MICROWARE C COMPILER USER'S GUIDE
C SYSTEM CALLS

INTRODUCTION TO C SYSTEM CALLS

This section of the C compiler manual is a guide to the system
calls available from C programs.

It is NOT intended as a definitive description of 0S-9 service
requests as these are described in the 0S-9 SYSTEM PROGRAMMER'S
MANUAL. However, for most calls, enough information is available
here to enable the programmer to write system calls into programs
without looking further.

The names used for the system calls are chosen so that programs
transported from other machines or operating systems should compile
and run with as 1ittle modification as possible. However, care
should be taken as the parameters and returned values of some calls
may not be compatible with those on other systems. Programmers that
are already familiar with 0S-9 names and values should take
particular care. Some calls do not share the same names as the 0S-9
assembly language equivalents. The assembly language equivalent
call is shown, where there is one, on the relevant page of the C
call description, and a cross-reference list is provided for those
already familiar with 0S-9 calls.

The normal error indication on return from a system call is a
returned value of -1. The relevant error will be found in the pre-
defined int "errno". Errno always contains the error from the last
erroneous system call., Definitions for the errors for inclusion in
the program are in "<errno.h>",

In the "SEE ALSO"™ sections on the following pages, unless
otherwise stated, the references are to other system calls.

Where "#include" files are shown, it is not mandatory to
include them, but it might be convenient to wuse the manifest
constants defined in them rather than integers; it certainly makes
for more readable programs.

Page 3 - 1

MICROWARE C COMPILER USER'S GUIDE
C SYSTEM CALLS

Abort - stop the program and produce a core dump

USAGE
abort()
DESCRIPTION

This call causes a memory image to be written out to the file
"core"™ in the current directory, and then the program exits
with a status of 1.

Page 3 - 2

MICROWARE C COMPILER USER'S GUIDE
C SYSTEM CALLS
Abs - Absolute value
USAGE

int abs(i)
int i

DESCRIPTION
ABS returns absolute value of its integer operand.
CAVEATS

You get what the hardware gives on the largest negative number.

Page 3 - 3

USAGE

DESCR

CAVEA

DIAGN

MICROWARE C COMPILER USER'S GUIDE
C SYSTEM CALLS

Access - give file accessibility

access(fname, perm)
char ¥*name;
int perm;

IPTION

Access returns 0 if the access modes specified in "perm"
correct for the user to access "fname". -1 is returned if
file cannot be accessed.

The wvalue for TM"perm" may be any legal 0S-9 mode as used
"open()" or "creat()", it may be zero, which tests whether
file exists, or the path to it may be searched.

TS

are
the

for
the

NOTE that the T"perm" value is NOT compatible with other

systems.

0STICS

The appropriate error indication, if a value of -1 is returned,

may be found in "errno'.

Page 3 - 4

s

USAGE

MICROWARE C COMPILER USER'S GUIDE
C SYSTEM CALLS

Chain -~ load and execute a new program

chain(modname,paramsize,paramptr,type,lang,datasize)
char *modname,¥®¥paramptr;

ASSEMBLER EQUIVALENT

DESCR

089 F$CHAIN
IPTION

The action of F$CHAIN is described fully in the 0S-9
documentation. Chain implements the service request as
described with one important exception: chain will NEVER return
to the caller. If there is an error, the process will abort
and return to its parent process. It might be wise, therefore,
for the program to check the existence and access permissions
of the module before calling chain. Permissions may be checked
by using "modlink()"™ or "modload()" followed by an "munlink()".

"Modname" should point to the name of the desired module.
"Paramsize® is the length of the parameter string (which should
normally be terminated with a "\n"), and "paramptr" points to
the parameter string. "Type" is the module type as found in
the module header (normally 1: program), and "lang" should
match the Jlanguage nibble 1in the module header (C programs
have 1 for 6809 machine code here). "Datasize" may be zero, or
it may contain the number of 256 byte pages to give to the new
process as initial allocation of data memory.

Page 3 - 5

MICROWARE C COMPILER USER'S GUIDE
C SYSTEM CALLS

Chdir,Chxdir ~ change directory

chdir(dirname)
char #*dirname;

chxdir(dirname)
char #*dirname;

ASSEMBLER EQUIVALENT

0s9 I$CHGDIR

DESCRIPTION

These calls change the current data directory and the current
execution directory, respectively, for the running task.
"Dirname" is a pointer to a string that gives a pathname for a
directory.

DIAGNOSTICS

Each call returns 0 after a successful call, or -1 if "dirname"
is not a directory path name, or it is not searchable.

SEE ALSO

03-9 shell commands "chd" and "chx".

