
CUSTOM MANUFACTURED IN TH E U.S.A. BY RADIO SHACK, A DIVISION OF TANDY CORPORATION



ALDS
ASSEMBLY LANGUAGE 
DEVELOPMENT SYSTEM



T MTRSDOS ' Operating System: Copyright 1982 Tandy 
Corporation. All Rights Reserved.

ALEDIT Software: Copyright 1982 Tandy Corporation. 
All Rights Reserved.

ALASM Software: Copyright 1982 Tandy Corporation. 
All Rights Reserved.

ALBUG Software: Copyright 1982 Tandy Corporation. 
All Rights Reserved.

ALLINK Software: Copyright 1982 Tandy Corporation. 
All Rights Reserved.

ALTRAN Software: Copyright 1982 Tandy Corporation, 
All Rights Reserved.
R

TRS-80 Assembly Language Development System 
Manual: Copyright 1982 Tandy Corporation. All Rights
Reserved.

Reproduction or use without express written permission from 
Tandy Corporation of any portion of this manual is 
prohibited, while reasonable efforts have been taken in the 
preparation of this manual to assure its accuracy, Tandy 
Corporation assumes no liability resulting from any errors 
or omissions in this manual, or from the use of the 
information obtained herein.



INTRODUCTION

TO OUR CUSTOMERS,

The Assembly Language Development System (ALDS) is a 
powerful tool for developing Z80 programs for the TRS-80 
Models I, II, III, and the Model 16 in the Model II mode.
It contains these five systems:

ALEDIT, a Text Editor, for writing and editing 
source programs.
ALASM, an Assembler for converting source programs 
to Z80 object code. The Assembler 
contains more than:

. 50 powerful directives. Among many
features, they allow you to build relocatable 
program sections, macro sections, index sections; 
generate a length byte for text storage; and 
control the assembly listing format

. 30 arithmetic, logical and relational operators.

. 10 "extended" Z80 mnemonics, which expand into 
an entire group of Z80 mnemonics.

ALLINK, a Linker, for linking relocatable program 
sections into absolute object files
ALBUG, a Debugger, for debugging a program in memory 
or altering a file on disk. ALBUG is comprised of six 
program files: ALBUG, ALBUG/SYS, ALBUG/OVL, ALBUGX, 
ALBUGRES/REL and ALBUG/RES.
ALTRAN, a File Transfer System, for transferring a 
file between the Models I, II, III, and 16.

For your convenience, it also contains:
Three source files for referencing Models I, II, or III 
Supervisor Calls (see REF, in Chapter 8, to find 
out how):

. SVCNUM1/SRC, for Model I Supervisor Calls 

. SVCNUM2/SRC, for Model II Supervisor Calls 

. SVCNUM3/SRC, for Model III Supervisor Calls



XSAMPLE/SRC, a source file documenting all the Z80 
mnemonics and extended mnemonics.

The Model II ALDS Package comes on three diskettes, allowing 
you to create a program on the Model II and transfer it to 
the Models I and III:

. the Model II ALDS diskette contains all the systems 
described above.

. the Model I diskette contains ALTRAN only.

. the Model III diskette contains ALTRAN only.
J



This manual assumes you already know Z80 assembly language 
programming and have used an editor/assembler. It contains 
three sections:

Section I, USING ALDS, begins with a sample session 
which shows how to create a modular program for the 
Models II and III using all five systems.
Following this session are reference chapters 
on each system.
Section II, ALDS ASSEMBLY LANGUAGE, references the 
source language acceptable to the ALDS Assembler. 
Chapter 7 outlines the syntax for writing source 
lines. The remaining chapters reference all the 
directives, Z80 mnemonics, and extended Z80 
mnemonics available.
Section III, ERROR MESSAGES, lists the error messages 
that may be generated by the ALDS programs.

If you are new to Z80 assembly language programming, we 
suggest you read:

TRS-80 Assembly-Language Programming by William 
Barden, Jr. (Radio Shack Catalog Number 62-2006)

ABOUT THIS MANUAL



NOTATION KEY
The manual uses these notational conventions:

DOT MATRIX to represent what you will
see on the screen or should type

<KEY> to represent a specific key you 
should press

italics to represent a value you should 
specify

H to represent a hexadecimal number 
(for example, 4233H represents the 
hexadecimal number 4233.)

$ to represent the current value 
of the Assembler's location counter 
(this is actually a convention of 
the Assembler)

filespec to represent a valid TRSDOS file 
specification. (See your TRSDOS 
manual for a definition of filespec.)



TABLE OF CONTENTS 

SECTION 1/ USING ALDS
Chapter 1/ Sample Session.................. 11
Chapter 2/ The ALDS Editor................. 19
Chapter 3/ The ALDS Assembler.............. 37
Chapter 4/ The ALDS Debugger............... 43
Chapter 5/ The ALDS Linker..................67
Chapter 6/ The ALDS File Transfer System....71

SECTION II/ ALDS ASSEMBLY LANGUAGE
Chapter 7/ Assembly Language Syntax........ 91
Chapter 8/ Directives..................... 101
Chapter 9/ Z80 Mnemonics...................161
Chapter 10/ Extended Z80 Mnemonics......... 347

SECTION III/ ERROR MESSAGES

APPENDICES
Appendix A/ Undocumented Z80 Instructions ... 385
Appendix B/ Memory Map.....................  391
Appendix C/ Converting a Series I Editor

Assembler Program.............. 393
Appendix D/ ALDS Object Code Format........ 394
Appendix E/ Model I TRSDOS 2.3B............ 398
Appendix F/ Numeric List of Z80 Instruction

Set.............................406
Appendix G/ Alphabetic List of Z80 Instruction

Set.............................412
Appendix H/ Z80 Hardware....................418



Table 1/ ALEDIT Insert Control Functions..... 22
Table 2/ ALEDIT Insert Mode Special Keys .... 23
Table 3/ ALEDIT Line Edit Mode Subcommands...24 
Table 4/ ALEDIT Line Edit Mode Special Keys..26
Table 5/ ALEDIT Command Mode Keys............ 28
Table 6/ ALEDIT Commands......................29
Table 7/ ALASM Switches...................... 39
Table 8/ Debugger Commands....................51
Table 9/ Baud Rate Change Table.............. 73
Table 10/ Operators.......................... 95
Table 11/ Complex Expressions Allowing

Relocatable or External Symbols....98

TABLES



Section 1

Editor, Assembler, Debugger, 
Linker, and File Transfer System



SECTION 1/
USING ALDS



Chapter 1/ SAMPLE SESSION

This chapter is for those of you who want to try a session 
using the entire ALDS package. It demonstrates how to link 
separate program sections for the Models II and III.
The session is for demonstration only. To find out how and 
why each system works the way it does, you will need to 
refer to specific chapters in this manual.

CREATING A SOURCE FILE
In this session, you need to create five source program 
files. To do this, use the ALDS Editor. In the TRSDOS 
READY mode, type:

ALEDIT <ENTER>
this loads the ALDS Editor. After it displays its heading,
type:

I
the insert command (Do not press <ENTER>). The Editor 
clears the screen and prints NONAME/SRC in the upper 
right-hand corner. You are now in the insert mode and can 
insert the first source program.
1. MAIN PROGRAM
To insert the first program, named MAIN, type:

MAIN PSECT
PUBLIC BEGIN
EXTERN PRINT,TRSDOS

BEGIN LD HL,MSG1
CALL PRINT
LD HL,MSG2
CALL PRINT
JP TRSDOS

MSG1 DEFT 'YOU WILL BE ABLE TO LINK THIS'
DEFB 0DH



MSG2 DEFT 'AS EITHER A MODEL II OR III PROGRAM'
DEFB 0DH
END BEGIN

(Press <TAB> between columns; press <ENTER> at the end of 
each line.)
When you are finished press <BREAK>. This puts you in the 
Editor command mode. If you made mistakes, you can use the 
Editor commands to edit the program. They are all listed in 
Chapter 2, The ALDS Editor.
After pressing <BREAK>, save this source program on disk by 
typing this Editor command:

W MAIN <ENTER>
.this saves the program as a source file named MAIN/SRC (the 
Editor changes the top right-hand corner display to 
MAIN/SRC.) Clear the edit buffer by typing:

K <ENTER>
the kill command and answer Y <ENTER> to the prompt. The 
screen will then clear.
Now repeat the same procedures for inserting and saving 
MODII, MODIII, PROGII, and PROGIII. (Insert all of these 
programs on the Model II —  even MODIII and PROGIII.)

2. MODII PROGRAM
MODII PSECT ;model II print routine

PUBLIC PRINT,TRSDOS
VDLINE EQU 9
JP2DOS EQU 36
PRINT LD B,(HL)

LD C,0 DH
INC HL
SVC VDLINE
RET

TRSDOS SVC
END

JP2DOS



MODEL II ALDS ® SAMPLE SESSIONTRS-SO

3.

4.

5.

MODIII PROGRAM
MODIII PSECT ;model III print

PUBLIC PRINT,TRSDOS
VDLINE EQU 021BH
JP2DOS EQU 402DH
PRINT INC HL

CALL VDLINE
RET

TRSDOS JP JP2DOS
END

PROGII PROGRAM
PROGII PSECT

EXTERN BEGIN
START JP BEGIN

LINK 'MAIN/REL'
LINK 'MODII/REL'
END START

PROGIII PROGRAM
PROGIII PSECT

EXTERN BEGIN
START JP BEGIN

LINK 'MAIN/REL'
LINK 'MODIIl/REL'
END START

routines

When you have finished inserting all five source files, exit 
the Editor by typing:

Q <ENTER>
which returns you to TRSDOS READY.

ASSEMBLING A FILE
You should now have stored five source files:

MAIN/SRC 
MODII/SRC 
MODIIl/SRC 
PROGII/SRC 
PROGIIII/SRC



To see that they are all on your diskette, check the disk 
directory by typing DIR <ENTER>.
These files contain three types of instructions:

. Z80 mnemonics (LD, CALL, INC, and RET), which the 
Assembler converts into Z80 object code.
Chapter 9 describes Z80 mnemonics.

. An extended mnemonic (SVC), which the Assembler 
converts into a group of Z80 instructions. Chapter 
10 describes extended mnemonics.

. Directives (PSECT, EXTERN, DEFT, PUBLIC, EQU, LINK 
and END), which are instructions to the Assembler 
or the Linker. Chapter 8 describes directives.

To assemble the source files, use the ALDS Assembler 
(ALASM). In the TRSDOS READY mode, type:

ALASM MAIN/SRC MAIN/REL <ENTER>
The Assembler processes the source file MAIN/SRC into an 
object file named MAIN/REL. If it displays any errors, edit 
or re-insert MAIN/SRC and re-assemble it. (An explanation 
of the Assembler error messages is in the Error Messages 
Section of this manual.)
You can assemble the other source files in the same way. 
Note: You can omit the /SRC and /REL extensions. The
Assembler knows to append them:

ALASM MODII MODII <ENTER>
ALASM MODIII MODIII <ENTER>
ALASM PROGII PROGII <ENTER>
ALASM PROGIII PROGIII <ENTER>

When finished, the Assembler produces these object files:
MAIN/REL 
MODII/REL 
MODIII/REL 
PROGII/REL 
PROGIII/REL



The extension REL means that the files are relocatable. 
That is, they do not have absolute load and execution 
addresses. Because of this, they cannot be loaded and 
executed in their present form.
The Assembler converts them into relocatable rather than 
absolute files because of the the PSECT directives. See 
Chapter 8 for more information on the directives. See 
Chapter 3 for information on operating the Assembler.

LINKING A RELOCATABLE FILE
Two of the relocatable files created by the Assembler are:

PROGII/REL 
PROGIII/REL

which consist solely of LINK directives. They are for the 
ALDS Linker to process. Type:

ALLINK PROGII/REL PROGII $=4000 <ENTER>
This causes the Linker to:

(1) process the LINK directives, LINKing MAIN/REL and 
MODII/REL to PROGII/REL.

