The Regina Rexx Interpreter

Anders Christensen

<Anders.Christensen@idi.ntnu.no>
Norwegian Institute of Technology
University of Trondheim

10 October 1998

Originally converted to Word by Ataman

Additions and corrections by Mark Hessling <M.Hessling@qut.edu.au>

Copyright (C) 1992-1998 Anders Christensen <Anders.Christensen@idi.ntnu.no>

Trademarks

Unix is a registered trademark of UNIX System Laboratories, Inc.
MS-DOS is a registered trademark of Microsoft Corporation.
IBM andVM/CMS are registered trademarks of International Business Machines Corporation

Amiga was a registered trademark of Commodore-Amiga Inc.

1.

Table of Contents

ReXX LanNQUuage CONSIIUCESccoiiiiiiiiiiiiiiit e ettt e e e e e e e e e e e et et e eeee s meeememanmnmnmn s e e e eeeeas 6

IO R D= (] 11 o] TSP PPPPPPR PP 6
Example: Binary transferring filles. ... 6

1.2 NUITCIAUSES ...ttt e e e s bt e e e ek e e e e s ea b et e e s saanreeeeeesnnrnneeeenans 6
Example: TraCing COMMENTS.uuuiiiiiiiiiiaaa ettt ettt e e e e e e e s e s s rab b bbb e e e e e e e aaaaaeeeesaeaeaeaaannns 7
Example: Trailing COMMENTSuuiiiiiiiiiiae ettt e et e e e e e e e e e e e e e s s ammmmmeneeanea 7

1.3 COMIMANGS ...eeieieeiitt ettt e ettt e e e okttt e o4kt ee o4 a bttt o4 1a s e s ¢ ¢ e 111t 8
Example: MUItple @SSIGNMENT..........u i it e et e e e e e e s smmmmmmmmneneas 8
Example: Emulating a default ValUe..............oooiiiiiiii e e 9
Example: Space CONSIAEIAtIONScooiiiiiiiiiiiiie ettt e e e e e e e b s ee e e e e esnnae 9

L4 INSEIUCTIONS ...ttt ettt ettt ettt e ekt e e 4 st e e e 4okttt e e 4kttt e+ i £ 5544441 9
Example: Examples of tEDDRESINSIIUCTIONuuuiiiiiiiiiiiiaaeeei ettt e e e e e 11
Example: ThAVALUESUDKEYWOITcooi ittt et e e e e e e et eeeaeaaaeeas 12
Example: Beware assignments

Example: Subroutines and trace SEtHNGSouoi i e e s
Example: Labels are ITEralSo
Example: EVAIUALION OFOEToi ittt ettt e e et e e e e e e e eeeaeaeeeeaens
Example: Loop convergence For the reasons just explained, the instruction:ccooo e 16
Example: Difference betWe@MNTIL anNdWHILE............. et 16
Example: Dropping compound Variableseeiiiiiiiiiiiiiiie e 18......
Example: Tail-SUDSHIUtION IDROP..........eeeiiiiiaiae et e e e e e e 18
EXampPIe: DANGINGELSE ettt ettt ettt e e e e e e e e e s e e s bbbt beeaeeeeaaaaeeaaesaaannnns 20
Example: Self-modifying Program............c...uuiiiiiiiiii e e e 21
Example: Iterating a SIMPIBGEND.............coo ittt e e e e e e e e as 22
Example: Simulating relative accuracy with absolute aCCuracyccuveeeiiiiiiiiiiiiniiiieeeeeeee e 23
Example: Drawback OODPTIONS.........ooo ettt e e e e e e e e aeeeeeeas 24
Example: Dynamic execution BROCEDURE.............cccccoiiiiiiieee et 26
Example: INAIr@Ct @XPOSINGuuurrriiiiiiiiaaee ettt e e e e e e e e e et e et e e e e e e e e e e s e s sannnrenreees 27
Example: Order Of @XPOSINGcooiiiiiiiiii ittt et e e e e e e e e et e s e 27
Example: Global variables28
Example: MUItiple €Ntry POINTS.....cooii i 29
Example: WIINGSWITCHASIF ...ttt ettt et e e e e e e e e e e e aab e e e e eaaeas 31
Example: Transferring control to iNSide @ 100ccuuuiiiiiiiiiii e 32....
Example: Naming condition trapsooooiiiiiii ittt s e 33
Example: Named condition traps in TRLL.........uuiiiiiiiiiiiiiaaaaeeee e e e e e 33......

I @0 =T =1 (o] £ TP PP UPTTR 35

1.6 Implementation-Specific INfOrMAatioNooii e 36

REXX BUIIE-IN FUNCHONSceeieiitteeee ettt e e et e e e e s smne e e e e e s 38

2.1 General INfOrMALIONeiiiiiiiiie ettt e e e s bbb e e e e s st b e s enmmmeeneeneeeee e s e 38

2.2 REXX Standard Built-in FUNCLONS..........cvviiiiiiiiiiiiicc e AL

2.3 Implementation specific documentation for Regina
1670] 10 [11[0] 0 £ ST P TP PP PPPPRPO
3.1 What @re CONAITIONS.coiieiiiie ittt e e e e e e e e e e e et ee e e e ee e e e e e e s mmmmmnnes
3.2 The Mythical Standard CONAItIONooiiiiiiiiiii e
3.3 The REAI CONAITIONS.eeiiiiiiiiiiiie ettt e et e e s s e s e e e eeeesmmnn s reeeees
3.4 Further Notes 0N CONMItIONSciiiiiiiiiiie et e s e e e e e annes
3.5 Conditions in Regina
3.6 POSSIDIE FULUIE EXIENSIONSttt e et e e e e e e e e e e e e e e s e s s e ananneees
Stream INPUL @N OULPUL ...ttt e e e e e e e e e e e bbb e e e e et e e e e e e aee e s e mnmreeeeeeeeas
4.1 Background and Historical REMAIKS...........oouiiiiiiiiii e ——
4.2 REXX'S NOLION Of @ STEAIM.....coiiiiiiiiiiiie ittt e e ne e e e e snnnes
4.3 SNOM CrasSN-COUISEueeiiiiiiitiiiie ettt e e skt e e et a s e et e a4 1as s —
4.4 NAMING SEIEAMS ...ttt ettt e e e e e e e e e et e e e e et b et bt et ettt etteaaaaaeaaaaaasaaaaaanbasbbraeaaaeaneaeaesaaaannns
Example: Specifying file NAMES ... e

Example: Internal file NandIES...........oooeiii i 85
Example: Unix temMPOrary fil@Souvviiii oo e e e e 86
Example: Files in different dir€CtONES.uuuuiiiiiiiiiiieieee e eeeeeeeeee 86

4.5 Persistent and TranSIENt STrEAMS.uuuiiiiiiiiieeeee e e et e iis s rr e e e eaeeeeeeesessassaaeeaasannnnnns 87
Example: Determining Stream LY Pe...uuuu i i i e e e e e e e reeeeeees 81.

I @ o L=t gl gl = TR (= T= 1o DR
Example: NOt CloSing fil€Sccoco i

A O (o] [0 I TS 1 (== 10 [PPSR

4.8 Character-wise and LINE-WISE 1/O.......ccccccuiiiiiiiiiiiiiieee et e e e e e e e e e e e e e e e e e anean
Example: Character-wise handling of EOL...........ccooociiiiiiiiiiiieecee e

e T == o T o = o Uo A4V 4] o SRR
Example: Counting lines, words, and characters

4.10Determining the CUTeNt POSITION.cuiiiiiiiiiii ettt e e e e e e s
Example: Retrieving CUIreNt POSITIONuuuiieiieiiiiiieeee e e e e e s s e s seee e e e e e e e e e e e e e e e e e s e e s e smmmmnnens
Example: Improvedell fUNCHONuuiiiieiieii e s snnnnnennes

4. 11P0sSItionNing WIthin @ FIlEoiiiiiiii et smm e e e
Example: Repositioning in €@MPLY fil@S.......vivii oo
Example: Relative repoSItioNiNgccoicouiiiiiiiiieiir e e e e e s e s s s ee e e e e e e e e s
Example: DeStroying INECOUNL..........uuuuiiiiiiiiiiiiiee e e e e e e e e e e e e e e e e e s e e s s e smmmmennenees

4.12Errors: Discovery, Handling, and RECOVEIY............ciiiiiiiiiiiieeiiiiiiieee et eeeeenas 94.
Example: GeneraNOTREADY¥0Ndition handler............oooiiiiiiiiiieeeee e 94

4.13Common Differences and Problems with Stream I/O ..o 95
Example: File reading idiOmcoooiiiiiiiii e s e—
Example: Differing @nd-0f-lNES..........uuuiiiiiiiiiiic e e eeee e

Extensions

L Y oV o F= Y T =] 3 o L PSPPSR

5.2 Extensions and Standard REXX

5.3 Specifying Extensions in Regina

5.4 The TroubIE BeOINS. ... ettt e e+ —

5.5 The Format of thOPTIONSCIAUSEuuuuiiiiiiiiiiiee i e e ee et e e e e e e s s s s e ereeeaeaeeeesesennnnnnnnnes 110
Example: EXtensions Changing ParSingceeeee oot e e e e e s eeeeeeaaaeaeas 110....

5.6 Why You Should Seriously Consider Not USing EXtENSIONSuuiiiiiiiiiiiiiiiaaiaeies e 111

5.7 The Fundamental EXIENSIONSccoiiiiiiiiiiaiii ettt e e e e e e e aeaeeas 111

5.8 MELA-EXIENSIONS ...coiiiiiiiieii ittt et e e e e e e e e e e e e e e bbbt bbbt e et ettt e aaaeaaeeeaaaeaaeeaaaaaaannnan

5.9 SEMI-SLANUAITS ...ttt ettt e e e e e e e e e e e e e e e e ———— e

R 0 =T [= o LS SO PP PUUPTPTPTP

T STACK. ...ttt ettt e et e e e e e e e e e e ————— 1 nrae

6.1 Background and history

6.2 General functionality Of the StaCK............oooiiiii i
Example: Using the stack to transfer parameters .
Example: Process all strings in the stack...........ooooiiiiii e
Example: How to empty the StACKoooiiiiiiiiiiiieeie e
Example: Counting the number Of DUFFEISuuiiiii e

6.3 The interface between REXX and the Stack............ccooiiiiiiiiiiiiiiiiiiie e

6.4 Strategies for implementing StACKS.............uuuiiiiiiii e
Example: Commands takes input from the stack
Example: “EXeCING” COMMANGSooiiiiiiiiiiiiitie ettt e et e e e e e e e e e aaaaeeeeeeaas

6.5 Specific implementations Of STACKS ...

Interfacing ReXX t0 Other ProgramsS.......coooi it eere e e e e e eeaaaaaeas

7.1 Overview Of FUNCLIONS IN SAA ..o ettt e e e e e s eaaaaeaammnns

7.2 The Subcommand Handler INterface............oooiiiiiiiiiiieiiee e

7.3 The External Function Handler Interface ...

7.4 EXecUtiNg REXX COUE ... ittt e et e e e e e e e e e e s smmmmmmmmmmnneas

7.5 Variable POOl INEITACEooi i s

7.6 The System Exit Handler INtErfaceooo i e 141

Implementation Limits crvvvreeneees 148

8.1 WY USE LIMIES?.....iiiiiiie e iiiiite ettt e ettt e e e e sttt e e e e e sttt e e e e e s sttt e e e e s snsbbeeeeeeseennnneaeeensanneees 148

4

8.2 WAL LIMIES £0 COOSE? ... cieiieeie ettt ettt et e et e et e et e e et e et e e et e e e eeaa s eesan s cmmmmmmnemmnn eas 148
8.3 Required Limits

... 148
R @ [[T (@] o 1o (=] (=) T o 11 £ PP SPT SR 149
8.5 What the Standard dOES NOt SAY........uuuuiuiiiiiiiiiiiiieeieee et ies s rrereeeeeeeeee e s mmmmeemnnnees 149
8.6 What an Implementation is Allowed t0 “IgNOIe”c.uuiiiieiiiiiiiie e 150....
8.7 LIMItS IN REOINAeiiei ittt ee e e e e e e e e e e e e st e s s e s sttt eeereeeeeeaeeeeeeesse s s mmmmmmmmnmnen s sesseeees 151

LS B L= (101 1o T TP PRRP 152

L0 R =71 o] o To =T o 0|78 156

1. Rexx Language Constructs

In this chapter, the concept and syntaxR&EXX clauses are explained. At the end of the chapter there is a section describing
how Regina differs from standardREXX are described in the first part of the chapter.

1.1 Definitions

A program in theREXX language consists of clauses, which are divided into four groups: null clauses, commands, assignme
and instructions. The three latter groups (commands, assignments, and instructions) are collectively referred to asHtédemel
does not match the terminology in TRL2, where “instruction” is equivalent to what is known here as “statement”, and “keywc
instruction” is equivalent to what is known here as “instructidtiowever, | find the terminology used here simpler and less
confusing.

Incidentally, the terminology used here matches e.g. [DANEY].

A clause is defined as all non-clause-delimiters (i.e. blanks and tokens) up to and including a clause delimiter. A tiken delir
can be:

« An end-of-line, unless it lies within a comment. An end-of-line within a constant string is considered a syntax error {6}.
¢ A semicolon character that is not within a comment or constant string.

e A colon character, provided that the sequence of tokens leading up to it consists of a single symbol and whitespace. If :
sequence of two symbol tokens is followed by a colon, then this ingYisg AXcondition {13}.

Some systems have the ability to store a text file having a last line unterminated by an end-of-line character sequerade. In g
this applies to systems that use an explicit end-of-line character sequence to denote end-of-lines, e.g. Unix and MS-BOS s
Under these systems, if the last line is unterminated, it will strictly speaking not be a clause, since a clause must include i
terminating clause delimiter. However, some interpreters are likely to regard the end-of-file as a clause delimiter too. The
functionality ofINTERPRETgives some weight to this interpretation. But other systems may ignore that last, unterminated lir
or maybe issue a syntax error. (However, there SYNTAXcondition number adequately covering this situation.

Example: Binary transferring files

Suppose &EXX program is stored on an MS-DOS machine. Then, an end-of-line sequence is marked in the file as the two
characters carriage return and newline. If this file is transferred to a Unix system, then only newline marks the efaotHise.
to work, the file must be transferred as a text file. If it is (incorrectly) transferred as a binary file, the resulhighh&irox
system, each line seems to contain a trailing carriage return character. In an editor, it might look like this:

say ‘hello world'*M
say ‘that”s it'"M

This will probably raiseSYNTAXcondition {13}.

1.2 Null clauses

Null clauses are clauses that consist of only whitespace, or comments, or both; in addition to the terminating clause delimite
These clauses are ignored when interpreting the code, except for one situation: null clauses containing at least one comme
traced when appropriate. Null clauses not containing any comments are ignored in every respect.

Example: Tracing comments

The tracing of comments may be a major problem, depending on the context. There are basically two strategies for large
comments: either box multiple lines as a single comment, or make the text on each line an independent comment, as show

trace all

/*
This is a single, large comment, which spans multiple lines.
Such comments are often used at the start of a subroutine or
similar, in order to describe both the interface to and the
functionality of the function.

*/

[* This is also a large comment, but it is written as multiple */
[* comments, each on its own line. Thus, this is several clauses */
[* while the comment above is a single comment. */

During tracing, the first of these will be displayed as one large comment, and during interactive tracing, it will onlpgguse o
The second will be displayed as multiple lines, and will make several pauses during interactive tracing. An interpreter may <
this situation in several ways, the main objective must be to display the comments nicely the to programmer debugging the
Preferably, the code is shown in a fashion that resembles how it is entered in the file.

If a label is multiple defined, the first definition is used and the rest are ignored. Multiple defined labels iSYiNT&AX
condition.

A null clause is not a statement. In some situations, like aftiHE®Nsubclause, only a statement come. If a null clause is
provided, then it is ignored, and the next statement is used instead.

Consider the following code:
parse pull foo

if foo=2 then

say ‘foo is not 2’
else

/* do nothing */
say ‘that "sit’

This will not work the way indentation indicates, since the comment in this example is not a statement. Eh&E thads
beyond the comment, and connects toSA instruction which becomes ti# SE part. (That what probably not what the
programmer intended.) This code will shgt's it , only whenfoo is different from2. A separate instructiobOPhas
been provided in order to fill the need that was inadequately attempted filled by the comment in the code fragment above.

Example: Trailing comments

The effect that comments are not statements can be exploited when documenting the program, and simultaneously making
program faster. Consider the following two loops:

sum=0

doi=1to 10

[Fsum123..8910%
sum =sum + i

end
sum=0
doi=1to 10
sum=sum+i /*sum123..8910%
end

In the first loop, there are two clauses, while the second loop contains only one clause, because the comment is appended
already existing clause. During execution, the interpreter has to spend time ignoring the null clause in the first Igbp, while
second loop avoids this problem (assuming tracing is unenabled). Thus, the second loop is fasggroalhmsignificantly

faster for small loops. Of course, the comment could have been taken out of the loop, which would be equally fast to the se
version above.

1.3 Commands

1.3.1 Assignments

Assignments are clauses where the first token is a symbol and the second token is the egalkigrdéfinition opens for
some curious effects, consider the following clauses:

a ==
This is not a command, but an assignment of the expresdiomo the variabla. Of course, the expression is illegal
(=b) and will trigger &SYNTAXcondition for syntax error {35}. TRL2 defines the operateras consisting of two
tokens. Thus, in the first of these examples, the second tokethis third token is alse, while the fourth token ib.

This is an assignment of the vaki¢o the symboB, but since this is not a variable symbol, this is an illegal assignment
and will trigger theSYNTAXcondition for syntax error {31}.

“ hello” =foo
This is not an invalid assignment, since the first token in the clause is not a symbol. Instead, this becomes a comm:

arg =(foo) bar
The fourth statement is a valid assignment, which will space-concatenate the two variable ®onlaoidbar , and
assign the result to the variable syman . It is specifically not a\RGinstruction, even though it might look like one.
If you need arRRGinstruction which template starts with an absolute indirect positional pattern, is&RISE UPPER
ARGinstruction instead, or prepend a dot in front of the template.

An assignment can assign a value to a simple variable, a stem variable or a compound variable. When assigning to a stem
variable, all possible variable symbols having that stem are assigned the value. Note specifically that this is noglike setti
default, it is a one time multiple assignment.

Example: Multiple assignment

The difference betwedREXX’s multiple assignment and a default value can be seen from the following code:

foo. = ‘bar’
foo.1l = ‘baz’
drop foo.1

say foo.1 [* says “FOO.1" */

Here, theSAY instruction writes ouFOO.1, notbar . During theDROHRnNstruction, the variablEOO.1 regains its original,
uninitialized valug=00.1, not the value of its stem varialt©0., i.e.bar , because stem assignments does not set up a defaul

Example: Emulating a default value

If you want to set the compound variable to the value of its stem variable, if the stem is initialized, then you mayllasértge fo
code:

if (symbol(‘foo.")) then
foo.1 = foo.
else
drop foo.1

In this example, thEOO.1 variable is set to the value of its stem if the stem currently is assigned a value. EH&Dthe
variable is dropped.

However, this is probably not exactly the same, since the internal storage of the computer is likely to store variabtelike
andFOO0.3 only implicitly (after all, it can not explicitly store every compound haw@. as stem). After the assignment of
the value oFOO. to FOO.1, theFOO.1 compound variable is likely to be explicitly stored in the interpreter.

There is no way you can discover the difference, but the effects are often that more memory is used, and some fundtionalit
dumps all variables may dunfO.1 but notFOO.2 (which is inconsistent). See sectiRaxxVariablePool.

Example: Space considerations

Even more strange are the effects of the following short example:

foo. = ‘bar’
drop foo.1

Although apparently very simple, there is no way that an interpreter can release all memory refE@i@gltoAfter all, FOO.1

has a different value th&00.2, FOO.3, etc., so the interpreter must store information that tells iFB&.1 has the

uninitialized value.

These considerations may seem like nit-picking, but they will matter if you drop lots of compound variables for a stens which

previously received a value. Some programming idioms do this, so be aware. If you can do without assigning to the stem ve
then it is possible for the interpreter to regain all memory used for that stem’s compound variables.

1.4 Instructions

In this section, all instructions in stand&HEXX are described.
Extensions are listed later in this chapter.
First some notes on the terminology. What is called an instruction in this document is equivalent t@&cianises. That is,

each instruction can consist of one or more clauses. For instan8& Ylestruction is always a single instruction, but ithe
instruction is a multi-clause instruction. Consider the following script, where each clause has been boxed:

if a=b then

say ‘hello’
else

say ‘bye’

Further, theTHENor ELSE parts of this instruction might consist dD&@ENDpair, in which case thi& instruction might
consists of an virtually unlimited number of clauses.

Then, some notes on the syntax diagrams used in the following descriptions of the instructions. The rules applying to these
diagrams can be listed as:

e Anything written incourier font in the syntax diagrams indicates that it should occur as-is REX& program.
Whenever something is writtenitialic font, it means that the term should be substituted for another value, expression, or
terms.

< Anything contained within matching pairs of square brackets ([...]) are optional, and may be left out.

* Whenever a pair or curly braces is used, it contains two or more subclauses that are separated by the \jextitahbang
that the curly braces will be substituted for one of the subclauses it contains.

¢ Whenever the ellipsis (...) is used, it indicates that the immediately following subclauses may be repeated zero or more
The scope of the ellipsis is limited to the contents of a set of square brackets or curly braces, if it occurs there.

* Whenever the vertical béris used in any of the syntax diagrams, it means that either the term to the left, or the term to t
right can be used, but not both, and at least one of the must be used. This “bisegiaimrciative (can be used in sequence),
and it has lower priority than the square brackets (the scope of the vertical bar located within a pair of square brackets |
curly braces is limited to the text within those square brackets or curly braces.

* Whenever a semicolon) is used in the syntax diagram, it indicates that a clause separator must be present at the point.
may either be a semicolon character, or an end-of-line.

* Whenever the syntax diagram is spread out over more lines, it means that any of the lines can be used, but that the inc
lines are mutually exclusive. Consider the syntax:

SAY = symbol
string

This is equivalent to the syntax:
SAY [symbol | string]
Because in the first of these two syntaxes IA¥ part may be continued at either line.

e Sometimes the syntax of an instruction is so complex that parts of the syntax has been extracted, and is shown below il
expanded state. The following is an example of how this looks:

SAY something TO someone
something : = HI

HELLO

BYE

someone : = THE BOSS
YOUR NEIGHBOR

You can generally identify these situations by the fact that they comes a bit below the real syntax diagram, and that
contains a colon character after the name of the term to be expanded.

In the syntax diagrams, some generic names have been used for the various parts, in order to indicate common attributes f

term. For instance, whenever a term in the syntax diagrams is @glledt means that any validEXX expression may occur
instead of that term. The most common such names are:

10

condition
Indicates that the subclause can be any of the names of the conditioB¥NTGAX NOVALUEHALT, etc.

expr
Indicates that the subclause can be any XX expression, and will in general be evaluated as normal during
execution.
statement
Indicates that extra clauses may be inserted into the instruction, and that exactly one of them must be a true staten
string
Indicates that the subclause is a constant string, i.e. either enclosed by single quotes ('...") or double quotes ("...").
symbol
Indicates that the subclause is a single symbol. In general, wheyeveolis used as the name for a subclause, it mean:s
that the symbol will not automatically be expanded to the value of the symbol. But instead, some operation is perfor
on the name of the symbol.
template
Indicates that the subclause is a parsing template. The exact syntax of this is explain in a chapter on tracing, to be
later.

In addition to this, variants may also exists. These variants will have an extra letter or number appended to the name of the
subclause, and is used for differing between two or more subclauses having the same “type” in one syntax diagram. fn the «
other names for the subclauses, these are explained in the description of the instruction.

1.4.1 The ADDRESSnstruction

ADDRESS [environment [command]];
[[VALUE] expression];

The ADDRESSnstruction controls where commands to external environment are sent. difvattnmentindcommandare
specified, the given command will be executed in the given environment. The effect is the same as issuing an expression tc
executed as a command (see sedciommands), except that the environment in which it is to be executed can be explicitly
specified in theADDRESSlause. In this case, the special varid@will be set as usual, and tERRORPr FAILURE

conditions might be raised, as for normal commands.

Theenvironmenterm must be a symbol or a literal string. If it is a symbol, its “name” is used, i.e. it is not tail substituted or
swapped for a variable value. Tbemmandandexpressiorterms can be arfREXX expression.

REXX maintains a list of environments, the size of this list is at least two. If you select a new environment, it will beeput in th
front of this list, possibly squeezing the backend environment out of the list. Notecthainifands specified, the contents of the
environment stack is not changed. If you ooinmandenvironmentvill always be put in the front of the list of environments.

What happens if you specify an environment that is already in the list, is not completely defined. Strictly speaking,d/endhou
up with both entries in the list pointing to the same environment, but some implementations will probably handle this by
reordering the list, leaving the selected environment in the front.

If you do not specify any subkeywords or paramete DBDRESSthe effect is to swap the two first entries in the list of
environments. Consequently, executhigDRES 3nultiple times will toggle between two environments.

The second syntax form 8DDRESSs a special case of the first form withmmandmitted. If the first token aftekDDRESS
is VALUE then the rest of the clause is taken to be an expression, naming the environment which is to be made the current

environment. Usiny ALUEmakes it possible to circumvent the restriction that the name of the new environment must be a
symbol or literal string. However, you can not combine hbih UEandcommandn a single clause.

Example: Examples of the ADDRESSnstruction

11

You can omit th&/ALUEkeyword if the expression followingDDRESStarts with a token which is neither a symbol or a literal
string. Confused? Let’s look at some examples:

ADDRESS COMMAND

ADDRESS SYSTEM ‘copy’ fromfile tofile
ADDRESS system

ADDRESS VALUE newenv

ADDRESS

ADDRESS (oldenv)

The first of these sets the environm@@MMAN&SES the current environment. The second performs the contoagdin the
environmenSYSTEMusing the values of the symbélemfile andtofile as parameters. Note that this will not set
SYSTEMas current environment. The third example SMSTEMas current environment (it will be automatically converted to
upper case). The fourth example sets as the current environment the contents of thaesyarbo| pushingSYSTEMlown one
level in the stack. The fifth clause swap the two uppermost entries on the staSk,&rEMends up at the top. The last example
sets the current environment to whatever is the value of the sphdeol .

Example: The VALUEsubkeyword

Let us look a bit closer at the last example. Note the differences between the two clauses:
ADDRESS OLDENV

ADDRESS (OLDENV)

The first of these sets the current default environme®LIDENYwhile the second sets it to the value of the syrGh@dENV
Actually, in the latter, the subkeywoxtALUEhas been omitted, which is legal since the parameter starts with a special charac

If you are still confused, Don't Panic; the syntaXAIDRESSs somewhat bizarre, and you should not put too much effort into
learning all aspects of it. Just make sure that you understand how to use it in simple situations. Chances are that gauewill nc
use for its more complicated variants for quite some time.

Then, what names are legal as environments? Well, that is implementation-specific, but some names seems to be in comn
The nameCOMMANIB sometimes used to refer to an environment that sends the command to the operating system. Likewi
name of the operating system is often used for @4 UNIX, etc.). You have to consult the implementation specific
documentation for more information about this. Actually, there is not really any restrictions on what constitutes a legal
environment name (even the nullstring is legal). Some interpreters will allow you to select anything as current envirahifnent;
it is an illegal name, the interpreter will complain only when the environment is actually tried used. Other implemergations n
not allow you to select an invalid environment name at all.

Nor does the definition dREXX say anything about which environment is preselected when you invoke the interpreter, althot
TRL defines that one environment is automatically preselected when startirigE)>ascript. Note that there does not exist any
NONEenvironment in standai®EXX, i.e. an environment that ignores commands. But some interpreters implenTERADE
setting ??? whichccomplish this.

The list of environments will be saved across subroutine calls; so the effectADBRESSlauses in the subroutine will cease
upon return from the subroutine.

1.4.2 The ARGInstruction
ARG [template 1;

12

The ARGinstruction will parse the argument strings at the current procedural level into the template. Parsing will be performs
upper case mode. This clause is equivalent to:

PARSE UPPER ARG [template 1];

For more information, see tRRARSEiInstruction. Note that this is the only situation where a multistring template is relevant.

Example: Beware assignments

The similarity betweeARGandPARSE UPPER ARGhas one exception. Suppose BRSE UPPER ARGhas an absolute
positional pattern as the first element in the template, like:

parse upper arg =(foo) bar

This is not equivalent to ahRGinstruction, becaus&RGinstruction would become an assignment. A simple trick to avoid this
problem is just to prepend a placeholder periddd the pattern, thus the equal sigi i no longer the second token in the new
ARGinstruction. Also, unless the absolute positional pattern is indirect, the equal sign can be removed without changing the
meaning of the statement.

1.4.3 The CALL Instruction

CALL = routine [parameter |
[parameter]...1;
{ON | OFF} condition [NAME label 1;

The CALL instruction invokes a subroutine, nameddytine, which can be internal, built-in, or external; and the three
repositories of functions are searched in that order. are searchiedtipein that order. The tokemutine must be either a literal
string or a symbol (which is taken literally). Howevergifitineis a literal string, the pool of internal subroutines is not searchec
Note that some interpreters may have additional repositories of labels to search.

In aCALL instruction, eaclparameteris evaluated, strictly in order from left to right, and passed as an argument to the
subroutine. Aparametemight be left out (i.e. an empty argument), which is not the same as passing the nullstring as argum

Users often confuse a parameter which is the nullstring with leaving out the parameter. However, this is two very different
situations. Consider the following calls to the built-in funcliétANSLATE():

say translate('abcDEF’) /* says ABCDEF */
say translate(‘abcDEF’,”) /* says abcDEF */

say translate(‘abcDEF’,,”) /*says*‘ '*/

The TRANSLATE() function is able to differ between receiving the nullstring (i.e. a defined string having zero length), from t
situation where a parameter was not specified (i.e. the undefined string) TRIABESLATE() is one of the few functions where
the parameters’ default values are very different from the nullstring, the distinction becomes very visible.

For theCALL instruction, watch out for interference with line continuation. If there are trailing commas, it might be interpretec
line continuation. If & ALL instruction use line continuation between two parameters, two commas are needed: one to separ
the parameters, and one to denote line continuation.

A number of settings are stored across internal subroutine calls. An internal subroutine will inherit the values in effieet when
call is made, and the settings are restored on exit from the subroutine. These settings are:

« Conditions traps, see chap@onditions.
e Current trapped condition, see sectiohS.
* NUMERIGsettings, see sectiddumeric.

13

* ADDRESSnvironments, see sectidwadress.
* TRACEmMode, see sectiofrace and chapter [not yet written].
e The elapse time clock, see sectiime.

Also, theOPTIONSsettings may or may not be restored, depending on the implementation. Further, a number of other thinc
may be saved across internal subroutines. The effect on variables are controlleBR@@EDURIEBStruction in the subroutine
itself. The state of alDOloops will be preserved during subroutine calls.

Example: Subroutines and trace settings

Subroutines can not be used to set various settings like trace séttilMERICsettings, etc. Thus, the following code will not
work as intended:

say digits() /* says 9, maybe */
call inc_digits

say digits() /* still says 9 */
exit

inc_digits:
numeric digits digits() + 1
return

The programmer probably wanted to call a routine which incremented the precision of arithmetic operations. However, sinc
setting ofNUMERIC DIGITS is saved across subroutine calls, the new value s&t idigits is lost at return from that
routine. Thus, in order to work correctly, tR&/MERIGnstruction must be located in the main routine itself.

Built-in subroutines will have no effect on the settings, except for explicitly defined side effects. Nor will externairssrout
change the settings. For all practical purposes, an external subroutine is conceptually equivalent to reinvoking theimgerprete
totally separated process.

If the name of the subroutine is specified by a literal string, then the name will be used as-is; it will not be conygrtedasel
This is important because a routine which contains lower case letters can only be invoked by using a literal stringires the rot
name in theCALL instruction.

Example: Labels are literals

Labels are literal, which means that they are neither tail-substituted nor substituted for the value of the variablthiattter,
means that the setting SfUMERIC DIGITS has no influence on the section of labels, even when the labels are numeric
symbols. Consider the following code:

call 654.32
exit

654.321:
say here
return

654.32:
say there
return

In this example, the second of the two subroutines are always chosen, independent of the NetMIERITC DIGITS.

Assuming thaNUMERIC DIGITS are set to 5, then the number 654.321 is converted to 654.32, but that does not affect labe
Nor would a stateme@ALL 6.5432E2 call the second label, even though the numeric value of that symbol is equal to that
one of the labels.

14

The called subroutines may or may not return data to the caller. In the calling routine, the speciaREgBIEWIll be set to
the return value or dropped, depending on whether any data was returned or not. TWEL timstruction is equivalent to
calling the routine as a function, and assigning the return vaRE$&JLT except when theoutine does not return data.

In REXX, recursive routines are allowed. A minimum number of 100 nested internal and external subroutine invocations, an
support for a minimum of 10 parameters for each call are requirBEKX. See chaptdrimits for more information concerning
implementation limits.

When the token followin@€ALL is eitherONor OFF, theCALL instruction is not used for calling a subroutine, but for setting up
condition traps. In this case, the third token of the clause must be the name of a condition, which setup is to be changed.

If the second token waBN then there can be either three or five tokens. If the five token version is used, then the fourth toke
must beNAMEand the fifth token is taken to be the symbolic name of a label, which is the condition handler. This name can |
either a constant string, or a symbol, which is taken literally. Vi@iigis used, the named condition trap is turned off.

Note that th@ONandOFFforms of theCALL instruction were introduced in TRL2. Thus, they are not likely to be present on
older interpreters. More information about conditions and condition traps are given in a ClogyoliEons.

1.4.4 The DQENDInstruction

DO|[repetitor 1[conditional 1;
[clauses]
END|[symbol 1;

repetitor .= symbol = expri [TO exprt]
[BY exprb][FOR exprf]
exprr
FOREVER
conditional :=WHILE exprw
UNTIL expru

The DOENDinstruction is the instruction used for looping and grouping several statements into one block. This is a multi-cle
instruction.

The most simple case is when there isepetitor or conditional in which case it works likBEGINENDin Pascal of ...} in C.
l.e. it groups zero or moREXX clauses into one conceptual statement.

Therepetitor subclause controls the control variable of the loop, or the number of repetitiorexpFhgubclause may specify a
certain number of repetitions, or you may G€REVERo0 go on looping forever.

If you specify the control variabymbo] it must be a variable symbol, and it will get the initial vadupri at the start of the
loop. At the start of each iteration, including the first, it will be checked whether it has reached the value spesifigdAithe
end of each iteration the vale&prbis added to the control variable. The loop will terminate after at expsfiterations. Note
that all these expressions are evaluated only once, before the loop is entered for the first iteration.

You may also specifyNTIL or WHILE, which take a boolean expressi@iHILE is checked before each iteration, immediately
after the maximum number of iteration has been perfortdBdIL is checked after each iteration, immediately before the contrc
variable is incremented. It is not possible to specify ki IL andWHILE in the sam@®OQinstruction.

The FOREVEReyword is only needed when there iscomditional and theepetitorwould also be empty FOREVERvas not
specified. Actually, you could rewrite this B® WHILE 1 . The two forms are equivalent, except for tracing output.

The subclauseBO, BY, andFORmay come in any order, and their expressions are evaluated in the order in which they occur.
However, the initial assignment must always come first. Their order may affect your program if these expressions have any
effects. However, this is seldom a problem, since it is quite intuitive. Note that the counting of iteratioRRshbclause has
been specified, is never affected by the settindlWMERIC DIGITS.

15

Example: Evaluation order

What may prove a real trap, is that although the value to which the control variable is set is evaluated before anyssioesexp
in therepetitor, it is assigned to the control variable after all expressions iepieditorhave been evaluated.

The following code illustrates this problem:

ctrl=1

do ctrl=f(2) by f(3) to f(5)
call func(6)

end

call func(7)

exit

f:
say ‘ctrl="ctrl ‘arg="arg(1)
return arg(1)

This code produces the following output:

ctrl=1 arg=2
ctrl=1 arg=3
ctrl=1 arg=5
ctrl=2 arg=6
ctrl=5 arg=6
ctrl=8 arg=7

Make sure you understand why the program produces this output. Failure to understand this may give you a surprise later,
you happen to write a compl®Qinstruction, and do not get the expected result.

If the TOexpression is omitted, there is no checking for an upper bound of the expressioBYI&thelause is omitted, then the
default increment of 1 is used. If tRORsubclause is omitted, then there is no checking for a maximum number of iterations.

Example: Loop convergence For the reasons just explained, the instruction:

do ctrl=1
nop /* and other statements */
end

will start with CTRLbeing 1, and then iterate through 2, 3, 4, ..., and never terminate ext&#WY RETURNSIGNAL, or
EXIT.

Although similar constructs in other languages typically provokes an overflow at some point, something “strange” happens i
REXX. Whenever the value ofrl becomes too large, the incrementation of that variable produces a result that is identical
the old value ottrl . ForNUMERIC DIGITS set to 9, this happens wheinl becomes 1.00000000E+9. When adding 1 to
this number, the result is still 1.00000000E+9. Thus, the loop “converges” at that value.

If the value oNUMERIC DIGITS is 1, then it will “converge” at 10, or 1E+1 which is the “correct” way of writing that number
underNUMERIC DIGITS 1 . You can in general disregard loop “convergence”, because it will only occur in very rare
situations.

Example: Difference between UNTIL and WHILE

16

One frequent misunderstanding is that\ttidILE andUNTIL subclauses of tHeGENDinstruction are equivalent, except that
WHILE s checked before the first iteration, wHU&ITIL is first checked before the second iteration.

This may be so in other languages, buREXX. Because of the order in which the parts of the loop are performed, there are
other differences. Consider the following code:

count=1
do i=1 while count \=5
count=count+ 1

end
say i count
count=1

do i=1 until count=5
count=count+ 1

end

say i count

After the first loop, the numbers 6 and 5, while in the second loop, the numbers 5 and 5 are written out. The reason is that ¢
WHILE clause is checked after the control variable of the loop has been incrementedJbiftlarexpression is checked before
the incrementation.

A loop can be terminated in several waySRBETURNr EXIT instruction terminates all active loops in the procedure levels
terminated. Further, &IGNAL instruction transferring control (i.e. neitheBEGNAL ON nor SIGNAL OFF) terminates all

loops at the current procedural level. This applies even to “impBtBENAL instructions, i.e. when triggering a condition

handler by the method &IGNAL. A LEAVE instruction terminates one or more loops. Last but not least, a loop can terminate
itself, when it has reached its specified stop conditions.

Note that theSIGNAL instruction terminates also non-repetitive loops (or ralDGENDpairs), thus after aBIGNAL
instruction, you must not execute BNDinstruction without having executed its correspondhfirst (and after th&IGNAL
instruction). However, as long as you stay away fronEtiBs, it is all right according to TRL to execute code within a loop
without having properly activated the loop itself.

Note that on exit from a loop, the value of the control variable has been incremented once after the last iteration,df the loop
loop was terminated by th&HILE expression, by exceeding the number of max iterations, or if the control variable exceeded
stop value. However, the control variable has the value of the last iteration if the loop was terminatéiNTgytithexpression,

or by an instruction inside the loop (eLdcAVE, SIGNAL, etc.).

The following algorithm irREXX code shows the execution ob®instruction, assuming thakpri, exprt, exprh exprf, exprw
expry andsymbolhave been taken from the syntax diagrarD@f

@expri= expri
@exprt= exprt
@exprb = exprb
@exprf = exprf
@iters=0

symbol = @expri

start_of loop:
if symbol > @extrt then signal after_loop
if @iters > @exprf then signal after_loop
if exprw then signal after_loop
instructions
end_of _loop:
if\ expru then signal after_loop
symbol = symbol + @exprb
signal start_of _loop

17

after_loop:

Some notes are in order for this algorithm. First, it useSKB&AL instruction, which is defined to terminate all active loops.
This aspect of th8IGNAL instruction has been ignored for the purpose of illustratin@@eand consequently, the code shown
above is not suitable for nested loops. Further, the order of the first four statements should be identical to the order in the
corresponding subclauses in tiepetitor. The code has also ignored thatWiElILE and theUNTIL subclauses can not be used
in the sam@®Oinstruction. And in addition, all variables starting with the at s@ndre assumed to be internal variables, private
to this particular loop. Withiinstructions aLEAVEinstruction is equivalent teignal after_loop , While alITERATE
instruction is equivalent teignal end_of _loop

1.4.5 The DRORnNstruction
DROPsymbol [symbol ...];

The DROHRnstruction makes the namedriables uninitialized, i.e. the same state that they had at the startup of the program. T
list of variable names are processed strictly from left to right and dropped in that order. Consequently, if one ofléseteariab
be dropped is used in a tail of another, then the order might be significant. E.g. the followbig®mmstructions are not
equivalent:

bar = ‘a’
drop bar foo.bar /* drops ‘BAR’ and ‘FOO.BAR’ */
bar = ‘a’

drop foo.bar bar /* drops ‘FOO.a’ and ‘BAR’

Thevariableterms can be either a variable symbol or a symbol enclosed in parentheses. The former form is first tail-substitt
and then taken as the literal name of the symbol to be dropped. The result names the variable to drop. In the lattealfieem, the
of the variable symbol inside the parentheses is retrieved and taken as a space separated list of symbols. Each ofsligse sy
tail-substituted (if relevant); and the result is taken as the literal name of a variable to be dropped. However, thismrbcess
recursive, so that the list of names referred to indirectly can not itself contain parentheses. Note that the second form was
introduced in TRL2, mainly in order to makéTERPRETunnecessary.

In general, things contained in parentheses can be anyREXX expression, but this does not apply toBiROPPARSE and
PROCEDURIBAstructions.

Example: Dropping compound variables

Note a potential problem for compound variables: when a stem variable is set, it will not set a default value, rathssignwill a
“all possible variables” in that stem collection at once. So dropping a compound variable in a stem collection for whith the s
variable has been set, will set that compound variable to the original uninitialized value; not the value of the stenSeariable.
sectionAssign for further notes on assignments. To illustrate consider the code:

foo. = ‘default’
drop baz bar foo.bar
say foo.bar foo.baz /* says ‘FOO.BAR default’ */

In this example, th&AY instruction writes out the value of the two compound varidb@S.BARandFOO.BAZ When

performing tail-substitution for these, the interpreter finds that B&fRandBAZ are uninitialized. FurtheFOO.BARhas also
been made uninitialized, whilgEDO.BAZ has the value assigned to it in the assignment to the stem variable.

Example: Tail-substitution in DROP

For instance, suppose that the varidi@Ohas the valubar . After being dropped;OOwill have its uninitialized value, which
is the same as its nanteDO If the variable to be dropped is a stem variable, then both the stem variable and all compound
variables of that stem become uninitialized.

18

bar = 123
drop foo.bar /* drops ‘FOO.123" */

Technically, it should be noted that some operations involving dropping of compound variables can be very space consumir
Even though the standard does not operate with the term “default value” for the value assigned to a stem variableyéyat is th
in which it is most likely to be implemented. When a stem is assigned a value, and some of its compound variables are droy
afterwards, then the interpreter must use memory to store references to the variables dropped. This might seem couaterintt
first, since droppingught to release memory, not allocate more.

There is a parallel betwe®@ROPandPROCEDURE EXPOSHowever, there is one important difference, although
PROCEDURE EXPOSEHill expose the name of a variable enclosed in parentheses before starting to expose the symbols th:
variable refers to, this is not so OROP If DROPhad mimicked the behavior BROCEDURE EXPOSR this matter, then the
whole purpose of indirect specifying of variableiROPRwvould have been defeated.

Dropping a variable which does not have a value is not an error. There is no upper limit on the number of variables that ca
dropped in on®RORclause, other than restrictions on the clause length. If an exposed variable is dropped, the variable in tf
caller is dropped, but the variable remains exposed. If it reassigned a value, the value is assigned to a variable moukiaealle

1.4.6 The EXIT Instruction
EXIT[expr];

Terminates th&@EXX program, and optionally returns the expressigprto the caller. If specifiedgxprcan be any string. In
some systems, there are restrictions on the range of valid valuesdrpth@ften the return expression must be an integer, or
even a non-negative integer. This is not really a restriction dREXeX language itself, but a restriction in the environment in
which the interpreter operates, check the system dependent documentation for more information.

If expris omitted, nothing will be returned to the caller. Under some circumstances that is not legal, and might be handled ¢
error or a default value might be used. BMT instruction behaves differently in a “program” than in an external subroutine. I
a “program”, it returns control to the caller e.g. the operating system command interpreter. While for an external routine, it
returns control to the callingEXX script, independent of the level of nesting inside the external routine being terminated.

RETURN EXIT
At the main level of the program Exits program Exits program
At an internal subroutine level of the program Exits subroutine, and reti¥rid program
At the main level of an external subroutine Exits the external subroutine EXxits the externalisubrouti

At a subroutine level within an external subroutixits the subroutine, returrgnExits the external subrouti
calling routine within external
subroutine script

Actions of RETURNand EXIT Instructions

If terminating an external routine (i.e. returning to the calREXX script) any legaREXX string value is allowed as a return
value. Also, no return value can be returned, and in both cases, this information is successfully transmitted backntp the calli
routine. In the case of a function call (as opposed to a subroutine call), returning no value V@Y KigeXcondition {44}. The
table above describes the actions taken bfEXid andRETURNNstruction in various situations.

1.4.7 The IF /TTHENELSE Instruction
IF expr [;] THEN [;] statement
[ELSE [;] statement]

This is a normal if-construct. First the boolean expressipnis evaluated, and its value must be either 1 (everything else is
a syntax error which rais&YNTAXcondition number {34}). Then, the statement following eifRidENor ELSE is executed,
depending on whethexprwasl or 0, respectively.

19

Note that there must come a statement dtENandELSE It is not allowed to put just a null-clause (i.e. a comment or a label
there. If you want th@ HENor ELSE part to be empty, use tiNOPinstruction. Also note that you can not directly put more than
one statement aft&diHENor ELSE, you have to package them im@®ENDpair to make them a single, conceptual statement.

After THEN afterELSE, and beford HEN you might put one or more clause delimiters (newlines or semicolons), but these ar
not required. Also, thELSE part is not required either, in which case no code is execut&grifs false (evaluates). Note

that there must also be a statement separator Hef@E, since the that statement must be terminated. This also applies to the
statement afteELSE However, sincatatemenincludes a trailing clause delimiter itself, this is not explicitly shown in the
syntax diagram.

Example: Dangling ELSE

Note the case of the “danglin@LSE. If anELSE part can correctly be thought of as belonging to more thatFofTéHEN
instruction pair, it will be parsed as belonging to the closest (i.e. inneriRoststruction:

parse pull foo bar

if foo then
if bar then
say ‘foo and bar are true’
else

say ‘one or both are false’

In this code, th&LSE instruction is nested to the innermist, i.e. tolF BAR THEN .

1.4.8 The INTERPRET Instruction
INTERPRET expr ;

The INTERPRETInstruction is used to dynamically build and exe®EXX instructions during run-time. First, it evaluates the
expressiorexpr, and then parses and interprets the result as a (possibly emptyRESXH¥finstructions to be executed. For
instance:

foo = ‘hello, world’
interpret ‘say “’foo’!”

executes the stateme®AY “hello, world!” after having evaluated the expression followiNGERPRET. This example
shows several important aspect$dTERPRET Firstly, it's very easy to get confused by the levels of quotes, and a bit of
caution should be taken to nest the quotes correctly. Secondly, thelNIERPRETdoes not exactly improve readability.

