

Introduction

Introduction to Compilation
Demonstration Run

Editing

Debugging with the Interpreter
Compiling

Linking

Running a Program

A Compiler/Interpreter Comparison

Error Messages

basic
compiler
user’s manual

! Régistration No.
| es1 18566

R

Information in this document is subject to change without notice and does not represent a
commitment on the part of Microsoft. The software described in this document is furnished
under a license agreement or non-disclosure agreement. The software may be used or copied
only in accordance with the terms of that agreement. It is against the law to copy the software
in this package on cassette tape, disk, or any other medium for any purpose other than backing
up your software.

© Microsoft, 1981

LIMITED WARRANTY

MICROSOFT shall have no liability or responsibility to purchaser or any other person or entity
with respect to any liability, loss or damage caused or alleged to be caused directly or indirectly
by this product, including but not limited to any interruption of service, loss of business or
anticipatory profits or consequential damages resulting from the use or operation of this
product. This product will be exchanged within twelve months from date of purchase if
defective in manufacture, labeling or packaging, but except for such replacement the sale or
subsequent use of this program is without warranty or liability.

THE ABOVE IS A LIMITED WARRANTY AND THE ONLY WARRANTY MADE BY MICROSOFT.
ANY AND ALL WARRANTIES FOR MERCHANTABILITY AND/OR FITNESS FOR A PARTIC.-
ULAR PURPOSE ARE EXPRESSLY EXCLUDED. : _

To report software ‘bugs or errors in the documentation, please complete and return the
Problem Report at the back of this manual.

CP/M is a registered trademark of Digital Research

8102-530-02

Microsoft BASIC Compiler, Version 5.3 July, 1981

ADDENDA TO: The BASIC Compiler User's Manual

There are significant differences between version 5.3 of the
Microsoft BASIC Compiler and previous versions. Major
differences are listed below:

1. CHAINing with COMMON is supported.

2. Runtime support is now organized so that a single
large module contains most of the runtime library.

3. In conjunction with points 1. and 2., now large
systems of programs can be <created that share
common data and use a single runtime environment.

4, Larger programs (l6K larger on the average) can be
compiled and linked.

5. Programs take up significantly less disk space.

See Appendix D of this manual for a further discussion - of
these and other changes.

SYSTEM REQUIREMENTS

The Microsoft BASIC Compiler can be used with most
microcomputers with a minimum of 48K RAM and one disk drive.
We recommend two drives, however, for easier operation. The
compiler operates under the CP/M operating system, which is
required.

CP/M is a registered trademark of Digital Research

Rovyalty Information

For those who want to market application programs, use of
the BASIC Compiler provides you with three major benefits:

1. Increased speed of execution for most programs,

2. Decreased program size for most programs, and
3. Source code security.

When you distribute a compiled program, vyou distribute
highly optimized machine code, not source code.
Consequently, you distribute your program in very compact
form and protect vyour source program from unauthorized
alteration.

The policy for distribution of parts of the BASCOM package
is as follows:

1. Any . application program. that vou generate by
linking to either of the two runtime libraries
{BASLIB.REL - and OBSLIB.REL) may be distributed
without payment of royalties. A copyright notice
reading "PORTIONS COPYRIGHTED BY MICROSOFT, 1981"
must be displayed on the media.

2. ‘However, the BRUN.COM runtime module cannot bhe
distributed without first entering into a license

agreement with Microsoft for such distribution. = A
copy of the license agreement can be readily
obtained by writing to Microsoft. Also, a

copyright notice reading "PORTIONS COPYRIGHTED BY
MICROSOFT, 1981" must be displayed on the media.

3. All other software in vour BASIC Compiler package
cannot be duplicated except for purposes of backing
up your software. Other duplication of any of the
software in the BASIC Compiler package is illegal.

All of the above information is included in the
Non-Disclosure Agreement, which must be signed and returned
to Microsoft at the time the BASIC Compiler is ©purchased.
In order to provide you anv updates or fixes, we must have
your completed form on file. Failure to register and - sign
the non-disclosure agreement voids any warranty expressed or
implied.

CONTENTS

CHAPTER 1 INTRODUCTION
1.1 How to Use this Manual
1.2 Contents of the BASIC Compiler Package
Software
Documentation
1.3 Software

BASCOM - The BASIC Compiler

L80 - The LINK-80 Linking Loader

M80 - The MACRO-80 Macro-—-assembler
BRUN.COM - The Runtime Module

BASLIB.REL - The Runtime Library
OBSLIB.REL - The Alternate Runtime Library

1.4 Documentation

The BASIC Compiler User's Manual
The BASIC-80 Reference Manual
The Utility Software Manual

1.5 Resources for Learning BASIC
CHAPTER 2 INTRODUCTION TO COMPILATION

2.1 Compilation vs. Interpretation

2.2 Vocabulary

2.3 The Program Development Process
CHAPTER 3 DEMONSTRATION RUN

3.1 Compiling

3.2 Linking

3.3 Running a Program
CHAPTER 4 EDITING

CHAPTER 5 DEBUGGING WITH THE BASIC INTERPRETER

CHAPTER 6
6.1
6.2
6.3
CHAPTER 7
7.1
7.2
7.3
CHAPTER 8
CHAPTER 9
9.1
9.2
9.3

CHAPTER 10
10.1
10.2

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

COMPILING

Command Line Syntax

Sample Compiler Invocations
Compiler Switches

LINKING

Sample Linker Sessions

Linking to Compiled BASIC .REL Files
Runtime Support

RUNNING A PROGRAM

COMPILER/INTERPRETER COMPARISON

Operational Differences
Language Differences
Other Differences

ERROR MESSAGES AND DEBUGGING

BASIC Compiletime Error Messages
BASIC Runtime Error Messages

Creating a System of Programs with
the BRUN.COM Runtime Module

ROM-able Code

Memory Map

Differences Between Version 5.3 and
Previous Versions of the BASIC Compiler

CHAPTER 1 -

INTRODUCTION

The Microsoft BASIC Compiler 1is an optimizing compiler
designed to complement Microsoft's BASIC-80 interpreter.
Since BASIC-80 is the recognized standard for microcomputer
BASIC, the BASIC compiler can support programs written for a
wide variety of microcomputers.

In addition, the BASIC Compiler allows vyou to create
programs that:

l. Execute faster in most cases than the same
interpreted programs,

2. Require less memory in most cases than the same
interpreted programs, and are

3. Source-code secure.

These benefits can be critical for real-time applications
such as graphics, where execution speed can often make or
break an application; business applications, where several
CHAINED programs can be supported by a main menu in a single
runtime environment; and commercial applications, where
software is being sold in a competitive marketplace and

source-code security is essential.

There is another major advantage that you gain by owning the
compiler. Because the BASIC Compiler has been created to
support most of the interpreted BASIC-80 language, the
interpreter .and the compiler complement each other, and
provide you with an extrememly powerful BASIC programming
environment. In this environment, vou can quickly RUN and
debug programs from within BASIC-80, and then later compile
those programs to increase their speed of execution and to
decrease their space in memory.

Although the language supported by the BASIC Compiler is not
identical to that supported by the interpreter; the
compiler has been designed so that compatibility is
maintained where ever possible. Note also, that the file
named BRUN.COM contains the majority of the runtime

INTRODUCTION Page 1-2

environment. For this reason, BRUN.COM 1is called the
runtime module. The runtime module is loaded when program
execution begins; later execution of CHAINed programs does
not require reloading. This allows you to develop a system
of related programs that can all be run using the same
runtime environment. The runtime environment required by
your program need not be saved on disk as part of your
executable .COM file. For a system of four programs, this
can save at least 48K of disk space--a substantial savings.

This version (5.3) of the BASIC Compiler is substantially
different from previous versions, These differences are
summarized in Appendix D.

TN

INTRODUCTION Page 1-3
1.1 HOW TO USE THIS MANUAL

The BASIC Compiler User's Manual is designed for wusers who
are unfamiliar with the compiler as a programming tool.
Therefore, this manual provides both a step-by-step
introduction and a detailed technical guide to the BASIC
Compiler and its use. After a few compilations, the User's
Manual then serves as both a refresher on procedures and as
a technical reference.

This manual assumes that the user has a working knowledge of
the BASIC language. For reference information, consult the
BASIC~-80 Reference Manual. If you need additional
information on BASIC programming, refer to Section 1.5 of

- this manual, RESOURCES FOR LEARNING BASIC.

Organization
This manual contains the following chapters:

Chapter 1, INTRODUCTION. Provides brief descriptions of the
contents of the BASIC Compiler package, and gives a list of
references for learning BASIC programming.

Chapter 2, AN INTRODUCTION TO COMPILATION. Gives you an
introduction to the wvocabulary associated with compilers, a
comparison of interpretation and compilation, and an
overview of program development with the compiler.

Chapter 3, DEMONSTRATION RUN. Takes you step by step
through the compiling, linking, and running of a
demonstration program.

Chapter 4, EDITING. Describes how to create a BASIC source
program for later compilation, and how to use the $INCLUDE
compiler directive.

Chapter 5, DEBUGGING WITH THE INTERPRETER. Describes how to
debug the BASIC source file with the BASIC-80 interpreter
before compiling it. Note that Chapter 9, A
COMPILER/INTERPRETER COMPARISON describes differences
between the language supported by the compiler and that

supported by the BASIC-80 interpreter.

Chapter 6, COMPILING. Describes use of the BASIC Compiler
in detail, including descriptions of the command line syntax
and the various compiler options.

Chapter 7, LINKING. Describes how to use LINK-80 to 1link
your programs to needed runtime support. (Note that phe
Utility Software Manual contains further reference material

on LINK-80.)

INTRODUCTION Page 1-4

Chapter 8, RUNNING A PROGRAM. Describes how to run vyour
final executable program.

Chapter 9, A COMPILER/INTERPRETER COMPARISON. Describes all
of the language, operational, and other differences between
the language supported by the BASIC Compiler and that
supported by the BASIC~80 interpreter. It is important to
study these differences and to make the necessary editing
changes in your BASIC program before you use the compiler.

Chapter 10, ERROR MESSAGES. Describes each error message.

Appendices that show you how to create a system of programs
with the BRUN.COM runtime module, and how to generate a
ROM-able program are also provided. Two other appendices
give you a memory map of the BRUN.COM runtime environment,
and describe the differences between this and pre-5.3

versions of the compiler.

INTRODUCTION Page 1-5

NOTATION USED IN THIS MANUAL

For the most part, any punctuation marks or other special
characters used, especially in command formats, are to be
taken literally. Consider these marks as part of the
command format.

However, some special characters used in command formats
have special meanings:

capital letters FOO Indicate that the parameter or
command must be entered exactly as shown.

angle brackets <> Indicate that enclosed text
specifies a class of parameters. Any

"parameter that you enter in this position
must be a valid member of that parameter
class. Hence, <filename> means that you
must enter a legal filename.

Capital letters enclosed by angle brackets
are used to specify non-displayable ASCII
characters. For example, <CR> specifies
entry of a carriage return.

square brackets] Indicate that the enclosed parameter
is optional. For instance,
<filename>[,<filename>] specifies entry of
either one filename or two filenames.

ellipses .o Indicate that the symbols preceding
the =ellipses can be entered as many times
as needed. For example, <filename>...

indicates entry of one or more filenames.

INTRODUCTION Page 1-6

1.2 CONTENTS OF THE BASIC COMPILER PACKAGE

The BASIC Compiler Package contains:

One disk containing the following files:

A Binder

BASCOM.COM - The BASIC Compiler

BRUN.COM - The Runtime Module

BASLIB.REL -The Runtime Library

OBSLIB.REL - The Alternate Runtime Library
BCLOAD - Runtime load information file
L80.COM - The LINK-80 Linking Loader
M80.COM - The MACRO-80 Macro-assembler
CREF.COM - The Cross~-reference Utility
LIB80.COM - The Library Manager

DEMO.BAS - A Demonstration program

with three Manuals including the following:

The BASIC Compiler User's Manual (this manual)
The BASI -80 Reference Manual
The Utility Software Manual

1.3 SOFTWARE

A description follows of the function of the software on
your disk:

1.

BASCOM.COM - (The BASIC Compiler} Compiles BASIC

source files 1into relocatable and linkable .REL
files.

BRUN.COM - (The Runtime Module) A single module

containing most of the routines called from vyour
compiled .REL file. So that the entire BRUN.COM
module 1is not loaded into memory at linktime, a
dummy module that resolves all of the references to
routines in BRUN.COM resides in BASLIB.REL.

BASLIB.REL - (The Runtime Library) A collection of

routines implementing functions of the BASIC
language not found in BRUN.COM. Your .REL file may
contain calls to these routines.

OBSLIB.REL - (The 014 Runtime Librarv) A collection
of modules containing routines that are similar to
the routines Ffound in BASLIB.REL and - BRUN.COM,
above. This library should be used for
applications that you wish to make ROM-able, or for
those that you want to execute as single .COM files
without the BRUN.COM runtime module. This 1library

INTRODUCTION Page 1-7

does not support CHAIN with COMMON, CLEAR, or RUN
<linenumber>. Additional differences are described

in Chapter 6, Linking.

5. BCLOAD - (Runtime load information file) Tells at
what address to load vour program at linktime, and
where to find BRUN.COM at runtime.

6. LB80.COM - (The Linking Loader) Links and 1loads
compiled .REL files, library modules, and assembly
language routines to create an executable .COM

file.

7. M80.COM - (The Macro-Assembler) Assembles assembly
language routines into ..REL files that can later be
linked to your compiled .REL file.

8. CREF.COM - (The Cross-Reference Utility) Creates a
cross-referenced listing of the use of variables in
assembly language prodgrams.

9. LIB80.COM - (The Library Manager) Allows vyou to
create and modify user runtime libraries.

10. DEMO.COM - (A Demonstration Program) Used in
Chapter 3 to demonstrate program development with

the BASIC Compiler.

1.4 DOCUMENTATION

Three manuals come with the BASIC Compiler package: the
BASIC Compiler User's Manual (this manual), the BASIC-80
Reference Manual, and the Utility Software Manual. Each
manual provides specific information necessary for the
successful creation of an executable compiled BASIC program.

THE BASIC COMPILER USER'S MANUAL

This manual is described above in Section 1.1, How To Use
This Manual. See that section for more information.

INTRODUCTION Page 1-8

BASIC-80 REFERENCE MANUAL

The BASIC-80 Reference Manual describes syntax and usage of
Microsoft's standard BASIC language. This is the language
supported by the BASIC Compiler, with the exceptions noted
in Chapter 9 of the BASIC Compiler User's Manual. Note that
the BASIC-80 interpreter itself is not supplied as part of
the BASIC Compiler package.

The BASIC Compiler supports, in some form, all of the
statements and commands described in the BASIC-80 manual,

except:

AUTO CLOAD CSAVE CONT DELETE EDIT
ERASE LIST LLIST LOAD MERGE NEW
RENUM SAVE

IMPORTANT

Language, operational, and other differences
between the BASIC Compiler and the BASIC-80
interpreter are described 1in Chapter 9, A BASIC
COMPILER/INTERPRETER COMPARISON, You should
review the information 1in that chapter before
compiling any of vour programs that already run
without problem when interpreted by BASIC-80.
Only then make any necessary changes.

UTILITY SOFTWARE MANUAL

The Utility Software Manual provides descriptions of the
following pieces of software in vyour BASIC Compiler package:

l. LINK-80
2. MACRO-80

4. CREF-80

1.5 RESOURCES FOR LEARNING BASIC

Microsoft provides complete instructions for using the BASIC
Compiler. However, no teaching material for BASIC
programming has been supplied. The BASIC-80 Reference
Manual is strictly a syntax and semantics reference for the

Microsoft BASIC-80 language.

INTRODUCTION Page 1-9

If you are new to BASIC and need help learning to program in
this language, we suggest the following texts:

l.

2.

Dwyer, Thomas A. and Margot Critchfield. BASIC
and the Personal Computer. Addison-Wesley, 1978.

Simon, David E. BASIC from the Ground Up. Hayden,
1978.

Albrecht, Robert L., LeRoy Finkel, and Jerry Brown.

BASIC. John Wiley & Sons, 1973.

TN

CHAPTER 2

INTRODUCTION TO COMPILATION

2.1 COMPILATION VS. INTERPRETATION

A microprocessor can execute only its own machine
instructions; it cannot execute BASIC statements directly.
Therefore, before a program can be executed, some type of
translation must occur from the statements contained in your

BASIC program to the machine language of your
microprocessor. Compilers and interpreters are two types of
programs that perform this translation. This discussion
explains the difference between these two translation

schemes, and explains why and when vyou want to use the
compiler.

Interpretation

An interpreter performs translation 1line by 1line during
runtime. To exXecute a BASIC statement, the interpreter must
analyze the statement, check for errors, then perform the
BASIC function requested.

If a statement must be executed repeatedly (inside a
FOR/NEXT 1loop, for example), this translation process must
be repeated each time the statement is executed.

In addition, BASIC programs are stored as a linked 1list of
numbered lines, and each 1line 1is not available as an
absolute memory address during interpretation. Therefore,
branches such as GOTOs and GOSUBs cause the interpreter to
examine every line number in a program, starting with the
first, until the line referred to is found.

Similarly, a list of all variables is maintained by the
interpreter. When a reference to a variable is made in a
BASIC statement, this list must be searched £from the
beginning until the variable referred to is found. Thus,
absolute memory addresses are not associated with the

variables in your program.

INTRODUCTION TO COMPILATION Page 2-2

Compilation

A compiler, on the other hand, takes a source program and
translates it into an object file. The object file contains
relocatable machine code, All translation takes place
before runtime; no translation of your BASIC source file

occurs during the execution of your program. In addition,
absolute memory addresses are associated with variables and
with the targets of GOTOs and GOSUBs, so that 1lists of
variables or of 1line numbers do not have to be searched
during execution of your program.

Note also, that the compiler 1is an optimizing compiler.
Optimizations such as expression re-ordering or
sub-expression elimination are made to either increase speed
of execution or to decrease the size of your program.

These factors all combine to measurably increase the
execution speed of your program. In most cases, execution
of BASIC programs is 3 to 10 times faster than execution of
the same program under the interpreter. If maximum use of
integer variables is made, execution can be up to 30 times

faster.

2.2 VOCABULARY

Before you read any farther in this manual, you need to
become familiar with some of the vocabulary that is commonly
used when discussing compilers.

To begin with, you should understand that a BASIC program is
more commonly called a BASIC "source." This source file is
the input file to the compiler and must be in ASCII format.
The compiler translates this source and creates as output, a
new file, called a relocatable "object" file. These two
files have the default extensions .BAS and .REL,

respectively.

Other terms that you should know are related to stages in
the development and execution of a compiled program. These
stages are described below:

Compiletime - That period of time during which the
compiler 1is executing, and during which it is
compiling a BASIC source file and creating a
relocatable object file.

Linktime - That period of time during which the
linker 1is executing, and during which it is
loading and linking together relocatable object
files and library files.

INTRODUCTION TO COMPILATION Page 2-3

Runtime - That period of time during which a
compiled and linked program is executing. By
convention, runtime refers to the execution time
of your program and not to the execution time of
the compiler or the linker.

You should also learn the following terms pertaining to the
linking process and to the runtime support library:

Module - A fundamental unit of code. There are several
types of modules, including relocatable and executable
modules. Relocatable modules are manipulated by the linker.
Your final executable program and BRUN.COM are executable
modules. Note that BRUN.COM 1is special since it is
executable only so that you can see its version number. Its
main purpose is to serve as a library of routines that can

be called at runtime from your compiled program.

Global Reference - A variable name or 1label in a given
module that is referred to by a routine in another module.
Global labels are entry points into modules.

Unbound Globhal Reference - A global reference in a module
that 1is not declared in that module. The linker tries to
"resolve" this situation by searching for the declaration of
that reference in other modules. These other modules are
usually library modules in the runtime 1library. If the
variable or 1label is found, the address associated with it
is substituted for the reference in the first module, and is
then said to be "bound." When a variable is not found, it is
said to be "undefined."

Relocatable - A module is relocatable if the code within it
can be "relocated" and run at different locations in memory.
Relocatable modules contain labels and variables represented
as offsets relative to the start of the module. These
labels and variables are said to be '"code relative." When
the module is loaded by the linker, an address is associated
with the start of the module. The linker then computes an
absolute address that is ‘equal to the associated address
plus the code relative offset for each 1label or variable.
These new computed values become the absolute addresses that
are used in the binary .COM file,

.REL files and library files are - all relocatable modules.
Note that normally a relocatable module contains global
references as well: these are resolved after all 1local
labels and variables have been computed within other
relocatable modules. This process of computing absolute
relocated values and resolving global references is what is

meant by "linking."

INTRODUCTION TO COMPILATION Page 2-4

Routine - Executable code residing in a module. More than
one routine may reside in a module. The BRUN.COM module
contains a majority of the library routines needed to
implement the BASIC language. A library routine usually
corresponds to a feature or sub-feature of the BASIC

language.

Runtime Support - The body of routines that may be linked to
your compiled .REL file. These routines implement various
features of the BASIC language. BRUN.COM, OBSLIB.REL, and
BASLIB.REL all contain runtime support routines. See
Chapter 6, LINKING, for more information on runtime support.

The BRUN.COM Module - A module containing most of the
routines needed to implement the BASIC language. It is a
peculiarity of the BRUN.COM module that it is an executable
.COM file. BRUN.COM, for the most part, is a library of
routines: it is made executable so that vyou can see the
version number of the module.

Use of BRUN.COM gives you the following advantages:
1. True CHAINing is allowed.

2. COMMON can be used to communicate between CHAINed
programs, not just between subroutines.

3, Linktime is reduced, since unbound globals do not
have to be searched for in multiple library

modules.

4, The BRUN.COM module is not explicitly loaded at
link-time, allowing considerably larger programs to
be linked and loaded, since an extra 16K 1is not
contained in your final .COM file.

Note, however, that BRUN.COM must be accessible on disk when
you execute your final .COM file.

The BASLIB.REL Runtime Library- A collection of modules
containing routines for BASIC functions that often are not
used in a program. The transcendental functions, the PRINT
USING function, some error handling code, and other
miscellaneous functions are contained in this library.
These functions are linked to your program only if needed.

BASLIB.REL also contains a module consisting of all the
global references in the BRUN.COM module. This module
exists so that the routines in BRUN.COM can be 1linked to
your compiled .REL file without BRUN.COM 1itself being

brought into memory at linktime.

The ORSLIB.REL Runtime Library - A collection of modules
containing routines almost identical in function to similar
routines contained in BRUN.COM and BASLIB.REL. However,

INTRODUCTION TO COMPILATION Page 2-5

this library does not support the CLEAR command, the RUN
<line-number> option of the RUN command, and COMMON between
CHAINed subprograms. It does support a version of CHAIN
that is semantically equivalent to the simple RUN command.

Link Loading - The process in which the LINK-80 1linking
loader loads modules into memory, computes absolute
addresses for labels and variables in - relocatable modules,
and then resolves all global references by searching the
BASLIB.REL runtime library. After loading and linking, the
linker saves the modules that it has loaded into memory as a
single .COM file on vyour disk. This entire process is
called 1link loading.

Complete understanding of all the above terms 1is not
essential for continued reading. You may want to refer back
to these terms later, as vyou- become familiar with the
compiler and with the linker. We now discuss the program

development process.

INTRODUCTION TO COMPILATION Page 2-6

2.3 THE PROGRAM DEVELOPMENT PROCESS

This discussion of the program development process is keyed
to figure 2.1, Use it for reference when reading this text.

Program development begins with (l.) the creation of a BASIC
source file. The best way to create a BASIC source file is
with the editing facilities of BASIC-80, although vyou can
use any general purpose text editor if you wish. Note that
files must be SAVEd with the ,A option from BASIC-80.

Once you have written a program, vyou should use BASIC-80
(2.) to debug the program by RUNning it to check for syntax
and program logic errors. There are a few differences in
the languages understood by the compiler and the
interpreter, but for the most part they are identical.
Because of this similarity, running a program provides you
with a much quicker syntactic and semantic check of vyour
program than does compiling, linking, and finally executing
a program. Therefore, you should strive to make the
interpreter your chief debugging tool.

After you have debugged your program with the interpreter,
(3.) compile it to check out differences that may exist
between interpreted and compiled BASIC. The compiler flags
all syntax errors as it reads your source file. If
compilation 1is successful, the compiler creates a
relocatable .REL file.

The .REL file is not executable, and needs to be 1linked to
the BASLIB.REL runtime library. You may want to include
your own assembly language routines to increase the speed of
execution of a particular algorithm, or to handle operations
that require a more intimate relationship with the
microprocessor. For these cases, use MACRO-80, the
macro-assembler, (4.) to assemble routines that you can
later link to your program. Similarly, separately compiled
Microsoft FORTRAN subroutines can be linked to your program.
({FORTRAN is a separate product available from Microsoft.
Macro-80 is discussed in the Utility Software Manual.) The
linker (5.) links all modules needed by your program, and
produces as output an executable object file with .COM as
the default extension. This file can be (6.) executed like
any .COM file by simply typing the file's base name (the
file name less its .COM extension).

This program development process 1is demonstrated in the
following chapter, Chapter 3, DEMONSTRATION RUN,

INTRODUCTION TO COMPILATION

Page 2-7
1, Create
+—> | BASIC-80 and edit Other
Interpreter BASIC Text Editor
source
J |
BASIi Source }
2. RUN and
BASIC-80 debug program
Interpreter with interpreter
! v
yes Assembler
“— bugs? Source
no
3. Compile BASIC
BASIC Source, creating v
Compiler .REL file
MACRO-80
l 4, Assemple ASM Assembler
o yes sources if any
+—e— bugs? l
no
BASLIB.REL ASM.REL
Relocatable

object file

LINK-80 «+ 5, Link compiled .REL file to

Linker library, and ASM routines
l } BRUN.COM

.COM file 6. Execute .COM file
l (BRUN.COM and .COM file are

loaded into memory from disk)

Figure 2.1 The Program Development Process

VN

CHAPTER 3

DEMONSTRATION RUN

IMPORTANT

Before beginning this
demonstration run, make a
backup copy of vyour BASIC
Compiler disk. Next, COPY
CP/M on to your copied disk so
that 1t <can be booted up by
itself. Store your master
disk 1in a safe place and work
with this backup copy.

