| L L L R L R L R

MICROWARE C COMPILER USER'S GUIDE
THE C COMPILER SYSTEM

INTRODUCTION

The "C" programming language is rapidly growing in popularity
and seems destined to become one of the most popular programming
languages used for microcomputers. The rapid rise in the use of C
is not surprising. C 1is an incredibly versatile and efficient
language that can handle tasks that previously would have required
complex assembly language programming.

C was originally developed at Bell Telephone Laboratories as an
implementation language for the UNIX operating system by Brian
Kernighan and Dennis Ritchie. They also wrote a book titled "The C
Programming Language" which is universally accepted as the standard
for the language. It is an interesting reflection on the language
that although no formal industry-wide "standard" was ever developed
for C, programs written in C tend to be far more portable between
radically different computer system as compared to so-called
"standardized" languages such as BASIC, COBOL, and PASCAL. The
reason C is so portable is that the language is so inherently
expandable that if some special function is required, the user can
create a portable extension to the language, as opposed to the
common practice of adding additional statements to the language.
For example, the number of special-purpose BASIC dialects defies all
reason. A lesser factor is the underlying UNIX operating system,
which is also sufficiently versatile to discourage

nonstandardization of the language. Indeed, standard C compilers
and Unix are intimately related.

Fortunately, the 6809 microprocessor, the 0S-9 operating
system, and the C language form an outstanding combination. The
6809 was specifically designed to efficiently run high-level
languages, and its stack-oriented instruction set and versatile
repertoire of addressing modes handle the C language very well. As
mentioned previously, UNIX and C are closely related, and because
03-9 is derived from UNIX, it also supports C to the degree that
almost any application written in C can be transported from a UNIX
system to an 0S-9 system, recompiled, and correctly executed.

Page 1-1

MICROWARE C COMPILER USER'S GUIDE
THE C COMPILER SYSTEM

THE LANGUAGE IMPLEMENTATION

0S-9 C 1is implemented almost exactly as described in 'The C
Programming Language' by Kernighan and Ritchie (hereafter referred
to as K & R). A copy of this book, which serves as the language
reference manual, is included with each software package.

Although this version of C follows the specification faith-
fully, there are some differences. The differences mostly reflect
parts of C that are obsolete or the constraints imposed by memory
size limitations.

DIFFERENCES FROM THE K & R SPECIFICATION

- Bit fields are not supported.

-~ Constant expressions for initializers may include arithmetic
operators only if all the operands are of type INT or CHAR.

- The older forms of assignment operators, '=+' or t=%' which
are recognized by some C compilers, are not supported. You
must use the newer forms '+=z','#=' etec.

- "#ifdef (or #ifndef) ...[#else...] #endif" is supported but
"#if <constant expressiond>" is not.

- It is not possible to extend macro definitions or strings
over more than one line of source code.

- The escape sequence for new-line '\n' refers to the ASCII
carriage return character (used by 0S-9 for end-of-line), not
linefeed.(hex OA). Programs which use '\n' for end-~of-line
(which includes all programs in K & R), will still work
properly.

Page 1-2

MICROWARE C COMPILER USER'S GUIDE
THE C COMPILER SYSTEM

ENHANCEMENTS AND EXTENSIONS

The "Direct" Storage Class

The 6809 microprocessor instructions for accessing memory via
an index register or the stack pointer can be relatively short and
fast when they are wused in C programs to access Mauto" (function
local) variables or function arguments. The instructions for
accessing global variables are normally not so nice and must be four
bytes 1long and correspondingly slow. However, the 6809 has a nice
feature which helps considerably. Memory, anywhere in a single page
(256 byte block), may be accessed with fast, two byte instructions.
This is called the "direct page", and at any time its location is
specified by the contents of the "direct page register®™ within the
processor. The 1linkage editor sorts out where this should be, and
it need not concern the programmer, who only needs to specify for
the compiler which variables should be in the direct page to give
the maximum benefit in code size and execution speed.

