ceecssetsesseets NN s EES ST

MICROWARE C COMPILER USER'S GUIDE
APPENDIX D

RELOCATING MACRO ASSEMBLER REFERENCE

This appendix gives a summary of the operation of the "Relocating
Macro Assembler" (named c.asm as distributed with the C Compiler).
This appendix and the example assembly source files supplied with
the C compiler should provide basic information on how to use the
"Relocating Macro Assembler"™ to create relocatable-object format
files (ROF). It is further assumed that you are familiar with the
6809 instruction set and mnemonics. See the Microware Relocating
Assembler Manual for a more detailed description., The main function
of this appendix is to enable the reader to understand the output
produced by c.asm. The Relocating Macro Assembler allows programs
to be compiled separately and then linked together, and it also
allows macros to be defined within programs.

Differences between the Relocating Macro Assembler(RMA) and the
Microware Interactive Assembler(MIA):

RMA is does not have an interactive mode. Only a disk file is
allowed as input.

RMA output is an ROF file. The ROF file must be processed by
the linker to produce an executable 0S9 memory module., The
layout of the ROF file is described later.

RMA has a number of new directives to control the placement of
code and data in the executable module. Since RMA does not
produce memory modules, the MIA directives "mod" and "emod" are
not present. Instead, new directives PSECT and VSECT control
the allocation of code and data areas by the linker.

RMA has no equivalent to the MIA "setdp" directive. Data (and
DP) allocation is handled by the linker.

Page D-1

MICROWARE C COMPILER USER'S GUIDE
APPENDIX D

Symbolic Names.

A symbolic name is wvalid if it consists of from one to nine
uppercase or lowercase characters, decimal digits or the characters
ngn, nm_w, nm.m opr man, RMA does not fold lowercase letters to
uppercase. The names "Hi.you" and ®"HI.YOU" are distinct names.

Label field.

If a symbolic name in the 1label field of a source statement is
followed by a ":" (colon), the name will be known GLOBALLY (by all
modules linked together). If no colon appears, the name will be
known only in the PSECT in which it was defined. PSECT will be
described later.

Undefined names.

If a symbolic name is used in an expression and hasn't been defined,
RMA assumes the name 1is external to the PSECT. RMA will record
information about the reference so the linker can adjust the operand
accordingly. External names cannot appear in operand expressions
for assembler directives.

Listing format.

00098 0032 59 + rolb
00117 0045=17ffDb8 label lbsr _dmove Comment

~ ~

! Start of comment

] I
] 1
P Start of operand
b Start of mnemonic
! Start of label
A "+ indicates a line generated by a macro
expansion.
|Start of object code bytes.
An "=" here indicates that the operand contains an
external reference.

Location counter value.
ine number.

!
!
!
!
!
i
'
!
|
i
L

Section location counters.
Each section contains the following location counters:

PSECT - instruction location counter

VSECT - initialized direct page location counter
non-initialized direct page location counter
initialized data location counter
non-initialized data location counter

CSECT - base offset counter

Section directives,

RMA contains 3 section directives. PSECT indicates to the linker
the beginning of a relocatable~-object-format file(ROF) and

Page D-2

(AT HAHADDSIAOI AT -

MICROWARE C COMPILER USER'S GUIDE
APPENDIX D

initializes the instruction and data location counters and assembles
code into the ROF object code area. VSECT causes RMA to change to
the data 1location counters and place any generated code into the
appropriate ROF data area. CSECT initializes a base value for
assigning offsets to symbols. The end of these sections is
indicated by the ENDSECT directive.

The source statements placed in a particular section cause the
linker to perform a function appropriate for the statement.
Therefore, the mnemonics allowed within a section are restricted as
follows:

These mnemonics are allowed inside or outside any section: nam,
opt, ttl, pag, spe, use, fail, rept, endr, ifeq, ifne, iflt,
ifle, ifge, ifgt, ifp1, ende, else, equ, set, macro, endm,
csect, and endsect.

Within a CSECT: rmb.

Within a PSECT: any 6809 instruction mnemonic, fcec, fdb, fecs,
feb, rzb, vsect, endsect, 0s9 and end.

Within a VSECT: rmb, fce, fdb, fes, fcb, rzb and endsect.