Page 3 - 6

MICROWARE C COMPILER USER'S GUIDE
C SYSTEM CALLS
Chmod - change access permissions of a file
USAGE
#include <modes.h)>

chmod(fname,perm)
char *fname;

DESCRIPTION
Chmod changes the permission bits associated with a file.
"Fname"™ must be a pointer to a file name, and "perm" should

contain the desired bit pattern.

The allowable bit patterns are defined in the include file as

follows:
/% permissions #/

#define S_IREAD 0x01 /% owner read %/
#define S_IWRITE 0x02 /¥ owner write %/
#define S_EXEC 0x0u4 /% owner execute #/
#define S_IOREAD 0x08 /* public read %/
#define S _IOWRITE 0x10 /% public write %/
#define S_IOEXEC 0x20 /% public execute #/
f#define S_ISHARE 0xli0 /* sharable %/
#define S_IFDIR 0x80 /% directory ¥/

Only the owner or the super user may change the permissions of

a file.

DIAGNOSTICS

A successful call returns NULL(O). A -1 is returned if the
caller is not entitled to change permissions or "fname" cannot
be found.

SEE ALSO

0S-9 command "attr"n

Page 3 - 7

MICROWARE C COMPILER USER'S GUIDE
C SYSTEM CALLS

Chown ~ change the ownership of a file

USAGE

chown(fname,ownerid)
char *fname;

DESCRIPTION

This call is available only to the super user. "Fname" is a
pointer to a file name, and "ownerid" is the new user-id.

DIAGNOSTICS

Zero is returned from a successful call. -1 is returned on
error.

Page 3 - 8

MICROWARE C COMPILER USER'S GUIDE
C SYSTEM CALLS
Close - close a file
USAGE
close(pn)
ASSEMBLER EQUIVALENT
089 I$CLOSE
DESCRIPTION
Close takes a path number, "pn", as returned from system calls
"open()", ‘Tcreat()", or "dup()", and closes the associated
file.
Termination of a task always closes all open files
automatically, but it is necessary to <close files where
multiple files are opened by the task, and it is desired to
re-use path numbers to avoid going over the system or process
path number limit.

SEE ALSO

creat(),open(),dup().

Page 3 - 9

MICROWARE C COMPILER USER'S GUIDE
C SYSTEM CALLS

Crc - compute a cyclic redundancy count

USAGE

cre(start,count,accum)
char *start,accum[3];

ASSEMBLER EQUIVALENT
0s9 F$CRC
DESCRIPTION

This call accumulates a crc into a three byte array at "accum"
for TMcount" bytes starting at "start", A1l three bytes of
"accum"™ should be initialized to Oxff before the first call to
"ere (), However, repeated calls can be subsequently made to
cover an entire module. If the result is to be used as an 0S-9
module crec, it should have its bytes complemented before
insertion at the end of the module.

Page 3 - 10

MICROWARE C COMPILER USER'S GUIDE
C SYSTEM CALLS

Creat - create a new file

USAGE
#include <modes.h)>

creat(fname,perm)
char ¥fname;

ASSEMBLER EQUIVALENT
059 TI$CREATE
DESCRIPTION

Creat returns a path number to a new file available for
writing, giving it the permissions specified in T"perm" and
making the task user the owner. If, however, "fname" is the
name of an existing file, the file is truncated to zero length,
and the ownership and permissions remain unchanged. NOTE,
that wunlike the 0S-9 assembler service request, creat does
not return an error 1if the file already exists. MAccess()"
should be used to establish the existence of a file if it is
important that a file should not be overwritten.

It is wunnecessary to specify writing permissions in "perm" in
order to write to the file in the current task.

The permissions allowed are defined in the include file as

follows:
/% permissions #/
#define S_IPRM Oxff /% mask for permission bits ¥/
#define S_IREAD 0x01 /* owner read %/
#define S_IWRITE 0x02 /% owner write #/
#define S_IEXEC 0x04 /% owner execute %/
#define S_IOREAD 0x08 /% public read ¥*/
#define S_IOWRITE 0x10 /* public write %/
#define S_IOEXEC 0x20 /* public execute #/
f#define S_ISHARE 0x40 /¥ sharable #/
Directories may not be created with this call; use "mknod()"
instead.
DIAGNOSTICS

This call returns -1 if there are too many files open. If the
pathname cannot be searched, if permission to write is denied,
or if the file exists and is a directory.

SEE ALSO

write(),close(),chmod()

Page 3 - 11

MICROWARE C COMPILER USER'S GUIDE
C SYSTEM CALLS

Defdrive - get default system drive

USAGE

char *defdrive()

DESCRIPTION

A call to defdrive returns a pointer to a string containing the
name of the default system drive. The method used is to
consult the "Init" module for the default directory name. The

name 1s copied to a static data area and a pointer to it is
returned.

DIAGNOSTICS

~1 is returned if the "Init" module cannot be linked to.