(2) assign absolute addresses beginning with 4000H to 
PROGII/REL

(3) save the resulting absolute object code as PROGII.
You can link PROGIII/REL in the same way. (Notice that you 
can optionally omit the /REL extension, since the Assembler 
will automatically append it.) Type:

ALLINK PROGIII PROGIII $=4000
Using the same processes as above, the Linker creates 
PROGIII, an absolute object file, composed of MAIN/REL and 
MODIII/REL.
Chapter 5, The Linker, discusses the Linker itself. Chapter 
8, Directives, discuss the directives which control the 
Linker.



EXECUTING A FILE
The Linker created two absolute object files

PROGII
PROGIII

which are actually two versions of the same main program. 
PROGII runs on the Model II; PROGIII is for the Model III.
To run PROGII, simply type (in the TRSDOS READY mode):

PROGII <ENTER>

TRANSFERRING A FILE
You will, of course, need to transfer PROGIII to the Model 
III before you can execute it. If you have a Model III and 
an appropriate modem or cable, you can transfer PROGIII with 
the ALDS File Transfer System. It will produce a Model III 
disk file of PROGIII.
Connect the two systems (see Chapter 6, The ALDS File 
Transfer System for instructions).
Load the ALTRAN program on both the Model II and Model III 
by typing:

ALTRAN <ENTER>
After ALTRAN displays its menu, type:

1 <ENTER>
PROGIII <ENTER>

on the Model II, and:
2 <ENTER>
PROGIII/CMD <ENTER> 

on the Model III.
This transfers PROGIII to the Model III diskette and names 
it PROGIII/CMD (Model III executable programs must have the 
/CMD extension.)



ALTRAN re-displays its menu when it has finished the 
transfer. Press <BREAK> to exit the ALTRAN program and 
return to TRSDOS READY. You can then execute PROGIII on the 
Model III in the same way you executed PROGII above. Type:

PROGIII <ENTER>

DEBUGGING A FILE
You can debug any of the object files with the ALDS 
Debugger. Type:

ALBUG <ENTER>
PROGII <ENTER>

The Debugger starts up at the beginning of PROGII. You can 
use any of the Debugger commands listed in Chapter 4 to
debug it.



The ALDS Editor allows you to enter and edit an assembly 
language source program. You can save this program on disk 
as a source file to be assembled into Z80 object code.
This section describes the use of the Editor itself. For 
information on how to write an assembly language source 
program, see Section II, "ALDS Assembly Language".

Chapter 2/ THE ALDS EDITOR (ALEDIT)

LOADING THE EDITOR
This command, typed in the TRSDOS READY mode:

ALEDIT source filespec
loads the Editor and then loads the specified source 
filespec into the Editor. The source filespec is 
optional. For example:

ALEDIT <ENTER>
causes the Editor to load and display its heading:

TRS-80 Text Editor Version v.r.
Copyright (c) 1982 Tandy Corp.

(v.r. is the version and release numbers.)
ALEDIT SORTER <ENTER>

causes the Editor to load, display the above heading, then 
load a source file named SORTER/SRC.
If the source filespec does not contain an extension, the 
Editor appends /SRC to it.
The Editor loads into all of the memory above TRSDOS. It 
reserves approximately the top 40K bytes as at "edit buffer" 
for inserting your programs. However, if you have also 
loaded.one of these TRSDOS utilities —  DO, HOST, SPOOL, 
SETCOM, or DEBUG —  the edit buffer will be smaller.



The following pages define the three modes in which you can 
use the Editor:

. the insert mode 

. the line edit mode 

. the command mode

USING THE EDITOR

THE INSERT MODE
The I command gets you into the insert mode. Type:

I
(Do not press <ENTER>.) The Editor clears the screen and 
positions the cursor at the upper left-hand corner. You can 
now insert source lines into the edit buffer.
Do not use line numbers. The Assembler will consider them 
syntax errors.
Each source line may have up to 78 characters. After typing 
the line, press <ENTER> to insert it. To cancel it and 
return to the Editor command mode, press <BREAK>. For
example:

;THIS IS THE FIRST SOURCE LINE <ENTER>
;THIS IS THE SECOND <ENTER>
;THIS IS THE THIRD <BREAK>

inserts only the first two lines in the Editor's memory; 
then returns to the Editor command mode.
While inserting lines, you might find it convenient to use 
the <TAB> key. The Editor has tabs set every eight columns.

The Editor offers certain control functions for quick 
insertion. To activate a control function, press the <CTRL> 
key at the same time you press the function key. For 
example, pressing these two keys at the same time:



<CTRL> <D>
causes the Editor to insert a semicolon and the current date 
in the text and then position the cursor on the next line.

<CTRL> <E>
causes the Editor to insert ":", tab to the next tab stop,
insert "EQU", and then tab again to the next tab stop.
If the line becomes full while inserting the control 
function, the Editor stops and awaits the next insert mode 
instruction.
Table 1 lists all the insert control functions.
Table 2 lists the special control keys available in the 
insert mode.
NOTE: When the edit buffer is full, it will give you a
buffer full message and return to the command mode.



Table 1/ ALEDIT Insert Control Functions

FUNCTION INSERTS

<CTRL> <D> ;current date <ENTER>
(i.e. ;Aug 18, 1981 <ENTER>)

<CTRL> <E> : <TAB> EQU <TAB>
<CTRL> <G> <TAB> GLOBAL < TAB>
<CTRL> <J> <TAB> HEADER <TAB> '
<CTRL> <L> <TAB> INCLUDE <TAB> '
<CTRL> <N> ; <TAB> ENTRY: <TAB>
<CTRL> <P> <TAB> PUBLIC <TAB>
<CTRL> <R> ; <TAB> EXIT: <TAB>
<CTRL> <S> .**************. . . <ENTER> 

(semicolon followed by 64 
asterisks)

<CTRL> <U> ; <TAB> USES: <TAB>
<CTRL> <X> <TAB> EXTRN <TAB>
<CTRL> <Y> displays the tab positions. 

Nothing is inserted.
<CTRL> <Z> --------------- ... <ENTER>

(semicolon followed by 64 
dashes)



Table 2/ ALEDIT Insert Mode Special Keys

<BACKSPACE> moves cursor back one space and 
deletes a character

<ENTER>

<BREAK>

<LEFT ARROW>

<TAB>

ends current line, carriage 
return, and goes to next line 
still in "I" mode.
Note: <ENTER> inserts a blank
line if executed by itself.
cancels current line, and returns 
to CMD-mode with the cursor on 
the next line.
erases current line, and still in 
"I" mode, returns to 
column 1 on current line.
moves to next tab position on the 
line.
Note: <BACKSPACE> will reverse
tab.

THE LINE EDIT MODE
The E command enters the line edit mode for editing 
characters within the current line. When you enter this 
mode, the Editor displays the line in reverse video. You 
can then use any of the edit subcommands listed in Table 2 
or the special edit keys listed in Table 3.
For example, assume the cursor is on the following line:

;THIS IS THE FIRST LINE
To change the word FIRST to THIRD from the command mode, 
type:

E
(Do not press <ENTER>.) The Editor will display the line in 
reverse video. You are now in the line edit mode.



Use the <SPACEBAR> to position the cursor at the F in FIRST 
and type:

5CTHIRD <ENTER>
This will store the change and return to the Editor command
mode.

Table 3/ ALEDIT Line Edit Mode Subcommands

COMMAND DESCRIPTION

A

nCstrinq

nD

E

Hstrinq

Istring

nKcharacter

Clears all changes and re-enters 
the edit mode for the current line.
Changes the next n characters to 
the specified string. If n is 
omitted, only one character is 
changed. (Press ESC to exit the 
change early)
Deletes n characters. If n is 
omitted, one character is deleted.
Exits the edit mode and stores 
changes.
Deletes the remaining characters, 
enters the insert mode and allows you 
to insert a string.
Allows you to insert material 
beginning at the current cursor 
position on the line. Pressing 
backspace will delete characters 
from the line. The line may be up to 
78 characters in length.
Kills all characters preceding the 
nth occurrence of the character.*
If n is omitted, the first 
occurrence is used. If no match is 
found, the rest of the line is killed.



L

Q

nScharacter

Xstring

Moves cursor to beginning of line.
Quits the edit mode, cancelling all 
changes.
Positions the cursor at the nth 
occurrence of character.* If no 
match is found, positions the cursor 
at the end of the line.
Moves the cursor to the end of the 
line, enters the insert mode, and 
allows you to insert a string.

* The compare begins on the character following the current 
cursor position.



Table 4/ ALEDIT Line Edit Mode Special Keys

<SPACEBAR> Moves cursor one position to the 
right.

<ESC> Returns to edit command mode from the 
I, X, C, or H subcommands.

<TAB> Moves cursor to next tab position 
(or the end of the line) while 
in the I, X, or H subcommand mode.

<left arrow> Identical to the L subcommand.
<right arrow> Identical to <SPACEBAR>.
<ENTER> Identical to the E subcommand.

THE COMMAND MODE
When you first load the Editor, it is in the command mode. 
While in this mode, you can use any of the special keys 
listed in Table 5 or the commands listed in Table 6.
All commands except I and E return to the command mode after 
executing. To return to the command mode from I (insert 
mode) or E (line edit mode), press <BREAK> or <ENTER> 
respectively.
When you enter an Editor command, it creates a blank "work 
line" and points to the line just beneath it. To redisplay 
the screen after an error message and delete the work line, 
use the N command.
Sample Use
For an example of using the command mode, use the I command to 
insert this program:

;THIS IS THE FIRST LINE <ENTER>
;THIS IS THE SECOND <ENTER>
;AND HERE IS ANOTHER <ENTER>
;AND ANOTHER <ENTER>



Press <BREAK> to return to the command mode. Type:
T

the cursor moves to the top of the text. Type B to move it 
to the bottom. Press <up arrow> and <down arrow> to move it 
to specific lines.
Move the cursor to the third line and type:

1
The < appears to the left of the line. This specifies the 
beginning of a block. Move the cursor to the last line and 
type:

2

The > appears to the left of the line. This specifies the 
last line in the block. Move the cursor up to the second 
line and type:

O
which is the O command. This inserts the block between the 
first and second line. Move the cursor to the last line and
type:

D
the delete command (executes without pressing <ENTER>). The 
last line is now deleted.
To save this program on disk you can use the W command.
Type (it does not matter which line the cursor is positioned 
at) :

W TEST <ENTER>
This saves this program on disk as a file named TEST/SRC. 
You can exit the Editor by typing:

Q <ENTER>
the quit command.



Q will exit the Editor without writing the text to disk. If 
you forgot to save the text first, type ALEDIT * <ENTER> to 
re-enter the Editor. Your text will be retained.
Be sure you use the ALEDIT * command immediately after you 
exit the Editor. It will not work predictably after you run 
a command which modifies memory. Also, be sure you type one 
blank space between ALEDIT and the asterisk (*).

Table 5/ ALEDIT Command Mode Keys

<left arrow> clears the command and returns to the 
command mode.

<down arrow> positions the cursor down one line 
(ignored if the cursor is not in 
first column)

<up arrow> positions the cursor up one line, 
(ignored if the cursor is not in 
the first column)

<Fl> positions the cursor to the top of the 
screen.

<F2> positions the cursor to the bottom of 
the screen or to the first line after the 
last line of text.
displays the current line sequence number. 
This number will change as you insert and 
delete lines.

#line<ENTER> postions the cursor to the specified
line sequence number and moves that 
line to the top of the screen.

<BREAK> cancels any command being executed and 
returns to the command mode.

<ESC> cancels the current command line if you 
have not yet pressed <ENTER>.