Also, INTERPRETwWill probably increase execution time considerably if put inside loops, since the interpreter may be forced
reparse the source code for each iteration. Many optimiiX interpreters (and in particul®EXX compilers) has little or

no support fotNTERPRET. Since virtually anything can happen inside it, it is hard to optimize, and it often invalidates
assumptions in other parts of the script, forcing it to ignore other possible optimizations. Thus, you shoUNT&RIRRET

when speed is at a premium.

There are some restrictions on which statements can be indid@ BRPRETstatement. Firstly, labels cannot occur there. TRL
states that they are not allowed, but you may find that in some implementations labels occurring there will not affdct the labe
symbol table of the program being run. Consider the statement:

interpret ‘signal there; there: say hallo’
there:

This statement transfers control to the IalidEREIN the program, never to tAHERElabel inside the expression of the

INTERPRETInstruction. Equivalently, angIGNAL to a labelTHEREelsewhere in the program never transfers control to the
label inside théNTERPRETinstruction. However, labels are strictly speaking not allowed insiiIERPRETstrings.

20

Example: Self-modifying Program

There is an idea for a self-modifying progranRIBEXX which is basically like this:

string ="
do i=1 to sourceline()

string = string ;" sourceline(i)
end

string = transform(string)
interpret string
exit

transform: procedure
parse arg string
[* do some transformation on the argument */
return string

Unfortunately, there are several reasons why this program will not wEXX, and it may be instructive to investigate why.
Firstly, it uses the labaIRANSFORMvhich is not allowed in the argumentidTERPRET. The interpret will thus refer to the
TRANSFORNbutine of the “outermost” invocation, not the one “in” tNEFERPRETstring.

Secondly, the program does not take line continuations into mind. WorSQWRCELINE() built-in function refers to the
data of the main program, even inside the code executed BYyTERPRETinstruction. Thirdly, the program will never end, as
it will nest itself up till an implementation-dependent limit for the maximum number of N&SIERPRETinstructions.

In order to make this idea work better, temporary files should be used.

On the other hand, loops and other multi-clause instructiondFlilkendSELECToccur inside alNTERPRETexpression, but
only if the whole instruction is there; you can not start a structured instruction indl@ERPRETinstruction and end it
outside, or vice-versa. However, the instruc®GNAL is allowed even if the label is not in the interpreted string. Also, the
instruction TERATE andLEAVEare allowed in alNTERPRET, even when they refer to a loop that is external to the
interpreted string.

Most of the time|NTERPRETis not needed, although it can yield compact and interesting code. If you do not strictly need
INTERPRET, you should consider not using it, for reasons of compatibility, speed, and readability. Many of the traditional uc
of INTERPREThave been replaced by other mechanisms in order to decrease the necR¢EEBRERET, e.g. indirect
specification of variables IEXPOSEandDRORthe improved/ALUE() built-in function, and indirect specification of patterns

in templates.

Only semicolon () is allowed as a clause delimiter in the string interpreted BMBBERPRETinstruction. The colon of labels

can not be used, since labels are not allowed. Nor does specific end-of-line character sequences have any defined meanin
However, most interpreters probably allow the end-of-line character sequence of the host operating system as alternative ¢
delimiters. It is interesting to note that in the context of HEERPRET instruction, an implicit, trailing clause delimiter is

always appended to the string to be interpreted.

1.4.9 The ITERATE Instruction
ITERATE[symbol];

TheITERATE instruction will iterate the innermost, active loop in whichlfRERATE instruction is located. Bymbolis
specified, it will iterate the innermost, active loop hawdgmbolas control variable. The simdEIENDstatement without a
repetitorandconditionalis not affected byTERATE. All active multiclause structureBQ SELECT, andIF) within the loop
being iterated are terminated.

21

The effect of alTERATE is to immediately transfer control to tB&IDstatement of the affected loop, so that the next (if any)
iteration of the loop can be started. It only affects loops on the current procedural level. All actions normally asshcibéed w
end of an iteration is performed.

Note thatsymbolmust be specified literally; i.e. tail substitution is not performed for compound variables. So if the control
variable in theDOinstruction isSFOO.BAR thensymbolmust usé=O0.BARIf it is to refer to the control variable, no matter the
value of theBARvariable.

Also note thatTERATE (andLEAVE are means of transferring control in the program, and therefore they are related to
SIGNAL, but they do have the effect of automatically terminating all active loops on the current procedural leve$]@Nigh
has.

Two types of errors can occur. Eittsgrmboldoes not refer to any loop active at the current procedural level;syrtiolis not
specified) there does not exist any active loops at the current procedural level. Both errors are repéNadd Zsondition
{28}.

1.4.10 The LEAVEInstruction
LEAVE[symbol];

This statement terminates the innermost, active loggyrifbolis specified, it terminates the innermost, active loop hasyngpol

as control variable. As for scope, syntax, errors, and functionality, it is identiF®RATE, except that EAVEterminates the
loop, whileITERATE lets the loop start on the next iteration normal iteration. No actions normally associated with the normal
end of an iteration of a loop is performed fdrBAVE instruction.

Example: Iterating a simple DQEND

In order to circumvent this, a simdlEJENDcan be rewritten as this:

if foo then do until 1
say ‘This is a simple DO/END group’
say ‘but it can be terminated by’
leave
say ‘iterate or leave’

end

This shows howTERATE has been used to terminate what for all practical purposes is a BiGiigDgroup. Eithel TERATE
or LEAVEcan be used for this purpose, althoufAVEis perhaps marginally faster.

1.4.11 The NOPInstruction
NOP ;

The NOPiInstruction is the “no operation” statement; it does nothing. Actually, that is not totally true, sih&@Rimstruction is
a “real” statement (and a placeholder), as opposed to null clauses. I've only seen this used in two circumstances.

e After anyTHENor ELSE keyword, where a statement is required, when the programmer wants arTetBpigr ELSE part.
By the way, this is the intended useN®DP Note that you can not use a null clause there (label, comment, or empty lines)
since these are not parsed as “independent” statements.

« | have seen it used as “trace-bait”. That is, when you start interactive trace, the statement immediately BA&€Ehe
instruction will be executed before you receive interactive control. If you don’t want that to happen (or mayeQke
instruction was the last in the program), you need to add an extra dummy statement. However, in this context, labels a
comments can be used, too.

22

1.4.12 The NUMERICQnstruction

NUMERIC =DIGITS[expr];
FORM [SCIENTIFIC | ENGINEERING | [VALUE expr 1;
FUZZ[expr];

REXX has an unusual form of arithmetic. Most programming languages use integer and floating point arithmetic, where nu
are coded as bits in the computers native memory words. HovrREXX uses floating point arithmetic of arbitrary precision,
that operates on strings representing the numbers. Although much slower, this approach gives lots of interesting functionali
Unless number-crunching is your task, the extra time spent by the interpreter is generally quite acceptable and often almost
unnoticeable.

The NUMERIGCstatement is used to control most aspects of arithmetic operations. It has three distinEtl®Im%; FORMand
FUZZ which to choose is given by the second token in the instruction:

DIGITS
Is used to set the number of significant digits in arithmetic operations. The initial value is 9, which is also the defaul
value ifexpris not specified. Large values BIGITS tend to slow down some arithmetic operations considerably. If
specified,exprmust be a positive integer.

FUzz
Is used in numeric comparisons, and its initial and default value is 0. Normally, two numbers must have identical nu
values for a number of their most significant digits in order to be considered equal. How many digit are considered |
determined bYIGITS . If DIGITS is 4, then 12345 and 12346 are equal, but not 12345 and 12356. However, wher
FUZZis non-zero, then only tHRIGITS minusFUZZ most significant digits are checked. E.dDIGITS is 4 and
FUZZare 2, then 1234 and 1245 are equal, but not 1234 and 1345.

The value folFUZZ must be a non-negative integer, and less than the valI&OFS . FUZZis seldom used, but is
useful when you want to make comparisons less influenced by inaccuracies. Note that using with Valdgshatt is
close toDIGITS may give highly surprising results.

FORM
Is used to set the form in which exponential numbers are written. It can be set tS@IHNITIFIC or
ENGINEERING The former uses a mantissa in the range 1.000... to 9.999..., and an exponent which can be any int
while the latter uses a mantissa in the range 1.000... to 999.999..., and an exponent which is dividable by 3. The ini
and default setting SCIENTIFIC . Following the subkeyworBORMmnay be the subkeywor@®&CIENTIFIC and
ENGINEERING or the subkeyworf# ALUE In the latter case, the rest of the statement is considered an expression,
which will evaluate to eitheBCIENTIFIC or ENGINEERING However, if the first token of the expression following
VALUEis neither a symbol nor literal string, then YWl UEsubkeyword can be omitted.

The setting oFORMever affects the decision about whether to choose exponential form or normal floating point form; it only
affects the appearance of the exponential form once that form has been selected.

Many things can be said about the usefulne$3JafZ My impression is that it is seldom usedrRBXX programs. One problem

is that it only addresses relative inaccuracy: i.e. that the smaller value must be within a certain range, that is dgtarmined b
percentage of the larger value. Often one needs absolute inaccuracy, e.g. two measurements are equal if their diffesence a
than a certain absolute threshold.

Example: Simulating relative accuracy with absolute accuracy

As explained aboveREXX arithmetic has only relative accuracy, in order to obtain absolute accuracy, one can use the follow
trick:

numeric fuzz 3
if a=b then

say ‘relative accuracy’
if abs(a-b)<=500 then

23

say ‘absolute accuracy’

In the firstIF instruction, ifA is 100,000, then the range of valuesBarhich makes the expression true is 99,500—100,499, i.e
an inaccuracy of about +-500.Afhas the value 10,000,000, tHemust be within the range 9,950,000—10,049,999; i.e. an
inaccuracy of about +-50,000.

However, in the secorlé instruction, assuming is 100,000, the expression becomes true for valuBsrothe range 99,500—
100,500. Assuming that is 10,000,000, the expression becomes true for valugeathe range 9,999,500—10,000,500.

The effect is largely to force an absolute accuracy for the second example, no matter what the AalindB afe. This
transformation has taken place since an arithmetic subtraction is not affectedNiyMERIC FUZZ only numeric comparison
operations. Thus, the effect MfUMERIC FUZZon the implicit subtraction in the operatienn the firstiF has been removed by
making the subtraction explicit.

Note that there are some minor differences in how numbers are rounded, but this can be fixed by transforming the expressi
something more complex.

To retrieve the values set iNtUMERICyou can use the built-in functioBBGITS() , FORM(), andFUZZ() . These values are
saved across subroutine calls and restored upon return.

1.4.13 The OPTIONSInstruction
OPTIONS expr ;

The OPTIONSInstruction is used to set various interpreter-specific options. Its typical uses are to seled®E&i¥adfialects,
enable optimizations (e.g. time versus memory considerations), etc. No standard dictates what may @RTWINS

keyword, except that it should be a vakiEXX expression, which is evaluated. Currently, no specific options are required by a
standard.

The contents oéxpris supposed to be word based, and it is the intention that more than one option can be specified in one
OPTIONSiInstruction. REXX interpreters are specifically instructed to ign@RTIONSwords which they do not recognize.

That way, a program can use run-time options for one interpreter, without making other interpreters trip when they see thos
options. An example dPTIONmay be:

OPTIONS 4.00 NATIVE_FLOAT

The instruction might instruct the interpreter to start enforcing language level 4.00, and to use native floating pointmumbers
stead of th&REXX arbitrary precision arithmetic. On the other hand, it might also be completely ignored by the interpreter.

It is uncertain whether modes selecteddBTIONSwill be saved across subroutine calls. Refer to implementation-specific
documentation for information about this.

Example: Drawback of OPTIONS

Unfortunately, the processing of t#TIONSiInstruction has a drawback. Since an interpreter is instructed to ignore option-
settings that it does not understand, it may ignore options which are essential for further processing of the prograng Contint
might cause a fatal error later, although the behavior that would most precisely point out the problem is a complainhaheut tf
supporteddPTION setting. Consider:

options ‘cms_bifs’
pos = find(haystack, needle)

If this code fragment is run on an interpreter that does not supparnthebifs option setting, then th@PTIONSinstruction

may still seem to have been executed correctly. However, the second clause will generally crashFiioé) thiunction is
still not available. Even though the real problem is in the first line, the error message is reported for the second line.

24

1.4.14 The PARSEInstruction

PARSE [UPPER] type [template 1];
type ={ARG | LINEIN | PULL | SOURCE | VERSION }
VALUE [expr 1 WITH
VAR symbol

The PARSEinstruction takes one or more source strings, and then parses them ugsngplagefor directions. The process of
parsing is one where parts of a source string are extracted and stored in variables. Exactly which parts, is determined by th
patterns. A complete description of parsing is given in chapter [not yet written].

Which strings are to be the source of the parsing is defined bypsubclause, which can be any of:

ARG.
The data to use as the source during the parsing is the argument strings given at the invocation of this procedure le
Note that this is the only case where the source may consist of multiple strings.

LINEIN.
Makes the® ARSEinstruction read a line from the standard input stream, aslifiié€IN() built-in function had been
called. It uses the contents of that line (after stripping off end-of-line characters, if necessary) as the source for the
parsing. This may raise tiOTREAD¢ondition if problems occurred during the read.

PULL.
Retrieves as the source string for the parsing the topmost line from the stack. If the stack is empty, the default actio
reading an empty stack is taken. That is, it will read a whole line from the standard input stream, strip off any end-o
characters (if necessary), and use that string as the source.

SOURCE.

The source string for the parsing is a string containing information about how this invocatioRBKenterpreter
was started. This information will not change during the executiorR&X script. The format of the string is:

system invocation filename

Here, the first space-separated wayk{enis a single word describing the platform on which the system is running.
Often, this is the name of the operating system. The second word describes how the script was invoked. TRL2 sug
thatinvocationcould beCOMMANBUNCTION or SUBROUTINEDbut notes that this may be specific to VM/CMS.

Everything after the second word is implementation-dependent. It is indicated that it should refer to the name of the
REXX script, but the format is not specified. In practice, the format will differ because the format of file names differ
between various operating systems. Also, the part after the second word might contain other types of information. F
to the implementation-specific notes for exact information.

VALUE expr WITH.
This form will evaluateexprand use the result of that evaluation as the source string to be parsed. ThiélTokeray
not occur insidexpr, since it is a reserved subkeyword in this context.

VAR symbol.
This form uses the current value of the named varmpiebol(after tail-substitution) as the source string to be parsed.
The variable may be any variable symbol. If the variable is uninitialized, tNET&EAD¥ondition will be raised.

VERSION.
This format resembleSOURCEbut it contains information about the versiorR&EXX that the interpreter supports. The
string contains five words, and has the following format:

language level date month year

Wherelanguageis the name of the languagepported by thdREXX interpreter. This may seem like overkill, since the
language iRREXX, but there may be various different dialectR&XX. The word can be just about anything, except for

25

two restrictions, the first four letters shouldREXX(in upper case), and the word should not contain any periods.
[TRL2] indicates that the remainder of the word (after the fourth character) can be used to identify the implementati

The second word is tHREXX language level @aported by the interpreter. Note that this is not the same as the version
the interpreter, although several implementations makes this mistake. Strictly speaking, neither [TRL1] nor [TRL2]
define the format of this word, but a numeric format is strongly suggested.

The last three wordslate month andyear) makes up the date part of the string. This is the release date of the
interpreter, in the default format of tRATE() built-in function.

Much confusion seems to be related to the second wa?dREE VERSION It describes the language level, which is not the
same as the version number of the interpreter. In fact, most interpreters have a version numbering which is independent of
REXX language level. Unfortunately, several interpreters makes the mistake of using this field as for their own version numl
This is very unfortunate for two reasons; first, it is incorrect, and second, it makes it difficult to determinRBEXhanguage
level the interpreter is supposed to support.

Chances are that you can find the interpreter version numBP&RISE SOURCHBr the first word oPARSE VERSION

The format of thdREXX language level is not rigidly defined, but TRL1 corresponds to the language level 3.50, while TRL2
corresponds to the language level 4.00. Both implicitly indicate the that language level description is a number, aatiastates t
implementation less than a certain number “may be assumed to indicate a subset” of that language level. However, this mu:
be taken to literally, since language level 3.50 has at least two features which are missing in language levebdaPOt(toe
setting, and th®ROCEDURIBstruction that is not forced to be the first instruction in a subroutine). [TRH:PRICE] gives a very
good overview over the varying functionality of differemdaage levels dREXX up to level 4.00.

With the release of theNSI REXX Standard [ANSI] in 1996, thREXX language IS now rigidly defined. The language level
of ANSI REXX is 5.00.Regina is attempting to keep pace with tABISI Standard. It includes some features of language level
5.00 such as date and time conversions ilDIEE() andTIME() BIFs plus the new BIFEOUNTSTR() andCHANGESTR().
Regina does not supply multiple-level error messages as defined ANBéStandard, so does not comply to language level
5.00, but currently is a hybrid between 4.00 and 5.00. PARSE VERSION will return 4.50 :-)

Note that even though the information of B¥@RSE SOURCEHES constant throughout the execution &EBXX script, this is not
necessarily correct for tiRARSE VERSION If your interpreter supports multiplenguage levels (e.g. through 8@ TIONS
instruction), then it will have to change the contents oPthRRSE VERSIONSstring in order to comply with different language
levels. To some extent, this may also applRARSE SOURCEsince it may have to comply with several implementation-
specific standards.

After the source string has been selected byhesubclause in thBARSEinstruction, this string is parsed into the template.
The functionality of templates is common for #@RSE ARGandPULL instructions, and is further explained in chapter [not yet
written].

1.4.15 The PROCEDURHmSstruction
PROCEDURE [EXPOSE [varref [varref ..]11;
varref ={ symbol |(symbol)}

The PROCEDURIAstruction is used bREXX subroutines in order to control how variables are shared among routines. The
simplest use is without any parameters; then all future references to variables in that subroutine refer to local veréablés. If
no PROCEDURIBstruction in a subroutine, then all variable references in that subroutine refer to variables in the calling rout
name space.

If the EXPOSEsubkeyword is specified too, then any references to the variables in the list foltXR@SEefer to local
variables, but to variables in the name space of the calling routine.

Example: Dynamic execution of PROCEDURE

26

The definition opens for some strange effects, consider the following code:
call testing

testing:
say foo
procedure expose bar
say foo

Here, the first reference #0O0is to the variabl&OOin the caller routine’s name space, while the second refereR€eQis to a
local variable in the called routine’s name space. This is difficult to parse statically, since the names to expose (had &ven w
expose them) is determined dynamically during run-time. Note that this BREOSEEDURIE allowed in [TRL1], but not in
[TRL2].

Several restrictions have been imposedROCEDURIB [TRL2] in order to simplify the execution ®BROCEDUREN in
particular, to ease the implementation of optimizing interpreters and compilers).

e The first restriction, to which aREXX interpreters adhere as far as | know, is that each invocation of a subroutine (i.e. nc
the main program) may execlRROCEDUR& most once. Both TRL1 and TRL2 contain this restriction. However, more
than onePROCEDURIBstruction may exist “in” each routine, as long as at most one is executed at each invocation of th
subroutine.

¢ The second restriction is that tRROCEDURIBstruction must be the first statement in the subroutine. This restriction was
introduced betweeREXX language level 3.50 and 4.00, but several level 4.00 interpreters may not enforce it, since ther
no breakage when allowing it.

There are several important consequences of this second restriction:

(2) it implicitly includes the first restriction listed above, since only one instruction can be the first; (2) it protabtiagene of
several possiblPROCEDURIBstructions; (3) it prohibits using the same variable name twice; first as an exposed and then a:
local variable, as indicated in the example above; (4) it prohibits the customaryRR®GEDURE&NMINTERPRET, where the
latter is used to create a level of indirectness foPR®OCEDURIBstruction. This particular use can be exemplified by:

testing:
interpret ‘procedure expose’ bar

whereBARholds a list of variable names which are to be exposed. However, in order to make this functionality available wi
having to resort ttNTERPRET, which is generally considered “bad” programming style, new functionality has been added to
PROCEDUREBEetween language levels 3.50 and 4.00. If one of the variables in the list of variables is enclosed in parenthese
means indirection. Then, the variables exposed are: (1) the variable enclosed in parentheses; (2) the value of tisateaatjable
and its contents is taken to be a space-separated list of variable names; and (3) all there variable names are exjosed strict
order from left to right.

Example: Indirect exposing

Consider the following example:

testing:
procedure expose foo (bar) baz

Assuming that the variabBARholds the valuene two |, then variables exposed are the followiR@Q BAR ONE TWQBAZ,
in that order. In particular, note that the varigb@Ois exposed immediately before the variables which it names are exposed.

Example: Order of exposing

27

Then there is another fine point about exposing, the variables are hidden immediately B¥&@&Esubkeyword, so they are
not initially available when the variable list is processed. Consider the following code:

testing:
procedure expose bar foo.bar foo.baz baz

which exposes variables in the order specified. If the varBaRholds the valué23, thenFOO.123 is exposed as the second
item, sinceBARis visible after having already been exposed as the first item. On the other hand, the third item will always ex
the variabld=O0O.BAZ no matter what the value BAZis in the caller, since tH&AZ variable is visible only after it has been
used in the third item. Therefore, the order in which variables are exposed is important. So, if a compound variablsiieused
parentheses in &ROCEDURIBstruction, then any simple symbols needed for tail substitution must previously to have been
explicitly exposed. Compare this to th® ORnstruction.

What exactly is exposing? Well, the best description is to say that it makes all future uses (within that procedural level) to
particular variable name refer to the variable in the calling routine rather than in the local subroutine. The implibéian of t
that even if it is dropped or it has never been set, an exposed variable will still refer to the variable in the caléngioatier
important thing is that it is the tail-substituted variable name that is exposed. So if youFeR@BAR andBARhas the value
123, then only=00.123 is exposed, and continues to be so, evBA\RIater changes its value to e234.

Example: Global variables

A problem lurking on neiREXX users, is the fact that exposing a variable only exposes it to the calling routine. Therefore, it
incorrect to speak of global variables, since the variable might be local to the calling routine. To illustrate, coneltiavitige f
code:

foo = ‘bar’
call subl
call sub2
exit

subl: procedure expose foo
say foo /*first says ‘bar’, then ‘FOQO’ */
return

sub2: procedure
say foo /* says ‘FOO’ */
call subl
return

Here, the first subroutine call in the “main” program writeshaut, since the variablEOOiIn SUB1refers to thé&-OOvariable in

the main program’s (i.e. its caller routine’s) name space. During the second call from the main Bo@2awmrites outFOQ

since the variable is not exposed. Howe@iB2callsSUBZ, which exposeEOQ but that subroutine also writes &t®O The
reason for this is th&XPOSEworks on the run-time nesting of routines, not on the typographical structure of the code. So the
PROCEDURIB SUB1(on its second invocation) expose®0to SUB2 not to the main program as typography might falsely
indicate.

The often confusing consequence of the run-time binding of variable names is that an exposed vatilBileah be bound to
different global variables, depending on from where it was called. This differs from most compiled languages, which bind th
variables independently of from where a subroutine is called. In turn, the consequence of tHREXXhhas severe problems
storing a persistent, static variable which is needed by one subroutine only. A subroutine needing such a variablet(e.g. a co
variable which is incremented each time the subroutine is called), must either use an operating system command, or all
subroutines calling that subroutine (and their calling routines, etc.) must expose the variable. The first of these getytion is
inelegant and non-standard, while the second is at best troublesome and at worst seriously limits the maximum practical siz
REXX program. There are hopes that We_UE() built-in function will fix this in future standards BEXX.

28

Another important drawback witRAROCEDURE that it only works for internal subroutines; for external subroutines it either do
not work, orPROCEDURBay not even be allowed on the main level of the external subroutine. However, in internal subrout
inside the external subroutiné¥®ROCEDURE allowed, and works like usual.

1.4.16 The PULL Instruction
PULL[template 1];

This statement takes a line from the top of the stack and parse it into the variabléermptate It will also translate the
contents of the line to uppercase.

This statement is equivalentPARSE UPPER PULL [template] with the same exception as explained forARG
instruction. See chapter [not yet written] for a description of parsing and cBgt&rfor a discussion of the stack.

1.4.17 The PUSHInstruction
PUSH[expr 1;

The PUSHinstruction will add a string to the stack. The string added will either be the resultespther the nullstring iexpris
not specified.

The string will be added to the top of the stack (LIFO), i.e. it will be the first line normally extracted from the stack. For
thorough discussion of the stack and the methods of manipulating it, see &tapkeior a discussion of the stack.

1.4.18 The QUEUHNstruction
QUEUE [expr 1;

The QUEUERNSstruction is identical to theUSHinstruction, except for the position in the stack where the new line is inserted.
While thePUSHputs the line on the “top” of the stack, QEJEUENSstruction inserts it at the bottom of the stack (FIFO), or in the
bottom of the topmost buffer, if buffers are used.

For further information, refer to documentation for HéSHinstruction, and see chapt&tack for general information about the
stack.

1.4.19 The RETURNRstruction
RETURN [expr 1;

The RETURNRNstruction is used to terminate the current procedure level, and return control to a level abovREWWHRNS
executed inside one or more nesting construcD{ElF , WHENor OTHERWISEthen the nesting constructs (in the procedural
levels being terminated) are terminated too.

Optionally, an expression can be specified as an argumentREfHgRNNnstruction, and the string resulting from evaluating this
expression will be the return value from the procedure level terminated to the caller procedure level. Only a singlebealue cal
returned. WheRETURNSs executed with no argument, no return value is returned to the caller, and it AXcondition

{44} is raised if the subroutine was invoked as a function.

Example: Multiple entry points

A routine can have multiple exit points, i.e. a procedure can be terminated by any of REV@&s&®NnNstructions. A routine can
also have multiple entry points, i.e. several routine entry points can be terminated by tREJ&RNnstruction. However,
this is rarer than having multiple exit points, because it is generally perceived that it creates less structured arubdeadable
Consider the following code:

29

call foo

call bar
call baz
exit
foo:
if datatype(hame, 'w’) then
drop name
signal baz
bar:
name = ‘foo’
baz:

if symbol(‘name’)=="VAR'’ then

say ‘NAME currently has the value’ name
else

say ‘NAME is currently an unset variable’
return

Although this is hardly a very practical example, it shows how the main bulk of a routine can be used together with tbnee diff
entry points. The main part of the routine is lfhestatement having tWBAY statements. It can be invoked by callf@Q BAR
or BAZ

There are several restrictions to this approach. For instandeRIbEEDUR&atement becomes cumbersome, but not
impossible, to use.

Also note that when a routine has multiple exit points, it may choose to return a return value only at some of those.exit poin
When a routine is located at the very end of a source file, there is an iREIditRNnstruction after the last explicit clause.
However, according to good programming practice, you should avoid taking advantage of this feature, because it can creat

problems later if you append new routines to the source file and forget to change theRBEpIEENO an explicit one.

If the current procedure level is the main level of either the program or an external subroutin®EfiérR&nstruction is
equivalent to aEXIT instruction, i.e. it will terminate thREXX program or the external routine. The table inEki section
shows the actions of both tRETURNaNdEXIT instructions depending on the context in which they occur.

TheSAY Instruction
SAY [expr 1;

Evaluates the expressierpr, and prints the resulting string on the standard output streanprlis not specified, the nullstring
is used instead. After the string has been written, an implementation-specific action is taken in order to produce awe .end-of-li

The SAY instruction is roughly equivalent to

call lineout , expr

The differences are that there is no way of determining whether the printing was successfully congpetéxiused, and the
special variabl&ESULTIs never set when executin@AY instruction. Besides, the effect of omittiegpris different. In SAA
API, theRXSIOSAYsubfunction of th&XSIO exit handler is able to trapSAY instruction, but not a call to thRdNEOUT()
built-in function. Further, th&lOTREAD¥ondition is never raised forSAY instruction.

1.4.20 The SELECTWHENDTHERWISHnstruction

SELECT ; whenpart [whenpart ...][OTHERWISE [;]
[statement ...]11END;

whenpart :WHEN expr [;] THEN [;] statement

30

This instruction is used for general purpose, nd$testructures. Although it has certain similarities WitASEin Pascal and
switch in C, it is in some respects very different from these. An example of the general usSEBfHE&Tinstruction is:

select
when exprl then statementl
when expr2 then do
statement2a
statement2b
end
when expr3 then statement3
otherwise
ostatementl
ostatement2
end

When theSELECTinstruction is executed, the next statement afteBHIeECTstatement must be\VHENtatement. The
expression immediately following tt¥HEMoken is evaluated, and must result in a valid boolean value. If it is trug)(itee
statement following th@ HENtoken matching th&VHENs executed, and afterwards, control is transferred to the instruction
following theENDtoken matching th8 ELECTinstruction. This is not completely true, since an instruction may transfer control
elsewhere, and thus implicitly terminate SiELECTinstruction; e.gLEAVE, EXIT, ITERATE, SIGNAL, or RETURNor a
condition trapped by methdalGNAL.

If the expression of the firsWHENSs not true (i.e.0), then the next statement must be either anMHi¢ENT anOTHERWISE
statement. In the former case, the process explained above is iterated. In the latter case, the clauses f@loWERWESEIp
to theENDstatement are interpreted.

It is considered &YNTAXcondition, {7} if no OTHERWISEtatement when none of tiiéHEMexpressions evaluates to true. In
general this can only be detected during runtime. However, if one @fHtehl is selected, the absence ofGIIHERWISEs not
considered an error.

By the nature of th8ELECTinstruction, thaVHERKl are tested in the sequence they occur in the source. If more thafiH&N:
have an expression that evaluates to true, the first one encountered is selected.

If the programmer wants to associate more than one statementWiEBtatement, ® O/ENDpair must be used to enclose the
statements, to make them one statement conceptually. However, zero, one, or more statements may be QUEFHERVHEE
without having to enclose them irDE®DJENDpair. The clause delimiter is optional af@FHERWISEand before and aftédiHEN

Example: Writing SWITCHas IF

Although CASEin Pascal andwitch in C are in general table-driven (they check an integer constant and jumps directly to tt
correctcase , based on the value of the consta8E] ECTin REXX is not so. It is a just a shorthand notation for nel$ted
instructions. Thus 8 WITCHinstruction can always be written as set of netedtatements; but for very lar@VITCH
statements, the corresponding neskedstructure may be too deeply nested for the interpreter to handle.

The following code shows how tI8WVITCHstatement shown above can be written as a n#statructure:

if exprl then statementl
else if expr2 then do

statement2a
statement2b
end else if expr3 then statement3
else
ostatementl
ostatement2
end

31

1.4.21 The SIGNAL Instruction

SIGNAL ={ string | symbol };
[VALUE] expr ;
{ON | OFF} condition [NAME
{ string | symbol }];

The SIGNAL instruction is used for two purposes: (a) to transfer control to a named label in the program, and (b) to set up a
named condition trap.

The first form in the syntax definition transfers control to the named label, which must exist somewhere in the progikees; if it
not exist, &8YNTAXcondition {16} is raised. If the label is multiple defined, the first definition is used. The parameter can be
either a symbol (which is taken literally) or a string. If it is a string, then be sure that the case of the string mambeotiiee
label where it is defined. In practice, labels are in upper case, so the string should contain only uppercase letters spacand
characters.

The second form of the syntax is used if the second token of the instrudfidhlE Then, the rest of the instruction is taken as
a generaREXX expression, which result after evaluation is taken to be the name of the label to transfer control to. This forrnr
really just a special case of the first form, where the programmer is allowed to specify the label as an expressiorif thete that
start ofexpr is such that it can not be misinterpreted as the first form (i.e. the first tokeprad neither a string nor a symbol),
then theVALUEsubkeyword can be omitted.

Example: Transferring control to inside a loop

When the control of execution is transferred I@NAL instruction, all active loops at the current procedural level are
terminated, i.e. they can not continued later, although they can of course be reentered from the normal start. The cohseque
this is that the following code is illegal:

do forever
signal there
there:
nop
end

The fact that the jump is altogether within the loop does not prevent the loop from being terminated. Thus, after thiegump to
loop, theENDinstruction is attempted executed, which will result BYaNTAXcondition {10}. However, if control is transferred
out of the loop after the label, but before EXD then it would be legal, i.e. the following is legal:

do forever
signal there
there:
nop
signal after
end
after:

This is legal, simply because tB&IDinstruction is never seen during this script. Although both TRL1 and TRL2 allow this
construct, it will probably be disallowed in ANSI.

Just as loops are terminated b$I&NAL instruction, SELECTandIF instructions are also terminated. Thus, it is illegal to jump
to a location within a block of statements contained\WMHENOTHERW!ISEor IF instruction, unless the control is transferred
out of the block before the execution reaches the end of the block.

Whenever execution is transferred duringl&NAL instruction, the special variabBiGL is set to the line number of the line
containing theSIGNAL instruction, before the control is transferred. If this instruction extends over several lines, it refers to tl

32

first of this. Note that even blanks are part of a clause, so if the instruction starts with a line continuation, thefréa line
instruction is different from that line where the instruction keyword is located.

The third form of syntax is used when the second token in the instruction isGiitbe©FF. In both cases must the third token in
the instruction be then name of a condition (as a constant string or a symbol, which is taken literally), and the setup of that
condition trap is changed. If the second toke@k%; then the trap of the named condition is disabled.

If the second token BN then the trap of the named condition is enabled. Further, in this situation two more tokens may be
allowed in the instruction: the first must NAMEand the second must be the name of a label (either as a constant string or a
symbol, which is taken literally). If the five token form is used, then the label of the condition handler is set to tHabelmed
else the name of the condition handler is set to the default, which is identical to the name of the condition itself.

Note that theNAMEsubclause of th8IGNAL instruction was a new construct in TRL2, and is not a part of TRL1. Thus, older
interpreters may not support it.

Example: Naming condition traps

Note that the default value for the condition handler (if the NAME subclause is not specified) is the name of the conhdligon, n
condition handler from the previous time the condition was enabled. Thus, after the following code, the name of the conditic
handler for the conditioBYNTAXis SYNTAX not FOOBAR:

signal on syntax name foobar
signal on syntax

Example: Named condition traps in TRL1

A common problem when trying to pdREXX code from a TRL2 interpreter to a TRL1 interpreter, is that explicitly named
condition traps are not supported. There exist ways to circumvent this, like:

syntax_name = ‘SYNTAX_HANDLER’

signal on syntax

if 1 + 2 then /* will generate SYNTAX condition */
nop

syntax:

oldsigl = sigl

signal value translate(syntax_name)

syntax_handler:
say ‘condition at line’ oldsigl ‘is being handled...’
exit

Here, a “global” variable is used to store the name of the real condition handler, in the absence of a field for thisrjpréierin
This works fine, but there are some problems: the var@bdTAX_NAMBwst be exposed to everywhere, in order to be
available at all times. It would be far better if this value could be stored somewhere from which it could be retrieveddeastn an
of the script, no matter the current state of the call-stack. This can be fixed with progra@&isORALVunder VM/CMS and
putenv under Unix.

Another problem is that this destroys the possibility of setting up the condition handler with the default handler name,. tllowe
circumvent this, add a neREFAULT_SYNTAX_HANDLHB&bel which becomes the new name for theXMNTAXlabel.

Further information about conditions and condition traps are given in clizgditions.

1.4.22 The TRACEInstruction

TRACE [number | setting |[VALUE] expr |;
setting =A|S|C|E|F|I|L|IN|O]|R]|S

33

The TRACEnstruction is used to set a tracing mode. Depending on the current mode, various levels of debugging informatic
displayed for the programmer. Also interactive tracing is allowed, where the user can re-execute clauses, change values of
variables, or in general, execlREXX code interactively between the statements oRIEEX script.

If settingis not specified, then the default vaNé assumed. If the second token aftRACEs VALUE then the remaining

parts of the clause is interpreted as an expression, which value is used as the trace setting. Else, if the secorttetoken is eit
string of a symbol, then it is taken as the trace setting; and a symbol is taken literally. In all other circumstancesfobateve
the tokenTRACEs taken to be an expression, which value is the trace setting.

If a parameter is given to tH@RACEinstruction, and the second token in the instruction i&/AdtUE then there must only be
one token aftefRACE and it must be either a constant string or a symbol (which is taken literally). The value of this token ce
either a whole number or a trace setting.

If is it a whole nhumber and the number is positive, then the number specifies how many of interactive pauses to skipdis a
interactive tracing; if interactive tracing is not enabled, TR&CEinstruction is ignored. If the parameter is a whole, negative
number, then tracing is turned off temporarily for a number of clauses determined by the absolutevahieof

If the second token is a symbol of string, but not a whole number, then it is taken to be one of the settings belowidhailyy opt
be preceded by one or more question majlcharacters. Of the rest of the token, only the first letter matter; this letter is
translated to upper case, and must be one of the following:

[A
(All) Traces all clauses before execution.
[C]
(Commands) Traces all command clauses before execution.
[E]
(Errors) Traces any command that would raiseER®ORcondition (whether enabled or not) after execution. Both the
command clause and the return value is traced.
[F]
(Failures) Trances any command that would raisé&#leURE condition (whether enabled or not) after execution. Both
the command clause and the return value is traced.
[1]
(Intermediate) Traces not only all clauses, but also traces all evaluation of expressions; even intermediate results. -
the most detailed level of tracing.
[L]
(Labels) Traces the name of any label clause executed; whether the label was jumped to or not.
[N
(Normal or Negative) This is the same asRhdure setting.
[
(Off) Turns off all tracing.
[R]
(Results) Traces all clauses and the results of evaluating expressions. However, intermediate expressions are not
[S]

(Scan) Traces all clauses from the current position in the script, until the end of the file, in sequence. However, it dc
not execute any of the clauses. When the end of the program is reached, the interpreter exits.

34

TheErrors andFailures settings are not influenced by whether BHRROPr FAILURE conditions are enabled or not.
TheseTRACEsettings will trace the command and return value after the command have been executed, but before the resp
condition is raised.

The levels of tracing might be set up graphically, as in the figure below. An arrow indicates that the setting pointeghévssta
of the setting pointed from.

|—> Failures —> Errors —> Commands
Off \

\—— > Labels > All —> Results —> Intermediate

Hierarchy of TRACEsettings

According to this figurelntermediate is a superset dresult , which is a superset @il . FurtherAll is a superset of
bothCommandsandLabels . Commandsis a superset drrors , which is a superset éfailures . BothFailure and
Labels are supersets @ff . Actually, Commands strictly speaking not a supersetafors , sinceErrors traces after the
command, whil&Commandtraces before the command.

Scan is not part of this diagram, since it provides a completely different tracing functionality. Ndsedmais part of TRL1,
but was removed in TRL2. It is not likely to be part of neREXX interpreters.

1.5 Operators

An operator represents an operation to be carried out between two terms, such as division. There are 5 types of operators
Rexx Language:Arithmetig AssignmentComparative ConcatenationandLogical Operators. Each is described in further
details below.

1.5.1 Arithmetic Operators

Arithmetic operators can be applied to numeric constantRearx variables that evaluate to valexx numbers. The following
operators are listed in descreasing order of precedence:

- Unary prefix. Same & - number.

+ Unary prefix. Same & + number.

** Power

* Multiply

/ Divide

% Integer divide. Divide and return the integer part of the division.

I Remainder divide. Divide and return the remainder of the division.
+ Add

- Subtract.

1.5.2 Assignment Operators
Assignment operators are a means to change the value of a variable. Rexx only has one assignment operator.

= Assign the value on the right side of the “=" to the variable on the left.

1.5.3 Comparative Operators

The Rexx comparative operators compare two terms and return the logical fathe result of the comparison is true,Qoif
the result of the comparison is false. The non-strict comparative operators will ignore leading or trailing blanks for string
comparisons, and leading zeros for numeric comparisons. Numeric comparisons are made if both terms to be compared al
Rexx numbers, otherwise string comparison is done. String comparisons are case sesitive, and the shorter of the two strin
padded with blanks.

35

The following lists the non-strict comparative operators.

= Equal

\=, = Not equal

> Greater than.

< Less than.

>= Greater than or equal.

<= Less than or equal

<>, >< Greater than or less than. Same as Not equal.

The following lists the strict comparative operators. For two strings to be considered equal when using the strict equal
comparative operator, both strings must be the same length.

== Strictly equal

==, == Strictly not equal.

>> Strictly greater than.

<< Strictly less than.

>>= Striclty greater than or equal.
<<= Strictly less than or equal.

1.5.4 Concatenation Operators

The concatenation operators combine two strings to form one, by appending the seond string to the right side of the first. Tl
Rexx concatenation operators are:

(blank) Concatenation of strings with one space between them.
(abuttal) Concatenation of strings with no intervening space.
Il Concatenation of strings with no intervening soace.

Examples:
a = abc;b = ‘def’
Sayab -> results in ‘abc def’
Sayal|b -> results in ‘abcdef’
Say a'xyz’ -> results in ‘abcxyz’

1.5.5 Logical Operators

Logical operators work with thRexx strings 1 and 0, usually as a result of a comparative operator. These operators also on
result in logical TRUE; 1 or logical FALSE; O.

& And Returns 1 if both terms are 1.

| Inclusive or Returns 1 if either term is 1.

&& Exclusive or Returns 1 if either term is 1 but NOT both terms.

\ Logical not Reverses the result; 0 becomes 1 and 1 becomes 0.

1.6 Implementation-Specific Information

1.6.1 Environments in Regina 0.05h

External environments name stack
External environments names
OPTIONSsettings

Are saved across subroutines, just like other pieces of information, like conditions skttiIMSRICsettings, etc. See
chapterOptions for more information aboWPTIONSsettings.

36

Return value
To the program that callgglegina is limited to being an integer, when this is required by the operating systems. All
current implementations are for operating systems that require this.

Default return value
From aREXX program i0 under most systems, specifically Unix, OS/2, MS-DOS. Here, VMS deviates, sincelit use
as the default return value. Usiiginder VMS tends to make VMS issue a warning saying that no error occurred.

Transferring control into a loop
Works fine inRegina, as long as nEND THEN ELSE, WHENor OTHERWISHnstructions are executed afterwards;
unless the normal entrypoint for the construct has been executed after the transfer of control.

PARSE SOURCE information
PARSE VERSIONinformation
Last line of source code

Is implicitly taken to be terminated by an end-of-line sequenB&@ina, even if such a sequence is not present in the
source code of thREXX script. This applies only to source code. Also, the end-of-strifgTIERPRETstrings is
taken to be implicitly terminated by an end-of-line character sequence.

Moving code MS-DOS to Unix
Is simplified byRegina, since it will accept the MS-DOS type end of line sequences as valid. l.e. any Ctrl-M in front «
a Ctrl-J in the source file is ignored on Unix systemf&béygina. This applies only to source code.

Labels in INTERPRET
Is handles byRregina in the following way: A label can occur inside INTERPRETSstring, but it is ignored, and can
never be jumped to inBIGNAL or CALL instruction.

1.6.2 List of All Environment Names in Use
Regina supports the following environments:

ENVIRONMENT
OS2ENVIRONEMNT
SYSTEM

PATH

COMMAND

37

2. REXX Built-in Functions

This chapter describes thEXX library of built-in functions. It is divided into three parts:

« First a general introduction to built-in functions, pointing out concepts, pitfalls, parameter conventions, peculiarities, an
possible system dependencies.

e Then there is the reference section, which describes in detail each function in the built-in library.

« Atthe end, there is documentation that describes where andvbgina differs from standardREXX, as described in the
two other sections. It also lislegina's extensions to the built-in library.

It is recommended that you read the first part on first on first reading of this documentation, and that you use the ¢exond p:
reference. The third part is only relevant if you are going toRsgina.

2.1 General Information

This section is an introduction to the built-in functions. It describes common behavior, parameter conventions, con@tpts anc
possible system-dependent parts.

2.1.1 The Syntax Format

In the description of the built-in functions, the syntax of each one is listed. For each of the syntax diagrams, theéepairts writ
italic font names the parameters. Terms enclosgddupare bracketsdenote optional elements. And ttwurier font is used
to denote that something should be written as is, and it is also used to mark output from the computer.

Note that in standar@EXX it is not really allowed to let the last possible parameter be empty if all commas are included,
although some implementations allow it. In the following calls:

say D2X(61)
say D2X(61, 1)
say D2X(61,)

The two first return the string consisting of a single charagtesile the last should return error. If the last argument of a
function call is omitted, you can not safely include the immediately preceding comma.

2.1.2 Precision and Normalization

The built-in library uses its own internal precision for whole numbers, which may be the range from -999999999 to +999999
That is probably far more than you will ever need in the built-in functions. For most functions, neither parameters nor returr
values will be effected by any settingdyMERIC In the few cases where this does not hold, it is explicitly stated in the
description of the function.

In general, only parameters that are required to be whole numbers are used in the internal precision, while numbersl tot rec
be whole numbers are normalized according to the settiNtbfERICbefore use. But of course, if a parameter is a numeric
expression, that expression will be calculated and normalized under the sethiigd BRICbefore it is given to the function as a
parameter.

38

2.1.3 Standard Parameter Names

In the descriptions of the built-in functions, several generic names are used for parameters, to indicate something@dout the
and use of that parameter, e.g. valid range. To avoid repeating the same information for the majority of the functions, some
common “rules” for the standard parameter names are stated here. These rules implicitly apply for the rest of this chapter.

Note that the following list does not try to classify any genREaXX “datatypes”, but provides a binding between the sub-
datatypes of strings and the methodology used when naming parameters.

¢ Lengthis a non-negative whole number within the internal precision of the built-in functions. Whether it denotes a length
characters or in words, depends on the context.

e Stringcan be any normal character string, including the nullstring. There are no further requirements for this parameter.
Sometimes a string is called a “packed string” to explicitly show that it usually contains more than the normal printable
characters.

e Optionis used in some of the functions to choose a particular action, BATiA() to set the format in which the date is
returned. Everything except the first character will be ignored, and case does not matter. note that the string should
consequently not have any leading space.

e Startis a positive whole number, and denotes a start position in e.g. a string. Whether it refers to characters or words d
on the context. The first position is always numbdrednless explicitly stated otherwise in the documentation. Note that
when return values denotes positions, the nudbgigenerally used to denote a nonexistent position.

« Padcharmust be a string, exactly one character long. That character is used for padding.

e Streamidis a string that identifiesREXX stream. The actual contents and format of such a string is implementation
dependent.

¢ Numberis any validREXX number, and will be normalized according to the settindUWIERICbefore it is used by the
function.

If you see one of these names having a number appended, that is only to separate several parameters of the satnmgype, e.
string2 etc. They still follow the rules listed above. There are several parameters in the built-in functions that do not easily fa
into the categories above. These are given other names, and their type and functionality will be described together with the
functions in which they occur.

2.1.4 Error Messages

There are several errors that might occur in the built-in functions. Just one error message is only relevant for &t the built
functions, that is number 4mg¢orrect call to routing. In fact, an implementation &EXX can choose to use that for any
problem it encounters in the built-in functions.

Depending on the implementation, other error messages might be used as well. Error message nimwvédet @B¢le numbér
might be used for any case where a parameter should have been a whole number, or where a whole number is out of range
implied that this error message can be used in these situations, and it is not explicitly mentioned in the description of the
functions.

