

CORRECTIONS TO MODEL II OWNERS MANUAL

8/23/7'7

IMPORTANT CORRECTIONS TO MODEL II OWNER'S MANUAL
PRELIMINARY VERSION

I. OPERATION MANUAL

PAGE 1

Pa9e 3/1: ALL DRIVES must be emPtY wheneve~ vou tu~n the Computer· on
or· 01::1:: ..

Pa9e 6/2: To use the Model II WITHou·r a Disk ExPansion Unit connected,
vou must connect the Te~minator Plug to the the connector labeled DISK
EXPANSION on the back of the DisPlaY Cor1sole~

II. TfiBDOS HEFERENCE MANUAL
Pa9e 6~ Delete the r•efe~ence to the KeYboard Code Map--such a map is
not included in the Preliminary manual ..

Pa9e 44: Note that the DEBUG UPload function is not comPatible with
SETCOI"', I:<S232C or· 'i::h,'::! c~ther· :=.er·ial I/0 ~:.u1:::-\~r·vi~-or· call:: ...

Pa9e 66A: SETCOM command .. Before chan9in9 anv of the Parameters for a
channel' the channel must be off~

The loLIH7.'~-t availa.b'le baud r·a.te i~. 1U2h not 100 .. Hol!Ji!fVE:r·, to ~'H?t 11(2")
baud, vou must still sp-;:rcifv 100 in the Parameter list~ Also make a
note of this on Pa9e 143.

Pa9e 72: The FORMAT command svntax requir-e braces, not Parentheses~
around the oPtion listu Chan9e all examPles on Pa9es '72 and 73 to
include braces instead of Parenthesesu

FOI~i"IAT : 1 {ID,=ACCOUNTt;, PW='iT!OUS<.ef
For· e::-::amPle::

P.-a.9e 14LJ-: In the wir·ing dia9r·am, t1ode"l II +.:1) Model II, ··(ou mus-t
connect Pins 20 and 6 on each DB-25 male connector. We also recommend
that vou add a connection from Pin 1 to Pin 1 on the DB-25 male
connectors~ This establishes a common CHASSIS GROUNDn

In addition' if vou are onlY 9oin9 to use one of the serial chanrtel·s~
Pins 3, s, 6, 7, and 8 on the other channel must be tied to9ether
BEFORE vou initialize the channels with SETCOM or RS232C~ Pr·epar·e a
DB-25 male terminator Plug for the unused channel:

HEAR VIEW OF DB-25 MALE CONNECTOR

I I I. BASIC F.(EFEI'<ENCE MANUAL.
Pa9e 132: To the list of field sPecifiers, add:
AAAA Causes a number to be Printed in leading ze~o E o~

D for·m;tt.
For· e::-::amPl e:

PfiiNT USING "#.#####AAA&•; 12.34501
Pr-ini:s

0. 123Lf5E+02

Pa9e 208: Chan9e the svntax for INPUT$ to:
INPUTSI1en9th• buffer-number)

Chan9e the examPle to:
AS= INPUTSI12• 2) _ .

Cha.n~:-Je s.o::J.ITIF~1·.:.· pr·o~tr·a.m_MM~ ine 2:.:::1.l"J to:
··::··-'1" ··1"$ = II\IPUT$({!ih 1 l:.. \(,}

COFHli::::CTIONt'l TO I'IODEL I I OHI\II::::f-lf3 1"1/\I\IUAL PAGE: 2

The TERM Pro9r·am included with TRSDOS Versior1 1~1

l"his Pr·o9Pam allows vou to use serial Channel A for sendin9 and
receiving characters in a terminal rnode~ That is~ it will function as
a sendin9/receivin9 clevice for ASCII charactersu The Pro9ram
alternatelY checks for a character re(:eived from the Channel A and
checks for acharacter tvPed in or1 t~,e Kevboard. Characters received
are automaticallY sent to the Video DisPlaY.

YES
Character available from)r---------)~ Display it)
serial input?

r---------~~~N ~ YES
0) Character available from t-· --------)" Send it via \

keyboard? , (serial channel I

Note that char·acter·s vou tvPe ar·e not automaticallY coPied to the
Video DisPlaYn If modems at both ends of the transmission are set to
half-·duPlex, characters vou tYPe will be echo~d back from the
~eceivin9 device and sent to the Video DisPlav.

Before usin9 TERM~ vo~J must initialize Channel A with SETCOM or
RS232C~ Select the Parameters that suit the modem o~ eguiPment You are
usin9~ Be SLir·e to Put a terminator· on Channel B if it is bein9 used
(::.f::f~ z::orr.:.:;;(~t).Qn for· t:=-~:t9E! :tLJ .. l~. of thf:! TF(EiDOEs !~.:.:::f<.::.,r·<.::~nc'-:? l"'la.nl.J;:l.l),

After YOU have initialized Charrnel A, type:
TEHI'I

as a TRSDOS command line" The Cor~Puter· will 9o into tt1e terminal
mod;;;!,

Er·r·or· H"1i.ndl in~.t

If t~1e data carrrier· is not Present uJtten TE~RM tr·ies to send or r·eceive
·~· ch<:!i.r·ac'i:-:::r-, it iJ.Ji 11 di:~.F··!~:t.·y· 'l:h.:.::! m·;~s::: .. ·::t.qi~:

DATA CAHHIEH IS NOT PRESENT
and stoPa Press <BREAK> to return to TRSDOS.

TE:RI'1 doe::-n''t check for ,;i.n·y· other· r'-~ceive E.'r·r·or·::. (~::o~9c ~ fr·amin9~ 11);:.+.:

di3.t<:'i!.) ~

If TEF~M dt·t~::oc-1::::. £:t tr·an:::.rrdt t.~r·r·or· (e~9"~ CTB fP)i: a.va.i'lable)~ it will
disPlaY the message:

XMIT I::::Fit!OH
and then look fo~ anot~1er KeYboar·d cha~acteru If the transmitter is
busy when TERM tries to send a character' TERM will re--send the
cha.r£:~.ct--.~r·,

•

PAGE 3

SOURCE LISTING OF 'TERM'

*H 'TER~INAL PROGRAM

I
RECV

I
KBIN

I
I
XMit

XMITE

DCDERR

HALT

XMITMS
DCDEMS

ORG l8010H

.;·TERM..,. PROGRAM ~ECEIYES CHARACTERS INTO CHANNEL A AND TRANSMITS
DATA KEYED IN FROM THE KEYBOARD ONTO CHANNEL A

EO\J
LD
RST
JR
JR

$
A9 Q6
8
C 9 DCDERR
NZ,KBIN

ISUPERVISDR FUNCTION - RECEIVE CHARACTER, CHANNEL A
IIF C~RACTER AVAILAALE, IT WILL BE ~ETTURNED IN REG 'B'
fDATA CAR;:?IER LOS.T ERROR
IND CHAR YET

WE HAVE A CHARACTER NOW F~M THE CHANNEL A RECEIVER

LD
RST

A,8
8

JSUPERVISOR FUNCTION- 'VIDEO CHARACTER OUTPUT
JOUTPUT THE CHARACTER IN REGISTER '~

NOW TES.T IF THERE IS A CHARACTER FRO.I4 THE KEYBOARD; IJUTPUT IT
ONTO THE CHANNEL A TRANSMITTEQ IF SO

EQU
LD
RST
JR

$

A 0 4
8
N7,RECV

JNOW LOOK TO SEE IF KB INPUT WAITING
JSUPERVISOR FUNCTION- KEYBOARD CHARACTER INPUT
I IF CHARACTER AVAIL, IT WILL COME BACK IN REG '~
INO CHARACTE~ AVAILABLE YET 1 SEE !F ONE HAS BEEN RECEIVED

WE HAVE A CHARACTER FROM THE KEYBOARD, NOW TRANSMIT THIS .CHARACTER

LD
RST
JR
JR
BIT
JR

A 1 97
8
C.OCDERR
Z,RECV
2,A
NZ,XMI.T

EQU $

LD
LD
INC
LD
LD
RST
JR

EDU
LD
LD
INC
LD
LD
RST

EQU
JR

mwr

HL, XMITMS
B,(HL)
HL
C,0DH
A,Q
8
RECV

s
HLtDCDEMS
8 1 O-IL}
HL
C,~DH

A,o
8

$
HALT

-' XMIT ERRrJR"

I SUPERVISOR FUNCTION- TRANSMIT ONTO CHANNEL A
100 IT
JDATA CAR~IER HAS BEEN LOST - ERROR!
ICHARACTER WAS TRANSMITTED PROPERLY
ITRANSMITTER STILL BUSY ERROR BIT
IRETRY UNTIL TRANSMITTER IS NOT BUSY

IERROR MESSAGE W/ LENGTH BYTE IN FRONT
IGET LENGTH FRO~ FRONT OF MESSAGE
IGET 1-L =>TEXT OF MESSAGE ITSELF
IFOLLOW TEXT W/ A CARRIAGE RETURN
ISUPERVISOR FUNCTION - VIDEO LINE ROUTINE
IOUTPUT MIO:SSA.GE TO VIDEO
IGn BACK TO SEE IF RECEIVED CHARACTER AVAILABLE

I ERROR- DATA CARRIER .WAS LOST MESSAGE
IERRDR MESSAGE W/ LENGTH BYTE IN FRONT
IGET LENGTH OF MESSAGE INTO REGISTER 'B~

IGET HL => TEXT OF MESSAGE ITSELF
lWE. WANT A CARRIAGE RETURN TO FOLLOW MESSAGE
ISUPERVISOR FUNCTION- VIDEO LINE· ROUTINE
lDUTPUT TO VIDEO HERE

; THIS WILL CAUSE A ·'HALT..,.. OF rHE PROGRAM
IUJOP BACK - THE 'BREAK"' KEY WILL RETURN CONTROL BACK TO TI:<SDOS

DEFT ..,.DATA CAR~IER lS NOT PRESENT-'

NOTE: "TERM" is intended as a demonstration program only-­
to help you in writing programs which use the serial i/o
capabilities of TRSDOS Model II.

CORRECTIONS TO MODEL II OWNER'S MANUAL PAGE 4

l'he BASIC comn1unications Pro9ram BASCOM/BAS and the
comm,Jnications subroutine COMS\JB together Perform. the same
function as t~1e TERM Pro9ram which is inclucled with TRSDOSu
BASCOM/BAS and COMSUB are incl,Jded -to give vou a feel for
ir1ter·facin9 Pro9rams at the assemblv--lan9ua9e level with BASIC
pro9ramsu BASCOM/BAS calls the machir)e-lan9,Ja9e COMSUB via
ttte USR fur,ctionu L.ike "fERM, BASCOM/BAS and COMSUB are
included on vour sYstem disk and maY be examined b·~ emPlovin9
the TRSDOS command LIST Cor the BASIC command L.IST in the case
1) f [-:?./.l-.sccwJ/I3i:,s) H

The Pro9rams allow vou to use the kevboar·d of the Model II to
send data in the for-m of ASCII characters to another comP~Jter

o~ device; at the same time' characte~s tr·arrsmitted on the
other device will be r·eceived bY the Mo(Je"l 11 and Printed on
th-e: DisFla.··(~

t:.~E .. r·i.::t 1 Cha.nrrel A is
must be terminated;
Reference Manual~>

used for sendirr9 arrd receivJ.n9~ <Channel B
see correction for pa9e 144 of the TRSDOS
The Pro9rams alte~natelv check Channel A

for a chara(:ter received, and· the keYboard for· a character
t··(p.,:;~d~ Char·;:r.cter·~. t··tF'ed L!.Ti 1"1 b·~: ;:~.utt)m.:ttic.::t.lly ,::!choed to thE•
Video Disp"lay, thou9h ·this can be defeated bY makin9 a
two--bvte modification to COMSUB; the NOPs at EF9F and EFA0
should be modified to a LD <Hl_),00.

Before usin9 the two P~o9rams~ make sure that the RS-232 cable
is connected to Channel A and that Channel B is fitted with a
ter·minator device~ l"hen, under· TRSDOS, type DO DOCOM. DOCOM
is the name of a DO file which (a) exe(:,Jtes the SETCOM command
(Par·ameters ar·e set to default values); (b) loads COMSUB; (c)
loads BASIC 1uith the extension -M:61000, which reserves enou9h
memorY for· COMSUB= Wherr the BASIC Pr·ompt aPPe~rs on the
s~::r·ef!n~ i:·y·p~::.· !:<UN 11 B/'-lBCOM/Bf~~3 11 ~ Th.;.::! Pr-oc.::Jr·i!:f.rn wi 11 b-.:::~) in~

When a tr-ansmit or· r·eceive err·or is encounter·ed, the word
11 EI:~HOR 11 will bf= P·r-·int~~~d, fo·l·!t)W'-~:d b·y· ;::r.n D·-bit -;~~r·1·or· C(td~:;.... If
bii:s 0, l ~ r.r.r1d 2 .:=trf~ .::t 11 (tff, i:h.-....7 -er·ror· u.ti 11 b-:...::; a. r{_::-ceiv'-;;"!
error and ARVC·--Channel A Receive, Pa9e 145 in the TRSDOS
manual, should be consulted to Pin the error dou.trr exactly" If
bits L}, 5, 6~ •a.nd 7 •'::tr·":~, iii!.·! 1 o1-1-, thf:! ,::_.r·r·or· i::;. a i:r·an~;rrrit

f.'r·r·or· .. Con:::·.ult /!,TX··-··-·Charrnf-Il f.\ Tr·ar1:E:'.JTrii:~ Pa.9'::! iiJ.fj in th{_~ TRSDOS
m,:a. n u .:-j. 1 ~·

j

XMI.TER

X MITt

ERROR

BITEST

BITSTl

BITST2
BITST3

CORRECTIONS TO MODEL II OWNER'S MANUAL PAGE 5

Ther·'i? ar·-e
The sour·ce

i:wo ver·sions o·i~

1 i~-tin9 b;,;_,1 ow
COMSUB, one for 64K and one

is the COMSUB 64K versionu
for-

ORG

INC
LD
LD
INC
LD
LD
LD
CP
JR
LD
RST
JR
RET
DR
JR
LD
RET

LD
LD
LD
RST
JR
NOP
NOP
RET
BIT
JR
LD
OR
DEC
JR
LD
LD
LD
BIT
LD
JR
INC
RLCA
INC
DJNZ
LD
LD
LD
LD
RST
RET

DEFM
DEFS

SUBROUTINE FOR BASIC COMMUNICATIONS PROGRAM

THIS ROUTINE MUST BE EXECUTED AT 3~~ BAUD OR HIGHER

0EF80H
DE
A9 (OE)

L,A
DE
A9 (DE)
H,A
At (HL)
~

NZ,XMITER
A,Q6
8
C,ERROR
NZ
A
NZ,ERROR
(HL) ,B

B,A
DE,0FFF.FH
A,97
8
C ,ERROR

z
0,A
NZ,ERROR
A,D
E
DE
NZ, XMITl
(HL) ,01::1
B,8
HL,BITST3
7,A
(HL),'IO-'
Z.,BITST1
(HL)

HL
BIT EST
HL,Bl.TST2
B, 14 c,,......,
A,Q
8

""ERROR'l-"
8

ION ENTRY DE POINTS TO A 3 BYTE STRING DESCRIPTOR
IDE NOW POINTS TO LSB OF STRING ADDDRESS
ILSS OF STRING ADDRESS TO ACCUMULATOR
ILSB nF STRI~G ADnRESS TO REGISTER L
IDE Nnw POINTS TO MSB OF STRING ADDRESS
J MSB OF STRir>.SG ADDRESS TO ACCUMLLATOR
JMSB 0~ STRING ADDRESS TO REGISTER H
I 1 BYTE STRING TO ACCUMULATOR
ISEE IF CHARACTER IS ZERO
IIF NOT ZERO TRANSMIT CHARACTEQ, ELSE FALL THR8UGH TO RECIEVE CHARACTER
ISVC CALLIPORT A RECIEVE
I
JQUIT ON ERROR LF MODEM CARRIER NOT PRESENT
IRETURN IF NO CHARACTER RECIEVED
ISET STATUS BITS
IOUIT ON ERROR I.F ANY STATUS BITS ARE SET
IPASS RECIEVED CHARACTER TQ STRING LOCATION

ICHARACTER TO BE TRANSMITTED TO REGISTER B
ILOOP COUNT IF TRANSMIIER BUSY STATUS ENCOUNTERED
ISVC CALLIPORT A TRANSMIT
I
I QUIT ON ERROR I.F MODEM CARRIER NOT PRESENT
I INSERT -11LD (HL),I'J0-11 HERE WHEN USING MODEM IN HALF-DUPLEX MODE
I
IRETURN IF CHARACTER TRANSMITTED
ICHECK CLEAR TO SEND STATUS BIT
I QUIT ON ERROR IF STATUS BIT SET
tMSB OF LOOP COUNT TO ACCUMULATOR
I LSB OF LOOP COUNT
I REDUCE LOOP COUNT
I LOOP IF COUNT IS NOT ZERO. ELSE FALL THROUGH TO AN ERROR
I DO NOT .0 I SPLAY .CHARACTER IF ERROR ENCOUNTERED
ILDOP COUNT (8 BIT STATUS BYTE)
IS.TORAGE AREA
ICHECK BIT 7 CF ACCUMLLATOR FOR COMMUNICATIONS STATUS
ILDAD ASC-II ZERO
IJUMP IF STATUS BIT NOT SET
IASC-11 ZERO=> ASC-II ONE IF STATUS BIT SET
JROTATE ACCUMULATOR LEFT
I MOVE TO r-EXT STORAGE POSITION
ILOOP TO CHECK STATUS OF 8 BITS
IERROR MESSA.GE TO BE DISPLA.YED
I LENGTH OF MESSAGE
ICHARACTER TO BE INSERTED AT THE END OF ERROR MESSAGE
ISVC CALLIVIDEO LINE
I

I ERROR MESSAGE
IS.TORAGE AREA FOR ERROR STATUS EUTS TO BE DISPLAYED

•

•

•. .,.·.·· ...

An Overview of the Model II
Documentation Package
This binder contains the information you need to use the
Modell I Computer System. It is intended as a practical
reference guide to the System. It is NOT a tutorial. Some
familiarity with Computers will be very helpful in reading this
material and using the Computer.

The binder comes with four manuals; other manuals can be
added as you expand your System.

Operation Manual

Explains the connection and operation of the System,
including power-up, handling diskettes, the keyboard,
maintenance, etc. If you are going to use Radio Shack
Applications Software, this Manual will give you all the
information you need to get going. It does NOT describe
Model II software (Operating System, BASIC, etc.).

Model II Operating System Reference
Manual

Describes the Operating System: command format, file
specification, operator commands, utilities, system routines
available to assembly programmers, memory allocation,
keyboard and video display features, etc.

Model II BASIC Reference Manual

Describes the BASIC programming language used in the
Modell I. While the manual includes examples of state­
ments and short applications programs, it is not a teaching­
boo!<. Radio Shack sells several books which will help you
learn to program with BASIC .

•

-·

- -~ ' ..

! ':_ :

,.•.!

TRS-80 Modell I

Operation Manual

1tad1e lhaeK
~ A DIVISION OF TANDY CORPORATION

One Tandy Center
Fort Worth , Texas 76102

First Edition - 1979

All r ights reserved . Reproduction o r use , without express
permission, of edi torial or pictorial content , in any man­
ncr, is prohibited. No patent liability is assumed with
respect to the usc of the information contained herein.
While every precau tion has been taken in the preparation
of this book, the publisher assumes no responsibility fo r
errors or omissions. Neither is any Liability assumed fo r
damages resulting from the use of the information con­
tained herein .

© Copyriglz t I Y 79, Radio Shack
A nivision of Tandy Corporation
Fort Worth , Texas 76102, U.S.A.

Contents

1. Brief description of basic system 111

2. Installation 211

3. Operation 3/1
Turning the Computer on
Using the RESET switch
Inserting a Diskette
Removing a Diskette
Loading the Operating System
Keyboard Operation
Video Display Adjustment

4 . Power-Up Diagnostic Messages 4/1

5. Care and Maintenance 5/1
Care of Diskettes
Tips on Labeling Diskettes

6. Add-Ons 6/ 1
Additional RAM
Additional drives
Peripherals
Other boards

7. Specifications 7/1
Display Character Set
Power Supply
Floppy Disk Drive
Serial Interface Signals and Levels
Parallel Interface Signals and Levels

1 I Brief Description of System

The Radio Shack TRS-80 Modelll is a disk-based computer system
consisting of two major components:

• a Display Console with built-in disk drive
• a separate Keyboard Enclosure

The Operating System software is loaded from diskette by a built-in
" bootstrap" program.

Here is a brief description of the functional elements of the Computer.

Processor

At the heart of the Computer is a Z-80A microprocessor operating at its
maximum design speed (4 million machine-cycles per second).

T he processor receives power-up and reset instructions from read-only
memory (ROM). After the TRSDOS initialization program is loaded from
disk, this ROM is e lectronically switched out of the system and replaced with
random access memory (RAM).

Random Access Memory (RAM)

The basic system includes 32K bytes 0f random access memory. (lK = 1024.)
An additional32K bytes can be added, for a total of 64K bytes of addressable
RAM.

Video Display

T he Video Display has its own LSI controller chip , to free the Z-80A
processor from display refresh and related tasks.

The Display offers two modes: 80 characters by 241ines, and 40 characters by
24 lines. The displayable character set includes the full ASCll set (upper and
lower case alphabet, numbers, and special symbols), plus 32 graphics
characters. Each character can be displayed as white on black or black on
white . See Displayable Characters in Section 7.

1/1

Keyboard

The Model I l Keyboard has its own LSI controller to free the Z-80A processor
from keyboard scan and related tasks. The Keyboard is in a separate case and
is connected to the Display Console via a built-in cable at the bottom front of
the Console.

The Model II has the standard typewriter keys (letters, numbers and
punctuation symbols); however, each of these keys can output several
different codes to the Computer, depending on which mode the Keyboard is
in: Unshift , Shift, Caps, or Control. In addition, the Keyboard features a
Repeat key and two programmable " function" keys. (See Keyboard
Operation.)

Floppy Disk Drive

The Modelll includes a built-in 8" disk drive. Up to 3 more drives can be
added in an external Expansion Unit. (See Section 6, Add-Ons.) Because of a
special high-density recording technique, each diskette can contain 509,184
bytes of information, which is more than 5 times the capacity of a 5-1/4"
diskette . (It would take a 70 wpm typist 24 hours of typing at speed to fi ll an 8"
diskette.)

The "System Drive" (the one that's built-in) must always contain an
Operating System diskette. The amount of free space on this drive available
for user programs and data depends on the Operating System. (See the Disk
Operating System Manual for actual diskette space allocation.)

The other optional drives can be devoted exclusively to the storage of user
programs and data.

Peripheral Interfaces

There are four interface connections on the back of the Display Console:
• Two serial (RS-232-C) Input/Output (1!0) channels
• A parallel I/0 channel, e.g., for connection to TRS-80 standard

parallel-interface line printers
• Floppy-disk 1!0 channel for connection of the Model II Disk Expansion

Unit

The Display Console also provides connectors and slots for future expansion.
(See Section 6, Add-Ons.)

1/2

Display Console PoweF Switch for
Entire System

Keyboard Case Reset ­
Press up
to reset
computer

Figure I: TRS-80 Modell/

Drive Release bar

Drive Select
LEO ­
Lights up
during disk
operation

Floppy Disk
Drive

Keyboard Connector
Cable
(not shown)

1/3

2 I Installation

Carefully unpack the System. Remove all packing material and save it in case
you ever need to transport the System. Be sure you locate all cables, papers,
diskettes, etc.

Place the Display Console on the surface where you' ll be using the Computer.
The Computer should be near a 120 V AC outlet, so that extension cables
won't be necessary. (See Notes on AC Power Sources.)

Notice the cable at the bottom right ofthe Display Console. Plug this into the
jack on the right rear of the Keyboard Case. (See Figure 2.)

Once connected, the Keyboard Case can be pushed back into the recessed
area at the base of the Display Console, or moved to any convenient place
within 2- 2 1!2 feet of the Console.

(For connection of additional peripheral equipment, see Section 6, Add­
Ons.)

Connect the female plug on the Power Cord to the back of the Display
Console. Connect the other end to a source of 120 V AC, 60Hz. (See
Figure 3.)

Figure 3. Power Cord connected to Dis­
play Console

Figure 2. Display Console connected to
keyboard.

Note: The power cord has a three-prong safety plug to provide a reliable
ground for the system. This ground is very important to the System. If at all
possible, plug it directly into a three-prong socket. Otherwise use a 3-to-2
prong adapter and ground the adapter.

2/1

Notes on AC Power Sources

Computers are sensitive to fluctuations in the power supply at the wall socket,
from very short-duration (millionths of a second) voltage spikes, to
prolonged d rops in current or voltage. This is rarely a problem unless you are
operating in the vicinity of heavy electrical machinery. The power supply may
a lso be unstable if some appliance or office machine in the vicinity has a
defective switch which a rcs when turned on o r off.

Your TRS-80 Model II conta ins a specially designed , built-in AC line filter. It
should eliminate all but the most severe interference problems. Should you
still experience power-line interference, you should take some or all of the
following steps :

• Install bypass/isolation devices to the noisy appliance
• Fix the defective switch
• Insta ll a separate power line
• Insta ll a special line fi lter designed for use with computers and other

e lectronic equipment
In severe conditions, a ll actions may be required.

Powe r line problems are rare and many times can be prevented by proper
choice of insta llation loca tion. T he more complex the system and the more
serious the application , the more consideration you should give to providing
an ideal power-source fo r your Computer.

2/2

3 I Operation

Turning the Computer On

The drive should be empty (no diskette in place)
when you turn on the Computer.

Push the Power Switch up to the ON position.
After a few seconds for warmup, the Screen
should be filled with a solid white field.

The Computer will now perform a quick check­
out of the bootstrap ROM, Z-80A microprocessor,
and the first 32K of RAM.

Next, the Computer will prompt you to insert the
Operating System Diskette . See Loading the
Operating System.

Using the RESET Switch

If you should ever lose Keyboard control of the System, or you simply want to
re-initialize , press RESET up momentarily and release it. The Computer will
repeat the power-up sequence, but the contents of user memory will not be
affected.

Note: You do not need to remove the diskette during this Reset sequence.

3/1

!J"'!fiiiif MODEL II OPERATION

Notes on Diskettes

Diske ttes a re precision recording media . Handle them carefully, as described
unde r Sectio n 5, Care and Maintenance. Be sure you do n't touch the exposed
diske tte surfaces.

Before inserting the diske tte , check the write protect notch. (See
illustra tio n.) If you do not want to write to that diske tte, it is a good idea to
leave it " write-protected" . This way, the Opera ting System will not le t you
accidentally write to that diske tte. To write-protect a diskette, just leave the
write-pro tect notch U Ncovered . (Sec Figure 4.)

If you do want to write to the diske tte, cover the write protect notch with
gummed-foil tape provided with the diskette.

Sector Hole

Leave Uncovered
for Write-Protection

Read/ Write
Notch

Fi!{Ur£' -1. A diskette and a write·pruteued diskeue.

Note: Any alte ration of the da ta o n the diske tte - even the deletion o f data
or programs, requires tha t the diskette NOT be write-protected. (Cover the
notch with gummed foil tape.)

Inserting a Diskette
1. If the drive door is closed , open it by pressing the re lease bar until the door

springs o pen. (Refer to Figure 5.)
2. R emove the Operating System diskette from its sto rage envelope. Grasp

the labe l side with the labe l facing away from the Display and insert it into
the drive slo t (see photo).

3 . Gently push the diskette a ll the way into the slot. A s the diskette reaches
the back of the drive slo t , you will feel a slight resistance from the
seating/e ject spring. Continue pressing the di skette in until it locks into
place.

4 . C lose the door hy moving it toward the left until it clicks into place. Some
pressure may he required .

3/2

OPERATION ~IIUUr~ 1

Removing a diskette

Never remove a diskette while the Drive Select light is on, or while a disk file
is Open.

Press the Drive ReleaseBar.The door will open and the diskette will be partly
ejected. Carefully remove it, taking care that the shiny diskette surface
doesn't touch the chassis or drive door on the way out.

Note: Once a diskette has been seated in the drive, you must shut the drive
door before you can remove the diskette.

Figure 5. Inserting a diskette (Label might extend vertically across the diskette).

Loading the Operating System

When the Computer prompts you to INSERT DISKETTE, carefully insert the
Operating System diskette into the drive.

As soon as you close the drive door, the Computer will begin the Operating
System bootstrap.

(If nothing happens when you close the drive door, the diskette is probably
inserted incorrectly. Remove it and re-insert it correctly.)

The Computer will then execute a dignostic program before starting the
Operating System. This lets you verify that the entire system is in working
order- before you attempt any data processing.

After Completing the Diagnostic Program, the Computer will load the
Operating System. See the Operating System Manual for details.

I

3/3

Keyboard Operation

The Keys can be divided into four functional groups: Alphanumerics, Mode­
Select, Numeric Keypad, and Control Keys, as illustrated below:

lphanumer.ic -
just like a
typewriter

Figure fJ . Functional groups of Model l/ keyboard.

Repeat Key Numeric Keypad -
for skilled
1 0-key operators

You use the alphanumeric keys just as you would on a normal typewriter.
H owever, each of these keys can send more than one character or code to the
Computer, depending on which mode you've selected.

3/4
•

OPERATION I'UJ',,
Keyboard Modes

The table below describes the typical use of the various modes. This use is
determined by the Operating System or by the program currently in
execution.

M:Uiii
I!•It13

[!jj;ll

Unshift - Lets you input lower case letters, numbers
and unshift punctuation symbols.

Shift - Lets you input capital letters and shift punctua­
tion symbols. Hold down SHIFf while pressing the
desired key, or press the LOCK key once so the red
light comes on; while that light is on the Keyboard will
output only Shifted characters. To return to the Unshift
mode, press SHIFT again.

Caps - Press the CAPS key once and the red light will
come on. Typically, in the Caps mode , the alphabet keys
A-Z send capital-letter codes only , and all other keys are
unaffected . To return to the Unshift mode press CAPS
once so the red light goes off.

Control - Hold down the CTRL key while pressing
one of the alphanumerics; this will output the "control"
code assigned to that key.

Note: The Shift mode over-rides the Caps mode. So if both LOCK and
CAPS lights are on, the Keyboard is in the Shift mode.

Control Keys

There are 12 Control Keys. Each key outputs a single control code ­
regardless of what mode the keyboard is in. How the Computer interprets
these control codes depends on the Operating System, but here's a
description of the typical function of each Control Key:

Escape - Usually used to exit for a subcommand.
ignoring preceding characters in the current line.

Tab - Advances the cursor to the next tab position. The
software typically sets Tab positions at R, 16, 24, 32, etc.

3/5

~lir MODEL II OPERATION

Control Keys (cont.)

~
(ffill3]

I:J;I#f!13

13~ii#I;J

SPACE BAR

3/6

Cancels the last character typed and moves the cursor
back one space.

Interrupts anything in progress in the machine and
returns to the command level.

Pauses execution of the current program. Press HOLD
a second time to continue execution.

Signifies the end of the current line. T he Display Cursor
will drop to the beginn ing of the next line. Note that the
two 13~ii#l;l keys are identical. The rightmost
13~ii3;1 is for convenient use with the numeric
keypad.

Enters a space (blank) character and moves the cursor
one space foiWard.

Cursor Control - Moves cursor back one space without
cancelling previous character.

Cursor Control - Moves cursor forward one space with­
out entering a blank-space character.

Cursor Control - In some programs, moves cursor up
one line without erasing previously entered characters.

Cursor Control - In some programs, moves cursor
down one line without erasing previously entered charac­
ters; docs not signify end-of-l ine.

Function Keys - Software Programmable. O utputs a
control code which can be used by the Operating System
or Applications Software for special functions.

Numeric Keypad

Clustered at the right of the Keyboard is a set
of number keys, arrow keys and a second
ENTER key. The arrow keys and ENTER

keys are described above . The number keys
are identical to the number keys on the top
row of the main key cluster- except that
these number keys output numeric character
codes only. SHIFf , LOCK , CAPS and
CTRL keys do not affect the output from the

numeric key cluster.

These keys are convenient for data entry by
skilled 10-key operators.

Repeat Key

This special convenience key works in con­
junction with any key combination in any
mode. Simply hold down REPEAT while
you press the desired key(s). While you hold
down these keys, the keyboard will output a
steady stream of the desired characters.

Video Display Adjustment

OPERATION l

Brightness and Contrast controls are located in the recessed area at the
bottom left of the Display Console. Adjust as necessary for a comfortable
display quality.

c B

317

.- c.·,

-----------------------------------~~'
4 I Power-Up Diagnostic Messages
Whenever the Computer is turned on or Reset, it executes a built-in
diagnostic program to help insure that the system is in good working order. If
the Computer detects a hardware fault or o ther problem, it will display an
error message and then stop. This checkout program reduces the chance that
you will lose time or data by using a defective system without knowing it.

If one of these error messages is displayed, the first thing you should do is
Reset the Computer, and attempt to duplicate the error. If the message
re-appears, consult the table below.

Note: This program does not check for multiple faults ; as soon as a single fault
is found, the Computer displays the appropriate message and stops.

Error
Code What it means- What to do about it

DC Floppy Disk Con troller Error. Defective Disk-
ette- T ry another.
Defective DC Chip or Drive.

DO Drive not Ready. Improperly inserted diskette
- Re-insert and reset.
D efective diskette - T ry another.
Defective Drive.

sc C RC Error. Invalid da ta on diskette o r defcc-
tive diskette- Try another.

TK R ecord not found o n bootstrap track. Improp-
erly formatted diskette or defective diskette-
Re-format or try another.

LD Lost Data during read . FDC or Drive fault.

RS Non R adio Shack diskette. Diskette is not
Radio Shack Model IT Operating System for-
ma t - Remove, insert proper d iskette, and
reset.

(Continued on next page)

4/1

IT -'-\ f ft MODELII OPERATION

Error
What it means - What to do about it Code

CK ROM Checksum Error. Defective ROM.

Z8 Z-80 Fault. Defective CPU .

MF RAM Fault. Defective RAM in address range
l()(X)H-7 FFFH.

PI PIO Chip Failure .

OM DMA Chip Failure.

MB RAM Fault. Defective RAM in address range
OOOOH-OFFFH

MH RAM Fault (on 64K systems only). Defective
RAM in address range 8000H-FFFFH

Sl SIO Chip Failure.

Before you ask for help ...

Try the operation several times. Try using other diskettes. Recheck to see
that all power and interconnections are right.

4/2

5 I Care and Maintenance
Care of Diskettes

In general, handle diskettes carefully, using the same precautions you use
with tape cassettes and high-fidelity records. A small indentation , dust
particle, or scratch can render all or part of a diskette unreadable ­
permanently.

• Keep the diskette in its storage envelope whenever it is not in one of the
drives.

• Do not place a diskette in the drive while you are turning the system on
or off.

• Keep diskettes away from magnetic fields (transformers , AC motors,
magnets, TVs, radios, etc.). Strong magnetic fields will erase data stored
on a diskette.

• Handle diskettes by the jacket only. Do not touch any of the exposed
surfaces. Don't try to wipe or clean the diskette surface; it scratches
easily.

• Keep d iskettes out of direct sunlight and away from heat.
• A void contamination of diskettes with cigarette ashes, dust or other

particles.
• Do not write directly on the diskette jacket with a hard point device such

as a ball point pen or lead pencil ; use a felt tip pen only.
• Store diskettes in a vertical file folder on a shelf where they are protected

from pressure to their sides (just as phono records are stored) .
• In very dusty environments, you may need to provide filtered air to the

Computer room.

Tips on Labeling Diskettes

Each diskette has a permanent label on its jacket. This label is for "vital
statistics" that will never change. For example, to help keep track of
diskettes, it 's a good idea to assign a unique number to each diskette. Write
such a number on the permanent label. You might also put your name on the
diskette, and record the date when the diskette was first put into use.
Remember, use only a felt tip pen for marking.

This " permanent" labe l is not a good place to record the contents of the
diskette- since that will change, and you don't want to be erasing or
scratching out information from this label.

5/ 1

MODEL II OPERATION

Keep such directory information on the storage box or in a separate
record book, using the diskette number as a key to all record-keeping.

U[R1~o®CQY ~©cill®D Jill
ltadle /1laek

.. II -:1-=.._= •
Model :n:

Microcomputer

Certified
Diskette

Custom Mid. m USA tor Radto Shack t~ A Otvi•iOn ot T•ndY Corpor•ttQn, Ff Wonh, T)(76 102

Figure 7. Labeled diskette.

5!2

6/ Add-Ons
Inside the Display Console are slots for eight printed circuit boards. Four of
these slots are taken up by the boards required by the basic system­
Processor, Video Display, Floppy Disk Controller, and Random Access
Memory (RAM).

Adding RAM

If your system has 32K of RAM, you can add another 32K by returning the
unit to Radio Shack. A nother 32K board will be added to the card-cage,
leaving three slots still open for future enhancement of your system.

Systems shipped with 64K of RAM have four slots open for future additions,
since a single 64K board is used in place of two 32K boards.

Decimal Address
0

32767

32768

32K RAM STOPS HERE

65535 .___.;....__64_ K_R_AM __ s _TO_ PS __ H_ER_ E ___ __.

Hexadecimal Address
x·oooo·

X '7FFF'

X '8000'

X 'FFFF'

RANDOM ACCESS MEMORY CONFIGURATION AFTER SYSTEM IS INITIALIZED

6/1

,·r:ll
r~.rr _________________ _
Adding Disk Drives

Each drive you add will increase the on-line storage of your system by 509,104
bytes (roughly equivalent to 300 double-spaced typewritten pages).

Connection of additional Disk Drives is quite simple. The connector is on the
back of the Display console , and a connector cable will be supplied with the
Disk Expansion Unit.

Note: When the Disk Expansion Unit is not connected to the Model II , a
specal terminator must be connected to the Disk Expansion connector on the
back of the Display Console. The Model II comes with this terminator
installed.

Further instructions are provided with the Expansion Unit, and can be added
at the end of this Operation Manual.

FigureR. Disk Expansion Unit with three additional Disk Drives.

6/2 '

Connecting Serial Interface Equipment

T he Model II provides two serial 1/0 channels, fo r connection to equipment
like Telephone Interface Modems, Serial Line Printers, etc. Connection
instructions will be provided with the serial equipment . You can add such
instructions at the end of this Operation Manual. (See Specifications for a
description of the Serial Interface Signals.)

Figure 9. Radio Shack Telephone Interface II Modem e for connection of computer system to telephone line.

DISK E)(PANiiii ON

.. lo@ ·· jol
-=-AR AL Le:L PRINTER

CHANNI!L

~1········ .. ····· .. 1?

SEAIAL C H A NNI!L8 OtSK AC PDWI!R

s(······· ·· ···-J? ~use~ A • ••. ~

.,J\ ,~ ~
!······· ··· ···.(~

Figure 10. Connect Telephone Interface Modem (or other serial I/O device) to serial
channel connection on the back panel of the video screen.

6/3

lc:I\
-- ~ ~ lffi[jf MODEL II OPERATION

Parallel Interface Equipment

The Modell! provides one parallel I/0 channel, for connection to Radio
Shack Line Printers and other compatible parallel-interface equipment.
Connection instructions will be provided with the equipment. You can add
such instructions at the end of this Operation Manual. (See Specifications for
a description of Parallel Interface Signals.)

Figure II. Radio Shack Line Printer Ill

Dt8K &XPANBION

: 10~ ··· ·······. ~01
PAAALLaL PRtNTIIIiR

C ANNii.L

SI· ·············· ··J ? ······ · ···· ··· ···

SERIAL C l-f A N N.L8 DISK AC POWeR

·S\"::.-. ·.-.-.-:::::J~ Fun~

. s \·:::::::. '::::]? ®

fij(ure 12. Connect Radio Shack Line Printcr (or other compatible parallel interface
equipment) to parallel channel connection on back panel of video screen.

6/4

•

7 I Specifications

Display Character Set

Here are the 32 graphics characters available on the Model II Display, along
with their corresponding character codes. For further detai l on the use of
these codes, see the Operating System Reference Manual.

Note: A reverse-character (black on white) is available for each of the
display characte rs, including alphanumerics.

11 .I 1 T~ .II
00 01 02 03 04 05 06 07

-r-IJ.tft+t
08 09 OA OB OC 00 OE OF

• I I II 1--
10 11 12 13 14 15 16 17

- I I i
18 19 1A 1B 1C 10 1E 1F

7 / 1

MODEL II OPERATION

Power Supply

Power Requirements

7/2

105- 130 V AC, 60Hz,
Grounded Outlet
Maximum current drain: 2.0 Amps
Typical current drain: 1.5 Amps

Floppy Disk Drive

Total Storage Capacity
(for User Data Capacity,
See Operating System Manual)

Diskette Organization
T racks per Diskette
Sectors per Track
Bytes per Sector

Data Transfer Rate

Required Media

Preventive Maintenance
Interval

Diskette Life*

c.· I
SPECIFICATIONS -·1111-,-,·

509,184 bytes per diskette

77 (0-76)
26 (0-25)
256 (except Track 0 = 128)

500,000 bits per second

Radio Shack 8" Floppy Diskettes,
Catalog Number 26-4905 , or
26-04906 (pkg of 10)

8000 Power-On Hours (typical usage)
5000 Power-On Hours (heavy usage)

3.5 million passes per track

*In practice , diskette life is usually limited by improper handling. Follow
ha ndling recommendations for maximum use.

7/3

,-CJl
"~ ~ lfiD]i- MODEL II OPERATION

Serial Interface Signals and Levels
Two channels are available, via the DB-25 connectors on the back of the
Display Console. The signals and levels conform to the RS-232-C standa rd.

Channel A is designed to allow asynchronous or synchronous transmission _
C hannel B is designed for asynchronous transmission only.

The DB-25 connector pin-outs and signals available a re listed below_

CHANNEL A CHANNELS

STANDARD
(PIN#) R$-232-C SIGNAL

STANDARD
R$-232-C SIGNAL

1/0 TRANSMIT S.E.T. 15 GROUND
GROUND 1,7 RECEIVED DATA
RECEIVED DATA 3 RECEIVER XMITTER CLOCK
RECEIVER CLOCK 17 DATA SET READY
TRANSMIT CLOCK 24 CLEAR-TO-SEND
DATA SET READY 6 CARRIER DETECT
CLEAR-TO-SEND 5 TRANSMIT DATA
CARRIER DETECT 8 REQUEST-TO-SEND
TRANSMIT DATA 2 DATA TERMINAL READY
REQUEST-TO-END 4
DATA TERMINAL READY 20

1 2 3 4 5 6 7 8 9 10 11 12 1 3

7/4

PIN#

1,7
3

17
6
5
8
2
4

20

Parallel Interface Signals and Levels

The Model II includes a parallel interface designed for connection to a line
printer via the 34-pin connector on the back panel of the Display Console.
Eight data bits are output in parallel , and four data bits are input. All levels
are TTL compatible.

The connector pin-outs and signals available are listed on the next page.

5 7 9 . . . 11 13 15 17 19 2 1 23 25 27 29 31 33 .
2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32 34

7/5

r~ r ~ MODELIIOPERATION

SIGNAL FUNCTION PIN#

STROBE* 1 ~S pulse to clock the data from 1
processor to printer

DATAO Bit 0 (lsb) of output data byte 3

DATA 1 Bit 1 of output data byte 5

DATA2 Bit 2 of output data byte 7

DATA3 Bit 3 of output data byte 9

DATA4 Bit 4 of output data byte 11

DATA5 Bit 5 of output data byte 13

DATA6 Bit 6 of output data byte 15

DATA? Bit 7 (msb) of output data byte 17

ACK* Input to Computer from Printer, low 19
indicates data byte received

BUSY Input to Computer from Printer, high 21
indicates busy

PAPER Input to Computer from Printer, high 23
EMPTY indicates no paper - if Printer doesn 't

provide this, signal is forced low

SELECT Input to Computer to Printer, high 25
indicates device selected

PRIME Output to Printer to clear buffer and 26
reset printer logic

FAULT Input to Computer from Printer high 28
indicates fault (paper empty, light
detect, deselect, etc.)

GROUND Common signal ground 2,4,6,8,10
12,14,16,18,
20,22,24,27,
31 ,33

NC Not connected 29,30,32,34

*These signals are active-low.

7/6

•

R A D I 0 S H A C K CRI

M 0 D E L I I T R S D 0 S

1 I G E N E R A L I N F 0 R M A T I 0 N

•
(C) CoPY~i9ht 1979 bv Radio Shack, A Division of l'andv CorPoration

•

..

•

•
.. ~.~ " '

I"IODEL. I I TRSDOS GENERAL. INFORMATION PAGE 1 .. (M2DOS!I.l B/:1.0/7'1)

CONTENTS

Intr-oductic~n ~~ n :;;-~
Memor-Y Re9lJir-ements 4
Loading TRSDOS 5
Using the Kevboar-d .•• ~.................... 5
Ente~in9 a Command.......................... 6
Fi 1<> SPecification . . • • • • • • • • • . • • • • • • :l!l.l

2. Libr-ar-··{ COITIO'!i::l.nd:= ... "" " ... a a 15
3. UtilitY Pro9rams 69

BACf\UP • 70
FORMAT • .. • • • • • 7:2

4. Technical Information 75
Diskette Organization 76
Di,.k Fi 1<''· . • • • • • • • • • • . • • • • . • • . • • • • • • 77
How to_ Use the StJPervisor Calls 82
List of Error Codes and Messa9es 85
SuPervisor Calls 86
Pr·o9ramrnin9 with TRSDOS 149

•

•

1'10DEL I I TI~~JDOS GENERAL INFORMATION

l I Gener·a.l Infor-mati(•rt

Intr-oduction

l"lodel I I TRSDOS (11 Tr-i;;:.;;:.-··Do$.S- 11) i~. a. POUJer·ful and E!.:Ls-··,..¥ ... to·· .. use Disk
0Peratin9 Svstem, Pr-oviding a f~Jll set of librarY commands and
Lttilitv Pro9rarnsu In addition~ manv useful Svstem r-outines can be
called directly bY user Pro9rams~

l.ibr·arv commands are tvPed irr fr·om the l'RSDOS command level to
accomPlish a varietY of OPerations~ including~

Initialization--setting Pr·inter· Parameters, date and time,
etc~

F'i le--handl inS1---··C(•P"·(inS.'' r·enan1ing, d~!l-...=:ting,
Protecting, etc.
File access--·-·loadin9 into memor·v~ listing to
Pr·int-=.~r- or· Di~-1::1-·1 ~!J.·y·, etc~

Error ider,tification
See LibrarY Commands for details~

UtilitY PP09rams Provide essential ser·vices like:
Formatting blank diskettes.
Makin9 backuP copies of entire diskettes.

See the UtilitY Pro9rams for detailsu

SYstem routines ar·e executed
to absolute memor~ addressesu
catf..rS.Ior·ie:=.::

B··rstf~m contr·o ·1
~<e··tb(li£i.r·d inPut
Video DisPlaY in~ut/outPut
l.ine Printer outPut
F'i ·1 e ~lC(:ess

ComPutational functions

via function codes instead of
Fl.outiiH•S ·avcd'lal:ol<e ·fall ini:•:<

See the Technical Information section for details~

Nc~ta.t ion

ca.ll ,.
~::. i ::{

For· claritY and brevity, we use some sPecial notatior1 and tYPe
stYles in this bookn

CAPITALS and Punctuation
Indicate material which must be entered exactlY as it aPPears.
<The only Punctuation svmbols not entered are triPle-periods,
~:::-::Pla.ined bel(tUJ,.) For· <:>~amPle, in the 1 inE-::

·· I R'• ~ c·vc-· '1. u. ' ,,::)) .. J.,
every letter and char·acter should be tYPed exactlY as indicated .

lowercase italir~

RePr·eserrt wor·ds~ l~.'i:ter·~-~ char·acter-~. or· valt.J~~~. ·y·ou SUPPlY fr-om a
set of acceptable values for a Particular command" For examPle,
the 1 i nt•::

..

•

•

•

i"IODEL I I TRSDOS GENERAL INFORMATION PAGE 3

LIST filespec
indicates that vou can SUPPlY anv valid file specification (defined
later) after LIST.

(tr·i Pl e-per·i,)ds)
Indicates that P~ecedin9 items can be rePeated. For examPle:

ATTRIB filesPec loPtiono .•. I
indicates that several oPtions mav be rePeated inside the braces.

This sPecial sYmbol is used occasionallY to indicate a blank sPace
character IASCII code 321.

X'NNNN'
Indicates that NNNN is a hexadecimal number. All other numbers in
the text of this book are in decimal form, unless otherwise noted.
For- e;:.~amPl e:

X'71l100'
indicates the hexadecimal value 7000 (decimal 286721 •

I"'ODEL I I TI'?SDOS GENERAL INFORMATION PAGE 4

Memory Reguir·ements

32K Model II Svsten.s ar·e suPPlied with a 32K version of TRSDOS;
64K Svstems, with a 64K version. The two versior~s are No·r·
interchan9eable--thou9h the onlY difference is in the locatior, of
the SPecial Programming Area Csee illustration).

TRSDOS occuPies 6.1 tracks on the Svstem diskette (39,040 bvtes).
However, onlv a small Portion is actuallY in memorY at any one
tin1e. The SuPervisor Pro9r·am, irJPut/outPut drivers, and ot~.er·

essentials are alltlavs in memorY. AuxiliarY code is loaded as
needed into an 11 0Ver1av areau.

MemorY addresses 0 thro~J9h 10239 CX'0'-X'27FF') are reserved for
th..:.· 0F:l-E.•r·a.tin9 S·-r·:::.ten·~~ C€·r·+~a.in comrr•.::l.nds-~ c:;-r.ll 11 hi9h ov~.,.'=lr·la··,.-:,. 11

';I

also use memorY addresses ~JP to x~2FFF' <details Provided in the
Con1mands sectior1u User Pr·o9r·ams must be located above X'27FF' ~
and You ma·v want to locate them above x~2FFF' to allow use of the
hi9h over-laYs uJithout loss of Your· Pro9ramu

DECIMAL HEX
ADDRESS ADDRESS

iZI
~ -- ··-· --- ···- -

SYC.>TEI"I AF<EA

~------------·-------
USER AREA !SHARED WITH
TRSDOS "HIGH OVERLAYS")

:X' ::~8!1!0'

---------------------------------------~
12288 :X'300!1!'

TOP•

USER AREA UNTOUCHED••
13Y TRSDOS

:----------------------------------: TOP•
MfW BE

RESERVED BY TRSDOS FOR
SPECIAL PROGRAMMING

32767 or-g-----------Last Memor-y Address------------·--·~X'7FFF' or

MEMORY REQUIREMENTS OF TRSDOS

Note~ The term 1'user Pro9ram" aPPlies to anY Pro9ram which is not
a Par-t of TRSDOSu l'herefore BASIC is a user Pro9ram~ For memor-y
requirements of BASIC~ see the BASIC Reference Manual~

~TOP is a memorY pr-otect address set bY TRSDOS. If TRSDOS is not

•

Prot~~ctin,_:.:~ hi9h m~.:!mor··y·~ th~::!n TOP is thf:! ~=-a.me as 11 La.~:.t M~~/Til)f'·'y' ··---, ..

Addr·e:..~-~~ ~

**Sin9le-drive COPY from one di:..kett~ to another-, BACKUP and
FORMAl. use ALL user memorY.

•
MODEL II TRSDOS GENERAL INFORMATION PAGE 5

Loading TRSDOS

See the OPeration Manual for instructions on connection' Power-up
and insertin9 the Svstem diskette.

Note: A Svstem diskette must be in Drive 0 <the built-in unit>
whenever the ComPuter is in use. Whenever the ComPuter is turned on
or reset, it will automaticallY load TRSDOS from Drive 0.

After the Svstem starts up, it will PromPt vou to kevin the date.
TYPe in the date in MM/DD/YYYY form and Press <ENTER>. For
examPle:

07/07/1979 <ENTER>
for JulY 7• 1979.
Next the SYstem will PromPt You to keY in the time. TO SKIP THIS
QUESTION, Press <ENTER>. The time will start at 00:00:00.

TO SET THE TIME, tYPe in the time in HH.MM.SS 24-hour form. Periods
are used instead of colons since thev?re easier to tYPe in. The
seconds are oPtional. For examPle:

14.30 <ENTER>
f ,:,r· 2:30 Pm.

:. The Sv·stem w-i 11 r-ecor·d the time and date inter·na ll··r and retur·n with
the IT1es.::.age:

•

TRSDOS READY
.................................. _.

Usin9 the KeYboard

l'RSDOS distin9uishes between UPPer and lower case letters.
Ther·efor·e

d i r·
is not the same as

DIR
Since TRSDOS commands ar·e alwaYs caPitalized' Y-ou, 11 Pr-obabl··t find
it convenient to oPerate the Kevboard in the Caps mode (press CAPS
so the red li9ht comes on·). That wav' all the alPhabet-keYs are
interPreted as capital letters' re9ardless of whether the SHIFT keY
is bein9 Pressed.

Certain control kevs are useful in the Command Mode:

ESC Escape--Cancels the ~urrent line and lets You start

BHEAI\

<-

over·.

InterruPts line entrY and starts with a new line ..

BacksPaces the cursor without erasin9 anv characters ..
Use this to position the cursor for correcting a
portion of a line.

-·> For.war-d-.. s-.paces-. the cur-sor- without er·a~.ir,g an·····

MODEL II THSDOS GENERAL INFORMATION

P.ACf\
SPACE

ENTER

HOLD

cha~actersu Use to Position the cu~sor for correcti~9
a Portion of a line.

BacksPaces the cursor, erasin9 the last
character vou tYPed. Use this to correct entrv
er·r·or·::. a

Si9nifies end of line. When vou Press this kev,
TRSDOS will take vour command. OnlY those characters
aPPearing to the left of the cursor will be used.

Pauses execution of a command. Press a9ain to
continue. N•:•t functi•:.nal in all commands.

TAB Advances the cursor to the next 8-column Position.

SPACE

Tab Po~-itions. ar·e at column::. !ZI, 8, 16, 24, etc ..

Enters a space (blank) character and moves the cursor
one character forward.

REPEAT For convenience when vou want to rePeat a sin9le key,
hold down REPEAT while P~essin9 the desired keY. For
examPle, to backsPace halfwaY back to the be9innin9 a
the linao hold down REPEAT and BACKSPACE.

PAGE 6

If YOU tYPe anY other control <non-alPhanumeric, non-punctuation)
key, a+/- sYmbol will be disPlaYed for that key, but the control
keY code will be sent to the Computer. Such control kevs will either
be i9nored or cause a Parameter error to occur. See the Kevboard
Code MaP in the APPendix for control codes.

Enterin9 a Command

Whenever the TRSDOS READY PromPt is disPlayed, You can tYPe in a
~ommand, UP to 80 characters. If the command line is less than 80
characters <as is usuallY true), YOU must Press <ENTER>to si9nifY
end-of-line. TRSDOS will then ''take'' the command.

For- e::-::a.mPle'
CLS

t··tPe:
<ENTEH>

and THSDOS will clear the DisPlaY.

Whenever You tYPe in a line, TRSDOS follows this Procedure:

First it looks to see if what vou've tYPed is the name of a TRSDOS
command~ If it is, TRSDOS executes it immediately.

If what vou tvPed is not a l'RSDOS command, then TRSDOS will check to
see if it's the name of a Pro9ram file on one of the drives.

When saarchin9 for a filao THSDOS follows the sa9uence drive 0•
drive 1, etc--unless vou include an exPlicit drive SPecification
with the file name (described later on>~

If TRSDOS finds a matching user filao it will load and execute the

•

I"IODEL I I TRSDOS GENERAL INFORMATION PAGE 7

• file. Otherwi~.e, You, 11 9et an er·ror· me::.sa9e .

•

•

MODEL. II TRSDOS GENERAL. INFORMATION PAGE 8

Command s·y·rt i:a::-::

Command svntax is the 9eneral form of a command, like the 9rammar of
an En9lish sentence. The svntax tells vou how to Put kevwords (like
DIRo LIST, and CREATE! to9ethe~ with the necessa~v Pa~amete~s fo~
each kevword. In this book' we Present 9eneral svntax inside 9rav
boxes, so thev 7 re easv to reco9nize.

There are three general command formats:
Na:~-fi le corr.mands.
One-file commands
Two-file commands

No-file commands take the form:
:-----------------------------~-------------------------------:

comm~.1nd {oPtiong.} CQmms?oi-
(oetipp~) is a list of one or more Parameters that

mav be needed bv the command. Some commands have
no oPtions. T .e braces £) around oPtions can be
omitted when n· _omment is added at the end :

:

of the command line~
commept is an oPtional field used to document the

PUrPose of the command-line. Comments are useful
inside automatic keYboard entrY files (see BUILD
and DO commands).

:---:
For· e::<amPle:

TIME 14.30.12H!!
is a no-file command, TIME, followed bY the Parameter oPtion,
14.30.00. No braces a~e ~e~ui~ed in this examPle.

T I I"IE {} Get c ur-r-er.t t i rr.e.
is a no-file command, TIME, followed by a comment. Note that the
b~aces are required to tell TRSDOS that "Get current time•• is a
comment and not an oPtion list.

One-file commands take the form:
: -----M-----------·-·----·--·--~--- .. -0MM ___ MM--MW ___ ,_HH0 ____ , __________ H _____ ::

command filesPec (oPtions) comment
filespec is a standard TRSDOS file sPecification

as described later in this section.
CoPtionsl--See descriPtion above.
comment--See descriPtion above.

'

::---::
For e>::amPle:

CREATE DATAFIL.E .(NGRANS=,40") Need Lf(i.) 9r-anules-
is a one-file command, CREATE, followed bv a filesPec, DATAFILE, an
oPtion list, {NGRANS=40), and a comment, Need 40 g~anules. In this
e::-::amPl~~' the br-aces {) ar·e r·e·;quir-ed i:o tel 1 TRSDOS wher·e the oPtion
list ends and the comment be9ins.

•

•

•

•

•

•

MODEL II TRSDOS GENERAL INFORMATION

Two-file commands take the fo~m:

:-~~;~~~d-fil~;.;;;=i"-d~li~it:~-fil~~;~~=;-(~;~i~~~}-~~~;~~~-:
: fi lesPec-1 and -2 ar·e TRSDOS file specifi•:ai:ion~. as

described later in this section.
: delimiter is one of the following:

blank sPace or sPaces (indicated as~)
a comma ' surrounded bv oPtional sPaces

)iTOJ;I' s.ur·r·ot.Jnded by oPtional S-Paces.
(options)--See descriPtion above.
comment--See descriPtion above.

:

:---~
For· e}.::arnPle:

RENAME PAYROLL! TO PAYROLL2

PAGE 9

is a two-file command RENAME, followed bv filesPec-1 <PAYROLL!), a
delimiter. and filespec-2 IPAYROLL21 •

MODEL. II TRSDOS GENERAL. INFORMATION PAGE 10

File SPecification

The onlv wav to store information on disk is to Put it in a disk
file. Afterwards, that information can be referenced via the file
name vou 9ave to the file when vou created or renamed ita

A file specification has the 9eneral form
:--:

f i 1 enamel~ Password: g (d i .skname)

'

'

filename consists of a letter followed bv UP to
seven optional numbers or letters.

/e::-.::t.: is. an oPtiona 1 narr,e-e>~ter,::.ic,n; e::-::t is a se·=J!Jence
~f UP tc' ·l:hr·ee number·::. or· 1 etter·s •

• Password is an optional Password; Password is a
se~uence of UP to ei9ht numbers or letter~

:d is an optional drive specification; ~is one of the
di9its tfh1,:2,:3.

(diskname) is an oPtional field of UP to 8 lette~s

or numbers. If this field is included, it must be
Preceded by a drive sPecification.

Note: There can be no blanks inside a file
specification. TRSDOS terminates the file specification•
at tha first blank sPace.

:--:
F1:1r- e}-::arrrPle:

FileA/TXT.Mana9er:3CACCOUNTSI
references the file named FileA/TXTCACCOUNTSl with the Password
Mana9er, on Drive 3, diskette name ACCOUNTS.

File Names

A file name consists of a name and an optional name-extension. For
the name' You can choose anv letter' followed bY UP to seven
additional numbers or letters. To use a name extension, start with a
dia9onal slash I and add UP to three numbers or letters.

For e::-::amPle:
MODEL2/TXT
NAI"'ES/123
TEST

INVNTORY
Au9us.t/15
TEST1

DATA11/8AS
WAREHOUS
TEST/1

are all valid and DISTINCT fila names.

Althou9h name-extensions are oPtional, they a~e useful for
identifvin9 what t·ype of data is in the file. For examPle, vou mi9ht
want
/BAS
/TXT
/i"IIM
/REL.
/DVR

to use the following set of extensions:
BASIC Pr·•:<9r·am
ASCI I te:>,:t
Memor-Y ima9e
Relocatable machine-lan9ua9e Pro9ram
InPut/OutPut driver

•

•

•

•

•

•

I"IODEL I I TRSDOS GENERAL INFORMATION PAGE 11

D~ive SPecification

If vou give TRSDOS a fila command like:
f'\ILL TEST /1

the Svstam will search for the file TEST/1• starting at Drive 0 and
9oin9 to the other d~ives in se9uence 1,2.,3 until it finds the
fila.

Arr·{ time TRSDOS has. to OPen a file (e.9 .. ., to Lis.t it for· vc•u), it
will follow the drive lookuP sa~uanca 0o 1• 2o 3. When TRSDOS has to
wr·ite tc• a file, it wi 11 :=.kiP over· anY write-pr·c•tected dis-kettes.

It is Possible to tell the Svstem exactlY which drive You want to
use, bY means of the drive specification. A drive sPecification
consists of a colon : followed bv one of the di9its 0,1,2, or 3,
corresponding to one of the four drives.

For· examPle:
fULL TEST I 1:3

tells the Svstem to look for file TEST/1 on driNe 3 onlv •

MODEL II THSDOS GENEHAL INFOHMATION PAGE 12

Pas~.wor·ds

You can Protect a file from unauthorized access by assi9nin9
passwords to the file. That way, a Person cannot access a_ file
simPlY bv referring to the file name; he must also use the
aPProPriate Password for that file~

l'RSDOS allows vou to assi9n two Passwords to a file:
An UPdate word, which 9rants the user total access
to the information (execute, read, write~ rename or
d<? ., "i:<?) •
An Access word, which 9rants the user limited
access to the information (see ATTRIB>.

When YOU create a file, the UPdate and Access words are both set
e9ual to the Password vou specifva You can chan9e them later with
th<? PROT or ATTRIB command.

A Password consists of a Period
numbers. If vou do not assi9n a
a default Passwo~d of 8 blanks.

followed bY 1 to 8 letters or
Password to a file, the SYstem uses
In this case the fil~ is said to be

unProtected; one can 9ain total access simPlY bY referring to the
file name.

For examPle, SUPPose You have a file named SECRETS/BAS, and the file
has MYNAME as an uPdate and access word. Then this command:

f<ILL. SECRETS/BAS. MYNAI"IE
will allow th<? til<? to b<? Kill<?d.

SuPPose a file is named DOMAIN/BAS and has blank Passwords. Then the
command:

KILL DOMAIN/BAS.GUESS
will not be obeYed, since GUESS is the wrong Password~

Disk Narn<? ;.

When YOU refe~ence a file like TESTER/BAS:3, TRSDOS will use
whatever diskette is in drive 3. However, if vou add a disk name to
th<? til<? SP<?cificationo TRSDOS will first ch<?ck to S<?<'? that th<?
correct diskette is in the drive. (You assi9n disk names durin9 the
Format or· Bac~cup Process.)

Note: OnlY the COPY command looks at the disk name and checks that
the correct diskette is inserted. The other commands i9nore the disk
name in Version 1.1u

A disk name consists of from 1 to 8 letters and numbers inside
Parentheses (). When You include the disk name in a file
SPecification, YOU must also include the d~ive number :1g Otherwise
the disk name will be i9no~ed.

•

•

•

•

•

•

MODEL II TRSDOS GENERAL INFORMATION PAGE 13

COPY HEPORT/TXT:0 TO REPORT/TXT:3<TXTFILES)
t•lls TRSDOS to COPY th• fil• REPORT/TXT on driv• 0 to anoth•r fil•
nam•d REPORT/TXT on a disk nam•d TXTFILES, usin9 driv• 3 .

•

M 0 D E L I I T R S D 0 S

2 I L I B R A R Y C 0 M M A N D S

•

•

i'IODEL. I I T RSDOfJ CCWir'IANDfJ PAGE 15

• (J'I:2DOS1 8/10/'79)

•

•

2 I L.ibrarv Commands

You can enter a librarY command whenever the TRSDOS READY PromPt is
di:=.J~->l;a·y·ed~ (Pro9r·~~.m~::- can .-a.·l :;:.o c~:t-11 1 j_br·i::tr···f' comm;:EJ.nd:: ... S<~f:! T.r:;chn:i.cii:!.-1
Infor-mation.)

In 9eneral, librarY commar1ds will use memor·v addresses below
X7 2800 7

; however, the following "high mernorv commandS 11 use addresses
UP to but not includin9 X,3000,:

APPEND COPY CREATE DUMP KILL LIST
BUILD ERROR VERIFY PURGE SETCOM

General rules for entering commands

Don,t tvPe anv leadin9 blanks in front of the command. For examPle:
TRSDO~> READY

DIH
is an er-ror. Omit the sPaces before DIR.

There must be at least one sPace between the command and anv oPtion
list or comment. For examPle:

DIH{ :l }"
is an error. I~se~t a space between R and ~-

The~e ca~ be any number of sPaces between .oPtions"
DI H ..(BYS , PRT J

has the same effect as:
DIR '(SYS, PRT}

When the svntax calls for a delimiter (~To~, comma or· sPace), anY
othe~ non-alPhanumeric non-brace characters will also serve, unless
the sPecial Punctuation is Par of an oPtion keYword, e~9~' the=
sign in several commands.
LIST TEXTFILE (PRT:SLOW}
is equivalent to:

LIST TEXTFILE {PRT, SLOW)

When no ambi9uitv would res,Jlt~ the braces around the oPtion list
can be c~rnitted ..

