

TERMS AND CONDITIONS OF SALE AND LIGENSE OF RADIQ SHACK COMPUTER EQUNPMENT AND SOFTWARE
PURCHASED FROM A RADIO SHACK COMPANY-CWNED COMPUTER CENTER, RETAIL STORE CR FROM 4
RADIQ SHACK FRANCHISEE QR GEALER AT ITS AUTHORIZED LOCATION

LIMITED WARRANTY
CUSTOMER OBLIGATIONS

A CUSTOMER assumes full responsibility that this Radio Shack computer hardware purchased (the “'Equipment™), and any copies of Radic
Shack software included with the Equipment or licensad separately (the “Software’™) meets the spacifications, capacity, capabilities,
versatility, and other requirements of CUSTOMER.

CUSTOMER assumes full responsitility for the candition and effectiveness of the operating environment in which the Equipment and Software
are to function, and for its installation.

RADIO SHACK LIMITED WARRANTIES AND GONDITIONS OF SALE

A, Fora period of ninety {90) calendar days from the date of the Radio Shack sales document received upon purchase of the Equipment, RADIO

SHACK warrants to the original CUSTOMER that the Equipment and the medium upon which the Seftware is stored is free from manufaciuring
defects. THIS WARRANTY 15 ONEY APPLICABLE TO PURCHASES OF RADIO SHACK EQUIPMENT BY THE ORIGINAL CUSTOMER FROM
RADIO SHACK COMPANY-OWNED COMPUTER CENTERS, RETAIL STORES AND FROM RADIO SHACK FRANCHISEES AND DEALERS AT ITS
AUTHORIZED LOCATION. The warranty is void if the Equipment's case or cabinet has been opened, or if the Equipment or Software has been
subjected to improper ar abnormal use. f @ manufacturing defect is discovered during the stated warranty period, the defective Equipment
must be returned to a Radio Shack Camputer Center, a Radlo Shack retail store, participating Radio Shack franchisee or Radio Shack dealer
for repair, aleng with a copy of the sales document or lease agreement. The original CUSTOMER'S sole and exclusive remedy in the event of
a defect is {imited to the correction of the defect by repair, replacement, or refund of the purchase price, at RADIQ SHACK'S elaction and sole
expense. RADIO SHACK has no obligation to replace or repair expendahle items.
RADIC SHACK makes no warranty as to the design, capability, capacity, or suitability for use of the Software, except as provided in this
paragraph. Software is licensed on an “AS IS™ basis, without warranty. The original CUSTOMER'S exclusive remedy, in the event of a
Software manufacturing defect, is its repair or replacement within thirty (30) calendar days of the date of the Radio Shack sales document
received upon license of the Software. The defective Software shall be returned 1o a Radfo Shack Camputer Cenier, a Radio Shack retail store,
participating Radio Shack franchisee or Radio Shack dealer along with the sales document.

C. Except as provided herein no employee, agent, franchisee, dealer ar other person is authorized to give any warranties of any nature on behalf
of RADIC SHACK.

D. Except as provided kerein, RADIO SHACK MAKES NO WARRANTIES, INCLUDING WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE. ’

E. Some states do not allow limitations on haw long an implied warranty lasts, so the above limitation(s) may not apply to CUSTOMER.

LIMITATION OF LIABILITY

A, EXCEPT AS PROVIDED HEREIN, RADIC SHACK SHALL HAVE NO LIASILITY OR RESPCNSIBILITY TO CUSTOMER OR ANY OTHER PERSON
OR ENTITY WITH RESPECT TO ANY LIABILITY, LOSS OR DAMAGE CAUSED OR ALLEGED TO BE CAUSED DIRECTLY OR INDIRECTLY BY
“EQUIPMENT™ OR “SOFTWARE" SOLD, LEASED, LICENSED OR FURNISHED BY RADIO SHACK, INCLUDING, BUT NOT LIMITED T), ANY
INTERRUPTION OF SERVICE, LOSS OF BUSINESS OR ANTICIPATORY PROFITS OR CONSEQUENTIAL DAMAGES RESULTING FROM THE
USE OR OPERATION OF THE “EQUIPMENT” DR “SOFTWARE". IN NO EVENT SHALL RADIO SHACK BE LIABLE FOR LOSS OF PROFITS, OR
ANY INDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY BREACH OF THIS WARRANTY OR IN ANY MANNER
ARISING OUT OF OR CONNECTED WITH THE SALE, LEASE, LICENSE, USE OR ANTICIPATED USE OF THE "EQUIPMENT" OR “'SOFTWARE".

NOTWITHSTANDING THE ABOVE LIMiTATIONS AND WARRANTIES, RADIO SHACK'S LIABILITY HEREUNDER FOR DAMAGES INCURRED BY
CUSTOMER OR OTHERS SHALL NOT EXGEED THE AMOUNT PAID BY CUSTOMER FOR THE PARTIGULAR "EQUIPMENT" OR “SQFTWARE"™
INVOLVED.

RADIO SHAGK shall not be liable for any damages caused by delay in delivering or furnishing Equipment andsor Software.

No action arising out of any claimed hreach of this Warranty or transactions under this Warranty may be brought more than fwo (2) years
after the cause of action has accrued or more than four (4) years after the date of the Radis Shack sales document for the Equipment or
Software, whichever first occurs.

Some states do not allow the limitation ar exclusion of ircidental or cansequenttal damages, so the above iimitation(s) or exclusion{s) may
not apply to CUSTOMER.

RADIO SHACK SOFTWARE LICENSE

RADIO SHACK grants to CUSTOMER a non-exclusive, paid-up license to use the RADIO SHACK Software an ene computer, subject to the following
provisions:
. Except as otherwise provided in this Software License, applicable copyright laws shall apply to the Software.

B. Title to the medium on which the Software is recorded (casssite and/or diskette) or starad {ROM) is transferred te CUSTOMER, but not title to
the Software.’
CUSTOMER may use Software on one host computer and access that Software through one or more terminals if the Software permits this
function.
CUSTOMER shall not use, make, manufacture, or reproduce copies of Software except far use an one computer and as is specifically
provided in this Software License. Customer is expressly prohibited from disassembling the Software.
CUSTOMER is permitted to make additional capies of the Software anly for backup or archival purposes or if additional copies are required in
the operation of ene computer with the Software, but only to the extent the Software allows a backup copy to be made. However, for
TRSO0S Software, CUSTOMER is permitted to make & limited number of additional cepies for CUSTOMER'S own use.
CUSTOMER may resell or cistribute unmodified copies of the Software provided CUSTOMER has purchased one copy of the Software for each
ane soid or distributed. The provisions of this Software License shall also be applicabls to third parties receiving copies of the Software from
CUSTOMER.

G. Al copyright noticas shall be retained an zll capies of the Softwasa.

APPLICABILITY OF WARRANTY

A, Theterms and conditions of this Warranty are applicable as between RADIQ SHACK and CUSTOMER to either a sale of the Equipment and/or
Software License to CUSTOMER or to a transaction whereby RADIO SHACK sells or conveys such Equipment to & third party for lease to
CUSTOMER.

The limitations of liability and Warranty provisions herein shall inure to the benefit of RADIO SHACK, the author, owner andor ticensor of the
Software and any manufacturer of the Equipment sold by RADIO SHACK.

STATE LAW RIGHTS

The warranties granted herein give the original CUSTOMER specific iegal rights, and the original CUSTOMER may have other rights which vary
from state to state.

BASIC Compiler
User’s Manual

" for TRS-80"
Model Il

BASIC Version 1.0

BASIC Compiler User's Manual for TRS-80 Model |l
© Microseft Corporation, 1981, 1982
Licensed to Tandy Corporation. All Rights Reserved.

Reproduction or use, without express written permission from
Tandy Corporation and/or its licensor, of any pertion of this
manual is prohibited. While reasonable efforts have been
taken in the preparation of this manual to assure its accuracy,
Tandy Corperation assumes no liability resulting from any er-
rors or omissions in this manual, or from the use of the infor-
mation contained herein.

10987654321

Contents

Introduction

System Requirements. oL
Licensing L
Package Contents
How To Use This Manual
Syntax Notation P .o
Learning More About BASIC

Chapter 1 Introduction To Compilation

1.1
1.2
1.3

Compilation vs. Interpretaticn.
Vocabulary L
The Program Development Process

Chapter 2 DemonstrationRun

Chapter 3 Editing a Source Program . . = = == .

Chapter 4 Debugging with the

BASIC Interpreter.

Chapter 5 Compiling

5.1

52

5.2.1
522
5.2.3
524
53

5.3.1
532
533

Command LineSyntax
Using Command Lines
Sample Command Lines
Filename Extensions0
Device Designations
Device Names as Filenames
Compiler Switches
Convention Switches L.
Error Handling Switches
Special Code Switches

Chapter 6 Linking and Loading

6.1

6.4.1
6.4.2
6.4.3
6.4.4
6.4.5
6.4.6

Linker Command bLines
RBuntime Supparto
The BCLOADFile.
LinkerSwitches
ExitSwitch.
Save Switch o
Address Setting Switches.o .
Library Search Switch.
Global Listing Switches
Radix Setting Switches oL

Chapter 7 Running a Program L

Chapter 8 Metacommands

8.1

oo Co 00 00
Mo 1o o o
why —

Syntax
Description
$INCLUDE. o
SLIST . . .
SOCODE o

824 STITLE. o 49

825 S$SUBTITLE 49
826 SLINESIZE. oo 49
827 S$PAGESIZEo 49
828 S$PAGE. 50
829 S$PAGEIF.o e 50
8210 $SKIP 50

Chapter 9 A Compiler/Interpreter
Language Comparison

91 Operaticnal Differences. P 51
9.2 Language Differences L. 51
921 CALL o 52
9.22 CHAIN. 52
923 CLEAR. 53
924 COMMON. 53
9.2.5 DEFINT/SNG/DBL/STR 54
926 DIM 55
927 END. 55
928 FORNEXT. 55
929 FRE 56
Q210 MEM. s 57
9.211 ONERRORGOTO, 57
9212 REM 57
9213 RESUME 57
9.214 RETURN.o 57
9215 RUN. 57
9,216 STOP 57
9.217 TRON/TROFF 58
9218 USR 58
9219 WHILE/WEND, 58
9220 WIDTH. oo 58
9.3 TRS3-80 Commands in Standard BASIC 59
9.4 BASIC Compiler Features notin TRS-80 59
9.5 Other Differences 80
9.5.1 Expression Evaluationo 00000 60
9.5.2 IntegerVariables 61
9.5.3 Double Precision Arithmetic Functions. 61
9.5.4 Double Precision Loop Control Variables| 62
955 String Space Implementation. 62
Appendix A Creating a System of Programs

with the Runtime Module . . = = = 63
Appendix B Source Listing Format. 65
AppendixC MemoryMaps 67
Appendix D BASIC Assembly Language

Subroutines
DA Memory Allocation 69
D.2 USRFunctionCalls, 69
D.3 CALLStaterment. 73

Appendix E Disk File Handling

EA SequentialFiles
E2 Random Access Files.

Appendix F Floating-Point Numeric Format . . .
Appendix G Error Messages

G.1 CompiletimeErrors
G.2 LBDErrors,
G.3 Runtime Errors L

Introduction

The BASIC Compiler is an optimizing compiler designed to
compiement the BASIC Interpreter.

The BASIC Compiler allows you to create programs that in most
cases:

1. Execute faster than the same interpreted programs
2. Require less memory than the same interpreted programs
3. Provide source-code security

These benefits can be critical in:

e Graphics applications, where execution speed can often make
or break an application

® Business applications, where several CHAINed programs can
be supported by a main menu

e Commercial applications, where software is being sold in a
competitive marketplace and source-code security is
essertial.

Another major benefit is that the BASIC Compiler has been created to
support most of the interpreted BASIC language. Thus, the interpreter
and the compiler complement each other, providing you with an
extremely powerful BASIC programming environment. In this
environment, you can quickly run and debug a program from within
the BASIC Interpreter, and then later compiie the same program to
increase its speed of execution and to decrease its space in memory.

An additional BASIC Compiler feature is a runtime module named
BASRUN, which contains most of the runtime environment. The
runtime module is loaded when program execution begins, and later
execution of CHAINed programs does not require reloading. This
atlows you to develop a system of related programs that can ali be run
using the same environment. And because the runtime environment
required by your program need not be saved on disk as part of your
executable file, a substantial amount of disk space is saved —
typically 45K for a system of four programs.

Although the language supported by the BASIC Compiler is not
completely identical to that supported by the BASIC Interpreter, the
compiler has been designed so that compatibility is maintained
wherever possible. The BASIC Compiler supports, in some form, all
the statements and commands described in the BASIC Reference
Manual except:

AUTO
CLOAD
CSAVE
CONT
DELETE
EDIT
ERASE
LIST
LLIST
LOAD
MERGE

NEW
RENUM
SAVE

Note: Language, cperational, and other differences between the
BASIC Compiler and Interpreter are described in Chapter 9 of this
manual. Review that information before compiling any of your
programs, even those that already run withcut problem on the
interpreter.

System Requirements

The BASIC Compiler requires a TRS-80 Mbdel [l computer with a
minimum of 64K BAM and one disk drive. We recommend at least two

drives, however, for easier operation. The compiler operates under the
TRSDOS operating system.

Licensing Information

For those who want to market application programs with BASIC, the
BASIC Compiler provides three major benefiis:

1. Increased speed of execution for most programs
2. Decreased program size for most programs
3. Source code security

When you distribute a BASIC compiled applications program, it is in
highly optimized machine code, not source code. Consequently,
you: distribute your program in very compact form and protect your
source program from unauthorized alteration.

The policy for distribution of applications programs with the runtime
part of the BASIC Compiler package is as follows:

1. Any application program that you generate by linking o either of
the two runtime libraries (BASRUN/REL and BASCOM/REL) may
be distributed without payment of royalties. However, the runtime
module and runtime library cannot be distributed without first
entering inta a license agreement with Microsoft Corporation for
such distribution. A copy of the license agreement can be readily
obtained by writing to Microsoft Corporation, 10700 Northup
Way, Belleview, Washington 28004.

2. All other software portions of the BASIC Compiler package
cannot be duplicated except for purposes of backing up your
software as provided in the Radio Shack Scftware License.

Package Contents

. The BASIC Compiler package contains one disk and one
documentaticn binder.

Software

The BASIC Compiler software contains the following files on disk:

BASCOM — (the BASIC Compiler) Compiles BASIC source
files into relocatable and linkable REL files.

BASRUN — (the runtime module) A single module containing
most of the routines called from your compiled REL file.

BASRUN/REL — (the runtime library) A collection of routines
implementing functions of the BASIC language not found in
the runtime module. Your REL file may contain calis to these
routines. :

BASCOM/REL — (the alternate runtime library) A collection of
modules containing routines that are similar to the routines
found in BASRUN/REL and the runtime module. This iibrary
should be used for applications that you want to execute as
single executable files without the runtime module. This
library does not support CHAIN with COMMON, CLEAR, or
RUN <linenumber>. Additional differences are described in
Chapter 6, “Linking and Loading.”

BCLOAD/L8D — (runtime load information) Tells at what
. address to load your program, and where to find the runtime
module at runtime.

DEMO/BAS — (a demonstration program) Used in Chapter 2 to
demonstrate program development with the BASIC
Compiler.

Documentation

BASIC Compiler User's Guide

The User's Guide provides a demaonstration run, an introduction to
compilation, and a technical reference for use of the BASIC
Compiler. It also describes language differences between the
BASIC Compiler and the BASIC Interpreter.

BASIC Reference Manual

The Reference Manual explains syntax and usage of the BASIC
language. With the exceptions noted in the User’s Guide, this is the
language supported by the BASIC Compiler.

How To Use This Manual

The BASIC Compiler User's Guide is designed for users who are not .
familiar with the compiler as a programming toal. Therefore, the

manual provides a step-by-step introduction to the BASIC Cormnpiler

and its use.

This manual assumes that the user has a working knowledge of the
BASIC language. For reference information, consult the BASIC
Reference Manual. If you need additional information on BASIC
programming, refer 1o “Learning More about BASIC,” beiow.

This User’s Guide is organized as follows:
INTRODUCTION

Provides brief descriptions of the contents of the BASIC
Compiler package, and gives a list of references for learning
BASIC programming.

Chapter 1 INTRODUCTION TO COMPILATION

Introduces you to the vocabulary associated with compilers,
compares interpretation and compilation, and presents an
overview of program development with the compiler.

Chapter2 DEMONSTRATION RUN

Takes you step by step through compiling, linking, and running
a demonstration program.

Chapter 3 EDITING A SOURCE PROGRAM

Describes how to create a BASIC source program for later
compilation.

Chapter 4 DEBUGGING WITH THE BASIC INTERPRETER

Describes how to debug a BASIC source file with the BASIC
Interpreter before compiling it.

Chapter 5 COMPILING

Describes in detail the use of the BASIC Compiler, including
command line syntax and compiler options.

Chapter 6 LINKING AND LOADING

Explains how to use L8O to link your programs to needed
runtime suppart.

Chapter 7 RUNNING A PROGRAM
Explains how to run your final executable program.
Chapter8 METACOMMANDS

Explains how to use the metacommands availabie with BASIC
Compiler.

Chapter9 A COMPILER/INTERPRETER LANGUAGE
COMPARISON

Describes all the language, operational, and other differences
between the languages supported by the BASIC Compiler and]
the BASIC Interpreter. It is important to study these differences .

‘ and to make the necessary editing changes in your BASIC
program before you use the compiler. .

The Appendices provide additional technical information and list all
BASIC compile time, link time, and runtime error messages.