Page 3 - 12

"ﬁﬂﬁ‘)“\‘\‘)ﬁﬂ‘\ﬂ“»‘\‘\‘\‘\‘)WWWW‘» Vb 0y Ty 0y Dy 0y oy y Yy oy

MICROWARE C COMPILER USER'S GUIDE
C SYSTEM CALLS
Dup - duplicate an open path number
USAGE
dup(pn)
ASSEMBLER EQUIVALENT
0s9 I$DUP
DESCRIPTION
Dup takes the path number, "pn", as returned from "open()" or
"ereat ()" and returns another path number associated with the
same file.

DIAGNOSTICS

A -1 is returned if the call fails because there are too many
files open or the path number is invalid.

SEE ALSO

open(),creat(),close()

Page 3 - 13

MICROWARE C COMPILER USER'S GUIDE
C SYSTEM CALLS
Exit,_ Exit - task termination

USAGE

exit(status)

_exit(status)
ASSEMBLER EQUIVALENT

089 F$EXIT
DESCRIPTION

Exit is the normal means of terminating a task. Exit does any
cleaning up operations required before terminating, such as
flushing out any file buffers (see Standard I/0), but _exit
does not.

A task finishing normally, that is returning from "main()",
is equivalent to a call - Mexit(Q)".

The status passed to exit is available to the parent task if it
is executing a "waitn".

SEE ALSO

wait()

Page 3 - 14

DHAADAEAAAARRAIANIAN T D

MICROWARE C COMPILER USER'S GUIDE
C SYSTEM CALLS
Getpid - get the task id
USAGE
getpid()
ASSEMBLER EQUIVALENT
0s9 F$ID
DESCRIPTION
A number unique to the current running task is often useful in
creating names for temporary files, This call returns the
task's system id (as returned to its parent by "os9fork").

SEE ALSO

,81 5
os9fork() Standard Library function mktemp.

Page 3 - 15

MICROWARE C COMPILER USER'S GUIDE

USAGE

C SYSTEM CALLS

Getstat - get file status

#include <sgstat.h>

getstat(code,filenum,buffer) /¥

char #¥buffer;

getstat(code,filenum) /*

getstat(code,filenum,size) /*

long ¥size;

getstat(code,filenum,pos) /%

long *pos;
ASSEMBLER EQUIVALENT

0s9 I$GETSTT
DESCRIPTION

A full

description of getstat can

code 0 #/

codes 1 and 6 %/

code 2 #/

code 5 ¥/

be found in the 0S-9 System

Programmer's Manual.

"Code"
getstat
an open file.

must

be the value of one of the standard codes for the
service request.

"filenum" must be the path number of

The form of the call depends on the value of "code™.

Code O0:

Code 1:

Code 2

Code 5

Code 6

"Buffer" must be the address of a 32 byte

buffer into which the relevant status packet
is copied. The header file has the
definitions of the various file and device

structures for use by the program.

Code 1 only applies to SCF devices and to
test for data available. The return value is
zero if there is data available. -1 1is
returned if there is no data.

"Sigze"™ should be the
integer into which
placed. The return
-1 on error and 0 on

address of a long

the current file size is
value of the function is
success.

"Pos" should be the address of a long integer
into which the current file size is placed.
The return value of the function is -1 on
error and 0 on success.

Returns -1 on EOF and error and 0 on success.

Page 3 - 16

MICROWARE C COMPILER USER'S GUIDE
C SYSTEM CALLS

NOTE that when one of the previous calls returns -1, the
actual error is returned in errno.

Page 3 - 17

MICROWARE C COMPILER USER'S GUIDE
C SYSTEM CALLS

Getuid - return user id

USAGE
getuid()
ASSEMBLER EQUIVALENT
089 F$ID
DESCRIPTION

Getuid returns the real user

maintained in the password file).

Page 3 ~ 18

id

of

the

current task (as

MICROWARE C COMPILER USER'S GUIDE
C SYSTEM CALLS

Intercept - set function for interrupt processing

USAGE

intercept(func)

int (¥*func)(); /% i.e., "func" is a pointer to a function

returning an int ¥/

ASSEMBLER EQUIVALENT

F$ICPT
DESCRIPTION

Intercept instructs 0S-9 to pass control to the function "func"
when an interrupt(signal) is received by the current process.

If the interrupt processing function has an argument, it will
contain the value of the signal received. On return from
"func", the process resumes at the point in the program where
it was interrupted by the signal. "Interrupt()" is an
alternative to the use of "signal()" to process interrupts.