To this end, a new storage class specifier is recognized by the
compiler, In the manner of K & R page 192, the sc-specifier list
is extended as follows:

Sc-specifier: auto

static

extern

register

typedef

direct (extension)
extern direct (extension)
static direct (extension)

The new key word may be wused in place of one of the other sc-
specifiers, and its effect is that the variable will be placed in
the direct page. "DIRECT" creates a global direct page variable.
"EXTERN DIRECT" references an EXTERNAL-type direct page variable;
and "STATIC DIRECT" creates a local direct page variable. These new
classes may not be wused to declare function arguments. "Direct®"
variables can be initialized but will, as with other variables not
explicitly initialized, have the value zero at the start of program
execution. 255 Dbytes are available in the direct page (the linker
requires one byte). If all the direct variables occupy less than the
full 255 bytes, the remaining global variables will occupy the
balance and memory above if necessary. If too many bytes of storage
are requested in the direct page, the linkage editor will report an
error, and the programmer will have to reduce the use of DIRECT-type
variables to fit the 256 bytes addressable by the 6809.

It should be kept in mind that "direct"™ is unique to this

compiler, and it may not be possible to transport programs written
using "direct" to other environments without modification.

Page 1-3

MICROWARE C COMPILER USER'S GUIDE
THE C COMPILER SYSTEM

Imbedded Assembly Language

As versatile as C is, occasionally there are some things that
can only be done (or done at maximum speed) in assembly language.
The 0S-9 C compiler permits user-supplied assembly-language
statements to be directly embedded in C source programs.

A line beginning with "#asm" switches the compiler into a mode
which passes all subsequent lines directly to the assembly-language
output, wuntil a line beginning with "#endasm"™ is encountered.
"#endasm®™ switches the mode back to normal. Care should be
exercised when using this directive so that the correct code section
is adhered to. Normal code from the compiler is in the PSECT (code)
section. If your assembly code uses the VSECT (variable) section,
be sure to put a ENDSECT directive at the end to leave the state
correct for following compiler generated code.

Control Character Escape Sequences

The escape sequences for non-printing characters in character
constants and strings (see K & R page 181) are extended as follows:

linefeed (LF): 1\l (lower case 'ell')

This is to distinguish LF (hex 0A) from \n which on 0S-9 is the same
as \r (hex 0D).

bit patterns: \NNN (octal constant)
\dNNN (decimal constant)
\XNN (hexadecimal constant)

For example, the following all have a value of 255 (decimal):

\377 \xff \d255

Page 1-4

MICROWARE C COMPILER USER'S GUIDE
THE C COMPILER SYSTEM

IMPLEMENTATION DEPENDENT CHARACTERISTICS
K & R frequently refer to characteristics of the C language
whose exact operations depend on the architecture and instruction

set of the computer actually used. This section contains specific
information regarding this version of C for the 6809 processor.

Data Representation and Storage Requirements

Each variable type requires a specific amount of memory for
storage. The sizes of the basic types in bytes are as follows:

Data Type Size Internal Representation

CHAR 1 two's complement binary

INT 2 two's complement binary

UNSIGNED 2 unsigned binary

LONG 4 two's complement binary

FLOAT] binary floating point (see below)
DOUBLE 8 binary floating point (see below)

This compiler follows the PDP-11 implementation and format in
that CHARs are converted to INTs by sign extension, "SHORT" or
"SHORT INT" means INT, "LONG INT" means LONG, and "LONG FLOAT"™ means
DOUBLE. The format for DOUBLE values is as follows:

(low byte) (high byte)
Fm et m e — e m——— e ——m e ———————————— o +
[seven byte ! 1 byte !
Pt mantissa | exponent |
o o - e ———— +

“ sign bit

The form of the mantissa is sign and magnitude with an implied
m{® bit at the sign bit position. The exponent is biased by 128.
The format of a FLOAT is identical, except that the mantissa is only
three bytes long. Conversion from DOUBLE to FLOAT is carried out by
truncating the 1least significant (right-most) four bytes of the
mantissa. The reverse conversion is done by padding the least
significant four mantissa bytes with zeros.

Register Variables

One register variable may be declared in each function. The
only types permitted Tfor register variables are int, unsigned and
pointer. Invalid register variable declarations are ignored; i.e.

the storage class is made auto. For further details see K & R page
81.