Syntax Notation

[]

< =

{}

CAPS

Square brackets indicate that the enciosed entry is optional.

Angle brackets indicate user-entered data. When the angle
brackets enclose lowercase text, the user must type in an
entry defined by the text; for example, <filename=>. When the
angle brackets enclose uppercase text, the user must press
the key named by the text; for example, <<ENTER>.

Braces indicate that the user has a choice between two or
more entries. At least one of the entries enclosed in braces
must be chosen uniess the entries are aiso enclosed in
square brackets.

A vertical bar separates entries within braces. At least one of
the entries separated by bar(s) must be chosen unless the
entries are also enclosed in square brackets.

Ellipses indicate that an entry may be repeated as many times
as needed or desired.

Capital letters indicate portions of statements or commands
that must be entered, exactly as shown.

All other punctuation, such as commas, colons, slash marks, and
equal signs, must be entered, exactly as shown.

Learning More About BASIC

The manuals in this package provide complete reference information
for your implementation of the BASIC Compiler. They do not, however,
teach you how to write programs in BASIC. If you are new to BASIC or
need help in learning to program, we suggest you read one of the
following boaoks:

Getting Started with TRS-80 BASIC. Radio Shack Catalog #26-2107.

Albrecht, Robert L., Finkel, LeRoy, and Brown, Jerry. BASIC. New York:
Wiley Interscience, 2nd ed., 1978.

Billings, Karen and Moursund, David. Are You Computer Literate?
Beaverton, Oregon; Dilithium Press, 1979,

Cean, James. Basic BASIC. Rochelle Park, N.J.: Hayden Beok
Company, 1978.

Dwyer, Thomas A. and Critchfield, Margot. BASIC and the Personal
Computer. Reading, Mass.: Addison Wesley Publishing Company,
1978.

Simoen, David E. BASIC From the Ground Up. Rochelle Park, N.J.:
Hayden Book Company, 1978,

CHAPTER 1

Introduction To Compilation

This chapter introduces you to compilation by doing three things:
1. Comparing compilation 1o interpretation
2. Discussing the vocabulary of compilation
3. Stepping through the program development process

11 Compilation vs. Interpretation

A microprocessor can execute only its own machine instructions; it
cannot execute source program statements directly. Therefore, before
a BASIC program can be executed, some type of translation must
occur from the statements contained in your program 1o the machine
language of your microprocessor. Compilers and interpreters are two
types of programs that perform this translation. This chapter explains
the difference between these two translation schemes and explains
why and when you want to use the compiler.

Interpretation

BASIC Interpreters (inciuding Model || BASIC) transiate a BASIC
program line by line at runtime. To execute a BASIC statement, the
interpreter must analyze the statement, check for errors, then perform
the function requested.

If a staterment must be executed repeatedly (inside a FOR/NEXT loop,
for example), this translation precess must be repeated each time the
statement is executed.

In addition, BASIC programs are stored as a list of numbered lines.
During interpretation, a line is not available as an absolute memory
address. Therefore, branches such as GOTOs and GOSUBs cause
the interpreter to examine all line numicers in the list, starting with the
first, until the referenced line is found.

Similarly, the interpreter maintains a list of ali variables. Absolute
memory addresses are not associated with the variables in your
program. When a statement refers to a variable, the variables fist must
be searched from the beginning until the referenced variable is found.

Compilation

A compiler, on the other hand, translates a source program and
creates a new file called an object file. The object file contains
“relocatable’” machine code, which can be placed and run at different
absolute locations in memeory. All translation takes place before
runtime; no translation of your BASIC source file occurs during the
execution of the object file. In addition, absolute memory addresses
are associated with variables and with the targets of GOTOs and
GOSUBSs, so that lists of variables or of line numbers do not have 1o be
searched during execution of your program.

.

Note also that the BASIC Compiler is an “optimizing"” compiler.
Optimizations such as expression re-ordering and sub-expression
elimination are made to either increase speed of execution or to
decrease the size of your program.

11

These factors combine to measurably increase the execution speed of
your program. In most cases, execution of compiled BASIC programs
is 3 to 10 times faster than execution of the same program under the
interpreter. If maximum use of integer variables is made, execution can
be up to 30 times faster. Note, however, that the compiler is not g
panacea; the algorithms used in your programs and the type of
processing performed should also be examined when attempting to
increase execution speed.

1.2 Vocabulary

This section reviews some of the vocabulary that is commonly used
when discussing compilers.

First, a BASIC program is more commonly calied a BASIC “source
program” or “source file.” The source file is the input file to the
compiler and must be in ASCIl format. The compiler transiates this
source and creates, as output, a new file called a “relocatable object”
file. These two files have the default extensions /BAS and /REL,
respectively.

Some other terms that you shouid know are related to stages in the
development and execution of a compiled program. These stages are:

Compile time — The time during which the compiler is executing,
and during which it compiles a BASIC source file and creates a
relocatable object file.

Link time — The time during which the linker is executing, and during
which it loads and links together relocatable object files and library
files.

Runtime — The time during which a compiled and linked program is
executing. By convention, runtime refers to the execution time of your
program and not to the execution time of the compiler or the linker.

You should also learn the following terms that pertain to the {inking
process and the runtime support library:

Module — A discrete unit of code. There are several types of
modules, including relccatable and executable modules. The
compiler creates relocatable modules that can be loaded by the
linker. Your final executable program is an executable module.

Global Reference — A variable name or label in a given module that
is referenced by a routine in another module. Global labels are entry
points into modules.

Unbound Global Reference — A global reference in a module that
is not declared in that module. The linker tries to resolve this situation
by searching for the declaration of that reference in ather modules. If
such a declaration is found in a module, that module is loaded into
memory (if it is not yet in memory) and becomes part of your load file.
These other moadules are usually library modules in the runtime library.

If the variable or label is found, the address associated with it is
substituted for the reference in the first module, and is then said to be
“bound.” When a variable is not fourd, it is said to be “undefined.”

12

Relocatable — A module is relocatable if the code within it can be
placed and run at different locations in memory. Relocatable modules
contain labeis and variables represented as offsets relative to the start
of the module. These labels and variables are said to be "code
relative.” When the module is loaded by the linker, an address is
associated with the start of the module. The linker then computes an
absolute address that is equal to the assoctated address plus the
code relative offset for each label or variable. These new computed
values become the absoiute addresses that are used in the
executable file.

Compiled REL files and library files are all relocatable modules. Note
that normally a relocatable module containg global references as well;
these are resolved after all local labels and variables have been
computed within other relocatable modules. This process of
computing absoluie reiocated values and resolving global references
is what is meant by “linking.”

Routine — Executable code residing in a moduie. More than one
routine may reside in a module. The runtime modute contains a
majority of the library routines needed to implement the BASIC
language. A library routine usually corresponds to a feature or sub-
feature of the BASIC language.

Runtime Support — The body of routines that may be linked to your
compiled REL file. These routines implement various features of the
BASIC tanguage. Both of the runtime libraries and the runtime module
all contain runtime support routines. See Chapter 8, “Linking and
Loading,” for more information on runtime support.

The Runtime Module — A module containing most of the routines
needed to implement the BASIC language. It is a peculiarity of the
runtime module that it is an executable file. The runtime module is
named BASRUN. The runtime module is, for the most part, a library of
routines. It is made executable so that you can see the version
nurnber of the module.

The BASRUN/REL Runtime Library — A few modules used to load
in the runtime module at runtime and to move segments around in
memory to permit CHAINIng.

The BASCOM/REL Runtime Library — A collection of modules
containing routines almost identical in function to similar routines
contained in the runtime module and BASRUN/REL.

However, this library does not support the COMMON statement
between CHAINed programs. It does support a version of CHAIN that
is semantically equivalent to the simple RUN <filename> command.

Linking — The process in which L8@ loads modules into memory,
computes absolute addresses for labels and variables in relocatable
modules, and then resolves all global references by searching the
BASRUN/REL runtime library. After loading and linking, the linker
saves the moduies that it has loaded into memory as a single
executable file on your disk.

13

1.3 The Program Development Process

This discussion cf the program development process is keyed to
Figure 2.1,

Program development begins with the creation (1) of a BASIC
source file. The best way to create a BASIC source file is with the
editing facilities of the BASIC Interpreter, although you can use any
general purpose text editor if you wish. Note that files must be
SAVEd from the BASIC Interpreter with the ,A option.

Once you have written a program, you should use the BASIC
Interpreter to debug the program (2) by running it to check for
syntax and program logic errors. There are a few differences in the
languages understood by the compiler and the interpreter, but for
the most part they are identical. Because of this similarity, running a
program provides you with & much quicker syntactic and semantic
check of your program than compiling, linking, and finally executing
a program. Therefore, you should try 10 make the interpretar your
chief debugging tool.

After you have debugged your program with the interpreter, compile
it (3} to check out differences that may exist between interpreted
and compiled BASIC. The compiler flags all syntax errors as it reads
your source file. If compilation is successful, the compiler creates a
relocatable REL file.

The REL file is not executable, and needs to ba linked to one of the
runtime libraries (in Figure 2-1 and in the demonstration in Chapter
2, the BASRUN/REL runtime library is used). You may want to
include your own assembly language routines to increase the speed
of execution of & particular algorithm, or to handie more caomplex
operations. For these cases, use the Editor Assembler to assemble
routines (4) that you can later link to your program. Similarly,
separately compiled FORTRAN subroutines can be linked to your
program.

The linker links all modules (5) needed by your program, and
produces as output an executable object file. This file can be
executed (8) by simply typing the file's base name.

This program development process is demonstrated in the following
chapter, Chapter 2, “Demonstration Run.”

14

BASIC
Interpreter

yes l

«—— bugs?

ino

BASIC
Compiler

yes l

bugs?

¢no

Relocatable
object file

lJS_

Linker

|

executable file

BASIC - grﬁaégit Text
interpreter BASIC Editor
l source
BASIC Source -
l . RUN and

debug program
with interpreter,
and SAVE.

. Compile BASIC

Source, creating
REL file

. Assemble ASM

sources if any

BASRUN/REL

4
Assembler
Source

\j

Editor
Assembier

l

ASM/REL

link compiled REL file to
library, and ASM routines

The Runtime Module

. Run executable file

(Runtime Module and
executable file

are loaded into memory
from disk)

Figure 2.1 The Program Development Process

15

- CHAPTER 2

Demonstration Run

This chapter provides step by step instructions for using the BASIC
Compiler. We strongly recommend that you compile the
demonstration program in this chapter before compiling any other
programs. For more technical information, read Chapters 3 through
9.

if you enter commands exactly as described in this chapter, you
should have a successful session with the BASIC Compiler. If a
problem does arise, carefully redo each step.

NOTE

Before you begin this demonstration run,
make backup copies of your BASIC
Compiler disk(s), using the TRSDOS
BACKUP command (see the TRSDOS and
BASIC Reference Manual that you received
with your computer). Store your master
disk(s) in a safe place and work with the
backup copies. :

The major stages in developing a program with the BASIC Compiler
are:

1. Editing and debugging {entering and correcting the BASIC
program, using a BASIC Interpreter)

2. Compiling (creating a relocatable object file)
3. Linking (creating an executable object file)
4, Running (executing the program)

Because we have prepared an edited and debugged demonstration
program on disk, you do not have to perform the first two steps
described below. Note that we have SAVEd the demonstration
program on disk in ASCII format by using the ,A option. All files must
be in ASCII format to be readabie by the compiler.

To create an executable compiled program, perform the following
steps:

1. Start up your computer system.
2. Create a BASIC source file.

BASIC programs can be created with any available text editor that
will create a text file with a logical record length of 1. However, for
this demonstration run we will use the program DEMO/BAS, which is
provided on your disk. For consistency, BASIC source files should
always be given the /BAS extension.

3. Invoke the compiler.

Invoke the compiler by entering:
BASCOM

4. Enter the command line.

- 17

After you invoke the compiler, it prints an asterisk to prompt you far
the command line. Enter:

*DEMD » : TT=DEMDO

This command line begins compilation of the source file. The source
file is the last entry on the command line (DEMO), and the /BAS
default extension is assumed.

The compiler generates relocatable object code that is stored in the
file specified by the first entry on the command line. (DEMQO). This
file is created with the default /REL extension.

The source listing file is the second entry on the command line. The
source listing file is created during compilation. It lists your BASIC
source and any compilation errors or warnings as they cccur. i no
listing file is specified in the cormmand line, none will be generated.
For this demonstration, we specified :TT in order to send the saurce
listing file to the console screen.

After you have completed your input, compilation begins. The
source listing file is sent to the console screen as the source file is
read.

5. Look for errar messages.

As your program is compiled, error messages are displayed on the
terminal screen. For the demonstration program, there should be no
error messages displayed. When the compiler has finished, it
displays the message:

18674 Bytes Available
18190 Bytes Free

0 Warning Error(s)
0 Severe Error(s)

(The number of bytes available and bytes free varies with a
particular system.) Program control is then returned to the operating
system.

At this point, you should see a new file named DEMO/REL listed in
the directory.

6. Link routines in the runtime library to your REL file.

Linking is accomplished with the L80 linker (the file named L80).
Perform the following steps to link DEMO/REL to needed runtime
support.

a. Invoke LB80.
To invoke L8@, enter:
L&

Your computer will search your disk for L80, ioad it, and
then return the asterisk (*) prompt.

If you want o stop the linking process, and you have
entered only L8O and nothing mare, you can exit to
TRSDOS by pressing the <BREAK=> key.

18

. b. Enter the name(s) of file(s) you want loaded and linked.
L8O performs the following operations:
Loads relocatable object (REL) modules

Computes absolute addresses for all local references
within modules

Resolves all unbound globai references between
loaded modules

Saves the linked and loaded modules as an
exscutable file on disk

After the asterisk prompt, type the following line to cause
loading, linking, and saving of the program DEMO:

*DEM{) DEMO-N-E

The first part of the command (DEMO) causes loading of
the program DEMO/REL. The —N switch causes an
executable image of the linked file to be saved on your disk
with the name DEMO. This occurs after an automatic search
of the BASRUN/REL runtime library. The file is saved only
after a —E switch is entered on the command line. You may
enter as many command lines as needed before you enter
a —E switch. Note that the —E switch causes an EXIT back to
TRSDOS. BASRUN/REL is automatically searched to satisfy
any unbound global references before linking ends.

. c. Wait.

The linking process requires several minutes. During this
time, the following messages will appear on your screen:

DATA <eprodram-start> <prodram-
end> {bvytes:

“free-bvtes> BYTES FREE
[<start-address> <prodram-end>]

This information is described in Chapter 6, “Linking and
Loading.”

7. Run your program.
To run the executable program, enter:
DEMAO

This causes the runtime module to be loaded. Note that if your
system has only one disk drive, the runtime module must be on the
disk with the executable file.

Once the runtime module is loaded, execution of the program
begins.

This completes the demonstration run. For more detailed
information, see Chapters 3-9 of this manual.

19

CHAPTER 3

Editing A Source Program

A BASIC source program must be written with a text editor capable

of creating a text file with a logical record fength of 1. Any text editor
will do, but the most convenient choice is the editor available within

the BASIC Interpreter. If you have previous experience with BASIC,

there is little need 1o learn how to use a new editor.

It is important to note that the compiler expects its source file in
ASCI tormat. H you edit a file from within BASIC, it must be SAVEd
with the ,A option; otherwise, the interpreter encodes the text of your
BASIC program into special tokens which cannot be read by the
compiler.

BASIC programs you want to compile are, for the most part, written
the same way you write programs to run with the BASIC interpreter.
However, there are certain language differences between the BASIC
Interpreter and the BASIC Compiler that must be taken into account
when compiling new or existing programs.

One of these differences is that the compiler supports
"metacommands,” which are not really part of the BASIC language
but rather commands to the compiler itself. The most powerfu!
metacommand is $INCLUDE, which aliows you to switch BASIC
source files during compilation. $INCLUDE and the other
metacommands are described in detail in Chapter 8.

Another difference is that the interpreter supports a number of
editing and file manipulation commands that are useful mainly when
creating a program. Examples are LOAD, SAVE, LIST, and EDIT.
These are operational commands not supported by the compiler.
Some differences also exist for some of the other statements and
functions. Remember that the editing stage of program development
is when you shoutd account for language differences. See Chapter
9, “A Compiler/Interpreter Language Comparison” for a full
description of these differences.

Note also that the interpreter cannot accept physical lines greater
than 254 characters in length. A physical line is the unit of input to
the interpreter. Interpreter logical lines can contain as many physical
lines as desired.

In contrast 1o the interpreter, the BASIC Compiier accepts logical
lines of up to only 253 characters. If you are using an external editor,
you can create logical lines containing sequences of physical lines
by ending your lines with an underscore. The underscore removes
the significance of the carriage return in the <ENTER> sequence
that ends each line (underscore characters in quoted strings do not
count). This resulis in just a linefeed being presented tc the
compiler. The linefeed is the line continuation character understocod
by the compiler and the interpreter. The ASCII key code for a
linefeed is Control-J.

21

CHAPTER 4

Debugging With The BASIC Interpreter

The easiest way to debug your BASIC source program is to use the
BASIC Interpreter for checking syntax and program logic errors.
Note that debugging with the interpreter is an optional step; it is
possible to create a program without ever running it with the
interpreter.

You may use some commands or functions in your compiled
program that execute differently with the interpreter. In those cases,
you need to use the compiler for debugging. Statements supported
by the compiler but not by the interpreter are listed in Chapter 9, “A
Compiler/interpreter Language Comparison.” The compiler also
supports double precision loop control variables and transcendental
functions, neither of which are supported by the interpreter.