Table 6/ ALEDIT Editor Commands

Description of terms: 
current line
the line where the cursor is currently positioned.
del
(stands for delimeter) One of the following characters 
which marks the beginning and ending of a string:

string
one to 37 ASCII characters. 
text
the source program or text currently in RAM.
A <ENTER>
Re-executes the last executed command that contains 
more than one letter.
B
Moves the cursor to the bottom of the text.
C del strinq1 del strinq2 del occurrence <ENTER>
Changes strinq1 to string2 for the number of 
occurrences you specify. Occurences must range from 
1 to 255. The changes begin at the current line and 
are made only to the first occurrence on a given line.
If you omit occurrence, only the first occurence of 
stringl is changed. You may specify occurrence with 
an asterisk, in which case the change is made to the 
first occurrence of stringl in all the remaining 
lines.
For example:

C/TEXT/FILE/3 <ENTER>
changes the first 3 occurrences of TEXT to FILE.

C?TEXT?FILE?* <ENTER>
changes all occurrences of TEXT to FILE. (Change acts 
on only the first occurrence within a line.)



After executing the command, the cursor positions 
itself at the last change or, at the top of the file 
if changes went through the whole file.
D
Deletes the current line or block of lines. To delete 
a block, position the cursor at the first line in the 
block and type <1>. Then position it at the last line 
and type the D command. (The block may be on 
several pages.) The cursor must be positioned on a 
line within the file.
For example:

LD A, B
<1> ADD A, 1

ADD A, 3
<D> ADD A,4

DEC B
deletes all but the following:

LD A, B 
DEC B

You can cancel a block deletion after pressing <1> but 
before typing D. To do this, press <3>.

E
Allows you to edit the current line using line edit 
mode subcommands. The line will appear in reverse 
video. See the edit mode for a listing of 
subcommands.

F del string del occurrence <ENTER>
Finds the specified occurrence of string. If you 
omit occurrence, finds the first occurrence of 
string. If you omit string, the last string specified 
is found. Occurences must range from 1 to 255. For 
example:



F/TEXT/2 <ENTER>
finds the second occurrence of TEXT.

F/TEXT/ <ENTER>
finds the next occurrence of TEXT.

F <ENTER>
finds the next occurrence of the last specified string. 

F% % <ENTER>
finds the next occurrence of five blank spaces.
The Editor will search for only one occurrence of the 
string in each line.

G <ENTER>
Deletes all text from the current line to the end. 
You will first be prompted with:

"Are you sure?"
Type Y <ENTER> to delete; N <ENTER> to cancel.

H <ENTER>
Prints the entire text if entered as the first command 
or the specified block on the printer. To print a 
block, move the cursor to the first line of the block 
and type <1>. Move the cursor to the last line of the 
block and type <H>. For example:

LD A, B
<1> ADD A, 1

ADD A, 3
<H> ADD A,4

DEC B
prints a block of ADD instructions.
You can cancel a block printing after pressing <1> 
but before typing H. To do this, press <3>.
Press <HOLD> to stop the printing; press <HOLD> again 
to continue. Press <BREAK> to terminate printing.
If the printer is off-line or goes off-line during 
printing, some characters may be lost.



I

Enters the insert mode for inserting lines just 
before the current line. See "Insert Mode" for 
more information.

J
Displays current size of text and how much memory 
remains. Memory size does not include a small work 
area when the buffer is full, but the text size may 
reflect some of this work area.
K <ENTER>
Deletes ALL text. (Does not delete text from the 
disk file, only from the edit buffer. Before deleting 
your text, the Editor will ask you "Are you sure".
Type Y <ENTER> to execute the command; N <ENTER> to not 
execute it.
L filespec $C <ENTER>
Loads filespec into the Editor. $C is optional.
If specified, the Editor chains the new filespec to 
the end of the text currently in memory. If not 
specified, the new filespec overlays the current text.
For example:
L TEST <ENTER>
loads TEST/SRC into the Editor.
L TEST $C <ENTER>
chains TEST/SRC to the end of the text currently in 
memory.

The Editor will load either variable length record 
(VLR) files or fixed length record (FLR) files with a 
record length of one. If the file is fixed length, 
each line must be ended with a carriage return.
M
Moves the specified block just ahead of the current 
line. Use <1> and <2> to specify the block.
The Editor displays a line count as it moves each line.



For example:

ADD A, B
<1> PUSH DE

PUSH HL
PUSH IY

<2> PUSH BC
LD A, 8

<M> ADD A,10
Moves the block of PUSH instructions just ahead of 
the last line:

ADD A,B 
LD A, 8 
PUSH DE 
PUSH HL 
PUSH IY 
PUSH BC 
ADD A,10

You can cancel the block after specifying it but 
before typing M. To do this press <3>.

N
Updates the display. You might want to use this 
after executing the J command or cancelling the G 
command.

O

Copies the specified block just above the current 
line. (Use <1> and <2> to specify a block as 
described in the M command.

P
Moves the cursor to the next page (which is 24 lines 
from the top of the screen).

Q <ENTER>
Exits the Editor. If you forgot to save the file 
first, type ALEDIT * <ENTER> immediately upon exiting 
the Editor. The Editor will load with your text 
retained in memory.



R <ENTER>
Deletes the current line and enters the insert mode. 
Using the J command, if there is 0000 memory left in 
the buffer, executing the R command will delete the 
line but will not allow it to be replaced with new
text.

S command <ENTER>
Executes a TRSDOS command and returns to the Editor. 
For example:

S DIR <ENTER>
displays a directory and then returns to the Editor.
You should only use the TRSDOS library commands (not 
TRSDOS utilities or user programs). Press N to 
redisplay the editor screen. The program is back in 
command mode at this point with the blinking cursor as 
prompt.
T
Moves the cursor to the top of the text.

U
Moves the cursor to the previous page (which is the 24 
preceding lines).

V
Scrolls current line to the top of the screen.

W filespec $optionl... <ENTER>
Saves all text on disk as filespec. filespec 
is optional; if omitted, it is the filespec you used 
to load the file. The Editor appends /SRC to filespec 
unless it already includes an extension.



If you specify a filespec which is the same name you 
used to load the file, the Editor saves the old file 
as a "backup". The backup file will have the 
extension /BAK. The Editor will create this backup 
file only once for each load command or initial loading 
of the editor. On subsequent Write commands, it 
updates the specified filespec only.
The options are:
N Negates the creation of a backup file.

(Useful if the disk is nearly full or if 
you do not want the previous backup erased.)

E Exits the Editor after saving the file 
unless there is an error.

L Saves the file as a variable length record
(VLR) file with line numbers in this format: 
line length/ASCII line number/dummy TAB/text.
This way, it can be loaded with Radio 
Shack's Series I Editor Assembler (Catalog 
Number 26-4713). The ALDS Assembler considers 
line numbers to be syntax errors.

M Saves the file as a fixed length record (FLR) 
file with an LRL of 1 in this format:

text/carriage return
This way, you can use ALEDIT to edit a "DO-file" 
created with the TRSDOS "BUILD" command and 
save it in a format which can be loaded by the 
TRSDOS "DO" command. In editing DO-file, do 
not remove the "P" character at the top left-hand 
corner of the screen. This character identifies 
the file as a DO-file.

ML Saves the file as a fixed length record (FLR)
or file with an LRL of 1 and line numbers in this
LM format:ASCII line number/dummy TAB/text/

carriage return. This way, it can be loaded with 
Radio Shack's Macro Editor/Assembler (Catalog 
Number 26-4202).



For example:
W SAMPLE <ENTER>

saves all text as a file named SAMPLE/SRC.
W SAMPLE $NE

saves text as SAMPLE/SRC. The Editor will not 
create any backup and will exit back to TRSDOS 
READY after saving the file.
Without using the L or the M options, the Editor 
saves the file in the format required by the ALDS 
Assembler:

Each record is variable length (VLR) as 
described in the TRSDOS Reference Manual.

. Each character is saved exactly as it appears 
on the display.

. No carriage returns or end of text code is saved.

. Each line is saved in this format:
length/text/

x strinql del string2 del occurrence
Same as the C command, but prompts before making 
the change. Occurence must range from 1 from 255.
Y filespec
Same as the L command with one exception. It 
compresses a file that contains blank space 
characters into tab characters. Text that does not 
begin on tab boundaries may be shifted out of 
alignment.



Chapter 3/ THE ALDS ASSEMBLER (ALASM)

The ALDS Assembler produces Z80 object code. It does this 
by inputting a source file —  composed of Z80 instructions, 
assembler language directives, and data —  and assembling it 
into Z80 code.
In this Section, we'll show how to use the Assembler. For 
information on the source file, see the sections on the ALDS 
Editor, Assembler Language Directives, and Z80 Instruction
Set.

THE ASSEMBLER COMMAND
This command, typed in the TRSDOS READY mode, loads and 
executes the Assembler:

ALASM filespec1 filespec2 {switches}
filespec1 is the source file you want assembled. If you 
do not specify an extension, the Assembler will assign it 
/SRC. filespecl must not be read protected. Do not 
specify a password.
filespec2 is optional. It stores the assembled object 
code. You can specify filespec2 with an asterisk (*). If 
so, the Assembler will assign it filespec1's name (less 
the extension).
If the program is relocatable and filespec2 does not have 
an extension, the Assembler will assign it /REL. (The 
Assembler uses the PSECT directive, discussed in Chapter 8, 
to determine whether the program is absolute or 
relocatable.)
filespec2 overrides any OBJ directive you have in your 
program. filespec1 and filespec2 must be in the 
standard TRSDOS filespec notation.
Examples:

ALASM TEST TEST <ENTER>
assembles TEST/SRC and saves the object code as TEST if the 
program is absolute or TEST/REL if it's relocatable.



ALASM TEST * <ENTER> 
does the same.

ALASM TEST/PAY * <ENTER>
assembles TEST/PAY and saves the object code as TEST or 
TEST/REL.

ALASM TEST/PAY FILE/ACC <ENTER> 
assembles TEST/PAY and saves the object code as FILE/ACC. 

ALASM TEST <ENTER>
assembles TEST/SRC. No object file is produced unless 
TEST/SRC contains an OBJ directive.

SWITCHES
You may specify one or more switches to create a listing or 
control the assembly output. If you do not specify 
filespec2, you must enclose the switches in braces. For
example:

ALASM TEST * L <ENTER>
assembles TEST/SRC into TEST or TEST/REL and displays a 
listing (L) of the assembly.

ALASM TEST * LXP <ENTER>
does the same as the above and also creates a cross 
reference listing (X) and prints it all on the printer (P).

ALASM TEST {L} <ENTER>
assembles TEST/SRC and creates a listing. Since filespec2 
is omitted, the braces are required.
The details of all the available switches are in Table 7:



Table 7/ ALASM Switches

L (Listing)
Generates a complete listing on the video display. 
Figure 1 shows a sample assembly listing.
The Assembler prints a character to the left of a 
line number if the line is affected by one of these 
special conditions:
Character Condition

p

g
+

X

r

the symbol in symbol field is never 
referenced
the symbol in symbol field is PUBLIC 
the symbol in symbol field is GLOBAL 
a symbol in operand field is defined 
in global file
a symbol in operand field is defined
in an external file
some or all the object data is
relocatable

X (Cross Reference)
Generates an alphabetical cross reference listing 
of all symbols defined in the program. Figure 2 
shows a sample cross reference.

P (Printer)
Outputs the listing on the printer in addition to 
the video display. Use this option with the L 
option. You may not use this switch with the 
Assembler D switch, nor can you use it with the 
TRSDOS SPOOL command's "capture file" option (the 
"N" option). Be sure that the printer is on-line.

 –



W (Wait On Errors)
Causes the Assembler to stop the listing at each 
assembly error. Press <ENTER> to continue the 
listing.
T (Truncate the Listing)
Truncates the listing output to the printer so 
that you can use 80 column paper.

