| L L L L L L L L

MICROWARE C COMPILER USER'S GUIDE
C STANDARD LIBRARY

INTRODUCTION TO THE C STANDARD LIBRARY

The Standard Library contains functions which fall into two
classes: high level I/0 and convenience.

The high level 1I/0 functions provide facilities that are
normally considered part of the definition of other languages; for
example, the FORMAT "statement" of Fortran. In addition, automatic
buffering of I/0 channels improves the speed of file access because
fewer system calls are necessary.

The high 1level 1I/0 functions should not be confused with the
low level system calls with similar names. Nor should "file
pointers™ be confused with "path numbers". The standard library
functions maintain a structure for each file open that holds status
information and a pointer into the files buffer. A user program
uses a pointer to this structure as the "identity" of the file
(which is provided by "fopen()"), and passes it to the various
I/0 functions. The I/0 functions will make the low level system
calls when necessary.

USING A FILE POINTER IN A SYSTEM CALL, OR A PATH NUMBER IN A
STANDARD LIBRARY CALL, is a common mistake among beginners to C and,
if made, will be sure to CRASH YOUR PROGRAM.

The convenience functions include facilities for copying,
comparing, and concatenating strings, converting numbers to strings,
and doing the extra work in accessing system information such as the
time,

In the pages which follow, the functions available are
described in terms of what they do and the parameters they expect.
The PUSAGE" section shows the name of the function and the type
returned (if not int). The declaration of arguments are shown as
they would be written in the function definition to indicate the
types expected by the function. If it is necessary to include a
file before the function can be used, it is shown in the "USAGE"
section by "#include <filename)>".

Most of the header files that are required to be included, must
reside 1in the "DEFS™ directory on the default system drive. If the
file is included in the source program using angle bracket
delimiters instead of the wusual double quotes, the compiler will
append this path name to the file name. For example, "#include
<stdio.h>" is equivalent to "#include /d0/defs/stdio.h", if "/d40" is
the path name of the default system drive.

PLEASE NOTE that if the type of the value returned by a
function is not INT, you should make a predeclaration in your
program before calling it. For example, if you wish to use
"atof ()", you should predeclare by having "double atof();" somewhere
in your program before a call to it. Some functions which have
associated header files in the DEFS directory that should be

Page 4 - 1

MICROWARE C COMPILER USER'S GUIDE
C STANDARD LIBRARY

included, will be pre-declared for you in the header. An example of
this is "ftell()" which is predeclared in "stdio.h". If you are in
any doubt, read the header file.

Page 4 - 2

1 L L L L

USAGE

MICROWARE C COMPILER USER'S GUIDE
C STANDARD LIBRARY

Atof,Atoi,Atol -~ ASCII to number conversions

double atof(ptr)
char #*ptr;

long atol(ptr)
char ¥ptr;

int atoi(ptr)
char #¥ptr;

DESCRIPTION

Conversions of the string pointed to by "ptr" to the relevant
number type are carried out by these functions. They cease to
convert a number when the first wunrecognized character is
encountered.

Each skips leading spaces and tab characters. Atof ()
recognizes an optional sign followed by a digit string that
could possibly contain a decimal point, then an optional "e"
or "E", an optional sign and a digit string. Atol() and atoi()
recognize an optional sign and a digit string.

CAVEATS
Overflow causes unpredictable results. There are no error
indications.

Page 4 - 3

MICROWARE C COMPILER USER'S GUIDE
C STANDARD LIBRARY

Fflush,Fclose - flush or close a file
USAGE
#include <stdio.h>

fflush(fp)
FILE #*fp;

felose(fp)
FILE *fp;

DESCRIPTION

Fflush causes a buffer associated with the file pointer nfpnw
to be cleared by writing out to the file; of course, only if
the file was opened for write or update. It is not normally
necessary to call fflush, but it can be useful when, for
example, normal output is to T"stdout", and it is wished to
send something to "stderr"™ which is unbuffered. If fflush
were not wused and ‘"stdout" vreferred to the terminal, the
"stderr"™ message will appear before large chunks of the
"stdout™ message even though the latter was written first.

Fclose <calls fflush to clear out the buffer associated with
"fp", closes the file, and frees the buffer for use by another
fopen call.

The exit() system <call and normal termination of a program
causes fclose to be called for each open file.