PSECT directive.

The main difference between PSECT and MOD is that MOD set up
information for 0S-9 and PSECT sets up information for the
linker(c.link in the C compiler).

PSECT {name,typelang,attrrev,edition,stacksize,entrypoint}

name Up to 20 bytes (any printable character except space
or comma) for a name to be used by the linker to
identify this PSECT. This name need not be distinct
from all other PSECTs linked together, but it helps
to identify PSECTs the linker has a problem with if
the names are different.

typelang byte expression for the executable module type/lang-
uage byte. If this PSECT is not a "mainline"(a
module that has been designed to be forked to) mod-
ule this byte must be zero.

attrrev byte expression {or executable module attribute/rev-
ision byte.

edition byte expression for executable module edition byte.

stacksize word expression estimating the amount of stack stor-
age required by this psect. The linker totals this
value in all PSECTs to appear in the executable mod-
ule and adds this value to any data storage require-
ment for the entire program.

Page D-3

MICROWARE C COMPILER USER'S GUIDE
APPENDIX D

entrypoint word expression entrypoint offset for this PSECT.
If the PSECT is not a mainline module, this should
be set to zero.

PSECT must have either no operand list or an operand list containing
a name and five expressions. If no operand list is provided, the
PSECT name defaults to "program" and all other expressions to zero.
There can only be one PSECT per assembly language file.

The PSECT directive initializes all counter orgs and marks the start
of the program module. No VSECT data reservations or object code
may appear before or after the PSECT/ENDSECT block.

Example:
psect myprog,Prgrm+0bjct,Reent+1,Edit,0,progent
psect another_prog,0,0,0,0,0

VSECT directive,
VSECT {DP}

The VSECT directive causes RMA to change to the data location
counters. If DP appears after VSECT, the direct page counters are
used, otherwise the non-direct page data is used. The RMB directive
within this section reserves the specified number of bytes in the
appropriate wuninitialized data section. The fecc, fdb, fcs, fcb and
rzb (reserve zeroed bytes) directives place data into the
appropriate initialized data section. If an operand for fdb or fecb
contains an external reference, this information is placed in the
external reference part of the ROF to be adjusted at link or
execution time. ENDSECT marks the end of the VSECT block. Any
number of VSECT blocks can appear within a PSECT. Note, however,
that the data 1location counters maintain their values between one
VSECT block and the next. Since the linker handles the actual data
allocation, there is no facility provided to adjust the data
location counters.

CSECT directive.

CSECT {expression}
The CSECT directive provides a means for assigning consecutive
offsets to 1labels without resorting to EQUs. If the expression is
present, the CSECT base counter is set to that value, otherwise it
is set to zero.
RZB statement.

Syntax: RZB <expression)>

The reserve zeroed bytes pseudo-instruction generates sequences of
zero bytes 1in the code or initialized data sections, the number of

Page D-14

1QQQAAAAQQQAAAAAAqqqﬁqqﬁﬂﬂﬂﬂﬁﬂﬂﬁﬂﬂﬂﬂ—

MICROWARE C COMPILER USER'S GUIDE
APPERDIX D

which is specified by the expression.

COMPARISON BETWEEN ASSEMBLY PROGRAMS FOR THE MICROWARE INTERACTIVE
ASSEMBLER AND THE RELOCATING MACRO ASSEMBLER

The following two program examples simply fork BASIC09. The purpose
of the examples are to show some of the differences in the new
relocating assembler. The differences are apparent.

* this program forks basic09

ifp1
use/defs/os9defs.a
endc
PRGRM equ 3$10
OBJCT equ $01
stk equ 200
psect rmatest,$11,$81,0,stk,entry
name fes /basic09/
prm feb $D
prmsize equ *-prm
entry leax name,pcr

leau prm,per

ldy #prmsize

1lda #PRGRM+OBJCT
clrb

089 F$FORK

0s9 F$WAIT

0s9 F$EXIT
endsect

MACRO INTERACTIVE ASSEMBLER SOURCE
ifp1
use defsfile

endc

mod siz,prnam,type,revs,start,size

prnam fecs /testshell/
type set prgrm+objct
revs set reent+1

rmb 250

rmb 200
name fes /basic09/
prm $D

prmsize equ *-prm (continued)