CHEATE FileA NHECS=100,LRL=64
is accePtable~ but

CREATE FileA NHECS=11ZJIZJ,L.HL.•64
is not~ since the comment 11 Set UP file area 11 will be taken as an
invalid Parameter.

DIFl bYS
is an error~ since SYS is taken as an ir,valid drive sPecification •
u, .•
DIH {SYS}
i n~.tea.d"

I"IODEL. I I TRSDOS COMMANDS ·PAGE 16

AGAIN
RePeat Last Command

:-------·--·--------:
: AGAIN
:--~-----·-------------~------------7--------~--------------:

This command tells TRSDOS re-execute the most recently entered
command.

AGAIN
TRSDOS will re-execute whatever command was last entered.

AGAIN is useful afte~ TRSDOS has ~etu~ned an InPut/OutPut e~~o~
messa9e instead of obevin9 a command~ For examPle' suPPose vou
t··tPe:
f\IL.L OL.DFILE: 1.
and the diskette in drive 1 is wr·ite-Protected~ Then vou~11 9et an

•

:~~~~ 15 .. Put a wr·ite-ena.tde tab on the di::.kette and tYPe •

Now TRSDOS will re-execute the command.

SuPPose vou are makin9 multiPle backuP coPies of~ file fr6~ drive~
to drive 1. Enter· the COPY comand once; for second and-third coPies,
use AGAIN~ For examPle:
COPY DAYSWORK:0 TO DAYSWORK:1
coPies the file to. a d~ive 1 diskettea Now Put another _diskette into
·.driv~- 1 and tvPe:
AGAIN
to repe~t the COPY us-in9 the new diskettea

•

•

..

•

MODEL II TRSDOS

APPEND
APP.end F:ll .,,_

COMMANDS

:--:
APPEND filq-l TO fil.e-2

fil*-1 and file-2 are file SPecificationsc
The files must have the same tvPe <Fixed or
Variable), the same Record Len9th, must both be
Pro9rams or both be data files (p or D in the
DirectorY listin9}.

J6TOJ(' i:":- a delimiter- .. A comma or· a sP•:l.ce- can
als.o be IJ::-..ed.

: -----·------·---:

PAGE 1"7

APPEND coPies the contents of file-l onto the end of filt-2 .. file-1
is unaffected, while file-? is extended to include file-1. The file
tvPes <V or F) and record len9ths (for fixed len9th record files)
must match. See CREATE for more information on file tYPeS and record
l.en9ths.

ExamPles

APPEND Wordfil.e/2 TO Wordfil.e/1
A coPY of Wordfile/2 is aPPended to Wordfile/1.

APPEND REGION1/DAT•TOTAL../DAT.9u.ess
A coPY of REGIONl/DAT is aPP.end.ed to TOTAL/DAT, which is Prot.ect.ed
with the Password 9uess.

SamPl"' Us.es.

SuPPOS<? YOU hav.e two data fil.es• PAYROLL/A and PAYROLL/B.
PAYHOLL/A PAYROLL/8

Atkins., W.li.
Bak.er·• cT.B.
Chamber·s" C. P.
Dodson' M.W
Kickamon' T.Y

L.ewis• G.E ••.•.••..•
Mill.er> L.O ..•..••••
Peterson, B • ••.••••.
Rodri9uez, F

You can combine the two files. with the command:
APPEND PAYHOLL/8 TO PAYROLL/A

PAYROLL/A will now look lik.e this:

Atkin~., W. li.
Bak.er. J.B ••••....•.•
Chamb.ers, C.P ..••...•
Dodson. M.W •••..•..••
Kickamon' T.V•
Lewis• G.E •••.•...••
Mill.er·• L.O.
Peterson' B. ··~·····

I"'ODEL I I TRSDOH COMI"'AI\IDS

Rodri9uez, Fa •••••••

PAYROLL/8 will be unaffected.

PAGE 18

•

- ..

•

~•

•

•

i"IODEL I I TRSDOS COMMANDS

ATTRIB
Chan9e a File's Passwords

:---:
ATTRIB file -(ACC=Passwned-1, UPD=Passwoed-2, PROT=level"}-
file i~. a file ~.p=ecification. -
ACC=pa~sword-1 sets the access word equal to Password-1~

If omitted, access wo~d is unchan9ed.
UPD=Password-2 sets the UPdate wo~d equal to Password-2.

If omitted, uPdate word is unchan9ed.
: PROT=level specifies the Protection level for

acces.s .. If omitted, level is unchan9ed.

:
Level

1\101\!E
EXEC
READ
WRITE
REI\IAME
KILL

De9ree of access granted bY access word

No acces.s
E::.::ecute onlY
Read and e>(ecute
Read, execute and write
Rename' read, execute and write
Kill, Rename, read, execute and write
(gives access word total access)

:--:

PAGE 19

ATTRIB lets YOU chan9e the Passwo~ds to an existin9 file. Passwords
are initiallY assi9ned when the file is created. At that time' the
uPdate and access words are set to the same value (eithe~ the
Password You sPecified or a blank Password). See ChaPter 1 for
details on access and UPdate Passwords.

E::<amPl es

ATTRIB DATAFILE ACC=JULY14• UPD=MOUSE, PROT=READ
Sets the access Password to JULY14 and the uPdate Password to MOUSE.
Use of the access word will allow onlY readin9 and executin9 the
file.

ATTRJB PAYROLL/BAS.SECRET ACC=•
Sets the access word to blanks. The Protection level assi9ned to the
access word is left unchan9ed.

ATTRIB OLD/DAT.APPles UPD=,
Sets the UPdate Password to blanks.

ATTRIB PAYROLL/BAS.PW PROT=EXEC
Leaves the access and uPdate words unchan9ed, but chan9es the level
<1f access ..

ATTRIB DATAFIL..E/l.PR!\1 PROT=,
Chan9es the access level to Kill.

SuPPose vou have a data file, PAYROLL, and You want an emPloYee to

i•IODEL I I TRSDOS COMI1ANDS PAGE 21il

use the file in preParing PaYchecks~ You want the emPlovee to be
able to read the file but not to chan9e it" Then use a command
like:

ATTRIB PAYROLL ACC=PAYDAY, UPD=Avocado, PROT=READ
Now tell the clerk to use the Password PAYDAY <which allows read
onlv); while onlv vou know the Password, Avocado, which 9rants total
access to the file.

SUPPO~-e "{OIJ want to tempor·ar·ilY·!:.tOP- acces--s- tc• t-he file~ Then IJS-e

the cc•mmand:
ATTRIB PAYROLL.Avocado PROT=NONE

Now the use of· the Passwor·d PAYDAY 9rants no access to the file~ To
restore the Previous de9ree of access, use the .comman·d:

ATTRIB PAYROLL. Avocado . PHOT~,READ

•

•

•

•

•

MODEL II TRSDOS COMMANDS

AUTO
Automatic Command after Svstem Sta~t-UP

: ------------------------·----------------M-------------M----M-0-:
AUTO command-line

cf.:lmmand-1-ine: i.-s..- a TRSD_OS .;:ommand-- or-:-the--· name
of an e::-::ecut_ab.1e- Pr·o9r-am fi.le;.

: --:--------·-----:--:---_----,..-...,.---::------:-:--_-:------------------...,..-:-~-c- ~

PAGE 21

This command lets You Provide a command to be executed whenever
TRSDOS is started (power-uP or reset). You can use it to 9et a
de_sir-:ed-. Pr·o9..r·-?-m r·-t,.H•nin9. without an·y· _,:sper-ator· a.ction r·e::::tuir-ed_, e::<CePt
t·..-·pin9 in t.he dai:--@' ar,d :l;:ime.

When vou enter an AUTO command, TRSDOS writes command-line into its
start-up Procedureu The AUTO command does not check for valid
commands; if the command line contains an error, it will be detected
the next time the svstem is started UP.

E>=:amPl es

AUTO DIR (SYS)·
Tells TRSDOS to write the command DIR (SYSJ at the end of its
start-uP Procedure. Each time the Svstem is reset or Powered up, it
will automaticallY execute that command after vou enter the date and
time ..

AUTO BASIC
Tells TRSDOS to load and execute BASIC each time the Svstem is
star'ted UP ..

AUTO FORMS <W=8f1))" For 8-1/2" wide PaPer·
Tells TRSDOS to reset the P~inter width Parameter each time the
svstem is started UP.

AUTO PAYfiOLL/ CI'ID
Tells TRSDOS to load and execute PAYROLL/CMD (must be a
machine-lan9ua9e Pro9ram) after each Svstem start-uP.

AUTO DO STARTER
Tells TRSDOS to take automatic command inPut froffi the file named
STARTER each time the Svstem is started UP. See BUILD and DO.

To erase an automatic command

Tvpe:
AUTO

This tells TRSDOS to delete anY automatic command and reset the
start-uP procedure to 9o directlY to the TRSDOS READY mode.

You cannot over-ride an automatic command. Therefore be sure a

i"IODEL I I TRSDOB COMMANDS PAt1E 22

Pr-o9r·arrl i$ 1~ullY d'i2bU99ed bef~,r-e makin9 it an .::J.utomatic command. •
FIJr·ther·m,::.r·f!!, Pr·<,9r··B.ms which"';~>~ecuted via the AUTO funci:ion should
normallY Pr-ovide a means of exitin9 to the TRSDOS READY mode.
(Unless the BREAK keY is blocked bv the user- Pr-o9ram, Pressing BREAK
will 9et YOU back to TRSDOS~)

Sa.mP 1 ~~ Use

SuPPose vou want the TRSDOS to run a certain BASIC pro9ram, MENU,
each time it is started UP. That way, an oPerator can turn on the
ComPuter and 9et 9oin9 without havin9 to enter anv TRSDOS commands.

Then use the command:
AUTO BAS I C MENU -.. F: 2
to PrePare the Svstem to run the BASIC Pro9ram each time it starts
IJP. (8<?<? BASIC HBfBr·BnCB Manual "f(•r· d<?tai 1 S- Cln 1 oadin9 BASIC'.)

•

•

•

•

•

MODEL II TRSDOS CCWIMANDS

BUILD
C~eate an Automatic Command InPut File

:---:
BUILD file

file is a file sPecification which cannot include
an e>::ten~. ion.

:--:

PAGE 23

l'his command lets vou create a an automatic command inPut fife which
can be executed via the DO command~ The file must contain data that
would normallY be tvPed in from the kevboard.

BUILD files are PrimarilY intended for Passing command lines to
TRSDOS Just as if thev'd been tvPed in at the TRSDOS READY level.

BUILDin9 New Files

When the file vou sPecifY does not exist~ BUILD creates the file and
immediatelY PromPts vou to be9in inserting lines~ Each time YOU
comPlete a line, Press <ENTER>~ BUILD will 9ive vou another chance
to re-do the line or keeP it~ Press <ESC> to erase and re-do the
line; <ENTER> to store it and start the next line .

While tvPin9 in a line' You can use<- and-> to Position the cursor
for corrections. <BACKSPACE> also works as usual. Be sure the cursor
is at the end of the desired line before You Press <ENTER>.

To end the BUIL.D file, simPlY Press <ENTER> at the be9innin9 of the
1 ine, i .. e .. , when the mE•::.:::.~lge:

TYPE IN UP TO 80 CHARS
~

Note: Pressing <BREAK> will also end the file. OnlY those lines
that have been tla99ed like this:

*** LINE STORED IN FILE ***
wi 11 be ~-aved.

Editing Existin9 BUILD-Files

When You sPecifY an existing file in the BUILD command, TRSDOS
assumes vou want to edit that file. Before startin9 the edit, it
copies the file into a new file with the same name but with the
extension /OLD .. That way, vou will have a backuP coPY of the file as
it was before bein9 edited •

Note: Editin9 an existin9 BUILD-file re9uires that vou have
write-access to the file .. That is' if the access Password .has a
Protection level which does not allow writing, then vou must SUPPlY
the uPdate Password.

i"IODEL I I TRSDOS COMMANDS PAGE 24

E>~amP 1 e:- :
SuPPose the file STARTER al~eadv exists, and vou tYPe the command:

BUILD STARTER
TRSDOS will first coPY STARTER into a new file STARTER/OLD (if
STARTER/OLD alreadY exists, Previous contents are lost->~ The-n it
wi 11 let '·(CtU be~Jin editin9 the file~ As ··tou edit the file, the
UPdated lines will be written into STARTER.

BUILD will disPlaY the existin9 contents o-f the· file, one line at a
time~ Beneath the line is an oPtion list:

K (keep), D (delete), I Cin•-ert), R (r-ePlace), ~~ (quitl ? ••

TvPe the first letter of the desired oPtion and Press <ENTER>.

KEEP OPTION: CoPies the line as-is into the new file' and-disPlaYs
the next line for editin9.

DELETE OPTION: De'letes thB 1 ine. bv not cop··(iTI9 it in-to the .new fl.-le,
and disPlavs the next line for editing.

INSERT OPTION: Allows You to insert lines AHEAD of the line bein9
di-sp'la···{:ed. IJ~.ing_ this-, OPtion i"s. -·1 ike erd:er-in9· 1 ines in·tt) a· rtettJ file
as described ab.ove.

After- ·y·ou Pr·e:=.s <ENTER>,- TRSDUS wi 11 9ive ··{ou a chancE- to er•.as.e· and
r-e-star-t the inse~t line,- o-~ ·to- sto-r-e the in-sert l·ine~ Pr-es~- <ESC>
to erase, <ENTER> to store it. You can then insert another line.

To stoP ins~rtin9, press <ENTER> at the be9innin9 of the li-ne.
TRSDOS wi 11 "then di•-Pla·-..- the ne>,:t line and the <:•Ption 1 i•-t.

REPLACE OPTION: De.letes, the disPlaYed 1 ine and lets ·-.-·ou in,.er-1:
rePlacement lines. Enterin9 rePlacement li-nes is l-ike enterin9 line·s
with the insert option. Pr-ess <ENTER> at the be9innin9 of. a 'line to
~-toP in.ser·.ti.n9 ... TRSDOS wi 11 disPla··,·· the n_e>::-t _l i.ne and th-2-. opti(lfl
1 is.t.

{;~UIT OPTION: End~. the ed·itin9· session. All: r·eO·!'aifd-r,g 1 i-ne·::. will be
coPied into the new file as-is. Before cl·osing the f·ile~--TRSDOS ·will
ask if You want to add new lines to the· e~d. (If You sim~lv want tn
add to a file but make no other chan9es, tYPe 0 at the be9innin9 of
the edit session.)

Ai: end oi:: fi 1 e

Whenever· TRSDOS r:eaches the end Ctf_- th·-rar file,. it wi 11 .a-sk if --..-ou· want
to add new lin•s at the end. TYPe Y <ENTER> to addo N <ENTER> to end
the editin9 session.

•

•

Addin9 lines at the end of a file is Just like usin9 the inse~t line
OPtion d~.?·s-. .cr·ib-ed above .. _Type -<ENTEH> at i:h~ b_e9in.nin9 of a _1-i'r.e to •
stoP addin9 and close -the_.filea-

·ro recover a BUILD file's P~evious contents

•

•

•

I"IODEL II TRSDOS .COMMi'\NDE< PAGE 25

There are a couPle of cases in which vou n1av need to do this. Let's
assume vou a~e editin9 a file named STARTER.
lR After endin9 the edit session~ You realize that vou have made an·
er·r-or·, and YOU liJant to r·<;?Ct)Ver· i:h-t: pr-evious v~':":!r·sion cr-f t-he _t-i-le ..

2. You accidentallY Press <BREAK> and end tt1e edit session-; -onl-v
those lines that have been fla99ed like this:

*** LINE STORED IN FILE ***
IJ..Ii 11 b-E' ·saved· in th~? n~?-h.l ·ftli~ n~:t.rr,:f:d BTl;RTE::H ..

Th~~>pr·e-v'i .. c'nJ·s f·il£· con-t:en·ts ar·e fi'Cii.JJ :::_::,tor·E.·d ·fr, STARTEf~/OLDa I:f· ··{CHJ

W•T:tn1: ·to r~:::-~··edit th-i-s- -fi h::.r~ ··{-OU must Cop·y· .it ci-r- .H .. 2·n.3.me it t-o a ·fi-l~;:

name without an extension. For examPle·~ v6u mi9ht -us~ these
commands.::

COPY !:HARTER/OLD TO STARTER {ABSf
Now vou can edit the Previous file 7 S contentsn TYPe::

BU I L.D !:>TARTER
To start editin9n

I"IODEL.. I I TF<SDOS COMMANDS PAGE 26

CLEAR
Clear User MemorY

:---:
' CLEAR
:---------·--------------------·---·---------------------------:
This command 9ets vou off to a fresh start. It zeroes user memorY
(loads bir1arv zero into each memorY address above x~27FF 7). It also
returns the Svstem to the state it is in when the first TRSDOS READY
messa9e aPPears: initializes the inPut/outPut drivers, un-protects
all memorv and resets the stack.

CL.EAR

•

•

•

•

•

•

MODEL II TRSDOS COMMANDS

CLOCK
Turn on Clock-Displav

:--:
CLOCf\ (~.wi tel';)

switch is one of the oPtions' ON o~ OFF.
·~witch is not 9ivern ON is as.sumed.

'

:--:

PAGE 27

This command controls the real-time clock disPlaY in the UPPer right
corner of the Video DisPlav. When it is on, the 24-hour time will be
disPlaved and UPdated once each second, re9ardless of what Pro9ram
is. e::-::ecutin9.

TRSDOS starts UP with the clock off.

Note: The real-time clock is alwavs running, re9ardless of whether
the clock-disPlaY is on or off.

E::-::amPl es

CLOCI\
Turns on the clock-disPlav .

CLOCK OFF
l'urns off the clock-disPlay .

I"IC>DEL I I TRSDOS C(>I'II"'ANDS PAGE 28

CLS
Clear- the Scr·een

: CLS :
:---------------------------------~----~---~--~--~~---------:

This- cornrf,and cl·ear-:"::- the Vide·o DlsPla··{,. U~-e it to er•ase ·in1=or-tna.tion
that vou don't want others to see' for examPle' file sPecifications
whic·h· i'ntl~ude ·pas·swords.

CLS

SamP 1 e Us~?

CREATE PERSONNL/BAS.secu~e
CLS

NGRANS=201ZJ

•

•

•

•

•

•

MODEL. II TRSDOS CC>I"II'1ANDS

COPY
Ct:1 p··t a. F i. 1 i=!

COPY "f i 'I;, 1 TO '!' i 1;, 2 4; ABG).
file 1 and 2 a.r·e fi 1 :: specificatil)fiS- .. For· :=.ir.9lt<­

d~ive coPies, the file names MUST BE DIFFERENT.
X.TOY is- a. del imitE.·r· .. A corr,ma or s-Pa.ce ca.n al s.o be us-ed.
ABS is an oPtional Paramete~ telling TRSDOS to coPY :

file 1 even if file 2 alreadY exists. The Pr·evious
contents of file 2 will be lost"
·-·-·------------·-·---·--------------·-----------------------:

PAGE 29

This command coPiQS file 1 into the new file defined bv file 2 .. If a
disk name is included in either· file SPecification' TRSDOS will
ensure that the aPProPriate diskette is inserted before making the
coPY .. This allows vou to coPY a file from one diskette to another~
usin9 A SINGLE DRIVE if necessarY~

When You do not add the ABS (''absolutely») Pa~ameter, TRSDOS will
NOT overwrite an existin9 file that matches the sPecification file
2~ Instead it will 9ive vou an err·or· messa9e~ Use the ABS oPtion to
overwrite (destrov) an existin9 fil~~

Normally, COPY uses n.emo~v belouJ X'3000'; however·, when coPYing from
a:aflf:! di:=-kett-f."! tl) ~'ii""J!)'I:her· in a BINGLE dr·ive, it wi 11 use ITI~'?mor·Y UP to
the start of Pr·otected memorY (see »MemorY Requirerr.ents of
THSDOSu),.

The disk name n.ust alwaYs be Pr·eceded bv a drive sPecification;
otherwise it will be i911ored~

For sin9le-drive coPies fr·om one disk to another·, both disk names
and drive sPecifications must be Provided.

COPY Ol..DFil..E/BAG TO NEWFil..E/BAG
Copi;,s OLDFILE/BAS into a n;,w fil;, nam;,d NEWFil..E/BAS. TRGDOG will
:. .. ea.r-ch thr-,:a•J9h i5t1.1 dr·ivt•::=. for- OLDFIL.E/E"~·AS, and wi 11 cop·y· it onto the
first diskette which is not write-protected.

COPY NAMEFil..E/TXT:0CDEPTCI TO Fil..EA/TXT:0CDEPTAI
This command sPecifies a one-drive coPY from a diskette named DEPTC
to anott1er· diskette named DEPTA. TRSDOS will pr·ovi,je the necessar·v
PromPting to accomPlish the coPY. Since it's a one-drive copy, file
r.arr1es must be differerrt.

COPY FILE/A TO Fil..E/B,1CDOUBLEI
This. c:ommar,d Ct)Pif.·s FILE/A to FILE/B .. TRSDO~~ wi "11 S'-f.•ar·ch all dr·ives.
for FILE/A~ and will require vou to have or insert a diskette named
DOUBLE in drive 1.

MODEL II TRSDOS COMMANDS PAGE 30

COPY NElrJFILE TO OL.DFIL.E {ABSJ. •
Pe~fo~ms the COPY even if OLDFILE al~eadv exists, in which case its
P~evious contents are losta

Whenever a file is uPdated, use COPY to make a backuP file on
another diskette. You can also use COPY to restructure a file for
faster access. Be sure the destination diskette is alreadv less
se9rnented than the source diskette; otherwise the new file could be
more segmented than the old one. (See FREE for information on file
s~?9mentation ..)

To rename a file on the same diskette, use RENAME, not COPY.

•

•

•

•

•

~·IODEL I I TRSDOS COMMANDS

(r12 DOS2A 8/6/79)

CREATE
Create a Preallocated File

:--:
CREATE fil<? ~NGRANS=n1o NRECS=n2o L.RL.=r,3o TYPE=l<?tt<?~·")­

file i~. a fi'lt? SP{~cificai:ion~

NGRANS=I!l indicates-. how man .. t 9r·anule5- to all ocate.
If NGRANS is ommitt<?do th<? numb<?r of 9ranul<?s
allocat<?d is d<?t<?rmin<?d bY NRECS and LRL.

NRECS==n2 indicat~?s how man····· recor·d~=- t<:• all ow for ..
If NRECS is omitt<?do NGRANS d<?t<?rmin<?s th<? siz<? of
the fil<?. When NRECS is given• LRL must also b<?
be 9iven.

LRL=_n3 indicate::. th€' r·ecor-d len9th <Fi::.::ed-len9th
r·ecor-d~- onlv). -~must be in the r·an9e <1.,256> ..
If LRL. is omitted, LRL=256 is used. When LRL is
9iven, NRECS must also be 9iven ..

TYPE=letter- specifies the record tvpe: letter e9uals
F 1Fixed-len9th r<?cordsl or V 1Variabl<?-l<?n9th
records)u If TYPE is omitted, TYPE=F is usedu

No:.te: {"NGRANS'} and {NRECSo L.RL) a r-EI mutua 1 h'
e::.~cl usive ..

:--:

PAGE 31

This command lets YOU c~eate a file and P~e-allocate (set aside)
sPace for its future co~tents. This is different from the default
(normal) TRSDOS P~ocedure, in which SPace is allocated to a file
dvnamicallvo i.<?o as n<?cessar-v WHEN DATA IS WRITTEN INTO THE FILE.

With Preallocated files' unused sPace at the end of file is NOT
deallocated (recovered) whe~ the file is Closed. With dYnamicallY
allocated files' on the othe~ hand, unused sPace at the end of the
file IS recovered when the file is Closed.

Note: With Pre-allocated files, TRSDOS will allocate extra sPace
when YOU exceBd the P~e-allocated amount durin9 a write oPeration~

You maY want to use CREATE to Prepare a file which will contain a
known affiount of d~ta. This will usuallY sPeed UP file write
oPerations, since TRSDOS won 1 t have to do Periodic allocations
durin9 the write operations~ File readin9 will also be faster, sir1ce
Pre-allocated files are less dispersed on the diskette--~equirin9
less motion of the read/write mechanism to locate the records.

E::-::amP 1 e :: .

CREATE DATAFIL.E/BAS NRECS=300o L.RL=256
Cr-<?ates a file named DATAFILE/BASo and allocates sPace for 300
256-bvte records.

CREATE TEXT/1 NGRANS•illllll• TYPE•V

MODEL II TRSDOS COMMANDS PAGE 32

Creates a file named 'TEXT/1, and allocates
will contain variable-len9th records.

100 9r·anules .. The file •

CREATE NAMES/TXT.IRIS NRECS=5011), LRL=30
Creates a file named NAMES/TXT Protected bv the Password IRIS. The
file will be lar9e enou9h to contain 500 records, each 30 bvtes
1 on9 ..

Determining the size of the file

You can allocate sPace accordin9 to number of 9ranules or number of
records. <A 9ranule contains 1280 bvtes; a record contains from 1 to
256 b·y·tes-., dePending (1n L.RL.)

The 9ranule is the unit of allocation in TRSDOS; if You ask for 30
9ranules, that,s exactlY how much sPace the file will 9et.

If, on the other hand, vou sPecifY the number of records, TRSDOS
will give vou the NUMBER OF GRANULES which are re~uired to CONTAIN
that manY records. For examPle, if vou sPecifY 100 records and a
record len9th of 40, You're askin9 for a total of 100 * 40 ~ 4000
bytes. Since TRSDOS allocates sPaces in units of g~anules (1280
bvtes), You'll actually 9et 4 9ranules--containin9 5120 bytes.

Record Length !Fixed-Length Files Onlvl

A record is the quantitY of data TRSDOS Processes fo~ You during
disk oPerations. The r-ecord len9th can be anv value from 1 to 256.

File T··,··pe

TRSDOS allows two types of files: Fixed-Len9th Record <FLR) files
and Variable-Length Record CVLRl files. With FLR fileso the record
1en9th <from 1 to 256) is set when the file is created' and it
cannot be chan9ed. With VLR files, the len9th of each record is
independent of all other records in the file. For examPle, record 1
mi9ht have a len9th of 70; record 2, 33; record 3, 225; etcu
Variable len9th records consist of a len9th bvte followed bY the
data, and can contain UP to 256 bvtes INCLUDING the len9th bvte.

For further exPlanation of file structure, allocation and tYPes' see
T-echnical In1=or·mati.:,n.

To CREATE a file to be used bY BASIC

1. Decide how manv records the file will contain.
<This is Just an estimate. If the file exceeds this
number·, it will automaticall'·(be e::-::tended ..)

2. If it is a Direct access file, dete~mine the
oPtimum ~eco~d len9th (f~om 1 to 256)u If it is a
s.e·=Juential a':cess file, the r·e(:or·d len9th must e·1ual 1 ..

3. Use a CREATE command like this:
CHEI\TE "l"i le {NI:<EC<l"=number·o LliLo~·l.gngth}

•

•

•

•

•

MODEL II TRSDOS COMMANDS PAGE 33

SamPle Us.e

SuPPose vou are 9oin9 to store Personnel
emPloYees, and each data record will look

Name (UP to 25 letters)
Social SecuritY Number 111 characters!
Job DescriPtion (UP to 92 characters)

infor-mation
like this:

on 250

Then vour records will need to be 25+11+92=128 bvtes lon9~

You could create an aPPrOPriate file with the command:
CHEATE PEHSONNL/TXT NRECS=25111. LRL=1:28

Once created, this Preallocated file will allow faster writin9 than
would a dvnamicallv allocated file' since TRDOS won't have to
writin9 PeriodicallY to allocate more space (unless vou exceed
Pre-allocated amount)a

s. t 1) ~':!­

the

i"IODEL I I TRSDOS COMI"IANDS

DATE
Reset or· Get Todav's Date

:-----·---:
DATE -(mm/dd/··,· ... ,.·y··fY

lli!!!. i.s-. a two-di9it month S-Pecificatior,
dd is a two-di9ii: da.·y· ... ~of"-month sPecific;a.tion
.. ,..· . ..-v··t is a four--~d i g it ·-... ear· s-F·e c if i cat i c1n
If mm/dd/yyy· ... · ar·e 9iven, TRSDOS r-esets the

da +:<;,. If J!!!!'l ddh··y··,.-··,.- i '· C•mi t t~?d, TRSDOS
disPlaYs the current date and time.

'

:------------------------·----------------------------------:

PAGE 34

This command lets vou reset the date or disPlaY the date and time~

The oPerator sets the date initiallY when TRSDOS is started UP.
After that, TRSDOS updates the time and date automatically, usin9
its built-in clock and calendar.
You can enter anY four-di9it Yea~ afte~ 1599.

When YOU request the date, TRSDOS disPlaYs it in this format:

•

THU JUL 19 1979 200 -- 14.15.31
for· Thur·:..day, Juh·· 19, 1979, th12 200th daY o:•f th12 Yl?a.r·• 2:15:31 PIT!. •

Note: If the time Passes 23~59.59, TRSDOS does not start over at
11.10.00.00. Ins.t~?ad, it cc•ntinu"''· with ;~4.00.00. l-lowi?V~?r·, th12 n~?>,:t

time vou use the TIME or DA'TE command, the time will be converted to
its cor·rect 24-hour value, and tt,e date will be uPdated. If you let
the clock run Past 59~59.59, it will recYcle to 00.00.00, and the
date will not be UPdated to include the 60-hour Period.

DATE
DisPlavs the current date and time~

DATE 07/18/1979
Resets the date to Julv 18, 1979, and disPlaYs the new date
infor·mai:ion ..

SamPle u~.E.'

In addition to resetting and 9ettin9 the current date, this command
can be used to Provide comPlete date information on anY date.

For examPle, the command~
DATE 12/lil7/1'i'Lf1

tells vou that December 7, 1941 fell on a SundaY~ the 341st day of
the Year. It also resets the current date.

•

•

•

•

i'IODEL I I TRSDOS CCWIMANDS

DEBUG
Btar·t Debu99er·

:--·----·-------·
DEBUG

switch is one of the following Pa~amete~s=
ON turns on the debu99e~~
OFF turns off the debu99er~

If switch is omitted and debu99e·r is off,
TRSDOS tells. ··{OIJ som

If switch is omitted and debu99er is on,
TRSDOS enters the debug monitor.

~----------------------------~--·---·-···-----·--------------------:

PAGE 35

This co-mmand ~.et~s UP the debu9 n,onitor·, which a.llow~. YC•U to E•nt-.c,rr'.l

'1:-f:!S-t, and d~=?l:~u9 J1'tachin~~---la.n~~ua~le Pr·c•9r-att,;: ... It •:tlso includes. an
UPload function to allouJ transmission of data from anott,er device to
the Model II, via the b~Jilt-in 3erial inte~fa<:e (Channel Bl.

DEBUG loads into the hi9h memorY area sometimes reserved bY TRSDOS
for sPecial Pro9rammin9 (see TRSDOS Memorv MaP)~ While DEBUG is on'
l"RSDOS will automaticallY Protect this ar-ea from bein9 overlaid bY
!?.ASIC or· other· us{?r· Pr·o9-r-a.ms~ To us-:2 DEBUG 1;;rom I?.AFJIC, vou IT!I,.J:£."1: ti.Jr·n
DEBUG on befor-e you start BASIC~

While DEBUG is on, ~verY time vou attemPt to load and execute a ~Jser

Pro9ram, You will enter· the debug monitor. In this mode, vou can
enter anY of a special set of single-keY commands for studYing how
Your Pro9ram is workin9Q

DEBUG can onlY be used on Pro9rams in the user ar·ea (X'2800' to
TOP l •

E::-::amP 1 e ~-

DEBUG
If DEBUG i~- ot~f, this corr1mand tells ··tou s-')= If it is. on5 thi::.
command enters the debug monitor~

DEBUG OFF
l·urns off DEBUG and un-Pr·otects hi9h IT1emor·v.

DEBUG ON
Tur-n::. on DEBUG: i ~E: .. , 1 ot£J.d:'E- t~he debuS.I9e-r· int1) hi~.lh memor···t, Pr·otect:::.
hi9h memory, and sets UP a »scroll window 0 ·--a b'!ock of lines that
u.•ill bE.• :'E-cr·~)·llE•dD The :'E-cr·oll window u.•ill cons.i:::--1: of the- bottom 1.1
lines on the disPlaYn "The toP 13 lines will be used to <:ontain the
debug rnonito~ disPlaY .

MODEL II TRSDOS COMMANDS PAGE 36

To enter the debu9 monitor

TYPe:
DEBUG ON
DEBUG

While DEBUG is on, vou can also enter the debu9 monitor simPlY bY
tYPin9 file sPecification of a use~ P~o9ram. TRSDOS will load the
PP09ram and transfer control to the debu99er. The transfer address
for the Pro9ram will be in the PC re9ister di$Plav.

of i:hi::.
16-bvte rouJ of RAM

00 iZiil) iZiil) il)iZI
I() II) LJ-f.:) II) II) II) II) II) II)

illiZI
!il0

-1ex contents of
t·ach b'·{te in r·ow

PFWGHAI"I

Ia ill il)iZI 05 C3 6A
IZllil II) II) 3/'1 AC !il0

C:J
00

ASCII characters
11

..
11 for· n•:·n-·

d i :::.r-::-1 •':\.Y char·~-"

6A iZI0 0ill ~:.7

lil0 ~)~3 ~5 .I.J- f.J-~.5 F
. . " . . .

•

. ... j •. j .. • w
' . " . .BTE

2B'Jill Lt-D iZJ(1 2E 2E: ~::E 2C "•9 illiZI 44· 24 2B :\3 3ill 30 :liZJ 2E 1'1" " . . ' I.D$13000.
2Bl\IZJ ;Ollil 311) ;l[i) 311) :31 2\i 00 20 :3B :;~I(J Lf 1 ~5 :3 ::-~0 f.t-9 33 24 0(1001) . B
::':BB0 ill0 20 '•·9 :u 2Lt illiZI illiZI ill0 00 00 00 IZID IZJIZ! 00 01ZJ iZI0 . I:l$. . . .
2BC0 00 00 1{)0 00 0~1 00 m~ 00 00 00 00 (1)0 -~0 DO 00 00 " " " . . " . . .
~':BDIZI 00 illiZI illiZI 00 IZJIZI IlliZI illl,"1 00 00 00 00 00 00 00 00 00
2BE0 illiZI 00 0,1 @i) m~ lili~ 0!il tQIIi 00 00 00 00 00 00 00 00 " . .

f'C SP BZI-!P AF BC DE "\" "'~' 001~0 01iJ00

Fl"-9'· Pr •)CJ! ·:ilfl 31.~-~·:~

HL IX IY AF' BC' DE' HL.'
01illil0 001il0 0(~00 0(~00 00~)0 00~~0 0000

etc ~
Co u n i:: E• r· P(•int-..~r· <P,=P/V)

the command Prompt, meaning that vou can enter· one of the
sin9le-kev commands. Press <H> (for uhelP'') to disPlaY a ''menu'' or
list of debu99e~ commands. To enter one of the commands~ Press the
letter which is caPitalized in the command menu. For examPle' to
enter the memorY command (''raM"), Press <M>.

Most commands will PromPt vou to enter additional information or
subcommands. While entering commands and subcommands, the following
ktt:!YS ·::tr·e us.ef.•.Jl:
<ESC> Retur-ns to the ? PromPt and cancels the command

··{ou' re in ..
<BACKSPACE> Back5P"-ces the cursor and er"ses Previous

< -~
·->

<Fl>
<.TAEP·

character ..
Cursor back without erasin9.
Cursor forward withou9 erasin9.
In cePtain subcommands, homes the cuPsoP~
In certain subcommands, tabs the cursor.

Command DescriPtion

AS !3$
.
. . . . :• . . . "
" " "

•

•

•

MODEL II TRSDOS COMMANDS PAGE 37

Press to set a breakPoint in vour PP09Pam. When execution
reaches a breakPoint, control returns to the debu9 monitor' with the
Pro9ram counter Pointing to the breakPoint address. To continue from
that Point, Press <C>. The ori9inal instruction will be
e:,:ecuted-·-BUT THE BREAKPOINT WILL NOT BE REMOVED. It wi 11 s.ti 11 be
there the next time that address is reached.

Note: Place breakPoints at the be9innin9 bvte of an OPcode--NEVER in
the middle of an instruction~

Press to enter the Break command. TRSDOS Prompts vou to enter
the breakPoint number. UP to ei9ht breakPoints are allowed, so tvPe
in a number from 1 to B. Next TRSDOS PromPts vou to enter the new
address for that breakPoint. If the breakPoint has PreviouslY been
set, TRSDOS disPlaYs the old b~eakPoint address' and the o~i9inal
inst~uction that 9oes in that address.

Note: While a breakPoint is in Place, a D7 is disPlaYed in the
memory disPlaY for the breakPoint address.

For- e::-::amPle:

? B #=1 A=2800
Puts a breakpoint (#1) at address X'2800'. The memory display for
X'2800' will show a D7.

/
RADIO SHACf\ ~L. I I DEBUG PROGRAM

2800 ijfl)'se.""2E D6 4~> F3 43 DE 42 96 44 C9 42 29 5E 95
2810
2820

60 f\ 1 3A 28 l+E 17 4F Z9
50 33 50 FD 60 00 61 03
60 E7 60 EA 60 D6 43 0A

'+1 7A
61 6D

4E 8B "•F
64 C0 64

. t.. C. C. B. D. BH>.
'71 4F 1E ·· . • :(N.OlAzN.O.O.
D3 64 E4 P3P. ·· . .. a .. amd .. d .. d ..

•

"'-4 :.36 44 83 44 36 5C 2F · .. ··. ·· . • C.D6D.D6.j,/ . .

To delete a sin9le breakPoint without affecting anY others, Press
<ENTER> instead of Pr-ovidin9 a new address for the breakPoint .. To
delete all br·eakPoints, Pres.s;. <E> for 11 empt··..- breakPoint table".

Continue
=========
P~ess <C> to enter this command. It resumes execution of Your
Pro9ram at the address Pointed to bv PC. Use it after the debu99er
has stoPPed at a breakPoint .. The ori9inal instruction at the
breakPoint address will be executed, but the breakPoint will remain
in Plaa:e ..

i"IODEL I I TRSDOf3 COMMANDS PAGE 38

Dec i ma 1 F (• r· rna t
== :::::=:::::::::::::::::::::::~;:::::::::=::::::::::::::::

P~ess <D> to enter this command. It disPlaYs all addresses in
decimal form~ However' the contents of all re9isters and memorY
addr·esse~. a.r·E· ~-ti 11 dis-Pla·-... ed ir, he~<adecirr,al .. In the decirr,al dis-Pla··{
format, vou must enter all addresses as five-di9it decimal numbers.

EmPtY BreakPoint Table
===:::::.":::::::::::::::::::::~~=~:::::::::::::::::::~·.::::::::::::::::::::::::::::==

Press <E> to emPtY the breakPoint table. All breakPointed
instructions will be restored~

~= ::::: ~= ::::: =~~ ~~= ::::: ~::: :::: ~= :::: :::= ::::: :::: ::::

Press <F> to start this command. It will search in memory for a
strin9 UP to 20 bvtes lon9. You must enter the search strin9 in
hexadec1rnal format. Press <ENTER> when vou have tYPed in the enti~e
strin9a The debug monitor will disPlaY the first occurrence of the
~-tr·in9. It it is. not in the sear-ch ar·ea, the cur·r·ent memQr· .. { dis.pla.··{
i:=. uncha.n9ed~

F c• r· e::-::amP 1 e:
? F s~"2800 E=L>0!;10 D=,C:l01ZJ70

Searches memorv from X'2800' throu9h X'4~00' for the three-bvte
~~exadecimal st~in9 X'C30070'.

•

•

•

•

•

•

I"IODEL I I TRSDOS

1-\-t._f F ott11~t
::::::::::::::::::::::::::.-::::::=::::::::::

COMMANDS PAGE 39

P~ess <X> to ~estore the DisPlay to hexadecimal format~ In this
mode, all add~esses must be ente~ed as four-di9it hexadecimal
number·~ ...

JumP

TYPe <J> to enter this command. The debu99er will PromPt vou to tYPe
in the address to JumP to. (JumPing to a breakPointed instruction
wi 11 caus.e an immediate rt:_.tur·n to the debug mordt~:.r-.)

For· e}::amPl e:
? J A=2811ll'i

starts execution at X7 2800 7
•

Load (COPY memorv to memorv>
============================
TYPe <L> to enter this command. It moves a block of memorY. The
debu99er will PromPt YOU to tYPe in the start IS=I and END IE•I
addresses of the block to be coPied, and the destination address
<T=> for the first bvte moved.

The move is incremental: the first byte is moved to the fir·st
destination address' then the second to the second destination
address' etc ..

E>;:amPl es:
? L S=281'il'i E=2BFI'i T<:\000

CoPies addresses from X'2800' to X'28F0' into memory from X'3000' to
X':30Fill'.

You can use this command to fill memorY with a
Puttin9 the df_:'::.ir·ed value in addr·e::.s .!:!..!:!...!!.' and
this.:

? L S=I!..!li!.!l- E=_;::::::<>::::< T:::::nnnn+1

~-Pec1t1c va.l•Je" bY
usin9 a command like

Thi~. will cop·y· the value in !.""!.!l.!li!. into everY location fr·om nnnn+1 to
xxxx. For examPle, if 2800 contains a X'20', then the command:

? L. S=2800 E=301'il'i T=281'i1
fills memory from 2801 to 3000 with X'20'.

Debug Off
-H--·-----HO­·-·---~--~~--~·-

TYPe <O> to exit the debu9 monitor and turn off DEBUG. All
breakPoints set bY the B command will be removed from vour Pro9ram,
AND EXECUTION WILL CONTINUE AT THE ADDRESS SHOWN IN PC.

Pr·in-1: Dis-FlaY
=-~==::::::::::::=========

TYPe <P> to send a coPY of the DisPlaY to the Printeru Printer must
have been initialized during TRSDOS startuP or bY the FORMS
command ..

~K>DEL. I I TRSDOS C0~1MANDS PAGE 412)

Examine and Chan9e MemorY
=========================
TvPe <M> to enter this command. The debu99er will PromPt vou to tvPe
in the startin9 address of memorY to be examined~ As soon as vou
t··{P€ in the comPlete addr·e::.s, the rr,err11:.rv di::.Pla·.,-· wi 11 show the
128-bvte area startin9 with that address. While the A=~"·· PromPt is
Present, vou can scroll throu9h memorY 16 bvtes at a time tv
Pressing <ENTER>.

TO MODIFY ANY MEMORY IN THE DISPLAY AREA, Press <Fl> while the
A= •..• is diPlaved. The cursor will move UP into the memorY dislav
ar-ea ..

While in the memorY disPlaY ar·ea, use the cursor control kevs, UP
arrow, down arrow, <- and ->, and <Fl> to Position the cursor to the
value vou want to chan9e. The 128-bvte block of memorY is disPlaved
in hexadecimal and ASCII format, and vou can modifY memorY bv
enterin9 hex values or ASCII values, dePending on the Position of
t h'.:? cur· s. or· ..

To switch from hexadecimal to ASCII entrY or vice versa, Press the
<I> kf:!·

•

When the cursor is in the hexadecimal area, enter hexadecimal
values. The debu99er will uPdate the memorY disPlaY as YOU tYPe in
each nibble (he>~adecimal chii:J.r·acter-, half .a. byte). •

When the cursor is in the ASCII area, enter ASCII characters. Press
<I> to return to hexadecimal entr·Y.

TO CANCEL ALL CHANGES in rnernor-··,··o Pr·ess <ESC>. TO EFFECT ALL. CHANGES•
Fr·-..~s.s <F2>.

================
Press <R> to enter this
letter indicating which
A for AF 8 for BC
X for IX Y for IV
F for AF~ C for BC~

command. The R =>
re9ister-Pair You

D for· DE

E for- DE'

Pr·c•mPt aPPear·s .•
want t-:• chan9e:
H for· HL.

L f·:.r· HL,

T·-... pe in a

The cursor will move over to the first bvte of the re9ister Pair.
While in the re9ister modifY mode, use the cursor control kevs, <­
and -> to move over one nibble at a time .. Use <TAB> to advance to
the next re9ister Pair.

TO CANCEL. CHANGES in re9ister contents, Press <ESC>. TO EFFECT
CHANGES rnadeo Press <F2>.

s·y·s. tem
:::::::::;:::::::::::::::=

Press <S> to return to the TRSDOS READY mode. The debu99er is still
on; when You load and execute a P~o9~am, You will enter the debu99er

•

1''\0DEL. I I TFlSDOS C0\'1MANDS PAGE 41

• >a.9a.in ..

•

•

UP l oe.d

Press <U> to ente~ the serial inPut mode, in which the ComPuter
accepts serial inP,Jt from another device CModel II or other
comPuter, etc.).

Set uP the sending device <e.9 .. ~ another Model II or other comPuter)
to transmit to the Model II via the serial interface, Channel B on
back Panel .. Trar1smissions must be RS--232C standard, with the
following characteristics:

1200 ba.ud
8-bit WQr·d:::.
No Pe.r·it·y·
1 stoP bit between words.

The transmitting pro9rarn must send the data in "Intel CR> PaPer TaPe
Hi'~>~ F.:~r-m;a.·l:u, descr·ibed be'l ow.

Each bvte of data is sent as a Pair of hexadecimal ASCII-coded
cha.raci:ers:

ll hi9h nibble (ITtost si9nificant four bits), sent as first
bYtf.! 1:-1= Pair· ..

2) low nibble (least si9rlificant four bits), sent as second
b··(·b:::r of 1:=.aiP ..

F1)r· t.o::·::amPle, the ve.l ue X,F7' is ::.ent as two bYt.e::., 11 F 11 <X'4·6')
fol'loUJed b·y· 11 7 11 <x~:37~) ..

Because onlY 11
:

1
' and ASCII coded hexadecimal numbers are sent, data

is alwaYs in the range <X'30',X'3A'> or <X'41',X'46'>. Values
outside this ran9e will terminate r·ecePtion and Produce an error
m e ~::. ::. ·3. 1.::J {,? ..

MODEL II TRSDOS COMMANDS

Record Format

Records must be sent as follows:
~------------:-------------------:-------------------------:
: Character
: Number· Conter.ts Comments
:------------:--------·--------·---:------------------------~

1 II : U Svnc-character to
indicate be9innin9
of record.

:------------:-·------------------:------------------------:
2 : Hi9h nibble of

: record len9th (N):
:------------:------------------:

3 ~ Low nibble of
: record len9th IN):

This 2-bvte se~uence
9ives the numbeP of
bvte PAIRS in this
Pecord~ Zero means
256 bvte Pairs follow.:

:------------:------------------:------------------------~

4 : Hi9h nibble of
: msb of load addr.:

-------·--·---:-----·-------------:
5 : Low nibble of

: msb of load addr~=
:-----------·-:------------------:

6 : Hi9h nibble of
lsb of load addP.:

:-------------:------------·------:
7 : Low nibble of

lsb of load add~.:

This 4-bvte sequence
9ives address where
the data is to start
loadin9u Address
sPecifiied must be
in the user area
<X'2800'oTOP>.

:------------~·-------------------:----------··-·--------------:
8 Hi9h nibble of

= EOF (end of tile):
: code

:---------·---:-------------------:
9 Low nibble of

: EOF code

This bvte-Pair 9ives
the EOF code. Anv non-:
zero value means end
of file (no more
records follow). A
value of zero means
more records follow.

:------------:------------------:------------------------=
10 : First bvte of

: first data Pair
:------------:-------------------:

1 1 : Second bvte of
: first data Pair

First bvte is ASCII
code for first hex
di9it; second bvte is
ASCII code for second
hex di9it.

:------------:------------------~-------------------------=

(continued)

PAGE 42

•

•

•

•

•

•

MODEL II TRSDOE COMI"'ANDE

<R~cord Format, continued)
:-----·---·----~------------------:----------------------
g Ch.:~r-acter·

: 1\lutrtb<,r· c,)n'l:ents.
:-------------:-------·--------------:-------·------------·--··--·----:
: B + (l\l-li·:2l Fir·st b·"f··l:e of

l a sf: data. pair-
:------------:------------·-------:

Second by·te of
l~'i!.Si: data p:-~::t.ir·

L.a.s.t Pair· of
da.ta. ch-'3.r·a.ctt:~r-s

:--------------:------·------------- ----------------------------:
Fir-st bYtf:: 01::

data cht•cksum
<hi9h nibble)

~-------------~-------------------:
i.1 ·t· (N;.;·:2) S\~C(Ifld b··tte 1)f

data chc::otcks.um
(low nibbl.-r::)

This Pair rePresents
2's comPlement of the
data (all b~fte Pairs
.::t.ftf.•f' th'l::- 11

:
11

UP to but not includ­
in9 the checksum).
Note that each bvte
Pai~ is conve~ted back~
to the or-i'.3ini:l.l bY"I:f!
of data befor·e it is
~-IJITIIT1~7! d ..

~ -----------.---.----.-·-""'"""""':- ·- ----------- ----- ---- ------ :-. -·- -· - -·- ·-- ------------- ------ - ... :

Note: OnlY the data bvtes (characters 10 th~ou9h 9+(N*2)
in memo r···{ ..

GamPl e r-~:::cor·d:

;------------:---------·--·-------~

: Char·act.:;?r·
: Number·

BamP ·1 e Da. tr1.
: ASCII Hex Value :

:------------:--------.. ---------.----:
1 " ' " 3A
··:·
-~-

ll(llll 30
3 11 :;;;:n 32

'• II·-) II .. :_ :3:~:::
~ .. } usn 30
6 II ~!Ill 30
.. , ;1011 30 ' n II 1;111 30
9 II (111 30

10 n;3n 3:5
1 1 11711 37
1::2 11711 37

' 13 11011 30
1lt II ~; II

_J 35
15 11[)11 LyLj.

:---------··-----------------------~

Thi;. r-ecor·d UJ i 1 1 contain 2 b··tte-pa ir-s-. of
11311 11""711

' r-epr·esentin9 the value
11711 "IZ!n r·-epr·esentin9 the value

data:
X.,37.,
X' 70'

a. r· {'~ ::·. i::t v E• d

and will star-t loadin9 at X'2800'. The one-bvte sum of the ori9inal
bvtes (r-epr-esented in Pairs bv characte~s 2 thr-ou9h 13) is X'A3'.
The 2.,s comPlement of X'A3' IS X'5D'--which is ~ePresented in bvtes
14 ar.d 15.

~IODEL.. I I TRSDOS COMMANDS PAGE Lf4

Notes on Usin9 the UPload Function

Because of the baud rate and the absence of comPlex P~otocols for
error handling, re-transmissions, etc., the UPload function is
intendt?d for·
to the Model

hard-wired machines' e.9., from a develoPment machine
II in the immediate vicinitv.

•

•

•

•
MODEL II TRSDOS COMMANDS

(i•i2DOS2B 8/6/79l

DIR
List the Diskette DirectorY

:--:
DI R :__g_ (SYS, PRT)-

:: _ _g_ i~. a dr-ive ::.p~::cificati,)n~ (Th~:: colon : bef•:.r·e .Q..._
is optional.) If :~is omitted' drive zero
i::. used ..

SYS tells TRSDOS to list svstem and user files
If SYS is omitted, onlv user files are listed.

PRT tells TRSDOS to list the directorY to the
Printer. If PRT is omitted, TRSDOS lists the
directorY on the Console DisPlaY.

:--:

PAGE 45

This command 9ives vou information about a diskette and the files it
C(•ntains ..

l'o Pause the listing, Press <HOLD>. To continue, Press <HOLD> a9ain.
To terminate the listing, Press <ESC>.

• E::<amP 1 t.~ ::.

•

DIR
DisPlaYs the directorY of user files in drive zero.

DIR 1 PRT
Lists to the Printer the directorY of user files in drive 1.

DIR {"sys,PRT")
Lists to the Printer the directorY of sYstem and user filesu The
braces are required to Prevent TRSDOS from takin9 SYS as an invalid
drive SPecification .

rK>DEL. I I TRSDOS COt'II'IANDS

SamPle DirectorY Listing

(r)

r
D I Sf\ t·JAI"IE:: Hlt>DOS @

FIL!o i'll\I'IE@ CHEATED
Mt'l DD YY

7 31 79 F<AI''IOO!•I
DEI'10
'fEET
TI::!3T/OLD
DISPL..AY/DBG
DBG

*·!~!-·~· :~12i9 FREE

1
7
'7

'

31
31
:31

19
79
79

7 31 '79
7 31 7'1

GRANULES I hi

I ; -

~T.T'HB
D·•·A7
D*Xii.l
lHX0
D* X li)

DRIVE::'\
rr;FILE HEC~
\-.lJ TYPE LEN

F 1
F 1
F
!
....
·-

1
1

f'*·XIli F :-;;::;6
f'*X~1 F 2'56

2 EXTEI~Tb *"'*

What the column headin9s mean

PAGE 46

•

12i8/iz:l6/79 ·
~1118 l'l(il NI'1B l'lclV

12:10. Lf8. 33 ,}j)
SPACE EOF

RE:C~> EXTS
167 1
3::l7 1

AL.LOC IJ!:.>FD BYTE
(<{) 5 (!J) 1 166

5 :<: [JIZJ

2112i 1 ~ 1 ;~,;;.~9 _,
2~1/t 1 ::5 :1. 21{j3

1 1 ~ _, 1 l2i
17 1 :21ZJ 17 0

•

(5) File Name--the name and extension assi9ned to a file when it was
createdu The Password (if anY) is not shown~

Creation Date--when the file was c~eated.

Attributes--a four-character field.
The first character is either P for Pro9ram

D f 1) r D;a. +.:a f i 1 e.
'!' i l"'

The second character is either· S for Svstem file or
* for User file.

The third char·acter 9ives the Password Pr·otection status.
X The file is unprotected Cno Passwords).
A The file has an access wor·d but no

uPdate W(,r·d ..
U The file has an update wor·d but no access

•

•
COMI"'/\NDb

u;o r· d ..
f:; l'he file t1as both tiPdate and access wo~ds.
1~our·th cha.r·act-?.:!r· I I l ·1 -::-P·f.·CliJ.e::. ·:~,.;a ev;,::: or

to th-e
li'J. 1

access U.lor-d:
Kill file and ever·vthin9 listed below.
Rename file and evervthin9 listed below~
f\J(It US-E.rd

F i 1 •o•
1··--·
\)

' ~-·

4 Write and evervtin9 listed below.
5 Read and everYthing listed below"
6 Execute or.lv.
7 1\lon~~ ..

TYPe--Indicates the r·ecor·d tYPe for
Fixed-len9th records fixed-len9th
Var·iable-·ler,9th r·ecor·ds

thi'! fi 1 "·
r·~?COPdS

t'.;'\1'-.lumb~~~~- ~~Jf H-;:~~:oJ~-~~::.--·-··how m;:3.nY ·1 (I(_;Jica.·l. r·ecor·ds 1:~1ve bf~en tur·j_tt{::.-n ..
~Aster1sks S19nltY none t.ave been wr1tten or t1le has variable len9th

records and number written cannot be calculated.

~BPa.ce U~.ed-···--}-·ll)l\J manY of the~-t~ ~-~::.·Ct(~r-~- hi3.V€ ii:lCtua.ll·y· be{?n l..!.lr·itt-E.'fld
~Asterisks si9nifY none have been allocated.

(;;1 E.nd of Fi 1...:.· (EOF) P,·y·i:e-··-··BhoLt.t:=. the stac.r·tin9 po:::.ition in a :::.ect1)r· of
~the last ~eco~d ltl~itten~

{.';)~~r-·2!E• ~:P.::tc•2.• Re~tainin9-··-~·i:·~:11~:. h~~~Lu m.:tn·y· 9r·2,.nulE·S (1.2Bf!J··-b·-~·te bl1)C~:~:::.) _.:tr·e
~ r~ee ror sto~ln9 new 1nrormat1onn Also tells how the tree space 1s

or·9ani::~E_.d, i.-E:., how Ht2tn··(conti9uou:::. block~- (e~-::t,;:.•nts) ma.kf! UP tht~

1~ r·-c:?~:-: s p;::t.ce,.

•

I"IODEL I I T RSDOS COMMANDS PAGE 48

DO
Be9in Auto Command InPut fr·om Disk File

:-------·--·----·---:
DO f i 1 e

'l~i le ~.peci1=ies a ·fi 1{::.- cr-ea1:ed with the BUILD command
:-----------·---:
This co~mand reads and executes the lines stored in a special-format
file created with the BUILD command~ The Svstem executes the
commands Just as if thev had been tvPed in from the Kevboard' excePt
that thev are not echoed to the Video DisPlay <except for PAUSE).

Command lines in a BUILD file mav include librarY commands or file
specifications for user Pro9ramsu

When DO reaches the end of the automatic command inPut file, it
returns control to TRSDOS~

The commands DO and DEBUG canr,ot be included in an automatic command
inPut file ..

SPecial Notes for Running BASIC AutomaticallY

You can include a command to run BASIC in the DO file. For examPle'
the line:
BASIC PROGRAM
Tells TRSDOS to load and execute BASIC. BASIC in turn will load and
run PROGRAMu While the BASIC Pro9ram is running, the keYboard will
oPerate norn,ally, with one exception: Pressin9 <BREAK> at anY time
terminates automatic command inPut and returns You to TRSDOS READY.

l'o resume automatic command inPut, a BASIC Pro9r·am must return to
TRSDOS READY via the SYSTEM command. If the BASIC Pro9ram simPlY
ends and returns to the BASIC command mode, the keYboard will
function normally EXCEPT Pressing <BREAK> will automaticallY return
YOU to TRSDOS READY.

General Notes for Automatic Execution of User Pro9rams

While DO is executing, a user· Pro9ram cannot set UP a <BREAK>-keY
Pr·oct?ssing PT•)(3r-am .. <S~:;;.e SETBR~\ in 11 Technical In1::or·m-l:i•:.r1 11

.) Ins-ide
the user Pro9ram, the kevboard will function no~mallY. When the
Pro9rarn ends and returns to TRSDQS, automatic command inPut will
r·e ~-ume ..

DO B'TARTER
l'RSDOS will be9in automatic command inPut from STARTER~after the
oPerator ans1uers the Date and Time Prompts ..

•

•

•

•

•

•

MODEL. II TRSDOS COMMANDS PAGE 49

AUTO DO STARTER
Whenever vou start TRSDOS, it will be9in automatic command inPut
fr-Qm STARTER.

SamPle u~.e

SuPPose vou want to set uP the following TRSDOS functions
automaticallY on start-up:

FORMS W=80
CLOCK ON
VERIFY OFF

THEN use BUILD to cr-eate such a file. If vou called it BEGIN, then
u~.to i:he command:

AUTO DO BEGIN
to Perform the commands each time TRSDOS starts UPa

MODEL II THSDOB CC>i"IMANDS

DUI"'P
Store a Pro9ram into a Disk File

:---:
DUI'1P file {E<TAFH=,addr-e,.s-1, END=addr-es,.--;;:, TRA=

•:>.ddr·eo;.s-3, ·-r~ELC""addr·ess-4, I~ORT"d ei:i::er)·
: file is a file sPecification~

STl~HT:::::a.ddr·es~::.·-1 ;;:.pecifi~?s. the star-t addroess of
the memory block.

E::ND=,.~·-'-~dr·e:::J:···-:2 sPec if i{~s. th-~.~ end addr·e~-~- of ·I: he
rnemor···{ block.

l'RA=address-3 sPecifies the transfer address' where
execution starts when the Pr·o9ram ii loaded. If
omitted, address-4 is used.

RELO=address-4 sPecifi~s the start address for loadin9
thf.~ Proqr-am back into mern,)r··y·. I·f i)rr,itt-~.::-d, addr·-&s.~·-:-:J

i~- US-E!d.

RORT=letter specifies 1uhether whether the Pro9ram is
directlY executable from TRSDOS. RORT stands for
11 f~~::-i:ur·n OR Tr-ans·l~~~r- 11

.. Ii= f~OHT:::::H, th{::!n Tl".i!BDOB C•3.n
1 oa.d but not e>::e,::ute fi 1'1..~~ If RORT=T, then TRSDOS
can load and execute file from the TRSDOS READY
mode. If RORT is- omitted, FWRT='T is. us.ed.

Note: Addresses must be in hexadecimal form, without
the X"~ notation.

:----------------------·-------------------------------------:

PAGE 512!

This command coPies a rnachine-lan9ua9e Pr·o9ram from memorv into a
Pro9r-am file. You can then load and execute the Pro9ram at anY time
bY entering tt,e file name in the TRSDOS READY mode.

You can enter machine lan9uaqe programs directlY into memory, via
the DEBUG command.

DUMP L I bTER/ Ci"ID START=7illiZH2h EI\ID=-7112!(1, TRA=7illill4
Creates a Pro9ram file named LISTER/CMD containing the Pro9ram in
memorY locations X7 7000' to X"~7100'. When loaded, LISTER/CMD will
occuPY the same addresses, and TRSDOS will p~oi:ect memory be9innin9
at X'7000 7

• The Pro9ram is executable from the TRSDOS READY level.

DUMP PROG2/CMD START•6illillill• END=6F012!, TRA=301ill• REL0=3000
Cr·eates a Pro9ram file named PROG2/CMD containing the Pro9ram in
addr-esses X'60ill0' to X'6FI2!ill'. When loaded, PROG2/CMD will ~eside

from X7 3000 7 to X'3F00. Execution will start at X 7 3010'~ The Pro9ram
is executable fr-om TRSDOS READY.

DUMP ROUT I NE/1 {START=,6812!12!, END=712!012!, RORT=R}
Creates a Pro9ram file ttlhich cannot be executed from the TRSDOS
READY level. TYPically, this wou·ld be a routine to be called bY
another Pr·o9r·a.rrr.

•

•

•

•

•

•

~·JODEL I I TRSDOS CC>i'II"IAI\lDS PAGE 51

(r12DOS3 8/6/79)

ERROR
DisPlaY Error Messa9e

:---:
: EHROR number·

numbe~-~¥-~ decimal number for a TRSDOS error code
:--:
This command disPlaYs a descriPtive error messa9e~ When TRSDOS 9ives
vou a reverse (black-on-white) message like:
* * ERHOR 47 * *
You tYPe back
EHROR 47
to see the full error rnessa9e.

ERROR :3
Gives you the messa9e
PARAMETEH EHHOR ON CALL

i''IODEL I I TRSDOS COMMANDS

FOHI"'S
Set Printer· Parameters

:---·--·-------:
FORMS .(p ::::: ~'!).a~:Je size, L == 1 ines' W ::: width, C ~:= ~=-~~E!~:_r·Ql).-
FORMS .Cr} --

p = Pa9e size tells TRSDOS the total number of lines
F:-er· Pa.9e .. If omitted, 66 i~- IJ::.ed.

L- Jines tells TRSDOS the maximum number of lines
to Print before an automatic form feed .. If
omitted, 60 is used. lints cannot be 9reater
than Pa9e ~·.i:::~e ..

W - _wid!;.lL ·l:ell s Tr~SDOS 1:he ma::.::imum number· of
cha.r·acter·s Per 1 ine. If omitted, 132 is u~.ed ..

C- control tells TRSDOS to initialize the Printer
bY sendin9 it the sPecified code.
The·code can be hexadecimal value in the
ran9e (0,FF> .. Do not use the X7 notation.

FORMS Tis a special ve~sion of the command~ tellin9
TRSDOS to advance Printer to toP of for-m.
Printe~ must have been Previouslv initialized
and must be r·eadv. When 1· is 9iven in the
oPtion list~ anv othe~ keYwords in the oPtion
list ar·e ignored.

:--:

PAGE 52

This command lets You set uP the TRSDOS Printer software to suit the
Printer You have attached. If the Printer was on-line when YO~J

started TRSDOSo and the default Parameters P = 66o L = 60o W = 132o
and C = 0 are aPProPriate, then You do not need to use this
command ..

In addition to settin9 Parameters, FORMS verifies that the Printer
is on-line~ and it lets You adJust PaPer to the toP of form.

FORMS
Resets all Parameters to their default values.

FOI'lMS 1...=~36

Resets the maximum number of Printed lines Per Pa9e to 56, leavin9
10 lines blank on each Pa9e.

FORI"IS C= 1 4·
Sends t~.e initializatior. code X?14? to the Printer·.

FOHI"'S T
Advances Printer to toP of form. Useful when YOU have done some
Printin9 and want to start next Printin9 at top of form.

Setting the Parameters

•

•

•

•

•

•

i"IODEL. I I TRSDOS COMMANDS PAGE 53

Pa9e Size. MultiPlY vour form len9th in inches bY the number of
Printed lines Pe~ inch to 9et the aPProPriate value. Most Printers
Print 6 lines Per inch. Therefore standard 11-inch forms have a Pa9e
size of 66 lines. That's whY the default is PAGE=66.

Lines Per Pa9e. This number determines the number of blank lines on
each Pa9e. If vou set line~ equal to page size, then TRSDOS will
Print everv line on the Pa9e. If vou set lines equal to Pa9e size
minus. 6, then TRSDOS wi 11 leav~::.o 6 blank 1 ir.e:::. on each Pa~J'&, Lines.
Per Pa9e cannot exceed Pa9e size~

Width. This number sets the maximum number of characters Per line~

If a Print line exceeds this width, TRSDOS will automaticallY break
the line at the maximum len9th and continue it at the be9innin9 of
the next Print line.

Control Codes. Some Printers require an initialization code (for
examPle, to set UP for double-size characters). The code vou sPecify
is $ent to the Printer durin9 execution of the FORMS commandR

1'10DEL I I TRlODOS COI"Ii"IANDS

FREE
DisPlaY Disk Allocation MaP

:--------·------------------·-----------------------------------:
FREE : d {PRT)

:.d._ is a dr·iv~S! :;.pecificai:ion~ <Th~ colon : befor-f;: .fL. is
oPtional ..) If :.Q_ is. (lmit~t =:d~ dr·ive 0 i~·. used ..