As an example, suppose we wish to ensure that a partially
completed output file is deleted if an interrupt is received.
The body of the program might include:

char *temp_file = "temp"; /% name of temporary file #*/

int pn = 0; /% path number ¥/
int intrupt(); /* predeclaration #/
intercept(intrupt); /* route interrupt processing %/

pn = creat(temp_file,3); /* make a new file ¥*/

write(pn,string,count) /* write string to temp file #*/

close(pn);
pn=0;

Page 3 - 19

MICROWARE C COMPILER USER'S GUIDE
C SYSTEM CALLS

The interrupt routine might be coded:
intrupt(sig);
{

if (pn){ /* only done if pn refers to an open file #/
close(pn);
unlink(temp_file); /% delete #/

3

exit(sig);

CAVEATS

"Intercept()"™ and "signal()" are mutually incompatible so that
calls to both must not appear in the same program. The linker
guards against this by giving an "entry name clash - _sigintn
error if it is attempted.

SEE ALSO

signal()

Page 3 - 20

2D DA

USAGE

MICROWARE C COMPILER USER'S GUIDE
C SYISTEM CALLS

Kill - send an interrupt to a task

#include <signal.h>
kill(tid,interrupt)

DESCRIPTION

Kill sends the interrupt type "interrupt"™ to the task with
ntidn.

Both tasks, sender and receiver, must have the same user
unless the user is the super user.

The include file contains definitions of the defined signals
follows:

/% 0S-9 signals %/

#define SIGKILL 0 /% system abort (cannot be caught
ignored)#/

#define SIGWAKE 1 /* wake up %/

#define SIGQUIT 2 /* keyboard abort #/

#define SIGINT 3 /* keyboard interrupt #/

Other user-defined signals may, of course, be sent.

DIAGNOSTICS

id

id

as

or

Kill returns 0 from a successful call and -1 if the task does

not exist, the effective user ids do not mateh, or the user
not the system manager.

SEE ALSO

signal() 0S-9 shell command "killn"

Page 3 - 21

is

MICROWARE C COMPILER USER'S GUIDE
C SYSTEM CALLS

Lseek - position in file

USAGE

long lseek(pn,position,type)
long position;

ASSEMBLER EQUIVALENT
0s9 I$SEEK
DESCRIPTION

The read or write pointer for the open file with the path
number, "pn", is positioned by lseek to the specified place in
the file. The "type"™ indicates from where "position" is to be
measured: 1if 0, from the beginning of the file, if 1, from the
current location, or if 2, from the end of the file.

Seeking to a location beyond the end of a file open for
writing and then writing to it, creates a "hole" in the file
which appears to be filled with zeros from the previous end to
the position sought.

The returned value is the resulting position in the file unless
there is an error, so to find out the current position use

lseek(pn,01,1);
CAVEATS
The argument “"position"™ MUST be a long integer. Constants
should be explicitly made long by appending an "1", as above,
and other types should be converted using a cast;

e.g. lseek(pn,(long)pos,1);

Notice also, that the return value from lseek is itself a long
integer.

DIAGNOSTICS

-1 1is returned if "pn" is a bad path number, or attempting to
seek to a position before the beginning of a file.

SEE ALSO

open(),creat() Standard Library function "fseek"

Page 3 -~ 22

MICROWARE C COMPILER USER'S GUIDE
C SYSTEM CALLS

Mknod - create a directory
USAGE
#include <modes.h>

mknod(fname,desc)
char *fname;

ASSEMBLER EQUIVALENT

0s9 I$MAKDIR

DESCRIPTION
This call may be used to create a new directory. "Fname"
should point to a string containing the desired name of the
directory. "Desc" is a descriptor specifying the desired mode

(file type) and permissions of the new file.

The include file defines the possible values for "desc!"

follows:

#define S_TIREAD 0x01 /% owner read %/
#define S_IWRITE 0x02 /¥ owner write ¥/
#define S_IEXEC 0x0u /¥ owner execute %/
#define S_IOREAD 0x08 /% public read #*/
#define S_IOWRITE 0x10 /% public write %/
f#define S_IOEXEC 0x20 /% public execute ¥/
f#define S_ISHARE 0x40 /% sharable #/

DIAGNOSTICS

Zero is returned if the directory has been successfully made; -

1 if the file already exists.

SEE ALSO

0S-9 command "makdir®

Page 3 - 23

MICROWARE C COMPILER USER'S GUIDE
C SYSTEM CALLS

Modload, Modlink - return a pointer to a module structure
USAGE
#include <module.h>
mod_exec *modlink(modname,type,language)
char *modname;
mod_exec *modload(filename,type,language)
char ¥filename;
ASSEMBLER EQUIVALENT
0s9 F$LINK
0s9 F$LOAD
DESCRIPTION

Each of these calls return a pointer to an 0S-9 memory module.

Modlink will search the module directory for a module with the
same name as "modname" and, if found, increment its link count.