Page D-5

size
start

siz

MICROWARE C COMPILER USER'S GUIDE
APPERDIX D

equ

equ *

leax name,pcr
leau prm,per
ldy #prmsize
lda #PRGRM+0BJCT
clrb

089 F$FORK
0s9 F$WAIT
089 F$EXIT
emod

equ

Page D-6

aeeeessssseesssaennnnsESEESSSA T

MICROWARE C COMPILER USER'S GUIDE
APPENDIX D

MACROS

Sometimes identical or similar sequences of instructions may be
repeated in different places in a program. The problem is that if
the sequence of instructions 1is long or must be used a number of
times, writing it repeatedly can be tedious.

A macro is a definition of an instruction sequence that can be
used numerous places within a program. The macro is given a name
which is used similarly to any other instruction mnemonic. Whenever
RMA encounters the name of a macro in the instruction field, it
outputs all the instructions given in the macro definition. In
effect, macros allow the programmer to create "new" machine language
instructions.

For example, suppose a program frequently must perform 16 bit
left shifts of the D register. The two instruction sequence can be
defined as a macro, for example:

dasl macro
aslb
rola
endm

The "macro®™ and "endm" directives specify the beginning and the
end of the macro definition, respectively. The label of the "macro"
directive specifies the name of the macro, "dasl" in this example.
Now the "new" instruction can be used in the program:

ldd 12,s get operand
dasl double it
std 12,s save operand

In the example above, when RMA encountered the "dasl" macro, it
actually outputted code for "aslb"™ and "rola". Normally, only the
macro name is listed as above, but an RMA option can be used to
cause all instructions of the "macro expansion" to be listed.

Macros should not be confused with subroutines although they
are similar 1in some ways. Macros repetitively duplicate an "in
line"™ code sequence every time they are used and allow some
alteration of the instruction operands. Subroutines appear exactly
once, never change, and are called using special instructions (BSR,
JSR, and RTS). In those cases where they c¢an be used
interchangeably, macros wusually produce longer but slightly faster
programs, and subroutines produce shorter and slightly slower
programs. Short macros (up to 6 bytes or so) will almost always be
faster and shorter than subroutines because of the overhead of the
BSR and RTS instructions needed.

MICROWARE C COMPILER USER'S GUIDE
APPENDIX D

MACRO STRUCTURE

A macro definition consists of three sections:

—_
.

The macro header - assigns a name to the macro
The body - contains the macro statements
3. The terminator - indicates the end of the macro

o

<name> MACRO /% macro header #/
body /% macro body */
ENDM /% macro terminator %/

The macro name must be defined by the label given in the MACRO
statement, The name can be any legal assembler label. It is
possible to redefine the 6809 instructions (LDA, CLR, ete.)
themselves by defining macros having identical names. Caution:
redefinition of assembler directives such as "RMB" can have
unpredictable consequences.

The body of the macro can contain any number of legal RMA
instruction or directive statements including references to
previously defined macros. The last statement of a macro definition
must be ENDM.

The text of macro definitions are stored on a temporary file
that is created and maintained by RMA. This file has a large (1K
byte) buffer to minimize disk accesses. Therefore, programs that
use more than 1K of macro storage space should be arranged so that
short, frequently used macros are defined first so they are kept in
the memory buffer instead of disk space.

Macro calls may be nested, that is, the body of a macro
definition may contain a call to another macro. For example:

times4 MACRO
dasl
dasl
ENDM

The macro above consists of the "dasl" macro used twice. The
definition of a new macro within another is not permitted. Macro
calls may be nested up to eight deep.

a9 aassasaseseeseesasassasasassasyssasysa s S H Y

MICROWARE C COMPILER USER'S GUIDE
APPENDIX D

MACRO ARGUMENTS

Arguments permit variations in the expansion of a macro.
Arguments can be used to specify operands, register names,
constants, variables, etc., in each occurence of a macro.

A macro can have up to nine formal arguments in the operand
fields. Each argument consists of a backslash character and the
sequence number of the formal argument, e.g, \1, \2 ... \9. When
the macro 1is expanded, each formal argument is replaced by the
corresponding text string "actual argument®™ given in the macro call.
Arguments can be wused in any part of the operand field not in the
instruction or 1label fields. Formal arguments can be used in any
order and any number of times.