PRT tells TRSDOS to send the maP to the Printer
If PRT is omitted, TRSDOS sends the maP to the
Console DisPlaY~

:--:
This command Gives vou a maP of 9ranule allocation on a diskette .. (A
sJr-anule, 12Bfli b·y·tes~ is. the unit of sPace all oce.tion.) Thi~­

information is useful when You want to oPtimize file access time.

When a diskette has been used extensivelY (file UPdates, files
ki llr:d, e::-::tended~ €.<'1:~:: ..) ~ i::i lf:!:'::- oft~~n b~::·::ome ~.e9mE!nt-ed (di::.p~::r·s~::.-d or·
fr·a9meni::ed)~ This slows the access tirr1e~ since the disk read/write
mechanism must move back and fo~th ac~oss the diskette to read or
wPite to a file~

FREE helPs You deter·mine Just how se9nlented a diskette is. If You
decide that You'd like to pe-o~9anize a Particular file to allow
faster access, YOU can then COPY it onto a relativelY ''clea0 11

di~.kette.

E::-~arnP 1 e

FREE
DisPlaYs a free space maP of the diskette in drive 0.

F F<EE .£p RTr
List the fr·ee sPace maP for drive 0 to the Printer. The braces are
required so TRSDOS won't take PRT as an invalid drive
sPecification~

FREE :2 PI~T

L.ists the drive 2 maP to the Printer.

•

•

•

MODEL II THBDOS COMMANDS PAGE ~3~'3

•
A TYPical FREE DisPlaY

Four special sYmbols a~e used in the FREE map:
Unu::.ed Gr·anule

D DirectorY Information
X Allocated Granule
F ·rrack is Flawed (Unusable)

Here's a tYPical disPlay:

F R E E <::' _, p A c E M A p
TRI-\ '~* TRSDOS ·-------·--------------------·------·----- DIHVE:Iil
01-·04' X
05·-08' X X X X X X X X X X X X X
09--12'
13-16:
17-211):
21--21+::
:£~5--28 ~ • 29·-:s::;-::
33-·36'
:>7--'>IZJ'
,, 1--41+' X X X X X D D D]) D
45 ---'>8' X
,,.9-5:;:,:'
53--56:
~:~7-·-60:

61 "'"64'
65 ·6B:
69-72:
'73-.. 7 6'

•

MODEL II TRSDOS COMMANDS PAGE 56

I
SwaP Diskettes

:-------------------·-----------------------------·----------:
I

:------------------·-·----·-----------------------------------:
ImmediatelY afteP vou chan9e diskettes in anv drive, enter this
command so TRSDOS will be able to Per·form imPortant '1 bookkeePin9 1

'

tasks.

ExamPle

I
tells the Svstem vou have chan9ed or1e of the diskettes~

•

•

•

•

•

•

i'IODEL I I TRSDOS COI4i"IAND~> PAC'iE 57

KILL..
Delete a File

~----------------·-----~---·------------·--·-·--·---·--·-·-·--------·------·
' Kil_L file

.f...iU is a. fi 1'2 2"-Ff.'Cific:e.tion
:----------·----------------------------·-----·------·--------·-----
This command deletes a file f~om the dir·ectorv ar1d frees tt,e sF~ace

allocated to that file~ If no d~ive is sPecified' TRSDOS ltlill search
for the file, star·tin9 u1ith drive 0. Before deleting the file'
TR~DOS will disPlaY the file name and the drive that contains the
file,. T·-,.-p,, Y <E:~J"TER> to f·\i 11 the file, N <ENTER> to ca.n•:<,l the,
command.

DO NOT KILL. AN OPEN FIL.E.

KILL TESTPROG/BAS
Deletes the named file from the first dr·ive that contair,s it.

KILL JOBFIL.E/IDY.fo99v
Deletes the named file from the first drive tt,at contains' it. The
file is Protected with the Password fo99Y.

1'\I L..L. FORM/123: :\
Deletes FORM/12:\ from drive :1.

When uPdatin9 a file' it is a 9ood Practice to ir1Put from tt1e old
file and outPut updated information to a new tile. That way, if the
uPdate is wrong, You still have the old file as a backuP. Wt1er1 you
have verified that the uPdate file is correct, votJ can Kill the old
file.

KILL is also useful in conJunction with pr·e-allocated files. SuPPose
vou have finished writin9 to a Pre·-allocated file, and 011e or more
9ranules ar·e unused in the Pre-allocated file. Then vou car1 COPY
the Pre-allocated file to a dYnamicallY allocated file, and
afterwards Kill the Pre-allocated file. This is the onlY wav to
nQrluce the size of a Pre--allocated file •

I"IODEL I I TRSDOS COMMANDS PAGE 58

•
LIB
DisPlav Librarv Commar1ds

:---·--·---·---·-----------·---------·-·-------------·-----·----------:
' LIB
~-----------··-------------·----------------------------·-----:

This command lists to the DisPlaY all the LibrarY Commands~

[::<amP 1 0

LIB

•

•

•

•

•

MODEL II TRSDOS COMI'IANDE;

LIST
List Contents of a File

:--:
LIST file (PRT, SLOW, R=r·ecor·d-nurnber·, A"}

fi l0i$ a file ~-Pecificatlon ,_. ______ _

PRT tells TRSDOS to list to th• Printer. If PRT is
omitted, the Console DisPlaY is used.

SLOW tells TRSDOS to Pause brieflY after each
record.· If omitted, the listing is continuous.

R=record-rumber tells TRSDOS the startin9 record tor
the 1 istin9 .. r-e,:,)_r-d-number· mus-.t be in the r·an9e
<1,655~35> .. If omitted, r·ecor·d 1 is used. :

A tells TRSDOS to list ASCII characters onlv (no
hexadecimal values). If omitted, ASCII and
e~uivalent hexadecimal values ar·e listed ..

:--:

PAGE :;9

This routine lists the contents of a file. The listin9 shows both
the hexadecimal contents and the ASCII characters corresPonding to
each value. For values outside the ran9e <X'20',X'7E'>, a Period is
di,.plaved •

To stoP the l-isting, P~ess HOLD. Press HOLD a9ain to continue~ Press
<ESC> or <BREAK> to terminate the 1istin9.

LIST DATA/BAS
Lists the contents of DATA/BAS.

LIST TEXTFILE/1 SLOW
L.ists the contents of TEXTFILE/1, Pausin9 after each recoPd.

LIST TEXTFILE/1 R•100, A
The listin9 starts with the 100th record in TEXTFILE/1. Onlv ASCII
characters are disPlaved~

LIST PROGRAM/CMD PRT
Lists the file PROGRAM/CMD to the Print•r .

i"IODEL. I I TRSDOS COMMANDS PAGE 60

•
Listin~J For·ma.i:

LIST numbers each record as it is
showin9 the relative position of
samPle listin9 after the command:

1 isted, and
each bYte in

pr-ints a headin9
the record. Here's a

LIST VARFILE PRT

VARF!I._[

f.:=-
LPL-'-- 71

f-•c- :~·

I. I'; I,_·~ l LJ.:·l

1-{c~ 3
L.kl_=- I. ~i~J

R= 4
Ll~l_·- ~J 7

r-;oc

LRL..= 1 'i Ci

I{ - ~~

l Rl_=-c 1.it4

P·-·
L kl_=- J "•it

R"-' i3

Lr\l-- "-"'

TYPE""V WED JUl .. 04 1979 1 tJS --·- 1 ·;. 46. (;:18 I"' AGE

BYTE i ... :J ••. 10 •.• 15 .•. 20 •.• 25 ••• 30 ••• 35 ••• 40 ••• 45 .•• Sl'l .•. 55 •.• 60 ••• 65 ••• 71lJ ••• 'I'J ... 81/J. •• 8':', ..• 90 .•• 95 •• l01i'l

t111l1 L"::::::2.::·33333'f4Lr44555SS66666777?78888899999AAAAABB8~-BCCCCCDDDDDEE.EEEFFFFFll100001111l?'.2?22
~l333333333JJ33333333333333]"3333333333333333334444444444it441r4'+'+1+444444444444J3~UJ3~·53:l:53333:3
Bl1111:2~C:2:2~':33:1334.Y-444555556666677777E!88889999911111:?22~'23333]4Lt44.Y-5555St.6t•66000Vi0l.1 l 11222:2:~

• 11111 ;-~;:::z:-,::233333<t<t.Y 4455:'>::.566666 7777788888°79?'/<;'A/iAf\A8BB8BCCCCCDDDDDEE.EEE::Ff- FTf 'VJ000011 J t 1 :·:::~·::~·:-:-:2J:DJ]4LI-4Lt
BJJ~'53J:lT53:r3:'3:·~~~::~:-;]J3~l'J3JJ3JJ3:3:5JJ3,:533.:133TOJ33J~'34444444444444444444"+"+4444Lr4.:1.~fLt333:3::5:r:n'3::n]JJ3J:5].·.5:·.5J.·L·:;J

F 'I 1 .1 _j 1 :?Z72:.::::UJJ::i44444~-)5~'i5:'•f..,[,l_,6i0 77T?788888999'i'911111222223333]4Lt4445~.5556666600000111. 1122Z2:.::J3333,t.o'ti+LI

1 tiJ 1 lt'JSS'JS66666T!T! /uosrJs··i''799?AAAAABne.e.e.cccccoo
:'(J333J:>.J:'33:1~1~~3JJ:.~~:J3::3333344 L; .:11, 411 44'•4 ft44'r44
Lt5'3555M-j61.6 77T778BBB899':>'991 :L 111 -=:.:::::·22:133:'3344

101

. l 111122222~U33J'-t4'+445555566666 7777 78B888'7''7999AAAAABBE'.BBCCCCCDDDDDEEEEEFFF--FFI/J0GJIIJ01 1 1 j 1 :-"c:2'22'?33~~J,J4'-tLf4
93::c;J:)JJJJ]JJ3J3JJJJJJJJ:JJJJJJ33333]J:J:~=-:'.J3JJJ34444ifLf44Lt4Lt44LfitLf4Lrl;.oj 1tirLt4.'J 44ii4LtJ]JJ33J~:-JJJJ3J33J33J3:JJ]
Bl1111:2~:;,::..:::,~:J,T3:'1~144 1i4i+~'i'''•'i~566666T77T/888B8't999911l1l ~-::~:::;:::;o·::;~·EIJ33444445555~1C,6C.'660001/JVJ1 1. t 112222:23~3J334,:rLfLt

-'i ~·:'·:"· :', ~- 661>66 T1777 888889999'?AAAf'oME:['.P,[',f'\ CC \:CCDDDDDE:EEEEr- F H
~~J33J33,'.5:~:J;:S3,.J .. 5:533:1:·_;::5T'.~!,:1:.'~]'-t444-+4't444'-tft444444LfLf~lt4444441t
'1 ~"r:=,::.S566t.•66 77Tr/88888'1'799'i' l 11 .1.1 22:C:;7-•:7:333J:S4Lt44-+:."·::l:.>S~'i6666

'7111 11 ~:·:7-':7·::·::~::3J:·n:34Lt444SSSS:'i6f...f._,!c_,6 777T78888899999AAAAAE.'.f3B[3UC
333.JJ3J:.i..:U:.:i.u: . .i.3::n::5,:J~~3:3::::-~:-5THJJ~·:;:·.5JJJ3JJ:5~5~3~'1:3:-~J344444444444
911111 :?:C'2Z-2J33:J344444~,ss::.st:,t-.666 7777788888'7''>"7'9'7'1111 1 ::::::::·;:·:~::7·::;

. 1 j_ j j 1 :?2;::.-:.::;:;:JJ33:3-'i Lf41t/I·SSS5566666T?"/T?888889'i'?9'7';\AAAAB8P-BBCCCCCDDDDDt::EEEETTFF'"F"Vi00001 j 11122:L.:23333:\4ftLI4
c;J;:-;~n~l3:1:·.::~n33JJ3J:JJJ.nJ-=.;T33~~JJ~~:·3l-'I:-53:3JJ:5JJ3~5:3-3444-+44-+" ,+:,:-~'•:•·+44444444"+4444'+1+433J.::>,'333:·~J~l:1333333J:l.5,33.33

-t.l 1 1112.;;:::::::::·:.::33:'\:~:•A444.Y-S555~,6L_,6Qb 77"?778888899999111 11:::: ~:2_;-·_::·:n::-;:;;344444SS::o55666661Ll00017i 111 t 1 :?:-':?:7::;::•JJJ:l34444

J. 0 1 "I~:.'::;~~'..':· ''i -~,/, .'c,f-,,1_)'?'7 '?'! 7212.!/-~82J'i''7">' 0/7AIVv\Af:.BP.P-P. C C CCCDDD!JDI::.'I::.
J:UJ:l:3J3JJ]:f::·.::·~:nJJJJJ33:5JJ4lfL!4-'I·/ILj·:I44Lf444444Lf444'-t
1t::S::'l~'iS'Sbl-.6bh777 1?BBGtltb''-!"j"J91l t t 1·:~·::·:.-"~?'2:-3:-5J33'-t4444S:J

. l 1 1 11 :~:::;:_:,~;~;;:J3333tf"l·t;L,LI'i~SS:'if,6666 T7 1 l 78BfJn;397":-'""'-'f,;~AAAP.I:'.F>.ni:J,I_XCCCIJ!Jl!J)Dt:::EEI:::I:::FFI::-I':FiiJc-J0VJC11 1 1. 1 1 f?2:.:::·;:·:l;f]JJ44Lf.l+
0i'~):~::::,3:.-J:33:::::'1J3::-1:',~_J:')]J33J3JJ]:J3~;:.;::):._{3]~{:~~·JJ:<:OJJ_]:J333Lt"!·4~t44~144:f4Lt:f·i--"I·A-!+Lj~IA44ii·444Lf~f443:.~~'i::JJJ::{:33:::'1:3:-1T3'J~'3:':3:33JJ3

IZll J. :1. 1 .l :.:.::..: .. ~ .. ~:::;:~_;::J~J::LV+-'I·Vt4~'l"j_'5'5S66666'(1 /'! ?Eti.JOfJB'!CJ'?9'? 1 J t j j ._., .:~-~~~·c:l.JJJ3Lt444•t5:5~JS'.J6i:>f,6{,!t1illlt'll?lli) t 1 1 :1_ t z-:-::_.2'23T5J344Lf-'t

J 0 l :1 ='·='·=-"·~'~'666C.6777778888899'1'99AAAAAE'-BP.8El.CCCCCDDD
3'3JT5J3]3JJJ,33~5:3c'5,j.J~53J:?T~:144ft4444444444444'-t-1-

ll =·5'=·='·56t-.h66 7777788888?':''7'':"<;'11 j 11 ;"'::~-:-~·::::::'33:3]3444

: 1111 t-::: .. ::·--:-:-·:~··: :·~'"'I'T5344Lf•t"t:J:J:~:::;:JC,.:'o.',1 ,6 7777 78El8Cj<:J'I'7'7'7'7Af.,.-,A~\RP./::'.8B<>.~CCCUDDDDEIC:G-]TFI'TFI.'Jiili?J001 J. 1 •. \. l :2j_~-=: ':-:::r:r.-,;~\"">;iv:.r<rl+
7:-:t:--(J]33:J33:J:J3:,3:J33::::;~,:3::1:3:1333J]:3JJ:.)~;:):J::_(::;3333J333444444444444444444~fL!Cf4-'iLfLflj.LI-4Lj.Lj.J3J:i3::;:i:j:_::3::::;T :~~~:03:<:~_~]JJ33

C1 l11 L::::~o .. 2·:2T1:n::JAft4445~'1S:J~i,6t_,<:>f:>7777'7RnBF:lti9'r999 .L .ll J. l .2:2~::::~::::~5:3':1334444'+5~i~',~.·:d_,c,~"'-.i,0t:'JG%'J0l 11 .L t:L:.: ·: ;:--;;:~:'>+ ,, 11 Lf

J. ~~.I -\~'.SS:',~.',I_-_,t_,(:_,t.77T/7fJD88D9'?<?

··5:·l'3]:::nJ:13,:~3~LLJ~J~~3~~:::r:1:·:~::1~·n
1! ~'.55~~ 5 t,6f,66 "/"/7-/ -/ [~l[l,';,(["(£";9')'9

. 11 l l ·1 :::-:::~-~·-::--:~~53T)]if4LtiiLJ.;-:;:;i:;~-,5

1 ::5]3:33333:33:'_;3333:\];:\:o::;:~:-':33:3
,;, 11 J l12:.~2'2:?33333~r444't5S~J=,s

1:0\Yrl.~ J. S •.• _1 t'i ••• 15 ..• :20 •.. ~~5 ... :-:;~:'!. •• 35 ... 40 ••. 4:3 ••. SD ... '15 ... 60 ••• 6::.-i ... 70 ... 75 ... 81/.1 .•• 85 ... '?D._. 95 .. l(ZliZI

•

•

•

•

•

MODEL II TRSDOS COMMANDS PAGE 61

He~e's a samPle listin9 after the command:
LIST TEST PRT,A

PROG/TXT TYPE=F MON AUG 06 1979 218 -- 01.16.36 PAGE

BYTE 1 ••• 5 ••• 10 ••• 15 ••• 20 ••• 25 ••• 3QJ ••• 35 ••• 40 ••• i;S .•• 50 ••• 55 ••• 612'1 ••• 65 ••• 70 ••• ?5 ••• Bill ••• 85 ••• 9121 ••• 95 •• 11210

R= 1
LRL=

1140 IF TIME$= 1:00 PRINT "Time is 10:15 A.M.--time to Pick UP the mail." :END.1150 PRINT "THI

101 SIS A TEST".1161Zl READ A,B,C.1170 DATA 3.141592653589792623, 333.000\Zl\ZI3!Z130003222111, 3.309 .

i"IODEL I I TRBDOS COMI'1ANDS

LOAD
Load a Pro9ram File

:-----··---·--------------------·---·-·---------------------·---·---:
LOAD 1' i 1"

file is a file specification for a file created
bY the DUMP commandn

:--------·----------·---:

PAEiE 62

This command loads in·to memorY a rnachine-lan9ua9e Pro9ram file.
After the file is loaded, TRSDOS returns to the TRSDOS READY mode.

You cannot use this command to load a BASIC pro9ram or anY file
created bY BASIC. See the BASIC Reference Manual for· instructions on
loadin9 BASIC Programs.

F>::a-.mP 1 ~...~

LOI'\D PAYROL.L/Pt 1
Loads the fil" PAYROLL/Ptl.

Often sever·al Pr·o9ram modules must be loaded into memory for use bv
a master Pro9ram. For examPle' suPPose PAYROLL/Ptl and PAYROLL/Pt2
ar·e modules, and MENU is the master Pro9~am. Then You could use the
~= omman d s:
LOAD PAYROLL/Ptl
LOAD PAYHOLL/P1:2
to 9et the modules into memory, and then tvpe:
MENU
to load and execute MENUu

If PAYROLL/Ptl and PAYROLL/Pt2 w"r" DUMP"d with RORT=Ro th"n YOU can
load bY tvPin9 the file name without the LOAD (:ommand, i.e"'
PAYROLL/Pt1
PAYHOLL/Pt2
After each is loaded, TRSDOS READY returns.

•

•

•

•

•

•

MODEL II TRSDOS COI"IMANDS

PAUSE
Pause Execution for OPerator Action

:--:
PAUSE PromPting rnessa9e

PromPting ~essa9e is an oPtional messa9e to be
·-- disPla·····ed diJr~If,g the Pau:=.e.

~--:

PAGE 63

This command is intended for use inside a DO file. It causes TRSDOS
to Print a messa9e and then wait for the OPerator to Press <ENTER>~

PAUSE Insert Disk #21
Prints PAUSE followed bv the messa9e and PromPts the oPerator to
Press <ENTER> to continue.

PAUSE
Prints PAUSE and PromPts the oPerator to Press <ENTER> to continue.

Sea BUILD and DO for samPle uses •

MODEL I I T R!:3DOS COMMANDS PAGE 64

PURGE
D<2l<2t<2 Fi 1<2'·

:--:
PUHGE :jj (fi 1<2-cla,.,.)

=1 is drive specification. The colon : is oPtional.
If :1._ i::. omi1:ted, dr-ive 0 i~. used. :

file-class is one and onlY one of the follown9:
SYS System files (Pro9ram and data)
PROG User Pr·o9ram files
DATA Us<2r data fil<2s
ALL All fi 1<..~~-' user· and s··{s.tem

:------------------------·-----------------------------------:
lhis command allows quick deletion of files from a Particular
diskette~ To use PURGE, vou must know the diskette's master
Password~ <TRSDOS Svstem diskettes are suPPlied with the Pass~Jord
PASSWOHD.)

All Svstem files are r-equired for TRSDOS to function. Do not
eliminate Svstem files if You want to use the diskette in drive 0u

When the command is er,ter·ed, TRSDOS will ask for tt1e diskette's
Passwo~d. TYPe in uP to 8 cha~acters, and Press <ENTER> if vou tYPed
fewer than 8 characters= The System will then disPlaY user file
names one at a time' PromPting YOU to Kill or leave each file.

PURGE :1
TRSDOS will let vou Pur9e files from drive 1=

PUHGE
TRSDOS will let ··{ou Pur9-e file~. fr·orr, drivE! et.

•

•

•

•

•

•

MODEL II TRSDOS COMMANDS

PROT
Use Diskette's Master Password

: --------·------~-~---:

:

PROT :_Q_ (0LD=Pa~.~-lLIOPd, _oPtion::.)
=A is a drive sPecification. The colon : is oPtional.
9Ptions include anv of the following:

OLD=Password sPecifies the diskette 7 S current
Password. This is requireda

9Ptions include the following:
PW Tells TRSDOS to chan9e the master Password.:

If omitted, the master password is left
: unchan9ed.
: NEW•=Pa~51AJoL!;i R<"·=tuir·ed after· PW, 9ives TRSDOS th<~

: LOCf~

UNLOCK

new Password (up to 8 char-acters)
Tells TRSDOS to Protect all user files
with the latest Password. UPdate and
access words will both be set to the
rna!E.ter Passwor-d.
Tells TRSDOS to remove Passwords from all
u:::-er· f i 1 e::: .•

: If LOCK and UNLOCK are omitted, user file Protection
is. li!ft unchart9i!d. If on.e i::- used, the other· must be
omitted.

:--:

PAGE 65

PROT chan9es file Protection on a 1ar9e scale~ If YOU know the
diskette~s master Password, you can chan9e it. You can also Protect
or· un-"Pr·otect a 11 user· files ..

A diskette's master password is initiallY assi9ned durin9 the format
or backuP Process. The TRSDOS diskette is SUPPlied with the master
Pa::.swor-d PASSWORD.

PROT :1 COLD=PASSWORDo PWo NEW=H20l
Tells TRSDOS to chan9e the mast<"r Password of th<" driv<" 1 diskette
from PASSWORD to H20.

PROT :0 COLD•H20o UNLOCK)
Tells TRSDOS to remove passwords from everY user file on the dr-ive 0
diskette (must have the Password H20>.

PROT :0 COLD=H20o PWo NEW=ELEPHANTo LOCKI
Tells 'fRSDOS to change the master password from H20 to ELEPHANT and
assi9n the new one to everY user file ..

COMMANDS

RENAME
Rena.rn<" a F i 1 <~

:------------~----·-------··-------·---··-----·--·------------·--------:
R<"narn<" fil<;-1 TO fil<;-2

file-1 and file-2 a~e file sPecifications
If file-2 includes a drive sPecification or
Pas.s-ll.'('r·d, it will be i9noPed, sinc~2 the file ll.till
remain on the same drive and will retain its former
Pa.s.s.wor·d, if anY ..

~TO~ is a delimiter. A comma or sPace mav also be
u~-ed.

~----------------------------------·---------------·----------------:

PAGE:: 66

This command r-enames a file. Or.lv tt,e name/extension is chan9ed; the
data in the file and its PhYsical location on the diskette are
unaf1:ectedu

RENAME cannot be used to chan9e a file's Passl!Jord. Use Al'TRIB to do
that.

RENAME Miss/BAS TO Ms/BAS
l"RSDOS will search for· Miss/BAS star·tin9 with dr·ive 0, and will
rename it to Ms/BASu

HENAME HEPORT/AUEi: 3, REPOFH/SEP
f<<"nam<;s. REPOHT/AUG on dr·iv<" 3 ·J:<:, REPORT/SEP.

HENAME MASTER.1234578 TO MASTER/A
Searches for MASTER and renames it to MASTER/A. The Password
12345678 must 9rarlt at least RENAME access (see Passwords in chaPter
1). The renamed file has the same Password.

•

•

•

•

•

•

t'IODEL I I T RSDOE; CO~WIANDE pAGE 66A

:3ETCOI"I
f;et UP RS--232C Communications
--·-----·-----·--·--·-----------·-·-·---·--·-·----------·--------""---------------:

A=(oPtions) tells TRSDOS to initialize channel A.
To tur·n channel A off, use A = OFF ir1stead of
A ::::: (oPtions)

is unch;:·:tn'.:.:Ji~d ..
B:::~(<:_~,Pt_i_9_n~.) tell~. TRSDOB to initia'i i:zt- chann.;:\'l B ..

To ttJ~n channel B off, use B = OFF instead of
B = < ~::~.t..i t) r~ ;:::. ;
If B = (oPtions) is omitted, status of channel B
i::-:. uncha.n9-..~d ..

'T'he options tell TRSDOS what RS--232C Parameters
to use. The following Parameters are availat,]e:

baud r·a.t~ ..

word 'lt::<f'l9th

stoP bits

100· 150. 300. 600. 1200. 2400. 4800
If not sPecified~ 300 is usedu

If not
E for·
If not
1, ::

sPecified~ 7 is used~
even, 0 for odd, N for norte
sPecified' even is used~

If not sPecified, 1 is lJsed.

EverY oPtion but the last must be followed bY a comma~

The oPtions ar·e F1ositional, e.9.~ the third item in an
ov~tion list must alwavs sPecifY ParitY~ ·rouse a default
v.:::tlue' omit the C•F1 tion~ If ··rou wa.nt to li:E.t ~.lJbse·=Juent

oPtior)s, YOU must include a comma for each default.
:---·--·-·----------------·-··-·------------·-·--------------·-----·------:
This command initializes RS-232C communications via channels A
and Bon the back panel. Before executing it, You st,ould connect
th~?. cornmunic•::ttions d>2Vic<:.~ (mod~.?.m'.l f.1tc.) t.:~ th~~ lvlodt~l II ..

See the Model II OPeration Manual for a descriPtion of RS-232C
si9nals used in channels A and B. For hard-1tlired connection from
one l"l·:.dE!l I I to a.notht~r·, st•f.' the l!.tirin9 dia.9r·arr, in Tt~chnic.:a.l

In1::or·m;:J.tion, HB2:·:s::~::c ::.uP~?!r-vis.:.r- •:=a.ll.

f;E~TCOM Llses the SPecial Pr·o9rammin9 Area above TOP (see MemoPY
Re~uirementsl~ To use the serial I/0 channels from BASIC vou must
execute SETCOM BEFORE starting BASIC •

Once You initialize a channel, you can be9in sendin9 and
receivin9 data, usin9 four sYstem routines that are set UP dur·in9
inii:ia.·l i:;.~a.'i:i·::.n~

ARCV Char1nel A Peceive~ function code 96
ATX Channel A transmit, fun(:tion code 97

MODEL II TRSDOS COMMANDS PAGE 66B

BRCV Channel B receive, function code 98
BTX c~~~nnel B tr·ansmit~ fUfiCtion code 99

These svstem routines are onlY available when the reSJ'ective
ct1ar,r1el t1as. t~e~r, ir1itializedR See ·rechnical Infor·mation for·
details.

ExamPles

SETCOM A=
Sets UP channel A for· serial communicatictns, using all the
default Parameters. Svstem function calls 1~6 and 97 are available
for serial I/0. The status of channel B is unchan9ed.

SETCOM B=C4800o 8o , 2), A~OFF

Sets uP channel 8:
baud rate 4800

8 bits wor·d lerJ9th
Pari tv Even (default)
stoP bits 2

SETCOM A=C2400o 8o Olo B=C
Sets UP channels A and Bg

Char1nel A
baud rate
wor·d len9th
Pari tv
stop bits

2400
8
Odd
1 (default)

' 2)

CtJaf1nel B
300 Cdefaultl
7 (default)
Even (default)

•

•

•

•

•

•

MODEL II TRSDOS COMMANDS

TIME
Reset or Get the Time

:--:
TIME hh.mm.ss

hh i~- >B. two-di9it hour· ~-Pecification.
mm is a two-di9it minute ~-Pecit~ication ..
~ i~. i3. two-di9it second ::.pecifica.tion ..

.. u_ is (q:::.tional; if omitted, .. 00 is used ..
If hh .. mm .. ss is 9iven, TRSDOS ~esets the time ..
If hh .. mm .. S'S i~- not 9iven, TRSDOS di::.,~lav:~- -i:hf:

cur·r·enttime and da-te.
:--:

PAGE 67

This command lets vou reset the time or disPlaY the date and time.

The oPe~ator can set the time initiallY when TRSDOS is started UP ..
After that, TRSDOS UPdates the time and date automatically, usin9
its built-in clock and calendar~

When You request the time, l'RSDOS disPlaYs it in this format:

THU ,JUL 19 1979 211.ll1l -- 14. 15. :31
fo~ Thursday, JulY 19, 1979, the 200th daY of the Year' 2:15:31 Pm.

Note: If the time Passes 23.59.59, TRSDOS does not start over at
00~00.00. Ins·tead, it continues with 24.00.00. However, the next
time You use the TIME or DATE command' the time will be converted to
its cor·rect 24-~hour· value' and the date wi 11 be tJPdated. If the
clock is allowed to run past 59~59R59, it will re-cvcle to zero, and
the date will not be uPdated to include the 60-hour Period.

TIME
DisPlaYs the current date and time.

TIME 13.211l.l1ll1l
Resets the time to 1:20:00 Pm.

TIME' 18.24
Rasats tha tima to 6:24:11)11) Pm.

Note: Periods are ·used instead of the customarY colons since Peribds
are easier to tvPe in--vou don't have to Press SHIFT •

MODEL II TRSDOS COMI"'ANDS

VERIFY
Automatic Read After Write

:------------------------·-----------------------------------:
VERIFY {switch)

~.wi '!:~:__!-!. is one 1)f thE' follow in~~:
ON Turn on the verifY function.
OFF Tu~n off the ve~ifv function~

If ::.u.Jit,~_b is orrritted, the cur-r-ent status is disPlaYed
and is left unchan9ed.

:------------------·--·----··---·-------·------·--·--------------------·--··-:

PA<:lE 68

This command controls the verify function. When it is on~ TRSDOS
wi 11 r-ead after- each wr-ite oPeration, tc1 ver-ifY tha.t the data is
readable. If the data is not readable afte~ retries' TRSDOS will
return an error messa9e, so you'll know that the operation was not
succes-~-fu 1 ..

Note: TRSDOS aluJavs ver1t1es diPectoPY wPites. UseP wPites CwPitin9
data into a file) a~e onlv ve~ified when VERIFY is ON~

l"RSDOS staPts UP with VERIFY ON. For most aPPlications, YOU should
le•~v<• it 01\1.

ExamPles

VERIFY ON
Turns on the verifv function.

VEiiiFY OFF
Turns off the ver·ifv function.

'VERIFY
DisPlaYs the status of the verifY switch.

•

•

•

•

M 0 D E L I I T R S D 0 S

3 I U T I L I T Y P R 0 G R A M S

•

•

•

•

•

•

•

•

MODEL. II TRSDOS UTILITY PROGRAMS PAGE 69

(1"1:2DOS4 8/6/79)

3 I UtilitY Pro9rams

TRSDOS includes two utility Pro9ramso BACKUP and FORMAT.

Before anv disk can be used to store information' it must be
formattedn Use FORMAT to PrePare a new (blank) diskette, or the
»start fresh•• with a PreviouslY formatted diskette.

Use BACKUP to COPY all the information on a diskette onto another
diskette. This 9ives vou safe coPies of imPortant data and Pro9rams.
BE SURE TO MAKE A BACKUP COPY OF YOUR SYSTEM DISK--before You be9in
using the Svstem.

Both utilities can be used in anv Model II Svstem-·-sin9le or
multiPle drive. Both use all available memory, but do not overlaY
the resident Svstem. Initialization values (time, date, Pr·inter
Parameters, etc.) are intact uPon return from either utilitY •

ftiODEL I I TF:E~DOE; COI"'H1ANDE\

Bt1C~<uP·

DuPlicate a Diskette

--·--··--·--·------------·-·--·-----------:
This Pro9ram duPlicates the data from a (iiskette onto another
for-matted diskette, bY COFYirr9 all allocated 9ranulesu

To exec~Jte BACKUP, tYPe
E',,\Cf\UP

PAGE 70

BACKUP Pr·ovides all r1ecessar·y Pr·omPtirr9 for inPutu The destination
di::.l:~~tt~~ lTru:::.-1: be ·f,)r·ma.tt,.__~d~ if i-J: cont(-:tins d•a.t•:l'J 13ACI·"\UP wi 1·1 w•:lr·n
YOU and ask if YOU want to write over the data~

PromPting Messa9es

:=JOUW:I::: DHIVE':?
l'ype in the number of the dr·ive whict1 uJill contain the sour·ce
diskette (diskette to be duPlicated). This can be anY drive 0
thr·ouS.th 3~

SOURCE DISK PASSWORD?
TYPe irr tt1e F~asswor·d, up to 8 number·s or· letter·s, and Press ENTER if
YOU tYPed fewer than Bu

DESTINATION DRIVE7
l"ype in the number· of the dr·ive u!trictt uJill contain the destination
diskette~ This (:an be anv drive 0 thro~J9h 3~

DO YOU WANT TO CHANGE DISK INFORMATION?
TYPe Y it vo~J ~tlan-J: to chan9e the master Password, diskette name, or
date. BACKUP will PPOmF~t You tc1 er1ter· the new info~matior1 <If vou
don 7 t want to chan9e anY of these~ -J:ype N.)g

l'o chan9e t~re Passwor·d, tYPe in UP to 8 rtumt~er·s and
letters, and Pr~ess EN'fER if You tYPed fetoer than 8a

l·o cttart9e the diskette r·,ame~ tYPe irr liP to 8 nun1ber·s ar1d
letter~s and Pr·ess EN-rER if YO~J tYPed fewer than 8"

cESTINATION DISK READY? Insert the destination diskette into the
destinatior1 drive and tYPe Y.

1\lotf!:: F'or· :::.in9'l;;?'""dr·iv<.::~ b<a.c!.uJ==-::;., ·y·(lt.J wi '! ·1 n<.:.~~~d "1:1) :.-:.t.Ui:::lP :::.our·c~::: and
destirration diskettes wt1en PromPted t~Y the ITiessa9es~

SO~JRCE l)ISK READY? and DESTINATION DISK READY?

•

•

•

•

•

..

i"IODEL. I I TRSDOS UTI L.I TY PROGRAMS PAGE 71

If there is a flaw on one of the destination tracks, BACKUP will
terminate and retur·n to TRSDOS without comPleting the duPlication.
The flawed diskette should be re-formatted and used as a data
diskette (multi-drive users onlv).

BACKUP also does a consistencY check of the directorY track,
cornparin9 individual file entries with a seParate table of sPace
allocation. If anv inconsistencies are found, BACKUP lists the
affected files and PromPts vou to choose one of the following
oPtion~.:

<1> CoPY onlv those files whose allocation
information is consistent~

<2> CoPY all files' re9ardless of inconsistencies.
<3> Abort the backuP Procedure.

Files with inconsistencies mav or mav not be usable .

MODEL II THBDOS

FOHI•IAT
0~9anize a Diskette

:: ---- -··--·- --·-- ·- -·· -- -··- -··- -- --·-·-· -·· -· ---- -· - --· ·-- -· -·· _ -- · · ···· ·:·z~ ·;··;~ .. ·e~"i ~--a~:;~·~;,:
FORMAT :~{ID=disk name, PW=Password, OPtion} :

:d sPecifies the dr·ive to be used. l'he colon ~ is
oPtional. d can be sPecifiy anY drive 0 thro~J9h 3~

ID::::cli.r:.:.k n<::tme t;;..11 s TRBDOS wh.::;.t to a.::.sisln.
disk name can be UP to 8 nlJmbers and letters with

no embedded blank sPacesd
PW=password tells TRSDOS 1uhat Password to assi9n.

Password can be UP to 8 r1umber·s or· letters uJith
no embedded blank sPaces.

oPtion tells TRSDOS how muct1 verifYing to do~

FULL Thorou9h check for flaws.
<~UIU"\

NOI\IE
Quick check fop flaws.
No checking for- flaws.

This PP09ram or9anizes a (jiskette into tracks and sectors. The
diskette mav be either blank (new or· bulk-·er·ased) or Pr·eviouslv
formatted~ If it contains data, FORMA·r will warn vou and ask if you
uJant to contir,ue. If You continue~ the data will be lost. In
9eneral, it,s a 9ood f~ractice to bulk erase a diskette before
f(tr·ma.ttin9 it.

Format also does a specified amount of ctteckin9 for· ar·eas on the
disk which cannot store data due to flaws in the recordin9 surface.
If it finds a flawed ar·ea, TRSDOS 11 locks out 11 the affected tPack and
will never trY to write to that tr·ack.

FOHI"IAT :1 CID=ACCOUNTS,PW=mousel
Dr·ive 1 wi "11 be u~-E·d, ."::tnd th-:.":? di~-k ~~Ji 11
and master Passwor·d rrtouse. TRSDOS will

be given the name ACCO\JNTS
do the full test for· flaws.

FOHMAT :0 IID=TESTDISKoPW=PASSWOHD,QUICKl
Drivt.~ 0 l.id 11 b-e .. u~.E·d, and the di.:..k wi 11 b·e S:Jiv-en the na.me 'l"ESTDI~H·\
an(j master PasstDord PASSWORD. FORMAT will do a quick for flaws.

FOHMAT :3 IID=Jacko PW=12345678o NONEl
Dr·ive 3. will b:;;.~ u~::.f::d~ di~:.k no::t.rn-..::~ ~J,::tck, r:·a.::.:~·.bJor·d l:;;::3~~~~:)/J .. 7l:3·, IDith no
checking for flaws.

To PrePare a new diskette~
Befor·e You can use a r1ew diskette, YOU must for·mat it. After
formatting~ record the disk name~ date of creation and Password in a
safe Place. This will helP You estirr1ate how lon9 a diskette has been
in use' and Prevent Your for9ettin9 the master Password~ (For ~Jses

•

..

MODEL II TRSDOS UTILITY PROGRAMS PAGE 73

• this a.PPl ication, a'IIJJa.v~. us.e th~ FULL ver·if ... { (!Pti~:~n ..

•

To e~ase all data from a diskette.
To "start over 11 with a diskette, vou can format it~ All data will be
lost. For this aPPlication' the QUICK verifY oPtion is ProbablY
ade~uate--unless vou have had Problems disk inPut/outPut errors with
the dis-kette. <See bel ow.)

To lock out flawed areas.
After lon9 use' flaws mav develoP on a diskette. Refor·mat the
diskette to lock out these tracks while leaving the 9ood tracks
available for data stor·a9e. Use the FULL verifY oPtion for this
aPPl icai:i,)n ..

•

M 0 D E L I I T R S D 0 S

4 I T E C H N I C A L I N F 0 R M A T I 0 N

•

•

•

•

•

MODEL I I T Ri:\DOE< TECHNICAL INFORMATION

CM2DOS5 8/10/791

::) I Tt!chnica.l Infor-mation

CONTENT!3
====~=~==~======================================

0~ IntPoduction nnn~•············~········· 75
1. Diskette Or9anizatior' ••.•.......••..... 76
2. Disk Fi'l'"'· T!

2.1 Methods of File Allocation 77
2.:2 i'l<ecor·d Lc,nc.Jth 7B
2.3 Record Processing CaPabilities ••••.

3. How to use the Supe~visor Cal-ls ••••....
3.1 Callin9 Procedure•.••...••.••
3.2 Error Codes and Messa9es ••.•..••..•

4. SuPervisor· Calls ..••..•....•..•........
4.1 Svstem Control •••....•••.••••••..•.
L~ .. ::;~ ~(e·)··bt:~ar·d
I.J-.;3 Video l)isP·l03 ... { ... " " n

L1 . • .it
1. ~~­+J

L.ine Pr·intf .. r· ~ ~

F':i.lo:::! f.\cc..::!~=-~=- ~ ~
L~ .. 6 Con1Puta.tion.::Ll
4 .. 7 Serial Communications

5 .. P~o9r·amrnin9 with TRSDOS

B0
(3:;~

B3
8lf

(36
l37
9El

102
11 L,.
11B
129
1 '•:;.::
14-9

5 .. 1 Pro9ram EntrY Conditions 149
5 .. 2 Handlin9 Pro9rammed Inter·ruPts 149

==

!fj .. Intr-oduction
== == ~= == ~= :::: == ::=: = ~= :::: :~= ::~ ::::: ::::
l"his chaPter 9ives a pr-actical descriF>tion of TRSDOS on a technical
level .. You do not need it to use the OPerator Commands, nor do You
need it to run BASIC aPPlications Pro9rams on the ComPuter .. You DO
need it to write assemblY Pro9rams which use SYstem ro,Jtines .. You
U!aY also- find the information incidentallY useful in Pro9rarnrrlin9
with Bt,SIC..

MODEL II TRSDOS TECHNICAL INFORMATION PAGE 76

1" Diskette Or9anization
========================
Model II uses sin9le-sided, double-densitY diskettes. Each diskette
contains 77 t~acks, numbered 0-76~

Each track contains 26 sectors' numbered 1-26. Each sector contains
256 bytes, excePt for track 0 sectors' which contain 128 bvtesA The
total caPacitY of a diskette is:

176 * 26 * 2561 + 11 * 26 * 1281 = 5~9,184 bvtes.

Disk SPace Available to User

Sector 26 of each track is reserved for svstem use, 9ivin9 the user
25 sectors Per track. On Svstem diskettes' 65 tracks are available
for the user; on non-Svstem diskettes, 75 tracks are available.

Detai 1 ~-:
Track 0 is reserved bv the Svstem. It
Another track Cusuallv track 441 is
Svstem for the diskette directorY.
diskettes, ten additional tracks a~e

Unit of Allocation

is not accessible.
~ese~ved bY the

On 0Per·atin9 Svstem
used fo~ Svstem files"

The onlY unit of disk sPace allocation is the ''9ranule". A TRSDOS
9~anule is defined as 5 secto~s. Therefo~e the smallest non-emPtY
file •:or,~-i::.ts •:•f 5 sector-s, i .. e .. , one gr-ar1ule.

NON-SYSTEM
DISf\ETTE

1

TRACf\S

75
1

GRANULES

375
5
1

SECTORS

1875
25
5
1

SPACE AVAILABLE TO USER

BYTES

48~.~~~
64~~

1280
2~56

•

•

•

•

•

•

MODEL II TRBDOS TECHNICAL INFORMATION PAGE 77

2. Disk Files
==============
2.1 Methods of File Allocation

Model II Provides two wavs to allocate disk sPace for files: Dvnamic
Allocation and Pre-AllocationR

Dvnamic Allocaton

With Dvnamic Allocation' the Svstem allocates 9ranules onlY at the
time of write. For examPle, when a file is first OPened for outPut,
no space is allocated. The first sPace allocation is done at the
first write. Additional space is added as required bv subsequent
writes.

With dvnamicallv allocated files' unused 9ranules are de-allocated
(recovered) when the file is ClosedR

Pre-Allocation

With Pre-allocation, the file is allocated a sPecified number of
9ranulas when it is created. Pre-allocated files can onlY be created
bv the operator· command CREATE.

TRBDOS will dYnamicallY extend Canlar9al a Pre-allocated fila as
needed fo~ subsequent w~ite oPe~atio~s. Howeve~, TRSDOS will not
de-allocate unu~ed g~anules when a P~e-allocated file is Closed. The
~JaY to ~educe the size of a P~e-allocated file is to CoPY it to a
smaller pre-allocated file or to a dYnamicallY allocated file and
Kill the old fila •

MODEL II TRSDOS TECHNICAL INFORMATION PAGE 78

2.2 Record Length

The Model II transfers data to and from diskettes one sector at a
time, i~e., in 256-bvte blocks" These are the Svstem's ''PhYsical''
records"

User records or ulo9ical'' recor·ds ar·e the buffer·s of data vou wish
to transfer to or from a file. These can be from 1 to 256 bvtes
lon9.

TRSDOS will automaticallY ''block'' vour lo9ical records into PhYsical
records which will be transferred to disk' and '1 deblock'' the
PhYsical records into lo9ical records which are used bv vour
Pro9ram. Therefore vour ONLY concern during file access is with
lo9ical records. You never· need to worrY about PhYsical records'
sectors, tracks, etc. This is to vour benefit, since PhYsical reco~d

le~9ths and featu~es mav chan9e in later TRSDOS versions, w~1ile the
concePt of lo9ical records will not.

From this Point on' the term ''record'' refers to a ••lo9ical record••.

SPanning

If the record len9th is not an even divisor of 256~ the records will
automaticallY be sPanned ac~oss sectors.

For examPle, if the record 1en9th is 200, Sectors 1 a~d 2 will look
like this:

:-----------SECTOR 1------:--------SECTOR 2-----------:

=<-record 1--> <-----·--record 2-------> <-------r-ecord 3---­
:< 200 bvtes > < 56 bvtes> < 144 bytes > , 112 bvtes:):

:-------------------------:---------------------------:
Sector 3 (not shown) contains the last 82 bvtes of r·ecord 3R

Fixed-Len9th and Variable Len9th Records

Model II files can have either fixed-len9th or variable-len9th
records. Files with fixed-ler,9th records will be refer-red to as
FLRs; files with variable len9th records, VL.Rs.

Record len9th in an FLR file is set w~ten the file is OPened for the
first time. This len9th can be anY value from 1 to 256 bYtes. Once
set, the record len9th in an FLR cannot be chan9ed, unless the file
is being over-written with new datau

Record len9th in a VLR file is sPecified in a one-bYte len9th-field
at the be9innin9 of each record. The record-len9ths in a VLR file
can varv~ For examPle, the first record in a file mi9ht have a

•

•

•

•

•

•

MODEL II TRSDOS TECHNICAL INFORMATION PAGE 79

len9th of 32, the second, 17; the thi~d, 250; etc.

The Pecord-len9th bvte indicates the entire length of the ~ecord,
INCLUDING the len9th-byte. This can be any value from 0 to 255. A
value of 1 can be used, but it has no meanin9.

E::-~arr,p 1 e s :
A len9th-bvte value of zero indicates that the record contains 255
bYtes of data:
:------:-------------------:

0 : 255 bYtes of data :
:------:-------------------:

LENGTH
BYTE

DATA

End
of
Rc.?C(if·d

A len9th-bvte value of 2 indicates that the record contains 1 bvte
of data:
:------:------------------=

2 : one bvte of data :
:------:-------------------:

LENGTH
BYTE

DATA

End
of
Recor·d

A len9th-bvte value of 16 indicates that the record contains 15

. . . . ------.------------------- .
' 16 : 15 bvtes of data :

End
of

:------:------------------: Reco~d
LENGTH

BYTE
DATA

MODEL II TRBDOS TECHNICAL INFORMATION PAGE 80

2~3 Record Processing CaPabilities

Model II TRSDOS allows both Direct and Sequential file access.
Dir·ect access--sometimes called 11 r·and,)ITI acc<?~-S 11 ' but 11 dir·ect 11 is
more descriPtive--allows vou to Process anv record vou sPecifY~

NOTE
A file can contain UP to 65535 ~ecords.
Records are numbered from 0 (be9innin9 of file)
to 65534. A record number of 65535 indicates
tha and of fila CEOFI. Thasa limits will ba chan9ad
in a later release of TRSDOS.

Se9uential access allows vou to Process r·ecords in se~uence: Record
N, N+l, N+2, •.•• With se9uential access, vou do not SPecifY a record
number; instead, the 0Peratin9 Svstem accesses the next record after
the cur·r·ent one,.

F'or files with Fixed Len9th Records <FLRs), You can Position the
cu~rent. record Pointer to the be9innin9 of the file, end of file, or
to anY record in the file. In short, YOU can use Direct and/or
Sequential Access with FLRs at anv time durin9 Processing.

•

For· file:=. with var-iable len9th r·ecor-ds (VLR~->, ·y·c,u ~:an onl·-.- PO~-itio·n •
the current record Pointer to the be9innin9 of the file or to the
end of file. You cannot Position to anY other record in the file,
since the Position of interior VLRs cannot be calculated. If short,
You can onlY use Se~uential access with VLRs.

The Direct access routines are Direct-Read and Direct-Write; the
Sequential access routines are Read-Next and Write--Next. Direct·
access routines always access the record You specifY. Sequential
access routines always access the record FOLLOWING the last record
Pr-oces.s--ed .. <When the file is fir·si: oPened, ~-e-=Juential pr-ocessing
starts with record 0.)

ExamPles
::::=::::::::~.:::::::::::::::::

Assume you have a Fixed Len9th Record file currentlY OPen. Here are
some tYPical se~uences You can accomPlish via the file Pro(:essin9
r·out i nes.

l.Read and/o~ w~ite records in the file--in anv order

This is done using Di~ect-Write and Dir-ect-Read routines~ You could
~ead record 5, write at end of file' read record 3, write record 3,
etc ..

2. Sequential Read (or Write) be9innin9 anYwhere in the file ..

First you would do a Direct-Read to the record where YOU want t•)
start readin9 or writin9. After that, YOU would do sequential reads
or· u.•r-ites ur.ti 1 dc•ne.

•

•

•

MODEL II TRSDOS TECHNICAL INFORMATION PAGE 81

3~ Se9uential Write sta~tin9 at end of file.

First do a Direct-Write to the end of file. Then do sequential
writes until donea

4. Determine the number of recor·ds in a filea

First do a direct-read to end of file, then use the LOCATE routine
to 9et the current record number, which now equals <number of
records) + 1.

ExamPles with Variable Len9th Records

1. Sequential Write startin9 at end of file.

First do a Direct-Write to the end of file. Then do sequential
writes 'Jntil donea

2. Start readin9 or· writin9 at first r·ecord

OPen the file and start reading or writin9 sequentiallY until done.

Note: Writin9 to a VLR file AUTOMATICALLY resets the end-of-file to
the last recor·d vou write. This means vou cannot update a VLR file
directly; You must read in the file and outPut the UPdated
information to a new VLR file .

I"'ODEL I I THSDOS TECHNICAL II\IFOfiMAT I ON PAGE B2

3~ How to Use the Supervisor Calls
==================================
SuPervisor Calls (SVC's) ar·e 0Peratin9 Svstem routines available to
anv user Pro9ram. The routines alter certain Svstem functions and
conditions; Provide file access; perform I/0 to the Kevboar·d, Video
DisPlaY~ and Printer; and Perform various comPutations

All the SVCs leave memorv above X'2FFF' untouched~ Onlv those Z-80
re9isters used to Pass Parameters from the SVC are altered. All
others are unaffected. However, all the Prime re9isters are used bv
the Svstem; theY are not restored~

Each SVC is assi9ned a Function Code. 1'hese codes run from 0 throu9h
127. Onlv the first 96 are defined bv the Svstem; codes 96-127 are
available for user definition~

To sPecifY a 9iven SuPervisor Call' Your Pro9ram refers to the SVC 1 s
Function Code.

..

•

•

•

•

•

MODEL. II TRSDOS TECHNICAL. INFORMATION

3.1 Callin9 Procedure

All SVCs are accomPlished via the RST 8 instruction.

la Load the Function Code fo~ the desired SVC into the A
re9ister. Also load anv other re9isters which are needed
bv the svc, as detailed in Section 4.

2. Execute a RST 8 instruction

3. UPon return from the svc, the Z flag will be set if
the function was successful. If the Z fla9 is not set,
there was an error. The A re9ister contains the
aPProPriate error code (excePt after certain comPutational
SVC,s, which use the A-re9ister to return other
infor-mation) ..

Time-De 1 a·y·
L.D BC,TIMCNT LENGTH OF DELAY
LD A,6 FUNCTION CODE 6 ·- DELAY-SVC
RST 8 JUMP TO SVC

DELAY OVER-PROGRAM CONTINUES HERE

Output a line to the Video Di ~-PI a··,··

I"ISG

LD HL,MSG
LD 8•10
LD C•IZJDH
LD A,9
HST 8
JR NZ,GOTEHH

IF NO ERROR THEN PROGRAM
DEFM 'TEN BYTES'

POINT TO THE MESSAGE
B=CHARACTER COUNT
C=CTRL CHAR. TO ADD AT END
CODE 9 = DISPLAY LINE-·SVC
JUI"IP TO SVC
JUMP IF I/0

CONTINUES HEHE
ERROR

Get a character from the Kevboard
GETCHAH L.D A•4 CODE 4 = GET CHARACTER-·BVC

JUMP TO SVC RST 8
,H< NZ, GET CHAR

CHARACTER IS IN HEGISTEH B
DO AGAIN IF NO CHARACTEH

PAGE 83

I"IODEL I I TRSDOS TECHNICAL INFORMATION PAGE Blf

3.2 Error Codes and Messa9es

Re9ister A usuallY contains a return code after anv function call,
with the Z fla9 set when no error occurredu ExcePtions are certain
comPutational routines, which use the A and F to Pass back data and
status information.

•

•

•

•

•

JvJODEL I I TRSDOS TECHNICAL. INFORMATION

0 NO ERROR FOUND
I BAD FUNCTION CODE ON SVC CALL OR NO FUNCTION EXISTS
2 CHARACTER NOT AVAILABLE
3 PARAMETER ERROR ON CALL
4 CHC ERROH DUHING DIBI-"\ I/0 OPEHATION
~ DISK SECTOR NOT FOUND
6 ATTEMPT TO OPEN A FILE WHICH HAS NOT BEEN CLOSED
7 DRIVE DOOR WAS OPENED WHILE FILE OPEN FOR WRITE
B Dif3f"\ DHIVE NOT I'~EADY

9 INVALID DATA PROVIDED BY CALLER
11/l MAXIMUI"' OF 16 FILE!3 MAY BE OPEN AT ONCE':
11 FILE ALREADY IN DIRECTORY
12 NO DRIVE /WAILI',BLE FOR AN OPEN
13 WRITE ATTEMPT TO A READ ONLY FILE
1'+
15
16
17
18
19
21/l
21
:22
23

WRITE FAULT ON DISK I/0
DISf-(IS (.JRJTE PROTECTED
DCB IG MODIFIED AND IS UNUS.<\BLE
DIRECTORY READ ERROR
DIRECTOHY WRITE ERROR
IMPHOPER FILE NAME (filesPec)
FAD HEAD EHflOR
FAD WRITE ERROR
FID READ EJ'(ROR
FID WRITE EHROR
FILE NOT FOUND
FILE ACCESS DENIED DUE TO PAGSWORD PROTECTION
DIRECTORY GPACE FULL
D I Gf"\ SPACE FULL
ATTEMPT TO READ PAST EOF
READ ATTEMPT ou·rsiDE OF FILE LIMITS
NO MORE EXTENTS AVAILABLE I 16 MAXIMUM
PROGRAI"I NOT FOUND
UNf"\NOWN DRIVE NUI"IBER I ·n 1 ,~,;.peel

PAGE 85

DISK SPACE ALLOCATION CANNOT BE MADE DUE TO FRAGMENTATION OF SPACE
ATTEMPT TO U!3E ,IJ, NON PROGRAM FILE AG A PHOGRAM
MEMORY FAULT DURING PROGRAM LOAD
PARAMETER FOR OPEN IS INCOHRECT
OPEN ATTEMPT FOR A FILE ALREADY OPEN
I/0 ATTEMPT TO AN UNOF'EN FILE
ILLEGAL. I/0 ATTEMPT
GEEf"\ E H RO R
DATA LOST DURING DISK I/0 I HI\RDWARE FAULT l
PfUNTEI~ NOT READY
PRINTER OUT OF PAPER
PRIN"lEH FAULT I !•JAY BE TUf~NED OFF l
PRINTER NOT AVAILABLE
NOT APPLICABLE TO VU~ TYPE FIL.EB
REQUIRED COMMAND PARAMETER NOT FOUND
INCORHECT COMMAND PAHAMETER
* * UNf"\NO~JN ERROR CODE * *
* * UNKNOWN EHHOR CODE * *

i"IODEL. I I T RSDOS TECHNICAL. INFORMATION

(i"I:2DOS6 8/6/7'i'l

4~ SuPervise~ Calls
===================
In this section we will use the following notatior1:

Not.:a.tion

FIP -- data
n 1 < R < n2

<RPl = da.ta

NZ => Er·r-or-

!"lean i n9

The r-e9ister Pair RP contains the data~
The re9ister· R contains a value 9reater

than nl and less than n2
The re9ister pair RP contair1s the

address of (»points t0 11
) the data.

If Z Flag is not set, an error
occur·r·~::!d a

PAGE 86

•

•

•

•

•

MODEL II TRSDOS TECHNICAL INFORMATION

4.1 Svstem Control

SuPervisor calls described in this section:

Function
Code

0

3
15
25
36
37

38

39
52

Name

INITIO
SETUSR
SETBRK
DISKID
TIMER
JP2DOS
DOSCMD

RETCMD

ERROR
ERRMSG

PurPose

Initializes all I/0 drivers
Sets uP a user-defined SVC
Sets UP <BREAK> kev Processing Pro9ram
Reads a diskette ID
Set timer to interruPt a Pro9oram
Returns to TRSDOS ITRSDOS READY!
Sends TRSDOS a command and then returns
to TRSDOS READY
Sends TRSDOS a command and return to
caller

Returns Error Messa9e to Buffer

PAGE 87

i"IODEL I I TRSDOS TECHNICAL INFORI"IATION PAGE 88

INITIO ("Initialize I/0 1')--Function Code 0

Thi::. r-outine initia.l i:ze::. all inPut/output dr-iver·: It calls. a.ll of
the other- initialization routines. There are no Parameters.

NOTE
This routine has been done alreadY bv the Svstem.
User-s shou.ld never· call it, e:=<cePi: l.n e>~tr·eme

error conditions.

Entr-y Condition::.

A llJ

E::-::it Conditions.

NZ
A

:::::) Er-r· or·
Er-r-r:~r- Cod{::.-

-·

•

•

•
i'IODEL I I TRSDOS TECHNICAL. INFORMATION PAGE 89

SETUSR c»set User") Function Code 2

l'his Poutine sets or removes a user vector. l'his 9ives vou the
abilitv to add SVC functions~ Function codes 96-127 are available
for user definition.

Once added, such a function can then be called via the RST 8
instruction, Just like the Svstem's SVC routines.

Your routine must reside above X'27FF', and should end with a RETurn
in:=.tr·ucti•)n ..

To chan9e a PreviouslY defined function' vou must first remove the
01 d V<t:!Ci:(•r·.,

Entr··-r· Conditic·n~.

CHL) - Entrv addr·ess of vour routine <when C not 0)
B - Function code to be used, 95 < code < 128
C = Set/Reset code. If C=0, remove the vector. Otherwise'

add the veci:or
A -· 2

• E>::it Condii:ions

CHL> = Removed vector address (when C=0 on entrv)

•

MODEL II THSDOS TECHNICAL INFOHMATION PA6E 90

SETBRK C"Set <BREAK>"l--Function Code 3

This routine lets vou enable the <BREAK> keY bv definin9 a
<BREAK>-keY pr·ocessin9 Pro9r·am. wt.enever <BREAK> is Pressed, Your·
Processing Pro9ram takes over. On entrY to the <BREAK> Processing
Pro9ram, the r·eturn address of the interruPted routine is on the top
of the stack and can be returned to with a RETurn instructionu All
of the re9isters are intact uPon entrv to the routine.

The routine also lets vou disable the <BREAK> key, bv removing the
address of the Processing Pro9ram. While <BREAK> is enabled, vou
cannot chan9e Processin9 Pro9rams; vou must disable it first.

The <BREAK> kev Processing Pro9rarn must reside above X'27FF'.

See Handlin9 Pro9rammed InterruPts for Pro9rammin9 information.

Entr··y· Condition::.

(HL) = Address of <BREAK> keY Processing Pr·o9r·ama When <BREAK>
is Pressed, control transfers to this address.
If HL = 0, then address of Previous Processing Pro9ram
is r·emove d.

A = 3

E::-::it Conditions

NZ =>
A =

(1-JL) =

Err·•:.r·
Er·r·or· Code
Addr-e~.~. of
if HL = 0 on entrv

<BREAK> keY Processin9 Pr·o9ram

•

•

•

•

•

•

~IODEL I I TRSDOS TECHNICAL INFORMATION PAGE 91

DIBKID--Function Code 15

This routine reads the Diskette ID f~om anY or all of drives 0
throu9h 3. IThe Diskette ID is assi9ned bv the FORMAT and BACKUP
utilities.) This routine is useful when the Pro9ram needs to ensure
that the OPerator has inserted the ProPer diskette.

B - Drive Select Code. If B = 0, read from drive 0, etc.
t~. must be one of the following: lih 1, 2, 3, •:.r· 255 .. If
B ~ 255, then routine reads from all four drives.

IHL..l -Buffer to hold the diskette IDI'sl.
If B = 0, 1, 2 or 3, then buffer must be 8-bvtes lon9.
If B • 255, then buffer must be 32 bvtes lon9. Drive 0
ID wi 11 be Placed in fir-s.t 8 b·-..-tes., then dr·ive 1• etc.

A • 15

The Diskette ID('s) are Placed in the buffer·s pointed to bv
re9ister-Pair HL~ If a drive is not ready, blanks are Placed into
the buffer· ..

NZ •> Er·r-or·
A = E:rr·or- Code

PAGE 92

TIMER
F~ur1ctior. Code 25

lhis r·outine lets vou start a timer to ir.ter·ruPt a Pr·o9ram when time
runs outrt ~Jnlike th~ DELAY routine' TIMER runs concurrent with vour
F~ro9ram. Or.e aPPlicatior• would be to 9ive an oPer·ator a sPecified
ntJmber of seconds for keYboard inPut, and to interruPt the kevboard
inPut r-outine if r.o inPut was made within the tirr.e limit.

When settin9 the timer, vou tell it how manY seconds to
TRSDOS will then continue executin9 vour pr·o9ram~ until
counts down to zero or vou reset the timer.

count down.
the timer

This is a 11 one--shot•• timer.
interrtJPt! it autom~ticallv

When it counts
shuts off.

to zero and causes ar.

See Pr·o9rammin9 with TRSDOS for information on inter·ruPts.

EntrY Conditions

(HL) - Rout i n~ t 0 hand 1 0. inter·rupt when timer·
counts to ze~o .

BC - Number· Crf seconds to count do~Jn~

A - 25

If HL and BC both egual zer·o, then timer is turr1ed off.
If HL ~ 0 and BC 1s not equal to zero' then time count is reset to
the value in BC, and timin9 continues.

•

•

•

•

•

•

t10DEL I I TRSDOS TECHNICAL INFOI~MATION PAGE 93

JP2DOS ("JumP to DOS">--Function 36

1'his P~o9~am simPlY ~etu~ns cont~ol to the command level CTRSDOS
READYl. All OPen files are Closed automaticallY.

Entr-y Conditic•ns.

A = 36

I"IODEL I I TRSDOS TECHNICAL INFORMATION PAGE 94

DOSCMD (1'008 Command'')--Function Code 37

This routine sends 'TRSDOS a command. After the command is executed,
control returns to TRSDOS ITRSDOS READY!. All OPen files are closed
automaticallY.

Entr·Y Conditions.

TRSDOS <HL) =
8 = Len91:h

= 37 A

c omma.nd ~- t: r· i n9
of command st~in9

•

•

•

•

•

•

MODEL II TRSDOS TECHNICAL. INFORMATION PAGE 95

RETCMD (11 Return after Command")--Function Code 38

This routine sends TRSDOS an operator command. After coffiPletion of
the command, control returns to vour Pro9ram. All OPen files are
Closed automaticallY.

NOTE
Take care that TRSDOS doesn't overlaY vour Pro9ram
while loadin9 the command file vou specified. Most
TRSDOS librarY commands use memorY below X'27FF'; a
few 9o UP to but not includin9 X'2FFF'. Sin9le-drive,
sin9le-disk coPies use all user memorY. See LibrarY
Commands for details.

Entry Conditions

IHLI = TRSDOS command string
B = Len9th of command strin9
A = 38

E::<it Conditions

NZ
A

:::::) Er·r·or·
Er·r·(1r· Code

MODEL II TRSDOS TECHNICAL INFORMATION PAGE 96

ERROR--Function Code 39

This ~outine disPlaYs the messa9e "ERROR" followed bv the sPecified
error code~ The messa9e aPPears at the current cursor Position~

Entr·Y Ct:trtditions

B = Error Code
A = :39

E::.::lt Condition!:-

NZ -· Er·r·cor·
A = Error Ct:,de

•

•

•

•

•

•

MODEL II TRSDOS TECHNICAL INFORMATION PAGE 97

ERRMSG (••Error Messa9e")--Function Code 52

This routine returns Qn 80-bvte descriPtive error message to the
sPecified buffer arean <See list of error messa9es' Section 3.2.)

Entr··y· Condi1:ion~-

8 =
(HU =

A -·

Error Code corresPonding to messa9e
80-bvte buffer area in user area (above X'27FF')
52

NZ = Er-r-or-
A =~ Er·r·or· Code

MODEL II TRSDOS TECHNICAL INFORMATION

4.2 Kevboard

SuPervisor· calls described in this section*:

Function
Code Name

1
4
5

12

•VIDKEY

KBINIT
KBCHAR
KBLINE
VIDKEY

is described

Clears stored kevstrokesa
Gets a character from kevboarda
Gets a line from keYboard.
DisPlaY messa9e and 9et line from KB.

in Section 4a3u

PAGE 98

•

•

•

•

•

•

MODEL II TRSDOS TECHNICAL INFORMATION PAGE 99

KBINIT ("KevboaPd Initialize")--Function Code 1

This routine initializes the kevboard inPut driver. This call should
be made before vou start kevboard inPut. It clears all Previou~
ke·..-·s.tr·r).kes ...

