1 AEAEmEEHEEEAESSSSTSTYSS SISO T S YY Y T Y Ty Ty Ty T

MICROWARE C COMPILER USER'S GUIDE
CHARACTERISTICS OF COMPILED PROGRAMS

The Object Code Module

The compiler produces position-independent, reentrant 6809 code
in a standard 0S-9 memory module format. The format of an execut-
able program module is shown below. Detailed descriptions of each
section of the module are given on following pages.

Module Section
Offset Size (bytes)
e ——— e +
$00 ! !
! Module Header ! 8
1 !
ety s !
$09 ! Execution Offset | R 2
e —————_—— ! !
$0B ! Permanent Storage Size ! ! 2
R et ittt datat e ! !
$0D ! Module Name ! !
. e e e e e e e 1 !
v Vv {-——+
Executable Code :

String Literals

Page 2~-1

MICROWARE C COMPILER USER'S GUIDE
CHARACTERISTICS OF COMPILED PROGRAMS

Module Header

This 1is a standard module header with the type/language byte set to
$11 (Program + 6809 Object Code), and the attribute/revision byte
set to $81 (Reentrant + 1).

Execution Offset

Used by 0S-9 to locate where to start execution of the program.

Storage Size

Storage size 1is the initial default allocation of memory for data,
stack, and parameter area. For a full description of memory
allocation, see the section entitled "Memory Management" located
elsewhere in this manual.

Module Name

Module name is wused by 0S-9 to enter the module in the module
directory. The module name is followed by the edition byte encoded
in estart, If this situation is not desired it may be overridden by
the -E= option in cec.

Information

Any strings preceded by the directive "info" in an assembly code
file will be placed here. A major use of this facility is to place
in the module the version number and/or a copyright notice. Note
that the '#asm' pre-compiler instruction may be used in a C source
file to enable the inclusion of this directive in the compiler-
generated assembly code file.

Executable Code

The machine code instructions of the program.

String Literals

Quoted strings in the C source are placed here. They are in the
null-terminated form expected by the functions in the Standard
Library. NOTE: the definition of the C language assumes that
strings are in the DATA area and are therefore subject to alteration
without making the program non-reentrant. However, in order to avoid
the duplication of memory requirements which would be necessary if
they were to be in the data area, they are placed in the TEXT
(executable) section of the module. Putting the strings in the

Page 2-2

MICROWARE C COMPILER USER'S GUIDE
CHARACTERISTICS OF COMPILED PROGRAMS

executable section implies that no attempt should be made by a C
programmer to alter string 1literals. They should be copied out
first. The exception that proves the rule is the initialization of
an array of type char like this:

char message[] = "Hello world\n";

The string will be found in the array 'message' in the data area and
can be altered.

Initializing Data and its Size

If a C program contains initializers, the data for the initial
values of the variables is placed in this section. The definition
of C states that all uninitialized global and static variables have
the value =zero when the program starts running, so the startup
routine of each C program first copies the data from the module into
the data area and then clears the rest of the data memory to nulls.

Data References

No absolute addresses are known at compile time under 0S-9, so where
there are pointer values in the initializing data, they must be
adjusted at run time so that they reflect the absolute values at
that time. The startup routine uses the two data reference tables
to locate the values that need alteration and adjusts them by the
absolute values of the bases of the executable code and data re-
spectively.

For example, suppose there are the following statements in the
program being compiled:

char ¥p = "I'm a stringi";
char #¥#q = &p;

These declarations tell the compiler that there is to be a char
pointer variable, 'p', whose initial value is the address of the
string and a pointer to a char pointer, 'q', whose initial value is
the address of 'p'. The variables must be in the DATA section of
memory at run time ©because they are potentially alterable, but
absolute addresses are not known until run time, so the values that
'p' and 'q' must have are not known at compile time. The string
will be placed by the compiler in the TEXT section and will not be
copied out to DATA memory by the startup routine. The initializing
data section of the program module will contain entries for 'p' and
'q'. They will bhave as values the offsets of the string from the
base of the TEXT section and the offset of the location of 'p' from
the base of the DATA section respectively.

The startup routine will first copy all the entries in the initial-
izing data section into their allotted places in the DATA section.

Page 2-3

MICROWARE C COMPILER USER'S GUIDE
CHARACTERISTICS OF COMPILED PROGRAMS

Then it will scan the data-text reference table for the offsets of
values that need to have the addresses of the base of the TEXR
section added to them. Among these will be "p" which, after
updating, will point to the string which is in the TEXT section.
Similarly, after a scan of the data-data references, "q" will point
to(contain the absolute of) mnpm,

MEMORY MANAGEMENT

The C compiler and its support programs have default conditions
such that the average programmer need not be concerned with details
of memory management. However, there are situations where advanced
programmers may wish to tailor the storage allocation of a program
for special situations, The following information explains in
detail how a C program's data area is allocated and used.

Typical C Program Memory Map

A storage area is allocated by 0S-9 when the C program is executed.
The layout of this memory is as follows:

high addresses

| <= SBRK() adds more
! memory here
I
]

R + <~ memend
! parameters !
e atal T P !
! 1
Current stack ! stack | <- 8p register
reservation -> it enenennnesannnas !
v

! !
! ! <~ standard I/0 buffers
! free memory ! allocated here
Current top ! !
of data -> | N M e ! <~ IBRK() changes this
! memory bound upward

L e ! <-- end
! wuninitialized !
! data !
LT PPy . ! <~- edata
! initialized !
! data !
R et L ST !