SEE ALSO
System call close(), fopen(), setbuf().

DIAGNOSTICS

EOF is returned if "fp" does not refer to an output file or
there is an error on writing to the file.

Page 4 ~ A4

| L L L L L

Feof

USAGE

MICROWARE C COMPILER USER'S GUIDE
C STANDARD LIBRARY

,Ferror,Clearerr,Fileno - return status information of files

#include <stdio.h>

feof(fp)
FILE #fp;

ferror(fp)
FILE *fp;

clearerr(fp)
FILE ¥fp;

fileno(fp)
FILE *fp;

DESCRIPTION

Feof returns non-zero if the file associated with "fp" has
reached its end. Zero is returned on error.

Ferror returns non-zero if an error condition occurs on access
to the file "fp"; zero 1is returned otherwise. The error
condition persists, preventing further access to the file by
other Standard Library functions, until the file is closed,
or it is cleared by clearerr.

Clearerr resets the error condition on the file "fp". This
does NOT "fix™ the file or prevent the error from occurring
again; it merely allows Standard Library functions at least to
try.

CAVEATS

These functions are actually macros that are defined in
"¢stdio.h>" so their names cannot be redeclared.

SEE ALSO

System call open(), fopen().

Page 4 - 5

MICROWARE C COMPILER USER'S GUIDE
C STANDARD LIBRARY

Findstr,Findnstr - string search

USAGE

findstr(pos,string,pattern)
char ¥*string,*pattern;

findnstr(pos,string,pattern,size)
char *string,*pattern;

DESCRIPTION

These functions search the string pointed to by "string" for
the first instance of the pattern pointed to by "pattern"
starting at position "pos" (where the first position is 1 not
0). The returned value is the position of the first matched

character of the pattern in the string or zero if a match is
not found.

Findstr stops searching the string when a null byte is found in
"string"®.

Findnstr only stops searching at position "pos"™ + "len" so0 it
may continue past null bytes.

CAVEATS
The current implementation does not use the most efficient

algorithm for pattern matching so that use on very long strings
is likely to be somewhat slower than it might be.

SEE ALSO

index(),rindex.

Page U4 - 6

l’ﬁﬂﬂqqqqﬁqqqmqqqﬂﬂﬂﬁﬂﬂﬂﬂﬂ-»‘aﬂ‘s‘»ﬂAxﬂﬂﬂﬂf

USAGE

MICROWARE C COMPILER USER'S GUIDE
C STANDARD LIBRARY

Fopen ~ open a file and return a file pointer

#include <stdio.h)>

FILE *fopen(filename,action)
char ¥filename,*action;

FILE ¥*freopen(filename,action,streak)
char *filename,*action;
FILE *stream;

FILE #*fdopen(filedes,action)
int filedes;
char #®*action;

DESCRIPTION

Fopen returns a pointer to a file structure (file pointer) if
the file named in the string pointed to by "filename" can be
validly opened with the action in the string pointed to by
"action",

The valid actions are:

pn open for reading

"wh create for writing

nan append(write) at end of file, or create for
writing

"r+t open for update

M+t create for update

Tasn create or open for update at end of file

nqn directory read

Any action may have an "x" after the initial letter which
indicates to "fopen()" that it should look in the current
execution directory if a full path name is not given, and
the x also specifies that the file should have execute
permission.

E.g. f = fopen("fred","wx");

Opening for write will perform a "creat()". If a file with the
same name exists when the file is opened for write, it will be
truncated to zero length. Append means open for write and
position to the end of the file. Writes to the file via
"pute()" etc. will extend the file. Only if the file does not
already exist will it be created.

Page 4 - 7

MICROWARE C COMPILER USER'S GUIDE
C STARDARD LIBRARY

NOTE that the type of a file structure is pre-defined in
"stdio.h"™ as FILE, so that a user program may declare or define
a file pointer by, for example, FILE ¥f;

Three file pointers are available and can be considered open
the moment the program runs:
stdin the standard input - equivalent to path number 0
stdout the standard output - equivalent to path number 1
stderr standard error output- equivalent to path number 2

All files are automatically buffered except stderr, unless a
file is made unbuffered by a call to setbuf() (gq.v.).

Freopen is usually used to attach stdin, stdout, and stderr to
specified files. Freopen substitutes the file passed to it
instead of the open stream. The original stream is closed.