Other general error messages that might be used in the built-in functions are error nufBbdratitmetic conversigrior any
parameter that should have been a VREKX number. The error message 1bvélid binary or hexadecimal stringnight occur
in any of the conversion routines that converts from binary or hexadecimal f&2X) (, X2B() , X2C() , X2D()). And of
course the more general error messages like error mesddgeliinie resources exhausjazn occur.

Generally, it is taken as granted that these error messages might occur for any relevant built-in function, and this will not b
restated for each function. When other error messages than these are relevant, it will be mentioned in the text.

39

In REXX, it is in general not an error to specify a start position that is larger than the length of the string, or a lengttstizat ref
parts of a string that is beyond the end of that string. The meaning of such instances will depend on the context, aifietére de
for each function.

2.1.5 Possible System Dependencies

Some of the functions in the built-in library are more or less system or implementation dependent. The functionality @y these
vary, so you should use defensive programming and be prepared for any side-effects that they might have. These function:
include:

ADDRESS() is dependent on your operating system and the implementatfREEDOL, since there is not standard for naming
environments.

ARG() at the main level (not in subroutines and functions) is dependent on how your implementation handles and pars:
parameters it got from the operating system.

BITAND() , BITOR() andBITXOR() are dependent on the character set of your machine. Seemingly identical parame
will in general return very different results on ASCII and EBCDIC machines. Results will be identical if the parameter we
given to these functions as a binary or hexadecimal literal.

C2X() ,C2D() , D2C() andX2C() will be effected by the character set of your computer since they convert to or from
characters. Note that@2X() andC2D() get their first parameter as a binary or hexadecimal literal, the result will be
unaffected by the machine type. Also note that the funcB@xg) , X2B() , X2D() andD2X() are not effected by the
character set, since they do not use character representation.

CHARIN() , CHAROUT() CHARS(), LINEIN() ,LINEOUT() ,LINES() andSTREAMY() are the interface to the file
system. They might have system dependent peculiarities in several ways. Firstly, the naming of streams is very depend
the operating system. Secondly, the operation of stream is very dependent on both the operating system and the
implementation. You can safely assume very little about how streams behave, so carefully read the documentation for y
particular implementation.

CONDITION() is dependent on the condition system, which in turn depends on such implementation dependent things
file I/O and execution of commands. Although the general operation of this function will be fairly equal among systems,
details may differ.

DATATYPE() andTRANSLATE() know how to recognize upper and lower case letters, and how to transform letters to
upper case. If yolREXX implementation supports national character sets, the operation of these two functions will depe
on the language chosen.

DATE() has the optionslonth , Weekday andNormal , which produce the name of the day or month in text. Depending
on how your implementation handles national character sets, the result from these functions might use the correct spell
the currently chosen language.

DELWORD() SUBWORD()WORD() WORDINDEX() WORDLENGTH(WORDPOS(rndWORDS()requires the
concept of a “word”, which is defined as a non-blank characters separated by blanks. However, the interpretation of wh,
blank character depends upon the implementation.

ERRORTEXT()might have slightly different wordings, depending on the implementation, but the meaning and numberir
should be the same. However, note that some implementations may have additional error messages, and some might r
follow the standard numbering.

QUEUED() refers to the system specific concept of a “stack”, which is exterREXX. The result of this function may
therefore be dependent on how the stack is implemented on your system.

RANDOM()will differ from machine to machine, since the algorithm is implementation dependent. If you set the seed, yc
can safely assume that the same interpreter under the same operating system and on the same hardware platform will

40

reproducible sequence. But if you change to another interpreter, another machine or even just another version of the
operating system, the same seed might not give the same pseudo-random sequence.

¢ SOURCELINE() has been changed betwd®aXX language level 3.50 and 4.00. In 4.00 it can re@ufrihe REXX
implementation finds it necessary, and any request for a particular line may get a nullstring as result. Before assuming t
this function will return anything useful, consult the documentation.

« TIME() will differ somewhat on different machines, since it is dependent on the underlying operating system to produc
timing information. In particular, the granularity and accuracy of this information may vary.

* VALUE() will be dependent on implementation and operating system if it is called with its third parameter specified. Co
the implementation specific documentation for more information about how each implementation handles this situation.

* XRANGE() will return a string, which contents will be dependent on the character set used by your computer. You can ¢
make very few assumptions about the visual representation, the length, or the character order of the string returned by
function.

As you can see, evdREXX interpreters that are within the standard can differ quite a lot in the built-in library. Although the
points listed above seldom are any problem, you should never assume anything about them before you have read the
implementation specific documentation. Failure to do so will give you surprises sooner or later.

And, by the way, many implementations (probably the majority) do not follow the standard completely. So, in fact, you shou
never assume anything at all. Sorry ...

2.1.6 Blanks vs. Spaces

Note that the description differs between “blanks” and the <space> character. A blank is any character that might be used &
“whitespace” to separate text into groups of characters. The <space> character is only one of several possible blangs. Whe
text says “blank” it means any one from a set of characters that are used to separate visual characters into wordseXt/hen th
says <space>, it means one particular blank, that which is generally bound to the spacebar on a normal computer keyboarc

All implementation can be trusted to treat the <space> character as blank. Additional characters that might be interpreted ¢
blanks are <tab> (horizontal tabulator), <ff> (formfeed), <vt> (vertical tabulator), <nl> (newline) and <cr> (carriage Taaurn).
interpretation of what is blank will vary between machines, operating systems and interpreters. If you are using support for
national character sets, it will even depend on the language selected. So be sure to check the documentation before you as
anything about blank characters.

Some implementations use only one blank character, and perceives the set of blank characters as equivalent to the <space

character. This will depend on the implementation, the character set, the customs of the operating system and various othe
reasons.

2.2 REXX Standard Built-in Functions

Below follows an in depth description of all the functions in the library of built-in functions. Note that only the sREBEMa¢d
functions is included. The extended functions available in some implementations are not described here.

ABBREV(ong , short [, length 1)
Returnsl if the stringshortis strictly equal to the initial first part of the strilwgpg, and return® otherwise. The minimum

length whichshortmust have, can be specifiedi@sgth If lengthis unspecified, no minimum restrictions for the lengtistadrt
applies, and thus the nullstring is an abbreviation of any string.

41

Note that this function is case sensitive, and that leading and trailing spaces are not stripped off before the two strings are
compared.

ABBREV(‘Foobar’, ‘Foo’) -> 1

ABBREV(‘Foobar’, ‘Foo’, 4) -> 0 /*Too short */

ABBREV(‘Foobar’, ‘foo’) -> 0 /*Different case */
ABS(number)

Returns the absolute value of thenber which can be any valiBREXX number. Note that the result will be normalized
according to the current setting®UMERIC

ABS(-42) —> 42
ABS(100) —> 100

ADDRESS()

Returns the current default environment to which commands are sent. The value is setAIDRES $lause, for more
information, see documentation on that clause.

ADDRESS() -> UNIX /* Maybe */

ARG([argno [, option]])

Returns information about the arguments of the current procedure level. For subroutines and functions it will refer to the
arguments with which they were called. For the “main” program it will refer to the arguments used WREK himiterpreter
was called.

Note that under some operating systeRESXX scripts are run by starting tREXX interpreter as a program, giving it the name
of the script to be executed as parameter. TheREX interpreter might process the command line and “eat” some or all of th
arguments and options. Therefore, the result of this function at the main level is implementation dependent. The parts of tl
command line which are not available to REEXX script might for instance be the options and arguments meaningful only to tt
interpreter itself.

Also note that how the interpreter on the main level divides the parameter line into individual arguments, is implementation
dependent. The standard seems to define that the main procedure level can only get one parameter string, but don’t count

For more information on how the interpreter processes arguments when called from the operating system, see the documel
on how to run &EXX script.

When called without any parameteARG() will return the number of comma-delimited arguments. Unspecified (omitted)
arguments at the end of the call are not counted. Note the difference between using comma and using space to separate st
Only comma-separated arguments will be interpreteE)YX as different arguments. Space-separated strings are interpreted
different parts of the same argument.

Argno must be a positive whole number. If oalgnois specified, the argument specified will be returned. The first argument is
numbered 1. largnorefers to an unspecified argument (either omitteargnois greater than the number of arguments), a
nullstring is returned.

If optionis also specified, the return value will b@r 0, depending on the value optionand on whether the numbered
parameter was specified or not. Option can be:

[

(Omitted) Returnd if the numbered argument was omitted or unspecified. Othefvisageturned.

42

[E]

(Existing) Returnd. if the numbered argument was specified, @radherwise.

If called as:

CALL FUNCTION ‘This’ ‘is’, ‘a’,, ‘test’,,

ARG() —> 4 [*Last parameter omitted */
ARG(1) —> ‘This is’

ARG(2) - ‘a’

ARG(3) - o

ARG(9) —> " [*Ninth parameter nonexisting */
ARG(2,'E") —> 1

ARG(2,0") —> 0

ARG(3,'E") —> 0 /*Third parameter omitted */
ARG(9,0") —> 1

B2X(binstring)

Takes a parameter which is interpreted as a binary string, and returns a hexadecimal string which represent the same infor
Binstring can only contain the binary digilsand1. To increase readability, blanks may be includeuiristringto group the

digits into groups. Each such group must have a multiple of four binary digits, except from the first group. If the numdogr of b
digits in the first group is not a multiple of four, that group is padded at the left with up to three leading zeros,tta make i
multiple of four. Blanks can only occur between binary digits, not as leading or trailing characters.

Each group of four binary digits is translated into on hexadecimal digit in the output string. There will be no extra thlanks in
result, and the upper six hexadecimal digits are in upper case.

B2X(‘0010 01011100 0011 —> ‘26C3’
B2X(‘10 0101 11111117") - ‘26FF’
B2X(‘0100100 0011") - 243

BITAND(stringl [,[string2][, padchar]])

Returns the result from bytewise applying the operator AND to the characters in the twosttrigdeindstring2 Note that this
is not the logical AND operation, but the bitwise AND operatfitning2defaults to a nullstring. The two strings are left-justified;
the first characters in both strings will be AND’ed, then the second characters and so forth.

The behavior of this function when the two strings do not have equal length is definegbagicharcharacter. If it is undefined,
the remaining part of the longer string is appended to the result after all characters in the shorter string have begnlforocesse
padcharis defined, each char in the remaining part of the longer string is logically AND’ed wipladicear(or rather, the

shorter string is padded on the right length, upiagdchal).

When using this function on character strings, e.g. to uppercase or lowercase a string, the result will be dependemtotethe c
set used. To lowercase a string in EBCDIC,BBEAND() with apadcharvalue ofbf’x . To do the same in ASCII, use
BITOR() with apadcharvalue of20'x

BITAND('123456°%, ‘3456'x) > 101456
BITAND(‘foobar’,, ‘df'x) —> ‘FOOBAR’ /*For ASCII*/
BITAND('123456'%, ‘3456'%, ‘f0'x) —> 101450’

BITOR(stringl [,[string2][, padchar 1))

Works likeBITAND() , except that the logical function OR is used instead of AND. For more informati@&hTs&sD() .

43

BITOR('123456'x, ‘3456'%) —> ‘367656
BITOR('FOOBAR’,, '20'x) —> ‘foobar’ /*For ASCII */
BITOR('123456'x, ‘3456, ‘fO’X) — ‘3676F6'X

BITXOR(stringl [,[string2][, padchar]])

Works like BITAND() , except that the logical function XOR (exclusive OR) is used instead of AND. For more information se
BITAND() .

BITXOR(‘123456x, ‘3456'%) - ‘266256
BITXOR(‘FooBar’,, ‘20'x) - ‘fOObAR’ /*For ASCII */
BITXOR('123456'x, ‘3456%, ‘fO'’x) —> ‘2662A6°X

C2D(string [, length)

Returns an whole number, which is the decimal representation of the packedtstrqygnterpreted as a binary number. If
length(which must be a non-negative whole number) is specified, it denotes the number of charstriegsdnbe converted,
andstring is interpreted as a two’s complement representation of a binary number, consisting of the length rightmost charac
string. If lengthis not specifiedstring is interpreted as an unsigned number.

If lengthis larger than the length efring, string is sign-extended on the left. l.e. if the most significant bit of the leftmost char «
string is setstring is padded withff'x ~ chars at the left side. If the bit is not $@@’x chars are used for padding.

If lengthis too short, only theengthrightmost characters string are considered. Note that this will not only in general change
the value of the number, but it might even change the sign.

Note that this function is very dependent on the character set that your computer is using.
If it is not possible to express the final result as a whole number under the current seNidyERIC DIGITS, an error is

reported. The number to be returned will not be stored in the internal representation of the built-in library, so sieasestric
whole numbers that generally applies for built-in functions, do not apply in this case.

C2D('fo0’) —> ‘6713199' /*For ASCII machines */
C2D('103'x) — ‘259’

C2D('103'x,1) - ‘3’

C2D('103'x,2) - ‘259’

C2D('0103%,3) —> ‘259’

C2D('ffff'x,2) - -1

C2D('ffff'x) —> ‘65535’

C2D('ffff'x,3) - ‘65535’

C2D('fff9'x,2) - -6’

C2D('ff80'x,2) - 128’

C2X(string)

Returns a string of hexadecimal digits that represents the charactesistnggConverting is done bytewise, the six highest
hexadecimal digits are in uppercase, and there are no blank characters in the result Leading zeros are not strippedalff in th
Note that the behavior of this function is dependent on the character set that your computer is running (e.g. ASCIl or EBCD

C2X(‘ffffx) —> ‘FFFF
C2X(‘Abc’) —> ‘416263 /[*For ASCIl Machines */
C2X('1234'x) > 1234

C2X('011 0011 1101’b) —> ‘033D’

CENTERSGtring , length [, padchar 1])
44

CENTRESGtring , length [, padchar)

This function has two names, to support both American and British spelling. It will sgimigrin a string total of lengtkength
characters. Ifength(which must be a non-negative whole number) is greater than the lersgtimgfstring is padded with
padcharor <space> ipadcharis unspecified. Ifengthis smaller than the length siring character will be removed.

If possible, both ends atring receives (or loses) the same number of characters. If an odd number of characters are to be a
(or removed), one character more is added to (or removed from) the right end than the leftramgl of

CENTER(‘Foobar’,10) —> * Foobar ‘
CENTER(‘Foobar’,11) —> ‘ Foobar '’
CENTRE('Foobar’,3) —> ‘oob’
CENTER('Foobar’,4) > ‘ooba’

CENTER(‘Foobar’,10,*") —> “**Eoobar**’
CHANGESTRf{eedle , haystack , newneedle)

This function was introduced with the REXX ANSI Standard. Its purpose is to replace all occurrevesiieif the string
haystackwith newneedleThe function returns the changed string.

If haystackdoes not containeedle then the originahaystackis returned.

CHANGESTR(‘a’,'fred’,’c") -> ‘fred’
CHANGESTR(",”,'x) >
CHANGESTR(‘a’,’abcdef’,’x’) -> ‘xbedef’
CHANGESTR('0,'0",'1") >
CHANGESTR(‘a’,'def",’xyz’) -> ‘def’
CHANGESTR(‘a’,”,'x’) >
CHANGESTR(",'def",'xyz") -> ‘def’
CHANGESTR(‘abc’,’abcdef’,'xyz’) -> ‘xyzdef’

CHANGESTR(‘abcdefg’,’abcdef’,’xyz") -> ‘abcdef’
CHANGESTR(‘abc’,’abcdefabccdabed’,’z’) -> ‘zdefzcdzd’

CHARIN([streamid][,[start][, length 1))

This function will in general read characters from a stream, and return a string containing the characterssteedmiidhe
parameter names a particular stream to read from. If it is unspecified, the default input stream is used.

Thestart parameter specifies a character in the stream, on which to start reading. Before anything is read, the current read |
is set to that character, and it will be the first character reathrtfis unspecified, no repositioning will be done. Independent of
any conventions of the operating system, the first character in a stream is always numbered 1. Note that transient streams (
allow repositioning, and an error is reported if skert parameter is specified for a transient stream.

Thelengthparameter specifies the number of characters to read. If the reading did work, the return string will beleftghgth
There are no other ways to how many characters were read than checking the length of the return value. After the reat, the
read position is moved forward as many characters as was readytifis unspecified, it defaults tb. If lengthis 0, nothing is
read, but the file might still be repositionedti&rt was specified.

Note that this function read the stream raw. Some operating systems use special characters to differ between septeate line
files. On these systems these special characters will be returned as well. Therefore, never assume that this furiaiosn will b
identical for text streams on different systems.

What happens when an error occurs or the End-Of-File (EOF) is seen during reading, is implementation dependent. The
implementation may choose to set M@ TREAD¥ondition (does not exist REXX language level 3.50). For more information,
see chapter on REXX's Notion of a Stream.

(Assuming that the file/tmp/file " contains the first line: This is the first line "):

45

CHARIN() —> ‘F *Maybe ¥/

CHARIN(,,6) - ‘Foobar’ /*Maybe */
CHARIN(‘/tmpffile’,,6) —> ‘This i’
CHARIN(‘/tmpffile’,4,6) - ‘sist

CHAROUT([streamid]1[,[string][, start 1))
In general this function will writstring to astreamid If streamidis not specified the default output stream will be used.

If startis specified, the current write position will be set todtath character istreamid before any writing is done. Note that
the current write position ca not be set for transient streams, and attempts to do so will report an error. Independent of any
conventions that the operating system might have, the first character in the stream is nlinbster is not specified, the
current write position will not be changed before writing.

If string is omitted, nothing is written, and the effect is to set the current write posisitamtifs specified. If neithestring nor
startis specified, the implementation can really do whatever it likes, and many implementations use this operation to close t
file, or flush any changes. Check implementation specific documentation for more information.

The return value is the number of characteigring that was not successfully written, @aenotes a successful write. Note that
in manyREXX implementations there is no need to open a stream; it will be implicitly opened when it is first used in a read ¢
write operation.

(Assuming the file referred to mutdata was empty, it will contain the strifgpobWowafterwards. Note that there will not be
an End-Of-Line marker after this string.)

CHAROUT(, ‘Foobar’) —> ‘o
CHAROUT(outdata, ‘Foobar’) —> ‘o
CHAROUT (outdata, ‘Wow’, 5) - ‘0

CHARS([streamid 1)

Returns the number of characters left in the nastre@mid or the default input streamdfreamidis unspecified. For transient
streams this will always be eith&iif more characters are available0oif the End-Of-File condition has been met. For persistent
streams the number of remaining bytes in the file will be possible to calculate and the true number of remaining bytes will be
returned.

However, on some systems, it is difficult to calculate the number of characters left in a persistent stream; the requirements
CHARS() has therefore been relaxed, so it can retumstead of any number other th@anif it returnsl, you can therefore not
assume anything more than that there is at least one more character left in the input stream.

CHARS() —> ‘’ [* more data on def. input stream */
CHARS() —> ‘0" /* EOF for def. input stream */
CHARS(‘outdata’) —> ‘94’ [* maybe */

COMPARKtringl , string2 [, padchar])

This function will comparetringl1to string2, and return a whole number, which will be 0 if they are equal, otherwise the positic
of the first character at which the two strings differ is returned. The comparison is case-sensitive, and leading asphtraitiog
matter.

If the strings are of unequal length, the shorter string will be padded at the right hand end peitichtzecharacter to the length
of the longer string before the comparison. plaalcharis not specified, <space> is used.

COMPARE(‘FooBar’, ‘Foobar’) — ‘4
COMPARE(‘Foobar’, ‘Foobar’) —> ‘o

46

COMPARE(‘Foobarrr’, ‘Fooba’) — ‘6’
COMPARE(‘Foobarrr’, ‘Fooba’, r') —> ‘0

CONDITION([option 1])

Returns information about the current trapped condition. A condition becomes the current trapped condition when a conditic
handler is called (b€ALL or SIGNAL) to handle the condition. The parametption specifies what sort of information to
return:

[C]
(Condition) The name of the current trapped condition is return, this will be one of the condition namedI&gllAb
ON like SYNTAXHALT, NOVALUENOTREAD)YERRORr FAILURE.

[D]
(Description) A description for the condition. What to put into this variable is implementation and system dependent

[1]

(Instruction) Returns eith€2ALL or SIGNAL, depending on which method was current when the condition was trappe

[S]
(State) The current state of the current trapped condition. This can be@NeQFFor DELAY. Note that this option
reflect the current state, which may change, not the state at the time when the condition was trapped.

For more information on conditions, consult the cha@tarditions. Note that condition may in several ways be dependent on th
implementation and system, so read system and implementation dependent information too.

COPIES(string , copies)

Returns a string withopiesconcatenated copies stfing. Copiesmust be a non-negative whole number. No extra space is adde
between the copies.

COPIES('Fo0’, 3) —> ‘FooFooFoo’
COPIES(‘*’, 16) _> bkkkkkkkkkkkkkhkkkhx?
COPIES('Bar , 2) —> ‘Bar Bar
COPIES(", 10000) —> "

COUNTSTRfeedle, haystack)

This function was introduced with the REXX ANSI Standard. It returns a count of the number of occurraeestcnf
haystackthat do not overlap.

COUNTSTR(",) -> 0
COUNTSTR(‘a’, ‘abcdef’) -> 1
COUNTSTR(0, 0) -> 1
COUNTSTR('a, ‘def) -> 0
COUNTSTR(a, ") -> 0
COUNTSTR(", ‘def’) -> 0
COUNTSTR(‘abc’, ‘abcdef’) -> 1
COUNTSTR(‘abcdefg’, ‘abcdef’ -> 0

COUNTSTR(‘abc’, ‘abcdefabccdabed’) -> 3

DATATYPE(string [, option 1)

47

With only one parameter, this function identifies the “datatypestrig. The value returned will beNUM if stringis a valid
REXX number. Otherwise CHAR is returned. Note that the interpretation of whe#tdng is a valid number will depend on
the current setting dilUMERIC

If optionis specified too, it will check gtring is of a particular datatype, and return eitl€rdr “0” depending on whether
string is or is not, respectively, of the specified datatype. The possible valoptarfare:

[Al
(Alphanumeric) Consisting of only alphabetic characters (in upper, lower or mixed case) and decimal digits.

[B]
(Binary) Consisting of only the two binary digsand1. Note that blanks are allowed wittgtring, provided 4 binary
digits follow each blank.

[L]

(Lower) Consisting of only alphabetic characters in lower case.

[M

(Mixed) Consisting of only alphabetic characters, but the case does not matter (i.e. upper, lower or mixed.)

[N
(Numeric) Ifstring is a validREXX number, i.eDATATYPE(string) would returnrNUM

[S]
(Symbolic) Consists of characters that are leg&HXX symbols. Note that this test will pass several strings that are
not legal symbols. The characters includes plus, minus and the decimal point.

[Y]

(Upper) Consists of only upper case alphabetic characters.

[wW
(Whole) Ifstring is a validREXX whole number under the current settindNefMERIC Note thatl3.0 is a whole

number since the decimal part is zero, whB&+1 is not a whole number, since it must be interpreted as 130
plus/minus 5.

[X]

(Hexadecimal) Consists of only hexadecimal digits, i.e. the decimal digits 0-9 and the alphabetic characters A-F in
case (or mixed.) Note that blanks are not allowed witring, as it would have been within a hexadecimal string.

If you want to check whether a string is suitable as a variable name, you should consider &ihgBfa () function instead,
since theSymbolic option only verifies which charactesting contains, not the order. You should also take care to watch out
for lower case alphabetic characters, which are allowed in the tail of a compound symbol, but not in a simple or stemilsymbc
the head of compound symbol.

Also note that the behavior of the optighd., MandU might depend on the setting of language, if you are using an interpreter
that supports national character sets.

DATATYPE(' - 1.35E-5) - ‘NUM’
DATATYPE('1E999999999’) - ‘CHAR’
DATATYPE('1E9999999999’) —> ‘CHAR’
DATATYPE('@#&#$(&*%) — ‘CHAR’
DATATYPE(‘FooBar’, ‘A’) —> ‘1
DATATYPE('Foo Bar’, ‘A’) —> ‘0
DATATYPE(‘'010010111101’, ‘B’) —> 1
DATATYPE(‘0100 1011 1101, 'B’) —> ‘o
DATATYPE(‘foobar’, ‘L") —> 1
DATATYPE(‘FooBar’, ‘M’) —> 1
DATATYPE(' -34E3 ", 'N’) - 1
DATATYPE('‘A_SYMBOL!?!", ‘S - 1

DATATYPE('1.23.39E+4.5, 'S’) - Q1

DATATYPE('Foo bar’, ‘S’) - ‘o
DATATYPE('FOOBAR’, ‘U’) - Q1
DATATYPE('123deadbeef, *X") - ‘1

DATE([option_out [,date [,option_in]I}

This function returns information relating to the current date. 1bgten_outcharacter is specified, it will set the format of the
return string. The default value foption_outis “N’.

Possible options are:

[B]

(Base) The number of complete days from Janu&B0D1 until yesterday inclusive, as a whole number. This function
uses the Gregorian calendar extended backwards. Therefore DATE(‘B’) // 7 will equal the day of the week where 0
corresponds to Monday and 6 Sunday.

[C]
(Century) The number of days in this century from Janu&r@D until today, inclusive. The return value will be a
positive integer.

[Dl
(Days) The number of days in this year from Janugnyrttil today, inclusive. The return value will be a positive integer.

[E]

(European) The date in European format, idel/fhm/yy . If any of the numbers is single digit, it will have a leading
Zero.

[M

(Month) The non-abbreviated name of the current month, in English.

[N

(Normal) Return the date with the name of the month abbreviated to three letters, with only the first letter in upper c
The format will be id Mmm yyyy ”, whereMmnis the month abbreviation (in English) ashdl is the day of the month,
without leading zeros.

e
(Ordered) Returns the date in the ordered format, whicyisitm/dd ”.

[S]
(Standard) Returns the date according the format specified by International Standards Organization Recommendat
ISO/R 2014-1971 (E). The format will bgyyymmdd”, and each part is padded with leading zero where appropriate.

[U
(USA) Returns the date in the format that is normally used in USAmm/dd/yy ", and each part is padded with

leading zero where appropriate.

[W

(Weekday) Returns the English unabbreviated name of the current weekday for today. The first letter of the result i
upper case, the rest is in lower case.

Note that the C’ option is present ilREXX language level 3.50, but was removed in level 4.00. The Béwaption should be

used instead. When porting code that use @i@ption to an interpreter that only have ttg# bption, you will can use the
conversion that January' 1900 is day 693595 in the Gregorian calendar.

49

Note that none of the formats in WhibATE() return its answer are effected by the settingsWHERIC Also note that if there
are more than one call RATE() (andTIME()) in a single clause G@EXX code, all of them will use the same basis data for
calculating the date (and time).

If the REXX interpreter contains national support, some of these options may return different output for the names of month
weekdays.

Assuming that today is Januar{} §992:

DATE('B) — 727203
DATE('C) —> ‘33609’
DATE('D) —> ‘6’
DATE(E) — ‘06/01/92
DATE('M) —> ‘January’
DATE(N) —> ‘6 Jan 1992’
DATE('O) — ‘92/01/06’
DATE('S) — 19920106’
DATE(U) — ‘01/06/92
DATE(W) — ‘Monday’

If the dateoption is specified, the function provides for date conversions. The optiotiah_inspecifies the format in which
dateis supplied. The possible values égtion_inare: BDEOUNS.
The default value fooption_inis N.

DATE('O’, ‘13 Feb 1923’) - ‘23/02/13’
DATE('O’, '06/01/50', ‘U’) -> ‘50/06/01’

If the datesupplied does not include a century in its format, then the result is chosen to make the
year within 50 years past or 49 years future of the current year.

The date conversion capability of the DATE BIF was introduced with the ANSI standard.

DELSTR(string , start [, length])

Returnsstring, after the substring of lengtbangthstarting at positiostart has been removed. The default valuddogthis the
rest of the stringStartmust be a positive whole number, wHdagthmust be a non-negative whole number. It is not an error if
start or length(or a combination of them) refers to more charactersgtrang holds

DELSTR(‘Foobar’, 3) —> ‘Foo’
DELSTR(‘Foobar’, 3,2) —> ‘Foor’
DELSTR(‘Foobar’, 3,4) — ‘Foo’
DELSTR(‘Foobar’, 7) —> ‘Foobar’

DELWORDAtring , start [, length 1)

Removedengthwords and all blanks between them, frsiming, starting at word numbetart The default value fdengthis the
rest of the string. All consecutive spaces immediately after the last deleted word, but no spaces before the first deleted wor
removed. Nothing is removedléngthis zero.

The valid range oftartis the positive whole numbers; the first wordiring is numbered.. The valid range dengthis the non-
negative integers. It is not an errostért or length(or a combination of them) refers to more words #taing holds.

DELWORD(‘This is a test’, 3) —> ‘Thisis *
DELWORD(‘This is a test’, 2, 1) —> ‘This a test’
DELWORD(‘This is a test’, 2, 5) —> ‘This’

DELWORD(‘This is a test’, 1, 3) —> ‘test’ /*No leading space*/

50

DIGITS()

Returns the current precision of arithmetic operations. This value is set ushiigMteRICstatement. For more information,
refer to the documentation 6MUMERIC

DIGITS() —> ‘9" [* Maybe */

D2C(integer [, length])

Returns a (packed) string, that is the character representatidag#r, which must be a whole number, and is governed by the
settings oNUMERIC not of the internal precision of the built-in functiondeligthis specified the string returned will lngth
bytes long, with sign extension.l&ngth(which must be a non-negative whole humber) is not large enough to hold the result, &
error is reported.

If lengthis not specifiedintegerwill be interpreted as an unsigned number, and the result will have no leading <nul> characte
If integeris negative, it will be interpreted as a two’s complementeamgthmust be specified.

D2C(0) - o
D2C(127) - TF'X
D2C(128) — ‘80'x

D2C(128, 3) —> ‘000080’x

D2C(-128) —> ‘80'x

D2C(-10, 3) —> “fffff5'x
D2X(integer [, length 1])

Returns a hexadecimal number that is the hexadecimal representatimyef Integermust be a whole number under the
current settings dIUMERIC it is not effected by the precision of the built-in functions.

If lengthis not specified, theimtegermust be non-negative, and the result will be stripped of any leading zeros.

If lengthis specified, then the resulting string will have that length. If necessary, it will be sign-extended on the left sidéto m
the right length. Ifengthis not large enough to hoidteger, an error is reported.

D2X(0) >
D2X(127) - TP
D2X(128) - ‘80’

D2X(128,5) —> ‘00080’
D2X(-128) —> ‘80X
D2X(-10,5) —> ‘ffff5'x

ERRORTEXTérrno)

Returns thd(REXX error message associated with error nurabero.

If the error message is not defined, a nullstring is returned.

The error messagesREXX might be slightly different between the various implementations. The standard saysthatust

be in the range 0-99, but in some implementations it might be within a less restricted range which gives room for syatem sp

messages. You should in general not assume that the wordings and ordering of the error messages are constant between
implementations and systems.

ERRORTEXT(20) > ‘Symbol expected’
ERRORTEXT(30) —> ‘Name or string too long’
ERRORTEXT(40) —> ‘Incorrect call to routine’

51

FORM)()

Returns the current “form”, in which numbers are presented when exponential form is used. This might BEI&MEH-IC
(the default) oENGINEERING This value is set through tiNUMERIC FORMlause. For more information, see the
documentation oNUMERIC

FORM() —> 'SCIENTIFIC’ /* Maybe */

FORMATumber[,| before][, after 1.[exppll.[expt 1)

This function is used to control the format of numbers, and you may request the size and format in which the number is writ
The parametenumberis the number to be formatted, and it must be a R X number. Note that before any conversion or
formatting is done, this number will be normalized according to the current sethid\ERIC

Thebeforeandafter parameters determines how many characters that are used before and after the decimal point, respectiv
Note thatbeforedoesnot specify the number of digits in the integer part, it specifies the size of the field in which the integer p
of the number is written. Remember to allocate space in this field for a minus too, if that is relevant. If the fielthgseraiugh

to hold the integer part (including a minus if relevant), an error is reported.

Theafter parameter will dictate the size of the field in which the fractional part of the number is written. The decimal point its
is not a part of that field, but the decimal point will be omitted if the field holding the fractional part is empty. df ¢hiexses

digits in the number than the size of the field, it is padded with zeros at the right. If there is more digits thenlitdggdissi

into the field, the number will be rounded (not truncated) to fit the field.

Beforemust at least be large enough to hold the integer partrober Therefore it can never be less tHarand never less than
2 for negative numbers. The integer field will have no leading zeros, except a single zero digit if the integaupdrené
empty.

The parameteexppthe size of the field in which the exponent is written. This is the size of the numeric part of the exponent,
the “E” and the sign comes in addition, i.e. the real length if the exponent is two moexgpapecifies. lfexppis zero, it
signalizes that exponential form should not be ugegpmust be a non-negative whole numbeexppis positive, but not large
enough to hold the exponent, an error is reported.

Exptis the trigger value that decides when to switch from simple to exponential form. Normally, the default piedisI&R(C
DIGITS) is used, but iexptis set, it will override that. Note thatakptis set to zero, exponential form will always be used.
However, ifexpttries to force exponential form, simple form will still be useebibpis zero. Negative values fexptwill give
an error. Exponential form is used if more digits thaptis needed in the integer part, or more than teiqedigits are needed
in the fractional part.

Note that theafter number will mean different things in exponential and simple forraftéf is set to e.g3, then in simple form
it will force the precision to 0.001, no matter the magnitude of the number. If in exponential form, it will force thetoumber
precision of 4 digits.

FORMAT(12.34,3,4) > *12.3400’
FORMAT(12.34,3,3,00 —> * 1.234E+001’
FORMAT(12.34,3,1) > *12.3400’
FORMAT(12.34,3,0) > 123
FORMAT(12.34,3,4) > 12
FORMAT(12.34,,,,0) —> ‘1.234E+1
FORMAT(12.34,,,0) > 1234
FORMAT(12.34,,,0,0) > 1234

FUZZ()

52

Returns the current number of digits which are ignored when comparing numbers, during operatioasdikeThe default
value for this i€). This value is set using tUMERIC FUZZstatement, for more information see that.

FUZZ() —> ‘0" /* Maybe */

INSERT(stringl , string2 [, position [, length [, padchar 1]])

Returns the result of insertirsgringlinto a copy obtring2 If positionis specified, it marks the characteistnng2which
stringlit to be inserted aftePositionmust be a non-negative whole number, and it defautswhich means thattring2is put
in front of the first character istringl

If lengthis specifiedstringlis truncated or padded on the right side to make it exacififhcharacters long before it is inserted.
If padding occurs, thepadcharis used, or <space>phadcharis undefined.

INSERT (first’, ‘'SECOND’) —> ‘SECONDfirst’
INSERT (first’, ‘'SECOND’, 3) - ‘fiISECONDrst’
INSERT (first’, ‘'SECOND’, 3, 10) —> ‘fiISECOND rst’
INSERT((first’, ‘'SECOND?’, 3, 10, *") - ‘fISECOND****rst’
INSERT (first’, ‘'SECOND’, 3, 4) —> fiSECOTrst’
INSERT((first’, ‘'SECOND’, 8) - ‘first SECOND’

LASTPOS(needle , haystack [, start 1])

Searches the striftpystackior the stringneedle and returns the position iraystackof the first character in the substring that
matchedheedle The search is started from the right side, se#dleoccurs several times, the last occurrence is reported.

If startis specified, the search starts at character nugtaetin haystack Note that the standard only states that the search start:
at thestartth character. It is not stated whether a match can partly be to the righstdrtiposition, so some implementations
may differ on that point.

LASTPOS('be’, To be or not to be”) —> 17
LASTPOS('to’, to be or not to be’, 10) —> 3
LASTPOS('is’, to be or not to be’) —> 0
LASTPOS('to’, to be or not to be’, 0) —> 0

LEFT(string , length [, padchar])

Returns théengthleftmost characters istring. If length(which must be a non-negative whole number) is greater than the lengt
of string, the result is padded on the right with <space>p&aicharif that is specified) to make it the correct length.

LEFT(‘Foo bar’, 5) —> ‘Foo b’
LEFT(‘Foo bar’, 3) —> ‘Foo’
LEFT(‘Foo bar’, 10) —> ‘Foo bar ‘
LEFT(‘Foo bar’, 10, *") —> ‘Foo bar***’

LENGTH(string)

Returns the number of charactersiring.

LENGTH(") —> ‘0
LENGTH(‘Foo’) —> ‘3’
LENGTH(‘Foo bar’) —> T
LENGTH(' foo bar) —> 10’

53

LINEIN([streamid][line 1, count 1)

Returns a line read from a file. When ostyeamidis specified, the reading starts at the current read position and continues to
first End-Of-Line (EOL) mark. Afterwards, the current read position is set to the character after the EOL mark which termina
the read-operation. If the operating system uses special characters for EOL marks, these are not returned by as #&ipgrt of t
read..

The default value fostreamidis default input stream. The format and range of the sitiegmidare implementation dependent.

Theline parameter (which must be a positive whole number) might be specified to set the current position in the file to the
beginning of line numbedme before the read operation startdifé is unspecified, the current position will not be changed
before the read operation. Note tha¢ is only valid for persistent steams. For transient streams, an error is repbnedsif
specified. The first line in the stream is numbeted

Countspecifies the number of lines to read. However, it can only take the Qadunel . When it is1 (which is the default), it
will read one line. When it i8 it will not read any lines, and a nullstring is returned. This has the effect of setting the current re
position of the file ifine was specified.

What happens when the functions finds a End-Of-File (EOF) condition is to some extent implementation dependent. The
implementation may interpret the EOF as an implicit End-Of-Line (EOL) mark is none such was explicitly present. The
implementation may also choose to raiseNI@ET READ¥ondition flag (this condition is new froREXX language level 4.00).

Whether or nostreammust be explicitly opened before a read operation can be performed, is implementation dependent. In
implementations, a read or write operation will implicitly open the stream if not already open.

Assuming that the fil&émp/file contains the three linesEirst line”, Second linéand “Third ling”:

LINEIN(‘tmpf/file’, 1) —> ‘First line’

LINEIN(‘/tmpf/file’) —> ‘Second line’
LINEIN(‘tmpffile’, 1, 0) —> " [* But sets read position */
LINEIN(‘/tmpf/file’) —> ‘First line’

LINEIN() —> ‘Hi, there!” /* maybe */

LINEOUT([streamid][,[string 1, line 1]J)

Returns the number of lines remaining after having positioned the sttesmidto the start of lindine and written oustring as

a line of text. Ifstreamidis omitted, the default output stream is usetnd (which must be a positive whole number) is omitted,
the stream will not be repositioned before the writstrifig is omitted, nothing is written to the streamstting is specified, a
system-specific action is taken after it has been written to stream, to mark a new line.

The format and contents of the first parameter will depend upon the implementation and how it names streams. Consult
implementation-specific documentation for more information.

If string is specified, but ndine, the effect is to writstring to the stream, starting at the current write positiolinéfis
specified, but nostring, the effect is only to position the stream at the new position. Note tHatelparameter is only legal if
the stream is persistent; you can not position the current write position for transient streams.

If neitherline nor string is specified, the standard requires that the current write position is set the end of the stream, and
implementation specific side-effects may occur. In practice, this means that an implementation can use this situatinggo do tl
like closing the stream, or flushing the output. Consult the implementation specific documentation for more information.

Also note that the return value of this functions may be of little or no value, If just a half line is rittery, still be returned,

and there are no way of finding out how much (if anygtahg was written. Ifstring is not specified, the return value will always
be0, even ifLINEOUT() was not able to correctly position the stream.

54

If it is impossible to correctly writstring to the stream, theOTREADYlag will be raised. It is not defined whether or not the
NOTREADYlag is raised whehINEOUT() is used for positioning, and this is not possible.

Note that if you writestring to a line in the middle of the stream (lige is less than the total number of lines in the stream), then
the behavior is system and implementation specific. Some systems will truncate the stream after the newly written lile, othe
only truncate if the newly written line has a different length than the old line which it replaced, and yet other systems will
overwrite and never truncate.

In general, consult your system and implementation specific documentation for more information about this function. You ce
safely assume very little about how it behaves.

LINEOUT(, ‘First line’) - ‘1
LINEOUT (*/tmpffile’, ‘Second line’, 2) —> ‘T
LINEOQUT(‘/tmplffile’, ‘Third line’) - ‘1
LINEOUT(‘/tmpffile’, ‘Fourth line’, 4) - ‘0

LINES([streamid 1)

Returns the number of complete lines remaining in the namestréi@m A complete line is not really as complete as the name
might indicate; a complete line is zero or more characters, followed by an End-Of-Line (EOL) marker. So, if you haveaead
line already, you still have a “complete” line left. Note that it is not defined what to do with a half-finished line alt the éte.
Some interpreters might interpret the End-Of-File as an implicit EOL mark too, while others might not.

The format and contents of the strestneamidis system and implementation dependent. If omitted, the default input stream wi
be used.

The standard says that if it is impossible (or maybe just difficult) to accurately count the remaining lines in &INEES,

can returrD for no more lines, andl for more lines. This probably applies for all transient streams, as the interpreter can not
reposition in these files, and can therefore not count the number of remaining lines. It can also apply for persidtém files, i
operation of counting the lines left in the file is very time-consuming.

As a result, defensive programming indicates that you can safely only assume that this function will ret@roedhen-zero
result. If you want to use the non-zero result to more than just an indicator on whether more lines are available, yalt must cl
that it is larger than one. If so, you can safely assume that it hold the number of available lines left.

As with all the functions operating on streams, you can safely assume very little about this function, so consult thalsystem a
implementation specific documentation.

LINES() —> ‘1" /* Maybe */
LINES() —> ‘0" /* Maybe */
LINES(‘/tmp/file”) > ‘2" [* Maybe */
LINES(‘/tmp/file”) > ‘1" [* Maybe */

MAX(numberl [, number2]...)

Takes any positive number of parameters, and will return the parameter that had the highest numerical value. The paramet
be any validqREXX number. The number that is returned, is normalized according to the current sefiibiddERIC so the
result need not be strictly equal to any of the parameters.

Actually, the standard says that the value returned is the first number in the parameter list which is equal to theldasylaof a
positive number or zero to any of the other parameters. Note that this definition opens for “strange” results if you are brave
enough to play around with the setting\&fMERIC FUZZ

MAX(1, 2, 3, 5, 4) - 5
MAX(6) >
MAX(-4, .001E3, 4) >

55

MAX(1, 2, 05.0, 4) —> ‘5.00

MIN(number[, number]...)

Like MAX(), except that the lowest numerical value is returned. For more informatidvASEg.

MIN(, 4, 3, 1, 2) > 1
MIN(6) >
MIN(-4, .001E3, 4) >

MIN(L, 2, 05.0E-1,4) —> ‘0.50’

OVERLAYGtringl , string2 [,[start]1[,[length 1, padchar]]])

Returns a copy dftring2, totally or partially overwritten bgtringl If these are the only arguments, the overwriting starts at the
first character irstring2

If startis specified, the first charactersiringl overwrites character numbsgtart in string2 Startmust be a positive whole
number, and defaults f i.e. the first character sfringl If thestart position is to the right of the end stfing2, thenstring2is
padded at the right hand end to malstatt 1 characters long, befostringlis added.

If lengthis specified, thestring2 will be stripped or padded at the right hand end to match the specified length. For padding (
both stringspadcharwill be used, or <space>pladcharis unspecifiedLengthmust be non-negative, and defaults to the length
of stringl

OVERLAY(‘NEW', ‘old-value’) —> ‘NEW-value’
OVERLAY(‘NEW’, ‘old-value’, 3) - ‘oldNEWIue’
OVERLAY(‘'NEW’, ‘old-value’, 3, 5) —> ‘oldNEW ¢’
OVERLAY(‘NEW’, ‘old-value’, 3, 5), *) —> ‘oldNEW**¢e’
OVERLAY(‘'NEW’, ‘old-value’, 3, 2) —> ‘oldNEalue’
OVERLAY(‘'NEW’, ‘old-value’, 8) —> ‘old-valuNEW’
OVERLAY(‘NEW’, ‘old-value’, 10) —> ‘old-value NEW’
OVERLAY(‘NEW', ‘old-value’, 8,, *) —> ‘old-value**NEW’
OVERLAY(‘NEW’, ‘old-value’, 8, 5,) —> ‘old-value**NEW**’

POS(needle , haystack [, start 1)

Seeks for an occurrence of the strirggdlein the stringhaystack If needleis not found, the@ is returned. Else, the position in
haystackof the first character in the part that matched is returned, which will be a positive whole nunstat.(vihich must be
a positive whole number) is specified, the searciméadlewill start at positiorstartin haystack

POS(‘'be’, ‘to be or not to be’) —> 3
POS(‘to’, ‘to be or not to be’, 10) —> 17
POS('is’, ‘to be or not to be’) —> 0

POS(‘to’, ‘to be or not to be’, 18) —> 0

QUEUED()

Returns the number of lines currently in the external data queue (the “stack”). Note that the stack is a concept REXMal to
this function may depend on the implementation and system Consult the system specific documentation for more informatio

QUEUED() —> ‘0’ /* Maybe */
QUEUED() - ‘42" I* Maybe */
RANDOM@1ax)

56

RANDOM(min][,] maA[, seed]])

Returns a pseudo-random whole number. If called with only the first parameter, the first format will be used, and the numbe
returned will be in the randg®to the value of the first parameter, inclusive. Then the parametanust be a non-negative whole
number, not greater than 100000.

If called with more than one parameter, or with one parameter, which is not the first, the second format will be usgd. Then
andmaxmust be whole numbers, anmdhxcan not be less thamnin, and the differenceax min can not be more than 100000. If
one or both of them is unspecified, the defaultnidn is 0, and the default faomaxis 999. Note that botimin andmaxare

allowed to be negative, as long as their difference is within the requirements mentioned.

If seedis specified, you may control which numbers the pseudo-random algorithm will generate. If you do not specify it, it wil
set to some “random” value at the first calRANDOM()(typically a function of the time). When specifyisged it will effect
the result of the current call RANDOM()

The standard does not require that a specific method is to be used for generating the pseudo-random numbers, so the
reproducibility can only be guaranteed as long as you use the same implementation on the same machine, using the same
operating system. If any of these change, a gieemay produce a different sequence of pseudo-random numbers.

Note that depending on the implementation, some numbers might have a slightly increased chance of turning up than other
REXX implementation uses a 32 bit pseudo-random generator provided by the operating system and returns the remainder
integer dividing it by the difference afin andmax low numbers are favored if the 2732 is not a multiple of that difference.
Supposing that the call RANDOM(100000) and the pseudo-random generator generates any 32 bit number with equal chan
the change of getting a number in the rangé@m96 is about 0.000010000076, while the changes of getting a number in the
range 67297100000 is about 0.000009999843.

A much worse problem with pseudo-random numbers are that they sometimes do not tend to be random at all. Under one
operating system (name withheld to protect the guilty), the system’s pseudo-random routine returned numbers where the la
binary digit alternated between 0 and 1. On that macRiIA&lDOM(1)would return the series 0, 1, 0, 1, 0, 1, 0, 1 etc., which is
hardly random at all. You should therefore never trust the pseudo-random routine to give you random numbers.