- ! direct page !

dpsiz ! variables 1
v L e + (-~ y,dp registers

low addresses

Page 2-4

W‘ﬂﬂﬁﬁq‘wﬂ‘i‘i‘tﬂﬁ‘»ﬂ‘)‘)ﬂﬂﬂ‘&‘)‘s‘\‘)‘)ﬂﬂ‘\‘)ﬁ‘xﬂﬁ‘»‘»

MICROWARE C COMPILER USER'S GUIDE
CHARACTERISTICS OF COMPILED PROGRAMS

The overall size of this memory area is defined by the "storage
size" value stored in the programn's module header. This can be
overridden to assign the program additional memory if the 0S-9 Shell
"#" command is used.

The parameter area is where the parameter string from the
calling process (typically the 0S-9 Shell) is placed by the system.
The initializing routine for C programs converts the parameters into
null-terminated strings and makes pointers to them available to
'main()' via 'arge' and 'argv'.

The stack area is the currently reserved memory for exclusive
use of the stack. As each C function is entered, a routine in the
system interface is called to reserve enough stack space for the use
of the function with an addition of 64 bytes. The 64 bytes are for
the wuse of user-written assembly code functions and/or the system
interface and/or arithmetic routines, A record is kept of the
lowest address so far granted for the stack., If the area requested
would not bring this lower then the C function is allowed to
proceed. If the new 1lower 1limit would mean that the stack area
would overlap the data area, the program stops with the message:

#%¥%% STACK OVERFLOW *¥¥#

on the standard error output. Otherwise, the new lower limit is
set, and the C function resumes as before.

The direct page variables area is where variables reside
that have been defined with the storage class 'direct' in the C
source code or in the ‘'direct' segment in assembly code source.
Notice that the =size of this area is always at least one byte (to
ensure that no pointer to a variable can have the value NULL or 0)
and that it is not necessarily 256 bytes.

The wuninitialized data area is where the remainder of the
uninitialized program variables reside. These two areas are, in
fact, cleared to all zeros by the program entry routine. The
initialized data area is where the initialized variables of the
program reside. There are two globally defined values which may be
referred to: 'edata' and 'end', which are the addresses of one byte
higher than the initialized data and one byte higher than the
uninitialized data respectively. Note that these are not variables;
the values are accessed in C by using the '&' operator as in:

high = &end;
low = &edata;

and in assembler:

leax end,y
stx high,y

The Y register points to the base of the data area and variables are

Page 2-5

MICROWARE C COMPILER USER'S GUIDE
CHARACTERISTICS OF COMPILED PROGRAMS

addresses using Y-offset indexed instructions.

When the program starts running, the remaining memory is

assigned to the M"free"™ area. A program may call "ibrk()" to
request additional working memory (initialized to zeros) from the
free memory area. Alternatively, more memory can be dynamically

obtained wusing the T"sbrk()" which requests additional memory from
the operating system and returns its lower bound. If this fails
because 0S-9 refuses to grant more memory for any reason "sbrk()"
will return -1.

Compile Time Memory Allocation

If not instructed otherwise, the 1linker will automatically
allocate 1k bytes more than the total size of the program's
variables and strings. This size will normally be adequate to cover
the parameter area, stack requirements, and Standard Library file
buffers, The allocation size may be altered when using the compiler
by using the "-m" option on the command 1line. The memory
requirements may be stated in pages, for example,

cec prg.c -m=2
which allocates 512 bytes extra, or in kilobytes, for example:
ce prg.c -m=10k.

The 1linker will ignore the request if the size is less than 256
bytes.

The following rules can serve as a rough guide to estimate how
much memory to specify:

t. The parameter area should be large enough for any anticipated
command line string.

2. The stack should be not less than 128 bytes and should take
into account the depth of funetion calling chains and any
recursion.

3. All function arguments and local variables occupy stack space
and each function entered needs 4 bytes more for the return
address and temporary storage of the calling function's register
variable.

4, Free memory is requested by the Standard Library I/0
functions for buffers at the rate of 256 bytes per accessed
file. This does not apply to the lower level service request I/0
functions such as "open()", T"read()" or T"write()"™ nor to
"stderr" which is always un-buffered, but it does apply to both
"stdin" and "stdout" (see the Standard Library documentation).

Page 2-6

MICROWARE C COMPILER USER'S GUIDE
CHARACTERISTICS OF COMPILED PROGRAMS

A good method for getting a feel for how much memory is
needed by your program is to allow the linker to set the memory size
to its usually conservative default value. Then, if the program runs
with a variety of input satisfactorily but memory is limited on the
system, try reducing the allocation at the next compilation. If a
stack overflow occurs or an "ibrk()" call returns -1, then try
increasing the memory next time. You cannot damage the system by
getting it wrong, but data may be lost if the program runs out of
space at a crucial time. It pays to be in error on the generous
side.

Page 2-T

MICROWARE C COMPILER USER'S GUIDE
CHARACTERISTICS OF COMPILED PROGRAMS

Page 2-8