NOTE that the original stream will be closed even if the open
does not succeed.

Fdopen associates a stream with a file descriptor. The streams
type(r,w,a) must be the same as the mode of the open file.

CAVEATS
The TMaction" passed as an argument to fopen must be a pointer
to a string, NOT a character. For example
fp = fopen("fred®","rn); is correct but
fp = fopen("fred",'r'); is not.
DIAGNOSTICS

Fopen returns NULL (0) if the call was unsuccessful.

SEE ALSO

System call open() Fclose()

Page 4 - 8

el Bl B B B e B B B B Bl B B B Jion S B M M e A B B I B B e e B B B B

MICROWARE C COMPILER USER'S GUIDE
C STANDARD LIBRARY
Fread,Fwrite - read/write binary data
USAGE
#include <stdio.h>

fread(ptr, size, number, fp)
FILE #fp;

fwrite(ptr, size, number, fp)
FILE #fp;

DESCRIPTION
Fread reads from the file pointed to by "fp". "Number" is the
number of items of size "size"™ that are to be read starting at
"ptr®, The best way to pass the argument "size" to fread is by
using "sizeof", Fread returns the number of items actually
read.
Fwrite writes to the file pointed to by "fp". T"Number" is the
number of items of size M"size" reading them from memory
starting at "ptrn,

DIAGNOSTICS
Both functions return O(NULL) at end of file or error.

SEE ALSO

System calls read(),write(). Fopen(),getc(),putc(),printf().

Page 4 - ¢

Fseek

USAGE

DESCR

DIAGN

SEE A

MICROWARE C COMPILER USER'S GUIDE
C STANDARD LIBRARY

yRewind,Ftell - position in a file or report current position

#include <stdio.h>
fseek(fp, offset, place)
FILE *fp;

long offset;

rewind(fp)
FILE *fp;

long ftell(fp)
FILE #*fp;

IPTION

Fseek repositions the next character position of a file for
either read or write. The new position is at moffset" bytes
from the beginning of the file if "place" is 0, the current
position if 1, or the end if 2. Fseek sorts out the special
problems of buffering.

NOTE that wusing "lseek()" on a buffered file will produce
unpredictable results.

Rewind is equivalent to "fseek(fp,01,0)".

Ftell returns the current position, measured in bytes, from the
beginning of the file pointed to by "fp",.

OSTICS
Fseek returns -1 if the call is invalid.

LSO

NOTE :
£ sEEK (P 2LH

System call lseek().

LOK 6 cor STHAT
oL

Page 4 - 10

THHHHHAHAADHHHAESHAEHHHHHHHSHSAAHHHHH IS DD Y Y T

Ge

USAGE

DESCR

MICROWARE C COMPILER USER'S GUIDE
C STANDARD LIBRARY

te,Getchar - return next character to be read from a file

#include <stdio.h>

int getec(fp)
FILE *fp;

int getchar()

int getw(fp)
FILE *fp;

IPTION

Getc returns the next character from the file pointed to by
nfpn,

Getchar is equivalent to "getc(stdin)v.
Getw returns the next two bytes from the file as an integer.

Under 0S-9 there is a choice of service requests to use when
reading from a file. "Read()"™ will get characters up to a
specified number in T"raw" mode i.e. no editing will take
place on the input stream and the characters will appear to the
program exactly as in the file. "Readln()", on the other
hand, will honor the various mappings of characters
associated with a Serial Character device such as a terminal
and in any case will return to the caller as soon as a carriage
return is seen on the input.

In the vast majority of cases, it is preferable to use
"readln()" for accessing Serial Character devices and "read()"
for any other file input. "Getc()" uses this strategy and, as
all file input using the Standard Library functions is routed
through "getc()"™, so do all the other input functions. The
choice 1s made when the first call to "gete()" is made after
the file has been opened. The system is consulted for the
status of the file and a flag bit is set in the file structure
accordingly. The choice may be forced by the programmer by
setting the relevant bit before a call to "getc()". The flag
bits are defined in "<stdio.h>" as "_SCF" and "_RBF" and the
method is as follows: assuming that the file pointer for the
file, as returned by "fopen()" is f,

f-> flag = _SCF;
will force the use of "readln()" on input and

f->_flag |= _RBF;

Page 4 - 11

MICROWARE C COMPILER USER'S GUIDE
C STANDARD LIBRARY

will force the use of "read()". This trick may be played on
the standard streams "stdin", "stdout" and "stderr" without the
need for calling "fopen()" but before any input is requested
from the stream.