Ddrive number (Store Listing on Disk)
Stores the listing in a disk file named 
filespec1/LST. Use this option with the L option.
If the listing will not all fit on the diskette, the 
Assembler will close the file and prompt you to change 
diskettes. Do so and press <ENTER>. (Be sure the 
diskette you remove does not contain the source, 
object, or ALASM files.)
The Assembler will store the remainder as 
filespec1/LSU on the newly inserted diskette.
If this diskette also becomes full, the listing 
will go to the next diskette as filespec1/LSV.
The Assembler will repeat this process until it has 
saved the entire listing. Each time it creates 
a new listing file, it will increment the third 
character in the extension:

filespec1/LST, filespec1/LSU, ...filespec1/LSZ, 
filespec1/LSA, filespec1/LSB, ...filespec1/LSS
You may optionally omit the drive number. If you 
do so, the Assembler will output the listing 
file to the lowest numbered write-enabled drive 
(usually drive 0) and continue the listing in the 
next drive. This is not a good method to use, 
since the Assembler will probably run out of work 
space before completing the listing.



Files created with the D option should be printed with 
the PRINT command with FORMS P=66, L=66 set. (If your 
printer handles form feeds, FORMS P=0, L=0 will also 
work.)
The D switch overrides the P switch.

G (Go)
Executes the program after assembling it. The 
program must be absolute and have no errors.

F (Memory image)
Causes the assembled object file to be in memory 
image form, rather than the TRSDOS program file 
format. The program must be absolute and have 
no errors. See the NOLOAD directive in Chapter 
8 for more information.
Examples:

ALASM SOURCE OBJTST LDX <ENTER>
assembles SOURCE/SRC into OBJTST/REL or OBJTST. 
Displays a listing and a cross reference of this 
assembly and saves these in one or more files 
named SOURCE/LST, SOURCE/LSU, SOURCE/LSV, etc.

ALASM TEST * G <ENTER>
assembles TEST/SRC into TEST or TEST/REL, then 
executes the program (unless it is relocatable or 
has errors).

ALASM MOD1 PROG/CMD LPW <ENTER>
assembles MOD1/SRC into PROG/CMD. Generates a 
listing which is printed on the video display 
and the printer. Each time the Assembler 
encounters an error, it stops the listing.



ALASM XYZ/COD TST/ABC:2 LD3 <ENTER>
assembles XYZ/COD and stores it as TST/ABC on the 
diskette in drive 2. The Assembler generates a 
listing which it displays and saves as XYZ/LST on 
the diskette in drive 3.
If the drive 3 diskette becomes full, you will be 
prompted to insert another diskette which will 
hold XYZ/LSU, a continuation of the listing.

NOTE: Be sure the CLOCK is not turned on (CLOCK {OFF})
while running the Assembler.



Chapter 4/ THE ALDS DEBUGGER

The ALDS Debugger is an easy-to-use system for debugging 
absolute object code programs. It includes all the features 
found on the DEBUG utility program of your TRSDOS disk. In 
addition, it includes several new, powerful debugging tools.
To allow you the maximum memory space for programs, the 
Debugger is on your diskette in three modules. These are 
ALBUG, the program which calls ALBUG/SYS, the main module, 
and ALBUG/OVL, an overlay which contains certain Debugger 
commands that load into memory only when necessary.
ALBUG, ALBUG/SYS, and ALBUG/OVL reside in the high memory of 
your Model II starting at EF00H.
ALBUGX, ALBUGRES/REL and ALBUG/RES are explained in the 
addendum.
Among many other features, the ALDS Debugger allows you to:

. set both permanent breakpoints with pass counts and 
temporary breakpoints (see the J and B commands in 
Table 8).

. execute one or more instructions at a time (see the I 
and E commands in Table 8).

. specify a memory address as an offset. This is 
useful in debugging a program which you assemble 
in the relocatable mode (see the 0 command in 
Table 8).

What you can debug with the ALDS Debugger :
You can debug any absolute program. The program must lie in 
memory between 2800H and EEFFH.
In addition, you can use the Debugger to change the contents 
of disk files, using the DISK ZAP mode (see the Z command).
The DISK ZAP mode uses memory locations EE00H through EEFFH 
as well as the normal Debugger memory. Because of this, you 
must be sure not to store one of your programs in that part 
of the memory if you want to use DISK ZAP, or else it may be 
overwritten.



Turn on the ALDS Debugger by typing (from TRSDOS READY): 
ALBUG <ENTER>

The Debugger clears the screen and displays the message: 
ALBUG is now ON

and returns control to TRSDOS READY. Now to debug your 
program, type (if your program uses any parameters, you may 
include them in the command line):

filespec <ENTER>

LOADING THE ALDS DEBUGGER

The Debugger display appears on your screen with the cursor 
flashing in the left-center. You are now in the Debugger 
command mode and can use any of the commands listed in Table
8. The PC contains the entry point of your program.
If you want to enter the Debugger without loading one of 
your programs (for instance, to enter the DISK ZAP mode), 
type:

ALBUG ON <ENTER>
from the TRSDOS READY mode, and the Debugger program begins 
execution.

ALBUG remains ON (activated) until either you enter <Q> from 
the Debugger, or you type:

ALBUG OFF <ENTER>
from the TRSDOS READY mode.



This is a sample Debugger display.
THE DEBUGGER DISPLAY



1. Upper Dump. This is a 32 byte section in the memory. U 
stands for Upper Dump. The 3000 signifies that the 
memory address of the first byte in that row is 3000H. 
To the right of the 3000 are the contents of memory 
locations 3000H through 300FH . To the right of the 
3010 are the contents of memory locations 3010H through 
301FH. Above these lines are numbers which represent 
the memory address of the data listed below them. For 
example, the byte under the 7 and in the row marked as 
3000, is the memory location 3007H.

2. Lower Dump. This is another 32 byte section of 
memory. It is arranged exactly like the Upper Dump.

3. The memory location pointed to by one of the register 
pairs (in this case SP) is displayed here along with 
the 15 bytes immediately following it. The label of 
this line is SP=>. Directly above it is a line 
labeled <SP-1. It contains the 16 bytes preceding the 
memory location pointed to by the register pair. (The 
byte on the far left of the line is at the address 
(SP)-16 and the byte on the far right is at the 
address (SP)-1.)

4. The memory location pointed to by the PC is on this 
line, marked @PC=>. It is followed by the contents of 
the next 15 bytes in memory. Above this line is the 
memory location of the respective bytes.

5. This line (here shown blank) displays certain 
information such as base register addresses and math 
function results. When you enter a new command, it is 
erased.

6. These lines show the contents of the Z80 registers.
At the right side of the lower line, below " @PC 
DISASSEMBLY ", is a Z80 instruction. The address 
pointed to by the PC contains this instruction in 
machine code, and the Debugger has disassembled it 
into an assembly level instruction. The Debugger uses 
as many bytes following the PC address as necessary to 
make a complete instruction. This means that what is 
disassembled can be one to four bytes long.



7. <SZHPNC> are the condition codes set in the F
register. The codes are:

S sign
Z zero
H half carry
P parity
N BCD condition
C carry

When a condition bit is set (i.e. when it is equal to 
1) the Debugger encloses the letter within the < >
characters. Otherwise it simply displays a hyphen
(-). For example, <-Z-- C) shows that the zero (Z)
and the carry (C) bits have been set and all other 
bits have not.

8. This area lists the status of the permanent 
breakpoints. BP1=2800/000C translates as breakpoint 1 
set at 2800H with the pass counter set at 12 decimal 
passes. BP2=OFF means that breakpoint 2 is not set. 
(See Table 7 for more information).

9. When you first enter the Debugger, this line gives 
version and copyright information. Thereafter, it 
displays commands and prompts used in debugging code.

10. This area displays the ASCII value of any hexadecimal 
data to its left. If the hex number has no printable 
value, a period (.) is displayed.



Table 7 lists all the Debugger commands. You can execute 
most of them by simply pressing the appropriate letter. By 
pressing <BREAK>, you can abort any command in the middle 
of execution and return to the command level.
Most commands prompt you to specify a register or data (the 
prompt is in area 9 of figure 1). The prompts use these 
abbreviations :

ENTERING COMMANDS

Adr Address
Asc ASCII
BP1 Breakpoint 1
CHR Character
C(lr) Clear
DEC Decimal
<E> <ENTER>
Eadr End address
H(ex) Hexadecimal
Pas Pass counter
Reg Register
SAdr Start address
Str String

The commands usually prompt you for a certain number of 
parameters. If you fail to provide enough parameters, or if 
you use an invalid number as a parameter (e.g. hex when a 
decimal number is expected), you receive the message:

Invalid Parameter
and the Debugger returns to the command mode.

SPECIFYING REGISTERS
Certain commands require you to input a register or register 
pair. For example, the Debugger might prompt you with:

C,E,L,A(F),B(C),D(E),H(L),(I)X,(I)Y,S(P) or P(C)
To enter a single register, you simply press the appropriate 
letter. To enter a register pair, you must press the letter 
NOT shown in parenthesis. For example, <C> enters the C 
register, but <B> enters the BC register pair.



SPECIFYING DATA 
As a Constant
Some commands require constants. When entering a 
hexadecimal constant, you must follow it with H. For 
example, "10" indicates the decimal number 10, while "10H" 
stands for the hexadecimal number 10 (the decimal number
16 ) .
As an Address
Other commands require addresses. These must be in 
hexadecimal. There is no need to follow hex addresses with 
an H.
You can specify an address by referring to a register pair 
which contains that address. For example, if BC contains 
the number 6000H, you can enter $B instead of the address 
6000H. The register abbreviations for this type of 
addressing are:

AF $A
BC $B
DE $D
HL $H
IX $X
IY $Y
SP $S
PC $P

You can also specify any address as an "offset" to a base 
register. This is useful if you assemble the program in the 
relocatable mode. It allows you to use a relocatable 
location to specify an address. (See the 0 command in Table 
8).
The ALDS Debugger is for debugging your own code. Hence, 
you cannot enter an address which is in the system memory 
(i.e., below 2700H). In addition, the Debugger protects 
itself by not allowing you to interfere with the memory 
above EF00H. If you enter an invalid address the Debugger 
returns to the command mode.



The Debugger allows you to set "breakpoints" within your 
code. Breakpoints are commands causing the execution of 
your program to stop at a given point. There are two types 
of breakpoints, temporary and permanent.
You can assign temporary breakpoints with the J command 
(Jump to an address and execute). They apply only to this 
one execution of J. With them you can execute a short 
section of code, or determine which way control goes at a 
branch statement. (See the J command in Table 8).
With the B (Breakpoint) command, you can set permanent 
breakpoints. They remain in your program until you leave 
the Debugger or clear them. Permanent breakpoints may have 
a pass count associated with them.
You must be cautious when setting breakpoints. Set them 
only at the first byte of an instruction. If you are 
writing a self-modifying code where the first byte of an 
instruction may change during the course of running the 
program, be careful not to place a breakpoint at that 
instruction.

BREAKPOINTS



Table 8/ Debugger Commands

n; (semicolon)
Advances the memory location of the Upper Dump. 
The default advance is 16 bytes. You can precede 
the semicolon with n, a decimal number, which 
changes the default to n bytes, until you press 
<BREAK>, when the default returns to 16 bytes.

n: (colon)
Advances the memory location of the Lower Dump. 
The default advance is 16 bytes. You can precede 
the colon with n, a decimal number, which changes 
the default to n bytes, until you press <BREAK>, 
when the default returns to 16 bytes.

n= (equal sign)
Decrements the memory location of the Upper Dump. 
The default decrement is 16 bytes. You can 
precede the equal sign with n, a decimal number, 
which changes the default to n bytes, until you 
press <BREAK>, when the default returns to 16 
bytes.

n+ (plus sign)
Decrements the memory location of the Lower Dump. 
The default decrement is 16 bytes. You can 
precede the plus sign with n, a decimal number, 
which changes the default to n-bytes, until you 
press <BREAK>, when the default returns to 16 
bytes.