Nevertheless, the language supported by the compiler is intended
to be as similar to that of the BASIC Interpreter as possible. This
allows you to make the BASIC Interpretear your prime debugging
tool, saving you debugging time by avoiding lengthy compifations
and links. Also, the RUN, CONT, and TRON/TROFF statements
make the interpreter a very powerful interactive debugging tool. See
your BASIC Reference Manual for more information on these
statements. :

Note that the interpreter stops execution of a program when an error
is encountered. Any subsequent errors are not caught until the first
detected error is corrected and the program re-RUN. This differs
from the compiler, where all lines are scanned and all detected
errors are reported at compiletime.

23

CHAPTERS

Compiling

After creating a BASIC source pragram that you have debugged
with-the interpreter, your next step is compilation. This chapter
covers:

1. Compiler command line syntax
2. Sample command lings
3. Compiler switches

5.1 Command Line Syntax

Unlike the BASIC Interpreter, the compiler is not interactive. It
accepts only a single command iine containing filenames and
extensions, appropriate punctuation, optionat device designations,
and switches. The placement of these elements when the command
line is entered determines which processes the compiler performs.
To allow users of single-drive system configurations to use the
compiler, the command line can be separated into two command
lines: one to invoke the compiler and the other to specify compilation
parameters.

The'general format for the BASIC Compiler command line is:

BASCOM [<objectfile>] |, {<listfile>]] = <sourcefile>.
l [1 |
|

output files - input file

where: < objectfile> specifies the name to be assigned to the
relocatable (REL) object file.

<listfile> specifies the name to be assigned to the listing
(LST file.

<sourcefile>> specifies the name of the BASIC (BAS)
source file.

The parts of the command line will he explained in detail in the
foliowing sections.

5.2 Using Command Lines

You can specify four possible combinations of files on the compiler
command line. These are:

1. Relocatable object file (REL) only.
2. Listing file (LST) only.

3. Both aREL and a LST file.

4, Neither a REL file nor a LST file.

25

5.2.1

Sample Command Lines

Sample command lines are given below for the four possible file
combinations.

1.

To Generate an Object File (REL) Only

The simplest way to create a REL file is to invoke the
compiler as shown below:

BASCOM <obdectfiles=<sourcefilie’:

In this invocation, <abjectfile> defaults to the default drive
(normally :@). This may or may not be the disk on which

< sourcefile> resides. An optional device designation may
ais¢ be given to either <<objectiite> or <scurcefile>.

. To Generate a Listing File (LST) Only

To create only 4 listing file, invoke the BASIC Compiler as
follows: '

BASCOM »<listfiles={sourcefileX

The generated <listfile> contains a line-by-line listing of the
BASIC source. if you use the -A compiler switch described
later in this section, the cbject code generated for each
BASIC statement is disassembled and fisted along with the
corresponding BASIC statements in your program. Note that
the actual REL file is not in a human-readable form.

To print out a listing file, enter the command line with the
name of the line printer device (:LP) in place of the listing
filename:

BASCOM sl P=<phjectfile:

When you examine your listing, notice the two hexadecimal
numbers preceding each line of the source program. The
first number is the relative address of the code associated
with that line, using @ as the start of the program. The
second number ig the cumulative data area needed so far
during the compilation. These two columns are totaled at the
end of the listing. The left column total is the actual size of
the generated REL file in bytes. The right column total is the
total data area required in byies.

. To Generate both Object and Listing Files

To generate both object and listing files, invoke the compiler
as shown below:

BASCOM <obJdectfilersy<listfiles=
sspnreefiles

You may add optional device desighations at the end of the
<objectfiie> and <listfile> parameters.

26

When your compilation is finished, the foliowing message is
displayed: ' '

XHHXK Brtes Available
XHHXK Brytes Free

KHHH¥ MWarnind Errord{s)
HEHHH Severe Errorf(s}

If severe errors occur, they should be corrected and the
program recompiled.

4. To Suppress Generation of All Output Files

To perform a syntax check of your <sourcefile>, while
suppressing generation of either an <<objectfile> or a
<listfile>, invoke the compifer as follows:

BASCOM =<sourcefile>
or
BABCOM s=<spourcefiles

In this example, the compiler simply compiles the source
program and reports the number of errors and the number of
free bytes. This is the fastest way to perform a syntax check
of your program with the compiler. Bunning a program with
the interpreter allows you to perform an accurate syntax
check only insofar as the language of the BASIC Interpreter
supporis the same language as the BASIC Compifer.

You may want to create output files on a disk ather than the defaults
provided by the compiler, or you may want to create output files with
different extensions or base names than that of your BASIC source
file. To do so, you must actually specify the filenames with the
desired extensions or device designations, as described in the
following sections.

5.2.2 Filename Extensions

You may append a filename extension of up to three characters to a
filename. These extensions may contain any alphanumeric
character, given in any position in the extension. Lowercase letlers
are converted to uppercase. Extensions must be preceded by a
slash { /). :

Keep in mind that the BASIC Compiler and L8 recognize certain
extensions by default. If you give your filenames unique extensions,
you must always remember to inciude the extension as part of the
filename for any filename parameter. When filename extensions are
omitted, default extensions are assumed.

The TRSDQOS default filename extensions used with the compiler
are:

Extension Type of File

/BAS BASIC source file

/REL Relocatahle object file

ILST Listing file _
MAC Editor Assembler source file

27

5.2.3 Device Designations

Each command line field may include device designations that
instruct the compiler where to find files or where to place them.

The disk drive designation is placed after a filename. For example:
DEMDO:1

For the input file (the sourcefile), the drive designation indicates
which device the fite is read from. For output files (objectfile or
listfile), the drive designaticn indicates where the files are written.

Device names supported under TRSDOS are:
Designation Device

@, 1,2, Disk Drives
3
LP Line Printer
TT Console

When device names are omitted, the default is drive .0 if the fils
does not exist; otherwise it is the lowest drive number containing a
file with the same name.

For exampie, the following command line:
BASCOM =DEMO:1

directs the compiler to write the object file to drive .0 if DEMO/REL
does not exist. The following output files are written to drive @, if :0 is
the currently logged drive;

BASCOM DEMO,DEMO=DEMO
BASCOM DEMO=DEMO

When the compiler has finished, it exits to TRSDOS and the currently
logged drive.

5.2.4 Device Names As Filenames

One of the command line options is fo give a device name in place
of a filename. The result of this option depends cn which davice you
specify, and for which command line parameter. Figure 6.1
illustrates some possibilities:

DEVICE | <objectfile> <ligtfile= <sourcefile>
@D, 1, writes file writes file N/A {must be
2,3 to drive fo drive specitied in
specified specified its entirety)
LP N/A writes N/A
(unreadable listing to (output only)
file format) - line printer
TT N/A sends
(unreadable fisting to
file format) console

N/A = Not Allowed

Figure 6.1 Effects of Using Device Designations in Place of File
Names

28

The BASIC Compller is not an interactive program. However, use of
device names in place of filenames allows you to compile lines input
directly from the keyboard, display lines on the screen as they are
compiled, or print out lines on a prmter as they are compiled. For
example:

STT {Console) may be entered in place of list filename.
Example:
DEMO,:TT=0EMD

displays the list file (source and compiled code) for each
line on the screen as it is compiled.

LP (Lineprinter) may be entered in place of list filename.
Example:
DEMO s+ 2 I.P=DEMO

prints the list file (source and compiled code) for each line
on the line printer as it is compiled.

5.3 Compiler Switches

In addition to specifying filenames, extensions, and devices to direct
the compiler to produce object and listing files, you can direct the
BASIC Comnpiler to perform additional or alternate functions by
adding switches to the command line.

Switches may be placed after source filenames or after other
switches, as in the following command line:

BASCOM FOOFOD=FO0-D-X

Switches signal special instructions to be used during compilation.
The switch tells the compiler to “switch on” a special function or to
alter a normal compiler function. More than one switch may be used,
but all must begin with a hyphen (—). Do not confuse these
switches with the linker switches, which are discussed in

Chapter 6.

Compiler switches fall into one of these categories:

1. Convention Switches — Allow you to specify which of two
lexical (language) and execution conventions you want
applied during compitation: version 4.51 or version 5.0,
version 4.51 is the default. If your programs contain version
5.0 features, use the -b switch.

2. Error Handling Switches — Allow you to compile source
programs that contain errar handling routines involving the
ON ERROR GOTO statement plus some form of a RESUME
statement. The two error handling switches are -E and -X.
Error handling routines require line numbers in the REL file.
If you do not use one of the error handling switches, the
compiler does not place line numbers in the REL file. Thus, if
a RESUME statement or ON ERROR GOTO statement is
encountered, a sévere compiler error results.

3. Special Code Switches — Cause the compiler to generate
special code for certain uses or situations. Some of these

29

special code switches cause the compiler to generate larger _ .
and slower code.

Figure 6-2 summarizes the functions of these switches. Following the
figure, you will find detailed descriptions of each switch.

CATEGORY SWITCH ACTION

Conventions -4 Use 4.51 lexical conventions

(default).

-T Use 4.51 execution
conventions (default).

N | Relax line numbering
constraints (not allowed with
-4).

-5 Use BASIC Version 5.3

convention. Use -4-5
together for BASIC lexical
but Version 5.3 execution
conventions. Use -7-5
together for BASIC execution
but Versicn 5.3 lexical
conventions.

krror -E Program has ON ERROR
GOTO with RESUME
<linenumber>,

-X Program has ON ERRCR
GOTO with RESUME,
RESUME @, or RESUME

NEXT.
Special -Z Use Z80 instructions
Code (default).

- Use only 8080 compatible
instructions in the compiled

code.

-A Include listing of
disassembled object code in
the listing file.

-O Substitute the BASCOM/REL

runtime library for BASRUN/
REL as the default runtime
library searched by the
linker.

-D Generate debug code for
runtime error chacking.

-S Write quoted strings to REL
file on disk and not to data
area in BAM.

Figure 6-2. Compiler Switches

30

Each of the switches shown above is explained in detail in the
following sections.

5.3.1

Convention Switches

The default convention switches (-4-T) provide Version 4.51 lexical
arid execution conventions. The -5 switch may be used for Version
5.0 conventions. Each of the convention switches is described

below.
Switch
-4

Action

The -4 switch directs the compiler to use the lexical
conventions of the versian 4.51 BASIC Interpreter.
L.exical conventions are the rules that the compiler uses
to recognize the BASIC language. This is the default
switch.

The following conventions are observed:
1. Spaces are not significant.
2. Variables with embedded reserved words are illegal.

3. Variable names are restricted to two significant
characters.

The -4 default switch forces correct compilation of a
source program in which spaces do not delimit reserved
words, as in the following statement.

FORI=ATOBSTEPC

With the -5 switch, the compiler would assign the
variable "ATOBSTEPC” to the variable “FORL." With the
-4 switch set, the compiler recognizes the lineg as a FOR
statement.

Note: The -4 and -N switches may not be used
together.

The T switch tells the compiler to use BASIC version
4,51 execution conventions. Execution conventions refer
to the implementation of BASIC functions and
commands and what they actually do at runtime. This
switch is the default convention.

With -T specified, the following 4.51 execution
conventions are used:

1. FOR/NEXT loops are always executed at least one
- time.

2. TAB, SPC, POS, and LPOS perform according to
version 4.51 conventions.

3. Automatic floating-peint to integer conversions use
truncation instead of rounding, except in the case
where a floating-point number is being converted to
an integer in an INPUT statement.

31

4. The INPUT statement leaves the variables in the
input list unchanged if anly a carriage return is
entered. If a "?Redo from start” message is issued,
then a valid input list must be given. A carriage
return in this case generates another “7Redo from
start” message.

The -5 switch tells the compiler to use BASIC Version
5.3 execution and lexical conventions.

The -N switch tells the cormnpiler to relax line numbering
constraints. When =N is specified, line numbers in your
source file may be in any order, or they may be
eliminated entirely. With =N, lines are compiled normally,
but unnumbered lines cannot be targets for GOTOs or
GOSUBs. While =N is set, the underiine character
causes the remainder of the physical line to be ignored.
In addition, -N causes the underline character to act as
a line feed so that the next physical line becomeas a
continuation of the current logical line. (See Chapter 3
for more information on physical and logical lines)

The =N switch provides three advantages:

1. Elimination of line numbers increases program
readability.

2. The BASIC Compiler optimizes over entire blocks of
code rather than single lines (for example in
FOR ... NEXT loops.}

3. BASIC source code can more easily be included in a
file with $INCLUDE.

Remember that -N and -4 may not bhe used together,

5.3.2 Error Handling Switches

The error handling switches ailow you to use ON ERROR GOTO
statements in your program. These statements can aid you greatly in
debugging your BASIC programs. However, extra code is
generated by the compiler to handle ON ERROR GOTO statements.

Switch
-E

Action

The -E switch tells the compiler that the program
contains an ON ERROR GOTO/RESUME <linenumber>
construction. To handle ON ERROR GOTO properly, the
campiler must generate extra code for the GOSUB and
RETURN statements. Also a line number address table
(one entry per line number) must be included in the REL
file, so that each runtime error message includes the
number of the line in which the error occurs, To save
memory space and execution time, do not use this
switch unless your program contains an ON ERROR
GOTO statement.

Note: The only RESUME statement that works properly
with -E is RESUME <linenumber>. If your program uses
RESUME, RESUME NEXT, or RESUME @ with an ON
ERROR GOTO statement, use the -X switch instead.

32

The -X switch tells the BASIC Compiler that the program
contains one or more RESUME, RESUME NEXT, or
RESUME @ statements.

The -X switch performs all the functions of the -E switch,
so the two need never be used at the same time. For
instance, the -X switch, like the -E switch, causes a line
number address table to be included in your objact file,
so that each runtime error message includes the
number of the line in which the error occurs. With -X,
however, the line number address table contains one
entry per statement; with -E, the table contains one entry
per line number. :

In order that RESUME statements may be handled
properly, the compiler cannot optimize across
statements. Therefore, do not use -X unless your
program contains RESUME statements other than
RESUME <linenumber>.

5.3.3 Special Code Switches

The special code switches are:

Switch
-Z

Action

The -Z switch tells the compiler to use Z80 instructions
whenever possible. This switch is the default mode.
When the -Z switch is set, several additional Z80
instructions are allowed, in addition to the 8680
compatible instructions normally generated by the
compiler.

The -l switch tells the compiler to use 8080 compatible
instructions, rather than Z8@ instructions. The abject
code is still listed using Z80 instructions, however,

The -A switch includes the disassembled object code
for each source line in the source listing file.

The -0 switch tells the compiler to substitute the
BASCOM/REL runtime library for BASRUN/REL as the
defauit runtime library searched by the linker. When you
use this switch you cannot use the runtime module.

Note that executable files created by linking to
BASCOM/REL do not need the runtime module on disk
at runtime.

The -D switch causes debugging and error handling
code to be generated at runtime. Use of -D allows you to
use TRON and TROFF in the compiled file. Without

-D set, TRON and TROFF are ignored.

With -D, the BASIC Compiler generates somewhat
larger and slower code that performs the foliowing
checks:

1. Arithmetic overflow. All arithmetic operations, both
integer and floating-point, are checkead for averflow
and underflow.

33

2. Array bounds. All array references are checked tc
see if the subscripts are within the bounds specified
in the DIM statement.

3. Line numbers. The generated binary code includes
line numbers so that the runtime error listing can
indicate the line on which an error occurs.

4. RETURN. Each RETURN statement is checked for a
prior GOSUB staterment.

If the -D switch is not set, array bound errors, RETURN
without GOSUB errors, and arithmetic overflow errors do
not generate error messages at compiletime. At runtime,
no error messages are generated either, and erronecus
program execution may result. Use the -D switch to
make sure that you have thoroughly debugged your
program.

The -8 switch forces the compiler to write quoted strings
ihat are longer than 4 characters to your REL file on disk
as they are encountered, rather than retaining them in
memory during the compilation of your program. If this
switch is not set, and your program contains a large
number of long quoted strings, you may run out of
memory at compiletime.

Although the -8 switch allows programs with many
quated strings to take up less memory at compiletime, it
may increase the amount of memory needed in the
runtime environment, since multiple instances of
identical strings will exist in your program. Without -S,
references toe multiple identical strings are combined so
that only one instance of the siring is necessary in your
final compiled program.

34

CHAPTERG

Linkihg and Loading

Alinking loader performs two important programming functions.

First, it loads into memory one or more program files the
programmer selects. The files that L80 loads are called REL files.
REL files are created during the compilation process and contain
relocatable machine code. A REL file is not an executable fite,
Converting a REL file into an executable object file, a process known
as linking, is the second function of the linking loader. Specifically,
the linking loader (L&) searches the REL file (or files if more than
one has been loaded) for all references to subroutines needed to
perform BASIC or other functions such as floating point addition,
printing data, and so on.

Some of the subroutines that are needed are in BASRUN, the
runtime module, which will be brought into memory just prior to
execution of your program. Others, the less commonly used
subroutines, are in BASRUN/REL, the subroutine library. For each
BASIC function, there is either a complete subroutine (or series of
subroutines) stored in BASRUN/REL or there is a reference tc a
subroutine stored in the runtime module.

L80 searches BASRUN/REL to satisfy undefined globals. If the
subroutine needed is stored in BASRUN/REL, L80 links that
subroutine to the loaded program(s). f the reguired subroutine is
stored in the runtime moduie, L80 sets up the code necessary for
the program to find the subroutine.

The final action of the linking loader, if the programmer requests it, is
to save the loaded program(s) and the linked routines in a single
executable disk file.