DIAGNOSTICS

EOF(-1) is returned for end of file or error.

SEE ALSO

Pute(),fread(),fopen(),gets(),ungetec().

Page 4 - 12

POHEEDHDDAREDDEAAAAADEADIADH DT

MICROWARE C COMPILER USER'S GUIDE
C STANDARD LIBRARY
Gets, Fgets - input a string
USAGE
#include <stdio.h>

char *gets(s)
char #*s;

char #*fgets(s,n,fp)
char #%*s;
FILE ¥fp;

DESCRIPTION
Fgets reads characters from the file "fp" and places them in
the buffer pointed to by "s"™ up to a carriage return('\n') but
not more than "n" - 1 characters. A null character is appended
to the end of the string.

Gets is similar to fgets, but gets is applied to "stdin" and no
maximum is stipulated and the '\n' is replaced by a null.

Both functions return their first arguments.

CAVEATS

The different treatment of the "n" by these functions is
retained here for portability reasons.

DIAGNOSTICS
Both functions return NULL on end-of-file or error.

SEE ALSO

Puts(),gete(),scanf(),fread().

Page 4 -~ 13

MICROWARE C COMPILER USER'S GUIDE
C STANDARD LIBRARY

Isalpha,Isupper,Islower,Isdigit,Isalnum,Isspace,Ispunct,Isprint,
Iscntrl,Isascii - character classification

USAGE
#include <ctype.h>
isalpha(e)
ete.

DESCRIPTION

These functions wuse table 1look-up to <classify characters
according to their ascii value, The header file defines them
as macros which means that they are implemented as fast, in-
line code rather than subroutines.

Each results in non-zero for true or zero for false.

The correct value 1is guaranteed for all integer values in
isascii, but the result is unpredictable in the others if the
argument is outside the range -1 to 127.

The truth tested by each function is as follows:

isalpha ¢c is a letter

isdigit ¢ is a digit

isupper ¢ is an upper case letter

islower ¢ is a lower case letter

isalnum ¢ is a letter or a digit

isspace ¢ 1is a space, tab character, newline, carriage
return or formfeed

isentrl ¢ is a control character (0 to 32) or DEL (127)

ispunet ¢ is neither control nor alpha-numeric

isprint ¢ is printable (32 to 126)

isasecii ¢ is in the range -1 to 127

Page 4 - 14

9NN HAHEEESEA T

MICROWARE C COMPILER USER'S GUIDE
C STANDARD LIBRARY

L3tol,Ltol3 - convert between long integers and 3-byte integers

USAGE

13tol(1lp,cp,n)
long *1lp;
char #¥cp;

ltol3(cp,lp,n)
long *1lp;
char #*cp;

DESCRIPTION

Certain system values, such as disc addresses, are maintained
in three-byte form rather than four-byte; these functions
enable arithmetic to be used on them.

L3tol converts a vector of "n" three-byte integers pointed to
by "ep", into a vector of long integers starting at "ip".

Ltol3 does the opposite.

Page 4 - 15

USAGE

DESCR

MICROWARE C COMPILER USER'S GUIDE
C STANDARD LIBRARY

Longjmp,Setjmp ~ jump to another function

include <setjmp.h>

setjmp(env)
jmp_buf env;

longjmp(env,val)
jmp_buf env;

IPTION
These functions allow the return of program control directly to
a higher level function. They are most useful when dealing

with errors and interrupts encountered in a low level routine.

"Goto"®™ in C has scope only in the function in which it is
used; 1i.e. the label which is the object of a "goto" may only

be in the same function. Control can only be transferred
elsewhere by means of the function call, which, of course,
returns to the caller. In certain abnormal situations a

programmer would prefer to be able to start some section of
code again, but this would mean returning up a ladder of
function calls with error indications all the way.

Setjmp is wused to ‘'"mark™ a point in the program where a
subsequent longjmp can reach. It places in the buffer, defined
in the header file, enough information for longjmp to restore
the environment to that existing at the relevant call to
setjmp.

Longjmp is called with the environment buffer as an argument
and also, a value which can be used by the caller of setjmp as,
perhaps, an error status.