Modload will open the file which has the path list specified by
"filename"®™ and 1loads modules from the file adding them to the
module directory. The returned value is a pointer to the first
module loaded.
Above, each is shown as returning a pointer to an executable
module, but it will return a pointer to whatever type of module
is found.

DIAGNOSTICS
-1 is returned on error.

SEE ALSO

munlink()

Page 3 - 24

MICROWARE C COMPILER USER'S GUIDE
C SYSTEM CALLS

Munlink - unlink a module

USAGE
#include <module.h>
munlink(mod)
mod_exec ¥nmod;

ASSEMBLER EQUIVALENT
089 F$UNLINK

DESCRIPTION
This call informs the system that the module pointed to by
"mod" 1is no longer required by the current process. Its link
count is decremented, and the module is removed from the module
directory if the link count reaches zero.

SEE ALSO

modlink(),modload()

Page 3 - 25

MICROWARE C COMPILER USER'S GUIDE
C SYSTEM CALLS

-089 -~ system call interface from C programs

USAGE
#include <o0s9.h>

_0s9(code, reg)
char code;
struct registers %reg;

DESCRIPTION

_089 enables a programmer to access virtually any 0S-9 system
call directly from a C program without having to resort to
assembly language routines.

Code 1is one of the codes that are defined in 0s9.h. 0s9.h
contains codes for the F$ and I$ function/service requests, and
it also contains getstt, setstt, and error codes.

The input registers(reg) for the system calls are accessed by
the following structure that is defined in 0s9.h:

struct registers {
char rg cc,rg_a,rg_b,rg dup;
unsigned rg_x,rg_y,rg_u;

b

An example program that uses _os9 is presented on the following
page.

DIAGNOSTICS

~1 1is returned if the 0S-9 call failed. 0 is returned on
success.

Page 3 - 26

MICROWARE C COMPILER USER'S GUIDE
C SYSTEM CALLS

Program example:

#include <o0s9.h>
#include <modes.h>

/* this program does an I$GETSTT call to get file size */
main(arge,argv)
int arge;
char #¥*argv;
{
struct registers reg;
int path;

/* tell linker we need longs %/
pflinit();

/% low level open(file name is first command line param %/
path=open(*++argv,S_IREAD);

/* set up regs for call to 0S-9 #*/
reg.rg_a=path;
reg.rg_b=SS_SIZE;

if(_o0s9(I_GETSTT,®) == 0)
printf("filesize = %1x\n", /% success #/
(long) (reg.rg _x << 16)+reg.rg_u);

else printf("0S9 error #%d\n",reg.rg_b & Oxff); /#failed*/

dumpregs(®); /* take a look at the registers #/

}

dumpregs(r)

register struct registers #¥r;

{
printf("cc=%02x\n",r->rg _cc & 0xff);
printf(™ a=%02x\n",r->rg_a & O0xff);
printf(" b=%02x\n",r->rg b & 0xff);
printf("dp=%02x\n",r->rg_dp & Oxff);
printf(" x=%04x\n",r->rg_x);
printf (" y=%04x\n",r->rg_y);
printf ("™ u=%04x\n",r->rg u);

Page 3 - 27

MICROWARE C COMPILER USER'S GUIDE
C SYSTEM CALLS

Open - open a file for read/write access

open(fname,mode)
char ¥fname;

ASSEMBLER EQUIVALENT

0s9 I$OPEN

DESCRIPTION

This call opens an existing file for reading if "mode" is 1,
writing if "mode"™ is 2, or reading and writing if "mode™ is 3.
NOTE that these values are 0S-9 specific and not compatible
with other systems. "Fname"™ should point to a string
representing the pathname of the file.

Open returns an integer as "path number" which should be used
by i/o system calls referring to the file.

The position where reads or writes start is at the beginning of
the file.

DIAGNOSTICS

-1 1is returned if the file does not exist, if the pathname
cannot be searched, if too many files are already open, or if
the file permissions deny the requested mode.

SEE ALSO

Creat(),read(),write(),dup(),close()

Page 3 - 28

IHHHHEDDHDHHHH A HHHHAHAHHT A HHYH H o H Y

MICROWARE C COMPILER USER'S GUIDE
C SYSTEM CALLS

0s9fork - create a process

USAGE

os9fork(modname,paramsize,paramptr,type,lang,datasize)
char *modname,*paramptr;

ASSEMBLER EQUIVALENT
0s9 F$FORK

DESCRIPTION

The action of F$FORK is described fully in the 0S-9 Systenm
Programmer's Manual. Os9fork will create a process that will
run concurrently with the calling process. When the forked
process terminates, it will return to the calling process.

"Modname" should point to the name of the desired module.
"Paramsize™ is the length of the parameter string which should
normally be terminated with a '\n', and "paramptr" points to
the parameter string. "Type" is the module type as found in
the header(normally 1: program), and "lang" should match the
language nibble in the module header(C programs have 1 for
6809 machine code here). "Datasize™ may be zero, or it may
contain the number of 256 byte pages to give to the new process
as initial allocation of memory.