Entr-·y· Conditions-

A = 1

E>::it Conditions-

NZ => Error
A = Er·r·or- Code

MODEL II TRSDOS TE CHI\l I CAL I 1\lFORI"'A TI 01\l PAGE 100

KBCHAR (''Kevboard Character")--Function Code 4

This routine 9ets one character from the kevboard. The routine
returns immediatelY either with or without a character in re9ister
8.

The <BREAK> kev is masked from the user--it will never be returned,
since it is intercePted bY the SYstem. If the <BREAK> keY is
enabled, control Passes to the Processing pro9ram (see SETBRK>
whenever <BREAK> is Pressed. Otherwise' <BREAK> is i9nored.

Entr··y· Condition!.

A = 4

B = Character found, if anv. Onlv codes within the ran9e
(0,127> can be returned. If no character is returned,
B is unchan9ed ..

I\IZ
A

=> No char·acter·
Er·r·or· Ct:.,de

•

•

•

•
MODEL. II TRSDOS TECHNICAL. INFORMATION PAGE 101

KBLINE <"Kevboa~d Line">--Function Code 5

This ~outine inPuts a line from the Kevboard into a buffer' and
echoes the line to the DisPlay, starting at the current cursor
position. As each character is received and disPlaved, the cursor
advances to the next Position (Scroll Mode--see section 4.3.)

On entrv to this routine, the inPut buffer is filled with Periods,
and these Periods appear on the disPlay, indicating the len9th of
the inPut field for the oPerator,s convenience.

The line ends when a carriage return is tYPed
buffer is filled. A carria9e return is alwavs
uPon termination of line inPut, but is stored
actually Pressed <ENTER>.

or- when
~.ent

onlv

Entr···{ C1:.nditions

(HU
B

A

= Start of inPut buffer
- Maximum number of char·acters to receive,

0 < B
= 5

to
if

the inPut
the Dis.pl a:·t
i: he 0Per·ator·

• E:=<it Conditions

•

B- Actual number of characters inPut, including carria9e
r·ei:ur-n ..

C = 0 if inPut buffer was filled without carria9e return.
If line ended with a carria9e return, then C = X'0D'M

Received Control Codes' code < 32

Control codes not listed below are Placed. in the buffer and
rePresented on the disPlaY with +/- svmbols

f\EY

<-

->

<ENTEH>

<CTHL-W>

<CTRL-X>

<ESC>

HEX
CODE

11)8

09

IIJD

17

1B

1B

FUNCTION

Backspaces the cursor to allow editin9 of
line .. Does not erase characters.
Advances the cursor to allow editin9 of
line. Does not erase characters.
Terminates line. Clears trailing Periods
on disPlaY but not in buffer.
Fills remainder of inPut buffer with
blanks, blanks remainder of DisPlaY line.
Fills remainder of inPut buffer.with
blanks, blanks to end of DisPlaY.
Reinitializes inPut function bY filling
inPut buffer with Periods and restorin9
cursor to ori9inal position ..

i"IODEL I I TRSDOS TECHNICAL INFORMATION

(M2DOS7 8/6/79)

4.3 Video DisPlaY

Supervisor Calls described in this section:

FI.Jnction
Code Name

7 VDINIT
8 VDCHAR
9 VDLINE

112) VDGRAF

Initializes DisPlay
Sends a character, Scroll Mode
Send~. a. 1 ine' Scr·oll Mode
Sends characters, GraPhics Mode

PAGE 102

1 1
1 •:-)

26

VDREAD
VIDKEY
CURSOR

Reads characters, Gr-aPhics Mode
DisPlavs message, and 9ets line from KB
Turns cursor· on or· off

27 SCROLL Sets number of lines at toP of disPlaY
which are not scrolled

The DisPlaY has two modes of OPeration--Scroll and GraPhics~ Cursor
motion and allowable inPut characters are different in the two
IT!(1des.

Scr-oll Mode

In the Scroll Mode, the DisPlaY can be thou9ht of as a sequence of
1920 disPlaY Positions, as illustrated below:

Line f2)

Line 1

Line 22
Line 23

:----------·-----------·------------------------------:

'

(0, 1, :~:::, 3,
812),81.82,83,.

17612), 1761•
18412), 1BL>1,

713.79
159

.1838,183'7

.1919,1919
:---~

DISPLAY POSITIONS, SCROLL. MODE

NOTE
l'he DisPlaY has two character sizes:
80 characters Pe~ line and 40 characters
Per line. The illustration above shows the
80 characte~ Pe~ line mode.

•

•

•

•

•

•

~10DEL. I I TRSDOS TECHNICAL. INFoRMATION PAGE 111l3

In the sc~oll mode, each time an accePtable disPlaY cha~acter is
~eceived, it is disPlaved at the cu~rent cursor Position, and the
cursor advances to the next hi9her numbered position.

When the cursor is on the bottom line and a line-feed or carria9e
return is received, or when the bottom line is filled, the entire
DisPlaY is ••scrolled":

Line f1l is deleted
Lines 1-23 are moved UP one line
Line 23 is blanked
The cursor is set to the be9innin9 of line 23.

Note: From 0 to 23 lines at the disPlaY can be Protected from
scrollin9 via the SCROLL. function call.

Gr·aPhics. Mode

In the GraPhics Mode, the DisPlav can be thought of as an 80 bv 24
matrix, as illustrated below:

li

(l

w

C 0 L. U M N
:---:
' f1l 1 2 • 77 78 79 :

:-----:---:
f1l
1
2

DISPLAY AREA

21 :
:::~2 '
23 : :

-----:---:
DISPLAY POSITIONS, GRAPHICS MODE

NOTE
l'he DisPlay has two cha~acter sizes:
8~ characters Per line and 40 cha~acter·s
Per line. The illustration above shows the
80 character per line mode.

Each time an accePtable disPlaY character is received, it is
diPlaved at the current cursor Position (which is set on entrv to
the GraPhics Mode routines). Before disPlaYing the next character'
the cursor Position is advanced, as follows:

If the cursor is to the left of Column 79, it advances to
the next column position on the same row •

If the cursor is at Column 79, it wraPs around to Column 0
on the same r·ow ..

MODEL II TRSDOS TECHNICAL INFORMATION PAGE 104

In short, no scrolling is done in the GraPhics Mode.

Cursor motion works the same waY in all directionsu For examPle, if
the cursor is at Row 23, Column 40, and the v (down arrow) character
is received, the cursor wraPs around to Row 0 in the same columnu

•

•

•

•

•

•

i•IODEL I I TRSDOS TECHNICAL INFORI"'ATION PAGE 11Zl5

VDINIT ("Video Initialization••)--Function Code 7

Call this initialization routine once before starting anv I/0 to the
DisPlaY. It blanks the screen and resets the cursor to the top left
corner' (position 1 in the Scroll Mode illustration).

Entr·Y Conditions

8 - Characters size switch. If 8 = Ill then sets to 40
characters/line size. Otherwise, sets to 80
characters/line size.

C =Normal/Reverse switch. If C =Ill then sets
Reverse mode, black on white back9round. btherwise
sets Normal mode, white on black background.

A -.. 7

E::-::it Condition~.

NZ
A

:::::} Er·r·or·
Er·r·or· Code

~IODEL. I I TRSDOS TECHNICAL. INFORMATION PAGE 106

VDCHAR (»Video Character")--Function Code 8

This routine outPuts a character to the current cursor Position. It
is a Scroll Mode routine, as described above~

Control Codes not listed below are i9nored~

HEX
KEY CODE FUNCTION

F1 01
F-·:~ 02
Bf\SP 08

TAB 09

CTRL.-,J 0A

ENTER 0D
CTHL-W 17
CTHL-X 18
CTHL-Y 19

CTHL-Z 1A

ESC 113
<-~ !C
·-.> :tD

Entr-·..-· Conditions

Cur·sor· on ..
Cur·s.or· off ..
Moves cursor back one position and blanks the
character at that Position.
Advances cursor to next tab Position .. Tab
Positions are at 8-byte boundaries,
8, 16• 24. :32· ..•
Line feed--cursor moves down to next row,
same column Position.
Moves cursor down to be9innin9 of next line.
Erases to end of line' cursor doesn't movB.
Erases to end of screen' cursor doesn't move.
Sets NoPmal DisplaY mode (white on black>~

Remair,s NoPmal till ~eset bv PP09~amme~.
Sfrts Reverse DisPlaY mode (black on white>~
Remains Reve~se till ~eset by P~o9rammer~
Erases screen and homes cursor (position 0>~
Moves cursor back one Position.
Moves cursor forward one Positionu

8 = ASCII code for characte~ to be outPut to the DisPlay;
character codes MUST be in the ran9e <0,127>~

A = 13

NZ => Er·r·or·
A ::::: Er-r·or- Code

•

•

•

•

•

•

i"IODEL I I TRSDOS TECHNICAL INFORMATION PAGE lf2l7

VDLINE (''Video Line")--Function Code 9

This ~outine writes a buffer of data to the DisPlay, startin9 at the
current cursor Position. It is a Scroll Mode routine.

rhe buffer should contain ASCII codes in the ran9e <0,127>.

Same as. fol' VDCHAii.

Entr···..- Conditions

<HL) - Be9innin9 of buffer containing characters to be
sent to the DisPlav

B = Number of characters to be sent
C =End of line character. This character will be sent

to the dis.Plav after the buffer text.
A ·- 9

E::<it Cor,diti•)fiS

NZ => Er·r· or·
A ~- Er·r-or· Cod.e

In
p.

case of an error:
Number of characters NOT disPlaved,
one causin9 the error

C = Character causing the error

including the

UPon return' the cursor is alwavs set to the Position following the
last character disPlaved •

t'IODEL.. I I T RSDOS TECHNICAL.. INFORMATION PAGE 1.08

VDGRAF <"Video G~aPhics'')--Function Code 10

This function disPlavs a buffer of characters, startin9 at a
sPecified row and column~ It is a GraPhics Mode routine <the cursor
'•wraPsu the DisPlav).

DisPlaYable Characters
This routine lets YOU disPlaY the 32 9raPhics characters (and their
reverse ima9es). The codes are numbered from 0 through X'lF', and
are Pictured in the Operator's Manual. Codes X'20' through X'7F' are
disPlayed as standard ASCII characters.

In addition' several sPecial control codes are available:

HEX
CODE

0F9

IZIFA

0FB
0FC

0FD

0FE

IZIFF

FUNCTION

Sets. l\lr)r·m,'Ell (Whii:e (•0 Black) modi:<. Cur~.r)r· does 0(1'1:

advance.
Sets Reverse <Black on White) mode. Cursor does
not advance. Reverts to Normal on return from each
9r·aPhic~. wr·it-e.
Homes cu~sor <Row 0, Column 0).
<- Moves cu~sor back one sPace. Col.=Col-1.
When cplumn equals 79, cu~sor "w~aps" to Col. ~
or1 P~-ecedi~g ~ow.

->Moves cursor fo~ward one sPace. Col.=Col.+l.
When column equals 0, cursor· w~aPs to Col. 79
on next ~ow down.

(up a_row) Moves cursor UP one row.
Row=How-1. 11 Wr·aps" to Row :23 when Row::::llJ ..
v (down a~robJ) Moves cu~so~ down one row ..
Row=liow+ 1 D II Wr·af~s n up 1:0 Row 0 whf:1fl Row=2;':"S ..

At exit, the curso~ is alwavs set to the GraPhics Position
immediatelY after the last character disPlaYed. If the Buffer len9th
was zero, the cursor is set to Position sPecified in BC re9isters.

Erttr·y Conditions

B = Row on scr·een to start disPlaYing t~.e buffer'
B < 24 .. If B > 23, then B mod 24 is used as
r·ow Ptt'.:.ition.

C - Column on screen to start disPlavin9 the buffer.
In 80 chararcter/line mode, C < 80.
For C > 79, C mod 80 is used as column Position.
In 40 character/line mode, C < 40.
For C > 39, C mod 40 is used as column Position ..

D = Length t:t'l= buf·fer·, in r·an9-..::: <0,255>
<HL) = Be9innin9 of text buffe~~ The buffer should contain

codes below X'80 1 o~ the SPecial control codes above
X'FB'q AnY value outside these ran9es will cause an

A
err·ora
10

•

•

•

•

•

•

MODEL II TRSDOS TECHNICAL INFORMATION

NZ =>Error <Invalid character sent)
A = Er·r-or- Code

PAGE 112l9

~IODEL. I I TRSDOS TECHNICAL. INFORMATION PAGE 1111)

VDREAD <"Video Read">--Function Code 11

l'his routine reads characters from the Video DisPlaY into a
SPecified buffer. It is a Grahpics Mode routine; when it reads Past
the last column, it wraPs back to column 1 on the next row. When it
reads past column 79 on row 23, it wraPs back to row 0, column 0.

Reverse (black on white) mode characters are r·ead in as ASCII codes
Just like their Normal counterParts; reverse mode is indicated when
the most si9nificant bit (bit 7) is set.

This routine can also be used Just to locate the cursor (see
bel ow>,

Entr··"·· Condi1:ion:~.

B = Row on screen wher·e read starts, B < 24.
If B > 23, then B mod 24 is used as row Position.

C - Column on screen where read starts.
In 80 chararcter/line mode, C < 80.
Fo~ C > 79, C mod 80 is used as column Position.
In 40 character/line mode' C < 40.
Fo~ C > 39, C mod 40 is used as column Position.

D = Len9th of buf1=er-, in r·an9e -:::0,255> .. If D := ((), then
Band C a~e i9nored. Current cursor position will be
returned as row' column in BC re9ister Pair.

CHL.l = 8e9innin9 of text buffer
A = 11

E::-dt Conditions

BC = Current cursor Position, B = row, C = column. CURSOR
postion at exit is the same as at entrv--VDREAD does
not chan9e it.

NZ = Er·r·or·
A = Er-ror· Code

•

•

•

•

•

•

I"IODEL. I I TRSDOS TECHNICAL INFORMATION PAGE 111

VIDKEY--Function Coda 12

This routine sends a PromPtinG messa9e to the DisPlaY and then waits
for a line from the Kevboard. It is a Scroll Mode routine' combining
the functions of VDL.INE and KBL.INE.

The routine writes the specified text buffer to the DisPlay,
starting at the current cursor Position. The text buffer must
contain codes< X7 80,. Refer to VDLINE for a list of Received
Control Codes and other details.

After the Video write, the cursor will be Positioned immediatelY
after the last character disPlaved. <To move it to another position,
control codes can be Placed at the end of the text buffer.)

Next' the routine 9ets a line from the Kevboard.

NOTE
Before starting the line inPut, all PreviouslY
stored keYstrokes are cleared.

Refer to KBLINE for a list of Received Cont~ol Codes and other
details.

Ent~··t Condition~.

<HL) = Be9innin9 of text buffer containing disPlaY messa9e.
B = Number of cha~acters to be disPlaYed' B in the ran9e

(({), 255>
c

<DEl
= L.an9th of KaYbord inPut field, C in the ran9a (0o255>
= Be9innin9 of text buffe~ where KeYboard inPut will

be ~-t•)r·ed

A = 12

E::-::it Condition::.

NZ
A

::::> Er·r·•:•r <Illa9al
Er·r·•)r· Code

value in di ~-Pl a .. , .. buffer·)

If Z is set (no error), then re9isters B and C contain:
B -- Number of characters inPut from the KeYboard,

including car·rria9e return' 1t anY
C = Kevboard line termination. If C = 0, then inPut buff~r

was filled. Otherwise C =control character that
terminated the line (carriage return)

If Z
8 =

c =

is not set (error), the re9isters B and C contain:
Number of characters not disPlaYed, includin9 the
causing the err·or
Character causin9 the error

one

i"IODEL. I I T RSDOS TECHNICAL. INFORMATION PAGE 112

CURSOR--Function Code 26

This routine tu~ns the cursor disPlaY on or off. TRSDOS keePS track
of the current cursor Position whether it is on or off.

Entr··y· Condition~.

B = Function Switch. If B = 0 then cursor will be
turned off. If B <> 0 then cursor will be turned on.

A = 26

•

•

•

•

•

•

MODEL II TRSDOS TECHNICAL. INFORI"IATION PAGE 113

SCROLL--Function Coda 27

This ~outine lets vou Protect a Portion of the DisPlaY from
scrollin9. From 0 to 23 lines at the TOP of the disPlaY can be
Protected; when scrollin9 occurs' onlY lines below the Protected
area will be chan9ed.

B
A

= Number of lines to be protected, in ran9e <0,23>
27

'

~IODEL I I TRSDOS TECHNICAL INFORI"IATION

4.4 Lin<'? Pr·int<'?r·

SuPe~visor Calls described in this section:

Fun~:i:ir:rn

Code Name PurPose

17
18
19

PRINIT
PRCHAR
PRLINE

Initializes the Line Printer Driver.
Send a character to the Printer.
Send a line to the Printer.

PAGE 114 •

•

•

•

•

•

MODEL II TRSDOS TECHNICAL INFORMATION PAGE 115

PRINIT !"Printer Initialization"l--Function Code 17

This routine initializes the Line Printer driver. It is
automatically called when the svstem is initialized. You don,t need
to call it unless:

You want to chan9e some of ttre Paraffieters.
The Printer was not available <ready) when the Svstem
ltJa p. in it i a 1 i zed.

When initialized bv the Svstem,
Page Len9th Clines to a page)
Printed Lines per Pa9e

Automatic Form Feed

the following Parameters are set:
66
60
Yes

Line len9th (Characters/Line) ': 132

NOTE
Linefeeds are done bv the Svstem durin9
initialization. You mav want to reset the PaPer
before usin9 the Printer for the first time.

Entr··y· Conditions

8
c

Page Len9th 166 is standard)
Printed Lines Per page 160 is standard).
If C = 0, no automatic form feed is done.
Otherwise, automatic form feed is done after Clines
have been Printed.

D • Maximum number of characters in a line
1132 is standard)

A -· 17

E::-::i·t Conditions

NZ
A

==> Er·r·1)r·
Er·r·or· Code

i"IODEL I I TRSDOS TECHNICAL INFORMATION

PRCHAR c••Print Character"l--Function Code 18

This routine sends one character to the Printer.

8
A

NOTE
Most Printers do not Print until their buffer
is filled or a carria9e return is receivedu

ASCII code for character to send
18

E::-::it Cc•nditions

NZ
A

==> Er-r-or­
Err·or· Code

PAGE 116

•

•

•

•

•

•

MODEL. II TRSDOS TECHNICAL. I NFORI"IA TI ON PAGE 117

PRLINE C"Print Line"I--Function Code 19

This routine sends a line to the Printer. The line can include
control characters as well as Printable data. A tab character
embedded in the buffer will cause the Printer to skiP over to the
next 8-bvte boundarY.

(HL) = Start of text buffer containing data and controls to

B
c

A

NZ
A

-·
·-

·-

=>

send tc.' Pr-inter·
(_en9ttl of buffer Cnumt,er of characters to send)
Con·trol character <anY character) to send after last
character in buffer
1'1

Er·r·c.·r·
Er·r-or· Cod-e

i"IODEL I I TRSDOB TECHNICAL INFORMATION PAGE 118

<M2DOS8 8/6/79)

SuPervisor calls described in this section:
Function

Code

33
34
35
411)

Lf 1
42
43
4.!.f

Name

LOCATE
HEADNX
DIHHD
OPEN

f\ILL
CL.OBE
WHITNX
POBNWH

FIJnctic•n

Returns the current record number~
Gets next record (Sequential access>
Reads SPecified recor-d <Direct Access>.
Sets UP access to new or existing
fil.;,.
Deletes the file from the directorY.
Terminates access to an OPen file~
Writes next record (Sequential Access).
Writes sPecified record <Dir·ect Access).

•

•

•

•

•

•

MODEL II TRSDOS TECHNICAL INFORMATION PAGE 119

OPEN - Function Code 40

This one call handles both the creation and 0Penin9 of files.

A 9iven file can onlY be OPen under one Data Cont~ol Block at a
time. Because of the versatile file Processin9 routines, this one
DCB is sufficient to handle the various I/0 aPPlications.

Entrv Conditions for OPEN

<DE)
(HL)

A

= 60-bvte Data Control Block (see below).
- 11-bvte Parameter List (see below).
-- 40.

E::-::it Conditir)nS.

NZ :::::) Er-r·<~r.

A = Er·r·or· Cc,de.

Before calling OPEN' vou must reserve space for the Data Control
Block, Parameter List, Buffer Area and Record Area, as described
bc?-1 C1 t.IJ •

Data Contr·ol Block <60 bvtes)

The Data Control Block <DCB) is used bv the Svstem for file access
bookkeePing. You will also use it to Pass the file sPecification for
the file You want to OPen, as follows:

Before callin9 OPEN' Place the file specification at the be9innin9
of the DCB, followed bY a carria9e return. See ChaPterr 1, "File
SPecification" for details.

For examPle ($ si9nifies a carria9e return):

CONTENTS OF FIRST BYTES OF DCB BEFORE OPEN
:-----------·---:
: F I L E N A M E I E X T . P A S S W 0 R D : D <DISKNAMEl$:
:--:
While a file is OPen, the filesPec is rePlaced with information used
bv the Svstem for· bookkeePing. When the file is Closed, the ori9inal
filesPec (excePt for the Password) will be Put back into the DCB.

I MPOFHANT NOTE
Do.not ever modify anY Portion of the DCB while
the file is 0Peng If -·{OIJ do, the r·esul t:=. wi 11 be
unpr-edictable ..

~IODEL I I TRSDOS TECHNICAL INFORI"'ATION PAGE 1212)

Parameter List (11 bvtes)

This list contains information TRSDOS needs to create or access the
fil<io::

CONTENTS OF PARAMETER LIST
:--------g--------:-------:-----:-----:---~--:---·----:------:
: BUFADR : RECADR : EODAD : R/W : RL : F/V : lll/1/2 : 12)12)

:---------:--·--·-·---:-------:-----:-----:-----:-------:------:

BUFADR !BUFFER ADDRESS). This two-bvte field must Point to the
be9innin9 of the Buffer Area~

The Buf'ft•r· IH·E<a i~. the sPace TRSDOS wi 11 u::.e to pr·t;11:ess a 11 file
accesses. If sPanned records are Possible, You must reserve 512
bvtesu If no sPannin9 is Possible' reserve onlY 256 bvtes.

With Fixed Len9th Record files, sPanning is onlY required when the
record len9th is not an even divisor of 256~ For examPle, if the
record len9th is 64, then each PhYsical ~eco~d contains four ~ecords
exactly, and no sPanning is r·e9uired. In this case' reserve onlY 256
bvtes for Processin9u

However' if the record len9th is 24 (not an even divisor
then ~.,)me r·eCt)t·d~. wi 11 ha.ve to b~::.- ~.p·~:tnned. In thi~. case,
need to reserve 512 bvtes.

of 256) ~
Yt)U t.t.li 11

With Variable Len9th Record files, You must alwaYs reserve 512 bvtes
for Processin9u This is because sPannin9 maY be re9uired, dePending
on the lengths of the individual records in the fileu

RECADR !RECORD ADDRESSI. This two-bvte field must Point to the
be9innin9 of vour Record Area.

For disk reads, this is where TRSDOS will Place the record. For disk
writes' this is where YOU Put the record to be written.

ExcePtion: Fo~ FLR files with a record len9th of 256, this address
is not used. Your recor·d will be in the buffer area Poir1ted to bv
BUFADI~.

For Fixed Len9th Record files with record length not equal to 256,
this buffer shotJld be the same size as the record len9th. For
Variable len9th Files' this area should be lon9 enou9h to contain
the lon9est record in the file (including the len9th-bvte). If You
are not sure what the lon9est record will be, ~eserve 256 bvtes.

EODAD lEND OF DATA ADDRESS!. This two bvte field can be used to 9ive
TRSDOS a transfer address
durin9 an attemPted ~eadc

to use in case the end of file is reached
If EODAD = 0 and end of file is reached,

•

•

•

t'IODEL I I TRSDOS TECHNICAL INFORMATION PAGE 121

• the SVC wi 11 r·ei:ur·n tsJith the end of ·file er·r·op code in r·e9i::.ter- A.

•

•

R/W IREAD OR WRITEl. Put an ASCII "R" here to allow read-access
onlv; Put an ASCII ''W'' here to allow read and/or write access.

RL <RECORD LENGTH). This one-bvte field specifies the record len9th
to be useda Zero indicates a record length of 256. For Va~iable
Len9th record files, this field is i9nored. If the file alreadv
exists, and the Creation Code is 0, the Svstem will suPPlY the
correct RL value, re9ardless of what vou Put there.

V/F (Variable or Fixed l_en9th). This one bvte field contains either
an ASCII "V'' for Variable or an ASCII "F'' for Fixeda Once a file has
been created, this attribute cannot be changed. If the file alreadv
e:=<ist.:::., and th€.• Cr-eation C<•de is 0, the Sv::.tem wi 11 ~-UPPl·y· the
corr~ct F/V value' re9ardless of what vou Put in the Parameter
1 i~.t.

0/1/2 (CREATION CODEl. This one bvte field contains a binarY number
0, 1, or· 2.

:-------:----------------------------------·-------------:
:CODE MEANING
:--·-----:---:

'

OPen the file onlY if it alreadv exists~
Do not c~eate a new file in di~ectorv.
Record Len9th and end of file are NOT
r·e~.et.

:-------:---:
1 Create a new file only; do not OPen an

existing file. Record Len9th and end of
file are set at Open time.

-------:---:
OPen existin9 file; if file not found,
create it. Record Len9th and end of file
ar·e r·E·s.et.

:-------:-----------------------·------------------------:

00 lEND-OF-LIST MARKER). Alwavs Put a binarY zero at the end of the
Par·arn~i:er- List,.

MODEL II TRSDOS TECHNICAL INFORMATION PAGE 122

READNX--Function Code 34

This routine reads the next record after the current record~
<Current record is the last record accessed~> If the file has Just
been OPened, READNX will read the first recordu

EntrY Conditions

<DE> -Data Control Block for currentlY OPen file.
(HL) - Reserved for use in later versions of TRSDOSu
A - 34.

Exit Conditions

NZ - Error
A = Err·or Code.

UPon retur·n, vour· record is in the Record Area Pointed to by RECADR
in the Parameter list, or~ if RL=256 and record tvPe is Fixed, Your
record is in the area Poir,ted to bv BUFADR.

•

•

•

•

•

•

MODEL II TRSDOS TECHNICAL INFORMATION PAGE 123

WRITNX--Function Code 43

This routine writes the next record after the last record accessed,
that iso it writes sequentiallY. If WRITNX is the first access after
the file is OPened, the first record will be written=

NOTE
When vou write to a Variable-Length Recor·d file,
the end of file is reset to t~e last record written~
r·e9ardless of its Previous Position.

Entry Conditions

IDEl -
CHLl -

A

Data Control
Reserved for

- 43u

Block for cur·r·entlv ~Pen
use in later versions of

file.
TRSDOS.

Before callin9 WRITNX, Put Your r·ecord ir1 the recor·d area Pointed to
bv RECADR in the Parameter list, or, if LRL=256 and record tvPe is
Fixed, Put r·ecord in area Pointed to bv BUFADRu

Exit Conditions

NZ - Error.
A => Err·or Code=

MODEL II TRSDOS TECHNICAL INFORMATION PAGE 124

DIRRD--Function Code 35

This routine reads the specified record, allowin9 direct accessw

NOTE
With VLR files, vou can onlY use it to
read the first record or to read the end
of file~

EntrY Conditions

(DE> -Data Control Block for currentlY OPen file~
BC ·- Desired record number.

BC = 0 means Position to be9innin9 of file.
BC = X'FFFF' means Position to end of filen

<HL) = Reserved for use in later versions of TRSDOSa
A = 35

Note: In a future release of TRSDOS, <BC) = address of a four-·byte
value sPecifvin9 a record number.

Exit Conditions

NZ
A

=> Error a

Error Code~

Upon return, the r·ecord will be in the Record Ar·ea Pointed to bY
RECADR in the Parameter list, or, if RL=256 and record tYPe is
Fixed, vour reco~d is in the a~ea Pointed to bv BUFADR.

•

•

•

•

•

•

MODEL II TRBDOS TECHNICAL INFORI'IATION PAGE 125

DIRWR--Function Code 44

This routine writes the sPecified record. It writes the record into
the sp-ecifi.ed r·ecor·d po~.iti,)n o·f the ·file ..

NOTE
For VLR files' vou can on'fv Position
to the be9innin9 or end of file~ When
vou write to a VLR file, the end of file
is reset to last recor·d written.

Entr···,·· Conditit)n~.

(DE) ::::

BC .•.

(Hl..) ;::~

A ~

Data Control Block for currentlY OPen file.
Record number vou want to write ..

BC = 0 means write first record in file.
BC = X7 FFFF? means write record ~t end of file~

Reserved for use in later versions of TRSDOS ..
lt4

Before callin9 DIRWR, Put the record into the Recor·d Ar~a Pointed to
bv RECADR in the Parameter List' or, if RL=256 and record tvPe is
Fixed, vour re~ord is in the area Pointed to bv BUFADR •

Note: In a future release of TRSDQS, CBC) = address of a four-bvte
value SPecifvin9 a record number.

E}::ii: Condii:ions

NZ "'> Er·r·(•l"'.
A = Error Code •

MODEL II TRSDOS TECHNICAL INFORMATION PAGE 126

LOCATE--Function Call 33

This function returns the number of the current r·ecord, i~e~t the
number of the last record accessed. You can use this call onlY with
Fixed Len9th Record files~

EntrY Conditions

<DE> -Data Control Block for· currentlY OPen file~

CHL> - Reserved for use in later versions of ·rRSDOS.
A = 33

Note: In a future release of TRSDOS, <BC) - address of a four-bvte
value sPecifvin9 a record number.

Exit Conditions

BC - Current Record Number
NZ => Error

A - Error Code

•

•

•

•

•

•

~10DEL I I TRSDOS TECHNICAL. INFORMATION PAGE 127

CLOSE--Function Code 42

This routine terminates access to the file. If there are records in
the Buffer Area not vet written, thev will be written at this time.

Entr-····· Condit i •:tns

IDEl -Data Control Block for currantlv OPen fila.
A = 4:2

E::.::i t Conditions.

NZ ='> Err·c•r
A = Er·r-or· Code

UPon return, the filesPec (except for the Password) will be Put back
into the DCB •

i"IODEL I I TRSDOS TECHNICAL INFORMATION PAGE 128

KILL--Function Code 41

This ~outine deletes the specified file from the dir·ectorv. A file
must be Closed before it can be killed.

Entr··y· Conditions

<DE> =Data Control Block, containing standard TRSDOS
filesPec (see illustration in descriPtion of OPEN>.

A -· Lfl

Exit Condii:ions.

NZ => Et··r·c·r·.
A = Error· Code.

•

•

•

•

•

•

MODEL. II TRSDOS TECHNICAL. INFORMATION

M2DOS'i f:l/6/79

4.6 ComPutational

SuPe~visor calls described in this section:

Function
Code

6
20
21

23

24

Narne

DELAY
F!ANDOM
BINDEC

STCMP
MPYDIV

BII\IHEX

DATE
PARSER

STSCAN

Function

P~ovides a delav-looP
Provides a random number' ran9e (0,254>
Converts binarv to ASCII-coded decimal'
and vice v.er·sa
Compares two text strin9s
Performs 8 bit * 16 bit multiPlication
and 16 bit I 8 bit division
Converts binarY to ASCII-coded
hexadecimal, and vice-versa
Sets or returns the time and date.
Finds the alPhanumeric Parameter
field in a text strin9
Looks for a specified strin9 inside
a i:<? >cl: b \J f 1' e r·

PAGE 129

I"IODEL. I I TRSDOS TECHNICAL. INFORMATION PAGE 1312l

DEl-AY--Function Code 6

This routine Provides a delaY routine, returnin9 control to the
calling Pro9ram after the sPecified time has elaPsed~

E:ntr··y· Cor1ditions.

BC =

A

DelaY MultiPlier.
426 milliseconds.

6.5 * (BC
6

If BC = 0, then delaY time will be
I1:: I:?.C > /Zi, then dele:·..- time uJ:ill b~:=

- 1) + 22 m i c: r· o s-. e con d S"-

•

•

•

•

•

•

MODEL II TRSDOS TECHNICAL INFORMATION PAGE 131

RANDOM--Function Code 20

This ~outine returns a random one-bvte value. To extend the cvcle of
rePetition, the instantaneous time/date are used in 9eneratin9 the
number-.

You Pa~.~. the r·'.:,utine a 1 imit value; the value retur-ned is. in the
ran9e <0,1irnit-1>. For examPle, if the limit is 255, then the value
returned will be in the ran9e (0,254>.

Entr-··{ Conditionz.

B
A

c

Limit value.
20

Random numb~:r ..
For B > 1, number returned is in ran9e (0,8-1>.
For B = 0 or 1, number returned = 0

MODEL. II TRBDOS TECHNICAL. INFORMATION PAGE 132

BINDEC--Function Code 21

This routine converts a two-bvte binarv number to ASCII-coded
decimal, and vice versa. Decimal ran9e is <0,65535>.

Entrv Conditions ·

B = Function Switch.
If B = 0, then convert binarv to ASCII decimal.
If B not 0 then convert ASCII decimal to binarv.

Contents of other re9isters when 8 = 0 Cbin-)dec):
DE = Two-bvte binarv number to convert

<HL> = 5 bvte area to contain ASCII coded decimal value uPon
r-eturn .. The field wi 11 con·tain decimal di9t'l:s
CX'30'-X'39') leading zeroes on the left as necessarY
to fill the field, f,)r· e>~amPle, i:he number· 21 toould
be: IZJ012l21.

Contents of other re9isters when 8 is not 0 (dec->bin):
CHL.l = 5-bvte area containing ASCII decimal value to be

converted to binarv.
A 21

E::-~it Conditions

CHLl = Decimal value
DE = Bina~Y value

•

•

•

•

•

•

MODEL II TRSDOS TECHNICAL. INFORMATION PAGE 133

BINHEX--Function Coda 24

This routine converts a two-bvte binarY number to ASCII-coded
haxadacimal, and vice versa. Hexadecimal ran9a is <G,FFFF>.

Entr······ Conditions

B • Function Switch.
If B = 0, then convert binarY to ASCII hexadecimalu
If B is not 0, convert ASCII hexadecimal to bina~v~

A • 24

Contents of other re9isters when B = 0 (bin->hex):
DE = Two·-bvte binarY number to convert

<HL) = 4 bvte area to contain ASCII coded hexadecimal value
UPon return~ The field will contain hexadecimal di9its
with leadin9 zeroes on the left as necessary to fill
the field, for examPle, the number X'FF' would be:
GGFF.

Contents of other re9isters when B is not 0 (hex->bin):
IHL.I • 4-bvta area containin9 ASCII hexadecimal value to ba

converted as described aboveu

Exit Condii:ions

IHL.l - Hexadecimal value
DE = Binarv value

MODEL II TRSDOS TECHNICAL INFORMATION PAGE 134

MPYDIV (1'MultiPlY Divide'')--Function Code 23

This routine does multiPlication and division with one 2-bvte v~lue
and one 1-bvte value.

Entry Conditions

B Function switch.
If B = 0 then multiPlY.
If B is not 0 then divide.

A = 23

For multiPlication:
HL = MultiPlicand

C - MultiPlier

Fo~ division:
HL = Dividend

C = Divisor

Exit Conditions

HL
A
c

=
=
=

Result (product HL • Cor ~uotient HL/Cl
Overflow bvte (multiPlication onlY)
R~mainder (division onlY)

Status bits affected bY division:
CarrY fla9 set if dividing bY zero. Divide not attemPted.
Z fla9 set onlv if the 9uotient is zerob

Status bits affected bY multiPlication:
CarrY Flag set if overflowa
Z flag set onlY if result is zeroa

•

•

•

•

•

•

MODEL II THSDOS TECHNICAL INFOHI'1ATION PAGE 13~j

STCMP--Function Code 22

This ~outine cornPa~es two strin9s to determine their collating
se·::::~uenci!'.

Entr···..- Conditions

CDEI - First strin9.
CHLI • Second strin9.

BC - Number of characters to comPare.
A - 22

E::<it Condition~-

Status bits indicate results, as follows:

Z Fla9 set indicates strin9s are identical~
NZ indicates strin9s not identical

Carrv Flag set indicates first strin9 (pointed to bv DE> Precedes
second strin9 <HL) in collating sequence.

Other· re9ister contents:
A -· First non-matchin9 in fir·st ~-tr·in9 ..

When strin9s are not equal, YOU can 9et further information from the
Prime re9isters' as follows:
<HL 7

)- Address of first non-matchin9 character in second
::.trin9.

<DE 7
) =Address of first non-ffiatchin9 characte~ in fi~st

si:r-in9 ..
BC 7 = Nuffibe~ of cha~acters r·emaining, including the non­

matchin9 character- ..

MODEL II TRSDOS TECHNICAL INFORMATION PAGE 136

DATE--Function Code 45

This r·outin~ sets or returns the real-time (time and date)u l'he data
can be returned as a 26-bYte ASCII strin9 containing 8 fields, as
illustrated below (numbers refer· to byte lengths of eact1 field)Q

~--------:-----~--------:----~--------:-------~-----:---------~
: NAME OF: MON.: DAY OF : YR : DAY OF : TIME : MON : DAY OF

DAY MON. YEAR # : WEEK
:-·----·---:------:--------:-----~---------·:------:-·-·----:--·-·-·-·---=

3 4 8 2 1

CONTENTS OF TIME/DATE STRING
(Len9th of field is shown under each field)

ExamPle Time/Date string:
SATAPR28197911813.20.42045

RePresents the data ''Saturday, APril 28, 1979, 118th dav of the
Year, 13.20.42 hou·rs, 4th month of the vear' 5th dav of
<Periods are used instead of colons, since theY 7 re more
easilY entered from the keYboard~>

NOTES
DAY OF WEEK Field: Monday is DaY 0"
l"he date calculations are based on t~1e

Julian CalendarH

EntrY Conditions

B Fur,ction Switch~

If B ·- 0 (Get time/date):
(HL> - 26 bYte buffer wher·e date/time will be stored~

If B = 1 (Set date):
(~1L) - 10 bYte buffer containing date in this for·m:

MM/DD/YYYY

If B- 2 !Set time):
<HL) - 8 bYte buffer containing time in this form:

HH.MM.SS

the weeku

•

•

•

•

•

•

I"IODEL I I TRSDOS TECHNICAL. INFORMATION PAGE 137

PARSER--Function Code 46

This 9ene~al-PU~Pose routine »pa~ses" (analvzes) a text buffer into
fields and subfields. PARSER is useful for analvzin9 TRSDOS command
lines (including kevword commands, file specifications' kevword
oPtions and Parameters. It can also be used as a fundamental routine
for a comPiler or· text editor. This versatility der-ives from the
9eneralitv of the routine.

Bv necessity, the descriPtion of PARSER is rather 1on9 and detailed.
In actual use, the routine is as convenient as it is Powerful. For
example, PARSER is desi9ned to allow rePetitive calls for Processing
a text buffer; on exit from the routine' Parameters for the next
call are all readilY available in aPP~OP~iate ~e9isters.

The routine has Pre-defined sets of field-characters and seParators;
vou can use these or re-define them to suit Your aPPlication.

In 9eneral, a field is anY strin9 of alphanumeric characters
<A-z,a-z,0-9) u'ith no embedded blanks. Fields are delimited bY
seParators and terminators' defined below. For examPle' the line:

8AUD=300o PARITY=EVENo WORD=7
contains 6 fields: BAUDo 300• PARITY, EVEN, and 7 •

However, a field can also be delimited bY Paired quote marks:
''field" or 'field'

When the -=tuote marks are used, ANY characters, not Just
alPhanumerics, are taken as Part of the field. The 9uote marks are
not included in the field. For examPle, the line:

'DATE 107/11/791'
will be interPreted as one field containing everYthing inside the
9U(t·l:es ..

When a 9uote mark is used to mark the sta~t of a field, the same
tYPe of quote mark must be used to mark the end of the field. This
allow~. ''f'O'~' to incl'ude -=tuotes ir1 a field, for· e::.::amPle:

"X'FF00' 11

will be Parsed as one field containing EVERYTHING ir1side the double
quotes " ", including the sin9le quote marks '

A sepa~ato~ is anY non-alPhanume~ic cha~acter. PARSE will alwavs
stop when a seParator is encountered, EXCEPT when the seParator is a
blank IX'20'l. Leadin9 and trailin9 blanks are i9nored. After
trailin9 blanks, PARSE stoPs at the be9innin9 of the next field, or
on the first non-blank sePa~ator.

You can also define terminators, which will stoP the parse
re9ardless of whether a field has been found. Unless YOU
sPecificallY define these' PARSE will onlY stoP on non-blank
~-ePar·att)r·s ...

SeParators and terminators have the same effect on a Parse; the onlY
difference is in how theY affect the F <Fla9) re9ister on exit.

MODEL I I TRSDOS TECHNICAL INFORI'1ATI ON PAGE 138

To re-define the field, sePa~ator, and terminator sets

If you need to chan9e the field and separator sets, or define
terminators, vou can Provide three chan9e-·lists via a List Address
Block' exPlained later~

Entr·Y Condition~.

IHLl = Start address of text buffer
IDEl - Address of List Address Block.

DE= 0 indicates no lists are to be used.
C = Maximum len9th of Parse
A -· L>6

E>::ii: Conditions

(HL) =Field-Position Pointer~
<HL)- First bvte of field, if a delimited field was

f.:•und ..
CHL) -Terminator or· non-·blank seParator if no field

wa~. found ..
<HL) = Last bvte of buffer if Parse reached maximum

len9th.
8 =Actual len9th of field, excluding leadin9 and trailing

A =

c -·

D =

E --

blanks.
Character Precedin9 the field Just found. If B = 0
A = X'FF'
Number of bvtes remainin9 to Parse after terminator or
seParator~ Note that trailin9 blanks have been Parsed.
SeParator or terminator at end of field.
If D = X,FF, then Parse stoPPed without finding a
non-blank sePar·ator or termin~tor.
DisPlacement Pointer for next Parse call.
Add E to HL to 9et:
a) Be9inning address of next field, or
b) Address of bv~e following the last bYte Par-sed.

Note that if Parse reached maximum length, then
E + HL =Address following end of text buffer.
If Parse did not reach maximum len9th, and E = 1,
then E + HL =Address following sePar·ator or
ter-mi na i:or·.

Status bits CF re9ister) affected when Parse did NOT r·each
reach maximum len9th:
Z fla.9•

Z (set> if Parse ended with a seParator~

NZ (not set) if Pa~se ended with a terminator~
C flag:

C (set) if ther·e we~e trailing blanks between end of
field and next non-blank seParator or terminator~

NC (reset--not set) if there were no trailing blanksu

•

•

•

•

•

•

MODEL II THSDOE TECHNICAL INFOHI"'ATION PAGE 139

List Address Block

The List Address Block is six bvtes 1on9 and contains two-bvte
addresses (lsb~msb) fo~ three change-lists:

List 1: Characters to be used as terminators
List 2: Additions to the set of field characters
List 3~ Deletions from the set of field characters, i.e.,

alPhanumerics to be interPreted as seParators.

~ach list has the following form:
1st bvte : 2nd bvte : 3rd bvte ------------ : n+1 bvte

:----------:----------:----------:--------------:----------
:n, number first
:of char's :character
:in list

second nth
:char·acter : ------------- : character:

:-·----·--·--:
Noi:{?S:
1. There are three wavs to indicate a null list:

a) Set the character-count bYte (n) equal to zero.
b) Set the Pointer in the List Address Block to zero.
c) Set DE=0 if YOU aren't 9oin9 Provide anY lists"

2. Characters.are stored in lists in ASCII form •
3.. I of a c h ·3. r· act e r- aPPear~- i n m (1 r· e than Q n e 1 i s i: , i ·t w.i 1 1 have

the character·istics of the fir·st list that contains it.

Here's is a tYPical List Address Block with its associated lists.
Assume that on entrv to PAHSER, !DEl = X'8000'.

~==========~=======================================:

: Address : Len9t~
He::..::>B.dec ima.l
Contents ' :===

X'f.3000'
,., .. :: x • 9tzmw I s.t;a.r·t of I ist 1l

X' 800;::• 2 X'9010' I s.tar·t of 1 i s.t 2)
X' B00't'

.~ ..
"' X'90:20' (s.tar-t o·f .I ist 3)

===:
X'9000' 1 x·' 04' (4 char··'s in 1 i :;. t 1)
X' 901ZJ1' l X' 0D' (car·r·ia9e return)
X ' 'i'fllllJ2' l. X' 7B' (l<'?"l't b r·i:"iC~:? ()

X'9003' 1 X' 7D' I r·i9ht br·ace))

X' 'i004' 1 X'29' (left P•::tre n))

==~==·==:
: X' 'i!1HI1l' 1 X' 03' (3 char-'s in list 2)

X ' 9011 ' 1 X' 3F' (U ? II)

X' 911l12' 1 X, 40, (II @II)

X' 901:1' 1 x, 2::r (u # u)

:==:
1 X'llJ0' (null listl

:====~===:

I"IODEL I I T RSDOS TECHNICAL INFORMATION PAGE 14·0

SamPle P~og~arnmin9

l'he following code shows tYPical rePetitive uses of PARSER to break
UP a Par~meter list.

;-------------PREPARE FOR PARSING L..OOP-----------------------
L..D CoMAXLEN C = Maximum len9th to Parse
l..D E, 0 For· initial call to i'lXTFl..D
l..D HLoBUFFER CHLl = string to Parse

;-------------PARSE LOOP-------------------------------------
PARSE CALL NXTFLD Routine to call PARSER

CALL HANDLR Routine to handle new field
JR NZ.NXTRTN Go to next routine if

LD
OR
JR
LD
CP

N:Z, PAI'~EE
A,0FFH
D

,JR Z, ERI~
,JR NXTRTN

;-------------FIELD-HANDLING
HANDLR PUSH AF

Parsed ended on terminator·
Else 9et new max len9th
I~. it Zf~ro?

If not9 then continu{?

If D=0FFH then no seParator
at end of buffer.

So 9o to error routine
Else, tt1en do next r·outine.

ROUTINE------------------------­
Must save status re9isters
and anv other re9isters
t~dll be chan9ed ..

Processing code 9oes here ...
POP AF

HET

Restore AF (and other
re9isters saved at entrv)

;-------------CALL TO PARSER---------------------------------
NXTFLD LD [),0

ADD HL,DE
LD DE,LAB

LD
RST
HET

Zer-o msb of DE:
CHLl = where to start Parse
CDEl =List address block
If DE=0 then no lists used.
Function Ct)dE.-

;-------------PROGRAM CONTINUE!> HERE------------------------
NXTRTN EQU S

•

•

•

•

•

~K>DEL I I TRSDOS TECHNICAL INFORMATION PAGE 141

STSCAN (1'String Scan 1'l--Function Code 49

This is a 9eneral purPose st~in9 scan. It searches through a
specified text buffer for the specified strin9a This string can
consist of anv values 0-255 Cit is not strictlY alPhanumericla

E.ntr·Y Cc,nditions-.

CHL) = Text area to be sear·ched.
CDEl = ComPare strin9~

B - L.en9th of comPare strin9.
A '>9

E>::it Condition~·.

NZ =>
l '">

Str·in9 r,ot founda
Si:rin9 found ..

CHL.) = Star·t Position of matchin9 strin9 in search strin9 ..

MODEL II TRSDOS TECHNICAL INFORMATION PAGE 142

(m2dos10 8/9/79)

4.7 Serial Communications

SuPervisor Calls described in this section:

Cocle Name Function
==========~=:=~================================:==============

55

96
97
98
99

RS232C

ARCV
ATX
BRCV
BTX

s~t oP tu~n off channel A or B for serial
ir,put/output.
Channel A receive
Chanr.el A tr-ansmit
Channel B receive
Chanr.el 8 receive

These routines allow vou to use the Model II's RS-232C interface,
ct.anr.els A and Bon the back Par.el. See the Model II Qper·ation
Manual for a descriPtion of si9nals available.

•

•

•

•

•

• --.

MODEL II TRSDOS TECHNICAL INFORMATION

RS232C--Initializa RS-232C Channel
Function C(•de 55

PAGE 143

l'his routine sets UP or disables either channel A or B. Before
usin9 it, the aPProPriate channel should be connected to the
modem or other equiPment.

This routine sets the standard RS-232C Parameters, and defines a
Pair of supervisor calls for I/0 to the specified channelD When
vou initialize Channel A, SVC,s 96 and 97 are defined; when v6u
initialize Channel Bo SVC's 98 and 99 are defined. Sea ARCV,
ARTX, BRCV, and BTX.

Before re-initializin9 a channel' ALWAYS turn it off.

Entrv Conditions

<HL> -Parameter list described below.
8 = Function switch

If B is not equal to zero then turn on channel
and define I/0 SVC's for that channel.

A

If B is e~ual to zero then turn off channel and
delete I/0 SVC's for that channel. In this case
onlv the first bvte in the Parameter list
("A" or ''B'') is used.

::::: 55

Par·ameter· List

This ~ix-bvte list includes the necessarY RS-232C Parameters:

: ------------------~--------- ---~~--------~---~-~-----~---~---~-----------~--:

: CHANNEL : BAUD
: !~ATE

: WORD : PARITY : STOP
: LENGTH : BITS

: END LIST:
: MARf~ER

__ , ______________ , _________________________ ~--M-H-M--H-~---------·-------:

CHANNEL is an ASCII "A" for channel A, or "B" for channel B.

BAUD RATE is. a b i nar··y· value fr·om 1 teo 7:
1 for· 111ll1l baud
2 for· 150 baud
3 for- :300 baud
4 for· 611)0 ba.J.Jd
5 for· 1211ll1l b;;tud
6 f.:~r- 2411)11) baud
7 for· ll811ll1l baud

~JORD LENGTH i •. a b i nar--..-- value fr-om 5 to 8:
5 for· 5--b it wor·ds
6 f~~r- 6-bit U,1 0 r- d ::.
7 for· 7-bit wor-d::-
8 ft:lf' 8-·b it w c1 r· d ::.

MODEL II TRSDOS TECHNICAL INFORMATION PAGE 144

PARITY i~. an ASCII 11 E 11 for· even' 11 0 11 for· •:,dd, or· 11 N 11 for- none ..

STOP BITS is a binarY 1 for 1 stoP bit, or 2 for 2 stoP bits.

END LIST MARKER is a binary 0.

E>::ii: Conditions.

NZ =
A

Er-r·op
Error return code

For hard-wirin9 between two Model II's without a modem' use the
wirin9 arran9ement described below:

\123456
7

• •
,.4 ,. {s r 1-B ~

' j: ~ "' ~ .§ <£ lt ~ "'
}\ ~

c. ..
~

c.
" ~ .,

1- ... u '$

;'".

\ ~.l : 6

·~ •

14 ,·s ,.6 r7 ,-s fg

8

~1

5

.Q ,.

a ~1

' 9 10 11 12 ~37 • • • •
2'z {3 I• ~s J

/

:'\
9 10 11 12 131 • • • • •

2"2 2•3 14 :1s J

j) e-2..5" mo.Je
tal\ 1\ ~c. tor. C Q. "'

co .. "• c. t -t.. Clua.., n•l
A o .. B.

1> f?-"'2, S 111"-(L

oonncc~or. C"'""' L
Wl\~d ~ C£u..nM
A OV' B.

Connection Diagram, Model II (Channel A or B) to
Model II (Channel A or B). Use stranded wire, 24-gauge,
to connect two DB-25 connectors as illustrated. If wire
length exceeds 50 feet, twist lines 7 (GND), 2 (TD) and
3 (RD). Refer to the Model II Operation Manual for a
description of signals available.

•

•

•

•
MODEL.. II TRSDOS

ARCV--Channel A Receive
Function Code 96

TECHNICAL.. INFORMATION PAGE 145

This r·outine inPuts a character· fr·om the serial Channel A. In
Practice, it is analo9ous to kevboard character inPut <see
f\BCHAR) .

TRSDO~~ sets UP ARCV and ATX when vou initialize channel A (see
RS232Cl. If vou call this routine without PreviouslY initializing
channel A, vou will 9et an- error· return code of 1 <no function
~?>::i~.i:s).

Entr·Y Condition~.

A = 96

E::<ii: Conditions.

l~· :::: Ch;3.r·a.cter· found•, if an·y· ..
NZ - No character found.
Carry Fla9 Set = Modem carrier not Present when SVC was

• A :~= Communictions statu~.::

•

Bit
::----::-------------·---::
: 0 Not used.
:----::--·---------·---:

1 Not us-ed.
:~---:--:
: 2 Not used.
:----:--:
: 3 Modem car~ier was lost.

:----:---·--=
: 4 Pa~itv e~ror occu~~ed on character found in

r·-e~-:}i::.i:er- B ..

:-·---~---·--------------·--------------------·----------------:
Data lost--more than one character received
between SVC 7 s. B cor1tains last cha~acte~ ~ec'd~

:-----:------------------------------·-----------------------:
: 6 Framing error occu~~ed on last characte~ rec 7 d.
~----~--
: 7 A 11 br·f.•a.k se·=tuer11:e 11 <-e>::tf!nded null cha.r·e.cter·)

was. r·~:;;.~:e i ved ..
:-----:----------------·---·----------------------·------------:

MODEL II THSDOS

ATX--Channel A Transmit
Function Code 97

TECHNICAL INFOHMATION PAGE 146

This. f'·(~utinE• S-'2nds a cha.r·-=~.ct-ar· to thE· ::-t=:oria.'J Cha.nnt=:.-1 A~ In
Practice' it is analo9ous to video character outPut (see
\!DCHAH l .

l'RSDOS sets UP ARCV and ATX wt1en vou initialize channel A (see
HS::~::3::;:~C), If ·y·ou call thi~·- r·outinf:! IA~ithout pr·-e /iou::.'l··{ initi~1·1 it~inH

cha.nnt~l A, Y•)U wi 11 9E:t a.n E.rr·r·or· r·E:t.:ur·n codE· of 1 (no function
<?>>:i".t~.)"

Entr··y· (:(,ndition::.

B - ASCII code for char-acter to be sent
A ::::: 97

E;:{it Condition::.

NZ - No character· sent
CarrY Flag Set = Modem car-rier not Present when SVC was

e 1"1 t~:~, f'€• d n

A - Communictions status:

Mean i n9 when £(;.~ t
g----:----------------------·--·---·-·-------·---·----·------·------:
~ 0 Clear to Send <CTSl was not detected.

~----·=--·---------·-·-·----------·--··-----------------------------:
1 Not IJ~.edu

:--·--~--·----·-----------~
~ 2 Transmitter is busY.
:----~---------------------------------·---------------------:
: 3 Modem carrier was lost.
:----:---------------------------------------·-----------------:
: 4 Not used.
=-----~-----------------------·--·-·-------·-·--·----------------·---·:
: 5 Not used~
:----~---·--------------------·-----------------·------·-------:
~ 6 Not used.
:--·--:---------·--·---·-·-----·--·----·-----·-·-----------·---------------:

7 1\lt;:tt IJ5'.f!dg

~-----~------------------·------------·--------------------·----··-

•

•

•

•

•

•

MODEL II TRSDOS

BRCV--Channel B Receive
Function Code 98

TECHNICAL INFOf~MATIOI\I PAGE 147

This ~outine inPuts a cha~acte~ from the se~ial Channel B. In
Practice, it is analo9ous to kevboard character inPut (see
f\BCHAR).

TRSDOS sets UP BRCV and BTX when YOU initialize channel B (see
RS232C). If vou call this routine without PreviouslY initializing
channel B, vou will 9et an error return code of 1 (no function
e}::i~=.i:s) ~

Entr-····· Conditions.

A = 98

B - Character found, if anv~
NZ = No character found.
CarrY Fla9 Set = Modem carrier not Present when SVC was

enter·ed ..
A - Communictions status:

Bit Meanin9 when set
~----:---··---:

' f2) ' :----:--:
1 Not us.ed ..

:----:--:
: 2 Not used.
:----:-----------------~----------------------------------=
: 3 Modem ca~rier was lost.
:----:--:
: 4 ParitY error occurred on character found in

r·e9ister- B.
:----~-------·---:
: 5 Data lost--more than one character received

between SVC'sa B contains last character rec,d.
:----:--:
: 6 Frarnin9 error occurr·ed on last characte~ rec'd.
:---·-:--·------------:
' 7

:
A ••break se~uence•• (extended null characte~)

was r·eceived ..
:----:--:

1'10DEL I I T r<SDOS

BTX--Channel B Transmit
Function Cod~~ 99

TECHNICAL I NFORI"IATI ON PAGE 148

This routine sends a chaPacte~ to the serial Channel B. In
PPactice, it is analo9ous to video cha~acter outPut (see
VDCHAR).

TRSDOS sets UP BRCV and BTX uJhen vou initialize channel B (see
RS232C>~ If vou call this routine without PreviouslY initializing
channel B, vou will 9et an error return code of 1 (no function
e:'-d 2-t2.).

Entr······ Condition~.

B - ASCII code for character to be sent
A = 99

NZ - No char·acter sent
CarrY Fla9 Set = Modem carrier· not Present when SVC was

entePed ..
A - Communictions status:

Bit
:----:---:
: 0 Clear to Send ((:TS) was not detectedn
:----:---·-----:

1 N(•i: u~.~d ..
:-----:---:
: 2 Transmitter is busYa
:----:--:
: 3 Modem carrier was lost ..
:----:--------·--:
g 4 Not usedu
:----:--:
: 5 Not usedu
g----:---·---:
: 6 Not used.
:----:-----------------------------------~------------------:
: 7 Not used.
:----:---:

•

•

•

•

•

r·IOOI":I. I I Tll:'JDOS TECHNICAL INFORMATION

5" Pro9rarnmin9 with TRSDOS
==========================
Tt.is section tells vou how execute vour own machine-lan9ua9e
P~o9rams unde~ TRSDOS. In includes two sections:

Pro9rarn EntrY Conditions---how contr-ol is transferr-ed
to vour Pro9ram after it is loaded from disk.
Handling Pr·o9rammed Ir.terruPts--how to uJr·ite an
interruPt service routine for BREAK-keY Processing
and TIMER inte~~upts.

·ro create and use a Pro9ram:
1. Enter the Pro9ram into memory, either with DEBUG, an

assembler-~ car· vi>3. the ser·ial in'l:er-1=~:.-:tce channel 1::r·om
another· devi,:e ..

2. Use the DUMP command to save the Pro9ram as an executable
disk file' settin9 load and transfer add~esses.

3. T(t r-ur. the Frr-o9r·arr., input the file narrif:. to the TRSDOS
command inte~P~ete~ <TRSDOS READY mode)~

5.1 P~o9r·am Ent~y Conditions

PAGE 149

UPon
BC

entrv to vour Pro9ram, TRSDOS sets up the following re9isters:
-First bvte following vou~ Pro9ram, i~e~, the first

free bvte for use bv vour Pro9r·am.
DE = Hi9hest memorY address not Protected bv TRSDQS, i~e.,

the end of memorv which car. be used bY vour Pro9ram.
HL - Buffer containing the last command entered to the

TRSDOS command interPreter·. The first bvte of the
buffer contains the 1en9th of the command line' not
inc1udin9 the carria9e· retur·n. The text of the command
follows this len9th bvte.

:--------:----------:----------:
len9th : 1st bYte : 2nd bvte

~ of text: of com- : or~ com-·
n ma.nd mand

:--------:----------:----------:

5.2 Handling Pro9rarnmed InterruPts

:---------:-----:
:nth b--(te ::. '
:of com­
:: mand

: X' 0D' :

' :---------:-----:

TRSDOS allows two user-Pro9rarnmed interruPts as described under
SETBRK and TIMER. When eithe~ kind of inte~~uPt is ~eceived !BREAK
keY is Pressed or TIMER counts to zero), control transfer to Your
interruPt handling routine.

Note: System ~outines called bv Your p~o9ram are also subJect to
• inter·r·upts .. Inter·r·uPt handler-s c.a.n also be inter·r·upted.

Upor1 entrY to your interruPt Processin9 routine' TRSDOS sets UP the
re9isters as follows:
(SP) = The addr-ess of tt.e next instruction to be executed

MODEL II TRSDOS TECHNICAL INFORMATION

when the interruPt was received.
Other re9isters~

Contents are the same as thev were when
the interruPt was received.

PAGE 150

Before doin9 anv Processing, vou should save all re9isters. When
finished Processing, restore all re9isters and execute a return to
continue with the interruPted Pro9ram.

It is 9ood Practice to keeP interruPt handlin9 routines short;
ideally, the routine simPlY fla9s the main Program that ~n interruPt
has occurred and returns. The main Pro9ram can then resPond to the
interruPt flag when convenient.

Alwavs end vour interruPt handler with the RET instruction and with
all re9isters intact.

TRSDOS is s•riallv r•usabl• but not alwavs r•-•ntrant. Mor•
SPecifically, vour interruPt routine should not make use of the
suPe~viso~ calls, since under some conditions this will P~oduce

unP~edictable ~esults.

•

•

•

•

M 0 D E L I I T R S D 0 S

5 I I N D E X

•

•

•

•

•

•

•

•

1'10DEL I I TREDOS INDEX

INDEX
==

PAGE
,1.\Gi\ IN • • • • • .. • • .. • • • .. • .. • • • • • • • • .. • • • 16
APPEND • • • • • • • • • • • • • • • • .. • • • • • • • • • • • • • • • • • 17
AI~CV • • • • • • • • • • • • • • • • .. 1'+~5
ATX ... 146
A TT HI B • • • • • • • • • .. • • .. • • .. • • • • • • • • • • • • • • .. • 1?
AUT 0 • • • • • • . . . • • . .. • • • • • . . . • • • • • • • • . • . 21

BACI··\UP
BINDEC
BINHEX

... 70
•••• " " " " ••••••••• " " " " " ••• " ••••• " .. " •• " ••• 1 32
" " • " " " " " " " " .. " " " •• " •....•••.. " • " 133

B R CV •• J.i.> 7
B "I X ••••... - .. 1L1fj
BUILD • .. • • • • • • • • • • • • • • • • • 23

CLEAt<
CLOCf\ • .. • • • • • • • • • • • • • • • • • 27
CL0i3F ... 12.7
CL S • • • .. • 21':1
(:o!Ttffla.nd !;·-r"t~'l:~:t::< ,. ,. .. ,. ,. ,. ,. ,. ~ .. ,,. ,., , r;y

C;ontO't€' rtt -.................................... ~ 9
ComPutational SuPervisor Calls 129
COPY • .. • • • • 29
CI~EATI:O • • • • • • • • • • • • • • • • • • • .. • • • • • • • • 31

DATE (Lit~rar·v Command) ~ 34
DhfE (BUP<er·vL'-C•I·· C;,,_ll) 1:.36
DEBUG • .. • .. • • • • • • • • • • • • • • • • :.\:'•
DELAY ... 1 -:lfll
De 1 i m i t e r· • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • • 9
D I H .. • • • .. • .. • • • • • • .. • • • • • • • • • • • • • .. • • • • • • • • • .. • • • .. • '>5
DIRHD .. 12'1·
D I I~WH ... 12:;
Di:::-kette Or·9anizati(ln .. 76
Di~.k File,; .. T7
D I Eh I D • 91.

Dis.k Na.rr~e"•'· """""""""""""""""""""""""""""""""""" 1··>
[H)~ ~ , " ~ ~ .. u .. ,. ., ~ ,., ",, £1·8

DOi3CMD • .. • .. • • • • • • • • • .. • • • • • .. • .. • • • .. • • • "tl.f
Drive· SPecification 11
DI,JjVjp " n n n n n n n n " " ot n ot n n 1r " u ot u " u u n " n It " u ot " u " !I u <t " It 10 " u ~){ZJ
DYr1amic Allocation 77

Ent.;?r·in 1;j :a. Comm<::~.nd .. 6
E. HHI"IEG • • • • .. • 97
ERROR CLib~a~v Command> .. 51
ERROR :SuPer·viso~ Call) 96
Error Codes and Messa9es .. 84
Error Codes and Messa9es !list) .~""""""""""""" 85

PAGE 1.

MODEL I I TI~SDOS II\IDEX

File Access SuPe~visoP Calls ~=~···g·-~········118
Fi.lf~ :;P~?cification ···~··"~ 1~1
Fixed Len9th Recor·ds 78
FOHt1AT .. • • • • • • • • • • • • • • • • • • .. • .. • • • • • • • .. • • • • • • 7':2
F' (l F~\"'t~ .. , .. • ~j :2:
1-·l·ll:ol::: •••••••• " • " " " " ••• " • • • • • • • 5·'>

GenePal Infor·mation 2
Gr·aPhi(:;:. l"""od.e ... 10:5.

Hi9h MeiT11)r···{ Comm-3.nd::: 1~)

How to Use SuPervisor Calls 82

I ... ::.6
II\IITIO ..

93

1·\F!.CHAH
f\811\!IT
1·\BL.. I 1\JE

... H'll~

""""." •••••• ".". """ •••• " •••• "."".""." •• ":l.!ii1
KeYboar-d SuPer·visor Calls············~········ 98
KILL <TRSDOS Command) •• ~··················~···· 57
KILL (SuP~~viso~ Call)•..........• 128

!..~IE? .. ~5t3

L.ibr·a.r···{ C:ornrna.nds .. 1:)
Line Printer SuPervisor Calls 114
l...ISRf" ••••••••=~••••••••••• .. •••••••••••••""""••• ::l9
I .. OAD • • • • .. • • • • • • • .. • .. • • • • • • • 6:2
l...oadi n9 TRSD()S a "" .. II .. "."..... ~;:)
L.OCA'TE .. :1.::26

t•!en-to r···(Re·=!U 1 f"·f!O"If.' r, t ~·. . " " " a " •••• " " ~ LJ.