In addition to these bhasic link loading functions, L86¢ can load and
link assembly language si:broutines written with the Editor
Assembler or FORTRAN Compiler, both available as separate
products. L8O also allows the programmer control over where
program and data areas are to be placed.

The following sections detail use of L80.

6.1 Linker Command Lines
A simple linker command line might look like this on your screen:
L 8o
*PROG-NPROG/REL-E

The asterisk (*) is the L8O prompt. PROG is the name of the
executable file to be created; it is followed by the names of the REL
files to be linked. Note that linker switches have no relation to the
compiler switches discussed in the preceding chapter.

If default filename extensions are to be used, they need not bhe
included in the command line:

L8
#PROG-MPROG-E

35

Both parts of the command line can be typed on the same line. For
example, the following command would perform the same functions
as the preceding example;

Le2 PROG-N:PROG-E

In any of the above examples, the -N switch indicates that an
executable file is to be created, and the -Eswitch tells the linker to
exit to TRSDOS and store the executable file on disk. Before exiting,
the linker automatically searches BASRUN/REL on the currently
logged drive for any as yet undefined global references. (To search
BASCOM/REL instead, use the -O compiler switch; see section 6.2.)
The final linked executable file has the name specified by your
<filename=>=>-N command. Note that the -N switch is essential if you
want to create an executable file.

You must specify the name of the file to store on disk. if you do not,
no executable file is stored.

Linker switches are discussed in detail in Section 6.4 below.

If you choose to link an assembly language subroutine to your
BASIC program, a sample linker invocation might look like this:

L8@
*PROG +MYASMPROG-N~E

In this case, MYASM/REL is the name of the assembiy language
subroutine and PROG/REL is the name of your program. The
subroutine MYASM/REL cannot be assembled with an END

<label> statement. The linker assumes that </abel> is the start .
address of & separate program, and the linker refuses to link two

programs together because their two separate start addresses will

conflict.

When you link a REL file to BASRUN/REL, the BCLOAD/L80 file must
be on disk in the currently logged drive. lf it is not, the following error
message is generated:

TBCLOAD not found: rlease create
header file

More information about BCLOAD/L80 can be found in Section 6.3,

When your linking session is complete, the following message is
generated:

DATA <prodram-start> <Prodram-ends
“bhytesr

“free-hvtes> BYTES FREE
E<start-addresss <prodram-end:]
where the parameters are:

1. <program-start> — Hexadecimal address of the beginning of
your program.

2. <program-end> — Hexadecimal address of the end of your

prograr. | .

3. <<hytes> -— Decimal size of program in bytes.

36

4. <free-bytes> - Decimal size of unused memory in bytes
during linking.

5. <start-address> -— Hexadecimal start address of your
program (not necessarily the same as <program-start>).

Parameters 1, 2, 3, and 5 are referenced by number in Figure 6.1,
which shows the [ink data map for a program linked to BASRUN/REL
and using the runtime module. If you tink to BASCOM/REL and use
the -P and -D linker switches, some of this information is not
‘accurate (see Section 6.4 below for details on linker switches).

Memory
Top Rest of Memory
2. —» -
Extra Runtime Code & Data
User Program Code
5 — 3.
User Program Data
COMMON
1. == -
RUNTIME MODULE
Bottom
of
Memory TRSDOS

Figure 6.1 Link Data Map

For programs linked to BASRUN/REL and using the runtime modute,
the size of the executahile program in bytes is roughly equal to:

<program-end> — <start-address>*1.¢1

Remember that at runtime the runtime module resides in memory
along with your executable file. When execution of your program
begins, the first thing your program does is load the runtime module
* to establish the runtime support environment.

6.2 Runtime Support

Once you have compiled a REL file, you need 1o link your program ta
modules that contain runtime suppart routines. Runtime support is
the body of routines that, in essence, implement the BASIC
language. Your compiled REL file, on the other hand, implements
the particular algorithm that makes your program a unique BASIC
prograrm. _

Runtime support is essential to the execution of all compiled BASIC
programs. It is found in the runtime module and the runtime library.
As arule, only a portion of all possible runtime routines is linked to
your REL file.

The time required for linking all the necessary runtime support
routines is often a problem on microcomputers. Partly for this
reason, the runtime module contains all of the more frequently used

37

routines in one module. Since they all reside in one module, they are
all linked at once, and need not be seafched for in iater linker
searches. The runtime module is autcmatically linked to every
program via a dummy module in BASRUN/REL; it is not present in
memoaory at linktime. (Thus, any program is at least 16K long at
runtime.) If your program needs other less frequently used routines,
these routines are automatically searched for and found in BASRUN/
REL. At linkiime, you cannot use the -P and -D linker switches, since
they will cause errors at runtime. Note that the runtime module must
be accessille on disk when the executable file is run.

When you specify the -0 switch at compiletime, the alternate
runtime library (BASCOM/REL) is substituted for BASRUN/REL as
the default library to be searched at linktime. At linktime you can
then use -P and -D as described in Section 6.4 below. Note that
when BASCOM/REL is selected as the library to be searched, the
runtime module is nat used by your program at all.

There are some advantages to using the BASCOM/REL runtime:

1. For smali, simple programs you may be able to compile and
link programs smaller than the 16K minimum required to
accommodate the BASRUN module. This can be important
in compiling a program for a ROM-based application, where
space is a critical factor.

2. Execution of a compile and iinked file does not require that
the runtime module he on disk at runtime.

There are, however, some distinct advantages to using the BASRUN
runtime module; :

1. COMMON and CHAIN statements can be used to support a
system of programs sharing common data. With BASCOM/
REL, COMMON is not supported and CHAIN is semantically
equivalent to RUN.

2. With BASRUN the CLEAR command is implemented; it is
not implemented with BASCOM/REL.

3. The RUN <linenumber> option to RUN is implemented with
BASRUN; it is not impiemented with BASCOM/REL.

4. When BASRUN is used, the linker can load programs
approximately 12K larger than when BASCOM/REL is used.
In addition, linktime is reduced, since unbound globals do
not have to be searched for in multiple library modutes.

5. The routines in BASRUN are not incorporated into the
executable file. This can save approximately 16K of disk
space per executable file, and also results in slightly faster
CHAINIng.

For more information on using CHAIN and COMMON with a system
of programs, see Appendix A.

38

6.3 The BCLOAD File

Because of the way the BASIC runtime environment is implemented
with the runtime module, the file BCLOAD/L8® must be on one of the
disk drives at linktime.

BCLOAD/L8D contains two pieces of information: the hexadecimal
load address of your program, and the filename of the runtime

module.
BCLOAD/L8Q looks like this if you TYPE it out:
+B400 Lrrodram load address]

BASRUN [filename af the runtime modulel

At runtime, you must have the runtime module in the disk drive
specified in the BCLOAD/L80 file, or an error is generated. The
default location of the runtime module is the currently logged drive.
With any available text editor, you can alter BCLOAD/L80, before
linktime, to specify the disk on which you want the runtime module
to reside at runtime.

The plus sign (+) tells the linker to write the executable file
beginning at the start address of your program instead of at the
program load address. (The start address is the address at which
your program begins execution.) '

6.4 Linkef Switches

As with the BASIC Compiler, you can use switches with L80 to
specify certain functions. Unlike compiler switches, however, L80
command line switches are not always placed at the end of the
command line. Most are placed at the end of the commmand fline,
but some must be placed at the beginning, and some in the middie.

Table 6.1 lists the switches available with L8@. Do not confuse
these switches with the compiler switches.

Full descriptions of the switches by category follow the table.

39

Table 6.1. Linker Switches

CATEGORY SWITCH | ACTION
Exit -E " | Exitto TRSDOS
Save -N Save all previously loaded programs

and subroutines using the name
immediately preceding -N

-N:P Alternate form of -N; save only
program area
Address -P Set start address for programs and
Setting . data. If used with -D, -P sets only the
program: start
-D Set start address for data area only
-R Reset L8O
Library -5 Search the library named
Search immediately preceding -S
Global -U List undefined globals and program
Listing and data area information
(a direct command)
-M List complete global reference map
Radix -0 Octal radix '
Setling -H Reset to hexadecimal radix {default)

Two switches will be used in every linking session. These are the
switches in the first two categories — Exit and Save.

6.4.1 Exit Switch
Switch Action

-E The -E switch causes L80 to execute and then causes
program control to Exit from L8@ and return to TRSDOS
command level. Every link loading command line should
end with the -E switch. While it is possible to exit L8¢ in
other ways (press <BREAK> when at LB@ command
level), the -N switch has no effect unti] L80 sees the -E
switch,

6.4.2 Save Switch
Switch Action

-N This switch saves a memory image of the executable file
on disk, using the filename and extension you specify.
Unless this switch is given in the command ling, no
memory image of the linked fileis saved on disk.
Therefore, you will use this switch almost every time you
link a REL file. To specify which drive contains the
diskette for saving the memory image, insert the drive .
number (:d) between the filename and -N.

40

The -N switch must immediately follow the filename of
each file you wish to save, and it does not take effect
unless a -E switch is given following it. Once the file is
saved on disk, you need anly type BASRUN filename at
TRSDOS command level to run the program.

The default condition of saving an executable file is to
save both program and data areas. If you wish to save
only the program to make your disk files smailer, use the
-N switch in the form™-N:P. With this switch set, only the
program code will be saved. Do not use this -N:P
feature if you compiled your program with the -S switch.

These two switches are all that are required in most L80
operations. Some additional functions are available
through the use of other switches which allow
programmers to manipulate the L80 processes in more
detail. The switches which turn on these additional
functions are arranged in categories according to type
of function. The function of each category is defined by
the category name.

' 6.4.3 Address Setting Switches

Switch
-P

Action

The -P switch is used to set both the program and data
origin. The format of the -P switch is

-P:<address>

The address value must be expressed in the current
radix. The default radix is hexadecimal. You will know if
the radix is set for a base other than hexadecimal
because the radix can only be changed by giving a
switch in the L8® command line.

The default value for the -P switch is :2800.

This switch may be used to set program and data origin
higher to make room for small machine language
subroutines, as described in Section D.2.

The -D switch sets the data area origin by itself. Since
the program origin always staris exactly at the end of
the data area, unless otherwise specified, the -D switch
used by itself has the exact same effect as the -P switch
used by itself. The syntax for the -D switch is the same
as for the -P swiich:

-D:<<address>

The address for the -D sWitch must be in the current
radix. (Hexadecimal is the default radix.)

When the -P switch is used with the -D switch, data
areas load starting at the address given with the -D
switch. (The program will be loaded beginning at the
program origin given with the -P switch.) This is the only
occasion when the address given in -P: is the start
address for the actual program code.

41

The -D switch, like the -P switch, takes effect as soon as
L80 “sees” the switch (the effect is not deferred until
linking is finished), but the -D switch has no effect on
_programs already ioaded. Therefore, it is important to
place the -D switch (as well as the -P switch) before the
data (and programs} you warnt to load at the address
specified.

The -P switch and -D switch must be separated from the
REL filename by a comma. For example,

LB -P:3000,DEMODEWMO-N-E

Additional Note for -P and -D Switches

If your program was compiled with'the -O switch and is too large for
the linking loader, you will sometimes be able to load it anyway if you
use -1J and -P together. This way you will be able to load programs
and data of approximately 33K to 36K, depending on the number of
global symbols.

While L80 is loading and linking, it builds a table consisting of five
bytes for each program relative reference. If you use the -D, -E, or -X
switch, this table contains at least five bytes for every line number.
By setting both -D and -P, you eliminate the need for L8@ to build this
table, thus giving you some exira memory to work with.

The -D and -P switches should not be used for pragrams using the
runtimée module.

To set the two switches, look at the end of the :LP file listing. Take
the number for the total of data, add that number to 2800H, add

another 100H + 1, and the result should be the -P: address for the
start of the program area. The -D switch should be set to -0:2800.

-R The -R switch "resets” L80 to its initialized condition.
L8@ scans the command line before it begins the
functions commanded. As soon as L80 sees the -R
switch, all files loaded are ignored, .80 resets itself, and
the asterisk (*) prompt is returned showing that L80 is
running and waiting for you to enter a command line,

The version of L80 supplied with the BASIC Compiter
defaults the initial load address to 2800+,

6.4.4 Library Search Switch
Switch Action

-5 The -8 switch causes L80 to search the file riamed
immediately prior to the switch for routines, subroutines,
definitions for globals, and so on. In a command line,
the filename with the -S switch appended must be
separated from the rest of the command fine by
commas.

The -5 switch is used to search library files only, such as
BASCOM or FORLIB.

You rarely need to give the -S switch. Only under the
following conditions is it required:

42

. Use BASCOM-S if you have only one drive (see
steps for Running .80 given above).

2. Use FORLIB-S to search the FORTRAN runtime
library if one or more of the programs you are link-
loading is a FORTRAN program.

6.4.5 Global Listing Switches

Switch
-U

Action

The -U switch tells L8® to list all undefined globals, to
the point in the link session when L80 encounters the -U
switch. While this switch is not a defauit setting, if your
program contains any undefined globals, they will be
listed automatically, just as if you had set the -U switch.
if your program contains no undefined globals, the

-actions controlled by the -U switch will not occur unless

-U is given in a command line that does not end with a
-E switch. Globals are the names of agssembly language
subroutines that are called from the REL file. If L8@
cannot find the routing, the global is undefined. Unless
you have written some of your own subroutines and
have directed L80 to load and link them with your
compiled program, you should have no need to use this
switch. BASRUN provides definitions for the gtobals you
need to run your program.

In addition to listing undefined globals, the -U switch
directs L8G to list the origin and the end of the program
and data areas. However, the program portion of the
information is listed only if the -D switch was also given.
If the -D switch was not given also, the program is
stored in the data area, and the origin and end of the
data area include the origin and end of the program.

The -M switch lists all globals, both defined and
undefined, on the screen. The listing cannot be sentfo a
printer. In the listing, defined globals are followed by
their values, and undefined globals are followed by an
asterisk { *).

Both the -M switch and the -U switch list the program
and data area information.

6.4.6 Radix Setting Switches

Switch
-0

Action

The -0 switch sets the current radix to Octal. If you have
a reason to use octal velues in your program, give the
-0 switch in the command line,

The -H switch resets the current radix to Hexadecimal.
Hexadecimal is the default radix. You do not need to
give this switch in the command line unless you
previously gave the -0 switch and now want to return to

hexadecimal.

43

 CHAPTER?7

Running a Program

To run a compiled program, simply enter the filename. For example:
DEMO

This command causes execution of the program DEMO. if the
program has been linked with the BASRUN/REL runtime tlibrary, the
runtime module must be accessible from disk at runtime.

The executable binary file can also be executed from within a
program, as in the following statement:

¢ RUN “PROG"

The executable file can be a binary file created in any programming
language. The CHAIN command is used in a similar fashion. In
either case, an executable binary file is loaded. The runtime module
is not reloaded when you use CHAIN; it is when you use RUN.

It is important to realize that the bulk of the runtime environment is
taken up by the runtime module. This module is automatically loaded
when you initially invoke an executable file requiring the runtime
module. When you RUN a program, the executable file is loaded into
memory. The runtime module is also loaded to create a fresh runtime
environment. Bath files reside in memory simultaneocusly.

45

CHAPTER 8

Metacommands

Metacommands are compiler directives that provide two
capabilities: source file control and listing file control. The available
metacommands are listed in Table 8.1.

Table 8.1 The Metacommands

Default
Name {(+/) Description
FINCLUDE: ' <filename>' Switches compilation from current
source file to saurce given by
: <filename>.
$LIST + Turns on or off source listing.
Errors are always listed.
$OCODE + Turns on or off disassembled
object code listing.
FTITLE: <text>' Sets page title.
FSUBTITLE:<text>' Sets page subtitle.
$LINESIZE:n Sets width of listing, Default is 80.
$PAGESIZE:n Sets length of listing in lines.
Default is 66; 60 are printable.
SPAGE Skips to next page. Line number
is reset.
$PAGEIF:n Skips to next page if less than (n)
lings left.
$SKIP:n Skips (n) lines or to end of page.
+ =0n
- = off

8.1

One or more metacommands can be given at the start of a
comment. Multiple metacommands are separated by whitespace
characters: space, tah, or linefeed. Whitespace between the
elements of a metacommand is ignored. Therefore, the following
metacommands are equivalent:

. REM $PAGE:12
REM $PAGE : 12

Note that no space may appear between the dollar sign and the rest
of the metacommand.

To disable metacommands within comments, place a character that
is not a tab or space before the first dollar sign. For example:

REM x$PAGE:12

Except for $INCLUDE, the metacommands affect the source listing -
only. Many commands can be turned on and off within a listing. For
example, most of a program might use $3OCODE-, with & few
sections using $OCODL + as neéded. However, some
metacommands, due to their nature, apply to an entire compilation.

47

Syntax

In the metacommands listed in Section 8.2, the following rules apply: .

1. A metacommand foliowed by plus (+) or minus (- } is an on/
off switch.

2. The plus (+}or minus (- } given in the heading for each
description of an on/off switch is the default setting of the
given metacommand.

3. A metacommand followed by :n requires an integer (@ < n <
256).

4. A metacommand followed by '<texi>' requires a string.

8.2 Descriptions

The metacemmands available with the BASIC Compiler are:

8.2.1 SINCLUDE:‘<filename>’

The $INCLUDE: <filename>" metacommand allows the compiler to
switch processing of a source file from the current source to the
BASIC file given by the <filename> paramster. When the end of iile
is reached in the included source, the compiler switches back to the
original source and continues compilation. Resumption of
compilation in the original source file begins with the line of source
text that follows the ling in which the $INCLUDE occurred. Therefore,
REM SINCLUDE should always be the last statement on a line, since
the remainder of the line is always treated as part of a comment.