This chapter provides step by step instructions for using
the BASIC Compiler. These steps are outlined wusing a

demonstration program.

We strongly recommend that vou compile the demonstration
program before compiling -any other programs, because this
demonstration run gives you an overview of the compilation
process. Also, you should read Chapters 4 through 9. They
contain important information that is crucial to successful
development of a program.

If you enter commands exactly as described in this chapter,
you should have a successful session with the BASIC
Compiler. If a problem does arise, check and redo each step

carefully.

DEMONSTRATION RUN Page 3-2

The five steps 1in developing a program with the BASIC
Compiler are:

l. Editing (entering and correcting the BASIC program)

2. Debugging with the Interpreter (using BASIC-80 to
RUN your program)

3. Compiling (creating a relocatable object file)

4. Linking (creating an executable object file)
5. Running (executing the program)

Because we have prepared a special debugged demonstration
program on disk, vou do not have to perform the first two
steps in the program development process. Therefore, the
demonstration run begins with compilation. ©Note that we
have SAVEd the demonstration program on disk with the ,A
option, since all files must be in ASCII format to be
readable by the compiler.

3.1 COMPILING

To begin compiling a program, insert a copy of vyour BASCOM
disk in drive A: and boot up your system. The BASCOM disk
contains all of the files that you need to <carry out this
demonstration run, including the demonstration program named
DEMO.COM. In this demonstration all files produced by the
compiler and by the 1linker will be placed on this disk.
Perform the following steps to compile your program:

1. Enter the BASIC Compiler command line.

Invoke the compiler by typing:
BASCOM DEMO,DEMO=DEMO

This command line begins compilation of the source
file, The source file is the last parameter on the
command line, and the .BAS default extension is

assumed.

The compiler generates relocatable object code that
is stored in the file specified by the first
parameter on the command line. This file 1is
created with the default .REL extension.

At the same time, a listing file is written out to
your disk. 1Its file name is that specified by the
second parameter on the command line (following the
comma). This file is created with the default .PRN

extension.

DEMONSTRATION RUN Page 3~3

2. Look for error messages.

When the compiler has finished, it displays the
message "00000 FATAL ERROR(S)", and program control
is returned to CP/M.

At this point, you should see two new files 1listed
in the A: directory: DEMO.REL and DEMO.PRN.

3. Delete the listing file,

You may want to view or print out the listing file
(DEMO.PRN) at this Jjuncture in the demonstration
run. In any event, you should delete the 1listing
file to gain additional disk space. To do this,

type:
ERA DEMO.PRN

Further information on listing files is given in Chapter 6,
COMPILING. You are now ready for the next step--Linking.

3.2 LINKING

Linking is accomplished with the LINK-80 linking loader ({the
file named L80.COM). Perform the following steps to link
DEMO.REL to needed runtime support.

1. Invoke LINK-80.

To invoke LINK-80, simply type:
L80

Your computer will search vour disk for LINK-80,
load it, and then return the asterisk (*) prompt.

If you wént to stop the linking process, and vyou
have entered only L80 and nothing more, you can
exit to CP/M by entering Control-C.

DEMONSTRATION RUN Page 3~4

2., Enter the filename(3) vou want loaded and linked.

LINK-80 performs the following operations:
Loads relocatable object (.REL) modules,

Computes absolute addresses for all local
references within modules,

Resolves all unbound global references between
loaded modules, and

Saves the linked and loaded modules as an
executable (.COM) file on disk.

After the asterisk prompt, type the following line
to cause loading, 1linking, and saving of the
- program DEMO.COM:

DEMO, DEMO/N/E

The first part of the command (DEMO) causes loading
of the program called DEMO.REL, The /N switch
causes an executable image of the linked file to be
saved on your disk with the Name DEMO.COM. This
occurs after an automatic search of the BASLIB.REL
runtime library. The file is only saved after a /E
or a /G switch is entered on the command line. You
may enter as many command lines as needed before
you enter a /E or /G switch. Note that the /E
switch, causes an Exit back to CP/M. If vou
substitute /G for /E here, you cause execution of
the new .COM file after linking. In either case,
BASLIB.REL is automatically searched to satisfy any
unbound global references before linking ends.

3. Wait.

The 1linking process requires several minutes.
During this time, the following messages will
appear on your screen:

DATA <program-start> <program-end> <bytes>

<free-~bytes> BYTES FREE
[<start—-address> <program-end> <num-of-pages>]

This information 1is described 1in Chapter 7,
LINKING.

T,

DEMONSTRATION RUN Page 3-5

4, Examine your directory

Type as follows:
DIR A:

You should see a file named DEMO.COM. This is an
executable file.

3.3 RUNNING A PROGRAM

Once you have compiled and linked your program, it is simple
to run it. From CP/M, enter the program filename, less its
.COM extension. In the case of DEMO.COM, type:

DEMO

The speed of execution of your program should be quite fast
relative to execution of the same program with the BASIC-80
interpreter. Compare speeds of execution by running the

BASIC source program with the interpreter.

LEARNING MORE ABOUT DEVELOPING A PROGRAM

You have successfully developed and run a simple BASIC
orogram. You are now ready to learn the more technical
details that vyou need to know to compile other BASIC
programs. Chapters 4-8 contain more extensive descriptions
of each of the steps you followed in this chapter. Chapter
9 describes all of the language, operational, and other
differences between the BASIC Compiler and the BASIC

interpreter.

TN

CHAPTER 4

EDITING A SOURCE PROGRAM

The creation of your BASIC source program requires the wuse
of a text editor. Most any text editor will do, but the
obvious choice is the 1line editor available from within
BASIC-80. If vyou have previous experience with BASIC-80,
then there is little need to learn how to use a new editor.

It is important to note that the compiler expects its source
file in ASCII format. If you edit a file from within
BASIC-80, it must be SAVEd with the ,A option; otherwise,
the compiler will attempt to read a tokenized encoding of
vour = BASIC program. For more information on -editing,
saving, and loading files with BASIC-80, you should refer to
the BASIC-~80 Reference Manual.

The BASIC Compiler supports a useful feature that 1is not
available when you run a BASIC program under the
interpreter. This 1is the $INCLUDE <filename> compiler
directive. It is called a compiler directive rather than a
BASIC command because it is not really a part of the BASIC
lanqguage. Rather, it is a command to the compiler, thus its
distinctive "$" prefix.

The %$INCLUDE <filename> directive allows vyou to switch
compilation of BASIC source files in mid-stream. It
switches from the source file you specify ~on invoking the
compiler, to the file vyou specify as <filename> in the
$INCLUDE directive (the <filename> parameter does not
require surrounding gquotes). When compilation of the
external file is complete, the compiler switches back to the
original BASIC source and continues compilation.

This process is equivalent to having the text of <filename>
expanded at the location of the %INCLUDE directive in your
BASIC source. (Note that %INCLUDEs cannot be nested.) Any
file that is %INCLUDEd in your BASIC program is called an
INCLUDE file. All INCLUDE files must be SAVE4 with the ,A
option if edited within BASIC-80. If vou use another
editor, this is not the case.

EDITING A SOURCE PROGRAM Page 4-2

You may want to create SINCLUDE files for any COMMON
declarations existing in more than one program, or for
subroutines that you might have in an external 1library of
subroutines. Note that the BASIC-80 interpreter does not
support the %INCLUDE directive, thus a syntax error occurs
when %INCLUDE is encountered during interpretation.

To make INCLUDE files easily included in large numbers of
programs, vyou may want to edit the INCLUDE file so that it
has no line numbers. The compiler supports sequences of
lines without 1line numbers if the /C 1is wused during
compilation. However, the BASIC-80 interpreter does not
allow vyou to create lines without line numbers, so you need
an external editor to do so. Also, line numbers must exist
for any lines that are targets for GOTOs or GOSUBs.

A word here about the differences between the languages
supported by the interpreter and the compiler. The
interpreter supports a number of editing and file
manipulation commands that are useful mainly when creating a
program. Examples are LOAD, SAVE, LIST, and EDIT. These
are operational commands not supported by the compiler.
Some differences also exist for some of the other statements
and functions. Realize that it is during editing that you
should account for language differences. See Chapter 9, A
COMPILER/INTERPRETER COMPARISON for a full description of

these differences.

Note also, that the interpreter cannot accept physical lines
greater than 254 characters in length. A physical line is
the unit of input to the interpreter. Interpreter logical
lines can contain as many physical lines as desired.

In contrast to the interpreter, the BASIC Compiler accepts
logical 1lines of up to only 253 characters in length. If
you are using an external editor, you can create logical
lines containing sequences of physical lines by ending your
lines with an underscore. The underscore removes the
significance of the carriage return in the <CR><LF> sequence
that ends each line (underscore characters in quoted strings
do not count). This results in just a linefeed being
presented to the compiler. The linefeed, <LF>, is the 1line
continuation character understood by the compiler and the
interpreter. The ASCII key code for a linefeed is

Control-J.

CHAPTER 5

DEBUGGING WITH THE BASIC INTERPRETER

You should use BASIC-~80 to interpret your BASIC source, and
thus to check for syntax and program logic errors. Note
that debugging with BASIC-80 is an optional step.

It is possible that you do not have the Microsoft BASIC-80
interpreter, and only own the BASIC Compiler. If this is
the case, you must edit your program with any general
purpose text editor and check for any errors at compiletime.
We strongly urge you to complement the compiler with the
BASIC-80 interpreter Dbecause the combination of the two
gives vyou an extremely powerful BASIC programming
environment.

You may use some commands or functions in - your compiled
program that execute differently with the interpreter. 1In
those cases, you need to use the compiler for debugging.
Note that $%INCLUDE is the only statement supported by the
compiler that is not supported in some form by the BASIC-80
interpreter. Also, the interpreter does not support double
precision transcendental functions as does the BASIC

Compiler.

Nevertheless, the language supported by the compiler is
intended to be as similar to BASIC-80 as possible. This
allows you to make BASIC-80 your prime debugging = tool, and
"to save you debugging time by avoiding lengthy compilations
and links. Also, the RUN, CONT, and TRON/TROFF statements
make BASIC~80 a very powerful interactive debugging tool.
See your BASIC-80 Reference Manual for more information on
these statements.

Note that the interpreter stops execution of a program when
an error 1is encountered. Any subsequent errors are not
caught until the first detected error is corrected and the
program re-RUN, This differs from the compiler where all
lines are scanned and all detected errors are reported at

compiletime.

CHAPTER 6

COMPILING

After creating a BASIC source program that you have debugged
with the interpreter, your next step is compilation. This
chapter covers:

1. Compiler command line syntax,
2. Sample compiler invocations, and

3. Compiler switches.

6.1 COMMAND LINE SYNTAX

Unlike the BASIC-80 interpreter, the <compiler 1is not
interactive. It accepts only a single command line
containing filenames and extensions, appropriate
punctuation, optional device designations, and switches.
The placement of these elements when entering the command
line determines which processes the compiler performs. To
allow users of single-drive system configurations to use the
compiler, the command line can be separated into two command
lines if desired: one to invoke the compiler and the other

to specify compilation parameters.

COMPILING ' Page 6-2

The general format for the BASIC Compiler command line is:

[<objectfile>][,[<listfile>]]=<sourcefile>

|

| |

output files input file

<objectfile> Specifies the name of the relocatable
(.REL) object file,

<listfile> Specifies the name of the 1listing (.PRN)
file,

<sourcefile> Specifies the name of +the BASIC (.BAS)
source file.

When filenames are entered as parameters, the compiler reads
them according to the syntax described above, and assigns
them to the appropriate input and output parameters.

Note that the above syntax is concise and accurate, but can

be fairly cryptic. We will clear wup questions in the
following paragraphs, by examining several sample compiler

invocations.

6.2 SAMPLE COMPILER INVOCATIONS

You can specify on the compiler command 1line, creation of
four possible combinations of files. These are listed

below:

1. A .REL (relocatable object) file only.
2. A .PRN (listing) file only.
3. Both a .REL and a .PRN file.

4, Neither a .REL file nor a .PRN file.

COMPILING ' Page 6-3

Sample

compiler invocations are given below for these

combinations of file productions.

How to Generate both Object and Listing Files

To generate both object and listing files, invoke
the compiler as shown below:

BASCOM <objectfile>,<listfile>=<sourcefile>

The <objectfile> and <listfile> parameters default
to the currently logged drive. You may prefix the
file specifications for these parameters with
optional device designations.

At the end of your compilation, the following
message is displaved:

<number-of~errors> FATAL ERROR(S)
<free~bytes> BYTES FREE

How to Generate an Object (.REL) File Only

The simplest way to create only a .REL file is to
invoke the compiler as shown below: ‘

BASCOM =<sourcefile>

The above example creates an <objectfile> (not
explicitly specified) on the same disk as that
containing the <sourcefile>, The <objectfile> will
have the same base name as your <sourcefile>, For
example, 1f your <sourcefile> is named A:PROG.BAS,
then the <objectfile> will be created with the name
A:PROG. REL., Another way to generate only an
<objectfile> is to enter:

BASCOM <objectfile>=<sourcefile>

In this invocation, <objectfile> defaults to the
disk in the currently logged drive. This may or
may not be the disk on which <sourcefile> resides.
An optional device designation may also be given to
either <objectfile> or <sourcefile>.

3.

How to Generate a Listing (.PRN) File Only

To create only a listing file, 1invoke the BASIC
Compiler as follows:

BASCOM ,<listfile>=<sourcefile>

The generated <listfile> contains a line-by-line
listing of the BASIC source. Also, the object code
gdenerated for each BASIC statement is disassembled
and listed along with the corresponding BASIC
statements in your program. - If you use the /N
compiler switch described later in this section,
listing of the object <code is suppressed. Note
that the actual .REL file is not in a
human-readable form.

As an alternative, you may have the 1listing file
printed out on a line printer. There are two ways
to do this. The first way is to enter Control-P
(to turn on the printer), then enter TYPE DEMO.PRN.
The listing file is simultaneously printed on the
line printer and displayed on your screen. When
the file has been printed, enter Control-P again
(to turn off the printer).

Another way to print out a listing file is to enter
the command line once again, but this time with the
name of the line printer device (LST:) in place of
the listing filename:

BASCOM ,LST:=<sourcefile>

The second method is the faster of the two since it
does not require the creation of a disk file.

When you examine vyour 1listing, notice the two
hexadecimal - numbers preceding each 1line of the
source program. The first number is the relative
address of the code associated with that line,

using the start of the program as 0. The second
number is the cumulative data area needed so far
during the compilation. These two columns are

totaled at the end of the listing. The left column
total is the actual size of the generated .REL file
in bytes. The right column total is the total data
area required in bytes.

TN

COMPILING Page 6-5

4. How to Suppress Generation of Any Output Files

To perform a syntax check of your <sourcefile>, and
to suppress generation of either an <objectfile> or
a <listfile>, invoke the compiler as follows:

BASCOM - ,=<sourcefile>

In the above example, the compiler simply compiles
the source program and reports the number of errors
and the number of free bytes. This is the fastest
way to perform a syntax check of your program with
the compiler. RUNning a program with the
interpreter allows you to perform an accurate
syntax check only insofar as the language of the
BASIC-80 supports the same language as the BASIC
Compiler.

You may want to create output files on a disk other than the
defaults provided by the compiler, or you may want to create
output files with different extensions or base names. than
that of of vyour BASIC source file. To do so, you must
actually specify the filenames with the desired extensions
or device designations, as described below:

Filename Extensions

You may append up to three-characters to filenames as

filename extensions. These extensions may contain any
alphanumeric character, given in any position in the
extension. Lowercase letters .are converted to uppercase.

Extensions must be preceded by a period (.).

Keep in mind that the BASIC Compiler and L80 recognize
certain extensions by default. If you give your filenames
unique extensions, you must always remember to include the
extension as part of the filename for any filename
parameter.

When filename extensions are omitted, default extensions are
assumed.

The relevant default filename extensions under CP/M are:

EXTENSION TYPE OF FILE

«BAS BASIC source file

.REL Relocatable object file
- .COM Executable object file

.PRN Listing file

.MAC ~ MACRO-80 source file

COMPILING Page 6-6

Device Designations

Bach command line field may include device designations that
instruct the compiler where to find files or where to output
files.

The device designation is placed in front of a filename.
For example:

B :DEMO

A device designation may be up to three alphanumeric
characters. Note also that the device name must alwavs

include the colon (:).

For the input file, (the <sourcefile>), the device
designation indicates from which device the file is read.
For output files (<objectfile>, <listfile>), the device
designation indicates where the files are written.

Device names supported under CP/M are:

DESIGNATIONS DEVICES

A:, B:, C:, etc. Disk Drives

LST: Line Printer

TTY: CRT (or Teletype)

When device names are omitted, the command scanner defaults
to the currentlv logged disk drive. The only exception to
this occurs if a drive 1is specified as the device for
<sourcefile>, but no filenames are specified for
<objectfile> or <listfile>. In this case, the compiler
writes the output files to the drive specified for the
~<sourcefile>.

Take for example, the following command line:
BASCOM =B:DEMO

This command line directs the compiler to write the object
file to the disk in drive B:, regardless of the location of

the currently logged drive.

In all other cases, the default device is the currently
logged drive. This may, or may not be the disk on which the

compiler resides.

COMPILING

For instance,

in the

following

examples,

Page 6-7

if A: is

the

currently logged drive, then the output files are written to

drive A:.

BASCOM DEMO,DEMO=B:DEMO

BASCOM ,DEMO=B:DEMO

When the compiler has finished compilation,

and the currently logged drive.

Device Names as Filenames

Giving a device name in place of a
option.
device you specify, and for which

line

The

result

filename 1is a

it exits to C/PM

command

of this option depends on which

command

Figure 6.1 illustrates the possibilities:

line

parameter.

DEVICE <objectfile> <listfile> <gourcefile>

A:, B:, writes file writes file N/A

C:, D: to drive to drive
specified specified

LST: N/A writes N/A
(unreadable listing to (output only)
file format) line printer

TTY : N/A "writes" Reads state-~
(unreadable listing to CRT| ments from

file format)

keyboard

N/A =

Not Allowed

Figure 6.1 Effects of Using Device Designations
in Place of File Names

Of special interest is the interactive ability you gain by
using the ,TTY:=TTY: command line. In this mode, you can
type single BASIC statements at vour terminal to check them
individually for syntax errors. No disk files are created
or read.

6.3 COMPILER SWITCHES

In addition to specifying filenames, extensions, and devices
to direect the compiler to produce object and listing files,

you can direct BASCOM to
functions bv adding switches to the command line.

perform

additional or

alternate

COMPILING ' Page 6-8

Switches may be placed after source file names or after
other switches, as in the following command line:

BASCOM FOO,FO0=F00/T/4/X

Switches signal special instructions to be wused during
compilation. The switch tells the compiler to "switch on" a
special function or to alter a normal compiler function.
More than one switch may be used, but all must begin with a
slash (/). Do not confuse these switches with the linker
switches.

Compiler switches fall into one of three categories:

1. Conventions

2. FError Trapping

3. Special Code

Conventions

The BASIC Compiler allows you to specify which of two
lexical and execution conventions you want applied during
compilation: version 4.51 or version 5.0. You need to use
the lexical convention switches - only if vou have older
programs that you are trying to convert to version 5.0 BASIC
conventions. You specify which conventions you want with

either or both of the switches /4 and /T.

Error Trapping

If vyour BASIC source program contains error trapping
routines that involve the ON ERROR GOTO statement plus some
form of a RESUME statement, you need to use one of the two
error trapping switches, /E and /X. Error trapping routines
require line numbers in the binary (.REL) file. If vou do
not wuse one of the error trapping switches, the compiler
does not place line numbers in the binary file, and a fatal

compiler error will result.

TN

COMPILING ‘ Page 6-9

Special Code

The BASIC Compiler can generate special code for special
uses or situations. Be aware that some of these special
code switches cause BASIC Compiler to generate larger and
slower code. Examples of special code switches are /D, /S,
and /0.

Let's go over the compiler switches by category. First,
we'll give you a chart that summarizes the function of each
switch. Following that, you'll find detailed descriptions
of each switch.

COMPILING Page 6-10

Table 6.1 Compiler Switches

CATEGORY SWITCH ACTION

Conven- /4 Use Microsoft 4.51 lexical conventions
tions (not allowed together with /C).
/T Use 4.51 execution conventions.
/C Relax line numbering constraints

(Not allowed together with /4).

*Use /4/T together for 4.51 lexical
and execution conventions.

Error /B Program has ON ERROR GOTO
Trapping with RESUME <line number>.
/X Program has ON ERROR GOTO with RESUME,
RESUME 0, or RESUME NEXT.
Special /2 Use 280 opcodes.
Code
/N Suppress listing of disassembled

object code in the listing file.

/0 Substitute the OBRSLIB.REL runtime
library for BASLIB.REL as the default
runtime library searched by the linker
after a linker /E or /G switch.

/D Generate debug code for runtime
error checking.

/S Write quoted strings to .REL file on
disk and not to data area in RAM.

Each of the switches shown in table 6.1 is explained in
detail in the following pages.

T

Vamns

COMPILING Page 6-11

CONVENTIONS

The convention switches may be given together (/4/T) to
request 4,51 lexical and execution conventions. The
individual action of each switch is described below:

Switch Action

/4 The /4 switch directs the compiler to wuse the
lexical conventions of the Microsoft 4.51 BASIC-80
interpreter. Lexical conventions are the rules
that the compiler uses to recognize the BASIC
language.

The following conventions are observed:
1. Spaces are not significant.

2. Variables with embedded reserved words are
illegal.

3. Variable names are restricted to two
significant characters.

The /4 switch is needed to correctly compile a
source program in which spaces do not delimit
reserved words, as in the following statement.

FORI=ATOBSTEPC

Without the /4 switch, the compiler would assign
the. wvariable "ATOBSTEPC" to the wariable "FORI".
With the /4 switch set, the compiler recognizes
the line as a FOR statement.

We recommend that you edit such programs to 5.0
lexical standards, rather than compile them with
the /4 switch. Delimiting reserved words with
spaces causes no increase in generated code while
greatly improving program readability.

NOTE

The /4 and /C switches may not be used
together.

COMPILING

/T

/C

Page 6-12

The /T switch tells the compiler to use BASIC-80
Version 4.51 execution conventions. Execution
conventions refer to the implementation of BASIC.
functions and commands and what they actually do
at runtime. With /T specified, the following 4.51
execution conventions are switched on:

1. FOR/NEXT loops are always executed at least
one time.

2. TAB, SPC, POS, and LPOS perform according to
4,51 conventions.

3. Automatic floating point to integer
conversions use truncation instead of
rounding, except in the case where a floating
point number is being converted to an integer
in an INPUT statement.

4. The INPUT statement leaves the variables in
the input 1list unchanged if only a carriage
return is entered. If a "?Redo from start"
message 1is issued, then a valid input list
must be given. A carriage return in this case
generates another "?Redo from start” message.

The /C switch tells the compiler to relax 1line
numbering constraints. When /C is specified, line
numbers in your source file may be in any order,
or they may be eliminated entirely.

With /C, 1lines are compiled normally, but
unnumbered 1lines c¢annot be targets for GOTOs or
GOSUBs. Be aware that while /C is set, the
underline character causes the remainder of the
physical line to be ignored. Also, /C causes the
underline character to act as a line feed so that
the next physical line becomes a continuation of
the current logical line. (See Chapter 4 for more
information on physical and logical lines.)

There are three advantages to using /C:

1. Elimination of line numbers increases program
readability.

2. The BASIC Compiler optimizes over entire
blocks of code rather than single lines (for
example in FOR...NEXT loops.)

3. BASIC source code can more easily be included
in a file with %INCLUDE.

Note that /C and /4 may not be used together.

COMPILING ‘ Page 6-13

ERROR TRAPPING

The error trapping switches allow you to use ON
ERROR GOTO statements in your program. These
statements can aid you greatly in debugging your
BASIC programs. Note, however, that extra code is
generated by the compiler to handle ON ERROR GOTO
statements.

Switch Action

/E The /E switch tells the compiler that the program
contains an ON ERROR GOTO/RESUME <line-number>
construction. To handle ON ERROR GOTO properly,
the compiler must generate extra code for the
GOSUB and RETURN statements. Also a line number
address table (one entry per line number) must be
included in the binary file, so that each runtime
error message includes the number of the line in
which the error occurs. To save memory Sspace and
execution time, do not use this switch unless your
program contains an ON ERROR GOTO statement. '

NOTE

If a RESUME statement other than RESUME
<line-number> is used with the ON ERROR
GOTO statement, use the /X switch
instead.

/X The /X switch tells the BASIC Compiler that the
program contains one or more RESUME, RESUME NEXT,
or RESUME 0 statements.

The /X switch performs all the functions of the /E
switch, so the two need never be used at the same
time. For instance, the /X switch, 1like the /E
switch, causes a 1line number address table (one
entrv per statement) to be included in your binary
object file, so that each runtime error message
includes the number of the line in which the error

occurs. Nevertheless, the /X switch performs
additional functions not performed by the /E
switch.

Note that to handle RESUME statements properly,
the compiler cannot optimize across statements.
Therefore, do not use /X unless your program
contains RESUME statements other than RESUME

<line~-number>.