I•IPYD I \1 .. LY+

r~.J1:1ta.tiQn o o • tt "" n ~ • n n ~ n • • u """ D *'"" D"" •" •" u "" u"" u"
.-. .. ::.

0 PEN ... :l 1 'i
(lpi:ions ~~··•n•• ~J

PI\Hi3Ef1 .. 137
F'a.ss.uJor·ds " ~ ~ :1.~-;:~

PAU~JE .. • .. • • • • • • • 6:3
PFlCHAH ... 116
!::ir-e-··A 11 Q(:;a.t ion " , ,"" " " .. "" ," ·7·l
PRII\IIT •• i.:lS
P I~L I I\IE ••• 1. 1 7
F'ROT • 65
P\.!fl(;E • • • • • • • • • • • • • • .. • • .. • .. • • • • .. • • • • • • .. • • .. • • • • • • <'A

FlAI\IDOI"I •• 1:; l.
l'lEADI\IX .. 12:2
F·~E•CE)r·d L.en9th

Pt\(":it:::: 2

•

•

•

•

•

•

MODEL I I TI~SDOS INDEX

Processing CaPabilities ReCt)f'·d
I~ENAiviE " " ~ " " " .. "

812)

66
m::·r CI•ID • .. • 95
Hfl2:32C ... 1'>:3

E:~cr-oll !VIod<~C! .. l.(l.t2
Serial Communications ... 142
tii:::Te.m<: • • • • • • • • • • • • .. • 90
m·:T COI'I • • • • • • • • • • • • • • • • • .. • • • • • • • • • • • • .. • • • • • • • • • 66. 1
f;ETUE>R • 8';'
Sp·;a.nninlJ .. -'1~3

f;fCI"IP ••• 1:3:\
GTEC,C,N ... :l.'t 1
SlJPervisor· Calls .. 86
S·····n ta.::<
Svstem Control SuPervisor Calls

Technical Information
T II'1E ••••••••••••• • • • • " •
T II'1E I'< .. .

lJ:.::.in9 the 1·<"1..::-·y·boa.r-d
tJti 1 i t··t Pr·t)(.::Jr-~:ttn~::- .. ,. ,. ,.

8
B7

5
69

VaPiable Len9th Recor·ds ~~~············,.·~·G""" 78
V:OCHi\1'< •• H16
VDGRAF •• 10B
VD IN IT .. 10~]
VDL.. I I\IE •• 107
IJDI'~EAD .. 11.0
VEHIFY •• 6B
Video DisPlaY SuPervisor Calls ...•....•....... 102
'JIDhFY •• 111

~HHTI\IX .. 12:3

•

•

•

•

•

R A D I 0 S H A C K CRI

i"IODEL. 1 I B A B I C

L. A N G U A G E R E F E R E N C E M A N U A L.

(c) CoPY~i9ht 1979 bv Micr·osoft, Licensed to Radio Shack'
A Division of TandY CorPoration, Fort Worth, Texas 76102

J

••
C 0 1\1 T E N T S

===
CHAPTER~)

1. Us.inSI Mcod<?l I I BASIC ••••••••••••••••••.•••••• • • • • • • 1

l\PPEND ICES
A .. F~E·Sef'ved Wor·ds . .. ~ " " 247

• C. c-;·1 os.s.<3.r·y ••••••••••••••••••••••.••••••••••••••••••• ·251

INDEX

•

•

•

•

•

•

•

MODEL II BASIC CHAPTER 1 PAGE 1

IM2BASIC1 8/9/791

1 I Using Model II BASIC

General Information

Model II BASIC is an easv-to-use' extended version of the BASIC
Pro9rammin9 lan9ua9e. It is desi9ned to run under the TRS-80 Disk
0Peratin9 Svstem <TRSDOS), and is included on the Svstem diskette.

Model II BASIC executes Your Pro9rams directlvu It does not Produce
a low-level, machine-lan9ua9e trar1slation. In technical terms, it is
an interPreter, not a comPiler. This makes it esPeciallY Powerful
for interactive use durin9 Pro9ram develoPment and debu99in9~

Model II BASIC offers all the standard features of the lan9ua9e'
Plus several imPortant additions' including:

Pro9ram line ren,Jmberin9
Line editor for easy Pro9ram corrections and chan9es
AbilitY to execute a TRSDOS command and return to
BASIC with Pro9ram and variables intact
Direct and sequential access to data in disk files
Special functions to allow'BASIC Pr·o9rams to call
machine-lan9ua9e subroutines
RecoverY from oPerator errors--the Svstem won't stoP
if You attemPt outPut to a device (such as a Printer or
Disk Drive) which is not readY •

i"IODEL I I B • .;~n C CHAPTEr< 1 Pi~GE :2

About This Reference Manual

lhis manual describes the kevuJords~ data tYPes~ and othe~ feattrr·es
which are available in Model II BASICn You 7 l find PlentY of
examPles and ·san1Ple Pro9r·ams to helP YOU try out tt1e lan9ua9e. Ttrere
is also a GlossarY in the APPendix~

l'he manual is or9anized this uJav:

CHAPTEr< 1. Usin9 Model II BASIC
f.\.. Gener-a 1 I nf c~r-ma.t ion
f3 .. Nc~t;::t.'l::ion

C .. MemorY Re~uirements
D .. LMo;;:Ldin9 BABIC
E~ Modes of OPeration
r Usin9 the Kevboard
GM Usin9 the Video DisPlaY

CHAP'TER 2 .. BASIC Concepts
A .. Data.

ln Data Storage TYPes
an NUIT!bers (Jnte9er, Sin9le and Double Pr-ecision)
b .. Btr·in9~-

...::: .. Con~·-tant~-

a .. Numbers and Strin9s
b. TYPes of Constants

3~ Variable:::.
a.= f\Ja.mtr s
b. TYPe Decla~ation

i~ D0faL1lt tvPes
j.i. Ta9s (!,#,%~$)

c.. t~r- r·a··rs
4~ Data Conversion

B. OPer·a.tions
1 .. St~:ti:emf2nts
..::.'.. E>=:Pr-e :=. :=. i o r1 ~·.

a.. Ope r·a t 1)r· s
in f~r·ithmetic

ii= L.o9ica.l, f~t!'la.tional~ and Boolf!a.n
iii. !3tr·in<.J

b. Evaluation of ExPr·essions
i .. F)a.r·.rz~ntheses

ii. Or·der· of 0Per·ations
iii .. TYPe Conve~sions

c .. Funct i or1~·

•

•

•

•

•

•

i"IODEL. I I BAS I C

CHAPTER 3. BASIC KeYwords
A. Sta tarr.a r. t !-

1.. c~~mman d
2. Pr· o9 ram

CHAPTER 1

a. Definition and Initialization
b .. As~.i9nm.erl'i:
c .. Pro9ram Sequence
d .. Inl~ut/OutPut

3 .. Debu99in9 Tools
B. Function~.

1 a ComPutationa.l
2 .. InPut/Oui:PtJt
3 .. SPecial Functions

CHAPTER 4. Fila Access Tachniguas

CHAPTER 5. Usin9 the Line Editor

APPENDICES
A. Reserved Word List
B .. Error Codes and Messages
C .. Gl1)::.sar···..-

• INDEX

For More Information

PAGE 3

If vou are a newcomer to BASIC, vou'll ProbablY need a 9ood
Pro9rammin9 manual to use alon9 with this book .. Here are a few we
r-e~:ommend:

BASIC AND THE PERSONAL COMPUTER, Thomas DwYer and Mar9ot
Critchfield; Addison-WesleY Publishing ComPany, 1978 ..

BASIC FOR HOME COMPUTERS: A SELF-TEACHING GUIDEo Bob Albrecht• LeRoY
Finkel' and Jerald R .. Brown; WileY & Sons, 1978.

BASIC FROM THE GROUND UPo David E. Simon; HaYden Book Com~anYo
1978.

ILLUSTRATING BASIC, Donald Alcock; Cambrid9a UniversitY Press•
1977 .

fv!ODEL I I BAS I C CHAPTER 1

Notation

For claritY and brevity, we use some special notation and tvPe
stvles in this manual.

CAPITALS and Punctuation

PAGE t,

Indicate mate~ial which must be entered exactlY as it aPPears~ <The
onlv Punctuation svmbols not entered are triPle-Periods, exPlained
belowa) For· e::.;:amPle, in the line:

PRINT "THE tiME IS " TIMES
every letter and character should be tYPed exactlY as indicated.

lowercase itali~s
RePr-esent W(,r·ds., letter·s, char·a.cter·s. or- va.lue:=. ··{OU suPPlY fr·om a :=.et
of accePtable valtJes for a Par-ticular command. For examPle' the
1 i D'l!•:

LIST line·-·r-an9e
indicates that vou can SUPPlY anY valid line-ran9e specificatior1
(defined later) after L.ISTa

(.,,, ip,.i,,.)

Indicates that Pr·ecedin9 items can be rePeated. For examPle~
INPUT var· i atol "',

Indicates that sever·al variables maY be rePeated after INPUT.

I
This special sYmbol is used occasionallY to indicate a blank sPace
character <ASCII code 32)~ For examPle:

INPUT "WHAT IS YOUR NAME?~";N$
The Vindicates that there is a sin9le blank sPace after the
·=1ues.ti(1n mark.,

<ae.aa, bbbb>
Indicates a numeric ran9e with lower limit aaaa and UPPer limit
bbbb. Both limits are incl,Jded in the ran9e. For examPle:

<-·32768, 32767>
rePresents the r·an9e of numbers from -32768 to 32767 inclusive. The
conte::-::'1: will sP·-z~ci·J: .. (tt..thf:!thf:!f· int~?9Gr·s or· r-eal numbers ar·e int~?nded ..

X'I\INI\IN'
Indicates that NNNN is a hexadecimal number. Numbers used in this
manual are in decimal form' unless otherwise noted., For examPle:

X'71i:l12JA'
is a hexadecimal rePresentation of the decimal number 28682.

O'NNNNI\I'

•

•

•

•

•

MODEL II BASIC CHAPTER 1 PAGE 5

Indicatas that NNNNN is an octal numbar. Numbars usad in this manual
are in decimal form, unless otherwise noted. For examPle:

0'17707'
is an octal rePresentation of the decimal number 8135.

<kevname>
Indicates one of the keys, usuallY a sPecial control keY like
<ENTER>. For axamPla:

PRINT "THE TIME IS " TIME$ <ENTER>
indicates vou should Press <ENTER> after tYPing in the text.

<CTRL-kavnama>
Indicates a control character. To outPut the character, hold down
<CTRL> and Press the specified kev. For examPle:

<CTRL-R>
Indicates that vou should hold down <CTRL> and Press <R>

MODEL II BASIC CHAPTER 1 PAGE 6

MemorY Requirements

BASIC occuPies 14 9ranules (17920 bvtes) on the Svstem disk. It
loads into memorv startin9 at the be9innin9 of user memory, 10240.
The amount of memory required bv BASIC dePends on how manv
concurrent data file vou sPecifY when vou load BASICu
During loading, vou can also to reserve a Portion of hi9h memorY for
stora9e of machine-lan9ua9e subroutinesu

Her-e'~. a

DECI~1AL

ADDRESS
Ill

10240

memorv allocation map:

HEX
ADDRESS

'------------------·------····----·-----: X' 12101210'

TRSDOS

:----------------------------------:X'2800'

:-
BAS I C & SO~IE TRSDOS COMMANDS><·

BASIC INTERPRETER
&

USER PROGRAM TEXT

-:

:----------------------------------:
RESERVED FOR YOUR MACHINE·­

LANGUAGE ROUTINES IOPTIONALJ
TOP** :----------------------------------: TOP**

MAY BE RESERVED BY TRSDOS FOR
SPECIAL PROGRAMMING

32767 or:--------Last Memorv Address-------:X'7FFF' or
65535 X'FFFF'

*Certain TRSDOS commands use memorY in the ran9e <X'2800,X'2FFF'>.
See "Library Commands'' in the TRSDOS Reference Manual for a list~

All TRSDOS commands excePt for these can be called frorr. BASIC via
the BASIC command• SYSTEM.

** TOP is a memorY Protect addr·ess set bY TRSDOS. If TRSDOS is not
Protecting hi9h memory, then TOP is the same as Last Memorv
Add r·e s. s .•

•

••

•
MODEL II BASIC CHAPTER 1 PAGE 7

L<:«lding BASIC

See the Operation Manual for instructions on connection, Power-uP
and inserting the Svstem diskette.

Note: A SYstem diskette must be in Drive 0 Cthe built-in unit)
whenever the ComPuter is in use. Whenever the ComPuter is turned On
or Reset, it will automaticallY load TRSDOS from Drive 0~

After the Svstem starts UP' it will PromPt vou to key in the date.
TYPe in the date in MM/DD/YYYY form and Press <ENTER>. For examPle:

07/25/1979 <ENTER>
for· Juh·· 25, 1979.

Next the Svstem will PromPt vou to kevin the time. TO SKIP THIS
QUESTION, Press <ENTER>. The time will start at 00:00:00.

TO SET THE TIME, type in the time in HH.MM.SS 24-hour form. Periods
.are used instead of colons~ since thev're easier to tvPe in. The
seconds .SS are optional. For examPle:

14.30 <ENTER>
for· 2 : 30 PM.

• The S··{stem wi 11 r-ecor·d the date and time inter·nall·y· and r·etur·n with
the me:=.s.a9~;;o.:

•

TRSDOS READY

You can now load and execute BASIC. The simPlest waY to do this is
to t··{Pe:

BASIC <ENTER>
BASIC will load (takes seve~al seconds) and disPlaY a sta~t-uP
heading like this~

Radic• Shack TRS-80 Mc•del II BASIC Vers 1,1
xxxxx BYtes free, 0 files
Read·"'"·
>

XXXXX bYtes f~ee tells You how much memo~Y is available fo~ stora9e
and execution of BASIC P~o9rams" 0 files tells vou that no data
files can be OPened from BASICR If YOU want to OPen data files' vou
need to sPecifY how manY when vou load BASIC (see next Para9raPhs)"

MODEL II BASIC CHAPTER 1 PAGE 8

OPtions for Loadin9 BASIC

There are several other wavs to start UP BASIC, as summarized in
this block:

~--~

:

BASIC Pro9ram -F:files -M:address
Pro9ram is a TRSDOS file sPecification for· a

BASIC Pro9rama After start-up, BASIC will run
it~ If Pro9ram is omitted, BASIC will start-uP
in the command mode.

-F:files tells BASIC the maximum number of files
that mav be OPen at once. files is a number
from 0 to 15. If -F:files is omitted, maximum
is set to 0.

-M:address tells BASIC not to use memorY
above address. address is a decimal number.
If -M:address is omitted, BASIC uses all
memorY UP to TOPa

'

:--:
The OPtions allow YOU to sPecify anv or all of the following~

A Pro9ram to rur1 after BASIC is started.
Maximum number of data files that maY be OPen at ont:e.
The lar9er the number of files, the less area available
for storin9 and executing Your Pro9rams~ (Each file YOU
sPecifY takes 834 bytes of memorY.) So use the
smallest value that will suit your needs.
Hi9hest address to be used bY BASIC during Pro9ram
execution. Omit this unless you are 9oin9 to call
mactline-lan9ua9e sut•routines.

ExamPles

TRSDOS READY
BASIC <ENTER>

Tells BASIC not to run a Pro9ram, but to enter the command mode; to
allow for zero concurrent files; and to use all memorY available
from TRSDOB.

TRSDOS READY
BASIC -F:l

Just like the Preceding examPle' excePt that onlY one file can be
OPen at anv 9iven time.

TRSDOS READY
BASIC -M:32000

BASIC won,t allow You to OPen anY files, and 32000 is the hi9hest
address it will use durin9 Pro9ram execution.

TRSDOS READY
BASIC PAYROLL -F:3

•

•

•

•

•

•

MODEL II BASIC CHAPTER 1 PAGE 9

BASIC will start up, load and run the BASIC Pro9ram PAYROLL; three
data files can be OPened, and BASIC can use all memorv available
from TRSDOS .

MODEL. II BASIC CHAPTER 1

Modes of OPeration

BASIC has three modes of oPeration:
Command mode--for tvPin9 in Pro9ram lines and immediate
lines
Execute mode--for execution of Pro9rams and immediate
1 i nes
Edit mode--for editing Pro9ram and immediate lines

C<:.rnman d Mode

PAGE 10

Whenever vou enter the command mode, BASIC disPlays a header and a
s-Pf,~cial Pr·ompt:

Read·y· (header)

> (PromPt followed bv blinking block
"cursor 11

)

While YOU are in the command mode~ BASIC will disPlay the prompt at
the be9innin9 of the current lo9ical line <the line vou are tYPin9
in) ..

A lo9ical line is a string of UP to 255 characters and is alwaYs
terminated with a carriage return <stored when vou Press <ENTER>>R A
PIY·ts-ical 1 ine' on the other· hand, is one 1 ine on the DisPlaY.. A
PhYsical line contains a maximum of 80 characters.

Fo~ examPle, if You tYPe 100 R's and then Press <ENTER>, YOU will
have two Pl-r·..-~.ical 1 ine~., but onlY Cine lo9ical 1 ine~

The blinking block is called a cursord It tells You where the next
character YQU tYPe will be disPlaYed~

In the CC~mmand mode, BASIC does not take Your inPut until YOU
cC~mPlete the lo9ical line bY Pressing <ENTER>. This is called »line
input••, as QPPosed to "character inPut»R

InterPretation of an InPut Line

BASIC alwaYs i9nores leading sPaces in the line--it JumPs ahead to
the first non-sPace character .. If this character IS NOT a di9it,
BASIC treats the line as an immediate line. If it IS a di9ito BASIC
treats the line as a Pro9ram lineR

For· e>=:amPle:
Read··..-
PRINT "THE TIME IS " TIMES <ENTER>

BASIC takes this as an immediate line.

If You t··tPe:
ReadY
10 PRINT "THE TIME IS " TIMES <ENTER>

BASIC takes this as a Pro9ram line.

•

•

•

•
I"IODEL I I BAS I C CHAPTER 1 PAGE 11

Imm~diate Line

An immediate line consists of one or more statements seParated bY
colons. The line is executed as soon as vou Press <ENTER>. For
exa.mpl e:

ReadY
CLS: PRINT "THE S0.UARE ROOT OF 2 IS" S0.R(2)

is ar, immediate 1 ine .. When ··..-ou Pre::.s-. ·<ENTEii">, BASIC e:x:ecu·l:es it ..

Pr-o9r-a.m Line

A Pro9ram line consists of a line number in the ran9e (0,65535>,
followed bv one or more statements seParated bv colons .. When vou
Press <ENTER>, the line is stored in the Pro9ram text area of
memory, along with anY other lines vou have entered this wav. The
Pro9ram is not executed until vou tvPe RUN or another execute
command .. For examPle:

1121121 CL.S: PRINT "THE S0.UARE ROOT OF 2 IS" S6lR(2)
Is a Pro9ram line. When YOU press <ENTER>• BASIC stores it in the
Pr·o9ram text area. To execute it, tvpe:

RUN <ENTER>

• SPecial ~'\e·v·s. in the Command Mode

<?>

< .. >

<'>

•
E::.::ecui:e Mode

When used in an immediate line, the question
mark can stand for the commonlY used kevword
PRINT. For exampleo the immediate line:

? "HELLO."
is the same as the immediate line:

PRINT "HELLO."
Note: 11 L?" does NOT mean "LPRINT".

The Period can stand for ''current Pro9ram line",
i.e., the last Pro9ram line entered or edited.
The Period can be used in most Places where a
line number would normallY aPPear.
the immediate line:

LIST.

For examPle,

tells BASIC to list the current Pro9ram linea

The sin9le-9uote tells BASIC to i9nore the rest
of the 1.:•9ical 1 ine. It is an abbr·eviation f(•r·
the BASIC keYword REM. When used in a
multi-statement line, it does not have to be
Preceded bY a colon. For examPle' when vou type
in the line:

PRINT 1+1 ' 2+2
BASIC will Print the sum 1+1 but not 2+2 .

MODEL II BASIC CHAPTER 1 PAGE 12

Whenever BASIC is executing statements (immediate lines or Pro9rams)
it is in the execute mode. In this mode, the contents of the Video
DisPlaY are under Pro9ram control.

SPecial Kevs in Execute Mode

<HOLD>

<BREAH>

Pauses execution. Pr·ess a9ain to cor1tinue.

Terminates execution and returns vou to the
command ITP)de ..

BASIC includes a line editor for correcting command or Pro9ram
lines. You can also use it to correct kevboard inPut to an INPUT
~-tatement.

To edit an immediate line, Press <Fl> BEFORE vou have Pressed ENTER~
To edit a pro9ram line, tvPe in the command:

EDIT 1 ine number·
where line number sPecifies the desired line.

When the editor is workin9 on a Pro9ram line, it disPlaYs the number
of the line being edited. When the editor is wo~kin9 on an immediate

•

1 ine Of' a. 1 ine bein9 inPut TO an INPUT s-t-atement, it dis-Pla:·..-s .a ! •
sYmbol in the fi~st column on the line.

In the edit mode, KeYboard inPut is ch-aracter-oriented, rather than
line-oriented. That is' BASIC takes a sPecified number of characters
as soon as theY are tvPed in--without waitin9 for vou to Press
<ENTER>.

See "Usin9 the Line Editor· 11 for detailsa

•

•

•

•

MODEL II BASIC CHAPTER 1

Usin9 the Kevboard

BASIC has two wavs of inPutting data from the kevboard:
Line InPut--BASIC does not take the inPut until vou
Press <ENTER>.
Character InPut: BASIC takes a SPecified number of
characters without waiting for vou to Press <ENTER>.

PAGE 13

In the command mode, BASIC uses line inPut. In the edit mode, it
uses character inPut. Both tYPes of inPut are available in the
executa mode. Sea INPUT, INPUTS, LINE INPUT, INKEYS.

Kevboard Line InPut

When vou tYPe number' letter' and Punctuation kevs' BASIC inPuts
them into the current line. Certain other kevs and kev combinations
have sPecial meanin9s to BASIC. Control keYs not
mentioned below are i9nored during line inPutb

<BACKSPACE> BacksPaces the cursoro arasin9 the Preceding
character in the line. Use this to correct
tvPin9 e~~ors. <CTRL-H> is the same code •

<SPACEBAR>

(Fl>

<BREAK>

<TAB>

<CTRL-J>

Enters a blank space cha~acter and advances
the cursor.

Puts You in the Edit Mode. The cu~~ent line
will be edited. Sea "Usin9 the Line Editor."
<CTRL-A> is the same code.

InterruPts line entrY and starts over with a new
line. <CTRL-C> is the same coda. <BREAK> is
echoed to the DisPlay as <carat> C.
Advances the cursor to the next 8-character
boundarY. Tab Positions are at 0,8,16,24, ...
Use this for indenting pro9ram lines. <CTRL-I>
is the same code.

Line feed--starts a new PhYsical line without
ending the current lo9ical line •

MODEL II BASIC CHAPTER 1

<Kevboard Line InPut, continued)

<CTRL-0>

<CTRL-R>

<CTRL-U>

<ENTER>

<REPEAT>

To99les (switches the state of) the DisPlaY
function' iue., turns it on or off.

If the DisPlaY is on' <CTRL-0> turns it off.
Subsequent characters tvPed will not
not be echoed to DisPlay, but will be inPut
into the current line. Anv Pro9rammed outPut
to the DisPlaY will also be i9nored.

If the DisPlaY function is off, <CTRL-0> tur·ns
it on. Subsequent characters tvPed will be
echoed to the DisPlav.

Whenever BASIC enters the command mode, it
tur·ns on the DisPlaY function.

<CTRL-0> is echoed as <carat> 0"

RetYPes the currrent lo9ical line.

Restarts the current lo9ical line (thou9h the
old line remains on the Displav). The keY is
echoed to the disPlaY as <carat> U~

Ends the current lo9ical line~ BASIC will
take the line~

For convenience when You want to rePeat
a sin9le key, hold down <REPEAT> while
Pressing the desired keY~ For examPle, to
backsPace halfwaY across the DisPlay, hold
do~n <REPEAT> and <BACKSPACE>.

KeYboard Character InPut

PAGE 14

In this mode, keY inPut is not echoed to the disPlaY~ AnY keY vou
Press is accePted as inPut, excePt for <BREAK>, which interruPts the
inPut and return vou to the command mode~

•

•

•

•

•

•

MODEL II BASIC CHAPTER 1 PAGE 15

Usin9 the Video DisPlaY

Model II BASIC 9ives vou easY access to the Video DisPlav,s full
character set, includin9 all standard ASCII svmbols and 32 sPecial
9raPhics codes. EverY character can also be disPlaved in reverse
(black on white).

The DisPlaY has two modes of oPeration--Scroll and GraPhics. Cur·sor
motion and Position-labelin9 are different in the two modes.

In the Scroll Mode, the DisPlaY can be thought of as a sequence of
1920 disPlaY Positions' as illustrated below:

:---:
Li.n<? 0
Line 1

Line :2:2
Lin<? 23

12), 1., 2, 3,
B0, 81 ., 82, 83., ..

1760.1761·
18Lf0, 1811·1'

78.79
159

.1838,1.839

.1918.1919
:---:

DISPLAY POSITIONS, SCROLL. MODE

In scroll mode outPut, each time an accePtable disPlay cha~acter is
received, it is disPlaved at the current cursor Position, and the
cursor advances to the next hi9her numbered Position.

When the cursor is on the bottom line and a line-feed or carria9e
return is received' or when the bottom line is filled, the entire
DisPlaY is 11 Scrolled":

Line 0 is deleted
Lines 1-23 are moved UP or.e lir1e
Line 23 is blanked
l'he cursor is set to the be9innin9 of line 23 .

MODEL II BASIC CHAPTER 1 PAGE 16

GraPhics Mode

In the GraPhics Mode, the DisPlaY can be thou9ht of as an 80 bv 24
matrix' as illustrated below:

C 0 L U M N
:---·--:
' 0 1 2 • 77 78 79 ' :-----:--------------·-------------------------------:

0
R 1

2
0

DISPLAY AREA
w

21
22
23

:-----:---:
DISPLAY POSITIONS, GRAPHICS MODE

In 9raPhics mode
moves bevond the
Current Position

column 79
column 0
row 23
row 0

outPut, the cursor "wraps•• the disPlaY whenever it
row or column boundaries~ That is:

Direction

forward
back
down
UP

New Position

column 0, same row
column 79, same row
row 0, same column
row 23, same column

•

•

•

•

•

•

MODEL II BASIC CHAPTER 1 PAGE 17

Video DisPlaY OutPut

All outPut to the DisPlaY is done via PRINT statementsu To send
actual codes to the DisPlay, use the CHR$ function.

For- e::.::amPle:
PRINT CHR$C26)

Sends code 26 to the DisPlay, which sets the reverse mode.

Th• tabl•s b•low summariz• th• Mod•l II BASIC DisPlaY cod•s.

:--------·------------:-----------------------------------:
Code

•D•cimal H•xad•cimal DisPlav Function
:--------------------:-----------------------------------:

1 1211
2 e:r-:o L

4 8 1218
9 09

:
: 1121 121A
:

13 121D

23 17

2L~ 18

25 19

26 1A

27 1B

28 1C

: 29 1D

252 FC
:
:

Tur·ns on cur·s.or·
T'Jr·ns. <~ff cur·s.or·
BacksPaces cursor and erases
Tabs cursor to next 8-character

:

boundarv :
Line feed. t1oves cursor down one

: row without changing column positiono:
Moves cursor to start of next

line
Erases to end of line, cursor

doe~.n't move
Erases to end of screen, cursor :

doe:=.n't ITI(tVe

Sets normal (white on black)
disPlaY mode :

S•ts r•v•rs• Cblack on whit•)
disPlaY mode

Erases screen and homes cursor
(position Ill)

Scroll mode cursor motion:
Moves cursor back one Position

without erasin9.
: Scroll mode cursor motion:

Moves cursor forward one Pos­
ition; if old Position= 1919,:
disPlaY is scrolled uP one
line and new position= 1840~

GraPhics mode cursor motion:
Moves cursor back one column;

column=column-1. If column=0,
new column=79. row is
unchan9ed •

: --------------------: -----oww--w----~-----~------------------:

i"IODEL I I BAS I C CHAPTER 1

<DisPlaY control codes, continued)
:--------------------:-----------------------·------------:

c~)df.:<

:Decimal Hexadecimal Dis-PlaY Function
:--------------------~----------------------------·-------:

253 FD

254- FE

FF

GraPhics mode cursor motion:
Moves cursor forward one column;

column=colurnn+l. If column
=79, new column=0

GraPhics mode cursor motion:
Moves cursor UP one row; row=

r·ow-·1; i1= row==0, nettJ r-ow
=23

GraPhics mode cursor motion:
Moves cursor down one row; row= ~

r-ouJ+l; if row=23, new r·c~w

=lil
:--------------------:-----------------------------------:

PAGE 18

•

GraPhics Characters are codes 128-159R To see them, run the
Pr-o9ram:
11il FOR I=128 TO 159 •
20 PRINT I; CHR$(I),
30 NEXT

Standa~d ASCII cha~acters (uPPer and lowe~case lette~s, numbers and
Punctuation) a~e codes 32 to 127~ To see them' run the Pro9ram:
40 FOR I•32 TO 127
Slil PRINT I; CHR$(J),
60 NEXT

•

•

•

••

MODEL. II BABIC CHAPTER 2 PAGE 19

CM2BABIC2 8/9/79)

2 I BASIC ConcePts

This section contains the back9round information vou,ll need to
write Pro9rams in Model II BASIC. It describes the tvPes of data
(information) BASIC can handle, and the oPerations BASIC can Perform
on the data ..

Pr·(•9r·a.m

A Pro9ram consists of one or more numbered lo9ical lines, each line
consisting of one or more BASIC statements. BASIC allows line
numbers from 0 to 65529 inclusive. The Pro9ram lines can include UP
to 255 total characters including the line number, and mav be broken
into two or more PhYsical lines~

For examPle, here is a Pro9ram:

l in~:::­

number·

100
1111)
:l :20
1311)

BABIC
~-t.:atement

col•)n bei:ween
statements.

CL.S: PRINT CHR$126) "THIS
FOR I=1 TO 111ll1l011l: NEXT I
PHI NT CHI'l$ (2~1 l ; '
CLS: PRINT "THIS IS NORMAL.

B,<\f3I C
~.tatement

IS REVEHSE MODE"
'DELAY LOOP

MODE"

When BASIC executes a Pro9ram, it handles the statements one at a
time' starting at the first and Procedin9 to the last~ Some
statements allow vou to chan9e this se9uence. (See Pro9ram Sequence
Statements ..)

Statement

A statement is a comPlete instruction to BASIC, telling the ComPuter
to Per·for·rn some OPi!-r·ations~ If the <)Per·ations involve data, the
statement mav include that, too. For examPle,

PHINT "THE SQUAHE HOOT OF 2 IS" SQRC:2l
is a comPlete statement. The number 2 is the data' and the
oPer·ati1)n::. ar·e:

DisPlavin9 the messa9e in quotes
ComPuting the square root of 2
DisPlaYing the resultant value

MODEL II BASIC CHAPTER 2

Data.

BASIC can t1andle two kinds of data:
Numbers' rePresenting quantities and subJect to standard
mathematical operations
Strings, rePresenting sequences of characters and subJect
to SPecial non-mathematical strin9 oPerations

PAGE 20

Each kind of data has its own memorY stora9e requirement and its own
range of valuesu

Numeric Data

BASIC allows three tYPes of numbers: inte9er, sin91e-precision and
double-Precisionu You can declare the tvPe of a number, or let BASIC
assi9n a tvPe~ Each tvPe serves a specific PurPose in terms of
Precision, SPeed in arithmetic oPerations, and ran9e of possible
val UE•::.u

In 1:e9er· TYPe

l·o be stored as an inte9er tvpe, a number must be whole and in the

•

r·anq~ <-32768,32767>~ An ini:-;;~9~:::r· V·alu-;;7! r·e·11Jj.r·es two b·y·t~~s of mi':!mor··-r· •
fo~ sto~a9e~ A~ithmetic oPerations are fastest when both ope~ands
ar·e in t~~3~~ r- s ~

For- e::-::.-l.mP'f ~ ~
1 32(1.)(1.)0 -2

can all be stored as inte9er-s~

Sin9le-Precision TvPe

500 -··12345

Sin9le-Pr~cision numbers can include UP to 7 si9nificant di9its, and
can rePresent nor-malized values* with exPonents UP to +/-38, i.e~,

numbers in the range:
(-1 X 10A38o -1 X 10A-38) (1 X 10A-38o 1 X 10A38)

A sin9le-precision value re9uires 4 bYtes of memorY for- stora9e"
BASIC assumes a number· is sin9le Pr·ecision if YOU do not sPecifY the
lev~l of Precision~

*In this r-eference manual, normalized value is one in which exactlY
one digit aPPears to the left of the decimal Pointn For examPle'
12u3 exPressed in normalized form is 1~22 x 10.

For· e::-::amPle::
10.001 -200034 1.774E:6 6. IZ•24E -23 123. '•567
can all be stored as sin9le Precision values.

NOTE
When used in a decimal number5 th~ sYmbol E
stands for 11 Sin9le-Precision times 10 to the Power of ••• 11 •

•

•

•

MODEL II BASIC CHAPTER 2

Therefore 6~024E-23 rePresents the sin9le-pr·ecision
value 6.024 x 10A-23

Double-Precision TvPe

F'AC.;E 21

Double-precision numbers can include UP to 17 si9nificant di9its,
and can rePresent values in the same range as that for
sin9le-precision numbers~ A double-precision value requires 8 bvtes
of memorY for stora9e~ Arithmetic oPerations involving at least one
double-precision number ~r·e slower than the same operations when all
operands are sin9le-precision or inte9er.

For· e::<amPl-a:
1010234578 -8.7777651010 3.1415926535898979 8.00100708D12
can all be stored as double-precision values.

NOTE
When used in a decimal number, the svmbol D
stands for •'double-Precision times 10 to the Power of •.• ''
Therefore 8.00100708 D12 represents the value

8.00100708 >~ 10"12

Str·in9 Data

Strin9s <sequences of characters) are useful for storing non-numeric
in1:or·m.ati<~r, s-uch as. name:;:., addr-esses~ te>::t~ etc .. An··{ ASCII cha-r·a.c"l:~r­

can be stored in a strin9u For examPle' the data:
Jack Brown' A9e 38

can be stored as a strin9 of 18 char-acters .. Each char-acter- (and
blank) in the str-ing is sto~~d as an ASCII code, r~quirin9 one bYte
of stora9e .. Th~ above strin9 would be stored internally as:

Hex :--:--:--:--:--:--:--:--:--:--:--:--:--:--:--:--:--:--:
Code-:4A:61:63:68:20:42:72:6F:77:6E:2C:20:41:67:65:20:33:38:

:--:--:--:--:--:--:--:--:--:--:--:--:--:--:--:---:--:--:
:J:a.:c:k: :3 : 8 '
:--~--:--:--:--:--:--:--:--:--:--:--:--:--:--:--:--:--:

A strin9 can be UP to 255 characters 1on9. Strin9s with len9th zero
are called 11 f1Ul1 11 or 1'empty•• ..

D.r.1ta Constants

All data is inPut to a Pro9ram in the form of constants--values
which are not subJect to chan9e. For examPle, the statement:

F'RINT "1 F'LUS 1 EQUALS" 2
contains one strin9 constant,

1 PLUS 1 E<;!UALS
and one numeric constant,

2

In this examPle' the constants serve as 11 inPut" to the PRINT
statement--telling it what values to Print on the DisPlaY.

MODEL. II BASIC CHAPTER 2 PAGE:

TYPin9 of Constants

When BASIC encounter-s a data constant in a statement, it must
dete~mine the tYPe of the constant (string, inte9er~

sin9le-P~ecision or double-Precision>~ Here are the rules it uses:
I~ I·f tt·H~ value is enclosed in doubl~:::r"--:=~ucd:~::.-:=.5 it is a

str·in9.. For· €;:.=:8.mPle, in the statements:
~1$::::: "YE•S"
8$ = ••3331 WaverlY Wav••
PRINT "1234567890"

the values in 9uotes are automaticallY cate9orized as
strin9s~ <AS and 8$ are variables' as exPlained
later in this section .. >

IIu I·f the value is not in ·=Juot~::!::-~ j,t is a number· .. * For·
examPle, in the statements~

A = 123001
B ~, 1
PRINT 12345, -7.32145 E:6

all the d~1.ta is nurner·i•: ..
*There are excePtions to tttis rulen See DATA, INPUT,
LINE INPUT, INKEY$, and INPUT$.

IIIu Whole numbers in the ~an9e <-32768,32767> are
inte9ers~ For examPle, the statements:

A = 12350
B = -12
PRINT 10012, -2111ll1ll1l

contain inte9er constants onlY~
IVu Numbers which ar·e not inte9er tYPe and which

contain seven or fewer di9its are sin9le-precision~
For examPle, the statements:

A = 123<>567
B = -··1. 23
PRINT 11000.25

all the numbers are sin9le-precision.
V .. If the number· C•)ntains mor·e than ei9hi: di9it::., it i::.

double-precision~ For examPle' in the statements:
A "' 1:;;-~345678901234:"i67
El ~' -ll1ll1li2K111l0001ill1l
PRINT 2.777000321

all the numbers are double-precision.

TYPe Declaration Characters

You can override BASIC's normal tvPin9 criteria bv addin9 the
following 11 tags•• to the end of the numeric constant:

Makes the number sin9le-precision.
For exa~Ple, in the statement:

A a 12.345678901234 1

the constant is classified as sin9le-Precision~ and
rounded to seven di9its: 12~34568

.-,.-,

...:.:..

•

•

•

•

•

•

i'IODEL I I BAS I C CHAPTER 2

Makes the number double-precision~ For examPle' in
~-ta.tement:

PRINT 3'1* I 2
the fi~st constant is classified as double-precision
before the division takes Place~

PAGE 23

(Addition and the other oPerations are described later in this
:::.eci:ion ..)

Hexadecimal and Octal Constants

Model II BASIC allows two additional tvPes of constants, hexadecimal
and octal numbers~

Hexadecimal numbers are quantities rePresented in base 16 notation~
composed of the numerals 0-9 and the letters A-F. Hexadecimal
C1)ns.+.:ants must be in the r-an9e <0,FFFF>·g The··f' a·r-e s.tr:,r·ed a::.
two-bvte inte9ers' corresPonding to decimal inte9ers as follows:

Hexadecimal Ran9e

<Ill. 7FFF>
<80011), FFFF>

E·=1u iva 1 ent
DE-cimal Ran~~f:!

<0, :'32767>
<-32768.-·l.>

AnY number Preceded by the svmbol &H is interPreted as a hexadecimal
constantu For examPle:

&HA010 &HFF &HDl &H10 &H0D
are all hexadecimal constants~

Octal numbers are quantities rePresented in base 8 notation,
composed of the numerals 0-7Q Octal constants must be in the ran9e
<0,177777>~ TheY are stored as two-bvte integers, corresPonding to
decimal inte9er·5- a.s foll Cll..!Js:

Ocl:a 1 Ran9e

<,~, 77777>
< 100000, l. T7777 >

E·=Juivalerd:
D;,cirr.al Ran9;,

(12),32767>
<--32768. -·1 >

Anv number Preceded bv the svmbol &0 or & is interPreted as an octal
constant. For examPle:

&70 &044 &100T1 8<1:::~3407

a.rc-! ;a.ll octal cons.t;a.nts ...

i"IODEL I I BASIC CHAPTER 2 PAGE 24

Var·iabl<H-

A variable is a Place in memorv--a sort of box or Pi9eonhole--where
data can be storedu Unlike a constant, a variable,s value can
chan9e. This allows vou to write Pro9rams dealin9 with chan9in9
·1uantitie:: ...

Var·iabl e Names

In BASIC, variables are rePresented bv namesu
be9in with a letter• A throu9h z. This letter
di9it, 0 thr·ou9h 9, or· another· lettE>r· ..

Variable names must
mav be followed bv a

For· e::-~amPl e::
A AA A2 B7 i"IJ

are all valid and distinct variable names ..

Variable names mav be lon9er than two characters.
first two characters are si9nificant in BASIC ..

However, onlv the

For- e::-::amPl e:
su SUM SU PE RNUI"IE RA RY

are all treated as the SAME variable bY BASIC.

Certain combinations of letters are reserved as BASIC keYwords, and
cannot be used in variable names. For examPle:

OR LAND NAME LENGTH MIFFED
cannot be used as variable names~ because theY contain the reserved
words OR, AND• NAME• LEN• and IF, resPectivelY.

See the APPendix for a list of ~eserved wo~ds.

TYPes of Variables

As with constants~ there are four tvPes of variables. The first
th~ee are numeric: integer, sin91e-precision and double-precision;
the fourth is strin9.

DePending on its tYPe, one variable can contain values from onlY one
of these 9r·(IIJps .•

l'he first letter of the variable name determines what the tYPe
Initially, all letters A throu9h Z have the sin9le-precision
attribute. This means that all variables are sin9le-Precision
is, theY can onlv hold sin9le-Precision values).

For· e::.::amPle:
A X1 CY TRS H4

are all sin9le-Precision variables initiallY.

<that

•

•

•

•

•

•

i"IODEL I I BAS I C CHAPTER 2 PAGE 25

However, vou can assi9n different attributes to anv of the letters,
bv means of DEFINT (define-inte9er), DEFDBL (define
double-precision), and DEFSTR (define-string) statements.

Ft:•r- E:-::.::amPl e:
DEFfHii L

makes all variables which start with L into strin9 variables.
After the above statement. the variables:

L Ll LL L0
can all hold string values, and onlv strin9 values~

TYPe Declaration Ta9s

You can alwavs override the tvpe of a variable name bv addin9 a tvPe
declaration tag at the end. There are four type declaration tags:

% Inte9er

$

For· e::-~amP 1 e:
I%

Si n9 1 e-pr·ec is:. ion
Double-precision
Strin9

FT% NUM% COUNTER%
are all inte9er variables. REGARDLESS of what attributes have been
assi9ned to the letters I, F, N and C •

T' RY' <Y.UAN I PERCENT'
ar·e all s.in9le-pr·ecision var-iables, REGARDLESS of
have been assi9ned to the letters T, R, 0 and P.

X# RR# PREV# LASTNUM#

what attr·ibutes.

are all double-precision variables, REGARDLESS of what attributes
have been assi9ned to the letters x, R, P and L.

<Y.$ CA$ WRD$ ENTRY$
are all string variables• REGARDLESS of what attributes have bean
assi9ned to the letters Q, c, W and E.

Note that anv 9iven variable name can rePresent four
different variables. For examPle:

A5# A5 1 A5% A5$
are all valid and DISTINCT variable names.

One further imPlication of tvPe declaration: Anv variable name used
without a tag is equivalent to the same variable name used with one
of the four ta9s. For examPle, after the statement:

DEFSTR C
the variable referenced bY the name Cl is identical to the variable
referenced bv the name Cl$.

P..r·r·a··r Var·iables .

BASIC allows subscriPted variables or arravs. An
references a list of values' or elements, instead

ar r·a··c· name
(1f a sirl9le

I"'ODEL I I BAS I C CHAPTER 2 PAGE 26

The arrav can have one or more dimensions~ Each dimension is
sPecified bv a subscriPt~ ArraY subscriPts ALWAYS start with zeroD
Therefore the statement:

DII'1 1\(1:;~, Hll
creates an arraY A with 143 elements arran9ed in 13 r-ows of 11
c<:~lumn~-~

A(S, 7)
r·efers to the element at rows, column 7 in arraY A~

See the DIM statement descriPtion for more information~

•

•

•

•

•

•

t'IODEL I I BAS I C CHAPTER 2 PAGE 27

Often it is necessa~v to convert a value from one tYPe to another
tvPe. BASIC will Perform manv conversions automatically; other
conversions require that vou use special conversion functions.

For examPle, suppose vou want to add two numbers=
1 + 1.2345678901234567

The first number is an inte9er constant; the second, a
double-Precision constant. Because of different storage formats for
the two tvPes, the oPeration is PhYsicallY imPossible until one of
the numbers is converted to match the other 7 S tvPe.

Accordin9 to rules described later, BASIC converts the 1 to double
Precision. Then the two double-Precision numbers can be added to
Produce a double-Precision resultn

What concerns us here is not the addition, or the rule for deciding
which number is converted~ Here we are onlY interested in the
conversion itself~

Ille9al Conversions

BASIC cannot automaticallY convert numeric values to string, or vice
versa~ For examPle' the statements:

A$ = 123Lf
A*~ ::::: II 123.1.~ II

are ille9al. CUse STR$ and VAL to accomPlish such conversions.)

Le9al Conversions

BASIC can convert anv numeric tvPe into anv other numeric tYPe. For
e>::amPl e:

A# -· A%
A' = A#
A! = A%

Inte9er to double-precision
Double-precision to sin9le-precision
Inte9er to sin9le-precision

MODEL II BASIC CHAPTER 2 PAGE 2!3

Rules for Conversion

Sin9le or double-precision to inte9er tvpe:

BASIC returns the 1ar9est inte9er that is not 9reater than the
or·i9inal valuE-~

Note: The ori9inal value must be 9reater than or e~ual to -32768,
and less than 3276!3.

E}::amPl es.:
A% = 3:n67.9

AssiBns A% the value 32767.

A% = 2.503
AssiBns A% the value 2500.

A% = -123.4567!3901234567
AssiBns A% the value -124.

A%= -3276!3.1
Produces an Overflow Error (out of inte9er ran9e).

Inte9er to sin9le- or double-precision:

No error is introduced. The converted value looks like the ori9inal
value with 7 or 17 zeros to the ri9ht of the decimal Place.

A# = 32767
Stor·es. 32767.000000000000 in A#.

A' = -1234
Stores -1234.000 in A!.

Double- to sin9le-Precision:

This involves converting a number with UP to 17 si9nificant di9its
into a number with no more than 7v BASIC choPs off (truncates) the
10 least si9nificant di9its, and Perfor·ms 4/5 rounding on the least
si9nificant di9it of the conve~ted numbe~.

That is, if the most si9nificant di9it <MSDl of the choPPed-off
portion is less than 5, then the least si9nificant di9it (LSD) of
the remaining Portion is left unchan9ed. But if the MSD of the
choPPed off Portion is 9reater than 4, BASIC adds 1 to the LSD of
the remaining Portion~

E~~::amP 1 e ~.:
A' • 1.234567!3901234567

Stores 1.23456!3 in A!

•

•

.N~,·b,:.: The ::.tatement:' •
PHINT A!

Will disPlaY the value 1.23457, because onlY six di9its are

i"IODEL I I BAS I C CHAPTEH :2 PAGE 29

disPlayed. The full seven di9its are stored in memorvg

.... A! = 1.33333333333333333

•

•

Stores 1.333333 in A!.

A ! = 112liZI0 12)1Zl9 5
Stores 1000010 in A!, thou9h onlY the first 6 di9its can be
displavad via tha PHINT statamant.

Sin9le- to double-Precision:

l·o make this conversion' BASIC simPlY adds trailin9 zeros to the
sin9le-precision number. If the ori9inal value has an exact binarY
rePresentation in sin9le-Precision format, no error will be
introducedD For examPle:

A# = 1. 5
Stores 1.5000000000000 in A#, since 1.5 does have an exact binarY
r·epr·e s.en tat ion ..

~1owever, for numbers which have no exact binar·v rePresentation, an
err-or is introd,uced when zer·oes ar-e add~~ d .. For· e::-::amPle:

Stores t1.299999952316284t in A#.

Because most fractional numbers do not have an exact bina~Y
~eP~esentation, YOU should keeP such conve~sions out of You~
P~o9~ams. Fo~ examPle, wheneve~ You assi9n a constant value to a
double-p~ecision va~iable, You can fo~ce the constant to be
double-precision:

A#= 1.3#
Both store 1.3 in A#.

eo r· A# = 1 • 3D

Here is a sPecial technique fo~ convertin9 sin9le-P~ecision to
double-p~ecison, without introducing e~ror into the double-Precision
value~ It is useful when the sin9le-precision value is stored in a
var·ia.bl e ..

Take the sin9le-precision variable, convert it to a strin9 with
STR$, then convert the ~esultant strin9 back into a number with VAL.
That i$' u, .•

VALISTR$($in9la-Pracision variable)).

For examPle' comPare the
10 A! = 1.3
20 A# = A'
30 PHINT A*i'

Prints a value of:

following Pro9ram:_
1 Sin9le-Precision
'Sin9le->D~)uble

1. 299999952:H6284

ComPa~e with this Pro9ram:
40 A! = 1.3 'Sin9le-Precision
50 A# • VALISTH$1A 1 ll 'SPacial conversion tachnigua
60 PHINT A#

which Prints a value of:
1.3

MODEL II BASIC CHAPTER 2

The conve~sion in line 50 causes the value in A! to be stored
accuratelY in double-precision variable A#.

PAGE 30

•

•

•

•

•

MODEL II BASIC CHAPTER 2

IM2BASIC3 8/9/791

0Pe~ations

==========
An oPeration instructs the ComPuter to do somethin9.

There are two levels of oPerations:
.Statements, which are comPlete instructions
.ExPressions' which serve as Parameters
and data for statements

Statements

PAGE 31

Statements tell the ComPuter to Perform some action. Statemer1ts are
comPlete in themselves. Once the statement has been written, no
other information needs to be added to the statement for it to be
executed.

For· examPle, the statement:
DEFINT N-R

Is comPlete as it stands .

A statement is made UP of a kevword* followed bv whatever Parameters
or data are needed. The data is usuallY rePresented bv an exPression
(defined below).

* A kevword is anv se~uence of characters which has a Predefined
meanin9 for BASIC~ 11 PRINT~, ~INPUT~~ and ~SQR 11 are all examPles of
keYwords~

For examPle:
PRINT "MODEL II"

Tells BASIC to disPlaY the messa9e inside ~uotes. PRINT is the
keYword; ~MODEL II 11

' the data.

LIST 100-130
Tells BASIC to list the r-esident Pro9ram lines in the ran9e 100-130.
LIST is the keyword; 100-130, the parameter"

A1 = 5 * A I 3
Tells BASIC to 9ive Ai the value ·of the exPression on the ri9ht of
the equals si9n~

I"IODEL I I BASIC CH1\PTER 2 PAGE 32

The concePt of an exPression is imPortant in this manual' since it
is used in most of the svntax descriPtions. Throu9hout these
descriPtions, vou will encounter the terms "numer·ic exPress.ion 11

'

' 'string exPression'', ''logical exPression'', etc. Understanding the
concePt wi 11 all ow ·y·ou to 9rasP the ful·l Potential of BASIC's
oPer·ation:: ..

ExPressions are comPosed of
• Con~£.t~:t.nt:: .
• Var·ia.ble~ .
.. OP'.:?r-ator·s
.Functions

A sirr1Ple exPr·ession consists of a sin9le tern.: a constar1t, variable,
or function Preceded bv an oPtional +or- si9n or the lo9ical
oF·erator NOT.

Note: For simPlicity, exPression and term definitions do not
necessarily conform to standard comPuter usa9e~

F·or· e::-::amPle:
1 A1 -33.565 1.2345-E5 Z#

Here 7 S a Picture definin9 a TERM (items
e 1 ~-ewher·e):

NOT 0

A function consists of a ~cevword usuallY followed bY an ar9ument
list in Parentheses. Each of the ar9uments can be an exPression. For
e::-~amP 1 e:

SG!R(2. 5+Al TAN(Yl CINT(X#)

Here 7 s a Picture defining a FUNCTIONu

•

•

•

•

i"IODEL I I BAS I C CHAPTER 2 PAGE 33

In 9eneral, an exPression consists of one term or two or more terms
combined bv oPerators (defined belouJ)~ For examPle:

A + 1 A I B C * D + E + 3.5

Hare's a Picture defining a COMPLEX EXPRESSION:

MODEL II BASIC CHAPTER 2 PAGE 34

An oper·ato~ is a sin9le svmbol or word which si9nifies some action
to be taken on one or two SPecified values referred to as oPerands~

For examPle:

The operator~ connects or· relates its two oPerar,ds~ tt,e DIJIT1t1ers 5
and 2, and indicates exPonentiation, 5 to the Power of 2.

0Per·ators fall into three categoriesg
.Numeric
.Lo9ica1
.Strin9

Ir, tt.e descriPtions t~elow, we use tt1e terms inte9er OPeration,
sin9le-precision oPeration, and double-precision oPeration. The
imPortance is that inte9er· oPerations involve two-bvte oPerands;
sin91e-Precision, four--bvte operands; and double-precision~
ei9t,t-·bvte oPerands. Tt,e more bYtes involved in an oPeration' the
slower the oPeration~

•

•

•

•

•

i"IODEL I I BASIC CHAPTER 2 PAGE 35

Numeric OPerators

There are nine different numeric oPerators~ Two of them' si9n + and
si9n -, are unary, that is, thev have onlY one oPerand~ A si9n
operator has no effect on the Precision of its oper-and.

For example, in the statement:
PRINT --7'7, +T!

the si9n operators- and+ Produce the values ne9ative 77 and
Positive 77, resPectivelY~

Note: When no si9n operator aPPears in front of a numeric term, + is
a::.sumed ~

The other· ntJIT1er·ic oPttr·ator·s ar-e all binar···{5 tha.t i~., they all take
two oPerands. These oPerators are

+ Addition

*
I

" A

MOD

~~ddi tion

Subtraction
Mul tiPl icati~:-n
Division
Inte9er· division (keYboard character <CTRL 9>
E>,P•:onerd:iati.on (keyboard character <SHIFT 6>
Modulus arithmetic

The + oPerator is the sYmbol for addition. The addition is done with
the Precision of the more Precise oPerand <the less Precise oPerand
i ~. Ct)nverted).

For examPle' when one oPerand is inte9er type and the other is
sin9le Precision, the inte9er is converted to sin9le-precision and
four-bvte addition is done. When one oPerand is sin9le-Precision and
the other is double-Precision, the sin9le-precision number is
converted to double-Precision and ei9ht-bvte addition is done~

E::..::amPl e;:.:
PRINT 2 + 3

Inte9er addition.

PRINT 3. 1 + 3
Sin9le-precision addition.

PRINT 1.2345678901234567 + 1
Double-Precision addition.

Subtr·action

The - oPerator is the svmbol for subtraction. As with addition• the
oPeration is done with the Precision of the more Precise operand
(the less Precise oPerand is converted).

MODEL II BASIC

ExamPles•
PRINT 33 - 11

Inte9er subtraction~

PRINT 35- 11.1
Sin9le-Precision subtraction.

CHAPTER 2

PRINT 12.345678901234567 - 11
Double-Precision subtr·actionu

MultiPlication

PAGE 36

The* oPerator is the symbol for rnultiPlicationu Once a9ain, the
oPeration is done with the Precision of the more Precise oPerand
(the less Precise operand is converted)u

ExamPles:
PRINT 33 * II

Inte9er m'JltiPlicationu

PRINT 33.1 * 11
Sin9le-Precision multiPlication.

PRINT 1.2345678901234567 * 11
Double--precision multiPlicationg

Division

The ! svmbol is used to ir1dicate ordinarY division. Both oPerands
are converted to single or double-Precision, dePending on their
ori9ir,al Precision~

If either oPerand is double-precision' tt1en both are
converted to double-PPecision and ei9ht-bvte division
is Performed~
If neither· oper-and is double-pr-ecision~ then bott, are
converted to sin9le-Precision and four-bvte division is
Perfor·med~

ExamPles•
PRINT 3/4

Sin9le-precision division~

PRINT 3.8/4
Sirl9le-PPecision divisionu

PRINT 3 I 1.2345678901234567
Double-precision division.

Inte9er Division

The integer division OPer·ator ' converts its oPerands into inte9er·
tYPe' then Performs integer division, in which the remainder after

•

•

•

•

•

•

i'IODEL.. I I BASIC CHAPTER ::;-~ PAGE 37

division is ignored~ leavin9 an inte9er result~ <If either oPerand
is outside the ran9e <-32768,32767}, an error· will occur.)

For· e::-::amPle:
PRINT 7 '\ 3

Prints the value 2, since 7 divided bY 3 equals 2 remainder 1.

E::-::P·onen t i a 1: ion

The s·y·mbol A (read: carat) d~2notes e::<Ponentia.tion. It cc,nver·t~­
both its operands to sin9le-precision~ and returns a sin9le
precision result.

Note: To enter the A oPerator, Press(SHIFT-6~

F1)r· e~<a.mPle::

PRINT 6 1\ .3
Prints 6 to the =3 Power.

Modulus Arithmetic

The MOD (1•modulo") operator allows YOU to do modulus arithmetic~
iue., arithmetic in which everY number is converted to its
equivalent in a cYclical counting scheme. For examPle' a 24-hour
clock indicates the hour in modulo 24: althou9h the hour keePs
incrementing, it is alwavs exPressed as a r1umber from 0 to 23~

MOD re~uires two oPerands, for examPle:
A MOD B

B is the modulus (the countin9 base) and A is the number to be
conver·ted ~

!ExPressed in mathematical terms• A MOD B returns the REMAINDER
after whole-number division of A bY B. In this sense, it is the
converse of \, which returns the WHOLE NUMBER QUOTIENT and i9nores
th~::t remainder-n)

MOD converts both oPerands to inte9er tYPe before Performing the
oPerationn If either oPerand is outside the ran9e <-32768,32767) an
E:r·r·or· wi 11 occur· ..

E>~amP·l f= :=.:
PRINT 15:'• MOD 1:;

Prints s, since 155/15 9ives a whole number quotient of 10 with
r·emainder 5.

PRINT 79 MOD 12
Prints 7, since 78/12 e9uals 6 with remainder 7 .

10 INPUT "TYPE IN AN I~NGLE IN DEGREES"; A%
20 PRINT A% " = " A% ' 90 " * 9[1) + " A% MOD 90

InPut a positive an9le 9reater than 90. Line 20 exPresses the an9le

MODEL II BASIC CHAPTER 2 PAGE 38

as a multiPle of 90 de9rees Plus a remainder. •

•

•

•

•

•

MODEL II BASIC CHAPTEFl 2 PAGE 39

The table below summarizes the Precision of oPe~ations for all
numeric oPer·ators. (I = inte9er~ S = sin9le-pr·ecision' D =
double-precision.)

ImPortant: For effects of conversions on accuracy~ see 1'Data
Conv~::r·sion" u

OPer-ator· OP<:r·ar.d ('·) Va lu<: Fl<:tur·r,<:d
===

!

MOD

+ (si9n)
and

-- (si9n)

II
IS SS

ID SD DD

I I IS SS
ID SD DD

All -Possible combinations

All Possible combinations

All Po:~-s:i.b'l~~ C()mbinai:i,)n::;.

I
s
])

I
s
D

D

I

I

I
R

D

~10DEL I I BAf3 I C CHAPTER 2 PAGE 40

Lo9ical OPerators

Lo9ical oPerators deal with True/False conditions, comParisons, and
testsn TheY allow vou to build elaborate decision-making structures
into Pro9rams, to Perform bit maniPulations, to sort data, etc.

All lo9ical oPerators convert their oPerands to two-bvte inte9ersu
If an oPerand is outside of the ran9e <-32768,32767> an error will
occur- ..

The lo9ical oPerators irtclude the three relatiortal oPerators:
<. ·-..

and six Boolean word-operators:
AND OR XOR NOT IMP

Note= An exPression involving a lo9ical operator is called a lo9ical
e>~Pr·f:!Sic~n ..

Relational Operators

Relational OPerators comPar-e two OPerands for numerical Precedence.
Here is a table of the relational oPerators and their various
combinations:

>

>< l)f· <>
=<or<=
=> or>=

Le~.s than
Gr·ea te r· than
E·=11Jal to
Not e·=tU·'3.1 to
Less than or equal to
Greater than or e9ual to

Relational oPerators can return or1lY two Possible values~ Tr·ue or
False. Actually, BASIC returns the number -1 to indicate True, and 0
to indicate False. But the ~uantitv (-1 or 0) is rarelY used as a
number~ More oft~:;:.on, it is u~-ed •::ts a decisi,)n-m~.lkin9 OPf~r-ator·, ~ls ir1
the line:

IF A = B THEN GOTO 1m0m ELSE END
The lo9ical exPression A= B returns ne9ative one (-1) when A equals
B, and zero when A does not equal B. But vou don 7 t care about the
numbers -1 and 0. What matters to vou is that if the exPression is
1-rue, GOTO 1000 is executed; otherwise BASIC ENDs the Pro9ram"

Here's an examPle 1uhere the result of a logical exPression IS used
as a ·=tua.ntit·-..-:

MAX - -CA < Bl * B
For anv two inte9er tvPe values
the two.

C B <= A) * A
A and 9, MAX contains the lar9er (If

Note~ All relational OPerators can also be used to comPare strin9s
for Precedence. The result of such a comParison is still eithe~ a
True <lo9ical -1) or· False (lo9ical 0>. See Strin9 OPerators.

•

•

•

•

•

•

MODEL II BASIC CHAPTER 2 PAGE 41

Boolean OPerators

In this section, we will exPlain how Boolean oPerators are
imPlemented in Model II BASIC~ •~owever' we will not trv to exPlain
Boolean al9ebr·a, decimal-to-binar-Y conversions, binar·v arithmetic,
and similar subJects. If vou need to learn somethin9 about these
toPics, Radio Shack's Understanding Di9ital Electronics <Catalog
Number 62-20101 and TRS-80 Assemblv-Lan9ua9e Pro9rammin9 1Catalo9
Number 62-2006) are the books to start with~

Model II BABIC includes
AND
EQV

six Boolean
OR
IMP

oPerators:
XOR
NOT

All the Boolean oPerators relate two oPerands excePt for NOT, which
acts on a sin9le oPerand~

These oPerators can be used to set UP decision structuresu For this
aPPlication, both oPerands are usuallY relational exPressions and
the oPerator is one of the following:
ANDo ORo XORo NOT.

AND
If both exPressions are True, then AND returns a lo9ical True.
Otherwise it returns a lo9ical False~

ClR
If either of the exPressions is True, or both are True, this oPerand
returns a lo9ical True~ Otherwise it returns a lo9ical False.

XOR (11 Exclusive-ORH)
OnlY ~Jhen one of the expr·essions is True does OR return a lo9ical
Truen Otherwise it returns a lo9ical False.

NOT
NOT is a unarY oPerator (acts on one oPerand). When the exPression
is True~ NOT returns a logical False. When it is False~ NOT returns
a lo9ical True.

ExamPle
IIF A<~ 90 AND A~= 01 THEN PRINT 'Value is okav.•

OnlY if A is in the ran9e <0,90> will BASIC Print the "okavH
messa9e~

I"IODEL.. I I E?.AE< I C CHAPTER 2

Bit ManiPulation

For this aPPlication' both oPerands are usuallY numeric exPr·essions.
BASIC does a bit-bv--bit comParison of the two oPerands, according to
Predefined rules for the sPecific operator.

Note: The operands are converted to inte9er tvPe' stored internallY
as 16-bit, two,s COIT1Plerr1ent numbersu To understand the results of
bit--bv-bit comParisons, vou need to keeP this in mind~

The following table summarizes the action of Boolean oPerators in
bit maniPulation~

OPe r·.a. tor·

BOOLEAN OPERATIONS

Me·T:I.n in~.~ of
OPeration

Fir·~.t

OPer-and
Sec,)nd

==
AND

OH

XOR
(-e::<clu-N

:.. i ve
,:. r·)

EQV
("L::<·=iu i v-

alence)

IMP
(i ITIP 1 i ·-
ca.tion)

NOT

Wh<2n both bits
~3. r- f.,~ l ' th{? r·f:: :::.u 1 1:
u.!i l 1 be 1. Other·-"·
IJ..IiS-.f~, the r·esul i:
w i 1 1 be 0.

FU?sul i: wi 1 1 be 1
un 1 e~.:::- both bit:..
ar·e 0.

Re:::.ul t w i 1 1 be 1
unless both bits
a.r·e the sa. me ..

Re~.u 1 t H.d 1 1 be 1
ur1l e:..s both bit"·
.::r. r· E! dif1::t?Pent ..

R<2~.u1t LO i 1 1 be 1
unlBs:::. fir·~.t bit
i :.. l and second
bit i ,. 0.

Hf:!S-1 .. 11 t is op­
Posit<..'=! (1f bit ..

l
:l
0
0

1
1.
0
0

1
1
0
0

1
1
0
IZ!

1
1
0
0

1
0

1

'1
l
0

1
0
1
(1

1
0
l
0

1
0
1
IZt

l
0
1
0

1
IZI
0
0

1
1
1
IZt

IZt
1
1
0

1
IZt
0
1

1
0
1
1

IZi
1

•

•

•

•

•

•

MODEL II BASIC CHAPTER 2 PAGE 43

As an examPle of bit maniPulation, SUPPose vou want to chan9e
lowercase characters to UPPercase and UPPercase characters to
lowercase. You could do this bY checking the ASCII code of each
character· and addin9 or subtracting decimal 32 (hexadecimal 20)
dePending on whether the character was UPPercase or lowera But this
routine could be done more simPlY, usin9 onlv the oPerator XOR.