B
Sets or clears permanent breakpoints and their 
pass counters. After you press <B>, a prompt 
appears :
1,2,3,4 or C(lr)?



You can now choose to set or alter any of the 
four breakpoints, or clear all four. To set 
breakpoint 1, for example, press <1>. The Debugger 
prompts with:

0 <E> or [Adr][,P(as)]<E>?
You can now select the address where you want the 
breakpoint. You must set it at the first byte of an 
instruction. You can not place a breakpoint on top 
of an existing breakpoint.
Each permanent breakpoint is associated with 
a pass counter. Pass counters are useful to stop 
execution after an instruction has been executed a 
given number of times. A pass count is specified by 
following the breakpoint address with a with a comma 
and then the pass count value.
To set the breakpoint at 3000H, with a pass of 12 
type:

3000,12 <ENTER>
You can clear the breakpoint by entering a value 
of 0:
0 <ENTER>

To clear all four of the breakpoints, press <C> 
in response to the first prompt. The Debugger 
asks you:
Are You Sure (Y/N)?

to allow you to change your command (the Debugger 
accepts only Y or N). The status of all four 
breakpoints is displayed in area 8 of figure 1.



When you set each breakpoint, the Debugger saves 
the contents of the breakpoint address, and 
replaces it with an RST 30 instruction which 
assembles into 0F7H. Now, in typing Y to remove 
the breakpoints, the Debugger restores the 
memory addresses to their original contents.
The contents of the pass counter can be updated 
without respecifying the address of the breakpoint.
For example, if you had previously set a permanent 
breakpoint at 3000H, you can update the pass count 
to 24 by typing:

,24 <ENTER>
in response to:
0<E> or [Adr][,P(as)]<E>?

Whenever ALBUG executes a program instruction 
which is associated with a permanent 
breakpoint with a nonzero pass count, the count is 
decremented and execution resumes. Execution halts 
when a permanent breakpoint with a pass count of 
zero is reached. ALBUG is designed so that once 
execution is halted by reaching a pass count of 
zero, you may single step over a permanent 
breakpoint.
The permanent breakpoint remains in the program until 
it is explicitly cleared with the <B> command or 
until ALBUG is exited with the <Q> command. Note: 
if a return to DOS is executed in your program, 
the p e rmanent breakpoints remain intact and ALBUG 
can be re-entered by typing ALBUG.
Typing ALBUG OFF will remove all breakpoints 
(restoring your original code) and deactivate ALBUG.
If you load another program, and then clear 
breakpoints with ALBUG OFF or the breakpoint clear 
command, the original code at the breakpoints from the 
first program will be restored. This is probably not 
what was intended. Turn ALBUG OFF or clear permanent 
breakpoints before loading another program.



ALBUG uses RST 30 instructions to handle all 
breakpoint processing. If ALBUG encounters a RST 30 
instruction which you placed in your program, 
execution will halt. To resume execution, the 
program counter must be reset using the <R> command.
C
Copies one section of memory to another. After 
you press <C>, a prompt appears:

Start Adr,End Adr,To Adr <E> ?
Type the appropriate start, ending, and 
destination addresses. For example, type:

2800,282F,3000 <ENTER>
to copy the data contained in addresses 
2800H-282FH to addresses 3000H-302FH.

D
Dumps the data contained in the address pointed 
to by a register pair to the Debugger display.
(See area 4 in figure 1). The data on either 
side of this address is also displayed. After 
you press <D>, the Debugger displays:
Reg Dump B (C ),D(E),H(L),(I)X,(I)Y,S(P) or P(C)?

To see the data referenced by the IX register 
pair, respond with:

<X>
The screen updates to display the new dump.

nE
This command is identical to the <I> command, with 
one exception: If the current instruction is a call 
the debugger executes the entire routine.



nF
Searches for a string within a given range in the 
memory. After you press <F>, a prompt appears:

SadrfEadr <E> or <E>?
After you enter a valid start and end address, 
the Debugger asks you:
H(ex) or A(scii)?

Depending on whether you enter <H> or <A>, the 
Debugger then prompts you with:
Hex Str <E>? 

or
Asc Str <E>?

When you enter the appropriate type string the 
Debugger searches through the given memory for 
it. If the Debugger finds a matching string, the 
Lower Dump is set to display this part of memory. 
If no match is found, the Debugger returns to the 
command level.
To find the next occurence of the string, you 
need only to press <F> from the command level and 
respond to the prompt with <ENTER>. You can 
continue to search for matching strings until you 
reach the ending address (EAdr) or until there 
are no more string matches in the specified 
range.
To specify which occurrence of the string you 
want to find, precede the F command with n, a 
decimal number between 1 and 255. For example, to 
find the fifth occurrence of 1FH, start by 
entering 5F.
The F command will find an ASCII string of up. to 
24 characters or a HEX string of up to 12 digits.



You may also specify a new range for the current 
string. Enter the new range, abort the <F> command 
with the <BREAK> key at the 'H(EX) or A(SCII)? ' 
prompt, and press 'F <ENTER>'.

G
Examines a 256 byte area in memory. After you 
press <G>, a prompt appears:

U(pper) or L(ower)?
Depending on your answer, the Debugger displays 
the 256 byte multiple of memory which contains 
the address of the Upper or Lower Dump. For 
example, if the Upper Dump starts at 2807H and 
you press <G> and then <U>, your screen changes 
so that it now contains a dump of memory starting 
with 2800H.
The <n;>, <n:>, <n=>, and <n+> commands may be used in 
this display mode as they were in the partial 
screen display mode, except that the value of n 
is always rounded up to a multiple of 256.
Press <BREAK> to return to the regular Debugger 
display.

nI
The <I> and <E> commands are ALBUG's single step 
instructions. The <I> command executes the current 
instruction in your program (the instruction 
pointed to by the PC register.) ALBUG then 
increments the PC register to the next instructions 
address and returns to the command mode.
By preceding <I> with n, a decimal number, you can 
indicate the number of times it is to be repeated. 
For example, if you type:

10I
the <I> command is executed 10 times.



There are a couple of considerations you should be 
aware of when single stepping. ALBUG will not place 
a breakpoint in a protected area. This implies that 
an attempt to single step an instruction in a 
protected area will cause a jump to that instruction. 
Single stepping a call to a protected area will cause 
the entire call to be executed at full speed. These 
precautions are necessary since many of the system 
calls such as video and disk I/O will work properly 
only when executed at full speed.

J
Executes a specific section of your program.
After you press <J>, a prompt appears:

J [ADR][,BPl][ ,BP2][,BP3][,BP4]<E>?
The start address (ADR) is optional. If you omit 
it, the execution begins at the contents of the 
PC. BP1-BP4 are temporary breakpoints and are 
also optional. You can include any or all of 
them.
The first temporary breakpoint encountered causes 
the execution to terminate. This clears all 
temporary breakpoints. The execution also 
terminates if a permanent breakpoint with a pass 
of zero is encountered.
For example, suppose you want to execute the 
instructions between 2800H and 2821H, inclusively. 
After pressing <J>, you would type:

2800,2821 <ENTER>
Temporary breakpoints are often useful near 
branch points. If you set breakpoints at the 
possible jump locations, you can see which way



your program goes. For example, say you have a 
set of conditional jumps which could go to 
3040H, 3080H or 30F0H. When you enter:
2800,3040,3080,30F0 <ENTER>

your program will begin at 2800, and terminate 
after jumping. You can then examine the PC to see 
which breakpoint caused the execution to stop 
(i.e., which way the jump went).

K
Allows you to convert between decimal, hex, and 
ASCII characters. With this command, you can 
also perform addition and subtraction. After you 
press K, a prompt appears:

Enter value or equation ?
You can then enter a value or equation. For 
example, to find out the ASCII character for 32H, 
type:

32H <ENTER>

The display (in area 5 of figure 1) is then:
HEX String = 0032 DEC String = 00050 CHR String= ".2"

To do addition or subtraction, simply type in the 
equation. You can mix decimal, hex, or character 
constants in the equation. Only single 
characters are allowed, and unprintable 
characters are output as periods (.); all 
characters must be preceded by a quote mark ("). 
For example, if you type this equation:
1124-40H+"Z <ENTER>

the Debugger displays:
HEX String = 047E DEC String = 01150 CHR String = ".."



the result must lie between 0 and FFFFH, or else 
the number is represented modulo FFFFH. For 
example, -1H is represented as FFFFH, and 10001H 
as 1H.

L
Loads a given range of memory with a constant 
value. After you press <L>, a prompt appears:

SAdr,EAdr,Value <E> ?
When you enter a start address, end address, and 
value, the area in memory is filled inclusively 
with the value. For example:

6000,6FFF,FFH<ENTER>
fills addresses 6000H to 6FFFH with FFH.

6000,6FFF,16<ENTER>
fills addresses 6000H to 6FFFH with 10H (the 
hexadecimal equivalent of decimal 16).

M
Changes values in user memory. After you press 
<M>, a prompt appears:

Address =?
Enter a hexidecimal address and press <ENTER>. The 
Debugger then displays a 256 byte block of memory and 
puts the cursor on the specified memory location.
The numbers along the left-hand side are the memory 
addresses for the first byte in their respective 
lines.
You may reposition the cursor with the up, down, 
left, and right arrow keys when entering data.
Press <ENTER> to return to the debugger display.



N
Toggles the Debugger display between the primed 
and unprimed register set.

O
Sets values for offset base registers. You can 
use these offset registers for debugging a 
program you assembled in the relocatable mode. 
When you press <O> a prompt appears:
1,2,3,4,5,6,7,8 or <E>?

If you press <ENTER> the Debugger displays the 
values of the base registers in area 5 of the 
screen (see figure 1). There are eight offset 
base registers. They supply the "base" or start 
address of the program or O module.
After you set an offset address, you can specify 
an address as a relocatable location, followed by 
a colon, followed by the number of the offset 
register. (Your Assembler listing gives the 
relocatable locations of each instruction.
For example, if an instruction in the assembly 
listing is at relocatable 001A, and you linked 
the program using an absolute start address of 
6000H, press <1> in response to the above prompt, 
and you will receive:

Base Adr <E>?
type:

6000 <ENTER>
This sets base register 1 to 6000H. Then, an 
address 1AH bytes after the beginning of 6000H 
can be entered as 1A:1.

P
Prints what is currently displayed on your 
screen. If your printer is not ready, the 
Debugger displays the error number.



Q
Exits the Debugger and returns to the TRSDOS 
READY mode. All existing breakpoints are cleared. 
The Debugger is turned off.

R
Alters the contents of any of the registers.
When you press <R>, a prompt appears:
C,E,L,A(F),B(C),D(E),H(L),(I)X,(I)Y,S(P) or P(C)?

After you press the appropriate letter, the 
Debugger prompts you for a value to put in the 
register. For example, if you are changing the C 
register, a prompt appears:

(C =## or # <E>) C = ?
To change the register to FFH, type:
FF <ENTER>

The screen is updated and the C register now 
contains FFH.

You can also change register pairs. For example, 
if you were changing the contents of the HL 
register pair to A064H, after you press <R>, 
respond to the register prompt by pressing <H>.
You are then prompted with:

(HL =#### or ### or H =## or # <E>) HL = ?
To complete the change, simply type:
A064 <ENTER>

If you are changing a register pair and you input 
only 3 digits, the Debugger assumes leading zeros.
By using the N command first, you may alter the 
contents of the prime register set.

61



The stack pointer and the program counter may not 
be changed to point at the protected areas. Keep 
in mind when changing the stack pointer that ALBUG 
uses the stack. To be safe allow for a stack size 
of 256 bytes.

S
Executes a TRSDOS system command. Enter the 
system command after the S. For example:

S DIR <ENTER>
returns the directory of drive 0 , and then 
prompts you with:

<ENTER> to continue 

V
Changes the start address of the Upper or Lower 
Dump. When you press <V>, a prompt appears:

(U)pper or (L)ower?
Depending on which you press, <U> or <L>, you 
will be prompted with either:

U Address =? 
or
L Address =?