FINCLUDEd BASIC source files may be subroutines, single lines, or
any type of partial program. Note that <filename> must be
surrounded by single quotes and that the default extension is /BAS,

Take care that any variables in the included files match their
counterparts in the main program, and that included lines do not
contain GOTOs to nonexistent lines, END statements, or similarly
erroneous code.

These further restrictions must be observed:

1. Included files must be SAVEd with the ,A option if created
from within the BASIC Interpreter.

2. Included lines must be in ascending order.

3. The lowest line number of the included lines must be higher
than the iine number of the $INCLUDE metacommand in the
main prograrm.

4. The range of {ine numbers in the included file must
numerically precede subseguent line numbers in the main
program.

These restrictions are removed if the main program is
compiled with the -N switch set, since line numbers need
not be in ascending order in this case. For maore information,
see Section 5.3, "Compiler Switches.”

48

5. $INCLUDE metacommands cannot be nested inside other
include files. This means that SINCLUDE can only be used
in the file containing your rmain BASIC program: an
SINCLUDE metacommand eannot appear inside the
included source fila.

6. The $INCLUDE directive must be the iast statement on a
line, and must be part of a comment statement, as in the
following statement:

893 DEFINT I-N =
REM $INCLUDE:'COMMON/BAS’

All other metacommands are designed to control the source listing.
Note, however, that none of the remaining metacommands listed
below have any effect if NUL/LPT is the name of the source listing
file.

8.2.2 SLIST+

The BLIST + metacommand turns on the source listing; $LIST- turns
it off. Metacornmands themselves appear in the listing, except for
$LIST-. The format of the listing file is described in Appendix B,
*Listing File Format."”

8.2.3 S$OCODE +

The $OCODE command controls listing of the generated code in the
listing file. For each BASIC source line, code addresses and
operation mnemonics are listed. Note that $OCQODE- turns off listing
of the generated code, even if the -A switch is used when the
compiler is invoked. $OCODE + turns on the generated code listing,
regardiess of the use of -A.

8.2.4 STITLE:‘<text>’

Sets the name of a title that appears at the top of each page of the
source listing. The string <text> must be less than 60 characters in
length.

8.2.5 $SUBTITLE: '<texi>

Sets the name of a subtitle that appears beneath the title at the top
of each page of the source listing. The string <text> must be fess
than 60 characters in length.

8.2.6 SLINESIZE:n

Sets the maximum length of lines in the listing file. This value
defaults to 8@. The number of characters printed perlingis (n-1).
The integer n must be greater than 49.

8.2.7 S$PAGESIZE:n

Sets the maximum size of a page in the source listing. The default is
66. In order to allow space for the page header, a page has (n-6)
lines printed on it. The integer n must be greater than 16.

49

8.2.8 $PAGE

Forces a new page in the source iisting. The page number of the
listing fite is automaticaily incremented.

8.2.9 S$PAGEIF:n

Conditionally performs $PAGE, above, if there is less than n printed
lines left on the page. If there are n or more lines left on the page, no
action is taken.

8.2.10 S$SKIP:n

Skips n lines in the source listing file. If there are fewer than n lines
left on the current page, the listing skips to the start of the next page.

50

CHAPTER 9

A Compiler/Interpreter
Language Comparison

Differences between the languages supported by the BASIC
Compiler and the BASIC Interpreter must be taken into acceunt
when compiling existing or new BASIC programs. For this reason we
recommend that you first compile the demaenstration program in
Chapter 2, then read Chapters 3-9, and only then begin compiling
other programs.

The differences between the languages supported by the BASIC
Compiler and the BASIC interpreter fall into three main categories:
operational differences, language differences, and ather
differences. The following lists serve as a reference guide to these
differences, with detailed discussion following.

All commands and functions except the metacommands and
commands specific to BASIC are also described in the BASIC
Reference Manual We suggest that for a complete understanding of
a command or function, you read the information in the BASIC
Reference Manual, then see this chapter for specific differences
between the interpreter and compiler implementations.

9.1 Operational Differences

BASIC Interpreter operational commands are not acceptable as
input to the compiler. These include:

AUTO
CLOAD
CONT
CSAVE
DELETE
EDIT
ERASE
LIST
LLIST
LOAD
MERGE
NEW
RENUM
SAVE

9.2 Language Differences

Most programs that run under the BASIC Interpreter will compile
under the BASIC Compiler with little or no change. However, it is
necessary to note differences in the following commands:

CALL
CHAIN
CLEAR
COMMON
DEFxxx
DIM

END

31

FORMNEXT
FRE

MEM

ON ERROR GOTO
REM

RESUME
RETURN

RUN

STOP
TRON/TROFF
USR
WHILE/WEND
WIDTH

The differences in the interpreter/compiler implementations of these
cemmands and statements are described below.

9.2.1 CALL

The CALL statement allows you to call and transfer grogram control
to a precompiled FORTBAN subrouling, or to an assembly language
routine that has been created with the Editor Assembler.

The format of the CALL statement is:
CALL <global-name> [(<argument-list>=) .]

where: <global-name> is the name of the subroutine that you wish
to call. This name must be 1 to 8 characters long and must
be recognized by L80 as a global symbol. That is, <globai-
name> must be the name of the subroutine in a FORTRAN
SUBROUTINE statement, or a PUBLIC symbol in an
assembly language routine.

<argument-list> is optional. It contains arguments that are
passed to an assembly language or FORTRAN subroutine.

Note that it is the responsibility of the assembly language procedure
to preserve the values in the registers at the point where the
procedure was invoked.

Further information on assembly language subroutines is contained
in the discussion of the USR function that follows in this chapter. For
more information on creating and interfacing assembly language
rouiines, see Appendix D of this manual.

Example of CALL statement:
128 CALL MYSUBR (T s K3
Note: If you dc not have FORTRAN, the CALL statement can only
be used with assembly language subroutines.
9.2.2 CHAIN

The BASIC Compiler does not support the ALL, MERGE, DELETE,
and <line number> options to CHAIN. If you wish to pass variables,
it is recommended that the COMMON statement be used. Note that
files are left open during CHAINing.

52

BASIC compiler programs can chain to any executable fiie;
however, they do not pass any command line information.

See Appéndix A for examples of programs using CHAIN.

9.2.3 CLEAR
The BASIC Compiler supports the CLEAR command. The format is:
CLEAR [,<expressiont> [,<expression2>]]

<expresiont> and <axpression2> must be integer
expressions. H specified, the first expression sets the highest
memory location available at compile time. if specified, the
second expression sets the number of bytes avaitable for the
stack during compitation.

- If a value of @ is given for either expression, the appropriate
default is used. The detfault stack size is 256 bytes and the
default top of memory is the current top of memory.

Note that CLEAR is supperted only for programs using the runtime
module, and not for programs linked to the BASCOM/REL runtime
library. '

The CLEAR statement performs the foliowing actions:

Closes all files

Clears all COMMON and user variables
Resets the stack and string space

Resets all numeric variables and arrays tc zero
Resets all string variables and arrays to nuli
Releases all disk buffers

See Appendix C for a memory map showing the location of the
stack, string space, and disk buffers discussed above.

The compiler's CLEAR statement does not clear DEFxxx statements,
as does the interpreter’'s. For the compiler, these declarations are
fixed at compiletime and may not vary.

9.2.4 COMMON

The BASIC Compiler supports’a modified version of the COMMON
statement. COMMON must appear in a program before any '
executable statement. All statements are executable except:

COMMON

DEFDBL, DEFINT, DEFSNG, DEFSTR
DIM

OPTION BASE

REM

$Metacocmmands

Arrays in COMMON must be declared in preceding DIM statements,
and array names must have parentheses when used in COMMON.
For example:

COMMON A (),B%().C()

The standard form of the COMMON statement is referred to as
“blank” COMMON. FORTRAN-style "named” COMMON areas are

53

also supported; however, the named COMMON variables are not
preserved across CHAINS,

The format for named COMMON is as follows:
COMMON /<name>/ <list of variables>

where: <name> is 1 to 6 alphanumeric characters, starting with a
letter. This is useful for communicating with FORTRAN and
assembly language routines without having to explicitly
pass parameters in the CALL statement.

Blank COMMON is used for passing variables between programs. It
is named blank COMMON because COMMON regions arg not
specified. For btank COMMON statements communicating between
CHAINing and CHAINed-to programs, the order of the variables
must be the same in both programs if the sizes of blank COMMON
are different.

To ensure that COMMON areas can be shared between programs,
place blank COMMON declarations in a single include file and use
the $INCLUDE statement in each program. For exampie:

MEMU/BAS

1@ 7 $INCLUDE: ‘COMDEF’

+

+

1g@d CHAIN "PROGL"
PROG1/BAS

i@ ¢ INCLUDE: ‘COMDEF’

+

+

Z@ed CHAIN "MENMU"
COMDEF/BAR

180 DIM A(LBG) BH{Z03)
11®% COMMON I:dsKsACQ)

12@ COMMON AF:BF{) 8 +% + 2
13 REM END COMDEF/BAS

Note that COMMON is not supported by the BASCOM/REL runtime
library. Therefare, do not compile programs with the -O switch if they
contain COMMON staterments.

9.2.5 DEFINT/SNG/DBL/STR

DEFxxx statements designate the storage class and data type of
variables listed as parameters.

The compiler does not "execute” DEFxxx statements, as it does
PRINT statements, for exampie. A DEFxxx statement takes sffect as
soon as it is encountered in your program during compilation.
Once the type has been defined for the listed variables, that type

54

remains in effect either until the end of the program or until another
DEFxxx statement alters the type of the variable. Unlike the
interpreter, the compiler cannot circumvent the DEFxxx statement by
directing flow of contral around it with a GOTQ. For variables given
with a precision designator (i.e., %, !, #, as in A% =B), the type is
not affected by the DEFxxx statement.

Al compiletime, the compiler allocates memory for storage of
designated variakzles and assigns them one of the following data

types:

INTeger,

SiNGie precision floating-point,
DouBLe precision floating-point, or
STRing.

9.2.6 DIM

The DIM statement is similar to the DEFxxx staterment in that it is
scanned ratherthan executed. That is, DIM takes effect when it is
encountered at compiletime and remains in effect until the end of the
program; it cannot be re-executed at runtime. '

If the default dimension (10) has already been established for an
array variable, and that variable s later encountered in a DIM
statement, an "Array Already Dimensioned” error resuits. Therefore,
the practice of putting a collection of DIM statements in a subroutine
at the end of your program generates severe errors. In that case, the
compiler sees the DIM statement only after it has already assigned
the default dimension to arrays declared earlier in the program.

The values of the subscripts in a DIM statement must be integer
constants; they may not be variables, arithmetic expressions, or
floating-point values.

9.2.7 END

During execution of a compiled program, an END statement closes
files and returns control to the operating system. The compiler

‘assumes an END statement at the end of the program, so "running
off the end” {omitting an END statement at the end of the program)
produces proper program termination by defauit. .

9.2.8 FOR/NEXT

Double precision FOR/NEXT locps can be used with the compiler.
All FOR/NEXT loops must be statically nested. Static nesting means
that each FOR must have a single corresponding NEXT. Static
nesting also means that each FOR/NEXT pair must reside within an
outer FOR/NEXT pair. Therefore, the following construction is not
allowed:

55

12, FOR I=1 TO 1@

29 FOrR Jd=1 TO 1@

39 FOR K=1 TO 1@
7@ NEXT J

ge NEXT K

B NEXT I
The following form is correct:
ig FOR I=1 TO 1@

2@ FGR J=1 T0O 1@

3@ FOR ®=1 TO 1@
79 NEXT X

a9 NEXT J

98 NEHXHT I

In addition, do not direct program flow into a FOR/NEXT loop with a
GOTO staterment. The result of such a jump is undefined. as in the
following example:

34 G070 1066

1]

+

+

ag FOR I=1 TO 14

19@ PRINT "InLOOR™

Z@@ MEXT I

9.2.9 FRE

The compiler supports two versions of the FRE statement, one with a
numeric argument and the other with a string argumant,

Examples:
Y = FRE (X)
Y = FRE (5%)

FRE with a numeric érgument always returns zero (0).

FRE with a string argument causes string space (o be bompacted le}
that the free string space is not fragmented. Then FRE returns size of
this single block of string space.

56

1 9.2.10 MEM

In the BASIC Interpreter, MEM returns the armount of free space in
memary. In the compiler, it always returns zero (0).

9.2.11 ON ERROR GOTO

If a program containg ON ERROR GOTO and RESUME
<linenumber> statements, the -E compilation switch must be given
in the compiler command line. If the RESUME, RESUME NEXT, or
RESUME @ form is used, the -X switch must be used instead.

The purpose of these switches is to allow the compiler to function
correctly when error handling routines are included in a program.
See Section 5.3, "Compiler Switches,” for a detailed explanation of
these switches. Note that the use of these switches increases the
size of the REL and execdtable files.

9.2.12 REM

REM statements are REMarks starting with a single quotation mark
or the word REM. Since REM statements do not take up time or
space during execution, REM may be used as freely as desired.
This practice is encouraged for improving the readability of your
programs.

9.2.13 RESUME
See the preceding discussion of ON ERROR GOTO.

9.2.14 RETURN

In addition to the simple RETURN statement, the compiler supports
RETURN <linenumber>. This allows a RETURN from a GOSUB to
an arbitrary <linenumber>, thereby circumventing normai return ot
program control to the statement following the GOSUB statement.

9.2.15 RUN

The BASIC Compiler supports both RUN and RUN <linenumber>. it
does not support the “R™ option with BRUN. If this feature is desired,
the CHAIN statement should be used.

Note that RUN is used for executable files created by the BASIC
Compiler, and does not support the execution of BASIC source files,
as does the interpreter. Other executable files not created with the
BASIC Compiler are executable with the RUN statement. These can
be executable files created in other languages besides BASIC.

9.2.16 STOP

The STOP statement is identical to the END statement, except that it
terminates your program at a point that is not necessarily its end. It
also prints a message telling you at which hexadecimal address you
have stopped. i the -D, -E, or -X compiler switchas are turned on,
then the message prints the line number at which you have stopped.
As with the END statement, STOP closes ali open files and returns
control to the operating system. STOP is normally used for
debugging.

57

9.2.17 TRON/TROFF .

in order to use TRON/TROFF, the compiler -D Debug switch must be
used. Otherwise, TRON and TROFF are ignored and a warning
message is generated.

9.2.18 USR

Although the USR function is implemented in the compiler to call
machine language subroutines, there is no way to pass parameters.
See Appendix D for details on using the USR function.

9.2.19 WHILE/WEND

Like FOR/NEXT loops, WHILE/AWEND constructions should be
statically nested. Static nesting means that each WHILE/WEND pair,
when nested within other FOR/NEXT or WHILE/WEND pairs, cannot
reside partly in and partly outside the nesting pair. For example, the
following construction is not allowed:

FOR I=1 TO 10—
A=COUNT
WHILE A=1

MERT I
A=A-1
WEND

n addition, you should not direct program flow into a WHILE/WEND
loop without entering through the WHILE staternent.

See "FOR/NEXT,” Secticn 9.2.8, for an example of this restriction
and.for an example of correct static nesting.

9.2.20 WIDTH

The WIDTH staternent sets the printed line width in number of
characters for the terminal ar line printer.

The format is:
WIDTH [LPRINT] <linteger expression>

If the LPRINT option is amitted, the line width is set at the terminal. If
LPRINT is included, the iine width is set at the line printer.

The <integer expression> must have a value in the range 15 to 255.
The default width is 72 characters.

If <integer expression> is 255, the line width is “infinite”; that is,
BASIC never inserts a carriage return. However, the position of the
cursor or the print head, as given by the POS or LPOS function,
returns to zero after position 255. ’

58

C) 9.3 TRS-80 Commands In BASIC

The following TRS-80 commands are supported by the BASIC
Compiler:

CLS

DATES

ERRS$ (BASIC 1.3 feature)
INKEY$

MEM

PRINT& pos, . .. _
PRINT@ (row,col), . . .
RANDOM

ROW(arg)

SYSTEM command$
TIME$

9.4 BASIC Compiler Features Not InTRS-80

The BASIC Compiler supports some powerful and efficient features
not supported by TRS-80. These new features compile with no
problems, but keep in mind that you cannot run a program using
these features with your interpreter.

1. Double Precision Transcendental Functions

SIN, CCS5, TAN, 5QR, LOG, and EXP return double precision

. ' results if given a double precision argument. Exponentiation
with double precision cperands will return a double
precision result.

2. Long Variable Names

Variable names may be up to 40 characters long with all 40
characters significant. Letters, numbers, and the decimal
point are allowed in variable names, but the name must
begin with a letter,

Variable names may also include embedded reserved
words. Reserved words include all BASIC commands,
statements, functicn names, and operator names.

Note: Totake advantage of the long variable name
capability, you must specify the -5 switch whenr you enter
the compiler command line. Refer to Section 5.3 for details.

3. Fixed Stack

The BASIC Compiler uses a 256 byte fixed stack at the top of
memaory. Consequently, the programmer cannct branch
indefinitely. For every GOSUB issued, the nrogram must
execute a RETURN. Nesting is allowed, but only up to 100
levels. If this limit is not observed, your program will crash.

o9

9.5 Other Differences

Other differences between the BASIC interpreter and the BASIC
Compiler include:

1. Expression Evaluation — The BASIC Comgiler performs
optimizations, if possible, when evaluating expressions.

2. Use of Integer Variables — The BASIC Compiler can make
optimum use of integer variables as loop control variables.
This allows some functions (and programs) to execute up tc
30 times faster than when interpreted.

