T

ASSEMBLER-16

PROGRAMMING
PACKAGE

CUSTOM MANUFACTURED IN U.S.A. BY RADIO SHACK, A DIVISION OF TANDY CORPORATION

Limited Warranty Information

o i CUSTOMER OBLIGATION

a. CUSTOMER assumes full responsibility that this computer hardware, (the "Equipment")
and/or software (the "Software") meets the specifications, capacity, capabilities, versatility,
and other requirements of CUSTOMER.

B. CUSTOMER assumes full responsibility for the condition and effectiveness of the
operating environment in which the Eguipment and Software is to function, and for its
installation.

II. RADIO SHACK LIMITED WARRANTIES AND CONDITIONS OF SALE

A. For a period of ninety (90) calendar days from the date of the Radio Shack sales
ticket, RADIO SHACK warrants to the original CUSTOMER that the Egquipment and the cassettes
and/or diskettes containing software programs are free from defects. This warranty is only
applicable to purchases from RADIO SHACK company-owned Computer Centers, retail stores and
through RADIQ SHACK franchisees and dealers. The warranty is void if the unit's case or
cabinet has been opened, or if the unit has been subjected to improper or abnormal use. If a
defect occurs during the warranty period, the defective Equipment must be returned to a Radio
Shack Computer Center, a Radio Shack retail store, participating franchisee or dealer for
repair, along with a copy of the sales ticket or lease agreement. The original CUSTOMER'S sole
and exclusive remedy in the event of a defect is limited to the correction of the defect by
repair, replacement, or complete refund, at RADIO SHACK'S election and sole expense. RADIO
SHACK has no obligation to replace or repair expendable items.

B. RADIO SHACK makes no warranty as to the design, capability, capacity, or suitability
for use of the Equipment or Software. Software is licensed on an "AS IS" basis, without
warranty. CUSTOMER'S exclusive remedy, in the event of a software defect is its repair or
replacement within thirty (30) calendar days of the date of purchase upon its return to a Radio
Shack Computer Center, Radio Shack retail store, participating franchisee or dealer along with
the sales ticket.

C. Except as provided herein no employee, agent, franchisee dealer or other person is
authorized to give any warranties of any nature on behalf of RADIO SHACK.

D Except as provided herein, RADIO SHACK MAKES NO WARRANTIES, INCLUDING WARRANTIES OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.

F. Some states do not allow limitations on how long an implied warranty lasts, so the
above limitation(s) may not apply to CUSTOMER.

III, LIMITATION OF LIABILITY

A. EXCEPT AS PROVIDED HEREIN, RADIO SHACK SHALL HAVE NO LIABILITY OR RESPONSIBILITY TO
CUSTOMER OR ANY OTHER PERSON OR ENTITY WITH RESPECT TO ANY LIABILITY, LOSS OR DAMAGE CAUSED OR
ALLEGED BE CAUSED DIRECTLY OR INDIRECTLY BY "EQUIPMENT" OR "SOFTWARE" SOLD, LEASED, LICENSED OR
FURNISHED BY RADIO SHACK, INCLUDING, BUT NOT LIMITED TO, ANY INTERRUPTION OF SERVICE, LOSS OF
BUSINESS OR ANTICIPATORY PROFITS OR CONSEQUENTIAL DAMAGES RESULTING FROM THE USE OR OPERATION
OF THE "EQUIPMENT" OR "SOFTWARE." 1IN NO EVENT SHALL RADIO SHACK BE LIABLE FOR LOSS OF PROFITS,
OR ANY INDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY BREACH OF THIS WARRANTY
OR IN ANY MANNER ARISING OUT OF OR CONNECTED WITH THE SALE, LEASE, USE OR ANTICIPATED USE OF
THE "EQUIPMENT" OR SOFTWARE".

NOTWITHSTANDING THE ABOVE LIMITATIONS AND WARRANTIES, RADIO SHACK'S LIABILITY HEREUNDER
FOR DAMAGES INCURRED BY CUSTOMER OR OTHERS SHALL NOT EXCEED THE AMOUNT PAID BY CUSTOMER FOR THE
PARTICULAR "EQUIPMENT" OR "SOFTWARE" INVOLVED.

B. RADIO SHACK shall not be liable for any damages caused by delay in delivering or
furnishing any Equipment or Software.

c. No action arising our of any claimed breach of this WARRANTY or transactions under
this WARRANTY may be brought more than two (2) years after the cause of action has accrued or
more than four (4) years after the date of the Radio Shack sales ticket for the Equipment or
Software whichever first occurs.

D. Some states do not allow the exclusion or limitation of incidental or consequential
damages, so the above limitation(s) or exclusion(s) may not apply to CUSTOMER.

IV. RADIO SHACK SOFTWARE LICENSE

RADIO SHACK grants to CUSTOMER A non-exclusive, paid-up license to use the RADIO SHACK
application or system Software and/or the RADIO SHACK system Software (including firmware)
installed in or provided with the Equipment on one computer, subject to the following
provisions:

A. Except as otherwise provided in this Software License, applicable copyright laws
shall apply to the Software.

B. Title to the medium on which the Software is recorded (cassette and/or diskette) or
stored (ROM) is transferred to CUSTOMER, but not title to the Software.

C. CUSTOMER shall not use, make, manufacture, or reproduce copies of Software except for
use on one computer and as is specifically provided in this Software License.

D. CUSTOMER is permitted to make additional copies of the Software only for backup or
archival purposes or if additional copies are required in the operation of one computer with
the Software, but only to the extent the Software allows a backup copy to be made.

E. CUSTOMER may resell or distribute unmodified copies of the Software provided CUSTOMER
has purchased one copy of the Software for each one sgold or distributed. The provisions of
this Software License shall also be applicable to third parties receiving copies of the
Software from CUSTOMER.

F. All copyright notices shall be retained on all copies of the Software.

V. APPLICABILITY OF WARRANTY

A. The terms and conditions of this WARRANTY are applicable between RADIO SHACK and
CUSTOMER to either a sale of the Equipment and/or Software License to CUSTOMER or to a
transaction whereby RADIO SHACK sells or conveys such Equipment and/or Software to a third
party for lease to CUSTOMER.

B. The limitations of liability and warranty provisions herein shall insure to the
benefit of RADIO SHACK, the owner and/or licensor of RADIO SHACK Software to RADIO SHACK, and
any author or manufacturer of computer hardware or Egquipment sold or Software licensed by RADIO
SHACK .

VII. STATE LAW RIGHTS

The warranties granted herein give the original CUSTOMER specific legal rights, and the
original CUSTOMER may have other rights which vary from state to state.

ASSEMBLER-16

PROGRAMMING PACKAGE

TRSDOS™-II oOperating System: Copyright 1982 Tandy Corporation. All
Rights Reserved.

TRSDOS™™16 Operating System: Copyright 1982 Ryan-McFarland Corporation.
All Rights Reserved. Licensed to Tandy Corporation.

EDIT16 Software: Copyright 1982 Ryan-McFarland Corporation. All Rights
Reserved. Licensed to Tandy Corporation.

ASMl6 Software: Copyright 1982 Ryan-McFarland Corporation. All Rights
Reserved. Licensed to Tandy Corporation.

LINK16é Software: Copyright 1982 Ryan-McFarland Corporation. All Rights
Reserved. Licensed to Tandy Corporation.

TRS-8¢® Assembler-16 Programming Package: Copyright 1982 Tandy
Corporation. All Rights Reserved.

Reproduction or use without express written permission from Tandy Corporation,
of any portion of this manual is prohibited. While reasonable efforts have
been taken in the preparation of this manual to assure its accuracy, Tandy
Corporation assumes no liability resulting from any errors or omissions in this
manual, or from the use of the information obtained herein.

ASSEMBLER-16 INTRODUCTION

TRS-80°

TO OUR CUSTOMERS...

The Assembler-16 Programming Package contains three systems
for developing programs in MC68@@@ object code:

The EDITOR (EDIT16) which allows you to create
and edit "source" assembly language programs

The ASSEMBLER-16 (ASM16) which assembles
the source program into an intermediate 684@@
object code program.

The LINKER (LINK1l6) which links the intermediate
object code program into an absolute executable
program file.

Also, as part of the TRSDOS-16, you can use:

The DEBUGGER (DEBUG) for debugging the
absolute program.

Radie fhaek

ASSEMBLER-16 INTRODUCTION

TRS-80 °

ABOUT THIS MANUAL
This manual contains two sections:

Section 1/ Operations explains how to use the
four systems.

Section 2/ Assembler-16 '‘Reference Guide references
the assembly language required by the Assembler-16.

The terms and notations the manual uses are:

ALL CAPS
indicates what will appear on your screen or what you
should type.

<KEYBOARD CHARACTER>
indicates keys you press.

lowercase underlined
represents words, characters, or values to be supplied by
you or the system.

filespec
is a standard TRSDOS-16 file specification, described in

the TRSD0S-16 Manual, having the general form:
filename/ext.password:drive(disk name)

The notations and terms accepted by the Assembler-16 are in
the beginning of Section 2.

Radio fhaek

dan

-1
ASSEMBLER-16 TRS-80 °©

INTRODUCTION

Section 1/ OP

Chapter
Chapter
Chapter
Chapter
Chapter

Section 2/ AS

Chapter
Chapter
Chapter
Chapter
Chapter

APPENDICES

Appendix
Appendix
Appendix
Appendix
Appendix

TABLE OF CONTENTS

ERATION OF THE ASSEMBLER-16

17 SEmMpLE SeASEON i: suweeiving § sasaeving i seell
2/ The EAitor (EDIT16)...ceveeccecccceseesld
3/ The Assembler-16 (ASM16).....eeeeeeoe..47
4/ The Linker (LINKL6)...v.eeeeecoaeasessnad9
5/ The Debugger (DEBUG)......se.. DI A I .

SEMBLER-16 REFERENCE GUIDE

6/ 68g@P Organization..... e siaie 93
7/ The Assembler-16 Program..... s@e § walared k9
8/ Inakructiong ... cosseniis s naeevis s 4 eesel2d
97 Directlves..ivisssinsensissonsiss seawa2?l
19/ Priveleged Instructions..............383

&) Linker Output POLMAE... ssesses s seieeadld
B/ MEWOLY MADws o sasisoni s & sseonss s s goosaIe]
C/' Banple: Programsys.ess i s saveesi & seeaes 328
D/ The Configurator Command File........336
E/ Additional 68@@@ Instructions........342

Radie fhaek

W
a
=
. M
-
1y
.
N]
"
.
S
. :
M N
" L3 o
-
L
&
-
.
bl a a
] - N
K . =
‘I! - = A -"
- &
a s

dn

ASSEMBLER-16 SAMPLE SESSION

TRS-80 °

CHAPTER 1

SAMPLE SESSION

Radio fhaek

ASSEMBLER~-16 SAMPLE SESSION

TRS-80°

CHAPTER 1/ SAMPLE SESSION
This chapter shows how to use the Assembler-16 Programming
Package to create, debug, and execute a 68@@@ object
program,
This is for demonstration purposes only. For complete

information on each system's commands, listings, and error
messages, see the appropriate chapter.

DEVELOPING A 688@@ PROGRAM
To develop a 68f@@ program file, follow these steps:

1. Create one or more source program files
(with the Editor)

2. Assemble the source files into intermediate
object files (with the Assembler)

3. Create a linker control file (with the Editor)
4, Using the control file, link the intermediate
files into an absolute program file (with the
Linker)
1. Creating a Source File
To create the source file, type:
EDIT16 <ENTER>
which loads the Editor. At the C? prompt type:
IN <ENTER>

which enters the insert mode. At the I? prompt, insert this
program:

BEGIN LDA .Af@,SVC BLOCK *]load svc block
MOVW @Aagd, #8 *store vdchar svc
MOVW 6@AHQ, #65 *store 'A
BRK #4 *execute vdchar
[
Radio fhaek

11

ASSEMBLER-16 SAMPLE SESSION

TRS-80°
LDA .Af,SVC BLOCK *load svc block
MOVW @Ad,#264 *store jp2dos svc
BRK #0 *execute jp2dos svc
SVC BLOCK
RDATAB 32,8 *reserve svc block
END BEGIN

Use <ENTER> to enter each line; <TAB> to tab between
columns. (The Editor displays the <TAB> as an + character
rather than tabbing.)

This assembly language program contains Assembler-16
instructions, described in Section II, and TRSDOS-16
SVCs, described in the TRSDOS-16 Operating System Manual.

If you need to edit the program, see Chapter 2.
Otherwise, save it and exit the Editor with:

! <ENTER>
SAVE SAMPLE/SRC <ENTER>
QUIT <ENTER>
You should now have a source disk file named SAMPLE/SRC.
Note: After using an SVC, you should normally
check offsets 2 and 3 for an error code. For
simplicity, this program does not do this.
2. Assembling an Intermediate File
To assemble SAMPLE/SRC, type:
ASM16 SAMPLE <ENTER>
which causes the Assembler to load and then assemble
SAMPLE/SRC into "intermediate", relocatable object code.

It then saves the intermediate code on disk as a file
named SAMPLE/OBJ.

3. Creating a Control File

To create a linker control file, load the Editor and
insert this program:

INCLUDE SAMPLE

Radie fhaek

12

ASSEMBLER-16 SAMPLE SESSION

TRS-80 °

END

INCLUDE and END are directives controlling the Linker
(discussed in Chapter 4).

SAVE this program as a file named SAMPLE/CTL and exit the
Editor.

4, Linking an Absolute Program File

To link the program file, type (at TRSDOS-16 Ready):
LINK16 SAMPLE <ENTER>

which loads the Linker and then loads SAMPLE/CTL.

The Linker links the one file which SAMPLE/CTL directs it

to INCLUDE -- SAMPLE/OBJ -- to absolute addresses

beginning with address @g@@@. (You could INCLUDE other

intermediate files, as well.)

The Linker saves this as an executable program file named
SAMPLE.

Refer to Chapter 4 for a complete listing of all the
options to the linker command.

EXECUTING THE PROGRAM

Since SAMPLE is an absolute, executable program file, you
can execute it from the TRSDOS-16 Ready mode. At
TRSDOS-16 Ready, type:

SAMPLE <ENTER>

TRSDOS-16 loads and executes SAMPLE beginning at the
"relative" address of @@g@gd.

Note that address @@P@ is relative. TRSDOS-16 loads
itself and the Debugger, if present, in an area of memory
that is "invisible" to the user. The relative address of
pP@@ is actually the first address available after
TRSDOS-16 and the Debugger.

Radio fhaek

13

ASSEMBLER-16 SAMPLE SESSION

TRS-80 °

Because TRSDOS-16 uses relative addresses, you need not
be concerned about loading your program over system
memory.

DEBUGGING THE PROGRAM

If you need to debug the program, you can use the
Debugger. At TRSDOS-16 Ready, type:

DEBUG ON <ENTER>
SAMPLE <ENTER>

which turns on the Debugger and then loads SAMPLE. If
the Debugger does not activate, you will need to
configure it into system memory. Appendix D explains
how.

Once SAMPLE is loaded into the Debugger, you can use any
of the Debugger commands. For example:

N <ENTER>
executes the SAMPLE's first instruction.
V 1A <ENTER>
displays the contents of addresses @@1A through @g@29.
To exit the Debugger and return to TRSDOS-16 Ready, type:

O <ENTER>

Radie fhaek

14

ASSEMBLER-16 THE EDITOR

TRS-80°

CHAPTER 2

THE EDITOR

Radio fhaek

15

ASSEMBLER-16 THE EDITOR

TRS-80 °

CHAPTER 1/ THE EDITOR

The Editor is a set of commands that allows you to create
and edit text files,

You can use the Editor with:
1. The Assembler-16
2. The COBOL Compiler
3. The TRSDOS-16 DO command and Configuration command
file
It allows you to:

1. Create files.

You can write your own programs and save them to disk for
future use.

2. Edit existing files.
You can change the program lines or contents of a file.
3 Combine files,.

You can combine multiple programs together into one program.

LOADING THE EDITOR
This command, typed at TRSDOS-16 Ready, loads the Editor:

EDIT16 source filespec {options}

source filespec is optional. It causes the Editor to
CONCATenate the specified source filespec.

The options are:

W=drive tells the Editor which drive to use as its
work file.
M=drive tells the Editor which drive to use as a

"scratch file" during a MOVE.

Radie fhaek

17

ASSEMBLER-16 THE EDITOR

TRS-80 °

WORK AND SCRATCH FILES

W=drive

As the Editor creates or edits a program, it does not use
its own memory to do so. It stores your program on disk in
a temporary "work file". You must have enough space on disk
for this file, otherwise you get a disk-full error.

The W=drive option tells the Editor which diskette to use
for the work file. 1In this way you can save your good
diskettes from excessive writes and deletions.

If drive is not a valid drive specification, EDIT1l6 will
not load and you will be returned to TRSDOS-16 Ready.

M=drive
When you use the Editor's MOVE command, the Editor creates
another temporary disk file called a "scratch file".

The M=drive option tells the Editor which diskette to use
as its "scratch file". Again, this will save wear and tear
on your good diskettes and files.

If drive is not a valid drive specification, the Editor
will use the first available drive for the scratch file.

SAMPLE SESSION

To enter the Editor, type:
EDIT16 <ENTER>
and the Editor displays the prompt:

c--lotoonnono-.looo--t L)

This is the Editor's Command mode. You can use any of the
Editor's commands in this mode.

To create a program in the Editor, you must get in the
Insert mode. At the C? prompt, type:

IN <ENTER>

Radio fhaek

18

ASSEMBLER-16 THE EDITOR

TRS-80°

The Editor displays the I? prompt =-- indicating the Insert
mode. Type in the following program lines. The asterisk
(*) indicates comment lines:

* THIS IS A PROGRAM <ENTER>

* THAT WILL DEMONSTRATE <ENTER>
* ALL OF THE TRSDOS-16 <ENTER>
* EDITOR'S COMMANDS <ENTER>
<ENTER>

When you press <ENTER>, the Editor exits the Insert mode.
The Editor keeps this file in its work file until you delete
the lines, SAVE the file, or exit the Editor.

To see what you've just entered in the Editor's work file,
type:

LIST ALL <ENTER>

and the Editor returns a complete program listing:

THIS IS A PROGRAM
THAT WILL DEMONSTRATE
ALL OF THE TRSDOS-16
EDITOR'S COMMANDS

* % ¥ *

Notice there are no line numbers in this program. To give
it line numbers, you must first save your program by typing:

SA SAMPLE1l/PRO <ENTER>
This writes the program as SAMPLEl/PRO to disk.

After saving the program, delete all information from the
Editor's work file by typing:

DE ALL <ENTER>

(The Editor prompts you with CANCEL = 'X'; type <ENTER> to continue
the DElete command. See DELETE for details.)

Next type:

CO SAMPLE1l/PRO <ENTER>

Radio fhaek

19

ASSEMBLER-16 THE EDITOR

TRS-80 °
to load -- CONCATenate —-- the program into the Editor's work
file. (See the appropriate Editor's command for details on

its use.)
Your program is now in the Editor's work file with numbers:

* THIS IS A PROGRAM

* THAT WILL DEMONSTRATE
* ALL OF THE TRSDOS-16
* EDITOR'S COMMANDS

=W

An alternate way to load your program into the work file
(after you've SAVEd it) is to exit the Editor. Type:

QU <ENTER>

Then reload the Editor and the file at the same time by
typing:

EDIT16 SAMPLEl/PRO <ENTER>

LINE NUMBERING

The Editor provides for two types of line numbrs:
é relative line numbers
. absolute line numbers
Relative line numbers
When you initially create a program, the Editor does not
assign line numbers. You can reference these unnumbered

lines via relative line numbers.

Relative line numbers are:

$ the current line
$-n the current line minus n lines
$+n the current line plus n lines

For example, to refer to a line five lines before the
current line, use the relative line number $-5. To refer to
a line nine lines after the current line, use $+9.

Radie fhaek

20

ASSEMBLER-16 THE EDITOR

TRS-80 °

Absolute line numbers

An'absolgte line number is the actual number which the
Editor gives a line when you first CONCATenate the file into
a work file.

An "absolute line number" can be:

. a whole number, including zero (@)
. START
END

Whenever the Editor concatenates a file into an empty work
file, it assigns each line a whole number beginning with 1.

Although the Editor never assigns a line §, you can use it
to insert lines at the beginning of the program. The
commands CONCATenate, MOVE, and INSERT are the only ones
that recognize a reference to line #.

START and END refer specifically to the first or last line
of the program.

REFERENCING PROGRAM LINES

The following commands allow you to specify one line or a
group of lines.

line

refers to a single line of the program. This single line
can be either an "absolute line number" or a "relative line
number".

Some examples of line as an absolute line number are:

START Refers to first line of program

23 Refers to line number 23

1@58 Refers to line number 1@58

END Refers to last line of program

2 Refers to the line preceding the first

line of the program
Some examples of line as a relative line number are:

$ Refers to the last line the work file

Radie fhaek

21

ASSEMBLER-16 THE EDITOR

TRS-80 °
displayed -- the current line
$-7 Refers to the line that is seven lines
before current line.
S$+6 Refers to line that is six lines after

the current line.

lines
When you see lines in the command's syntax, you can enter:
. One line
to indicate a single line only.
. ALL lines
to indicate every line of the work file.
. A pair of lines
to indicate all lines between and including the pair of
lines. To separate the line pair, use a comma (,), period

(.), or hyphen (-).

When you specify a pair of lines, you cannot mix absolute
and relative line numbers. For example:

2-4 and $-2,8
are valid pairs of lines to reference. Both 2 and 4 are
absolute line numbers. Both $-2 and $ are relative line
numbers,

$,2 and START-$

are not valid because $ and 2 and START and $§ reference
both relative and absolute line numbers within one pair.

When specifying a pair of lines in a command, be sure to
put the earliest line in the program first. You can use the
pair $-6,$-4, but not $-4,$-6.

Some more examples of pairs of lines are:

START, 23 Refers to all lines from the first to
line 23.
971-1423 Refers to lines 971 through 1@23.
@
Radio fhaek

22

ASSEMBLER-16 THE EDITOR
TRS-80 °
ALL Refers to the entire contents of the
work file.
$-7,8-2 Refers to the lines from the seventh

before the current line to the
second before the current line.

146 ,END Refers to lines 146 to the end.

$.$+3 Refers to the lines from the current
line to the line three lines after the
current line.