DIAGNOSTICS

-1 will be returned on error, or the ID number of the child
process will be returned on success.

Page 3 - 29

MICROWARE C COMPILER USER'S GUIDE
C SYSTEM CALLS

Pause - halt and wait for interrupt
USAGE
pause ()
ASSEMBLER EQUIVALENT
089 I$SLEEP with a value of 0
DESCRIPTION

Pause may be used to halt a task until an interrupt is received
from "killr,

Pause always returns -1.
SEE ALSO

kill(),signal() 0S-9 shell command "kill"

Page 3 - 30

"‘\‘)ﬂ‘»‘\‘)ﬂ‘\ﬂ‘)‘\‘\‘\ﬁﬁ‘}‘\ﬁﬁﬂ‘\‘u‘«ﬂ‘)‘)ﬂ‘\‘)‘\‘\‘\‘\‘\ T

MICROWARE C COMPILER USER'S GUIDE
C SYSTEM CALLS

Prerr - print error message
USAGE
prerr(filnum,errcode)
ASSEMBLER EQUIVALENT
089 F$PERR
DESCRIPTION
PRERR prints an error message on the output path as specified
by "filnum"™ which must be the path number of an open file. The

message depends on "errcode" which will normally be a standard
0S-9 error code.

Page 3 - 31

MICROWARE C COMPILER USER'S GUIDE
C SYSTEM CALLS

Read,Readln - read from a file
USAGE

read(pn,buffer,count)
char #*buffer;

readln(pn,buffer,count)
char %*puffer;

ASSEMBLER EQUIVALENT
089 I$READ
089 TI$READLN
DESCRIPTION
The path number, "pn", is an integer which is one of the

standard path numbers 0, 1, or 2, or the path number should
have been returned by a successful call to "open", "creat", or

"dup". "Buffer"®™ 1is a pointer to space with at least "count"
bytes of memory into which read will put the data from the
file.

It is guaranteed that at most "count" bytes will be read, but
often less will be, either because, for readln, the file
represents a terminal and input stops at the end of a line, or
for both, end-of-file has been reached.

Readln causes "line-editing" such as echoing to take place and
returns once the first ®"\n" is encountered in the input or the
number of bytes requested has been read. Readln 1is the
preferred call for reading from the user's terminal.

Read does not cause any such editing. See the 0S-9 manual for
a fuller description of the actions of these calls.

DIAGNOSTICS

Read and readln return the number of bytes actually read (0 at
end-of-file) or -1 for physical i/o errors, a bad path number,
or a ridiculous "count™",

NOTE that end-of-file is not considered an error, and no error
indication is returned. Zero is returned on EOF.

SEE ALSO
open(),creat(),dup()

Page 3 ~ 32

ITHHAEEEAAADHARESHHHHAHH T A D Y

USAGE

DESCR

MICROWARE C COMPILER USER'S GUIDE
C SYSTEM CALLS

Sbrk,Ibrk - request additional working memory

char #*gbrk(increase)
char *ibrk(increase)
IPTION

Sbrk requests an allocation from free memory and returns a
pointer to its base.

"Sbrk()" requests the system to allocate "new" memory from
outside the initial allocation.

Users should read the Memory Management section of this manual
for a fuller explanation of the arrangement.

Ibrk requests memory from inside the initial memory allocation.

DIAGNOSTICS

Sbrk and ibrk return -1 if the requested amount of contiguous
memory is unavailable.

Page 3 - 33

MICROWARE C COMPILER USER'S GUIDE
C SYSTEM CALLS

Setpr - set process priority
USAGE
setpr(pid,priority)
ASSEMBLER EQUIVALENT
0s9 F$SPRIOR
DESCRIPTION
SETPR sets the process identified by "pid"(process id) to have
a priority of ‘Mpriority". The lowest priority is 0 and the
highest is 255,

DIAGNOSTICS

The call will return -1 if the process does not have the same
user id as the caller.

Page 3 - 34

HHHEIEESEADAHARDADHHAAHH O

MICROWARE C COMPILER USER'S GUIDE
C SYSTEM CALLS

Setime,Getime - Set and get system time
USAGE
#include <time.h>
setime(byffer)
getime(buffer)
struct sgtbuf ¥*buffer /* defined in time.h %/
ASSEMBLER EQUIVALENT

059 F$STIME
0s9 G$GTIME

DESCRIPTION

GETIME returns system time in buffer.
SETIME sets system time from buffer.

page 3 - 35

MICROWARE C COMPILER USER'S GUIDE
C SYSTEM CALLS

Setuid - set user id
USAGE

setuid(uid)
ASSEMBLER EQUIVALENT
089 F$SUSER

DESCRIPTION)

This call may be used to set the user id for the current task.
Setuid only works if the caller is the super user(user id 0).