COMPILING

Page 6-14

SPECIAL CODE

Switch
/2

/N

/0

/D

Action

The /Z switch tells the compiler to use 280
opcodes whenever possible. When the /Z switch is
set, additional 2780 opcodes are allowed, and 280
mnemonics are used when listing these
instructions. All other opcodes are listed wusing
8080 mnemonics.

The /N switch suppresses listing of the
disassembled object c¢ode for each source line.
Instead, you get a simple BASIC source .listing
plus the relative locations of your code and the
size of your accumulated data area. If this
switch is not set, the source listing produced by
the compiler contains the disassembled object code
generated by each statement. Use this switch when
you want a shorter listing file, and want to 1list
your BASIC - source file along with the code
relative locations of your program and the size of
your accumulated data area.

The /0 switch tells the compiler to substitute the
OBSLIB.REL runtime library for BASLIB.REL as the
default runtime library searched by the 1linker.
When vyou wuse this switch you cannot wuse the
BRUN.COM module.

Note that you can create ROM-able code when vyou
link to OBSLIB.REL, something you cannot do if you
link to BASLIB.REL. Also, .COM files c¢reated by
linking to OBSLIB.REL do not need BRUN.COM on disk

at runtime.

The /D switch causes debugging and error handling
code to be generated at runtime. Use of /D allows
you to use TRON and TROFF in the compiled file.
Without /D set, TRON and TROFF are ignored.

TN

COMPILING

/S

Page 6-15

wWith /D, the BASIC Compiler generates somewhat
larger and slower code to perform the following
checks:

1. Arithmetic overflow. All arithmetic
operations, integer and floating point, are
checked for overflow and underflow.

2, Array bounds. All array references are
checked to see if the subscripts are within
the bounds specified in the DIM statement.

3. Line numbers. The generated binary code
includes 1line numbers so that the runtime
error listing can indicate on which line each
error occurs.

4., RETURN. Each RETURN statement is checked for
a prior GOSUB statement.

Without the /D switch set, array bound errors,
RETURN without GOSUB errors, and arithmetic
overflow errors do not generate error messages at

compile time. At runtime, no error messages are
generated either, and erroneous program execution
results. Use the /D switch to make sure that you

have thoroughly debugged your program.

The /S switch forces the compiler to write quoted
strings greater than 4 characters in length to
your .REL file on disk as they are encountered,
rather than retaining them in memory during the
compilation of your program. If this switch is
not set, and your program contains a large number
of long quoted strings, you may run out of memory
at compiletime.

Although the /S switch allows programs with many
quoted strings to take up less memory at
compiletime, it may increase the amount of memory
needed in the runtime environment, since multiple
instances of identical strings will exist in your
program. Without /S, references to multiple
identical strings are combined so that only one
instance of the string 1is necessary in your final

compiled program.

,//x

CHAPTER 7

LINKING

To load and link a compiled program, use the Microsoft
LINK-80 Linking Loader. Refer to the LINK-80 section of the
Utility Software Manual for information on how to wuse the
linker, before yvou read this chapter. This chapter
supplements the Utility Software Manual, by providing:

1. Sample linker sessions,

2. A discussion of linking compiled BASIC programs,
and

3. A discussion of the BASIC runtime support
environment.

We begin with some sample linker sessions.

7.1 SAMPLE LINKER SESSIONS

A simple link might look like this on your screen:

>L80
*PROG.COM/N, PROG.REL/E

The caret (>) is the CP/M prompt; the asterisk {(*) is the
linker prompt. Note that linker switches have no relation
whatsoever to the compiler switches discussed in the
preceding chapter.

If you use default extensions, a 1link session might 1look
like this:

>T.80
*PROG/N, PROG/E

LINKING Page 7-2

The L80 invocation line can also be used for specifying
linker parameters. So, the following command would perform
the same functions as the preceding example:

>L80 PROG/N,PROG/E

In any of the above cases, the /E switch tells the linker to
exit to CP/M and store a .COM file on disk. Before exiting,
the linker automatically searches BASLIB.REL on the
currently logged drive for any as <vyet undefined global
references. The final linked .COM file has the name
specified by your last <filename>/N command. The /N switch
is essential if you want to create a .COM file.

The /G switch 1is similar to the /E switch. The only
difference between the +two ' is that the /G switch causes
execution of the .COM file after it is stored on disk. In
either case, you must specify the name of the file to store
on disk. If you do not, no .COM file is stored.

If you choose to link an assembly language routine to your
BASIC program, a sample linker invocation might look like
this:

>1.80
*PROG,MYASM,PROG/N/E

In the above case, MYASM.REL is the name of the assembly
language routine and PROG.REL is the name of your program.
The routine MYASM.REL .cannot be assembled with an END
<label> statement since the linker will assume that <label>
is the start address of a separate program. The linker will
refuse to 1link two programs. together since their two

separate start addresses will conflict.

When you link a BASIC .REL file to BASLIB.REL, the BCLOAD
file must be on disk in the currently logged drive, If it
is not, the following error message is generated:

?BCLOAD not found, please create header file

More information about BCLOAD can be found later in this
chapter.

LINKING ' Page 7-3

When your linking session is complete, the following message
is generated:

DATA <program-start> <program-end> <bytes>

<free-bytes> BYTES FREE
[<start—-address> <program=-end> <num-of-pages>]

The values displayed provide the information shown in Figure
7.1 for a program linked to BASLIB.REL and using BRUN.COM.
If you link to OBSLIB.REL and use the /P and /D linker
switches, some of this information is not accurate.

Memory >
Top Rest of Memory
y J S SIS S R T } <
Extra Runtime Code & Data 7
————————————————————————————— +
User Program Code i
- 3.
§.m=> fmmmmm e +
User Program Data + 6.
COMMON
lom=> Fmmmmm e Lt
RUNTIME MODULE
Bottom fe-~——ememee e e T ———t
of CPM vectors
Memory
Figure 7.1 Link Data Map
1. <program-start> - Hexadecimal address of the

beginning of your program.

2., <program-end> - Hexadecimal address of the end of
your program.

3. <bytes> - Decimal size of program in bytes.

4, <free-bytes> -~ Decimal size of unused memory in
bytes during linking.

5. <start-address> - Hexadecimal start address of your
program (not necessarily the same as
<program-start>).

6. <num—~of-pages> - Decimal number of 256-byte pages
used by program.

LINKING - Page 7-4

For programs linked to BASLIB.REL and using the BRUN.COM
runtime module, the size of your .COM file in bytes is equal
to:

<program-end> - <start-address> + 128

At runtime, remember that BRUN.COM also resides in memory
along with your program. The 128 bytes in the above
equation 1is for a small relocator routine that begins every
.COM file. When vyou invoke a program, this relocator
routine is the first routine executed. All it does is move
the rest of your .COM file to the start address shown above.
Execution of your program then begins. The first thing your
program does is load the runtime module to establish the
runtime support environment.

We now discuss linking to compiled BASIC .REL files.

7.2 LINKING TO COMPILED BASIC .REL FILES

Because of the way the BASIC runtime environment is
implemented with the BRUN.COM runtime module, there are a
number of peculiarities that you must account for at
linktime.

First of all, before you can link any BASIC .REL file, vyou
must have the file BCLOAD on the currently logged disk.
BCLOAD contains two pieces of information: the hexadecimal
load address of your program, and the drive in which to find

BRUN.COM at runtime.
BCLOAD looks like this if you TYPE it out:

+4000 [Program Load Address]
: fa:, t, :, etc., or : for default]

At runtime, you must have BRUN.COM on the disk specified in
BCLOAD or 'an error is generated. Note that the plus sign
(+) is necessary to tell the linker to write the .COM file
beginning at the start address of your program instead of
the program load address. (The start address is the address
at which your program begins execution.) The default
location of the BRUN.COM runtime module 1is the currently
logged drive. You <can alter BCLOAD, before linktime, to
specify the disk on which you want BRUN.COM to reside at

runtime.

LINKING | Page 7-5

There are two other peculiarities associated with 1linking
programs that require the BRUN.COM runtime module. Namely,
these linking procedures may not work:

L80 FOO/G
L80 FOO/E followed by SAVE xxx FOO.COM

L80 FOO/G may not work if BRUN.COM does not reside on the
disk you have specified in BCLOAD. CHAINing of programs
does not work properly if you use SAVE after a link.

We now move to a discussion of the runtime support that is
linked to your program.

7.3 RUNTIME SUPPORT

Once you have compiled a .REL file, you need to 1link your
program to modules that contain runtime support routines.
Runtime support is the body of routines that, in essence,
implement the BASIC language. Your compiled .REL file, on
the other hand, implements the particular algorithm that
makes your program a unigue BASIC program.

Runtime support 1is essential to the execution of all
compiled BASIC programs. It is found in BRUN.COM and the
runtime library. As a rule, only a portion of all possible
runtime routines is linked to your .REL file. The length of
time necessary to link all these needed runtime support
routines is often a problem on microcomputers.

Partly for this reason, the BRUN.COM runtime module contains
all of the more frequently wused routines in one module.
Since they all reside in one module, they are linked all at
once, and need not be searched for in later linker searches.
Note that the BRUN.COM module 1is automatically linked %o
every program via a dummy module in BASLIB.REL: it is not
present in memory at linktime. Thus, a minimal program at
runtime is at least 16K long. If your program uses other
less frequently used routines, these routines are searched
for and found in BASLIB.REL. At linktime, you cannot use

‘the /P and /D linker switches, since they will cause errors

at program runtime.

When you specify the /O switch at runtime, the alternate
runtime library (OBSLIB.REL) is substituted for BASLIB.REL
as the default library to be searched at linktime. At
linktime vyou can then use /P and /D as described in the
Utility Software Manual. Note that when OBSLIB.REL is
selected as the library to be searched, BRUN COM is not used

by vour program at all.

LINKING

Page 7-6

There are several advantages to using OBSLIB.REL:

l.

Programs not using BRUN.COM can be put in ROM,
since separate instruction and data areas can be
created when linking to routines in OBSLIB.REL with
the /P and /D switches.

For small and simple programs, you may be able to
compile and 1link smaller programs than the 16K
minimum required to accommodate the BRUN.COM
module. This can be of importance in compiling a
program for a ROM-based application, where space
can be a critical factor.

Execution of a compiled and linked .COM file does
not reguire the existence of BRUN.COM on disk at
runtime,

There are, however, some distinct disadvantages to using

OBSLIB.REL:

1. COMMON is not supported between programs.

2. The CHAIN command is semantically equivalent to the
RUN command.

3. COMMON and CHAIN commands cannot be used to support
a system of programs sharing common data. (See 1.
and 2. above.)

4, The CLEAR command is not implemented.

5. The RUN <linenumber> option to RUN is not
implemented.

6. The linker cannot load programs as large as those
that use the BRUN.COM module.

7. All required runtime support functions are included

in every .COM file generated, thus increasing the
size of each of your .COM files. This is not the
case for .COM files wusing the BRUN.COM runtime

module.

For more information on using CHAIN and COMMON with a system
of programs, see Appendix A. For more ‘information on
ROM-able code, see Appendix B.

CHAPTER 8

RUNNING A COMPILED PROGRAM

To run a compiled program, simply enter the filename without
its .COM filename extension. For example:

DEMO

The above command causes execution of the program DEMO.COM.
At runtime, BRUN.COM must be accessible from disk. BRUN.COM
is loaded from the disk in the drive you specify in BCLOAD
at linktime.

Programs can also be executed immediately after 1linking 1is
complete by using the /G linker switch. This works only if
BRUN.COM is on the disk you have selected in BCLOAD.

The executable binary file can alsoc be executed from within
a program, as in the following statement:

10 RUN "PROG"

The default extension 1is .COM. The .COM file can be a
program created in any programming language. The CHAIN
command is wused in a similar fashion. 1In either case, an
executable binary file 1is 1loaded. The BRUN.COM runtime
module 1is not reloaded when you use CHAIN; it is when you
use RUN.

It is important to realize that the bulk of the runtime:
environment is taken up by the BRUN.COM runtime module.
This module is automatically loaded when vyou initially
invoke an executable .COM file reguiring BRUN.COM. When you
RUN a program, the .COM file 1is 1loaded into memory and
BRUN.COM is also loaded to <create a fresh runtime
environment. Both files reside in memory simultaneously.

CHAPTER 9

A COMPILER/INTERPRETER COMPARISON

There are differences bhetween the languages supported by the
BASIC Compiler and the BASIC-80 interpreter that must be
taken into account when compiling existing or new BASIC
programs. This 1is why we strongly recommend that you
compile the demonstration program in Chapter 3 first; read
Chapters 4-8; and only then begin compiling other programs.

The differences between the languages supported by the BASIC
Compiler and the BASIC interpreter fall into three
categories: operational differences, language differences,
and other differences. The tables on the next page serve as
a reference guide to these differences. All commands and
functions except %INCLUDE are described in the BASIC-80
Reference Manual. Where differences exist, those commands
and functions are also discussed 1in the following
paragraphs.

A COMPILER/INTERPRETER COMPARISON Page 9-2
9.1 OPERATIONAL DIFFERENCES

Those BASIC~-80 commands used to operate in the BASIC-80
programming environment are not acceptable input to the
compiler, These include the following:

AUTO CLOAD CSAVE CONT DELETE
EDIT LIST LLIST . LOAD MERGE
NEW RENUM SAVE

9.2 LANGUAGE DIFFERENCES

Most programs that run under the BASIC-80 interpreter will
compile under the BASIC Compiler with little or no change.
However, it 1is necessary to note differences in the
following commands:

CALL $INCLUDE
CHAIN ON ERROR GOTO
CLEAR REM

COMMON RESUME

DEFxXXX RUN

DIM STOP

END ' TRON/TROFF
ERASE USRn

FOR/NEXT WHILE/WEND

These differences are described below:

1. CALL
The CALL statement allows you to call and transfer
program control to a precompiled FORTRAN-80
subroutine, or to an assembly language routine that
you have created with MACRO~80. The format of the
CALL Statement is:

CALL <variable-name> [<argument-list>...]

The <variable-name> parameter is the name of the
subroutine that vyou wish to call. This name must
be 1 to 6 characters long and must be recognized by
LINK-80 as a global symbol. That is,
<variable-name> must be the name of the subroutine
in a FORTRAN SUBROUTINE statement, or a PUBLIC

symbol in an assembly language routine. Refer to
the MACRO-80 Reference Manual and the FORTRAN-80

Reference Manual for definitions of these terms.
(See NOTE below.) ,

A COMPILER/INTERPRETER COMPARISON Page 9-3

The <argument-list> parameter 1is optional. It
contains arguments that are passed to an assembly
language or FORTRAN subroutine.

Example: 120 CALL MYSUBR (I,J,K)

NOTE

FORTRAN-80 is a separate product available
from Microsoft and is not part of the BASIC
Compiler package. If you do not have
FORTRAN-80, then the CALL statement can
only be used with assembly language
subroutines.

Further information on assembly language
subroutines 1is contained in in the discussion of
the USR function that follows in this chapter.
Also, more information is provided on creating and
interfacing assembly language routines in the
Utility Software Manual.

CHAIN

The BASIC Compiler does not support the ALL, MERGE,
DELETE, and <line number> options to CHAIN. If you
wish to pass variables, it is recommended that the
COMMON statement be used. Note that files are left
open during CHAINing.

A COMPILER/INTERPRETER COMPARISON Page 9-4

3.

CLEAR
The BASIC Compiler supports the CLEAR command as
described in the BASIC-80 Reference Manual, with
the restriction that <expressionl> and
<expression2> must be integer expressions. If a
value of 0 is given for either expression, the
appropriate default is used. The default stack
size is 256 bytes and the default top of memory 1is
the current top of memory. The CLEAR statement
performs the following actions:

Closes all files

Clears all COMMON and user variables
Resets the stack and string space
Releases all disk buffers

See Appendix C for a memory map showing the
location of the stack, string space, and disk
buffers discussed above.

Note that CLEAR is supported only for programs
using the BRUN.COM module, and not for programs
linked to the OBSLIB.REL runtime library.

COMMON
The BASIC Compiler supports a modified version of

the COMMON statement, The COMMON statement must
appear 1in a program before any executable
statements. A 1list of non-executable statements

follows:

COMMON

DEFDBL, DEFINT, DEFSNG, DEFSTR
DIM

OPTION BASE

REM

$INCLUDE

All other statements are executable. Arrays 1in
COMMON must be declared in preceding DIM
statements.

The standard form of the COMMON statement is
referred to as blank COMMON. FORTRAN-style named
COMMON areas are also supported; however, the
named COMMON variables are not preserved across
CHAINS.

The syntax for named COMMON is as follows:
COMMON /<name>/ <list of variables>
The parameter <name> 1is 1 to 6 alphanumeric

characters starting with a letter. This is wuseful
for communicating with FORTRAN and assembly

T

A COMPILER/INTERPRETER COMPARISON Page 9-5

language routines without having to explicitly pass
parameters in the CALL statement.

IMPORTANT

For blank COMMON statements communicating
between CHAINing and CHAINed-to programs,
both the size of the COMMON area, and the
order of variables must be the same.

To ensure that COMMON areas can be shared between
programs, place blank COMMON declarations in a
single INCLUDE file and use the %INCLUDE statement
in each program. For example:

MENU. BAS
10 $INCLUDE COMDEF

1000 CHAIN "PROG1"

PROG1.BAS
10 %INCLUDE COMDEF

2000 CHAIN "MENU"

COMDEF.BAS

100 DIM A(100),BS$(200)
110 COMMON I,J,K,A()

120 COMMON AS,BS() ,X,Y,2

DEFINT/SNG/DBL/STR
DEFxxXx Statements designate the storage class and
data type of variables listed as parameters. The
compiler does not "execute" DEFxxx | statements as it
does a PRINT statement, for example.

A COMPILER/INTERPRETER COMPARISON Page 9-6

Instead, the compiler allocates memory for storage
of designated variables, and assigns them one of
the following data types:

1. 1INTeger,
2. SiNGle precision floating point,
3. DouBLe precision floating point, or

4., BSTRing.

A DEFxxx statement takes effect as soon as it 1is
encountered in vyour program during compilation.
Once the type has been defined for the listed
variables, that type remains in effect either until
the end of the program or until another DEFPXXX
statement alters the type of the variable. Unlike
the interpreter, the compiler cannot circumvent the
DEFxXxX statement by directing flow of control
around it with a GOTO. For variables given with a
precision designator (i.e., %, !, #, as in A%=B),
the type is not affected by the DEFxxx statement.

DIM
The DIM statement 1is similar to the DEFxXXxX

statement in that it is scanned rather than
executed. That is, DIM takes effect when it 1is
encountered at compiletime and remains in effect
until the end of the program: it cannot Dbe
re—executed at runtime. If the default dimension
(10) has already been established for an array
variable, and that variable is later encountered in
a DIM statement, an "Array Already Dimensioned"
error results. Therefore, the practice of putting
a collection of DIM statements in a subroutine at
the end of your program generates fatal errors. 1In
that case, the compiler sees the DIM statement only
after it has already assigned the default dimension
to arrays declared earlier in the program.

Also note that the values of the subscripts in a
DIM statement must be integer constants; they may
not be wvariables, arithmetic expressions, or
floating point values. For example, each of the
following DIM statements is illegal:

DIM Al(I)
DIM Al (3+4)
DIM Al (3.4E5)

A COMPILER/INTERPRETER COMPARISON S Page 9-7

7.

END

During execution of a compiled program, an END
statement closes files and returns control to the
operating system. The compiler assumes an END
statement at the ' end of the program, so "running
off the end" (omitting an END statement at the end
of the program) produces proper program termination
by default.

ERASE
The ERASE statement 1is not implemented for the
compiler. ERASE in BASIC-80 allows you to

re-dimension arrays, something that is not done in
the compiled environment.

FOR/NEXT
Double precision FOR/NEXT loops can be used with
the compiler. Also, FOR/NEXT loops must be

statically nested. Static nesting means that each
FOR must have a single corresponding NEXT.

Static nesting also means that each FOR/NEXT pair
must reside within an outer FOR/NEXT pair.
Therefore, the following construction is not

allowed:

FOR I
FOR J
FOR K

NEXT|J
NEXT K

NEXT I

This construction is the correct form:

FOR I
FOR J
FOR K

NEXT K
NEXT J
NEXT I

A COMPILER/INTERPRETER COMPARISON Page 9-8

10.

Also, you should not direct program flow into a
FOR/NEXT loop with a GOTO statement. The result of
such a jump 1is undefined, as 1in the following
example:

50 GOTO 100

90 FOR I =1 to 10

100 PRINT "INLOOP"

200 NEXT I

$INCLUDE
The format of the %INCLUDE compiler directive is:

2 INCLUDE <filename> %/%@féwgﬁa%ww~qu€«

$INCLUDE allows the compiler to include source code
from an alternate BASIC file. These BASIC source
files may be subroutines, single lines, or any type
of partial program. No assembly language or
FORTRAN files are allowed as arguments to the
ZINCLUDE statement. Note that <filename> does not
require quotes and that the default extension is
.BAS.

The programmer should take care that any variables
in the included files match their counterparts in
the main program, and that included 1lines do not
contain GOTOs to non-existent lines, END
statements, or similarly erroneous code.

These further restrictions must be observed:

(a.) The INCLUDEd file must be SAVEd with the ,A
option if created from within BASIC-80.

(b.) The INCLUDEd lines must be in ascending order.

(c.) The lowest line number of the included 1lines
must be higher than the line number of the INCLUDE
statement in the main program.

(d.) The range of line numbers in the INCLUDEAd file
must numerically precede subsequent line numbers in
the main program. These restrictions are removed
if the main program is compiled with the /C switch
set, since line numbers need not be in ascending
order in this case. For more information, see

Section 6.3, Compiler Switches.

A COMPILER/INTERPRETER COMPARISON Page 9-9

11.

12.

13.

14.

(e.) FINCLUDE directives cannot be nested inside
INCLUDE files. This means that %INCLUDE can only
be used in the file containing vyour main BASIC
program.

(£.) The $INCLUDE directive must be the 1last
statement on a line, as in the following statement:

999 DEFINT I-N : $INCLUDE COMMON.BAS
£ A RERRRY cannet Lo ot c R G an IGO0 S

ON ERROR GOTO

If a program contains ON ERROR GOTO and RESUME
<line number> statements, the /E compilation switch
must be given in the compiler command line. If the
RESUME NEXT, RESUME, or RESUME 0 form is used, the
/X switch must be used instead.

The basic function of these switches 'is to allow
the compiler to function correctly when error
trapping routines are included in a program. See
Section 6.3, Compiler Switches, for a detailed
explanation of these switches. Note, however, that
the use of these switches increases the size of the
.REL and .COM files.

REM

REM statements are REMarks starting with a single
qguotation mark or the word REM. Since REM
statements do not take up time or space during
execution, REM may be used as freely as desired.
This practice 1is encouraged for improving the
readability of your programs.

RESUME
See the preceding discussion of ON ERROR GOTO.

RUN

The compiler supports both the RUN and RUN <line
number> forms of the RUN ' statement. The BASIC
Compiler does not support the "R" option with RUN.
If this feature 1is desired, the CHAIN statement
should be used. Note that RUN is used to execute
.COM files created by the BASIC Compiler, and does
not support the execution of BASIC source files as
does the interpreter.

Other .COM files not <created with the BASIC
Compiler ‘are executable with the RUN statement.
These can be .COM files created in other 1languages

besides ‘BASIC.

A COMPILER/INTERPRETER COMPARISON Page 9-10

15,

16.

17.

STOP

The STOP statement is identical to the END
statement, except that it terminates your program
at a point that is not necessarily its end. It
also prints a message telling vyou at which
hexadecimal address you have stopped. 1If the /D,
/E, or /X compiler switches are turned on, then the
message prints the line number at which vyou have
stopped. As with the END statement, STOP closes
all open files and returns control to the operating
system. STOP is normally used for debugging
purposes.

TRON/TROFF

In order to use TRON/TROFF, the compiler /D Debug
switch must be switched on. Otherwise, TRON and
TROFF are ignored and a warning message is

generated.

USRn Functions

Although the USRn function is implemented in the
compiler to call machine 1language subroutines,
there is no way to pass parameters, except through
the use of POKEs to protected memory locations that
are later accessed by the machine language routine.

When the compiler sees X = USRn (0), it generates
the following code:

CALL SU%+const
SHLD X%

If you have compiled the program with the /Z switch
on, then the compiler generates instead similar 280

code:

CALL SU%+const
LD (X%) ,HL

During execution, the program encounters this code,
jumps to the address of the CALL, performs the
steps of vour subroutine and returns. Your routine
should place the integer result of the routine in
the H,L register pair prior to returning to the
compiled BASIC program. On return, as shown above,
the contents of the H,L register pair are placed in
the location of the wvariable X. Any other
parameters to be passed must be PEEKed from the
main BASIC program, and POKEd into protected memory
locations. With this method of passing parameters,
the USRn function is quite usable. You must take
responsibility, though, to ensure that your code
and any variables you use are protected.

A COMPILER/INTERPRETER COMPARISON Page 9-11

If you do not want to wuse the above method of
passing parameters, you have two other choices:

l.

If your machine 1language routine 1is short
enough, you can store it by making the first
string defined in the program contain the ASCII
values corresponding to the hexadecimal values
of your routine. Use the CHRS$ function to
insert ASCII values in the string. You can
then find the start of your routine by using
the VARPTR function. For example, for the
string A$, VARPTR (A$) will return the address
of the 1length of the string. The next two
addresses are (first) the least significant
byte and (then) the most significant byte of
the actual address of the string., This set-up
of the string space for the compiler differs
from the set-up for the interpreter in this
respect. Thus, to find the actual start
address of your routine, vyou would use the
following BASIC instructions:

AS "String containing routine"

I% VARPTR (AS)

AD% = PEEK(I% + 2) * 256 + PEEK(I% + 1)
AD% .is the start address of your routine.