To set the system up, a function will call setjmp to set up the
buffer, and if the returned value is zero, the program will
know that the call was the "first time through". If, however,
the returned value is non-zero, it must be a longjmp returning
from some deeper level of the program.

NOTE that the function calling setjmp must NOT HAVE RETURNED

at the time of calling longjmp, and the environment buffer must
be declared GLOBALLY.

Page 4 - 14

1

PN 2999HHH s HHY DT

1

MICROWARE C COMPILER USER'S GUIDE
C STANDARD LIBRARY
Malloc,Free,Calloc - memory allocation

USAGE

char *malloc(size)
unsigned size;

free(ptr)
char #*ptr;

char #*calloc(nel,elsize)
unsigned nel,elsigze;

DESCRIPTION

Malloc returns a pointer to a block of at least "size" free
bytes.

Free requires a pointer to a block that has been allocated by
malloc; it frees the space to be allocated again.

Calloc allocates space for an array. Nel is the number of
elements 1in the array, and elsize is the size of each element.
Calloc initializes the space to zero.

DIAGNOSTICS

Malloc, free, and calloc return NULL(0) if no free memory can
be found or if there was an error.

Page 4 - 17

MICROWARE C COMPILER USER'S GUIDE
C STANDARD LIBRARY

Mktemp - create unique temporary file name

USAGE

char *mktemp(name)
char %®name;

DESCRIPTION

Mktemp may be used to ensure that the name of a temporary file

is unique in the system and does not clash with any other file
name,

"Name™ must point to a string whose last five characters are

"X"; the Xs will be replaced with the ascii representation of
the task id.

For example, if "name" points to "foo.XXXXX", and the task id
is 351, the returned value points at the same place, but it now
holds "foo.351",

SEE ALSO

System call "getpid()™".

Page 4 - 18

h

)

AR R

I e R R R B B A R A e A L 0 e e R R e B B B B

USAGE

DESCR

MICROWARE C COMPILER USER'S GUIDE
C STANDARD LIBRARY

Printf,Fprintf,Sprintf - formatted output

#include <stdio.h>

printf(control [,arg0[,argt..]])
char #¥control;

fprintf(fp, control [,arg0[,argl1..]])
FILE #¥*fp;
char #*control;

sprintf(string,control [,arg0[,argl..]])
string [];
char ¥control;

IPTION

These three functions are used to place numbers and strings on
the output in formatted, human readable form.

Fprintf places its output on the file "fp", printf on the
standard output, and sprintf in the buffer pointed to by
"string", NOTE that it is the user's responsibility to ensure
that this buffer is large enough.

The Mcontrol"™ string determines the format, type, and number
of the following arguments expected by the function. If the
control does not match the arguments correctly, the results
are unpredictable.

The control may contain characters to be copied directly to
the output and/or format specifications. Each format
specificaticon causes the function to take the next successive
argument for output.

A format specification consists of a "%" character followed by
(in this order)

An optional minus sign ("-") that means left justification
in the field.

An optional string of digits indicating the field width
required. The field will be at least this wide and may be
wider if the conversion requires it. The field will be
padded on the left unless the above minus sign is present,
in which case it will be padded on the right. The padding
character is, by default, a space, but if the digit string
starts with a zero (%"0"), it will be "O".

Page 4 - 19

MICROWARE C COMPILER USER'S GUIDE
C STANDARD LIBRARY

An optional dot (".") and a digit string, the precision,
which for floating point arguments indicates the number
of digits to follow the decimal point on conversion, and
for strings, the maximum number of characters from the
string argument are to be printed.

An optional character "1" indicates that the following
"d","x", or "o" is the specification of a long integer
argument. NOTE _that _in _order for the printing of long
integers _to __take _place, the source code must have in it
somewhere _the _statement pflinit(), which causes routines
to be linked from the library.

A conversion character which shows the type of the
argument and the desired conversion. The recognized
conversion characters are:

d,o,x,X The argument is an integer and the
conversion is to decimal, octal, or
hexadecimal, respectively. "X" prints hex
and alpha in upper case.

u The argument is an integer and the
conversion 1is to an unsigned decimal in
the range 0 to 65535.

f The argument is a double, and the form of
the conversion is "[-]nnn.nnn". Where the
digits after the decimal point are
specified as above. If not specified, the
precision defaults to six digits. If the
precision is 0, no decimal point or
following digits are printed.

e,E The argument is a double and the form of
the conversion is "[~]n.nnne(+or-)nn"; one
digit before the decimal point, and the
precision controls the number following.
"E" prints the "e™ in upper case.

g,G The argument is a double, and either the
nfn format or the "e" format is chosen,
whichever is the shortest. If the ngn

format is used, the "e"™ is printed in
upper case.