START . END Refers to the entire contents of the
work file.

SPECIFYING STRINGS

Three more terms to know when specifying a string to search
for are:

delimiter indicates a character used to mark the
beginning and end of distinct variables.

string indicates a set of characters. These can be
any alphanumeric characters including
blanks.

G indicates a Global search. When G is

specified, the Editor will search for each
occurrence of the specified string within
the given range. Without G, the Editor
stops at the first occurrence of string.

USING THE <BREAK> KEY

You can use the <BREAK> key in the Editor with these commands:

CONCAT SAVE
LIST SEARCH
MOVE STRING
PRINT

When you press <BREAK> with any of these commands, the
Editor will display the last line of operation and will
return to the command mode -- C? prompt.

NOTE: Be careful when using <BREAK> with the SAVE and
STRING commands. If you press <BREAK> while executing one

Radio fhaek

23

ASSEMBLER-16 THE EDITOR

TRS-80°

of these commands, part of the work file (with STRING) or
the disk file (with SAVE) will be altered.

ENTERING AN EDITOR COMMAND

The following pages list all the Editor's commands. You
may enter them by typing either:

= the entire command (SAVE FILE <ENTER>)
3 the first two letters of the command (SA FILE
<ENTER)

Most commands allow you to specify an expression.

If the expression begins with an alpha-character (A through
Z), you must leave at least one blank space between the
command and the expression (SA NEWFILE rather than
SANEWFILE).

If the expression begins with a number, you do not need to

type an intervening space (both IN 10@ and IN1@@ are
correct).

Radio fhaek

24

ASSEMBLER-16 THE EDITOR

TRS-80 °

CHANGE
CH line
allows you to change line.

line is optional; if omitted, the Editor displays the
current line for you to change.

Once you enter this command, the Editor displays the I?
prompt. To change the line, type the new line followed by
<ENTER>.

If you decide not to change the line, press <ENTER>.

Examples

With our sample program inserted, type (at the C? prompt):
CH 1 <ENTER>

and the Editor displays:

1 * THIS IS A PROGRAM
I?

Change line 1 by typing:
* THIS IS A NEW PROGRAM <ENTER>

The Editor then displays the new line 1 and returns to the
Editor's command mode.

Radie fhaek

25

ASSEMBLER-16 THE EDITOR

TRS-80 °

CONCAT

CO (line) filespec (lines)

inserts (CONCATenates) the contents of filespec into the
Editor.

line is optional and can only be used when the work file
already contains a program. It indicates where in the work
file to insert filespec. If omitted, filespec is

inserted at the current position.

lines is optional and tells the Editor to only CONCATenate
the specified lines from filespec. If omitted, the entire
file is inserted.

Both line and lines must be enclosed in parentheses ().

Examples

Before entering this example, delete everything in the work
file by typing:

DE ALL <ENTER>
To CONCATenate SAMPLE1l/PRO into the work file, type:
CO SAMPLEl/PRO <ENTER>

The Editor loads the file SAMPLE1l/PRO from disk, displaying
the last line with its new line number.

To see the entire listing of the file, type LI ALL <ENTER>
and the Editor displays:

THIS IS A PROGRAM
THAT WILL DEMONSTRATE
ALL OF THE TRSDOS-16
EDITOR'S COMMANDS

= W -

*
*
*
*
To CONCAT lines into a program already in the work file,
type:

CO (2) SAMPLE1l/PRO (2-3) <ENTER>

The Editor inserts lines two and three of SAMPLEl/PRO after
the second line of the current program in the Editor.

Radie fhaek

26

ASSEMBLER-16 THE EDITOR

TRS-80 °

(After the Editor CONCATenates lines, it displays the last
of the lines being inserted.)

Type LI ALL <ENTER> to see all of the Editor's contents:

1 * THIS IS A PROGRAM

2 * THAT WILL DEMONSTRATE
* THAT WILL DEMONSTRATE
* ALL OF THE TRSDOS-16

3 * ALL OF THE TRSDOS-16

4 * EDITOR'S COMMANDS

When the Editor concatenates lines of a file into a program
already in a work file, it doesn't add line numbers to the
most recently CONCATenated lines.

Radio fhaek

27

ASSEMBLER-16 THE EDITOR

TRS-80 °

DELETE
DE lines
deletes lines.

If you do not specify lines, the Editor deletes the
current line.

If you specify lines as ALL, the Editor prompts you with:
CANCEL = 'X'
Type X <ENTER> to cancel the DElete command. If you really
do want to delete all the lines, press <ENTER>.
Examples
With the Editor's current position at the END of the work
file, you can delete the two lines we inserted in the last
example by typing:
DE $-3,5-2 <ENTER>
The program will again be:
* THIS IS A PROGRAM
* THAT WILL DEMONSTRATE

* ALL OF THE TRSDOS-16
* EDITOR'S COMMANDS

=W~

To delete the entire program, type:
DE ALL <ENTER>

Before actually deleting the lines, the Editor prompts:
CANCEL = 'X!

Type X <ENTER> to cancel the DElete ALL command. (If you
really do want to delete all the lines, press <ENTER>).

Radio fhaek

28

ASSEMBLER-16 THE EDITOR

TRS-80°

INSERT
IN line

enters the Insert mode, displays the I? prompt, and allows
you to insert lines after the referenced line.

To terminate the Insert mode, type ! <ENTER> or simply
<ENTER> at the beginning of an Insert line. The Editor will
display the last line that you inserted, followed by the
command mode prompt -- C?.

If you don't specify line, insertion begins after the
current line.

Examples

If you have the sample program entered in the Editor and
want to insert new lines after the fourth line, type:

IN 4 <ENTER>
The Editor displays:

4 * EDITOR'S COMMANDS

You are now in the Insert mode and can now insert lines
after line 4. Type:

BEGINKTAB>LD<TAB>.Af, #TABLE<TAB>*load start of table <ENTER>
<TAB>BNE<TAB>DONE<TAB>*if no match go to DONE <ENTER>
<ENTER>

When you press the <TAB> key in the Insert mode, you'll see
+ . This represents the <TAB> key. The tabstops are
preset to multiples of eight, i.e., tabstops at 8, 16, 24,
32, etc. (To set your own tabs, see the TAB command later
in this chapter.)

To see the tabbed inserted lines and the rest of the
program, at the C? prompt, type:

LI ALL <ENTER>

and the Editor displays:

Radie fhaek

29

ASSEMBLER-16 THE EDITOR

TRS-80 °

* THIS IS A PROGRAM

* THAT WILL DEMONSTRATE

* ALL OF THE TRSDOS-16

* EDITOR'S COMMANDS

BEGIN LD .Af, $#TABLE *load start of table

= w o

BNE DONE *if no match go to DONE

To insert lines at the beginning of a program, type:
INg <ENTER>

you'll see the I? prompt. You can now insert lines which
will precede the first line of the program. For example,
type:

* LET'S LOOK AT THE EDITOR <ENTER>
<ENTER>

This inserts * LET'S LOOK AT THE EDITOR as the first line of
the sample program.
To insert a line at the end of the program, type:
IN END <ENTER>
You can now add lines at the end of the program. Type:

<TAB>MOV<LTAB>.D2,.Dg+<TAB>*otherwise move element number
<ENTER>

to enter one more line.
Save this new program by typing:

SAVE SAMPLE2/PRO <ENTER>

Radie fhaek

39

<ENTER>

ASSEMBLER-16 THE EDITOR

TRS-80 °

LIST
LI lines

displays lines and positions the Editor to the last line
listed.

lines is optional; if omitted, the Editor lists the
current line.

If you attempt to list more than 21 lines (more than the
screen can display at one time), the Editor displays the
first 21 lines and then returns the message:

CANCEL = 'X!
If you press <ENTER>, the display will continue. If you
type X <ENTER>, the Editor stops the LISTing and returns to
the command prompt.
Examples

LI ALL <ENTER>

returns a complete listing of the current program. In this
case, the Editor displays:

* LET'S LOOK AT THE EDITOR
1 * THIS IS A PROGRAM
2 * THAT WILL DEMONSTRATE
3 * ALL OF THE TRSDOS-16
4 * EDITOR'S COMMANDS
BEGIN LD .AQ, #TABLE *load start of table
BNE DONE *if no match go to DONE
MOVE .D2,.D@ *otherwise move element number

To obtain a listing of the first unnumbered line at the
beginning of the program, type:

LIST START <ENTER>
and the Editor returns this listing:

* LET'S LOOK AT THE EDITOR

Radie fhaek

31

ASSEMBLER-16 THE EDITOR

TRS-80°

MOVE
MO (lines) TO line
duplicates lines and places them after line.

lines is optional. If omitted, the Editor moves the
current line.

line is optional. If omitted, the Editor places lines
after the current line.

You must enclose lines with parentheses (). If you do
not, the Editor returns an error.

Note: Use the DELETE command (See DELETE) if you want the
MOVEd line(s) deleted from the original position in the
file.

Examples

MO (START)TO END

moves the first line of the program to the end of the
program,

MO (1-2)TOS

moves all lines between and including lines 1 and 2 to
follow the current line.

MO($-2)TO $

moves the line two places before the current line to follow
the current line.

MO TO 4
moves current line to follow line 4.
MO

moves current line to follow current line. (Has the effect
of repeating the current line).

Radie fhaek

32

ASSEMBLER-16 THE EDITOR

TRS-80 °

Use the DElete command to get rid of any of the lines you
MOved that you don't want duplicated in your program. First
LI ALL lines, then type:

DES$-3,$ <ENTER>
DE$-3 <ENTER>
DE$-3 <ENTER>

This returns the program to the contents we will reference
in the remainder of this section.

Radio Sfhaek

33

ASSEMBLER-16 THE EDITOR

TRS-80 °

POSITION

PO +
PO -

=}=/

moves the Editor's current position plus (+) or minus (-)
n lines and then displays the new current line.

Typing PO is optional; if you simply type +n or -n, you
can position the Editor.

n is optional. If you specify it, n can be any whole
number. 1If n is greater than the number of lines in the
program, the Editor returns:

TTEM NOT FOUND
and moves the current position to the beginning or end of
the program (beginning if you specified minus (-), end if
you specified plus (+)).
If you do not specify n, the Editor uses Ll.
Once you enter the POsition command, whenever you simply
press <ENTER>, the Editor will move one line forward or
backward, depending on the POsition command you originally
entered. To exit this command, enter another of the
Editor's commands.
Examples

Using the sample program, SAMPLE2/PRO, position the Editor
to the end by listing the entire program. Type:

LTI ALL <ENTER>

and the Editor displays the current program:

* LET'S LOOK AT THE EDITOR
1l * THIS IS A PROGRAM
2 * THAT WILL DEMONSTRATE
3 * ALL OF THE TRSDOS-16
4 * EDITOR'S COMMANDS
BEGIN LD .Af, $TABLE *load start of table
BNE DONE *if no match go to DONE
MOV .D2,.Df *otherwise move element number
®
Radio fhaek

34

ASSEMBLER-16 THE EDITOR

TRS-80 °

The Editor's position at this time is the last line of the
program. To position the Editor to line 2, type:

PO -5 <ENTER>
The Editor displays:

2 * THAT WILL DEMONSTRATE

CRs wwmowimuinm & wosasmimms & seewenEe W el e
To position the Editor to line number 1, type:
- <ENTER>
and the Editor now displays:

1 * THIS IS A PROGRAM

C?..0o---to---.---.t.-..ctottc--o

Radio fhaek

35

ASSEMBLER-16 THE EDITOR

TRS-80 °

PRINT
PR lines
prints lines on the printer.

lines is optional. If you omit lines, the Editor prints
only the current line.

If lines include absolute line numbers, the Editor prints
them also.

Before printing, PRINT moves the paper to the TOP OF FORM.

Examples
PR 2 <ENTER>

prints line 2 on the printer.
PR ALL <ENTER>

prints the entire listing on the printer.
PR <ENTER>

prints the current line on the printer.

Radio fhaek

36

ASSEMBLER-16

TRS'BD ® THE EDITOR

QUIT
QU
terminates the Editor and returns to TRSDOS-16.

If you attempt to QUit the Editor without SAVEing the
current work file, you'll see the prompt:

NO FILES SAVED
QUIT EDITOR? Y OR N

This warns you that you haven't saved the file you were
working on. If you don't want to SAVE it, type:

Y <ENTER>
The Editor then terminates and returns to TRSDOS-16 Ready.

If you do not want to exit the Editor without SAVEing your
program, type:

N <ENTER>
You will now see the last line, followed by the Editor's
command prompt.
Examples

QU <ENTER>

(if you have saved your file) terminates the Editor and
displays:

EDITOR TERMINATED

PRSDOS=16 REAAV s & vamsaie & & sveiawius s & awaoean s 8 wene e

Radio fhaek

37

ASSEMBLER-16 THE EDITOR

TRS-80 °

RELABEL
RE lines

Sequentially reorders the local label numbers between two
global label definition lines. (See the Assembler Reference
Section for details on local and global labels.)

If either of the lines you indicate does not contain a
global label definition, the Assembler will use the next
line which does contain one.

When the Editor alters lines, it displays all altered
lines followed by the last altered line. That is, it
repeats the last line.

Use this command only on source text that uses the local
label format.

Examples

Type in the example program using local and global labels.
(Be sure to first delete all lines currently in the Editor.)

S$1<TAB>DATALLTAB>1f# <ENTER>
GLOBAL ONE <ENTER>
S$7<TAB>BE<TAB>$5 <ENTER>
S$5<TAB>BL<TAB>$7 <ENTER>
GLOBAL TWO <ENTER>
SP<TAB>NOP <ENTER>
<TAB>LDA<KTAB>.Af#,$1 <ENTER>
GLOBAL THREE <ENTER>

! <ENTER>

(After typing in this program, SAVE it, DElete ALL lines in
the work file, and then CONCATenate it to have the Editor
give it line numbers.) When you LIst it, the program now
appears as:

1 51 DATAL 14

2 GLOBAL ONE

3 §7 BE $5

4 $5 BLT $7

5 GLOBAL TWO

6 S¢ NOP

7 LDA .Af,S1
8 GLOBAL THREE

Radie fhaek

38

THE EDITOR

ASSEMBLER-16 TRS-80 °©

The Editor would execute the following commands in these

ways:
RE1,8 <ENTER>

causes the Editor to relabel all the local labels in the

above program.

(After executing each RElabel command, you'll have to first

DElete all the contents of the work file, then
re—-CONCATenate the program to see the effect of each

RELABLE.

RE 2 <ENTER>
It returns **ITEM

The Editor does not relabel any lines.
NOT FOUND** followed by the line that you specified.

RE 1,2 <ENTER>
The Editor returns **ITEM NOT FOUND**

No relabeling occurs.
followed by the last line you specified.

RE 1~3 <ENTER>
causes the Editor to relabel GLOBAL ONE's range only.

RE 2,5 <ENTER>
causes the Editor to relabel GLOBAL ONE's range only.

RE 2-6 <ENTER>
causes the Editor to relabel GLOBAL ONE's and GLOBAL TWO's

ranges.
RE 3.7 <ENTER>
causes the Editor to relabel GLOBAL TWO's range only.

RE ALL <ENTER>
causes the Editor to relabel each GLOBAL RANGE in the

program,
When you RELABEL all of the program, it should be:
1 s1 DATAL 19

2 GLOBAL ONE

Radio fhaek

39

ASSEMBLER-~-16 THE EDITOR

TRS-80 °
3 s1 BE $2
4 S2 BLT sl
5 GLOBAL TWO
6 $1 NOP
) LDA +Af,S$1
8 GLOBAL THREE
&
Radio Sfhaek

49

ASSEMBLER-16 THE EDITOR

TRS-80 °

SAVE

SA (lines) filespec

saves filespec to disk.

lines is optional. If you omit it, the Editor saves all
of the current program.

If you do not specify filespec, the Editor saves the
program under the most recently CONCATenated or SAVEd
filespec. Before doing so, it displays the filename,
followed by "CANCEL = 'X'". To cancel the SAve, type X
<ENTER>; to continue the SAVE, press <ENTER>.

Examples

With the sample program -- SAMPLE2/PRO -- CONCATenated in
the work file, type:

SAVE SAMPLE2/PRO <ENTER>

The Editor SAVEs the program to disk, writing over any
existing file with the same name.

To SAVE only the first two lines of the program, type:
SA (1,2) SAMPLE2/PRO <ENTER>
If you type:
SA <ENTER>
the Editor prompts you with:
SAMPLE2/PRO
CANCEL = 'X'

If you want to discontinue the SAVE, type X <ENTER>; if you
want to continue the SAVE, press <ENTER>.

Radie fhaek

41

ASSEMBLER-16 THE EDITOR

TRS-80 °

SEARCH

SE (lines)delimiter string delimiterG

causes the Editor to search for string within the range of
lines.

lines is optional. If omitted, the Editor SEarches the
current line only. You must enclose lines in parentheses
A

G is optional. When used, it tells the Editor to list all
occurences of string within the range of lines. If not
included, the Editor lists only the first occurrence of

string.

Examples

CONCATenate SAMPLE2/PRO into the empty Editor (every line
has an absolute line number), and type:

SE (1-2)*LOOK* <ENTER>
"*¥" is the delimiter. The Editor searches lines 1 and 2 for
the string LOOK. Since you didn't specify G, the Editor
displays only the first line containing LOOK.

SE (ALL)*BNE*G <ENTER>
The Editor searches all lines of the program for the string

BNE and displays every line containing it followed by the
current line.

Radio fhaek

42

ASSEMBLER-16 THE EDITOR

TRS-80 °

STRING

ST (lines)delimiter stringl delimiter string2 delimiter G

searches lines of the program for stringl and replaces
it with string2.

lines is optional; if omitted, the current line is used.
You must enclose lines with parentheses ().

G is optional. When used, it tells the Editor to substitute
stringl with string2 at every occurence of stringl within the
range of lines. If you don't specify G, the Editor substitutes
string2 for stringl at the first occurrence within the range of
lines.

stringl is optional. If you omit it, the Editor inserts
string2 at the beginning of every line within the range of
lines.

string2 is optional. If you omit it, the Editor deletes
stringl.

Examples

With SAMPLE2/PRO still CONCATenated in the Editor's work
file, type:

ST(1-4)/THIS/THAT/G <ENTER>
"/" is the delimiter. The Editor finds all occurrences (G

is specified) of the string THIS and substitutes each with
THAT.

By typing:

ST (ALL)/THAT/THIS/ <ENTER>
the Editor finds all occurrences of the string THAT and
replaces it with THIS, and stops at the first occurrence (no
G specified).

ST/E// <ENTER>

causes the Editor to search the current line for the string
E. Since the second string is empty, it deletes E.

Radio fhaek

43

ASSEMBLER-16 THE EDITOR

TRS-80 °

TAB

TA c,tabstopl,tabstop2,....

allows you to set tabs for use in the Insert mode (I?
prompt).

¢ can be any character that you choose to represent the
tab. (except blank or $). If you don't specify c, the
Editor clears all tab stops.

tabstopl, tabstop2, are the positions where you set
the tabs stops. You can specify up to eight tab stops,
separating each with a comma. The first tab in a line is

tabstopl, the second tabstop2, etc.

If you specify only the tab character, the Editor keeps all
previous tab stops. In this way, you can change the tab
character without altering the actual tab stops. This is
especially useful when ¢ is a character used in the text

of an insert.

To set a tab (at the Editor's commmand mode -- C?), type TA
followed by the tab character, a comma, then a string of tab
stops (column number where you want to place tabs). You can
enter up to eight tabs.

You can also use the <TAB> key instead of the TABS command.
Its tabstops are preset to multiples of eight (i.e., 8, 16,
24, 32, etc.).

When you enter <TAB> in the Insert mode, it displays a +
character. 1In the Command mode, the Editor displays the
actual tabbed spacing.

Use the <TAB> key when you want the multiple of eight

tabstops; otherwise set your own tabstops with the TAB
command.

When setting tab stops:

1. If you don't specify any variables, tab stops are
cleared. For example, TA <ENTER> clears all tab stops.

2. If you specify only the tab character, the actual tab
stops remain the same.

Radio fhaek

44

ASSEMBLER-16 THE EDITOR
TRS-80 °
3. The tab character can be any character except blank, §,
or one included in the text.
4, Remember where you set the tab stops because, when you

use them in the Insert mode, the Editor does not
display the actual tab spacing.

5. Always set the maximum number of tabs that you'll
want to use. For example, if you only set three
tabs with the TA command, you can only reference three
in the Insert mode. If you reference more than you
set, the Editor deletes any information following the
extra tab(s).

You can use a tab character at any time in the Insert mode.
For example, set tabs at 1§, 20, and 35, with a slash (/) as
the tab character, by typing:

TA /,18,20,35 <ENTER>
Now you can use tabs in any lines you type in the Insert
mode. To do so, simply type the slash (/) before the word
or phrase you want tabbed. You can use as many tabs as you
set with the TAb command. Type:

BEGIN/LD/.Af,#TABLE/*load start of table <ENTER>
Now the program line is set with tabs. Whenever the Editor
displays this line, it does so with the contents of the line
tabbed like this:

BEGIN LD .AQ,#TABLE *load start of table

Examples:
TA/,5,12,30 <ENTER>

Sets tabs at columns 5, 12, and 3¢. The tab character is
the / (slash).

TA ? <ENTER>

Changes the tab character to ? (question mark) and keeps all
previous tab stops (5,12, and 3f) the same.

Radie fhaek

45

ASSEMBLER-16 THE EDITOR
TRS-80°

TA <ENTER>

Clears all tabs.

Radie fhaek

46

ASSEMBLER-16 THE ASSEMBLER-16
TRS-80 °

CHAPTER 3

THE ASSEMBLER-16

Radio fhaek

47

ASSEMBLER-16 THE ASSEMB -
TRS-80 °© BENBLER-26

Radio fhaek

48

ASSEMBLER-16 THE =
TRS-80 ® ASSEMBLER-16

CHAPTER 3/ THE ASSEMBLER-16

The Assembler-16 assembles a source file into an
intermediate, relocatable object code file.

This Chapter explains how to operate the assembler. For

information on the source format required by the Assembler,
see Section II.

THE ASSEMBLER COMMAND

This command, typed at TRSDOS-16 Ready:

ASM16 source filespec {options} comment

loads the Assembler-16 and assembles the source filespec
using the default options or the options you specify.
(The options and default options are described below).