3. Double Precision Arithmetic Functions — The BASIC
Compiier allows double precision arithmetic functions,
including all of the transcendentatl functions.

4. Doubie Precision Loop Variables — Unlike the interpreter,
the BASIC Compiler allows the use of double precision loop
control variables,

5. String Space Implementation — To increase the speed of
garbage collection, the implementation of the string space
for the compiler differs from its implementation for the
interpreter,

Each of these differences is described in detail in the fcllowing
seclions.
9.5.1 Expression Evaluation

During expression evaiuation, the BASIC Compiler converts
operands of different types to the type of the more precise cperand.
For example, the following expression:

QR=J%+Al+Q#

causes J% to be converted to single precision and added to Al. Thig
doubte precision result is added to Q#.

The BASIC Compiler is more limited than the interpreter in handling
numeric overflow. For example, when run on the interpreter, the
following statements yield 40000 for A%.

1% = 20000
J% =20000
A% =1%1+J%

That is, J% is added to 1%. Bacause the resuliing number is too
large for an integer representation, the interpreter converts the result
into a floating-point number. The result (42000} is found and
cenverted back to an integer and saved as A%.

The BASIC Compiler, however, must make type conversion
decisions during compilation. It cannot defer until actual values are
known. Thus, the compiler generates code to perform the entire
operation in integer mode and arithmetic overflow occcurs. If the -D
Debug switch is set, the error is detected. Otherwise, an incorrect

answer is produced. ‘

Besides the above type conversion decisions, the compiler performs
certain valid optimizing algebraic transformations before generating _

60

code. For example, the following program could produce an
incorrect result when run:

[% = 20000
J% =-18000
K% = 20000

M% =% + J% + K%

it the compiler actually pertorms the arithmetic in the order shown,
no overtlow occurs. However, if the compiler performs 1% + K% first
and then adds J%, overfiow does occur. The compiler follows the
rules of operdtor precedence, and parentheses may be used to
direct the order of evaluation. No other guarantee of evaluation
order can be made.

9.5.2 Integer Variables

To produce the fastest and most compact object code possible, you
should make maximum use of integer variables. For example, the
following program executes approximately 30 times faster by
replacing "1", the loop control variable, with 1% or by declaring | an
integer variable with DEFINT,

FOR 1=1 TO 10
A)=0
NEXT |

Also, it is especially advantageous to use integer variables to
compute array subscripts. The generated code is significantly faster
and more compact.

9.5.3 Double Precision Arithmetic Functions

The BASIC Compiler allows you to use double precision floating-
point numbers as operands for arithmetic functions, including all of
the transcendental functions (SIN, COS, TAN, ATN, LOG, EXP,
SQR). Only single precision arithmetic functions are supported by
the interpreter.

Your program development strategy when designing a program with
double precision arithmetic functions should be the following:

1. Implement your BASIC program using single precision
operands for ali functions that you later infend to be double
precision.

2. Debug your program with the interpreter to determine the
soundness of your algorithm before converting variables to
doubkle precision,

3. Deciare ali desired variables as douhle precision. Your
algorithm should be sound at this point.

4, Compile and link your program. It should implement the
algorithm that you have already debugged with the
interpreter, but with double the precision in your arithmetic
functions.

61

9.5.4 Double Precision Loop Control Variables

The compiler, unlike the interpreter, allows the use of double
precision loop control variables. This allows you to increase the
precision of increment in loops.

9.5.5 String Space Implementation

The compiler and interpreter differ in their implementations and
maintenance cf string space. With the compiler, using either PEEK
or POKE with VARPTR, or using assembly language routines to
change string descriptors, may result in a “String Space Corrupt”
error. See more information on string space in the discussion of the
CALL statement, Section 9.2.1, and the USR function, Section
9.2.17.

62

APPENDIX A

Creating a System of Programs
with the Runtime Module

The CHAINing with COMMON feature and the runtime module are
designed for creating large systems of BASIC programs that interact
with each other. In this section, a hypothetical system will be
described to show the interactions in a targe system.

The following integrated accounting system contains separate
packages for general ledger, accounts payable, and accounts
receivable. Within each package, the components are sgparate
programs, each of which is separately compiied, linked, and loaded.
At linktime, the load address in the BCLOAD file should be the same
for all programs. ’

Entry into each package is controlled by a main menu program. The
system structure is shown below:

MENU

| I
GL AP AR

T [] [T]

GLO1 GL@2 GLO3 APO1 APB2 APB3 ARO1 ARO2 ARD3

in order to use CHAINiIng with COMMON efiectively, it is important to
jogically structure the system and the COMMON information. In the
system pictured above, COMMON information exists within each of
the packages GL, AP, and AR. Each package contains a system of
three separately compiled pregrams. Furthermore, there may be
COMMON information between MENU and each of the packages.
Note that there may be overlapping sets of COMMON information.

The compiler's COMMON statement is not as flexible as the
interpreter’'s: With the compiler, COMMON areas must be the same
size in programs that CHAIN to each other.

This may be accomplished by:

1. Using the same COMMON declarations in all programs so
that all common information may be shared.

2. Using the same set of COMMON declarations within each of
the three packages, with no information shared with the
other packages or the main MENU program via COMMON.
In this case, there will be three sets of COMMGN
declarations, one for each package.

For a large, integrated system of compiled programs the second
method gives more {lexibility with the compiler, because program
control is switched from package tc package through the main
MENU. Any commen infarmation that could be obtained from MENU
is obtained instead from the main program for each of the packages
GL, AP, and AR. This approach would be used with a single
package.

63

For the system shown above, the use of CHAIN and RUN .
commands in each of the major programs is outlined in the following

program fragments, Note that the RUN statement loads the

specified program as a normal executable file and starts execution.

For compiled BASIC programs, a new copy of the runtime module is

reloaded at that time, allowing a new system of CHAINed programs

to be started. While CHAINIng is in progress, the runtime module is

in control, and therefore does not have to be reloaded for each

program.

MENU/BAD

iege IF MENU=1 THEN RUN "GL*®
ieie IF MENU=Z THEM RUN "APR"
1ez2¢ IF MENU=3 THEN RUN "AR"

GL/BAS Geveral Ledder

1¢ - $INCLUPE: ‘GLCOMDEFS
(GL) COMMON declarations
100@ CHAIN "GLAO1"
191@ CHAIN "GL8Z"
10Z@ CHAIN "GL®3" _
1830 IF MENU=YES THEN RUN "MENU"

AR /BAS Accounts Pavable

i3 7 $INCLUDE: ‘APCOMDEF’
(AP COMMON declarations
139@ CHAIN "APAL"
1318 CHAIN "APaZ"
i3z CHAIN "appd3”
183¢ IF MENU=YES THEN RUN "MENU"

AR/BAS Accounts Receivable

i2 * $INCLUDE: ‘ARCOMDEF’
(AR COMMON declarations
1289 CHAINM "ARGL"
I21@® CHAIN "ARGZ"
1220 CHAIN "ARGZ"
18392 IF MENU=YES THEN RUN "MENU"

Each of the lower level programs XXYY (XX =GL, AP, AR, YY = 01,
02, ©3) should CHAIN back to the package main program XX.

64

APPENDIX B

Source Listing Format

The source listing file format is described below. The discussion is
keyed to the sample listing on the next page.

Every page of the source listing has a header at the top. The left
portion of the first two lines contains the user-assigned title and
subtitle, which are set with the first source line.

In some versions of BASIC, the right side of the second line containg
the date, and the right side of the third line contains the'time. The
“Offset” column specifies the hexadecimal ofiset from the start of the
executable file for each line of source. The "Data” column specifies
the hexadecimal offset from the start of the data segment for any
data values generated by the source line. The “"Source Ling"” column
coniains a source line's line number, along with the line itself. This
line number and the source file name identify runtime errors if the
appropriate error checking is on.

Example: The following source listing is from a program that was
compiled with the -A switch (to include listing of disassembied
cbject code}.

BASIC Compiler PAGE 1
Prodram

Cffset Data Sourceline BASIC Compiler U5,34

oala Pae7 1@ ¢ &#TITLE: ‘BASIC Comeiler’ $SUBTITLE:
‘'Progdram’

o@14 o077 20 DEFINT A-Z2

2914 eao7 30 DIM A(SE)

peld pod7 49 ¢ $0DCODE +

p@14 2027 58 A(@) = 1: AllY = 1

deld *% I1a9@@2d: CALL 432

aal7 * % Loaodpld: Le0@Z2a: LOOP3E@¢: LOIGAdD:
LADDS@:

POL7 * % LD HL @261

aela * % LD (A% HL

A@1D * ¥ LD (A %L+2902) JHL

e 0aBD G@ FOR I=1 TO 24

Pez0 * % Logese: LD HL :@@@a1

ee23 * % LD (I %) +HL

QRZ6 * ¥ 102001

PO26E DPEF 7 A(Z*#{I+1)) =
AI2H(I+1)-1)+A(2%([+1)Y-2)+3

DAZ6 *% Loge7e: LD HL (I %)

@ez9 * % ADD HL +HL

DEZA * % ADD HL +HL
. PoZB * % FUSH HL

P@2C % LD DE A %+@002

PRIF | % ADD HL :DE

Ba3a *% . LD E+{HL)

BE31 * % INC HL.

2337 *% LD D tHL)

033 * % EX DE sHL

e@3d ** LD (T:21) :HL

65

ee37
ee38
@39
po3C
@30
PA3E
DA3F
o4
2243
eadd
gaas
dea6
aed7
dBaA
04
AQ4E
AvaF
ve3d
@53
eas4d
2e53
DASE
Das7
POSE
PASE
PASE
?asC
BASF

*¥
*¥%
%
%
%

**

LR 3
*
* %
* ¥
* ¥
* ¥
¥
* ¥
* ¥
* #*
* %

g0

NEXT 1
LepdaBA:

POP
PUSH
LD
ADD
LD
INC
LD
LD
ADD
INC
INC
INC
LD
FOP
LD
ADD
PUSH
LD
EX
FOP
LD
INC
LD

LD
INC
LB
LD

HL

HL

DE :A %

HL »DE

E .+ (HL)

HL

D (HL)
HL(Tz21)
HLDE

HL

HL

HL

(T:@Z) +HL
HL

DE +A %+0094
HL :DE

HL

HL :{(T:0Z)
DE :HL

HEL

{HLY +E
HL

tHLY +D

HL (T %}
HL

(I %3y HL
HL (I %)

Two kinds of compiler messages appear in the listing: severe errors
and warnings. A cempilation with severe errors should not be linked.
One with only warnings can be used to generate code, but the rasult
may hot execute correctly, Errars and warnings are listed in

Appendix G, “Error Messages.”

Usually the Iccation of an arror in the source line is ingicated by an
up arrow (1), followed by a two-character code. At times, however,
an error in a line is not immediately detected and the error indicator
may point to the end of a statement or the end of line. This is
normally the case with TC ("'toc complex™) errors.

66

APPENDIX C

Memory Maps

The following memory maps show layout of the runtime memaory for

programs linked to the two runtime libraries, BASRUN/REL and

BASCOM/REL. Remember that linking to BASRUN/REL causes the
- runtime module to be used at runtime.

Top of :
Mermory Stack Grows Downward
File Buffers Grow Downward
Mmm
String Space Grows Upward
~——
Extra Runtime Code & Data _;e_lxecutable
ile
User Program Code
- —
Load User Program Data
address Named COMMON
BCLOAD Blank COMMON
e -
RUNTIME MODULE
16K
Contains most
commonly used
library routines
-2800H
Bottom -~
of TRSDOS
Memory ‘

Figure C-1. Runtime memory map of a program using the BASRUN
runtime module.

87

Top of
Memaory

Stack Grows Downward

P W P Ay g

N N N A s i Nl N N N N

File Buffers Grow Downward
T S e P S

T T T e
String Space Grows Upward

Runtime Library
Code and Data

User Program Code

User Program Data

TRSDOS

| executable
file

2800H

Figure C-2. Runtime memery map of a program using the BASCOM/

REL runtime library.

68

APPENDIX D

BASIC Assembly Language Subroutines

Ail versions of BASIC have provisions for interfacing with assembly
language subroutines via the USR function and the CALL statement.

The USR function allows assembly language subroutines to be
called in the same way BASIC intrinsic functicns are called.
However, the CALL statement is the recommended way of
interfacing 280 machine language programs with BASIC. It is
compatible with more languages than is the USR function call, it
produces more readable source code, and it can pass multiple
arguments.

D.1 Memory Allocation

It is important to avoid stack overflow when calling assembly
language subroutines. Therefore, if additional stack space is
needed when an assembly language subroutine is to be cailed, the
BASIC stack can be saved and a new stack set up for use by the
assembly language subroutine, The BASIC stack must be restored,
however, before returning from the subroutine.

The assembly language subroutine can e loaded into memory by
means of the operating system. If you have the Editor Assembler,
routines c¢an be assembled with the Editor Assembler and loaded
using L80.

D.2 USR Function Calls

Although the CALL statement is the recommended way of calling
assembly language subroutines, the USR function call is still
available for compatibility with previously written programs.

The syntax of the USR function is:
USR[<digit> } [<argument> }]

- where: <digit> is from 0 to 9. <digit> specifies which USR routine
is being called (see DEF USR statement, Section 2.13 of
the BASIC Reference Manual). If <digit> is omitted, USR®
is assumed.

<argument>> is ignored by the compiler. Arguments may
be passed only with the use of POKE statements to memory
locations known by the assembly language procedure (see
discussion below).

For each USR function, a corresponding DEF USR statement must
have been executed to define the USR call offset. This oifset
determines the starting address of the subroutine.

When the compiler sees X = USRn (), it generates the following
code:

CALL $U% + const
LD (X%) ,HL

During execution, the program encounters this code, jumps to the
address of the CALL., performs the steps of your subroutine, and
then returns te resume execution where it left off. Your routine should

69

place the integer result of the routine in the HL register pair prior to
returning to the compiled BASIC program.

On return, as shown above, the contents of the HL register pair are
placed in the location of the variable X. Any other parameters to be
passed must be PEEKed from the main BASIC program, and POKEd
into protected memory locations. With this method of passing
parameters, the USR function works quite well. You must take
responsibility, however, to ensure thal your code and any variables
you use are protected. This is more complicated than in the
interpreter because the top of memory painter cannot be set from
within the compiled program. It must bea set prior to executing the
compiled program, if any part of high memory is to be protected.

If you do not want to use the above method of passing parameters,
you have three other choices:

1. If your machine language routine is short enough, you can
store it by making the first string defined in the program
contain the ASCII values corresponding to the hexadecimal
values of your routines. Use the CHR$ function tc insert
ASCIH values in the string. You can then find the start of your
routine by using the VARPTR function.

For example, for the string A$, VARPTR (AS) will return the
address of the length of the string. The next two addresses
are (first) the least significant byte and (than) the most
significant byte of the actual address of the string. This set-
up of the string space is different from the interpreter’s.

Note that strings move around in the string space, sc any
absolute references must be adjusted to reflect the current
memory location of the routing. To make your cade position
independent for the Z80, you should use relative, rather than
absolute jumps.

2. The second method is to reset the default value of the load
address in the BCLOAD/LB0 file. The BCLOAD/LBQ file’s
main purpose is to direct loading of your execuiable
program so that later the runtime module can e loaded
beneath it in memory. By increasing the load address, you
create free protected space between the end of the runtime
module and the start of the loading area. If ycu increase the
load address by 100H, for example, 256 bytes of free space
are created. Machine language routines or data can then be
safely POKEd into this area.

3. A better alternative is to use the Editor Assembler to
assemble your subroutines. Then your subroutines can be
linked directly to the compiled program and referenced
using the CALL statement (see discussion of “CALL,"
section 9.2.1).

70

D.3 CALL Statement

Assembly language subroutine calls can also be made with the
CALL statement. The syntax is:

CALL <global name> [(<argument ligt>)]

where <global name> contains an address that is the starting point
in memory of the subroutine. <global name> cannot be an array
variable name. <argument list> contains the arguments that are
passed to the external subroutine. <argument list>> can contain only
variables.

A BASIC CALL staterment with no arguments generates a simpie Z80
"CALL" instruction. The corresponding subroutine should return with
a simple "RET.” {CALL and RET are 780 opcodes — see a Z80
microprocessor reference manuai for details.)

A subroutine CALL with arguments results in a more complex calling
sequence. For each argument in the CALL argument iist, a
parameter is passed to the subroutine. That parameter is the
address of the low byte of the argument. Therefore, parameters
always occupy two bytes each, regardless of type.

The method of passing parameters depends upon the number of
parameters to pass:

1. If the number of parameters is less than or equal to 3, they
are passed in the registers. Parameter 1 wili be in HL, 2 in
DE (if present), and 3 in BC (if present).

2. If the number of parameters is greater than 3, they are
passed as follows: '

Parameter 1 in HL.
Parameter 2 in DE.

Parameters 3 through n in a contiguous data block. BC will
point to the low byte of this data block (i.e., to the low byte
of parameter 3).

Note that with this scheme, the subroutine must know how many
parameters to expect in order to find them. Conversely, the calling
program is responsitle for passing the correct number of
parameters. There are no checks for the correct number or type of
parameters.

If the subroutine expects mare than 3 parameters and needs to
transfer them 1o a local data area, a systemn subroutine named $AT
will perform this transfer. The $AT routine is listed below (it is located
in the FORTRAN library, FORLIB/REL). The routine is called with HL
pointing to the local data area, BC pointing to the third parameter,
and A containing the number of arguments to transfer (i.e., the total
number of arguments minus 2).