For example, to change the start address of the 
Upper Dump to 6000H, respond to "U Address =?" 
with:

6000 <ENTER>

Z
Enters the DISK ZAP mode, allowing you to debug disk 
files. See the explanation following.



The DISK ZAP mode allows you to change the contents of your 
fixed-length record disk files. When you press the <Z> 
command, the screen clears, and you are prompted:

ALDS DISK ZAP Utility
Enter Filespec Name?

After you enter the filespec, DISK ZAP asks you whether you 
want to see your file based on relative sectors or records:

Enter S(ector) or R(ecord) ?
SECTOR MODE
If you enter S, you are then asked to enter the relative 
sector number:

Enter Relative Sector Number (# <E> or <E>) ?
You can specify a sector number, or just press <ENTER>. If 
you press <ENTER>, the DISK ZAP displays the first disk 
sector containing your file (relative sector 0).
The display for the sector is similar to what the M (Modify 
memory) command displays. Except that the relative sector 
and starting byte numbers are listed along the left side. 
For example, the number 001100 refers to sector 11 and byte
00.

THE DISK ZAP MODE

You can move from sector to sector by using the semicolon 
(;) which advances the display to the next sector. The 
equal sign (=) decrements the display to the previous 
sector. If you cross a file boundary (that is, if you go 
to a sector not used by your file), you will return to the 
DISK ZAP, filespec prompt.
You can modify the data in your file much like you modify 
memory. When you press <M>, the Debugger puts the cursor 
onto the first byte of the sector. You can then position 
the cursor to the correct byte with the up, down, left, and 
right arrows. After you have completed your change, press 
<ENTER> to write the change to disk. If you don't want the 
change written, press the <BREAK> key.



If you respond to the Record/Sector prompt with <R>, DISK 
ZAP prompts you to:

Enter Record Number (# <E> or <E>) ?
You can default to the beginning record (record 0) by 
pressing <ENTER>, or you can choose a specific record in 
your file. DISK ZAP displays only the record you specify. 
If the record length is less than or equal to 16, one line 
is shown and the irrelevent bytes are filled with zeros.
If the record length is between 17 and 32 two lines are 
displayed, between 33 and 48 three lines, and so on.
If you want to display the previous record, press the equal 
sign (=). The next record of a file is displayed when you 
press the semicolon (;). If you go beyond the last record, 
or go before the first record (record 0), the Debugger 
returns to the DISK ZAP filespec prompt.
Bytes of the record are modified just like they are in the 
Sector Mode. After you press <M>, position the cursor and 
make the change.
Technical Note: Decimal numbers in ALBUG are treated 
modulo 65536 (Ex. A number entered as 65537 will be 
treated by ALBUG as 1). TRSDOS 2.0a files may contain 
65536 records. Thus, the largest file with LRL=1 is 256 
sectors. Specifying a sector number greater than the 
maximum size allowable for that logical record length will 
give a displacement into that file based on modulo 65536 
records.
TRSDOS-II files may be larger than 65536 records, but DISK 
ZAP cannot access beyond 65536 records.

RECORD MODE

DISK ZAP ERRORS
If you get an error message while using DISK ZAP, it is a 
TRSDOS error message. See your TRSDOS Owner's Manual for 
an explanation.



Pressing <BREAK> at the DISK ZAP filespec prompt returns 
you to the Debugger. Pressing <BREAK> from any other level 
of DISK ZAP returns you to the original DISK ZAP filespec
prompt.
Note: DISK ZAP uses memory starting at EE00H rather than
EF00H, so any data you have stored there will be over­
written .

LEAVING THE DISK ZAP MODE



Chapter 5/ THE ALDS LINKER (ALLINK)

The ALDS Linker converts a relocatable object file into 
absolute object code.
Unlike many linkers, ALDS Linker receives its commands 
through directives in your program. You can use these 
directives to get the Linker to link in external program 
sections and use external symbols. The Linker directives
are:

PSECT
PUBLIC
EXTERN
GLOBAL
GLINKLINK

begins a program section and determines 
its mode (absolute or relocatable) 
declares symbol definitions PUBLIC so that 
other program sections can use them 
brings in external symbols 
creates a global symbol file 
brings in global symbols
links an external absolute or relocatable 
program section

For information and examples on how to write a relocatable 
program containing Linker directives, see Chapter 8.

THE LINKER COMMAND
This command, typed in the TRSDOS READY mode, loads and 
executes the Linker:

ALLINK filespec1 filespec2 {options}
filespec1 is the relocatable file you want converted. If 
you do not specify an extension, the Linker will assign it 
/REL.
filespec2 is optional. If specified, it stores the 
converted absolute object file. If not, the Linker will 
still process the file so that you can test for undefined 
symbols, missing files, or generate a listing.
On the Models I and III, filespec2 must have the extension 
/CMD to load and execute. You can use an asterisk (*) to 
specify filespec2. If so, the Linker assigns it 
filespec1's name less the extension.



You can specify one or more of these options, separated by a 
blank space:

$=nnnn specifies the absolute hexadecimal start 
address of the program. If omitted the start 
address is 3000H (Model II) or 5200H (Model I/III).

MAP prints each PSECT name, its absolute start 
address, and the start, end, and transfer 
address of the program.

SYM prints the absolute address of each PUBLIC 
and GLOBAL symbol, sorted alphabetically by 
symbol. You cannot use this option with the 
XREF option

XREF prints an alphabetical cross-reference of
each PUBLIC and GLOBAL symbol, its absolute 
address, and all addresses which reference 
it. This option overrides the SYM option, if 
both are specified

DISK saves the listing requested by the MAP,
SYM, or XREF options on disk. The resulting 
disk file will have the same name as 
filespec1 with the extension /MAP.

PRT directs the listing requested by the MAP,
SYM, or XREF options to the printer. The 
Linker ignores this option if your printer is 
not connected or ready for printing.

Examples:
ALLINK PROG/REL PROG $=7000 MAP SYM DISK

assigns absolute addresses beginning with 7000H to PROG/REL 
and stores the resulting file as PROG. The Linker displays 
a PSECT MAP, and a table of absolute symbol definitions and 
stores this listing in a file named PROG/MAP

ALLINK PROG DONE
assigns absolute addresses beginning with 3000H (Model II) 
or 5200H (Models I or III) to PROG/REL and stores the 
resulting file as DONE.



ALLINK PROG *
assigns absolute addresses beginning with 3000H or 5200H to 
PROG/REL and stores the resulting file as PROG.

TECHNICAL INFORMATION
OPERATION
The Linker processes the file in two passes. In pass 1, the
Linker:

. processes any LINK directives by linking in 
the specified program sections.

. assigns the file absolute addresses.
It does this by offsetting the relocatable 
locations (assigned by the Assembler) to the 
absolute start address.

. processes any LINK directives by linking in 
the specified program sections (PSECTs). If 
the PSECT to be LINKed is relocatable, the Linker 
assigns it addresses which immediately follow the 
last relocatable PSECT. If it is absolute, the 
Linker will assign it the same addresses the 
Assembler assigned it.

. processes any PUBLIC or GLOBAL directives by 
inserting the declared symbols and their 
corresponding definitions in a Linker symbol table.

. processes any GLINK directives by inputting the 
specified global file's symbols into the Linker 
symbol table.

In pass 2 the Linker:
. fills in the addresses of any EXTERNal symbols, 
and generates error messages for all undefined 
symbols.

. if filespec2 is specified, saves the resulting 
absolute file.

. processes any GLOBAL directives, by creating a 
global file.



MAXIMUM SIZES:
The Linker will link up to 200 external program sections
(PSECTs).

The Linker Symbol Table will hold at least 2,000 external 
symbols. If the symbols are smaller than the maximum size 
of ten characters the Table will hold more.
The maximum absolute object file which the Linker creates 
can be as large as TRSDOS will load. See your TRSDOS
manual.



Chapter 6/ ALDS FILE TRANSFER SYSTEM (ALTRAN)

The ALTRAN program transfers files created under the ALDS 
package between any two TRS-80s (Model I, II, or III) by 
either hardwire or modem. It transmits or receives object 
code, source code or data files.
Since ALTRAN was developed specifically for files created 
with the ALDS package, we cannot guarantee that it will 
accurately transfer files created with other software.

SET-UP
You can use two types of connections in ALTRAN: modem or 
hardwire.

Modem
The standard RS-232-C Interface is appropriate if you plan 

 to transfer files via a modem. You can use any TRS-80 modem
provided that both ends can use the same baud rate and can 
communicate with each other (i.e. both can't be originate 
only or answer only modems).
See your Radio Shack modem operation manual for installation 
instru tions.
On the Model II, ALTRAN automatically disables the channel 
you're using, then resets it with it's own parameters. 
Certain "smart" modems automatically hang-up if the channel 
it's on is disabled. To avoid this hang-up, start ALTRAN 
first, then turn on the modem. ALTRAN has no effect on the 
channel not being used.

Hardwire
If you plan to hardwire computers, you will need:
Model I/III to Model I/III  26-1408 RS-232-C Cable

26-1496 Adapter Box 
26-1497 12" Extension Cable

Model II to/from Model I/III 26-1496 Adapter Box
26-1408 RS-232-C Cable



To hardwire a Model I to a Model II:
1. Connect cable from the Model I RS-232-C Interface 

to the female plug of the 26-1496 Adapter Box, 
and connect the other end to the Model I Expansion 
Interface.

2. Directly connect the male plug of the Adapter Box 
to Serial Channel B on your Model II.

To hardwire a Model I to a Model III:
1. Connect cable from the Model I RS-232-C Interface 

to the female plug of the 26-1496 Adapter Box, 
and connect the other end to the Model I Expansion 
Interface.

2. Attach the other end of the Adapter Box to the 
female plug of the 26-1497 12" Extension Cable.

3. Connect the male plug of the Extension Cable 
directly to the RS-232 port of the Model III.

To hardwire a Model II to a Model III:
1. Connect the male plug of the Adapter Box to Serial 

Channel B of the Model II.
2. Attach the other end of the Adapter Box to the 

RS-232-C Interface of the Model III.

BAUD RATE
The factory sets the baud rate at 300 for all ALTRAN 
packages. As a general rule with most systems, the quality 
of transmissions is directly proportional to the ratio of 
distance versus baud rate. In other words, the higher the 
baud rate, the shorter the distance allowed.
If you want to change the factory-set baud rate, you can use 
the PATCH utility. The patch for the Model I and III is:

PATCH ALTRAN/CMD (ADD=5200 , FIND=55 , CHG=nn )
where nn is the value in Table 9.
The patch for the Model II is:

PATCH ALTRAN {A=3000,F=03,C=0n}
where 0n is the value in Table 9.



1. Use the patch indicated above.
2. Perform the patch: PATCH ALTRAN/CMD (ADD=5200,

FIND=55,CHG=FF), and adjust the Dip Switches on the 
RS-232-C Interface board as listed in Table 3. Note 
that only switches S4, S6, S7, and S8 are used and 
that, like the Model II and III, you can't change the 
other parameters. These settings are for ALTRAN and do 
not necessarily match switch settings for any other 
terminal programs. 'FF' is a signal to the program 
that the desired baud rate is not software overwritten 
and must be patched back if you want to use the 
software option mentioned above.

(ALTRAN will function properly only under Model I TRSDOS 
2.3B —  not Model I TRSDOS 2.3. Appendix E describes the 
differences between the two versions of TRSDOS.)