If you omit the source filespec's extension and include
the disk identifier (drive or disk name), the Assembler-16
uses the disk identifier instead of the extension.

If you omit the source filespec's extension and also omit
the disk identifier, the Assembler-16 uses /SRC as the
extension.

You can use a source file produced by other editors, as
well as the Assembler-16's Editor, provided it is in one of
these formats:

(1) variable length record (VLR) with one statement
per record preceded by a byte count (this is what
the Editor in this package produces)

(2) ASCII stream with one byte per record (an LRL of
one) and each line terminated by a carriage
return byte.

(3) fixed length record (FLR) with one statement per
record.

The optional comment allows you to document the assembly.
If you use the comment, you must enclose the options in
braces {}. Otherwise, the braces are not required.

Radie fhaek

49

ASSEMBLER-16 ® THE ASSEMBLER-16

TRS-80

ASSEMBLER OPTIONS

You can specify the one letter options in one of four ways:

option switches the option ON
option=Y switches the option ON
option=N switches the option OFF
option=drive switches the option ON using

the specified drive

You can separate each option with a comma, a space, or
nothing (not separate them at all).

The options and their defaults (what the Assembler-16 uses
if you omit the option) are:

C (Current Record Count)

Displays the number of the record currently being assembled.
The default is C=N.

E (Errors Only)

Produces a listing of only the records which generate an
error, along with any any object produced, and the error
message. The default is E=N.

K (Keep Work Files)

Keeps the Assembler-16 from deleting the work files. (See
the W switch for an explanation of the work files.) This
speeds up multiple assemblies, since the Assembler-16 will
not have to create work files over and over again. The
default is K=N.

L (Listing File)

Creates a listing disk file using the same filename as the

source, with the extension /LST. The default is L=N.

O (Object File)

Radie fhaek

50

ASSEMBLER-16 ® THE ASSEMBLER-16

TRS-80

Generates an object file using the same filename as the
source, with the extension /OBJ. The default is 0=Y.

P (Print Listing)

Prints the listing on the printer. The default is P=N.

S (Short Listing)

Truncates listing if the source is too long for a line (as
opposed to wrapping-around). The default is S=N.

T (Terminal Listing)

Prints the listing on the video display terminal. The
default is T=Y.

U (Uppercase Conversion)

Converts lowercase letters to uppercase letters. This is
useful for printers without lowercase. The source remains
unchanged. The default is U=N.

W (Work File Specification)

Allows you to specify which drive the Assembler-16 should
use for its work files. The default is W=g. W=N is not
allowed.

To save memory, the Assembler-16 creates two work files
during the assembly for temporary storage. It names the
files:

ASMS@@@p/WRK
ASMP@PPp/WRK

(p is the partition number for multi-tasking environments.
Multi-tasking will be available in a future release of
TRSDOS~16. 1In a single-~tasking environment, p=l.)

The Assembler-16 stores this file in your primary drive

(unless you use W=drive.) When it finishes the assembly,
it deletes the work files (unless you use K=N).

Radio fhaek

51

ASSEMBLER-16 THE ASSEMBLER-16
TRS-80°

EXAMPLE ASSEMBLER COMMAND
This command, typed at TRSDOS-16 Ready:
ASM16 FRED {C=Y,L,P,U,W=4,K} <ENTER>

causes the Assembler-16 to assemble the source file named
FRED/SRC and:
. display a current record count on the screen (C=Y)
. generate a listing file named FRED/LST (L)
. generate an an object file named FRED/OBJ (the
default of 0 is 0=Y)
. print the listing on the printer in all uppercase
(P,U)
. store the work files on drive 4 (wW=4)
. retain (not delete) the work files (K)

THE ASSEMBLER LISTING
1. Side-by-Side Listing Format

The side-by-side listing starts on a new page. These are
two examples of it:

Example 1:
8234C @PEL2F 43F8 743 * LDA .Al, /MIT25 LABEL4
g6E4+
Example 2:
60g ggpgs86 227C LDL LAl #3
poeegaR3

The meaning of the examples is as follows:

Line 1

columns 1-4 contains the source file line number in
decimal notation (Example 1 is line 8234;
Example 2 is line 6@§)

column 5 tells whether the line is from the primary

source filespec or a file which was

Radie fhaek

52

ASSEMBLER-16

TRS-80 © THE ASSEMBLER-16

column 7-12

column 14-17

columns 19-22

column 23

column 24

column 26-end

copied into it. (See the COPY directive
in Chapter 9):
. a blank space indicates the line
is from the primary file (Example 2)
. the characters A-I indicate the line
was copied. (Example 1 indicates
the line was part of "C", the third
file copied into the program.)

contains the hexadecimal memory address

where the operation word is stored.
(Example 1 indicates the LDA instruction
is at H'E1l2F; Example 2

indicates LDL is at H'@586.)

contains the hexadecimal operation word.
(The lines immediately below it reflect the
extensions.) (Example 1 indicates the
operation word for LDA is 43F8; Example 2
indicates LDL is 227C)

tells where the symbol used in the line (if
any) was defined. (Example 1 indicates
MIT25 LABEL4 was defined in line 743.)

tells whether the symbol used in this line
is from the primary file or copied.
. @ blank space indicates it was from
the primary file (Examples 1 and 2
both contain blank spaces in this
column)
. the letters A-I indicate the symbol
was from a copied file.

tells if the symbol used in the line is
a backwards reference (defined in a previous
line):
. an asterisk (*) indicates it is a
backwards reference
. a blank space indicates it is a
forwards reference
(Example 1 indicates MIT25 LABEL4 was
defined in a previous line.)

is the source line, printed with no reformatting.
If the source line is long, the excess is
printed right justified on the following line.

Radie fhaek

53

ASSEMBLER-16 THE ASSEMBLER-16
TRS-80 ©

Line 2

columns 1@~17 is the extension of the operation word,
right justified (Example 1 indicates the
extension for the instruction is @6E4;
Example 2 indicates a long extension of

pOOIFIR3.)
column 18 is the relocation type of the symbol used in
the line (if any):
. a period (.) indicates it is external

(defined by DEF)
. a plus sign (+) indicates it is relocatable
(defined in an RSECT)
. a blank space indicates it is absolute
(defined in an ASECT)
(Example 1 indicates the symbol MIT25 LABEL4 is
relocatable; Example 2 does not contain a symbol)
See Chapter 9 for an explanation of the DEF,
RSECT, and ASECT directives.)

The Assembler-16 may print line 2 one to four times, depending on how
many extensions the operation word uses.
2. Error/Warning Messages

The error and warning listing begins immediately after the
side-by-side listing. These are examples of it:

Example 1:

2 0p9app pepeEase 1 LOAD .D1, #32

% ERROR ***] UNKNOWN OPCODE
*¥** ERROR ***] TLLEGAL STATEMENT

Example 2:

3 gopppa 343cC LD .B1XYZ, #32
g929

*%% ERROR **% REGISTER SYMBOL REQUIRED BIlXYZ
** WARNING ** WORD LENGTH ASSUMED

Example 3:

Radie fhaek

54

ASSEMBLER-16 HE E -16

4 gpppgs 323¢ LD .D1, #32
go2¢

** WARNING ** WORD LENGTH ASSUMED
The meaning of each line is as follows:
Line 1 is the line containing the error

Line 2 indicates with a dollar sign ($) the position
of the errors or warnings. The Assembler-16
uses this notation only where it is helpful.

Line 3 is the error message. Line 3 is repeated for
each error in the source line. This is the
meaning of each column in line 3:

column 1-13 tells the type of message:
*** ERROR *** (this causes the program not
to assemble properly)
** WARNING ** (this warns you that the
Assembler-16 might not be interpreting
your instruction as you want it to)

column 15-16 identifies which $ character the error message

is referencing (Both messages in Example 1 indicate

that they are referencing the first -- actually
the only -- $ character)

columns 18-end contains the error/warning message, followed by

a blank space, followed by the associated symbol

(if any). If the symbol is longer than space
permits, it is truncated.

List of Errors and Warnings

CONSTANT OUT OF RANGE COPY FILE NOT FOUND
ILLEGAL BINARY CONSTANT FORM FIELDS SIZE ERROR
ILLEGAL COPY STATEMENT ILLEGAL ORG EXPRESSION
ILLEGAL EXPRESSION INCORRECT NUMBER OF EXPRESSIONS
ILLEGAL FORMAL INDEXING NOT ALLOWED
ILLEGAL HEX CONSTANT INVALID LOCAL
ILLEGAL LOCAL LOCAL LABEL NOT ALLOWED
ILLEGAL OCTAL CONSTANT NESTED COPY NOT ALLOWED
ILLEGAL STRING DELIMITER OPERAND INCOMPATIBLE WITH INSTRUCTION
ILLEGAL SYMBOL REGISTER SYMBOL REQUIRED
MISSING COMMA STATEMENT IGNORED
]
Radie fhaek

55

ASSEMBLER-16 THE ASSEMBLER-16
TRS-80°

MISSING COMMENT SEPARATOR SYMBOL NOT POP

MISSING SEPARATOR TOO MANY COPY STATEMENTS

SYMBOL REQUIRED USE OF ILLEGAL FORM SYMBOL
UNKNOWN OP CODE VALUE NOT RELATIVE TO CURRENT PSECT
MISSING RIGHT PAREN VALUE OUT OF RANGE

MISSING STRING TERMINATOR VALUE TRUNCATED

PACKED STRING NOT ALLOWED BIT NUMBER OUT OF RANGE

GLOBAL SYMBOL REQUIRED SHIFT VALUE OUT OF RANGE

INVALID FORMAL REFERENCE SMALLER LENGTH ATTRIBUTE ASSUMED
INVALID GLOBAL SYMBOL WORD LENGTH ASSUMED

LOCAL MULTIPLY DEFINED DIVISION BY ZERO

LOCAL UNDEFINED ILLEGAL STATEMENT

SYMBOL MULTIPLY DEFINED REPEATED RLIST ELEMENT - IGNORED
SYMBOL UNDEFINED: INCORRECT NUMBER OF OPERANDS
ABSOLUTE EXPRESSION REQUIRED DSECT SYMBOL REQUIRED

ADDRESS REGISTER REQUIRED RSECT SYMBOL REQUIRED

3. Cross Reference Listing

The cross reference listing starts on a new page. This is an
example of it:

LABELSCANHAVESINGLESPACESBUTDONTSHOWTHEM poPP@3¥2 L+ 39g8C
331 /MOV 336 /LD 337 /STP 338 /XCH
349 /LDL 343 /ADD 344 /LD 356 /MOV
376 /STB

The meaning of it is as follows:

Line 1
columns 1-45 is the first 45 nonblank characters of the
symbol, with trailing blanks.
column 56 is the length attribute of the symbol:
L = Long
W = Word
B = Byte
U = Undefined
column 57 indicates where the symbol's relocation type:

blank space = absolute (defined in a program
section initialized by the ASECT directive)
+ = relocatable (defined in a program
section introduced by the RSECT directive)
. = external (declared by the DEF directive)
(If the program contains none of the above

Radie fhaek

56

ASSEMBLER-16 -
TRS'BD ® THE ASSEMBLER 16

directives, the Assembler-16 treats all the
symbols as absolute.)

columns 59-62 contains the source line number where the symbol
is defined (**** indicates the symbol's undefined.)

column 63 tells whether the symbol is from the primary
source filespec or a copied file:
blank space = primary file
A-I = copied file

Lines 2-n

columns 3@-33 contains the source line number where
the symbol is referenced.

column 34 tells whether that line is from a primary
or copied file:
blank space = primary file
A-I = copied file

columns 35-4f contains the source line's instruction
preceded by a slash (/)

The Assembler-16 lists line 2 as many times as there are
references to the symbol. If there are no references, the
Assembler-16 does not list line 2. Columns 3f-41 are repeated
across the entire width of the page.

4, Statistics Listing

The statistics listing is the final page of the listing. It
lists the total ERROR and WARNING messages (in decimal notation).

Example:

STATISTICS OF THIS ASSEMBLY

TOTAL NUMBER OF ERRORS 6
TOTAL NUMBER OF WARNINGS 8
]

Radio fhaek

57

ASSEMBLER-16 THE LINKER

TRS-80 °

CHAPTER 4

THE LINKER

Radie fhaek

59

ASSEMBLER-16

CHAPTER 4/ THE LINKER

The Linker (LINK16) links one or more "intermediate" files
into an absolute program that the 68g@9F can execute. It
does this in one pass.

In addition, the Linker can load multiple object files,
resolve undefined external references between the modules,
and produce a single program file.

PREPARING A LINKER CONTROL FILE

Before using the Linker, you must prepare a Linker control
file by:

l. Creating an object file, and then
2. Creating the control file

1. Creating an Object File

The object file is a file of intermediate, relocatable
object code. You will normally use the Assembler-16 to
create it.

You can also create it with another assembler or compiler
provided it produces the format required by the Linker.
Appendix A describes the format.

2. Creating the Control File

The control file is a file of linker directives. You will
normally use the Editor, as demonstrated in Chapter 1 to
create it.

You can also use other editors to create the file, provided
it is in the format required by the Linker:

(1) wvariable length record (VLR) with each record
preceded by a byte count (this is what the Editor
in this package produces.)

(2) ASCII stream with one byte per record (an LRL
of one) and each line terminated by a carriage
return byte.

Radio fhaek

61

ASSEMBLER-16 THE LINKER

TRS-80 °

(3) fixed length record (FLR) with one record per
statement.

The directives you can use in creating this file are:
END

END
ends the control file. If the Linker reaches the end of the
file and does not encounter an END directive, it
automatically supplies one.
Example:

END
tells the Linker to stop reading the control file, finish
producing the absolute program file, and return to
TRSDOS-16 Ready.
INCLUDE

INCLUDE object filespec

inputs the object filespec and links it to the existing
program,

If you omit the object filespec's extension, the Linker
appends the extension /OBJ. However, if you omit the
extension and include the drive, the Linker treats the drive
as the extension,

Example:
INCLUDE FILEL

causes the Linker to load FILE1l/0BJ and link it to the
current program.

INCLUDE FILEl:2
causes the Linker to load FILEl/:2 and link it to the

current program.

ORIGIN

Radio fhaek

62

THE LINKER

ASSEMBLER-16
S TRS-80 °

ORIGIN address
forces the next INCLUDEd filespec to be loaded beginning at
the specified address. The Linker assumes this address
is decimal unless it has either a leading 'O' or '>', both
of which imply hexadecimal.
The Linker will not test for conflicts with previously
loaded code. For example, if you specify the same ORIGIN
address for two filespecs, the Linker will load one on top
of the other without giving you a warning.

If you omit ORIGIN, the Linker uses an originating address

of @gpgg.
Examples:
ORIGIN 5000

tells the Linker to use decimal 5@@@ as the originating
address for the next INCLUDEA4d file.

ORIGIN >10040

tells the Linker to originate the next file at hexadecimal

1908.

*

Begins a comment line. The Linker will print it on the map,
but otherwise ignore it.

Example:
*This is a comment

is ignored by the Linker.

THE LINKER COMMAND

This command, typed at TRSDOS-16 Ready:

Radio fhaek

63

ASSEMBLER-16 THE LINKER

TRS-80°

LINK16 control filespec {options} comment

loads the Linker, executes the directives in the control
filespec, and produces an absolute program file. The
absolute program file will have the same name as the
control filespec, minus the extension.

If you omit the control filespec's extension, the Linker
appends the extension /CTL. However, if you omit the
extension and include the drive, the Linker treats the drive
as the extension.

LINKER OPTIONS

As with the Assembler-16, you can specify the one letter
options in one of four ways:

option switches the option ON
option=Y switches the option ON
option=N switches the option OFF
option=drive switches the option ON using

the specified drive number
(for the M and O options only)

The options and their defaults are:

L (Create Map File)

Creates a file containing a Linker map on the drive
specified. The Linker assigns this file the same filename
as the source, with the extension /MAP. The default is M=N.
0 (Output Program File)

Creates a final, executable program file on the drive
specified. The default is O=Y.

P (Print Linker Map on Printer)

Prints the Linker map. The default is P=N.

Radio fhaek

64

ASSEMBLER-16 THE LINKER

TRS-80°

T (Print Linker Map on Terminal)

Prints the Linker on the video display terminal. The
default is T=Y.

EXAMPLE LINK

This is an example of linking a control file named TEMP/CTL.
The next section, "The Linker Map" will use it to
demonstrate the the wvarious maps the Linker outputs.

TEMP/CTL (created with the Editor) contains these
directives:

*[,LINK OF TEMP/CTL
INCLUDE TEMP/OBJ
ORIGIN @2g@
INCLUDE TEMPB/OBJ
ORIGIN @509
INCLUDE TEMPC/OBJ
INCLUBE THREE/OBJ
END

Note: The word INCLUBE (in the next to the last line) is
intentionally misspelled. The section on "The Linker Map"

uses this misspelling to demonstrate how the Linker outputs
errors.

This command, typed at TRSD0OS-16 Ready:
LINKl6 TEMP {L=2,P,T=N} <ENTER>

causes the Linker to link an absolute program, following the
directives in TEMP/CTL, and:

. create a map file on drive 2 named TEMP/MAP (M=2)
. print the map on the printer (P)
. not print the map on the video terminal (T=N)
. create a program file named TEMP (O=Y is the
default)
THE LINKER MAP

The Linker map consists of the following:

1. linker control listing

Radie fhaek

65

ASSEMBLER-16 THE LINKER
TRS-80 °
2. allocation map
3. definitions map
4., undefined references map
5. summary
1. Linker Control Listing
The Linker outputs the linker control listing first. It

conta
inter

ins each directive from the control filespec
spersed with error messages.

The above example produces the following listing:

pogg1
poagp2
29aa3
gogga
soeags
pogge
geeg7

kkkk%k

a9098

*k ok ok ok

* LINK OF TEMP/CTL

INCLUDE TEMP/OBJ

ORIGIN @200

INCLUDE TEMPB/OBJ

ORIGIN @540

INCLUDE TEMPC/OBJ

INCLUBE THREE/OBJ

$ - ILLEGAL COMMAND

END

WARNING - UNRESOLVED EXTERNAL REFERENCE AT @gg@g502

The Linker prints error messages as it encounters them,

There

are three classes:
ERRORS -- these are caused either by syntax errors
in the control file or object code errors. (The

above example has an ILLEGAL COMMAND error due to
the misspelling of INCLUBE.)

WARNINGS -- these are to advise you that the Linker
might be interpreting your file in a different way
than you intended. (The warning in the above example
is due to an undefined symbol, MYSTERY SYMBOLIC

LABEL, which appears in the undefined references map.)

FATAL -- these are caused by errors in the object

code construction. You should never get one of these
errors when using the Assembler-16. These errors will
always cause the Linker to abort the linkage. Note
that an error line may be printed immediately before
the fatal diagnostic,

Radio fhaek

66

ASSEMBLER-16 THE LINKER

TRS-80 °

Note that the above example lists the comment, *LINK OF
TEMP/CTL. However, this comment has no effect on the
linkage.

2. Allocation Map

The allocation map describes where in memory the Linker has
located the INCLUDEd object files (modules).

The above example produces this map:

ALLOCATION MAP

MODULE NO ORIGIN LENGTH DATE CREATOR VER
TEMP 1A gppggy —------ 11/24/81 ASM-16 1.8
TEMPB 2A @gp@2gg @ —————- 11/24/81 asM-16 1.8
TEMPC 3 gags9e gogggc 11/24/81 ASM-16 1.8

The meaning of each column is as follows:

MODULE -- the linked object filename. Only the filename
(not the extension) is printed.

NO -- the sequential order in which the modules are
INCLUDEdA. If the module is part of an ASECT (an
absolute program section), this number is followed
by the letter A.

ORIGIN -- the memory address where the module is
loaded.
LENGTH —- the length of the module. The characters

------ ' in this column indicate the module is part
of an ASECT and therefore the length is undefined.

DATE -- the date the module was created.

CREATOR ~-- the name of the assembler or compiler
used to create the module.

VER -- the version number of creator (1.8 for ASM-16).

The above example indicates that the Linker included
TEMP/OBJ, an absolute section, at address @@@00.

Radie Shaek

67

ASSEMBLER-16 THE LINKER

TRS-80 °

TEMPB/OBJ and TEMPC/OBJ, both relocatable, are included at
hexadecimal 2@@ and 5¢@. THREE/OBJ is not included, since
the word INCLUBE was misspelled.

3. Definition Map

The definition map lists all the symbol defined as external
by the DEF directive.

The above example produces this map:
DEFINITIONS
SYMBOL VALUE PROG
SYMBOLICLABEL 2op@s2 1A

The meaning of each column is as follows:

SYMBOL -- the symbol itself. A maximum of 45 characters
are printed. (This example contains only one.)

VALUE -- the symbol's value

PROG -—- the module which defined the symbol. If the

number is part of an ASECT, the letter A follows it.

The Linker does not sort this map. It prints the symbols in
the same order it encounters them.

The Linker will not print this listing if there are no
externally DEFined symbols.

4, Undefined Reference Map

This is a listing of all symbols referenced, but not
defined.

The above example produces:
UNDEFINED REFERENCES

SYMBOL
MYSTERYSYMBOLICLABEL

Radie fhaek

68

ASSEMBLER~-16 THE LINKER

TRS-80 °

indicating the file references only one undefined symbol --
MYSTERYSYMBOLICLABEL -- which was what caused the warning in
the directive listing.

The Linker prints the symbols in the same order it
encounters them. It does not print the map if there are no
undefined symbols.

5. Summary

This is the completion message, with a count of errors and
warnings.

The above example produces:

RSECT LENGTH = @gg@ggggc
PROGRAM ENTRY = @gggggg
PROGRAM LENGTH = @@@50C

POS INDEPENDENT = NO

LINK COMPLETE: #g@d@d@l ERRORS, @@@@Fl WARNINGS.

which shows that @@@C is the length of TEMPC/OBJ, the one
relocatable program section; P@@FP is the originating address
of the entire program; @5@C is the length of the entire
program; and the program is not position independent..

The Linker generated one error and one warning.

ERROR MESSAGES

This is a listing of the Linker error messages, divided into
three groups:

1. ERRORS

2. WARNINGS

3. FATAL
ERRORS

These messages alert you that the program will not link
properly.

FILE UNAVAILABLE, CODE= error code

Radio fhaek

69

ASSEMBLER-16 THE LINKER

TRS-80°

The file included in the control file cannot be accessed for
the reason cited by the TRSDOS error code.