Note that due to the special syntax, there is a big difference betweeRANMYOM(10)andRANDOM(10,). The former will
give a pseudo-random number in the rang&Q) while the latter will give a pseudo-random number in the rang@990

Also note that it is not clear whether the standard altoisdo be equal tonax so to program compatible, make sure thakis
always larger thamin.

RANDOM() — ‘123" /*Between 0 and 999 */

RANDOM(10) —> ‘5" [*Between 0 and 10 */

RANDOM(, 10) —> ‘3" [*Between 0 and 10 */

RANDOM(20, 30) —> ‘27 [*Between 20 and 30 */

RANDOM(,, 12345) —> ‘765’ [*Between 0 and 999, and sets seed */

REVERSESGtring)

Returns a string of the same lengttstigg, but having the order of the characters reversed.

REVERSE(‘FooBar’) — ‘raBooF’
REVERSE(* Foo Bar’) —> ‘raB ooF
REVERSE('3.14159’) - ‘95141.3’

RIGHT(string , length [, padchar 1)

57

Returns théengthrightmost characters string. If length(which must be a non-negative whole number) is greater than the lenc
of string the result is padded on the left with the necessary numipadohas to make it as long dsngthspecifiesPadchar
defaults to <space>.

RIGHT(‘Foo bar’, 5) — ‘0 bar’
RIGHT(‘Foo bar’, 3) — ‘bar’
RIGHT(‘Foo bar’, 10) - * Foo bar’
RIGHT(‘Foo bar’, 10, *) —> “***Eoo bar’

SIGN(number)

Returns eitherl , 0 or 1, depending on whethaumberis negative, zero, or positive, respectivélymbermust be a valid
REXX number, and are normalized according to the current settiddldMERICbefore comparison.

SIGN(-12) >
SIGN(42) >
SIGN(-0.00000012) —> *1’
SIGN(0.000) >
SIGN(-0.0) > 0

SOURCELINE([/ineno 1)

If lineno (which must be a positive whole number) is specified, this function will return a string containing a copREeX¥e
script source code on that linelitfenois greater than the number of lines in REEXX script source code, an error is reported.

If linenois unspecified, the number of lines in REXX script source code is returned.

Note that fromREXX language level 3.50 to 4.00, the requirements of this function were relaxed to simplify execution when"
source code is not available (compiled or pre-paRiedX). An implementation might make two simplifications: to retQrif

called without parameter. If so, any calS®O@URCELINE() with a parameter will generate an error. The other simplification is

to return a nullstring for any call ®OURCELINE() with a legal parameter.

Note that the code executed by INFERPRETclause can not be retrieved BQURCELINE().

SOURCELINE() - ‘42" [*Maybe */
SOURCELINE(1) - ‘*This Rexx script will ... */’
SOURCELINE(23) - ‘var =12 [*Maybe */'

SPACE(string [,[length][, padchar]])
With only one parametestring is returned, stripped of any trailing or leading blanks, and any consecutive blankstinisgle

translated to a single <space> charactepéaicharif specified).

Lengthmust be a non-negative whole number. If specified, consecutive blanksstithinis replaced by exactlgngth
instances of <space> (padcharif specified). Howevempadcharwill only be used in the output string, in the input string,
blanks will still be the “magic” characters. As a consequence, if there exigtadelyas instring, they will remain untouched
and will not affect the spacing.

SPACE(* Foo bar) - ‘Foo bar’
SPACE(* Foo bar‘, 2) - ‘Foo bar’
SPACE(* Foo bar‘,, *) - ‘Foo*bar’
SPACE(‘Foo bar’, 3, ‘-9 - ‘Foo—-bar’
SPACE(‘Foo bar’,, ‘0’) - ‘Fooobar’
STREAMSGtreamid [, option [, command])

58

This function was added REXX in language level 4.00. It provides a general mechanism for doing operations on streams.
However, very little is specified about how the internal of this function should work, so you should consult the implementatio
specific documentation for more information.

Thestreamididentifies a stream. The actual contents and format of this string is implementation dependent.

Theoptionselects one of several operations wWiBGHREAM() is to perform. The possible operations are:

[C]
(Command) If this option is selected, a third parameter must be pres@mandwhich is the command to be
performed on the stream. The contentsafimands implementation dependent. FRegina, the valid commands
follow. Commands consist of one or more space separated words.
[D]
(Description) Returns a description of the statstiifamid The return value is implementation dependent.

S

(Status) Returns a state, which describes the statesaimid The standard requires that it is one of the following:
ERRORNOTREADMREADYandUNKNOWNhe meaning of these are described in the ch&ftieram Input and
Output.

Note that the optionBescription andStatus really have the same function, but tB&tus in general is implementation
independent, whil®escription is implementation dependent.

Thecommandspecifies the command to be performedstaamid The possible operations are:

[READ

Open for read access. The file pointer will be positioned at the start of the file, and only read operations are allowec
This command iRegina-specific; useODPEN READN its place.

[WRITH

Open for write access and position the current write position at the end of the file. An error is returned if it was not
possible to get appropriate access. This commaRddima-specific; us@OPEN WRITEin its place.

[APPEND

Open for append access and position the current write position at the end of the file. An error is returned if it was n
possible to get appropriate access. This commaRddma-specific; useOPEN WRITE APPEND its place.

[UPDATHE

Open for append access and position the current write position at the end of the file. An error is returned if it was n
possible to get appropriate access. This commaRddia-specific; useOPEN BOTHn its place.

[CREATHE

Open for write access and position the current write position at the start of the file. An error is returned if it was not
possible to get appropriate access. This commaRddgma-specific; useOPEN WRITE REPLACHN its place.

[CLOSHE

[Close tf;}e stream, flushing any pending writes. An error is returned if it was not possible to get appropriate access.
FLUS

Flush any pending write to the stream. An error is returned if it was not possible to get appropriate access.

[STATUS

Feturns_” status information about the stream in human readable forlRetiiah stores about the stream.
FSTA

Returns status information from the operating system about the stream.

[RESET

Resets the stream after an error. Only streams that are resettable can be reset.

[READABLE

Returns 1 if the stream is readable by the user or O otherwise.

[WRITABLE

Returns 1 if the stream is writeable by the user or O otherwise.
[EXECUTABLE

Returns 1 if the stream is executable by the user or 0 otherwise.

[QUERY

59

Returns information about the named stream. If the named stream does not exists, then the empty string is returne
command is further broken down into the following sub-commands:

DATETIME

EXISTS
HANDLE

POSITION READ
POSITION WRITE
POSITION CHAR
POSITION LINE
POSITION SYS

SIZE
STREAMTYPE

TIMESTAMP

[OPEN

returns the date and time of last modification of the stred®exx US Date

format; MM-DD-YY HH:MM:SS.

returns the fully-qualified file name of the specified stream.

returns the internal file handle of the stream. This will only return a valid value if
the stream was opened explicitly or implicitly Rggina.

returns the current read position of the open stream. This is expressed in charac
so returns the same value as POSITION CHAR.

returns the current write position of the open stream. This is expressed in
characters.

returns the current read position of the open stream. This is expressed in charac
returns the current read position of the open stream. This is expressed in lines.
returns the current read position of the open stream as the operating reports it. T
is expressed in characters.

returns the size, expressed in characters, of the persistent stream.

returns the type of the stream. One of TRANSIENT, PERSISTENT or
UNKNOWN is returned.

returns the date and time of last modifcation of the stream. The format of the stril
returned is YYYY-MM-DD HH:MM:SS.

Opens the stream in the optional mode specified. If no optional mode is specified, the defRENIBOTH

READ

WRITE

BOTH

WRITE APPEND

WRITE REPLACE

BOTH APPEND

BOTH REPLACE

STRIP(string [,[option][, char]])

The file pointer will be positioned at the start of the file, and only read operations
are allowed.

Open for write access and position the current write pointer at the end of the file.
On platforms where it is not possible to open a file for write without also allowing
reads, the read pointer will be positioned at the start of the file. An error is returne
if it was not possible to get appropriate access.

Open for read and write access. Position the current read pointer at the start of tt
file, and the current write pointer at the end of the file. An error is returned if it we
not possible to get appropriate access.

Open for write access and position the write pointer at the end of the file. On
platforms where it is not possible to open a file for write without also allowing
reads, the read pointer will be positioned at the start of the file.

Open for write access and position the current write position at the start of the file
On platforms where it is not possible to open a file for write without also allowing
reads, the read pointer will be positioned at the start of the file. This operation will
clear the contents of the file. An error is returned if it was not possible to get
appropriate access.

Open for read and write access. Position the current read position at the start of t
file, and the current write position at the end of the file. An error is returned if it
was not possible to get appropriate access.

Open for read and write access. Position both the current read and write pointers
the start of the file. An error is returned if it was not possible to get appropriate
access.

Returnsstring after possibly stripping it of any number of leading and/or trailing characters. The default action is to strip off b
leading and trailing blanks. thar (which must be a string containing exactly one character) is specified, that character will be
stripped off instead of blanks. Inter-word blanksdbars if defined, that are not leading of trailing) are untouched.

If optionis specified, it will define what to strip. The possible valuesfitionare:

60

[L]
(Leading) Only strip off leading blanks, onars if specified.

[T]
(Trailing) Only strip off trailing blanks, azhars if specified.

[Bl
(Both) Combine the effect af andT, that is, strip off both leading and trailing blankscbars if it is specified. This is
the default action.

STRIP(‘ Foo bar) —> ‘Foo bar’
STRIP(‘ Foo bar‘, ‘L) —> ‘Foo bar’
STRIP(‘ Foo bar‘, ‘t) —> ‘Foo bar’
STRIP(‘ Foo bar‘, ‘Both’) —> ‘Foo bar’
STRIP(*0.1234500’,, ‘0") — 12345
STRIP(*0.1234500 ‘,, ‘0") - *.1234500’

SUBSTR(string , start [,[length][, padchar]])

Returns the substring efring that starts adtart, and has the lengtangth Lengthdefaults to the rest of the strirgtartmust be
a positive whole, whiléengthcan be any non-negative whole number.

It is not an error fostartto be larger than the lengthsifing. If lengthis specified and the sum leihgthandstart minus 1 is
greater that the length sfring, then the result will be padded withdchas to the specified length. The default value for
padcharis the <space> character.

SUBSTR(‘Foo bar’, 3) —> ‘0 bar’
SUBSTR(‘'Foo bar’, 3, 3) —> ‘ob’
SUBSTR(‘Foo bar’, 4, 6) —> ‘bar *
SUBSTR(‘Foo bar’, 4, 6, *) —> ‘ bar**’

SUBSTR(‘Foo bar’, 9,4, *) —> ko)

SUBWORDYring , start [, length 1)

Returns the part aftring that starts at blank delimited waosthrt (which must be a positive whole number)eligth (which must
be a non-negative whole number) is specified, that number of words are returned. The defaultlealyi fothe rest of the
string.

It is not an error to specifgngthto refer to more words thastring contains, or fostart andlengthtogether to specify more
words tharstring holds. The result string will be stripped of any leading and trailing blanks, but inter-word blanks will be
preserved as is.

SUBWORD(‘To be or not to be’, 4) —> ‘not to be’

SUBWORD(‘To be or not to be’, 4, 2) —> ‘not to’

SUBWORD(‘To be or not to be’, 4, 5) —> ‘not to be’

SUBWORD(‘To be or not to be’, 1, 3) —> ‘To be or’
SYMBOLpame)

Checks if the stringameis a valid symbol (a positive number or a possible variable name), and returns a three letter string
indicating the result of that check. ndmeis a symbol, and names a currently set variabARis returned, ihameis a legal
symbol name, but has not a been given a value (or is a constant symbol, which can not be used as a variable isame),
returned to signify that it is a literal. Elsepndmeis not a legal symbol name the strBgDis returned.

61

Watch out for the effect of “double expansioNameis interpreted as an expression evaluating naming the symbol to be check
S0 you might have to quote the parameter.

SYMBOL(‘Foobar’) — VAR’ /* Maybe */
SYMBOL(‘Foo bar’) - ‘BAD’
SYMBOL(‘Foo.Foo bar) —> ‘VAR' /* Maybe */
SYMBOL('3.14") — ‘LIT
SYMBOL('.Foo->bar’) - ‘BAD’

TIME([option_out [,ime [option_in 1]])

Returns a string containing information about the time. To get the time in a particular forp@tpanoutcan be specified. The
defaultoption_outis Normal . The meaning of the possible options are:

[C]
(Civil) Returns the time in civil format. The return value might lble:frhmXX’, whereXX are eitheamor pm Thehh
part will be stripped of any leading zeros, and will be in the randé inclusive.

[E]

(Elapsed) Returns the time elapsed in seconds since the internal stopwatch was started. The result will not have a
leading zeros or blanks. The output will be a floating point number with six digits after the decimal point.

[H

(Hours) Returns the number of complete hours that have passed since last midnight in thifofime‘ output will
have no leading zeros, and will be in the rang23)

[L]

(Long) Returns the exact time, down to the microsecond. This is called the long format. The output might be
“hh:mm:ss.mmmmmrh Be aware that most computers do not have a clock of that accuracy, so the actual granular
you can expect, will be about a few milliseconds. fhemmandss parts will be identical to what is returned by the
optionsH, MandsS respectively, except that each part will have leading zeros as indicated by the format.

[M

(Minutes) Returns the number of complete minutes since midnight, in a format having no leading zeros, and will be
range 0 59.

[N

(Normal) The output format ishh:mm:ss ", and is padded with zeros if needed. Tiiie mmandss will contain the
hours, minutes and seconds, respectively. Each part will be padded with leading zeros to make it double-digit.

[R]
(Reset) Returns the value of the internal stopwatch just like tpgion, and using the same format. In addition, it will
reset the stopwatch to zero after its contents have been read.

[S]
(Seconds) Returns the number of complete seconds since midnight, in a format having no leading spaces, and will
the range 0-59.

Note that the time is never rounded, only truncated. As shown in the examples below, the seconds do not get rounded upw
even though the decimal part implies that they are clogd than to58. The same applies for the minutes, which are closer to
33 than to32, but is truncated t82.

None of the formats will have leading or trailing spaces.

Assuming that the time is exactly 14:32:58.987654, the following will be true:

TIME(C) —> ‘2:32pm’
62

TIME(E) —> ‘0.01200° /* Maybe */
TIME(H) —> 14’

TIME(L) —> ‘14:32:58.987654’
TIME(M) — ‘32

TIME(N) —> ‘14:32:58'

TIME(R) —> ‘0.430221' /* Maybe */
TIME('S) —> ‘58

If the time option is specified, the function provides for time conversions. The optiptiah_inspecifies the format in which
timeis supplied. The possible values égtion_inare: CHLMNS.
The default value fooption_inis N.

TIME('C’, '11:27:21") —> 11:27am’
TIME('N’, ‘11:27am’, ‘C’) -> 11:27:00°

The time conversion capability of the TIME BIF was introduced with the ANSI standard.

TRACE([setting 1)

Returns the current value of the trace setting. If the stBitgngis specified, it will be used as the new setting for tracing, after
the old value has been recorded for the return value. Note thssttimgyis not an option, but may be any of the trace settings tha
can be specified to the clauBRACE except that the numeric variant is not allowed WRACE() . In practice, this can be a
word, of which only the first letter counts, optionally preceded by a question mark.

TRACE() —> ‘C’ [*Maybe */
TRACE(N) —-> ‘C
TRACE(?) —> ‘N’

TRANSLATEGtring [,[tableout][,[tablein][, padchar 1]])

Performs a translation on the characterstiimg. As a special case, if neithiablein nor tableoutis specified, it will translate
string from lower case to upper case. Note that this operation may depend on the language chosen, if your infgrprester su
national character sets.

Two translation tables might be specified as the sttadgjein andtableout If one or both of the tables are specified, each
character irstring that exists irtableinis translated to the charactertébleoutthat occupies the same position as the character
did intablein Thetableindefaults to the whole character set (all 256) in numeric sequencetfatiideutdefaults to an empty
set. Characters not tableinare left unchanged.

If tableoutis larger tharnablein the extra entries are ignored. If it is smaller ttzdoleinit is padded witlpadcharto the correct
length.Padchardefaults to <space>.

If a character occurs more than oncégiblein, only the first occurrence will matter.

TRANSLATE(‘FooBar’) — ‘FOOBAR’
TRANSLATE(‘FooBar’, ‘ABFORabfor’, ‘abforABFOR’) —> ‘fOObAR’
TRANSLATE(‘FooBar’, ‘abfor’) - ‘F B’
TRANSLATE(‘FooBar, ‘abfor’,, ‘#) —> ‘FHHBHH

TRUNCQumber(, length 1)

Returnsnumbertruncated to the number of decimals specifietebgth Lengthdefaults td), that is return an whole number
with no decimal part.

63

The decimal point will only be present if the is a non-empty decimal patengthis non-zero. The number will always be
returned in simple form, never exponential form, no matter what the current settitigM&RICmight be. Iflengthspecifies
more decimals thanumberhas, extra zeros are appendetknfthspecifies fewer decimals thammberhas, the number is
truncated. Note thatumberis never rounded, except for the rounding that might take place during normalization.

TRUNC(12.34) > 9
TRUNC(12.99) > 1
TRUNC(12.34,4) —> ‘12.3400°
TRUNC(12.3456, 2) —> ‘12.34’

VALUE(symbol [,[value],[pool 1))

This function expects as first parameter stegmbo] which names an existing variable. The result returned from the function is
the value of that variable. $iymboldoes not name an existing variable, the default value is returned, w0\ UEEondition

is not raised. Isymbolis not a valid symbol nhame, and this function is used to access a REXlvariable, an error occurs.

Be aware of the “double-expansion” effect, and quote the first parameter if necessary.

If the optional second parameter is specified, the variable will be set to that value, after the old value has been extracted.

The optional paramet@ool might be specified to select a particular pool of variables to searsirfirol The contents and

format ofpoolis implementation dependent. The default is to search in the variables at the current procedur&e{él in
Which pools that are available is implementation dependent, but typically one can set variables in application programs or ir
operating system.

Note that ifVALUE() is used to access variable in pools outsiddrB¥ X interpreter, the requirements to format (a valid
symbol) will not in general hold. There may be other requirements instead, depending on the implementation and the syster
Depending on the validity of the name, the value, or whether the variable can be set or k&adJth@ function can give error
messages when accessing variables in pools other than the normal. Consult the implementation and system specific docur
for more information.

If it is used to access compound variables inside the interpreter the tail part of this function can take any expression, even
expression that are not normally legaREXX scripts source code.

By using this function, it is possible to perform an extra level of interpretation of a variable.

VALUE(‘FOO’) > ‘bar’

VALUE(FOO’, ‘new) —> ‘bar’

VALUE(‘FOO’) > ‘new’

VALUE(USER’, ‘root’, ‘SYSTEM’) —> ‘guest’ /* If SYSTEMeXists */
VALUE(USER',, ‘SYSTEM’) > ‘root’

VERIFY(string , ref [,[option 1, start]])

With only the first two parameters, it will return the position of the first characgtriing that is not also a character in the string
ref. If all characters istring are also imef, it will return 0.

If optionis specified, it can be one of:

[N
(Nomatch) The result will be the position of the first charactstring that does exist iref, or zero if all exist imef.
This is the default option.

[M
(Match) Reverses the search, and returns the position of the first charattieigithat exists imef. If none exists imef,
zero is returned.

64

If start (which must be a positive whole number) is specified, the search will start at that postiorgirmThe default value for
startis 1.

VERIFY (‘foobar’, ‘barfo’) - ‘2
VERIFY (‘foobar’, ‘barfo’, ‘M’) —> ‘2’
VERIFY (‘foobar’, ‘fob’, ‘N’) — ‘5’
VERIFY(‘foobar’, ‘barf’, ‘N’, 3) —> ‘3’
VERIFY(‘foobar’, ‘barf’, ‘N’, 4) —> ‘o

WORD$tring , wordno)

Returns the blank delimited word numiesrdnofrom the stringstring. If wordno (which must be a positive whole number)
refers to a non-existing word, then a nullstring is returned. The result will be stripped of any blanks.

WORD(‘To be or not to be’, 3) —> ‘or’
WORD(‘To be or not to be’, 4) —> ‘not’
WORD(‘To be or not to be’, 8) —> Y

WORDINDEXgtring , wordno)

Returns the character position of the first character of blank delimited word nworokeoin string, which is interpreted as a
string of blank delimited words. Hfumber(which must be a positive whole number) refers to a word that does not estigidn
thenO is returned.

WORDINDEX('To be or notto be’, 3) —> 7
WORDINDEX('To be or not to be’, 4) —> 10’
WORDINDEX('To be or notto be’, 8) —> ‘o

WORDLENGTH(ring , wordno)

Returns the number of characters in blank delimited word numilmberin string. If number(which must be a positive whole
number) refers to a non-existent word, tBeis returned. Trailing or leading blanks do not count when calculating the length.

WORDLENGTH('To be or not to be’, 3) —> ‘2
WORDLENGTH('To be or not to be’, 4) —> ‘3
WORDLENGTH('To be or not to be’, 0) —> ‘0

WORDPOS®hrase , string [, start])

Returns the word number gtring which indicates at whichhrasebegins, provided thathraseis a subphrase atring. If not, 0
is returned to indicate that the phrase was not found. A phrase differs from a substring in one significant way; a pérade is a
words, separated by any number of blanks.

For instance,i$ a " is a subphrase ofThis is a phrase ". Notice the different amount of whitespace betwesn™and

“a’.
If startis specified, it sets the word $tring at which the search starts. The default valuestiant is 1.

WORDPOS(‘or not’, ‘to be or not to be’) —> ‘3’
WORDPOS(‘not to’, ‘to be or not to be’) —> ‘4
WORDPOS(‘to be’, ‘to be or not to be’) —> ‘T
WORDPOS('to be’, ‘to be or not to be’, 3) —> ‘6’

WORDS{tring)
65

Returns the number of blank delimited words ingtig.

WORDS(‘To be or notto be’) —> ‘6’
WORDS(‘Hello world") - ‘2’
WORDS(") —> ‘0’

XRANGE([start][, end])

Returns a string that consists of all the characters $tarhthroughend inclusive. The default value for characséairtis

‘00’x , while the default value for charactdis ‘ff’x . Without any parameters, the whole character set in “alphabetic
order is returned. Note that the actual representation of the outpuKR&MNGE() depends on the character set used by your
computer.

If the value ofstartis larger than the value ehd the output will wrap around frofff’x to‘00’x . If startor endis not a
string containing exactly one character, an error is reported.

XRANGE(‘A’, ‘") > ‘ABCDEFGHIY
XRANGE(*FC’x) > ‘FCFDFEFF’x
XRANGE(, ‘05'x) —> ‘000102030405’
XRANGE(FDx, ‘04’x) —> ‘FDFEFF0001020304'

X2B(hexstring)

Translatehexstringto a binary string. Each hexadecimal digihexstringwill be translated to four binary digits in the result.
There will be no blanks in the result.

X2C(hexstring)

Returns the (packed) string representatioheofstring Thehexstringwill be converted bytewise, and blanks may optionally be
inserted into th@exstringbetween pairs or hexadecimal digits, to divide the number into groups and improve readability. All
groups must have an even number of hexadecimal digits, except the first group. If the first group has an odd number of
hexadecimal digits, it is padded with an extra leading zero before conversion.

XZC(I 1) _> (3]
X2C(466f6f 426172") —> ‘FooBar
X2C('46 6f 6f) - ‘Foo’

X2D(hexstring [, length 1)

Returns a whole number that is the decimal representatioexsfring If lengthis specified, thehexstringis interpreted as a
two’s complement hexadecimal number consisting ohtiraberrightmost hexadecimal numeralshiaxstring If hexstringis
shorter thamumber it is padded to the left with <NUL> characters (thatd8!x).

If lengthis not specifiedhexstringwill always be interpreted as an unsigned number. Else, it is interpreted as an signed numt
and the leftmost bit ihexstringdecides the sign.

X2D('03 24) > 792
X2D('0310) > 784
X2D('ffff) > ‘65535’
X2D(ffff,5) —> ‘65535’
X2D(ffff, 4) —> -1
X2D(f80",3) —> = 128

X2D('12345,3) —> ‘837

66

2.3 Implementation specific documentation for Regina

2.3.1 Deviations from the Standard

For those built-in functions where the last parameter can be onittégiha allows the last comma to be specified, even
when the last parameter itself has been omitted.

The error messages are slightly redefined in two ways. Firstly, some of the have a slightly more definite text, and secon
some new error messages have been defined.

The environments available are described in chapter [not yet written].

Parameter calling

Stream 1/O0

Conditions

National character sets

Blanks

Stacks have the following extra functionallBROPBUF(), DESBUF() andMAKEBUF() andBUFTYPE().
Random()

Sourceline

Time

Character sets

2.3.2 Interpreter Internal Debugging Functions

ALLOCATED([option 1)

Returns the amount of dynamic storage allocated, measured in bytes. This is the memory allocatedllogthe call, and
does not concern stack space or static variables.

As parameter it may take aption, which is one of the single characters:

[Al

[C]

[L]

[S]

This is the default value if you do not specify an option. It will return a string that is the number of bytes of dynamic
memory currently allocated by the interpreter.

Returns a number that is the number of bytes of dynamic memory that is currently in use (i.e. not leaked).

Returns the number of bytes of dynamic memory that is supposed to have been leaked.

Returns a string that is nicely formatted and contains all the other three options, with labels. The format of this strin

67

“Memory: Allocated=XXX, Current=YYY, Leaked=2ZZ

This function will only be available if the interpreter was compiled withTfRACEMEMreprocessor macro defined.

DUMPTREE()

Prints out the internal parse tree for REEXX program currently being executed. This output is not very interesting unless you
have good knowledge of the interpreter’s internal structures.

DUMPVARS()

This routine dumps a list of all the variables currently defined. It also gives a lot of information which is rather timinteres
most users.

LISTLEAKED()

List out all memory that has leaked from the interpreter. As a return value, the total memory that has been listed i$meterned
are several option to this function:

[N

Do not list anything, just calculate the memory.
[Al

List all memory allocations currently in use, not only that which has been marked as leaked.
[L]

Only list the memory that has been marked as leaked. This is the default option.
TRACEBACK()

Prints out a traceback. This is the same routine which is called when the interpreter encounters an error. Nice for debuggin
not really useful for any other purposes.

2.3.3 REXX UNIX Interface Functions

CHDIR(string)

Setstring as current working directory.

A separate function is needed for this task in the current implementation. But when commands are implemented using
pipes/sockets instead of the C functiystem() , this will not be needed. Then tREXX interpreter and its subprocesses
have different current directories.

GETENVnvironmentvar)

Returns the named UNIX environment variable. If this variable is not defined, a nullstring is returned. It is not passhiigido
function to determine whether the variable was unset, or just set to the nullstring.

This function is now obsolete, instead you should use:

VALUE(environmentvar, ,'SYSTEM')
68

UNIXERROREgrrorno)

This function returns the string associated withetrao error number thagrrorno specifies. When some UNIX interface
function returns an error, it really is a reference to an error message which can be obtainedJthiisEHRROR

This function is just an interface to teteerror() function call in UNIX, and the actual error messages might differ with the
operating system.

This function is now obsolete, instead you should use:

ERRORTEXT(100 + errorno)

69

3. Conditions

In this chapter, th&REXX concept of “conditions” is described. Conditions allow the programmer to handle abnormal control
flow, and enable him to assign special pieceRBKX code to be executed in case of certain incidences.

« Inthe first section the concept of conditions is explained.
e Then, there is a description of how a standard conditidREXXX would work, if it existed.

« In the third section, all the existing conditionsREXX are presented, and the differences compared to the standard
condition described in the previous section are listed.

* The fourth sections contains a collections of random notes on the conditi@asiXi

* The last section describes differences, extensions and peculiariRegina on the of subject conditions, and the lists
specific behavior.

3.1 What are Conditions

In this section, the concept of “conditions” are explained: What they are, how they work, and what they mean in programmir

3.1.1 What Do We Need Conditions for?

3.1.2 Terminology

First, let's look at the terminology used in this chapter. If you don’t get a thorough understanding of these terms,rpbalill p
not understand much of what is said in the rest of this chapter.

[Incident:]
A situation, external or internal to the interpreter, which it is required to respond to in certain pre-defined manners. -
interpreter recognizes incidents of several different types. The incident will often have a character of “suddenness”,
will also be independent of the normal control flow.

[Event:]
Data Structure describing one incident, used as a descriptor to the incident itself.

[Condition:]
Names thdREXX concept that is equivalent to the incident.

[Raise a Condition:]
The action of transforming the information about an incident into an event. This is done after the interpreter senses
condition. Also includes deciding whether to ignore or produce an event.

[Handle a Condition:]
The act of executing some pre-defined actions as a response to the event generated when a condition was raised.

[(Condition) Trap:]
Data Structure containing information about how to handle a condition.

[(Trap) State:]
Part of the condition trap.

70

[(Condition) Handler:]
Part of the condition trap, which points to a piecRBKXX code which is to be used to handle the condition.

[(Trap) Method:]
Part of the condition trap, which defined how the condition handler is to be invoked to handle the condition.

[Trigger a Trap:]
The action of invoking a condition handler by the method specified by the trap method, in order to handle a conditic

[Trap a Condition:]
Short of trigger a trap for a particular condition.

[Current Trapped Condition:]
The condition currently being handled. This is the same as the most recent trapped condition on this or higher proc
level.

[(Pending) Event Queue:]
Data Structure storing zero or more events in a specific order. There are only one event queue. The event queue
events of all condition types, which have been raised, but not yet handled.

[Default-Action:]
The pre-defined default way of handling a condition, taken if the trap state for the condition r&iE&d is

[Delay-Action:]
The pre-defined default action taken when a condition is raised, and the trap BEitA ¥

3.2 The Mythical Standard Condition

REXX Language Level 4.00 has six different conditions. However, each of these is a special case of a mythical, non-existin
standard condition. In order to better understand the real conditions, we start by explaining how a standard condition work.

In the examples below, we will call our non-existing standard conditidéiiH Note that these examples will not be executable or
anyREXX implementation.

3.2.1 Information Regarding Conditions (data structures)

There are mainly five conceptual data structures involved in conditions.

[Event queue.]
There is one interpreter-wide queue of pending conditions. Raising a condition is identical to adding information ab
the condition to this queue (FIFO). The order of the queue is the same order in which the conditions are to be han

Every entry in the queue of pending conditions contains some information about the event: the line numB&Xof the
script when the condition was raised, a descriptive text and the condition type.

[Default-Action.]
To each, there exists information about the default-action to take if this condition is raised but the trap Shikstate
This is called the “default-action”. The standard default-action is to ignore the condition, while some conditions may
abort the execution.

[Delay-Action.]
Each condition will also have delay-action, which tells what to do if the condition is raised when condition trap is in ¢
DELAY. The standard delay-action is to queue the condition in the queue of pending conditions, while some conditic
may ignore it.

71

[Condition traps.]
For each condition there is a trap which contains three pieces of status information: the state; the handler; and the
method. The state can BN OFFor DELAY.

The handler names tlREXX label in the start of thREXX code to handle the event. The method can be either
SIGNAL or CALL, and denotes the method in which the condition is to be handled. If the §&fe then neither
handler nor method is defined.

[Current Trapped Condition.]
This is the most recently handled condition, and is set whenever a trap is triggered. It contains information about m
which condition, and a context-dependent description. In fact, the information in the current trapped condition is the
same information that was originally put into the pending event queue.

Note that the event queue is a data structure connected to the interpreter itself. You operate on the same event quieun, inds
of subroutines, even external ones. On the other hand, the condition traps and the current trapped condition are data struct
connected to each single routine. When a new routine is called, it will get its own condition traps and a current trapped conc
For internal routines, the initial values will be the same values as those of the caller. For external routines, thethalues are
defaults.

The initial value for the event queue is to be empty. The default-action and the delay-action are static information, and will
always retain their values during execution. The initial values for the condition traps are that they are abDlFsTdte initial
value for the current trapped condition is that all information is set to the nullstring to signalize that no conditiently being
trapped.

3.2.2 How to Set up a Condition Trap

How do you set the information in a condition trap? You do it wBh@GNAL or CALL clause, with th€Nor OFF subkeyword.
Remember that a condition trap contain three pieces of information? Here are the rules for how to set them:

e To set the trap method, use eitB8GNAL or CALL as keyword.

« To set state tONor OFF, use the appropriate subkeyword in the clause. Note that there is no clause or fulREEXXn
capable of setting the state of a trajpELAY.

* To set the condition handler, append the teRANME handler " to the command. Note that this term is only legal if you are
setting the state tON you can not specify a handler when setting the stadé-fo

The trap is said to be “enabled” when the state is eé@dNar DELAY, and “disabled” when the stateQ$F Note that neither the
event queue, nor the current trapped condition can be set explicRIEX¥ clauses. They can only be set as a result of
incidents, when raising and trapping conditions.

It sounds very theoretical, doesn't it? Look at the following examples, which sets thertrip

/*1* SIGNAL ON MYTH NAME TRAP_IT
* 2 */ SIGNAL OFF MYTH

/*3* CALL ON MYTH NAME MYTH_TRAP
/*4 * CALL ON MYTH

/*5* CALL OFF MYTH

Line 1 sets state tON method tdSIGNAL and handler tdRAP_IT. Line 2 sets state ©©FF handler and method becomes
undefined. Line 3 sets state@N method taCALL, and handler ttdYTH_TRAPLine 4 sets state ©©ON method taCALL and
handler taVlY TH(the default). Line 5 sets state@&F, handler and method become undefined.

Why should method and handler become undefined when the trap i@Bt&é-or two reasons: firstly, these values are not used

when the trap is in sta@FF, and secondly, when you set the trap to <iitethey are redefined. So it really does not matter what
they are in stat®FF

72

What happens to this information when you call a subroutine? All information about traps are inherited by the subroutine,
provided that it is an internal routine. External routines do not inherit any information about traps, but use the defaulotealu
that the inheritance is done by copying, so any changes done in the subroutine (internal or external), will only havi gifgect ur
routine returns.

3.2.3 How to Raise a Condition

How do you raise a condition? Well, there are really no explicit W&EXX to do that. The conditions are raised when an
incident occurs. What sort of situations that is, depends on the context. There are in general three types of inciiedtbyclass
the origin of the event:

* Internal origin. The incident is only dependent on the behavior ®EX script. TheSYNTAXcondition is of this type.

< External origin. Th&REXX script and the interpreter has really no control over when this incident. It happens completely
independent of the control of tRREXX script or interpreter. ThdALT condition is of this type.

< Mixed origin. The incident is of external origin, but the situation that created the incident, was an actioREXhecript
or the interpreter. ThHERRORondition is of this type: the incident is a command returning error, but it can only occur whe
the interpreter is executing commands.

For conditions trapped by meth@ARLL, standardREXX requires an implementation to at least check for incidents and raise
condition at clause boundaries. (But it is allowed to do so elsewhere too; although the actual triggering must only be aerforr
clause boundaries.) Consequently, you must be prepared that in some implementations, conditions trappabled#lLinethod
might only be raised (and the trap triggered) at clause boundaries, even if they are currently trapped [8I@GMé#iod

The six standard conditions will be raised as result of various situations, read the section describing each one of tieem for n
information.

+ + + + / \ + +
|Incident] |Condition| /Trap \ Off |Default |
| occurs | —> Jis raised | —> \ State / —-> | action |
+ + + + \ / + +
/
/On |Delay
I

/
/ %
+ +/ / \ + +
| Queue | Yes /DelayAction\ No |lgnore|
|an event] <—- \is queue? / —> | event|

+ + \ / + +
I
Y,
[———\
/Method is\
\ CALL? /
—/\
/ \
/No Yes\
/ \ / \
/ \ / \
+ + + + \ Decision /
| Set state | | Set state | \ /
| OFF | | DELAY |
+ + + + + +
| Trigger | I I | 1
| trap | | Return | | Action |
+ + + + + +

The triggering of a condition

73

When an incident occurs and the condition is raised, the interpreter will check the state of the condition trap forulaat partic
condition at the current procedure level.

« If the trap state iI©FF the default-action of the condition is taken immediately. The “standard” default-action is to ignore
condition.

« Ifthe trap state IDELAY, the action will depend on the delay-action of that condition. The standard delay-action is to igne
then nothing further is done. If the delay-action is to queue, the interpreter continues as if the Siate was

< If the state of the trap BN an event is generated which describes the incident, and it is queued in the pending event que
The further action will depend on the method of trapping.

e If the method i<CALL, the state of the trap will be setD&LAY. Then the normal execution is resumed. The idea is that the
interpreter will check the event queue later (at a clause boundary), and trigger the appropriate trap, if it finds amyrevents
event queue.

» Else, if method of trapping BIGNAL, then the action taken is this: First set the trap to &t&fe then terminate clause the
interpreter was executing at this procedure level. Then it explicitly trigger the condition trap.

This process has be shown in the figure above. It shows how an incident makes the interpreter raise a condition, aatethat tl
of the condition trap determines what to do next. The possible outcomes of this process are: to take the default-act®if; to ig
delay-action is not to queue; to just queue and the continue execution; or to queue and trigger the trap.

3.2.4 How to Trigger a Condition Trap
What are the situations where a condition trap might be triggered? It depends on the method currently set in the qmndition |

If the method iSIGNAL, then the interpreter will explicitly trigger the relevant trap when it has raised the condition after havi
sensed the incident. Note that only the particular trap in question will be triggered in this case; other traps wilgetdm tri
even if the pending event queue is hon-empty.

In addition, the interpreter will at each clause boundary check for any pending events in the event queue. If the queue is no
empty, the interpreter will not immediately execute the next normal statement, but it will handle the condition(s) first. This
procedure is repeated until there are no more events queued. Only then will the interpreter advance to execute the next nol
statement.

Note that thdeREXX standard does not require the pending events to be handled in any particular order, although the model
in this documentation it will be in the order in which the conditions were raised. Consequently, if one clause geneahtes seve
events that raise conditions before or at the next clause boundary, and these conditions are trapped@#lrheffieh, the

order on which the various traps are triggered is implementations-dependent. But the order in which the different irtences
same condition is handled, is the same as the order of the condition indicator queue.

3.2.5 Trapping by Method SIGNAL

Assume that a condition is being trapped by me®I&NAL, that the state ®Nand the handler i8YTH_TRAPThe following
REXX clause will setup the trap correctly:

SIGNAL ON MYTH NAME MYTH_TRAP

Now, suppose thelYTHncident occurs. The interpreter will sense it, queue an event, set the trap Gfekeatal then explicitly
trigger the trap, since the metho®i$sNAL. What happens when the trap is triggered?

« It collects the first event from the queue of pending events. The information is removed from the queue.

e The current trapped condition is set to the information removed from the pending event queue.

74

e Then, the interpreter simulate SEGNAL clause to the label named by trap handler of the trap for the condition in questior

* As all SIGNAL clauses, this will have the side-effects of setting3#@&_ special variable, and terminating all active loops at
the current procedure level.

That's it for methodSIGNAL. If you want to continue trapping conditiéhY TH you have to execute a nGAGNAL ON MYTH
clause to set the state of the tra®ftd But no matter how quick you reset the trap, you will always have a short period where it
in stateOFF. This means that you can not in general use the m&t@uAL if you really want to be sure that you don't loose
anyMYTHevents, unless you have some control over vihgmHcondition may arise.

Also note that since the statement being executed is terminated; all active loops on the current procedure level aredadninat
the only indication where the error occurred is the line number (the line may contain several clauses), then it is in general
impossible to pick up the normal execution after a condition trapp&iGIYAL. Therefore, this method is best suited for a
“graceful death” type of traps. If the trap is triggered, you want to terminate what you were doing, and pick up the akeoution
earlier stage, e.g. the previous procedure level.

3.2.6 Trapping by Method CALL
Assume that the conditiaY THis being trapped by meth@ALL, that the state i©®Nand the handler YTH_HANDLER

The followingREXX clause will setup the trap correctly:

CALL ON MYTH NAME MYTH_HANDLER

Now, suppose that thdYTHncident occurs. When the interpreter senses that, it will raiddYfgicondition. Since the trap

state iSONand the trap method GALL, it will create an event and queue it in the pending event queue and set the trap state t
DELAY. Then it continues the normal execution. The trap is not triggered before the interpreter encounters the next clause
boundary. What happens then?

« Atthe every clause boundaries, the interpreter check for any pending events in the event queue. If one is founddit is h:
This action is done repeatedly, until the event queue is empty.

e It will simulate a normal function call to the label named by the trap handler. As witb/drlyclause, this will set the
special variabl&IGL to the line of from which the call was made. This is done prior to the call. Note that this is the curre
line at the time when the condition was raised, not when it was triggered. All other actions normally performed when ca
a subroutine are done. Note that the arguments to the subroutine are set to empty.

* However, just before execution of the routine starts, it will remove the first event in the pending event queue, the finform
is instead put into the current trapped condition. Note that the current trapped condition is information that is saved acrt
subroutine calls. It is sefter the condition handler is called, and will be local to the condition handler (and functions calle
by the condition handler). To the “caller” (i.e. the procedure level active when the trap was triggered), it will seegn as if
current trapped condition was never changed.

« Then the condition handler finishes execution, and returns by executiR§ ThéRNclause. Any expression given as
argument tARETURNwill be ignored, i.e. the special varialit&SULTwill not be set upon return from a condition handler.

e Atthe return from the condition handler, the current trapped condition and the setup of all traps are restored, as wafith a
return from subroutine. As a special case, the state of the trap just triggered, will not be put lEkANstate, but is set
to stateON

« Afterwards (and before the next normal clause), the interpreter will again check for more events in the event queué, anc
not continue on thREXX script before the queue is empty.

During the triggering of a trap by meth@d\LL at a clause boundary, the state of the trap is not normally changed, it will contir
to beDELAY, as was set when the condition was raised. It will continue to be ifD&h#eY until return from the condition

75

handler, at which the state of the trap in the caller will be changed 6 during the execution of the condition trap, the state of
the condition being trapped is set, that change will only last until the return from the condition handler.

Since new conditions are generally delayed when an condition handler is executing, new conditions are queued up for exec
If the trap state is changed@ the pending event queue will be processed as named at the next clause boundary. If the sta
changed t®FF the default action of the conditions will be taken at the next clause boundary.

3.2.7 The Current Trapped Condition

The interpreter maintains a data structure called the current trapped condition. It contains information relating thenmost rece
condition trapped on this or higher procedure level. The current trapped condition is normally inherited by subroutines and
functions, and restored after return from these.

¢ When trapped by methdlGNAL the current trapped condition of the current procedure level is set to information
describing the condition trapped.

¢ When trapped by methd@dALL, the current trapped condition at the procedure level which the trap occurred at, is not
changed. Instead, the current trapped condition in the condition handler is set to information describing the condition.

The information stored in the current trapped condition can be retrieved by the built-in fi@OMDITION() . The syntax
format of this function is:

CONDITION(option)

whereoptionis an option string of which only the first character matters. The valid optiorGardition name

Description , Instruction andState . These will return: the name of the current trapped condition; the descriptive texi
the method; and the current state of the condition, respectively. The dgfudtis Instruction . See the documentation on
the built-in functions. See also the description of each condition below.

Note that theState option do not return the state at the time when the condition was raised or the trap was triggered. It retu
the current state of the trap, and may change during execution. The other information in the current trapped condition may
change when a new condition is trapped at return from subroutines.

3.3 The Real Conditions

We have now described how the standard condition and condition trap wlEXH Let's look at the six conditions defined
which do exist. Note that none of these behaves exactly as the standard condition.

3.3.1 The SYNTAXcondition

The SYNTAXcondition is of internal origin, and is raised when any syntax or runtime error is discoveredRExe
interpreter. It might be any of the situations that would normally lead to the abortion of the program and the r&ixXof a
error message, except error message numb@mgiam interruptedl which is handled by thdALT condition.

There are several differences between this condition and the standard condition:
e Itis not possible to trap this condition with the metl@#&LL, only methodSIGNAL. The reason for this is partly that method
CALL tries to continue execution until next boundary before triggering the trap. That might not be possible with syntax o

runtime errors.

¢ When this condition is trapped, the special vari&tds set to thdREXX error number of the syntax or runtime error that
caused the condition. This is done just before the setting of the special Vahable

e The default action of this condition if the trap stat®¥sF is to abort the program with a traceback and error message.
76

e There is not delay-action for conditi@YNTAX since it can not be trapped by metl@Al L, and consequently never can
get into stat®ELAY.

The descriptive text returned BONDITION() when called with th®escription option for conditiorSYNTAX s
implementation dependent, and may also be a nullstring. Consult the implementation-specific documentation for more
information.

3.3.2 The HALT condition

TheHALT condition of external origin, which is raised as a result of an action from the user, normally a combination of keys
which tries to abort the program. Which combination of keys will vary between operating systems. Some systems might alsc
simulate this event by other means than key combinations. Consult system for more information.

The differences betwed®ALT and the standard condition are:

e The default-action for thBIALT condition is to abort execution, as thougREXX runtime error number 4£¢ogram
interrupted had been reported. But note tBMNTAXwill never be raised iHALT is not trapped.

e The delay-action of this condition is to ignore, not queue.

The standard allows the interpreter to limit the search for situations that would l4éd flieondition, to clause boundaries. As a
result, the response time from pressing the key combination to actually raising the condition or triggering the trap enay vary,
if HALT s trapped by metho8IGNAL. If a clause for some reason has blocked execution, and never finish, you may not be a
to break the program.

The descriptive text returned BONDITION() when called with th®escription option for conditiortHALT, is

implementation dependent, and may also be a nullstring. In general, it will describe the way in which the interpretempiext atte
halted, in particular if there are more than one way to do raigd a condition. Consult the implementation documentation for
more information.

3.3.3 The ERRORondition

TheERRORSs a condition of mixed origin, it is raised when a command returns a return value which indicates error during
execution. Often, commands return a numeric value, and a particular value is considered to mean success. Then, other va
might raise th&RRORcondition.

Differences betweeBERRORand the standard condition:
e The delay action dERRORs to ignore, not to queue.

e The special variablRCis always set before this condition is raised. So even if it is trapped by ns#@®NAL, you can rely
onRCto be set to the return value of the command.

Unfortunately, there is no universal standard on return values. As stated, they are often numeric, but some operatimgy syster
non-numeric return values. For those which do use numeric values, there are no standard telling which values and ranges &
considered errors and which are considered success. In fact, the interpretation of the value might differ between conimands
the same operating system.

Therefore, it is up to thREXX implementation to define which values and ranges that are considered errors. You must expec
that this information can differ between implementations as well as between different environments within one implementati

The descriptive text returned BONDITION() when called with th®escription option for conditiorERRORIs the

command which caused the error. Note that this is the command as the environment saw it, not as it was enRieedin the
script source code.

77

3.3.4 The FAILURE condition

The FAILURE is a condition of mixed origin, it is raised when a command returns a return value which indicates failure durin
execution, abnormal termination, or when it was impossible to execute a command. It is a sub&RRORBNdition, and if

it is in stateOFF, then theeRRORcondition will be raised instead. But note that an implementation is free to consider all returr
codes from commands BRROR, and none a@SAILURES. In that case, the only situation wherEAILURE would occur, is

when it is impossible to execute a command.

Differences betweeRAILURE and the standard condition:
e The delay action dfAILURE is to ignore, not to queue.

e The special variablRCis always set before this condition is raised. So even if it is trapped by ns#@NAL, you can rely
onRCto be set to the return value of the command, or the return code that signalize that the command was impossible
execute.