The ASCII codes for UPPercase characters are decimal 65-90
(hexadecimal 41-SA); for lowercase' decimal 97-122 (hexadecimal
61-7A>~ Looking at these ran9es in binary, vou can see that all
caPital letters have a 0 in bit Positions, while all lowercase
letters have a 1 in bit Position 5~

Note: Position 7 is the most si9nificant bit; Position 0 is least
si9nificant, as illustrated below:

most si9nificant
bit

least si9nificant
bit

7 ' 6 ' 5 ' 4 ' 3 ' 2 ' 1 0 '

So, to convert from lower to UPPercase and vice versa' vou Just
to99le (reverse the state of) bit 5~ Decimal 32 has the following
binarY rePresentation:

00100000
Notice that bit 5 is a 1; all others ar·e zeroes. When you XOR
decimal 32 with anv number, You will effectivelY to99le bit 5. For
letters, this will switch cases' UPPer to lower and vice versa~

For instance' since 72 is the ASCII code for ••H••:
PRINT CHR$172 XOR 321

Prints a lowercase ••h··~

You can check this bv consultin9 XOR in the table above and XOR-in9
the two numbers bY hand~

MODEL II BASIC CHAPTER 2 PAGE 44

st~in9 OPerators

The~e a~e seven string oPerator·s in Model II BASIC. These oPerator·s
allow YOU to comPare strin9s and to concatenate them (i~eu' strin9
then' to9ether).

The comParison oPerators for strin9s are the same as those for
numbers, althou9h their meanin9s ~re sli9htlv different. Instead of
comPar·in9 numerical ma9nitudes, the oPer·ators compare sortin9
Precedence (i.e., alPhabetical se~uence>.

<
>

Precedes
Follows
Has the same Precedence

<> Does not have the same Precedence
<= Precedes or has the same Precedence
>= Follows or has the same Prece(ience

ComParisort is made character bv character on the basis of ASCII
codes. When a non-matching character is found, the st~in9 containin9
the char·acter with a lower ASCII code is taken as the smaller
(••precedent"> of the two strin9s. See the APPendix for an ASCII code
tabla.

ExamPles:
IIA» < IIBII

The ASCII code for A is decimal 65; for· B it~s 66.

11 C00L 11
)

11 C0DE 11

ASCII for 0 is 79; for· D it's 68~

If, while comParison is Proceeding, the end of one string is reached
before any non-matching characters are found, the SHORTER strin9 is
considered to be the smaller~ For examPle:

"TRAIL" < "TRAILER"

Leadin9 and trailing blanks are significant~ For examPle~
» All < IIA »

ASCII for " 11 (space) is 32; for A it's 65.

··z-80 11 < ·~z-B0A"
The strin9 on the left is four char·acters long; the str·in9 on the
ri9ht is five.

Here are some examPles of houJ vou mi9ht use the str·in9 comParison
oPerators in a Pro9ram~

IF A$ <> 8$ THEN END
If string A$ is not the same as B$, the Pro9ram ends.

IF A$ ~ 8$ THEN PRINT A$
If A$ alPhabeticallY *Precedes* B$, A$ is Printed.

•

•

•

•

•

•

MODEL II BASIC CHAPTER 2 PAGE 45

IF NME$ • "CARRUTHERS" OR CITY$ • "BUFFALO"
THEN PRINT NME$, CITY$

If the value of NMES is CARRUTHERS, then CARRUTHERS ~lus the cu~rent
value of CITY$ will be P~intedo OR if the value of CITY$ is BUFFALO•
then BUFFALO will be ~rinted Plus the current value of NMES.

The co~catenation operator is rePresented bv the svmbol +. This
oPerator takes two strin9s as its oPerands and returns a sin91e
strin9 as its result bv adding the strin9 on the ri9ht of the + si9n
to the string on the lefta If the new strin9 is 9reater than 255
characters' a Strin9 Too Lon9 error will occur.

For examPle:
PRINT "CATS II + "LOVE II + "MICE''

which returns
CATS LOVE MICE

riO DEL I I BAS I C CHAPTER 2 PAGE A6

Evaluation of ExPressions

When an exPression involves multiPle OPe~ations, BASIC Performs the
operations accordin9 to a well-defined hierarchy, so that results
ar··e alwaYs Predictableu

Par·enthe~.f=s

When a complex expression includes Parentheses, BASIC alwaYs
evaluates the exPression inside the Parentheses before evaluating
the rest of the expr·ession. For examPle' the exPression:

8·-(3-2)
is evaluated like this:

3···2,~1

8-·1="7
With nested Parentheses• BASIC starts evaluation at the innermost
level and works outwardu For examPle:

4 • (2 - (3 - 4)
is evaluated like this:

3--4 = ···1
2 - ··-1 = 3

L1. * 3 ··· 12

•

Or·der o1~ Ot:=·~?r·ations •

When evaluating a sequence of operations on the same level of
Parenthesis~ BASIC uses the followin9 hierarchY to determine what
OPeration to do first. OPerators are shown below in decreasing order
of Precedence. OPerators listed in the same entrY in the table have
the same Precedence and ar·e executed in or·der FROM LEFT TO RIGHTa

-i··' -"

*' I

" I"'OD
+, -·

E::-::Ponen t ia ·t ion
UnarY si9n operands (NOT additianand subtraction)

Inte9er division

Addition and subtraction
-:::, :::-, :::, <=, >=';I <>
NOT
AND
OR
XOI~

E<N
IMP

For· e::-::amPle, in the 1 ine
X•X+5A2.8

BASIC will find the value of 5 to the 2.8 Power. Next it uJill
multiPlY X* x, and finallY add this value to the value of 5 to the
2.8. If vou want BASIC to Perform the indicated OPerations in a
different order, YOU must add Parentheses, ea9a

X* <X+ :'1 "'2.8} •

•

•

•

MODEL II BASIC CHAPTER 2 PAGE 47

x • ex + s1 A 2.s

He~e's another examPle:
IF X = 0 OR Y > 0 AND Z = 1 THEN GOTO 255

The relational operators ~ and > have the hi9hest Precedence, so
theY will be Performed first. Since they both have the same
Precedence, theY will be Performed one after another, left to ri9ht~
Then the Boolean oPerations will be Performed. AND has a hi9her
Precedence than OR, so the AND operation will be Performed before
the ORd Therefore' the line above means that if X= 0, or if Y > 0
and Z = 1, control switches to line 255.

If the line above looks confusin9 because vou can't remember which
oPerator is Precedent over which, then vou can use Parentheses to
make the sequence obvious:

IF X • 0 OR CCV> 01 AND CZ = 111 THEN GOTO 255

MODEL II BASIC CHAPTER 2 PAGE 48

TYPe Conve~sions

Durin9 evaluation of an exPression, BASIC often has to Perform type
conversions. Unless YOU 7 re careful in formin9 exPressions' these
conversions can Produce invalid results. For examPle' in the
exPression:

A# * C'
C! must be converted to double-Precision before the multiPlication
can take Place. This ltlill 'JsuallY introduce an error into the
result.

Before evaluatin9 the exPr·ession~
A + BA1.2345678

BASIC must conver·t 1.2345678 to to sin9le-precision. You can~ot
exPect double-precision from a sin9le-Precision operator or
function.

See "Data Conversion" for details on the effects of tYPe conversion
on accuracy, and for sPecial conversion techni9ues.

Functions

A function is a built-in subr·outineu The functions SUPPlied in
Model II BASIC save You fpom having to wPite equivalent BASIC
routines, and theY oPePate fasteP than a BASIC Poutine would.

A function consists of a keYword followed bY required inPut values,
r·eferred to as ar9uments or· Parameters. The ar9uments are alwaYs
enclosed in Parentheses and seParated bY commas. Some functions have
no ar9uments; others require UP to three. The quantitY output or
Peturned bv a function is called the value of the function.

ExamPles:
S0RCAl

1"ells BASIC to comPute the square root of the quantitY A. SQR is the
keYword' and A is the aP9ument.

MIDCA, 3, 21
Tells BASIC to return a substrin9 of the strin9 A$, staPtin9 with
the thiPd chaPactep, with 1en9th 2. MID$ is the keYword, and A$, 3
and 2 are its ar9uments or Parameters.

Since functions are sYntacticallY equivalent to exPressions' theY
cannot stand alone in a BASIC Pro9ram. Thev must be used in
statements.

For examPle:
A = S0R (8)

Assi9ns A the value of square root of 8.

•

•

•

•

•

•

MODEL II BASIC CHAPTER 2 PAGE 49

PRINT MIDSIA$, 3, 21
P~ints the substrin9 of A$ startin9 at the third character and two
characters lon9~

PRINT LOGISQRI21l
Prints the natural lo9arithm of the s~uare root of 2.

In this manual' functions are classified as numeric when thev return
a number' and strin9 when theY return a strin9~
Wherever the svntax calls for a numeric exPr·ession' vou can use a
numeric function; for a strin9 exPression' vou can use a strin9
function.

There is another sPecial class of functions which return information
about the allocation of memorY and the location of various
9Uantities i~ memorv. For examPle:

~M
Returns the number of bvtes of memorv available for storin9 Pro9ram
text, numeric and arrav variables •

•

•

•

Chapter3

BASIC Keywords

PAGE NU~1BERING PESUr·1ES ON THE NEXT

PAGE \·JITH NUt1BE R 57 .

There are no ~aqes numbered 50 , 51 ,52 ,53 , 54 ,55 , 56.

A. Statements

57

Command Statements

Command statements tell BASIC to enter anothex: operation mode or to
perform various System functions (like loading a program from disk).
Although they can be included inside a program, their primary use is outside
of a program.

For example , the command statement

1\IFW

Erases the entire program currently in memory and zeroes all variables.

59

AUTO
Number Lines Automatically

AUTO start/ina, increment
startline is a line number specifying the first line number to be used. If

startline is omitted, 1 0 is used. A period (". ") can be substituted for
startline. In this case, the current line number is used.

increment is a number specifying the increment to be used between lines. If
increment is omitted, 10 is used.

AUTO turns on an automatic line numbering function. After you enter this
command, BASIC will supply the startline. All you have to do is type in the
text of the line and pressl3~ii=I;J. Then AUTO will display the next line
number, using increment or a default increment of 10.

To turn off the AUTO function , press I:J;I:::t!13 at any time. The current line
will be cancelled.

Whenever AUTO provides a line number that is already in use, it will display
an asterisk immediately after the line number. Pressi:J;J:t!13 if you do not
want to change that line .

Examples

AUTO

starts automatic numbering with line 10, using increments of 10 between line
numbers.

AUTO 100

starts numbering with 100, using increments of 10 between line numbers.

AUTO 1000, 100

starts numbering with 1000, using increments of 100 between line numbers.

Au·ro , s

starts numbering with 0, using increments of 5 between line numbers.

AUTO •

starts numbering with the current line number, using increments of 10
between line numbers.

60

DELETE
Erase Program Lines from Memory

DELETE startline-endline
startline is a line number specifying the lower limit for the deletion. If startline

is omitted, then the first line in the program is used as startline.
endline is a line number specifying the last line in your program that you

want to delete. End line must reference an existing program line.

A period(".") can be substituted for either startline or endline. The period
signifies the current line number.

DELETE removes from memory the specified range of program lines.

Examples
DELETE 70

Erases line 70 from memory. If there is no line 70, an error will occur.

DELETE 50-110

Erases lines 50 through 110 inclusive.

DELETE -4 0

Erases all program lines up to and including line 40.

DELETE -.

Erases all program lines up to and including the line that has just been entered
or edited.

DELETE .

Erases the program line that has just been entered or edited.

61

EDIT
Edit Program Line

EDIT line number

EDIT allows the specified line to be revised without affecting any other lines.
T he ED IT command has a powerful set of subcommands which are discussed
in detail in the section on Program Editing and Debugging.

EDIT 112!0

Edits line 100

EDIT.

Edits the current line.

62

KILL
Delete File from Disk

KILL filespec

Kll..L deletes the speci~ed file from the diskette directory.

If no drive specification is included in the filespec, BASIC will search for the
first drive that contains the filespec , and attempt to delete that file.

Do not KILL an open file. CLOSE it first.

Example
~<ILL II FILE / BAS II

deletes this file from the first drive which contains it.

~'\ILL II DATA : 2"

deletes this file from drive #2.

63

LIST
Display Program Lines

LIST startline-endline
start/ina is a line number specifying the lower limit for the listing. If startline is

omitted, then the first line in the program is used.
end line is a line number specifying the upper limit for the listing. If end line is

omitted, the last line in the program is used.

A period (". ") can be substituted for either start/ina or end line. The period
signifies the current line number.

LIST instructs the Computer to display the specified range of program lines
currently in memory. The arguments are optional.

Examples

LIST

Displays the entire program. To stop the automatic scrolling, press HOLD.
This will freeze the display. Press any key to continue the list ing.

LI ST 50

Displays line 50.

LIST 50 - 85

Displays lines in the range 50-85.

LIST 227 -

Displays li ne 227 and a ll higher-number lines.

LI ST. -

Displays the program line that has just been entered or edited, and all
higher-numbered lines.

LIST- 227

Displays all lines up to and including 227.

LI ST- .

Displays a ll lines up to and including the line that has just been entered o r
edited .

LIST.

Displays the line that has just been entered or edited.

64

LLIST
Print Program Lines

LLIST startline-endline
startline is a line number specifying the lower limit for the listing. If startline is

omitted, then the first line in the program is used as startline.
end line is a line number specifying the upper limit for the listing. If end line is

omitted, the last line in the program is used as endline.
A period (". ") can be substituted for either startline or end line. The period
signifies the current line number.

LLIST works like LIST, but its output is to the Printer rather than the
Display. LUST instructs the Computer to print the specified range of
program lines currently in memory. The arguments are optional.

Examples

LLIST

Lists the entire program to the printer. To stop this process, press HOLD.
This will cause a temporary halt in the Computer's output to the Printer. Press
any key to continue printing.

LLIST 780

Prints line 780.

LLIST 68-90

Prints lines in the range 68-90.

LLIST 50-

Prints lines 50 and all higher-numbered lines.

LLIST.-

Prints the program line that has just been entered or edited plus all higher­
numbered lines.

LLI ST-50

Prints all lines up to and including 50.

LLIST-.

Prints a ll lines up to and including the line that has just been entered or
edited.

LLIST.

Prints the line that has just been entered or edited.

65

LOAD
Load Basic Program File

LOAD "filespec" [,R]
R (optional) tells BASIC to RUN the program after it is loaded.

This command loads a BASIC program file into RAM. If the R option is
used, BASIC will proceed to RUN the program automatically. Otherwise,
BASIC will return to the command mode.

LOAD wipes out any resident BASIC program, clears all variables, and
closes all open files unless the R option is used, in which case open files will
not be closed.

LOAD with the R option is equivalent to the command RUN filespec, R.
Either of these commands can be used inside programs to allow program
chaining (one program calling another).

If you attempt to LOAD a non-BASIC file, a Direct Statement in File or
Load Format error will occur.

Example
LOAD "PROG1/BAS:2"

This loads PROGl/BAS from drive 2 BASIC then returns to the command
mode.

LOAD "PROG1/BAS"

Since no drive specification is included in this command, BASIC will begin
searching for this program file in drive 0 and load the first one it finds with the
name PROGl/BAS.

66
••

MERGE
Merge Disk Program with Resident Program

MERGE filespec/txt
filespec/txt is a BASIC file in ASCII format, e.g., a program saved with the A

option.

The MERGE statement takes a BASIC program from disk and merges it with
the resident BASIC program in RAM.

Program lines in the disk program are inserted into the resident program in
sequential order. For example, if three of the lines from the disk program are
numbered 75, 85, and 90, and three of the lines from the resident program are
numbered 70, 80, and 100, when MERGE is used on the two programs, this
portion of the new program will be numbered, 70, 75, 80, 85, 90, 100.

If line numbers in the disk program coincide with line numbers in the resident
program, the resident lines will be replaced by those from the disk program.
For example, if three of the lines from the disk program are numbered 5, 10,
and 20, and three of the lines from the resident program are numbered 10, 20,
and 30, when MERGE is used on the two programs, this portion of the new
program will be numbered 5, 10, 20, 30. Lines 10 and 20 of the new program
will be identical to lines 10 and 20 on the disk program.

MERGE closes all files and clears all variables. Upon completion, BASIC
returns to the command mode.

Example
Let's say we have a BASIC program on disk, PROG2/TXT, which we want to
merge with the program we've been working on in RAM. Then

MERGE "PROG2/TXT"

will do the job.

67

Sample Uses
MERGE provides a convenient means of putting modular programs together.
For example, an often-used set of BASIC subroutines can be tacked onto a
variety of programs with this command.

Suppose the following program is in RAM:

80 REM
90 Gosur~.

100 REM
110 REM
1212.1 REM
130 a~D

MAIN PROGRAM
UZJ00

PROGRAM LINE
PROGRAM LINE
PROGRAM LINE

And suppose the following subroutine, SUB/TXT, is stored on disk in ASCII
format:

1000 REM
1(2)10 REM
1020 REM
1030 REM
1040 RETU RN

BEGINNING OF SUBROUTINE
SU[~. ROUTINE LINE
SUBROUTINE LINE
SUBROUTINE LINE

We can MERGE the subroutine with the main program using the statement

MERGE " SUB/TXT"
and the new program in RAM would be:

E~0 HEI"I i"lf.>,IN P FWGRA I'1
90 GOSUB
101Zl REM
110 I~EM

1~%~0

120 REM
1::.m END
1000 REM
117.) 10 F~EM

1 fJ~~:0 RE:i"l
1 '~ ~.'m HEI'1
1 0Lt1Zl RETURN

68

PROGRAM LINE
PI~OGHI-1M LINE
PROGRA M LI NE

BEG I NNING OF SUBROUTINE
i3UBW>UT I 1\IE l._ I NE
f.::uE:~F~OUT I NE l... I NE
BVBFWUT I NE l_ll\11.:.:

;

NEW
Erase Program from Memory

NEW

NEW erases all program lines, sets numeric variables to zero and string
variables to null.

Example
NEW

69

RENUM
Renumber Program

RENUM newline, startline, increment
newline specifies the new line number of the first line to be renumbered. If

newline is omitted, the line number 10 is used.
startline specifies the line number in the original program where you want to

start renumbering. If startline is omitted, the entire program will be
renumbered.

increment specifies the increment to be used between,each successive
renumbered line. If increment is omitted, 10 is used.

RENUM changes all ine numbers in the specified range, as well as all line
number references appearing after GOTO, GOSUB , THEN, ON . ..
GOTO, ON ... GOSUB, ON ERROR GOTO, and ERL [relational
operator] - throughout the program.

All the RENUM arguments are optional.

RENUM will add trailing blanks to line number references which contain
fewer than 5 digits. These blanks will not accumulate during subsequent
renumbering operations on the same program.

Examples
RENUM

Renumbers the entire resident program, incrementing by lO's. The new
number of the first line will be 10.

RENUM 6000 , 5Q00 ,100

Renumbers all lines numbered from 5000 up. The first renumbered line will
become 6000, and an increment of 100 will be used between subsequent lines.

RENUM 10000,1000

Renumbers line 1000 and all higher-numbered lines. The first renumbered
line will become line 10000. An increment of 10 will be used between
subsequent line numbers.

RENUM 100,,100

Renumbers the entire program, starting with a new line number of 100, and
incrementing by 100's. Notice that the commas must be retained even though
the middle argument is gone.

RENUM, I 5

Renumbers the entire program, starting with a new line number of 10, and
incrementing by 5's.

70

Error Conditions

1. RENUM cannot be used to
1 in <2 ::. • F o:• r· e :=·=: amP 1 ~::-, it
number ed 10, 20 and 30,

RENUM 15, 30

c han9e the order of Pro9ram
the ori9inal Pro9ram has l 1ne s
ther, th e comrr.ar.d

i::. ille9al,
lin~'? of th~::­
H:: (i ., ., ega 1

s ince the r es ult would be to move the third
Pro9ram ahead of the seco nd. In t hi s case, an
f u r, o:: t i o n c a .. , 1) e r· r· o:• r· w i 1 1 r· 1.."! ::. •J 1 t ' a. n d t h e

or· i g i n a 1 P r· o g r· am w i 1 1 be 1 eft u n chan 9 1':- d •

2 . RENUM will not create new line numbers 9reater than
65529. Instead, an FC error will r es ult, and the
or·i9inal Pr·o9r·an, wi 11 be left ur.chan9ed.

3. If an undefined linE- number is used inside Your ori9inal
Pro9ram, RENUM will Print a warnin9 messa9e' UNDEFINED
LINE xxxx in yyyy, wher e xxxx is the ori9inal line number
reference an d YYYY is the ori9inal number of the line
o:: ontain i n9 :=<>=:>=:>=: .

Note that RENUM will renumber the Pro9ram in sPite of
this warning messa9e. It will rePlac e th e number xxxx
with 5 blanks, and will renumber yyyy, accordin9 to the
ParamE-ters in You r RENUM command.

F o r· e >=: amP 1 e ' i f ·.,.· o u r· o r· i 9 i n a 1 P r· o 9 r· a m i n c 1 u d e ::. t h e 1 i r1 e
110 GOTO 1000

but do:oe::. NOT ir,cl•Jde a 1 ir1e 1000, the n RENUM wi 11 Pr· int a
war·ning,

UND EF INED 1000 in 110
a n d r· 1"! n u m b 1':1 r· t h 1':- P r · o g r· •::t m • T h 1':1 t e ::< t o f o r· i 9 i n •::t 1 1 i n e 1 1 0
w i 1 1 be o:: 1"1 an 9 e d t o

GOTO <fi ve blank s he re >

7 1

RUN
Execute Program

RUN startline
startline is a line number specifying where you want program execution to

start. If startline is omitted, the first line in the program is used. A period
(". ") can be used in place of start/ine. The execution will start at the
current line number.

RUN filespec, R
filespec is the filespec for a BASIC program stored on disk. If, R is added,

BASIC leaves open files open. Otherwise, all files are closed.

RUN followed by a line-number, period, or nothing at all simply executes the
program in memory.

RUN followed by a filespec loads a program from disk and then runs it. Any
resident BASIC program will be replaced by the new program.

RUN atuomatically CLEARS all variables.

Examples
RUN

Execution starts at lowest line number.

RUN 100

Execution starts at line 100.

RUN "DISKDUMP/BAS "

When you type the above line and press ENTER, the BASIC sector-dump
program will be loaded and executed.

72

Sample Uses

Suppose you have two programs in memory. One of them begins at line 100
and ends at line 180; the other begins at 200 and ends at 350. Furthermore, the
first program has been appropriately terminated (i.e. , 180 END). You want
to run the second program, stop, observe its output, and then run the first.
Type:

RUN 200

and the second program will execute. When you want to begin execution of
the first program, simply type:

RUN

Sample Program
Suppose you save the following program on disk with the name " PROG 1/
BAS":

200 PRINT " PROG1 EXECUTING •• • 11

210 RUN "PROG2 /BAS"

And save this program on disk with the name " PROG2/BAS" :

220 PRINT "PROG2 EXECUTINE "
230 RUN "PROG1 / BAS"

Now type:

RUN " PROG1/BAS

H:Ua;l
and you'll see a simple example of program chaining. Hold down the BREAK
key to interrupt the program chain.

73

SAVE
Save Program

SAVE filespec, A
A causes the file to be stored in ASCII rather than compressed format.

The SAVE command lets you save your BASIC programs on disk. If the
filespec you use as the argument of SAVE a lready exists, its contents will be
lost as the file is re-created.

You can save a program in compressed or ASCII format. Using compressed
format takes up less disk space and is faster during SA YEs and LOADs.
BASIC programs are stored in RAM using compressed format.

Using the ASCII option makes it possible to do certain things that can' t be
done with compressed-format BASIC files. Some examples:

• A disk file must be in ASCII form before the MERGE command can be
used.

• A disk file must be in ASCII form before TRSDOS commands LIST and
PRINT can be used.

• Programs which read in other programs as data typically require that the
data programs be stored in ASCII .

For compressed-format programs, a useful convention is to usc the extention
/BAS. For ASCII-format programs, use /TXT.

Example
SAVE "FILE1 / BAS .JOHN0DOE: 3 "

saves the resident BASIC program in compressed format. The file name is
FILEl; the extension is /BAS ; the password is JOHNQDOE. The file is
placed on drive 3.

SAVE "MATHPAK/TXT ", A

saves the resident program in ASCII form , using the name MATHPAK/
TXT, on the first non-write-protected drive.

74

•

SYSTEM
Return to TRSDOS

SYSTEM "command"
command is a string expression specifying a TRSDOS command.

command MUST NOT sPecifY anY of the TRSDOS "hi9h memorY co mmand s "
li sted in the TRSDOS Re f ere nc e Manual' LibrarY Command s sec tion.
Furthermore' to call DEBUG from BAS IC, You MUST turn DEBGUG on
before s tartin9 BASIC.

SYSTEM is used to return to TRSDOS, the disk operating system. The
argument command causes the System to execute the specified TRSDOS
command and immediately return back to BASIC. Your program and
variables will be unaffected.

If command is omitted, SYSTEM returns you to the TRSDOS READY
mode.

Examples

SYSTEM

R eturns you to TRSDOS. Your resident BASIC programs will be lost.

SYSTEM " DIR"

Causes the TRSDOS command, " DIR" (print Directory) to be run , and then
returns to BASIC. Your resident BASIC program will remain intact.

Sample Program
350 PRINT "THIS IS A PROGRAM FILE "
360 PRINT "BEFORE SAVING IT, I WANT TO SEE WHAT

FILENAMES HAVE BEEN USED"
370 FOR N=1 TO 1000: NEXT
380 SYSTEM "DIR"
390 PRINT "NOW I CAN CHOOSE A FILENAME WHICH HASN'T

BEEN USED"
400 END

Line 380 causes the system to execute the TRSDOS command DIR which
displays a file directory. After displaying the directory, the System
immediately returns to BASIC and runs the next line in the program. Line
370 simply sets a two-second pause before displaying the directory.

75

Program Statements

Program statements allow you to define variable types, initialize and aiiocate
memory, perform input and output, and control the sequence in which
statements are executed.

Most program statements can be used in immediate lines as well as in
programs. For example:

PHINT 2 3 ·*- 11

is an immediate line. As soon as you end the line by pressing ENTER ,
BASIC executes it. But the line:

100 PRINT 23 * 11

is a program line. When you press I:J:ijj;l , BASIC does not execute the
line but stores in memory to be executed when you type RUN.

77

Dermition and lntialization
The statements in t hi s cate9ory Perform o ne or more of three
function :: . .

T heY cha n 9e defa ul t va lue s set initiallY by BASIC. For
instance, UPon initiali zation, BASIC sets variable V to
si n9l e-precisi on. But the stateme nt

DEFDBL V

resets V to double -Prec ision.

TheY rese r ve and allocate me morY sPace .

DI M A(L·~, 12)

se ts o ff e nou9 h me mor Y to hol d a 169 (13 X 13) element a rraY.

Th eY reset and initiali ze BASIC's Pointers. The ::.tatement

RESTORE

ca u ses BASIC's d a t a Pointer to be reset to the first data
item.

79

CLEAR
Clear Variables and Allocate String Space

CLEAR string space
string space is a numeric expression; if stringspace is omitted, string space

allocation is ·unchanged.

When used without an argument , CLEAR sets all numeric variables to zero,
and all string variables to null. When used with an argument, this command
performs a second function in addition to the one just described: it causes the
Computer to set aside for string storage the specified number of bytes. When
BASIC is initializedlOObytes are automatically set aside for strings.

The amount of string storage CLEARed must equal or exceed the greatest
number of characters stored in string variables during execution; otherwise
an Out of String Space error will occur. By setting string storage to the exact
amount needed , your program can make more efficient use of memory. A
program which uses no string variables could include a CLEAR 0 statement,
for example.

Examples
CLEAR

All variables are cleared but string space is unchanged.

CLEAR 75

All variables are cleared and 75 bytes of memory are reserved for string
storage.

Sample Program

60 CLEAR 100
70 PRINT FRE(A$)
80 CLEAR 0
90 PRINT FRE (A$)
100 CLEAR 100

Since CLEAR initializes all variables, you must use it near the beginning of
your program, before any variables have been defined.

80

DATA
Store Program-Data

OAT A item-list
item list is a list of string and/or numeric constants, separated by commas.

The DATA statement lets you store data inside your program to be accessed
by READ statements. The data items will be read sequentially, starting with
the first item in the first OAT A statement, and ending with the last item in the
last DATA statement. Expressions are not allowed in a DATA list. If your
string values include leading blanks, colons, or commas, you must enclose
these values in quotes.

DATA statements may appear anywhere it is convenient in a program.
Generaly, they are placed consecutively, but this is not required. It is
important that the data types in a DATA statement match up with the
variable types in the corresponding READ statement.

Examples

DATA NEW YORK, CHICAGO, LOS ANGELES, PHILADELPHIA , DETROIT

This line contains five string data items. Note that quote marks aren't needed ,
since the strings contain no delimiters or leading blanks.

DATA 2.72, 3.14159, 0.0174533, 57 . 29578

This line contains four numeric data items.

DATA "SMITH, T.H.", 38, "THORN, J . R.", 41

The quote marks are required around the first and third items.

81

Sample Program

l70 CLS: PRI NT: READ HEADINGS : PRI NT HEADING$: PRINT S TRING
$('+~~~' " -·- ")
J 80 ON ERROR GOTO 500
190 READ C$: READ DOB: READ N$
7 00 PRINT cs , DOB, N$: GOTO 190
21 0 DATA COMPOSER DATE OF BIRTH
:?20 Df.\TA f:?.O CCHER INI, 17L~3 ,

230 DATA GLUCK , 1714,
7 40 DATA HAYDN, 1732 ,
250 DATA MOZART, 1756,
~·00 IF EFm =:: t:,. TI-·IEN END
5 10 ON ERROR GOTO 0

N,-;·r I ONAL I T Y
I TAL. I AN
GER MAN
AUSTH IAN
l\U ~::> THJt-1 N

This program prints a list of some major composers of the late 18th Century.
Notice we use an ON ERROR GOTO statement to allow the inclusion of
data lists of unknown length. For a different means of achieving the same end,
see the sample program for READ.

82

DEFDBL
Derme Variables as Double-Precision

DEFDBL Jetter list
letter list is a sequence of individual letters or letter-ranges; the elements in

the list must be separated by commas.
a letter-range is of the form:

letter1 -Jetter2

DEFDBL causes variables beginning with any letter specified in letter list to
be classified as double-precision, unless a type declaration character is added
to the variable name. Double-precision values include 17 digits of precision,
though only 16 are printed out.

DEFDBL is ordinarily used at the beginning of a program. Otherwise, it
might suddenly change the meaning of a variable that lacks a type declaration
character.

Examples
DEFDBL K

causes any variable beginning with the letter K to be double-precision.

DEFDBL Q, S-Z, A-E

causes any variable beginning with the letters Q , S through Z , or A through E
to be double-precision.

Sample Program

570 DEFDBL X
580 A= 3.1415926535897932
590 X= 3. 14 15926535897932
600 PRINT "PI IN SINGLE PRECISION IS" A
610 PRINT "PI IN DOUBLE PRECISION IS" X

83

DEFFN
Derme Function

DEF FN function name (argument-1 .. .) = formula
function name is any valid variable name.
argument-1 and subsequent arguments are used in defining what the

function does.
formula is an expresson usually involving the argument(s) passed on the

left side of the equals sign.

The DEF FN statement lets you create your own function. That is, you only
have to call the new function by name, and the associated operations will
automatically be performed. Once a function has been defined with the DEF
FN statement, you can call it simply by inserting FN in front of function name.
You can use it exactly as you might use one of the built-in functions, like SIN,
ABS and STRING$.

The type of variable used for function name determines the type of value the
function will return. For example, if function name is single precision, then
that function will return a single-precision value, regardless of the precision of
the arguments.

The particular variables you use as arguments in the DEF FN statement
(argument- I , ...) are not assigned to the function . When you call the function
later, any variable name of the same type can be used.

Furthermore, using a variable as an argument in a DEF FN statement has no
effect on the value of that variable . So you can use that particular variable in
another part of your program without worrying about interference from DEF
FN.

The function must be defined with at least one argument. In other words,
there must be at least one variable in the position of argument-] above, even if
this variable is not actually used to pass a value to the function.

84

Examples

DEF FNR(A,B) =A+ INT((B- (A- 1)) * RND(O))

This statement defines function FNR which returns a random number
between integers A and B . The values for A and Bare passed when the
function is "called", i.e., used in a statement like:

Y = FNR(R1, R2)

If Rl and R2 have been assigned the values 2 and 8, this line would asign a
random number between 2 and 8 toY.

DEF FNL$(X) = STRING$(X, "-")

Defines function FNL$ which returns a string of hyphens, X characters long.
The value for X is passed when the function is called:

PRINT FNL$ (30)

This line prints a string of 30 hyphens.

Here's an example showing DEF FN used for a complex computation- in
double precision.

DEF FNX#(A#, B#) = (A# -B#) * (A# - B#)

Defines function FNX# whlch returns the double-precision value of the
square of the difference between A# and B#. The values for A# and B# are
passed when the function is called:

S# = FNX#(A#, B#)

We assume that values for A# and B# were assigned elsewhere in the
program.

Sample Program

710 DEF FNV(T) = (1087 + SQR(273 + T))/16.52
720 INPUT "AIR TEMPERATURE IN DEGREES CELSIUS"; T
730 PRINT "THE SPEED OF SOUND IN AIR OF" T "DEGREES

CELSIUS IS" FNV (T) "FEET PER SECOL'l£1.

85

DEFINT
Define Variables as Integers

DEFINT letter list
letter list is a sequence of individual letters or letter-ranges; the elements in

the list must be separated by commas.
a letter-range is of the form:

letter1 - letter2

D EFINT causes variables beginning with any letter specified in letter list to be
classified as integer, unless a type declaration character is added to the
variable name. Integer values must be in the range (-32768,32767) . They are
stored internally in two-byte, two's complement form .

DEFINT may be placed anywhere in a program, but it may change the
meaning of variable references without type declaration characters .
Therefore , it is normally placed at the beginning of a program.

Examples

DEFINT A,I,N

After the above line, all variables beginning with A , I, or N will be treated as
integers. For example, A l , AA, 13, and NUMBER will be integer variables.
However, Al # , AA#, 13#, and NUMBER# would still be double-precision
variables, because type-declaration characters always override DEF
statements.

DEFINT I-N

causes any variable beginning with the lette rs I through N to be treated as an
integer variable.

Sample Program

8 6

880 m::~F~ I ~H W
tl' :Vi Z :::: l • 99999: t,.j =" 1 . 99999
900 PRINT "THE VALUE OF S INGLE-PRECISION Z IS" Z
910 PRINT "BUT THE VALUE OF INTEGER W IS" W

•

DEFSNG
Define Variables as Single-Precision

DEFSNG letter list
letter list is a sequence of individual letters or letter-ranges; the elements in

the list must be separated by commas.
a letter-range is of the form:

letter1 - letter2

D EFSNG causes variables beginning with any letter specified in letter List to
be classsified as single-precision, unless a type declaration character is added
to the variable name. Double-precision values include 7 digits o f precision,
though only 6 are printed out.

Example
DEFSNG I, W-Z

causes any variables beginning with the letters I or W through Z to be treated
as single-precision. However, 1% would still be an integer variable, and I# a
double-precision variable , because of their type declaration characters.

Sample Program
960 CLS: DEFINT p: PI = 3. 14159
970 PRINT " ALL P' S ARE I NTEGERS: WE CAN ONLY MAKE PI =" PI
980 INPUT ''WANT TO MAKE P'S SINGLE-PRECISION WITH DEFSNG CY /
N) " ; A$
990 IF A$ = "N" THEN END
1000 CLS: DEFSNG P: PI= 3. 14159
1010 PRI NT "NOW ALL P'S ARE SINGLE-PRECIS I ON; WE CAN MAKE PI

-·- " p I

87

DEFSTR
Define Variables as Strings

DEFSTR letter list
letter list is a sequence of individual letters or letter-ranges; the elements in

the list must be separated by commas.

a letter-range is of the form :
letter1 - letter2

DEFSTR causes variables beginning with any le tter specified in letter list to
be classified as strings, unless a type declaration character is added to the
variable name.

Example
DEFSTii c, L--7

causes any variables beginning with the letters Cor L through Z to be string
variables, unless a type declaration character is added. After this line is
executed, L1 = " WASHINGTON" will be valid.

Sample Program

88

70 S = 555 : PRINT " S =" S
80 DEFSTR S
90S= "SALTON SEA" : PRINT "S =" S

DEFUSR
Define Point of Entry for USR Routine

DEFUSRn = address
n equals one of the digits 0,1 , ... ,9; if n is omitted, 0 is assumed.
address specifies the entry address to a machine-language routine. Address

must be in the range (- 32768, 32767].

DEFUSR lets you define the entry points for up to 10 machine-language
routines.

Examples

DEFUSii:3 :::: <'i."<H7D0vJ

assigns the entry point 7000 hex, 32000 decimal, to the USR3 call. When
your program calls USR3, control will branch to your subroutine beginning at
hex7DOO.

DEFUSR = (BASE + 16)

assigns start address (BASE + 16) to the USRO routine.

89

DIM
SetUp Array

DIM array1 (dimension list) array2(dimension list)
array1, array2, ... are variables which name the array(s).
dimension lists are of the form :

subscript1, subscript2, ...
each subscript is a numeric expression specifying the highest-num­
bered element in that dimension of the array.

Note: The lowest element in a dimension is always zero.

T his statement sets up one or more arrays for structured data processing.
Each array has o ne or more dimensions.

Arrays may be of any type: string, integer, single-precision or do uble­
precision , depending on the type of variable name used to name the array.

When the array is created, BASIC reserves space in memory for each element
of the array. (For string arrays, BASIC reserves space for pointers to the
s tring elements, not for the e lements themselves.) All elements in a newly
created array a re set to zero (numeric arrays) o r the null string (string arrays).

Arrays can be created im plicitly, without explicit DIM statements. Simply
refer to the desired array in a BASIC statement, e.g. ,

If this is the first reference to array A (), then BASIC will create the array and
assign element A(5) the value of300. Each dimensio n of an implicitly defined
array is defined to be 11 elements deep, subscripts 0-10.

When an array has been defined, it cannot be re-dimensioned. You must
clear the array first (with ERASE, CLEAR or NEW or other variable­
clearing operation).

Examples
DII"I AF~(100)

Sets up a o ne-dimensional array AR(), containing 101 elements: A (O),
A(l), A(2), ... , A (98), A(99) , and A(lOO). The type of the array depends on
the type of the name AR. Unless previously changed by a DEFTNT,
DEFDBL o r DEFSTR statement, AR is a single-precision variable.

Note: The array A R() is completely independent of the variable A R.

D I M L 11:. (n j 2~})

Sets up a two-dimensional array LI % (,) , containing 9 x 26 integer
e lements, Ll % (0,0), L1 % (1,0) , Ll % (2 ,0) , . .. , L1 % (8,0), Ll % (0 , 1),
Ll% (1,1), ... , Ll% (8,1), ... , Ll % (0,25),LI % (1,25) , ... , L1% (8,25).

90

Two-dimensional arrays like AR(,) can be thought of as a table in which the
first subscript specifies a row position, and the second subscript specifies a
column position:

0,0
1,0

7,0
8 ,0

0,1
1,1

7,1
8 ,1

0,2
1,2

7,2
8,2

0,3
1,3

7,3
8,3

DIM B1L"2,~:.,8), CR <2~::. , 8),

Sets up three arrays:

0,23
1,23

7,23
8,23

L Y$ (::dZ;, 2)

0,24
1,24

7,24
8,24

81 (, ,) and CR (, ,) are three-dimensional , each containing
3*6*9 elements.

L Y (,)is two-dimensional, containing 51 *3 string elements.

Sample Program

170 CLEAR 4000: CLS
180 INPUT II HOW t-1ANY ME I"'BERS IN THE CLUB II ; M
1 90 DIM L $ (l'h L~)
2 00 FOR I = 1 TO M

0,25
1,25

7,25
8 ,25

2 10 PRINT "NAME OF MEMBER#" I;: LINE INPUT" ? "; L$(I,1)
220 INPUT " AGE " ; L$(I, 2)
230 I NPUT "PHONE"; L$(I , 3)
240 LINE INPUT "ADDRESS? " ; L$(I,4)
250 NE XT I
260 PRINT
270 PRINT "THE LIST I S STORED AS FOLLOWS :"
:2130 PRI NT "NAI"'E" , " AGE " , II PHONE·= II , II ADm~Ess II

290 PR INT STRI NG$(80, " - 11
)

300 FOR I - 1 TO M
3 10 FOR J = 1 TO 4
320 PR INT L$(!,J),
330 NEXT cJ
3L~0 PRI NT
3 =•0 NE XT I

91

ERASE
Delete Array

ERASE array1, array2, .. .
array1, array2 are variable names for currently defined arrays.

The ERASE statement eliminates arrays from a program and allows their
space in memory to be used for other purposes. ERASE will only operate on
arrays. It can ' t be used to delete single elements of an array.

If one of the arguments of ERASE is a variable name which is not used in the
program, an Illegal Function Call will occur.

Arrays deleted in an ERASE statement may be re-dimensioned.

Example

Erases the three specified arrays.

Sample Program
400 DIM A(~,s>~ X=0

410 FOR !=0 TO 5
420 FOR J =0 TO 5
430 X = X + 1
440 ACI,J l ~ X
445 PRINT A(J , J),
450 NEXT J
4 60 NEXT I
'+ 7(;1 E f~t~f;E A
4·80 DIM A< 100)

The array that is set up in line 400 is destroyed by the ERASE A statement in
line 470. The memory space which is thereby released is now available for
further use. The array may be re-dimensioned, as we've chosen to do in line
480.

92

RANDOM
Reseed Random Number Generator

RANDOM

RANDOM reseeds the random number generator. If your program uses the
RND function, the same sequence of pseudorandom numbers will be
generated every time the Computer is turned on and the program loaded.
Therefore, you may want to put RANDOM at the beginning of the program.
This will ensure that you get an unpredictable sequence of pseudorandom
numbers each time you load the program.

Random needs to execute just once.

Sample Program

600 CL.S: RANDOM
610 INPUT II PIO'\ A NUMBER BET~JEEN 1 AND su; A
620 8 = RND<S>
630 IF A = 8 THEN 6 5 0
640 PRINT "YOU LOSE, THE ANSWER IS" 8

u __ TRY AGAIN.
645 GOTO 610
650 PRINT "YOU PIO'\ED THE RIGHT NUMBER --- YOU ~JIN~":

II

GOTO 610

93

REM
Comment Line (Remarks)

REM

REM instructs the Computer to ignore the rest of the program line. This
allows you to insert remarks into your program for documentation . Then,
when you (or someone else) look at a listingofyourprogram, it wiU be easier
to figure out.

If REM is used in a multi-statement proram line, it must be the last sta tement.

An apostrophe (') may be used as an abbreviation for :REM.

Examples
' THIS IS A REMARK

Sample Program

780 REM CUSTOMER LOADING PROGRAM
790 REM THESE LINES ARE INSTRUCTIONS TO THE OPERATOR
800 PRINT "LOADING CUSTOMER FILE"
810 PRINT "THE SCREEN WILL SHOW YOU A SAMPLE ENTRY "
820 REM THE NEXT LINE SETS A PAUSE BEFORE CLEARING THE SCREEN
830 FOR N=1 TO 1500: NEXT
840 CLS
850 REM THE NEXT LINES SET THE SAMPLE DISPLAY

The above program shows some of the graphic possibilities of REM
statements. Any alphanumeric character may be included in a REM
statement, and the maximum length is the same as that of other statements:
255 characters to tal.

94 •

RESTORE
Reset Data Pointer

RESTORE

RESTORE causes the next READ statement to be executed to start over
with the first item in the first DATA statement. This lets your program re-use
the same DATA lines.

Sample Program
160 READ X$
170 F~ESTORE

180 REt--,D Y$
190 PRINT xs ~ Y$
2 0 0 DATA THIS IS THE FIRST ITEM, AND THIS IS THE SECOND

When this program is run ,

THIS IS THE FIRST ITEM THIS IS THE FIRST ITEM

wiU be printed on the Display. Because of the RESTORE statement in line
170, the second READ statement starts over with the first DATA item.

95

Assignment

An assi9nment statement Pu ts a certa in val ue into a va riable
or field or trades the val ue of one variab l e with another.

LSET CO LOR$ = "VERMIL ION"

This s tatement assi9n s the v alue VERMILION to the field
COLOR$.

SWAP A/., B'l.

A'l. and B'l. exchan9e values with one another.

97

LET
Assign Value to Variable

LET variable = expression

LET may be used when assigning values to variables. Model II BASIC
doesn ' t require assignment statements to begin with LET, but you might want
to use it to ensure compatibility with those versions of BASIC that do require
it.

Examples

LET AS = "A ROSE IS A ROSE"
lYT fl.l : .. : l • ::-3
l..E 'T X :::: X ·-- 7 l

In each case, the variable on the left side of the equals sign is assigned the
value of the constant or expression on the right side.

Sample Program

550 P = 1001: PRINT "P = " P
560 LET P = 2001: PR I NT "NOW P = " P

98

LSET and RSET
Place Data in a Direct Access Buffer Field

LSET name = data and RSET name = data
name is a field name
data is the data to be placed in the buffer field named by name

These two statements let you place string data into fields previously set up by
a FIELD statement.

Examples

Suppose NM$ and AD$ have been defined as field names for a direct access
file buffer. NM$ has a length of 18 characters; AD$ has a length of25
characters. The statements

LSEl. NM$ - " J I M CRICKET~JR . "

U·:>E:T Af)1i ··- " ~:-''Wt(Zt Ef\f:)"T P[CAI\.1 ~:"3"1"". "

put the data in the buffer as follows:

I JIM~CRICKET,JR.~~~ I j2000~EAST~PECAN\'IST.~~~~lj)~ l
Notice that filler blanks were placed to the right of the data
strings in both cases. If we had used RSET statements instead of LSET, the
filler spaces would have been placed to the left. This is the only difference
between LSET and RSET.

If a string item is too large to fit in the specified buffer field , it is always
truncated on the right. That is, the extra characters on the right are ignored.

9 9

MID$=
Replace Portion of String

MID$= (oldstring, position, length) = replacement-string
old string is the variable-name of the string you want to change
position is the numeric expression specifying the position of the first charac­

ter to be changed
length is a numeric expression specifying the number of characters to be

replaced
replacement-string is a string expression to replace the specified portion of

old string

Note: If replacement-string is shorter than length, then the entire replace­
ment-string will be used.

This statement lets you replace any part of a string with a specified new string ,
giving you a powerful string editing capability.

Note that the length of the resultant string is always the same as the original
string.

Examples:

A$ = "LINCOLN" in the examples below:

MIDS (A$, 3 , 4) = "12345": PRINT A$

which returns LT 1234N.

!VIID$ (i\$, l , :/ > -- "": t-'HIN I /-\t·

which returns LINCOLN.

r·l I[)$ (A~>~ ::;) ···· "l z.·v,.:) " : F'F~ J Nf i\~1>

returns LINC123.

returns LINCOlN.

returns ***COLN.

Sample Program
770 CLS: PRINT: PRlNT
780 LINE INPUl "TvPE I N A MONTH AND DAY MM!DD. "; S$
790 P = INSTR{~$, ";")
800 IF P = 0 THEN 780
Bl0 IVI lfH;(b$, p, l) :~~ CHF<~;(.t.,.~j)

F:20 Prlll'-f l ~::~~~; " If:) Ff,F::IF:f~ ·ro HF/'d), ISf\1"' T IT'i"

This program uses INSTR to search for the slash("/"). When it finds it (if it
finds it) , it uses MID$= to substitute a"-" (CHR$(45)) for it.

100

READ
Get Value from DATA Statement

READ variable

R EAD instructs the Computer to read a value from aDA T A statement and
assign that value to the specified variable. The first time a READ is executed,
the first value in the first DATA statement will be used ; the second time , the
second value in the DATA statement will be read. When all the items in the
first DATA statement have been read, the next READ will use the first value
in the second DATA statement ; etc. (An Out-of-Data error occurs if there
are more attempts to READ than there are DATA items.)

Examples

reads a numeric value from a DA T A statement.

RE.C~D S$

reads a string value from a DATA statement.

Sample Program
This program illustrates a common application for READ and DATA
statements.

40 PRINT "NAME","AGE"
SIZl READ N$
60 IF N$="END " THEN PRINT "END OF LIST": END
70 READ AGE
80 IF AGE <18 THEN PRINT NS,AGE
'IIZl f:iOTO ~jiZl

11Zl1Zl DATA "SMI TH, JOHN", 30, "ANDERSON , T.M.", 20
1l.IZl DATA "JONES, BILL" , 15, "DOE, SA I._L Y" , 21
120 DATA "COLLINS, W. P. ", 17, END

101

RSET
Place Data in a Direct Access Buffer F i eld

SEE LSET for syntax and descriPtion.

102

SWAP
Exchange Values of Variables

SWAP variable 1, variable 2

The SWAP statement allows the values of two variables to be exchanged.
Either or both of the variables may be elements of arrays. If one or both of the
variables are non-array variables which have not had values assigned to them,
an Illegal Function Call error will result. Both variables must be of the same
type or a Type Mismatch error will result.

Example

The contents of F2# are put into Fl#, and the contents of Fl# are put into
F2#.

Sample Program

::=·('! INPUT II TYPE IN A VALUE FOR F$ II ; F$
26~ INPUT "TYPE IN A VALUE FOR L$ " ; L$
~?70 SWAP F$, L$
28~ PRI NT "AFTER SWAP, F$ = II FS II AND L$ - II L.$

103

c. Program Sequence
Control in a BASIC Pro9am no rmall Y Proceeds from on e line to
the next hi9her-numbered line to th e n ex t hi9her-n umbere d
line, until the end of th e Pro9ram i s reached. T he Pro9ram
se~uence s tate ment s can be used to alter thi s s teP- bY-s teP
Proces s . With the helP of these stat e me nt s , You ca n alter the
transfe r of co ntrol i n you r BAS I C pro9ram to Produce Jump s to
ot her Part s of the P ro9ram, iterati ve loop s , and other u sef ul
c .:• n t r· o 'I ::;. t r· u c t u r· e :: .•

F or exam P le, the stateme nt

IF NOT X > 5 AND NOT Y > 8 THEN 100

tra n sfers co ntrol
at the s ame time ,

to line 1~0 if X i s not 9reater than s,
Y i s not Qreater than 8 .

FOR I = 1 TO 10~~0: NEXT I

a nd '

P ro9ram control will Pass back and f orth between the FOR
s tat e me nt and the NEXT s tatement ten t hou sand time s be for e
mo v ing on to the next li ne, causin9 a delaY of aPProximatelY
eleven ;.econd :: . •

105

END
Terminate Program

END

END terminates execution of a program whenever it is reached in a program
line . Some versions of BASIC require END as the last statement in a
program. In Model II BASIC it is optional. END is primarily used in Model II
BASIC to force execution to terminate at some point other than the logical
end of the program.

Sample Program
LJ.eJ I NF-'Ln f.~ 1 ~ t<~
~'i ILl GOSUE~. l vJ!Zl
::. :i PH ll\lT H
61ZJ END
]00 H=SQR(Sl*Sl + S2*S2l
llllJ HE .. TUI<N

The END statement in line 60 prevents program control from ·'crashing" into
the subroutine. Now line 100 can only be accessed by a branching statement
such as 50 GOSUB 100.

106

FOR/NEXT
Establish Program Loop

FOR variable = initial value TO final value STEP increment
NEXT variable

variable is any valid variable name; variable is optional after NEXT
initial value, final value, and increment are numeric constants, variables, or
expressions.
STEP increment is optional; if STEP increment is omitted, a value of 1 is

assumed.

FOR ... TO .. . STEP/NEXT opens an iterative (repetitive) loop so that a
sequence of program statements may be executed over and over a specified
number of times.

The first time the FOR statement is executed, variable is set to initial value.
Execution proceeds until a NEXT is encountered. At this point, variable is
incremented by the amount specified in step increment. (If increment has a
negative value, then variable is actually decremented.) STEP increment is
often omitted, in which case an increment of 1 is used .

Then variable is compared with final value. If variable is greater than final
value, the loop is completed and execution continues with the statement
following NEXT. (If increment is a negative number, the loop ends when
variable is less than final value.) If variable has not yet exceeded final value,
control passes to the statement following the FOR statement.

Sample Programs

830 FOR I = 10 TO 1 STEP
El L~ ({) P I:~ J NT I 7
B'StlJ NEXT l

__ .. , ..

When this program is run , the following output is produced:

10 9 8 7 6 5 4 3 2 1

FOR NEXT loops may be "nested" :

880 FOR I = 1 TO 3
Ei9!?l PFUNT "OUTE~F~ I.OOP "
900 FOR J = 1 TO 2
910 PRINT " INNER LOOP"
9:::-~121 NEXT :r
930 NEXT I

NEXT can be used to close nested loops, by listing the counter-variables. For
example, delete line 920 and change 930 to:

NEXT J, I

107

GO SUB
Go to Specified Subroutine

GOSUB line number.

GOSUB transfers program control to the subroutine beginning at the
specified line number. When the Computer encounters a RETURN
statement in the subroutine, it then returns control to the statement which
followsGOSUB. GOSUB issimilartoGOTO in that it maybe preceded by a
test statement.

Example

When this line is executed, control will automatically branch to the sub­
routine at 1000.

Sample Program
~:~60 <::iOHIJb!· ~,::,jc~

270 PRINT "BACK FROM SUBROUTTNF": END
2Fl0 PRINT " l.:::XF:CUTII\iC-=i TI .. ·IF c;up. j~Ot.JTJI\IF"

::::·90 HETURN

Control is transferred from line 260 to the subroutine beginning at line 280.
Line 290 instructs the Computer to return to the statement immediately
following GOSUB.

108

GOTO
Go To Specified Line Number

GOTO line number

GOTO transfers program control to the specified line number. Used alone,
GOTO line number results in an unconditional (automatic) branch.
However, test statements may precede the GOTO to effect a conditional
branch.

You can use GOTO in the command mode as an alternative to RUN. GOTO
line number causes execution to begin at the specified line number, without an
automatic CLEAR. This lets you pass values assigned in the command mode
to variables in the execute mode.

Example

t~iOTO :1.00
When this line is executed, control will automatically be transferred to line
100.
Sample Program
160 GOTO :-:-:00
170 PRINT "AND ARAMIS -- AND D'ARTAGNAN MAKES FOUR.": END
180 PRINT "POfHHOS, ";
190 GOTO 170
2~~(2) P I:-.(:r. NT II 1\"H·IU~3' II ;

:? 10 GOTO 180

109

IF ... THEN ... ELSE
Test Conditional Expression

IF test THEN statement or line number ELSE statement or line number
ELSE statement or line number is optional.

The IF ... THEN ... ELSE statement instructs the Computer to test the
following logical or relational expression. If the expression is true, control will
proceed to the 1HEN clause immediately following the expression. If the
expression is false, control will jump to the matching ELSE statement (if one
is included) or down to the next program line .

Examples

If X is greater than 127, control will pass to PRINT and then to END. If X is
not greater than 127, control will jump down to the next line in the program,
skipping the PRINT and END statements.

IF X > 0 AND Y <> 0 THEN Y = X + 180

If both expressions are true, then Y will be assigned the value X + 180.
Otherwise control will pass directly to the next program line, skipping the
1HEN clause.

I F H F' H I r·J T " /, ..- ~-:-~. " :. :. ! .. c !:-- 1 '· • r ~·-1 r " • :;, ,·: . - i~ "

If A is less than B, the Computer prints the fact and then proceeds down to
the next program line, skipping the ELSE statement. If A is not less than B ,
the Computer jumps directly to the ELSE statement and prints the specified
message. Tben control passes to the next statement in the program.

IF A$:::: "YES" THE I\J 210 EL.E3E IF A$ ~" "1\.10" TI-·IEN ft!2l0 Fl...:3E: 370

If A$ is YES then the program branches to line 210 . If not, the program
skips over to the first ELSE, which introduces a new test.lf A$ is NO then the
program branches to line 400 . If A$ is any value besides NO or YES, the
program skips to the second ELSE and the program branches to line 370:.

110

IF A > .001 THEN B = 1/A: A = A/5: ELSE 1510

If the value of A is indeed greater than .001, then the next two statements will
be executed, assigning new values to Band A. Then the program will drop
down to the next line, skipping the ELSE statement. But if A is less than or
equal to .001, then the program jumps directly over to ELSE, which then
instructs it to branch to 1510 . Note that GOTO is not required after ELSE.

Sample Program
IF THEN ELSE statements may be nested. However , you must take care to
match up the IFs and ELSEs.

1040 INPUT "ENTER TWO NUMBE RS"; A, 8
1050 IF A <= B THEN IF A < 8 THEN PRINT A; ELSE
PRINT "NEITHER"; ELSE PRINT B;
1060 PRINT "IS SMALLER THAN THE OTHER."

For any pair of numbers that you enter, this program will pick out and print
the smaller of the two.

111

ON ... GOSUB
Test and Branch to Subroutine

ON expression GOSUB line number, line number . ..
expression is a number between 0 and 255.

ON ... GOSUB is a multi-way branching statement like ON GOTO,.except
that control passes to a subroutine rather than just being shifted to another
part of the program. For further information, sec ON GOTO.
Example

ON Y GOSUB 1000, 2~00, 3000

When program execution reaches the line above , if Y = 1, the subroutine
beginning at 1000 will be called. IfY = 2, the subroutine at 2000 will be called.
If Y = 3, the subroutine at 3000 will be called.

Sample Program
Lt.Jl;>j I 1\IPt._rr II cHoOHE 1 ~ :::: j oR ::-II 1
440 ON I GOSUB 500, 600, 700
1.,. 5 0 F:J'-1 D
:d2)Q) F'RINT "::)._)['.ROUTINE ~*1 II: F~[TUF~N

60V.t Pr~ I i·H· ":::;uBFWUT T NE iL~:" : r-~ETUHN

7t2:1'1t PFUNT 11 SUBROUTTNF #~~~~: RFTURN

11 2

ON ... GOTO
Test and Branch to Different Program Line

ON test-value GOTO line number, line number, ...
test value is a numeric expression between 0 and 255.

ON . .. GOTO is a multi-way branching statement that is controUed by a test value.

When ON ... GOTO is executed, test-value is evaluated and the integer po rtion is
obtained. We '11 refer to this integer portion as J. The Computer counts over to the J th
line number in the list of line numbers after GOTO, and branches to this line number.
If there is no Jth line number, then control passes to the next statement in the
program.

Notice that if test value is less than zero, an error will occur. There rna y be any
number of line numbers after GOTO.

Examples
ON MI GOTO 150 , 160, 170, 150, 18~

says "Evaluate MI.
If integer portion of MI equals 1 then go to line 150;
If it equals 2, then go to 160;
If it equals 3 , then go to 170;
If it equals 4 , then go to 150;
If it equa ls 5, then go to 180;

If the integer portion of MI doesn't equal any of the numbers 1 through 5, advance to
the next statement in the program."

113

Sample Program

T::iti.'J n .. !Pur II rvpr.: Il\i /\NY NUI"IP-Ef<" 1 x
760 ON SGN(Xl ~ ~ GOTO 770, 780, 790
77~ PRINT 11 NEGAIIVL": END
·/Be' F'FHt·n II ZERO " : FND
790 P~INT "POGil.IV~~~ : END

SGN(X) returns -1 for X less than zero; 0 for X equal to zero; and + 1 for X greater
than 0. By adding 2, the expression takes on the values 1, 2, and 3, depending on
whether X is negative, zero , or positive. Control then branches to the appropriate
line number.

114

RETURN
Return Control to Calling Program

RETURN

RETURN ends a subroutine by returning control to the statement
immediately following the most-recently executed GOSUB. If RETUR N is
encountered without execution of a matching GOSUB , an error will occur.

Sample Program

330 PRINT " THIS PROGR/\t1 r:: II\!DS THE AREA OF l'-'1 C I RCL.E"
3'+0 INPUT "TYPE IN A VALUE FOF~ T!-·IE FMDI US" ; R
350 GOSUB 370
360 PRINT "AREA IS"; A~ END
370 A= 3.14 * R * R
3B0 F~ETUF~N

115

d . InPut / OutPut

T he inPut /o utPut s tat e ments transfer data b e twee n the CPU and
Per·iPher·al device:: ..

For· e>::amP 1 ... ~'

LPRINT "Thi s 1 s a test"

sends the sente nc e "This is a test" to the Line Printer . The
~: ta.temen t

GET 1

r eads the cur r ent record fr o m di sk and Places i t in direct
fi 1 e buffer· #1.

Fo r fu rt h e r information on file-access Pro9rammin9, see
ChaPi:«= r· i.~.

117

Keyboard

119

INPUT
Input Data to Program

INPUT "message"; variable 1, variable 2, ...

When BASIC encounters the INPUT statement in a program it stops
execution of the program until you enter certain values from the keyboard.
The INPUT statement may specify a list of string or numeric variables,
indicating string or numeric values to be input. For instance, INPUT X$, Xl ,
Z$, Zl calls for you to input a string literal, a number, another string literal,
and another number, in that order.

When the statement is encountered, the Computer will display a ? . You may
then enter the values all at once or one at a time. To enter values all at once ,
separate them by commas. (If your string literal includes leading blanks,
colons, or commas, you must enclose the string in quotes.)

If you ENTER the values one at a time, the Computer will display a ?? ,
indicating that more data is expected. Continue entering data until all the
variables have been set, at which time the Computer will advance to the next
statement in your program.

Be sure to enter the correct type of value according to what is called for by the
INPUT statement. For example, you can't input a string-value into a numeric
variable. If you try, the Computer will display a ?REDO FROM START and
give you another chance to enter the correct type of data value , starting with
the first value to be called for by the INPUT list.

If you ENTER more data elements than the INPUT statement specifies , the
Computer will display the message ?EXTRA IGNORED and continue with
normal execution of your program.

You can include a "prompting message" in your INPUT statement. This will
make it easier to input the data correctly. The prompting message must
immediately follow INPUT. It must be enclosed in quotes, and it must be
followed by a semicolon.

You can enter any valid constant. 2, 105, 1, 3# , etc. are all valid constants.

12 0

Examples

INPUT Y/.

If this line were part of your program, when this line is reached, you must type
any integer number and press ENTER before the program will continue.

INPUT :::JFNTENCI::i;

Here you would have to type in a string when this line is reached. The string
wouldn't have to be enclosed in quotation marks unless it contained a
comma, a colon, or a leading blank.

INPUT II ENTFF~ YOUf~ NAI"IF Ar-.W ;\Gt=::: (NAMF::' ;\\:iF) II ; N$' A

This line would print a message on the screen which would help the person at
the keyboard to enter the right sort of data.

Sample Program
5 0 I NPUT "HOW MUCH DO YO U WEI GH"; X
60 PRI NT " ON MA RS YOU WOULD WEIGH ABOUT" CINT <X * . 3 8) "POUNDS ."

121

LINE INPUT
Input a Line from Keyboard

LINE INPUT["prompf'] ;variable
prompt is a prompting message
var$ is the name that will be assigned to the line you type in

LINE INPUT (or LINEINPUT - the space is optional) is similar to INPUT,
except:

• The Computer will not display a question mark when waiting for your
operator's input

• Each LINE INPUT statement can assign a value to just one variable
• Commas and quotes your operator can use as part of the string input
• Leading blanks are not ignored - they become part of var$
• The only way to terminate the string input is to press 13:ii3;1
LINE INPUT is a convenient way to input string data without having to worry
about accidental entry of delimiters (commas, quotation marks, colons, etc.).
The ~~~ii3;1 key serves as the only delimiter. If you want anyone to be able
to input information into your program without special instructions, use the
LINE INPUT statement.

Some situations require that you input commas, quotes and leading blanks as
part of the date. LINE INPUT serves well in such cases.

Examples:

Input A$ without displaying any prompt.

Displays a prompt message and inputs data . Commas will not terminate the
input string, as they would in an input statement.

1 22

Sample Program

200 REM CUSTOME R SURVEY
:~~0S CL.E{\R J.Wfll~!

207 F'VdNT
2 10 LI NE INPUT "TYPE IN YOUR NAME " ; A$
:?:?!lJ LINE :I:I'·H)t...JT "DO YOU L...H\E~ YOlm CCWIPUTEW? "; P. ~~
:?:30 l... I NE I w ::ouT " l·JH Y? " ; C$
2~·:5 ~5 PHIN·r
240 PRINT A$: PRINT
250 IF 8$= "NO" THEN 270
260 PRI NT "I LIKE MY COMPUTER BECAUSE" ; CS :END
270 PR INT "I DO NOT LIKE MY CO MPUTER BECAUSE"; C$

Notice that when line 210 was executed, a question mark was not displayed
after the statement, "Type in your name". Also, notice on line 230 you can
answer the question "Why" with a statement full of delirneters (",;'etc.).

1 23

Video Display

1 2 5

CLS
Clear Screen

CLS

CLS clears the screen . It fills the display with blanks and moves the cursor to
the upper-left corner. Alphanumeric characters are wiped out as well as
graphics blocks. CLS can be very useful if you should want to present an
attractive Display output.

Sample Program

540 CU3
550 FOR I = 1 TO 24
560 PRINT STRI NG$(79,]3)
~:170 NE XT I
'"it=J0 GOTO 1:5LJ·0

126

PRINT, PRINT@, PRINT TAB,
PRINT USING
Output to Display

PRINT@ position, item list
@position is a number between 0 and 1919, or
@ position is two numbers,(row, co 1 umn), row between 0 and 23 and

column between 0 and 79. if@ position is omitted, the current cursor
position is used.

item list is a list composed of any of the following items:
TAB (number)

number is a numeric expression between 0 and 255
constants
variables
expressions,

where any of these items may be separated by the optional delimiters ","
and";".

PRINT@ position, USING format; item lise
format is one or more of the field specifiers #, *, $,

%, !, " "(space), or any alphanumeric character.
item list is a list composed of constants and variables, which must be

separated by the delimiters "," or ";".

PRINT prints an item or a list of items on the Display. The items to be printed
may be separated by commas or semicolons. If commas are used, the cursor
automatically advances to the next tab position before printing the next item.
If semicolons are used, spaces are not inserted between the items printed on
the Display. There are ten tab positions to a line, one at each 8-byte column
boundary.

Positive numbers are printed with a leading blank, instead of a plus sign. All
numbers are printed with a trailing blank. No blanks are inserted before or
after strings; you can insert them with the help of quotation marks.