NOTE in each of the above double conversions, the last digit is
rounded.

ALSO _NOTE _that in order for the printing of floats or doubles

to _take _place, _the _source _program _MUST have the statement
pffinit() somewhere.

Page 4 - 20

asssassasyaaaadyadyd NN eSS S SSSSSSY N T

SEE ALSO

MICROWARE C COMPILER USER'S GUIDE

C STANDARD LIBRARY

The argument is a character.

The argument is a pointer to a string.
Characters from the string are printed up
to a null character, or until the number of
characters indicated by the precision have
been printed. If the precision is 0 or
missing, the characters are not counted.

No argument corresponding; "%" is printed.

Kernighan & Ritchie pages 145-147. Putc(),scanf().

Page 4 - 21

MICROWARE C COMPILER USER'S GUIDE
C STANDARD LIBRARY

Putec, Putchar,Putw - put character or word in a file
USAGE
#include <stdio.h>
char pute(ch,fp)
char ch;

FILE *fp;

char putchar(ch)
char #¥ch;

putw(n, fp)
FILE *fp;

DESCRIPTION

Putc adds the character "ch" to the file "fp" at the current
writing position and advances the position pointer.

Putchar 1is implemented as a macro (defined in the header file)
and is equivalent to "putc(ch,stdout)".

Putw adds the (two byte) machine word "n" to the file "fp" in
the manner of putec.

Output via putc is normally buffered except
(a) when the buffering is disabled by "setbuf ()", and
(b) the standard error output is always unbuffered.

DIAGNOSTICS

Putec and putchar return the character argument from a
successful call, and EOF on end-of-file or error.

SEE ALSO

Fopen(),fclose(),fflush(),getc(),puts(),printf(),fread().

Page 4 - 22

aien M s B B B B B 2 2 Hin s M Biun Hin Hinn e Min Mo M Biam B B B B H B e e L

MICROWARE C COMPILER USER'S GUIDE

C STANDARD LIBRARY

Puts,Fputs -~ put a string on a file

USAGE

#include <stdio.h>

puts(s)
char ¥s;

fputs(s,fp)

char #*s;

FILE *fp;
DESCRIPTION

Fputs copies
onto the file

Puts copies
appends "\n".

the
llfp" .

the

(null-terminated) string pointed to by

string "s"™ onto the

standard output

The terminating null is not copied by either function.

CAVEATS

The inconsist
not by fputs
compatibility.

ency
is

of the new-line being appended by puts

dictated by history

Page 4 - 23

and

the

desire

and

and
for

MICROWARE C COMPILER USER'S GUIDE
C STANDARD LIBRARY

Qsort - quick sort

USAGE

qsort(base,n,size,compfunc)

char ¥*base;

int (*compfunc)(); /* which means: a pointer to a function
returning an int #/

DESCRIPTION

Qsort implements the quick-sort algorithm for sorting an
arbitrary array of items.

"Base" is the address of the array of "n" items of size "size".
"Compfune®™ is a pointer to a comparison routine supplied by
the wuser. It will be called by gsort with two pointers to
items 1in the array for comparison and should return an integer
which dis 1less than, equal to, or greater than 0 where,
respectively, the first item is less than, equal to, or greater
than the second.

Page 4 - 24

r«aTasasasnesaysey s sy s SsSS SIS SIS S SSSSS DT

MICROWARE C COMPILER USER'S GUIDE
C STANDARD LIBRARY

Scanf,Fscanf,Sscanf - input string interpretation

#include <stdio.h)>

fscanf(fp,control,[,pointer...])
FILE ¥fp;
char ¥*control;

scanf(control[,pointer...1)
char ¥*control;

sscanf(string,control[,pointer...])
char *string,¥*control;

DESCRIPTION

These functions perform the complement to "printf()" etec.

Fscanf performs conversions from the file "fp", scanf from the
standard input, and sscanf from the string pointed to by
"string".