For example:
FILE UNAVAILABLE: 'filename', CODE = 24
indicates TRSDOS error 24 (file not found).

ILLEGAL COMMAND
The directive is not one of those allowed by the Linker.

SYNTAX ERROR
The directive has not been typed correctively.

WARNINGS

These messages warn you that the Linker might be taking a
different action than you intended.

DOUBLE DEFINED RSECT

The module has more than one RSECT (for example, a blank
RSECT and a named RSECT). The Linker allows only one RSECT
per module,

DOUBLE DEFINED SYMBOL: 'symbol'

The symbol enclosed in quotes is defined in two separate
modules. The Linker uses the first definition it
encounters.,

ERRORS GENERATED DURING ASSEMBLY
There were errors generated during the assembly of the
module.

SIZE ERROR AT: absolute address

An external will not fit into the field reserved. The
Linker lists the absolute address of the modifiable part
of the instruction generating the error.

For example:

SIZE ERROR AT: @g@g202
might occur when address 20§ of the module contains an
instruction such as:

LDW .DO, /external
with the Linker evaluating 'external' as greater than H'FFFF
(the maximum wvalue that will fit into a word).

To solve the problem, put a '.L' after the name of the
external wherever it is referenced. For example:

Radio fhaek

79

ASSEMBLER-16 THE LINKER

TRS-80 °

LDW .DO, /external .L
will never generate a SIZE ERROR. (However, it does cost an
extra word of program storage over the previous example.)

Note that the address associated with the size error does
not indicate the address of the instruction. Instead, it
indicates the address of the modifiable field (the address
where the external will be loaded.)

UNRESOLVED EXTERNAL REFERENCE AT: absolute address

The Linker did not find a definition (DEF) for an external
reference (REF). The Linker lists the absolute address of
the instruction generating the error.

WARNINGS GENERATED DURING ASSEMBLY
There were warnings generated during the assembly of the
current module.

FATAL

These errors should NEVER occur in normal use of the Linker.
The Linker detects these errors primarily to support
development of compilers and assemblers.

If one of these errors occurs while using the Assembler-16,
it should be considered a BUG and be reported. See also the
OBJECT CODE DESCRIPTION section in this manual.

Note that unless otherwise stated, these errors are FATAL.
The Linker will abort with an error message.

DOUBLY DEFINED SECTION LENGTH
The Linker encountered two DEFINE SECTION LENGTH plexes in
the object stream.

END OF OBJECT ENCOUNTERED

The object code stream was improperly terminated (no END OF
OBJECT plex). This may be caused by terminating the
assembler (with BREAK key) before normal completion.

ILLEGAL POLISH EXPRESSION

An object code expression was encountered that does not
conform to the standards set forth in the object code
description.

MODULE HAS MORE THAN ONE PROCESSOR DEFINED
The DEFINE PROCESSOR plex was encountered more than once.

Radio fhaek

7al

ASSEMBLER-16 THE LINKER

TRS-80°

UNDEFINED EXTERNAL SYMBOL
A SYMBOL REFERENCE was made without that symbol previously
being defined.

UNDEFINED OPERATOR
An invalid operator was encountered during expression
evaluation.

UNDEFINED POLISH COMMAND
An invalid operand was encountered in expression
evaluation.

UNDEFINED RSECT SELECTED
An attempt was made to select a section (RSECT) that was not
previusly defined (opened).

RSECT LENGTH UNDEFINED

A define section length plex was not encountered in the
object stream. This is only a warning (the linker does
not abort).

Radie fhaek

72

ASSEMBLER-16 THE DEBUGGER

TRS-80 °

CHAPTER 5

THE DEBUGGER

Radie fhaek

13

"

ASSEMBLER-16 THE DEBUGGER

TRS-80°

CHAPTER 5/ THE DEBUGGER
The Model 16 Debugger (DEBUG) allows you to:

. debug an existing 68@@@ machine code program
. insert a 68@@g@ machine code program into memory

The way to start the Debugger depends on which you want to
do.

(DEBUG will not load if it is not included in a file named
CONFIG1l6/SYS. See Appendix D if it does not load properly.)

STARTING THE DEBUGGER

To Debug an Existing Program...
To debug an existing program, type (at TRSDOS-16 Ready):
DEBUG ON <ENTER>
which turns ON a switch causing the Debugger to activate.
While this switch is ON, any program you load is loaded into
the Debugger. (The Debugger remains dormant until you load
a program.)
For example, with the DEBUG ON, type:
SAMPLE <ENTER>

which loads SAMPLE into the Debugger. The Debugger displays
the Register Display and a # prompt.

The # prompt indicates you are in the Debugger command mode
and can enter any of the Debugger commands. Type:

H <ENTER>
for a menu of all the commands.

To turn OFF the Debugger switch, type (at the Debugger #
prompt) :

O <ENTER>

Radio fhaek

15

ASSEMBLER-16 THE DEBUGGER

TRS-80°

or (at the TRSD0S-16 Ready prompt):

DEBUG OFF <ENTER>

To Insert a New Program...

To insert a new machine-code program with the Debugger, type
(at TRSDOS-16 Ready):

DEBUG <ENTER>

which causes the Debugger to activate, displaying the
Register Display and the # command prompt.

To insert a program beginning at address 50@@, type:
C 50#@ <ENTER>

the Debugger displays address 5@@@ (in parentheses and its
contents. To enter the MOVW instruction, type:

3¢BC <ENTER>

and the Debugger inserts 3@BC, the operation word for this
instruction, and waits for you to insert the next
instruction. (See Chapter 8, "Instructions", for
information on machine code operation words.)

Type QO <ENTER> to return to the # prompt. Type Q <ENTER>
again to exit the Debugger.

REGISTER DISPLAY

When you first start-up the Debugger, the Register Display
appears on your screen. Certain Debugger commands will
"call" it (cause it to appear again) or update it.

This is an example Register Display:
TRS-8f Model 16 DEBUG Version 3.0
PC=f@PJP@PR X=f N=@ z=f V=g C=f IM=f S=U

A=f@8J1l8FE (@80PALAN (UBPIBAE @P8JLB6A PPIPPIPP PPBPLAEE @P8g1886
D gpgQgpPEs @pegepees PEPPFFFF SRQ00QR00 Qo000 SPPPIesY PEgReeRd

Radio fhaek

76

sg8p2090
gy

ASSEMBLER-16 THE DEBUGGER

TRS-80 °

Line 1 contains the contents of the PC (program counter
register and and the value of the condition codes. Notice
that the PC register is set to a "relative" address. (The
character R indicates the address is relative.)

TRSDOS-16 loads DEBUG in memory that is "invisible" to the
user. Therefore, a program origin address of zero is

actually a "relative zero". All addresses are relative to
the end of TRSDOS-16 and DEBUG. (See Appendix B, "Memory
Map.)

Line 2 contains the contents of each of the eight address
registers. (column 1 is register Af, column 2 is Al, etc.)

Line 3 contains the contents of each of the eight data
registers.

(The Debugger uses the same register notations as the
Assembler-16. See Section II for a listing of these
notations.)
You can display or change the contents of any of the
registers. To do this, type the name of the register
preceded by a period (.).
For example, at the # prompt, type:

.Afl <ENTER>
and the Debugger displays the contents of register Af.
If you do not wish to change this, simply press <ENTER>. If
you do wish to change it, type the new value and then press
<ENTER>.

DEBUGGER COMMANDS

To execute a Debugger command, type the one-letter command
followed by <ENTER>,

Some of the commands allow you to specify parameters. You
must type a blank space between the command and the
parameter.

The parameters you can specify are:

. value

Radie fhaek

77

ASSEMBLER-16 THE DEBUGGER

TRS-80°

. register (register direct)
. address
Specifying a value
To specify a value, you can use:
. a number
(must be hexadecimal)
. an ASCII character
(must be enclosed in quotes)

or an expression of values separated by these operators:

. addition (+)
. subtraction (-)

For example, when using the Change command, it prompts you
for a value. You could enter:

2121 <ENTER>

to insert the hexadecimal value of 2121,
'AB' <ENTER>

to insert the ASCII codes for 'A' and 'B', or
32+'A' <ENTER>

to insert 32 plus the ASCII code for 'A'.

Specifying a register directly
To specify a register directly, precede the register name
with the character @. This indicates direct register
addressing. (This is the opposite of the Assembler-16's use
of the @ notation.)
For example:

D @Al <ENTER>

displays the contents of register Al. (If Al contains 1111,
the Debugger displays 1111.)

Radio fhaek

78

ASSEMBLER-16 THE DEBUGGER

TRS-80 °

Specifying an address
To specify an address, you can use:
. a value
(as defined above)
. a indirect register, preceded by a period (.)
(the Debugger interprets the period as indirect
addressing.)
For example:
D 1¢§@@g <ENTER>
displays the contents of address 10@g.
D .Al <ENTER>

displays the contents of the address contained in register

Al. (If Al contains 1111, the Debugger displays the
contents of address 1111.)
D 10¢g@+50

displays the contents of address 1@50.

When you specify an address, the Debugger assumes you mean
an address relative to base zero. You can change this
assumption by changing the value of the displacement
register (with the R command), and then specifying the
address with the letter 'R'.

For example, if you set the displacement register to a
relative 2000:

D 10@@R
displays the contents of address 3@@@. The Debugger
computes this address as the sum of 1@¢f@ and 20@@, the
contents of the displacement register.

D 10@@+50R

displays the contents of address 305(.

The Debugger commands are:

Radie fhaek

79

ASSEMBLER-16 THE DEBUGGER

TRS-80 °

A (Address Stop Command)

A addressl,address2,mask
A addressl,register,mask

Executes the program being debugged until the contents of
address2 or register is changed.

You can specify the size of address2 or register with:
/B (byte)
/W (word)
/L (long word)

addressl is optional. If specified, execution begins at
addressl. Otherwise, execution begins at the current
address.

mask is also optional. It allows you to mask address2

or register.

Examples:
A ,@A5

executes the program from the current position until
register A5 is changed.

A ,@A5,FFAf

stops execution when the third and fourth bytes (specified
by the mask) of register A5 is changed.

A 50@,10844/L
executes the programming beginning at address @58¢ until the
long word at 1§44 is altered.
B (Breakpoint Command)

B breakpoint, address

B breakpoint
B breakpoint/

Allows you to:

Radio fhaek

8g

ASSEMBLER-16 THE DEBUGGER

TRS-80 °

. set up to eight breakpoint addresses
. display the contents of a breakpoint
. reset a breakpoint

Be sure to set the breakpoint address at the beginning of an
instruction -- never in the middle of an instruction.

For example:

B 1,190@ <ENTER>
sets 10@@ as the first breakpoint address. When you execute
your program (with the G command), it will stop executing
when it reaches address 1§00.

B 1 <ENTER>
displays breakpoint 1. You can enter a new value or simply
press <ENTER>. (******** means the breakpoint is not set.)
Both the relative and non-relative values are displayed.

B 1/ <ENTER>
resets breakpoint 1 (to 32 bit-1).

B <ENTER>

displays all the breakpoints currently set.

C (Change Command)

C address
Enters the "change mode" displaying the contents of the
specified address (in parenthesis), followed by its
contents.

Type value <ENTER> to insert a new value for that address.
(value can be one to four bytes.)

Type / <ENTER> to see the contents of that address again.

Press <ENTER> to see the contents of the next address (the
next memory word).

Radio fhaek

81

ASSEMBLER-16 a THE DEBUGGER
TRS-80

Press <CTRL> <9> <ENTER> to see the contents of the previous
word (the previous memory word).

Type Q <ENTER> to exit the "change mode".
Example:
C FgeA
displays the contents of address F@6A.
307A <ENTER>
changes the contents of that address to 3¢7A.
/ <ENTER>
displays the address with its new contents.
<ENTER>
displays the next address.
<CTRL> <9> <ENTER>
displays the previous address.
Q <ENTER>

exits the change mode.

D (Display Command)

D address or register,address or register,address or

register

calls the Register Display and displays the contents of up
to three address or registers in the top right-hand corner.

The Debugger will continually update this display as you
debug the program.

Radio fhaek

82

ASSEMBLER-16 THE DEBUGGER

TRS-80°

Examples:

D a4¢B, .A5, @A4
displays the Register Display with the contents of address
A40B, the address specified by register A5, and the contents
of register AA4.

D @A2 <ENTER>

displays the contents of register A2.

E (Erase Breakpoints Command)
E

Erases the breakpoints.

G (Go Command)

G address
executes the program beginning at the specified address.
Execution continues until the Debugger reaches a breakpoint
(set with the B command) or the end of the program.

address is optional. If omitted, execution begins at the
current address.

Example:

G 4@ 2B <ENTER>
executes the program being debugged at address @4@2B and
continues until the Debugger encounters a breakpoint or the
end of the program,
H (Help Command)

H

Displays all the Debugger commands.

Radie fhaek

83

ASSEMBLER-16 THE DEBUGGER

TRS-80 °

N (Next Instruction Command)
N

executes the next instruction and then calls the Register
Display.

After entering the N command, simply press <ENTER> to
execute another "next" instruction. Executing any other
command exits this "next instruction execution mode".
If the next instruction is a call to a subroutine, the
Debugger executes the entire subroutine. (Use the S command
to single step through the subroutine.)
Example:

N
executes the next instruction in the program currently being
debugged.
O (Quit Debug with DEBUG OFF Command)

0

Turns DEBUG OFF and exits the Debugger. The next program
will load into the normal TRSDOS-16 Ready.

Q (Quit Debug with DEBUG ON Command)

Q

Exits the Debugger leaving DEBUG ON. The next program will
load into the Debugger.

R (Relative Addressing Command)
R value

displays and changes (if you specify value) or displays
and allows you to change (if you omit value) the contents

Radio fhaek

84

ASSEMBLER-16 THE DEBUGGER

TRS-80°

of the displacement register. At start-up, the value of
the displacement register is zero.

The R command helps in debugging relocatable program
sections. By specifying an address as Relative, the
Debugger will add to this address the value of the
displacement register.
Examples:

R <ENTER>
displays the value in the displacement register. Press
<ENTER> to leave it unchanged. Enter a new value to
change it. For example:

199@ <ENTER>
causes hexadecimal 19@F to be the new value of the
displacement register. If you specify a relative address,
such as:

G 2@0@@dR <ENTER>
the Debugger will interpret this as:

20@g@ + 1pP@ (the value in the displacement register)

causing the Debugger to begin program execution at address

3009.
R 3333 <ENTER>

causes hexadecimal 3333 to be the new value in the displacement
register.

S (Step Command)

S
executes the next instruction and calls the Register Display.

The S command is the same as N, except S will single step
through a subroutine.

Radio fhaek

85

ASSEMBLER-16 THE DEBUGGER

TRS-80 °

As with the N command, press <ENTER> to execute the next
instruction. To exit the "single stepping mode", enter a new
command.
Example:

S <ENTER>

executes the next instruction in the program being debugged.

V (View Command)
V addressl,value
V addressl,address?2

displays the contents of the addresses beginning with
addressl (or the current address) and continuing for the
number of bytes specified by value.

If the value is larger than addressl, the Debugger
interprets it as address2. 1In this case it displays the
address beginning with addressl and ending with
address?2.

If you specify only addressl, the Debugger displays 16
bytes beginning with addressl.

Examples:
vV 5008,199 <ENTER>

displays 10@ bytes of memory starting at address 5@@f.
v 5909 ,5500

displays memory starting at address 5@@@ through address
5509.

V 500@ <ENTER>
displays 16 bytes of memory starting at address 5@@f@.
V <ENTER>

displays the next 16 bytes of memory.

Radie fhaek

86

ASSEMBLER-16 THE DEBUGGER

TRS-80°

V .Af

displays 16 bytes of memory starting with the address
specified by the contents of register Af.

Radio fhaek

87

ASSEMBLER-16 5 INTRODUCTION
TRS-80

The Assembler-16 contains an easy-to-use set of assembly
language mnemonics for developing Motorola MC68@@@ programs
on the TRS-8f Model 16.

Please note that the Assembler-16 mnemonics are not the same
as the Motorola mnemonics. This is due to a major effort
among programming and engineering organizations to
standardize mnemonics.

Since the Assembler-16 mnemonics and notations are different
from Motorola's, you will need to use this Reference Guide
to learn the Assembler-16 ones.

However, you will probably find it helpful to use these
books to understand the logic of the 68@@@ Microprocessor:
MC68g@@: 16-BIT MICROPROCESSOR User's Manual,
Motorola Incorporated, 1984
The 68@@@F: Principles and Programming, by Leo J.

Scanlon: Howard W. Sams & Co., Inc.,
Indianapolis, Indiana, 1981.

Radie fhaek

91

ASSEMBLER-16 INTRODUCTION

TRS-80 °

KEY TO NOTATION

The following notation conventions are used in this
section:

d
I

the item within is optional.

- a byte length string (8 bits).

- a word length string (16 bits).

a long word length string (32 bits).

- an undefined length string.

an expression (described in chapter 2).
- 1in place of a blank space.

crgc:r'zm-—
o]
t I

The registers are represented as follows:

Ad or Dd - an address or data register used as a
destination operand.

An - one of the eight address registers Af-A7 (n
specifies the register number).

As or Ds - an address or data register used as a source
operand.

Au or Du - an address or data register used as an

upper-bounds operand.

Dn - one of the eight data registers D@-D7 (n
specifies the register number).

Rn - any data or address register (n specifies the
register number).

Ri - any register used as indexed register with
optional .W (word) or .L (long) length
specified.

Ri - can be either An.W, An.L, Dn.W, or Dn.L.

SP - the stack pointer.

SSP - the supervisor stack pointer register (SP in

System Mode).

UsP - the user stack pointer register (SP in the
User Mode).

Radie fhaek

92

ASSEMBLER-16 68088 ORGANIZATION

TRS-80 ¢

CHAPTER 6

6800% ORGANIZATION

Radio fhaek

93

ASSEMBLER-16 & 680@F ORGANIZATION
TRS-80

CHAPTER 6/ 68@@f ORGANIZATION

The 68fgPF contains eighteen registers: eight data
registers, eight address registers, a program counter, and a
status register. Both address and data registers can be
used for word and long word arithmetic operations as well as
for indexing. 1In addition, address registers can be used
for indirect addressing; and data registers can be used for
byte arithmetic operations.

Data registers are 32 bits in size. Byte operands occupy
the low order 8 bits, word operations the low order 16 bits,
and long word operands the entire 32 bits. The least
significant bit is always labeled as zero.

When one of the low order portions of a data register is
used, only that low order portion is changed. The remaining
high order position is not used or changed.

Address registers are also 32 bits in size. However, they
do not support byte-sized operands. Depending on the
operation, either the low order 16 bits (word) or all 32
bits (long word) are used. When the address register is a
destination operand, the entire register is affected. 1In
word size operations, the operands are sign extended to 32
bits before the operation is performed.

The user stack pointer (USP) is another 32 bit register.
While you are in the user mode, it provides the stack
address in specific stack operations such as PUSHA and LINK.
While in the supervisor mode, you can use it as an operand.

The system stack pointer (SSP), also 32 bits, serves as

the stack register while you are in the supervisor mode.
While in the supervisor mode, you can use USP as an operand.
You can never use SSP as an operand, nor can you use USP as
an operand while in the user mode.

Note: TRSD0OS-16 does not allow you to get into the
supervisor mode.

Another 32 bit register is the program counter. It
contains the memory address of the next sequential
instruction to be executed.

Radie fhaek

95

ASSEMBLER-16 6809@% ORGANIZATION

TRS-80 °

The status register is a 16 bit register which contains
certain system information as is illustrated below:

15 14 13 12 11 18 9 8 7 6 5 4 3 21 @
Tl Is] [T] [XInJz]v]C]

In this diagram:

T - contains the status of the trace mode (set when
trace is on, cleared otherwise).

S - reflects the current status of the CPU (set in
supervisor mode; cleared in user mode).

I - contains the level of interrupt recognized by the
CPU.

Bits 8 through F make up the system byte of the status
register. You can change these bytes only from the
supervisor mode.

The least significant byte (bits zero through seven) of the
status register is known as the "user byte" or the
"condition code register™ (CCR). You can address this

byte from either the user or supervisor mode. The CCR
contains information pertaining to the actions of the
current instruction. The bits in the CCR are:

X - The eXtend bit is set when an instruction (like
ADD) causes a carry at the most significant bit.

N - The Negative bit is set when an operation
results in a negative number (i.e., the most
significant bit of the operand is set in an
arithmetic operation).

Z - The Zero bit is set when an operation results in
a zero value.

\'4 - The ovVerflow bit is set when an operation causes
overflow of the operand (i.e., the resulting
number is too big for the size of the operand.

c - The Carry bit is set when an instruction (like
ADD) causes a carry at the most significant bit.

Radio fhaek

96

ASSEMBLER-16 . 680089 ORGANIZATION
TRS-80

Note: The carry and extend bits are set together during
most operations.

Radie fhaek

97

ASSEMBLER-16 " 68089 ORGANIZATION
TRS-80

MEMORY ORGANIZATION

With the 68@@g@ processor, data can be accessed by using byte
(8 bits), word (16 bits), or long word (32 bits) operations.
All words and long words begin on even-numbered addresses.

The most significant byte is stored first and the least
significant byte is stored last:

15 14 13 12 1116 9 8 7 6 5 4 3 2 1 @
word @pgPgagQ
byte #0980 l byte gggggl
word PPpggg2
byte #90802 l byte @gpEg3

word FFFFFE
byte FFFFFE | byte FFFFFF

Long Word/Register/Address Organization - 32 Bits (MSB and
LSB signify the most and least significant bits,
respectively):

15 14 13 12 11 1g 9 8 7 6 5 4 3 2 1 P

MSB high order

lolg WOEd B 5 s & » 5 & © & 8 @ @ 8 ® @ @ & @
low order LSB
high order

long word 1 . . . & & & o & 4 o o o o o a s o
low order

IJong Wotd 2 s & w w % ¥ w w & & & W % ¥ W W o

Decimal Data - 2 binary coded decimal digits equals 1 byte
(MSD and LSD signify the most and least significant bits,
respectively):

Radio fhaek

98

ASSEMBLER-16 680@F ORGANIZATION

TRS-80 °

15 14 13 12 11 1 9 8 7 6 5 4 3 2 1 p

(MSD) (LSD)
BCD ﬂ BCD 1 BCD 2 BCD 3
BCD 4 BCD 5 BCD 6 BCD 7
H
Radie fhaek

99

ASSEMBLER-16 68808 ORGANIZATION

TRS-80°

INSTRUCTION FORMAT

When the Assembler-16 translates the 68@f@@ instructions into
machine code, it arranges them so that the instruction word
(16 bits) comes first, followed by any operands, which may
include up to four more words. The result of this operation
is stored in the destination. The source is the second
operand. This is illustrated below:

15 14 13 12 11 19 9 8 7 6 5 4 3 2 1 g
operation word
(first word specs operation & mode)
immediate operand
(if any, one or two words)
source mode register extension
(if any, one or two words)
destination mode register extension
(if any, one or two words)

The typical format of the operation word follows, where mode
and register are three bit fields.