A semicolon at the end of a line overrides the cursor-return so that the next
PRINT begins where the last one left off. If no trailing punctuation is used
with PRINT, the cursor drops down to the beginning of the next line.

127

PRINT II I II ' ' II VOTED" "FOR" "THAT" II RASCP.
"DEWEY "

"I" i s P~i~t e d at t a b Pos itio~ 0.
P r inted at 28 ; "DEWEY" at 56 .

"VOTEDFORTHATRASCAL "

This line is fully equivalent to

PF~ I NT 1-\~> ; r'.<j;; C'*>

Sample Program
-,1 (1 N ::·· 1-.

E.~v1 A<t. '" "Fnc:;r:.L.~:; '' : r~.~. "'' " 1\NU MY l-J IFF Ot·JNf:) B. "
;:;;~;i PPII\Ii ":::()~,IN" N /\'t; II";
1 e~ ~i.l P r;· :r l\l r E-. %;

When run , this program gives

I OWN 6 EDSELS AND MY WIFE OWNS 8,"

Notice that " " prints a space.

PRINT @n
PRINT@ specifies exactly where printing is to begi n. There must be no
spaces between PRINT and @ . T he location specified must be a number
between 0 and 1919.

Whenever you cause something to PRINT@ on the bottom line of the
display, there is an automatic line feed ; everything on the Display moves up
one line. To suppress this automatic line feed , use a trailing semicolon at the
end of the statement.

PRINT @ (11 , 3 9) , II* II

Prints an aste risk in the middle o f the Display .

PRI NT @ 0 , II* II

Prints an a sterisk a t the top l e ft c orner of the
Disp l ay .

128

Examples
PRINT@ 550, "LOCAliON 550"

Run this to find out where position 550 is.

P FH NT i:iJ UtJ vJ Ill j X

Let's say the value of X in the above example is 7. "7" will be printed at
location 1001, not 1000. Recall that a positive number will be printed with a
leading blank to indicate its sign rather than a plus sign. So a space is printed
at 1000 and the number itself is printed at 1001.

Sample Program
150 LINE INPUT "TYPE SOMETHING IN.
155 CLS YOU'LL GET AN ECHO."; L$.
160 PRINT@ 500, L$
170 PRINT@ 1000, L$
180 PRINT@ 1500, L$

PRINT TAB (n)

PRINT TAB moves the cursor to the specified position on the current line (or
on succeeding lines if you specify TAB positions greater than 80). TAB may
be used more than once in a print list.

Since numerical expressions may be used to specify aT AB position, TAB can
be very useful in creating tables, graphs of mathematical functions , etc.

TAB can't be used to move the cursor to the left. If the cursor is to the right of
the specified position , the TAB statement will simply be ignored.

Example

PRINT TAP· (~::,) "T 1\BBE.D ::. " ; ·r AB (25) '' T ABF!.ED

Notice that no punctuation is needed after the TAB modifiers.

Sample Program
220 CL_S

.-,c:: II

.L:_.l

230 PRINT TAB<2) "CATALOG NO."; TAB<16) "DESCRIPTION OF ITEM";
2 40 PRINT TABC39) "QUANTITY"; TAB<Sl) "PRICE PER ITEM";
245 PRINT TAB<69) "TOTAL PRICE"

129

PRINT USING format
The PRINT USING statement allows you to specify a format for printing
string and numeric values. It can be used in applications such as printing
report headings, accounting reports, checks, or wherever a specific print
format is required.

The PR1NT USING statement ordinarily takes this form : PRINT USING
format, item list. PRINT USING takes the value item list, inserts it into the
expression format as directed by the field specifiers of format, and prints the
resulting expression. Format may be expressed as a variable as well as a
constant.

Examples of Field Specifiers

The following field specifiers may be used as part of format:

This sign specifies the position of each digit located in the numeric value.
The number of# signs you use establishes the numeric field. If the
numeric field is greater than the number of digits in the numeric value,
then the unused field positions to the leftofthe number will be displayed
as spaces and those to the right of the decimal point will be displayed as
zeros.

'

The decimal point can be placed anywhere in the numeric field
established by the# sign. Rounding-off will take place when digits to the
right of the decimal point are suppressed.

The comma- when placed in any position between the first digit and
the decimal point- will display a comma to the left of every third digit
as required. The comma establishes an additional position in the field .

In all the examples below, the first line represents a program line as you might
type it in ; the second line is the value returned after the first line has been run.

**

66
PH 11\iT I.)C 11\l(:i II :j:f.ii:" j:j: II ~ "'iF~ .. / b

58.8
P r~ I !'J ·r 'J ~::; :r I'J <::i '' *1: :J* *t- :1* =n tr. =l:r. =i:i: =!:!: :J:t- •.1

1
' ~; 1 ::;:: ~-5 .~~!- :j /:i ·-,:;, F~ 4; 1

123,456,789
Two asterisks placed a t the beginning of the field will cause all unused
positions to the left of the decimal to be filled with asterisks. The two asterisks
will establish two more positions in the field .

PF< I NT u~:::; I I\IC~i

**** 44

130

$$ Two dollar signs placed at the beginning of the field will act as a
floating dollar sign. That is, the dollar sign will occupy the first
position preceding the number.

PRINT USING"$$##.##"; 118 . 6735 , 462.9983~ 34.2500

$118. 67$463.00 $34. 25

**$ If these three signs are used at the beginning of the field, then the
vacant positions to the left of the number will be filled by the* sign
and the $ sign will again position itself in the first position preceding
the number.

PRINT USING "**S#. # # "; 8 . 333
* *$8.33

+ When a + sign is placed at the beginning or end of the field , it will be
printed as specified as a+ for positive numbers of as a - for negative
numbers

PRINT USING"+**#####"; 75200
* *+ 75200

PRINT USING"+###"; -216
- 216

When a - sign is placed at the end of the field , it will cause a negative
sign to appear after all negative numbers. A space will appear after
positive numbers.

PRINT U~ING "####.#- " ; -8124 . 420
8124.4-

''

131

This causes the Computer to use the first string character of the current
value.

PRINT USI NG

T

II f II w

. ' "TAN ZANII\"

%spaces% To specify a string field of more than one character,
%spaces% is used. The length of the field will be the number
of spaces between the percent signs plus 2.

One space between the backs 1 ashes:

PRINT USING"\ ~·; "TANZANIA"

TAN

Four spaces between the backs 1 ashes:

PRINT u~.:; I N~j " \
T ANZANETHIOP

'-"; "TANZANIA", " FTI··HOPIA"

Any other character that you can include in format will be displayed as a string
literal.

$8.63 BUCKS

If item list is a numeric value , the % sign is automatically printed if the field is
not large enough to contain the number of digits found in the numeric value.
The entire number to the left of the decimal will be displayed preceded by this
sign.

132

F' F~ J !\IT t)-:·3 I N<:i
Fi F~ I 1\1 r 1,)~:; I!\!()

% 100000.0
II tt-~t:f!:" tf li J

Sample Program

Li-20 CL..S: /\!ii === II ·lHE·$:1:f:lt' ~:t:H:J:HJ:=IH~ .. #:t:t DUi ... L..AF~~) ll
L1.30 INPUT "1-JHAT r s voL.m F 1 H~-;-r r'-U\I"IE" ; F·=t
440 INPUT "WHAT IS YOUR MIDDLE NAME"; M$
LJ 51.:1 I i\lPUT "ltJHAT H::: vou r~ L.f\ST r·-.iAI"1E" ~ L.. $
"~6~1 INPUT "1::::1\rTER AI"IOUNT P,<"~Yt1Ei.l .. E"; F'
470 CLS: PRINT "PAY TO THE ORDER OF";
L~80 PFU NT us I f\.IG II ! I I I II ; F$; ll " II ; 1"1$;
'~i9D PF; I r'-IT L $

II II 11
r. "}

500 PRINT: PRINT USING A$; P

In line 480, each ! picks up the first character of one of the following string
(F$, " . ", M$, and "." again). Notice the two spaces in " !! ! ! " . These two
spaces insert the appropriate spaces after the initials of the name (see below).
Also notice the use of the variables A$ for format and P for item list in line 500.
Any serious use of the PRINT USING statement would probably require the
use of variables at least for item list rather than constants. (We've used
constants in our examples for the sake of better illustration.)

When the program above is run, the output should look something like this:

WHAT IS YOUR FIRST NAME? JOHN
WHAT IS YOUR MIDDLE NAME? PAUL
WHAT IS YOUR LAST NAME? JONES
ENTERAMOUNTPAYABLE? 12345.6
PAY TO THE ORDER OF J.P. JONES
****** ** $12,345.60 DOLLARS

1 33

Line Printer

135

LPRINT, LPRINT TAB, LPRINT USING
Output to Printer

LPRINT item list
item list is a list composed of any of the following items:

TAB (number)
number is a numeric expression between 0 and 1920

constants
variables
expressions

where any of these items may be separated by commas or semi-colons

LPRINT USING format; item list
format is one or more of the field specifiers #, *, $, %, !, or other characters.
item list is a list composed of constants and variables, which must be

separated by commas or semi-colons.

LPRINT, LPRINTTAB , and LPRINT USING allow you to output to the
Line Printer.

Examples
L. F' f~ I 1\l·r \ (\ -~ ::::) ! .:'l

Sends the value of the expresion (A * 2)/2 to the Line Printer.

Moves the Line Printer carriage to tab position 50 and prints TABBED 50.

LPRINT USING"#####.#"= 2.17

Sends the formatted value2. 2 to the Line Printer.

For more examples and a more detailed explanation of how to use these
statements, see PRINT.

Sample Program

1 3 6

::5;··;;t1 Il\l eu·r ::<

:jL!-iZI IF •:t: <17'1 T!··IFI\I ;:'.3\?1
350 LPRII\IT "SQUARE ROOT IS" SQR(X)
::·<: l::· Cl [!)f)

Disk

For programminq information, see Chapter Ll , "FilP. Access

Techniques ...

137

CLOSE
Close Access to File

CLOSE buffer-number, buffer-number . . .
buffer-number = 1 ,2,3, ... 15

If buffer-number is omitted, all open files will be closed.

This command terminates access to a file through the specified buffer or
buffers. If buffer-number has not been assigned in a previous OPEN
statement, then

CLOSE buffer-number

has no effect.

Do not remove a diskette which contains an open file. Close the file first. This
is because the last records may not have been written to disk yet. Closing the
file will write the data, if it hasn't already been written .

The following actions and conditions cause all files to be closed:

NEW <ENTEii>
1:~UI\I <FNTE I:".{>
MERGE filesPec <ENTER>
E d i t i r, 9 -3. f i l e
Ad din 9 or deletin9 Pro9ram li nes
Execution of the CLEAR statement
1.> 1 :;:. k e r· r· o r· ~=·

Examples

Terminates the file assignments to buffers 1, 2, and 8. These buffers can now
be assigned to other files with OPEN statements.

CLOSE FIRST% + COUNT%

Terminates the fi le assignement to the buffer specified by the sum FIRST% +
COUNT%.

1 38 '

FIELD
Organize a Direct File-Buffer Into Fields

FIELD buffer-number, length AS name, buffer-number, length AS
name ...
buffer-number specifies a direct-access file buffer (1 ,2,3, ... 15)
name defines a variable name for the first field

The FIELD statement is used to organize a direct file buffer so data can be
passed from BASIC to disk and disk to BASIC. Before fielding a buffer, you
must use an OPEN statement to assign that buffer to a particular disk file.
(The direct access mode, i.e., OPEN " D", ... must be used.)

Yo u may use the FIELD statement any number of times to " re-organize" a
file buffer. FIELDing a buffer does not clear the contents of the buffer; only
the means of accessing the buffer (the field names) are changed. Furthermore,
two or more field names can reference the same area of the buffer.

Examples

FI ELD 1, 128 PS A$, 128 AS B$

This statement tells BASIC to assign two 128-byte buffers to the string
variables A$ and B$. If you now print A$ orB$, you will see the contents of
the buffer. Of course, this value would be meaningless unless you've
previously used GET to read a 256-byte record from disk.

Note: All data - both strings and numbers - must be placed into the buffer
in string form. There are three pairs of functions (MKI$/CVI, MKS$/CVS,
and MKD$/C VD) for converting numbers to strings and strings to numbers.
See section B of this chapter.

FIELD 3, 16 AS NMS~
7 A~~:; ZP$

A~3 AD1>,

The first 16 bytes of buffer 3 are assigned the buffer name NM$; the next 25
bytes, AD$; the next 10, CY$; the next 2, ST$; the next 7, ZP$.

139

GET
Directly Access a Record from Disk

GET buffer-number, record number
buffer-number specifies a direct access file buffer (1 ,2,3, . . . 15)
record number specifies which record to GET in the file; if omitted, the

current record will be read

This statement gets a data record from a disk file and places it in the specified
buffer. Before using GET, you must open the file and assign a buffer to it.

When BASIC encounters the GET statement, it reads the record number
from the file and places it into the buffer. If you omit record number, it will
read the current record.

The current record is the record whose number is one greater than that of the
last record accessed. The first time you access a file via a particular buffer, the
current record is set to 1.

Examples

Gets record 1 into buffer 1.

Gets record 25 onto buffer 1.

14 0

INPUT#
Sequential Read from Disk

INPUT# buffer-number, name, name ...
buffer-number specifies a sequential input file buffer {1 ,2,3, ... 15}
name is the variable name to contain the data from the file

This statement inputs data from a disk file.

With INPUT#, data is input sequentially. That is, when the file is opened, a
pointer is set to the beginning of the file. The pointer advances each time data
is input . To start reading from the beginning of the file again, you must close
the file buffer and re-open it.

INPUT# doesn 't care how the data was placed on the disk - whether a single
PRINT# statement put it there , or whether it required ten different PRINT#
statements. What matters to INPUT# is the position of the terminating
characters and the EOF marker.

When inputting data into a variable, BASIC ignores leading blanks. When
the first non-blank character is encountered, BASIC assumes it has
encountered the beginning of the data item.

The data item ends when a terminating character is encountered or when a
terminating condition occurs. The terminating characters vary, depending on
whether BASIC is inputting to a numeric or string variable .

Examples
I I'WtFf lt. :1 , r:\, ri.

Sequentially inputs two numeric data items from disk and places them in A
and B. File-buffer #1 is used.

INPUT#4, A$, 8$, CS

Sequentially input three string data items from disk and places them in A$,
B$, a nd C$. File-buffer #4 is used.

141

LINE INPUT#
Read Line of Text from Disk

LINE INPUT# buffer-number, name
buffer-number specifies a sequential input file buffer (1,2,3, ... 15)
name is the variable name to contain the string data

Similar to LINE INPUT from the keyboard , LINE INPUT# reads a "'line" of
string data into name. LINE INPUT# is useful when you want to read an
ASCII-format BASIC program file as data, or when you want to read in data
without following the usual restrictions regarding leading characters and
terminators.

LINE INPUT# reads everything from the first character up to

• a carriage return character which is not preceded by a line feed character
• the end-of-file
• the 255th data character (the 255th character is included in the string)

Other characters encountered - quotes, commas, leading blanks,
<LF:><EN> pairs - are included in the string.

Example
If the data on disk looks like

10 C~P 500 <X ' OD ' >
20 OPFN " I " I 1, "PPCX:::" < ' OP >

then the statement

could be used repetitively to read each program line , one line at a time.

142

OPEN
Assign a Buffer to a File and Set Mode

OPEN mode, buffer-number, filespec, record-length
mode is a string expression or constant of which only the first character is

significant; this character specifies the mode in which the file is to be
opened: I for sequential input, 0 for sequential output, D for direct­
access input-output.

buffer-number specifies a buffer to be assigned the file specified by filespec
filespec defines a TRSDOS file specification
record-length = 0,1 ,2 ... 255. If record-length is omitted or if a value of 0 is

used, the record length will be 256.

This statement makes it possible to access a file. Mode determines what kind
of access you 'll have via the specified buffer. Buffer-number determines
which buffer will be assigned to the file. Filespec names the file to be
accessed. If filespec does not exist, then TRSDOS may or may not create it,
depending on the access mode.

When a file is open, it is referenced by the buffer-number which was assigned
to it. GET buffer-number, PUT buffer-number, PRINT# buffer-number,
INPUT# buffer-number, all reference the file which was opened via buffer­
number. The mode must be correct.

Once a buffer has been assigned to a file with the OPEN statement, that
buffer can't be used in another OPEN statement. You have to CLOSE it first.

Examples

Opens the file "CLIENTS/TXT" for sequential output. Buffer 1 will be used.
If the file does not exist, it will be created. If it already exists , then its previous
contents are lost.

OPEN "D", 2, "DATA / BAS.SPE CI AL "

Opens the file OAT A/BAS with password SPECIAL in the direct access
mode. Buffer number 2 is used. If DATA/BAS does not exist, it will be
created on the first non write-protected drive.

OPEN "D", 5, "TEST /BAS" , 64

Opens the file TEXT/BAS for direct access. Buffer number 5 is used. The
record length is 64. If this record length does not match the record-length
assigned to TEXT/BAS when the file was originally opened, an error will
occur.

143

PRINT#
Sequential Write to Disk File

PRINT# buffer-number, expression; ...
buffer-number specifies a sequential output file buffer (1 ,2,3, ... 15)
expression is the expression to be evaluated and written to disk
; is a delimiter placed between every two expressions to be printed to disk. A

comma(",") can also be used. The delimiter is not used if there is only
one expression to be written

This statement writes data sequentially to the specified file. When you first
open a file for sequential output, a pointer is set to the beginning of the file.
Thus the first PRINT# places data at the beginning of the file. At the end of
each PRINT# operation the pointer advances, so values are written in
sequence.

A PRINT# statement creates a disk image similar to what a PRINT to the
Display creates on the screen. Remember this, and you' ll be able to set up
your PRINT# list correctly for access by one or more INPUT statements.

PRINT# does not compress the data before writing it to disk. It writes a n
ASCII-coded image of the data.

Examples
IfA = 123.45

will write a nine-byte character sequence onto disk:

·.· l ::~:~.3" i~ ~~~ •.t

where ' · ' " indicates a blank.

The punctuation in the PRINT list is very important. U nquoted commas and
semicolons have the same effect as they do in regular PRINT to Display
statements. For example , if A = 2300 and B = 1.303, then

PF~ INTHl , 1\, H

places the data on disk as

'2300'''''''' '' 1.303 ' <EN>

144

The comma between A and Bin the PRINT# list causes lO extra spaces in the
disk file. Generally you wouldn't want to use up disk space this way, so you
should use semicolons instead of commas.

Files can be written in a carefully controlled format using PRINT# USING.
Or you can use this opt"ion to control how many characters of a value are
written to disk.

For example, suppose A$ = " LUDWIG", B$ = ·•y AN", and C$ =
"BEETHOVEN". Then the statement

PRII\IT#l.,l)£:-)If\JG" 1
• ~ · ' '\." ;A~> ;B<:t;;c~;

would write the data in nickname form:

i... ... \/ .. BE!:::T <E::N >

(In this case, we didn 't want to add any explicit de limiters.) See 2.C.ii.,
PRINT, for more information on the USING option.

145

PUT
Write a Direct Access Record to Disk

PUT buffer-number, record number
buffer-number specifies a direct access file buffer (1 ,2,3, . .. 15}
record number specifies the record number of the file. If record number is

omitted, the current record number is used

T his statement moves data from the buffer of a fi le into a specified place in the
file . Before putting data into a file , you must

• OPEN a file , which assigns a buffer and defines the access mode (which
must be D)

• FIELD the buffer, so you can
• place data into the buffer with LSET and RSET statements.

The first time you access a file via a particular buffer, the current record is set
equal to 1. (The current record is the record whose number is one greater than
the I as t record accessed.)

If the record number you PUT is higher than the end-of-file record number,
then record number become the new end-of-file record number.

Examples

PUT :1.

Puts record 1 into buffer 1.

PUT 1 , :? ~)

Puts record 25 into buffer 1.

146

Debug Statements

The debug statements allow you to isola te logical errors in your programs,
and to trap input/output errors so that your program can continue execution
in spite of the error.

For example:

100 ST<jp

interrupts program execution at the specified line. The Computer will
automatically return to the command mode to allow you to test the contents
of variables via immediate statements like:

PRINT x, y, z

147

CONT
Resume Execution of Program

CONT

When program execution has been stopped (by the BREAK key or by a
STOP statement in the program). type CONT and @:ii3;1 to continue
execution at the point where the stop or break occurred. During such a break
or stop in execution, you may examine variable values (using PRINT) or
change these values. Then type CONT and PHii3;1 and execution will
continue with the current variable values. CONT. when used with STOP and
the BREAK key, is primarily a debugging tool.

NOTE: You cannot use CONT after EDITing your program lines or other­
wise changing your program . CONT is also invalid after execution has ended
normally.

See also STOP.

148

ERL
Get Line Number of Error

ERL

ERL returns the line number in which an error has occurred. This function is
primarily used inside an error-handling routine. If no error has occurred
when ERL is called, line number 0 is returned. Otherwise, ERL returns the
line number in which the error occurred. If the error occurred in the
command mode, 65535 (the largest number representable in two bytes) is
returned .

Examples
PRII\IT EPL.

Prints the line number of the error.

[:== EJ~l...

Stores the error's line number for future use .

Sample Program
1999 REM ERL PROGRAM
2 000 CLEAR 100: ON ERROR GOTO 2125
?010 INPUT"WHAT NAME ARF YOU LOOKING FOR";Q$
2020 F<EAD ·1 $

?030 IF QS=T$ THEN PRINT TS" IS IN THE LIST" : GOTO 20b~
~,::04 !.1 GOTO 2121:20
2050 PRINT Q$" IS NOT IN THE LIST." : RESTORE: GOTO 2010
2060 I NPUT"WHAT IS YOUR FAVOR ITE FRUif" ;F$
2 07171 F<Et-\D T$
:?0Ei(2) IF F~>==-r 1> TI···IE:I\1 P I~ I 1\IT" YOU' F~E IN l._IJCI<--+JE HI\\)[SOI"If:::. " :

RESTORE: GOTO 2010
2(;~90 GOTO 2!2170
:? 10(2) PRII\IT " f)OR f~Y·-·-· t,Jf:: DON'T H~,'v'E 1\NY "F~>"b ": f{F~rlOI:~E : (~;cnn 2!2l6m
·~~ 1 H1 DATA TOI"I , JY[Cl< \' HAFmY ., ,J A!"IE ~3 , F~OE>.DrT, ~31Jb bAI. . .L Y,

CF:~I:<r:LLE, lvl f-\RY
? 120 DATA WATERMELON ~ PEACH, PEAR, ORANGE, APPLE, CHERRY,

T01'1ATO, AVOCADO
2L2::, IF ERR<>L~ THE]\! ON EI=<ROR GOTO 0
2130 IF ERL.=2020 THEN RF.SUI'"IF 2050
21 '+12l IF ERL.=:2070 THEN RESUME 2l0!ZJ
2 150 ON ERROR GOTO 0

149

ERR
Get Error Code

ERR

ERR is similar to ERL, except that ERR returns the code of the error rather
than the line in which the error occurred. ERR is normally used inside an
error-handling routine accessed by ON ERROR GOTO. See the section on
error codes in the Appendix.

Examples
I F ERR = 7 THEN 1000 ELSE 2000

If the error is an Out of Memory error (code 7) the program branches to line
1000; if it is any other error, control will instead go to line 2000.

Sample Program

2160 ON ERROR GOTO 2220
:::.:: 1. 70 F<EAI) A
?1Ei\Zl PPINT 16..
:::.:: 1'ik't GOTO :;,~1-70

2200 PRINT "DATA HAS BEEN READ IN"
:::~;2 1 (ZJ END
2220 I F ERR = 4 THEN RESUME 2200
?230 ON ERROR GOTO 0
:~ .. ~23;: f)t"'·r t\ Lt, :: ~ pj, ~=~ ., c.1 , :2, ::~~, ~:1.1 :.' ·?, 1 =~ , 1

This program "traps" the Out of Data error, since 4 is the code for that error .

151

ERROR
Simulate Error

ERROR code
code is a numeric expression in the range [0,255]

ERROR lets you simulate a specified error during program execution. The
major use of this statement is for testing an ON ERROR GOTO routine.
When the ERROR code statement is encountered, the Computer will
proceed exactly as if that error had occurred. Refer to the Appendix for a
listing of error codes and their meanings.

Example

When the program reaches this line, a Next Without For error (code 1) will
" occur", and the Computer will print a message to this effect.

Sample Program

:::::?-•H;) I i\iFiiJT N
:22 ~::,!?.1 EF:F:O F: r\~

When you input one of the error code numbers, that error will be simulated in
line 2250.

152

ON ERROR GOTO
Set Up Error-trapping Routine

ON ERROR GOTO line number

When the Computer encounters any kind of error in your program, it
normally breaks out of execution and prints an error message. With ON
ERROR GOTO, you can set up an error-trapping routine which will allow
your program to " recover" from an error and continue, without any break in
execution. Normally you have a particular type of error in mind when you use
the ON ERROR GOTO statement.

For example, suppose your program performs some division operations and
you have not ruled out the possibility of division by zero. You might want to
write a routine to handle a division-by-zero error, and then use ON ERROR
GOTO to branch to that routine when such an error occurs.

The ON ERROR GOTO must be executed before the error occurs or it will
have no effect.

The ON ERROR GOTO statement can be disabled by executing the
statement, ON ERROR GOTO 0.

If you use this inside an error-trapping routine, BASIC will handle the
current error normally.

The error handling routine must be terminated by a RESUME statement.
See RESUME.

Examples
ON ERROR GOTO 1500

If an error occurs in your program anywhere after this line, control will
suddenly shift to line 1500.

Sample Program
Fo~ the use of ON ERROR GOTO in a program, see the sample programs for
ERLand ERR.

153

RESUME, RESUME NEXT
Terminate Error-Trapping Routine

RESUME line number
line number is optional.

RESUME NEXT

RESUME terminates an error-handling routine by specifying where normal
execution is to resume. Place a R ESUME statement at the end of an error­
trapping routine. That way later errors can also be trapped.

RESUME without an argument and RESUME 0 both cause the Computer to
return to the statement in which the error occurred.

RESUME followed by a line number causes the Computer to branch to the
specified line number.

RESUME NEXT causes the Computer to branch to the statement following
the point at which the error occurred.

Examples

RESUME

If an error occurs, when program execution reaches the line above , control
will be transferred to the line in which the error occurred.

RESUME 10

If an error occurs, control will be transferred to line 10 after the problem has
been fixed.

Sample Program
For the use of RESUME in a program , see the sample programs for ERL and
ERR.

154

STOP
Interrupt Execution of Program

STOP

STOP interrupts the execution of your program and prints the words
BREAK IN followed by the number of the line that contains the STOP.
STOP is primarily a debugging aid. During the break in execution, you can
examine variables or change their values.

The CONT command is used to resume execution at the point where it was
halted. But if the program itself is altered during the break, CONT can't be
used.

Sample Program

2 ::?6flt X "' F~ ND \ l Cil)
:?210 b·roP
22El!Zl CiUTU 2260

A random number between 1 and 10 will be assigned to X and program
execution will halt at line 2270. You can now examine the value of X with
PRINT X or? X. Type CONT to start the cycle again.

155

TRON,TROFF
Turn Trace Function On, Off

TRON

TROFF

TRON turns on a trace function that lets you follow program flow for
debugging and for analysis of the execution of the program. Each time the
program advances to a new program line , that line number will be displayed
inside a pair of brackets.

Sample Program

~~::.:91ZI T FW!\1
2300 X= X* 3.14159
:;,:: 3 l !/1 ·r-rw FT

might be helpful in assuring you that line 2300 is actually being executed,
since each time it is executed [2300] will be printed on the Display. (We
assume the program doesn't jump directly to line 2300 without passing
through line 2290, which would execute the assignment statement without
turning the trace on.)

After a program is debugged , the TRON and TROFF statements can be
removed.

156

Functions

157

Computational Functions

Computational functions are internal to BASIC, i.e., they are not concerned
with input/output. They perform some action on their argument or
arguments and return a result.

There are numeric and string computational functions.

ASC

is a numeric computational function because it returns a numeric result.

OCT$

is a string computational function because it returns a string result.

159

Numeric

161

ABS
Compute Absolute V aloe

ABS (number)
number is any numeric expression

ABS returns the absolute value of the argument, i.e. , the magnitude of the
number without respect to its sign. ABS(x)= x for x greater than or equal to
zero, and ABS(x)=-x for x less than zero.

Examples

The absolute value of Y is assigned to X.

I r: t\t?.::::; < x) < 1 E ·····t::· T H E:i\1 F; F< 1 hl-r- " ·r c,() ~::~~·-·tt\L.L_ jl

TOO SMALL is printed only if the absolute value of X is less than the
indicated number.

Sample Program

10fl1 n~PlJr "t.-JH t~ T ., ~; THE TFl'IPE:r~A ·ruF<E ouTs I DE < DFGnEE:S F) " ; TEMP
11 0 IF TEMP < 0 THEN PRINT "THAT'S" ABSCTEMP)

"BELOW ZEn0 1 BRR'": END
120 IF TEMP= 0 THEN PR I NT " ZERO DEGREES' MITE COLD! " : END
1:3l7J PP I NT TEJ•IP "DE:GF<EE~:; f\BO'v'E ZER0 7 P.A l.JW ! II: END

162

ASC
Get ASCII Code

ASC (string)
string is a string expression. If string is null, an Illegal Function Call will

occur.

ASC returns the ASCII code of the first character of the string. The value is
returned as a decimal number.

Examples
PRir·~T 1-;E~C("t~")

PHli\IT r:-...~:;cc "t~ !3 ")

Both lines will print 65, the ASCII code for "A".

PRINT ABCCRIGHT$(T$, 1>>

Prints the ASCII code of the last character ofT$.

Sample Programming

Refer to the ASCII code table in the Appendix. Note that the ASCII code for a
lower-case letter is equal to that letter's upper case code plus 32. So ASC
can be used to convert lower-case to upper case, simply by subtracting 32
from ASC(x). For instance:

J.it·0 INPU ·i· "L..ETTI:;::F~ (d. ·-z) "; X$
l:'·Q) IF. X<!;>=::: ".::1. " 1\l'H) X<£; <=::: ";:~ " THEN X$::: Cf·iR~t,(t~E~C(X$) ·<32)
160 PFUNT X$

ASC can be used to make sure that a program is receiving the proper input.
Suppose you've written a program that requires the user to input numerals
0-9. To make sure that only those characters are input, and exclude all other
characters. vou can insert the following routine.

170 INPUT " ENTER A NUMBER (0-9)"; N$
180 IF ASCCN$) < 48 OR ASCCN$) > 57 THEN 170
185 IF LEN(I\I$) > 1 THEN 170

163

ATN
Compute Arctangent

ATN (number)
number is a numeric expression

A 1N returns the angle whose tangent is number. The angle will be in
radians ; to convert to degrees, multiply ATN(X) by 57.29578.

Examples

A ssigns the value of the arctangent ofY/3 to X.

PR I NT ATN<1.002~) *57.:

Prints the indicated value.

R = N * ATNC-20 * F2/F 1)

Assigns the indicated value to R.

Sample Program
1. 90 INPUT "T,.;t'KjENT"; T
200 PRINT " ANGLE JS" ATN(l) * ~7.29578 " RADIANS"

164

CDBL
Convert to Double-Precision

CDBL (number)
where number is any numeric expression.

R eturns a double-precision representation of the argument. The value
returned will contain 17 digits, but only the digits contained in the argument
will be significant.

CDBL may be useful when you want to force an operation to be done in
double-precision. even though the operands are single precision or even
integers. For example , CDBL (I%)/J% will return a fraction with 17 digits of
precision.

Examples

Y# = CDBL <N * 3) + M

The operations on the right are forced double-precision.

Sample Program
210 FOR I = 1 TO 25
220 PRINT 1/CDBLCI) ,
230 NEXT I

Prints the elements of the harmonic series 1. 1/2. 1/3, ... l /25 in double­
precision.

165

CINT
Converts to Integer Representation

CINT (number)
number is a numeric expression such that - 32768 <= number<32768.

CINT re turns the largest integer not greater than the argument. For example,
CINT(1.5) returns 1; CINT(- 1.5) returns - 2. The result is a two-byte integer.

Examples
PRINT CINT(15.0075)

Prints the indicated value.

K = CINTCX #) + CINTCY#)

T he addition will involve only integer arithmetic, which is much faster than
double-precision.

Sample Program

240 INPUT "ENTER A POSI TIVE DECIMAL NUMBER
<L IKE DDDD.DDDD>"; N
250 PRINT "INTEGER PORTION IS"; CI NT <N>

166

cos
Compute Cosine

COS (number)
number is a numeric expression.

COS returns the cosine of the angle number. The angle must be given in
radians. When number is in degrees, use COS(number * .01745329).

Examples
v :::: co~;< x >

Assigns the value of COS(X) toY.

Y = COS<X * .01 745329)

If X is an angle in degrees, the above line will give its cosine.

PRINT C08(5.8) - COSC85 * .42)

Prints the difference of the two cosines.

(i::~ ::: ci 1 -lf < c co~::;</\> > " 1 ~:;)

Computes the indicated cosine and stores it in G2.

Sample Program
~:::60 INPUT "ANGLE IN Rr"\D I f>.NS" ; A
?70 PRINT "COSINE IS" COS(A)

lb 7

CSNG
Convert to Single-Precision

CSNG (number)
number is a numeric expression.

CSNG returns a single-precision representation of the argument. When the
argument is a double-precision value, it is returned as six significant digits
with " 4/5" rounding in the least significant digit. For instance,
CSN G(. 6660666666666667) returns .666667; CSNG(. 3333333333333333)
returns .333333.

Examples

Assigns the valueCSNG (TM#) to FC.

PRINT ~SNGC.1453885509)

Prints a single-precision value.

R ==: Ct)I\JGU,#/P.#)

Performs the indicated computation and stores it in R .

Sample Program
?80 Pl#= I J ~ 141 59265358979
290 8# = 18. 000000795
300 PRINT CSNG<PI# * B#l

This program prints a single-precision value after the double-precision
multiplication.

168

EXP
Compute Natural Antilog

EXP (number)
number is a numeric expression.

Returns the natural exponential of number, that is , enumber. This is the inverse
of the LOG function; therefore, X= EXP(LOG(X)).

Examples
H == EXP<A>

Assigns the value of EXP(A) to H .

PRI NT E:XP < -<:.:)

Prints the value .135335.

E = (Gl + G2- . 07) * EXP< .055 * !Gl + G2))

Performs the required calculation and stores it in E.

Sample Program
3 10 INPUT "NUMBER"; N
320 PRINT "E RAISED TO THE N POW ER IS" EXP(Nl

169

FIX
Return Truncated V aloe

FIX (number)
number is a numeric expression.

FIX returns a truncated representation ofthe argument. All digits to the right
of the decimal point are simply chopped off, so the resultant value is an
integer. For non-negative X , FIX(X) = INT(X). For negative values of X,
FIX(X) = INT(X) + 1.

Examples
Y = FIX(X)

The truncated number is put in Y.

Pf{INT F" I X(~:~.2)

Prints the value 2.

PfHNT FIX(·---::~=2)

Prints the value -2.
Sample Program

330 INPUT "NUMBER"; A#
340 Y# = ABSCA# - FIXCA#))
350 PRINT "FRACTIONAL PORTION IS" Y#

This program splits any number into its integer and fractional parts.

170

INSTR
Search for Specified String

INSTR (position, string1, string2)
position specifies the position in string1 where the search is to begin.

Position is optional; if it is not supplied, search automatically begins at the
first character in string 1. (Position 1 is the first character in string 1.)

string 1 is the string to be searched.
string2 is the substring you want to search for.

This function lets you search through a string to see if it contains another
string. If it does, INSTR returns the starting position of the substring in the
target string; othetwise, zero is returned. Note that the entire substring must
be contained in the search string, or zero is returned. Also, note that INSTR
only finds the first occurrence of a substring, starting at the position you
specify.

Examples
In these examples, A$= "LINCOLN" :

INEI TR(A$, "INC")

returns a value of2.

INSTR U\$, "L2")

returns 0.

I NSTR CA$, " LINCOL NABRAHAM")

returns 0. For a slightly different use of INSTR, look at
INSTR (3, "1232123 " , "12")

which returns 5.

171

Sample Program
The program below uses INSTR to search through the addresses contained in
the program's DATA lines. It counts the number of addresses with a specified
county zip code (761--) and returns that number. The zip code is preceded by
an asterisk to distinguish it from the other numeric data found in the address.

360 RESTORE
370 COUNTER = 0
380 ON ERROR GOTO 410
390 READ ADDRESS$
400 IF INSTRCADDRESS$, "*761") <> 0 THEN COUNTER= COUNTER+ 1

ELSE 390
405 GOTO 3'10
410 PRINT "NlJMBER OF TARRANT COUNTY, TX ADDRESSES IS" COUNTER:

END
420 DATA "5950 GORHAM DRIVE, BURLESON, TX *76148 "
430 DATA "71 FIRSTFIELD ROAD, GAITHERSBURG , MD * 20760"
440 DATA "1000 TWO TANDY CENTER, FORTH WORTH, TX *76102"
450 DATA "16633 SOUTH CENTRAL EXPRESSWAY, RICHARDSON, TX *75080"

172

INT
Convert to Integer V aloe

INT(number)
number is any numeric expression.

TNT returns an integer representation of the argument, using the largest
whole number that is not greater than the argument. The result has the same
precision as the argum~nt. The argument is not limited to the range-32768 to
32767.

Examples

A = INT(X)

Gets the integer value of X and stores it in A.

PRINT INT<2.5)

Prints the value 2.

PRINT I NT (--·2. 5)

Prints - 3.

Sample Program:
460 INPUT X#
470 IF X# < 0 THEN GOTO 460
480 A = INT<<X# * 100) + . 5)/100
490 PRINT A

If you type in a positive number with a fraction like 25.733720, this program
will round it off to two decimal places and print it.

173

LEN
Get Length of String

LEN (string)
string is a non-null string expression.

LEN returns the character length of the specified string.

Examples
X :: LEN (~ENTENCE$)

Gets the length of SENTENCE$ and stores it in X.

PRINT U::N (01 CAI'1BR I DC:i[01
:• + LEN (01 BE:m\Fl.E:Y")

Prints the value 17.

Sample Program

500 A$ = 11 11

510 B$ = "TOM"
520 PRINT A$, B$, B$ + B$
530 PRINT LEN<A$), LEN(B$), LEN(B$ + B$)

When this short program is run , the following will be printed on the display:

174

TOM
3

TOM TOM
6

LOG
Compute Natural Logarithm

LOG (number)
number is a numeric expression.

LOG returns the natural logarithm of the argument. This is the inverse of the
EXP function , so X = LOG(EXP(X)). To find the logarithm of a number to
another base B, use the formula LOG B(X) = LOG E(X)/LOG E(B). For
example, LOG(32767)/LOG(2) returns the logarithm to base 2 of 32767.

Examples

B = LOG(A)

Computes the value of LOG(A) and stores it in B.

PRINT LOGC3. 14159)

Prints the value 1.14473.

Z = 10 * LOG<P2/P1)

Performs the indicated calculation and assigns it to Z.

This program demonstrates the use of LOG. It utilizes a formula taken from
space communications research.

Sample Program

540 INPUT "DISTANCE SIGNAL MUST TRAVEL <MILES>"; D
550 INPUT "SIGNAL FREQUENCY <GIGAHERTZ)"; F
560 L = 96.58 + <20 * LOG<F>> + <20 * LOG<D>>
570 PRINT "SIGNAL STRENGTH LOSS IN FREE SPACE IS" L "DECIBELS."

175

RND
Generate Pseudorandom Number

RND (number)
number is a numeric expression such that

0 . = number ,32768.

RND produces a pseudorandom number using the current " seed" number.
The seed is generated internally and is not accessible to the user. RND may be
used to produce random numbers between 0 and 1, or random integers
greater than 0, depending on the argument.

RND(O) returns a single-precision value between 0 and 1. RN D(X), where X
is an interger between 1 and 32768, returns an integer between 1 and X. For
example, RND(55) returns a pseudorandom integer between 1 and 55.
RND(55.5) returns a number in the same range, because RND uses the
integer value of the argument.

Examples
A ::' RND C?)

A is given a value of 1 or 2.

A = f~r.Jf) (Z ">

Returns a random integer between 1 and Z and assigns it to A.

PF~ I NT r~ND ((i))

Prints a decimal fraction between 0 and 1.

Sample Program

580 FOR I = 1 TO 100
590 PRINT RND<10);
6~1) f2) NF X T l

This prints 100 pseudorandom numbers between 1 and 10.

176

SGN
Get Sign

SGN (number)
number is a numeric expression.

This is the "sign" function. It returns -1 if its argument is a negative number,
0 if its argument is zero, and 1 if its argument is a positive number.

Examples

Y = SGN <A * ED

The function determines what the sign of the expression A * B is, and passes
the appropriate number (- 1, 0, 1) toY.

PRINT SGN(N)

Prints the appropriate number on the Display.

Sample Program

6 10 INPUT "ENTER A NUMBER";
62121 ON SGN<X> + .-,

..:... GOTO 630,
63121 PRINT "NEGATIVE " : END
640 PRINT "ZERO" : END
650 PRINT "POSITIVE": END

X
6 40, 651ll

177

SIN
Compute Sine

SIN (number)
number is a numeric expression.

SIN returns the sine of the argument, which must be in radians. To obtain the
sine of X when X is in degrees , use SIN(X * .0174533).

Examples

I,..J := !3I N<l"1X)

Assigns the value of SIN (MX) to W.

PF-< HIT SHH7.96)

Prints the value .994385.

E = <A * A) * CSI NCD>/2)

Performs the indicated calculation and stores it in E .

Sample Program

660 INPUT "ANGLE IN DEGREES"; A
67~ PRINT "SINE I S " SIN<A * . 01 74533)

178

SQR
Compute Square Root

SQR (number)
number is a non-negative numeric expression.

SQR returns the square root of its argument.

Examples

Performs the required calculation and stores it in Y.

Prints the value 12.478.

Sample Program

680 INPUT " TOTAL RESISTANCE (OHMS>"; R
690 INPUT "TOTAL REACTANCE <OHMS) " ; X
700 Z = SQRC<R * Rl + CX *X>>
710 PRINT "TOTAL IMPEDANCE <OHMS) IS" Z

This program computes the total impedance for series circuits.

1 79

TAN
Compute Tangent

TAN (number)
number is a numeric expression.

TAN returns the tangent of the argument. The argument must be in radians.
To obtain the tangent of X when X is in degrees, use TAN(X * .01745329).

Examples
L. ::: T f\N (1'1)

Assigns the value ofT AN (M) to L.

PRINT T~\l\1 (7 .~.16)

Prints the value -9.39702.

Z = <TANCL?- Li))/2

Performs the indicated calculation and stores the result in Z.

Sample Program

180

720 INPUT "ANGLE IN DEGREES"; ANGLE
730 l = TAN<ANGLE * .01745329)
740 PRINT "TAN IS" T

VAL
Evaluate String

VAL (string)
string is a string expression.

VAL is the inverse of the STR$ function; it returns the number represented
by the characters in a string argument. This number may be integer, single
precision, or double precision depending on the range of values and the rules
used for typing all constants.

For example, if A$= "12" andB$ = "34" then V AL(A$ + " ." + B$) returns
the value 12.34 and V AL(A$ + "E" + B$) returns the value 12E34, that is, 12
* 10t34.

VAL terminates its evaluation on the first character which has no meaning in
a numeric term - e.g. , Z , ? , etc. The current value at termination is used . e If the string is non-numeric or null , VAL returns a zero.

Examples
f' Fn:~H Vt'\L (" HJ0 DOL. L. AF<t:) ")

prints 100.

PRI N r VALC " 1234E5")

prints ·1.234E+08o

E~. :::: 'v'AL. (II =~ II ·+ !I* II ~~· II ~~~ II)

S The value 3 is assiqned to Bo
ample Program

REM WHAT SIDE OF THE STREET?

750 REM WHAT SIDE OF THE STREET?
760 REM NORTH I S EVEN; SOUTH IS ODD
770 LINE INPUT "ENTER THE ADDRESS <NUMBER AND STREET) ";ADS
780 C = INT<VAL<AD$) / 2) * 2
790 IF C = VAL<AD$) THEN PRINT "NORTH S IDE": GOTO 7 70
8 00 PR I NT "SOUTH S IDE": GOTO 770

181

String

1 83

CHR$
Get Character for ASCII or Control Code

CHR$ (number)
number is a numeric expression,

number = 0,1 ,2, . . . ,255

C HR$ is the inverse of the ASC function. It returns a one-character string;
this character has the ASCII , control, or graphics code number specified by
the argument of the function .

Examples:
P$ "'" CHR$ (T)

The function CHR$ converts the number T into its ASCII character
equivalent and puts the character into P$.

P F~ I NT CH R':'i> (~~::))

Prints a # on the Displ ay .

PRINT CHH$(:?fJ)

Puts the Display into its black-on-white mode (use CHR$ (25) to return to
normal).

A$= A$+ CHR$(1)

T he character whose ASCII code is I is added to the end of A$.

Sample Program
Using CHR$, you can assign quotation marks to strings, even though they are
ordinarily used as string-delimiters. Since the ASCII code for quotations is
34, A$ = CHR $(34) assigns the value " to 34.

7 00 A$ = CHR$(34)
7 :1.121 FlFn r-.!T II HE HA H> ~ " ; A't ·; II I···!F::u_o. " ' {1 'i ;

When this is RUN , the following line will be printed on the Display:

HE S;l\ I D, II HELLO. II

184

DATE$
Get Today's Date

DATE$

This function lets you display today's date and use it in a program.

T he operator sets the date initially when TRSDOS is started up. When you
request the date , BASIC will display it in this fashion:

SATAPR281979118 45

which means Saturday, April28, 1979, 118th day of the year, 4th month of the
year, 5th day of the week (Monday is the Oth day of the week).

Example
PRINT DA"TT$

which returns
-y.-,
{ . .::.

Sample Program

1090 PRIP..!T "In vent •:•r···,·· C h ed~ :"

1100 IF DATE$ = "THUJAN311980~31 13" THFN PRINT "TodaY is
th~ last daY of JanuarY 1980. Time to Perform monthlY
i nve ntor Y. ": END

1110 A$= LEFTSCDATE$, 8): B$ = RIGHTSCA$, 2)
ll :::::0 B := W\L (1?.$)

j 130 PRINT 31 -- E.'. II o:la:·,··::. until inV<2ni:•:or···,·· time. II

185

HEX$
Compute Hexadecimal Value

HEX$ (number)
number is a numeric expression,

- 32768 = number 32768

HEX$ returns a string which represents the hexadecimal value of the
argument. The value returned is like any other string - it cannot be used in a
number expression. That is , you cannot add hex strings. You can concatenate
them, though .

Examples:
P RINT HEX$(30), HEX$(50), HEX$(90)
prints the following strings:

1E ;.:.:: A
_ _,1M

Y$ '-= HE:XS(X/lb)

Y$ is the hexadecimal string representing the integer quotient X/16.

Sample Program

720 INPUT "DECIMAL VALUE"; DEC
730 PRINT "HEXADECIMAL VALUE IS " HEXS<DEC)

186

LEFT$
Get Left Portion of String

LEFT$ (string, number)
string is a string expresson, string null string
number is a numeric expression, LEN(string) = number

LEFT$ returns the first number characters of string. If LEN(string)
number, the entire string is returned.

Examples:

PRINT LEFTSC"BATTLESHIPS", 6)

Prints the left six characters of BATTLESHIPS, namely , BATTLE.

PR INT L_E:F·Ts ("P. H~i FIERCE Doc:," , ::;::0)

Since BIG FIERCE DOG is less than 20 characters long, the whole phrase is
printed.

PHRASE$ = LEFT$(M$, 12)

Puts the first 12 characters of M$ into PHRASE$.

PRINT LEFTS<"ALPHA" +"BETA" +"GAMMA", 8)

Prints ALPHABET.

Sample Program

740 A$ = "TIMOTHY"
750 8$ = LEFTSCA$~ 3)
760 PRINT 8$; "-- THAT' S SHORT FOR"; A$

When this is run , the following will be printed:

T IM--THAT 'S SHORT FOR TIMOTHY

187

MID$
Get Substring

MID$ (string, position, length)
string is a string expression
position is the position where the substring begins in string
length is the number of characters in the substring (this parameter is

optional)

MID$ returns a substring of string. The substring begins at position in string
and is length characters longs.

If length is omitted, the entire string beginning at position will be returned.

Examples

If A$ = " WEATHERFORD" then

PRINT MID$(A$, 3 , 2)

prints AT.

F$ = MID$ (A$, 3)

puts A THERFORD into F$.

Sample Program_

2 00 INPUT "AREA CODE AND NUMBER <NNN- NNN- NNNN) " ; PHS
2 10 EXS = MI DS< PH$, 5 , 3)
?20 PR INT " NUMBER I S IN THE " EX$ " EXCHANGE. "

T he first three digits of a local phone number are sometimes called the
exchange of the number. This program looks at a complete phone number
(~rea code, exchange, last four digits) and picks out the exchange of that
number.

1 88

OCT$
Compute Octal Value

OCT$(number)
number is a numeric expression.

OCT$ returns a string which represents the octal value of the argument. The
value returned is like any other string - it cannot be used in a numeric
expression

Examples:
PRINT OCT$(30), OCT$(50), OCT$(90)

prints the following strings:

Y$ is a string representation of the integer quotient X/84 to base 8.

Sample Program

830 INPUT HDECIMAL VALUE H; DEC
840 PRINT HQCTAL VALUE IS H OCTS<DEC)

189

RIGHT$
Get Right Portion of String

RIGHT$ (string, number)
string is a string expression, string not equal to null string
number is a numeric express.

RIGHT$ returns the last number characters of string. If LEN(string) is less
than or equal to number, the entire string is returned.

Examples:

PRINT RIGHT$("WATERMELON", 5)

Prints the five right characters of WATERMELON, namely, MELON.

Since MILKY WAY is less than 25 characters long, the whole phrase is
printed.

ZIPS : RIGHTS(ADDRESS$, ~)

Puts the last five characters of ADDRESS$ into ZIP$.

Prints a single"!".

Sample Program
850 RESTORE: ON ERROR GOTO 880
860 READ COMPANY$
870 PRINT RIGHTS (COMPANYS, 2),: GOTO 860
880 END
890 DATA "BECHMAN LUMBER COMPANY, SEATTLE , WA"
900 Dt~ TA "F::D NORT'OI\I SEt..JER SERVICE, 8 1~001·\ I YN , N\'"
9 :10 DI\TA "H1\MI'10ND I"IANUFACTUF<ING CCJIVIPANY , I···I AMMOI'JD' IN"

This program prints the name of the state in which each company is located.

190

SPACE$
Return String of Spaces

SPACE$ (length)
length is a numeric expression,

0 = length 256.

SPACE$ returns a string of spaces. The number of spaces is determined by
the argument.

Examples:
PRINT II DESCR I PT I 01\l II SPf~CF$. (Lf) II TYPE II SPACE$ ('-i) "()li,..J t,NT I TY"

Prints DESCRIPTION followed by four spaces followed by TYPE followed
by nine spaces followed by QUANTITY.

Puts a string of fourteen spaces into A$.

SP$:::: SPACEt• (N)

Puts a string of N spaces into SP$.

Sample Program
920 PFHNT II H-2 f""E.' "
930 F)!< I NT !3Pl\CE:::$ (l :.3)
c;>Lf(l) PRINT ~)Pf1CE$ (~-:-~ c-~.)
17i'":JiZI PPII\IT ~3Pf"'CE'\"; (39)
960 PF.:It-.IT ~=; P .<'1 CE: '!; (52)
97121 P HI NT EP,t;,CE$ (I "" ·-'1 .. J)

II i :=. ll

n -3. nil

II of II

191

STR$
Convert to String Representation

STR$(number)
number is a numeric expression.

STR$ converts its argument to a string. For example, if X = 58.5, then
STR$(X) equals the string" 58.5". Notice that a leading blank is inserted
before 58.5 to allow for the sign of X. While arithmetic operations may be
performed on X, only string functions and operations may be performed on
the string" 58.5".

Examples:

Converts the number X into a string and stores it in S$.

T$ = STR$(A * 18)

Converts the number A * 18 into a string and stores it in T$.

Sample Program
980 CLEAR 201Zl
990 CLS: LINE INPUT "TO APPLY FOR VOTER REGISTRATION,

TYPE YOUR FULL NAME . . "; NMS
1000 INPUT "AND WHAT'S YOUR AGE"; AGE
1010 IF AGE < 18 THEN PRINT "SORRY, WE CAN t T REGISTER YOU.

YOU MUST BE 18.":
END

11Z.121Zl REGS= NMS + STRS<AGE) + STRS<RND<l!Z.IIZ.IIZ.IIZ.I)): CLS
11Z.13IZ.I PRINT "NAME - AGE - VOTER REGI STRATION NUMBER":

PRINT REGS
In the above program, the variable AGE must first be tested as a numeric
value and later stored as part of a string. STR$ is used to accomplish the latter
function, not only for AGE but for RND as well.

192

STRING$
Return String of Characters

STRING$ (length, character)
length is a numeric expression,

number = 0,1 ,2, ... ,255 0 = length 256
character is a string expression or an ASCII code.

STRING$ returns a string of characters. How many characters are returned
depends on STRING$'s first argument; what characters they are depends on
its second argument. For example , STRING$(30, 65) returns a string of thirty
"A "s. STRING$(30,20) returns a string of30 blanks, since 20 is the code for a
blank character.

STRING$ is useful for creating graphs , tables, and so on.

Examples:
B$ =o STRING$(25, "X")

Puts a string of 25 "X"s into B$.

PRINT STRING$(50 , 10)

10 is ASCll code for a line feed , so the line above will print 50 blank lines on
the Display.

Sample Program

1040 CLEAR 300
1050 INPUT "TYPE IN THREE NUMBERS BETWEEN 33 AND 159 CN1, N2
' N3) II ; N 1 ' N2 ' N3
1060 CLS : FOR I = 1 TO 4: PRI NT ST RING$(20 , N1): NE XT I
107 0 FOR J = 1 TO 2: PRINT STR ING$(40' N2) : NE XT J
1080 PRINT STR ING$(80, N3)

19 3

TIME$
Get the Time

TIME$

This function lets you use the time in a program.

The operator sets the time initially when TRSDOS is started up. When you

request the time , TIME$ will supply it using this format:

which means 14 hours, 47 minutes , and 18 seconds (24-hourclock) or2:47:18

P.M.

Example

r\$:::

When this line is reached in your program, the current time is stored in A$.

Sample Program

1140 IF LEFTS<TIME$, 5) = "10.15" THEN PRINT "Time is 10:15
A.M.--time to Pick UP the mail.": END
1150 GOTO 1140

194

•

Input/Output Functions

The input/output functions are concerned with the transfer of data from the
CPU to peripheral devices, and from peripheral devices to the CPU. They
also return information which indicates a peripheral's state of readiness.

Model II input/output functions are dependent on TRSDOS input/output
drivers.

195

Keyboard

197

INKEY$
Get Keyboard Character

IN KEY$

Returns a one-character string from the keyboard without the necessity of
having to pressl@ a i@ ;ut no key is pressed, a nun string (length zero) is
returned. Characters typed to INKEY$ are not echoed to the Display.

INKEY$ is invariably put inside some sort of loop. Otherwise program
execution would pass through the line containing INKEY$ before a key could
be pressed .

Example
A$ = II'H'\EY$

When put into a loop, the above program fragment will get a key from the
keyboard and store it in A$. If the line above is used by itself, when control
reaches it and no key is being pressed, a null string("") will be stored in A$.

Sample Program
1 212HZ! CL!::;
1210 PRINT@ 540, INKEY$;·
1 :?20 <.:iOTO 121 0

When you run this program, the screen will remain blank (except for the
cursor) until you strike a key. The last key that you strike will remain on the
D isplay until you press another one. Whenever you fail to hit a key while this
program is executing, a null string, i.e., nothing, is printed at 540.

19 8

INPUT$
Input a Character String

INPUT$ (length)
length is a numeric expression.

This function allows a program to input a specified number of keyboard
characters. As soon as the last required character is typed, execution
continues. (You don' t have to press ENTER to signify end-of-line.) The
characters you type will not be displayed on the screen.

Any character you type will be accepted (except BREAK).

Examples
A$::: INPUT$ (~.)

A string of 5 characters must be input before BASIC will proceed to the next
line of the program.

Sample Program

This program shows how you might use INPUT$ to have an operator input a
password to access a protected file. By using INPUT$, the operator can type
in the password without anyone seeing it on the Video Display. (To see the
full file specification, Run the program, then type:

PRINTF$.

110 LINE INPUT "TYPE IN THE FILENAME /EXT" ; F$
12 0 PRINT "TYPE IN THE PASSWORD-- MUST TYPE 8 CHARACTERS: ";
130 P$ = INPUT$(8)
140 F$ = F$ + "." + P$

199

Video Display

20 1

POS
Returns Cursor Position

POS (dummy)
dummy is any numeric expression.

POS returns a number from 1 to 80 indicating the current cursor position on
the Display.

Examples
PRINT TAB< 4~) P08(0)

The PRINT TAB statement moves the cursor to position 40. Since the cursor
is at 40, POS(O) returns the value 40, and 40 is printed on the Display.
(However, since a blank is inserted befo re the " 4" to accommodate the sign,
the "4" is actually at position 41 .) The "0" in POS(O) is the dummy argument.

Sample Program
L?3fll PFU NT II T HESE II TAP. (P(lf:) (QD + =·) II lr,IORDf) II ;

1232 PR I NT TABCP08(0) + 5) " ARE" TAB< POS(fll) + 5) "EVENLY";
1240 PRINT TAB<POS (fll) + 5) "SPACED"

When this program is RUN, you should get this output:

WO RDS EV E::i\IL.\' f)Pf\ C:FD

202

ROW
Get Row Position of Cursor

ROW(dummy)
dummy is a dummy argument.

The ROW function finds the row at which the cursor is currently located, and
returns that row-number. The 24 rows are numbered 0-23.

Examples

X = ROW(Y)

The row-number of the cursor's position at the time this line is encountered is
assigned to X.

PRINT ROW(IZ))

The row-number is printed on the Display.

Sample Program
When a key is typed, the program below will print it, find its Display
row-number and column-number, print this information, find its ASCII
code, and print this information too.

112)12) CLS
1112) R==IZ): C=IZ)
1212) PRINT@(21,32),"ROW"," COLUMN"
1312) X$=INPUT$(1)
140 PRINT @(R,C),X$;
150 C=POS(IZ)):R=ROW(0)
160 PRINT@ (22,32),R,C;
163 PRINT@ (23,32),STRING$(21Z),32);
165 PRINT @(23,32),"ASCII CODE I S "HE X$(ASC(X$)) ;
1712) PRINT@(R,C),"";
180 GOTO 130

203

SPC
Print Line of Blanks

SPC (number)
number is a numeric expression,

number = 0,1 ,2, ... , 255

SPC prints a line of blanks. The number of blanks is determined by the
argument of SPC.

Examples

Sample Program

l:?'.:ll1 PI::;:INT ~:JPC(T::,) "H~:.r·~'·"

J 26D PP 1 !\IT ~-we (6({J 1 " :L ::7."
1 2 7 i7l P n Hrr H F" C (::,. ~:.) " .::i r1 "

1 :::::Hm PH I t··rr ~~; P c (3tt.J) " "'' ::-:: ;_itTt r:- 1 '.=.· "

1290 PHINT SPCC15l "o f "
t ~:mi?t F' H li\!.T '' ' :;PC''

204

D~k

5@@ ChaPte~ 4 for sam P l e P~o9rammin9 usi n9 t hese f unction s .

20 5

CVD, CVI, CVS
Restore String Data to Numeric

CVD (string)
string is a string expression which defines an eight-character string; string is
typically the name of a buffer-field containing a numeric string. If LEN(string)
<8, an Illegal Function Call occurs; if LEN(string)>8, only the first eight
characters are used.

CVI (string)
string is a string expression which defines a two-character string; string is
typically the name of a buffer-field containing a numeric string. If LEN(string)
<2, an Illegal Function Call occurs; if LEN(string)>2, only the first two
characters are used.

CVS (string)
string is a string expression which defines a tour-character string; string is
typically the name of a buffer-field containing a numeric string. If LEN(string)
<4, an Illegal Function Call occurs; if LEN(string)>4, only the first four
characters are used.

These functions let you restore data to numeric form after it is read from disk.
Typically the data has been read by a GET statement, and is stored in a direct
access file buffer. CVD, CVI, and CVS are the inversesofMKD$, MKI$, and
MKS$, respectively.

Examples
Suppose the name GROSSPA Y$ references an eight-byte field in a direct
access file buffer, and after GETting a record , GROSSPAY$ contains an
MKD$ representation of the number 13123.38. Then the statement

A# ~ CVD<GROSSPAY$)

assigns the numeric value 13123.38 to the double-precision variable A#.

Sample program

1 ~.,. ~., lt.l ·::1 t:: ·r 1

l L,:,(~l P F<· J hiT (:\) J (I i "i: ..) 5 C:I. . .J~:;; (T :?'i.') , C:'·../U (J 3·*;)

This program opens a file named "TEST/DAT" which is assumed to have
been previously created. (For the program which creates the file, see the
section on MKD$, MKI$, and MKS$.) CVI, CVS, and CVD are used to
convert string data back to numeric form.

206

EOF
End-of-file detector

EOF (buffer number)

This function checks to see whether all characters up to the end-of-file marker
have been accessed, so you can avoid INPUT PAST END errors during
sequential input.

Assuming number specifies an open file, then EOF(number) returns 0 (false)
when the EOF record has not yet been read , and -1 (true) when it has been
read.

Examples
IF EOFCFILE> THEN CLOSE FILE

This line determines whether the end-Qf-file has been reached. If it has, the
specified buffer (file) is closed.

Sample program
The following sequence of lines reads numeric data from DA T A{TXT into
the array A(). When the last data character in the file is read, the EOF test in
line 30 " passes", so the program branches out of the disk access loop,
preventing an INPUT PAST END error from occurring. Also note that the
variable I contains the number of elements input into array A().

1470 DIM AC100) 'ASSUMING THIS IS A SAFE VALUE
J..l~80 OPEN "I", 1~ ''DATA/TXT"
1't90 I /. = fZ)

1500 I F EOF(l) THEN GOTO 1540
15 10 I NPUT:!:~ l~ /i(I/..)
l.S2~1 ~~~ ::: I/. + 1
1 ~·30 GOTO 1 ~_i00
1540 REM PROG. CONT. HERE AFTER DISK IN PUT

207

INPUT$
Input Specified Number of Bytes from Disk

INPUT$ (length, buffer-number)
buffer-number is a sequential input file buffer (1 ,2,3, ... 15)
length is the number of bytes to be input

This function is analogous to KEYBOARD INPUT$ except that it inputs
data from disk rather than the keyboard.

You can use disk INPUT$ to get a certain specified number o f bytes
(sequential access only). INPUT$, in contrast to INPUT# , allows you to get
any number of data bytes (up to 255) from disk.

Example
AS = INPUT$(2, 12)

Inputs 12 bytes from disk into A$. File-buffer 2 is used.

Sample Program
2200 OPEN "Itl, 1, tlTEST/DATtl
2210 T$ = INPUT$(1, 70)
2~:20 CLOSE

If a file TEST/DAT has been created previously, this program will open it,
retrieve 70 bytes from it, store the date in T$, and close the file.

208

LOC
Get Current Record Number

LOC (file number)
file number is a numeric expression specifying the buffer for a currently­

open file

LOCisused to determine the current record number, i.e., thenumberofthe
last record processed since the file was opened. It returns the record number
that will be used if a GET or PUT is executed with the record number
omitted.

LOC is also valid for sequential files, and gives the number of 1-byte records
processed since the OPEN statement was executed.

Example
PRHfT L..OC (J.)

Sample Program
1310 A$:::: II (,.JILL. I AM L·JI Lf.)(ll\i II
13::~~~ GF.-~:T l
l3:30 IF N$::::A$ THEN F'F:H.!T "FOUND H-.! FiECORD" L..OC(l):

CI ... O~:JE: END
13Lf0 GOTO 13:?(1

This is a portion of a program. Elsewhere the file has been opened and
fielded. N$ is a field variable. lfN$ matches A$ the record number in which it
was found is printed.

209

LOF
Get End-of-File Record Number

LOF (number)
number specifies a random access buffer,

number = 1 ,2, . . . , 15

This function tells you the number of the last, i.e. , highest-numbered, record
in a file. It is useful for both sequential and direct access.

Examples

Puts the record number into variable Y.

Sample Programs
During direct access to a pre-existing file, you often need a way to know when
you've read the last valid record. LOF provides a way.

1s LJ.(ll oPEN " Fi II , ., , " UNhNOV-JN 1 ·r x T II

155~ FIFLD 1· 2S5 AS A$
1560 FOR I%= 1 TO LOF(l) ' l OF (:l) - H J i=iHEST F~E=T-·

'ORO NUM. TO 8E ACCESSED i."':·7'1 (iFT l ~II.
:l5t>.0 F'FHI\IT t;<f·
l':.i(~!!J NE XT TZ

If you attempt to GET record numbers beyond the end-of-file record, BASIC
simply fills the buffer with zeroes , and no error is generated.

When you want to add to the end of a file, LOF tells you where to start
adding:

1600 I%= LOF(l) + l
1 6l li1 PUT l , I 1:

'HIGHEST EXISTING RFCORD
',t,Dl) I\IE:XT HE~~ CO F~D

210

MKD$, MKI$, MKS$
Convert Numeric to String

MKD$(number), MKI$(number), MKS$(number)
number is a numeric expression.

These three functions are the inverses ofCVD, CVT, and CYS. They change
a number to a string. Actually, the byte values which make up the number are
not changed; only one byte, the internal data-type specifier, is changed, so
that numeric data can be placed in a string variable.

MKD$ returns an eight-byte string; MKI$ returns a two-byte string; and
MKS$ returns a four-byte string.