Each function expects a control string containing conversion
specifications, and zero or more pointers to objects into which
the converted values are stored.

The control string may contain three types of fields:

(a) Spaces, tab characters, or "\n" which match any of
the three in the input.

(b) Characters not among the above and not "%" which must
match characters in the input.

(c) A ngn followed by an optional "¥*¥" indicates
suppression of assignment, an optional field width
maximum and a conversion character indicating the
type expected.

A conversion character controls the conversion to be applied
to the next field and indicates the type of the corresponding
pointer argument. A field consists of consecutive non-space
characters and ends at either a character inappropriate for the
conversion or when a specified field width is exhausted.
When one field is finished, white-space characters are passed
over until the next field is found.

The following conversion characters are recognized

d A decimal string is to be converted to an integer.

o An octal string; the corresponding argument should
point to an integer.

X A hexadecimal string for conversion to an integer.

s A string of non-space characters is expected and

will be <copied to the buffer pointed to by the

Page 4 - 25

MICROWARE C COMPILER USER'S GUIDE
C STANDARD LIBRARY

corresponding argument and a null ("\0O") appended.
The wuser must ensure that the buffer is large
enough. The input string is considered terminated
by a space, tab or ("\n").

c A character is expected and is copied into the byte
pointed to by the argument. The white-space
skipping is suppressed for this conversion. If a
field width is given, the argument is assumed to
point to a character array and the number of
characters indicated is copied to it. NOTE to ensure
that the next non-white-space character is read use
"21s" and that TWO bytes are pointed to by the
argument.

e,f A floating point representation is expected on the
input and the argument must be a pointer to a float.
Any of the wusual ways of writing floating point
numbers are recognized.

[This denotes the start of a set of match characters;
the inclusion or exclusion of which delimits the
input field. The white-space skipping is
suppressed. The corresponding argument should be a
pointer to a character array. If the first
character in the match string is not "°m,
characters are copied from the input as long as they
can be found in the match string, if the first
character 1is the copying continues while characters
cannot be found in the match string. The match
string is delimited by a m]w,

D,0,X Similar to d,o,x above, but the corresponding
argument is considered to point to a long integer.

E,F Similar to e,f above, but the corresponding argument
should point to a double.

% A match for "g" is sought; no conversion takes
place.

Each of these functions returns a count of the number of
fields successfully matched and assigned.

CAVEATS

The returned count of matches/assignments does not include
character matches and assignments suppressed by "#*"_ The
arguments must ALL be pointers. It is a common error to call
scanf with the value of an item rather than a pointer to it.

DIAGNOSTICS

These functions return EOF on end of input or error and a count
which 1is shorter than expected for unexpected or unmatched
items.

SEE ALSO
Atoi(),Atof(),Gete(),Printf() Kernighan and Ritchie pp 147-150

Page 4 - 26

i B B M B B B B B e B B B B i e e B 2 B M B B B B B B A A A D

MICROWARE C COMPILER USER'S GUIDE
C STANDARD LIBRARY

Setbuf - fix file buffer

USAGE
#include <stdio.h>
setbuf(fp,buffer)
FILE #fp;
char ¥*puffer;

DESCRIPTION

When the first character is written to or read from a file
after it has been opened by "fopen()", a buffer is obtained
from the system if required and assigned to it. Setbuf may be
used to forestall this by assigning a user buffer to the file.

Setbuf must be used after the file has been opened and before
any I/0 has taken place.

The buffer must be of sufficjent size and a value for a
manifest constant, BUFSIZ, is defined in the header file for
use in declarations.

If the “"buffer" argument is NULL (0), the file becomes un-
buffered and characters are read or written singly.

NOTE that the standard error output is unbuffered and the
standard output is buffered.

SEE ALSO

fopen(),getc(),pute().

Page 4 - 27

MICROWARE C COMPILER USER'S GUIDE
C STANDARD LIBRARY

Sleep - stop execution for a time
USAGE

sleep(seconds)
unsigned seconds;

DESCRIPTION

The current task is stopped for the specified time.
If "seconds™ is zero, the task will sleep for one tick.