As for ERRORthere is no standard the defines which return values are failures and which are errors. Consult the system an
implementation independent documentation for more information.

The descriptive text returned BONDITION() when called with th®escription option for conditiorFAILURE, is the
command which caused the error. Note that this is the command as the environment saw it, not as it was enRieedin the
script source code.

3.3.5 The NOVALUEcondition

The NOVALUEondition is of internal origin. It is raised in some circumstances if the value of an unset symbol (which is not
constant symbol) is requested. Normally, this would return the default value of the symbol. It is considered bad programmin
practice not to initialize variables, and setting @VALUEondition is one method of finding the parts of your program that
uses this programming practice.

Note however, there are only three instances where this condition may be raised: that is when the value of an unsetfhon-c
symbol is used requested: in an expression; after Aisubkeyword in #ARSEclause; and as an indirect reference in either a
template, DROPor aPROCEDUREause. In particular, this condition is not raised if\fd¢ UE() or SYMBOL() built-in

functions refer to an unset symbol.

Differences betweeNOVALUEand the standard condition are:

« It may only be trapped by meth&GNAL, never metho€€ALL. This requirement might seem somewhat strange, but the
idea is that since an implementation is only forced to check for conditions trapped by @wthaoat clause boundaries,
incidences that may occur at any point within clauses NiR&ALUEcan only be trapped by meth88GNAL. (However,
conditionNOTREADYan occur within a clause, and may be trapped by m&hadad so this does not seem to be absolute
consistent.)

e There is not delay-action for conditidOVALUEsince it can not be trapped by meti@Al L, and consequently never can
get into stat®ELAY.

The descriptive text returned by calli@@NDITION() with theDescription option, is the derived (i.e. tail has be
substituted if possible) name of the variable that caused the condition to be raised.

3.3.6 The NOTREADondition

The conditiolNOTREADYs a condition of mixed origin. It is raised as a result of problems with stream 1/0. Exactly what cau:
it, may vary between implementations, but some of the more probable causes are: waiting for more 1/O on transient stream:s
access to streams not allowed; 1/0 operation would block if attempted; etc. See the Stwagaterinput and Output for more
information.

78

Differences betweeNOTREADYNd the standard condition are:
« It will be ignored rather than queued if condition trap is in SEEAY.

e This condition differs from the rest in that it can be raised during execution of a clause, but can still be trapped by meth
CALL

The descriptive text returned BONDITION() when called with th®escription option for conditiorNOTREADVis the
name of the stream which caused the problem. This is probably the same string that you used as the first parameter to the
functions that operates on stream 1/O. For the default streams (default input and output stream), the string returned by
CONDITION() will be nullstrings.

Note that if theNOTREADYrap is in stat®ELAY, then all I/O for files which has tried to raN®©TREAD Within the current
clause will be simulated as if operation had succeeded.

3.4 Further Notes on Conditions

3.4.1 Conditions under Language Level 3.50

The concept of conditions was very much expanded R&XX language level 3.50 to level 4.00. Many of the central features i
conditions are new in level 4.00, these include:

e TheCALL method is new, previously only tis#@GNAL method was available, which made it rather difficult to resume
execution after a problem. As a part of this, It AYstate has been added too.

e The conditiorNOTREADYias been added, to allow better control over problems involving stream 1/O.

e The built-in functionCONDITION() has been added, to allow extraction of information about the current trapped conditic

3.4.2 Pitfalls when Using Condition Traps
There are several pitfalls when using conditions:

* Remember that some information are saved across the functions. Both the current trapped condition and the settings o
traps. Consequently, you can not set a trap in a procedure level from a lower level. (l.e. calling a subroutine tdsset a tre
will not work.)

« Remember thaBIGL is set when trapped by methGALL. This means that whenever a condition might be trapped by
CALL, theSIGL will be set to a new value. Consequently, never trust the contentsSif3hevariable for more than one
clause at a time. This is very frustrating, but at least it will not happen often. When it do happen, though, you will probat
have a hard time debugging it.

« Also remember that if you use tRROCEDURE&ause in a condition handler called by meti@d L, remember t&XPOSE
the special variableSIGL if you want to use it inside the condition handler. Else it will be shadowed PROEEDURE

3.4.3 The Correctness of this Description

In this description of conditions REXX, | have gone further in the description of how conditions work, their internal data
structures, the order in which things are executed etc., than the standard does. | have tried to interpret the set of distinct
statements that is the documentation on condition, and design a complete and consistent system describing how such conc
work. | have done this to try to clarify an areaR&EXX which at first glance is very difficult and sometimes non-intuitive.

79

I hope that the liberties | have taken have helped describe conditiREXX. | do not feel that the adding of details that | have
done in any way change how conditions work, but at least | owe the reader to list which concepts that afRE)é¢KyB¥Rd
which have been filled in by me to make the picture more complete. These are not a part of theRE(ard

« REXX does not have anything called a standard condition. There just “are” a set of conditions having different attribute:
values. Sometimes there are default values to some of the attributes, but still the are no default condition.

*« The terms “event” and “incident” are not used. Instead the term “condition” is somewhat overloaded to mean several thi
depending on the situation. | have found it advantageous to use different terms for each of these concepts.

e StandardREXX does not have condition queue, although a structure of such a kind is needed to handled the queuing of
pending conditions when the trap statBiE_AY.

* The values default-action and delay-action are really non-existing in the St&idéxddocumentation. | made them up to
make the system more easy to explain.

e The two-step process of first raising the flag, and then (possibly at a later stage) triggering the trap, is n®EXAly a
concept. OriginallyREXX seems to allow implementations to select certain places of the interpreter where events are sc
for. All standard conditions that can be called by metBAdL, can be implemented by checking only at clause boundaries.

« Consequently, REXX implementation can choose to trigger the trap immediately after a condition are raised (since
conditions are only raised immediately before the trap would trigger anyway). This is also the common way used in lanc
level 3.50, when only methd8l GNAL was implemented.

< Unfortunately, the introduction of the std&LAYforces the interpreter to keep a queue of pending conditions, so there is
nothing to gain on insisting that raising should happen immediately before triggering. And the picture is even more mud
when theNOTREADYondition is introduced. Since it explicitly allows raising of condition to be done during the clause,
even though the triggering of the trap must happen (if methG4li4) at the end of the clause.

| really hope that these changes has made the concept of conditions easier to understand, not harder. Please feelnfree to fl
for any of these which you don't think is representativeRiaxX.

3.5 Conditions in Regina

Here comes documentation that are specific foRibgina implementation oREXX.

3.5.1 How to Raise theHALT condition

The implementation connect thEAL T condition to an external event, which might be the pressing of certain key combination.
The common conventions of the operating system will dictate what that combination of keystrokes is.

Below is a list, which describes how to invoke an event that will raisdAhd condition under various the operating systems
which Regina runs under.

e Under various variants of thénix operating system, tHéALT event it connected to the signal “interrugB1GINT). Often
this signal is bound to special keystrokes. Depending on your version of Unix, this might be <ctrl>-<c> (mostly BSD-
variants) or the key (mostly System V). It is also possible to send this signal from the command line, in general u
the progrankill(1) ; or from program, in general using the cadjnal(3) . Refer to your Unix documentation for more
information.

* UnderVAX/VMS , the key sequence <ctrl>-<c> is used to raisédtheT condition in the interpreter.

80

3.5.2 Extended built-in functions

Regina has a few extra built-in functions that are added to support theygiely of the interpreter. Under some circumstances,
these might also be useful when debugdriEtk X scripts. Note that these functions are not a part of staREXX and should
never be used when portability is required. The functions are:

RAISE_COND(ondition)
is used to explicitly raise @nditionduring execution of REXX script. The interpreter will accept the execution of this
function as an event, just as if the event had occurred. Returns the nullstring.

COND_INFO([condition 1)
is a function that will return information about the current settings of the condition indicatenftition including the
state of the flag, and the contents of the pending queue. If called without a parameter, it will return a <space>-sepa
list of those conditions which have non-empty pending condition queue.

TRAP_INFO([condition])
is a functions that returns the status information about a trigger at the current procedure level. The information rett
will be the state, the method and the condition handler. If called without a parameter, a <space>-separated list of
condition enabled (stateNor DELAY) at the current procedure level, is returned.

These functions are described in detail elsewhere. Note that these functions will only be available if the interpreteil@gs corr
with the certain preprocessor flag set. If the code was included in the compilation, the availability of these funcilbbewill st

dependent on the selection of extensions with the claB3dONS where the extensidbBG_FUNCShould be chosen. See
chapter on extensions for more information.

3.5.3 Extra Condition in Regina
Regina has some other extra conditions. These conditions are:

« A conditionDEBUGthat is very similar to the conditidhALT. The condition is raised as a result of an event of external
origin, generally a special combination of keystrokes is pressed.

e The default-action of this condition is to set the trace modotmal and interactive. Consequently, the user will generally
get into interactive tracing at the next clause boundary. This way, the user may be able to stop the program during exec
and perform debugging.

* The delay-action of this condition is to ignore it.

¢ On Unix machines, this is the sigiUIT (SIGQUIT), which is normally bound the <ctrl>key. Just like conditioRALT,
this might also be simulated from the command line, or from other programs. Consult the Unix documentation for more
information. On VAX/VMS machines, this event is normally bound to the <ctrl>-<y> key.

« This extended condition will only be available if the exten€§@ND_DEBURas been chosen.

Whether or not the conditions listed here are available, may also depend on whether particular preprocessor flag was set d
compilation. For more information, see the chapter on extensions.

3.5.4 Various Other Existing Extensions
Here is a list of other current extensionfRegina. See chapter on extensions for more information.

* Regina allows the conditioNOVALUHEo be trapped by methd@ALL, which is not allowed according to the standard.

e This extension will only be available if the extensioAlLL._ON_NOVALUBEas been chosen, and the code was compiled
with certain preprocessor flags set.

81

« If NOVALUEHs being trapped by meth@ALL, the current clause will be completed aN@VALUEwvas not trapped at all,
returning the default value for an unset symbol as variable value.

3.6 Possible Future extensions

e Here is a list of possible future extension®EXX which has not been implemented iRegina. Some of these exist in
other implementations ®&EXX, and some of them are just suggestions or ideas thrown around by various people.

« Another extension could have been included, but have been left out so far. It is the delay-action, which irREXidasch
be either to ignore or to queue. There is at least one other action that make sense: to replace. That is, when aérap is in
DELAY, and a new condition has been raised, the pending queue is emptied, before the new condition is queued. That
the new condition will effectively replace any conditions already in the queue.

« If there are several new conditions raised while the condition handler is executing (and the traDEta&@)jonly the very
last of them is remembered.

¢ It should be possible to set the state for a trdpEbAY, so that any new instances of the condition is handles by the delay-
action. As a special case, tB¥ NTAXcondition trap might not be set in st&tELAY

82

4, Stream Input and Output

And the streams thereof shall be turned into pitch
Isaiah 33:21

For every one that asketh receivedth;

and he that seeketh findth;

and to him that knocketh it shall be opened.
Matthew 7:8

This chapter treats the topic of input from and output to streams using the built-in functions. An overview of the otifehearts
input/output (I/O) system is also given but not discussed in detail. At the end of the chapter there are sections containing
implementation-specific information for this topic.

4.1 Background and Historical Remarks

Stream 1/O is a problem area for languagesREXX. They try to maintain compatibility for all platforms (i.e. to be non-system-
specific), but the basic I/0O capabilities differ between systems, so the simplest way to achieve compatibility is to ipaude on
minimal, common subset of the functionality of all platforms. With respect to the functionality of the interface to their
surrounding environment, non-system-specific script languageREkeX are inherently inferior to system specific script
languages which are hardwired to particular operating systems and can benefit from all their features.

AlthoughREXX formally has its own I/O constructs, it is common for some platforms that most or all of the I/O is performed
operating system commands rather thaREXX. This is how it was originally done under VM/CMS, which was one of the
earliest implementations and which did not sup&EXX’s I/O constructs. There, tHeXECIO program and the stack (among
other methods) are used to transfer data to and flREX&X program.

Later, the built-in functions for stream I/O gained territory, but lots of implementations still rely on special purposespiamgra
doing I/0. The general recommendatiorRiBEXX programmers is to use the built-in functions instead of special purpose
programs whenever possible; that is the only way to make compatible programs.

4.2 REXX's Notion of a Stream

REXX regards a stream as a sequence of characters, conceptually equivalent to what a user might type at the keyboard. N
a stream is not generally equivalent to a flMCGH:DICT] defines a file as “a collection of related records treated as a unit,”
while [OX:CDICT] defines it as “Information held on backing store [...] in order (a) to enable it to persist beyond the time of
execution of a single job and/or (b) to overcome space limitations in main memory.” A stream is defined by [OX:CDICT] as
flow of data characterized by relative long duration and constant rate.”

Thus, a file has a flavor of persistency, while a stream has a flavor of sequence and momentarily. For a stream, dega read €
may already have been lost, and the data not yet read may not be currently defined; for instance the input typed atoa keybo:
the output of a program. Even though much ofREXX literature use these two terms interchangeably (and after all, there is
some overlap), you should bear in mind that there is a difference between them.

In this documentation, the term “file” means “a collection of persistent data on secondary storage, to which random access
multiple retrieval are allowed.” The term “stream” means a sequential flow of data from a file or from a sequential device like
terminal, tape, or the output of a program. The term stream is also used in iIRESXgicimeaning: a handle to/from which a flow
of data can be written/read.

83

4.3 Short Crash-Course

REXX 1/0 is very simple, and this short crash course is probably all you need in a first-time reading of this chapter. But note
that, we need to jump a bit ahead in this section.

To read a line from a stream, use thREIN() built-in function, which returns the data read. To write a stream, use the
LINEOUT() built-in function, and supply the data to be written as the second parameter. For both operations, give the nam
the stream as the first parameter. Some small examples:

contents = linein(‘myfile.txt’)
call lineout ‘yourfile.txt’, ‘Data to be written’

The first of these reads a line from the stremayfile.txt , while the second writes a line to the strgamarfile.txt
Both these calls operate on lines and they use a system specific end-of-line marker as a delimiter between lines. The mark
tagged on at the end of any data written out, and stripped off any data read.

Opening a stream IREXX is generally done automatically, so you can generally ignore that in your programs. Another usefu
method is repositioning to a particular line:

call linein ‘myfile.txt’, 12, 0
call lineout ‘yourfile.txt’,, 13

Where the first of these sets the current read position to the start of line 12 of the stream; the second sets theecpogtibmrit
to the start of line 13. Note that the second parameter is empty, that means no data is to be written. Also note timatr#ae curre
and write positions are two independent entities; setting one does not affect the other.

The built-in function®CHARIN() andCHAROUT()are similar to the ones just described, except that they are character-orient
i.e. the end-of-line delimiter is not treated as a special character.

Examples of use are:

say charin(‘myfile.txt’, 10)
call charout ‘logfile’, ‘some data’

Here, the first example reads 10 characters, starting at the current input position, while the second writes the elarsro€harac
“some data” to the file, without an end-of-file marker afterwards.

It is possible to reposition character-wise too, some examples are:

call charin ‘myfile’,, 8
call charout ‘foofile,, 10

These two clauses repositions the current read and write positions of the named file§ snth&® characters, respectively.

4.4 Naming Streams

Unlike most programming languag&EXX does not use file handles; the name of the stream is also in general the handle
(although some implementations add an extra level of indirection). You must supply the name to all 1/O functions operating !
stream. However, internally, tiREXX interpreter is likely to use the native file pointers of the operating system, in order to
improve speed. The name specified can generally be the name of an operating system file, a device name, or a special str
name supported by your implementation.

84

The format of the stream name is very dependent upon your operating system. For portability concerns, you should try not 1
specify it as a literal string in each 1/O call, but set a variable to the stream name, and use that variable when fealtitigrisO
This reduces the number of places you need to make changes if you need to port the program to another system. Unfortun
this approach increases the need#BOCEDURE EXPOSEince the variable containing the files name must be available to all
routines using file 1/O for that particular file, and all their non-common ancestors.

Example: Specifying file names

The following code illustrates a portability problem related to the naming of streams. The \fdeiahfee is set to the name
of the stream operated on in the function call.

filename = ‘/tmp/MyFile. Txt’

say ' first line is’ linein(filename)
say ‘second line is’ linein(filename)
say ‘ third line is’ linein(filename)

Suppose this script, which looks like it is written for Unix, is moved to a VMS machine. Then, the stream name might be
something likeSYS$TEMP:MYFILE.TXT, but you only need to change the script at one particular point: the assignment to tt
variablefilename ; as opposed to three places if the stream name is hard-coded in each of the threlel & IsI{p .

If the stream name is omitted from the built-in I/O functions, a default stream is used: input functions use the defsdtaimput
while output functions use the default output stream. These are implicit references to the default input and output streams, |
unfortunately, there is no standard way to explicitly refer to these two streams. And consequently, there is no standefdrway
to the default input or output stream in the built-in func8IIREAM().

However, most implementations allow you to access the default streams explicitly through a name, maybe the nullstring or
something likestdin andstdout . However, you must refer to the implementation-specific documentation for information
about this.

Also note that standaREXX does not support the concept of a default error stream. On operating systems supporting this, i
probably be accessed through a special name; see system-specific information. The same applies for other special stream:s

Sometimes the term “default input stream” is called “standard input stream,
“stdin.”

default input devices,” “standard input,” or just

The use of stream names instead of stream descriptors or handles is deeply rooREXXtphilosophy: Data structures are

text strings carrying information, rather than opaque data blocks in internal, binary format. This opens for some intriguing
possibilities. Under some operating systems, a file can be referred to by many names. For instance, under Unix, a file can
referred to asoobar , ./foobar and././foobar . All which name the same file, althouglR&EXX interpreter may be

likely to interpret them as three different streams, because the names themselves differ. On the other hand, nothiaig prever
interpreter from discovering that these are names for the same stream, and treat them as equivalent (except concerns for
processing time). Under Unix, the problem is not just confined to the useinffile names, hard-links and soft-links can
produce similar effects, too.

Example: Internal file handles

Suppose you start reading from a stream, which is connected to a filefealledou read the first line dbo , then you issue a
command, in order to renarf@o tobar . Then, you try to read the next line fréoo . TheREXX program for doing this
under Unix looks something like:

signal on notready
linel = linein(‘foo’)
‘mv foo bar’

line2 = linein(‘foo’)

85

Theoretically, the fildoo does not exist during the second call, so the second read should r&SETIREAD ¥ondition.

However, aREXX interpreter is likely to have opened the stream already, so it is performing the reading on the file descriptc
the open file. It is probably not going to check whether the file exists before each 1/0 operation (that would requiexadot of
checking). Under most operating systems, renaming a file will not invalidate existing file descriptors. Consequently, the
interpreter is likely to continue to read from the origfioal file, even though its has changed.

Example: Unix temporary files

On some systems, you can delete a file, and still read from and write to the stream connected to that file. This tebbnigue is
in the following Unix specific code:

tmpfile = ‘/tmp/myfile’

call lineout tmpfile,

call lineout tmpfile,, 1

‘rm’ tmpfile

call lineout tmpfile, ‘This is the first line’

Under Unix, this technique is often used to create temporary files; you are guaranteed that the file will be deleted, oo closing
matter how your program terminates. Unix deletes a file whenever there are no more references to it. Whether the referenc
from the file system or from an open descriptor in a user process is irrelevant. Aftaragbmmand, the only reference to the

file is from theREXX interpreter. Whenever it terminates, the file is deleted—-since there are no more references to it.

Example: Files in different directories

Here is yet another example of how using the filename directly in the stream 1/O functions may give strange effects. Suppos
are using a system that has hierarchical directories, and you have a f@¢BdR() which sets a current directory; then
consider the following code:

call chdir *../dir1’
call lineout ‘foobar’, ‘written to foobar while in dirl’
call chdir *../dir2’
call lineout ‘foobar’, ‘written to foobar while in dir2’

Since the file is implicitly opened while you are in the directbrg , the filefoobar refers to a file located there. However,
after changing the directory thr2 , it may seem logical that the second calltdEOUT() operates on a file idir2 , but that
may not be the case. Considering that these clauses may come a great number of lines B¢t e no standard way of
closing files, and theREXX only have one file table (i.e. open files are not local to subroutines); this may open for a significal
astonishment in compleREXX scripts.

Whether an implementation treatgfoo and./foo as different streams is system-dependent; that applies to the effects of
renaming or deleting the file while reading or writing, too. See your interpreter’s system-specific documentation.

Most of the effects shown in the examples above are due to insufficient isolation between the filename of the operatimgl syst
the file handle in th&@EXX program. Whenever a file can be explicitly opened and bound to a file handle, you should do that
order to decrease the possibilities for strange side effects.

Interpreters that allow this method generally hav®BREN() function that takes the name of the files to open as a parameter, a
returns a string that uniquely identifies that open file within the current context; e.g. an index into a table of opatefil¢isis
index can be used instead of the filename.

Some implementations allow only this indirect naming scheme, while others may allow a mix between direct and indirect nal
The latter is likely to create some problems, since some strings are likely to be both valid direct and indirect file ids.

86

4.5 Persistent and Transient Streams

REXX knows two different types of streams: persistent and transient. They differ conceptually in the way they can be opera
which is dictated by the way they are stored. But there is no difference in the data you can read from or write tobtbém (i.e.
can used for character- or line-wise data), and both are read and written using the same functions.

[Persistent streams]
(often referred to just as “files”) are conceptually stored on permanent storage in the computer (e.g. a disk), as an e
characters. Random access to and repeated retrieval of any part of the stream are allowed for persistent streams.
example of persistent streams are normal operating system files.

[Transient streams]
are typically not available for random access or repeated retrieval, either because it is not stored permanently, but |
a sequence of data that is generated on the fly; or because they are available from a sequential storage (e.g. magr
tape) where random access is difficult or impossible. Typical examples of transient streams are devices like keyboe
printers, communication interfaces, pipelines, etc.

REXX does not allow any repositioning on transient streams; such operations are not conceptually meaningful; a transient ¢
must be treated sequentially. It is possible to treat a persistent stream as a transient stream, but not vice versa. Thus, some
implementations may allow you to open a persistent stream as transient. This may be useful for files to which you have only
append access, i.e. writes can only be performed at the end of file. Whether you can open a stream in a particular mgele, ot
the mode of a stream already open depends on your implementation.

Example: Determining stream type

Unfortunately, there is no standard way to determine whether a given file is persistent or transient. You may try to fi@positior
the file, and you can assume that the file is persistent if the repositioning succeeded, like in the following code:

streamtype: procedure

signal on notready

call linein arg(1), 1, 0

return ‘persistent’ [* unless file is empty */
notready:

return ‘transient’

Although the idea in this code is correct, there are unfortunately a few problems. FIED TREAD¥ondition can be raised by
other things than trying to reposition a transient stream; e.g. by any repositioning of the current read position in g @mpty f
you have write access only, etc. Second, your implementation may ndl@a\READ Yor it may not use it for this situation.

The best method is to us&aREAM() function, if one is available. Unfortunately, that is not very compatible, since no standa
stream commands are defined.

4.6 Opening a Stream

In most programming languages, opening a file is the process of binding a file (given by a file name) to an interneEXXdle.
is a bit special, since conceptually, it does not use stream handles, just stream names. Therefore, the stream nédspehe itself
stream handle, and the process of opening streams becomes apparently redundant. However, note that a number of
implementations allow explicit opening, and some even require it.

REXX may open streams “on demand” when they are used for the first time. However, this behavior is not defined in TRL,

says the act of opening the stream is not a p&EXX [TRL2]. This might be interpreted as open-on-demand or that some
system-specific program must be executed to open a stream.

87

Although an open-on-demand feature is very practical, there are situations where you need to open streams in particular m
Thus, most systems have facilities for explicitly opening a file. IREXX interpreters may require you to perform some
implementation-specific operation before accessing streams, but most are likely to just open them the first time thegdate refe
in an 1/O operation.

There are two main approaches to explicit opening of streams. The first uses a non-standard built-in function normally calle
OPEN(), which generally takes the name of the file to open as the first parameter, and often the mode as the second paran
The second approach is similar, but uses the standard built-in fuBdtRBAM() with aCommandoption.

Example: Not closing files

Since there are no open or close operatidREAX interpreter never knows when to close a stream, unless explicitly told so. It

can never predict when a particular stream is to be used next, so it has to keep the current read and write positieais in case
stream is to be used again. Therefore, you should always close the streams when you are finished using them. Failure to d
will fill the interpreter with data about unneeded streams, and more serious, it may fill the file table of your proctss.oAsys

a rule, anyREXX script that uses more than a couple of streams, should close every stream after use, in order to minimize tl
number of simultaneously open streams. Thus, the following code might eventually crash fREsOimterpreters:

do i=1to 300
call lineout file.’||i, ‘this is file number’ i
end

A REXX interpreter might try to defend itself against this sort of open-many-close-none programming, using of various
programming techniques; this may lead to other strange effects. However, the main responsibility for avoiding this is with y:
theREXX script programmer.

Note that if a stream is already open for reading, and you start writing to it, your implementation may have to reoplen ibin or
open for both reading and writing. There are mainly two strategies for handling this. Either the old file is closed, and then
reopened in the new mode, which may leave you with read and write access to another file. Or a new file handle is opened
new mode, which may leave you with read and write access to two different files.

These are real-world problems which are not treated by the ideal description of TRL. A good implementation should detect
situations and raiSdOTREADY

4.7 Closing a Stream

As already mentionedREXX does not have an explicit way of opening a stream. Nor does it have an explicit way of closing a
stream. There is one semi-standard method: If yol.BdEOUT() , but omit both the data to be written and the new current
write position, then the implementation is defined to set the current write position to the end-of-file. Furthermol@yédssl
TRL to do something “magic” in addition. It is not explicitly defined what this magic is, but TRL suggests that it mayrige closi
the stream, flushing the stream, or committing changes done previously to the stream.

In SAA, the definition is strengthened to state that the “magic” is closing, provided that the environment supports tbat opera

A similar operating can be performed by callD AROUT()with neither data nor a new position. However, in this case, both
TRL and SAA leave it totally up to the implementation whether or not the file is to be closed. One can wonder whether the
changes foLINEOUT() in SAA with respect to TRL should also have been dol@&HAROUT() but that this was forgotten.

TRL2 does not indicate thBtNEIN() or CHARIN() can be used to close a string. Thus, the closest one gets to a standard \
of closing input files is to call e. gINEOUT() ; although it is conceptually suspect to call an output routine for an input file. Th
historical reasons for this omission are perhaps that flushing output files is vital , while the concept of flushingpistifoelev
input files; flushing is an important part of closing a file, and that explains why closing is only indicated for output files.

88

Thus, the statement:

call lineout ‘myfile.txt’

might be used to close the streayfile.txt in some implementations. However, it is not guaranteed to close the stream, s
you cannot depend on this for scripts of maximum portability, but it's better than nothing. However, note that if it closes the
stream, then also the current read position is affected. If it merely flushes the stream, then only the current write lgaition

to be affected.

4.8 Character-wise and Line-wise 1/0O

Basically, the built-irREXX library offers two strategies of reading and writing streams: line-wise and character-wise. When
reading line-wise, the underlying storage method of the stream must contain information which describes where each line st
and ends.

Some file systems store this information as one or more special characters; while others structure the file in a numitgr of rec
each containing a single line. This introduces a slightly subtle point; even though datresaturns the same data when read

by LINEIN() on two different machines; the data read ffom may differ between the same two machines when the stream is
read byCHARIN() , and vice versa. This is so because the end-of-line markers can vary between the two operating systems

Example: Character-wise handling of EOL

Suppose a text file contains the following three lines (ASCII character set is assumed):

first
second
third

and you first read it line-wise and then character-wise. Assume the following program:

file = ‘DATAFILE’
foo="
do i=1 while chars(file)>0
foo = foo || c2x(charin(file))" ’
end
say foo

When the file is read line-wise, the output is identical on all machines, i.e. the three lines shown above. Howevertdghe chars
wise reading will be dependent on your operating system and its file system, thus, the output might e.g. be any of:

66 69 72 73 74 73 65 6F 63 6E 64 74 68 69 72 64 66 69 72 73 74 OA

66 69 72 73 74 OA
73 65 6F 63 6E 64 OA
74 68 69 72 64 OA

66 69 72 73 74 0D OA
73 65 6F 63 6E 64 0D OA
74 68 69 72 64 0D OA

If the machine uses records to store the lines, the first one may be the result; here, only the data in the linesottnenidd. i

Note that the boxes in the output are put around the data generated by the actual line contents. What is outside the boxes |
generated by the end-of-line character sequences.

89

The second output line is typical for Unix machines. They use the newline ASCII character as line separator, and thas chare
read immediately after each line. The last line is typical for MS-DOS, where the line separator character sequenceds a carri
return following by a newline (ASCIDD’x and‘0A’x).

For maximum portability, the line-wise built-in functiondEIN() , LINEOUT() andLINES()) should only be used for
line-wise streams. And the character-wise built-in functi@$ARIN() , CHAROUT()andCHARS()) should only be used for
character-wise data. You should in general be very careful when mixing character- and line-wise data in a single steeam; it (
work, but may easily lead to portability problems.

The difference between character- and line-wise streams are roughly equivalent to the difference between binary andtext s
but the two concepts are not totally equivalent. In a binary file, the data read is the actual data stored in the file, tevkilélé,

the character sequences used for denoting end-of-line and end-of-file markers may be translated to actions or other charac
during reading.

The end-of-file marker may be differently implemented on different systems. On some systems, this marker is only implicitly
present at the end-of-file—-which is calculated from the file size (e.g. Unix). Other systems may put a character sighd¥ing el
file at the end (or even in the middle) of the file (e.g. <Ctrl-Z> for MS-DOS). These concepts vary between operating syster
interpreters should handle each concept according to the customs of the operating system. Check the implementation-spe:
documentation for further information. In any case, if the interpreter treats a particular character as end-of-file Jyrgines on
special treatment to this character during line-wise operations. During character-wise operations, no characters have speci
meanings.

4.9 Reading and Writing

Four built-in functions provide line- and character-oriented stream reading and writing capa®GHithdRtN() , CHAROUT()
LINEIN() , LINEOUTY() .

[CHARINQ)]
is a built-in function that takes up to three parameters, which are all optional: the name of the stream to read from,
start point, and the number of characters to read. The stream name defaults to the default input stream, the start pc
defaults to the current read position, the number of characters to read defaults to one character. Leave out the sec
parameter in order to avoid all repositioning. During execution, data is read from the stream specified, and returnec
the return value.

[LINEIN()]
is a built-in function that takes three parameters too, and they are equivalent to the para@eterRINf) . However,
if the second parameter is specified, it refer to a line position, rather than a character position; it refers to the chara
position of the first character of that line. Further, the third parameter can dhlgride and refers to the number of
lines to read; i.e. you cannot read more than one line in each call. The line read is returned by the function, or the
nullstring if no reading was requested.

[LINEOUT()]
is a built-in function that takes three parameters too, the first is the name of the stream to write to, and defaults to tt
default output stream. The second parameter is the data to be written to the file, and if not specified, no writing occ!
The third parameter is a line-oriented position in the file; if the third parameter is specified, the current position is
repositioned at before the data (if any) is written. If data is written, an end-of-line character sequence is appended t
output stream.

[CHAROUT()]
is a built-in function that is used to write characters to a file. It is identitaNBOUT() , except that the third
parameter refers to a character position, instead of a line position. The second difference is that an end-of-line che
sequence is not appended at the end of the data written.

Example: Counting lines, words, and characters

90

The followingREXX program emulates the core functionality of wWeprogram under Unix. It counts the number of lines,
words, and characters in a file given as the first argument.

file = arg(1)
parse value 0 0 0 with lines words chars
do while lines(file)>0
line = linein(file)
lines =lines + 1
words = words + words(line)
chars = chars + length(line)
end
say ‘lines='lines ‘words="words ‘chars="chars

There are some problems. For instance, the end-of-line characters are not counted, and a last improperly terminated line is
counted either.

4.10 Determining the Current Position

StandardREXX does not have any seek call that returns the current position in a stream. Instead, it provides two calls that r
the amount of data remaining on a stream. These two built-in functiobB\N&8() andCHARS().

e TheLINES() built-in function returns the number of complete lines left on the stream given as its first parameter. The
“complete lines” does not really matter much, since an implementation can assume the end-of-file to implicitly mean an
of-line.

e TheCHARS() built-in function returns the number of character left in the stream given as its first parameter.

This is one of the concepts wh&EXX 1/0 does not map very well to C I/O and vice versa. WRHEXX reports the amount of
data from the current read position to the end of stream, C reports the amount of data from the start of the file ta the curren
position. Further, thREXX method only works for input streams, while the C method works for both input and output files. O
the other hand, C has no basic constructs for counting remaining or reposition at lines of a file.

Example: Retrieving current position

So, how does one find the current position in a file, when only allowed to do normal repositioning? The trick is to reposition
twice, as shown in the code below.

ftell: procedure
parse arg filename
now = chars(filename)
call charin filename, 0, 1
total = chars(filename)
call charin filename, 0, total-now
return total-now

Unfortunately, there are many potential problems with this code. First, it only works for input files, since there isatenetuiv
CHARS() for output files. Second, if the file is empty, none of the repositioning work, since it is illegal to reposition at or afte
end-of-file for input files—-and the end-of-file is the first position of the file. Third, if the current read positiorfitd that the

end of file (e.g. all characters have been read) it will not work for similar reasons as for the second case. And fyuntbrkison
for persistent files, since transient files do not allow repositioning.

Example: Improved ftell function

91

An improved version of the code for tfiell routine (given above), which tries to handle these problems is:

ftell: procedure
parse arg filename
signal on notready name not_persist
now = chars(filename)
signal on notready name is_empty
call charin filename, 0, 1
total = chars()
if now>0 then
call charin filename, 0, total-now+1
else if total>0 then
call charin filename, 1, total
else
nop /* empty file, should have raised NOTREADY */
return total-now+1

not_presist: say filename ‘is not persistent’; return 0
is_empty: say filename ‘is empty’; return O

The same method can be used for line-oriented 1/O too, in order to return the current line number of an input file. However,
potential problem in that case is that the routine leaves the stream repositioned at the start of the current linejasven if it
initially positioned to the middle of a line. In addition, the line-oriented version oftéilis routine may prove to be fairly
inefficient, since the interpreter may have to scan the whole file twice for end-of-line character sequences.

4.11 Positioning Within a File

REXX supports two strategies for reading and writing streams: character-wise, and line-wise, this section describes how a
program can reposition the current positions for each these strategies. Note that positioning is only allowed for peesistent st

For each open file, there is a current read position or a current write podéfmending on whether the file is opened for reading
or writing. If the file is opened for reading and writing simultaneously, it has both a current read position and a ctgrent wri
position, and the two are independent and in general different. A position within a file is the sequence number of tireebyte or
that will be read or written in the next such operation.

Note thatREXX starts numbering at one, not zero. Therefore, the first character and the first line of a stream are both humb
one. This differs from several other programming languages, which starts numbering at zero.

Just after a stream has been opened, the initial values of the current read position is the first character in the stteam, whil
current write position is the end-of-file, i.e. the position just after the last character in the stream. Then, readingliergrst
character (or line) in the stream, and writing will append a new character (or line) to the stream.

These initial values for the current read and write positions are the default values. DependindR&Xyoumplementation,
other mechanisms for explicitly opening streams (e.g. througBTREAM() built-in function) may be provided, and may set
other initial values for these positions. See the implementation-specific documentation for further information.

When setting the current read position, it must be set to the position of an existing character in the stream; i.evalpesitote
greater than the total number of characters in the stream. In particular, it is illegal to set the current read posjtiasitiorthe
immediately after the last character in the stream; although this is legal in many other programming languages and operatin
systems, where it is known as “seeking to the end-of-file”.

When setting the current write position, it too must be set to the position of an existing character in the stream. Jraddition

unlike the current read position, the current write position may also be set to the position immediately following thradsest cha
in the stream. This is known as “positioning at the end-of-file”, and it is the initial value for the current write postica wh

92

stream is opened. Note that you are not allowed to reposition the current write position further out beyond the end-atfile—-
would create a “hole” in the stream—-even though this is allowed in many other languages and operating systems.

Depending on your operating system &XX interpreter, repositioning to after the end-of-file may be allowed as an extensio
although it is illegal according to TRL2. You should avoid this technique if you wish to write portable programs.

REXX only keeps one current read position and one current write position for each stream. So both line-wise and character
reading as well as positioning of the current read position will operate on the same current read position, and sitndarly for t
current write position.

When repositioning line-wise, the current write position is set to the first character of the line positioned at. However, if
positioning character-wise so that the current read position is in the middle of a line in the file, a subsequelE&N (o

will read from (and including) the current position until the next end-of-line marker. TINEIN() might under some
circumstances return only the last part of a line. Similarly, if the current write position has been positioned in thé amddle o
existing line by character-wise positioning, AddNEOUT() is called, then the line written out becomes the last part of the line
stored in the stream.

Note that if you want to reposition the current write position using a line count, the stream may have to be open forTrgiad, to
is because the interpreter may have to read the contents of the stream in order to find where the lines start and egdomepen
your operating system, this may even apply if you reposition using character count.

Example: Repositioning in empty files

Since the current read position must be at an existing character in the stream, it is impossible to reposition in oaread from
empty stream. Consider the following code:

filename = ‘/tmp/testing’
call lineout filename,, 1 /* assuming truncation */
call linein filename, 1, 0

One might believe that this would set the current read and write positions to the start of the stream. However, assume that
LINEOUT() call truncates the file, so that it is zero bytes long. Then, the last call can never be legal, since there is no byte
file at which it is possible to position the current read position. Therefol®T&READ¥ondition is probably raised.

Example: Relative repositioning

It is rather difficult to reposition a current read or write position relative to the current position. The only way tathithibe
definition of the standard is to keep a counter which tells you the current position. That is, if you want to move threadirrent
position five lines backwards, you must do it like this:

filename = ‘/tmp/data’
linenum=0;
say linein(filename,10); linenum = 10
do while random(100)>3
say linein(filename); linenum = linenum+1
end
call linein(filename,linenum-5,0); linenum = linenum-5

Here, the variablénenum is updated for each time the current read position is altered. This may not seem to difficult, and i
not in most cases. However, it is nearly impossible to do this in the general case, since you must keep an account of both li
numbers and character numbers. Setting one may invalidate the other: consider the situation where you want to reposition 1
current read position to the "l@haracter before the 10(ne in the stream. Except from mixing line-wise and character-wise 1/C
(which can have strange effects), this is nearly impossible. When repositioning character-wise, the line number count is
invalidated, and vice versa.

93

The “only” proper way of handling this is to allow one or more (non-stan@rBEAM() built-in function operations that
returns the current character and line count of the stream in the interpreter.

Example: Destroying linecount

This example shows how overwriting text to the middle of a file can destroy the line count. In the following code, we assume
the filefoobar exists, and contains ten lines which diest line ", second line , etc. up to tenth line . Then
consider the following code:

filename = ‘foobar’

say linein(filename, 5) /* says ‘fifth line’ */

say linein(filename) /* says ‘sixth line’ */

say linein(flename) /* says ‘seventh line’ */

call lineout filename, ‘This is a very long line’, 5

say linein(filename, 5) /* says ‘This is a very long line’ */
say linein(filename) /* says ‘venth line’ */

say linein(flename) /* says ‘eight line’ */

As you can see from the output of this example, the calN&OUT() inserts a long line and overwrites the fifth and sixth lines
completely, and the seventh line partially. Afterwards, the sixth line is the remaining part of the old seventh line gand the n
seventh line is the old eighth line, etc.

4.12 Errors: Discovery, Handling, and Recovery

TRL2 contains two important improvements over TRL1 in the area of handling errors in stream NOTIREAD¥ondition

and theSTREAMY() built-in function. TheNOTREADondition is raised whenever a stream I/O operation did not succeed. Th
STREAM() function is used to retrieve status information about a particular stream or to execute a particular operation for a
stream.

You can discover that an error occurred during an 1/O operation in one of the following ways: a) it may SighareX

condition; b) it may trigger NOTREADondition; or c) it may just not return that data it was supposed to. There is no clear
border between which situations should trig§¥NTAXand which should triggedOTREADXYErrors in parameters to the 1/O
functions, like a negative start position, is clear§YaNTAXcondition, while reading off the end-of-file is equally clearly a
NOTREADYondition. In between lay more uncertain situations like trying to position the current write position after the end
file, or trying to read a non-existent file, or using an illegal file name.

Some situations are likely to be differently handled in various implementations, but you can assume that they are hémelled a
SYNTAXor NOTREADYDefensive, portable programming requires you to check for both. Unfortund@nhREADYs not

allowed in TRL1, so you have to avoid that condition if you want maximum compatibility. And due to the very lax restrictions
implementations, you should always perform very strict verification on all data returned from any file 1/O built-in function.

If neither are trappe&YNTAXwill terminate the program whillOTREADWill be ignored, so the implementor’s decision

about which of these to use may even depend on the severity of the problem (i.e. if the problem is sma&ly Nighxgnay be

a little too strict). Personally, | thifRYNTAXshould be raised in this context only if the value of a parameter is outside its valic
range for all contexts in which the function might be called.

Example: General NOTREADYondition handler
Under TRL2 the “correct” way to handdOTREADYonditions and errors from 1/O operations is unfortunately very complex. |

is shown in this example, in order to demonstrate the procedure:

myfile = ‘MYFILE.DAT’
signal on syntax name syn_handler

94

call on notready name 10_handler
do i=1 to 10 until res=0
res = lineout(myfile, ‘line #'i)
if (res=0) then
say ‘Call to LINEOUT() didn"t manage to write out data’
end
exit

I0_handler:
syn_handler:
file = condition(‘'D’)
say condition(‘C’) ‘raised for file’ file ‘at line’ sigl’”’
say * ‘ sourceline(sigl)
say ' State='stream(file,’S’) ‘reason:’ stream(file,’D’)
call lineout(condition(‘D’)) /* try to close */
if condition(‘C’)=="SYNTAX’ then
exit 1
else
return

Note the double checking in this example: first the condition handler is set up to tid@AREAD¥onditions, and then the
return code fronkINEOUT() is checked for each call.

As you can see, there is not really that much information that you can retrieve about what went wrong. Some systems may |
additional sources from which you can get information, e.g. special commands$aRE&AM() built-in function, but these are
non-standard and should be avoided when writing compatible programs.

4.13 Common Differences and Problems with Stream 1/0O

This section describes some of the common traps and pitf&IEXX 1/0.

4.13.1 Where Implementations are Allowed to Differ

TRL is rather relaxed in its specifications of what an interpreter must implement of the 1/O system. It recognizes tingt operati
systems differ, and that some details must be left to the implementor to deREXfis to be effectively implemented. The
parts of the 1/0O subsystem REXX where implementations are allowed to differ, are:

e The functiond INES() andCHARS() are not required to return the number of lines or characters left in a stream. TRL s
that if it is impossible or difficult to calculate the numbers, these functions may tetunless it is absolutely certain that
there are no more data left. This leads to some rather kludgy programming techniques.

* Implementations are allowed to ignore closing streams, since TRL does not specify a way to do this. Often, the closing
streams is implemented as a command, which only makes it more incompatible.

* Check the implementation-specific documentation before using the fubdN&OUT(file) for closing files.

« The difference in the action of closing and flushing a file, can m&&XaX script that works under one implementation
crash under another, so this feature is of very limited value if you are trying to write portable programs.

TRL says that because the operating system environments will differ a lot, and an efficient and useful interpreter is the mos

important goal, implementations are allowed to deviate from the standard in any respect necessary in the domain of I/0O [TR
Thus, you should never assume anything about the 1/0 system, as the “rules” listed in TRL are only advisory.

95

4.13.2 Where Implementations might Differ anyway

In the section above, some areas where the standard allows implementations to differ are listed. In an ideal worldtatet oug
the only traps that you should need to look out for, but unfortunately, the world is not ideal. There are several arbas where t
requirements set up by the standard is quite high, and where implementations are likely to differ from the standard.

These areas are:

« Repositioning at (for the current write position) or beyond the end-of-file may be allowed. On some systems, to prohibit
would require a lot of checking, so some systems will probably skip that check. At least for some operating systems, the
of repositioning after end-of-file is a useful feature.

« Under Unix, it can be used for creating a dynamically sized random access file; do not bother about how much space is
allocated for the file, just position to the correct “sloth” and write the data there. If the data file is sparse, hotEcoTigit
the file; that is parts of the file which has not been written, and which is all zeros (and which are therefore not seked on

« Some implementations will use the same position for both the current read position and the current write position to
overcome these implementations. Whenever you are doing a read, and the previous operation was a write (or vice ver
may prove useful to reposition the current read (or write) position.

e There might be a maximum linesize for y&®REXX interpreter. At least the 50Kb limit on string length may apply.

* Handling the situation where another program writes data to a file which is usedRBEXMKeinterpreter for reading.

4.13.3 LINES() and CHARS() are Inaccurate

Because of the large differences between various operating syRiEXS,allows some fuzz in the implementation of the
LINES() andCHARS() built-in functions. Sometimes, it is difficult to calculate the number of lines or characters in a strean
generally because the storage format of the file often requires a linear search through the whole stream to determireg.that n
Thus,REXX allows an implementation to return the valufor any situation where the real number is difficult or impossible to
determine. Effectively, an implementation can restrict the domain of return values for these two functibrendflyrom these
two functions.

Many operating systems store lines using a special end-of-line character sequence. For these systems, it is very timéeconst
count the number of lines in a file, as the file must be scanned for such character sequences. Thus, it is very tempting for al
implementor to return the valdefor any situation where there are more than zero lines left.

A similar situation arises for the number of characters left, although it is more common to know this number, thus itlysegener
better chance dHARS() returning the true number of characters left thtNES() returning the true number of lines left.

However, you can be fairly sure that if an implementation returns a number greaterttiemthat number is the real number of
lines (or characters) left in the stream. And simultaneously, if the number retutneldga there is no lines (or characters) left to
be read in the stream. But if the numbet ishen you will never know until you have tried.

Example: File reading idiom

This example shows a common idiom for reading all contents of a filREXX variables using theINES() andLINEIN()
built-in functions.

i=1
signal on notready
lleft = lines(file)
do while lleft>0
do i=i to i+lleft
line.i = linein(file)
end
lleft = lines(file)

96

end
notready:
lines.0 =i-1

Here, the two nested loops iterates over all the data to be read. The innermost loop reads all data currently avaithble, while
outermost loop checks for more available data. Implementations haliNgES() that return onlyd and1 will generally iterate
the outermost loop many times; while implementations that returns the “true” numberf&®() generally only iterates the
outermost loop once.

There is only one place in this code thlBMIEIN() is called. The variable is incremented at only one place, and the variable
LINES.O is setin one clause, too. Some redundancy can be removed by setiMfidltiteexpression to:

do while word(value(‘lleft’,lines(file)) lleft,2)>0

The two assignments to theEFT variable must be removed. This may look more complicated, but it decreases the number
clauses having a call tdNES() from two till one. However, it is less certain that this second solution is more efficient, since
usingVALUE() built-in function can be inefficient over “normal” variable references.

4.13.4 The Last Line of a Stream

How to handle the last line in a stream is sometimes a problem. If you use a system that stores end-of-lines as special char
sequences, and the last part of the data of a stream is an unterminated line, then what is returned when you try trtreéd that
data?