71

The subrouting is responsible for saving the first two parameters .
before calling $AT. For example, if a subroutine expects 5
parameters, it should look like this:

SUBR: LD {Pi):HL 3iSAVE PARAMETER 1
EX HL :DE
LD (P2) +HL 3FSAVE PARAMETER 2
LD A3 iNGC., OF PARAMETERS LEFT
LD HL »P3 iPOINTER TO LOCAL AREA
CALL SAT## FSTRANSFER THE OTHER 3
PAKAMETERS

+
[Body of subroutinel
t

t

RET IRETURN 7O CALLER
P1: DS 2 iSPACE FOR PARAMETER |
P2z Db 2 iSPACE FOR PARAMETER 2
P3: DS G iSPACE FOR PARAMETERS 3-9

The argument transfer routine $AT is:

1 i ARGUMENT TRANSFER

2 iBC POINTS TO 3RD PARAM.

3 FHL POINTS TO LOCAL STORAGE FOR FARAM 3

4 iA CONTAINS THE # OF PARAMS TD XFER (TOTAL-2)

5

B

7 .

=] EAT:: EX HL:DE 3S5AVE HL IN DE

g LD H:B

19 LD L.C fHL = PTR TO PARAMS

11 AT1: LD Cs(HL)

12 INC HL

i3 LD B (HL)

14 INC HL tBC = PARAM ADR

15 EX HL:DE §HL POINTS TO LOCAL
STORAGE

16 LD (HL) :C

17 INC HL

18 LD (HL) »B

19 INC HL iSTORE PARAM IN LOCAL AREA

Z@ K HLsDE SEINCE GOING BACK TO ATI1

21 DEC N FTRANSFERRED ALL PARAMS?

22 Jr NZ+AT1 3iNO: COPY MORE

z3 RET iYES s RETURN

When accessing parameters in a subroutine, remember that they
are pointers to the actual arguments passed.

Note: The programmer must match the number, type, and length

of the arguments in the calling program with the parameters .
expectad by the subroutine. This applies to BASIC subroutines, as

well as those written in assembly language.

72

APPENDIX E

Disk File Handling

Two types of disk data files may be created and accessed by a
BASIC program: sequential files and random access files.

E.1 Sequential Files

Sequential files are easier to create than random files but are limited
in flexibility and speed when it comes to accessing the data. The
data that is written to a sequential fiie is a series ot ASCIl characters
stored, one after another (seguentially), in the order it is sent. It is
read back in the same way.

The statements and functions that are used with segquential files are:

OPEN

PRINT#
PRINT# USING
WRITE#
INPUT #

LINE INPUT#
EOF

- LOC

CLOSE

See the BASIC Reference Manual for a more detailed discussion of
these commands.

E.1.1. Creating a Sequential File

The following program steps are required to create a sequential file
and access the data in the file:

1. OPEN the file in "O” mode. OPEN “O", #1,"DATA"

2. Write data to the file using the WRITE# WRITE#1,A$,B$,C§
statement. (PRINT# may be used
instead, but consult Section 2.51 in the
Reference Manual before doing s0.)

3. To access the data in the file, you must CLOSE #1
CLOSE the file and reOPEN it in “I” QOPEN “I",#1,"DATA”
mode.

4, Use the INPUT# statement to read data INPUT#1,X$,Y$,2%
from the seguential file into the program.

A program that creates a sequential file can also write formatted
data to the disk with the PRINT# USING statement. For example, the
statement

PRINT#1,USING "#### ##,",AB.CD

could be used to write numeric data to disk without explicit
delimiters. The comma at the end of the format string serves o
separate the items in the disk file.

73

The LOC function, when used with a séquential file, returns the
number of sectors that have been written to or read from the file
since it was OPENed. For example,

100 IF LOC(1)=>50 THEN STOP

would end program exacution if more than 5@ sectors had been
written {o or read from file #1 since it was OPENed.

Program 1 is a short program that creates a sequential file, named
"DATA", from information you input at the terminal;

Prodram 1--Create -a Seauential Data File

19 ODPEN "O" %1 ,"DATA"

28 INPUT "NAME"3N%$

25 IF M%="DOME" THEN END

39 IMFUT "DEPARTMENT"3iD%

49 INPUT "DATE HIRED" iH%

o@ PRINT®HI] JN&E§" " sDe5" " 5H$
5@ PRINT:GOTO 2@

Execution of the program with sample input yields the following
example:

NAME®Y MICKEY MOUSE
DEPARTMENT? AUDID/VISUAL AIDS
DATE HIREDY @L1/12/72

NAMETY SHERLOCK HOLMES
DEPARTMENT?T RESEARCH
DATE HIRED? 12/B3/B5

NAME?Y EBENEZER SCROOGE
DEPARTMENT? ACLOUNTING
DATE HIREDY @4/27/78

NaMET SUPER MAMN
DEPARTHENTY MAINTENANCE
DATE HIRED® @8/1B/78

MNAMET etg.

FProgram 2 accesses the file "DATA" that was created in Program 1
and displays the name of everyone hired in 1978;

~3

Frodgram 2--Accessing a Sequential File

1@ OPEN "I .,#1,:"DATA"

S INPUT#I +N$DE sHS

3@ IF RIGHTS(H%.2)="78" THEN PRINT N&
49 QOGTO 24 .

Running the precgram gives:

EBENEZER SCROOGE

SUPER MANN

InPput Past end at address HHMX
Ok

74

Program 2 reads, sequentially, every item in the file. When all the
data has been read, line 20 causes an "Input past end” error. To
avoid getting this error, insert line 15 which uses the EQOF function to
test for end-of-file: :

i3 IF EQF(1) THEN END
and change line 40 to GOTO 15.

E.1.2 Adding Data to a Sequential File

Data can be appended to an existing sequential access file. Itis
important, however, to follow carefully the procedure given bealow.

Warning: If you have a sequential fite residing on disk and later
want to add more data to the end of it, you cannot simply open the
file in Q" mode and start writing data. As soon as you open a
sequential file in "QO” mode, you destroy its current contents.

The following procedure can be used to add data to an existing file
called "NAMES™

1. OPEN "NAMES” in "I mode.

OPEN a second file called "COPY" in "O" mode.
Read in the data in "NAMES"” and write it to "COPY "
CLOSE “"NAMES" and KILL it.

Write the new information to "COPY."”

Rename "COPY" as "NAMES"” and CLOSE.

Now there is a file on disk called "NAMES" that includes all
the previous data plus the new data you just added.

No o~

Program 3 illustrates this technique. It can be used to create or add
onto a file called NAMES. This program also illustrates the use of
LINE INPUT# to read strings with embedded commas from the disk
file. Remember, LINE INPUT# will read in characters from the disk
until it sees a carriage return (it does not stop at quotes or commas)
or until it has read 255 characters.

Prodram 3-- fAddingd Data
to a Seguential File

i® ON ERROR GOTO 2920

2@ OPEN "I",#1,"NAMES"

30 REM IF FILE EXISTS, WRITE IT TO "COPY"

4@ OPEN "0".,#Z,"COPY"

38 I¥ EOF(:) THEN 98

B@ LINE INPUT=H1 A%

7@ PRINT=Z ;A%

Ba GOTO 5@

8¢ CLOSE %1

igd KILL "MAMES™

11¢ RrREM ADD NEW ENTRIES TO FILE

120 N$="" :INPUT "NAME" iN%

130 IF N#$="" THEN Z@d: 'CARRIAGE RETURN
. EXITS INPUT LOOP

id@ LINE INPUT "ADDRESST "ins

13@ LINE INPUT "BIRTHDAY? "iB%

160 PRINT#Z :N# 75

178 PRINTs=Z.A%

188 PRINT#Z:B%

1898 PRINT:GOTO 12¢

28 CLOSE

283 REM CHANGE FILENAME BACK TO "NAMES®

212 NAME "COPY" A5 "NAMES®

200¢ IF ERR=23 AND ERL=Z2 THEM OPEN "0O".
#2,"COPY" 1 REQGUME 120

221¢ ON ERROR GOTO 10

The error handling routine in line 2000 traps a “File does not exist”
error in line 20. If this happens, the statements that copy the file are
skipped, and "COPY" is created as if it were a naw file.

E.2 Random Access Files

Creating and accessing random files requires more program steps
than sequential files. However, there are advantages to using
random files, one of which is that random files require less room on
the disk, because BASIC stores them in a packed binary format. (A
seguential file is stored as a series of ASCII characters.)

The biggest advantage to random files is that data can be accessed
randomly, i.e., anywhere on the disk — it is not necessary to read
through all the information, as with sequential files. This is possible
because the information is stored and accessed in distinct units
called records and each record is numbered.

The statements and functions that are used with random files are;

OPEN
FIELD
LSET/RSET
GET
PUT
CLOSE
LOC
MKD$
MKI$
MKS$
CVvD
CVI
CVS

See the BASIC Reference Manualfor detalled discussion of these
statements and functions.

E.2.1 Creating a Random Access File

The foliowing program steps are required to create a random
access file.

1. OPEN the file for random access ("R” OPEN “R",#1,"FILE",32
mode). This example specifies a record
length of 32 bytes, If the record length is
omitted, the default is 128 bytes.

76

2. Use the FIELD statement to allocate FIELD #1, 20 AS N%, 4
space in the random buffer for the - AS A%, 8ASPS
variables that will be written to the
random file.

3. Use LSET to move the dataintothe ~ LSET N$§=X$
random buffer. Numeric values must be LSET A% =MKS$ (AMT)
made into strings when placed in the LSET P$=TELS$
buffer. To do this, use the “make” :
functions: MKI$ to make an integer value
into a string, MKS$ for a single precision
valug, and MKD$ for a double precision
value,

4. Write the data from the buffer io the disk PUT #1,CODE%
using the PUT statement.

The LOC function with random files returns the “current record
number.” For example, the statement

IF LOC (1)>50 THEN END

ends program execution if the current record number in file #1 is
~higher than 50.

Program 4 writes information that is input at the terminal to a random
file.

Program 4--Create a Random ficcess File

19 DPEN "RY:sl "FILE" s34 :
2@ FIELD #1:20 AS N$: 4 AS A% B A5 Ps
38 INPUT "2-DIGIT CODE":CODEY
4@ INPUT "NAME" iK%

3@ INPUT "AMOUNT" SAMT

G INPUT "PHONE"STEL®:PRINT
70 LSET NE=HS$

B LSET A$=MKSS (AMT)

g9 LSET P&=TELS$

18@ PUT =1 .COD0EY

119 GOTO 382

E.2.2 Accessing a Random Access File
The foliowing program steps are required to access a random file:

1. OPEN the file in "R” mode. OPEN "“R",#1,
“FILE",32
2. Use the FIELD statement to allocate FIELD #1 28 AS NS, 4
space in the random buffer far the AS A%, B ASP3
variables that will be read from the
file.

Note: 1n a program that performs Doth input and outout on the
sarme random file, you can often use just one OPEN statement and
one FIELD statement. -

77

3. Use the GET statement to move the GET #1, CODE%
gesired record into the random
buffer.

4. The data in the buffer may now be PRINT N$
accessed by the program. Nurmeric Print CV5(AS)
values must be converted back to
numbers using the “convert”
functions: CVI for integers, CVS for
single precision values, and CVD
for double precision values.

Program 5 accesses the random file “FILE" that was created in
Program 4. When the two-digit code set up in Program 4 is input, the
information asscciated with that code is read from the file and
displayed:

Program B5--fAiccess a Random Access File

10 OPEN "R",#l,"FILE" +3Z

=@ FIELD #1,2¢ A5 N%: 4 A5 A%+, B AL P%
3¢ INPUT "Z2-DIGIT CODE"SCODEYX

4@ GET #1:CODEX

5@ PRINT N# -

G@ PRINT USING "$$##s.#2z"5CUS(4%)

7@ PRINT P#:PRINT

go GOTO 3@

Program 6 is an inventory program that illustrates random file .
access. In this program, the record number is used as the part

numeer. It is assumed the inventory will contain no more than 100

different part numbers.

Note: This example must be compiled with the “-5" option switch.
Press Break to stop program.

Lines 900-960 initialize the data file by writing CHR$(255) as the first
character of each record. This is used later {line 270 and line 500) to
determine whether an entry afready exists for that part number.

Lines 130-220 display the different inventory functions that the
program performs. When you type in the desired function number,
line 230 branches to the appropriate subroutine.

Frodram B«-~Inventory

OPEN"R" »#1 " INVEN/DAT" .38

FIELD=1,1 A8 F%:30 AS D%, 2 A5 Q%
Z2 AS R$.4 A5 P$

139 PRINT:PRINT "FUNCTIONS:":PRINT

135 PRINT 1,»"INITIALIZE FILE"

1d@ PRINT 2,"CREATE A MEW ENTRY"

120 PRINT 3:"DISPLAY INVENTORY

FORrR ONME PART™

+“ARD TA SGTOCKY

+"BUBTRALT FROM STOCK®

s "DISPLLAY ALL ITEMS BELQOMW

REURDER LEVEL"

TR
-3 k3
LA o

16¢@ PRINT 4
17¢ PRINT 3
i8¢ PRINT B

78

22¢ PRINT:PRINT:INMNPUT"FUNCTION" SFUNCTION

225 IF (FUNCTION<1)OR(FUNCTION:E)
THEN PRINT

. “BAD FUNCTION NUMBER®":GOTO 138

238 ON FUNCTION GOSUB
9599 ,Z50 +390 488,560,680

240 GOTOD 220

200 REM BUILD NEW ENMTRY

260 GOS5UB 84@

270 IF ASC(F#%){ 2535 THEN INPUT"OUVERWRITE"]
A%$: IF A%< >"Y" THEN RETURN

280 LS5ET F&=CHR%(®)

2899 INPUT "DESCRIPTIDN":DESCS

3¢9 LSET D#=DESC%$

31¢ INPUT "QUANTITY IN STOCK"iQ%

228 LSET Q$=MKI$ (L)

338 INPUT "REORDER LEVEL"™IRZ

340 LSET R&=HMKI%{R%L)

35@ INPUT "UNWIT PRICE"IP

369 LSET Ps=HMKS%{P)

379 PUT#1,PARTY

389 RETURN

39¢ REM DISPLAY ENTRY

4¢9 GOSUB B4@ :

419 IF ASC(F®)=2Z53 THEN PRINT
"NULL ENTRY" :RETURN

429 PRINT USING "PART NUMBER ###"3iPARTZL

439 PRINT D% .

448 PRINT USING "QUANTITY ON HAND ##uss!;j
CUI(Q%)

4539 PRINT USING "REORDER LEVEL ##un#s"j
CUT(R%)

468 PRINT USING "UNIT PRICE $$#u#,uu"}
CUS(P%)

478 RETURN

4898 REM ADD TO STOCK

4g¢ GOSUL 840

o@® IF ASC{F®)=255 THEN PRINT
"NULE ENTRY" :RETURN

21@ PRINT D$:INPUT "QUANTITY TO ADD "3A%

SZ0 QU=CUI(Qs)+A%

230 LBET Q#=MKI#{Q%)

o4@ PUT#1,,PARTA

550 RETURN

5269 REM REMOVE FROM STOCK

579 GOBUB g4

580 IF ASC(F%)=253% THEN PRINT
"NUEL ENTRY" sRETURN

390 PRINT D%

G@@ INPUT "QUANTITY TO SUBTRACT":5%

G190 GQX=CVI(Q%)

BZ9 IF (R%-8%)4¢ THEN PRINT "OnNLY"3QZI"
IN BTOCK" :GOTO Gee

B30 Q%L=0%-8%

79

4@

D@
569
57¢
580
599
719
Pl

739
74
8B40
gae

890
geo
g10

Q2@
930
940
as@
850

IF Q#<CVIIR$) THEN PRINT
TQUANTITY NOW" Q%3
" REORDER LEVEL"SOUIIR%)

LSET Q&=MKI%(Q%)

PUT=#1 sPARTA

RETURN

REM DISPLAY ITEMS BELOW REORDER LEWVEL

FOR I=1 T0 19@

GET#1 I

IF CUI(QE)<CVI(R$) THEN PRINT D%3
TOQUANTITY "8 CVI{O4$) TAB(SO)
"REORDER LEVEL"SCUT(R%)

MEXT I

RETURN

INPUT "PART NUMBER"SPARTY

IF{PARTAC1IBR(PARTZ 194 THEN
PRINT "BAD PART NUMBER":
GOTC BdoO
ELSE GET#1,,PARTY:RETURN

END

REM INITIALIZE FILE

INPUT "ARE YOU SURE" iB%:
IF B&<>"Y" THEN RETURN

LSET F$=CHR${(238)

FOR I=1 TO 12@

PUT#1 41

NEXT I

RETURN

80

APPENDIX F

Floating-Point Numeric Format

This discussion provides the information needed to encode and
decode the floating-point representation. This information is
intended for advanced assembly language programmers, and
should not be viewed as an introduction to binary math.

Note that the encoding information presented below pertains only to
integral numbers. Encoding fractional numbers is a very complex
process.

- F.1 Encoding an Integral Floating-Point Number

The floating-point representation is a normalized binary
approximation of the argument numter. It consists of two parts, the
mantissa and the exponent.

The mantissa is a 24-bit (single precision) or 56-bit {double
precision) normalized approximation of the number. The most
significant bit of the mantissa is always assumed to be a 1, after
normalization. Therefore, this bit is free to represent the sign of the
mantissa. :

The exponent is an “excess-80" (88H) representation of the binary
(powers of two) exponent of the number. 80H is added to the binary
exponent, so that positive exponents are assumed to have an
exponent of 8H or greater, while negative exponents are assumed
to have an exponent of 7FH or less. An exponent of zero indicates
the number itself is zero, regardless of the mantissa.

