DO HHSSAESHHHASHAIH A D

MICROWARE C COMPILER USER'S GUIDE
APPENDIX B

COMPILER PHASE COMMAND LINES

This appendix describes the command 1lines and options for the
individual compiler phases. Each phase of the compiler may be
executed separately. The following information describes the
options available to each phase.

cel & cc2 (C executives):
cc [options] file {file} [options]

Recognized file suffixes:

.C C source file
.a Assembly language source file
.r Relocatable module format file

Recognized options: (UPPER and lower case is equiv.)
-a Suppress assembly. Leave output in ".am"™ file.
-ezn Edition number (n) is supplied to c.prep for

inclusion in module psect and/or to e¢.link for
inclusion as the edition number of the linked

module.
-0 Inhibits assembler code optimizer pass.
-p Invoke compiler function profiler.
-r Suppress link step. Leave output in ",r" file.

-m=<size)> Size in pages (in kbytes if followed by a K) of

additional memory the 1linker should allocate to

object module.
-l=<path> Library file for linker to search before the
standard library.

-f=<{path> Overrride other output naming. Module name (in
object module) is the last name in the pathlist.

-f is not allowed with -a or -r.
-C Output comments in assembly language code.
-3 Suppress generation of stack-checking code.
-d<NAME> TIs equiv to #define <NAME> 1 in the

preprocessor. -d<NAME>=<STRING> is equivalent to

#define <NAME> <STRING>.

~n=<name> output module name. <name> is used to override
the -f default output name.

CC1 only:

-X Create, but do not execute c.com command file.
CC2 only:

-q Quiet mode. Suppress echo of file names.

Page B-1



MICROWARE C COMPILER USER'S GUIDE
APPENDIX B

c.prep (C macro preprocessor)
c.prep [options] <path)>

<path> 1is read as input. C.prep causes c.comp to generate a
psect directive with the last element of the pathlist and _c as
the psect name. If <path> is /d0/myprog.c, the psect name is
myprog_c¢. Output is always to stdout.

Recognized options:
-1 Cause c.comp to copy source lines to assembly
output as comments.
-E=<n>
-e=<{n> Use <n> as psect edition number.
~-D<NAME> Same as described above for cc1/ce?2.

c.comp (One-pass compiler)
c.comp [options] [<file>] [options]

If <file> 1is not present, c.comp will read stdin. Input text
need not be c.prep output, but no preprocessor directives are
recognized (#include, #define, macros etec.). Output assembly
code is normally to stdout. Error message output is always
written to stdout.

Recognized options:
-3 Suppress generation of stack checking code.
-p Generate profile code.
~0=<path> Write assembly output to <path>.

c.pass! (Pass One of Two-pass Compiler)
c.pass2 (Pass Two of Two-pass Compiler)

c.pass1 [options] [<file>] [options]
c.pass2 [options] [<file>] [options]

Command line and options are the same as c.comp. If the
options given to c.pass1 are not given to c.pass2 also, c¢.pass2
will not be able to read the c.pass1 output. Both c.pass? and
¢.pass2 read stdin and write stdout normally.

Page B-2



aesscessssseess s DT

MICROWARE C COMPILER USER'S GUIDE
APPENDIX B

c.opt (Assembly code optimizer)

c.opt [<inpath>] [<outpath>]

C.opt reads stdin and writes stdout. <inpath> must be present

if <outpath> is given. Since c.opt rearranges and changes

code, comments and assembler directives may be rearranged.
c.asm (Assembler)

c.asm <filed> [options]

C.asm reads <file> as assemble language input. Errors are

written to stderr. Options are turned on or off by the

inclusion of the option character preceeded by a '-'.

Recognized options:
-o=<path> Write relocatable output to path. Must be a

disk file.
-1 Write listing to stdout. (default off)
~-C List conditional assembly lines. (default on)
-f Formfeed for top of form. (default off)
-g List all code bytes generated. (default off)
-X Suppress macro expansion listing. (default on)
-e Print errors. (default on)
-S Print symbol table. (default off).
~-dn Set lines per page to n. (default 66).
-wn Set line width to n. (default 80).

c.link (Linker)
c.link [options] <mainline)> [<sub1> {<subn>} ] [options]

C.link turns c.asm output into executable form. All input
files must contain relocatable object format (ROF) files.
<mainline)> specifies the base module from which to resolve
external references. A mainline module is indicated by setting
the type/lang value in the psect directive non-zero. No other
ROF can contain a mainline psect. The mainline and all
subroutine files will appear in the final linked object module
whether actually referenced or not.