Note that strings move around in the string
space, so any absolute references must be
adjusted to reflect the current memory location
of the routine. To make your code position
independent for the 780, vyou should use
relative, rather than absolute jumps.

The second method is to reset the default wvalue
of the 1load address in the BCLOAD file. The
BCLOAD file's main purpose is to direct loading
of vyour executable program in memory after
BRUN.COM has been loaded. By increasing the
load address by 100H, for example, 256 bytes of
free protected space are created between the
end of BRUN.COM and the start of the loading
area. Machine language routines or data can
then be safely POKEd into this area.

A better alternative is to use MACRO-80 to

assemble = your subroutines. Then, your
subroutines can be 1linked directly to the
compiled program and referenced using the CALL

statement. 3

A COMPILER/INTERPRETER COMPARISON Page 9-12

18.

WHILE/WEND

WHILE/WEND constructions should be statically
nested. Static nesting means that each WHILE/WEND
pair, when nested within other FOR/NEXT or
WHILE/WEND pairs, cannot reside partly in, and
partly outside, the nesting pair. For example, the
following construction is not allowed:

FOR I =1 to 10
A = COUNT
WHILE A =] —e—}——t

NEXT I
A =A-1
WEND

You should also not direct program flow into a
WHILE/WEND 1loop without entering through the WHILE
statement. See FOR/NEXT, above, for an example of
this restriction.

9.3 OTHER DIFFERENCES

Other differences between BASIC-80 and the BASIC Compiler
include the following:

1.

Expression Evaluation - The BASIC Compiler performs
optimizations, if possible, when evaluating
expressions.

Use of Integer Variables - The BASIC Compiler can
make optimum use of 1integer wvariables as loop
control variables. This allows some functions (and
programs) to execute up to 30 times faster than
when interpreted.

Double Precision Arithmetic Functions - The BASIC
Compiler implements double precision arithmetic
functions, including all of the transcendental
functions.

String Space Implementation = To increase the speed
of garbage collection, the implementation of the
string space for the compiler differs from its
implementation for the interpreter.

e

A COMPILER/INTERPRETER COMPARISON Page 9-13

EXPRESSION EVALUATION

During expression evaluation, the BASIC Compiler converts
operands of different types to the type of the more precise
operand.

OR=J%+A!+Q#

The above expression causes J% to be converted to single
precision and added to A!. This double precision result is
added to Qt.

The BASIC Compiler is more limited than the interpreter in
handling numeric overflow. For example, when run on the
interpreter, the following statements yield 10000 for M%.

I%=20000
J%=20000
K$=-30000
M3=I3+J%~K%

That is, J% is added to 1I%. Because the number 1is too
large, it converts the result into a floating point number.
K% 1is then coverted to a floating point number and
subtracted. The result, 10000, is found, and converted back
to an integer and saved as M%.

The BASIC Compiler, however, must make type conversion
decisions during compilation. It cannot defer until actual
values are known. Thus, the compiler generates code to
perform the entire operation in integer mode and arithmetic
overflow occurs. If the /D Debug switch is set, the error
is detected. Otherwise, an incorrect answer is produced.

Besides the above type conversion decisions, the compiler
performs certain valid optimizing algebraic transformations
before generating code. For example, the following program
could produce an incorrect result when run:

I%=20000
J%=-18000
K$=20000
M%=I2%+J%+K%

If the compiler actually performs the arithmetic in the
order shown, no overflow occurs. However, if the compiler
performs I%+K% first and then adds J%, overflow does occur.
The <compiler follows the rules of operator precedence, and
parentheses may be used to direct the order of evaluation.
No other guarantee of evaluation order can be made.

A COMPILER/INTERPRETER COMPARISON Page 9-14

INTEGER VARIABLES

To produce the fastest and most compact object code
possible, you should make maximum use of integer variables.
For example, the following program executes approximately 30
times faster by replacing "I", the loop control variable,
with "I%" or by declaring I an integer variable with DEFINT.

FOR I=1 TO 10
A(I)=0
NEXT I

Also, it is especially advantageous to use integer variables
to compute array subscripts. The generated code is
significantly faster and more compact.

DOUBLE PRECISION ARITHMETIC FUNCTIONS

The BASIC Compiler allows vyou to use double precision
floating point numbers as operands for arithmetic functions,
including all of the transcendental functions (SIN, COS,
TAN, ATN, LOG, EXP, SQR). Only single precision arithmetic
functions are supported by the interpreter.

Your program development strategy when designing a program
with double precision arithmetic functions should be the

following:

l. Implement your BASIC program using single precision
operands for all functions that you later intend to
be double precision.

2. Debug vyour program with the interpreter to
determine the soundness of your algorithm before
converting variables to double precision. ’

3. Declare all desired variables as double precision.
Your algorithm should be sound at this point.

4, Compile and link your program. It should implement
the algorithm that you have already debugged with
the interpreter, now with double the precision in
your arithmetic functions.

STRING SPACE IMPLEMENTATION

The compiler and interpreter differ in their implementation
and maintenance of the string space. Using PEEK, POKE,
VARPTR, or assembly language routines to change string
descriptors may result in a String Space Corrupt error. See
more information on the string space in the discussion of
the USR function earlier in this chapter.

CHAPTER 10

ERROR MESSAGES

During development of a BASIC program with the BASIC
Compiler, three different kinds of errors may occur: BASIC
Compiler fatal errors, BASIC Compiler warning errors, and
BASIC runtime errors. This chapter lists error codes, error
numbers, and error messages for each type of error.

10.1 BASIC COMPILETIME ERROR MESSAGES

For errors that occur at compiletime, the compiler outputs
the 1line <containing the error, an arrow beneath that line
pointing to the place in the line where the error occurred,
and a two-character code for the error. In some cases, the
compiler reads ahead on a line to determine whether an error
has actually occurred. ' In those cases, the arrow points a
few characters beyond the error, or to the end of the line.

The BASIC Compiletime errors described below are divided
into Fatal Errors and Warning Errors.

ERROR MESSAGES Page 10-2

FATAL ERRORS
CODE MESSAGE
BS Bad Subscript

Illegal dimension value
Wrong number of subscripts

Cb Duplicate COMMON variable

CN COMMON array not dimensioned
cO COMMON out of order

DD Array Already Dimensioned

FD Function Already Defined

FN FOR/NEXT Error

FOR loop index variable already in use
FOR without NEXT
NEXT without FOR

IN INCLUDE Error

$INCLUDE file not found
LL Line Too Long
LS String Constant Too Long
oM Out of Memory

Array too big

Data memory overflow

Too many statement numbers
Program memory overflow

ov Math Overflow
SN Syntax error - caused by one of the following:
. Illegal argument name

Illegal
Illegal
Illegal
Illegal
Illegal
Illegal
Illegal
Illegal
Illegal
Illegal
Illegal
Invalid
Missing
Missing

assignment target

constant format

debug request

DEFxxx character specification
expression syntax

function argument list
function name

function formal parameter
separator

format for statement number
subroutine syntax

character

AS

equal sign

<

ERROR MESSAGES

5Q

TC

™

ucC

UF

WE

/0

Missing
Missing
Missing
Missing
Missing
Missing
Missing
Missing
Missing
Missing

GOTO or GOSUB

comma

INPUT

line number

left parenthesis
minus sign

operand in expression
right parenthesis
semicolon

slash

Name too long

Expected GOTO or GOSUB
String assignment required
String expression required
String variable required

Illegal

syntax

Variable required

Wrong number of arguments

Formal parameters must be unique
Single variable only allowed

Missing
Illegal
Illegal
Missing

TO

FOR loop index wariable
COMMON name

THEN

Missing BASE
Illegal subroutine name

Sequence Error
Duplicate statement number
Statement out of sequence

Too Complex
Expression too complex
Too many arguments in function call
Too many dimensions
Too many variables for LINE INPUT
Too many variables for INPUT

Type Mismatch
Data type conflict
Variable must be of same type

Unrecognizable Command
Statement unrecognizable

Command not implemented
Function Not Defined
WHILE/WEND Error

WHILE without WEND

WEND without WHILE

Division by Zero

Page

10-3

ERROR MESSAGES | Page 10-4

/E Missing "/E" Switch

/X Missing "/X" Switch

WARNING ERRORS

CODE MESSAGE
ND Array not Dimensioned
SI1 Statement Ignored

Statement ignored
Unimplemented command

ERROR MESSAGES Page 10-5

10.2 BASIC RUNTIME. ERROR MESSAGES

The following errors may occur at program runtime. The
error numbers match those issued by the BASIC-80
interpreter. The compiler runtime system prints long error
messages followed by an address, unless /D, /E, or /X is
specified in the compiler command line. 1In those cases, the
error messadge is also followed by the number of the line in
which the error occurred.

NUMBER MESSAGE

2 Syntax Error
A line is encountered that contains an incorrect

sequence of characters in a DATA statement.

3 RETURN without GOSUB
A RETURN statement is encountered for which
there is no previous, unmatched GOSUB statement.

4 Out of Data _
A READ statement is executed when there are no
DATA statements with wunread data remaining in
the program.

5 Illegal Function Call
A parameter that is out of range is passed to a
math or string function. A function call error
may also occur as the result of:

A negative or unreasonably large subscript
A negative or zero argument with LOG

A negative argument to SQR

A negative mantissa with a non-integer
exponent

A call to a USR function for which the
starting address has not yet been given

An improper argument to ASC, CHRS$, MIDS,
LEFTS, RIGHTS, INP, OUT, WAIT, PEEK, POKE,
TAB, SPC, STRINGS, SPACES, INSTR, or
ON...GOTO ‘

A string concatenation that is longer than
255 characters

6 Floating Overflow or Integer Overflow
The result of a calculation is too large to be
represented within the range allowed for

floating point numbers.

ERROR MESSAGES Page 10-6

9

11

14

20

21

50

51

52

53

54

55

Subscript Out of Range
An array element is referenced with a subscript
that is outside the dimensions of the array.

Division by Zero
A division by =zero is encountered in an
expression, or the operation of involution
results in zero being raised to a negative
power.

Out of String Space
String variables exceed the allocated amount of
string space.

RESUME without Error
A RESUME statement 1is encountered before an
error trapping routine is entered.

Unprintable Error
An error message is not available for the error
condition that exists. This is usually caused
by an ERROR with an undefined error code.

Field Overflow
A FIELD statement is attempting to allocate more
bytes than were specified for the record length

of a random file.

Internal Error
An internal malfunction occurs in the BASIC
Compiler. Report to Microsoft the conditions
under which the message appeared.

Bad File Number
A statement or command references a file with a
file number that is not OPEN or is out of the
range of file numbers specified at
initialization.

File Not Found
A LOAD, KILL, or OPEN statement references a

file that does not exist on the current disk.

Bad File Mode
An attempt is made to use PUT, GET, or LOF with
a sequential file, to LOAD a random file, or to
execute an OPEN with a file mode other than I,

0, or R.

File Already Open
A sequential output mode OPEN is issued for a
file that 1is already open; or a KILL is given

for a file that is open.

ERROR MESSAGES Page 10-7

57 Disk I/0 Error
An I/0 error occurred on a disk I/0 operation.

The operating system cannot recover from the
error.

58 File Already Exists
The filename specified in a NAME statement is
identical to a filename already in use on the
disk.

61 Disk Full
All disk storage space is in use.

62 Input Past End
An INPUT statement reads from a null (empty)
file, or from a file 1in which all data has
already been read. To avoid this error, use the
EOF function to detect the end of file.

63 Bad Record Number
In a PUT or GET statement, the record number 1is
either greater than the maximum allowed (32767)
or 1is equal to 0.

64 Bad File Name
An illegal form is used for the filename with
LOAD, SAVE, KILL, or OPEN (e.g., a filename with
too many characters).

67 Too Many Files
The 255 file directory maximum is exceeded by an
attempt to create a new file with SAVE or OPEN.

The following additional runtime error messages are fatal
and cannot be trapped:

Internal Error - String Space Corrupt
Internal Error - String Space Corrupt during G.C.
Internal Error - No Line Number
The first two errors wusually occur because a string
descriptor has been improperly modified. (G.C stands for

garbage collection.) The last error occurs when the error
address cannot be found in the 1line number table during

error trapping.

APPENDIX A

Creating a System of Programs
with the BRUN.COM Runtime Module

The CHAINing with COMMON feature and the BRUN.COM runtime
module are designed for creating 1large systems of BASIC
programs that interact with each other. A hypothetical
system will be described to show the interactions in a large
system design. 1In particular, the distinction between CHAIN
and RUN will be highlighted.

Consider the following integrated accounting = system
containing three packages for general ledger, accounts
payable, and accounts receivable. Entry into each package
is controlled by a main menu program. The system structure
is shown below:

| I I l J l l 1 1

GLOl1 GL02 GLO3 APO1 APO2 APO3 ARO1 ARO2 ARO3

In order to use CHAINing with COMMON effectively, it 1is
important to logically structure the system and the COMMON
information. In the system pictured above, COMMON
information exists within each of the packages GL, AP, and
AR. EBach package contains a system of three separately
compiled programs. Furthermore, there may be COMMON
information between MENU and each of the packages. Note
that there may be overlapping sets of COMMON information.
The compiler's COMMON statement is not as flexible as tpe
interpreter's: COMMON areas must be the same size 1n
programs that CHAIN to each other.

Page A-2

Two solutions to this problem of communicating between
programs are given below, though others are possible:

l. Use the same COMMON declarations in all programs so
that all common information mav be shared, or

2. Use the same set of COMMON declarations within each
of the three packages with no common information
shared via COMMON with the other packages or the
main MENU program. In this case, there are three
sets of COMMON declarations, one for each package.

For a large integrated set of systems of programs, the
second method gives more flexibility with the compiler.
Since program control is switched from package to package
through the main MENU, there is little loss of flexibility
with this method. Any common information that could be
obtained in MENU should be obtained in the main program for
each of the packages GL, AP, and AR. This 1is the same
approach you would use with a single package.

For the above diagram, the use of CHAIN and RUN in each of
the major programs is outlined in the following program

fragments:

MENU.BAS
1000 If MENU=1] THEN RUN "GL"
1010 IF MENU=2 THEN RUN "AP"
1020 IF MENU=3 THEN RUN "AR"

GL.BAS General Ledger
10 2INCLUDE GLCOMDEF (GL) COMMON declarations
1000 CHAIN "GLO1"
1010 CHAIN "GLO2"
1020 CHAIN "GLO3"
1030 IF MENU=YES THEN RUN "MENU"

AP,BAS Accounts Payable
10 $INCLUDE APCOMDEF (AP) COMMON declarations
1000 CHAIN "ApPO1"
1010 CHAIN "ApO2"

1020 CHAIN "APO3"
1030 IF MENU=YES THEN RUN "MENU"

AR.BAS Accounts Receivable
10 3INCLUDE ARCOMDEF (AR) COMMON declarations
1000 CHAIN "AROL1l"™
1010 CHAIN "ARO2"
1020 CHAIN "ARO3"
1030 IF MENU=YES THEN RUN "MENU"
Bach of the lower level programs XXYY (XX=GL, AP, AR, YY =
01, 02, 03) should CHAIN back to the package main program

XX.

TN

,//_‘\

Page A-3

The RUN statement in the above programs loads the specified
program as a normal .COM file and starts execution. For
compiled BASIC programs, a new copy of the BRUN.COM runtime
module 1is reloaded. This allows a new system of CHAINed
programs to be started. During CHAINs, the BRUN.COM runtime
module is in control, like the BASIC interpreter during

"interpretation, and BRUN.COM is not reloaded.

APPENDIX B

ROM-able Code

To create a program that can be burned into ROM, you should
note the following:

1. Constant data and instructions can go into ROM.
2. Variable data cannot go into ROM,

Therefore, it is necessary that ROM-able code have separate
data and instruction areas. You can specify these areas at
linktime by using the /D and /P switches (D for Data and P
for Program). See the Utility Software Manual for more
information on the use of these switches.

Unfortunately, you cannot use the /P and /D switches if vyou
choose to 1link a program that uses the BRUN.COM runtime
module. PFurthermore, any program that requires BRUN.COM
cannot be put into ROM.

The only way that you can put a compiled BASIC program into
ROM 1is by linking to the OBSLIB.REL runtime library. This
library is searched by default at linktime only if at
compiletime you compile with the /O switch.

The disadvantages of using OBSLIB.REL are discussed in
Chapter 7.

APPENDIX C

Memory Map
Top
of CPM
Memory D t=—==mmmm—mmm—m—m——— e —— -
Stack Grows Downward
INN/NIN/NIN/NIN/IN/N/N/N/N/
B T it L
File Buffers Grow Downward
IN/N/N/N/NN/NININ/NIN/NN/
A\VAVAVAVAVAVAVAVAVAVAVAVAVAN
String Space Grows Upward
i ——— e ——————— d Gt
Extra Runtime Code & Data
ittt bttt +.COM file
User Program Code
Fom e] - et v,
Load User Program Data
address f-——=———=——s-——-—————————ooo- 1
in Named COMMON
BCLOAD +4-——————smmmmmm——mm——mmm—mm +
! Blank COMMON ,
e e o e i 2 e e e o e e R e &
RUNTIME MODULE
16K +BRUN.COM
Contains most
commonly used
library routines
Bottom tf-==—————==--—mo—ommo—sesssmsses +
of CPM vectors
Memory

Figure 1 Runtime Memoryvy Map

Runtime memory map of a program using the BRUN.COM runtime
module.

APPENDIX D

Differences between Version 5.3 and
Previous Versions of the BASIC Compiler

Described below are the major differences between this
version of the BASIC Compiler (5.3) and previous versions of
the compiler:

1. Your compiled programs now rely on a large runtime
module for most of the runtime support that you
need during ©program execution. This -module is
named BRUN.COM.

2. What used to be called BASLIB.REL, 1is now called
OBSLIB.REL (short for 0l1d BaSlib). The runtime
library on your disk called BASLIB.REL contains a
dummy module containing references to all the
routines in the BRUN.COM module. BRUN.COM is never

in memory at linktime.

3. The COMMON statement now works between CHAINed
subprograms, as well as between functions in the
same program.

4, The CHAIN statement 1is no longer semantically
equivalent to RUN, and true chaining is allowed.
Note that CHAIN <filename> does not cause reloading
of the runtime module. 1In fact, BRUN.COM acts much
like the interpreter in this case, supervising the
change of control from one program to the next.

5. The CLEAR command is now implemented.

6. The RUN <line-number> form of the RUN command 1is
now implemented.

As a result of the above <changes to the BASIC compiler
package, the rovalty requirements have been altered. The
0ld runtime library (what used to be BASLIB.REL and 1is now
OBSLIB.REL) can be used in your applications without payment
of royalties. However, notice must -exist within your
application that portions of your software are copyrighted

by Microsoft.

Page D=2

However, any distribution of the BRUN.COM runtime module
requires payment of royalties. Examine your non-disclosure
agreement or contact Microsoft for more specific information
on the nature of royalty payments.

~

Page Index-1

INDEX

SINCLUDE . « ¢« v « o o o o « » 4=1, 9-9
,A - save option 3-2, 4-1
JTTY:=TTY: v ¢ o o o o o o o o 6=7
/4 switch (compiler) 6-10 to 6-11
/C switch (compiler) 6-10, 6-12
/D switch (compiler) 6-10, 6-14, 9-10, 9-13
/D switch (linker) 7-5
/E switch (compiler) 6-10, 6-13, 9-9
/E switch (linker) 7-1
/G switch (linker) 7-1
/N switch (compiler) 6-10, 6-14
/N switch (linker) . « . « « . 7-1
/O switch (compiler) 6-14
/P switch (linker) 7-5, 9-11
/S switch (compiler) 6-10, 6-15
/T switch (compiler) 6-10, 6-12
/X switch (compiler) 6-10, 6-13, 9-9
/7 switch (compiler) 6-10, 6-14
4.51 execution switch - /T . . 6-10, 6-12
4.51 lexical switch - /4 . . . 6-10 to 6-11
Array Variables 9-14
ASCII - source file format . . 3-2, 4-1
BASIC Compiler procedures . . 3-2
BASIC Compiler User's Manual . 1-7
BASIC Learning Resources . . . 1-8
BASIC Runtime Errors 10-5
BASIC Statements not implemented 1-8
BASIC-80 Reference Manual . . 1-8
BASLIB.REL + &« « o o o o« o o o 2=4
BCLOAD + v « o o o o o o o o o 1-4
BCLOAD - Format . « « o« « » . 71-4
BRUN.COM +. &« o o o o o o o« o o« 2-4, 9-11
CALL : « o « o o o o o o o « « 9=2, 9-10 to 9-11
CAPITAL LETTERS e e e o o « « 1-5
CHAIN v ¢« o o o o o o o o o » 9-3
CHRS + o o o o o o o o o o o « 9-11
CLEAR &+ o o o o o o o o o o+ » 9-4
Code Relative . . « + ¢ o « o 2-3
Command line syntax« . 6-1
Commands not implemented . . . 9-2
COMMON e e e e e e e e . 9-4
COMMON - blank . e e s e e < 9-4
COMMON - named . « « « « o » » 9-4

ation .+ + + ¢ 4 e o o« . 32

Compil

Compiler Fatal Errors . . .
Compiletime . . ¢« « « « o« &
Compiletime Error Messages .
Compiling - output files . .

Compiling - technical details

Contents of Package
Convention switches
Copyright Requirement . . .

Debug code switch - /D . . .
DEFDBL ¢ ¢ o ¢ o o o s s o
DEFINT . o« o o o o s s s o =
DEFSNG . &« o & o s o o o o
DEFSTR o« &« o o o o o o o « .o
Device Designations
Device names as files . . .
Devices as Parameters . . .
Differences =« « « s o+ o o o
DIM e & o o s s 8 e e e o
Documentation . ¢« « « ¢ + .
Double Precision Arithmetic

Editing - technical details
Ellipses {(.ee) o o o o o o &
END . ¢ o o o o o o o o o
Error Messages . « « « o o o
Error Trapping . « « « « « =
Error Trapping switches . .
Errors - Fatal . « « « « =« =
Errors - Runtime
Errors - Warning . . « « .+ =«
ExXpression Evaluation . . .
Extensions - filename . . .

Fatal Errors - Compiler . .
Filename Extensions . « .+ .
FOR/NEXT [] L] [] L] L] E] . L] [] .

Global Reference . . . « =+ =
Global Reference - Unbound
Global Reference - Undeflned

How to use this manual . . .

INCLUDE '« « o o o o o o o -
Integer Variables

Language Differences
Learning BASIC . . « « + . =
Line Length . « « « ¢ ¢ « =
Line number switch - /C . .
Link Loading . « « « ¢ « o+
Link Loading - basic steps .
Linking - restrictions . . .
Linking - technical details
Linktime « o o « o o ¢ o o
Long string switch - /S . .

O HMMAVH N

NN o N H NOHHHMNO HORHW OWHWOWWOWAANNNN OO WYWWOWO

H

O >

ANNIJWNhOYVE O

[= N N

I 11 o0l ©
I

WA HNI N

N

}-—l

I U T T T N T T I |
o
~

~No H~JoaAMNMIJoyO0tULI Ot

ot !
I

o O

|
(SN

o

W

11
= N B W UT R 00 N

W W W ~
Wik U1 N

=
B .

>

}_l

[aS]

o
~

~

o
-

(o)
i
[
-9

O
|
Xe]

6-12

W
1
w

(02}
|
[
[$)]

R

TN

Manual descriptions
Manuals - BASIC-80 Reference
Manuals - Compiler User's .
Manuals - User's Manual . .
Manuals - Utility Software .
Memory Map « « « o o o o o o
Message - finished linking .
Module e e e e e .
Mocdule ~ BRUN. COM e e e e s

Non-Disclosure Agreement . .
Notation used in Manual . .

OBSLIB.REL . ¢ &« ¢ « + o o
OBSLIB.REL - Advantages . .
OBSLIB,.REL - Disadvantages .
ON ERROR GOTO o e
ON ERROR GOTO switch - /E .
ON ERROR GOTO switch - /X .
Operational Differences . .
Operators
Optimizations . .
Other Differences
Overflow

POKE v« « 4 o s o o o o o o =
Procedures - BASIC Compiler
Program Development Process

Relocatable . . ¢« « ¢ « o« &
REM o e s e e
Resources for BASIC o & s
RESUME . + o o o s o o o »
Routine . .« ¢ « o « o o o
Royalty Information . . .

RUN e e s e e 8 e s o o

Running a Compiled Program .
Running a Program
Runtime . . . ¢« o « o o o
Runtime Errors - BASIC . . .
Runtime library - BASLIB.REL
Runtime library - OBSLIB.REL
Runtime support . . « « « =
Runtime support routines . .

SAVE . ¢ o o o o o o o =
Source file - format . . .
Special Code switches . .
Statements not implemented
Static nesting

STOP o« « o o «
String Space . .
Subroutine + . .
Subscripts . . . =« . .
Suppress code sw1tch - /N
Switch - /4 (compiler) . .
Switch - /C (compiler) . .
Switch - /D (compiler) . .

NNDWO
|
B Wads M 00wl

4
1-5
2-4, 6-14
7-5
7-6
9-9
6-10, 6-13
6-10, 6-13
9-2
9-13
2-2
9-12
9-13
9-~10 to 9-11
3-2
2-6
2-3
9-9
1-8
9-9
2-3
4
9-9
8-1
3-5
2-2
10-5
2-4
2-4
2-4
2-4
3-2, 4-1
3-2, 4-1
6-9
9-2
9-7
9-10
9-14
9-2
9-6
6-10, 6-14
6-10 to 6-11
6-10, 6-12
6-10, 6-14

Switch -
Switch -
Switch -
Switch -
Switch =
Switch -
Switch -
Switch -
Switch =
Switch -
Switch -
Switch -
Switch =~
Switch -
Switch -
Syntax -

/D (linker) . .
/E (compiler) .
/E (linker) . .
/G (linker) .