Page 1-5

MICROWARE C COMPILER USER'S GUIDE
THE C COMPILER SYSTEM

A considerable saving in code size and speed can be made by
Jjudicious use of a register variable. The most efficient use is
made of it for a pointer or a counter for a loop. However, if a
register variable is used in a complex arithmetic expression, there
is no saving. The "U"™ register is assigned to register variables.

IMPORTANT NOTE: Upper and lower case letters cannot be mixed as in
Basic(09. For example, Prog.c and prog.c are distinct names. Since
the Color Computer is wusually used in upper case only, it is

necessary to enter the following commands to use upper AND lower
case: TMODE -UPC and CLEARKO>.

Access To Command Line Parameters

The standard C arguments Marge" and "argv" are available to
"main" as described in K & R page 110. The start-up routine for C
programs ensures that the parameter string passed to it by the
parent process is converted into null-terminated strings as expected

by the program. In addition, it will run together as a single
argument any strings enclosed between single or double quotes (m'n
or tmt), If either is part of the string required, then the other

should be used as a delimiter.

e VARIABLE
NAMES ARE
UNTZQUE oiLY .p

O @ C HARAC TERS
SAME FBR C.PREP
#Hdasenl ONlYge g

Page 1~-6

MICROWARE C COMPILER USER'S GUIDE
THE C COMPILER SYSTEM

SYSTEM CALLS AND THE STANDARD LIBRARY

Operating System Calls

The system interface supports almost all the system calls of
both 0S8S~9 and UNIX. In order to facilitate the portability of
programs from UNIX, some of the calls use UNIX names rather than
0S-9 names for the same function. There are a few UNIX calls that
do not have exactly equivalent 0S-9 calls. In these cases, the
library function simulates the function of the corresponding UNIX
call. In cases where there are 0S-9 calls that do not have UNIX
equivalents, the 0S-9 names are used. Details of the calls and a
name cross-reference are provided in the "C System Calls"™ section of
this manual.

The Standard Library

The C compiler includes a very complete library of standard
functions. It 1is essential for any program which uses functions
from the standard library to have the statement:

"#include <stdio.h>"

See the "C Standard Library" section of this manual for details on
the standard library functions provided.

IMPORTANT NOTE: If output via printf(), fprintf() or sprintf() of
long integers is required, the program MUST call "pflinit()" at some
point; this is necessary so that programs not involving LONGs do not
have the extra LONGs output code appended. Similarly, if FLOATs or
DOUBLEs are to be printed, "pffinit()" MUST be called. These func-
tions do nothing; existence of calls to them in a program informs
the linker that the relevant routines are also needed.

Page 1-7

MICROWARE C COMPILER USER'S GUIDE
THE C COMPILER SYSTEM

RUN-TIME ARITHMETIC ERROR HANDLING

K & R 1leave the treatment of various arithmetic errors open,
merely saying that it is machine dependent. This implementation
deals with a limited number of error conditions in a special way; it

should be assumed that the results of other possible errors are
undefined.

Three new system error numbers are defined in <errno.hd>:

#define EFPOVR 40 /* floating point overflow or underflow #*/

#define EDIVERR 41 /* division by zero #/

#define EINTERR 42 /* overflow on conversion of floating point
to long integer ¥/

If one of these conditions occur, the program will send a
signal to itself with the value of one of these errors. If not
caught or ignored, this will cause termination of the program with
an error return to the parent process. However, the program can
catch the interrupt using "signal()" or "intercept()" (see C System
Calls), and in this case the service routine has the error number as
its argument.

Page 1-8

a0

| R R R B U B S R R B B B

MICROWARE C COMPILER USER'S GUIDE
THE C COMPILER SYSTEM

ACHIEVING MAXIMUM PROGRAM PERFORMANCE

Programming Considerations

Because the 6809 is an 8/16 bit microprocessor, the compiler
can generate efficient code for 8§ and 16 bit objects (CHARs, INTs,
etc.). However, <code for 32 and 64 bit values (LONGs, FLOATs,
DOUBLEs) can be at least four times longer and slower. Therefore
don't use LONG, FLOAT, or DOUBLE where INT or UNSIGNED will do.

The compiler can perform extensive evaluation of constant
expressions provided they involve only constants of type CHAR, INT,
and UNSIGNED. There 1is no constant expression evaluation at
compile-time (except single constants and "casts" of them) where
there are constants of type LONG, FLOAT, or DOUBLE, therefore,
complex constant expressions involving these types are evaluated at
run time by the compiled program. You should manually compute the
value of constant expressions of these types if speed is essential.