There are three possible solutions: First, it may interpret the end-of-file itself as an implicit end-of-line, in thie pastath

part of the line is returned, as if it was properly terminated. Second, it may ra@TiIREAD¥ondition, since the end-of-file

was encountered during reading. Third, if there is any chance of additional data being appended, it may wait until sich dat
available. The second and third approaches are suitable for persistent and transient files, respectively.

The first approach is sometimes encountered. It has some problems though. If the end of a stream contains the data
ABC<NL>XYZthen it might return the stringYZ as the last line of the stream. However, suppose the last line was an empty li
then the last part of the stream would ABC<NL> Few would argue that there is any line in this stream after thAH@eThus,

the decision whether the end-of-file is an implicit end-of-line depends on whether the would-be last line has zero léngth or n

An pragmatic solution is to let the end-of-file only be an implicit end-of-file if the characters immediately in froneafat an
explicit end-of-line character sequence.

However, TRL gives some indications that an end-of-file is not an implicit end-of-line. It sa$NE&() returns the number

of complete lines left, and thBtNEIN() returns a complete line. On the other hand, the end-of-line sequence is not rigidly
defined by TRL, so an implementor is almost free to define end-of-line in just about any terms that are comfortable |&8tus, tt
line of a stream may be a source of problem if it is not explicitly terminated by an end-of-line.

4.13.5 Other Parts of the 1/0 System

This section lists some of the other part®R&iXX and the environments arouREXX that may be considered a part of the I/O
system.

[Stack.]
The stack be used to communicate with external environments. REKX side, the interface to the stack is the
instructionsPUSH PULL, PARSE PULL, andQUEUEand the built-in functioQUEUED(). These can be used to
communicate with external programs by storing data to be transferred on the stack.

[The STREAM() built-in function.]
This function is used to control various aspects about the files manipulated with the other standard I/O functions. Tt
standard says very little about this function, and leaves it up to the implementor to specify the rest. Operations like
opening, closing, truncating, and changing modes

97

[The SAYinstruction.]
The SAY instruction can be used to write data to the default output stream. If you use redirection, you can indirectly
it to write data to a file.

[The ADDRESSnstruction.]
The ADDRESSnstruction and commands can be used to operate on files, depending on the power of your host
environments and operating system.

[The VALUE() built-in function.]
The functionVALUE() , when used with three parameters, can be used to communicate with external host environm
and the operating system. However, this depends on the implementation of your interpreter.

[SAA APL]
The SAA API provides several operations that can be used to communicate between processes. In general, SAA A
allows you to perform the operations listed above from a binary program written in a language otR&XKan

And of course, 1/O is performed wheneveREBXX program or external function is started.

4.13.6 Implementation-Specific Information

This section describes some implementations of stream REBXX. Unfortunately, this has become a very large section,
reflecting the fact that stream 1/O is an area of many system-specific solutions.

In addition, the variations within this topic are rather lalBegina implements a set of functions that are very close to that of
TRL2. The other extreme afRexx andBRexx, which contain a set of functions which is very close to the standard 1/O library
of the C programming language.

4.13.7 Stream 1/O in Regina 0.07a

Regina implements stream 1/O in a fashion that closely resembles how it is described in TRL2. The following list gives the
relevant system-specific information.

[Names for standard streams.]
Regina uses<stdout> and<stdin> as names for the standard output and input streams. Note that the angle brac
are part of the names. You may also access the standard error stream (on systems supporting this stream) under t
<stderr> . In addition, the nullstring is taken to be equivalent to an empty first parameter in the 1/O-related built-in
functions.

[Implicit opening.]
Regina implicitly opens any file whenever it is first used.

If the first operation is a read, it will be opened in read-only mode. If the first operation is a write, it is opened in rea
write mode. In this case if the read-write opening does not succeed, the file is opened in write-only mode. If the file
exists, the opening is non-destructive, i.e. that the file is not truncated or overwritten when opened, else it is create
opened in read-write mode.

If you name a file currently open in read-only mode in a write opera®iegina closes the file, and reopens it in read-
write mode. The only exception is when you ¢ANEOUT() with both second and third arguments unspecified, which
always closes a file, both for reading and writing. Similarly, if the file was opened in write-only mode, and you use i
a read operatiorRegina closes and reopens in read-write mode.

This implicit reopening is enabled by default. You can turn it off by unsetting the ext&xgilicitOpen
[Separate current positions.]
The environment in whicRegina operates (ANSI C and POSIX) does not allow separate read and write positions, b

only supplies one position for both operatidRegina handles this by maintaining the two positions internally, and
move the “real” current position back and forth depending on whether a read or write operation is next.

98

[Swapping out file descriptors.]
In order to defend itself against “open-many-close-none” programiRagina tries to “swap out” files that have been
unused for some time. Assume that your operating system Rega to 100 simultaneously open files; when your try
to open your 10%file, Regina closes the least recently used stream, and recycles its descriptor for the new file. You
enable or disable this recycling with tBeapFilePtr extension.

During this recyclingRegina only closes the file in the operating system, but retains all vital information about the file
itself. If you re-access the file lat&egina reopens it, and positions the current read and write positions at the correct
(i.e. previous) positions. This introduces some uncertainties into stream processing. Renaming a file affects it only
gets swapped out. Since the swap operation is something the users do not see, it can cause some strange effects.

Regina will not allow a transient stream to be swapped out, since they often are connected to some sort of active p:
in the other end, and closing the file might kill the partner or make it impossible to reestablish the stream. So only
persistent files are swapped out. Thus, you can still fill the file talRegmna.

[Explicit opening and closing.]
Regina allows streams to be explicitly opened or closed through the use of the built-in fSTR&AM(). The exact
syntax of this function is described in sectstream. Old versions oRegina supported two non-standard built-in
functionsOPEN() andCLOSE() for these operations. These functions are still supported for compatibility reasons,
might be removed in future releases. Their availability is controlled b9pleaBif andCloseBif extensions.

[Truncation after writing lines.]
If you reposition line-wise the current write position to the middle of aRiégina truncates the file at the new position.
This happens whether data is written duringltMEOUT() or not. If not, the file might contain half a line, some lines
might disappear, and the linecount would in general be disrupted. The availability of this behavior is controlled by
LineOutTrunc , which is turned on by default.

Unfortunately, the operation of truncating a file is not part of POSIX, and it might not exist on all systems, so on son
rare systems, this truncating will not occur. In order to be able to truncate a file, your machine must have the
ftruncate() system call irC. If you don'’t have this, the truncating functionality is not available.

[Caching info on lines left.]
WhenRegina executes the built-in functiddNES() for a persistent stream, it caches the number of lines left as an
attribute to the stream. In subsequent calldREIN() , this number is updated, so that subsequent cdliNgBS()
can retrieve the cached number instead of having to re-scan the rest of the stream, provided that the number is still
Some operations will invalidate the count: repositioning the current read position; reading using the character orien
1/0, i.e.CHARIN() ; and any write operation by the same interpreter on the stream. Ideally, any write operation shot
invalidate the count, but that might require a large overhead before any operation, in order to check whether the file
been written to by other programs.

This functionality can be controlled by the extension calladheLineNo , which is turned on by default. Note that if
you turn that off, you can experience a serious decrease in performance.

The following extra built-in functions relating to stream I/O are defindglegina. They are provided for extra support and
compatibility with other systems. Their support may be discontinued in later versions, and they are likely to be mowadyto a li
of extra support.

CLOSE(streamid)

Closes the stream nameddiyeamid This stream must have been opened by implicit open or YRENfunction call earlier.

The function returng if there was any file to close, afdf the file was not opened. Note that the return value does not indicate
whether the closing was successful. You can use the extension GeeeBif with theOPTIONSInstruction to select or
remove this function. This function is now obsolete, instead you should use:

STREAM(streamid, ‘Command’, ‘CLOSE’)

CLOSEmyfile) 1 if stream was open
99

CLOSE(‘NOSUCHFILE’) 0 if stream didn't exist

OPEN(streamid,access)

Opens the stream namsileamidwith the accesaccesslf accesds not specified, the acceRwill be usedaccessnay be the
following characters. Only the first character of #teesds needed.

[R]
(Read) Open for read access. The file pointer will be positioned at the start of the file, and only read operations are
allowed.

[W
(Write) Open for write access and position the current write position at the end of the file. An error is returned if it w
not possible to get appropriate access.

The return value from this function is eittleor 0, depending on whether the named stream is in opened state after the operat
has been performed.

Note that if you open the file§dobar " and “./foobar " they will point to the same physical file, bRegina interprets them
as two different streams, and will open a internal file descriptor for each one. If you try to open an already openisty¢iaen, us
same name, it will have no effect.

You can use the extensi@penBif with theOPTIONSiInstruction to control the availability of this function. This function is
now obsolete, but is still kept for compatibility with other interpreters and older versiRegiofa. Instead, wittRegina you
should use:

STREAM(streamid, ‘C’, ‘READ’|'WRITE’|'APPEND’|'UPDATE")

OPEN(myfile, ‘write’) 1 maybe, if successful

OPEN(passwd, ‘Write") 0 maybe, if no write access

OPEN('DATA’, ‘READ’) 0 maybe, if successful
The return value from this function is eittleor 0, depending on whether the named stream is in opened state after the operat
has been performed.

4.13.8 Functionality to be Implemented Later

This section lists the functionality not yetRegina, but which is intended to be added later. Most of these are fixes to problem
compatibility modes, etc.

[Indirect naming of streams.]
Currently, streams are named directly, which is a convenient. However, there are a few problems: for instance, it is
difficult to write to a file which name isstdout> , simply because that is a reserved name. To fix this, an indirect
naming scheme will be provided through SIEREAM()< built-in function. The functionality will resemble t@PEN()
built-in function ofARexx.

[Consistence in filehandle swapping.]
When a file handle is currently swapped out in order to avoid filling the system file table, very little checking of
consistency is currently performed. At least, vital information about the file should be retained, such as the inode ar
system for Unix machines retrieval by fiséat() call. When the file is swapped in again, this information must be
checked against the file which is reopened. If there is a misN@AREAD¥hould be raised. Similarly, when
reopening a file because of a new access mode is requested, the same checking should be performed.

[Files with holes.]
Regina will be changed to allow it to generate files with holes for system where this is relevant. Although standard
REXX does not allow this, it is a very common programming idiom for certain systems, and should be allowed. It wi
however, be controllable through a extension calipdrseFiles

100

4.13.9 Stream I/O in ARexx 1.15

ARexx differs considerably from standalREXX with respect to stream I/O. In fact, none of the standard stream functionality o
REXX is available ilARexx. Instead, a completely distinct set of functions are used. The differences are so big, that it is use
to describeARexx stream I/O in terms of standaREXX stream I/O, and everything said so far in this chapter is irrelevant for
ARexx. Therefore, we explain th&Rexx functionality from scratch.

Allin all, the ARexx file I/O interface resembles the functions of the Standard C I/O library, probably béteseis written
in C, and theARexx I/O functions are “just” interfaces to the underlying C functions. You may want to check up the
documentation for the ANSI C I/O library as described in [ANSIC], [KR], and [PJPlauger].

ARexx uses a two level naming scheme for streams. The file names are bound to a stream nameOlEN(Jhauilt-in
function. In all other I/O functions, only the stream name is used.

OPEN(name, filename [, modd)

You use thedOPEN() built-in function to open a stream connected to a file céilletamein AmigaDOS. In subsequent I/O calls,
you refer to the stream aame These two names can be different.

Thenameparameter cannot already be in use by another stream. If €2PEMN() function fails. Note that theameparameter
is case-sensitive. THidenameparameter is not strictly case-sensitive: the case used when creating a new file is preserved, bt
when referring to an existing file, the name is case-insensitive. This is the usual behavior of AmigaDOS.

If any of the other 1/0O operations uses a stream name that has not been properly ope@@gN{pgthat operation fails,
becaus@Rexx has no auto-open-on-demand feature.

The optional parametenodecan be any dRead, Write , or Append. The moddRead opens an existing file and sets the
current position to the start of the file. The még®end is identical toRead, but sets the current positions to the end-of-file.
The modeNrite creates a new file, i.e. if a file with that name already exists, it is deleted and a new file is created. Thus, w
Write you always start with an empty file. Note that the terms “read,” “write,” and “append” are only remotely connected tc
mode in which the file is opened. Both reading and writing are allowed for all of these three modes; the mode namex only r
the typical operations of these modes.

The result fronOPEN() is a boolean value, which 1sif a file by the specifiedlamewas successfully opened during the
OPEN() call, and0 otherwise.

The number of simultaneously open files is no problem because AmigaDOS allocates files handles dynamically, and thus o
limited by the available memory. One system managed 2000 simultaneously open files during a test.

OPEN(infile’, ‘work:DataFile’) 1 if successful
OPEN(‘work’, ‘RAM:FooBar’, ‘Read’) 0 if didn’t exist
OPEN(‘output’, “TmpFile’, ‘W’) 1 (re)creates file

CLOSE(hame)

You use theCLOSE() built-in function to close a stream. The parameteanemust match the first parameter in a call to
OPEN() earlier in the same program, and must refer to an open stream. The return value is a boolean value that reflects w
there was a file to close (but not whether it was successfully closed).

CLOSE(infile’) 1 if stream was previously open
CLOSE((‘outfile’) 0 if stream wasn't previously open

WRITELN(name, string)
101

The WRITELN() function writes the contents sfring as a line to the streaname Thenameparameter must match the value of
the first parameter in an earlier call@®EN(), and must refer to an open stream. The data written is all the charasteirggin
immediately followed by the newline character (ASCII <Ctrl-J> for AmigaDOS).

The return value is the number of characters written, including the terminating newline. Thus, a returnOvaldieaties that
nothing was written, while a value which is one more than the number of charastersgimdicates that all data was
successfully written to the stream.

When writing a line to the middle of a stream, the old contents is written over, but the stream is not truncated; thayetés no w
truncate a stream with t#&Rexx built-in functions. This overwriting can leave partial lines in the stream.

WRITELN(‘tmp’, ‘Hello, world!") 14 if successful
WRITELN(‘work’, ‘Hi there’) 0 nothing was written
WRITELN(‘tmp’, ‘Hi there’) 5 partially successful

WRITECH(ame, string)

The WRITECHY() function is identical t®2WRITELN() , except that the terminating newline character is not added to the data
written out. ThusWRITELNY() is suitable for line-wise output, whlWRITECH() is useful for character-wise output.

WRITECH(‘tmp’, ‘Hello, world!) 13 if successful
WRITECH(‘work’, ‘Hi there’) 0 nothing was written
WRITECH('tmp’, ‘Hi there’) 5 partially successful

READLN((pame)

The READLN() function reads a line of data from the stream referred tmalme The parametaramemust match the first
parameter of an earlier call @PENY(), i.e. it must be an open stream.

The return value is a string of characters which corresponds to the characters in the stream from and including thetmnrent |
forward to the first subsequent newline character found. If no newline character is found, the end-of-file is implicityedtagy
a newline and the end-of-file state is set. However, the data returned to the user never contains the terminating end-of-line.

To differ between the situation where the last line of the stream was implicitly terminated by the end-of-file and where it was
explicitly terminated by an end-of-line character sequence, ug2R€ built-in function. TheEOF() returnsl in the former
case and in the latter case.

There is a limit inARexx on the length of lines that you can read in one c&BEADLN(). If the length of the line in the stream
is more than 1000 characters, then only the first 1000 characters are returned. The rest of the line can be read by additione
READLN() andREADCH() calls. Note that whenev®EADLN() returns a string of exactly 1000 characters, then no
terminating end-of-line was found, and a new caREADLN() must be executed in order to read the rest of the line.
READLN(‘tmp’) Hello world! maybe
READLN(‘'work’) maybe, if unsuccessful
READCHbamd, length])
The READCH() built-in function reads characters from the stream named by the paraam&rhich must correspond to the
first parameter in a previous call@PEN(). The number of characters read is giverdngth which must be a non-negative

integer. The default value Engthis 1.

The value returned is the data read, which has the length correspondintptmthparameter if no errors occurred.

102

There is a limit inARexx for the length of strings that can be read in one c&BEADCH(). The limit is 65535 bytes, and is a
limitation in the maximum size of akRexx string.

READCH(‘tmp’,3) Hel maybe
READCH(‘tmp’) I maybe
READCH(‘tmp’,6) o worl maybe

EOF(name)

TheEOF() built-in function tests to see whether the end-of-file has been seen on the stream speifiad tWich must be an
open stream, i.e. the first parameter in a previous ca@PBN().

The return value i& if the stream is in end-of-file mode, i.e. if a read operation (EREADLN() or READCHY()) has seen the
end-of-file during its operation. However, reading the last character of the stream does not put the stream in end-gfyiile moc
must try to read at least one character past the last character. If the stream is not in end-of-file mode, the retOrn value is

Whenever the stream is in end-of-file mode, it stays there until a GHiE&() is made. No read or write operation can remove
the end-of-file mode, onlBEEK() (and closing followed by reopening).

EOF(‘tmp) 0 maybe
EOF(‘work’) 1 maybe

SEEK(name, offset [, modd)

The SEEK() built-in function repositions the current position of the file specified by the paramagterwhich must correspond

to an open file, i.e. to the first parameter of a previous c@REBN(). The current position in the file is set to the byte referred to
by the parametasffset Note thabffsetis zero-based, so the first byte in the file is numb@rethe value returned is the current
position in the file after the seek operation has been carried throughBegjimning mode.

If the current position is attempted set past the end-of-file or before the beginning of the file, then the current pmgition is
moved, and the old current position is returned. Note that it is legal to position at the end-of-file, i.e. the positicatetgmedi
after the last character of the file. If a file contains 12 characters, the valid range for the resulting new currernis @ssitidn

The last parametemode can take any of the following values:

Beginning , Current , orEnd. It specify the base of the seeking, i.e. whether it is relative to the first byte, the end-of-file
position, or the old current position. For instance: for a 20 byte file with current position 3, then offset 7 Badiaiseg is
equivalent to offset —13 for ba&d and offset 4 foCurrent . Note that only the first character of tm@deparameter is
required, the rest of that parameter is ignored.

SEEK(‘tmp’, 12, ‘B’) 12 if successful

SEEK(‘tmp’, -4, ‘Begin’) 12 if previously at 12

SEEK(‘tmp’, -10, ‘E’) 20 iflengthis 30

SEEK(‘tmp’, 5) 17 if previously at 12

SEEK(‘tmp’, 5, ‘Celcius’) 17 only first character in mode matters
SEEK(‘tmp’, 0, ‘B) 0 always to start of file

4.13.10 Main Differences from Standard REXX

Now, as the functionality has been explained, let me point out the main conceptual differences fromREXatidey are:

[Current position.]
ARexx does not differ between a current read and write position, but uses a common current position for both readi
and writing. Further, this current position (which it is called in this documentation) can be set to any byte within the
and to the end-of-file position. Note that the current position is zero-based.

103

[Indirect naming.]
The stream I/O operations ARexx do not get a parameter which is the name of the file. Insédekx uses an
indirect naming scheme. TIBPEN() built-in function binds &EXX stream name for a file to a named file in the
AmigaDOS operating system; and later, onlyREEXX stream name is used in other stream 1/O functions operating on
that file.

[Special stream names.]
There are two special file namesARexx: STDOUTandSTDIN, which refer to the standard input file and standard
output file. With respect to the indirect naming scheme, these are not file names, but names for open streams; i.e. t
can be used in stream I/O operations other @REN(). For some reason, is it possible to cI8F®IN but not
STDOUT

[NOTREADYot supported.]
ARexx has ndANOTREADondition. Instead, you must detect errors by califf-() and checking the return codes
from each I/O operations.

[Other things missing.]
In ARexx, all files must be explicitly opened. There is no way to reposition line-wise, except for reading lines and
keeping a count yourself.

Of course ARexx also has a lot of functionality which is not part of standREXX, like relative repositioning, explicit opening,
an end-of-file indicator, etc. But this functionality is descriptive above in the descriptions of extended built-in fusrtionis,
of less interest here.

When anARexx script has opened a file Write mode, otheARexx scripts are not allowed to access that file. However, if the
file is opened irRead or Append mode, then othekRexx scripts can open the file too, and the same state of the contents of t
file is seen by all scripts.

Note that it is difficult to translate between using stan@REXX stream I/O andRexx stream 1/O. In particular, the main
problem (other than missing functionality in one of the systems) is the processing of end-of-lines. In RaKXarthe end-of-

file is detected by checking whether there is more data left, whil&@xx one checks whether the end-of-file has been read. Th
following is a common standaREXX idiom:

while lines(‘file’)>0 /* for each line available */
say linein(‘file’) /* process it */
end

In ARexx this becomes:

tmp = readin(‘file’) /* attempt to read first line */
do until eof(‘file’) /* if EOF was not seen */

say tmp /* process line */

tmp = readIn(‘file’) /* attempt to read next line */
end

It is hard to mechanically translate between them,
because of the lack of �OF() built-in function in standarBEXX, and the lack of AINES() built-in function inARexx.

Note that in théARexx example, an improperly terminated last line is not read as an independent linBEAiREN() searches
for an end-of-line character sequence. Thus, in the last invotatois set to the last unterminated line, B@F() returns true
too. To make this different, make tbd&TIL subterm of th&®Oloop check for the expressi&OF(‘file’) && TMP<>"

The limit of 1000 characters fRREADLN() means that a generic line reading routinARexx must be similar to this:

readline: procedure
parse arg filename

104

line="

do until length(tmpline)<1000
tmpline = readIn(filename)
line = line || tmpline

end

return line

This routine calllREADLN() until it returns a line that is shorter than 1000 characters. Note thaf-&ledebecking is ignored,
sinceREADLN() returns an empty string a the end-of-stream.

4.13.11 Stream I/O in BRexx 1.0b

BRexx contains a set of I/O which shows very close relations with the C programming language 1/O library. In fact, you shot
consider consulting the C library documentation for in-depth documentation on this functionality.

BRexx contains a two-level naming schemeREBXX, streams are referred to by a stream handle, which is an integer; in the
operating system files are referred to by a file name, which is a normal string. The f@RIEbIf) is used to bind a file name to
a stream handle. Howev@Rexx I/O functions generally have the ability to get a reference either as a file name and a strean
handle, and open the file if appropriate. However, if the name of a file is an integer which can be interpreted as iptile descr
number, it is interpreted as a descriptor rather than a name. Whenever iRexgeand want to program robust code, always
useOPEN() and the descriptor.

If a file is opened by specifying the name in a 1/0O operation othelQR&N(), and the name is an integer and only one or two
higher than the highest current file descriptor, strange things may happen.

Five special streams are defined, having the pseudo file naBEBIN>, <STDOUT><STDERR><STDAUX> and
<STDPRN>and are assigned pre-defined stream handles@rtwd, respectively. These refer to the default input, default
output, and default error output, default auxiliary output, and printer output. The two last generally ref€@Gmthand

LPT1: devices under MS-DOS. Either upper or lower case letter can be used when referring to these four special names.

However, note that if any of these five special files are closed, they can not be reopened again. The reopened fileawill be ju
normal file, having the name egSTDOUT>

There is a few things you should watch out for with the special files. 1/0 involvirgSI(hRBAUX>and<STDPRN>can cause the
Abort, Retry, Ignore message to be shown once for each character that was attempted read or written. It can be bor
and tedious to answ&or | if the text string is long. IA is answeredBRexx terminates.

You should never write data to file descriptoc@TDIN>), apparently, it will only disappear. Likewise, never read data to file
descriptors 1 and Z6TDOUT>and<STDERRY, the former seems to terminate the program while the latter apparently just

returns the nullstring. Also be careful with reading from file descriptors 3 and 4, since your program may hang if no data is
available.

OPEN(ile , mode

The OPEN() built-in function opens a file named bie, in modemode and returns an integer which is the number of the strearnr
handle assigned to the file. In general, the stream handle is a non-negative integdd,te/desee pre-defined for the default
streams. If an error occurred during the open operation, the Alalisereturned.

Themodeparameter specifies the mode in which the file is opened. It consists of two parts: the access mode, and the file m
The access mode part consists of one single character, which cdarbvead w for write, anda for append. In addition, the
character can be appended to open a file in both read and write mode. The file mode part can also have of one additional
character which can hiefor text files and for binary files. Theé mode is default.

The following combinations of and access mode are possible:

105

r is non-destructive open for readingis destructive open for write-only modejs non-destructive open for in append-only
mode, i.e. only write operations are allowed, and all write operations must be performed at the end-oisfibn-destructive
open for reading and writingy+ is destructive open for reading and writing; ardis non-destructive open in append update, i.e.
reading is allowed anywhere, but writing is allowed only at end-of-file. Destructive mode means that the file is trunesded to z
length when opened.

In addition, theb andt characters can be appended in order to open the file in binary or text mode.

These modes are the same as under C, althoughntiogle character is strictly not in ANSI C. Also note that, anda are
mutually exclusive, but one of them must always be present. Theinisdgtional, but if present, it must always come
immediately after , w, ora. Thet andb modes are optional and mutually exclusive; the defatlt ispresentf orb must be
the last character in the mode string.

open(‘myfile’,;'w’) 7 perhaps

open(‘no.such.file',’r') -1 if non-existent

open(‘c:tmp’, ‘r+b’) 6 perhaps
If two file descriptors are opened to the same file, only the most recently of them works. However, if the most recepitty desct
is closed, the least recently starts working again. There may be other strange effects too, so try avoid reopeninig a file that
already open.

CLOSE(file)

The CLOSE() built-in function closes a file that is already open. The pararfietean be either a stream handle returned from
OPEN() or a file name which has been opened (but for which you do not known the correct stream handle).

The return value of this function seems to be the nullstring in all cases.

close(6) if open
close(7) if not open
close(‘foobar’) perhaps

EOF(file)

TheEOF() built-in function checks the end-of-file state for the stream giveildyywhich can be either a stream descriptor or a
file name. The value returnedlsf the end-of-file status is set for the stream, @nflit is cleared. In addition, the valug is
returned if an error occurred, for instance if the file is not open.

The end-of-file indicator is set whenever an attempt was made to read at least one character past the last charaetétaithe f
that reading the last character itself will not set the end-of-file condition.

eof(foo) 0 if not at eof
eof(‘8") 1 ifateof
eof(‘no.such.file’y -1 iffile isn't open

READ([file][, length 1])

TheREAD() built-in function reads data from the file referred to byfileeparameter, which can be either a file name or a
stream descriptor. If it is a file name, and that file is not currently openBRexx opens the file in mode . The default value
of the first parameter is the default input stream. The data is read from and including the current position.

If the lengthparameter is not specified, a whole line is read, i.e. reading forwards to and including the first end-of-line seque
However, the end-of-line sequence itself is not returned. letighparameter is specified, it must be a non-negative integer,
and specified the number of characters to read.

106

The data returned is the data read, except therigthis not specified, the terminating end-of-line sequence is stripped off. If the
last line of a file contains a string unterminated by the end-of-string character sequence, then the end-of-file is implicitly
interpreted as an end-of-line. However, in this case the end-of-file state is entered, since the end-of-stream was found while
looking for an end-of-line.

read(‘foo’) one line reads a complete line

read(‘foo’,5) anoth reads parts of a line

read(6) er line using a file descriptor

read() hello there perhaps, reads line from default input stream

WRITE(] file 1[string 1[, dummy])

TheWRITE() built-in function writes a string of data to the stream specified bfjilthparameter, or by default the default
output stream. If specifiefile can be either a file name or a stream descriptor. If it is a file name, and that file is not already o
it is opened usingit mode.

The data written is specified by th&ing parameter.

The return value is an integer, which is the number of bytes written during the operation. If the file is opened in teXt mode,
ASCII newline characters are translated into ASTRILFcharacter sequences. However, the number returned is not affected b
this translation; it remains independent of any text of binary mode. Unfortunately, errors while writing is seldom trdpped, so
number returned is generally the number of character that was supposed to be written, independent of whether they was ac
written or not.

If a third parameter is specified, the data is written as a line, i.e. including the end-of-line sequence. Else, thétatassisyr
without any end-of-line sequence. Note that EitRexx, the third parameter is considered present if at least the comma in front
of it—-the second comma—-is present. This is a bit inconsistent with the standard operatioAfRk@ @hbuilt-in function. The
value of the third parameter is always ignored, only its presence is considered.

If the second parameter is omitted, only an end-of-line action is written, independent of whether the third paramete¢iois prese
not.

write(‘bar’,’data’) 4 writes four bytes
write(‘bar’,’data’,’nl') 4+?? write a line
write(‘bar’,’data’,) 4+?? same as previous

SEEK(file [[offset][, origin 1])
The SEEK() built-in function moves the current position to a location in the file referred fiteby he parametefile can be
either a file name (which must already be open) or a stream descriptor. This function does not implicitly open files that is no

currently open.

The parameteoffsetdetermines the location of the stream and must be an integer. It defaults to zero. Note that the addressi
bytes within the stream is zero-based.

The third parameter can be anyl@F CUR or EOF, in order to set the reference point in which to recomftfsetlocation. The

three strings refer to top-of-file, current position, and end-of-file, and either upper or lower case can be used. Tvedwdefault
?2?7.

The return value of this function is the absolute position of the position in the file after the seek operation has beed.perfor

The SEEK() function provides a very important additional feature. Whenever a file opened for both reading and writing has
used in a read operation and is to be used in a write operation next (or vice versa), therS&EEd(Yomust be performed

107

between the two 1/O calls. In other words, after a read only a seeking and reading may occur; after a write, only seeking anc
writing may occur; and after a seek, reading, writing, and seeking may occur.

4.13.12 Problems with Binary and Text Modes

Under the MS-DOS operating system, the end-of-line character seque@iR>SsLF> while in C, the end-of-line sequence is
only <LF>. This opens for some very strange effects.

When an MS-DOS file is opened for read in text mod8Rgxx, all <CR><LF> character sequences in file data are translated
to <LF> when transferred into the C program. FurtBRexx, which is a C program, interpret F> as an end-of-line character
sequence. However, if the file is opened in binary mode, then the first translation@RmLF>in the file to<LF> into the C
program is not performed. Consequently, if a file that really is a text file is opened as a binary file and read lindimése, all
would appear to have a trailisgCR>character.

Similarly, <LF> written by the C program is translatedGR><LF>in the file. This is always done when the file is opened in
text mode. When the file is opened in binary mode, all data is transferred without any alterations. Thus, when writirag lines t
file which is opened for write in binary mode, the lines appear to havebRby, not<CR><LF>, If later opened as a text file,

this is not recognized as an end-of-line sequence.

Example: Differing end-of-lines

Here is an example of how an incorrect choice of file type can corrupt data. ABR@xe running under MS-DOS, using
<CR><LF>as a end-of-line sequence in text files, but the system calls translating<this>tan the file 1/0O interface. Consider
the following code.

file = open(‘testfile.dat’, ‘wt’) /* text mode */

call write file, ‘45464748, ‘dummy’ /*i.e. ‘abcd’ */
call write file, ‘65666768, ‘dummy’ /*i.e. 'ABCD’ */
call close file

file = open(‘testfile.dat’, ‘rb’) /* binary mode */

say c2x(read(file)) [* says ‘454647480D’ */
say c2x(read(file)) [* says ‘656667680D’ */
call close file

Here, two lines of four characters each are written to the file, while when reading, two lines of five characters arenesbrThe
is simply that the writing was in text mode, so the end-of-line character sequenc€mrasLF>; while the reading was in binary
mode, so the end-of-line character sequence wasljist. Thus, the<CR>preceding th&LF> is taken to be part of the line
during the read.

To avoid this, be very careful about using the correct mode when opening files. Failure to do so will almost certairdpggve sti
effects.

108

5. Extensions

This chapter describes how extension&&gina are implemented. The whole contents of this chapter is speciftefpna.

5.1 Why Have Extensions

Why do we need extensions? Well, there are a number of reasons, although not all of these eod veagons:
* Adaptations to new environments may require new functionality in order to easily interface to the operating system.
« Extending the language with more power, to facilitate programming.

* Sometimes, a lot of time can be saved if certain assumptions are met, so an extension might be implemented to allow
programmers to take shortcuts.

* When a program is ported from one platform to another, parts of the code may depend of non-standard features not av
on the platform being ported to. In this situation, the availability of extensions that implement the feature may beetif grec
to the programmer.

e The implementor had some good idea during development.

Extensions arise from holes in the functionality. Whether they will survive or not depends on how they are perceived by
programmers; if perceived as useful, they will probably be used and thus supported in more interpreters.

5.2 Extensions and Standard REXX

In standardREXX, theOPTIONSinstruction provides a “hook” for extensions. It takes any type of parameters, and interprets
them in a system-dependent manner.

The format and legal values of the parameters foDR€IONSinstruction is clearly implementation dependent [TRL2, p62].

5.3 Specifying Extensions in Regina

In Regina there are three level of extensions. Each independent extension has its own name. Exactly what an independent
extension is, will depend on the viewer, but a classification has been done, and is listed at the end of this chapter.

At the lowest level are these “atomic” extensions. Then there are some “meta-extensions”. These are collections of other
extensions which belongs together in some manner. If you need the extension for creating “buffers” on the stack, it would b
logical to use the extension to remove buffers from the stack too. Therefore, all the individual extensions for operations that
handle buffers in the stack can be named by such a “meta-extensions”. At the end of this chapter, there is a list ¢h-all the me
extensions, and which extensions they include.

At the top is “standards”. These are sets of extensions that makes the interpreter behave in a fashion compatible with some

standard. Note that “standard” is used very liberally, since it may refer to other implementaf@&xsXofHowever, this
description of how the extensions are structured is only followed to some extent. Where practical, the structure hagduten de

109

5.4 The Trouble Begins

There is one very big problem with extensions. If you want to be able to turn them on and off during execution, thengur pr
has to be a bit careful.

More and mord&REXX interpreters (includinRegina seem to do a parsing when the interpreter is started. The “old” way was t
postpone the parsing of each clause until it was actually executed. This leads to the problem mentioned.

Suppose you want to use an extension that allows a slightly different syntax, for the sake of the argument, let us asgume th:
allow an expression after ti3ELECTkeyword. Also assume that this extension is only allowed in extended more, not in
“standard mode”. However, sinB&gina parses the source code only once (typically at the starts of the program), the problel
a catch-22: the extension can only be turned on after parsing the program, but it is needed before parsing. This alsa lapplie:
of otherREXX interpreters, and aREXX compilers and preprocessors.

If the extension is not turned on during parsing, it will generate a syntax error, but the parsing is all done befordahsdiist
executed. Consequently, this extension can not be turned on during execution, it has to be set before the parsing starts.

Therefore, there are two alternative ways to invoke a set of extensions.

e It can be invoked by using the option to the interpreter. The word following the option is the extension or standard to
invoke. Multiple-e options can be specified.

« It can be invoked by setting the environment vari&i#X XEXTSwhich must be a string of the same format as the
parameters to th@PTIONSclause.

5.5 The Format of the OPTIONSclause

The format of th@©OPTIONSclause is very simple, it is followed by aR¥EXX string expression, which is interpreted as a set of
space separated words. The words are treated strictly in order from left to right, and each word can change zero oriorore e
settings.

Each extension has a name. If the word being treated matches that name, that extension will be turned on. However, if the
being treated matches the name of an extension but has theNtetien that extension is turned off. If the word does not match
any extensions, then it is simply ignored, without creating any errors or raising any conditions.

Example: Extensions changing parsing

An example of the same is tht?PERinstruction. In the following piece of code the same clause is interpreted in two complete
different ways:

options ‘NOUPPER’

doi=1to 2
if i=2 then options ‘UPPER’
upper foo bar

end

In the first iteration of the loop, the clause starting with the takBRERwill be a command, issuing the string resulting from
evaluating the expressiampper foo bar . However, in the second iteration of the loop, the same clause is interpreted as ar
UPPERInstruction. Since these two statements has very different syntax, it seems impossible to handle both in the same pr
Regina tries to handle this by “allowing” both syntaxes when parsing the source code, and selecting the right one when
interpreting the statement in question.

110

Regina’s frequent usage of extensions may slow down execution. To illustrate how this can happen, coiBRENhextra
built-in function. As this is an extension, it might be dynamically included and excluded from the scope of currently defined
function. Thus, if the function is used in a loop, it might be in the scope during the first iteration, but not the serspnd. Th
Regina can not cache anything relating to this function, since the cached information may be outdated later. As a conseque
Regina must look up the function in the table of functions for each invocation. To avoid this, you can set the extension
CACHEEXTwhich tellsRegina to cache info whenever possible, without regards to whether this may render useless later
executions 0DPTIONS

5.6 Why You Should Seriously Consider Not Using Extensions

5.7 The Fundamental Extensions

Here is a description of all “atomic” extensiondliegina:

[BUFTYPE_BIF]
Allows calling the built-in functioBUFTYPE(), which will write out all the contents of the stack, indicating the
buffers, if there are any. The idea is taken from VM/CMS, and its command iskaty PE

[CACHEEXT]
Tells Regina that information should be cached whenever possible, even when this will render future execution of tt
OPTIONSiInstruction useless. Thus, if you use e.g.@REN() extra built-in function, and you s€ACHEEXTthen
you may experience that t@PEN() function does not disappear from the current scope when you set the
NOOPEN_BIFextension.

Whether or not a removal of an extension really do happen is unspecifie@CAl#EEXhas been called at least once.
Effectively, info cached during the period wh@ACHEEXTwas in effect might not be “uncached”. The advantage of
CACHEEXTs efficiency when you do not need to do a lot of toggling of some extension.

[CLOSE protect_BIF]
Allows the CLOSE() extra built-in function, which allows the program to explicitly close a stream.

[DESBUFprotect_BIF]
Allows calling the built-in functiodDESBUF(), to remove all contents and all buffers from the stack. This function is a
idea taken from the program by the same name under VM/CMS.

[DROPBUFprotect_BIF]
Allows calling the built-in functiodROPBUF(), to removed one of more buffers from the stack. This function is an
idea take from the program by the same name under VM/CMS.

[FIND_BIF]
Allows calling theFIND() extra built-in function, which is a compatibility function with VM/CMS. This function is
really equivalent t&?OS() , but the parameters are somewhat reversed, and sonidNiDgd) more intuitive. Besides,
this extension helps porting.

[FLUSHSTACK]
Tells the interpreter that whenever a command clause instructs the interpreter to flush the commands output on the
and simultaneously take the input from the stack, then the interpreter will not buffer the output but flush it to the real
stack before the command has terminated. That way, the command may read its own output. The default setting fc
Regina is not to flush, i.eNOFLUSHSTACKuvhich tells interpreter to temporary buffer all output lines, and flush them
to the stack when the command has finished.

[LINEOUTTRUNC]

111

This options tells the interpreter that wheneveritNEOUT() built-in function is executed for a persistent file, the file
will be truncated after the newly written line, if necessary. This is the default setfRegivia, unless your system does
not have thdtruncate() system call. The complement optioN®OLINEOUTTRUNC

[MAKEBUF_BIF]
Allows calling the built-in functioMAKEBUF(), to create a buffer on the stack. This function is an idea taken from a
program by the same name under VM/CMS.

[OPEN_BIF]
Adds the extra built-in functio®PEN() , which is used for explicitly opening streams.

[PRUNE_TRACE]
Makes deeply nested routines be displayed at one line. Instead of indenting the trace output at a very long line (pos
wrapping over several lines on the screen). It disglays at the start of the line, indicating that parts of the white
space of the line has been removed.

5.8 Meta-extensions

[BUFFERS]
Combination oBUFTYPE_BIF, DESBUF_BIF, DROPBUF_BIFandMAKEBUF_BIF

[FILEIO]
Introduces some commonly used extra features for handling files. This is a combinatBNfBIF() and
CLOSE_BIF() , which allow the programmer to explicitly open and close files.

5.9 Semi-standards

[CMS]
A set of extensions that stems from the VM/CMS operating system. Basically, this includes the most common exter
in the VM/CMS version oREXX, in addition of some functions that perform task normally done with commands unde
VM/CMS.

[VMS]
A set of interface functions to the VMS operating system. Basically, this makeEX¥ programming under VMS as
powerful as programming directly in DCL.

[UNIX]
A set of interface functionality to the Unix operating system. Basically, this includes some functions that are normal
called as commands when programming Unix shell scripts. Although it is possible to call these as comRegida,in
there are considerable speed improvements in implementing them as built-in functions.

5.10 Standards

[ALL]
[ANSI]
[DEFAULT]

[NONE]
112

[SAA]

[TRL1]
REXX Language level 3.50, as described in [TRL1].

[TRL2]
REXX Language level 4.00, as described in [TRL2].

Also, for those of these standards that have a accBEEX language level number, that number can be used, provided that it
matches character by character (i.e. not by numeric value). Thus, you @&bQusas a synonym foFRL1, and4.00 as a
synonym forTRL2.

Option ALL ANSI DEF NONE SAA TRL1 TRL2
BUFTYPE_BIF yes ?? yes no ?? no no
CLOSE_BIF yes ?2? yes no ?2? no no
CACHEEXT no no no no no no no
DESBUF_BIF yes ?? yes no ?? no no
DROPBUF_BIF yes ?? yes no ?? no no
FIND_BIF yes ?? yes no ?? no no
FLUSHSTACK yes ?? no no ?? no no
LINEOUTTRUNC yes ?2? yes no ?2? no no
MAKEBUF_BIF yes ?2? yes no ?2? no no
OPEN_BIF yes ?? yes no ?? no no
PRUNE_TRACE yes no yes no no no no
UPPER_CLAUSE yes ?? yes no ?2? no no

Note that the standard and default interpretefRE&AX language level 4.00 interpreter. All other functionality is extensions. In
fact, the features in 4.00 that does not exist in 3.50 are “inverse” extensions, i.e. the extension is to remove thé&yumdjional
in 4.00.

113

0. The Stack

In this chapter, the stack and operations manipulating the stack are discussed. Since the stack is exteRakbs ldreguage,
there are large differences between implementations with respect to the stack. These differences are attempted described
latter part of this chapter.

Another goal of this chapter is to try to describe both the “real” standards and some of the most commonly used de facto
standards related to stack operation. Where something is not a part of any defined standard, this is clearly labeledeAlso, s
liberties have been taken in order to create a coherent vocabulary on a field where very little standardization has taken pla

6.1 Background and history

In the various definitions dREXX, there are numerous references to the “stack” (often called the “external data queue”, or ju:
the “queue”). It is a structure capable of storing information, but it is not a partREXX¥ language itself. Rather, it is a part of
the external environment supportinREXX implementation.

Originally, the references to the stack was introducedREXX because of the strong binding betw&XX and IBM

mainframes in the early history BEXX [BMARKS]. Most (all?) of the operating systems for these machines support a stack,
and many of their script programming idioms involve the stack. Therefore, it was quite natural to introduce an interface to tf
stack intoREXX, and consequently today many of the programming paradigREXX involve a stack.

Unfortunately, this introduced an element of incompatibility REXX, as the stack is not in general supported for other
operating systems. ConsequenBEXX implementors often must implement a stack as well of theRBX¥X interpreter. Since

no authoritative definition of the stack exists, considerable differences between various implementations. Ironicallytfathouc
stack was introduced to help communication between separate programs, the interpreter-specific implementations of stacks
actually be a hindrance against compatibility between different interpreters.

The stack may have “seemed like a good idea at the time”, but in hindsight, it was probably a bad move, sinB&EXkade
more dependent on the host operating system and its interfaces.

6.2 General functionality of the stack

This section describes the functionality generally available in implementations of stacks. The basic functionality deseribed h
will be complemented with information on specific implementations later. Unless explicitly labeled otherwise, this fugctional
is available in all standards treated in this documentation.

6.2.1 Basic functionality

Below is listed the general functionality of the stack, in order of decreasing compatibility. I.e. the functionality disiedhfire
likely to be a part of all implementations than the ones listed at the end of the list.

e The stack is a data structure, which strings can either be inserted into or extracted from. The strings in the stacknare stc
a linear order. Extraction and insertion works at a granularity of a complete string, i.e. it is not possible to insact or extr
parts of string.

e The stack has two ends: a top and a bottom. New strings can be inserted into the stack in both ends, but strings can o
extracted from the top of the stack.

114

« There exists a way of counting the number of strings currently stored in the stack.

A stack is often compared with the pile of plates you often find in cantinas. It allows you to either add new plates @it e top
pile or take old plates from the top. When a plate is taken from the pile, it will be the most recently plate (thatisesti)l pr
added to the pile. Stack operatingREXX work the same way, although there also allow “plates” to be added to the bottom of
the pile.

* There might be an implementation-specific limit on the length and number of strings stored in the stack. Ideally, the
maximum length will be fairly large, at least 2**16, although some implementations are likely to enforce shorter limits.
Similarly, there might be a limit on the number of strings that can be simultaneously stored in the stack. Ideally, tthere st
be no such limit.

e Itis natural that there are limits imposed on the amount of memory occupied by the strings in the stack. Some
implementations are likely to reserve a fixed (but perhaps configurable) amount of memory for this purpose while others
dynamically re-size the stack as long as enough memory is available.

« Some implementations might restrict the set of characters allowed in strings in the stack, although ideally, all characters
should be allowed, even characters normally used for end-of-line or end-of-string.

This documentation use the term “string”, while “line” is in common use elsewhere. The term is used because the strings in
stack are not inherently interpreted as lines (having an implied end-of-line), only as a string.

Note that the stack itself is not a parREXX, only the parts which interface to the stack.

Example: Using the stack to transfer parameters

This is a commoREXX idiom used in several situations for special parameter passing. The following code illustrates its use

doi=1to 10 /* for each parameter string */
queue string.1 /* put the string on the stack */

end

call subrout 10 /* call the subroutine */

exit

subrout: procedure /* the definition of the subroutine */
do j=1to arg(1) [* for each parameter passed */
parse pull line.j /* retrieve the parameter */
end
/*do something with the parameters*/
return

In this example, ten parameter strings are transferred to the sub®UBROUTThe parameters are stored in the stack, and onl
the number of parameters are transferred as a “real” argument.

There are several advantages: first, one avoids problems related to exposing variable names. Since the data is stacgd on t
there is no need to refer to the variable names and bind the variables in the subroutine to variables in the calle{T<ije. In
indirect references to variablesRiROCEDURE EXPOSE llegal, and this method circumvent the problem.

Two other ways around this problem is to US€ERPRETfor thePROCEDURE EXPOSHRstruction in order to dynamically
determine which variables to expose; or to usé/#hieUE() built-in function (with its two first parameters). The former is
incompatible with TRL2, while the latter is incompatible with TRL1. Using the stack can solve the problem in a fashion
compatible with both standards. Anyway, if the called routine is an external routine, then exposing does not work, 8o using
stack to transfer values may be the only solution.

115

Another advantage of this idiom; TRL only requires implementations to support 10 parameters for subroutinggh thigne are
no reasons why an implementation should set a limit for the number of parameters a routine can get, you should use anothe
mechanism than arguments when the number of strings is greater than 10. Using the stack fixes this.

6.2.2 LIFO and FIFO stack operations

As already mentioned, the stack is a linear list of strings. Obviously, this list has two ends. Strings can only bdrextracied
end, while strings can be added to both ends.

If a set of new strings are added to the same end as they are later extracted from, the strings will be extracted edtbedesvers
with respect to the order in which they were added. This is called stacking “LIFO”, which means “last-in-first-out”, m@aning t
the last string stacked, will be the first string extracted, i.e. reversal of the order.