/N (compiler)

/N (linker) . .
/0 (compiler)

/P (linker) .

/S (compiler) .
/T (compiler) .
/X (compiler) .
/7 (compiler) .
Conventions . .
Error Trapping
Special Code .
Command Line .

Syntax Notation
System Requirements . .

TROFF .
TRON . .

. . . . » . . °

Unbound Global Reference
Undefined Global Reference

USRn Functions
Utility Software Manual

VARPTR .

Warning errors e e e .

Warranty

WHILE...WEND . . « .« « =

280 SWitCh - /Z - . . .

<> (angle brackets) o«
[1 (square brackets) . .

ee. (ellipses) . . .

L] L L * L)

* o & o s & & o o

[C-JVs) uraoxmcho\mcn?um\4m~qo\q~qa\q

I I I B B |
- o o
- -

1
VMHOOORHHFEUODHEHEER =W
o
-~

O O [

I N N
o W
= ow OO

o N
1 o
= §
N >

6-15
6-12
6-13
6-14

P

basic-80
reference
manual

This manual is a reference for Microsoft’s BASIC-80 language, release 5.0 and later.

There are significant differences between the 5.0 release of BASIC-80 and the previous releases
(release 4.51 and earlier). If you have programs written under a previous release of BASIC-80,
check Appendix A for new features in 5.0 that may affect execution.

Information in this document is subject to change without notice and does not represent a
commitment on the part of Microsoft. The software described in this document is furnished
under a license agreement or non-disclosure agreement. The software may be used or copied
only in accordance with the terms of the agreement. It is against the law to copy Microsoft
BASIC on cassette tape, disk, or any other medium for any purpose other than personal
convenience.

© Microsoft, 1979

LIMITED WARRANTY

MICROSOFT shall have no liability or responsibility to purchaser or any other person or entity
with respect to any liability, loss or damage caused or alleged to be caused directly or indirectly
by this product, including but not limited to any interruption of service, loss of business or
anticipatory profits or consequential damages resulting from the use or operation of this
product. This product will be exchanged within twelve months from date of purchase if
defective in manufacture, labeling or packaging, but except for such replacement the sale or

subsequent use of this program is without warranty or liability.

THE ABOVE IS A LIMITED WARRANTY AND THE ONLY WARRANTY MADE BY MICROSOFT.
ANY AND ALL WARRANTIES FOR MERCHANTABILITY AND/OR FITNESS FOR A PARTIC-
ULAR PURPOSE ARE EXPRESSLY EXCLUDED.

To report software bugs or errors in the documentation, please complete and return the
Problem Report at the back of this manual.

CP/M is a registered trademark of Digital Research

8101-530-07

INTRODUCTION

CHAPTER 1
CHAPTER 2

CHAPTER 3

APPENDIX

APPENDIX
APPENDIX

APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX
APPENDIX

APPENDIX

BASIC~80 Reference Manual

T @ o =

o

CONTENTS

General Information About BASIC-80

BASIC-80 Commands and

BASIC-80 Functions

New Features in BASIC-80,

BASIC-80
Assembly
BASIC-80
BASIC-80

BASIC-80

BASIC-80

Disk I/0
Language
with the
with the
with the

with the

Statements

Release 5.0

Subroutines
CP/M Operating System
ISIS-II Operating System

TEKDOS Operating System

Intel SBC and MDS Systems

Standalone Disk BASIC

Converting Programs to BASIC-80

Summary of Error Codes and Error Messages

Mathematical Functions

Microsoft BASIC Compiler

ASCII Character Codes

Introduction

BASIC-80 is the most extensive implementation of BASIC
available for the 8080 and 280 microprocessors. In its
fifth major release (Release 5.0), BASIC-80 meets the ANSI
qualifications for BASIC, as set forth in document
BSRX3.60-1978. ©Each release of BASIC-80 consists of three
upward compatible versions: 8K, Extended and Disk . This
manual is a reference for all three versions of BASIC-80,
release 5.0 and later. This manual is also a reference for
Microsoft BASIC-86 and the Microsoft BASIC Compiler.
BASIC-86 is currently available in Extended and Disk
Standalone versions, which are comparable to the BASIC-80
Extended and Disk Standalone versions.

There are significant differences between the 5.0 release of
BASIC-80 and the previous releases (release 4.51 and
earlier). 1If you have programs written under a previous
release of BASIC-80, <check Appendix A for new features in
5.0 that may affect execution.

The manual is divided into three large <chapters plus a
number of appendices. Chapter 1 covers a variety of topics,
largely pertaining to information representation when wusing
BASIC-80. Chapter 2 contains the syntax and semantics of

every command and statement in BASIC-80, ordered
alphabetically. Chapter -3 describes all of BASIC~80's
intrinsic functions, also ordered . alphabetically. The

appendices contain information pertaining to individual
operating systems; plus 1lists of error messages, ASCII
codes, and math functions; and helpful information on
assembly language subroutines and disk I/0.

CHAPTER 1

GENERAL INFORMATION ABOUT BASIC-80

1.1 INITIALIZATION

The procedure for initialization will wvary with different

implementations of BASIC-80. Check the appropriate appendix
at the back of this manual to determine how BASIC-80 is

initialized with your operating system.

1.2 MODES OF OPERATION

When BASIC-80 is initialized, it tvpes the prompt "Ok".
"Ok" means - BASIC-80 is at command level, that is, it is
ready to accept commands. At this point, BASIC-80 may be
used in either of two modes: the direct mode or the

indirect mode.

In the direct mode, BASIC statements and commands are not
preceded by line numbers. They are executed as they are
entered. Results of arithmetic and logical operations may
be displayed immediately and stored for later use, but the
instructions themselves are lost after execution. This mode
is useful for debugging and for using BASIC as a
"calculator" for quick computations that do not require a

complete program.

The indirect mode is the mode used for entering programs.
Program lines are preceded by line numbers and are stored in
memory. The program stored in memory 1is executed by
entering the RUN command.

1.3 LINE FORMAT

Program lines in a BASIC program have the following format
(square brackets indicate optional):

nnnnn BASIC statement([:BASIC statement.}.] <carriage return>

GENERAL INFORMATION ABOUT BASIC-80 Page 1-2

At the programmer's option, more than one BASIC statement
may be placed on a line, but each statement on a line must
be separated from the last by a colon.

A BASIC program line always begins with a line number, ends
with a carriage return, and may contain a maximum of:

72 characters in 8K BASIC-80
255 characters in Extended and Disk BASIC-80.

In Extended and Disk versions, it is possible to extend a
logical 1line over more than one physical line by use of the
terminal's <line feed> key. <Line feed> lets vyou continue
typing a logical 1line on the next physical line without
entering a <carriage return>. (In the 8K wversion, <line
feed> has no effect.)

1.3.1 Line Numbers

Every BASIC program line begins with a line number. Line
numbers indicate the order in which the program lines are
stored in memory and are also used as references when
branching and editing. Line numbers must be in the range 0
to 65529, 1In the Extended and Disk wversions, a period (.)
may be used in EDIT, LIST, AUTO and DELETE commands to refer
to the current line.

GENERAL INFORMATION ABOUT BASIC-80 ‘Page 1-3

1.4 CHARACTER SET

The BASIC-80 character set is comprised of alphabetic
characters, numeric characters and special characters.

The alphabetic characters in BASIC~-80 are the upper case and
lower case letters of the alphabet.

The numeric characters in BASIC-80 are the digits 0 through
9. ;

The following special characters and terminal Kkeys are
recognized by BASIC-80:

Character Name

Blank
Equal sign or assignment symbol

+ Plus sign
- Minus sign
* Asterisk or multiplication symbol
/ Slash or division syvmbol
~ Up arrow or exponentiation symbol
(Left parenthesis
) Right parenthesis
% Percent
Number (or pound) sign
$ Dollar sign
! Exclamation point
[Left bracket
] Right bracket
’ Comma
. Period or decimal point
! Single guotation mark <(apostrophe)
; Semicolon
: Colon
& Amper sand
? Question mark
< Less than
> Greater than
\ Backslash or integer division symbol
@ At-sign
_ Underscore
<rubout> - Deletes last character typed.
<escape> Escapes Edit Mode subcommands.
See Section 2.16,
<tab> Moves print position to next tab stop.

Tab stops are every eight columns.
<line feed> Moves to next physical line.

<carriage
return> Terminates input of a line.

GENERAL INFORMATION ABOUT BASIC-80 Page 1-4

l.4.1 Control Characters

The following control characters are in BASIC-80:

Control-A Enters Edit Mode on the line being typed.

Control-C Interrupts program execution and returns to
BASIC-80 command level.

Control-G Rings the bell at the terminal.

Control-H Backspace. Deletes the last character typed.

Control-I Tab. Tab stops are every eight columns.

Control-0O Halts program output while execution
continues. A second Control-0O restarts
output,

Control-R Retypes the 1line that 1is currently being
typed.

Control-S Suspends program execution.

Control—-Q Resumes program execution after a Control-S.

Control-U Deletes the 1line that 1is currently being
typed.

1.5 CONSTANTS

Constants are the actual values BASIC uses during execution.
There are two types of constants: string and numeric.

alphanumeric

A string constant is a sequence of up to 255
Examples of

characters enclosed in double quotation marks.
string constants:

"HELLO"
"s25,000.00"
"Number of Employees"

Numeric constants are positive or negative numbers. Numeric
constants in BASIC cannot contain commas. There are five
types of numeric constants:

Whole numbers between -32768 and
+32767. Integer constants do not
have decimal points.

1. 1Integer constants

Positive or negative real numbers,
i.e., numbers that contain decimal

points.

2. Fixed Point
constants

GENERAL INFORMATION ABOUT BASIC-80 Page 1-5

3. Floating Point Positive or negative numbers repre-
constants sented in exponential form (similar
to scientific notation). A

floating point constant consists of
an optionally signed integer or
fixed point number (the mantissa)
followed by the letter E and an
optionally signed integer (the
exponent). The allowable range for
floating point constants is 10-38
to 10+38.

Examples: -

235.988E-7 = .0000235988
2359E6 = 2359000000

(Double ©precision floating point
constants use the letter D instead
of E. See Section 1.5.1.)

4. Hex constants Hexadecimal numbers with the prefix
&§H. Examples:

&H76
&H32F

5. Octal constants Octal numbers with the prefix &0 or
&. Examples:

&0347
§1234

1.5.1 ' Single And Double Precision Form For Numeric Constants

In the 8K version of BASIC-80, all numeric constants are
single precision numbers. They are stored with 7 digits of

precision, and printed with up to 6 digits.

In the Extended and Disk wversions, however, numeric
constants may be either single precision or double precision
numbers. With double precision, the numbers are stored with
16 digits of precision, and printed with up to 16 digits.

GENERAL INFORMATION ABOUT BASIC-80 Page 1-6

A single precision constant is any numeric constant that
has:

1. seven or fewer digits, or
2. exponential form using E, or
3. a trailing exclamation point (!)

A double precision constant is any numeric constant that

1., eight or more digits, or
2. exponential form using D, or
3. a trailing number sign (#)

Examples:

Single Precision Constants Double Precision Constants
46.8 345692811
-1.09E-06 -1.09432D-06
3489.0 3489.0#
22.5! 7654321.1234

1.6 VARIABLES

Variables are names used to represent values that are used
in a BASIC program. The value of a variable may be assigned
explicitly by the programmer, or it may be assigned as the
result of calculations in the program. Before a variable 1is
assigned a value, its value is assumed to be zero.

1.6.1 Variable Names And Declaration Characters

BASIC-80 variable names may be any length, however, in the
8K version, only the first two characters are significant.
In the Extended and Disk versions, up to 40 characters are
significant. The characters allowed in a variable name are
letters and numbers, and the decimal point 1is allowed in
Extended and Disk variable names. The first character must
be a letter. Special type declaration characters are also
allowed -- see below.

A variable name mav not be a reserved word. The Extended
and Disk versions allow embedded reserved words; the 8K
version does not. If a variable begins with FN, it 1is
assumed to be a call to a user-defined function. Reserved
words include all BASIC-80 commands, statements, function

GENERAL INFORMATION ABOUT BASIC-80 Page 1-7

names and operator names.,

Variables may represent either a numeric value or a string.
String variable names are written with a dollar sign ($) as
the last character. For example: AS$ = "SALES REPORT". The
dollar sign 1is a variable type declaration character, that
is, it "declares" that the variable will represent a string.

In the Extended and Disk versions, numeric variable names
may declare integer, single or double precision values.
(All numeric values in 8K are single precision.) The type
declaration = characters for these variable names are as
follows:

% Integer variable
! Single precision variable
Double precision variable

The default type for a numeric variable name 1is single
precision.

Examples of BASIC-80 variable names follow.

In Extended and Disk versions:

PI# declares a double precision value
MINIMUM! declares a single precision value
LIMITS declares an integer value

In 8K, Extended and Disk wversions:

NS declares a string value ,
ABC represents a single precision wvalue

In the Extended and Disk versions of BASIC-80, there is a
second method by which variable tyvpes may be declared. @ The
BASIC-80 statements DEFINT, DEFSTR, DEFSNG and DEFDBL may be
included in a program to declare the types for certain
variable names. These statements are described in detail in

Section 2.12.

l1.6.2 Arrav Variables

An array is a group or table of wvalues referenced. by the
same variable name. Each element in an array is referenced
by an array variable that is subscripted with an integer or
an integer expression. An array variable name has as many
subscripts as there are dimensions in the array. For
example V(10) would reference a value in a one-dimension
array, T(1,4) would reference a value in a two-dimension
array, and so on. The maximum number of dimensions for an

GENERAL INFORMATION ABOUT BASIC-80 Page 1-8

array is

is 32767.

255. The maximum number of elements per dimension

1.6.3 Space Requirements

VARIABLES: BYTES
INTEGER 2
SINGLE PRECISION 4
DOUBLE PRECISION 8
ARRAYS: BYTES
INTEGER 2 per element
SINGLE PRECISION 4 per element
DOUBLE PRECISION 8 per element
STRINGS:

3 bvtes overhead plus the present contents of the string.

1.7 TYPE CONVERSION

When necessary, BASIC will convert a numeric «constant from

one type

to another. The following rules and examples

should be kept in mind.

l.

If a numeric constant of one type is set egual to a
numeric variable of a different type, the number
will be stored as the type declared in the variable
name. (If a string wvariable 1is set equal to a
numeric value or vice versa, a "Type mismatch"
error occurs.)

Example:

10 A% = 23.42
20 PRINT A%
RUN

23

During expression evaluation, all of the operands
in an arithmetic or relational operation are
converted to the same degree of precision, i.e.,
that of the most precise operand. Also, the result
of an arithmetic operation 1is returned to this
degree of precision.

Examples:

10 p#¥ = 6%/7 The arithmetic was performed

TN

GENERAL INFORMATION ABOUT BASIC-80 Page 1-9

20 PRINT D# in double precision and the
RUN result was returned in D#
.8571428571428571 as a double precision value.
10 D = 6%/7 The arithmetic was performed
20 PRINT D in double precision and the
RUN result was returned to D (single
.857143 precision variable), rounded and
printed as a single precision
value.

3. Logical operators (see Section 1.8.3) convert their
operands to integers and return an integer result.
Operands must be in the range -32768 to 32767 or an
"Overflow" error occurs.

4. When a floating point value 1is converted ¢to an
integer, the fractional portion is rounded.
ixample:

10 C& = 55.88
20 PRINT C%
RUN

56

5. If a double precision variable is assigned a single
precision wvalue, only the first seven digits,
rounded, of the converted number will be wvalid.
This 1is because only seven digits of accuracy were
supplied with the single precision value. The
absolute value of the difference between the
printed double precision number and the original
single precision value will be less than 6.3E-8
times the original single precision value.

Example:

10 A = 2.04

20 B# = A

30 PRINT A;B#

RUN

2,04 2.039999961853027

1.8 EXPRESSIONS AND OPERATORS

An expression may be simply & string or numeric constant, or
a variable, or it may combine constants and variables with
operators to produce a single value.

Operators perform mathematical or logical operations on
values. The operators provided by BASIC-80 may be divided

into four categories:

GENERAL INFORMATION ABOUT BASIC-80 Page 1-10

1. Arithmetic
2., Relational
3. Logical

4, Punctional

1.8.1 Arithmetic Operators

The arithmetic operators, in order of precedence, are:

Operator Operation Sample Expression
~ Exponentiation XY
- Negation -X
x,/ Multiplication, Floating X*Y
Point Division X/Y
+, - Addition, Subtraction X+Y

To change the order in which the operations are performed,
use parentheses. Operations within parentheses are
performed first. Inside parentheses, the wusual order of
operations is maintained.

Here are some sample algebraic expressions and their BASIC
counterparts.

Algebraic Expression BASIC Expression

X+2Y X+Y*2
K %} X-Y/Z
%; X*Y /7
E%X (X+Y) /Z
(x%) ¥ (X"2)"Y
XYZ‘ X" (Y"2)

X*(-Y) Two consecutive
operators must
be separated by
parentheses.

GENERAL INFORMATION ABOUT BASIC-80 Page 1-11

1.8.1.1 Integer Division And Modulus Arithmetic -

Two additional operators are available in Extended and Disk
versions of BASIC-80: Integer division and modulus
arithmetic.

Integer division is denoted by the baskslash (\). The
operands are rounded to integers (must be in the range
-32768 to 32767) before the division is performed, and the
qguotient is truncated to an integer.

For example:

10\4 = 2
25.68\6.99 = 3

The precedence of integer division is just after
multiplication and floating point division.

Modulus arithmetic is denoted by the operator MOD. It gives
the 1integer wvalue that 1is the remainder of an integer
division. For example:

10.4 MOD 4 = 2 (10/4=2 with a remainder 2)
25.68 MOD 6.99 = 5 (26/7=3 with a remainder 5)

The precedence of modulus arithmetic is just after integer
division.

1.8.1.2 oOverflow And Division By Zero -

If, during the evaluation of an expression, a division by
zero is encountered, the "Division by zero" error message is
displayed, machine infinity with the sign of the numerator
is supplied as the result of the division, and execution
continues. If the evaluation of an exponentiation results
'in zero being raised to a negative power, the "Division by
zero" error message is displayed, positive machine infinity
is - supplied as the result of the exponentiation, and
execution continues.

If overflow occurs, the "Overflow" error me ssage is
displayed, machine infinity with the algebraically correct
sign is supplied as the result, and execution continues.

1.8.2 Relational Operators

Relational operators are used to compare two values. The
result of the comparison is either "true" (-1) or "false"
(0). This result may then used to make a decision regarding
program flow. (See IF, Section 2.26.)

GENERAL INFORMATION ABOUT BASIC-80 Page 1-12

Operator Relation Tested Expression
= Equality X=Y
<> Inequality X<>Y
< Less than X<Y
> Greater than X>Y
<= Less than or egqual to X<=Y
>= Greater than or egqual to X>=Y

(The equal sign 1is also used to assign a value to a
variable. See LET, Section 2.30.)

When arithmetic and relational operators are combined in one
expression, the arithmetic is always performed first. For
example, the expression

X+Y < (T-1) /2

is true if the value of X plus ¥ is less than the value of
T-1 divided by 2. More examples:

IF SIN(X)<0 GOTO 1000
IF I MOD J <> 0 THEN K=K+l

1.8.3 Logical Operators

Logical operators perform tests on multiple relations, bit
manipulation, or Boolean operations. The logical operator

returns a bitwise result which is either "true” (not zero)
or "false” (zero). In an expression, logical operations are
performed after arithmetic and relational operations. The

outcome of a logical operation is determined as shown in the
following table. The operators are listed in order of

precedence.

GENERAL INFORMATION ABOUT BASIC-80 Page 1-~13

NOT

X NOT X

1 0

0 1
AND

X Y X AND Y

1 1 1

1 0 0

0 1 0

0 0 0
OR

X Y XORY

1 1 1

1 0 1

0 1 1

0 0 0
XOR

X Y X XCR Y

1 1 0

1 0 1

0 1 1

0 0 0
IMP

X Y X IMP Y

1 1 1

1 0 0

0 1 1

0 0 1
EQV

X Y X EQV Y

1 1 1

1 0 0

0 1 0

0 0 1

Just as the relational operators <c¢an be wused to make
decisions regarding program flow, logical operators can
connect two or more relations and return a true or false
value .~ to be used in a decision (see IF, Section 2.26). For

example:

IF D<200 AND F<4 THEN 80
IF I>10 OR K<(Q THEN 50
IF NOT P THEN 100

Logical operators work by converting their operands to
sixteen bit, signed, two's complement integers in the range
-32768 to +32767. (If the operands are not in this range,
an error results.) If both operands are supplied as 0 or -1,
logical operators return 0 or -1. The given operation is

GENERAL INFORMATION ABOUT BASIC-80 Page 1-14

performed on these integers in bitwise fashion, i.e., each
bit of the result is determined by the corresponding bits in
the two operands.

Thus, it is possible to use logical operators to test bytes
for a particular bit pattern. For instance, the AND
operator may be used to "mask" all but one of the bits of a
status byte at a machine I/O port. The OR operator may be
used to "merge" two bytes to create a particular binary
value. The following examples will help demonstrate how the

logical operators work.

63 AND 16=16 63 = binary 111111 and 16 = binary
10000, so 63 AND 16 = 16

15 AND 14=14 15 = binary 1111 and 14 = binary 1110,
so 15 AND 14 = 14 (binary 1110)

-1 AND 8=8 -1 = binary 1111111111111111 and
8 = binary 1000, so ~1 AND 8 = 8

4 OR 2=6 4 = binary 100 and 2 = binary 10,
so 4 OR 2 = 6 (binary 110)

10 OR 10=10 10 = binary 1010, so 1010 OR 1010 =
1010 (10)

-1 OR =-2=-=1 -1 = binary 1111111111111111 and
= binary 1111111111111110,

so -1 OR -2 = -1, The bit

complement of sixteen zeros is

sixteen ones, which is the
two's complement representation of -1.

NOT X=-(X+1) The two's complement of any integer
is the bit complement plus one.

1.8.4 Functional Operators

A function is used in an expression to call a predetermined
operation that is to be performed on an operand. BASIC-80
has "intrinsic" functions that reside in the system, such as
SOR (square root) or SIN (sine). All of BASIC-80's
intrinsic functions are described in Chapter 3.

BASIC~80 also allows "user defined" ' functions that are
written by the programmer. See DEF FN, Section 2.11.

GENERAL INFORMATION ABOUT BASIC-80 - Page 1-15

1.8.5 String Operations

Strings may be concatenated using +. For example:

10 A$="FILE" : B$S="NAME"
20 PRINT AS + BS

30 PRINT "NEW " + AS$ + BS
RUN

FILENAME

NEW FILENAME

Strings may be compared using the same relational operators
that are used with numbers:

= <> < > <= >=

String comparisoﬁé are made by taking one character at a
time from each string and comparing the ASCII codes. If all
the ASCII codes are the same, the strings are equal. If the
ASCII <codes differ, the 1lower code number precedes the
higher. If, during string comparison, the end of one string
is reached, the shorter string is said to be smaller.
Leading and trailing blanks are significant. Examples:

"AA" ¢ WARM
"FILENAME" = "FILENAME"

nYE" > "xs®

"CL " o> "CL"

"kg" > "KG"

"SMYTH" < "SMYTHE"

BS$ < "9/12/78" where B$ = "8/12/78"

Thus, string comparisons can be used to test string values
or to alphabetize = strings. All string constants used in
comparison expressions must be enclosed in quotation marks.

1.9 INPUT EDITING

If an incorrect character is entered as a line 1is being
typed, 1t <can be deleted with the RUBOUT key or with
Control-H. Rubout surrounds the deleted character(s) with
backslashes, and Control-H has the effect of backspacing
over a character and erasing it. Once a character(s) has
been deleted, simply continue typing the line as desired.

To delete a line that is in the process of being typed, type
Control-U. A carriage return 1is -executed automatically

after the line is deleted.

To correct program lines for a program that is currently in
memory, simply retype the line using the same line number.
BASIC-80 will automatically replace the old 1line with the
new line. ‘

GENERAL INFORMATION ABOUT BASIC-80 Page 1-16

More sophisticated editing capabilities are provided in the
Extended and Disk versions of BASIC-80. See EDIT, Section
2.16.

To delete the entire program that is currently residing in
memory, enter the NEW command. (See Section 2.41.) NEW is
usually used to clear memory prior to entering a new
program.

1.10 ERROR MESSAGES

If BASIC-80 detects an error that causes program execution
to terminate, an error message 1s printed. In the 8K
version, only the error code is printed. In the Extended
and Disk versions, the entire error message is printed. For
a complete list of BASIC-80 error codes and error messagdes,
see Appendix J.

CHAPTER 2

BASIC-80 COMMANDS AND STATEMENTS

All of the BASIC-80 commands and statements are described in
this chapter. Each description is formatted as follows:

Format:

Versions:

Purpose:

Remarks:

Example:

Shows the correct format for the instruction.
See below for format notation.

I.ists the versions of BASIC-80
in which the instruction is available.

Tells what the instruction is used for.

Describes in detail how the instruction
is used.

Shows sample programs Or program segments
that demonstrate the use of the instruction.

Format Notation

Wherever the format for a statement or command is given, the
following rules apply:

1.
2‘

Items in capital letters must be input as shown.

Items in lower case ‘letters enclosed 1in angle
brackets (< >) are to be supplied by the user.

Items in square brackets ([1) are optional.

All punctuation except angle brackets and square
brackets (i.e., commas, parentheses, semicolons,
hyphens, equal signs) must be included where shown.