The procedure for enceding an integral number into floating-point
representation consists of 4 steps:

1. convert to binary

2. normalize

3. compute the exponent
4. store

This process may best be explained by example. In the steps
explained below, the number 5.00 is converted to a single precision
number.

1. The conversion to binary may be done in many ways. The
simplest of these is the subtraction method.

This method uses repeated subtractions of the powers of
two until the number is converted. For the purposes of our
example, a partial table of the positive powers of two is
shown:

20=1 =2 2¢2=4 22=8 2¢=16, ...

Subtract the largest power of two that produces a positive
result or zero. If the result is positive or zero; mark a 1 in the
binary equivalent column as shown below. If the result is a
negative number, mark a zerc in the binary equivalent
column. If there is a remainder, repeat the subtraction
process with the next power of two.

81

For example:

Conversion Binary equivalent
5-4=1 — 1
4 (22) is the largest number that can be subtracted from 5.
The result is a remainder of 1.

Now, see if the next power of two (2') can be subtracted
from the remainder.

Conversicn Binary equivalent
1-2=-1 — @1

Since 1-2 produces a negative number, do nct subtract.
Instead, mark a zero.

Repeat the subtraction process with the next largest power
of two (2°=1).

Conversion Binary equivalent
1-1=0 — 101

One will subtract evenly, so the final binary result is 101.

Note: If you get to the point of subtracting 1 and the result
is not zero, you have made an error.

2. Now the binary number must be normalized. This is
accomplished by moving the binary point (the binary
equivalent of the decimal peint) to the feft until it is
immediately left of the leftmost 1 of the number (the Most
Significant Bit); as the point is moved, count the number of
“shifts” that were made. Thus, 101.00 . . . becomes
10100 . ..

The next step in normalization is convarting the Most
Significant Bit into the sign bit. Because floating-point
representation assumes that the Most Significant Bit is 1

(this is why the number is normalized), this bit represents the
sign of the numbper. Since the original number was positive,
the sign bit becomes zero (1 indicates negative). Therefore,
the normalized number is .0010 0002 ...

3. To convert the number to its final form, calculate the
exponent by adding 82H to the number of shifts performed
during normalization. Since the binary point was shifted 3
places, add 3. This resulis in an exponent of 83H. The
floating-point number is therefore .0010 6000 OB VOO
2000 GEDY with an exponent of 83H, or 00 @0 20 83 in Hex.

4. The floating-point number is stored as LSB (Least Significant
Byte), NSB (Next Significant Byte), M5B (Most Significant
Byte), and EXP (Exponent), with LSB at low memory and
EXP at high memory. This is the form presented by a USR
function call or a CALL statement.

82

F.2 Decoding an Integral Floating- Point Number

To decode an integral floating-point number, perform the above
steps in reverse: Find the MSB of the mantissa, check the Most
Significant Bit for sign, set the MSB, and de-normalize. For example,
the following steps are required to decode 00 00 20 83 Hex:

1. Check the Most Significant Bit of the Most Significant Byte
(MSB) for the sign of the number. In this case, the MSB is
0010 0000, so the sign of the number is positive.

2. Set the Most Significant Bit to 1. This results in a binary
number of 1010 BOOO.

3. De-normalize the number by shifting the binary point the
necessary number of places. 83H implies shifting the binary
point 3 places right, giving us 101.@ 8000, or 5 decimal.

F.3 Decoding a Fractional Floating-Point Number

If the number to be converted is a fraction, it will have a negative
exponent, :

A negative exponent (7F or less) simply implies that the binary point
is shifted to the left instead of the right when decoding. Therefore
1010 0000 with an exponent of 7DH would become .0001 @100 after
de-normalization. Because the sign bit was set, we know the original
number was negative. Computing from the negative powers of two,
we have 24+ 2°¢ = 0625+ .015625 = .078125. Since the sign of the
number is negative, the final result is -.@78125.

83

APPENDIX G

Error Messages

During development of a BASIC program with the BASIC Compiler,
four different kinds of errors may occur: BASIC Compiler severe
errors, BASIC Compiler warning errors, L8@ errors, and BASIC
runtime errars. This chapter lists error codes, error numbers, and
error messages.

G.1 Compiletime Errors

For errors that occur at compiletime, the compiler outputs the line
containing the error, an arrow beneath that line pointing to the place
in the line where the error occurred, and a two-character code for
the error. In some cases, the compiler reads ahead on a line to
determine whether an error has actually occurred. In those cases,
the arrow points a few characters beyond the error, or to the end of
the line.

The BASIC Compiletime errors described below are divided into
Severe Errors and Warning Errors.

Severe Errors
. CODE MESSAGE

BS Bad Subscript
: Ilegail dimension value
Wrong number of subscripts

CcD Duplicate Common variable

CN COMMON array not dimensioned
Cco COMMON out of order

oD Array Already Dimensioned

FD Function Already Defined

FN FOR/NEXT Errar

FOR loop index variable already in use
FOR without NEXT

NEXT without FOR
IN INCLUDE Error
S$INCLUDE file not found
LL Line Too Long
LS String Constant Too Long
OM Out of Memory

Array too big

Data memory overflow’

Too many statement numbers
Program memory overflow

Qv Math Overflow

SN Syntax error — caused by one of the following:
llegal argument name
legal assignment target
tegal constant format

85

Negal debug request

lllegal DEFxxx character specification
llegal exprassion syntax

llegal function argument list
lllegal function name

lllegal function formal parameter
lllegal separator

lllegal format far statement number
[fegal subrouting syntax

Invalid character

Missing AS

Missing equal sign

Missing GOTO or GOSUB
Missing comma

Missing INPUT

Missing line numbear

Missing left parenthesis

Missing minus sign

Missing operand in exprassion
Missing right parenthesis
Missing semicolon

Missing slash

Name too iong

Expected GOTO or GOSUB
String assignment reguired
String expression reguired
String variable required

fllegal syntax

Variable required

Wrong number of arguments
Formal parameters must be unigue
Single variable only allowed
Missing TO

lllegal FOR loop index variable
llegal COMMON name

Missing THEN

Missing BASE

lllegal subroutine name

Sequence Error

Duplicate statement number
Statement out of seguence

Too Complex

Expression too complex

Too many arguments in function call
Too many dimensions

Too many variables for LINE INPUT
Too many variables for INPUT

Type Mismatch

Data type conflict
Variable must be of sams type

86

uc Unrecognizable Command
Statement unrecagnizable
Command not implemented

UF Function Not Defined

WE WHILE/WEND Error
WHILE without WEND
WEND without WHILE

1@ Division by Zero
-E Missing "-E" Switch
-X Missing "-X" Switch

Warning Errors

CODE MESSAGE
MC Metacommand Error
ND Array not Dimensioned
Sl ~ Statement Ignered

Statement ignored
Unimplemented command

G.2

?Loading Error The iast file given for input was not a properly
formatted L8O object file.

?0ut of Memory Not enough memory to load program.
?Command Error Unrecognizable L80 command.

7<file> Not Found <file>, as given in the command string, did not
exist.

%Mult. Def. Global YYYYYY

' More than one definition far the global (internai)
symbo! YYYYYY was encauntered during the
loading process. This means two subroutines
with the same ENTRY point were specified in the
L8O command line.

%Overlaying Program Area
Data

?Intersecting Program Area
Data
If you receive either of these error messages,
you have set the -D and -P switches too close
together. Reset the :<address> partion of both
switches so that the locations are farther apart.

87

L8O Errors

Origin Above Loader Memory, Move Anyway (Y or N)? .
Below

Loader memory is 2800H to high memory. If you
received this error message, you specified the
-D or the -P switch with an address outside this
range. Reset the ;<address> porticn of the
switch{es).

?Can’t Save Object File
A disk error occurred when the file was being
saved. AlImost always when you receive this
message, you can assume that there is not
enough disk space free in which to store the
program,

G.3 Runtime Errors

The foilowing errors may occur at program runtime. The error
numbers match those issued by the BASIC Interpreter. The compiler
runtime system prints long error messages followed by an address,
unless -D, -E, or -X is specified in the compiter command line. In
those cases, the error message is also followed by the number of
the line in which the error occurred.

When you receive an error that gives the address where the error

occurred, you can review the listing file to find the correct line

number. Subtract the hexadecimal address of the prcgram origin X
from the error address. Find the difference in the left column of .
hexadecimal numbers in the listing file. When you find the line which

corresponds to the difference between the program origin and the

error address, the line number will be the line which contains the

error.

Note that if you have deleted the listing file, you will need to
recompile it. Enter the command:

BASCOM +.8Tfiles<drive>=BASTile
Or, if you have a printer, obtain a hard copy:
BASCOM +:LP=BASTile
The error numbers given befcw correspond to the value returned for

BASIC.
NUMBER MESSAGE
2 Syntax Error

A line is encountered that contains an incorrect
sequence of characters in a DATA statement.

3 RETURN without GOSUB
A RETURN statement is encounterad for which thaere
is no previous, tnmatched GOSUB statement.

4 QOut of Data
A READ statement is executed when thera are no -
DATA statements with unread data remaining in the .
program.

88

"“\

11

14

20

21

50

51

52

lllegal Function Call
A parameter that is out of range is passed to a math
or string function. A function call error may also occur
as the result of:

A negative or unreasonably large subscript
A negative or zero argument with LOG
A negative argument to SQR
- A negative mantissa with a non-integer exponent

A call to a USR function for which the starting
address has not yet been given

An improper argument to ASC, CHR$, MIDS,
LEFTS, RIGHTS, INP, OUT, WAIT, TAB, SPC,
STRINGS, SPACES, INSTR, or ON . . . GOTO

A string concatenation that is longer than 255
characters

Floating Overflow or Integer Overflow
The result of a calculation is tco large to be
represented within the range allowed for floating point
numbers.

Subscript Out of Range
An array element is referenced with a subscript that is
outside the dimensions of the array. '

Division by Zero
A division by zero is encountered in an expression, or
the operation of involution results in zero being raised
to a negative power.

Out of String Space :
String variables exceed the allocated amount of string
space.

RESUME without Error
A RESUME staterment is encountered before an error
trapping routine is entered.

Unprintable Error
An error message is not available for the error
condition that exists. This is usually caused by an
ERROR with an undefined error code.

Field Overflow
A FIELD statement is attempting to allocate more
bytes than were specified for the record length of a
random file.

internal Error
An internal malfunction occurs in the BASIC Compiler.

Bad File Number
A statement or command references a file with a file
number that is not OPEN or is out of the range of file
numbers specified at initialization.

89

53 File Not Found
A LOAD, KILL, or OPEN statement references a file
that does not exist on the current disk.

54 Bad File Mode
An attempt is made to use PUT, GET, or LOF with a
sequential file, to LOAD a random file, or to execute
an CPEN with a file mode other than |, G, or R.

55 File Already Open
A sequential output mode OPEN is issued for a file
that is already open; or a KILL is given for a file that is
open.

57 Disk /O Error
An l/O error occurred on a disk I/O operation. The
operating system cannot recaver from the error.

58 File Already Exists
The filename specified in a NAME statement is
identical to a filename already in use on the disk.

61 Disk Fuil
All disk space has been allocated.
62 fnput Past End

An INPUT statement reads from a null (empty) tile, or
from a file in which all data has already been read. To
avoid this error, use the EQOF function to detect the
end of file.

63 Bad Record Number
Ina PUT or GET statement, the record number is
either greater than the maximum allowed (32767) or is
equal to 8. :

64 Bad File Name
An illegal form is used for the filename with LOAD,
SAVE, KILL, or OPEN {e.g., a filename with too many
characters),

67 Too Many Filtes
The 255 file directory maximum is exceeded by an
attempt to create a new file with SAVE or OPEN.

The following additional runtime error messages are severe and
cannot be trapped:

Internal Error — String Space Corrupt
Internal Error — String Space Corrupt during G.C.
Internal Error — Ne Line Number

The first two errors usually occur because a string descriptor hag
been improperly modified. (G.C. stands for garbage coilection.) The
last error occurs when the error address cannot be found in the line
number table during error trapping. This occurs if you have forgotten
to use either the -X or -E compiler switch for programs that use
RESUME and ON ERROR GOTO statements.

90

INDEX

SINCLUDE 47

%Mult. Def Global YYYYYY 87

%Qverlaying Program Area 87

LP 28

AIT 28

,A—SAVE option 21

-4 switch (compiler) 30

-5 switch (compiler) 30

-A switch (compiler) 30, 33

-D switch (compiler) 30, 33, 43, 57,
58, 60

-D switch (linker) 40, 41, 87

-E switch (compiler) 30, 32, 57

-E switch (linker) 40

-H switch (linker) 40, 43

-M switch (linker) 40, 43

-N switch (compiler) 30, 32

-N switch (linker) 40, 41

-N:P switch (compiler) 41

-0 switch (compiler) 30, 33

-0 switch (linker) 40

-P switch (linker) 40, 41, 87

-R switch (linker} 40, 42

-5 switch {compiler) 30, 34

-8 switch (linker) 40, 42

-T switch (compiler) 30, 31

-U switch (linker) 40, 43

-X switch {compiler) 30, 33, 42

-Z switch (compiler) 30, 33

4.51 execution switch, -T 31

4.51 |lexical switch, -4 31

5.0 lexical switch, -5 29

?<file> Not Found 87

?Can't Save Object File 88

?Command Error 87

?Loading krror 87

?0ut of Memory 87

A option to SAVE 21

Argument in CALL statement 71

Array variables 61

ASCI format 21

Assembly language subroutines 69

BASCOM/REL 13,33 '

BASIC compiler procedures 21

BASIC learning resources 9

BASIC runtime errars 88

BASRUN 13

BASRUN/REL 13

BCLOAD/L80 39

CALL 52, 69-72

CHAIN 52
CHR$ 70
CLEAR 52

CLOSE 73,76
Code Relative 13
Commands not implemented 59
COMMON 53

BLANK 54

NAMED 54
Compiletime 12
Compiler severe errors 85-87
Compiler syntax 25
Compiletime error messages 85-87
Compiling 25
CONT 23
Convention switches 29
CvD 76
CVI 76
CVvSs 76
Debug code switch, -D 30, 33
Debugging 23

DEFDBL 54
DEFINT 54
DEFSNG 54
DEFSTR 54

Device names as filenames 28-29
DiM 55
Double precision arithmetic 61
Drive designations 28
END 55
EOF 73,75
Error handling 76
Error handling switches 29
Error messages 85-90

linking B7-88

runtime 88-90

severe 85-87

warning 87
Expression evaluation 60
Extensions to filenames 27
FIELD 76
Filename extensions 27
Floating-point representation 81
FOR/NEXT 55
FORLIB/REL 71
Fractional fioating-point numbers 83
FRE 56 '
GET 76
Global Reference 12

Unbound 12

Undefined 12
INCLUDE 48
Include code switch, -A 30, 33
INCLUDE metacommand 47-48
INPUT# 73
Integer variables 61

integral floating-point numbers
L8O errors 87-88
Language comparison 51
Learning more about BASIC
LINE INPUT# 73
Line length 21

Line number switch, -N

Link time 12
Linking 13,18, 356
LIST metacommand 49
LOC 73,76, 77
Long string switch, -S
Loop control variables 51
LSET 77
MEM function 57
Memory Maps 67
Metacommands 47-49
SINCLUDE 48
SLINESIZE 49
BLIST 49
$OCODE 49
SPAGE 50
SPAGEIF 50
SPAGESIZE 49
$3SKIP 50
$SUBTITLE 49
$TITLE 49
MKD$ 77
MKI1$ 77
MKS$ 77
Module 12
Nondisclosure agreement 4
OCQDE metacommand 49
ON ERROR GOTO 57
ON ERROR GOTO switch, -E
ON ERROR GOTO switch, -X
Opcodes 71
CALL 71
RET 71
OPEN 73,76
Operational Differences 51
Operators 60
Optimizations 11
QOrigin above loader memaory
Origin below loader memory
Other differences 60
Overflow 60
PAGE metacommand 50
PAGEIF metacommand 50

30, 34

81

9

30, 32
LINESIZE metacommand 49

30, 32
30

88
88

PAGESIZE metacommand 49

Parameters passed in CALL
statement 71

82

POKE 70

PRINT# 73

PRINT# USING 73

Program development process 14
PUT 76

Random access files 76
Relocatabtle 13

REM 60

RESUME 57

RETURN 57

Routine 13

Royalty information 4

RSET 76)

RUN 23,57

Running a program 45

Running the DEMGC program 19
Runtime 12

Runtime errors 88-90

Runtime library — BASCOM/REL 13
Runtime library — BASRUN/REL 13
Runtime support 13

Runtime sugport routines 13

SAVE 21

Sequential files 73
Severe errors (compiler)
SKIP metacommand 50
Special code switches 33
Statements not implemented
Static nesting 55

STOP 57

Siring space G2

Subscripts 55

SUBTITLE metacommand 49
Switch -N:P 40

85-87

51-52

Switches
Compiler
-4 30
-A 30
-D 30
-E 30
-N 30
-0 30
-5 30
-T 30
-X 30
-z 30
Linker
-D 40
-E 40
-N 40
-P 40
Syntax

compiler 25

Syntax notation
System requirements
TITLE metacommand

Unbound Global Reference
Undefined Global Reference

Warning errors
WHILE . . . wend

280 switch, -Z

93

	Untitled.PDF.pdf
	Untitled.PDF.pdf
	Untitled.PDF.pdf