Model I customers can set the baud rate in one of two ways:

Table 9/ BAUD RATE CHANGE TABLE

Baud Rate Model III Model II Model I Model I Switches
Desired Patch Patch Patch S4 S6 S7 S8

75 11 N/A 11 O O O C
110 22 01 22 O C O O
134.5* N/A N/A 33 O C O C
150 44 02 44 O O C O
300 55 03  55 O O C C
600 66 04 66 O C C O

1200 77 05 77 O C C C
1800 88 N/A 88 C O O O
2000 N/A N/A 99 C O O O
2400 AA 06 AA C C O O
3600 BB N/A BB C C O C
4800 CC 07 CC C O C O
7200 DD N/A DD C  O C C
9600 EE N/A EE C Cc C O

listed in the MENU as 134
N/A = not available 
C = Closed O = Open



The Model II package uses channel B for operations. To use 
channel A, perform the PATCH:

PATCH ALTRAN {A=3001,F=42,C=41}
If you want to change both the baud rate and the channel on 
the Model II, you may wish to use this patch:

PATCH ALTRAN {A=3000,F=0342,C=nn41}
where nn is the appropriate value from the change table
above (01 to 07) .
The following table shows the recommended maximum distance 
(hardwired) versus baud rate for high quality transmissions. 
The factors that govern this table are for worse case 
non-modem situations.
Note: all values are approximate

Maximum Maximum
Baud Rate Model I/III Model II

Distance Distance
75 - 300 500 feet 500 feet
600 - 1200 50 feet 75 feet

1800 - 3600 25 feet 35 feet
4800 + 10 feet 20 feet

LOADING ALTRAN
To load ALTRAN from TRSDOS READY, type:

ALTRAN <ENTER>
The program immediately displays the menu of operations and 
the settings of the RS-232-C parameter list (including the 
channel being used on the Model II).
Figure 1 shows the menu of a Model II. The menus for Model 
I and Model III vary slightly in format. The operations and 
numbers are the same.



1 - Transmit OBJECT file
2 - Receive OBJECT file
3 - Transmit SOURCE file
4 - Receive SOURCE file
5 - Transmit DATA file
6 - Receive DATA file
7 - Transmit via COMMAND file
8 - Receive via received COMMAND file or WILDCARD mask
9 - Enter 'Mini-Terminal' Mode 
W - Transmit via WILDCARD mask

Channel 'B', 300 baud, 8 data bits, no parity, 1 stop bit

Figure 1. THE ALTRAN MENU
Operations 1, 3, 5, 7 and W are the transmission modes. The 
one you select depends on the type of file you want to 
transfer.
Operations 2, 4, 6 and 8 are the receiving modes. Again, 
the one you select depends on the type of file you'll be 
receiving.
You can use operation 9, 'Mini-Terminal', for terminal to 
terminal communications.
See COMMAND FILE for instructions on creating a command 
file.
The W operation is only available on Model II ALTRAN. See 
"WILDCARD MASK" later in this section.

OPERATION
Once you load ALTRAN, as a final test to ensure both 
transmitting and receiving stations are operational, send a 
test message via Operation 9 - 'Mini-Terminal' mode in both 
directions. ALTRAN must be able to communicate in both 
directions to function properly.



1. Determine the type of file you want to transfer.
Use operations 1 and 2 (OBJECT file) for:

. ALDS object files (both executable and 
relocatable)

Use operations 3 and 4 (SOURCE file) for:
. ALDS source files
. Series I Editor/Assembler source files 

(the file transfer system will write the 
file to the receiving station in ALDS 
source file format).

Use operations 5 and 6 (DATA file) for:
. fixed length record files with an LRL of other 
than 256 (assembler global files, application 
program data files, assembler listing files, and 
non-ALDS source files such as BASIC.)
Please note some non-ALDS Model I and Model III 
files, with an EOF byte which is not zero (as 
displayed in the directory) may not transfer 
properly. This is because ALTRAN will change 
the EOF byte to zero, thereby changing the 
length of the file.

. Model II variable length files. (You cannot 
transfer a variable length file to a Model I 
or III, since these two systems do not support 
variable length files.)

Note: When transferring files from one model to
another, you must consider the differences between 
systems. It is unlikely that the same object file can 
run on all three models due to the difference in ROM 
and RAM addresses, etc. In addition, we can't 
guarantee successful transfer of file formats not used 
by ALDS, even though some files may transfer.

Beginning the Transmission



2. Select an operation.
The number of the operation you choose depends on the 
type of file you want to transfer and whether you're 
the transmitting or receiving station. If you are the 
transmitting station and plan to send an OBJECT file, 
type 1 <ENTER> in response to the Which? prompt. The 
receiving station enters a 2 in answer to the Which? 
prompt. (The order in which the stations enter their 
operations doesn't affect the transfer, i.e. the 
receiving station can specify operation 2 before the 
transmitting station specifies operation 1.)

3. Specify a file.
After each station selects an operation, ALTRAN prompts 
for a filespec with File Name?.........
Both stations should enter the name of the file. Be 
sure to include the extension and drive number (if not 
the system drive).
If you choose Operation 2 and are using a Model I or 
III, be sure to specify a file which has the extension 
/CMD. Model I and III object program files must 
have this extension.
If you choose Operation 7 or W, ALTRAN prompts the 
the transmitting station with File Name? (See COMMAND 
FILE later in this section on how to create one.)
Using Operation 8, ALTRAN prompts the receiving station 
with Drive Number?. To avoid the possibility of 
accidently writing over a file, the receiving station 
should use a blank diskette. Remember, the Model I and 
III diskettes do not hold as much data as the Model II.

4. Specify a record length (Model I data transfers only)
In operation 5, if you are the transmitting station on 
a Model I, ALTRAN prompts you with "File's‘LRL?" Your 
response must be the LRL set when the file was created. 
To find this information, use the DIRectory command 
under TRSDOS .



When operation actually begins, the transmitting station 
immediately sends the first block of the file. During 
transmission, the display reads:

'Transmitting Block 1 '
As each block is sent, it increments the block number by 
one. (Depending on the baud rate and LRL, this increment 
may take from a fraction of a second to about a minute.)
This message is not displayed if you are transferring a null 
file (EOF and no other information).
At the same time, the message:

'Receiving Block 1'
appears on the receiving station's video display. This 
indicates that the station is ready to receive the first 
block of the file, and is not necessarily receiving it.
After each file is received, the block number displayed is 
one more than what was actually received.
This message may not come on immediately in operations 5 and 
6 because the transmitting station must first send the file 
type and the logical record length of the file before the 
receiving station can be readied to receive the first block 
of the file.
After receiving each block, ALTRAN increments the block 
number by one, then stores that block to disk under the 
filespec named in step 3.
If the receiving station is not ready, the transmitting 
station keeps trying to transmit a block until it receives 
an acknowledgement or until the <BREAK> key is pressed.
Once transmission actually takes place, the receiving 
station expects a block until it receives an EOF marker or 
until the <BREAK> key is pressed. If the <BREAK> key is 
pressed during transmission of a file, the file won't be 
valid or useable.

During the Transmission



On SOURCE file transfer only, prior to transmission, ALTRAN 
at the transmitting station checks the first line of the 
file for an existent line number. If there is none, it 
automatically adds line numbers to the entire file before 
sending the file.
The receiving station strips the bytes corresponding to the 
line number from all lines of the transferred file as it 
stores them.
In the 'Mini-Terminal' mode, you can transmit any character 
except <ESC> (<up arrow> on the Model I/III) and <BREAK> and 
the receiving station will output the character to the 
screen. However, not all of the TRS-80 models (at the 
receiving station) interpret the characters in the same way. 
One model may interpret the control characters differently 
and display a character other than what was transmitted. On 
other models, certain characters may activate features such 
as dual routing, reverse video, or 40-character mode. And, 
the Models I and III won't output tabs.

Ending the Transmission
After all transmissions are complete for operations 1 
through 8, ALTRAN returns to the menu, unless you are 
sending a wildcard or a command file ending with operation
9.
To escape from the menu, type Q <ENTER>. To exit the 
'Mini-Terminal' mode, press <ESC> on the Model II and <up 
arrow> on the Model I/III. The COMM drivers are left turned 
on. You may wish to turn them off with SETCOM after a 
series of transfers.
If you want to transfer another file, return to Step 2.



If an error occurs at one station (not including 'Unknown or 
unuseable baud rate was patched' which automatically returns 
to TRSDOS READY), ALTRAN will cease transmission, close the 
file, return a descriptive error message (including error 
number if a TRSDOS error on the Models II or III), and 
display the following:

Further transmission not possible 
Press <ENTER> to go into Mini-Terminal mode 
Press <ENTER> <ESCAPE>* to return to menu 
Press <BREAK> to exit to TRSDOS READY
* <up arrow> on Model I/III

When an error occurs, the computer making the error will 
send a cancellation message (<CTRL><X> or 18H) which the 
other computer will display minus the descriptive error 
message.
Under certain circumstances, such as transmitting or 
receiving the LRL, a byte of data, or the checksum, this 
feature is disabled so that a legitimate 18H won't cause a 
cancellation and an error message won't be displayed. 
Therefore, if your computer remains idle for a period of 
time (the length depending upon your baud rate), you can 
assume an error has occurred. Press <BREAK> to return to 
TRSDOS READY.
Note: It is always a good idea for both stations to
arrange to go to 'Mini-Terminal' mode if an error occurs. 
Because the station not causing the error isn't always 
informed of an error, you should return to 'Mini-Terminal' 
mode if your computer locks up for an unusual length of 
time.
COMMAND FILE
A command file is an automatic input file. This file 
executes a series of operations with one command. By 
building a command file, you will be able to transmit 
several files with this one command.

When an Error Occurs



You must enter the Editor to create a command file. The 
procedure is:

1) Load the Editor
2) Enter the Insert Mode
3) Enter the filespec you are sending
4) Tab over one position and enter the 

operation code number used for transmitting 
file (1, 3, or 5)

the
5) Repeat steps 3 and 4 until all files are entered.
6) If you want to invoke Mini-Terminal mode, enter it

last. A dummy filespec must precede it.
7) Exit insertion mode
8) Write the command file to disk. Do NOT use 

line numbers option.
the

Example
At TRSDOS READY, type: 

ALEDIT <ENTER>
to enter the Screen Editor. Then type I to enter the 
insertion mode.
In the insertion mode, type:

FILE1/SRC
FILE2/0BJ
FILE3/DAT
DUMMY

3 <ENTER> 
1 <ENTER> 
5 <ENTER> 
9 <ENTER>

to create the command file.
When run, this command file transmits three files in a row 
with one input command. It transmits the first filespec,
FILE1/SRC, as a source file, the second, FILE2/0BJ, as an 
object file, and the third, FILE3/DAT, as a data file. The 
last file, DUMMY, isn't transmitted. It invokes the 
'Mini-Terminal' mode.
If for some reason you don't have ALEDIT, you may download the 
Command File from another computer, using the SOURCE File Transfer.



The wildcard mask allows you to specify a collection of 
files by using a "wildcard" field in place of the filenames 
and/or extensions. For a complete definition of a wildcard 
and how to use it, see your Model II Owner's Manual.
The wildcard feature only scans the first 96 directory 
entries. Under TRSDOS-II, disks may have more than 96 
files. Files beyond the 96th directory entry will not be 
transmitted. (Use Function 1, 3 or 5 for these files.)
Example
You can use a wildcard to transfer related files with the 
same extension. For example, if you want to transfer all of 
the object files on a certain disk with the extension /PAY, 
you can use the W command. All the files you transfer must 
have this extension (i.e., ACCT/PAY:1, MERCH/PAY:1, etc.), 
be on the same drive, and be the same type (i.e., all are 
object files, source files or data files). To transmit the 
files, select the W option. When the computer prompts you 
for the wildcard mask, type:

*/PAY:1 <ENTER>
The computer then prompts you for the function number. Type 
1 for Object File, 3 for Source File or 5 for Data File.
As it transfers each, the computer displays the name of the 
file, when the transfer is complete, the computer returns 
to the menu.
Remember when writing your mask:

1. Drive number must be specified (even if drive 0 ).
2. No imbedded blanks are allowed.
3. All files must be the same type.
4. * means zero or more characters. It doesn't 

matter what they are. Beware of specifying files 
you didn't want to transfer.