Items followed by an ellipsis (...) may be repeated
any number of times (up to the length of the line).

BASIC-80 COMMANDS AND STATEMENTS

2.1 AUTO

Format:
Versions: Extended, Disk

Purpose:

To generate a line

Page 2-2

AUTO [<line number>[,<increment>]]

number automatically after

every carriage return.

AUTO begins
increments

<increment>.
If <line

Remarks:

numbering at
each
The default for both values is 10.

number> 1is
<increment> is not specified,

number> and
number by

<line
subsequent line
followed by a comma but
the last increment

specified in an AUTO command is assumed.

If AUTO generates a line number that is
used, an

number to warn the
existing
carriage return immediately after the
save the

being
replace the

will
number.

AUTO is terminated by
which Control-C is typed is not saved.

line in
After
command level.

Example: AUTO 100,50

AUTO

Control-~C

already

is printed after the
that any input will
line. However, typing a
asterisk
line and generate the next line

asterisk
user

typing Control-C. The

is typed, BASIC returns to

Generates line numbers 100,
150, 200 ...

Generates line numbers 10,
20, 30, 40 ...

BASIC-80 COMMANDS AND STATEMENTS Page 2-3

2,2 CALL

Format:

Version:
Purpose:

Remarks:

Example:

NOTE:

CALL <variable name>[(<argument list>)]
Extended, Disk

To call an assembly language subroutine.

The CALL statement is one way to transfer
program flow to an external subroutine. (See
also the USR function, Section 3.40)

<variable name> contains an address that is the
starting point in memory -of the subroutine.
<variable name> may not be an array variable
name. <argument list> contains the arguments
that are passed to the external subroutine.
<argument list> may contain only variables.

The CALL statement generates the same calling
sequence used by Microsoft's FORTRAN, COBOL and

BASIC compilers.

110 MYROUT=&HD0O0O
120 CALL MYROUT(I,J,K)

For a BASIC Compiler program, line 110 1is not
needed because the address of MYROUT will be
assigned by the linking loader at load time.

BASIC-80 COMMANDS AND STATEMENTS Page 2-4

2.3 CHAIN

Format:

Version:

Purpose:

Remarks:

CHAIN [MERGE] <filename>([,[<line number exp>]
[,ALL] [,DELETE<range>]]

Disk

To call a program and pass variables to it from
the current program.

<filename> is the name of the program that is
called. Example:

CHAIN"PROGL"

<line number exp> 1is a line number or an
expression that evaluates to a line number in
the called program. It is the starting point
for execution of the called program. If it is
omitted, execution begins . at the first line.
Example:

CHAIN"PROGL",1000

<line number exp> is not affected by a RENUM
command.

With the ALL option, every vwvariable in the
current program is passed to the called program.
If the- ALL option 1is omitted, the current
program must contain a COMMON statement to list
the variables that are passed. See Section 2.7.
Example:

CHAIN"PROG1",1000,ALL

If the MERGE option is included, it allows a
subroutine to be brought into the BASIC program
as an overlay. That is, a MERGE operation is
performed with the current program and the
called program. The called program must be an
ASCII file if it is to be MERGEd. Example:

CHAIN MERGE"OVRLAY",1000
After an overlay is brought in, it 1is usually

desirable to delete it so that a new overlay may
be brought in. To do this, use the DELETE

option. Example:
CHAIN MERGE"OVRLAY2",1000,DELETE 1000-5000

The line numbers in <range> are affected by the
RENUM command.

BASIC-80 COMMANDS AND STATEMENTS Page 2-5

NOTE:

NOTE:

NOTE:

The CHAIN statement with MERGE option leaves the
files open and preserves the current OPTION BASE
setting.

If the MERGE option is omitted, CHAIN does not
preserve variable types or user-defined
functions for use by the chained program. That
is, any DEFINT, DEFSNG, DEFDBL, DEFSTR, or DEFFN
statements containing shared variables must be
restated in the chained program.

The Microsoft BASIC compiler does not support
the ALL, MERGE, DELETE, and <line number exp>
options to CHAIN. Thus, the statement format is
CHAIN <filename>. If you wish to maintain
compatibility with the BASIC compiler, it is
recommended that COMMON be used to pass
variables and that overlays not be used. The
CHAIN statement 1leaves the files open during
CHAINing.

BASIC-80 COMMANDS AND STATEMENTS Page 2-6

2.4 CLEAR

Format:
Versions:

Purpose:

Remarks:

NOTE:

NOTE:

Examples:

CLEAR [, [<expressionl>][,<expression2>]]
8K, Extended, Disk

To set all numeric variables to zero, all string
variables to null, and to close all open files;
and, optionally, to set the end of memory and
the amount of stack space.

<expressionl> is a memory location which, if
specified, sets the highest location available
for use by BASIC-30.

<expression2> sets aside stack space for BASIC.
The default is 256 bytes or one-eighth of the
available memory, whichever is smaller. }

In previous versions of BASIC-80, <expressionl>
set the amount of string space, and
<expression2> set the end of memory. BASIC-80,
release 5.0 and later, allocates string space
dynamically. An "Out of string space error"
occurs only if there is no free memory left for
BASIC to use.

The BASIC Compiler supports the CLEAR statement
with the restriction that <expressionl> and
<expression2> must be integer expressions. If a
value of 0 is given for either expression, the
appropriate default is used. The default stack
size is 256 bytes, and the default top of memory
is the current top of memory. The CLEAR
statement performs the following actions:

Closes all files
Clears all COMMON and user variables
Resets the stack and string space
Releases all disk buffers

CLEAR

CLEAR ,32768

CLEAR ,,2000

CLEAR ,32768,2000

BASIC-80 COMMANDS AND STATEMENTS Page 2-7

2.5 CLOAD

Formats:

Versions:

Purpose:

Remarks:

NOTE:

Example:

CLOAD <filename>

CLOAD? <filename>

CLOAD* <array name>

8K (cassette), Extended (cassette)

To load a program or an array from cassette tape
into memory.

" CLOAD executes a NEW command before it loads the

program from cassette tape. <filename> 1is the
string expression or the first character of the
string expression that was specified when the
program was CSAVEd.

CLOAD? verifies tapes by comparing the program
currently in memory with the file on tape that
has the same filename. If they are the same,
BASIC-80 prints Ok. If not, BASIC-80 prints NO

GOOD.

CLOAD* loads a numeric array that has been saved
on tape. The data on tave is loaded into the
array called <array name> specified when the
array was CSAVE*ed.

CLOAD and CLOAD? are always entered at command
level 'as direct mode commands. CLOAD* may be
entered at command level or used as a program
statement. Make sure the array has been
DIMensioned before it is loaded. BASIC-80
always returns to command level after a CLOAD,
CLOAD? or CLOAD* is executed. Before a CLOAD
is executed, make sure the cassette recorder is
properly connected and in the Play mode, and the
tape is possitioned correctly.

See also CSAVE, Section 2.9.

CLOAD and CSAVE are not included in all
implementations of BASIC-80.

CLOAD "MAX2"

Loads file "M" into memory.

BASIC-80 COMMANDS AND STATEMENTS Page 2-8

2.6 CLOSE

Format:
Version:
Purpose:

Remarks:

Example:

CLOSE[[#]<file number>{,{#]<file number...>]]
Disk
To conclude I/0 to a disk file.

<file number> is the number under which the file
was OPENed. A CLOSE with no arguments closes
all open files.

The association between a particular file and
file number terminates upon execution of a
CLOSE. The file may then be reOPENed using the
same or a different file number; likewise, that
file number may now be reused to OPEN any file.

A CLOSE for a sequential output file writes the
final buffer of output.

The END statement and the NEW command always
CLOSE all disk files automatically. (STOP does
not close disk files.)

See Appendix B.

BASIC~80 COMMANDS AND STATEMENTS Page 2-9

2.7 COMMON

Format:
Version:
. Purpose:

Remarks:

Example:

NOTE:

COMMON <list of variables>
Disk
To pass variables to a CHAINed program.

The COMMON statement is used in conjunction with
the CHAIN statement. COMMON - statements may
appear anywhere in a program, though it is
recommended that they appear at the beginning.
The same variable cannot appear in more than one
COMMON statement. Array variables are specified
by appending " ()" to the variable name. If all
variables are to be passed, use CHAIN with the
ALL option and omit the COMMON statement.

100 COMMON A,B,C,D(),GS$
110 CHAIN "PROG3",10

The BASIC Compiler supports a modified version
of 'the COMMON statement. The COMMON statement
must apvear in a program before any executable
statements. The current non-executable

statements are:

COMMON

DEFDBL, DEFINT, DEFSNG, DEFSTR
DIM

OPTION BASE

REM

% INCLUDE

Arrays in COMMON must be declared in preceding
DIM statements,

The standard form of the COMMON statement 1is
referred to as blank COMMON. FORTRAN style
named COMMON areas are also supported; however,
the wvariables are not preserved across CHAINSs.
The syntax for named COMMON is as follows:

COMMON /<name>/ <list of variables>

where <name> is 1 to 6 alphanumeric characters
starting with a letter. This 1is useful for
communicating with FORTRAN and assembly language
routines without having to pass explicit
parameters in the CALL statement.

BASIC-80 COMMANDS AND STATEMENTS Page 2-10

The blank COMMON size and order of variables
must be the same in the CHAINing and CHAINed-to
programs. With the BASIC Compiler, the best way
to insure this 1is to place all blank COMMON
declarations in a single include file and use
the %INCLUDE statement in each program. For
example:

MENU.BAS
10 %INCLUDE COMDEF

1000 CHAIN "PROGL"

PROG1.BAS
10 $INCLUDE COMDEF

. 2000 CHAIN "MENU"

COMDEF.BAS
100 DIM A(100) ,B$(200)

110 coMMoN I,J,K,A, ()
120 COMMON A$,BS, () ,X,Y,2

BASIC-80 COMMANDS AND STATEMENTS Page 2-11

2.8 CONT

Format:
Versions:

Purpose:

Remarks:

Example:

CONT
8K, Extended, Disk

To continue program execution after a Control-C
has been typed, or a STOP or END statement has
been executed.

Execution resumes at the point where the break
occurred, If the break occurred after a prompt
from an INPUT statement, execution continues
with the reprinting of the prompt (? or prompt
string).

CONT is usually used in conjunction with STOP
for debugging. When execution 1is stopped,
intermediate values may be examined and changed
using direct mode statements. Execution may be
resumed with CONT or a direct mode GOTO, which
resumes execution at a specified line number.
With the Extended and Disk versions, CONT may be
used to continue execution after an error.

CONT is invalid if the program has been edited
during the break. In 8K BASIC-80, execution
cannot be CONTinued if a direct mode error has
occurred during the break.

See example Section 2.61, STOP.

BASIC-80 COMMANDS AND STATEMENTS Page 2-12

2.9 CSAVE

Formats:

Versions:

Purpose:

Remarks:

NOTE:

“Example:

CSAVE <string expression>
CSAVE* <array variable name>
8K (cassette), Extended (cassette)

To save the program or an array currently in
memory on cassette tape.

Each program or array saved on tape is
identified by a filename. When the command
CSAVE <string expression> is executed, BASIC-80
saves the program currently in memory on tape
and uses the first character in <string
expression> as the filename. <string
expression> may be more than one character, but
only the first character 1is wused for the

filename.

When the command CSAVE* <array variable name> is
executed, BASIC-80 saves the specified array on
tape. The array must be a numeric array. The
elements of a multidimensional array are saved
with the leftmost subscript changing fastest.

CSAVE may be used as a program statement or as a
direct mode command.

Before a CSAVE or CSAVE* is executed, make sure
the cassette recorder is properly connected and
in the Record mode.

See also CLOAD, Section 2.5.

CSAVE and CLOAD are not included in all
implementations of BASIC-80.

CSAVE "TIMER"

Saves the program currently in memory on
cassette under filename "T".

BASIC-80 COMMANDS AND STATEMENTS Page 2-13

2.10 DATA

Format:
Versions:

Purpose:

Remarks:

Example:

DATA <list of constants>
8K, Extended, Disk

To store the numeric and string constants that
are accessed by the program's READ statement(s).
(See READ, Section 2.54)

DATA statements are nonexecutable and may be
placed anywhere in the program. A DATA
statement may contain as many constants as will
fit on a 1line (separated by commas), and any
number of DATA statements may be used in a
program, The READ statements access the DATA
statements in order (by 1line number) and the
data contained therein may be thought of as one
continuous list of items, regardless of how many
items are on a 1line or where the lines are

placed in the program.

<list of constants> may contain numeric
constants in any format, 1i.e., fixed point,
floating point or integer. . (No numeric
expressions are allowed 1in the list.) String
constants in DATA statements must be surrounded
by double quotation marks only if they contain
commas, colons or significant leading or
trailing spaces. Otherwise, quotation marks are
not needed.

The variable type (numeric or string) given 1in
the READ statement must agree with the

corresponding constant in the DATA statement.

DATA statements may be reread from the beginning
by use of the RESTORE statement (Section 2.57).

. See .examples in Section 2.54, READ.

BASIC-80 COMMANDS AND STATEMENTS Page 2-14

2.11 DEF FN

Format: DEF FN<name>|[(<parameter list>)]=<function definition>

Versions: 8K, Extended, Disk

Purpose: To define and name a function that is written by
the user.

Remarks: <name> must be a 1legal wvariable name. This
name, preceded by FN, becomes the name of the
function. <parameter list> 1is comprised of

those variable names in the function definition
that are to be replaced when the function 1is
called. The items in the list are separated by
commas. <function definition> is an expression
that performs the operation of the function. It

is limited to one 1line. Variable names that
appear 1in this expression serve only to define
the function; they do not affect program

variables that have the same name. A variable
name used in a function definition may or may
not appear in the parameter list. If it does,
the value of the parameter is supplied when the
function 1is called. Otherwise, - the current
value of the variable is used.

The variables in the parameter 1list represent,
on a one-to-one basis, the argument variables or
values that will be given in the function call.
(Remember, in the 8K version only one argument
is allowed in a function call, therefore the DEF
FN statement will contain only one variable.)

In Extended and Disk BASIC-80, user-defined
functions may be numeric or string; in 8K,
user-defined string functions are not allowed.
If a type is specified in the function name, the
value of the expression is forced to that type
before it is returned to the calling statement.
If a type is specified in the function name and
the argument type does not match, a "Type
mismatch" error occurs.

A DEF FN statement must be executed before the
function it defines may be called. If a
function is called before it has been defined,
an "Undefined user function" error occurs. DEF
FN is illegal in the direct mode.

BASIC-80 COMMANDS AND STATEMENTS i Page 2-15

Example: .

410 DEF FNAB(X,Y)=X"3/Y"2
420 T=FNAB(I,J) '

Line 410 defines the function FNAB. The
function is called in line 420.

BASIC-80 COMMANDS AND STATEMENTS - ; Page 2-16

2.12 DEFINT/SNG/DBL/STR

Format: DEF<type> <range(s) of letters>
where <type> is INT, SNG, DBL, or STR

Versions: Extended, Disk

Purpose: To declare variable types as integer, single
precision, double precision, or string.

Remarks: A DEFtype statement declares that the wvariable
names beginning with the letter(s) specified
will be that type variable. However, a type
declaration character always takes precedence
over a DEFtype statement in the typing of a
variable.

If no type declaration statements are
encountered, BASIC-80 assumes all variables
without declaration characters are single
precision variables.

Examples: 10 DEFDBL L-P All variables beginning with
the letters L, M, N, O, and P
will be double precision
variables.

10 DEFSTR A All variables beginning with
the letter A will be string
variables.

10 DEFINT I-N,W-2
All variable beginning with
the letters I, J, K, L, M,
N, W, X, ¥, Z will be integer
variables.

TN

BASIC-80 COMMANDS AND STATEMENTS Page 2-17

2.13 DEF USR

Format:
Versions:

Purpose:

Remarks:

Example:

DEF USR[<digit>]=<integer expression>

Extended, Disk

To specify the starting address of an assembly
language subroutine.

<digit> may be any digit from 0 to 9. The digit
corresponds to the number of the USR routine
whose address is being specified. If <digit> is
omitted, DEF USRO 1is assumed. The value of
<integer expression> is the starting address of
the USR routine. See Appendix C, Assembly
Language Subroutines.

Any number of DEF USR statements may appear in a
program to redefine subroutine starting
addresses, thus allowing access to as many
subroutines as necessary.

200 DEF USR0=24000
210 X=USR0(YA2/2.89)

BASIC-80 COMMANDS AND STATEMENTS Page 2-18

2.14 DELETE

Format: DELETE[<line number>]([-<line number>]

Versions: Extended, Disk

Purpose: To delete program lines.

Remarks: BASIC-80 always returns to command level after a
DELETE is executed. If <line number> does not
exist, an "Illegal function call" error occurs.

Examples: DELETE 40 Deletes line 40

DELETE 40-100 Deletes lines 40 through
100, inclusive

DELETE-40 Deletes all lines up to
and including line 40

BASIC-80 COMMANDS AND STATEMENTS Page 2-19

2.15 DIM

Format:
Versions:

Purpose:

Remarks:

Example:

DIM <list of subscripted variables>
8K, Extended, Disk

To specify the maximum values for array variable
subscripts and allocate storage accordingly.

If an array variable name is used without a DIM
statement, the maximum value of its subscript(s)
is assumed to be 10. If a subscript 1is used
that 1is greater than the maximum specified, a
"Subscript out of range" error occurs. The
minimum value for a subscript 1is always 0,
unless otherwise specified with the OPTION BASE
statement (see Section 2.46).

The DIM statement sets all the elements of the
specified arrays to an initial value of zero.

10 DIM A(20)

20 FOR I=0 TO 20
30 READ A(I)

40 NEXT I

BASIC-80 COMMANDS AND STATEMENTS Page 2-20

2,16 EDIT

Format: EDIT <line number>

Versions: Extended, Disk

Purpose: To enter Edit Mode at the specified line.
Remarks: In Edit Mode, it is possible to edit portions of

a line without retyping the entire line. Upon
entering Edit Mode, BASIC-80 types the line
number of the line to be edited, then it types a
space and waits for an Edit Mode subcommand.

Edit Mode Subcommands

Edit Mode subcommands are used to move the
cursor or to insert, delete, replace, or search
for text within a line. The subcommands are not
echoed. Most of the Edit Mode subcommands may
be preceded by an integer which causes the
command to be executed that number of times.
When a preceding integer is not specified, it is
assumed to be 1.

Edit Mode subcommands may be categorized
according to the following functions:

1. Moving the cursor
2. Inserting text

3. Deleting text

4., Finding text

5. Replacing text

6. Ending and restarting Edit Mode

NOTE

In the descriptions that follow, <ch>
represents any character, <text>
represents a string of characters of
arbitrary length, [i] represents an
optional integer (the default is 1), and
$ represents the Escape (or Altmode)

key.

BASIC-80 COMMANDS AND STATEMENTS Page 2-21

1.

Moving the Cursor

Space

Rubout

Use the space bar to move the <cursor to the
right. [i]Space moves the cursor i spaces to
the right. Characters are printed as you space
over them.

In Edit Mode, [i]Rubout moves the cursor i

spaces to the left (backspaces). Characters are
printed as you backspace over them.

Inserting Text

I

D

Finding

S

I<text>$ inserts <text> at the current cursor
position. The inserted characters are printed
on the terminal. To terminate insertion, type
Escape. If Carriage Return is typed during an
Insert command, the effect is the same as typing
Escape and then Carriage Return. buring an
Insert command, the Rubout, Delete, or
Underscore key on the terminal may be used to
delete characters to the left of +the cursor.
Rubout will print out the characters as you
backspace over them. Delete and Underscore will
print an Underscore for each character that you
backspace over. If an attempt is made to insert
a character that will make the line longer than
255 characters, a bell (Control-G) is typed and
the character is not printed.

The X subcommand is used to extend the line. X
moves the cursor to the end of the line, goes
into insert mode, and allows insertion of - text
as 1f an Insert command had been given. When
you are finished extending the line, type Escape

or Carriage Return.

Deleting Text

[i]1D deletes i characters to the right of the
cursor, The deleted characters . are echoed
between ‘backslashes, and the cur sor is
positioned to the right of the last character
deleted. If there are fewer than 1 characters
to the right of the cursor, 1iD deletes the
remainder of the line.

H deletes all characters to the right of the

cursor and - then automatically enters insert
mode. H is useful for replacing statements at

the end of a line.

Text

The subcommand [i]S<ch> searches for the ith

BASIC-80 COMMANDS AND STATEMENTS Page 2-22

occurrence - of <ch> and positions the cursor
before it., The character at the current cursor
position is not included in the search. If <ch>
is not found, the cursor will stop at the end of
the line. All characters passed over during the
search are printed.

The subcommand [i]K<ch> is similar to [i]S<ch>,
except -all the characters passed over in the
search are deleted. The «cursor 1is positioned
before <ch>, and the deleted characters are
enclosed in backslashes.

Replacing Text

C

The subcommand C<ch> changes the next character

to <ch>. If you wish to change the next i
characters, use the subcommand iC, followed by i
characters. After the 1ith new character is

typed, change mode is exited and you will return
to Edit Mode. ‘

Ending and Restarting Edit Mode

<Cr>

Typing Carriage Return prints the remainder of
the line, saves the changes you made and exits
Edit Mode.

The E subcommand has the same effect as Carriage
Return, except the remainder of the line is not
printed.

The Q subcommand returns to BASIC-80 command
level, without saving any of the changes that
were made to the line during Edit Mode.

The L subcommand lists the remainder of the line
(saving any changes made so far) and repositions
the cursor at the beginning of the 1line, still
in Edit Mode. L 1is usually used to list the
line when you first enter Edit Mode.

The A subcommand lets you begin editing a line
over -again. It restores the original line and
repositions the cursor at the beginning.

NOTE

If BASIC-80 receives an unrecognizable
command or illegal character while in
Edit Mode, it prints a bell (Control-G)
and the command or character is ignored.

BASIC-80 COMMANDS AND STATEMENTS , Page 2-23

Syntax Errors

When a Syntax Error is encountered during
execution of" a program, BASIC-80 automatically
enters Edit Mode at the 1line that caused the
error. For example:

10 K = 2(4)

RUN

?S8yntax error in 10
10 ‘

When you finish editing the 1line and type
Carriage Return (or the E subcommand), BASIC-80
reinserts the line, which causes all wvariable
values to be lost. To preserve the variable
values for examination , first exit Edit Mode
with the Q0 subcommand. BASIC-80 will return to
command level, and all variable values will be
preserved.

Control-A

To enter Edit Mode on the line you are currently
typing, type Control-A, BASIC-80 responds with
a carriage return, an exclamation point (!) and
a space. The cursor will be positioned at the
first character in the line. Proceed by typing
an Edit Mode subcommand.

NOTE

Remember, if you have Jjust entered a
line and wish to go back and edit it,
the command "EDIT."™ will enter Edit Mode
at the current line. (The line number
symbol "." always refers to the current

line.)

BASIC-80 COMMANDS AND STATEMENTS Page 2-24

2.17 END

Format:

Versions:

Purpose:

Remarks:

Example:

END

8K, Extended, Disk

To terminate program execution, close all files
and return to command level.

END statements may be placed anywhere in the
program to terminate execution. Unlike the STOP
statement, END does not cause a BREAK message to
be printed. An END statement at the end of a
program is optional. BASIC-80 always returns to
command level after an END is executed.

520 IF K>1000 THEN END ELSE GOTO 20

BASIC-80 COMMANDS AND STATEMENTS Page 2-25

2.18 ERASE

Format:
Versions:
Purpose:

Remarks:

NOTE:

Example:

ERASE <list of array variables>
Extended, Disk
To eliminate arrays from a program.

Arrays may be redimensioned after they are
ERASEd, or the previously allocated array space
in memory may be used for other purposes. If an
attempt is made to redimension an array without
first ERASEing it, a "Redimensioned array" error
occurs.

The Microsoft BASIC compiler does not support
ERASE.

450 ERASE A,B
460 DIM B(99)

BASIC-80 COMMANDS AND STATEMENTS Page 2-26

2.19 ERR AND ERL VARIABLES

When an error handling subroutine 1is entered,
the wvariable ERR contains the error code for the
error, and the variable ERL contains the 1line
number of the 1line in which the error was
detected. The ERR and ERL variables are usually
used in IF...THEN statements to direct program
flow in the error trap routine.

If the statement that caused the error was .a
direct mode . statement, ERL will contain 65535.
To test if an ‘error occurred in a direct
statement, use IF 65535 = ERL THEN ...
Otherwise, use

error code THEN ...

IF ERR
IF ERL = line number THEN ...

If the line number is not on the right side of
the relational operator, it cannot be renumbered
by RENUM. Because ERL and ERR are reserved
variables, neither may appear to the left of the
equal sign in a LET (assignment) statement.
BASIC-80's error codes are listed in Appendix J.
(For Standalone Disk BASIC error codes, see

Appendix H.)

BASIC-80 COMMANDS AND STATEMENTS . Page 2-~27

2.20 ERROR

Format:
Versions:

Purpose:

Remarks:

Example 1:

ERROR <integer expression>

Extended, Disk

1) To simulate the occurrence of a BASIC-80
error: or 2) to ‘allow error <codes to be
defined by the user.

The wvalue of <integer expression> must be
greater than 0 and less than 255. 1If the value
of <integer expression> equals an error code
already in use by BASIC-80 (see Appendix J), the
ERROR statement will simulate the occurrence of
that error, and the corresponding error message
will be printed. (See Example 1.)

To define your own error code, use a value that
is greater than any wused by BASIC-80's error
codes. (It is preferable to use the highest
available values, so compatibility may be
maintained when more error codes are added to
BASIC-80.) This user-defined error code may then
be conveniently handled in an error trap
routine. (See Example 2,)

If an ERROR statement specifies a code for which
no error message has been defined, BASIC-80
responds with the message UNPRINTABLE ERROR,
Execution of an ERROR statement for which there
is no error trap routine causes an error messagde
to be printed and execution to halt.