For the C Compiler, cstart.r is the mainline module. It is the
mainline module's job to perform the initialization of data and
the relocation of any data-text and data-data references within
the initialized data using the information in the object module
supplied by c.link.

Page B-3




MICROWARE C COMPILER USER'S GUIDE

APPENDIX B

(ec.link continued)

Recognized options:

-o=<path>

~-n=<name)
-1l=<path>

-E=<n>
-e=<n>

-M=<size>

Linker object output file must be a disk

file. The last element in <path> is used as the
module name unless overridden by -n.

Use <name)> as output module name,

Use <path)> as library file. A library file
consists of one or more merged assembly ROF
files. Each psect in the file is checked to see
if it resolves any unresolved references. If
so, the module is included in the final output
module, otherwise it is skipped. No mainline
psects are allowed in a library file. Library
files are searched in the order given on the
command line.

<n> is used for the edition number in the final
output module. 1 is used if -e is not present.
<size> indicates the number of pages (kbytes if
size is followed by a K) of additional memory,
c.link will allocate to the data area of the
final object module. If no additional memory is
given, c.link adds wup the total data stack
requirements found in the psect of the modules
in the input modules.

Prints linkage map indicating base addresses of
the psects in the final object module.

Prints final addresses assigned to symbols in
the final object module.

Link C functions to be callable by BASICQ9.
<ept> is the name of the function to be
transferred to when BASIC09 executes the RUN
command.

Allows static data to appear in a BASICQ09 call-
able module. It is assumed the C function call-
ed and the calling BASIC(09 program have provided
a sufficiently 1large static storage data area
pointed to by the Y register.

Page B-Y



asssassssasssansSAIARR A

MICROWARE C COMPILER USER'S GUIDE
APPENDIX B

USING AND LINKING TO USER DEFINED LIBRARIES

A library consists of a group of "C" procedures or functions that
have been separately compiled into Relocatable Object Files (ROF)
and subsequently merged into one library file.

If, hypothetically, you had created a set of higher level mathematic
functions, that you wanted to convert into a "C" library. First you
would separately compile each one using the -R option. Then you
would merge them all into one large library file. If you need to
scan the 1library file for available functions you can use the
example program "RDUMP.C"™ to inspect any "C" library file.

For example:
0S9:CC1 SIN.C COS.C TAN.C ARCOS.C =R
0S9:CC1 ARCSIN.C ARCTAN.C EXP.C LOG.C =R
0S9:CC1 NLOG.C SQRT.C SQR.C CUBE.C -R

Then you would:

0S9:MERGE SIN.R COS.R TAM.R ARCOS.R >TEMP1
0S9:MERGE ARCSIN.R ARCTAN.R EXP.R LOG.R >TEMP2
0S9:MERGE NLOG.R SQRT.R SQR.R CUBE.R >TEMP3
0S9:MERGE TEMP1 TEMP2 TEMP3 >TRIG.L

Then to use the library simply use the -1l=<pathlist> option in your
command line when you compile your programn.

When the linker is executed the pathlist specified will be searched
to resolve any references made to the functions within the library.
The linker searches all specified libraries in the order specified
before searching the standard library. The linker will resolve all
references on a first found basis. This means that the linker will
use the first procedure or function whose name matches a reference
to that name and will ignore any additional functions found that
have the same name.

Procedures or functions within a library that use other functions
within the same library should always appear first. For example, in
the above example if the "ARCSIN"™ routine used the "SIN"™ routine,
the "SIN" routine should be merged into the library file after the
"ARCSIN™. Another way of putting this is that all references to
other procedures within a library should be forward references.

Page B-5




MICROWARE C COMPILER USER'S GUIDE
APPENDIX B

Page B-6