Similarly, when a set of strings are stacked in the end opposite to the end which they are later extracted from, they will be
extracted in the same order in which they were stacked. This is referred to as “FIFO” stacking, meaning “first-in-first-out”.

The FIFO method of stacking is also sometimes referred to as “queueing”, while the LIFO method is sometimes referred to
“stacking” or “pushing”.

6.2.3 Using multiple buffers in the stack

The concept of buffers and everything directly related to buffers lay without the domain of slREI&XdThus, this section
describes a de facto standard.

Some implementations support “buffers”, which are a means of focusing on a part of the stack. When creating a new buffer,
old contents of the stack is somewhat insulated from the effects of stack operations. When the buffer is removed, ttie state
old buffer i restored, to some extent: Whenever a string is read from the stack, and the topmost buffer on the stadkénempty
that buffer will be destroyed. Consequently, if this situation has arisen, dropping buffers will not restore the stati#cif the s
before the buffer was created.

The functionality of buffers, and their effect on other stack operations may differ considerably between implementations.

Whenever a queuing operations is performed (e.g. b ieUEnNstruction), then the new string is inserted into the bottom of th
topmost buffer, not the bottom of the stack. This is the same if the stack has no buffers, but else, the outcome of the queuir
operation can be very different.

With IBM mainframe operating systems like CMS, buffers can be inserted on the top of the stack. To perform buffer operati
operating system commands are used. It may be instructional to list the buffer operations of CMS:

[DESBUF]
Removes all strings and buffers from the stack, and leaves the stack clean and empty. It is often used instead of re
calls toDROPBUHLt always returns the value zero.

[DROPBUF]
Removes zero or more buffers from the stack. It takes one parameter which can be omitted, and which must be an
position if specified, and is the assigned number of the bottom-most buffer to be removed, i.e. that buffer and all bu
above it (and of course, all the strings in these buffers) are to be removed. If the parameter is not specified, only th
topmost buffer is removed. The return valued is always zero, unless an error occurred.

[MAKEBUF]
Makes a new buffer on the stack, starting at the current top of the stack. The return code (as stored in the special v
RQ is the number of buffers currently on the stack after the new buffer has been added. Obviously, this will be a
positive integer. This program takes no parameters.

One might regard a buffer as a sort of bookmark, which is inserted into the stack, so that a subBggBBtlEommand can
remove the stack down to a particular such bookmark.

116

When such a mark is located on the top of the stack, Bl & instruction is executed, the buffer mark is implicitly destroyed
when thePULL instruction reads the string below the buffer mark. This is to say that a buffer can be destroyed by either a
DESBUFcommand, ®ROPBUEommand, or a read from the stack (by eithePtieL or PARSE PULL instructions).

6.2.4 The zeroth buffer

Normally, data pushed on the stack is added to the top of the stack. When a stack contains only one buffer, the gtrings in tl
buffer are the strings stored above that buffer-mark. The strings below it are not part of the first buffer; insteadsaitetpare
belong to the zeroth buffer.

Thus, all strings from the bottom of the stack, up till the first buffer mark (or the top of the stack if no buffers saistpibe

the strings in the zeroth buffer. However, note that the zeroth buffer is only defined implicitly. Thus, it can not reaityied r

by callingDROP only the strings in the zeroth buffer are removed. Afterwards, the zeroth buffer will still contain all strings at
bottom of the stack, up till the first buffer mark (if existing).

Example: Process all strings in the stack

This is a commoiREXX idiom, where a loop iterates over all the strings currently in the stack, but otherwise leave the stack
untouched. Supposing the routiRROCESS() exists, and do to processing with its parameter and return the processed string:

doi=1to5 /* just to fill the stack ~ */
push ‘line #' i

end

do queued() /* foreach line in the stack */
parse pull line [* fetch the line */

queue process(line) /* put back the processed line */
end

Here, it is important to uSRUEUEO put the strings back into the stack, ROXSH else the loop will iterate the correct number of
times, but only operate on the same data string. It is also important that the stack does not contain any buffai& (Bivie

insert into the bottom of the topmost buffer, the loop would iterate the correct number of times, but only on a partkf the sta
Thus, the topmost part of the strings in the stack would be processed multiple times.

Example: How to empty the stack

The following short example shows how you can most easily empty the stack:

doi=1to5 * Just to fill the stack */
push ‘line #' i
end
do queued() [* For each line in the stack */
pull /* Remove the line from the stack */
end

This is trivially simple, but there are several interesting and subtle notes to make about this example. First, if thé stingger o
in the stack is likely to change, due to some external process, tHe@¢thause should perhaps better be written as:

doi=1to5 /* Just to file the stack */
push ‘line #' i
end

do while queued()>0 [* While the stack is not empty */

pull /* Remove a line from the stack */
end

117

This will in general mean more work for the interpreter, as it is now required to check the number of strings in theestzttk for
iteration, while for the previous code fragment, the number of strings is only checked once. Another point is that tlis might r
remove all buffers from the stack. Suppose the zeroth buffer is empty, i.e. there exists an buffer which was put on lilea stack
the stack was empty. This buffer is removed in any of the following situations: dH88UF- calling DROPBUKsometimes),

or reading a string below the buffer mark. Since there are no strings below the buffer mark, pulling a string from thaldtack w
make the interpreter read from the keyboard, and hang the interpreter.

Thus, the only “safe” way to remove the string and buffers from the stack, without side effects, iIDES&IFor DROPBUF

On the other hand, if you only want to make sure that there are no strings in the buffer, the method described her¢ablejore
since it is far more compatible (although possibly not so efficient). But anyway, buffers are not a compatible constitoes so i
not matter so much.

6.2.5 Creating new stacks

The description of multiple stack operations in this section, is not part of staR#XA. Thus, this section describes a de facto
standard and you may find that few implementations support these operations.

Just as the operations described above |eRE¥X programmer use multiple buffers within one stack, there exists another set
operations which let the programmer create multiple stacks. There is really nothing fancy about this, except that a cémmans
swap the stack the interpreter correctly uses with another stack.

To the interpreter this is really equivalent to a situation where a command empties the current stack, and sets up a new sta
When one stack is empty, and REXX program tries to read from the stack, the request will not “overflow” to the previous
stack (as requests to an empty buffer “overflows” to the previous buffer). Thus, the use of multiple stacks has evei less dire
impact onREXX interpreters than multiple buffers.

Here, it is instructive to list the commands operating multiple stacks that exists. This list has been taken from the MVS
environment, according to [REXXSAA].

[DELSTACK]
Is used to remove the most currently stack, and make the most recent of the saved stacks the current stack. When
are no saved stacks, the current stack is emptied.

[NEWSTACK]
Creates a new stack, which becomes the current stack. The old current stack is put on the top of the list of saved s
and can be retrieved as the current stack by a subsé&feSTACK

[QBUF]
Counts the number of buffers in the current stack, and returns that number as the returnREXX.gkogram starting
this command can retrieve this value as the special vafble

[QELEM]
Counts the number of strings (i.e. elements) in the current stack, and returns that value as the return value of the
command. This value can be retrievedRiBEXX as the special variabRC This operation is equivalent to the
QUEUED() built-in function inREXX; it has been probably included for the benefit of other script languages that hav
less functionality thaREXX.

[QSTACK]
Counts the number of stacks (including the current stack) and returns the value as the return value from the comme
This number can be retrievedREXX as the special variabRC

One can regard multiple buffers and stacks as two ways of insulating the stack; where multiple stacks are a deeper and mo
insulating method than buffers. Note that each stack can contain multiple buffers, while a buffer can not contain arfyestacks.
term “hard buffers” has been used about multiple stacks, as opposed to normal buffers, which are sometimes called *soft b

Also note that neither multiple stacks nor buffers are part of staREaXX, so you might come across implementations that
support only multiple stacks, only buffers, or even none of them.

118

Example: Counting the number of buffers

In order to count the number of buffers on the stack, the following method can b&agath(syntax has been used for buffer
handling). This method is equivalent to @BUFcommand described above.

buffers = makebuf() - 1
call dropbuf

This will store the number of buffers in the stack in the variabfiers . However, just as for the other examples using buffers,
this example also suffers from the fact that buffer handling is fairly non-standard. Thus, you will have to adapt the code to
whatever system you want to use.

6.3 The interface between REXX and the stack

As defined in TRL, the interface to the stack consists oPhRSE PULL, PULL, PUSH andQUEUENstructions; and the
QUEUED() built-in function.

There exists a binary interface to the stack in SAA, see the chapter on the SAA API interface. This interface consists of the
RXMSE@xit handler and th@UENAMEalue of theRXSHV_PRIVrequest of th&®exxVariablePool() function of the
variable pool interface.

6.4 Strategies for implementing stacks

As mentioned, stacks are rarely a part of the operating system. Therefore, under most operatingrREps¥eimerpreters have
to implement their own stacks. There are several strategies for doing this, some which are listed below.

[In the operating system.]
This is of course “the right way” to do it. However, it requires that the definition of the operating system is such that
stacks are supported. Currently, only IBM mainframe-based systems support stack, together with a few other systel
have included stacks as a consequence of m&&XGK a main scripting language (Amiga and OS/2 come to mind).

[As a device driver.]
This is really just a variation of making the stack a part of the operating system. However, in some systems, drivers
be added very easily to the system. Drivers are often filesystem-based, in which case driver-based stack operation:
operate on a file or pseudo-file. But for some systems, adding a driver requires much more profound changes,
reconfiguration, and often system privileges. In all cases, drivers are likely to be very system specific.

[As a daemon.]
A “daemon” is background process that does some housekeeping service, e.g. handling mail from remote systems.
Implementing a stack as a daemon is only slightly simpler than using a driver, but the main idea is the same for bot
approaches.

[In the interpreter.]
Using this approach, the stack is built into the interpreter as a sort of extension. This is often the simplest way, sinc
require very little coordination with other programs during run-time. The main problem is that the stack becomes pit
to the interpreter, so two interpreters can not use the same stack; not even if they are two invocations of the same
interpreter.

These items are listed in the order of how closely they are coupled to the operating system: the first items are vevkildosely,

the last items are loosely coupled. The more closely coupled the implementation of a stack is coupled to the operatiing syst:
better is the chance that several interpreters on the same system can communicate in a compatible way, using the stack.

119

There is room for several hybrid solutions, based on the four fundamental approaches. For instance, a built-in staakt ean als
a daemon.

Example: Commands takes input from the stack

In the example above, the routine that is called takes its arguments from the stack. Similarly, commands to an external
environment can get their arguments in the same way. Here is an example of how to do it:

queue ‘anonymous’ /* the username */
queue ‘user@node’ [* the password */
queue ‘dir’ [* first command */
queue ‘exit’ /* second command */

address command ‘FTP flipper.pvv.unit.no’

Although this is very convenient in some situations, there is also considerable disadvantages with this method: Thére is no

interactive communication between the interpreter and the command; i.e. all input meant for the command must be set up &
the command itself is invoked. Consequently, if one of the input lines to the command provokes an error, there is keny little
handling facility. Commonly, such an error might start a cascade of errors, as the remaining input lines are likely i, loe inval
even be interpreted in a context different from what they were intended.

As with all commands involving the stack, it is important to push or queue the correct order.

Using this technique, a program can “fool” a command to do almost anything, by storing the correct input on the stack. How
there is a big disadvantage: Since the stack is implementation-dependent, it is not certain that a command will takerits input
the stack. For some systems, this is the default, while for other systems, this is only possible through some explataestion.
systems might not even allow commands to take their input from the stack at all.

Example: “Execing” commands

Many script programming languages can only execute commands while still running, or at most start a new command imme
after the termination (like thexec() system call in Unix). However, the stack can be used on some systems to set up the
system to execute one or more commands after the current script terminates. Here is an example:

push ‘Is’ [* finally execute ‘Is’ */
push ‘who’ /* then execute ‘who’ */
push ‘pwd’ [* first execute ‘pwd’ */
exit 0

Supposing that the system reads its commands from the stack if the stack is not empty, then this script will terminategafter h
set up the stack so that the three commamdi who andls will be run in that sequence. Note the ordeQUfEUEhad been

used, the order would be the opposite, which is perhaps more intuitive (assuming the topmost buffer is empty).

As with the example above, this too is only relevant for some systems, thus is not very compatible, and you should be caref
when using it. It also suffers from the lack of interactivity, error handling, and the importance of the order in whiclysharstr
pushed or queued. For all practical reasons, this is just a special case.

Using the stack to “leave behind” command names and input only works for systems where command interpreters and com
reads their input from the stack. This is in general true for IBM mainframe systems, but very few other systems.

6.5 Specific implementations of stacks
Below is listed implementation-specific documentation, with respect to stacks, for some interpreters.

120

6.5.1 Implementation of the stack in Regina 0.05h

In Regina, the stack is implemented as an integral, private part of the interpreter. The advantage of this is that stack operat
are very fast. On the other hand, it means that two interpreters running on the same machine does not use the samerstack.
it means that a program can not on its own initiative communicate with the stack; such piping must be set up by theahterpre
the invocation time of the program.

Whenever th&EXX programmer wants to execute a command and let that command either flush the output to the stack, or
its input from the stack, this has to be arranged by the interpreter its®égima this is normally done by prepending or
appending certain terms to the command to be executed.

Consider the following command clausesRegina:

‘Is >LIFO’

‘who >FIFO’
‘LIFO> wc’

‘s’

‘LIFO> sort >FIFO’

For all these commands, the “piping” terms are stripped off the command string before the command is sent to the commar
interpreter of the operating system. Thus, the command interpreter only sees the cdswmahdswec, andsort . The terms
stripped off, are used as indicators of how the input and output is to be coupled with the stack. Note that it is imgortant not
confuse the redirection of output to the stack and input from the st&egina with the redirection of the Unix shells. The two
can be mixed in command lines, but are still two different concepts.

The first command will execute the® command, and redirect the output from it to the stack in a LIFO fashion. The second
executes the commameho and redirects the output to the stack to, but in a FIFO fashion. The third command exeeutes the
but lets the standard input of that command come from the stack. Actually, it is irrelevant Whefireor LIFO> is used for
input; the strings are read from the top of the stack in both cases. The fourth command issaqdaimand without any
redirection to or from the stack. The last command execute®the program and lets it read its input from the stack, and
redirect the output to the stack.

Regina allows a command to take both an input and an output “redirection” to a stack, as showed in the last example above
However, it also guarantees that the output is not available in the stack before the command has terminated. The oetput frc
command is stored in a temporary stack, and flushed to the ordinary stack after the command is terminated. Thus, the com
will not start to read its own output.

Note that this temporary buffering of command output is the default behavior, which might be set up to something different
your site.

In addition, you can change it through BTIONSinstruction, by using eithédiLUSHSTACKr BUFFERSTACHS
“parameters”.

FurthermoreRegina supports the standard TREXX stack interface functionality, likeARSE PULL, PULL, QUEUEPUSH
the QUEUED() built-in function, and the SAA API stack interface. In addition, there are a few extra built-in functions, which a
supposed to provide compatibility with otHREXX implementations. These are:

Again, note the difference betweRegina’s redirection and Unix redirection. Regina, only the term&IFO> andFIFO>

(when first in the command string), and the tewhd-O and>FIFO (when last in the command string), will be interpreted as
redirection directives. These terms will be stripped off the command string. All other redirection directives will bedeftadt
If you should happen to need to redirect output from a Unix command to tRéFeor LIFO , then you can append a space at
the end. That will makBegina ignore the redirection term and the space is ignored by Unix.

Note that this particular form of redirection of command input and output will most probably disappear in future versions of
Regina, where it will probably be replaced by an extend@DRESSnstruction.

BUFTYPE()
121

This function is used for displaying the contents of the stack. It will display both the string and notify where the buffers ar
displayed. It is meant for debugging, especially interactive, when you need to obtain information about the contentskoithe s
always returns the nullstring, and takes no parameters.

Here is an example of the output from callBIgFTYPE(note that the second and fourth buffers are empty):

==> Lines: 4

==> Buffer: 3

“fourth line pushed, in third buffer”
==> Buffer: 2

==> Buffer: 1

“third line pushed, in first buffer”

==> Buffer: 0

“second line pushed, in ‘zeroth’ buffer”
“first line pushed, in ‘zeroth’ buffer”
==> End of Stack

BUFTYPE()

DESBUF()

This function removes all buffers on the stack, it is really just a way of clearing the whole stack for buffers as wegsas stri
Functionally, it is equivalent to executid)ROPBURvith a parameter d¥. (Actually, this is a lie, sSincBROPBUFRs not able to
take zero as a parameter. Rather, it is equivalent to exeDRiOFPBURvith 1 as parameter and then execudigOPBUF
without a parameter, but this is a subtle point.) It will return the number of buffers left on the stack after the funioien has
executed. This should Ifein all cases.

DESBUF()

DROPBUF([number])

This function will remove zero or more buffers from the stack. Called without a parameter, it will remove the topmosbbuffer |
the stack, provided that there were at least one buffer in the stack. If there were no buffers in the stack, it will retnioge iall
the stack, i.e. remove the zeroth buffer.

If the parametenumberwas specified, and the stack contains a buffer with an assigned number egualbéy then that buffer
itself, and all strings and buffers above it on the stack will be removed; but no strings or buffers below the numbewneldl buffer
be touched. Ihumberrefers to a buffer that does not exist in the stack; no strings or buffers in the stack is touched.

As an extra extension, Regina the DROPBUF() built-in function can be given a non-positive integer as parameter. If the nam
is negative then it will convert that number to its absolute value, and remove that many buffers, counted from the top. This i
functionally equivalent to repeatim@ROPBUF() without parameters for so many times as the absolute value of the negative
number specifies. Note that usiiy as parameter is equivalent to removing all strings and buffers in the stackDsisce
equivalent to normad. The number is converted during evaluation of parameters prior to the calDBR@®RBUF() routine, so

the sing is lost.

The value returned from this function is the number of buffers left on the stack after the buffers to be deleted havevieden ren
Obviously, this will be a non-negative integer. This too, deviates from the behavioDR@RBUEommand under CMS,
where zero is always returned.

DROPBUF(3) 2 remove buffer 3 and 4

DROPBUF(4) 0 no buffers on the stack
DROPBUK() 4 if there where 5 buffers

122

MAKEBUF()

Creates a new buffer on the stack, at the current top of the stack. Each new buffer will be assigned a number; thiebBiagbuffe
assigned the numbér A new buffer will be assigned a number which is one higher than the currently highest number of any
buffer on the stack. In practice, this means that the buffers are numbered, with the bottom-most having tHeandriber
topmost having a number which value is identical to the number of buffers currently in the stack.

The value returned from this function is the number assigned to the newly created buffer. The assigned number will be one
than the number of buffers already in the stack, so the numbers will be “recycled”. Thus, the assigned numbers will ribt nec
be in sequence.

MAKEBUF() 1 if no buffers existed
MAKEBUF() 6 if 5 buffers existed

123

7. Interfacing Rexx to other programs

This chapter describes an interface betwed®EXX interpreter and another program, typically written in C or another high
level, compiled language. It is intended for application programmers who are implem@akig support in their programs. It
describes the interface known as REXX SAA API.

7.1 Overview of functions in SAA

The functionality of the interface is divided into some main areas:

e Subcommand handlers
which trap and handle a command to an external environment.
« External function handlers
extend thdREXX language with external functions
e Interpreting
REXX scripts, either from a disk file, or from memory.
e Variable interface
which makes it possible to access the variables in the interpreter, and allows operations like setting, fetching and
dropping variables.
e System exits
which are used to hook into certain key points in the interpreter while it executes a script.

In the following sections each of these areas are described in detail, and a number of brief but complete examples are
given at the end of the chapter.

The description is of a highly technical nature, since it is assumed that the reader will be an application programmer
seeking information about the interface. Therefore, much of the content is given as prototypes and C style datatype
definitions. Although this format is cryptic for non-C programmers, it will convey exact, compact, and complete
information to the intended readers. Also, the problems with

ambiguity and incompleteness that often accompany a descriptive prose text are avoided.

7.1.1 Include Files and Libraries

All the C code that uses tiREXX application interface, must include a special header file that contains the necessary
definitions. This file is calledexxsaa.h. Where you will find this file,
will depend on you system and which compiler you use.

Also, the interface part between the application andREE¥X interpreter may be implemented as a library, which you

link with the application using the functions described in this chapter. The name of

this library, and its location might differ from system to system. Under Unix, this library can be implemented as a static
(libregina.a) or dynamic librarylibregina.[so|sl]). Under other platforms Regina is also be implemented as a static or
dynamic library.

7.1.2 Preprocessor Symbols

Including a header file ought to be enough; unfortunately, that is not so. Each of the domains of functionality listed above
are defined in separasectionsin therexxsaa.h header file. In order for
these to be made available, certain preprocessor symbols have to be set. For instance, you have to include the following
definition:

#define INCL_RXSHV

124

in order to make available the definitions and datatypes concerning the variable pool interface. The various definitions
that can be set are:

* INCL_RXSUBCOM
Must be defined in order to get the prototypes, datatypes and symbols needed for the subcommand interface of
the API.
¢ INCL_RXFUNC
Must be defined in order to get the prototypes, datatypes and symbols needed for the external function interface
of the API.
e INCL_RXSYSEXIT
Must be defined in order to get the prototypes, datatypes, and symbols needed for the system exit functions
¢ INCL_RXSHV
Must be set in order to get the prototypes, symbols and datatype definitions necessary tREXX thariable
pool.

7.1.3 Allocating and De-allocating Space

For several of the functions described in this chapter, the application calling them must allocate or de-allocate dynamic
memory. Depending on the operating system, compileR&XX interpreter,
the method for these allocations and de-allocations might vary. Reginaait®ms) andfree() in all these situations.

7.1.4 Data structures and data types

In this section, some data structures and datatypes relevant to the application int&aXX tre defined and
described. The datatypes defined are:

¢ RXSTRING
Holds aREXX string.

e RXSYSEXIT
Holds a definition of a system exit handler. Used when startiRg&X script withRexxStart(), and when
defining the system exit handlers.

The datatypes used in tBAA API are defined imexxsaa.h. They are:

typedef char CHAR ;

typedef short SHORT ;

typedef long LONG ;

typedef char *PSZ ;

typedef CHAR *PCHAR ;

typedef SHORT *PSHORT ;
typedef LONG *PLONG ;

typedef unsigned char UCHAR ;
typedef unsigned short USHORT ;
typedef unsigned long ULONG ;
typedef USHORT *PUSHORT ;
typedef char *PCH ;

typedef unsigned char *PUCHAR ;
typedef ULONG APIRET;

typedef APIRET (APIENTRY *PFN)();

One other item needs mentionidPIENTRY. This value is used to specify the linkage type on OS/2 and Win32

platforms. It is assumed that this vaitdefined by inclusion of compiler-specific header filegéxxsaa.h. Under
Unix, this is#defined to nothing.

125

7.1.4.1 The RXSTRING structure

The SAA API interface usdRexx stringwvhich are stored in the structtRXSTRING. There is also a datatype
PRXSTRING, which is a pointer tRXSTRING. Their definitions are:

typedef struct {
unsigned char *strptr ; /* Pointer to string contents */
unsigned long strlength ; /* Length of string */

} RXSTRING ;

typedef RXSTRING *PRXSTRING ;

Thestrptr field is a pointer to an array of characters making up the contentsR&xxestring while strlength holds the
number of characters in that array.

Unfortunately, there are some inconsistencies in naming of various special kinds of stiREEEXI{TRL), a™ "null
string" is a string that has zero length. On the other hand, the SAA API operates with two kinds of specialutrings:
stringsandzero length stringsThe latter is a string with zero length (equals null strindggEXX), while the former is a
sort of undefinedor emptystring, which denotes a string without a value. fbk stringsof SAA API are used to
denote unspecified values (e.g. a parameter left out in a subroutine call). In this chapter, when thd tringsand
zero length stringsare italicized, they refer to the SAA API style meaning.

A number of macros are defined, which simplifies operatiorRXBTRINGs for the programmer. In the list below, all
parameters callexlare of typeRXSTRING.

« MAKERXSTRING(x,content,length)]
The parameterontent must be a pointer tchar, while length is integer. Thex parameter will be set to the
contents and length supplied. The only operations are assignments; no new space is allocated and the contents
of the string is not copied.

« RXNULLSTRING(x)]
Returns true only ik is anull string.
i.e. x.strptr is NULL.

* RXSTRLEN(x)]
Returns the length of the strigas an unsigned long. Zero is returned both whisranull string or azero
length string

« RXSTRPTR(X)]
Returns a pointer to the first character in the stingr NULL if x is anull string. If x is azero length string
and nonNULL pointer is returned.

* RXVALIDSTRING(X)]
Returns true only ik is neither anull string nor a zero length string
i.e. X must have non-empty contents.

« RXZEROLENSTRING(X)]
Returns true only ik is azero length string
i.e. x.strptr is nonNULL, and x.strlength is zero.

These definitions are most likely to be defined as preprocessor macros, so you shoudlindvem withparameters
having any side effects. Also note that at IBMBKERXSTRING() is likely to be implemented as two statements, and
might not work properly if following

e.g. anf statement. Check the actual definitions inryexsaa.h header file before using them in a fancy context.

One definition of these might be (don't rely on this to be the case with your implementation):

#define MAKERXSTRING(X,c,l) ((x).strptr=(c),(x).strlength=(l))
#define RXNULLSTRING(x) (!(x).strptr)

#define RXSTRLEN(x) ((x).strptr ? (x).strlength : OUL)
#define RXSTRPTR(x) ((x).strptr)

126

#define RXVALIDSTRING(X) ((X).strptr && (x).strlength)
#define RXZEROLENSTRING(X) ((x).strptr && !(x).strlength)

Note that these definitions of strings differ from the normal definition in C programs; where a string is an array of
characters, and its length is implicitly given by a terminating ASCIlI NUL character. IRX8TRING definition, a
string can contain any character, including an ASCIlI NUL, and the length is explicitly given.

7.1.4.2 The RXSYSEXIT structure

This structure is used for defining which system exit handlers are to handle which system exits. The two relevant
datatypes are defined as:

typedef struct {
unsigned char *sysexit_name ;
short sysexit_code ;

} RXSYSEXIT ;

typedef RXSYSEXIT *PRXSYSEXIT ;

In this structuresysexit_name is a pointer to the ASCIlI NUL terminated string containing the name of a previously
registered (and currently active) system exit handler. §ysexit_code field is main function code of a system exit.

The system exits are divided into main functions and sub-functions. An exit is defined to handle a main function, and
must thus handle all the sub-functions for that main function. All the functions and sub-functions are listed in the
description of th€&XIT structure.

7.2 The Subcommand Handler Interface

This sections describes the subcommand handler interface, which enables the application to trap comREXJ§ in a
script being executed and handle this commands itself.

7.2.1 What is a Subcommand Handler

A subcommand handler is a piece of code, that is called to handle a command to an external envirBEEKehtltn

must be either a subroutine in the application that started the interpreter, or a subroutine in a dynamic link library. In any
case, when the interpreter needs to execute a command to an external environment, it will call the subcommand handler,
passing the command as a parameter.

Typically, an application will set up a subcommand handler before stafEXX script. That way, it can trap and

handle any command being executed during the course of the script.

Each subcommand handler handles one environment, which is referred to by a name. It seems to be undefined whether
upper and lower case letters differ in the environment name, so you should assume they differ. Also, there might be an
upper limit for the length of an environment name, and some letters may be illegal as part of an environment name.

Regina allows any letter in the environment name, except ASCII NUL; and sets no upper limit for the length of an
environment name. However, for compatibility reasons, you should amo@mmoretters and keep the length of the
name fairly short.
The prototype of a subcommand handler function is:
APIRET APIENTRY handler(
PRXSTRING command,
PUSHORT flags,

127

PRXSTRING returnstring
)

After registration, this function is called whenever the application is to handle a subcommand for a given environment.
The value of the parameters are:

[command]
Thecommand string that is to be executed. This is the resulting string after the command expression
has been evaluated in tREXX interpreter. It can not be empty, although it can em-length-
string.

[flags]
Points to aunsigned short which is to receive the status of the completion of the handler. This can
be one of the following: RXSUBCOM_OK, RXSUBCOM_ERROR, or RXSUBCOM_FAILURE.
The contents will be used to determine whether to raise any condition at return of the subcommand.
Do not confuse it with the return value.

[returnstring]
Points to RXSTRING which is to receive the return value from the subcommand. Passing the return
value as a string makes it possible to return non-numeric return codes. As a special case, you might
setreturnstring.strptr to NULL, instead of specifying a return string of the ASCII representation of
zero.

Note that it is not possible to retunothingin a subcommand, since this is interpreted as zero. Nor is it possible to return
a numeric return code as such; you must convert it to ASCII representation before you return.

Thereturnstring string will provide a 256 byte array which the programmer might use if the return data is not longer that
that. If that space is not sufficient, the handler can provide another area itself. In that case, the handler should not de-
allocate the default area, and the new area should be allocated in a standard fashion.

7.2.2 The RexxRegisterSubcomExe() function

This function is used to register a subcommand handler with the interface. The subcommand handler must be a procedure
located within the code of the application. After registrationRIEXX interpreter can execute subcommands by calling
the subcommand handler with parameters describing the subcommand.

The prototype foRexxRegisterSubcomExe() is:

APIRET APIENTRY RexxRegisterSubcomExe(
PSZ EnvName,
PFN EntryPoint,
PUCHAR UserArea

)
All the parameters are input, and their significance are:

[EnvName]
Points to an ASCII NUL terminated character string which defines the name of the environment to be
registered. This is the same name afRBXX interpreter uses with thADDRESS clause in order
to select an external environment.

[EntryPoint]
Points to the entrypoint of the subcommand handler routine for the environment to be registered. See
the section on Subcommand Handlers for more information. There is an upper limit for the length of
this name.

[UserArea]
Pointer to an 8 byte area of information that is to be associated with this environment. This pointer can
beNULL if no such area is necessary.

128

The areas pointed to bgnvName and UserArea are copied to a private area in the interface, so the programmer may
de-allocate or reuse the area used for these parameters after the call has returned.

The RexxRegisterSubcom() returns arunsigned long, which carries status information describing the outcome of the
operation. The status will be one of RESUBCOM values:

[RXSUBCOM_OK]
The subcommand handler was successfully registered.
[RXSUBCOM_DUP]
The subcommand handler was successfully registered. There already existed another subcommand
handler which was registered wiexxRegisterSubcomDII(), but this will be shadowed by the
newly registered handler.
[RXSUBCOM_NOTREG]
Due to some error, the handler was not registered. Probably because a hagaleNfone was
already defined at a previous callRexxRegisterSubcomExe().
[RXSUBCOM_NOEMEM]
The handler was not registered, due to lack of memory.
[RXSUBCOM_BADTYPE]
Indicates that the handler was not registered, due to one or more of the parameters having invalid
values.

7.2.3 The RexxRegisterSubcomDIl() function

This function is used to set up a routine that is located in a module in a dynamic link library, as a subcommand handler.
Some operating systems don't have dynamic linking, and thus cannot make use of this facility. The prototype of this
function is:

APIRET APIENTRY RexxRegisterSubcomDII(
PSZ EnvName,
PSZ ModuleName,
PFN EntryPoint,
PUCHAR UserArea,
ULONG DropAuth

)

This function is not yet supported Regina.

7.2.4 The RexxDeregisterSubcom() function

This function is used to remove a particular environment from the list of registered environments. The prototype of the
function is:

APIRET APIENTRY RexxDeregisterSubcom(
PSZ EnvName,
PSZ ModuleName

)

Both parameters are input values:

[EnvName]
Pointer to ASCII NUL terminated string, which represents the name of the environment to be removed.
[ModuleName]
Also an ASCII NUL terminated string, which points to the name of the module containing the
subcommand handler of the environment to be deleted.

129

The list of defined environments is searched, and if an environment matching the one named by the first parameter are
found, it is deleted.

The returned value froRexxDeregisterSubcom() can be one of:

[RXSUBCOM_OK]
The subcommand handler was successfully deleted.
[RXSUBCOM_NOTREG]
The subcommand handler was not found.
[RXSUBCOM_BADTYPE]
One or more of the parameters had illegal values, and the operation was not carried through.

Most systems that do have dynamic linking have no method for reclaiming the space used by dynamically linked
routines. So, even if you were able to loatllathere are no guarantees that you will be able to unload it.

7.2.5 The RexxQuerySubcom() function

This function retrieves information about a previously registered subcommand handler. The prototype of the function is:

APIRET APIENTRY RexxQuerySubcom(
PSZ EnvName,
PSZ ModuleName,
PUSHORT Flag,
PUCHAR UserWord

)
The significance of the parameters are:

[EnvName]
Pointer to an ASCII NUL terminated character string, which names the subcommand handler about
which information is to be returned.

[ModuleName]
Pointer to an ASCII NUL terminated character string, which names a dynamic link library. Only the
named library will be searched for the subcommand handler namEd\wdyame. This parameter
must beNULL if all subcommand handlers are to be searched.

[Flag]
Pointer to a short which is to receive the vaRX¥SUBCOM_OK or RXSUBCOM_NOTREG. In
fact, this is the same as the return value from the function.

[UserWord]
Pointer to an area of 8 bytes. Tueerareaof the subcommand handler is copied to the area pointed to
by UserWord. This parameter might B¢ULL if the data of theiserareais not needed.

The returned value frolRexxQuerySubcom() can be one of:

[RXSUBCOM_OK]
The subcommand handler was found, and the required information has been returnEthmahd
UserWord variables.

[RXSUBCOM_NOTREG]
The subcommand handler was not found. Flag variable will also be set to this value, and the
UserWord variable is not changed.

[RXSUBCOM_BADTYPE]
One or more of the parameters had illegal values, and the operation was not carried through.

7.3 The External Function Handler Interface

130

This sections describes the external function handler interface, which extends the language by enabling external functions
to be written in a language other tHREXX.

7.3.1 What is an External Function Handler

An external function handler is a piece of code, that is called to handle external functions and subroutirREO&Hs in

It must be either a subroutine in the application that started the interpreter, or a subroutine in a dynamic link library. In
any case, when the interpreter needs to execute a function registered as an external function, it will call the external
function handler, passing the function name as a parameter.

All external functions written in a language other than REXX must be registered with the interpreter before starting a
REXX script.

An external function handler can handle one or more functions. The handler can determine the function actually called
by examiining one of the parameters passed to the handler and act accordingly.

The prototype of a subcommand handler function is:

APIRET APIENTRY handler(
PSZ name,
ULONG argc,
PRXSTRING argv,
PSZ queuename,
PRXSTRING returnstring

)

After a function is registered with this function defined as the handler, this function is called whenever the application
calls the function. The value of the parameters are:

[name]
The function called.

[argc]
The number of parameters passed to the functingu will containargc RXSTRINGS.

[queuename]
The name of the currently define data queue.

[returnstring]
Points to RXSTRING which is to receive the return value from the function. Passing the return value
as a string makes it possible to return non-numeric return codes. As a special case, you might set
returnstring.strptr to NULL, instead of specifying a return string of the ASCII representation of zero.

Thereturnstring string will provide a 256 byte array which the programmer might use if the return data is not longer that
that. If that space is not sufficient, the handler can provide another area itself. In that case, the handler should not de-
allocate the default area, and the new area should be allocated in a standard fashion. if the external function does not
return a value, it should sedturnstring to an emptfRXSTRING. This will enable the interpreter to raise error 44;
Function did not return datdf the external function is called as a function. If the external function is invoked via a

CALL command, the interpreter drops the special varidBESULT.

The handler returns zero if the function completed successfully. When the handler returns a non-zero value, the
interpreter will raise error 40nvalid call to routine

7.3.2 The RexxRegisterFunctionExe() function

This function is used to register an external function handler with the interface. The external function handler must be a
procedure located within the code of the application. After registratioREX& interpreter can execute external
functions as if they were built-ins.

131

The prototype foRexxRegisterFunctionExe() is:

APIRET APIENTRY RexxRegisterFunctionExe(
PSZ FuncName,
PFN EntryPoint

)
All the parameters are input, and their significance are:

[FuncName]
Points to an ASCII NUL terminated character string which defines the name of the external function to
be registered. This is the same name aREX¥X interpreter uses with a function call or via the
CALL command.

[EntryPoint]
Points to the entrypoint of the external function handler routine for the function to be registered. See
the section on External Function Handlers for more information.

The area pointed to bifuncName is copied to a private area in the interface, so the programmer may de-allocate or
reuse the area used for this parameter after the call has returned.

The RexxRegisterFunctionExe() returns arunsigned long, which carries status information describing the outcome
of the operation. The status will be one of R3FUNC values:

[RXFUNC_OK]
The handler was successfully registered.

[RXFUNC_DUP]
The handler was successfully registered. There already existed another external function handler
which was registered witRexxRegisterFunctionExe(), but this will be shadowed by the newly
registered handler.

[RXFUNC_NOEMEM]
The handler was not registered, due to lack of memory.

7.3.3 The RexxRegisterFunctionDII() function

This function is used to set up an external function handler that is located in a module in a dynamic link library. Some
operating systems don't have dynamic linking, and thus cannot make use of this facility. The prototype of this function is:

APIRET APIENTRY RexxRegisterFunctionDII(
PSZ ExternalName,
PSZ LibraryName,
PSZ InternalName

)
All the parameters are input, and their significance are:

[ExternalName]
Points to an ASCII NUL terminated character string which defines the name of the external function to
be registered. This is the same name aREX¥X interpreter uses with a function call or via the
CALL command.

[LibraryName]
Points to an ASCII NUL terminated character string which defines the name of the dynamic library.
This string may require a directory specification.

[InternalName]
Points to an ASCII NUL terminated character string which defines the name of the entrypoint within
the dynamic library. On systems where the case of function names in dynamic libraries is relevant, this
namemust be specified in the same case as the function name within the dynamic library.

132

The areas pointed to by all parameters are copied to a private area in the interface, so the programmer may de-allocate or
reuse the area used for these parameters after the call has returned.

The RexxRegisterFunctionDII() returns arunsigned long, which carries status information describing the outcome of
the operation. The status will be one of BFUNC values:

[RXFUNC_OK]
The handler was successfully registered.

[RXFUNC_DUP]
The handler was successfully registered. There already existed another external function handler
which was registered witRexxRegisterFunctionDII(), but this will be shadowed by the newly
registered handler.

[RXFUNC_NOEMEM]
The handler was not registered, due to lack of memory.

7.3.4 The RexxDeregisterFunction() function

This function is used to remove a particular external function handler from the list of registered external function
handlers. The prototype of the function is:

APIRET APIENTRY RexxDeregisterFunction(
PSZ FuncName

)
The parameter is an input values:

[FuncName]
Points to an ASCII NUL terminated character string which defines the name of the external function to
be registered. This is the same name aRE¥X interpreter uses with a function call or via the
CALL command.

The list of defined function handlers is searched, and if an environment matching the one named by the parameter are
found, it is deleted. This call is used to de-register function handlers registered with either
RexxRegisterFunctionExe() or RexxRegisterFunctionDII().

The returned value frolRexxDeregisterFunction() can be one of:

[RXFUNC_OK]

The handler was successfully deleted.
[RXFUNC_NOTREG]

The handler was not found.

Most systems that do have dynamic linking have no method for reclaiming the space used by dynamically linked
routines. So, even if you were able to loatllathere are no guarantees that you will be able to unload it.

7.3.5 The RexxQueryFunction() function

This function retrieves the status of an external function handler. The prototype of the function is:

APIRET APIENTRY RexxQueryFunction(
PSZ FuncName

)
The significance of the parameters is:
133

[FuncName]
Points to an ASCII NUL terminated character string which defines the name of the external function to
be registered. This is the same name aRE¥X interpreter uses with a function call or via the
CALL command.

The returned value frolRexxQueryFunction() can be one of:

[RXFUNC_OK]

The external function handler was found.
[RXFUNC_NOTREG]

The handler was not found.

7.4 Executing REXX Code

This sections describes tRexxStart() function, which allows the application to startup the interpreter and make it
interpret pieces dREXX code.

7.4.1 The RexxStart() function

This function is used to invoke tIREXX interpreter in order to execute a piecé&r@&XX code, which may be located
on disk, as a pre-tokenized macro, or as ASCII source code in memory.

APIRET APIENTRY RexxStart(
LONG ArgCount,
PRXSTRING ArgList,

PSZ ProgramName,
PRXSTRING Instore,
PSZ EnvName,

LONG CallType,
PRXSYSEXIT Exits,
PUSHORT ReturnCode,
PRXSTRING Result

)

Of these parameterReturnCode andResult are output-only, whilénstore is both input and output. The rest of the
parameters are input-only. The significance of the parameters are:

[ArgCount]
The number of parameter strings given to the procedure. This is the number of B&K)éestrings
pointed to by thérgList parameter.

[ArgList]
Pointer to an array d®REXX-strings, constituting the parameters to this caREXX. The size of this
array is given by the paramet®rgCount. If ArgCount is greater than one, the first and last
parameters ar@rgList[0] andArgList[ArgCount-1]. If ArgCount is 0, the value ofrgList is
irrelevant.

If the strptr of one of the elements in the array pointed témlList is NULL, that means that this
parameter is empty (i.e. unspecified, as opposed to a string of zero size).

[ProgName]
An ASCII NUL terminated string, specifying the name of REEXX script to be executed. The value
of Instore will determine whether this value is interpreted as the name of a (on-disk) script, or a pre-
tokenized macro. If it refers to a filename, the syntax of the contents of this parameter depends on the
operating system.

[Instore]

134

Parameter used for storing tokeniZEXX scripts. This parameter might eitherNeLL, else it will
be a pointer to twW& XSTRING structures, the first holding the ASCII version ®@BXX program,
the other holding the tokenized version of that program. See below for more information about how to
uselnstore.

[EnvName]
Pointer to ASCII NUL terminated string naming the environment which is to be the initial current
environment when the script is started. If this parameter is bifltd, the filetype is used as the
initial environment name. What the filetype is, may depend on your operating system, but in general it
is everything after the last period ‘.’ in the filename.

[CallType]
A value describing whether tHREXX interpreter is to be invoked in command, function or subroutine
mode. Actually, this has little significance. The main difference is that in command mode, only one
parameter string can be passed, and in function mode, a value must be returned. In addition, the mode
chosen will affect the output of tFRARSE SOURCE instruction inREXX.

Three symbolic values of integral type are defined, which can be used for this parameter:
RXCOMMAND, RXFUNCTION andRXSUBROUTINE.

[SysExists]
A pointer to an array of exit handlers to be used. If no exit handlers are to be défihdédnay be
specified. Each element in the array defines one exit handler, and the element immediately following
the last definition must havesgsexit code set toRXENDLST.

[ReturnCode]
Pointer to &8HORT integer where the return code is stored, provided that the returned value is
numeric, and within the range -(2**15) to 2**15-1. | don't know what happeRgtornCode if
either of these conditions is not satisfied. It probably becomes undefined, which means that it is totally
useless since the program has to inspect the return string in order to determineRdtath€ode
is valid.

[Result]
Points to &REXX string into which the result string is written. The caller may or may not |lstribie
field be supplied. If supplied (i.e. it is non-NULL), that area will be used, else a new area will be
allocated. If the supplied area is used, its size is supposed to be giverstoletiggh field. If the size
if not sufficient, a new area will be allocated, by some system dependent channl{ae()), and
the caller must see to that it is properly de-allocated (usgy)).

Note that theArgCount parameter need not be the same a®\R@&() built-in function would return. Differences will
occur if the last entries irgList arenull strings

ThelInstore parameter needs some special attention. It is used to directly or indirectly specify where to fetch the code to
execute. The followinglgorithmis used to determine what to execute:

If Instore is NULL, thenProgName names the filename of an on-dREXX script which it to be read and
executed.

Else, ifinstore is notNULL, the script is somewhere in memory, and no reading from disk is performed. If
both Instore[0].strptr andinstore[1].strptr areNULL, then the script to execute is a pre-loaded macro which
must have been loaded with a call to eitRekxAddMacro() or RexxLoadMacroSpace(); andProgName

is the name of the macro to execute.

Else, ifInstore[1].strptr is nonNULL, theninstore[1] contains the pre-tokenized image ®RBXX script, and
it is used for the execution.

Else, if Instore[0].strptr is nonNULL, theninstore[0]} contains the ASCII image of REXX script, just as if

the script had been read directly from the disk (i.e. including linefeeds and such). This image is passed to the
interpreter, which tokenizes it, and stores the tokenized script ingtoee[1] string, and then proceeds to

execute that script. Upon return, thetore[1] will be set, and can later be used to re-execute the script within
the same process, without the overhead of tokenizing.

135

The user is responsible for de-allocating any storage uskdtoye[1]. Note that after tokenizing, the source
code ininstore[0] is strictly speaking not needed anymore. It will only be consulted if the user calls the
SOURCELINE() built-in function. It is not an error to uS®URCELINE() if the source is not present, but
nullstrings and zero will be returned.

Regina does not currently return any tokenized data in Instore[1] that can be used in a later call to RexxStart,
outside of the current process. What Regina returns in Instore[1], is an index into an in-memory tokenized
version of the source code. Once the process that parsed the source has stopped, the tokenized code is lost.

The valid return values froRexxStart() are:

[Negative]
indicates that a syntax error occurred during interpretation. In general, you can expect the error value
to have the same absolute value afRBEXX syntax error (but opposite signs, of course).

[Zero]
indicates that the interpreter finished executing the script without errors.

[Positive]
indicates probably that some problem occurred, that made it impossible to execute the script, e.g. a bad
parameter value. However, | can't find any references in the documentation which states which values
it is supposed to return.

During the course of an execution BexxStart(), subcommand handlers and exit handlers might be called. These may
call any function in the application interface, including another invocation of
RexxStart().

Often, the application programmer is interested in providing support simplifying the specification of filenames, like an
environment variable search path or a default file type REXX interface does support a default file typ€MD, but

the user may not set this to anything else. Therefore, it is generally up to the application programmer to handle search
paths, and also default file types (unlg@s1D is OK).

If the initial environment nameé&EgnName) is NULL, then the initial environment during interpretation will be set equal

to the file type of the script to execute. If the script does not have a file
type, it is probably set to some interpreter specific value.

7.5 Variable Pool Interface

This section describes the variable pool part of the application interface, which allows the application programmer to set,
retrieve and drop variables in tREXX interpreter from the application program. It also allows access to other
information.

The C preprocessor symhdICL_RXSHV must be defined if the definitions for the variable pool interface are to be
made available whemrexxsaa.h is included.

7.5.1 Symbolic or Direct

First, let us define two termsymbolicvariable name andirect variable name, which are used in connection with the
variable pool.

A symbolic variable name is the name of a variable, but it needs normalization and tail substitution before it names the
real variable. The nanfeo.bar is a symbolic variable name, and it is transformed by normalizatiGfQ@.BAR, and
then by tail substitution tB0O0.42 (assuming that the current value BAR is 42).

Normalization is the process of uppercasing all characters in the symbolic name; and tail substitution is the process of
substituting each distinct simple symbol in the tail for its value.