Radie fhaek

109

ASSEMBLER-16 6809% ORGANIZATION

TRS-80 °
15 14 13 12 11 18 9 8 7 6 5 4 3 2 1 g
[X X X X X X X X X x| mode | reg. |
&
Radie fhaek

191

ASSEMBLER-16 68gPg ORGANIZATION

TRS-80°

ADDRESSING MODES

The 68fg@gF allows you to address data seven different ways:

i

Implicit - The operand is implied from the
instruction.

Register Direct - The operand or operands are in a
data and/or address register.

Address Register Indirect - The operand is in a
memory location pointed to by an address register.

Indirect with Indexing - The operand is in a memory
location which is pointed to by the sum of an address
register and an index register.

Memory Direct (or Absolute) - The operand is in a
memory location which is supplied by an expression.

Program Relative - The operand is in a memory
location which is offset from the PC by a given
displacement.

Immediate - The operand follows the instruction word.

Radio fhaek

192

ASSEMBLER-16 6880% ORGANIZATION

TRS-80 °

Implicit Addressing

Some instructions make implicit reference to the program
counter (PC), the system stack pointer (SP), the supervisor
stack pointer (SSP), the user stack pointer (USP), or the
status register (SR). The table below provides a list of
these instructions and the registers implied.

INSTRUCTION IMPLIED REGISTER(S)
branch conditional (Bcc), branch (BR) PC
break (BRK) SSP SR
break on overflow (BRKV) SSP SR
call to subroutine (CALL) PC SP
check register against bounds (CHK) SSP SR
test condition decrement and branch (DBcc) PC
signed divide (DIV) SSP SR
unsigned divide (DIVU) SSP SR
link and allocate (LINK) SP
move condition codes (MOVE CCR) SR
move status register (MOVE SR) SR
move user stack pointer (MOVE USP) usp
push effective address (PUSHA) SP
return from exception (RETI) PC SSP_SR
return and restore condition codes (RTR) PC SP SR
return from subroutine (RET) PC SP
unlink (UNLK) SP

Radio fhaek

193

ASSEMBLER-16 o 68¢¢@ ORGANIZATION
TRS-80

Register Direct Modes
The operand is in one of the 68@g@@ registers. So, it could

be in either A@-A7, D@-D7, CCR, SR, or USP (USP can only be
used in the supervisor mode).

Data Register Direct: .Dn
The operand is in the specified data register. For example,
CLRW .Df

clears the least significant word in data register DO.

The operand is a data register; length (1) is 1, 2, or 4
bytes.

31 J/)

OPERAND (Dn)

Address Register Direct: .An

The operand is in the specified address register. For
example,

MOVL .Ag, .Al

moves the long word contents of address register Af to
address register Al.

The operand is an address register; length (1) is 2 or 4
bytes (this addressing mode is wvalid for word and long
operations only).

Radio fhaek

104

ASSEMBLER-16 68483 ORGANIZATION

TRS-80°

34 g

OPERAND (An)

Radie fhaek

195

ASSEMBLER-16 ® 680@@ ORGANIZATION
TRS-80

Memory Address Modes
The operand is a memory location pointed to by the specific
mode.
Address Register Indirect: @An

The operand is in a memory location pointed to by an address
register. The addressing mode is used to address data.

For example:
CRLB eag

clears the byte at the memory location referenced by address
register Af.

The operand is in a memory location; length is 1, 2, or 4
bytes.

31 [/}

ADDRESS REGISTER (An)

J,

MEMORY

OPERAND

Address Register Indirect Postincrement: @An+

The operand is a memory location pointed to by the contents
of an address register (AO-A7).

Radio fhaek

196

ASSEMBLER-16 _ 68¢@F ORGANIZATION
TRS-80°

When the operation is complete, the address register is
incremented by one, two, or four. The increment size
depends on whether the size of the operand is byte, word, or
long word. If the address register is the stack pointer (SP
or A7) and the operand is one byte, the address is
incremented by two rather than one to keep the stack pointer
on a word boundary. This addressing mode causes data mode

memory accesses.
For example:

CLRW eAd+

clears the word at the memory location referenced by address
register A@ and then increments Af by 2.

The operand is in a memory location; length is 1, 2, or 4
bytes.

31 g

ADDRESS REGISTER (An)

T

OPERAND LENGTH —_———> + C—m———

MEMORY

OPERAND

Address Register Indirect Predecrement: -@An

Radie fhaek

197

ASSEMBLER-16 68099 ORGANIZATION

TRS-80 °

The operand is in a memory location pointed to by the
contents of an address register (AO-A7).

Before the operand location is used it is decremented one,
two, or four. The decrement size depends on whether the
operand is size is byte, word, or long word. If the address
register is the stack pointer and the operand size is byte,
the address is decremented by two rather than by one to keep
the stack pointer on a word boundary. This addressing mode
causes data mode memory accesses.

For example,
CLRL -@ag

Decrements address register Af by 4 and then clears the long
word at the memory location referenced by Af.

The operand is in a memory location; length is 1, 2, or 4
bytes.

31 g

ADDRESS REGISTER (An)

OPERAND LENGTH e - - SR Up——

MEMORY

OPERAND

Radie fhaek

108

ASSEMBLER-16 " 68¢0¢ ORGANIZATION
TRS-80

Address Register Indirect
with 16-bit Displacement: /exp@An

The operand is a memory location pointed to by the contents
of an address register plus a 16 bit expression which is
sign extended to 32 bits by the processor. This addressing
mode causes data made memory addresses. By branch
instruction, it can refer to program locations.

For example,
CLR seag

clears the word at the memory location given by the sum of
address register Af@ and 8.

The operand is a memory location; length is (1) =1, 2, or 4
bytes

3L J/}

ADDRESS REGISTER (An)

¢

3 16 15 [
T SIGN |
l EXTENSION EXPRESSIOﬁ_l—--} +
MEMORY
OPERAND
Y
Radio fhaek

109

ASSEMBLER-16 6800@% ORGANIZATION

TRS-80 °

Address Register Indirect Indexed
with 8-bit Displacement: /exp@An(Ri)

The operand is a memory location determined by the sum of
the contents of the specified address register, an index
register (either a double word or a sign-extended word) and
the 8-bit expression which is sign extended to 32-bits by
the processor. This mode causes data mode memory accesses,
except when used with the BR and CALL instructions.

For example,
CLRW 5@QAZ(Df)

clears the word at the memory location given by a sum of
five, address register Af, and index register Df.

The operand is in a memory location; length is 1, 2, or 4
bytes.

Radie fhaek

119

ASSEMBLER-16 680@F ORGANIZATION

TRS-80 °

31 g

MEMORY ADDRESS (An)

4

8L 8 7 [’}
SIGN
EXTENSION EXPRESSION +
31)

LONG INDEX REGISTER

OR--->| +
£ S 16 15)
SIGN WORD
EXTENSION INDEX
______ REGISTER
v
MEMORY
OPERAND
1)
Radie fhaek

111

ASSEMBLER-16 6800@% ORGANIZATION

TRS-80 °

Special Address Modes

The operand is a memory location pointed to by an
expression.

Short Absolute: /exp [.W]

The operand is a memory location pointed to by a 16 bit
expression which is sign-extended to 32 bits by the
processor. This addressing mode causes data mode memory
accesses. With branch instructions, it can be used to
reference program locations.

For example,

CLRW /SUM.W
clears the word at the memory location given by SUM (the
address of SUM has been assigned by a directive such as RES

or DATA).

The operand is in a memory location; length is 1, 2, or 4
bytes.

31 16_15]
SIGN
EXTENSION EXPRESSION
MEMORY
OPERAND

Long Absolute: /exp[.L]

Radie fhaek

112

ASSEMBLER-16 " 68008 ORGANIZATION
TRS-80

The operand is in a memory location pointed to by a 32 bit
expression. The first word of the expression the high order
part of the address. The second word of the expression is
the low order part of the address. This addressing mode can
be used to address data. With branch instructions it can be
used to reference program locations.

For example,

CLRW /JHEADING.L
clears the word at the memory location given by HEADING (the
address of HEADING has been assigned by a directive such as

RES or DATA).

The operand is in a memory location; length is 1, 2, or 4.

Radio fhaek

113

ASSEMBLER-16 5 680998 ORGANIZATION
TRS-80

15 '}
FIRST
EXPRESSION

15 /)
SECOND
EXPRESSION

31 16 15)

CONCATENATION
OF TWO WORDS

l

MEMORY

OPERAND

Program Relative: exp@PC

The operand is in a memory location pointed to by the sum of
the program counter (PC) and a sign extended 16 bit
expression. The value of the program counter is the
address of the 16 bit displacement. This addressing mode
causes program mode memory accesses. With the branch
instruction it can be used to refer to program locations.

For example,

BR LOOP

Radio fhaek

114

ASSEMBLER-16 680P@% ORGANIZATION

TRS-80 °

branches to memory location LOOP. Note that the "@PC" is
optional here.

The operand is in a memory location; length is 1, 2, or 4
bytes.

31 Jj

PROGRAM COUNTER

v

31 16_15)]
SIGN
EXTENSION EXPRESSION [--->| +
MEMORY
OPERAND

Program Relative with Index: exp@PC(Ri)

The operand is in a memory location pointed to by the sum of
the program counter, the index register (Ri) and the 8-bit
expression. Both the index register and the expression are
sign-extended to 32 bits by the processor. The value in the
program counter is the address of the displacement value.
This addressing mode causes program mode memory references.

For example,

CLRW NUM@PC(D1)

Radie fhaek

115

ASSEMBLER~-16 68008 ORGANIZATION
TRS-80 °

clears the word at the memory location given by the sum of
NUM, the PC, and data register DIl.

The operand is in a memory location; length is 1, 2, or 4
bytes.

31 [/}

PROGRAM COUNTER

¥

31 8 7)

~ SIGN
EXTENSION EXPRESSION +

LONG INDEX REGISTER

OR--->| +
3 16 15 J')
SIGN WORD
EXTENSION INDEX
______ REGISTER
MEMORY
OPERAND
Immediate Data: #expl.W] #expl.L]
i
Radio fhaek

116

ASSEMBLER-16 o 68098% ORGANIZATION
TRS-80

The operand follows the instruction word in either one or
two extension words, depending on the size of the operation:

Byte Operation - The operand is the low order byte of
the first extension word.

Word Operation - The operand is the extension word.

Long Operation - The operand is in the two extension words.
The high order 16 bits are in the first
extension word; the low order 16 bits are
in the second extension word.

For example,

LDW .D@,#H"112F
loads the data register D with the immediate data H'l1l2F.
The operand is in the memory location immediately following

the instruction; length is 1 or 2 bytes for 1 extension word
and 4 bytes for 2 extension words.

Radie fhaek

117

ASSEMBLER-16 6800F ORGANIZATION
TRS-80°

31 '}

PROGRAM COUNTER

CONSTANT (2) |-==->| + [€—===-—-

OPERAND

Radio fhaek

118

ASSEMBLER-16 o ASSEMBLER-16 PROGRAM
TRS-80

CHAPTER 7

THE ASSEMBLER-16 PROGRAM

Radie fhaek

119

ASSEMBLER-16 o ASSEMBLER-16 PROGRAM
TRS-80

CHAPTER 7/ THE ASSEMBLER 16 PROGRAM

An assembly language source program can contain:

- Labels

- Instructions, Directives, or Programmed Operations
- Operands

- Comments

These are organized into a program line in one of the
following ways:

[label]bb[INSTRUCTION]lbb[operand(s) [1]]1bbl[comment],
[label]bb[DIRECTIVE]bb[operand(s) [1l]]bb[comment] or

[label]bb[PROGRAMMED OPERATION]lbb[operand(s) [1]1lbb[comment]

All fields are described as optional. A statement will have
at least one field. Others will be optional depending on
the statement.

LABELS

A label statement begins in column 1. It can be either
global or local. A label must be followed by at least two
spaces.

Global -

If the label is global (accessible by any main programs or
subroutines), it can contain up to 45 characters. The first
character must be alphabetic, the next 45 nonblank
characters can be alphabetic, numeric, or an underline. No
more than one consecutive blank space is permitted in a
symbol. Single blanks are not significant. Two global
labels which match the first 45 nonblank characters are the
same to the Assembler-16.

A global label can be the only entry on a source input line
(this is known as a "hanging label"). Any reference to a
hanging label will, in effect, be a reference to the
statement following the hanging label.

Radie fhaek

121

ASSEMBLER-16 ASSEMBLER-16 PROGRAM
TRS-80°

Local -

If the label is a local label (defined only within the
current program), it is defined on the current location
counter. Local labels consist of a dollar-sign character
($) followed by a single integer. Local labels are used in
the same way global labels are except that the scope is
delimited by global labels.

INSTRUCTIONS
There are three types of instructions you can use:
- Mnemonics
- Directives

- Programed Operations
Mnemonics

The instruction (mnemonic) field can begin anywhere except
in column one. If there is a label, two blanks must
separate the label and instruction. The mnemonic field
contains one of the allowed M68@@F operation mnemonics,
followed by an operand length (1) indicator where needed.
Length -

With most instructions, you may specify the length of the
operand on which it will act. This length (1) can be:

B - byte (8 bits)
W - word (16 bits)
L - long word (32 bits)
For example:
ADDB
signifies an ADD instruction of one byte (8 bits).
If you do not specify a length, the Assembler-16 assumes a
length. If the Assembler-16 cannot determine the length, it

assumes word length and issues a warning to that effect.

The following table illustrates the length assumed by the
Assembler-16:

Radio fhaek

122

ASSEMBLER-16 o ASSEMBLER-16 PROGRAM
TRS-80

First Operand: B W L U
B B B B B
Second W B W W W
Operand: L B W L L
U B W L U

You cannot specify length on unsized instructions or on
instructions with only one size possibility.

Directives

The same basics that apply the instructions, apply to
directives:

The label if present, begins in column one with two
blanks separating it from the directive. If there is
no label, the directive can begin in column two. Some
directives require either a label in the statement or
a hanging label preceding the statement.

The operand field syntax depends on the directive. The
field begins two or more blank spaces beyond the end of
the directive field. The field is terminated by two
consecutive blanks not inside a gquoted string.

The optional comments' field is two blank spaces after
the operand field. 1If there is no operand, it begins
two positions after the directives field.

Programed Operations

The format for programmed operations is similar to that of
directives:

The programmed operation field contains a predefined
program operator. It is defined in a user-defined
opcode directive statement (in the source program)
prior to its use as an opcode. This is done with the
FORM directive (see Chapter 9).

The operands are likewise predefined.

Radio fhaek

123

ASSEMBLER-16 ASSEMBLER-16 PROGRAM
TRS-80°

The label, if any, is defined at the current location
counter.

OPERANDS

The optional operand field is separated from the mnemonic
field by at least two blank spaces. The format of the
operands depends upon the instruction; @, 1, 2, or more
operands may be permitted. In certain addressing modes an
operand length (1) can be optionally stipulated:

word
long word

-W
L

General Operand Rules:
1, Multiple operands are separated by a comma.

2 Operands are checked by the Assembler-16 both by number
and by addressing modes.

3. Each operand must be valid for the instruction being
performed.
4. Single blank spaces are permitted within symbols and

around operators and special characters.

5. Two or more blank spaces terminate the operand field
and begin the comment field unless the blank spaces are
within a quoted string.

COMMENTS

The optional comment field is separated from the previous
field by at least two blanks. You cannot have a comment
with a hanging label, nor may you have a comment on an END
statement which does not have an entry point specified. A
comment can occupy a whole line if there is an asterisk (%)
in column one.

Radie fhaek

124

ASSEMBLER-16 o ASSEMBLER-16 PROGRAM
TRS-80

EXPRESSIONS

Expressions occur as operands of machine imstruction,
assembler directive statements, or as programmed operation
statements. An expression consists of one or more terms
separated by optional operators.

Each term in an expression may be:

- a self-defining constant,

- a symbol (local or global),

- the program location counter character (*), or
- a parenthesized expression.

Constants may be decimal, hexadecimal, binary, octal, or
character constants:

Hexadecimal constants consist of a string of hex digits

preceded by capital H quote (H').

Binary constants consist of a string of binary digits
preceded by capital B quote (B').

Octal constants consist of a string of octal digits
preceded by capital Q quote (Q').

A Character constant is a single character preceded by

a quote (single or double). Packed character constants

are not allowed.

A local or global symbol represents an address. The
Assembler-16 uses the symbol as a displacement to the PC
register.

The program counter (PC) results in a 32 bit displacement
of the current statement.

Expression evaluation is left to right with unary operator
precedence. Parentheses may be used to change the order of
expression evaluation. The operators used to build an
expression are arithmetic or logical.

Arithmetic operators act upon 32 bit signed integer
quantities with negative numbers in twos complement format.

+ 1s addition

Radio fhaek

125

ASSEMBLER-16 , MSSEMBLER-16 PROGRAM
TRS-80

- 1is unary minus or subtraction
* is multiplication
/ 1is signed division

Only addition and subtraction are permitted using
relocatable values.

Logical operators act upon 32 bit binary unsigned numbers.

.AND. is logical AND
.XOR. is logical XOR
.OR. 1is logical OR
.NOT. is logical NOT
.SHL. is shift left logical

where
A.SHL.B

shifts value A left B bits if B is positive and shifts value
A right (-B) bits if B is negative.

The Assembler-16 computes the size attribute of an
expression from the size attribute of the terms of the
expression. If exactly one term has a non-U size attribute,
and all other terms have a U size attribute, then the
expression inherits the non-U size attribute. If more than
one term has a non-U size attribute, or if all terms have a
U size attribute, then the expression is assigned a size
attribute of U.

Radie fhaek

126

ASSEMBLER-16 o INSTRUCTIONS
TRS-80

CHAPTER 8

INSTRUCTIONS

Radie Shaek

127

ASSEMBLER-16 o INSTRUCTIONS
TRS-80

CHAPTER 8/ INSTRUCTIONS

Description

In this chapter, each instruction is listed alphabetically.
They are either listed individually or as part of an
instruction group.

Instruction Groups

Some of the instructions fall into an instruction group.
Each instruction within the group uses the same mnemonic,
but the assembler-16 translates them into different machine
codes. Preceding each instruction group is an overview
giving the general function of the instruction group.

Individual Instructions
Some instructions have only one form. The function of
individual instructions follows its syntax.

Syntax

The syntax consists of the mnemonic, the sizes allowed, and
the addressing modes permitted. For example:

LDA .Ad,/expl.W or .L] Operand length(l) = L
.Ad,[expl@As[(Ri)]
.Ad,expl[@PC[(Ri)]]

The operand length is long (L); hence the mnemonic is LDA.
The destination operand is an address register (.Ad), and
the source operand may be either :

1. an absolute short or long address ("/expl.W or
.L]il)

2. an indirectly derived address with optional
displacement and index ("[expl@As[(Ri)]1")

3. a program relative address with optional index
("expl[@PCI[(Ri)II"™)

Radio fhaek

129

ASSEMBLER-16 INSTRUCTIONS
TRS-80 °

Condition Codes

After execution of the instruction, the status of the
condition codes may change. This change is reflected under
"Condition Codes". Each bit of the condition code register
(CCR) may be listed as:

- the bit is unaffected by the instruction

the bit is cleared (reset to @) after the
instruction is executed

* the bit is either set to 1 or reset to @ based on
the result of the operation

U the bit is undefined for the operation

For example:

X N Z VvV C

[- * g @[

This means that the X bit is not affected, the N and Z bits

are set or cleared based on the result of the operation, and
the V and C bits are always cleared.

Instruction Fields

The Assembler-16 translates the instruction into machine
code. This machine code is referred to as the "Instruction
Field". For example:

15 14 13 12 11 18 9 8 7 6 5 4 3 2 1 @
[1 g g @ g 1 P |[size|] mode [reg. |

This is the instruction code for CLeaR. The top line refers
to the bit number in the instruction word and the numbers in
the second line refer to the actual bit. 1In this example,
bits 8-15 contain the machine code for the CLeaR
instruction.

The word "size" is listed under bits 6-7. This refers to
the size of the operand to be CLeaRed (i.e.,byte, word, or
long word). Under bits 3-5 is the word "mode". This refers
to the addressing mode (e.g. direct address register, short
address, etc.) The addressing mode takes three bits to
describe, and these codes are listed on the next few pages.

Radio fhaek

130

ASSEMBLER-16 INSTRUCTIONS

TRS-80 °

Under bits -2 is the word "register". This refers to the
register number used by the instruction. This value also
requires three bits and the codes for each register are
listed on the following pages. For example, the
instruction:

CLRL .D1
generates the following code:

15 14 13 12 11 1§ 9 8 7 6 5 4 3 2 1 @
| 8 1 # g g @ 1 g 1 g g g B g g 1]

(Note: The instruction codes may vary from the example
above, depending on the number of operands, the sizes
allowed, etc.)

REGISTER/MODE CODES

Reg./mode
Function Mnemonic Mode Code Reg.
Code
Data Register Direct = .Dn 1373’} n
Address Register = _An agl n
Address Register Indirect = @An pLe n
Address Register Indirect = @An+ g11 n
Postincrement
Address Register Indirect = —@An 199 n
Predecrement
Address Register Indirect = exp@An 191 n
16-bit displacement
Address Register Indirect = exp@An(Ri) 119 n

Indexed with 8 bit displacement.
This mode requires an additional one word extension:

15 14 13 12 11 1§ 9 8 7 6 5 4 3 2 1 g
[D/A] reg. |W/L | @] B[]] displacement value |

Radie fhaek

131

ASSEMBLER-16 INSTRUCTIONS

TRS-80 °
Bit 15 -
= data register is index register
1 = address register is index register

Bits 14 through 12 -
index register number

Bit 11-
f = sign extended, low order integer in index
register
1 = long value in index register

Absolute Short Address = /expl .W] 111 gag
Absolute Long Address = /expl.L] 111 91
Program Relative = exp @PC 111 g1g
Program Relative with = exp @PC(Ri) 111 g11

Index
This address mode requires one word of extension:

15 14 13 12 11 19 9 8 7 6 5 4 3 2 1 g
[D/Alregister[W/L][@ [# | # | displacement value |

Bit 15 =~
@ = data register
1l = address register

Bits 14 through 12 -
index register number

Bit 11 - Index size
f = sign extended, low order word in index
register:
1 = long value in Index Register.