Examples
LSET AVG$- MKS$(0.123)

Sample Program
~3~Hl) OPEN " D", 1' " "fEST/i.:•AT"
136~ FIELD 1, 2 AS It$, 4 AS T2S, 8 AS I3S
1370 LSET Il$ = MKI$(3000)
1380 LSET 12$- MKS$(3000.1>
1390 LSET T3S- MKD$(3000.~0001)
1 ll·l~~1 F)UT 1
:1 Lt J itj cL.om~

211

Special Functions

With the special functions you can perform memory-related tasks like finding
or changing the amount of total memory or string space, and discovering the
absolute memory address of the value of a variable.

For example:
·-

S$ = FRE(A$)

will find the number of bytes of string storage space left, and put this value in
S$.

Other special functions , such as V ARPTR and USRn, let you interface your
BASIC program with machine-language programs.

213

FRE
Get Amount of Memory /String Space

FRE (dummy)
dummy is a numeric dummy argument, or a string dummy argument.

FRE returns two different values depending on its argument. If the argument
is a number or numeric variable, FRE will return the total amount of memory
available. If the argument is a string or string variable, FRE will return the
total amount of string storage space that is available.

Examples

Prints the amount of memory left.

PRINT F"FlE: ("i.f4")

Prints the amount of string space left.

Sample Program

1580 PRINT FRE("Z ")
1590 PHRASE$ = "THE MODEL II TRS-80" +

II I~3 E~·Af:~ED ON t\ 7··0(1.1 F'HOC:ESSOFL II

160(2) PRINT r:·,:~F~("Z'')

214

MEM
Get Amount of Memory

MEM

MEM performs the same function as FRE when FREis followed by a
numeric dummy argument. MEM returns the number of unused and
unprotected bytes in memory. This function may be used in the immediate
mode to see how much space a resident program occupies, or it may be used
inside a program to avert out of memory errors by allocating less string space
and dimensioning smaller array sizes. MEM requires no argument.

Example
PRINT MEM

Enter this command (in the immediate mode; no line number is needed) . The
number returned indicates the amount of leftover memory, i.e ., memory not
being used to store programs, variables, strings, stack, or not reserved for
object files.

Sample Program
1610 IF MEM < 80 THEN 1630
1620 D Il'1 l>, (l ~::i)
1630 REM PROGRAM CONT INUES HERE

If fewer than 80 bytes of memory are left, control switches to another part of
the program. Otherwise, an array of 15 elements is created.

215

VARPTR
Gets Absolute Memory Address

VARPTR (variable name) or (file number)

V ARPTR returns an absolute memory address which will help you locate a
value in memory. When used with a variable name, it locates the contents of
that variable. When used with a file number, it returns the address of the file"s
data buffer. If the variable you specify has not been assigned a name, or the
file has not been opened, an Illegal Function Ca11 wi11 occur.

V ARPTR is used primarily to pass a value to a machine laguage subroutine
via USRn. Since V ARPTR returns an address which indicates where the
value of a variable is stored, this address can be passed to a machine language
subroutine as the argument of USR; the subroutine can then extract the
contents of the variable with the help of the address that was supplied to it.

If VARPTR(integer variable) returns address K:
Address K contains the least significant byte (LSB) of2-byte integer.
Address K + 1 contains the most significant byte (MSB) of integer.

If VARPTR(single precision variable) returns address K:
(K)* LSB of value
{K+ 1) = Next most sig. byte (Next MSB)
{K + 2) MSB with hidden (implied) leading one. Most significant bit is

the sign of the number
(K+3) = exponent of value excess 128 (128 is added to the exponent) .

If V ARPTR(double precision variable) returns K :
(K) LSB of value
(K+ 1) Next MSB
(K+ ...) NextMSB
(K+6) MSB with hidden (implied) leading one. Most significant bit is

the sign of the number.
(K + 7) exponent of value excess 128 (128 is added to the exponent).

For single and double precision values, the number is stored in normalized
exponential form, so that a decimal is assumed before the MSB. 128 is added
to the exponent. Furthermore, the high bit ofMSB is used as a sign bit. It is set
to 0 if the number is positive or to 1 if the number is negative . See examples
below.

216

lfVARPTR(string variable) returns K:
K = length of string
(K + 1) = LSB of string value starting address
(K + 2) = MSB of string value starting address
* (K) signifies "contents of address K"

The address will probably be in high RAM where string storage space has
been set aside. But, if your string variable is a constant (a string literal) , then it
will point to the area of memory where the program line with the constant is
stored, in the program buffer area. Thus, program statements like
A$= "HELLO" do not use string storage space.

For all of the above variables, addresses (K-1) and (K-2) will store the TRS-80
Character Code for the variable name. Address (K-3) will contain a descriptor
code that tells the Computer what the variable type is. Integer is 02; single
precision is 04; double precision is 08; and string is 03.

VARPTR(array variable) will return the address for the first byte of that
element in the array. The element will consist of 2 bytes if it is an integer
array; 3 bytes if it is a string array; 4 bytes if it is a single precision array; and 8
bytes if it is a double precision array.

The first element in the array is preceded by:
1. A sequence of two bytes per dimension, each two-byte pair indicating the

" depth" of each respective dimension .
2. A single byte indicating the total number of dimensions in the array.
3. A two-byte pair indicating the total number of elements in the array.
4. A two-byte pair containing the ASCII-coded array name.
5. A one-byte type-descriptor (02 = Integer, 03 =String,

04 = Single-Precision, 08 = Double-Precision).

Item 1 immediately precedes the first element, Item 2 precedes Item 1, and so
on.

The elements of the array are stored sequentially with the first dimension­
subscripts varying "fastest", then the second, etc.

217

Examples
A! = 2 will be stored as follows:
2 = 10 Binary, normalized as .1E2 = .1 x 102
So exponent of A is 128+2 = 130 (called excess 128)
MSB of A is 10000000; however, the high bit is changed to zero since the value
is positive (called hidden or implied leading one).

So A! is stored as

Exponent (K + 3) MSB (K + 2) NextMSB (K + l) LSB (K)
130 0 () 0

A! =- .5 will be stored as
Exponent (K+3) MSB (K+2) NextMSB(K+ 1) LSB (K)

128 128 0 0

A!= 7 will be stored as
Exponent (K + 3) MSB (K+2) Next MSB (K+ 1) LSB (K)

131 96 0 0

A!= - 7:
Exponent (K+3) MSB (K+ 2) Next MSB (K+ 1) LSB (K)

131 224 0 ()

Zero is simply stored as a zero-exponent. The other bytes are insignificant.

Example
Y = USR 1 <VARPTR(\l)

If X is an integer value, V ARPTR(X) finds the address of the least significant
byte of X. This address is passed to the subroutine, which in turn passes its
result toY.

• 218

USRn
Call User's External Subroutine

USRn (number)
n specifies one of ten available USA calls, n = o, 1 ,2, . .. ,9.

If n is omitted, zero is assumed.
number is a numeric expression, - 32768 < = number<32768, which is

passed as an integer argument to the routine.

These functions (U SRO through USR9) Jet you can as many as 10 machine­
language subroutines and then continue execution of your BASIC program.
These subroutines must have been previously defined with DEFUSRn
statements.

" Machine language" is the low-level language used internally by your
Computer. It consists of Z-80 microprocessor instructions. Machine­
language subroutines are useful for special applications (things you can' t do in
BASIC) and for doing things very fast (like white-out the Display).

Writing such routines requires familiarity with assembly-language program­
ming and with the Z-80 instruction set. For more information on this
subject, see the Radio Shack book, TRS-80 Assembly-Language Program­
ming, by William Barden, Jr.

When a USR call is encountered in a statement, control goes to the address
defined in the DEFUSRn statement. This address specifies the entry point to
your machine-language routine.

Examples

X =: USI~S ("Y)

When this statement is executed, BASIC cans the machine-language routine
USR5, previously defined in a DEFUSR5 = address statement.
Pass i ng a~9 uments f ~ o m BASIC to t he sub~outine:

UPon e nt ~Y to a USRn su b ~o u ti ne, the foll ow ing ~e9iste~ conte n ts a~e
set u P (for notation, see Pa9e 86 of the TRSDOS Reference Manua l).

A = T··,.-pe of a r·<:J ume n t in USRn r· '2 t "-~ r· e n c e
A - 8 if ar·9 ume n t i ~=· doub ·1 -e- t~r·~~c is-. ion ..
A -· '+ if a r· Stu me rt t l. ~- ~- i n9 ·1 e - P r· e c i ~- i o r, .
A - 2 if <:tr·q urne n t i :;. i n t ~:- <.:J e r· .
f-1 -· 3 l :;. a r· q u me rt t i s ~- t r· i rt9 .

HL When the a~9ume n t is a nu mb er, th i s req i ste~

Points to the a r 9ument sto~a9e a~ea CASA)
Described later .

21 9

UBHn, continl.H~d PAGE 220

Returnin9 values from the subroutine to BASIC

Wh-E!n the USRn ;;Lr-9ument i~. a va.r-ia.b·le~ ··{OU ca.n modif··{ its value b··{ •.
chan9in9 the ASA or strin9 contents, as Pointed to bv HL or DE. For
examPle, the statement:

X ~ UBI~F1 <A%)
transfers contr·ol to the USR1 subroutine, witt1 HL Pointin9 to the
two-bvte ASA for inte9er variable A%~ SuPPose You modifY the contents
of this stora9e ar~ea. When YOU do a RET instr-uction to return to
BASIC, A% will have a new value' and X will be assi9ned this new
va.l ue ..

In 9eneral, USRnCar9ument> will return the same tYPe of value as
ar9ument. However~ You can use BASIC 7 s MAKINT routine to return an
inte9er· value~ The address of the MAKINT routine is stored at
<X'2805'~X'2806'>.

For· examPle, You rni9ht ir1clude the followin9 code at the end of Your
pro9ram to return a value to BASIC ..

MAKINT EQU 2805H
LD HL,VAL VAL is the value to

be r·eturned ..
F'lJE)H
l_D
EX

RET

HL.
I··IL, (I"!(\ I·\ I ~,rr)
(t)PJ,HL..

Save value in stack
Restore VAL into HL
and PUt ~1Af\INT

into ;;;.tack ..
Do MAKINT & return
to BASIC Pro9ram. •

•

•

•

UBRn, continued

DE - When the ar9ument is a strin9o this re9ister Points
Points to a strin9 descriPtor~ as follows:
The fi~st bvte 9ives the length of the strin9u
The next two bvtes 9ive the address where the
strin9 is stored: least si9nificant bvte <LSB)
followed bv most significant bvte <MSB>.

DescriPtion of Ar9ument Stora9e Area <ASA>
For numeric values onlv.

===:=
For double-precision numbers:

ASA

ASA-1

ExPonent in 128-excess for·m. E.9u'l a value of
2~~ indicates a 0 exPonent; a value of 128 indicates
a -62 exPonent. A value of 0 always indicates the
number· i:::- z ... ~r·o.
Hi9hest 7 bits of the mantissa with hidden (imPlied
leadin9 one. Bit 7 is the si9n of the number (0
Positive, 1 ne9ativel. E.g., a value of X'84'
indicates the number is ne9ative and the MSB of
the mantissa is X'84'. A value of X'04' indicates
the number is Positive and the MSB of the mantissa
i ~- X ' 8L1.' ..

ASA-2 throu9h ASA-6

ASA-7
Successive 8-bit blocks of the mantissa.
Lowest 8 bits of the mantissa.

For sin9le-Precision numbersg

For inte9er numbers:

ABA
ASA+l

LSB of the number.
MSB of t~.e numbe~. To9ether, the two bvtes r·ePresent

the number in si9ned, two's comPlement fo~m.

To convert the ar9ument to integer tvpe:

PAGE 220A

Your routine can call BASIC~s FRCINT routine to Put the ar9ument into
HL in 16-bit~ si9ned two's comPlement form=
The address of FRCINT is stored in <X~2803~5X'2804'>.

For examPle, YOU can put the following code at the be9innin9 of vou.r
~·.ubr·out i ne:

FRCINT E<:i!U 2812l3H Cor.verts USR ar9ument
to inte9er in HL

CHL> = continuation
addr-ess ..

CTNU

LD HL.,CTNU

PUSH HL Save it for return
fr·orn FRCINT

L.D HLo <FRCINTl

\HLl

<HL> = force inte9er
r·oui:ine

Do FRCINT r·outine
Pr-o9rams continues her-e with ar9ument
in HL in two's comPlement inte9er form ..

•
MODEL. II BASIC I CHAPTER 4

CM2BASIC4 8/10/791

1 I File Access Techniques

Model II BASIC Provides two means of file access:
Se~uential--in which vou sta~t readin9 or writing
data at the be9innin9 of a file; subsequent reaads or
or writes are done at followin9 Positions in the file"
Direct--in which vou start readin9 or writin9 at anv
record vou sPecifY~ (Direct access also called random
acces.:: . ., but 11 dir·ect 11 is mor-e descr·iPtive ..)

PAGE 221

Se~uential access is stream-oriented; that is, the number of
ctl~.racters read or written can vary, and is usuallY determined bv
delimiters in the data. Direct access is record-oriented; that is,
data is alwavs read or written in fixed-len9th blocks called
r·.;:;cor·d:: ...

No·te: When vou start BASIC from TRSDQS, You select the maximum
~umber of files vou will want to have OPen simultaneouslY. For
examPle' the TRSDOS command line:

TRSDOS READY
BASIC -F:3

starts BASIC with a maximum of three concurrent data files, i.e.,
• data ·filf:!S OPen simult.-=tneousl··t.

•

To do anY inPut/outPut to a disk file' You must first OPen the file.
When You OPen the file, You sPecifY what kind of access vou want:

''0" for sequential outPut
"I" for se9uential inPut
"D" for direct inPut/outPut (''R'' can also be used)

You also assi9n a file buffer for BASIC to use during file accesses.
This number can be from 1 to 15, but must not exceed the number of
concurrent files You requested when You started BASIC from TRSDOS.
For example, if You started BASIC with 3 files, You can use buffer
numbers 1, 2, and 3. Once You assi9n a buffer number to a file, vou
cannot assi9n that number to another file until vou Close the first
"file.

ExamPles:
OPEN "0 11

, 1, "TEST"
Creates a sequential outPut file named TEST on the first available
drive; if TEST alreadY exists, its Previous contents are lost.
Buffer 1 will be used for this file.

OPEN "I", 2, "TEST"
OPen~. TEST for- ::.e·=Juential input, us.in9 buffe-r· 2 ..

OPEN''D 1',1,"TEST"
OPens TEST for direct access' usin9 buffer 1. If TEST does not
exist, it will be created on the first available drive. Since record
len9th is not SPecified, 256-bYte records will be useda

t10DEL I I BAS I C

OPEN II D II ' 1' II TEST II ' 41Zt
Same as Preceding examPle'

CHAPTER 4

but 40-bvte records will be used~

PAGE 222

•

•

•

•

•

•

MODEL II BASIC CHAPTER 4 PAGE 223

Se~uential Access

This is the simPlest wav to sto~e data in and retrieve it from a
file. It is ideal for storin9 free-form data without wastin9 sPace
between data items. You read the data back in the same order in
which it was written.

There are several imPortant Points to keeP in mind.

1. You must start writin9 at the be9innin9 of the file. If the data
vou are seeking is somewhere inside, vou have to read vour wav up to
it.

2. Each time vou OPen a file for sequential outPut, the file's
Previous contents are lost.

3. To uPdate (chan9el a se~uential file• read in the file and write
out the uPdated data to a NEW outPut file.

4. Data written se~uentiallv usuallY includes delimiters (markers)
to si9nifv where each data item be9ins and ends. To read a file
se9uentially, vou must know ahead of time the format of the data.
For examPle, does the file consist of lines of text terminated with
carr·ia9e return? does it consist of numbers seParated by blank
SPaces? does it consist of alterntin9 text and numeric information?
etc.

5. Sequential files are alwaYs written as ASCII coded text, one bvte
for each character of data. For examPle, the number:

b1.2345b
requires 8 bYtes of disk stora9e, including the leading and trailing
blanks that are sUPPliedu The text string:

Johnson, Robert
requires 15 bYtes of disk stora9eM

6~ Sequential files are alwaYs written with a record len9th of one.
This matters if YOU want to Close the file and re-OPen it for Direct
access; in such a case, You must sPecifY a record len9th of 1~

Sequential Output - An Example
Suppose we want to store a table of English-to-metric conversion
constants:

English unit

I inch
I mile
I acre
I cubic inch
I U.S. gallon
I liquid quart
I lb (avoir)

Metric equivalent

2.5400 I centimeters
1.6093 5 kilometers
4046.86 sq. meters
0.01638716liter
3.785 liters
0.9463 liter
0.45359 kilogram

First we decide what the data image is going to be. Let's say we want
it to look like this:

english unit- >metric unit, factor <EN>

For example, the stored data would start out:

IN->CM,l,l2.540011,l <EN>

The following program will create such a data file.

Note: <EN> represents a carriage return, hex OD.

•

•

• 224

•

•

•

10 OPEN" 0", 1, "11ETR I C/TXT"
20 FORI%=1 TO 7
30 READ UNIT$,FACTR
40 PRINT#1,UNIT$; ", ";FACTR
50 NEXT
60 CLOSE
70 DATA IN->CM, 2. 54001, MI->KI1, 1. 60935, ACRE-)SQ. M, 4046. 86
80 DATA CU. IN-)LTR,1. 638716E-2,GAL->LTR,3. 785
90 DATA LIQ. QT->LTR,0. 9463,LB->KG,0.45359

Line 10 creates a disk file named METRIC/TXT, and assigns buffer I
for sequential output to that file. The extension /TXT is used because
sequential output always stores the data as ASCII-coded text.

Note: If METRIC/TXT already exists, line 10 will cause all its data
to be lost. Here's why: Whenever a file is opened for sequeJ:)tial
output, the EOF marker is set to the beginning of the fJ.le. In effect,
TRSDOS "forgets" that anything has ever been written beyond
this point.

Line 40 prints the current contents of UNIT$ and FACTR to the file
buffer. The disk-write won't actually take place until the buffer is
fJ.lled or you close the file, whichever happens first. Since the string
items do not contain delimiters, it is not necessary to print explicit
quotes around them. The explicit comma is sufficient.

Line 60 closes the file. The EOF marker points to the end of the last
data item, i.e., 0.45359, so that later, during input, DISK BASIC will
know when it has read all the data .

225

Sequential Input - An Example

The following program reads the data from METRIC/TXT into two
"parallel" arrays, then asks you to enter a conversion problem.

5 CLEAR 500
10 DIM UNITS$(9), FACTR<9) 'ALLOWS FOR UP TO 10 [>ATA PAIRS
20 OPEN"I",1, "METRIC/TXT"
25 I~;=e

30 IF EOF<D THEN 70
40 INPUT#1, UNIT$(r;;) .. FACTR< I%)
50 IX=I%+1
60 GOTO 30
70 REM ... THE CONVERSION FACTORS HAVE BEEN REA[> IN
100 CLS: PRINT TA8(5)"*** ENGLISH TO METRIC CONVERSIONS***"
110 FOR ITEM%=0TOI%-1
120 PRINT USING"(##) ~; %";ITEM~;, UNIT$<ITEMX)
130 NEXT
140 PRINT@704, "WHICH CONVERSION ";
150 INPUT CHOICE%
155 PRINT@768, "ENTER ENGLISH G!UANTITY";
160 INPUT V
170 PRINT"THE METRIC EQUIVALENT IS"V*FACTR<CHOICE%)
180 INPUT"PRESS ENTER TO CONTINUE"; X
190 PRINT@704, CHR$G1); 'CLEAR TO END OF FRAME
200 GOTO 140

Line 20 opens the file for sequential input. The read pointer is
automatically set to the beginning of the file.

Line 30 checks to see that the end-of-file record hasn't been read.
If it has, control branches from the disk input loop to the part of the
program that uses the newly acquired data.

Line 40 reads a value into the string array UNIT$(), and a number into
the single-precision array F ACTR(). Note that this INPUT list
parallels the PRINT# list that created the data file (see the section
"Sequential Output: An example"). This parallelism is not required,
however. We could just as successfully have used:

40 INPUT#1,1JNIT$(I%): INPUT#1,FACTR<l%)

•

•

• 226

•

•

•

How to update a me
Suppose you want to add more entries into the English-Metric
conversion file. You can't simply re-open the file for sequential
output and PRINT# the extra data- that would immediately set
the end-of-file marker to the beginning of the file, effectively
destroying the flle's previous contents. Do this instead:

I) Open the file for sequential input
2) Open another new data file for sequential output
3) Input a block of data and update the data as necessary
4) Output the data to the new file
5) Repeat steps 3 and 4 until all data has been read,

updated, and output to the new file; then go to
step 6

6) Close both files

227

Sequential LINE INPUT- An Example

Using the line-oriented input, you can write programs that edit other
BASIC program files : renumber them, change LPRINTs to PRINTs,
etc. - as long as these "target" programs are stored in ASCII format.

The following program counts the number of lines in any disk file
with the extension "/TXT".

10 CLEAR 3:00
20 INPUT "WHAT IS THE NAME OF THE PROGRAI1"; PROG$
3:0 IF INSTR<PROG$, "/TXT")=0 THEN 110 ~REQUIRE /TXT EXTENSION
40 OPEN"I",1,PROG$
50 1%=0
60 IF EOF U HHEN 90
70 I%= I% +1 : LINE INPUT #1, THlP$
80 GOT060
90 PRINT"THE PROGRAM IS" !%"LINES LONG. "
100 CLOSE: GOT020
110 PRINT "FILESPEC MUST INCLUDE THE EXTENSION •"/TXT~"

120 GOT020

For BASIC programs stored in ASCII, each program line ends with
an <EN > character not preceded by an < LF >line feed.
So the LINE INPUT in line 70 automatically reads one entire line at
a time, into the variable TEMP$. Variable I% actually does the
counting.

•

•

• 228

•

•

•

DIRECT ACCESS TECIItJIQUES

Direct acces' offers several advantages over sequential access:

• Instead of having to start reading at the beginning of a file,
you can read any record you specify.

• To update a file, you don't have to read in the entire file,
update the data, and write it out again. You can rewrite or
add to any record you choose, without having to go through
any of the other records.

• Direct access is more efficient- data takes up less space and
is read and written faster.

• Opening a file for direct access allows you to write to and
read from the file via the same buffer.

• Direct. access provides many powerful statements and
functions to structure your data. Once you have set up the
structure, random input/output becomes quite simple.

The last advantage listed above is also the "hard part" of direct
access. It takes a little extra thought.

For the purposes of direct access, you can think of a disk file as a
set of boxes- like a wall of post-office boxes. Just like the post
office receptacles, the file boxes are numbered.

The number of boxes in a file will vary, but it's always a multiple
of 5.

The smallest non-empty file contains 5 boxes, numbered I through
5. When the file needs more space to hold more data, TRSDOS
provides it in increments of 5.

Each record may contain between 1 and 256 bytes. The
length of the records is set when you create a file, in
the OPEN statement.

You can place data in any record, or read the contents of any
record, with statements like:

PUT L5
GET 1,5

write buffer-! contents to record 5
read the contents of record 5 into buffer-!

229

"PUT1,5"

"GET 1,5"

RECORDS IN DISK FILE 1/0 BUFFERS IN RAM

The buffer is a waiting area for the data. Before writing data to a file,
you must place it in the buffer assigned to the file. After reading
data from a file, you must retrieve it from the buffer.

As you can see from the sample PUT and GET statements above, data
is passed to and from the disk in 256-byte chunks.

You can place several values into the buffer before
PUTting its contents into the disk file, to avoid wasting disk space.

This is accomplished by 1) dividing the buffer up into fields and
naming them, then 2) placing the string or numeric data into the
fields.

For example, suppose we want to store a glossary on disk. Each
record will consist of a word followed by its definition. We start
with:

100 OPEN"R",1, "GLOSSARY/BAS"
110 FIELD 1,16 AS WD$,240 AS MEANING$

Line I 00 opens a file named GLOSSARY /BAS (creates it if it doesn't
already exist); and gives buffer I direct access to the file.

Line II 0 defines two fields onto buffer 1:
WD$ consists of the first 16 bytes of the buffer;
MEANING$ consists of the last 240 bytes.

WD$ and MEANING$ are now field-names.

7·66

•

•

•
230

•

•

•

What makes field names different? Most string variables point to an
area in memory called the string space. This is where the value of
the string is stored.

Field names, on the other hand, point to the buffer area assigned
in the FIELD statement. So, for example, the statement:

10 PRINT WD$ " : " 11EAN IHG$
displays the contents of the two buffer fields defined above.

These values are meaningless unless we first place data in the buffer.
LSET, RSET and GET can all be used to accomplish this function.
We'll start with LSET and RSET, which are used in preparation
for disk output.

Our first entry is the word "left-justify" followed by its definition.

100 OPEN"R",i, "GLOSSARY/BAS"
110 FIELD 1,16 AS WD$,240 AS MEANING$
120 LSET WD$="LEFT-JUSTIFY"
130 LSET MEANING$="TO PLACE A VALUE IN A FIELD FROM LEFT
TO RIGHT; IF. THE DATA DOESN'T FILL THE FIELD, BLANKS ARE ADDED
ON THE RIGHT; IF THE DATA IS TOO LONG, THE EXTRA CHARACTERS ON
THE RIGHT ARE IGNORED. LSET IS A LEFT-JUSTIFY FUNCTION."

Line 120 left-justifies the value in quotes into the first field in buffer
1. Line 130 does the same thing to its quoted string. When typing
in line 130, you should insert line-feed <c.rRL J> characters

to force line breaks as above. This makes it easier
to print out the data after reading it back in to a string variable.

Note: RSET would place filler-blanks to the left of the item.
Truncation would still be on the right.

Now that the data is in the buffer, we can write it to disk with a
simple PUT statement:

14111 PUT 1,1
150 CLOSE

This writes the first record into the file GLOSSARY /BAS.

To read and print the first record in GLOSSARY /BAS, use the
following sequence:

160 OPEN"R",1, "GLOSSARY/BAS"
170 FIELD 1, 16 AS WD$,240 AS MEANING$
180 GET 1,1
190 PRINT WD$ ": "MEANING$
200 CLOSE

Lines 160 and 170 are required only because we closed the flle in
line 150. If we hadn't closed it, we could go directly to line 180 .

231

DIRECT ACCESS: A GENERAL P ROCE DIJRE

The above example shows the necessary sequences to read and
write usingdi rect access. But it does not demonstrate the primary
advantages of this form of access -in particular, it doesn't show
how to update existing files by going directly to the desired record.

The program below, GLOSSACC/BAS, develops the glossary example
to show some of the techniques of direct access for f:tle maintenance.
But before looking at the program, study this general procedure for
creating and maintaining files viadi rect access.

Step Number

I. OPEN the file
2. FIELD the buffer
3. GET the record to be updated
4. Display current contents of

the record (use CVD,CVI,CVS
before displaying numeric data)

5. LSET and RSET new values into
the fields (use MKD$,MKI$,MKS$
with numeric data before setting
it into the buffer)

6. PUT the updated record
7. To update another record, continue

at step 3. Otherwise, go to step 8.
8. Close the file

7-68

See GLOSSACC/BAS, Line Number

110
120
140
145-170

210-230

240
250-260

270

•

•

• 232

•

•

•

10 REM. . . GLOSSACCIBAS ...
100 CLS: CLEAR 300
110 OPEN"R",1,"GLOSSARYIBAS"
120 FIELD 1,16 AS WD$, 238AS MEANING$,2 AS NX$
B0 INPUT"WHAT RECORD DO YOU WANT TO ACCESS";R~
140 GET 1,R~
145 NX~=CVI<NX$) 'SAVE LINK TO NEXT ALPHABETICAL ENTRY
150 PRINT"WORD: "WD$
160 PRINT"DEF'N:": PRINTMEANING$
170 PRINT"NEXT ALPHABETICAL ENTRY: RECORD#"NX~: PRINT
180 W$= '"' :c INPUT" TYPE NEW WORD<EN> OR <EN> IF OK"; W$
190 D$="":PRINT"TYPE NEW DEF'N<EN> OR <EN> IF OK?":LINEINPUTD$
200 INPUT" TYPE NEW SEQUENCE NUt1BER OR <EN> IF OK"; NX~
210 IF W$0""THEN LSET WD$=W$
220 IF D$0""THEN LSET MEANING$=D$
230 LSET NX$=MKl$(NX~)
240 PUT L R~
245 R~=NX~ 'USE NEXT ALPHA. LINK AS DEFAULT FOR NEXT RECORD
250 CLS: INPUT" TYPE<EN> TO READ NEXT ALPHA. ENTRY,

OR RECORD # <EN) FOR SPECIFIC ENTRY,
OR 0 <EN> TO QU!T";R~

260 IF 0<R~ THEN 140
270 CLOSE
280 END

Notice we've added a field, NX$, to the record (line 120). NX$ will
contain the number of the record which comes next in alphabetical
sequence. This enables us to proceed alphabetically through the
glossary, provided we know which record contains the entry which
should come first.

For example, suppose the glossary contains:

record#

1
2
3
4

word(WD$)

LEFT-JUSTIFY
BYTE
RIGHT-JUSTIFY
HEXADECIMAL

defn,
pointer to next
alpha. entry (NX$)

3
4
0
I

When we read record 2 (BYTE), it tells us that record 4
(HEXADECIMAL) is next, which then tells us record 1 (LEFT­
JUSTIFY) is next, etc. The last entry, record 3 (RIGHT-JUSTIFY),
points us to zero, which we take to mean "THE END".

Since NX$ will contain an integer, we have to first convert that
number to a two-byte string representation, using MKI$ (line 230
above) .

233

The following program displays the glossary in alphabetical sequence:

300 REM ... GLOSSOUT/BAS ...
310 CLS: CLEAR 300
320 OPEN" R ", L "GLOSSARY /BAS"
330 FIELD 1, 16 AS WD$, 238 AS MEANING$, 2 AS NX$
340 INPUT"WHICH RECORD IS FIRST ALPHABETICALLY"; NY.
350 GET 1,N?.
360 PRINT: PRINnJD$
370 PRINTr1EANING$
380 N?.=CV I< NX$)
390 INPUT"PRESS ENTER TO CONTINUE"; X
400 IF N?.<>0 THEN 350
410 CLOSE
420 END

•

•

• 234

•

•

•

Overlapping Fields

Suppose you want to access a field in two ways - in total and in
part. Then you can assign two field names to the same area of the
buffer.

For example, if the first two digits of a six-digit stock-number specify
a category, you might use the following field structure:

FIELD I, 6 AS STOCK$,
FIELD I, 2 AS CTG$,

Now STOCK$ will reference the entire stock-number field, while
CTG$ will reference only the first two digits of the number .

7-76
235

•

Chapters

Using the Line Editor

•

• 236

•

•

•

Using the Line Editor
The Line Editor is a powerful set of subcommands which simplifies
programming by making it easy to make corrections. In inputting long
application programs, the Editor is a fast and efficient way to debug the
program and get it running. There are two ways to activate the Editor:

Fl
If you type in a long program line or an input line and realize you have made a
mistake, you can also activate the Editor by hitting the Fl key before you
press ENTER . This will activate the Editor and all of its subcommands
listed above.

EDIT line number

This command starts tbe Editor when you want to edit program lines which
have already been entered. You must specify which line you wish to edit, in
one of two ways:

This command puts you in the Edit Mode. You must specify which line you
wish to edit, in one of two ways:

EDIT line-number l#l:ii#f;l

or

EDIT.

Lets you edit the specified line.
If line number is not in use, an FC error
occurs

Lets you edit the current program line -
last line entered or altered or in which an
error has occurred.

For example, type in and l#:ii¥1;1 the following line:

100FOR I= 1 TO 10STEP .5: PRINT I, 1-"2, 1"3 :NEXT

This line will be used in exercising all tbe Edit subcommands described below .

237

Now type EDIT 100 and hit I#!~ II ¥!;1. The Computer will display:

100

This starts the Editor. You may begin editing line 100.

NOTE: EDITing a program line automatically clears all variable values and
eliminates pending FOR/NEXT and GOSUB operations. If BASIC
encounters a syntax error during program execution, it will automatically put
you in the EDIT mode. Before EDITing the line, you may want to examine
current variable values. In this case, you must type Q as your first EDIT
command. This will return you to the command mode, where you may
examine variable values. Any other EDIT command (typing E, pressing
ENTER, etc.) will clear out all variables.

ENTER key
Hitting I#!: i i #!;I while in the Edit Mode causes the Computer to record all
the changes you've made (if any) in the current line, and returns you to the
Command Mode.

nSpace-bar
In the Edit Mode, hitting the Space-Bar moves the cursor over one space to
the right and displays any character stored in the preceding position. For
example, using line 100 entered above, put the Computer in the Edit Mode so
the Display shows:

100

Now hit the Space-Bar. The cursor will move over one space, and the first
character of the program line will be displayed. If this character was a blank,
then a blank will be displayed. Hit the Space-Bar until you reach the first
non-blank character:

100 F

is displayed. To move over more than one space at a time, hit the desired
number of spaces first, and then hit the Space-Bar. For example, type 5 and
hit Space-Bar, and the display will show something like this (may vary
depending on how many blanks you inserted in the line):

100FORI~

•

•

•
238

•

•

•

Now type 8 and hit the Space-Bar. The cursor will move over 8 spaces to the
right, and 8 more characters will be displayed.

nBACKSPACE
Moves the cursor to the left by n spaces. If no number n is specified, the cursor
moves back one space. When the cursor moves to the left, all characters in its
"path" are erased from the display, but they are not deleted from the
program line. Using this in conjunction with D or K or C can give misleading
Video Displays of your program lines. So, be careful using it! For example,
assuming you've used nSpace-Bar so that the Display shows:

100FORI=1T010 !

type 8 and hitthe BACKSPACE key. The Display will show something like
this:

100FORI=

ESC

(will vary depending on number of blanks in your line
100)

Hitting the ESC key effects an escape from any of the Insert subcommands
listed below: X, I and H. After escaping from an Insert subcommand, you'll
still be in the Edit Mode, and the cursor will remain in its current position .
(Hitting I::U0¥!;1 is another way to exit these Insert subcommands) .

239

L (List Line)
When the Computer is in the Edit Mode, and is not currently executing one of
the subcommands below, hitting L causes the remainder of the program line
to be displayed. The cursor drops down to the next line of the Display,
reprints the current line number, and moves to the first position of the line.
For example, when the Display shows

100

hit L (without hitting 13:0:!1;1 key) and line 100 will be displayed:

100 FOR 1~1 TO 10 STEP .5: PRINT I, 1"'2, 1"-3: NEXT
100

This lets you look at the line in its current form while you're doing the editing.

X (Extend Line)
Causes the rest ofthe current line to be displayed, moves cursor to end ofline,
and puts Computer in the Insert subcommand mode so you can add material
to the end of the line. For example, using line 100, when the Display shows

100

hit X (without hitting p:u U #1;1) and the entire line will be displayed; notice
that the cursor now follows the last character on the line:

1_00 FOR 1~1 TO 10STEP .5: PRINT I, 1"-2, 1"3 :NEXT

We can now add another statement to the line, or delete material from the
line by using the BACKSPACE key. For example, type : PRINT"DONE" at the
endofthe line. Now hit !#l:u:t;l. If you now type LIST 100, the Display
should show something like this:

100 FOR 1~1 TO 10STEP .5: PRINT I, IA2, 1"3: NEXT: PRINT"DONE"

Note: If you want to continue editing the line, type the ESC key to get out of
the "X" command mode.

•

•

•
240

• I (Insert)

Allows you to insert material beginning at the current cursor position on the
line. (Hitting BACKSPACE will actuall~ delete material from the line in this
mode.) For example, type andl:j:U36 the EDIT lOOcommand, then use
the Space Bar to move over to the decimal point in line 100. The Display will
,show:

100FORI=1T010STEP.

supf:ose ;:ou wantto change the increment from .5 to .25. Hitthe I key (don't
hit::j:i #j;l) and the Computer will now let you insert material at the
current position. Now hit 2 so the Display shows:

100 FOR 1=1 TO 10STEP .2

You've made the necessary change, so hit ESC to escape from the Insert
Subcommand. Now hit L key to display remainder of line and move cursor
back to the beginning of the line:

100 FOR 1=1 TO 10STEP .25: PRINT I, IA2, IJ\3: NEXT: PRINT"DONE"
100

You can also exit the Insert subcommand and save all changes by hitting
13:ii:ij;l. This will return you to Command mode.

• A (Cancel and Restart)

•

Moves the cursor back to the beginning of the program line and cancels
editing changes already made. For example, if you have added, deleted, or
chang~;d something in a line, and you wish to go back to the beginning of the
line and cancel the changes already made: first hit ESC (to escape from any
subcommand you may be executing); then hit A. (The cursor will drop down
to the next line, display the line number and move to the first program
character.

E (Save Changes and Exit)

Causes Computer to end editing and save all changes made. You must be in
Edit Mode, not executing any subcommand, when you hit E to end editing .

241

Q (Cancel and Exit)
Tells Computer to end editing and cancel all changes made in the current
editing session. If you've decided not the change the line, type Q to cancel
changes and leave Edit Mode.

H (Hack and Insert)

Tells Computer to delete remainder ofline and lets you insert material at the
current cursor position. Hitting BACKSPACE will actually delete a
character from the line in this mode. For example, using line 100 listed above,
enter the Edit Mode and space over to the last statement, PRINT" DONE".
Suppose you wish to delete this statement and insert and END statement.
Display will show:

100 FOR 1=1 TO 10 STEP .25: PRINT I, lA 2, I A3: NEXT:

Now typeH and then type END. Hit !¥!~U3;1key. List the line:

100 FOR I= 1 TO 10 STEP .25 : PRINT I, lA 2, IA3: NEXT: END

should be displayed.

Note: To continue editing the line, type the ESC key to get you out of the
"H" subcommand.

nD (Delete)
Tells Computer to delete the specified number n characters to the right of the
cursor. The deleted characters will be enclosed in exclamation marks to show
you which characters were affected. For example, using line 100, space over
to the PRINT command statement:

100 FOR 1=1 TO 10 STEP .25:

Now type 19D. This tells the Computer to delete 19 characters to the right of
the cursor. The display should show something like this:

100 FOR 1=1 TO 10 STEP .25: /PRINT I,IA2, IA3 :/

When you list the complete line, you'll see that the PRINT statement has
been deleted.

•

•

•
242

•

•

•

nC (Change)
Tells the Computer to let you change the specified number of characters
beginning at the current cursor position. If you type C without a preceding
number, the Computer assumes you want to change one character. When you
have entered n number of characters, the Computer returns you to the Edit
Mode (so you're not in the nC Subcommand). For example, using line 100,
suppose you want to change the final value of the FOR-NEXT loop, from
"10" to "15". In the Edit Mode, space over to just before the "0" in "10".

100 FOR 1=1 TO 1

Now type C. Computer will assume you want to change just one character.
Type 5, then hit L. When you list the line, you'll see that the change has been
made.

100 FOR 1 =1 TO 15 STEP .25: NEXT: END

would be the current line if you've followed the editing sequence in this
chapter.

The BACKSPACE does not work as a backspace under the C command in
the Editor. Instead, it replaces the character you want to change with a
backspace. So it should not be used. If you make a mistake while typing in a
change, Edit the line again to correct it, instead of using the BACKSPACE
key.

nSc (Search)
Tells the Computer to search for the nth occurrence of the character c, and
move the cursor to that position. If you don't specify a value for n, the
Computer will search for the first occurrence of the specified character. If
character cis not found, cursor goes to the end of the line. Note: The
Computer only searches through characters to the right of the cursor.

For example, using the currentform of line 100, type EDIT 100 <HHU:!!;!)
and then hit2S:. This tells the Computer to search for the second occurrence
of the colon character. Display should show:

100 FOR 1=1 TO 15 STEP .25: NEXT

243

You may now execute one of the subcommands beginning at the current
cursor position. For example, suppose you want to add the counter variable
after the NEXT statement. Type I to enter the Insert subcommand, then type
the variable name, I. That's all you want to insert, so hit ESC to escape from
the Insert subcommand. The next time you list the line, it should appear as:

100 FOR 1=1 TO 15 STEP .25: NEXT 1: END

nKc (Search and "Kill")

Tells the Computer to delete all characters up to the nth occurrence of
character c, and move the cursor to that position. For example, using the
current version of line 100, suppose we want to delete the entire line up to the
END statement. Type EDIT 100 (i#Wi*l), and then type2K:. This tells
the Computer to delete all characters up to the 2nd occurrence of the colon.
Display should show:

100 FOR 1=1 TO 15 STEP .25: NEXT 1/

The second colon still needs to be deleted, so type D . The Display will now
show:

100/FOR 1=1 TO 15STEP .25: NEXT 11/:/

Now hit HHW~;I and type LIST 100 cr:l3::r:'"•:-::ir:3r:;:Wil.

Line 100 should look something like this:

100END

•

•

• 244

•

APPEND! X

•

•
245

-·

•

•

RESERVED WORDB APPENDIX A

A ~eserved word with a do11ar-si9n cas"> after it mav be used
as a numeric variable name if the dollar-si9n is droPPed. For
instance, CHR and CHR# a~e valid va~iable names. Howeve~' DEF
statements mav not be used to assi9n values to this tYPe of
variab'lt·~

ABS FOR OH ~JIDTH

AND FORI'Ii\T POINT XOH
ASC FRE POS
ATN FHEE POSN
AUTO E.ET PHI NT
CDBL GOSUB PUT
CI-IR$ GOTO RANDOl"!
CINT HEX$ READ
CLEMl IF I~Eivl

CL.OCf\ IMP RENAI"IE
CLOSE INf\EY$ HEI~IJ~1

CLS INPUT F;ESTORE
COI'H INPUT$ RESUiviE
cos INSTR HETURN
CSNG I rrr RIGHT$
CVD f\IL.L HND
CVI LEFT$ ROW
cvs LEN RBET
DATA LET HUN
Df'>TE$ LINE SAVE
DEF LINE INPUT BGN
DEFDBL LIST SIN
DEFFN LL..IST SPACE$
DEFINT U)f'>D SPC
DEFSNG LOC t10.1i

DEFSTH LOF STEP
DEFUSR LOG BTOP

DELETE LPO!:J
s·rR$

DIM L.SET STHING$
EDIT I'IEM SWAP
ELSE riERGE SYSTEI'~

END I"'ID$ TAB
EOF Mf\D$ TA~J

EG~V I"II·H$ THEN
ERASE 1"11·\E>$ TII"'E$
EHL. IVIOD TO
ERI'l NAME TROFF
EHHOR NEW TRON
EXP NEXT USING
FIEL.D NOT USR
FILES OCT$ VAL
FIX ON VAFlPTR
FN OPEN VERIFY

247

•

•

•

ERROR MESSAGES APPENDIX B

MODEL II BASIC ERROR MESSAGES

CODE ABBREVIATION

1 1\IF
,.,
"" SN
3 HG
Ll· OD
5 FC
6 ov
7 01•1
8 UL.
'} BS

10 DD
11 /0
1-· _ ID
13 TM
14 OS
1 ~) LS
16 ST
17 CN
18 UF
19 NR
20 RW
21 UE
22 MO
23 BO

DISK ERRORS

50 FO
::) 1 IE
52 BN
53 FF
5'+ Bl"i
55 AO
57 FE
~l8 UE
61 RN
l: .-.

~~:.:. NM
63 MM
61.~ liE
66 FL
67 UE

~1EANING

NEXT without FOR
s·.,.·nta::{ err-or·
Return without GOSUB
Out of data
Ille9al function call
Over-T 1 (tW

Out o1= memor·v
Undefined line
Subsc~iPt out of ran9e
Redimensioned arraY
Divi:=.it)fl bv zero
Ille9al direct
TYPe mismatch
Out of string sPace
Str·il19 t1)(1 1 on9
Str-in9 formula too comPlex
Can~t continue
Undefined user function
No RESUME
RESUME without error
UnPrintable error
Mi s~. i n9 oper·and
Line buffer overflow

Field r)VE-r·flow
Inter-nal er-r-or­
Bad 1' i l e number·
Fi 1 e n<'t found
Bad file- mode
File alreadY oPen
Di s.k I /0 er·r·(•r
File alreadY exists
Dis.k ·full
InPut Pas.t end
Bad record number
Bad file name
Direct statement in filel
Too marn·· f i 1 es

249

•

•

•

APPEND! X C

Glossary
access

The method in which information is read from or written to disk;
see direct access and sequential access.

address

A location in memory, usually specified as a two-byte hexadecimal
number. The address range<:O to FFFF>is represented in decimal
as<O to 32767 > <-32768, ... , -1 >

alphabetic

Referring strictly to the letters A-Z.

alphanumeric

Referring to the set of letters A-Z and the numerals 0-9.

argument

The string or numeric quantity which is supplied to a function and
is then operated on to derive a result; this result is referred to as
the value of the function .

array

An organized set of elements which can be referenced in total or
individually, using the array name and one or more subscripts.
In BASIC, any variable name can be used to name an array; and
arrays can have one or more dimensions. AR() signifies a
one-dimensional array named AR; AR(,) signifies a
two-dimensional array named AR; etc.

ASCII

American Standard Code for Information Interchange. This method
of coding is used to store textual data. Numeric data is typically
stored in a more compressed format.

ASCII format disk me

Disk files in which each byte corresponds to one character of the
original data. For example, a BASIC program stored in ASCII format
"looks like" the program listing, except that each character is
ASCII-coded. Compare to compressed-format file .

251

backup disk

An exact copy of the original: a "safe copy". You should keep
backups of your original TRSDOS diskette and all important data
diskettes.

BASIC

Beginners' All-purpose Symbolic Instruction Code, the programming
language which is stored in ROM in the TRS-80. Radio Shack
supports LEVEL I BASIC, LEVEL II BASIC, and DISK BASIC.
LEVEL II is a subset of DISK BASIC.

binary

Having two possible states, e.g., the binary digits 0 and I: The
binary (base 2) numbering system uses sequences of zeroes and ones
to represent quantities. This is analagous to the Computer's internal
representation of date, using electrical values for 0 and I.

bit
Binary digit; the smallest unit of memory in the Computer, capable
of representing the values 0 and I.

break

To interrupt execution of a program. In BASIC the statement
STOP

causes a break in execution, as does pressing the BREAK key.

buffer
An area in RAM where data is accumulated for further processing.
For example, to pass data from BASIC to a disk file, and vice­
versa, the data must go through a file-buffer.

buffer field

A portion of the buffer which you define as the storage area for a
buffer-field variable. Dividing a buffer into fields allows you to
pass multiple values to and from disk storage.

252

APPENDIX C

•

•

•

•

•

•

APPENDIX C

byte

The smallest addressable unit of memory in the Computer,
consisting of 8 consecutive bits, and capable of representing 256
different values, e.g., decimai values from 0 to 255.

compressed-fonnat

A method of storing information in less space than a standard ASCII
representation would require. An integer always requires two bytes;
a single-precision number, four; a double-precision number, 8 -
regardless of how many characters are required to represent the
numbers as text. String values cannot be stored in compressed
format.

BASIC programs in RAM and non-ASCII disk files are stored in
compressed-format, with all BASIC keywords stored as special
one-byte codes .

close

Terminate access to a disk file. Before re-accessing the file, you
must re-open it.

data

Information that is passed to our output from a program; under
LEVEL II and DISK BASIC, there are four types of data:

• integer numbers
• single-precision floating point numbers
• double-precision floating point numbers
• character-string sequences, or just "strings,

debug

To isolate and remove logical or syntax errors from a program .

253

decimal

Capable of assuming one of ten states, e.g., the decimal digits
0, I, ... ,9. Decimal (base I 0) numbering is the everyday system,
using sequences of decimal digits. Decimal numbers are stored in
binary code in the Computer.

default

An action or value which is supplied by the Computer when you
do not specify an action or value to be used.

delimiter

A character which marks the beginning or end of a data item, and
is not a part of the data. For example, the double-quote symbol is
a string delimiter to BASIC.

destination

The device or address which receives the data during a data transfer
operation. For example, during a BACKUP operation, the destination
disk is the one onto which the source-disk is being copied.

device

A physical part of the computer system used for data I/0, e.g.,
keyboard, display, line printer, cassette, disk drive, voice synthesizer.

directory

A listing of the files which are contained on a disk.

direct access
Direct access 1 ets you read or write directly to a
file. Contrast with sequential access.

diskette or disk

A magnetic recording medium for mass data storage.

drive specification or drivespec

An optional field in a TRSDOS file specification and in some
TRSDOS commands, consisting of a colon followed by one of the
digits 0 through 3. The drivespec is used to specify which drive is to
be used for a disk read or write.

When the drivespec is omitted from a command involving a read
operation, TRSDOS will search. through all the disks for the
desired file, starting with drive 0.

When the drivespec is omitted from a command involving a write
operation, TRSDOS will generally search through all non
write-protected drives for the desired file.

254

APPENDIX C

•

•

•

•

•

•

APPENDIX C

drive number

An integer value from 0 to 3, specifying one of the Disk
drives.

dummy variable

A variable name which is used in an expression to meet syntactic
requirements, but whose value is insignificant to the programmer.

edit

To change existing information.

entry point

The address of a machine-language program or routine where
execution is to begin. This is not necessarily the same as the
starting address. Entry point is also referred to as the
transfer address .

field

e

A user-defined subdivision of a direct access file-buffer, created
and named with the FIELD statement.

field name

A string variable which has been assigned to a field in a direct
access file-buffer via the FIELD statement.

file

An organized collection of related data. Under TRSDOS, a file is the
largest block of information which can be addressed with a single
command. BASIC programs and data sets are stored on disk in
distinct files.

me extension

An optional field in a file specification, consisting of a I followed by
up to three alphanumeric characters; the

extension can be used to identify the flle type, e.g., /BAS, /TXT,
/CIM, for BASIC, text, and core image, respectively .

255

me name

A required field in a file specification, consisting of one alphabetic
followed by up to 7 alphanumeric characters. Filenames are assigned
when a file is created or renamed.

me specification or mespec

A sequence of characters which specifies a particular disk file under
TRSDOS, consisting of a mandatory filename, followed by an
optional extension, password, and dri vespec, and option a 1 disk.

fonnat

To organize a new or magnetically erased diskette into tracks and
sectors, via the TRSDOS FORMAT utility.

granule

The smallest unit of allocatable space on a disk, consisting of
5 sectors.

hexadecimal or hex

Capable of existing in one of 16 possible states. For example, the
hexadecimal digits are 0,1,2, .. , ,9,A,B,C,D,E,F. Hexadecimal
(base-16) numbers are sequences of hexadecimal digits. Address and
byte values are frequently given in hexadecimal fonn. Under DISK
BASIC, hexadecimal constants can be entered by prefixing the
constant with &H.

increment

The value which is added to a counter each time one cycle of a
repetitive procedure is completed.

input

To transfer data from outside the Computer (from a disk file,
keyboard, etc.) into RAM.

256

APPENDIX C

•

•

•

•
APPENDIX C

kilobyte or K

1024 bytes of memory. Thus a 12 K ROM includes 12*1024=12288
bytes.

logical expression

An expression which is evaluated as either True (=-!) or FALSE (=0).

• logical record

•

A block of data which contains from I to 256 bvtes, and can be
addressed as a unit,

machine language

The Z-80 instruction set, usually specified in hexadecimal code. All
higher-level languages must be translated into machine-language in
order to be executed by the Computer.

null string

A string which has a length of zero; For example, the assignment
A$= II"

makes A$ a null-string.

object code

Machine language derived from "source code", typically, from
Assembly Language .

257

octal

Capable of existing in one of 8 states, for example, the octal digits
are 0,1, ... ,7. Octal (base-8) numbers are sequences of octal
digits. Address and byte values are frequently given in octal form.

Under t1ode 1 I I BASIC, an octal constant can be entered by prefixing
the octal number with the symbol &0.

open

To prepare a file for access by assigning a sequential input,
sequential output, or random I/0 buffer to it.

output

To transfer data from inside a Computer's memory to some external
area, e.g., a disk file or a line printer.

parameter

Optional information supplied with a command to specify how the
command is to operate. TRSDOS parameters are placed inside
parentheses.

password

An optional field in a filespec consisting of
up to 8 ,. alphanumeric characters. If a file

is created without a password, 8 blanks become the default
password. To access a file, you must specify the password in the
filespec.

Using the TRSDOS ATTRIB command, you can assign both update
and access passwords; the access password will grant only a
limited degree of access, while the update password grants total
access to the ftle. See f"Jlespec.

258

APPENDIX C

•

•

•

•

•

APPENDIX C

prompt

A character or message provided by the Computer to indicate that
it's ready to accept keyboard input.

protected me
A disk file which has a non-blank password, and therefore can only
be accessed by reference to that password.

protection level

The degree of access granted by using the access password: kill,
rename, write, read, or execute.

random access memory or RAM

Semiconductor memory which can be addressed directly and either
read from or written to. See "Memory Requirements" o

routine
A sequence of instructions to carry out a certain function; typically,
a routine may be called from multiple points in a program. For
example: keyboard scan routine .

259

sector

One-tenth of a track on a diskette, containing 256 bytes of storage;
a TRSDOS "physical record".

sequential access

Reading from a disk flle or writing to it "from start to finish",
without being able to directly access a particular record in the file.

statement

A complete instruction in BASIC.

string

Any sequence of characters which must be examined verbatim for
meaning: in other words, the string does not correspond to a
quantity. For example, the number 1234 represents the same
quantity as 1000+234, but the string "1234" does not. (String
addition is actually concatenation, or stringing-together, so that:
11 1234" equals ''1 11 + "2'' + 113" + 114").

syntax

The "grammatical" requirements for a command or statement.
Syntax generally refers to punctuation and ordering of elements
within a statement. See "Notation Conventions", General
Information, for a description of syntax abbreviations used in
this manual.

transfer address

Se.e entry point.

TRSDOS

TRS-80 Disk-Operating System, pronounced "triss-doss".
TRSDOS is supplied on disk and is then loaded into RAM.

260

APPENDIX C

-~

•

•

•

•

•

APPENDIX C

user RAM or user memory
Seedi rect access memory.

utility
A program or routine which serves a limited, specific purpose.
There are two extended TRSDOS utilities, FORMAT and BACKUP,
and two non-TRSDOS utilities, DISKDUMP/BAS and TAPEDISK.

write-protect

To physically protect a disk from being written to by leaving the
write-protect notch uncovered •

261

MODEL.. II BASIC II\IDEX

INDEX
==
SPEC I.'IL.. SYMBOLS
+ (addition)

* I

(:::.ubtr·acti<~n)

:carat"
b~:tck~::-1 a:::.h
4· (unary Positive)

(unar-Y n{?9a i: i ve)
.(

<==
):::::

<>

About This Reference Manual
ABS •••.•
Addj.tion
AND
Arr·a·y· Var·ie.b1 es.
ABC
ATN
AUTO

Bit ManiPulation
Boolean O~er-ator-s

CDBL.
CHI~$

CINT
CLEAFl
CI....OSE
CLS
Comma.nd Flode
Command Statements
ComPutational Functions
CONT
cos
cm\IG
CVD
CVI
CVB

.39
• ;:~ '1
• ,, l2l

" itl2l
• 41
• IJ. 0
.39
.:39
.44
~ Ll.iJ-

• '•4
•. lj.lf

.44

. 4'•

2
162
• :35
• Lt1

. 25
16:3
164
.. 60

165
1f31t
166
.B0
13B
126
. 10

~ SV.h ~5 (:r
159
14B
167
:l6B
206

.. :206

.206

PAGE 1

MODEL

Data
DATA

II BASIC

D~:t+.:a

Data
DATE$

CQns-+.:an+.::.::.
Conver·~.ion

Debu9
DEFDBL.
DEF FN

INDEX

Definition and Initialization Statements~
DEFINT
DEFSNC-i
DEFSTR
DEFUSR
DELETE
DII"I
Di~ect Access Techniques
Dis.k ••••••••
Di. s.k Sta t<:m<:nt~.
Divis-i-::.r1 ~
Double-Precision TYPe
Double- to Sin9le-Precision

E:~DIT

Edi.t
Edit

I"! ode
Mt)de
A

Subcomma.nds

END
EOF
EG!V
ERASE
ERI...
ERR
ERROR

c
D
E
H
I
f\
L
0
s
X

Er·r·(,r· lvtes.sa9es.
Evaluation o1=
E::-::e c u +.:e Flo de
EXP
E>::Ponentiation
1::::-::·?r·e s. s ions-.

E~<Pr·es.sion:.::.

~ 2LI.

• 8:1.
. 21
.:27
185
1 Lf 7
. 83
• 8'+
n79
.86
.87
.8B
• E<9
.61
.90

.. 229
~205

:lT7
.36
"21
.2fJ

6''~}

• 12
.Z38
.241
• 2'1·3
.242
• 2'• 1
.242
.241
"2LJ.LJ .
• 2'+0
• :24:2
• 2ft3
.240

106
207
• Lf 1
.92
149
151
1. s::;~
249
.46
. 11
169
• 37
..;32

FIELD ••••••••••••••••••••••••••••••••••••••• 1.39

PAGE

•

•

MODEL II BASIC

FIX
For More Information
FOR ... NEXT
FRE
Function::.

Gener-a 1 Inf(•r·mation
GET
Gl ossar··y·
GOSUB
GOTO
Gr-aPhic:::. Mode

He>::.:a.dec ima 1 and Octal
HEX$

IF ... THEN
Ille9al Conver~.i(•ns

Immediate Line
IMP
INf\EY$
INPUT
INPUT$
INPUT$ (di~.k)
INPUT# .•.•••

Constants

InPut/OutPut
InPut/OutPut
INSTR

Functions
Statement~.

INT
Integer Division

INDEX

Inte9er to Sin9le- or Double-Precision
Inte9er· TYPe
InterPretation of an InPut Line

Keyboard
Kevboar·d
~"\eyboar-d

KILL

Character InPut auuuuau

InPut/Output Functions
Line InPut

LEFT$
Le9al
LEN
LET
LINE
LINE
L.. i r1~=.r
LIST
LUST
LOAD

Conver-sions

INPUT
INPUT#
Printer Statements

1711)
•• 7
107

.214
48, 157

.. 1
1411)

• 251
108
109
. 16

.. 23
186

110
.27
. 11
.41
1'78
120
199

.208
141
195
117
171
17:3
• 36
.28
.20
.10

• 14
1 'i>7
• 13
.63

187
.. 27
174
.98
122
142
135
.64
.65
.66

PAGE 3

MODEL II BASIC

Loading BASIC
LOC
LOF
LOG
Lo9ical Qper~tors

L.PRII\IT
U3ET

MEI"I
!"!emorY
MERGE
MID$
MI\D$
MI\I$
MI\S$
MOD
Modes of Operation
Modulus Arithmetic

I\IEW
I\IOT
Notation
Numer-ic
Numer-ic
Numer-ic

CoiT!PI..Jte.ti(•flal
Da 1:a •••••
OPer-ators

OCT$ •.•••••..
01\1 ERROR GOTO
ON ••• GOSUB
ON ••• GOTO
OPEN •••••
0Per·atic•ns-.
OPer-ator-s

Functions-

OPtions
OR

for Loadin9 BASIC

Order of OPerations

Parenthe:::.e:::.
POS
PRINT
PRINT#
Pr·o9r·am
Pr·o9r-arr, Line
Pro9ram Sequenc~ Statements
Pro9ram Statements
PUT

II\IDEX

1IZIIZI•

-, . '
• ::;~09
.210

175
. 4·IZI
136
.99

.215
•. 6
a 6/'
18f3
211

• 211
.:211
.37
• 1 fZ)

.T1

.36

.69

.41
n ~ ,(}-

16J.
• 2~)
.35

189
153
112
113
143
.31
"3't
•• 8
• 41
"L~b

• • '+6
.. 202

1:27
11>4
• 19
.11.
105

.5fZl, T!
146

RANDOM •..••.•••••••.....••••••••.••••••••••.• 93

PAGE 4

•

•

•

•

•

•

MODEL II BASIC

READ
Relational OPePators
REI"!
RENUM
Rest=:r·ved Wor-ds
I'<ESTOHE
I'<ESUME
HETURN
HIGHT$
HND
ROW
HSET
Rules
I'< UN

SAVE

f•)f· Conver·sicrn

Scr·o 1 Mode
Sequential Access Techniques
SGN •••..••••••••.••.•
SIN •••••.••••.•• · • •..
Sin9le-Precision TvPe
Sin9le- or- Double-Precision
Sin9le- to Double-Precision
SPACE$
SPC
SPecial
SP<2C i.a.l
SPecial

Functions
~'\e··..-s in the
t\eY5- in the

SG!R
Statement::.
STOP •••.••
Str·ir,g
STH$
STHING$
Str·in9
Str·in9

Data

Functions
0Per·ator·s

Subi::r·;action
SWAP
SYSTEM

TAB
TAN
TIME$
TROFF
TRON

CCriTtiTi•'::l.fld
E::--.:ecute

TYPe
T··tPe
T·y·pe

Cc·nver·sion:E.
Decl.a.r·ation
Decl .:::u-·ation

Char·ac te r- ::.
Ta9s.

TvPin9 of Constants
TYPes of Variables

Mode
Me• de

INDEX

101
• 4·0
.94
.70

• 24. 24·7
.95
l. 5if

115
190
176

.203
.99
. 28
.72

•. 74
•• 15
.. ~-;-~23

1T7
178
.. 20
.. 28
.. 29
191

.204

.213
• 11

1"'
179

19. 31
155
.21
192
193
183
• 4-4
" 3~)
111)3
.75

1.29
1811)
194
156
156
.48
.. 22
.. 25
..22

PAGE 5

MODEL II BASIC INDEX

U:;.in9 t.h<'? 1-\<'?Yb•:•ar·d ••••••••••••••••••••••••••• 13
Usin9 the Line Edit.o~ ••••...•••••••••••••••• 232
Usin9 the Video DisPlaY ••.•••..•••••••••••••• 15
USRn •• ;"219

VAL ••••••••••••.•••••••••••••••••••••••••••• 181
Var-iable Narr1es . .. 24
Var·iabl es .•••.•.•....••...•.•..••••••••••••••. 24
VARPTR •••••••••••••••••••••••••••••••••••••• 216
VARPTR<*~ l •••••••••••••••••••••••••••••••••• 216
Video DisPlaY InPut/OutPut Functions 201
Video DisPlaY OutPut •••••••••.•••••••••••••• 125

XOR •••••••••••.••••••.••••••••••••••••••••••• 41

PAGE 6

•

IMPORTANT NOTICE

ALL RADIO SHACK COMPUTER PROGRAMS ARE DISTRIBUTED ON AN
"AS IS" BASIS WITHOUT WARRANTY

Radio Shack shall have no liability or responsibility to customer or any other
person or entity with respect to any liability, loss or damage caused or alleged to
be caused directly or indirectly by computer equipment or programs sold by ·
Radio Shack, including but not limited to any interruption of service, loss of
business or anticipatory profits or consequential damages resulting from the use ·
or operation of such computer or computer programs.
NOTE: Good data processing procedure dictates that the user test the program,

run and test sample sets of data, and run the system in parallel with the
system previously in use for a period of time adequate to insure that
results of operation of the computer or program are satisfactory.

LIMITED WAR.RANTY
For a period of 90 days from the date of delivery, Radio Shack war­
rants to the original purchaser that the. computer hardware described
herein shall be free from defects in material and workmanship under.
normal use and service. This warranty is only applicable to purchases
from Radio Shack company-owned retail outlets and through duly
authorized franchisees and dealers. The warranty shall be void if this
unit's case or cabinet is opened or if the unit is altered or modified.
During this period, if a defect should occur, the product must be re­
turned to a Radio Shack store or dealer for repair, and proof of pur­
chase must be presented. Purchaser's sole and exclusive remedy in the
event of defect is expressly limited to the correction of the defect by
adjustment, repair or replacement at Radio Shack's election and sole
expense, except there shall be no obligation to replace or repair items
which by their nature are expendable. No representation or other affir­
mation of fact, including. but not limited to, statements regarding
capacity, suitability for use, or performance of the equipment, shall
be or be deemed to be a warranty or representation by Radio Shack,
for any purpose, nor give rise to any liability or obligation of Radio
Shack whatsoever.

EXCEPT AS SPECIFICALLY PROVIDED IN THIS AGREEMENT,
THERE ARE NO OTHER WARRANTIES, EXPRESS OR IMPLIED,
INCLUDING. BUT NOT LIMITED TO, ANY IMPLIED WARRAN­
TIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE AND IN NO EVENT SHALL RADIO SHACK BE LIABLE
FOR LOSS OF PROFITS OR BENEFITS, INDIRECT, SPECIAL,
CONSEQUENTIAL OR OTHER SIMILAR DAMAGES ARISING OUT
OF ANY BREACH OF THIS WARRANTY OR OTHERWISE.

RADIO SHACK ~A DIVISION OF TANDY CORPORATION

U.S.A.: FORT WORTH, TEXAS 7.6102
CANADA: BARRIE. ONTARIO L4M 4W5

AUSTRALIA

280·316 VICTORIA ROAD
RYDALMERE, N.S.W. 2116

PRINTED IN U.S.A.
8749124
8749122
8749123

TANDY CORPORATION

BELGIUM

PARC INOUSTRIEL DE NANINN.E
5140 NAN I NNE

U.K.

BILSTON ROAD WEDNESBURY
WEST MIDLANDS WS10 7JN

	TRSDOS 1.1 Letter
	TRSDOS 1.1 Response Card - Side A
	TRSDOS 1.1 Response Card - Side B
	TRSDOS 1.1 Return Card
	Untitled.PDF.pdf
	TRSDOS 1.1 Operation Tab
	Untitled.PDF.pdf
	TRSDOS 1.1 TRSDOS Tab
	Untitled.PDF.pdf
	Untitled.PDF.pdf
	TRSDOS 1.1 BASIC Tab
	Untitled.PDF.pdf
	Blank Page

	Untitled.PDF.pdf
	Blank Page

	Untitled.PDF.pdf