DIAGNOSTICS

Zero is returned from a successful call, and -1 is returned on
error.

SEE ALSO

getuid())

Page 3 - 36

1NN HOHEOH Y Y DT

MICROWARE C COMPILER USER'S GUIDE
C SYSTEM CALLS

Setstat - set file status
USAGE

#include <sgstat.h>
setstat(code,filenum,buffer) /% code 0 %/
char #¥*buffer;

setstat(code,filenum,size) /% code 2 #/
long size;

ASSEMBLER EQUIVALENT
0s9 F$SETSTT
DESCRIPTION

For a detailed explanation of this call, see the 0S-9 System
Programmer's Manual.

"Filenum" must be the path number of a currently open file.
The only values for code at this time are 0 and 2. When "code"
is 0, "buffer"™ should be the address of a 32 byte structure
which 1is written to the option section of the path descriptor
of the file. The header file contains definitions of various
structures maintained by 0S-9 for use by the programmer. When
code 1is 2, "size" should be a long integer specifying the new
file size.

Page 3 - 37

MICROWARE C COMPILER USER'S GUIDE
C SYSTEM CALLS

Signal -~ catch or ignore interrupts

USAGE
#include <signal.h>

(*signal(interrupt,address))()
(*address)();

(Which means:"signal" returns a pointer to a function,
"address" is a pointer to a function.)

DESCRIPTION

This call 1is a comprehensive method of catching or ignoring
signals sent to the current process. Notice that "kill()"™ does
the sending of signals, and "signal()" does the catching.

Normally, a signal sent to a process causes it to terminate
with the status of the signal. If, in advance of the
anticipated signal, this system call is used, the program has
the choice of ignoring the signal or designating a function to
be executed when it is received. Different functions may be
designated for different signals.

The values for "address" have the following meanings:

0 = reset to the default i.e. abort when received

1 = ignore; this will apply until reset to another
value

Otherwise: taken to be the address of a C function which
is to be executed on receipt of the signal.

If the latter case is chosen, when the signal is received by
the process the "address" is reset to 0, the default, before
the function is executed. This means that if the next signal
received should be caught then another call to "signal()"
should be made immediately. This is normally the first action
taken by the "interrupt®" function. The function may access the
signal number which caused its execution by looking at its
argument. On completion of this function the program resumes
at the point at which it was "interrupted" by the signal.

An example should help to clarify all this. Suppose a program
needs to create a temporary file which should be deleted before
exiting. The body of the program might contain fragments like

this:

pn = creat("temp",3); /% create a temporary file #/
signal(2,intrupt); /* ensure tidying up */
signal(3,intrupt);

write(pn,string,count); /% write to temporary file #/

Page 3 - 38

2 f i B M M M M M e Mie M M M M M e B B B B B B e e e e e e e I e T e B

MICROWARE C COMPILER USER'S GUIDE
C SYISTEM CALLS

close(pn); /% finished writing %/
unlink("temp"); /% delete it #*/
exit(0); /% normal exit ¥/

The call to "signal()" will ensure that if a keyboard or quit
signal 1is vreceived then the function "intrupt()" will be
executed and this might be written:

intrupt(sig)

{

close(pn); /% close it if open #*/

unlink("temp®); /% delete it #*/

exit(sig); /* received signal as exit
status#/

}

In this case, as the function will be exiting before another
signal 1is received, it is unnecessary to call "signal()" again
to reset its pointer. Note that either the function
"intrupt()" should appear in the source code before the call to
"signal()"™, or it should be pre-declared.

The signals wused by 0S-9 are defined in the header file as
follows:

/% 0S-9 signals #/

#define SIGKILL © /* system abort (cannot be caught or
ignored)#*/

#define SIGWAKE 1 /% wake up #/

#define SIGQUIT 2 /* keyboard abort %/

#define SIGINT 3 /* keyboard interrupt %/

/% special addresses #/

#define SIG_DFL 0 /* reset to default #/

#define SIG_IGN 1 /% ignore #/

Please note that there is another method of trapping signals,

namely "intercept()"™ (q.v.). However, since "signal()" and

"intercept()" are mutually incompatible, calls to both of them

must not appear in the same program. The link~loader will

prevent the creation of an executable program in which both are
called by aborting with an T"entry name clash" error for
" _sigint®,

SEE ALSO

intercept() 0S-9 shell command "kill" kill()

Page 3 - 39

MICROWARE C COMPILER USER'S GUIDE
C SYSTEM CALLS

Stacksize, Freemem -~ obtain stack reservation size

USAGE

stacksize()
freemem()

DESCRIPTION

For a description of the meaning and use of this call, the user
is referred to the Memory Management section of this manual.