Immediate Short = #expl.W] 111 190

Immediate Long = #expl.L] 111 199

Status Register = .SR 111 149

Condition Code Register = .CCR 111 109
Radio Sfhaek

132

ASSEMBLER-16 " INSTRUCTIONS
TRS-80

ADD
ADD binary

This instruction's general operation is:
ADD[1] destination, source

which adds the source to the destination. The result is
stored in the destination.

The Assembler-16 can interpret the binary ADD four different
ways. From the operands used, it determines which
instruction is to be executed.

The Assembler-16 chooses which operation to use according to
the following guidelines:

ADD quick if the source is immediate
(indicated by the # sign) and less
than or equal to 8.

ADD address if the destination is an address
register and the source is other
than immediate.

ADD immediate if the source is immediate and
greater than 8 (more than 3 bits).

ADD data register for any other operations performed
by the ADD instruction. A data
register is always one of the
operands.

Radie fhaek

133

ASSEMBLER-16 INSTRUCTIONS

TRS-80°

ADD
ADD quick/ ADD immediate

ADD[1] .Dd, #exp[.W or .L] Operand length(l): B W L
-@Ad, #expl[.W or .L]
@Ad+, #expl[.W or .LJ]
/expl[.W or .L], #exp2[.W or .L]
[expl]@Ax[(Ri)], #exp2[.W or .L]
.Ad, #exp[.W or .L] (Quick only (1)=W L only)

Condition Codes:

X N Z V C
* %

J * * * _I
X - Set if carry occurred, cleared otherwise (same as
carry(C)).
N - Set if result is negative, cleared otherwise.
Z — Set if result is zero, cleared otherwise.
V - Set if overflow generated, cleared otherwise.
C - Set if carry occurred, cleared otherwise.

Condition codes are not affected if an addition to an
address register is made.
Examples:
If DP is H'8P2A, then
ADDW .Df, #H' 7000
changes the contents of D@ to H'F@2A
If DJ contains H'@@2A, then
ADDW .DF, #4

Changes the contents of D@ to H'PPF2E.

Instruction Fields for ADD quick

15 14 13 12 11 1p 9 8 7 6 5 4 3 2 1 @
1 2 &k [/} 1 | data | § |size] mode | regq.

Radio fhaek

134

ASSEMBLER-16 o INSTRUCTIONS
TRS-80

The data field contains bit data, with values 1-8.
(gF1-111 = 1-7 decimal @g@F = 8 decimal)

The size field contains the size of the operation.
If the size field contains @@ it is a byte operation.
If the size field contains @1 it is a word operation.
If the size field contains 1§ it is a long word
operation.

The mode and register fields contain the address mode

of the destination operand. Address register direct
addressing is not permitted when the size of the instruction
is byte length. If the size is word length and the
destination is an address register, the source is sign
extended to 32-bits.

Instruction Fields for ADD immediate

According to the size of the operation, the number of
extensions for the immediate data vary (see data fields).

15 14 13 12 11 1g 9 8 7 6 5 4 3 2 1 4@
[8 @ g g F# 1 1 @ [size] mode | reg. |

+
T | byte data (8 bits) |
or
| word data (16 bits) [
or

long word (32 bits including previous word)

The size field contains the size of the operation.
If the size field contains @@ it is a byte operation.
If the size field contains @1 it is a word operation.
If the size field contains 1f it is a long word
operation.

The mode and register fields contain the address mode
of destination operand.

The data field contains the data immediately following
the instruction:

Radie fhaek

135

ASSEMBLER-16 INSTRUCTIONS

TRS-80 ©

If the size field contains @@, then the data is in the
low order byte of the immediate word (8 bits).

If the size field contains fl, then the data is in the
entire immediate word (16 bits).

If the size field contains 1§, then the data is in the
next two immediate words (32 bits).

Radie fhaek

136

ASSEMBLER-16 INSTRUCTIONS

TRS-80°

ADD
ADD address register

ADD[1l] .Ad, .As Operand Length(l):W,L

.Ad, .Ds

-Ad; -@AS

.Ad, @As+

.Ad, /expl[.W or .L]

.Ad, [expl@Ayl[(Ri)]

.Ad, exp[@PC[(Ri)]]

.Ad, #exp[.W or .L] (Add immediate only)

Adds the source to the destination address register.

Example:
If AP contains H'6f@F and Al contains H'#F1lg, then
ADDW .Afg,.Al

changes the contents of Af to H'6014.

Condition Codes:

X N Z VvV C
-]

All of the flags are unaffected.

Instruction Fields:

15 14 13 12 11 14 9 8 7 6 5 4 3 2 1 @
11 1 [/ 1l | register] size | mode | reg. |

The register field contains any address register; always
the destination operand.

The size field contains the size of the operand.

If the size field contains @@l it is a word operation.
The source operand is sign-extended (See EXT) to fill
32 bits of the address register.

Radie fhaek

137

ASSEMBLER-16 . INSTRUCTIONS
TRS-80

If the size field contains 111 it is a long word
operation.

The mode and register fields contain the address mode
of the source operand.

Radio fhaek

138

ASSEMBLER-16 & INSTRUCTIONS
TRS-80

ADD
ADD data register

Operand length(l):B,W,L

ADD[1] .Dd, .Ds

.Dd, —-@As

.Dd, @As+

.Dd, /expl[.W or .L]

.Dd, [expl@Ay[(Ri)]

.Dd, expl[@PCI[(Ri)]]

.Dd, .As (Word and long word length only)

-@Ad, .Ds

@Ad+, .Ds

/exp[.W or .L],.Ds

[expleAx[(Ri)],.Ds

A data register is always one of the operands.

Example:
If DP contains H'P143 and D1 contains H'##@7, then
ADDW .Dg,.DL

changes the contents of D@ to H'@1l4A.

Condition Codes:

X N Z2 Vv C
l * * * * *

X - Set if carry occurred, cleared otherwise(same as
carry(C)).

N - Set if the result is negative, cleared otherwise.

Z - Set if the result is zero, cleared otherwise.

V - Set if overflow is generated, cleared otherwise.

C - Set if carry occurred, cleared otherwise.

Instruction Fields:

15 14 13 12 11 1§ 9 8 7 6 5 4 3 2 1 @
[1 1 [/} 1 | register| size/op] mode | reg. |

Radie fhaek

139

ASSEMBLER-16 o INSTRUCTIONS
TRS-80

The register field contains the data register.

The size/op field contains the size of the operation and
the destination of the result.

Byte Word Long Word Destination
299 g9l g1 data register
190 191 119 second operand

The mode and register fields contain the location of
the second operand.

If the second operand is the source operand and its
size is one byte, the address register direct
addressing mode is not permitted.

Radie Sfhaek

140

ASSEMBLER-16 INSTRUCTIONS

TRS-80 °
ADDC
ADD binary with Carry
ADDC[1] .Dd,.Ds Operand-length (1): B,W,L
-@Ad, -@As

Adds the source and carry bit at the destination. The
result is stored in the destination.

Example:

If DF contains H'@5 and D1 contains H'@6, and the extend bit
of the status register is set, then

ADDCB .Df,.D1

changes the contents of D@ to H'f@C.

Condition Codes:

X N Z2 V C
I * * * * *

[

- Set if carry is generated, cleared otherwise.

- Set if the result is negative, cleared otherwise.
Cleared if the result is nonzero, unchanged otherwise.
~ Set if overflow is generated, cleared otherwise.

- Set if carry is generated, cleared otherwise.

O<<N2Z NN
I

Instruction Fields:

15 14 13 12 11 1§ 9 8 7 6 5 4 3 2 1 @
11 1 g 1 [reg(d) [1 [size| @] Blr/m[reg(s)]

The register(d) field contains the destination register.

If the R/M field is zero, register(d) is the data
register.

If the R/M field is one, register(d) is the address
register in the predecrement addressing mode.

If the size field contains @1 it is a word operation.
If the size field contains 1§ it is a long operation.

Radie fhaek

141

ASSEMBLER-16 . INSTRUCTIONS
TRS-80

The R/M field contains the operand addressing mode.
If the R/M field is @, the operation is from data
register to data register.
If the R/M field is 1, the operation is from memory to
memory.

The register(s) field contains the source register.
If the R/M field is f§, register(s) is the data
register.
If the R/M field is 1, register(s) is the address
register in predecrement addressing mode.

Radie fhaek

142

ASSEMBLER-16 INSTRUCTIONS

TRS-80 ©

ADDD
ADD Decimal (BCD) with extend

ADDD .Dd, .Ds Operand length (l): B
Adds the source and the extend bit to the destination and
then stores it in the destination. Binary coded decimal
arithmetic is used for the addition.

Example:

If D@ contains 6 and Dl contains 7, and the extend bit of
the status register is set, then

ADDD .D@,.D1l

changes the contents of DJ to 14.

Condition Codes:

X N Z Vv C
| * U * U *

[

X - Set if a carry (BCD) is generated, cleared otherwise.

N - Undefined.

Z - Cleared if the result is non-zero. Unchanged otherwise.
U - Undefined.

c

- Set if a carry (decimal) generated. Cleared otherwise.

Instruction Fields:

15 14 13 12 11 1§ 9 8 7 6 5 4 3 2 1 @
[1 [1 [AT AT reg(d) [IF [F [# [AIR/M] reg(s)]

If the R/M field is @, the operation is from data register
to data register.

If the R/M field is 1, the operation is from memory to
memory.

The register(s) field contains the source register.

Radio fhaek

143

ASSEMBLER-16 INSTRUCTIONS

TRS-80 °

The register(d) field contains the destination register.

Radio fhaek

144

ASSEMBLER-16 o INSTRUCTIONS
TRS-80

AND
logical AND

The AND instruction can be interpreted by the Assembler-16
two different ways. From the operands used, the
Assembler-16 determines which instruction to use.

AND[1] destination, source

which ANDs the source with the destination. The result is
stored in the destination.

The Assembler-16 chooses which operation to use according to
the following guidelines:

AND immediate if the source is immediate
(indicated by the # sign).

AND data for any other operations
performed by the AND
instruction. A data register
is always one of the operands.

Condition Codes: (Identical for both operations)

X N 2 vV C
[= * * g § |

X — Not affected

N - Set if the most significant bit of the result is set,
cleared otherwise.

Z - Set if the result is zero, cleared otherwise.

V - Always cleared.

C - Always cleared.

Radie fhaek

145

ASSEMBLER-16

TRS-80 °

AND

INSTRUCTIONS

logical AND immediate

AND[1] .Dd, #expl[.W
-@Ax, #expl[.W
@Ax+, #expl[.W

/expl[.W or .L], #exp2[.W

[expl]@Ax[(Ri)], #exp2[.W
.CCR, #expl[.W

Example:

If DP contains H'4F, then

ANDB D@ ,#H'FP

or

or
or
or
or
or

.L]

.L]
L]
.L]
.L]
.L]

Operand length(l): B,W,L

(1=W only)

changes the contents of D@ to H'4f.

Instruction Fields:

15 14 13 12 11 1

g 9 8
| # 8 B g g @# 1 g

|size| mode | reg. |
+
T | byte data (8 bits) |
or
T word (16 bits) I
or

long word (32 bits)

The size field contains the size of the operation.
If the size field contains @@ it is a byte operation.
If the size field contains @1 it is a word operation.
If the size field contains 18 it is a long word

operation.

The register and mode fields contain the address mode

of the destination operand

The data field contains the data immediately following

the instruction:

Radio fhaek

146

ASSEMBLER-16 & INSTRUCTIONS
TRS-80

If the size field contains @@, the data is in the low
order byte of the immediate word (8 bits).

If the size field contains @1, the data is the entire
immediate word (16 bits).

If the size field contains 1@, the data is the next two
immediate words (32 bits).

Radio fhaek

147

ASSEMBLER-16 INSTRUCTIONS

TRS-80°

AND
logical AND data

AND[1] .Dd, .Ds Operand length(l):B,W,L

.Dd, -@Ay

.Dd, QAy+

.Dd, /expl[.W or .L]

.Dd, [expl@Ayl[(Ri)]

.Dd, exp[@PC[(Ri)]]

-@An, .Ds

@Ax+, .Ds

/expl[.W or .L],.Ds

[expl@Ax[(Ri)],.Ds

Example:
If DY contains H'FF@g@ FF@@ and D1 contains H'@@FF @gPFF, then

ANDL .DO,.D1

changes the contents of Df to H'Pg@gP P@PF.

Instruction Fields:

15 14 13 12 11 1 9 8 7 6 5 4 3 2 1 @
[[1 1 @# B] register | size/op] mode | reg. |

The register field contains the data register.

The size/op field contains the size of the operation and
the destination of the result:

Byte Word Long Word Destination
[iff) 291 %16 data register

199 191 114 second operand

The register and mode fields contain the location of
the second operand.

Radio fhaek

148

ASSEMBLER-16 . INSTRUCTIONS
TRS-80

Bcc
Branch on condition
Bcc[l]l expl@PC] Operand length(l): B,W
Tests a condition. If the condition is true, sets the
program counter (PC) to the value of the operand. If the
condition is false, program execution continues at the next
instruction.

Example:

If the zero flag of the status register is set, and LOOP is
a statement label somewhere in the program, then,

BE LOOP

transfers control of the program to the instruction at LOOP.

Condition Codes:

X N Z VvV C

[- - - - -

None of the flags are affected.

Instruction Fields:

15 14 13 12 11 14 9 8 7 6 5 4 3 2 1 @
[] 1 1 g | condition | 8 bit displacement
16 bit displacement (if 8 bit dislacement is f)

The 8 bit displacement field contains the two's

complement integer which contains the relative distance (in
bytes) between the current instruction address, plus 2, and
the referenced instruction.

The 16 bit displacement field allows larger
displacement than 8-bits. It is used if the 8-bit field is
equal to zero.

The condition field is one of the following fourteen
conditions:

Radio fhaek

149

ASSEMBLER-16 INSTRUCTIONS
TRS-80 °
g111 BE equal
#1109 BNE not equal
#4181 BC carry
g1@g BNC - no carry
1419 BP positive
1611 BN negative
1481 BV overflow
1990 BNV no overflow
1114 BGT greater than
1190 BGE greater than or equal
1141 BLT less than
1111 BLE less than or equal
g@19 BH higher than
#@11 BNH not higher than
#1¢g1 BLO low
#1@4@ BHS high, same

Radio fhaek

159

ASSEMBLER-16 & INSTRUCTIONS
TRS-80

BR
BRanch control addressing

BR /exp Operand length(l): unsized
[exp]l@Ax[(Ri)]
exp[@PC(Ri)]

The program execution branches to the address given by the
operand.

Example:
If LOOP is a statement label somewhere in the program, then
BR LOOP

transfers control of the program to the instruction at LOOP.

Condition Codes:

X N Z2 VvV C

[- - -7

None of the flags are affected.

Instruction Fields:

15 14 13 12 11 1 9 8 7 6 5 4 3 2 1 g
[1 g §F 1 1 1 g 1 1] mode | req. |

The register and mode fields contain the address of
the next instruction.

Radie fhaek

151

ASSEMBLER-16 " INSTRUCTIONS
TRS-80

BRK
BReak

BRK #exp Operand length(l): Unsized

Three operations are performed by this instruction:

9 The program counter is pushed into the supervisor
stack.

2s The status register is pushed into the supervisor
stack.

3 The vector number (#exp) is loaded into the program
counter.

This instruction initiates exception processing. The vector
number 1is generated to reference the Break exception vector
which is specified by the four low order bits of the
instruction. Sixteen vectors are available.

Example:

If a supervisory call (SVC) has been set up, then

BRK #0

causes execution of that SVC.

Condition Codes:

X N 2 VvV C

- - - - -]

None of the flags are affected.

Instruction Fields:

15 14 13 12 11 1 9 8 7 6 5 4 3 2 1 @
[F 1 g ©# 1 1 1 g @ 1 g B | #exp |

The #exp field contains the number (break vector) to be
loaded into the program counter.

Radie fhaek

152

ASSEMBLER~-16 o INSTRUCTIONS
TRS-80 "

BRKV
BReaK on oVerflow
BRKV Operand length(l): Unsized
Initiates exception processing if the overflow condition is
on (overflow(V) = 1). Generates the vector number to

reference the overflow exception vector as follows:

Program Counter (PC) =--> Stack

Status Register (SR) =--> Stack

Overflow Vector --> Program Counter (PC)
No operation is performed if the overflow is off. Execution
continues with the next instruction. (Note: You must set
the overflow vector using the SETTRP SVC before executing
the exception.)
Example:
If the overflow bit of the status register is set, then

BRRKV

initiates overflow exception processing.

Condition Codes:

None of the flags are affected.

Instruction Fields:

15 14 13 12 11 18 9 8 7 6 5 4
T 1 @ g 1 1 1 g g 1 1 1

=W
o

g1

Radie fhaek

153

ASSEMBLER-16 INSTRUCTIONS

TRS-80 °

CALL
CALL general

CALL /exp Operand length(l): Unsized
[exp]l@Ax[(Ri)]
exp[@PC(Ri)]

Example:

If SUBl1 is the label of a subroutine somewhere in the
program, then

CALL SUBL

transfers control of the program to the instruction at SUBL.

Condition Codes:

X N Z V C

[- - -

None of the flags are affected.

Instruction Fields:

15 14 13 12 11 1p 9 8 7 66 5 4 3 2 1 @
[g 1 g g 1 1 1 g 1 F] mode | reqg. |

The register and mode fields contain the address of
the next instruction.

Radio fhaek

154

ASSEMBLER-16 . INSTRUCTIONS
TRS-80

CHK
CHecK against bounds

CHK .Du, .Dn Operand Sizes : W
-@Aul oDn
@Au+, .Dn

/expl[.W or .L], .Dn
[exp] @Ax[(Ri)], .Dn
exp[@PC[(Ri)]], .Dn

$exp[.W or .L], Dn

Examines the content of the low order in the data register
(Dn) and compares it to the upper bound operand. The upper
bound is a two's complement integer. Exception processing
is initiated if the data register is less than zero or
greater than the upper bound operand. Generates the vector
number to reference the CHK instruction exception vector.
(Note: You must set the CHK vector with the SETTRP SVC
before executing this statement.)

Example:
If D@ contains H'@1@g@ and D1 contains H'@1@1l, then
CHK .D@g,.D1

initiates CHK exception processing.

Condition Codes:

V C
U U |

X - Not affected.

N - Set if Dn is less than zero; cleared if Dn is greater
than the; undefined otherwise.

7z - Undefined.

V - Undefined.

C - Undefined.

Instruction Fields:

Radie fhaek

155

ASSEMBLER-16 INSTRUCTIONS

TRS-80 °

15 14 13 12 11 1p 9 8 6 5 4 3 2 1 @

7
[1 @B B] data reg.[1 1 @ [mode | reg. |

(upper bound)

The data register contains the data register whose
content is checked.

The register and mode fields contain the upper bound
operand word.

Radio fhaek

156

ASSEMBLER-16 " INSTRUCTIONS
TRS-80

CLR
CLeaR an operand

CLR[1] .Dn Operand length(l): B,W,L
-@An
@An+
/expl.W or .L]
[exp]@An[(Ri)]

Clears the operand to all zero bits.

Example:
If D@ contains H'@@@P1l, then
CLRW .Dg

changes the contents of DJ to H'@ggM.

Condition Codes:

X N 2 V C
| - 8 1 8 g1

Not affected.
Always cleared.
Always set.
Always cleared.
Always cleared.

Nn<NZ X
LI I | I T I

Instruction Fields:

15 14 13 12 11 1 9 8 7 6 5 4 3 2 1 g
| g 1 g B# B B 1 @ [size] mode | reg. |

The register and mode fields contain the operand
addressing mode.

The size field contains the size of the operation:

If the size field contains @@ it is a byte operation.
If the size field contains @1 it is a word operation.
If the size field contains 1f it is a long word

Radie fhaek

157

ASSEMBLER-16 INSTRUCTIONS

TRS-80 °

operation.
CMP
CoMPare

This instruction's general operation is:
CMP[1l] Destination, Source

where the source is subtracted from the destination and the
condition codes (CCR) are set according to the results. The
values of the operands are not changed.

The compare instruction is interpreted by the Assembler-16
as four different instructions. The Assembler-16 determines
which is to be executed by the operands.

The Assembler-16 chooses which operation to use according to
the following guidelines:

CMP immediate if the source is immediate
(indicated by the # sign).

CMP memory if both operands are addressed
with the postincrement
addressing mode.

CMP address for any other compare
operation where
the destination is addressed
using the address register
direct mode.

CMP data for any other compare
operation where the
destination is addressed using
the data register direct mode.

Condition Codes: are identical for all CMP operations.

X N Z V C
* %

T - % %

X - Not affected.
N - Set if the result is negative, cleared otherwise.
Z - Set if th eresult is zero, cleared otherwise.

|

Radio fhaek

158

ASSEMBLER-16 & INSTRUCTIONS
TRS-80

V - Set if overflow is generated, cleared otherwise.
C - Set if borrow is generated, cleared otherwise.

Radio fhaek

159

ASSEMBLER-16 INSTRUCTIONS
TRS-80 °
CMP
CoMPare immediate
CMP[1] .Dd, #expl[.W or .L] Operand length(l): B,W,L

-@Ax, #expl.W or .L]
QAx+, #expl[.W or .L]
/expl[.W or .L]1, #exp2[.W or .L]
[expl]l@Ax[(Ri)], #exp2[.W or .L]

Example
If DF contains H'@@1@, then

CMPW D@, #H'1Q

sets the zero bit of the status register.

Instruction Fields:

15 14 13 12 11 19 9 8 7 6 5 4 3 2 1 @
[¢ ¢ @d[1 1 § @ [size] mode [reg.]