LIST

10 S 10

20T 5

30 ERROR S + T

40 END

Ok

RUN

String too long in line 30

Or, in direct mode:

Ok
ERROR 15 (vou type this line)
String too long (BASIC-80 types this line)

Ok

BASIC-80 COMMANDS AND STATEMENTS Page 2-28

Example 2:

110
120
130

400
410

ON ERROR GOTO 400
INPUT "WHAT IS YOUR BET";B
IF B > 5000 THEN ERROR 210

210 THEN PRINT "HOUSE LIMIT IS $5000"
130 THEN RESUME 120

IF ERR
IF ERL

BASIC-80 COMMANDS AND STATEMENTS Page 2-29

2.21 FIELD

Format: FIELD([#]<file number>,<field width> AS <string variable>...
Version: Disk
Purpose: To allocate space for variables in a random file
buffer.
Remarks: To get data out of a random buffer after a GET

or to enter data before a PUT, a FIELD statement
must have been executed.

<file number> is the number under which the file
was - OPENed. <field width> is the number of
characters to be allocated to <string variable>.
For example,

FIELD 1, 20 AS N$, 10 AS IDS, 40 AS ADDS

allocates the first 20 positions (bytes) in the
random file buffer to the string variable NS,
the next 10 positions to ID$, and the next 40
positions to ADDS. FIELD does NOT place any
data in the random file buffer. (See LSET/RSET
and GET.)

The total number of bytes allocated in. a FIELD
statement must not exceed the record length that
was specified when the file was OPENed.
Otherwise, a "Field overflow" error occurs.
(The default record length is 128.)

Any number of FIELD statements may be executed
for the same file, and all FIELD statements that
have been executed are in effect at the same

time.
Example: See Appendix B.
NOTE: Do not use a FIELDed variable name in an INPUT

or LET statement. Once a variable name is
FIELDed, it points to the correct place in the
random file Dbuffer. If a subsequent INPUT or
LET statement with that variable name is
executed, the variable's pointer is moved to

string space.

BASIC-80 COMMANDS AND STATEMENTS Page 2-~30

2,22 FOR...NEXT

Format:

Versions:

Purpose:

Remarks:

FOR <variable>=x TO y [STEP z]

NEXT [<variable>][,<variable>...]
where x, y and z are numeric expressions.

8K, Extended, Disk

To allow a series of instructions to be
performed in a loop a given number of times.

<variable> is used as a counter. The first
numeric expression (x) is the initial wvalue of
the counter. The second numeric expression (y)
is the final value of the counter. The program
lines following the FOR statement are executed
until the NEXT statement is encountered. Then
the counter is incremented by the amount
specified by STEP. A check is performed to see
if the value of the counter is now greater than
the final wvalue (y). If it is not greater,

BASIC-80 branches back to the statement after

the FOR statement and the process is repeated.
If it is greater, execution continues with the
statement following the NEXT statement. This is
a FOR...NEXT loop. If STEP is not specified,
the 1increment is assumed to be one. If STEP is
negative, the final value of the counter is set
to be less than the initial value. The counter
is decremented each time through the 1loop, and
the 1loop 1is executed until the counter is less
than the final value.

The body of the loop is skipped if the 1initial
value of the loop times the sign of the step
exceeds the final value times the sign of the

step.

Nested Loops

FOR...NEXT loops may be nested, that is, a
FOR...NEXT loop may be placed within the context
of another FOR...NEXT loop. When loops are
nested, each loop must have a unique variable
name as its counter. The NEXT statement for the
inside loop must appear before that for the
outside loop. If nested loops have the same end
point, a single NEXT statement may be used for
all of them.

The variable(s) in the NEXT statement may be

BASIC~80 COMMANDS AND STATEMENTS Page 2-31

omitted, in which case the NEXT statement will
match the most recent FOR statement. If a NEXT
statement is encountered before its
corresponding FOR statement, a "NEXT without
FOR" error message 1is issued and execution is
terminated.

Example 1: 10 K=10
20 FOR I=1 TO K STEP 2
30 PRINT I;

40 K=K+10
50 PRINT K
60 NEXT
RUN

1 20

3 30

5 40

7 50

9 60
Ck

Example 2: 10 J=0
20 FOR I=1 TO J
30 PRINT T
40 NEXT I

In this example, the loop does not execute
because the initial value of the loop exceeds
the final value.

Example 3: 10 I=5
20 FOR I=1 TO I+5
30 PRINT I;

40 NEXT
RUN

1 2 3 4 5 6 7 8 9 10
Ok

In this example, the loop executes ten times.
The final value for the loop variable is always
set before the initial wvalue is set. (Note:
Previous versions of BASIC-80 set the initial
value of the loop variable = before setting the
final wvalue; i.e., the above loop would have

executed gix times.)

BASIC-80 COMMANDS AND STATEMENTS Page 2-32

2.23 GET

Format:
Version:

Purpose:

Remarks:

Example:

NOTE:

GET [#]1<file number>{,<record number>]
Disk

To read a record from a random disk file into a
random buffer.

<file number> is the number under which the file
was OPENed. 1If <record number> is omitted, the
next record (after the last GET) is read into
the. buffer. The largest possible record number

is 32767.
See Appendix B.

After a GET statement, INPUT# and LINE INPUT#
may be done to read characters from the random

file buffer.

.

BASIC-80 COMMANDS AND STATEMENTS Page 2-33

2.24 GOSUB...RETURN

Format:

Versions:
Purpose:

Remarks:

Example:

GOSUB <line number>

RETURN
8K, Extended, Disk
To branch to and return from a subroutine.

<line number> 1is the first line of the
subroutine.

A subroutine may be called any number of times
in a program, and a subroutine may be called
from within another subroutine. Such nesting of
subroutines is limited only by available memory.

The RETURN statement(s) in a subroutine cause
BASIC-80 to branch back to the statement
following the most recent GOSUB statement. A
subroutine may contain more than one RETURN
statement, should 1logic dictate a return at
different points in the subroutine. Subroutines
may appear anywhere in the program, but it 1is
recommended that +the subroutine be readily
distinguishable from the main program. ToO
prevent inadvertant entry into the subroutine,
it may be preceded by a STOP, END, or GOTO
statement that directs program control around

the subroutine.

10 GOSUB 40
20 PRINT "BACK FROM SUBROUTINE"
30 END

40 PRINT "SUBROUTINE";
50 PRINT " IN";

60 PRINT " PROGRESS"
70 RETURN

RUN

SUBROUTINE IN PROGRESS
BACK FROM SUBROUTINE
Ok

BASIC-80 COMMANDS AND STATEMENTS Page 2-34

2.25 GOTO

Format:
Versions:

Purpose:

Remarks:

Example:

GOTO <line number>

8K, Extended, Disk

To branch unconditionally out of the normal
program sequence to a specified line number.

If <line number> is an executable statement,
that statement and those following are executed.
If it is a nonexecutable statement, execution
proceeds at the first executable statement
encountered after <line number>.

LIST

10 READ R

20 PRINT "R =";R,
30 A = 3.14*R"2

40 PRINT "AREA =";A

50 GOTO 10

60 DATA 5,7,12

Ok

RUN

R =25 AREA = 78.5

R =7 AREA = 153.86
R =12 AREA = 452.16

?20ut of data in 10
Ok

BASIC-80 COMMANDS AND STATEMENTS Page 2-35

2.26 IF...THEN[...ELSE] AND IF...GOTO
Format: IF <expression> THEN <statement(s)> | <line number>
[ELSE <statement(s)> | <line number>]
Formati IF <expression> GOTO <line number>
[ELSE <statement(s)> | <line number>]
Versions: 8K, Extended, Disk

NOTE: The ELSE clause is allowed only in Extended and
Disk versions.

Purpose: To make a decision regarding program flow based
on the result returned by an expression.

Remarks: If the result of <expression> is not zero, the
THEN or GOTO clause is executed. THEN may be
followed by either a line number for branching
or one or more statements to be executed. GOTO
is always followed by a 1line number. If the
result of <expression> is zero, the THEN or GOTO
clause 1s ignored and the ELSE clause, |if
present, 1is executed. Execution continues with
the next executable statement. (ELSE is allowed
only in Extended and Disk wversions.) Extended
and Disk versions allow a comma before THEN.

Nesting of IF Statements

In the Extended and Disk versions,
IF...THEN...ELSE statements may “be nested.
Nesting is limited only by the 1length of the
line. For example

IF X>Y THEN PRINT "GREATER" ELSE IF ¥Y>X
THEN PRINT "LESS THAN" ELSE PRINT “EQUAL"

is a legal statement. . If the statement does not
contain the same number of ELSE and THEN
clauses, each ELSE is matched with the closest
unmatched THEN. For example

IF A=B THEN IF B=C THEN PRINT "A=C"
ELSE PRINT "A<>C"

will not print "A<>C" when A<>B.

If an IF...THEN statement is followed by a 1line
number in the direct mode, an "Undefined line"
error results unless a- statement with the
specified line number had previously been
entered in the indirect mode.

BASIC-80 COMMANDS AND STATEMENTS Page 2-36

NOTE:

Example 1:

Example 2:

Example 3:

When using IF to test equality for a value that
is the result of a floating point computation,
remember that the internal representation of the
value may not be exact. Therefore, the test
should be against the range over which the
accuracy of the value may vary. For example, to
test a computed variable A against the value
1.0, use:

IF ABS (A-1.0)<1.0E-6 THEN ...

This test returns true if the wvalue of A is 1.0
with a relative error of less than 1.0E-6.

200 IF I THEN GET#1,I

This statement GETs record number I if I is not
zZero.

100 IF(I<20)*(I>10) THEN DB=1979-1:GOTO 300
110 PRINT "OUT OF RANGE"

In this example, a test determines if I is
greater than 10 and less than 20. If I is in
this range, DB 1is calculated and execution
branches to 1line 300. If I 1is not in this
range, execution continues with line 110.

210 IF IQFLAG THEN PRINT A$ ELSE LPRINT AS

This statement -'causes printed output to go
either to the terminal or the line printer,
depending on the value of a variable (IOFLAG).
If IOFLAG 1is zero, output goes to the line
printer, otherwise output goes to the terminal.

BASIC-80 COMMANDS AND STATEMENTS Page 2-37

2,27 INPUT

Format:
Versions:

Purpose:

Remarks:

INPUT(;] [<"prompt string">;}<list of variables>
8K, Extended, Disk

To allow input from the terminal during program
execution.

When an INPUT statement is encountered, program
execution pauses and a question mark is printed
to indicate the program is waiting for data. If
<"prompt string"> is included, the string is
printed before the question mark. The required
data is then entered at the terminal.

A comma may be used instead of a semicolon after
the prompt string to suppress the question mark.
For example, the statement INPUT "ENTER
BIRTHDATE",BS will print the prompt with no
guestion mark.

If INPUT is immediately followed by a semicolon,
then the <carriage return typed by the user to
input data does not echo a carriage return/line
feed sequence,

The data that is entered 1is assigned to the
variable (s) given 1in <variable 1list>. The
number of data items supplied must be the same
as the number of variables in the list. Data
items are separated by commas.

The variable names in the list may be numeric or
string wvariable names (including subscripted
variables). The type of each data item that is
input must agree with the type specified by the
variable name. (Strings 1input to an - INPUT
statement need not be surrounded by quotation

marks.)

Responding to INPUT with too many or too few
items, or with the wrong type of value (numeric
instead of string, etc.) causes. the messsage
"?Redo from start" to be printed. No assignment
of input values is made wuntil an acceptable

response is given.

In the 8K version, INPUT 1is illegal in the
direct mode. .

BASIC-80 COMMANDS AND STATEMENTS Page 2-38

Examples:

10 INPUT X

20 PRINT X "SQUARED IS" X"2

30 END

RUN

? 5 ~ (The 5 was typed in by the user

in response to the question mark.)
5 SQUARED IS 25
Ok

LIST

10 PI=3.14

20 INPUT "WHAT IS THE RADIUS";R

30 A=PI*R"2

40 PRINT "THE AREA OF THE CIRCLE IS";A
50 PRINT

60 GOTO 20

ok

RUN
WHAT IS THE RADIUS? 7.4 (User types 7.4)
THE AREA OF THE CIRCLE IS 171.946

WHAT IS THE RADIUS?
etc.

BASIC-80 COMMANDS AND STATEMENTS ' Page 2-39

2.28 INPUTH

Format:

Version:

Purpose:

Remarks:

Example:

INPUT#<file number>,<variable list>
Disk

To read data items from a sequential disk file
and assign them to program variables.

<file number> 1is the number used when the file
was OPENed for input. <variable list> contains
the variable names that will be assigned to the
items in the file. (The wvariable type must
match the type specified by the variable name.)
With INPUT#, no question mark is printed, as
with INPUT.

The data items in the file should appear Jjust as
they would if data were being typed in response
to an INPUT statement. With numeric values,
leading spaces, carriage returns and line feeds
are ignored. The first character encountered
that - is not a space, carriage return or line
feed is assumed to be the start of a number.
The number terminates on a space, carriage
return, line feed or comma.

If BASIC-80 is scanning the sequential data file
for a string item, 1leading spaces, carriage
returns and line feeds are also ignored. The
first character encountered that is not a space,
carriage return, or line feed is assumed to be
the start of a string item. If this first

character is a quotation mark ("), the string
item will consist of all characters read between
the first gquotation mark and the second. Thus,

a quoted string may not contain a quotation mark
as a character. 1If the first character of the
string is not a quotation mark, the string is an
unquoted string, and will terminate on a comma,
carriage or line feed (or after 255 characters
have been read). 1If gnd of file is reached when
a numeric or string item is being INPUT, the

item is terminated.

See Appendix B.

lermunglic w IR Hex (EOF) o ieecl.

BASIC-80 COMMANDS AND STATEMENTS ' Page 2-40

2,29 KILL

Format:
Version:
Purpose:

Remarks:

Example:

KILL <filename>
Disk
To delete a file from disk.

If a KILL statement is given for a file that is
currently OPEN, a "File already open" error

occurs.

RILL is used for all types of disk files:
program files, random data files and sequential
data files.

200 KILL "DATAl"

See also Appendix B.

BASIC-80 COMMANDS AND STATEMENTS Page 2-41

2.30 LET

Format:
Versions:

Purpose:

Remarks:

Example:

[LET] <variable>=<expression>

8K, Extended, Disk

To assign the wvalue of an expression to a
variable.

Notice the word LET is optional, i.e., the equal
sign 1is sufficient when assigning an expression
to a variable name.

110 LET D=12

120 LET E=12"2
130 LET F=12"4
140 LET SUM=D+E+F

or

110 D=12

120 E=12"2
130 F=12"4
140 SUM=D+E+F

BASIC-80 COMMANDS AND STATEMENTS Page 2-42

2.31 LINE INPUT

Format: LINE INPUT[;] [<"prompt string”>;]<string variable>

Versions: Extended, Disk

Purpose: To input an entire line (up to 254 characters)
to a string wvariable, without the wuse of
delimiters.

Remarks: The prompt string is a string literal that 1is
printed at the terminal before input is
accepted. A question mark is not printed unless
it is part of the prompt string. All input from
the end of the prompt to the carriage return 1is
assigned to <string variable>. However, if a
line feed/carriage return sequence (this order
only) is encountered, both characters are
echoed; but the carriage return is ignored, the
line feed is put into STRING variable>, and data
input continues.

If LINE - INPUT is immediately followed by a
semicolon, then the carriage return typed by the
user to end the input 1line dces not echo a
carriage return/line feed sequence at the
terminal.

A LINE INPUT may be escaped by typing Control-C.
BASIC-80 will return to command level and type
Ok. Typing CONT resumes execution at the LINE
INPUT.

Example: See Example, Section 2.32, LINE INPUT#.

BASIC-80 COMMANDS AND STATEMENTS Page 2-43

2.32 LINE INPUT#

Format: LINE INPUT#<file number>,<string variable>
Version: Disk
Purpose: To read an entire line (up to 254 <characters),

without delimiters, from a sequential disk data
file to a string variable.

Remarks: <file number> is the number under which the file
was OPENed. <string variable> is the variable
name to which the line will be assigned. LINE
INPUT# reads all characters in the sequential
file up to a carriage return. It then skips
over the carriage return/line feed sequence, and
the next LINE INPUT# reads all characters up to
the next carriage return. (If a line
feed/carriage return sequence is encountered, it

is preserved.)

LINE INPUT# is especially useful if each line of
a data file has been broken into fields, or if a
BASIC-80 program saved in ASCII mode is being
read as data by another program.

Example: 10 OPEN "O",1l,"LIST"
20 LINE INPUT "CUSTOMER INFORMATION? ";C$
30 PRINT #1, CS$
40 CLOSE 1
50 OPEN "I",1l,"LIST"
60 LINE INPUT #1, CS
70 PRINT CS

80 CLOSE 1

RUN ‘

CUSTOMER INFORMATION? LINDA JONES 234,4 MEMPHIS
LINDA JONES 234,4 MEMPHIS

Ok

15 10" Hex = read loc g Trwacdes: ! OF

BASIC-80 COMMANDS AND STATEMENTS Page 2-44

Format 1:
Versions:
Format 2:
Versions:

Purpose:

Remarks:

LIST [<line number>]

8K, Extended, Disk

LIST [<line number>[-[<line number>]]]
Extended, Disk

To list all or part of the program currently in
memory at the terminal.

BASIC-80 always returns to command level after a
LIST is executed.

Format 1l: If <line number> 1is omitted, the
program 1is 1listed beginning at the lowest line
number. (Listing is terminated either by the
end of the program or by typing Control-C.) If
<line number> is included, the 8K version will
list the program beginning at that line; and
the Extended and Disk versions will 1list only
the specified line.

Format 2: This format allows the following
options:

1. If only the first number is specified, that
line and all higher-numbered 1lines are

listed.

2. If only the second number is specified, all
lines from the Dbeginning of the program
through that line are listed.

3. If both numbers are specified, the entire
range is listed.

BASIC-80 COMMANDS AND STATEMENTS Page 2-45

Examples: Format 1l:

LIST Lists the program currently
in memory.

LIST 500 In the 8K version, lists
all programs lines from
500 to the end.
In Extended and Disk,
lists line 500.

Format 2:

LIST 150- Lists all lines from 150
to the end.

LIST -1000 Lists all lines from the

lowest number through 1000.

LIST 150-~1000 Lists lines 150 through
1000, inclusive.

BASIC-80 COMMANDS AND STATEMENTS Page 2-46

2.34 LLIST

Format:
Versions:

Purpose:

Remarks:

NOTE:

Example:

LLIST [<line number>[-[<line number>]]]
Extended, Disk

To list all or part of the program currently in
memory at the line printer.

LLIST assumes a l32-character wide printer.
BASIC-80 always returns to command level after
an LLIST is executed. The options for LLIST are
the same as for LIST, Format 2.

LLIST and LPRINT are not included in all
implementations of BASIC-80.

See the examples for LIST, Format 2.

BASIC-80 COMMANDS AND STATEMENTS Page 2-47

2.35 LOAD

Format:

Version:
Purpose:

Remarks:

Example:

LOAD <filename>[,R]
Disk
To load a file from disk into memory.

<filename> is the name that was used when the
file was SAVEd. (With CP/M, the default
extension .BAS is supplied.)

LOAD closes all open files and deletes all
variables and program lines currently residing
in memory before it 1loads the designated
program. However, if the "R" option is used
with LOAD, the program is RUN after it is
LOADed, and all open data files are Kkept open.
Thus, LOAD with the "R" option may be used to
chain several programs (or segments of the same
program). Information may be passed between the
programs using their disk data files.

LOAD "STRTRK",R

BASIC-80 COMMANDS AND STATEMENTS Page 2-48

2.36 LPRINT AND LPRINT USING

Format:

Versions:
Purpose:

Remarks:

NOTE:

LPRINT [<list of expressions>]

LPRINT USING <string exp>;<list of expressions>
Extended, Disk

To print data at the line printer.

Same as PRINT and PRINT USING, except output
goes to the line printer. See Section 2.49 and

Section 2.50.

LPRINT assumes a l32-character-wide printer.

LPRINT and LLIST are not included in all
implementations of BASIC-80.

BASIC~-80 COMMANDS AND STATEMENTS Page 2-49

2.37 LSET AND RSET

Format:

Version:

Purpose:

Remarks:

Examples:

NOTE:

fl

LSET <string variable> <string expression>
RSET <string variable> = <string expression>

Disk

To move data from memory to a random file buffer
(in preparation for a PUT statement).

If <string expression> requires fewer byvtes than
were FIELDed to <string variable>, LSET
left-justifies the string in the field, and RSET
right-justifies the string. (Spaces are used to
pad the extra positions.) If the string 1is too
long for the field, characters are dropped from
the right. Numeric values must be converted to
strings before they are LSET or RSET. See the
MKIS$, MKSS$, MKDS$ functions, Section 3.25.

150 LSET A$=MKSS$ (AMT)
160 LSET D$S=DESC(S)

See also Appendix B.

LSET or RSET may also be used with a non-fielded
string variable to left-justify or right-justify
a string in a given field. For example, the

program lines

110 AS$=SPACES (20)
120 RSET AS$=NS$

right-justify the string N$ 1in a 20-character
field. This can ‘be very handy for formatting
printed output.

BASIC-80 COMMANDS AND STATEMENTS Page 2-50

2.38 MERGE

Format:
Version:

Purpose:

Remarks:

Example:

MERGE <filename>
Disk

To merdge a specified disk file into the program
currently in memory.

<filename> is the name used when the file was
SAVEAd. (With CP/M, the default extension .BAS
is supplied.) The file must have been SAVEd in
ASCII format. (If not, a "Bad file mode” error
occurs.,.) ‘

If any lines in the disk file have the same line
numbers as lines in the program in memory, the
lines from the file on disk will replace the
corresponding lines in memory. (MERGEing may be
thought of as "inserting" the program 1lines on
disk into the program in memory.)

BASIC-80 always returns to command level after
executing a MERGE command.

MERGE "NUMBRS"

BASIC-80 COMMANDS AND STATEMENTS Page 2-51

2.39 MIDS

Format:

Versions:

Purpose:

Remarks:

Example:

MIDS (<string expl>,n[,m])=<string exp2>

where n and m are integer expressions and
<string expl> and <string exp2> are string
expressions.

Extended, Disk

To replace a portion of one string with another
string.

The characters in <string expl>, beginning at
position n, are replaced by the characters in
<string exp2>. The optional m refers to the
number of characters from <string exp2> that
will be used in the replacement. If m is
omitted, all of <string exp2> is used. However,
regardless of whether m is omitted or included,
the replacement of characters never goes beyond
the original length of <string expl>.

10 AS="KANSAS CITY, MO"
20 MIDS(AS,14)="KS"

30 PRINT AS

RUN :

KANSAS CITY, KS

MIDS is also a function that returns a substring
of a given string. See Section 3.24.

BASIC-80 COMMANDS AND STATEMENTS Page 2-52

2.40 NAME

Format:
Version:
Purpose:

Remarks:

Example:

NAME <o0ld filename> AS <new filename>
Disk
To change the name of a disk file.

<0ld filename> must exist and <new filename>
must not exist; otherwise an error will result.
After a NAME command, the file exists on the
same disk, in the same area of disk space, with
the new name.

Ok
NAME "ACCTS" AS "LEDGER"
Ok

In this example, the file that was
formerly named ACCTS will now be named LEDGER.

BASIC-80 COMMANDS AND STATEMENTS Page 2-53

2.41 NEW

Format:
Versions:

Purpose:

Remarks:

NEW
8K, Extended, Disk

To delete the program currently in memory and
clear all variables.

NEW is entered at command level to clear memory

before entering a new program. BASIC-80 always
returns to command level after a NEW is

executed.

BASIC-80 COMMANDS AND STATEMENTS Page 2~54

2.42 NULL

P

Format:
Versions:

Purpose:

Remarks:

Example:

NULL <integer expression>
8K, Extended, Disk

To set the number of nulls to be printed at the
end of each line.

For l0-character-per-second tape punches,
<integer expression> should be >=3. When tapes
are not being punched, <integer expression>
should be 0 or 1 for Teletypes and
Teletype-compatible CRTs. <integer expression>
should be 2 or 3 for 30 cps hard copy printers.
The default value is 0.

Ok

NULL 2

Ok

100 INPUT X

200 IF X<50 GOTO 800

Two null characters will be printed after each
line.

BASIC-80 COMMANDS AND STATEMENTS Page 2-55

2.43 OM ERROR GOTO

Format:
Versions:

Purpose:

Remarks:

NOTE:

Example:

ON ERROR GOTO <line number>
Extended, Disk

To enable error trapping and specify the first
line of the error handling subroutine.

Once error trapping has been enabled all errors
detected, including direct mode errors (e.g.,
Syntax errors), will cause a Jjump to the
specified error handling subroutine. 1If <line
number> does not exist, an "Undefined 1line"
error results. = To disable error trapping,
execute an ON ERROR GOTO 0. Subsequent errors
will print an error message and halt execution.
An ON ERROR GOTO 0 statement that appears in an
error trapping subroutine causes BASIC-80 to
stop and print the error message for the error
that caused the trap. It is recommended that
all error trapping subroutines execute an ON
ERROR GOTO 0 if an error is encountered for
which there is no recovery action.

If an error occurs during execution of an error
handling subroutine, the BASIC error message is
printed and execution terminates. Error
trapping does not occur within the error

handling subroutine.