If the stack check code is in effect, a call to stacksize will
return the maximum number of bytes of stack used at the time of
the call. This call can be used to determine the stack size
required by a program.

Freemem() will return the number of bytes of the stack that has
not been used.
SEE ALSO

ibrk(),sbrk(),freemem() Global variable "memend"™ and value
"end".

Page 3 - 10

(A9 HHSADAESSAHAAAA I A T

MICROWARE C COMPILER USER'S GUIDE
C SYSTEM CALLS

Strass - byte by byte copy
USAGE

_strass(s1,s2,count)
char %*s1,%¥32;

DESCRIPTION
Until such time as the compiler can deal with structure
assignment, this function is useful for copying one structure

to another.

"Count" bytes are copied from memory location at "s2" to memory
at "si" regardless of the contents.

Page 3 - M

MICROWARE C COMPILER USER'S GUIDE
C SYSTEM CALLS

Tsleep - put process to sleep

USAGE
tsleep(ticks)
ASSEMBLER EQUIVALENT
0s9 F$SLEEP

DESCRIPTION

Tsleep deactivates the calling process for a specified number

of system "ticks" or indefinitely if "ticks™ is =zero.
is system dependent but is usually 100ms.

For a fuller description of this call, =see the 0S-9
Programmer's Manual.

Page 3 - 42

Wﬂﬂﬁ‘»ﬂﬂ‘sﬂﬂﬂﬂﬁﬂ‘»‘sﬂ‘bﬂ‘»‘sﬁﬂﬂ‘»ﬂﬂ‘»‘\ﬂﬂﬂﬂﬂ'\ﬂﬂ

MICROWARE C COMPILER USER'S GUIDE
C SYSTEM CALLS

Unlink - remove directory entry

USAGE
unlink(fname)

ASSEMBLER EQUIVALENT
0s9 I$DELETE

DESCRIPTION
Unlink deletes the directory entry whose name is pointed to by
"fname". If the entry was the last link to the file, the file
itself 1is deleted and the disc space occupied made available
for re-use. If, however, the file is open, in any active task,
the deletion of the actual file is delayed until the file is

closed.

ERRORS
Zero 1is returned from a successful call, -1 if the file does
not exist, if its directory is write-protected, or cannot be
searched, if the file is a non-empty directory or a device.

SEE ALSO

0S-9 command "kill" link()

Page 3 - 43

MICROWARE C COMPILER USER'S GUIDE
C SYSTEM CALLS

Wait - wait for task termination

wait(status) int *status;

wait(0)

ASSEMBLER EQUIVALENT

089 F3$WAIT

DESCRIPTION

Wait 1is wused to halt the current task until a child task has
terminated.

The call returns the task id of the terminating task and places
the status of that task in the integer pointed to by "status"
unless "status" is 0. A wait must be executed for each child
task spawned.

The status will contain the argument of the "exit"™ or "_exit"
call in the <child task or the signal number if it was
interrupted. A normally terminating C program with no call to
"exit" or "_exit™ has an implied call of "exit(O0)™.

CAVEATS

NOTE that the status is the 0S-9 status code and is not
compatible with codes on other systems.

DIAGNOSTICS

-1 is returned if there is no child to be waited for.

SEE ALSO

fork(),signal(),exit(),_exit()

Page 3 - 4j

19‘»%‘54%‘5‘»"‘,%%%%‘»"‘»‘5‘»‘5‘»%-\ﬁ—yﬂﬂﬂﬂﬂﬁﬂﬁ*\ ™

MICROWARE C COMPILER USER'S GUIDE
C SYSTEM CALLS

Write,Writeln - write to a file or device

USAGE

write(pn,buffer,count) char *buffer;

writeln(pn,buffer,count) char *buffer;

ASSEMBLER EQUIVALENT

0s9 IS$WRITE

0s9 I$WRITLN

DESCRIPTION

"Pn" must be a value returned by Mopen™, "creat™ or "dup" or
should be a 0(stdin), 1(stdout), or 2(stderr).

"Buffer” should point to an area of memory from which "count"
bytes are to be written. Write returns the actual number of
bytes written, and if this is different from "count", an
error has occurred.

Writes in multiples of 256 bytes to file offset boundaries of
256 bytes are the most efficient.

Write causes no "line-editing"™ to occur on output. Writeln
causes line-editing and only writes up to the first "\n" in the
buffer if this is found before "count" is exhausted. For a

full description of the actions of these calls the, reader is
referred to the 0S-9 documentation.

DIAGNOSTICS

-1 is returned if "pn" is a bad path number, if T"count"™ is
ridiculous or on physical i/o error.

SEE ALSO

creat(),open()

Page 3 - 45