The Optimizer Pass

The optimizer pass automatically occurs after the compilation
passes. It reads the assembler source code text and removes
redundant code and searches for code sequences that can be replaced
by shorter and faster equivalents. The optimizer will shorten object
code by about 11% with a significant increase in program execution
speed. The optimizer is recommended for production versions of de-
bugged programs. Because this pass takes additional time, the m-0QOn
compiler option can be used to inhibit it during error-checking-only
compilations.

The Profiler

The profiler is an optional method used to determine the
frequency of execution of each function in a C program. It allows
you to identify the most frequently used functions where algorithmic
or C source code programming improvements will yield the greatest
gains.,

When the "-P" compiler option is selected, code is generated at
the beginning of each function to call the profiler module (called
"_prof"), which counts invocations of each function during program

execution. When the program has terminated, the profiler
automatically prints a list of all functions and the number of times
each was called. The profiler slightly reduces program execution

speed. See "prof.c" source for more information.

Page 1-9

MICROWARE C COMPILER USER'S GUIDE
THE C COMPILER SYSTEM

C COMPILER COMPONENT FILES AND FILE USAGE
Compilation of a C program by cc requires that the following

files be present in the current execution directory (CMDS).

0S-9 Level I Systems:

cet compiler executive program
c.prep macro pre-processor
c.passi compiler pass 1

c.pass2 compiler pass 2

c.opt assembly code optimizer
c.asm relocating assembler
c.link linkage editor

05-9 Level II Systems:

ce? compiler executive program
c.prep macro pre-processor

c.comp compiler proper

c.opt assembly code optimizer
c.asm relocating assembler
c.link linkage editor

In addition a file called "clib.1l" contains the standard 1ib-
rary, math functions, and system library. The file "cstart.r" is
the setup code for compiled programs. Both of these files must be
located in a directory named "LIB"™ on drive /D1. The DEFS directory
must also be on /D1.

If, when specifying "#include" files for the preprocessor to
read in, the programmer uses angle brackets, "<" and ">", instead of
parentheses, the file will be sought starting at the "DEFS"
directory.

Temporary Files

A number of temporary files are created in the current data
directory during compilation, and it is important to ensure that
enough space is available on the disk drive. As a rough guide, at
least three times the number of blocks in the largest source file
(and its included files) should be free.

The 1identifiers Metext","edata™, and "end" are predefined in the
linkage editor and may be used to establish the addresses of the end
of executable text, initialized data, and wuninitialized data
respectively.

Page 1-10

AR R R B B R S R R IR R B R R B R R R A e

MICROWARE C COMPILER USER'S GUIDE
THE C COMPILER SYSTEM

RUNNING THE COMPILER

There are two commands which invoke distinet versions of the
compiler. "eci" is for 0S-9 Level I which uses a two pass compiler,
and, cc¢2 1is for Level II which uses a single pass version. Both
versions of the compiler work identically, the main difference is
that cc1 has been divided into two passes to fit the smaller memory
size of 0S-9 Level I systems. In the following text, "cc" refers to
either "cc1" or "ce2" as appropriate for your system. The syntax of
the command line which calls the compiler is:

cc [option-flags] file {file}

One file at a time can be compiled, or a number of files may be
compiled together. The compiler manages the compilation through up
to four stages: pre-processor, compilation to assembler code,
assembly to relocatable module, and linking to binary executable
code (in 0S-9 memory module format).

The compiler accepts three types of source files, provided each

name on the command line has the relevant postfix as shown below.
Any of the above file types may be mixed on the command line.

File Name Suffix Conventions

Suffix Usage
.C C source file
.a assembly language source file
.r relocatable module
none executable binary (0S-9 memory module)

There are two modes of operation: multiple source file and
single source file. The compiler selects the mode by inspecting
the command line. The usual mode is single source and is specified
by having only one source file name on the command line. of
course, more than one source file may be compiled together by using
the "ginclude™ facility in the source code. In this mode, the
compiler will use the name obtained by removing the postfix from the
name supplied on the command line, and the output file (and the
memory module produced) will have this name. For example:

ce prg.c

will 1leave an executable file called "prg" in the current execution
directory.