+

[| byte data (8 bits) |

or
[word data (16 bits) |

or

long word data (32 bits, including previous word)

The size field contains the size of the operation.
If the size field is @@, it is a byte operation.
If the size field is @1, it is a word operation.
If the size field is 1§, it is a long word operation.

The register and mode fields contain the address mode
of the destination operand.

The data field contains the data immediately following

the operation word.
If the size field is @@, the data is low order byte of
the immediate word (8 bits).
If the size field is @1, the data is the entire

Radie fhaek

169

ASSEMBLER-16 INSTRUCTIONS

TRS-80 °

immediate word (16 bits).
If the size field is 1§, the data is the next two
immediate words (32 bits).

Radie fhaek

16l

ASSEMBLER-16 INSTRUCTIONS

TRS-80 °

CMP
CoMPare memory

CMP[1l] eAd+, @As+ Operand length(l): B,W,L

Example:

If A@ points to memory address H'4@@@, which contains H'@#d,
and Al points to address H'4@@4, which contains H'@5 then

CMPB @AQ+,@AL+
sets the negative and carry bits of the status register and
increments A and Al by 1.
Instruction Fields:

15 14 13 12 11 14 9 8 7 6 5 4 3 2 1 @
'l g 1 1 | reg.(d) | 1 [size]l @ F 1 Jreg.(s)]

The register(d) field contains the destination register.

The register(s) field contains the source register.

The size field contains the size of the operation.
If the size field is @@, it is a byte operation.
If the size field is @1, it is a word operation.
If the size field is 14, it is a long word operation.

Radio fhaek

162

ASSEMBLER-16 INSTRUCTIONS

TRS-80 °

CMP
CoMPare address

CMP[1l] .Ad, .As Operand length(l): W, L

.Ad, .Ds

.Ad, -@As

.Ad, @As+

.Ad, /exp[.W or .L]

.Ad, [expl]@Ay[(Ri)]

.Ad, expl[@PCI[(Ri)]]

.Ad, #exp

Example:
If AP contains H'@@@F FPPP and Al contains H'@PPF g@EPF, then
CMPL Af,.AL

clears the negative bit in the status register.

Instruction Fields:

15 14 13 12 11 1 9 8 7 6 5 4 3 2 1 ¢
|1 g 1 s | reg. | size | mode | reg. |

The register field contains the destination address
register.

The size field contains the the size of the operation
If the size field is @gP1, it is a word operation.
The source is sign extended to a long operand and the
operation is performed internally using all 32 bits.
If the size field is @11, it is a long word operation.

The register and mode fields contain the source
address mode.

Radie fhaek

163

ASSEMBLER-16 INSTRUCTIONS

TRS-80 °

CMP
CoMPare data

CMP Operand Length(l): B,W,L
CMP[1] .Dd, .Ds

. Dd, _@AS

.Dd, @As+

.Dd, /exp [.W or .L]
.Dd, [expl@Ay[(Ri)]
.Dd, exp[@PCI[(Ri)]]
.Dd, As ([1l]=W, L only)

Instruction Fields:

15 14 13 12 11 1p 9 8 7 6 5 4 3 2 1 4@
71 [/ 1 1 [reqg. | size | mode | reg. |

The register field contains the destination data
register.

The size field contains the size of the operation.
If the size field is @@fF, it is a byte operation.
If the size field is @@1l, it is a word operation.
If the size field is @14, it is a long word operation.

The register and mode fields contain the source
operand addressing mode.

Radie fhaek

164

ASSEMBLER-16 " INSTRUCTIONS
TRS-80

DBcc
test condition Decrement and Branch

DBcc .Dx, expl[@PC] Operand length(l): W

A condition is tested. If the condition is determined to be
true, no operation is performed. If the condition is false
(not cc), the low order word (lé6 bits) of the data register
is decremented. When false and the result is =1, then no
other operation is performed (the program goes to the
next instruction); if the result is anything besides -1,
then the program counter is set to the value of the second
operand (PC plus exp, where PC is the address of exp, the
displacement word).

Examples:

If DF contains H'@2, the zero bit in the status register is
set, and LOOP is a statement label, then

DBNE . D@ ,LOOP
changes the contents of DJ to H'Pl, and then transfers
control of the program to the instruction at LOOP.
If D@ contains H'@Fl, the zero bit in the status register is
clear, and LOOP is a statement label, then

DBNE .D@ ,LO0OP
transfers control to the next sequential instruction (DM is
not decremented).
If D contains H'@@, the zero bit in the status register is
set, and LOOP is a statement label, then

DBNE .D# ,LOOP
transfers control to the next sequential instruction (Df is

decremented to -1).

Condition Codes:

Radie fhaek

165

ASSEMBLER-16 . INSTRUCTIONS
TRS-80

X N Z VvV C

[- - -]
None of the flags are affected.

Instruction Fields:

This instruction requires one word of extension for
displacement [exp].

15 14 13 12 11 1p 9 8 7 6 5 4 3 2 1 @
2 1 a 1 | condition [1 1 g @# 1 | regq.
displacement

The condition field contains one of 16 conditions.

The cc mnemonic can be one of the following:

Op Code - Mnemonic - Description

pgogyg - DBR - always

#1111 - DBE - equal

p11g - DBNE - not equal

24191 - DBC - carry

g1g9 - DBNC - no carry

18108 - DBP - positive

1411 - DBN - negative

1081 - DBV - overflow

1990 - DBNV - no overflow

1119 - DBGT - greater than

1199 - DBGE - greater than or equal
1191 - DBLT - less than

1111 - DBLE = less than or equal
g@lg - DBH - higher than

g1l - DBNH - not higher than
ggal - DEC - never

g1e1 - DBLO - low

g19@ - DBHS - high, or same

The register field contains the data register which is
used as a counter.

The displacement field contains the 16 bit displacement
(exp) and specifies the distance of the branch.

Radie fhaek

166

ASSEMBLER-16 o INSTRUCTIONS
TRS-80

DIV
DIVide signed

DIV .Dd, -€As Operand length(l): W
.Dd, @As+
.Dd, /exp [.W or .L]
.Dd, [expl@Ay[(Ri)]
.Dd, expl[@PC[(Ri)]]
.Dd, #expl[.W or .L]
.Dd, .Ds

Divides the destination (always a data register) by the
source and the result is stored in the destination. The
destination is a long word (32 bits) and the source is a
word (16 bits). The division is performed using signed
arithmetic. The result is a long word (32 bits) where:

1. The quotient is in the lower word.
2. The remainder is in the upper word.
3. The sign of the remainder is the same as the

dividend unless the remainder is zero.

Special Conditions:
Division by zero causes a trap.

Overflow may be detected and set before completion of the
operation.

If overflow occurs, the flag is set but the operands are

unaffected.

Example:

If DF contains H'@Pl4 and D1 contains -6 (H'FFFA), then
DIV .Dg,.D1

changes the contents of DF to H'@@@2 FFFD (-3 with a
remainder of 2).

Radio fhaek

167

ASSEMBLER-16 o INSTRUCTIONS
TRS-80

Condition Codes:

X N Z2 V C
J = * * * *

r

X = Not affected.

N - Set if the quotient is negative, cleared otherwise,
undefined if an overflow.

Z - Set if the quotient is zero, cleared otherwise,
undefined if overflow.

V - Set if overflow detected, cleared otherwise.

C - Always cleared.

Instruction Fields:

15 J4a 13 12 11 31 9 8 7 6 5 4 3 2 1 @
['l1T g g @] reg. | 1 1 1] mode | reg. |

The register field contains the data (destination)
register.

The register and mode fields contain the source
address mode.

Radie fhaek

168

ASSEMBLER-16 - INSTRUCTIONS
TRS-80

DIVUO
DIVide Unsigned

DIVU .Dd, -€As Operand length(l): W

.Dd, @As+

.Dd, /exp [.W or .L]

.Dd, [expleAy[(Ri)]

.Dd, exp[@PCI[(Ri)]]

.Dd, #expl[.W or .L]

.Dd, .Ds
Divides the destination (always a data register) by the
source and stores the result in the destination. The
destination is a long word (32 bits) and the source is a
word (16 bits). The division is performed using unsigned
arithmetic. The result is a long word (32 bits) where:

; I The quotient is in the lower word.

25 The remainder is in the upper word.

Special Conditions:
Division by zero causes a trap.

Overflow may be detected and set before completion of the
operation.

If overflow occurs, the flag is set, but the operands are
unaffected.
Example:
If DJ contains H'@@1l4 and D1 contains H'@@@F4, then
DIVU .D@,.D1

changes the content of DF to H'GPFFY PEGS5.

Condition Codes:

X N Z2 VvV C
* *

T = * *

[

Radie fhaek

169

ASSEMBLER-16 INSTRUCTIONS

TRS-80 °

X - Not affected.

N - Set if the most significant bit of the quotient is set,
cleared otherwise, undefined if an overflow.

Z - Set if the quotient is zero, cleared otherwise,
undefined if an overflow.

V - Set if an overflow is detected, cleared otherwise.

C - Always cleared.

Instruction Fields:

15 14 13 12 11 1 9 8 7 6 5 4 3 2 1 @
|1 g B g | reg. | g 1 1] mode | reg. |

The register fields contain the data (destination)
register.

The register and mode fields contain the source
address mode.

Radie fhaek

1798

ASSEMBLER-16 . INSTRUCTIONS
TRS-80

EXT
sign EXTended

EXT[1] .Dn Operand length(l): W, L

Sign-extends a byte to a word (bit 7 copied in bits 15-8),
or a word to long word (bit 15 copied in bits 31-16).

The operand is always a data register.

Example:
If DF contains H'@@FP FPIF, then
EXTL .Df

changes the contents of DJ to H'FFFF F@@gF.

Condition Code:

X N 2 V C
| =% * 7 ¥]

- Not affected.

- Set if the result is negative, cleared otherwise.
Set if the result is zero, cleared otherwise.

- Always cleared.

- Always cleared.

N M
|

Instruction Fields:

15 14 13 12 11 1 9 8 7 6 5 4 3 2 1 @
| 8 1 g g 1 g @] size | g F B] reg. |

The size field contains the size of the sign-extension.
If the size field is @1lf@, the sign extension is low
order byte to word.

If the size field is @11, the sign extension is low
order word to long word.

The register field contains the data register number
(#-7) to be sign-extended.

Radio fhaek

171

ASSEMBLER-16 " INSTRUCTIONS
TRS-80

LD
LoaD data

Can be interpretted by the Assembler-16 as four different
instructions. By the operands used, the Assembler-16
chooses which instruction to initiate.

LD [1] destination, source

where the destination is a register and the second operand
is the data located at source.

Radie fhaek

172

ASSEMBLER-16 5 INSTRUCTIONS
TRS-80

LD
LoaD condition codes

LD[1] .CCR, #expl.W] Operand length(l): W
.CCR, —-@As
.CCR, @As+
.CCR, /expl.W]
.CCR, [expl@As[(Ri)]
.CCR, expl[@PC[(Ri)]]
.CCR, .Ds

Loads the content of the source in the condition codes. The
source is a word but only the low order 8 bits are loaded.
Example:

If the condition codes of the status register are all set,
then

LDW .CCR, #H'JE
changes the codes so that the extend and carry bits are
clear, and the negative, zero, and overflow bits are set.
Condition Codes:

X N Z Vv C
*

| %* * * ﬁ_T

Set all flags according to the source operand.

Instruction Fields:

15 14 13 12 11 1 9 8 7 6 5 4 3 2 1 @
12 1 g g g 1 g g 1 1] mode | reg. |

The register and mode fields contain the addressing
modes of the source.

Radio fhaek

173

ASSEMBLER-16 INSTRUCTIONS

TRS-80 °

LD
LoaD data register

LD[1] .Dd, -@As Operand length(l): B, W, L
.Dd, @As+
.Dd, /expl[.W or .L]
.Dd, [expl@As[(Ri)]
.Dd, exp[@PC[(Ri)]]
.Dd, #expl.W or .L]
.Dd, .Ds
.Dd, .As (1=W, L only)

Loads the contents of the source into a destination data
register.
Example:

If AP points to memory address H'5@§@@, which contains H'lF,
and D contains H'@g@g@g@g @#@@@, then

LDB .DgJ ,eag+
changes the contents of DF to H'@P@P PPLF, and increments Af
by 1.

Condition Codes:

X N Z2 V C
[- * * g g |
Unaffected.

Set if the result is negative, cleared otherwise.
Set if the result is zero, cleared otherwise.
Always cleared.

Always cleared.

NN
I nnn

Instruction Fields:

15 14 13 12 11 19 9 8 7 6 5 4 3 2 1 B
destination source
g P | size req. | mode mode | reg.

The size field contains the size loaded.

Radie fhaek

174

ASSEMBLER-16 & INSTRUCTIONS
TRS-80

If the size field contains @1 the size loaded is byte.
If the size field contains 11 the size loaded is word.
If the size field contains 1§ the size loaded is long.

The destination fields determine the destination data
register. Note that the register mode is reverse normal
order.

The source fields determine the source addressing mode.

Radio fhaek

175

ASSEMBLER-16 5 INSTRUCTIONS
TRS-80

LD
LoaD address register

LD[1] .Ad, #exp[W or .L] Operand length(l): W, L

.Ad, -@As

.Ad, @As+

.Ad, /expl[.W or .L]

.Ad, [exp]l@As[(Ri)]

.Ad, expl[@PC[(Ri)]]

.Ad, .As

.Ad, .Ds

Loads the contents of the source to an address register.

Example:
If Af contains H'Q@gg@ PPPP, then
LDW .AfQ,#H'FFOQ
changes the contents of A@ to H'FFFF FF@@ (the source is
sign extended).
Condition Codes:

X N Z V C

[- - - -7

None of the flags are affected.

Instruction Fields:

15 14 13 12 11 18 9 8 7 6 5 4 3 2 1 @
destination source
g g size reg. | 8 g1 mode | reg.

The size field contains the size of the operand.
If the size field contains 11, it is a word operation.
The source is sign extended to a long operand and all
32 bits are loaded into the address register.
If the size field contains 1§, it is a long operation.

Radio fhaek

176

ASSEMBLER-16 INSTRUCTIONS

TRS-80 °

The destination field contains the destination address
register.

The source field contains the addressing mode of the
source.

Radio fhaek

177

ASSEMBLER-16 INSTRUCTIONS

TRS-80 °

LDA
LoaD Address

LDA .Ad, /expl.W or .L] Operand length(l): L
.Ad, [expl@As[(Ri)]
.Ad, exp[@PC[(Ri)]]
Loads the specified address register with the address of the
source. All 32 bits of the address register are affected.

Example:

If A@ contains H'PP@gP PPPFF, Al contains H'64@F and A2
contains H'@@@P @P25, then

LDA .Af,H'10@AL(A2)

Changes the contents of Afg to H'PPPgPI6PFP35.

Condition Codes:

X N 2 V C

None of the flags are affected.

Instruction Fields:

15 14 13 12 11 1 9 8 7 6 5 4 3 2 1 @
8 1 B P | reg. [1 1 1| mode | reg. |

The register field determine the address register to
load.

The register and mode fields contain the address to be
loaded.

Radie fhaek

178

ASSEMBLER-16 o INSTRUCTIONS
TRS-80

LDM
LoaD Multiple

LDM[1] Rlist, @As+ Operand length(l): W, L
Rlist, /exp
Rlist, [explAs([Ri)]
Rlist, exp[@PC[(Ri)]]

where R list is a set of registers (destination), separated
by commas (Rx, Ry...etc).

The registers in Rlist are loaded from consecutive memory
locations beginning with the location specified by the
source operand. The order of loading register is from Df
to D7, then from Af to A7. Note that this order is’
independent of the order given in Rlist (.Al,.D3, D2 would
give the same result as .D2, .D3, .Al.). If a word is
stipulated in operand length (1), then the low order word of
each register is loaded, and the word is sign extended into
the upper word.

If the source is the postincrement mode, the incremented
address register is updated to contain the address of the
last word loaded plus two.

Example:

If the memory addresses H'6@@@-60@#3 contain H'AA AA BB BB,
and D@ and D1 both contain H'@@g@g@ @@@gP, then

LDMW .Dg,.D1,/H'6090

changes the contents of D@ to H'@@PP AAAA, and D1 to H'PgPgg
BBBB.

Condition Codes:

X N Z VvV C

I 1

None of the flags are affected.

Instruction Fields:

Radie fhaek

179

ASSEMBLER-16 INSTRUCTIONS

TRS-80 °

A word extension is added to the operation word for this
instruction (Rlist).

15 14 13 12 11 1 9 8 7 6 5 4 3 2 1 g
2 1 g g 1 1 # P 1 |sz|] mode | req.
Rlist

The size field contains the size of the operation.
If the size field contains f, it is word.
If the size field contains 1, it is long.

The register and mode fields contain the source
addressing mode.f

The Rlist field contains the registers in the Rlist as
follows:

15 14 13 12 11 18 9 8 7 6 5 4 3 2 1 #
[A7 A6 A5 a4 A3 A2 Al Afg D7 D6 D5 D4 D3 D2 D1 DFJ

This is where the bits corresponding to the registers
included in the Rlist are set.

Radio fhaek

184

ASSEMBLER-16 o INSTRUCTIONS
TRS-80

LDP
LoaD Peripheral data
LDP[1] .Dd, [expl@As Operand length(l): W, L
Loads the data into the data register (destination) from
memory (source). The data in memory is formatted as one
byte per word (the high order byte for even addresses and
the low order byte for odd addresses).

Example:

If A contains H'6@P@, addresses H'6@4@@-60#@3 contain H'FA 23
1B 30, and DJ contains H'@@g@gd g@gPP, then

LDPW .Dg,eAp

changes the contents of D to H'@@g@g@ FALB.

Radio Shaek

181

ASSEMBLER-16 INSTRUCTIONS

TRS-80°
OPERAND LENGTH: W
MEMORY SOURCE ADDRESS TO DATA REGISTER

A B EVEN —--> | | | A | ¢ |

[D

E F

G H oDD --> | | | B | D |
Example:

If AP contains H'60@f, addresses H'6P0F - 6§87 contain H'FA
23 1B 38 25 26 27 28, and Df contains H'@@g@g@ @F@P@, then

LDPL .Dg,@ap@

changes D to H'FALlB 25 27

OPERAND LENGTH: L

MEMORY SOURCE ADDRESS TO DATA REGISTER
A B EVEN --> [A | ¢ | E | &6 |

C D

E F

G H oob --> | B | p [F | H |

Condition Codes:

X N Z VvV C

[— - - - -7

None of the flags are affected.

Instruction Fields:

15 14 13 12 11 1 9 8 7 6 5 4 3 2 1 g
g B @ P | data reg.|l |f [sz[f# P 1[add reg.
[exp]

The data register field contains the destination of
the data register.

Radio fhaek

182

ASSEMBLER-16 & INSTRUCTIONS
TRS-80

The size field contains the size of the operation.
If the size field contains @, the operation is word.
If the size field contains 1, the operation is long.

The address register field contains the source address
register used in indirect mode (plus optional displacement).

The [exp] field contains the placement used in
calculating the operand address.

Radio fhaek

183

ASSEMBLER-16 . INSTRUCTIONS
TRS-80

LINK
LINK and allocate

LINK .An, #exp Operand length(l): Unsized

This is a three-step instruction:

1z The address register specified (.An) is pushed
onto the stack (.An occupied two words -- 32
bits).

2. Then, the address register (.An) is loaded with

the updated stack pointer.

35 The sign-extended displacement (two's complement
integer) is added to the stack pointer (#exp,
occupies a 16-bit extension of the operation
word) .

Example:

If AP contains H'P@ll 4PP@F, and the SP contains H'@@@P 3406,
then

LINK Af, #H'1pg

changes the contents of A@ to H'@@@P 3g@2, the SP to H'FPPH
3gg2, and memory addresses H'3@§@2-3445 to H'@GP 11 49 @gF.

Condition Codes:

X N Z V C

[-]

None of the flags are affected.

Instruction Fields:

9 8 7 6 5 4 3 2 1 g

1 g g 1 g 1 P | req.
#exp

15 14 13 12 11 14
[} L 2 2 1 1

Radie fhaek

184

ASSEMBLER-16 INSTRUCTIONS

TRS-80°

The register field contains the address register
specified in the operand.

The #exp field determines the two's complement integer
which is to be added to the stack pointer.

Radio Jhaek

185

ASSEMBLER-16 INSTRUCTIONS

TRS-80 °

MOV
MQOVe

This instruction can be interpreted by the instruction four
different ways. The operands used determine which
instruction the Assembler-16 chooses.

General Operation:

MOVI[1] destination, source

where the operands are either both memory or both registers.
The contents of the source is moved to the destination.

Radio fhaek

186

ASSEMBLER-16 o INSTRUCTIONS
TRS-80

MoV
MOVe address register

MovI[l] .ad, .As Operand length(l): W, L
.Ad, .Ds

The destination is an address register.

Example:

If Al contains H'FF@@, and Af contains H'Q@g@gd @@PF, then
MOVW.A#, .Al

changes the contents of Af to H'FFFF FFf@ (the source is

sign extended).

Condition Codes:

X N 2 V C

[- - - [

None of the flags are affected.

Instruction Fields:

15 14 13 12 11 1 9 8 7 66 5 4 3 2 1 @
destination source
g J/| size register | g g 1 mode | req.

The size field contains the size of the operand.
If the size field contains 11, it is a word operation.
The source is sign extended to a long operand and all
32 bits are loaded into the address register.
If the size field contains 1§, it is a long operation.

The destination field determines the destination address
register.

The source field determines the addressing mode of the
source operand.

Radie fhaek

187

ASSEMBLER-16 " INSTRUCTIONS
TRS-80

MOV
MOVe to condition codes
MOVI[1] .CCR, .Ds Operand length(l): W
Loads the content of the source into the condition codes.
Only the low order 8 bits of the source are loaded. The
source 1is a word.

Example:

If DF contains H'@@1l1l, and the condition codes are all
clear, then

MOV .CCR, .Df

sets the extend and carry bits of the status register, and
clears the negative, overflow, and zero bits.

Condition Codes:

X N 2 V C
]*****

I

All condition codes are set according to the source operand.

Instruction Fields:

15 14 13 12 11 1 9 8 7 6 5 4 3 2 1 @
[# 1 @# # g 1 @# F 1 1] mode | reg. |

The register and mode fields contain the addressing
mode of the source.