136

On the other hand, a direct variable refers directly to the name of the variable. In a sense, it is a symbolic variable that
has already been normalized and tail substituted. For instandeqr is not a valid direct variable name, since lower

case letters are not allowed in the variable stem. The direct vafi@klel2 is the same as the variable above. For

simple variables, the only difference between direct and symbolic variable names is that lower case letters are allowed in
symbolic names

Note that the two direct variable nant€30.bar andFOO.BAR refer to different variables, since upper and lower case
letters differ in the tail. In fact, the tail of a compound direct variable may contain any character, including ASCII NUL.
The stem part of a variable, and all simple variables can not contain any lower case letters.

As a remark, what would the direct variabl@O. refer to: the ster®OO. or the compound variable having ste@O.
and a nullstring as tail? Well, | suppose the former, since it is the more useful. Thus, the latter is inaccessible as a direct
variable.

7.5.2 The SHVBLOCK structure

All requests to manipulate tHREXX variable pool are controlled by a structure which is céld¥yBLOCK, having the
definition:

typedef struct shvnode {
struct shvnode *shvnext; /* ptr to next in blk in chain */
RXSTRING shvname ; /* name of variable */
RXSTRING shvvalue ; /* value of variable */
ULONG shvnamelen ; /* length of shvhame.strptr */
ULONG shvvaluelen ; /* length of shvvalue.strptr */
UCHAR shvcode ; /* operation code */
UCHAR shvret ; [* return code */

} SHVBLOCK ;

typedef SHVYBLOCK *PSHVBLOCK ;

The fieldsshvnext andshvcode are purely input, whilshvret is purely output. The rest of the fields might be input or
output, depending on the requested operation, and the value of the fields. The significance of each field is:

[shvnext]
One call toRexxVariablePool() may sequentially process many requests.shivaext field links
one request to the next in line. The last request must hasteveetxt to NULL. The requests are
handled individually and thus, calliiRexxVariablePool() with several requests is equivalent to
making one call t&kexxVariablePool() for each request.

[shvname]
Contains the name of the variable to operate on,RX&TRING. This field is only relevant for some
requests, and its use may differ.

[shvvalue]
Contains the value of the variable to operate onRESTRING. Like shvname, this might not be
relevant for all types of requests.

[shvnamelen]
The length of the array thahvname.strptr points to. This field holds the maximum possible number
of characters irshvname.strptr. While shvname.strlength holds the number of characters that are
actually in use (i.e. defined).

[shvvaluelen]
The length of the array thahvvalue.strptr points to. Relates tshvvalue, like shvnamelen relates
to shvname.

[shvcode]
The code of operation; decides what type of request to perform. A list of all the available requests is
given below.

[shvret]

137

A return code describing the outcome of the request. This code is a bit special. The lower seven bits
are flags which are set depending on whether some condition is met or not. Values above 127 are not
used in this field.

There is a difference betweshvnamelen and shvname.strlength. The former is the total length of the array of
characters pointed to lshvname.strptr (if set). While the latter is the number of these characters that are actually in
use. When &HVBLOCK is used to return data froRexxVariablePool(), and a pre-allocated string space has been
supplied, both these will be usestivname.strlength will be set to the length of the data returned, whlilenamelen

is never changed, only read to find the maximum number of charactestthatne can hold.

Even thouglshvnamelen is not really needed whesmvname is used for input, it is wise to set it to its proper value (or
at least set it to the samesiwname.strlength). The same applies fehvvalue andshvvaluelen.

The fieldshvcode can take one of the following symbolic values:

[RXSHV_DROPV]
The variable named by the direct variable natmename is dropped (i.e. becomes undefined). The
fields shvvalue andshvvaluelen do not matter.

[RXSHV_EXIT]
This is used to set the return value for an external function or exit handler.

[RXSHV_FETCH]
The value of the variable named by the direct variable r&duvigame is retrieved and stored in
shvvalue. If shvvalue.strptr is NULL, the interpreter will allocate sufficient space to store the value
(but it is the responsibility of the application programmer to release that space). Else, the value will be
stored in the area allocated &hvvalue, and shvvaluelen is taken to be the maximum size of that
area.

[RXSHV_NEXTV]
This code is used to retrieve the names and values of all variables at the current procedure level; i.e.
excluding variables shadowed BROCEDURE. The name and value of each variable are retrieved
simultaneously intghvname and shvvalue, respectively.
Successive requests RXSHV_NEXTV will traverse the interpreter's internal data structure for
storing variables, and return a new pair of variable name and value for each request. Each variable that
is visible in the current scope, is returned once and only once, but the order is non-deterministic.
When all available variables in tREXX interpreter have already been retrieved, subsequent
RXSHV_NEXTYV requests will set the flagXSHV_LVAR in theshvret field. There are a few
restrictions. The traversal will be reset whenever the interpreter resumes execution, so an incomplete
traversal can not be continued in a later external function, exit handler, or subcommand handler. Also,
any set, fetch or drop operation will reset the traversal. These restrictions have been added to ensure
that the variable pool is static tlughout one traversal.

[RXSHV_PRIV]
Retrieves some piece of information from the interpreter, other than a variable value, based on the
value of theshvname field. The value is stored shvvalue as for anormalfetch. A list of possible
names is shown below.

[RXSHV_SET]
The variable named by the direct variable natmename is set to the value given lsjvvalue.

[RXSHV_SYFET]
Like RXSHV_FETCH, except thashvname is a symbolic variable name.

[RXSHV_SYDRO]
Like RXSHV_DROPV, except thashvname is a symbolic variable name.

[RXSHV_SYSET]
Like RXSHV_SET, except thatshvname is a symbolic variable name.

One type of request that needs some special attentionRX®BEV_PRIV, which retrieves a kind oheta-variable
Depending on the value afhvname, it returns a value ishvvalue describing some aspect of the interpreter. For
RXSHV_PRIV the possible values fashvname are:

[PARM]
138

Returns the ASCII representation of the number of parameters to the currentlyR&XMeprocedure.
This may not be the same value as the built-in funcB&®G() returns, but is the numbekrgCount
in RexxStart(). The two might differ if a routine was called with trailing omitted parameters.

[PARM.n]
The n must be a positive integer; and the value returned will be'tth@arameter at the current
procedure level. This is not completely equivalent to the information that the built-in fuRBt®()
returns. For parameters whefdRG() would return the state omitted, the returned valuanidla
string, while for parameters wheARG() would return the statexisting the return value will be the
parameter string (which may beero length string

[QUENAME]
The name of the currently active external data queue. This feature has not yet been implemented in
Regina, which always returdefault

[SOURCE]
Returns the same string that is used iIrRARSE SOURCE clause irREXX, at the current
procedure level of interpretation.

[VERSION]
Returns the same string that is used irRARSE VERSION clause irREXX.

The value returned by a variable pool request is a bit uncommon. A return value is computed for each request, and stored
in theshvret field. This is a one-byte field, of which the most significant bit is never set. A symbolic value

RXSHV_OK is defined as the value zero, and sheret field will be equal to this name if none if the flags listed below

is set. The symbolic value for these flags are:

[RXSHV_BADF]
Theshvcode of this request contained a bad function code.
[RXSHV_BADN]
Theshvname field contained a string that is not valid in this context. What exactly is a valid value
depends on whether the operation is a private, a symbolic variable, or direct variable operation.
[RXSHV_LVAR]
Set if and only if the request WBRXSHV_NETXV, and all available variables have already been
retrieved by earlier requests.
[RXSHV_MEMFL]
There was not enough memory to complete this request.
[RXSHV_NEWV]
Set if and only if the referenced variable did not previously have a value. It can be returned for any set,
fetch or drop operation.
[RXSHV_TRUNC]
Set if the retrieved value was truncated when it was copied into eithenth@ame or shvvalue
fields. See below.

These flags are directly suitable for logical OR, without shifting, e.g. to check for truncation and no variables left, you
can do something like:

if (reg->shvret & (RXSHV_TRUNC | RXSHV_LVAR))
printf("Truncation or no vars left\n") ;

RXSHV_TRUNC can only occur when the interface is storing a retrieved valuSHVBLOCK, and the pre-allocated
space is present, but not sufficiently large. As describeRX@HV_FETCH, the

interpreter will allocate enough spacsalifvvalue.strptr is NULL, and therRXSHV_TRUNC will never be set. Else
the space supplied bghvvalue.strptr is used, andshvvaluelen is taken as the maximum lengthsbfvvalue, and
truncation will occur if the supplied space is too small.

Some implementations will consid8HV_MEMFL to be so severe as to skip the rest of the operations in a chain of

requests. In order to write compatible software, you should never assume that requests
following in a chain after a request that retur§¢tv/_ MEMFL have been performed.

139

RXSHV_BADN is returned if the supplieshvname contains a value that is not legal in this context. For the symbolic

set, fetch and drop operations, that means a symbol that is a legal variable name; both upper and lower case letters are
allowed. For the direct set, fetch and drop operations, that means a variable name after normalization and tail
substitution is not a legal variable name. FXSRIV_PRIV, it must be one of the values listed above.

There is a small subtlety in the above description. TRL states that VREEX>Xa assignment assigns a value to a stem
variable, all possible variables having that stem are assigned a new value (independent of whether they had an explicit
value before). So, strictly speaking, if a stem is set, tHRMSHV_NETV sequence should return an (almost) infinite
sequence of compound variables for that stem. Of course, that is completely useless, so you can assume that only
compound variables of that stem given an explicit value after the stem was assigned a value will be returned by
RXSHV_NEXTV. However, because of that subtlety, the variables returnBXBHV NEXTV for compound

variables might not be representative for the state of the variables.

e.g. what would a sequenceRIXSHV_NEXT requests return after the followiREXX code ?:
foo. = 'bar'
drop foo.bar

The second statement here, might not change the returned values! After the first statement, onlyftioe wizuid
probably have been returned, and so also if all variables were fetched after the second statement.

7.5.3 Regina Notes for the Variable Pool

Due to the subtleties described at the end of the previous subsection, some noteRegimawandles
RXSHV_NEXTV requests for compound variables are in order. The following rules applies:

« Both the stem variablEOO. and the compound variable havikgO. as stem and a nullstring as tail, are returned
with the name ofFOO.. In this situation, a sequence BXSHV_NEXTV requests may seem to return values for
the same variable twice. This is unfortunate, but it seems to be the only way. In any case, you'll have to perform the
RXSHV_SYFET in order to determine which is which.

« If a stem variable has not been assigned a value, its compound variables are only returned if they have been assigned
an explicit value. i.e. compound variables for that stem that have either never been assigned a value, or have been
dropped, will not be reported by RXSHV_NEXTV. There is nothing strange about this.

« If a stem variable has been assigned a value, then its compound variables will be reported in two cases: Firstly, the
compound variables having explicitly been assigned a value afterwards. Secondly, the compound variables which
have been dropped afterwards, which are reported to have their initial value, and RESH#g NEWYV is set in
shvret.

It may sound a bit stupid that unset variables are listed when the request is to list all variables which have been set, but
that is about the best | can do, if | am to stay within the standard definition and return a complete and exact status of the
variable pool.

If the return code frorRexxVariablePool() is less than 12&egina is guaranteed to have tried to process all requests

in the chain. If the return code is above 127, some requests may not have been

processed. Actually, the number 127 (or 128) is a bit inconvenient, since it will be an problem for later expansion of the
standard. A much better approach would be to have a preprocessor symbol (say,

RXSHV_FATAL, and if the return code from tfexxVariablePool() function was larger than that, it would bdieect

error code, and not@mpositeerror code built from thshvret fields of the requests. THRXSHV_FATAL would

then have to be the addition of all the atomic composite error codes.

(Warning: author mounting the soapbox.)
The right way to fix this, is to let the functioRexxVariablePool() set another flag ishvret (e.g. named
RXSHV_STEM) duringRXSHV_NEXTYV if and only if the value returned is a stem variable. That way, the
application programmer would be able to differ between stem variables and compound variable with a null
string tail.

140

To handle the other problem with compound variablesRXN8HYV_NEXTV, | would have liked to return a

null string in shvvalue if and only if the variable is a compound variable having its initial value, and the stem

of that compound variable has been assigned a value. Then, the value of the compound variable is equal to its
name, and is available in teBvname field.

I'd also like to see that thehvret value contained other information concerning the variables, e.g. whether the
variable was exposed at the current procedure level. Of cdReggna does not contain any of these extra,
non-standard features.

(Author is dismounting the soapbox.)

WhenRegina is returning variables witRXSHV_NEXTYV, the variables are returned in the order in which they occur
in the open hashtable in the interpreter. i.e. the order in which variables belonging to different bins are returned is
consistent, but the order in which variables hashed to the same bin are returned, is non-deterministic. Note that all
compound variables belonging to the same stem are returned in one sequence.

7.5.4 The RexxVariablePool() function

This function is used to process a sequence of variable requests, and process them sequentially. The prototype of this
function is:

APIRET APIENTRY ULONG RexxVariablePool(
SHVBLOCK *Request

)

Its only parameter is a pointer t&&IVBLOCK structure, which may be the first of the linked list. The function
performs the operation specified in each block. If an error should occur, the current request is terminated, and the
function moves on to the next request in the chain.

The result value is a bit peculiar. If the returned value is less than 128, it is calculated by logically OR'ing the returned
shvret field of all the requests in the chain. That way, you can easily check whether any of the requests was e.g. skipped
because of lack of memory. To determine which request, you have to iterate through the list.

If the result value is higher than 127, it signifies an error. If any of these values are set, you can not assume that any of
the requests have been processed. The following symbolic hame gives its meaning.

[RXSHV_NOAVL]
Means that the interface is not available for this request. This might occur if the interface was not able
to start the interpreter, or if an operation requested a variable when the interpreter is not currently
executing any script (i.e. idle and waiting for a script to execute).

7.6 The System Exit Handler Interface

The exit handlers provide a mechanism for governing important aspectsREXheinterpreter from the application: It
can trap situations like the interpreter writing out text, and then handle them itself, e.g. by displaying the text ih a specia
window. You can regard system exits as a soth@bks

7.6.1 The System Exit Handler

Just like the subcommand handler, the system exit handler is a routine supplied by the application, and is called by the
interpreter when certain situations occur. These situations are described in detail later. For the examples below, we will
use the output frorBAY as an example.

141

If a system exit handler is enabled for 8&Y instruction, it will be called with a parameter describing the text that is to

be written out. The system exit handler can choose to handle the situation (e.g. by writing the text itself), or it can ignore
it and let the interpreter perform the output. The return code from the system exit tells the interpreter whether a system
exit handled the situation or not.

A system exit handler must be a routine defined according to the prototype:
LONG APIENTRY my_exit_handler(
LONG ExitNumber,
LONG Subfunction,
PEXIT ParmBlock

)

In this prototype, the typREXIT is a pointer to a parameter block containing all the parameters necessary to handle the
situation. The actual definition of this parameter block will vary, and is described in detail in the list of each system exit.

The exits are defined in a two-level hierarchy. Bx@Number defines the main function for a system exit, while the
Subfunction defines the subfunction within that main function. e.gSfal, the main function will b&XSIO (the
system exit for standard I/0O) and the subfunction wilRBESIOSAY. TheRXSIO main function has other sub-
functions for handling trace output, interactive trace input,RIAL input from standard input.

The value returned from the system exit handler must be one of the following symbolic values:

[RXEXIT_HANDLED]
Signals that the system exit handler took care of the situation, and that the interpreter should not
proceed to do the default action. For tBAY instruction, this means that the interpreter will not print
out anything.

[RXEXIT_NOT_HANDLED]
Signals that the system exit handler did not take care of the situation, and the interpreter will proceed to
perform the default action. For tB&Y instruction, this means that it must print out the argument to
SAY.

[RXEXIT_RAISE_ERROR]
Signals that the interpreter's default action for this situation should not be performed, but instead a
SYNTAX condition should be raised. Don't get confused by the name, it is TEREB®R condition,
but theSYNTAX condition is raised, using the syntax effailure in system servigg@ormally
numbered 48).

In addition to returning information as the numeric return value, information may also be returned by setting variables in
the parameter block. For instance, if the system exit is to handle interactive trace input, that is how it will supply the
interpreter with the input string.

It is a good and disciplined practice to let your exit handlers start by verifyifigxitNdumber andSubfunction codes,

and immediately returRXEXIT_NOT_HANDLED if it does not recognize both of them. That way, your application
will be upwards compatible with future interpreters which might have more sub-functions for any given main function.

7.6.2 List of System Exit Handlers

7.6.2.1 RXFNC — The External Function Exit Handler

The RXFNC system exit handler provides hooks for external functions. It has only one subfuRXtFEMCCAL,
which allows an application program to intervene and handle any external function or subroutine.

Do not confuse this exit handler with the external function routines which allow you to defifRExey semi-built-in
functions. The exit handler is called for all invocations of external routines, and can be called for function names which
you were unaware of.

The parameteParmBlock for RXFNCCAL is defined as:

142

typedef struct {
typedef struct {
unsigned int rxfferr:1 ;
unsigned int rxffnfnd1 ;
unsigned int rxffsub: 1;
} rxfnc_flags ;
unsigned char *rxfnc_address ;
unsigned short rxfnc_addressl ;
unsigned char *rxfnc_que ;
unsigned short rxfnc_quel ;
unsigned short rxfnc_argc;
RXSTRING *rxfnc_argv ;
RXSTRING rxfnc_retc ;
} RXFNCCAL_PARM ;

The significance of each variable is:

[rxfnc_flags.rxfferr]
Is an output parameter that is set on return in order to inform the interpreter that the function or
subroutine was incorrectly called, and thus$Y&NTAX condition should be raised.

[rxfnc_flags.rxffnfnd]
Is an output parameter that tells the interpreter that the function was not found. Note the inconsistency:
it is only effective if tthe exit handler returRXEXIT_HANDLED, which looks like a logic
contradiction to setting the not-found flag.

[rxfnc_flags.rxffsub]
Is an input parameter that tells the exit handler whether it was called for a function or subroutine call.
If set, the call being handled is a subroutine call and returning a value is optional; else it was called for
a function, and must return a valueminc_retc if RXEXIT_HANDLED is to be returned.

[rxfnc_name]
Is a pointer to the name of the function or subroutine to be handled, stored as a character array. This is
an input parameter, and its length is given byrxifiec_namel parameter.

[rxfnc_namel]
Holds the length ofxfnc_name. Note that the last character is the letfgrnot the number one.

[rxfnc_que]
Points to a character array holding the name of the currently active queue. This is an input parameter.
The length of this name is given by thénc_quel field.

[rxfnc_quel]
Holds the length ofxfnc_que. Note that the last character is the letiérnot the number one.

[rxfnc_argc]
Is the number of arguments passed to the function or subroutine. It defines the size of the array pointed
to by therxfnc_argv field.

[rxfnc_argv]
Points to an array holding the parameters for the routines. The size of this array is given by the
rxfnc_argc field. If rxfnc_argc is zero, the value akfnc_argv is undefined.

[rxfnc_retc]
Holds anRXSTRING structure suitable for storing the return value of the handler. It is the
responsibility of ht ehandler to allocate space for the contents of this string (i.e. the array pointed to by
therxfnc_retc.strptr).

7.6.2.2 RXCMD — The Subcommand Exit Handler

The main function code for this exit handler is given by the symbolic RM@MD. It is called whenever the interpreter
is about to call a subcommand, i.e. a command to an external environment. It has only one sulRCKHEMHST.

TheParmBlock parameter for this subfunction has the following definition:

typedef struct {
143

typedef struct {
unsigned int rxfcfail:1 ;
unsigned int rxfcerr:1 ;
} rxemd_flags ;
unsigned char *rxcmd_address ;
unsigned short rxemd_addressl ;
unsigned char *rxcmd_dll ;
unsigned short rxcmd_dll_len ;
RXSTRING rxcmd_command ;
RXSTRING rxcmd_retc ;
} RXCMDHST_PARM ;

The significance of each variable is:
[rxemd_flags.rxfcfail]
If this flag is set, the interpreter will raisé=AILURE condition at the return of the exit handler.
[rxemd_flags.rxfcerr]
Like the previous, but the ERROR condition is raised instead.
[rxemd_address]
Points to a character array containing the name of the environment to which the command normally
would be sent.
[rxemd_addressl]
Holds the length ofxcmd_address. Note that the last character is the le¢igrmot the number one.
[rxemd_dll]
Defines the name for the DLL which is to handle the command. I'm not sure what this entry is used for.
It is not currently in use fdRegina.
[rxemd_dIl_len]
Holds the length ofxcmd_dll. If this length is set to zero, the subcommand handler for this
environment is not a DLL, but an EXE handler.
[rxemd_command]
Holds the command string to be executed, including command name and parameters.
[rxemd_retc]
Set by the exit handler to the string which is to be considered the return code from the command. It is
assigned to the special variaBR€ at return from the exit handler. The user is responsible for
allocating space for this variable. | have no clear idea what happ&omid_retc.strptr is set to
NULL; it might setRC to zero, to the null string, or even drop it.

It seems that this exit handler is capable of raising botBRRROR and the FAILURE conditions simultaneously. |
don't know whether that is legal, or whether onlyRIAdLURE condition is raised, since tERROR condition is a sort
of subsetof FAILURE.

Note that the return fields of the parameter block are only relevant if theR&EXIT HANDLED was returned. This
applies to thexcmd_flags and rxcmd_retc fields of the structure.

7.6.2.3 RXMSQ — The External Data Queue Exit Handler

The external data queue exit handler is used as a hook for operations manipulating the external data queue (or the stack).
Unfortunately, the stack is a borderline case of what is relevant REKX SAA API. Operations like putting

something on, retrieving a string from, obtaining the size, etc. of the stack is not paisARtAE°1.

However, some of this functionality is seemingly here; but not all. For instance RXMBQPLL subfunction SAA

API is called by the interpreter before the interpreter calls whatever system-specific call is available for retrieving a

string from the stack.

Thus theSAA API can be used by an application to provide the interpreter with a fake stack, but it is not a suitable

means for the application itself to manipulaterds stack.

TheRXMSG exit has four subfunctions:

[RXMSQPLL]

144

This is called before a line is retrieved from the stack and the application may itself provide the
interpreter with an alternative line. On entry, the third parameter points to a structure having the
following definition:

typedef struct {
RXSTRING rxmsq_retc;
} RXMSQPLL_PARM,;

Therxmsg_retc field holds the string to be retrieved from the stack. Note that it is an output
parameter, so its value on entry is undefined.

[RXMSQPSH]
This is called before the interpreter puts a line on the stack, and it may grab the line itself, and thus
prevent the interpreter from putting the line on the stack. Note that this exit handles both pushing and
queuing. The third parameter is:

typedef struct {
struct {
unsigned rxfmlifo: 1;
} rxmsq_flags;
RXSTRING rxmsq_value;
} RXMSQPSH_PARM;

Here the fieldxmsq_value holds the string to be put on the stack. Whether the string is to be pushed
or queued is determined by the boolean vataesq_flags.rxmlfifo, which isTRUE if the string is to
be pushed.
All values are input values. What happens if you change them is not defineiAEPl. Some
implementations may let you modify the contentsxafisq_value and return
RXEXIT_NOT_HANDLED and the string push by the interpreter contains the modified string.
However, you should not rely on this since it is highly incompatible. You may not de-allocate
rxmsq_value.

[RXMSQSIZ]
this is called before the interpreter tries to determine the size of the stack, and it may present an
alternative size to the interpreter. The third parameter is:

typedef struct {
ULONG rxmsq_size;
} RXMSQSIZ_PARM;

The fieldrxmsqg_size can be set to the number the application wantQtHWEUED() function to
return. Note that this parameter is undefined on entry, so it cannot be used to retrieve the number of
lines on the stack.

[RXSQNAM]
This is called before the interpreter tries to retrieve the name of the current stack, and it may present
the interpreter with an alternative name. Note that this functionality is pa&Abut notTRL; it
supports th&et option of theRXQUEUE() built-in function. Note that there are no other exits
supporting the other options BXQUEUE(). The third parameter for this exit is:

typedef struct {
RXSTRING rxmsqg_name,;
} RXMSQNAM_PARM;

As with RXSQMSIZ, the fieldrxmsg_name can be set to the name which the application wants to

return to the interpreter as the name of the current stack. Note that this is an output-only parameter; its
value on input is undefined, and in particular is not the name of the real stack.

145

Note that this area is troublesome.TRL, external data queues are not defined as part of the language, V@Ala ih
is. Thus,TRL-compliant interpreters are likely to implement stacks in various ways that may not be compatible with the
SAA.

7.6.2.4 RXSIO — The Standard I/O Exit Handler

The main code for this exit handler has the symbolic iaXi8lO. There are four sub-functions:

[RXSIODTR]
Called whenever the interpreter needs to read a line from the user during interactive tracing. Note the
difference between this subfunction aRKXSIOTRD.

[RXSIOSAY]
Called whenever the interpreter tries to write something to standard outp&Ail énstruction, even
aSAY instruction without a parameter.

[RXSIOTRC]
Called whenever the interpreter tries to write out debugging information, e.g. during tracing, as a trace
back, or as a syntax error message.

[RXSIOTRD]
Called whenever the interpreter need to read from the standard input stream éwirg er PARSE
PULL instruction. Note that it will not be called if there is sufficient data on the stack to satisfy the
operation.

Note that these function are only called for the exact situations that are listed above RX&I®SAY is not called

during a call to th&EXX built-in functionLINEOUT () that writes to the default output strearRL says thaBAY is

identical to calling.INEOUT () for the standard output stream, but SAA API still manages to see the difference between
stem variables and compound variables witlzard-length-stringtail. Please bear with this inconsistency.

Depending on the subfunction, tRarmBlock parameter will have four only slightly different definitions. It is kind of
frustrating that th&armBlock takes so many different datatypes, but it can
be handled easily usingions, see a later section. The definitions are:

typedef struct {
RXSTRING rxsiodtr_retc ; /* the interactive trace input */
} RXSIODTR_PARM ;

typedef struct {
RXSTRING rxsio_string ; /* the SAY line to write out */
} RXSIOSAY_PARM ;

typedef struct {
RXSTRING rxsio_string ; /* the debug line to write out */
} RXSIOTRC_PARM ;

typedef struct {
RXSTRING rxsiotrd_retc ; /* the line to read in */
} RXSIOTRD_PARM ;

In all of these, th®@XSTRING structure either holds the value to be written out REEIOSAY andRXSIOTRC), or
the value to be used instead of reading standard input streaRXEOTRD andRXSIODTR). Note that the values
set byRXSIOTRD andRXSIODTR are ignored if the exit handler does not return the VRXEXIT_HANDLED.

Any end-of-line marker are stripped off the strings in this context. If the exit handler writes out the string during
RXSIOSAY or RXSIOTRC, it must supply any end-of-line action itself. Similarly, the interpreter does not expect a end-
of-line marker in the data returned fré?XSIODTR andRXSIOTRD.

The space used to store the return data foR¥X®IODTR andRXSIOTRD sub-functions, must be provided by the exit

handler itself, and the space is not de-allocated by the interpreter. The space can be reused by the application at any later

146

time. The space allocated to hold the data given bRK®IOSAY andRXSIOTRC sub-functions, will be allocated by
the interpreter, and must neither be de-allocated by the exit handler, nor used after the exit handler has terminated.

7.6.2.5 RXHLT — The Halt Condition Exit Handler

Note: Because tHRXHLT exit handler is called after eveREXX instruction, enabling this exit sSlolREXX program
execution.

The main code for this exit handler has the symbolic ieieLT. There are two sub-functions:
[RXHLTTST]
Called whenever the interpreter polls externally rald8dT conditions; ie after evelREXX
instruction.

The definition of thdParmBlock is:

typedef struct {
unsigned rxfhhlt : 1 ;
} RXHLTTST_PARM ;

Therxfhhlt parameter is set to the state of LT condition in the interpreter; eith@RUE or
FALSE.

[RXHLTCLR]
Called to acknowledge processing of the HALT condition when the interpreter has recognized and

raised a HALT condition.

7.6.2.6 RXTRC — The Trace Status Exit Handler
7.6.2.7 RXINI — The Initialization Exit Handler

RXTER and this exit handler are a bit different from the otfRMINI provides the application programmer with a
method of getting control before the execution of the script starts. Its main purpose is to enable manipulation of the
variable pool in order to set up certain variables before the script starts, or set the trace mode.

It has only one subfunctioRXINIEXT, called once during each callRexxStart(): just before the firsREXX
statement is interpreted. Variable manipulations performed during this exit will have effect when the script starts.

As there is no information to be communicated during this exit, the valBamwhBlock is undefined. It makes no
difference whether you retuRXEXIT_HANDLED or RXEXIT_NOT_HANDLED, since there is no situation to
handle.

7.6.2.8 RXTER — The Termination Exit Handler

This exit resembleRXINI. Its sole subfunction RXTEREXT, which is called once, just after the last statement of the
REXX script has been interpreted. The state of all variables are intact during this call; so it can be used to retrieve the
values of the variables at the exit of a script. (In fact, that is the whole

purpose of this exit handler.)

Like RXINI, there is no information to be communicated during the exRasamBIlock is undefined in this call. And

also likeRXINI, it is more of a hook than an exit handler, so it does not matter whether yolRE&EXAT HANDLED
or RXEXIT_NOT_HANDLED.

147

8. Implementation Limits

This chapter lists the implementation limits required byREEXX standard. All implementations are supposed to support at leas
these limits.

8.1 Why Use Limits?

Why use implementation limits at all? Often, a program (ab)uses a feature in a language to an extent that the impleraentor ¢
foresee. Suppose an implementor decides that variable names can not be longer than 64 bytes. Sooner or later, a program
the idea of using very long variable names to encode special information in the name; maybe as the output of a machidne ge
program. The result will be a program that works only for some interpreters or only for some problems.

By introducing implementation limitREXX tells the implementors to what extent a implementation is required to support cert
features, and simultaneously it tells the programmers how much functionality they can assume is present.

Note that these limited are required minimums for what an implementation must allow. An interpreter is not supposed to enf
these limits unless there is a good reason to.

8.2 What Limits to Choose?

A limit must not be perceived as an absolute limit, the implementor is free to increase the limit. To some extent, theamplem
may also decrease the limit, in which case this must be properly documented as a non-standard feature. Also, the 1iason fc
should be noted in the documentation.

Many interpreters are likely to have “memory” as an implementation limit, meaning that they will allow any size as loeg as tt
is enough memory left. Actually, this is equivalent to no limit, since running out of memory is an error with limit enforcing
interpreters as well. Some interpreters let the user set the limits, often controlled throD&T O Sinstruction.

For computers, limit choices are likely to be powers of two, like 256, 1024, 8192, etc. HoweiRE Xtlidanguage takes the
side of the user, and defines the limits in units which looks as more “sensible” to computer non-experts: most of the limits in
REXX are numbers like 250, 500, 1000, etc.

8.3 Required Limits

These are the implementation minimums define@®BXX:

[Binary strings]
Must be able to hold at least 50 characters after packing. That means that the unpacked size might be at least 400
characters, plus embedded white space.

[Elapse time clock]
Must be able to run for at least 10**10-1 seconds, which is approximately 31.6 years. In general, this is really a big
overkill, since virtually no program will run for a such a period. Actually, few computers will be operational for such
period.

[Hexadecimal strings]

148

Must be able to hold at least 50 characters after packing. This means that the unpacked size might be at least 100
characters, plus embedded white space.

[Literal strings]
Must be able to hold at least 100 characters. Note that a double occurrence of the quote character (the same chare

used to delimit the string) in a literal string counts as a single character. In particular, it does not count as twoit nor c
start a new string.

[Nesting of comments]
Must be possible to in at least 10 levels. What happens then is not really defined. Maybe one of the syntax errors is
issued, but none is obvious for this use. Another, more dangerous way of handling this situation would be to ignore
start-of-comments designators when on level 10. This could, under certain circumstances, lead to running of code t
actually commented out. However, most interpreter are likely to support nesting of comments to an arbitrary level.

[The Number of Parameters]
In calls must be supported up to at least 10 parameters. Most implementations support somewhat more than that, t
quite a few enforce some sort of upper limit. For the built-in function, this may be a problem anliXpr and
MAX() .

[Significant digits]
Must be supported to at least 9 decimal digits. Also, if an implementation supports floating point numbers, it should
allow exponents up to 9 decimal digits. An implementation is allowed to operate with different limits for the number
significant digits and the numbers of digits in exponents.

[Subroutine levels]
May be nested to a total of 100 levels, which counts both internal and external functions, but probably not built-in
functions. You may actually trip in this limit if you are using recursive solution for large problems. Also, some tail-
recursive approaches may crash in this limit.

[Symbol (hame) length]
Can be at least 50 characters. This is the name of the symbol, not the length of the value if it names a variable. No
the name of the variable after tail substitution. In other words, it is the symbol as it occurs in the source code. Note
this applies not only to simple symbols, but also compound symbols and constant symbols. Consequently, you can
write numbers of more than 50 digits in the source code, edINFERIC DIGITS is set high.

[Variable name length]
Of at least 50 characters. This is the name of a variable (which may or may not be set) after tail substitution.

8.4 Older (Obsolete) Limits

First edition of TRL1 contained some additional limits, which have been relaxed in the second edition in order to make
implementation possible for a large set of computers. These limits are:

[Clock granularity]
Was defined to be at least of a millisecond.

Far from all computers provide this granularity, so the requirement have been relaxed. The current requirement is &
granularity of at least one second, although a millisecond granularity is advised.

8.5 What the Standard does not Say

An implementation might enforce a certain limit even though one is not specified in the standard. This section triest@iist mc
the places where this might be the case:

149

[The stack]
(Also called: the external data queue) is not formally defined as a concept of the language itself, but a concept to w
the REXX language has an interface. Several limits might apply to the stack, in particular the maximum length of a |
in the stack and the maximum number of lines the stack can hold at once.

There might also be also be other limits related to the stack, like a maximum number of buffers or a maximum numt
different stack. These concepts are not referred BE¥YX, but the programmer ought to be aware of them.

[Files]
May have several limits not specified by the definitiolR&XX, e.g. the number of files simultaneously open, the
maximum size of a file, and the length and syntax of file names. Some of these limits are enforced by the operating
system rather than an implementation. The programmer should be particularly aware of the maximum number of
simultaneously open files, sinBEXX does not have a standard construct for closing files.

[Expression nesting]
Can in some interpreters only be performed to a certain level. No explicit minimum limit has been put forth, so take
in complex expressions, in particular machine generated expressions.

[Environment name length]
May have some restrictions, depending on your operating system. There is not defined any limit, but there exists a
message for use with too long environment names.

[Clause length]
May have an upper limit. There is defined an error message “Clause too long” which is supposed to be issued if a c
exceeds a particular implementation dependent size. Note that a “clause” does not mean a “line” in this context; a i
can contain multiple clauses.

[Source line length]
Might have an upper limit. This is not the same as a “clause” (see above). Typically, the source line limit will be mu
larger than the clause limit. The source line limit ought to be as large as the string limit.

[Stack operations]
Might be limited by several limits; first there is the number of strings in the stack, then there is the maximum length
each string, and at last there might be restrictions on the character set allowed in strings in the stack. Typically, the
will be able to hold any character. It will either have “memory” as the limit for the number of string and the length of
each string, or it might have a fixed amount of memory set aside for stack strings. Some implementations also set .
maximum length of stack strings, often 2*8 or 2*16.

8.6 What an Implementation is Allowed to “Ignore”

In order to make thREXX language implementable on as many machines as possibRE X standard allow implementation
to ignore certain features. The existence of these features are recommended, but not required. These features are:

[Floating point numbers]
Are not required; integers will suffice. If floating points are not supported, numbers can have not fractional or
exponential part. And the normal division will not be available, i.e. the opefdtarilt not be present. Use integer
division instead.

[File operations]
Are defined inREXX, but an implementation seems to be allowed to differ in just about any file operation feature.

150

8.7 Limits in Regina

Regina tries not to enforce any limits. Wherever possible, “memory” is the limit, at the cost of some CPU whenever internal
structures must be expanded if their initial size were too small. Noteegata will only increase the internal areas, not
decrease them afterwards. The rationale is that if you happen to need a large internal area once, you may need gdater in th
program too.

In particular,Regina has the following limits:

Binary strings source line size

Clock granularity 0.001-1 second (note 3)
Elapse time clock until ca. 2038 (note 1)
Hexadecimal strings source line size
Literal string length source line size
Nesting of comments memory

Parameters memory

Significant digits memory (note 2)
Subroutine levels memory

Symbol length source line size
Variable name length memory (note 2)
Notes:

1) Regina uses the Unix-derived cdline() for the elapse time (and time in general). This is a function which returns the
number of seconds since Januaiyl®70. According to the ANSI C standard, in whiRiagina is written, this is a number which
will at least hold the number 2**31-1. Therefore, these machines will be able to work until about 20R8garadwill satisfy

the requirement of the elapse time clock until 2006. By then, computers will hopefully be 64 bit.

Unfortunately, theime() C function call only returns whole secondsR&gina is forced to use other (less standardized) calls
to get a finer granularity. However, most of what is said atimet) applies for these too.

2) The actual upper limit for these are the maximum length of a string, which is at least 2**32. So for all practical ploeposes,
limit is “memory”.

3) The clock granularity is a bit of a problem to define. All systems can be trusted to have a granularity of about 1xsepbdnd. E
from that, it's very difficult to say anything more specific for certain. Most systems allows alternative ways to rettieve the
giving a more accurate result. Wherever these alternatives are avétiedlea will try to use them. If everything else fails,
Regina will use 1 second granularity.

For most machines, the granularity are in the range of a few milliseconds. Some typical examples are: 20 ms for Sun3, 4 m

Decstations 3100, and 10 ms for SGI Indigo. Since this is a hardware restriction, this is the best measure anyone lvaseget fc
machines.

151

9. Definitions

In order to make the definitions more readable, but still have a rigid definition of the terms, some extra comments have bee
added to some of the definitions. These comments are enclosed in square brackets.

Argument is anexpressiorsupplied to dunctionor subrouting and it provides data on which the call can work on.
Assignmentis aclausein which secondokenis the equal sign. [Note that the statemeats=h” and “3=4" are an (invalid)
assignment, not an expression. The type of the first token is irrelevant; if the second token is the equal sign, therighe claus
assumed to be an assignment.]

Blanks are characters whiaflyphsare empty space, either vertically or horizontally. A blank is noken(but may sometimes

be embedded in tokens), but actsaken separatordExactly which characters are considered blanks will differ between
operating systems and implementations, but the <space> character is always a blank. The <tab> character is also aftbn cc
a blank. Other characters considered blank might be the end-of-line <eol>), vertical tab (<vt>), and formfeed (<ff>)ifiSee sp
documentation for each interpreter for more information.]

Buffer

Caller routine

Character is a piece of information about a mapping from a storage unit (normally a byteylgpth ®ften used as “the

meaning of the glyph mapped to a particular storage unit”. [The glyph “A” is the same in EBCDIC and ASCII, but the charac
“A” (i.e. the mapping from glyph to storage unit) differs.]

Character string is an finite, ordered, and possibly empty sethafracters

Clauseis a non-empty collection abkensin aREXX script. The tokens making up a clause are all the consecutive tokens
delimited by two consecutivdause delimiters[Clauses are further divided imall clausesinstructions assignmentsand

command$

Clause delimiteris a non-empty sequence of elements of a subsekerfis normally the linefeed and the semicolon. Also the
start and end of REXX scriptare considered clause delimiters. Also colon is a clause separator, but it is only valid after a lal

Command
Compound variableis avariable which name has at least on€ ‘tharacter that isn’t positioned at the end of the name.

Current environment is a particulaenvironmento whichcommandss routed if no explicit environment is specified for their
routing.

Current procedure levelis theprocedure levein effect at a certain point during execution.
Daemon

Decimal digit

Device driver

Digit is a single character having a numeric value associate with its glyph.

Empty string
152

Environment is a interface to whicREXX can routecommandsind afterwards retrieve status information li&eirn values
Evaluation is the process applied to expressionn order to derive aharacter string

Exposingis the binding of aariable in thecurrent procedure levédb the variable having the same name inctilker routine
This binding will be in effect for as long as the current procedure level is active.

Exponential form is a way of writing particularly large or smalimbersn a fashion that makes them more readable. The
number is divided into a mantissa and an exponent of base 10.

Expressionis a non-empty sequencetokens for which there exists syntactic restrictions on which tokens can be members, al
the order in which the tokens can occur. [Typically, an expression may consist of literal strings or symbols, connected by
concatenation and operators.]

External data queuesee “stack”.

External subroutine is ascript of REXX code, which is executed as a responsestabaoutineor functioncall that is neither
internal nor built-in.

FIFO
Glyph is an atomic element of text, having a meaning and an appearance; like a letter, a digit, a punctuation mark, etc.
Hex is used as a general abbreviation for thexadecimaivhen used in compound words like hex digit and hex string.

Hexadecimal digitis adigit in the number system having a base of 16. The first ten digits are identical vd#ctmal digity0-
9), while for the last six digits, the first six letters of the Latin alphabet (A-F) are used.

Hexadecimal stringis acharacter stringthat consists only of theexadecimal digitsand with optionalvhitespaceo divide the
hexadecimal digits into groups. Leading or trailing whitespace is illegal. All groups except the first must consist of an even
number of digits. If the first group have an odd number of digits, an extra leading zero is implied under some circumstances

Instruction is aclausethat is recognized by the fact that the fiodtenis a speciakeyword and that the clause is not an
assignmenor label. Instructions typically are well-definBEXX language components, such@sds and function calls.

Interactive trace is atrace mode, where thimterpreterhalts execution between eadhuse and offer the user the possibility to
specify arbitrarfREXX statementso be executed before the execution continues.

Label
LIFO
Literal name is a name which will always be interpreted as a constant, i.e. that no variable substitution will take place.

Literal string is atokenin aREXX script, that basically is surrounded by quotation marks, in order to matkaracter string
containing the sameharactersas the literal string.

Keyword is a element from finite set of symbols.
Main level
Main program

Name spacas a collection of namedhriables In general, the expression is used when referring to the set of variables availab
to theprogramat some point during interpretation.

153

Nullstring is acharacter stringhaving the length zero, i.e. an empty character string. [Note the difference from the undefined
string.]

Operating system
Parameters
Parsing
Procedure level

Program is a collection oREXX code, which may be zero or maeripts or other repositories ®EXX code. However, a
program must contain a all the code to be executed.

Queuesee “external data queue” or “stack”.

Routine is a unit during run-time, which is a procedural level. Certain settings are savedagtioges Oneroutine (the caller
routine) can be temporarily suspended while anothatineis executed (the callgdutine). With such nesting, the calledutine
must be terminated before execution of the catlatine can be resumed. Normally, tBALL instruction or a function call is
used to do this. Note that the main level &E&XX script is also @aoutine

Script is a single file containinBEXX code.

Space separated

Stack

Statementis aclausehaving in general some action, i.e. a clause other thaii elause [Assignments, commands and
instructions are statements.]

Stem collection
Stem variable
Strictly order

Subkeyword is akeyword but the prefix “sub” stresses the fact thaymbolis a keyword only in certain contexts [e.g. inside a
particular instruction].

Subroutine is aroutine which has been invoked from anotiREXX routing i.e. it can not be the “main” program oR&EXX
script.

Symbol

Symbol table
Tail substitution
Term

Token

Token separator
Uninitialized
Variable name

154

Variable symbol

WhitespaceOne or several consecutisgiank characters.

hex literal

norm. hex string

bin {digit,string,literal}
norm. bin string
packed char string

Character strings is the only type of data available in Rexx, but to some extent there are ‘subtypes’ of character Istdiegs; cha
strings which contents has certain format. These special formats is discussed below.

155

10. Bibliography

[KIESEL]
Peter C. KieseREXX - Advanced Techniques for ProgrammbtsGraw-Hill, 1993, ISBN 0-07-034600-3
[CALLAWAY]

Merill Callaway, The ARexx Cookbools11-A Girard Blvd. SE, Albuquerque, NM 87106: Whitestone, 1992, ISBN 0-
9632773-0-8

[TRL2]

M. F. Cowlishaw, The REXX Language- Second Editiamglewood Cliffs: Prentice-Hall, 1990, ISBN 0-13-780651-5
[TRL1]

M. F. Cowlishaw,The REXX Language - First EditioBnglewood Cliffs: Prentice-Hall, 1985, ISBN 0-13-780735-X
[SYMPOS3]

Proceedings of the REXX Symposium forDdevelopers andUustnsford: Stanford Linear Accelerator Center, 1992
[TRH:PRICE]

Stephen G. PriceSAA Portability chapter 37, pp 477-498. In Goldberg ans Smith Ill [TRH], 1992

[TRH]
Gabriel Goldberg and Smith III, Philip HThe REXX HandboolcGraw-Hill, 1992, ISBN 0-07-023682-8
[DANEY]
Charles DaneyProgramming in REXXMcGraw-Hill, 1992, ISBN 0-07-015305-1
[BMARKS]
Brian Marks, Advanced REXX programmingicGraw-Hill, 1992
[ZAMARA]
Chris Zamara and Nick Sullivablsing ARexx on the Amigabacus, 1991, ISBN 1-55755-114-6
[REXXSAA]
W. David Ashley,SAA Procedure Language REXX RefereBcEimberline Dr., Trophy Club, Tx 76262: Pedagogic
Software, 1991
[MCGH:DICT]
Sybil P. ParkerMcGrw-Hill Dictionary of ComputersMcGraw-Hill, 1984, ISBN 0-07-045415-9
[PJPLAUGER]
P. J. PlaugeiThe Standard C LibraryEnglewood Cliffs: Prentice Hall, 1992, ISBN 0-13-131509-9
[KR]

Brian W. Kernighan and Dennis M. Ritchiehe C Programming Language - Second Editienglewood Cliffs:
Prentice Hall, 1988, ISBN 0-13-110362-8

156

[ANSIC]

Programming languages -.C Technical Report ISO/IEC 9899:1990, ISO, Case postale 56, CH-1211 Geneve 20,
Switzerland, 1990

[OX:CDICT]

Edward L. Glaser and I. C. Pyle and Valerie lllingswor@xford Reference Dictionary of Computing - Third Edition.
Oxford University Press, 1990, ISBN 0-19-286131-X

[ANSI]
Programming languages - REXXANSI X3.274-1996, 11 West 42nd Street, New York, New York 10036

157

	Rexx Language Constructs
	Definitions
	Null clauses
	Commands
	Instructions
	Operators
	Implementation-Specific Information

	REXX Built-in Functions
	General Information
	REXX Standard Built-in Functions
	Implementation specific documentation for Regina

	Conditions
	What are Conditions
	The Mythical Standard Condition
	The Real Conditions
	Further Notes on Conditions
	Conditions in Regina
	Possible Future extensions

	Stream Input and Output
	Background and Historical Remarks
	REXX™s Notion of a Stream
	Short Crash-Course
	Naming Streams
	Persistent and Transient Streams
	Opening a Stream
	Closing a Stream
	Character-wise and Line-wise I/O
	Reading and Writing
	Determining the Current Position
	Positioning Within a File
	Errors: Discovery, Handling, and Recovery
	Common Differences and Problems with Stream I/O

	Extensions
	Why Have Extensions
	Extensions and Standard REXX
	Specifying Extensions in Regina
	The Trouble Begins
	The Format of the OPTIONS clause
	Why You Should Seriously Consider Not Using Extensions
	The Fundamental Extensions
	Meta-extensions
	Semi-standards
	Standards

	The Stack
	Background and history
	General functionality of the stack
	The interface between REXX and the stack

	Interfacing Rexx to other programs
	Implementation Limits
	Definitions
	Bibliography