Page 4 ~ 28

2 Mee B M B B B B Bion e B B B B e B B i e M B B e B B B e B B B D D R B B

MICROWARE C COMPILER USER'S GUIDE
C STANDARD LIBRARY

Strecat, Strnecat, Stremp, Strnemp, Strepy, Strhepy, Strnepy,
Strlen,Index, Rindex- string functions

USAGE

char #*strcat(si1,s2)
char #s1,%s52;

char #*strncat(st,s2,n)
char #s1,#%#s32;
int n;

stremp(s1,s2)
char %#s1,#s2;

char #*strhepy(s1,s2)
char #s1,%#s2;

strnemp(s1,s2,n)
char #s1,%s2;
int n;

char ¥*strepy(st,s2)
char %#s1,#s2;

char #strncpy(s1,s2,n)
char #s1,%#32;
int nj;

strlen(s)
char #*s;

char *index(s,ch)
char *s,ch;

char ¥*rindex(s,ch)
char ¥*s,ch;

DESCRIPTION

All strings passed to these functions are assumed null-
terminated.

Strcat appends a copy of the string pointed to by "s2" to the
end of the string pointed to by "s1". Strncat copies at most
"n" characters. Both return the first argument.

Stremp compares strings "s1" and "s2" for lexicographic order
and returns an integer less than, equal to or greater than 0
where, respectively, "si" is less than, equal to or greater
than "s2". Strncmp compares at most "n" characters.

Page 4 - 29

MICROWARE C COMPILER USER'S GUIDE
C STANDARD LIBRARY

Strepy copies characters from "s2" to the space pointed to by
"s1" up to and including the null byte. Strncpy copies exactly
"n" characters. If the string "s2" is too short, the "s1" will
be padded with null bytes to make up the difference. If "s2"
is too 1long, "s1"™ may not be null-terminated. Both functions
return the first argument.

Strhepy copies string with sign bit terminator.
Strlen returns the number of non-null characters in "s",

Index returns a pointer to the first occurrence of %ch" in "gn
or NULL if not found.

Rindex returns a pointer to the last occurrence of "ch" in "gn
or NULL if not found.

CAVEATS
Strcat and strepy have no means of checking that the space
provided is 1large enough. It is the user's responsibility to
ensure that string space does not overflow.

SEE ALSO

Findstr().

Page 4 - 30

THHHHEADHHHHAEAEAAHADAAHHHHHAAAS DA Y YYD D

MICROWARE C COMPILER USER'S GUIDE
C STANDARD LIBRARY

System - shell command request
USAGE

system(string)
char #¥string;

DESCRIPTION

System passes its argument to "shell"™ which executes it as a
command line. The task is suspended until the shell command

is completed and system returns the shell's exit status.

maximun length of string is 80 characters. If a longer string

is needed, use os9fork.
SEE ALSO

System calls "os9fork()","wait()",.

Page 4 - 39

MICROWARE C COMPILER USER'S GUIDE
C STANDARD LIBRARY

Toupper,Tolower -~ character translation
USAGE
#include <ctype.h>

int toupper(c)
int c;

etc.

int _toupper(c)
int ec;

int _tolower(c)
int c¢;

DESCRIPTION

The functions toupper and tolower have as their domain the
integers 1in the range -1 through 255. Toupper converts lower-
case to upper-case, and tolower converts upper-case to lower-

case. All other arguments are returned unchanged.

The macros _toupper and _tolower do the same things as the
corresponding functions, but they have restricted domains and
they are faster. The argument to _toupper must be lower-case,

and the argument to _tolower must be upper-case.

that are outside each macros domain, such as passing a lower-

case to _tolower, yield garbage results.

Page 4 - 32

3 B M B B i B B B e B B B B B B B I e T B e e M M M I B R B B R B

USAGE

DESCR

MICROWARE C COMPILER USER'S GUIDE
C STANDARD LIBRARY

Ungete - put character back on input

#include <stdio.h>
ungete(ch,fp)

char ch;

FILE #fp;

IPTION

This function alters the state of the input file buffer such
that the next call of "getc()" returns "ch".

Only one character may be pushed back, and at least one
character must have been read from the file before a call to
ungetec.

"Fseek()" erases any pushback.

DIAGNOSTICS

Ungetc returns its character argument unless no pushback could
occur, in which case EOF is returned.

SEE ALSO

gete(),fseek()
WARNZNG 4]]

GET & HAS
THT VARABLE

UNBGETLC p4s
c HAR

Page 4 - 33

MICROWARE C COMPILER USER'S GUIDE
C STANDARD LIBRARY

Page 4 - 34