Radio fhaek

188

ASSEMBLER-16 . INSTRUCTIONS
TRS-80 —

MoV
MOVe general

MOVI[1] .Dd, .Ds Operand length(l): B, W, L
.Dd, .As (1 = W or L only)
-@Ax, -@Ay
@Ax+, @Ay+
_@Ax; @AY'I'
-@Ax, /exp
-@Ax, [exp]l@Ay[(Ri)]
-@Ax, exp[@PC[(Ri)]]
@AX+f _@Ay
@Ax+, /exp
@Ax+, [expl]@Ayl[(Ri)]
@Ax+, exp[@PCI[(Ri)]1]
/exp, —-@Ax
/exp, @Ax+
/expl, /exp2
/expl, [exp2]@Ax[(Ri)]
/expl, exp2[@PCI[(Ri)]]
[expl@Ax[(Ri)], —-@Ay
[expl@AxX[(Ri)], @Ay+
[explleAx[(Ri)], /exp2
[expl]@Ax[(Ri)], [exp2]@Ay[(Ri)]
[expl]@Ax[(Ri)], exp2[@PC[(Ri)]]
-@Ax, #exp
QAx+, #exp
/expl, #exp2
[expl]eAx[(Ri)], #exp2

Moves the contents of the source to the destination (memory
to memory, or register to data register.
Example
If D@ contains H'l@@P@ and D1 contains H'FF, then
MOVB .Dg,.D1

changes the contents of D to H'1l@FF

Condition Codes:

Radie fhaek

189

ASSEMBLER-16 INSTRUCTIONS

TRS-80 °
X N Z V C
[- * * g g
Unaffected.

Set if result is negative, cleared otherwise.
Set if result is zero, cleared otherwise.
Always cleared.

Always cleared.

O<NZ X
LI T I | B

Instruction Fields:

Radie fhaek

199

ASSEMBLER-16 o INSTRUCTIONS
TRS-80

15 14 13 12 11 18 9 8 7 6 5 4 3 2 1 #
destination source
g g size | register | mode mode | regq.

The size field determines what size is moved.
If the size field is @1, it is byte.
If the size field is 11, it is word.
If the size field is 1@, it is long.

The destination fields contain the destination
addressing mode (note reg./mode is reverse normal order).

The source fields contain the source addressing mode.

Radio fhaek

191

ASSEMBLER-16 & INSTRUCTIONS
TRS-80

MOV
MOV from SR
MOV[1l] .Dd, .SR Operand length(l): W
Moves the contents of the status register to the data
register.
Example:
If the SR contains H'8715 and DJ contains H'@@g@@, then
MOV .D@,.SR

changes the contents of D@ to H'8715.

Condition Codes:

X N Z Vv C

None of the flags are affected.

Instruction Fields:

15 14 13 12 11 1 9 8 7 6 5 4 3 2 1 @
| # 1 g B# g B P P 1 1| mode | reg. |

The register and mode fields contain the destination
data register.

Radie fhaek

192

ASSEMBLER-16 INSTRUCTIONS

TRS-80°

MUL
MULtiply signed

MUL .Dd, -€As Operand length(l): W
.Dd, @As+
.Dd, /exp [.W or .L]
.Dd, expleAy[(Ri)]
.Dd, expl[@PCL[(Ri)]]
.Dd, #exp[.W or .L]
.Dd, .Ds

Multiplies the two signed word (16 bits) operands, producing
a 32-bit signed result in the destination (data register).
The register operands are taken from the low order word,
leaving the high order word unused. All 32 bits of the
product are saved in the destination.

Example:

If D@ contains H'@@F1lF and D1 contains H'FFF5, then
MUL .Dg,.D1

changes the contents of DJ to H'FFFF FF5§.

Condition Codes:

X N 2 V C
| = % = § 8 |

Not affected.

Set if the result is negative, cleared otherwise.
Set if the result is zero, cleared otherwise.
Always cleared.

Always cleared.

1 I

NNz ™
i

Instruction Fields:

15 14 13 12 11 1 9 8 7 6 5 4 3 2 1 @
| 1 [/} B P | register [1 1 1 [mode | reg. |

The register field contains the data register
(destination).

Radie fhaek

193

ASSEMBLER-16 " INSTRUCTIONS
TRS-80

The register and mode fields contain the source
address mode.

Radio Shaek

194

ASSEMBLER-16 n INSTRUCTIONS
TRS-80

MULU
MULtiply Unsigned

MULU .Dd, -@As Operand length(l): W
.Dd, @As+
.Dd, /exp [.W or .L]
.Dd, [expleAyl[(Ri)]
.Dd, expl[@PCI[(Ri)]]
.Dd, #expl[.W or .L]
.Dd, .Ds

Multiplies two unsigned word (16 bits) operands, producing a
32-bit unsigned result in the destination (data register).
The register operands are taken from the low order word; the
high order word is unused. All 32 bits of the product are
saved in the destination.

Example:
If DF contains H'@PlP and D1 contains H'@@PES5, then
MULU .Dg, .D1

changes the contents of D@ to H'Gg@gd @@54.

Condition Codes:
X N Z V C

| - * * g g]

- Not affected.

Set if the most significant bit of the result is set,
cleared otherwise.

- Set if the result is zero, cleared otherwise.

Always cleared.
- Always cleared.

=z
|

O< 3
1

Instruction Fields:

15 14 13 12 11 1 9 8 7 6 5 4 3 2 1 @
[1 1 g P [register[§ 1 1] mode [reg. |

Radio fhaek

195

ASSEMBLER-16 INSTRUCTIONS

TRS-80°

The register field contains the data register
(destination).

The register and mode fields contain the source
address mode.

Radio Sfhaek

196

ASSEMBLER-16 INSTRUCTIONS

TRS-80 °
NEG
NEGate
NEG[1l] .Dd Operand length(l): B, W, L
-@Ad
@Ad+

/expl[.W or .L]
[expleAx[(Ri)]

Subtracts the operand addressed as the destination from
zero., The result is stored in the destination.
Example:
If DJ contains H'3A, then

NEGB .Dg

changes the contents of D@ to H'C6.

Condition Codes:

X N 2 VvV C
* %

| * % % [
X - Set the same as carry ((c) - if borrow generated),
cleared otherwise.
N - Set if the result is negative, cleared otherwise.
Z - Set if the result is zero, cleared otherwise.
V - Set if an overflow is generated, cleared otherwise.
C - Set if a borrow is generated, cleared otherwise.

Instruction Fields:

15 14 13 12 11 1 9 8 7 6 5 4 3 2 1 @
| 8 1 g g B 1 B P [size] mode | reg. |

The size field contains the size of the operation.
If the size field is @1, it is byte.
If the size field is @1, it is word.
If the size field is 1§, it is long.

Radio fhaek

197

ASSEMBLER-16 " INSTRUCTIONS
TRS-80

The register and mode fields contain the destination
address mode.

Radio fhaek

198

ASSEMBLER-16 & INSTRUCTIONS
TRS-80

NEGC
NEGate with carry

NEGC[1l] .Dd Operand length(l): B, W, L

-@Ad

eAd+

/expl.W or .L]

[expl@Ax[(Ri)]
Subtracts the operand addressed as the destination and the
carry bit from zero. The result is stored in the
destination.

Example:

If DY contains H'34 and the extend bit of the status
register is set, then

NEGCB .Dg

changes the contents of Df to H'CB.

Condition Codes:

X N Z VvV C
* %

| * % k l
X - Set the same as carry ((c¢) - if borrow generated),
cleared otherwise.
N - Set if the result is negative, cleared otherwise.
Z - Cleared if the result is nonzero, unchanged otherwise.
V - Set if an overflow is generated, cleared otherwise.
C - Set if a borrow is generated, cleared otherwise.

Instruction Fields:

15 14 13 12 11 19 9 8 7 6 5 4 3 2 1 g
18 1 g 8 P§ B P P [size] mode | reg. |

The size field contains the size of the operation.
If the size field is @@, it is byte.
If the size field is @1, it is word.

Radio fhaek

199

ASSEMBLER-16 . INSTRUCTIONS
TRS-80

If the size field is 1§ it is long.

The register and mode fields contain the destination address
mode.

Radio fhaek

208

ASSEMBLER-16 R INSTRUCTIONS
TRS-80

NEGD
NEGate Decimal (BCD) with extend

NEGD -Q@Ad Operand sizes: B
@Ad+
/exp
[exp]@Ax[(Ri)]
.Dd

Subtracts the operand and the extend bit from zero. Binary
coded decimal arithmetic is used, storing the result in the
operand address. The ten's complement of the destination
is produced if the extend bit is clear, if the extend bit
is set the nine's complement of the destination is produced.
This is a byte only operation.

Example:

If D@ contains 51 and the extend bit of the status register
is clear, then

NEGD .Dg

changes the contents of Df to 49.

Condition Codes:

X N Z VvV C
| *x U * Uy * I

X - Set if borrow (BCD) occurred, cleared otherwise (same as

carry(c)).
N = Undefined.
Z - Cleared if the result is nonzero, unchanged otherwise.
V - Undefined
C - Set if borrow (BCD) occurred, cleared otherwise. (Same

as extend (X)).

Instruction Fields:

15 14 13 12 11 18 9 8 7 6
[§ 1 g B 1 @ @ P § F | mode | reg. |

Radio fhaek

201

ASSEMBLER-16 " INSTRUCTIONS
TRS-80

The register and mode fields contain the operand
destination (the address of the operand.)

Radio fhaek

202

ASSEMBLER-16 " INSTRUCTIONS
TRS-80

NOP
No OPeration

NOP Operand length(l): Unsized
No operation occurs. The program counter is incremented by
two. Otherwise, the processor state is unaffected.
Example:
If the PC contains H'64@@, then

NOP

changes the PC to H/6@@2.

Condition Codes:

X N Z2 VvV C
[- - - = -]

None of the flags are affected.

Instruction Fields:

15 14 13 12 11 1§
| g 1 g p 1 1

|
s
=|w
=N
=+
-

9 8 7 6
1 g g 1

Radie fhaek

203

ASSEMBLER-16 o INSTRUCTIONS
TRS-80

NOT
logical NOT

NOT(1l) .Dd Operand length(l): B, W, L
-@Ax
@Ax+
/expl[.W or .L]
[expl@Ax[(Ri)]

The one's complement of the operand is taken and is stored
in the destination.

Example
If DF contains H'3C, then
NOTB .D@

changes the contents of DJ to H'C3.

Condition Codes:

X N Z2 V C

- > 7 51

- Not affected.

- Set if the result is negative, cleared otherwise.
Set if the result is zero, cleared otherwise.

- Always cleared.

- Always cleared.

Q<™ Z N
I

Instruction Fields:

15 14 13 12 11 1 9 8 7 6 5 4 3 2 1 @
1 @ il [7] g @ 1 1 @ [size] mode [reg. |

The size field contains the size of the oeration.
If the size field is @@, it is byte.
If the size field is @1, it is word.
If the size field is 1§, it is long.

The register and mode fields contain the destination
address mode.

Radio fhaek

204

ASSEMBLER-16 5 INSTRUCTIONS
TRS-80

OR
logical OR

This instruction can be interpreted by the Assembler-16 two
differnt ways. By the operands used, the Assembler-16
chooses which instruction to execute.

General Operation:

OR[1l] destination, source

where the source is ORed to the destination and the result
is stored in the destination.

The Assembler-16 chooses which instruction to initiate by
the following guidelines.

OR immediate used if the source is
immediate (indicated by a #
sign).

OR data used for all other OR

operations, one of the
operands 1is always a data
register.

Condition Codes: (Identical for both operations)

X N Z VvV C
L_**gﬁl

X - Not affected.

N - Set if the most significant bit of the result is set,
cleared otherwise.

- Set if the result is zero, cleared otherwise.

Always cleared.

- Always cleared.

NO<m™
|

Radio fhaek

205

ASSEMBLER-16 o INSTRUCTIONS
TRS-80

OR
logical OR immediate

OR[1] .Dd, #expl[.W or .L] Operand length(l): B, W, L
-@Ax, #expl[.W or .L]
@Ax+, #expl[.W or .L]

/expl[.W or .L], #exp2[.W or .L]

[expl]leAx[(Ri)], #exp2[.W or .L]
.CCR, #exp[.W or .L] (1=W only)

Example:
If DJ contains H'C6, then
ORB .D@, #H'2A

Changes the contents of D@ to H'EE.

Instruction Fields:

15 14 13 12 11 1 9 8 7 6 5 4 3 2 1 #
| 88 % § § P f P [size[mode [reg. |

+

1 | byte data (8 bits) |
or
| word data (16 bits) |
or

long word data (32 bits including previous word)

The size field contains the size of the operation.
If the size field is @@, it is byte.
If the size field is @1, it is word.
If the size field is 1@, it is long word.

The register and mode fields contain the address mode
of the destination operand.

The data field contains the data immediately following

the instruction:
If the size field is @@, then the data is the low order
byte of the immediate word (8 bits).
If the size field is @1, then the data is the entire

Radio fhaek

206

ASSEMBLER-16 INSTRUCTIONS

TRS-80°

immediate word (16 bits).
If the size field is 1f, then data is the next two
immediate words (32 bits).

Radie fhaek

207

ASSEMBLER-16 . INSTRUCTIONS
TRS-80

OR
Logical OR data

Operand length(l):B, W, L

OR[1] .Dd, .Ds

.Dd, -@Ay

-@Ax , .Ds

.Dd, @Ay+

@Ax+, .Ds

.Dd, /expl[.W or .L]
/expl[.W or .L], .Ds
.Dd, [expleAyl (Ri)
[expl@Ax[(Ri)], .Ds
.Dd, exp[@PC[(Ri)]]

Example:
If DF contains H'C6 and D1 contains H'2A, then
ORB .Dg, .D1

changes the contents of D@ to H'EE.

Instruction Fields:

15 14 13 12 11 18 9 8 7 6 5 4 3 2 1 @
11 g g 2 | reqg. | size/op] mode | reg. |

The register field contains the data register.

The size/op field contains the size of the operation and
the destination of the result:

Byte Word Long Word Destination
a9 ga1 719 data register
194 191 119 second operand

The mode and register fields contain the location of
the second operand.

Radio fhaek

208

ASSEMBLER-16 INSTRUCTIONS

TRS-80 °

PUSHA
PUSH Address

PUSHA /exp Operand length(l): L
[exp] @Ax [(Ri)]
exp [@PC [(Ri)]]

Computes the address and pushes it into the stack.

Example:
If the SP contains H'@@g@gP 6@@4, then
PUSHA H'JPFFIRLP
changes the contents of memory locations H'6@@g@-6@g@3 to H'@P
FF gA @@, and the SP to H'@PPP 60F0.
Condition Codes:

X N Z VvV C

[= - -]

None of the flags are affected.

Instruction Fields:

l1s 14 13 12 11 1 9 8 7 6 5 4 3 2 1 #
| g 1 g g 1 @# g g B 1] mode | reg.

The register and mode fields contain the address to be
pushed onto the stack.

Radie fhaek

209

ASSEMBLER-16 INSTRUCTIONS

TRS-80 °

RET
RETurn from subroutine

RET Operand length(l): Unsized
Pops a long word from the stack and stores it in the program
counter (PC). The previous program counter is lost.
Example:

If the top of the stack contains H'@F FF 64 @@, then
RET

changes the contents of the PC to H'6@@@ and resumes

execution from that address.

Condition Codes:

X N 72 V C

[]

None of the flags are affected.

Instruction Fields:

9 8 7 6 5
1 g g 1 1

15 14 13 12 11 1@
[g 1 g g 1 1

|
= W
(o
S\
=

Radio fhaek

219

ASSEMBLER-16 INSTRUCTIONS

TRS-80 °

RTR
ReTurn with Restore
RTR Operand length(l): Unsized
Pops a long word and word off the stack and then stores them
in the program counter(PC) and condition code register

(CCR), respectively. The previous values of the PC and CCR
are lost. The Supervisor portion of the SR is unaffected.

Example:

If the top of the stack contains H'@@ g9 6¢ @9 @@ @5, then
RTR

sets all of the condition codes of the status register and

changes the contents of the PC to H'6@@@F where program

execution resumes.

Condition Codes:

X N Z VvV C
] * * * * *

T

All flags are set according to the word on the stack.

Instruction Fields:

15 14 13 12 11 19
1

9 8 7 6 5 4 3 2 1 ¢
[1T @ ¢ 1 1 § 9 1 1 1 g 1 1 1]

Radio fhaek

211

ASSEMBLER-16 INSTRUCTIONS

TRS-80 °

ROdc
ROtate

General Operation:

Rotates the bits of a specified data register by a count
contained in either a second data register or an immediate
expression whose value is in the range 1-8, Memory
addresses of word length can also be rotated, but only by
one bit. The direction and category are specified in the
mnemonics:

ROL - left logical
ROR - right logical
ROLC - left with carry(extend)
RORC - right with carry(extend)

Radio fhaek

212

ASSEMBLER-16 INSTRUCTIONS
TRS-80 °

ROL
ROtate Left logical

C |€-=—--- OPERAND Cmmm

Bits rotated out of the high order bit go to the carry and
low order bits. The extend bit is not modified.

Radio fhaek

213

ASSEMBLER-16 INSTRUCTIONS

TRS-80°

ROR
ROtate Right logical

——> OPERAND | ==—=—- >| c

Bits rotated out of the low order bit go to the carry and
high order bits. The extend bit is not modified.

Radio fhaek

214

ASSEMBLER-16 INSTRUCTIONS
TRS-80°

ROLC
Rotate Left with Carry (extend)

c [¢-=---- OPERAND S 1

X |<--

Bits rotated out of the high order bit go to the carry and
extend bits. The previous value of extend bit is rotated low
order bit.

Radio fhaek

215

ASSEMBLER-16 INSTRUCTIONS

TRS-80°

RORC
Rotate Right with Carry (extend)

-——> OPERAND [=—=--- > ¢

-->| X

Bits rotated out of the low order bit go to the carry and

extend bits. The previous extend bit is rotated to low order
bit.

Radio fhaek

216

ASSEMBLER-16 INSTRUCTIONS
TRS-80°

ROL or ROR
ROtate logical

Condition Codes:

X N 2 V
[-—* * 7

- Not affected.

- Set if the most significant bit of the result is set,
cleared otherwise.

- Set if the result is zero, cleared otherwise,

Always cleared.

- Set according to the last bit rotated out of the
operand, cleared for a shift count of #.

C
*

[

2 >

n<gxN
|

Radio fhaek

217

ASSEMBLER-16 o INSTRUCTIONS
TRS-80

ROL or ROR
ROtate logical data

ROL[1] or Operand length(1l):B, W, L
ROR[1] .Dx, .Dy
.Dx, #expl[.W or .Ll]
Example:
If DF contains H'8Q@¥ F@FPP, then
ROLL .DF, #1

changes the contents of DU to H'@PPP PPP1.

Instruction Fields

15 14 13 12 11 19 9 8 7 6 5 4 3 2 1 4@
11 1 1 g | count l[dr]size[i/r[1 J1 | reg. |

The count field contains the expression specifying the
count,
If the immediate/register field contains @, the rotate
count is specified in this field.
Values are 1-8 where 8 is indicated by @@@; values 1-7
sre standard binary, where @@l = 1, #1090 = 2 etc.

The direction field contains the direction of the
rotation.
If the direction field contains @, the rotation is to
the right.
If the direction field contains 1, the rotation is to
the left.

The size field contains the size of the operation.
If the size field is @@, it is byte.
If the size field is @1, it is word.
If the size field is 1f, it is long word.

The immediate/register field contains the
immediate/register.
If the immediate register field contains @, the count
field contains an expression.
If the immediate register field contains 1, the count

Radie fhaek

218

ASSEMBLER-16 INSTRUCTIONS
TRS-80 °

field contains a register.

The register field contains the specifying register to
be rotated.

Radio fhaek

219

ASSEMBLER-16 o INSTRUCTIONS
TRS-80

ROL or ROR
ROtate logical memory

ROL[1] Operand length(l): W
or
ROR[1] -@An
@An+
/exp
[expl@An[Ri]

NOTE: rotate of one bit only

Example:

If memory address H'50@@ contains H'@@F42, then
ROR /H'S500¢

changes the contents of H'50@@ to H'@@21.

Instruction Fields:

15 14 13 12 11 1 9 8 7 6 5 4 3 2 1 @
[1 1 1 g @ 1 1Jdr] 1 1 | mode | reg. |

The direction field contains the direction of rotation.
If the direction field contains @, the rotation is to
the right.
If the direction field contains 1, the rotation is to
the left.

The register and mode fields contain the operand to be
rotated.

Radio fhaek

22¢

ASSEMBLER-16 INSTRUCTIONS
TRS-80 °

ROLC or RORC
ROtate with Carry

Condition Codes:

X
*

*=2

Z C
* *

\'
I g [
X - Set according to the bit last rotated out of the
operand, cleared otherwise.
N - Set if the most significant bit of the result is set,
cleared otherwise.
Z - Set if the result is zero, cleared otherwise.
V - Always cleared.
c

- Set according to the last bit rotated out of the
operand, unaffected for a shift count of f.

Radio fhaek

221

ASSEMBLER-16 o INSTRUCTIONS
TRS-80

ROLC[1] or RORCI[1]
ROtate with Carry data

ROLC[1] or Operand length(l):B,W,L
RORC[1] .Dx, .Dy
.Dx, #expl[.W or .L]

Example:

If DP contains H'@8 and the carry bit of the status register
is set, then

RORCB .DF, #2

changes the contents of D@ to H'42.

Instruction Fields:

15 14 13 12 11 19 9 8 7 6 5 4 3 2 1 @
[1 1 1 @ | count Jdr[size[i/r[l1 @] reg. |

The count field contains the expression signifying
register.
If the immediate/register field contains @, the rotate
count is specified in this field.
Values are 1-8 where 8 is indicated by @@f@; values 1-7
are standard binary where #@1 = 1, @10 = 2 etc.

The direction field contains the direction of the
rotation.
If the direction field contains §, the rotation is to
the right.
If the direction field contains 1, the rotation is to
the left.

The size field contains the size of the operation.
If the size field is @@, it is byte.
If the size field is @1, it is word.
If the size field is 10, it is long word.

The immediate/register field contains the
immediate/register.
If the immediate register field contains @, the count
field contains an expression.

Radie fhaek

222