For example, the macro below performs the typical instruction
sequence to create an 0S-9 file:

create MACRO

leax \1,pcr get addr of file name string
lda #\2 set path number

1db #\3 set file access modes

039 I$CREATE

ENDM

This macro uses three arguments: "\1" for the file name string
address; "\2" for the path number; and "\3" for the file access mode
code. When "create" is referenced, each argument is replaced by the
corresponding string given in the macro call, for example:

create outname,2,$1E
The macro call above will be expanded to the code sequence:

leax outname,pecr
lda #22

1db #3$1E

089 I$CREATE

If an argument string includes special characters such as
backslashes or commas, the string must be enclosed in double quotes.
For example, this macro reference has two arguments:

double count,"2,s"
An argument may be declared null by omitting all or some

arguments in the macro call to make the corresponding argument an
empty string so no substitution occurs when it is referenced.

MICROWARE C COMPILER USER'S GUIDE
APPENDIX D

There are two special argument operators that can be useful in
constructing more complex macros. They are:

\Ln - Returns the length of the actual
argument n, in bytes.

\# - Returns the number of actual arguments
passed in a given macro call.

These special operators are most commonly used in conjunction with
RMA's conditional assembly facilities to test the validity of
arguments used in a macro call, or to change the way a macro works
according to the actual arguments used. When macros are performing
error checking they can report errors using the FAIL directive.
Here is an example using the "create™ macro given on the previous
page but expanded for error checking:

create MACRO

ifne \# - 3 must have exactly 3 args
FAIL create: must have three arguments
endce

ifgt \L1 - 29 file name can be 1 - 29 chars
FAIL create: file name too long

endce

leax \1,per get addr of file name string
lda #\2 set path number

1db #\3 set file access modes

059 I$CREATE

ENDM

‘-QQQ.QQQQQQQQAQQQQQ‘!%G‘»‘»‘)ﬂ‘ﬂ‘?‘sﬂﬂ‘aﬂﬂ‘\‘

MICROWARE C COMPILER USER'S GUIDE
APPENDIX D

MACRO AUTOMATIC INTERNAL LABELS

Sometimes it is necessary to use labels within a macro. Labels
are specified by m\e", Each time the macro is called, a unique
label will be generated to avoid multiple definition errors. Within
the expanded code "\@" will take on the form "@xxx", where xxx will
be a decimal number between 000 to 999.

More than one label may be specified in a macro by the addition
of an extra character(s). For example, if two different labels are
required in a macro, they can be specified by "\@A"™ and "\@B". 1In
the first expansion of the macro, the labels would be "@001A" and
"8001B", and in the second expansion they would be "@002A" and
"002B". The extra characters may be appended before the "\" or
after the man,

Here is an example of macro that uses internal labels:

testovr MACRO

cmpd #\1 compare to arg
bls \@A bra if in range
orce #1 set carry bit
bra \€B and skip next instr.
\ 64 andcc #$FE clear carry
\€éB equ * continue...

Suppose the first macro call is:
testovr $80

The expansion will be:

cmpd #$80 compare to arg

bls €0014 bra if in range
orce #1 set carry bit

bra 6001B and skip next instr.

60014 andce #$FE clear carry
@001B equ * continue...

If the second macro call is:
testovr 240

The expansion will be:

cmpd #240 compare to arg
bls €0024A bra if in range
orec #1 set carry bit
bra @002B and skip next instr.
80024 andce #$FE clear carry
€002B equ ® continue...

MICROWARE C COMPILER USER'S GUIDE
APPENDIX D

ADDITIONAL COMMENTS ABOUT MACROS

Macros can be an important and useful programming tool that can
significantly extend RMA's capabilities. In addition to creating
instruction sequences, they can also be wused to create complex
constant tables and data structures.

Macros can also be dangerous in the sense that if they are used
indiscriminately and unnecessarily they can impair the readability
of a program and make it difficult for programmers other than the
original author to wunderstand the program logic. Therefore, when
macros are used they should be carefully documented.

D-12