10 ON ERROR GOTO 1000

BASIC-80 COMMANDS AND STATEMENTS » : Page 2-56

2.44 ON...GOSUB AND ON...GOTO

Format:

Versions:

Purpose:

Remarks:

Example:

ON <expression> GOTO <list of line numbers>
ON <expression> GOSUB <list of line numbers>
8K, Extended, Disk

To branch to one of several specified 1line
numbers, depending on the value returned when an
expression is evaluated.

The value of <expression> determines which line
number in the list will be used for branching.
For example, if the value is three, the third
line number in the list will be the destination
of the branch. (If the value is a non-integer,
the fractional portion is rounded.)

In the ON...GOSUB statement, each line number in
the list must be the first line number of a

subroutine.

If the value of <expression> is zero or dreater
than the number of items in the list (but less
than or equal to 255), BASIC continues with the
next executable statement. If the wvalue of
<expression> is negative or greater than 255, an
"Illegal function call" error occurs.

100 ON L-1 GOTO 150,300,320,390

BASIC-80 COMMANDS AND STATEMENTS , Page 2-57

2.45 OPEN

Format: OPEN <mode>, [#]<file number>,<filename>, [<reclen>]
Version: Disk
Purpose: To allow I/0 to a disk file.

Remarks: A disk file must be OPENed before any disk 1I/0
- operation can be performed on that file. OPEN
allocates a buffer for I/0 to the file and
determines the mode of access that will be used

with the buffer. ~

<mode> is a string expression whose first
character is one of the following:

0 specifies sequential output mode
I specifies sequential input mode
R specifies random input/output mode

<file number> is an integer expression whose
value is between one and fifteen. The number is

then associated with the file for as long as it
is OPEN and is used to refer other disk I/O

statements to the file.

<filename> is a string expression containing a
name that conforms to your operating system's
rules for disk filenames.

<reclen> is an integer expression which, if
included, sets the record 1length for random
files. The default record length is 128 bytes.
See also page A-3.

NOTE: A file can be OPENed - for sequential input or
random access on more than one file number at a

time. A file may be OPENed for output, however,
on only one file number at a time.

Example: 10 OPEN "I",2,"INVEN"

See also Appendix B.

BASIC-80 COMMANDS AND STATEMENTS Page 2-58

2.46 OPTION BASE

Format: OPTION BASE n
where n is 1 or 0
Versions: 8K, Extended, Disk
Purpose: To declare the minimum value for array

subscripts.
Remarks: The default base is 0. If the statement
OPTION BASE 1

is executed, the lowest value an array subscript
may have is one.

BASIC-80 COMMANDS AND STATEMENTS Page 2-59

2,47 OUT

Format:

Versions:

Purpose:

Remarks:

Example:

ouT I,Jd

where I and J are integer expressions in the
range 0 to 255,

8K, Extended, Disk
To send a byte to a machine output port.

The integer expression I is the port number, and
the 1integer expression J 1is the data to be
transmitted.

100 OUT 32,100

BASIC-80 COMMANDS AND STATEMENTS Page 2-60

2.48 DPOKE

————

Format:

Versions:
Purpose:

Remarks:

Example:

POKE I,J
where I and J are integer expressions

8K, Extended, Disk
To write a byte into a memory location.

The integer expression I is the address of the
memory location to be POKEd. The 1integer
expression J is the data to be POKEd. J must be
in the range 0 to 255. 1In the 8K version, I
must be less than 32768. 1In the Extended and
Disk versions, I must be in the range 0 to
65536.

With the 8K version, data may be POKEd into
memory locations above 32768 by supplying a
negative number for 1I. The value of I is
computed by subtracting 65536 from the desired
address. For -example, to POKE data into
location 45000, I = 45000-65536, or -20536.

The complementary function to POKE is PEEK. The
argument to PEEK is an address from which a byte
is to be read. See Section 3.27.

POKE and PEEK are wuseful for efficient data
storage, loading assembly language subroutines,
and passing arguments and results to and from
assembly language subroutines.

10 POKE &HS5AQ00,&HFF

BASIC-80 COMMANDS AND STATEMENTS Page 2-61

2,49 PRINT

Format:
Versions:
Purpose:

Remarks:

PRINT [<list of expressions>]

8K, Extended, Disk
To output data at the terminal.

If <list of expressions> 1is omitted, a blank
line 1is printed. If <list of expressions> is
included, the wvalues of the expressions are
printed at the terminal. The expressions in the
list may be numeric and/or string expressions.
(Strings must be enclosed in quotation marks.)

Print Positions

The position of each printed item is determined
by the punctuation used to separate the items in
the list. BASIC-80 divides the line into print
zones of 14 spaces each. In the 1list .of
expressions, a comma causes the next value to be
printed at the beginning of the next zone. A
semicolon causes the next value to be printed
immediately after the last value. Typing one or
more spaces between expressions has the same
effect as typing a semicolon.

If a comma or a semicolon terminates the list of
expressions, the next PRINT statement begins
printing on the same line, spacing accordingly.
If the list of expressions terminates without a
comma or a semicolon, a carriage return is
printed * at the end of the line. 1If the printed
line is longer than the terminal width, BASIC-80
goes to the next physical line and continues
printing.

Printed numbers are always followed by a space.
Positive numbers are preceded by a space.
Negative numbers are preceded by a minus sign.
Single precision numbers that can be represented
with 6 or fewer digits in the unscaled format no
less accurately than they can be represented in
the scaled format, are output using the unscaled
format. For example, 1lE-7 is output as .0000001
and 1E-8(-7) is output as 1E-08. Double
precision numbers that can be represented with
16 or fewer digits in the -unscaled format no
less accurately than thev can be represented in

"~ the scaled format, are output using the unscaled

format. For example, 1D-15 1is output as
.0000000000000001 and 1D-16 is output as 1D-16.

BASIC-80 COMMANDS AND STATEMENTS Page 2-62

Example 1:

Example 2:

Examplé 3:

A guestion mark may be used in place of the word
PRINT in a PRINT statement.

10 X=5
20 PRINT X+5, X-5, X*(-5), X5
30 END

RUN
10 0 -25 3125

Ok

In this example, the commas in the PRINT
statement cause each value to be printed at the
beginning of the next print zone.

LIST
10 INPUT X
20 PRINT X "SQUARED IS" X"2 "AND":
30 PRINT X "CUBED IS" X"3
40 PRINT
50 GOTO 10
Ok
RUN
29
9 SQUARED IS 81 AND 9 CUBED IS 729

? 21
21 SQUARED IS 441 AND 21 CUBED IS 9261

?

In this example, the semicolon at the end of
line 20 causes both PRINT statements to be
printed on the same line, and line 40 causes a
blank line to be printed before the next prompt.

10 FOR X = 1 TO 5
20 J=J+5
30 K=K+1l0
40 ?J;K;
50 NEXT X
Ok
RUN
5 10 10 20 15 30 20 40 25 50
Ok

In this example, the semicolons| in the PRINT
statement cause each wvalue |to be printed
immediately after the preceding |value. (Don't
forget, a number is always followed by a space
and positive numbers are preceded by a space.)
In line 40, a question mark is used instead of

the word PRINT,

//\

BASIC-80 COMMANDS AND STATEMENTS Page 2~63

2.50 PRINT USING

Format: PRINT USING <string exp>;<list of expressions>

Versions: Extended, Disk

Purpose: To print strings or numbers using a specified
format.

Remarks <list of expressions> is comprised of the string

and expressions or numeric expressions that are to

Examples: be printed, separated by semicolons. <string
exp> is a string literal (or variable) comprised
of special formatting characters. These

formatting characters (see below) determine the
field and the format of the printed strings or
numbers.

String Fields

When PRINT USING is used to print strings, one
of three formatting characters may be used to
format the string field:

" Specifies that only the first character 1in the
given string is to be printed.

"\n spaces\" Specifies that 2+n characters from the string
are to be printed. If the backslashes are typed
with no spaces, two characters will be printed;
with one space, -three characters will be
printed, and so on. If the string is 1longer
than the field, the extra characters are
ignored. 1If the field 1is 1lonnger than the
string, the string will be left-justified in the
field and padded with spaces on the right.
Example:

10 A$="LOOK" :B$="0UT"

30 PRINT USING "!";AS$;BS

40 PRINT USING "\ \";A$;BS

50 PRINT USING "\ \";AS$;BS;" 11"
RUN

LO

LOOKOUT

LOOK OUT 1!}

BASIC-80 COMMANDS AND STATEMENTS Page 2-64

"&"

Specifies a variable length string field. When
the field 1is specified with "&", the string is
output exactly as input. Example:

10 A$="LOOK":B$="OUT"

20 PRINT USING "!";AS$;
30 PRINT USING "&";BS
RUN
LouT

Numeric Fields

When PRINT USING is used to print numbers, the
following special characters may be used to
format the numeric field:

A number sign is used to represent each digit
position. Digit positions are always filled.
If the number to be printed has fewer digits
than positions specified, the number will be
right-justified (preceded by spaces) in the
field.

A decimal point may be inserted at any position
in the field. If the format string specifies
that a digit is to precede the decimal point,
the digit will always be printed (as 0 if
necessary). Numbers are rounded as necessarv.

PRINT USING "##.##";.78

0.78
PRINT USING "###.##";987.654
987.65
PRINT USING "##.## ".10.2,5.3,66.789,.234

10.20 5.30 66.79 0.23

In the last example, three spaces were 1inserted
at the end of the format string to separate the
printed values on the line.

A plus sign at the beginning or end of the
format string will cause the sign of the number
(plus or minus) to be printed before or after
the number.

BASIC-80 COMMANDS AND STATEMENTS Page 2-65

* %

$$

**S

A minus sign at the end of the format field will
cause negative numbers to Dbe printed with a
trailing minus sign.

PRINT USING “+##o## “;"68.95,2.4’55.6’-.9
-68.95 +2.40 +55.60 -0.90

PRINT USING "##.##- ";-68.95,22.449,-7.01
68.95- 22.45 7.01-

A double asterisk at the beginning of the format

string causes leading spaces in the numeric
field to be filled with asterisks. The ** also
specifies positions for two more digits.

PRINT USING "**#~# ";12039"‘0-9’765.1
*12.4 *~0.9 765.1

A double dollar sign causes a dollar sign to be
printed to the immediate left of the formatted
number. The $$ specifies two more digit
positions, one of which is the dollar sign. The
exponential format cannot be wused with §S.
Negative numbers cannot be used unless the minus

sign trails to the right.

PRINT USING "$S###.##";456.78
$456.78

The **$ at the beginning of a format string
combines the effects of the above two symbols.
Leading spaces will be asterisk-filled and a
dollar - sign will be printed before the number.
**S gpecifies three more digit positions, one of
which is the dollar sign.

PRINT USING "**S##.##";2.34
***52.34

A comma that is to the left of the decimal point
in a formatting string causes a comma to be
printed to the left of every third digit to the
left of the decimal point. A comma that is at
the end of the format string is printed as part
of the string. A comma specifies another digit
position. The comma has no effect if used with
the exponential (~""") format.

PRINT USING "####,.#4";1234.5
1,234.50

PRINT USING "###4#.#4,";1234.5
1234.50,

BASIC-80 COMMANDS AND STATEMENTS Page 2-66

AAANAAN

Four carats (or up-arrows) may be placed after
the digit position characters to specify
exponential format. The four carats allow space
for E+xx to be - printed. Any decimal point
position may be specified. The significant
digits are left-justified, and the exponent is
adjusted. Unless a leading + or trailing + or -
is specified, one digit position will be used to
the left of the decimal point to print a space
or a minus sign.

PRINT USING "##.##4°7°""",;234.56
2.35E+02

PRINT USING ".####°"""-";888888
.8889E+06

PRINT USING "+.##°"""";123
+.12E+03

An underscore in the format string causes the
next character to be output as a literal
character.

PRINT USING "_!##.##_1";12.34

112,341
The 1literal character itself may be an
underscore by placing " " in the format string.

If the number to be printed is larger than the
specified numeric field, a percent sign |is
printed in front of the number. If rounding
causes the number to exceed the field, a percent
sign will be printed in front of the rounded

number.

PRINT USING "##.##";111.22
%$111.22

PRINT USING ".##";.999
$1.00

If the number of digits specified exceeds 24, an
"Tllegal function call” error will result.

™

BASIC-80 COMMANDS AND STATEMENTS Page 2-67

2.51 PRINT# AND PRINT# USING

Format: PRINT#<filenumber>, [USING<string exp>;]<list of exps>
Version: Disk
Purpose: To write data to a sequential disk file.
Remarks: <file number> 1is the number used when the file
was OPENed for output, <string exp> |is

comprised of formatting characters as described
in Section 2.50, PRINT USING. The expressions
in <list of expressions> are the numeric and/or
string expressions that will be written to the
file.

PRINT# does not compress data on the disk. An
image of the data is written to the disk, just
as it would be displayed on the terminal with a
PRINT statement. For this reason, care should
be taken to delimit the data on the disk, so
that it will be input correctly from the disk.

In the list of expressions, numeric expressions
should be delimited by semicolons. For example,

PRINT#1,A;B;C:X:Y:7Z

(If commas are used as delimiters, the extra
blanks that are inserted between print fields
will also be written to disk.)

String - expressions must be separated by
semicolons in the list. To format the string
expressions correctly on the disk, use explicit
delimiters in the list of expressions.

For example, let A$="CAMERA" and B$="93604-1".
The statement

PRINT#1,AS$:BS

would write CAMERA93604-~1 to the disk. Because
there are no delimiters, this could not be input
as two separate 'strings. To correct the
problem, insert explicit delimiters into the
PRINT# statement as follows:

PRINT#1,AS$;",";BS$
The image written to disk is

CAMERA,93604-1

BASIC-80 COMMANDS AND STATEMENTS Page 2-68

which can be read back into two string
variables.

If the strings themselves contain commas,
semicolons, significant leading blanks, carriage
returns, or line feeds, write them to disk

surrounded by explicit quotation marks,
CHRS (34) . :

For example, let AS$="CAMERA, AUTOMATIC" and
B$=" 93604-1". The statement

PRINT#1,A$;BS

would write the following image to disk:

CAMERA, AUTOMATIC 93604-1

and the statement

INPUT#1,AS$,BS

would input "CAMERA" to AS and
"AUTOMATIC 93604~1" to BS. To separate these
strings properly on the disk, write double

quotes to the disk image using CHRS$(34). The
statement

PRINT#1,CHRS (34) ;AS;CHRS(34) ;CHRS (34) ;B$;CHRS (34)
writes the following image to disk:

"CAMERA, AUTOMATIC"" 93604~-1"

and the statement

INPUT#1,AS$,BS

would input "“CAMERA, AUTOMATIC" to AS and
" 93604-1" to BS.

The PRINT# statement may also be used with the
USING option to control the format of the disk
file. For example:

PRINT#1,USING"SS##4.44,";J;K;L
For more examples using PRINT#, see Appendix B.

See also WRITE#, Section 2.68.

BASIC-80 COMMANDS AND STATEMENTS Page 2-69

2,52 PUT

Format:
Version:

Purpose:

Remarks:

Example:

NOTE:

PUT [#]1<file number>[,<record number>]
Disk

To write a record from a random buffer to a
random disk file.

<file number> is the number under which the file
was OPENed. If <record number> is omitted, the
record will have the next available record
number (after the last PUT). The largest
possible record number is 32767. The = smallest
record number is 1.

See Appendix B.

PRINT#, PRINT# USING, and WRITE# may be used to
put characters in the random file buffer before

a PUT statement.

In the case of WRITE#, BASIC-80 pads the buffer
with spaces up to the carriage return. Any
attempt to read or write past the end of the
buffer causes a "Field overflow" error.

BASIC-80 COMMANDS AND STATEMENTS Page 2-70

2.53 RANDCMIZE

Format:
Versions:
Purpose:

Remarks:

Example:

RANDOMIZE [<expression>]
Extended, Disk
To reseed the random number generator.

If <expression> is omitted, BASIC~-80 suspends
program execution and asks for a value by
printing

Random Number Seed (-32768 to 32767)7?

before executing RANDOMIZE.

If the random number generator is not reseeded,
the RND function returns the same sequence of
random numbers each time the program is RUN. To
change the sequence of random numbers every time
the program is RUN, place a RANDOMIZE statement
at the beginning of the program and change the
argument with each RUN.

10 RANDCOMIZE

20 FOR I=1 TO 5

30 PRINT RND;

40 NEXT I

RUN

Random Number Seed (-32768 to 32767)? 3 (user

types 3)
.88598 .484668 .586328 .119426 .709225

Ok
RUN
Random Number Seed (-32768 to 32767)7? 4 (user
types 4 for new sequence)

.803506 .162462 .929364 ,292443 ,322921
Ok
RUN
Random Number Seed (-32768 to 32767)? 3 (same
sequence as first RUN)

.88598 .484668 .586328 .119426 .709225

Ok

BASIC~80 COMMANDS AND STATEMENTS Page 2-71

2.54 READ

Format: READ <list of variables>
Versions: 8K, Extended, Disk

Purpose: To read values from a DATA statement and assign
- them to variables. (See DATA, Section 2.10.)

Remarks: A READ statement must always be used in
conjunction with a DATA statement. READ
statements assign variables to DATA statement
values on a one-to-one basis. READ statement
variables may be numeric or string, and the
values read must agree with the variable types
specified. If they do not agree, a "Syntax
error" will result,.

A single READ statement may access one oOr more
DATA statements (they will be accessed 1in
order), or several READ statements may access
the ~same DATA statment, If the number of
variables in <list of variables> exceeds the
number of elements in the DATA statement(s), an
OUT OF DATA messade is printed. If the number
of variables specified is fewer than the number
of elements in the DATA statement(s), subsequent
READ statements will begin reading data at the

‘first unread element. If there are no
subsequent READ statements, the extra data is
ignored. ' :

To reread DATA statements from the start, use
the RESTORE statement (see RESTORE, Section

2.57)

Example 1l: .

80 FOR I=1 TO 10

90 READ A(I)

100 NEXT I

110 pATA 3.08,5.19,3.12,3.98,4.24

120 DATA 5.08,5.55,4.00,3.16,3.37

This program segment READs the values from the

DATA statements into the array A. After
execution, the value of A(l) will be 3.08, and

SO On.

BASIC-80 COMMANDS AND STATEMENTS

Example 2:

LIST ’
10 PRINT "CITY", "STATE", " ZIP"

20 READ CS$,SS$,7Z
30 DATA "DENVER,", COLORADO, 80211

40 PRINT C$,SS,7

Ok

RUN

CITY STATE Z1IP
DENVER, COLORADO 80211
Ok

This program READs string and numeric data
the DATA statement in line 30.

Page 2-72

from

N

BASIC-80 COMMANDS AND STATEMENTS Page 2~73

2.55 REM

Format:
Versions:

Purpose:

Remarks:

Example:

REM <remark>
8K, Extended, Disk

To allow explanatory remarks to be inserted in a
program.

REM statements are not executed but are output
exactly as entered when the program is listed.

REM statements may be branched into (from a GOTO
or GOSUB statement), and execution will continue
with the first executable statement after the
REM statement.

In the Extended and Disk wversions, = remarks may
be added to the end of a line by preceding the
remark with a single quotation mark instead of

: REM.

WARNING: Do not use this in a data statement as
it would be considered legal data.

120 REM CALCULATE AVERAGE VELOCITY
130 FOR I=1 TO 20
140 SUM=SUM + V(I)

or, with Extended and Disk versions:

120 FOR I=1 TO 20 'CALCULATE AVERAGE VELOCITY
130 SUM=SUM+V(I)
140 NEXT I

BASIC-80 COMMANDS AND STATEMENTS Page 2-74
2.56 RENUM

Format: RENUM [[<new number>]1[, [<0ld number>])|[,<increment>]11]]

Versions: Extended, Disk
Purpose: To renumber program lines.

Remarks: <new number> is the first line number to be used
in the new sequence. The default is 10. <o0ld
number> is the line in the current program where
renumbering is to Dbegin. The default is the
first line of the program. <increment> is the
increment to be used in the new sequence. The
default is 10.

RENUM also changes all 1line number references
following GOTO, GOSUB, THEN, ON...GOTO,
ON...GOSUB and ERL statements to reflect the new
line numbers. If a nonexistent line number
appears after one of these statements, the error
message "Undefined 1line =xxxxx in vyyyyy" is
printed. The incorrect 1line number reference
(xxxxx) is not changed by RENUM, but line number
yyyyy may be changed.

NOTE: RENUM cannot be used to change the order of
program lines (for example, RENUM 15,30 when the
program has three lines numbered 10, 20 and 30)
or to create line numbers greater than 65529.
An "Illegal function call" error will result.

Examples: RENUM Renumbers the entire program.
The first new line number
will be 10. Lines will
increment by 10.

RENUM 300,,50 Renumbers the entire pro-
gram. The first new line
number will be 300. Lines
will increment by 50.

RENUM 1000,900,20 Renumbers the lines from
900 up so they start with
line number 1000 and
increment by 20.

BASIC-80 COMMANDS AND STATEMENTS Page 2-75

2.57 RESTORE

Format:
Versions:

Purpose:

Remarks:

Example:

RESTORE [<line number>]
8K, Extended, Disk

To allow DATA statements to be reread from a
specified line.

After a RESTORE statement is executed, the next
READ statement accesses the first item in the
first DATA statement in the program. If <line
number> 1is specified, the next READ statement
accesses the first item in the specified DATA

statement.

10 READ A,B,C

20 RESTORE

30 READ D,E,F

40 DATA 57, 68, 79

BASIC~80 COMMANDS AND STATEMENTS Page 2-76
2.58 RESUME

Formats: RESUME
RESUME 0
RESUME NEXT

RESUME <line number>

Versions: Extended, Disk

Purpose:’ To continue program execution after an error
recovery procedure has been performed.

Remarks: Any one of the four formats shown above may be
used, depending upon where execution 1is to
resume:

RESUME Execution resumes at the
or statement which caused the

RESUME 0 error.

RESUME NEXT Execution resumes at the

statement immediately fol-
lowing the one which
caused the error.

RESUME <line number> Execution resumes at
<line number>.

A RESUME statement that is not in an error trap
routine causes a "RESUME without error” message

to be printed.

Example: 10 ON ERROR GOTO 900

900 IF (ERR=230)AND(ERL=90) THEN PRINT "TRY
AGAIN":RESUME 80

BASIC-80 COMMANDS AND STATEMENTS Page 2-77

2.59 RUM

Format 1:
Versions:
Purpose:

Remarks:

Example:

Format 2:

Version:
Purpose:

Remarks:

Example:

NOTE:

RUN [<line number>]
8K, Extended, Disk
To execute the program currently in memory.

If <line number> is specified, execution begins

‘on that line. Otherwise, execution begins at

the lowest line number. BASIC-80 always returns
to command level after a RUN is executed.

RUN

RUN <filename>[;R]
Disk
To load a file from disk into memory and run it.

<filename> is the name used when the file was
SAVEAd. (With ¢€P/M and ISIS-II, the default
extension .BAS is supplied.)

RUN closes all open files and deletes the
current contents of memory before loading the
designated program. However, with = the "R"
option, all data files remain OPEN.

RUN "NEWFIL",R

See also Appendix B.

The BASIC Compiler supports the RUN and RUN
<line number> forms of the RUN statement. The
BASIC Compiler does not support the "R" option
with ROUN. If vou want this feature, the CHAIN
statement should be used.

BASIC-80 COMMANDS AND STATEMENTS ' Page 2-78

2.60 SAVE

Format:
Version:
Purpose:

Remarks:

Examples:

SAVE <filename>[,A | ,P]
Disk
To save a program file on disk.

<filename> is a quoted string that conforms to
your operating system’'s requirements for
filenames. (With CP/M, the default extension
.BAS is supplied.) If <filename> already exists,
the file will be written over.

Use the A option to save the file in ASCII
format. Otherwise, BASIC saves the file in a
compressed binary format. ASCITI format takes
more space on the disk, but some disk access
requires that files be in ASCII format. For
instance, the MERGE command requires and ASCII
fFormat file, and some operating system commands
such as LIST may require an ASCII format file,

Use the P option to protect the file by saving
it in an encoded binary format. When a
protected file is later 'RUN (or LOADed), any
attempt to list or edit it will fail.

SAVE"COM2" ,A
SAVE"PROG",P

See also Appendix B.

BASIC-80 COMMANDS AND STATEMENTS Page 2-79

2.61 STOP

Format:
Versions:

Purpose:

Remarks:

Example:

STOP
8K, Extended, Disk

To terminate program execution and return to
command level.

STOP statements may be used anywhere in a
program to terminate execution. When a STOP is
encountered, the following message is printed:

Break in line nnnnn

Unlike the END statement, the STOP statement
does not close files.

BASIC-80 always returns to command level after a
STOP is executed. Execution is resumed by
issuing a CONT command (see Section 2.8).

10 INPUT A,B,C
20 K=A"2*5,3:L=B"3/.26
30 STOP
40 M=C*K+100:PRINT M
RUN
2 1,2,3
BREAK IN 30
Ok
PRINT L
30.7692
Ok
CONT
115.9
Ok

BASIC-80 COMMANDS AND STATEMENTS Page 2-80

2,62 SWAP

Format:
Versions:
Purpose:

Remarks:

Example:

SWAP <variable>,<variable>

Extended, Disk

To exchange the values of two variables.

Any type variable may be SWAPped (integer,
single precision, double precision, string), but
the two variables must be of the same type or a
"Type mismatch" error results.

LIST

10 AS=" ONE " : B$=" ALL " : C$="FOR"
20 PRINT AS$ C$ BS

30 SWAP AS, BS

40 PRINT AS$ C$ BS

RUN

ok

ONE FOR ALL

ALL FOR ONE

ok

BASIC-80 COMMANDS AND STATEMENTS Page 2-81

2,63 TRON/TROFF

Format:

Versions:

Purpose:

Remarks:

Example:

TRON

TROFF

Extended, Disk

To trace the execution of program statements.

A