The multiple source mode is specified by having more than one

Page 1-11

MICROWARE C COMPILER USER'S GUIDE
THE C COMPILER SYSTEM

source file name on the command line. In this mode, the object code
output file will have the name "output®™ in the current execution
directory, wunless a name is given wusing the 7"-f=%" option (see
below). Also, in multiple source mode, the relocatable modules
generated as intermediate files will be left in the same directories
as their corresponding source files with the postfixes changed to
".r", For example:

ce prgl.c /d0/fred/prg2.c
will leave an executable file called "output™ in the current
execution directory, one called "prgl.r" in the current data
directory, and "prg2.r®" in ®"/d0/fred".

CC -E=3 PNAME.C ~-F=PROG
compiles the file called "PNAME.C"™ into an executable object file
named "PROG"™ and sets the module revision level to 3.

CC PROG.C -DIDENTIFIER=VALUE
compiles the program with a definition identifier being passed to

the compiler. The definition being passed is used within the source
to control compilation via IFDEF/IFNDEF functions.

Page 1-12

AHEHEHEAHAAHAHAAHDHHAAAAAHHS Y A Y DY Y T

-

i R

MICROWARE C COMPILER USER'S GUIDE
THE C COMPILER SYSTEM

COMPILER OPTION FLAGS

The compiler recognizes several command-line option flags which
modify the compilation process where needed. All flags are
recognized before compilation commences so the flags may be placed
anywhere on the command line. Flags may be ran together as in "-
ro", except where a flag is followed by something else; see "-f=n
and "-d" for examples.

-A suppresses assembly, leaving the output as assembler code in a
file whose name is postfixed ".a".

~-E=<number> Set the edition number constant byte to the number
given. This is an 0S-9 convention for memory modules.

-0 inhibits the assembly code optimizer pass. The optimizer will
shorten object code by about 11% with a comparable increase in speed
and is recommended for production versions of de-bugged programs.

-P invokes the profiler to generate function invocation frequency
statistics after program execution.

-R suppresses linking library modules into an executable program,
Outputs are left in files with postfixes ".p",

~-M=<memory size> will instruct the linker to allocate <memory size)
for data, stack, and parameter area. Memory size may be expressed
in pages (an integer) or in kilobytes by appending "k" to an
integer. For more details of the use of this option, see the
"Memory Management" section of this manual.

-L=<filename> specifies a library to be searched by the linker
before the Standard Library and system interface.

~F=<path> overrides the above output file naming. The output file
will be 1left with <filename) as its name. This flag does not make
sense in multiple source mode, and either the -a or -r flag is also
present. The module will be called the last name in <path).

-C will output the source code as comments with the assembler code.

-3 stops the generation of stack-checking code. -S should only be
used with great care when the application is extremely time-critical
and when the use of the stack by compiler generated code is fully
understood.

-D identifier> is equivalent to "#define <identifier>" written in
the source file. -D is useful where different versions of a program
are maintained in one source file and differentiated by means of the
"#ifdef" or "#ifndef" pre-processor directives. If the <identifier>
is used as a macro for expansion by the pre-processor, "i"(one) will

ccd X

CREME B UT S0 MiT

EYEcuare c.com [pe B-3 Page 1-13

MICROWARE C COMPILER USER'S GUIDE
THE C COMPILER SYSTEM

be the expanded "value" unless the form "-d<identifier>=<stringd>" is
used in which case the expansion will be <string>.

COMMAND LINE AND OPTION FLAG EXAMPLES

command line action output file(s)
ce prg.c compile to an executable prg

program -
cec prg.c -a compile to assembly prg.a

language source code

cc prg.c =-r compile to relocatable prg.r
module
cc prgl.c prg2.c prg3.c compile to executable prgt.r, prg2.r,
program prg3.r, output
cc prgt.c prg2.a prg3.r compile prgil.c, prgl.r, prg2.r -

assemble prg2.a and
combine all into an
executable program

cec prgl.c prg2.c =-a compile to assembly prgl.a, prg2.a
language source code

ec prgt.c prg2.c -f=prg compile to executable prg
program R

Page 1-14