5. Do not specify passwords in this mask. The files 
must not be read protected.

USING A WILDCARD MASK (Model II only)



TECHNICAL INFORMATION:

DEFINITIONS:
ACK = Acknowledgement of receipt of correct block 

or inquiry and request to transmit next 
block. (code 06H)

NAK = Acknowledgement of receipt of incorrect
block and request for retransmission. (code 
15H)

WAK = Acknowledgement of receipt of correct block, 
but wait before transmitting next block (so 
the computer may write out block). (code 
1BH)

EOT = End of transmission of this file. (code 
04H)

ENQ = Enquire for a ready to receive. (code 05H)
ETX = End of text. (code 03H)
CAN = Cancellation (aborts current transfer) (code 18H)

ALGORITHMS
OBJECT FILES
ALTRAN transmits and receives OBJECT files as 256 byte, 
fixed length record (FLR) blocks.
It uses this algorithm to transmit OBJECT files:

1 open file for read
2 read a sector into a buffer

if end of file, send EOT, receive ACK, 
and return to menu

3 display xmit block number
4 send ENQ
5 receive ACK
6 output sector
7 output checksum



8 receive ACK or NAK or WAK
repeat block if NAK 
if WAK, wait for ACK

9 goto 2, "read a sector"
It uses this algorithm to receive OBJECT files:

1 open file for write
2 display received block number
3 receive ENQ

if EOT, send ACK, close file and exit
4 send ACK
5 receive sector
6 receive checksum
7 output ACK,NAK,WAK

repeat receive if NAK
8 send WAK
9 write sector
10 send ACK
11 goto 2, "display block number"

SOURCE FILE
ALTRAN transmits SOURCE files as variable length records 
(VLR) in the Model II, or fixed length records (FLR) 256 on 
Models I/III.

It uses the following algorithm to transmit the SOURCE file:
1 open file for read
2 read in a line (if MOD I/III strip bit 7 from

line numbers). if a line number is not 
present on the first byte of the line, 
add a line number. Be sure the source 
does not have numbers in column 1. They 
may be accidentally deleted. If end of 
file, send EOT and receive ACK.

3 display xmit block number
4 send ENQ
5 receive ACK
6 send line length
7 output the line
8 output the checksum
9 receive ACK, or NAK, or WAK

repeat line if NAK 
if WAK, wait for ACK

10 goto 2, "read in a line"



1 open file for write
2 display receive block number
3 receive ENQ

if EOT, send ACK, close file and exit
4 send ACK
5 receive line length
6 receive the line
7 receive the checksum
8 send ACK, or NAK, or  WAK

repeat receive if NAK 
send WAK
write the line, without the line number

9 goto 2, "display block number"

It uses this algorithm to receive the SOURCE file.

DATA FILE
The ALTRAN program sends DATA files as variable length 
records (VLR) or as fixed length records (FLR), depending on 
whatever created the file, on the Model II or as fixed 
length records (FLR) on the Models I/III.
It uses the following algorithm to transmit the DATA file:

1 (if Model I, ask for LRL)
2 open file for read
3 send file type (V/F) and file's LRL
4 read in one record of data

if end of file, send EOT, receive ACK, 
and exit.

5 display xmit block number
6 send ENQ
7 receive ACK
8 send data record length
9 send data
10 send checksum
11 receive ACK or NAK or WAK

repeat xmit if NAK 
if WAK, wait for ACK

12 goto 4, "read in one record"



It uses this algorithm to receive the DATA file:
1 receive file type (V/F) and file's LRL
2 open file for write with those parameters
3 display receive block number
4 receive ENQ

if EOT, send ACK, close the file and 
exit

5 send ACK
6 receive data record  length
7 receive data
8 receive checksum
9 send ACK or NAK or  WAK

repeat receive of NAK 
send WAK, write data record

10 send ACK
11 goto 3, "display block number"

INDIRECT COMMAND FILE
ALTRAN uses this algorithm to transmit the COMMAND file:

1 open IND file for read
2 build a text line

if end of file, send ETX, wait for ACK, 
and return to menu.

3 send ENQ
4 receive ACK
5 send file name and function
6 send checksum
7 receive ACK or NAK or WAK

if NAK, goto send ENQ
8 display file name
9 transmit file through functions 1, 3, or 5
10 goto 2, "build a text line"

It uses this algorithm to receive the COMMAND file:
1 receive ENQ or ETX

if ETX, send ACK and return to main menu
2 send ACK
3 receive file name and function
4 receive checksum
5 send ACK or NAK or WAK

if NAK, goto receive ENQ or ETX
6 display file name
7 receive file through functions 2, 4, or 6
8 goto 1, "receive ENQ or ETX"



WILDCARD MASK (Model II only)
ALTRAN uses this algorithm to transmit a wildcard mask:

1 check for a drive number, if none, then error
2 get the directory of the drive
3 check each filespec against the wildcard mask
4 store each filespec that matches the mask

into an internal command file
5 after all filespecs are checked, goto

appropriate transmitting mode

MINI-TERMINAL MODE
ALTRAN uses the following algorithm to transmit and receive 
keyboard characters:

1 scan keyboard for character
if escape character, exit mini-terminal 
mode
if character, then display and output 
to RS-232-C

2 scan RS-232-C input
if character, then display

3 goto 1, "scan keyboard"

BUILDING AN ADAPTER CONNECTION
If you want to, you have the option to build your own 
adapter connection instead of buying a Radio Shack Adapter 
Box (Catalog Number 26-1496).

Required Materials
Model I

Model II 

Model III

RS-232-C Interface Board
RS-232-C Cable
DB-25 Male Connector (2)
DB-25 Connector (2)
Cable Wire (minimum of 9 wires)
RS-232-C Interface Board
RS-232-C Cable
DB-25 Male Connector (2)



When hardwiring for Model I/III to Model I/III, the pin 
connections are as shown below:

Figure 2. / Model I/III Pin Connections

For Model I/III to Model II, the pin connections are as
shown:

Figure 3. / Model II Pin Connections

(Note: This cable works from any model to any other model.
You can eliminate the connections involving pins 4, 5, 6, 7, 
8, and 20 on the Model I/III end if you wish.)



Section 2
      ALDS Assembly Language

Syntax, Directives, 
Z80 Mnemonics, Extended Z80 Mnemonics



SECTION II
ALDS ASSEMBLY LANGUAGE



Chapter 7/ ALDS ASSEMBLY LANGUAGE SYNTAX

This chapter describes how the ALDS Assembler interprets 
source lines. The next chapters list all the instructions 
available with ALDS.
An ALDS assembly language source line can contain up to four 
fields. They are:

. the label 

. the instruction 

. the operands 

. the comment

THE LABEL
The label is optional. It is a symbol which defines the 
location of the instruction immediately following it. For 
example:
NAME LD A,5
NAME is a symbol used as a label. The Assembler uses it to 
store the location of the LD A,5 instruction. For example, 
if LD A,5 is at location 3000H, the Assembler assigns the 
value 3000H to NAME and stores this in the symbol table.
The label must begin in column one (the first character in 
the line) or be followed by a colon. For example, this line 
produces a syntax error:
NAME LD A,5
since the label NAME is not in column one.
However, this is acceptable:
NAME: LD A,5
since NAME is followed by a colon.



A symbol can consist of up to ten of the following 
characters:
alpha characters

(A-Z) in either upper or lower case (the Assembler 
treats upper and lower case letters differently. 
"NAME", for example, is a different symbol than 
"Name").

numeric characters
(0-9) (the symbol cannot begin with a number).

special characters
the underscore (_) 
the question mark (?) 
the dollar sign ($) 
the @ character

VALID SYMBOLS

It may not contain a space character. These are examples of 
valid symbols:

Date? $ B__? A1D2 B2345678
The following are reserved words. You cannot use them as
ordinary symbols, since this conflicts with the way the
Assembler notes register names, branch conditions, or the
location counter value:

$ A B C D E H L F Z P
M I R V AF BC DE HL SP IX IY
XH XL YH YL NC NZ PE PO NV

Reserved words are reserved in both upper and lower case. 
For example, SP, sp, Sp, and sP are all reserved.

THE INSTRUCTION
The instruction is usually required. It can be either: 

a Z80 mnemonic
(Chapter 9), which is an instruction to the microprocessor. 
The Assembler converts into a Z80 operation code.



an assembler directive
(Chapter 8), which is an instruction to the Assembler 
itself.

an extended Z80 mnemonic
(Chapter 10 ), which the Assembler expands into a group of 
Z80 mnemonics.

a macro call
(Chapter 8), which the Assembler expands into one or more of 
the above types of instructions.
You can begin the instruction anywhere but in column one.
If the line contains a symbol, there must be at least one 
space, tab, or colon between the instruction and the symbol.
For example, the Assembler interprets LDIR as an instruction 
in all of these lines:
SYMBOL LDIR 
SYMBOL LDIR 
LDIR

LDIR
However, in these two lines:
SYMBOLLDIR
LDIR

the Assembler interprets LDIR as part of the symbol field.
You can use either upper or lower case to indicate the 
instruction. For example, you can indicate the LDIR 
instruction as:

ldir
Of course, in the case of a macro call, you must be careful 
that you use the same case that you used when you defined 
the macro.



THE OPERANDS
Many instructions allow you to specify data as operands.
Some instructions allow you to use a register name or a flag 
as an operand. Some allow you to indicate a specific value.
You must use at least one space or tab to separate the 
operands from the instruction. In these examples, A and 3 
are operands:
SYMBOL LD A,3 
LD A,3
LD A,3

However, this line produces an error:
SYMBOL LDA,3
since there is no space between the instruction and the
operands.

EXPRESSIONS
When specifying a certain value as an operand (such as "3" 
in the above example), you must use a valid assembler 
expression. The expression can consist of one or more terms 
connected by operators.
Terms
A term can be: 
a number

The Assembler assumes the number is 
decimal (base 10) unless you use a base suffix 
or the RADIX directive. Changing number bases 
is described in the next chapter.

an ASCII character
You must enclose the character in single  
quotes. The Assembler will assemble it into its 
ASCII code.

a symbol
The Assembler fills in its value using the symbol 

table.



$ (the dollar sign character)
The Assembler interprets this character as the 
location counter's current value.

For example, each of these are valid terms:
152

which represents the decimal number 152 (unless you have 
used the RADIX directive described in the next chapter).

'A'
which represents the ASCII character code of decimal 65 or 
hexadecimal 41.

SYMBOL
which represents the value of SYMBOL.

$
which represents the current value of the Assembler's 
location counter.

OPERATORS
The operators and their functions are listed on Table 10. 
If an asterisk (*) follows the function, the operator is 
unary (acts on one operand). Otherwise it is binary (acts 
on two operands).

Table 10/ OPERATORS

OPERATOR FUNCTION PRIORITY

+ unary plus* 1- unary minus* 1
.NOT. logical not* 1
.HIGH.or.MSB .high order byte* 1
.LOW.or.LSB. low order byte* 1.BIT. bit* 1

(one shifted n bits to the left)



** or exponentiation* multiplication
/ integer division
.MOD. modulo
.SHR. logical shift right
.SHL. logical shift left
.RR. logical rotate right
.RL. logical rotate left
+ addition
- subtraction
.AND. logical and
.OR. logical or
.XOR. logical exclusive or
.ABS. absolute value*
.EQ. or = equals
.GT. or > greater than
.GE. greater than or equal to
.LT. or < less than
.LE. less than or equal to
.RES. result*

(ignore overflow)
.SGN. sign*
.UGT. unsigned greater than
.UGE. unsigned greater 

than or equal to
.ULT. unsigned less than
.ULE. unsigned less than 

or equal to

Examples:

4321H.SHL.3
returns the number 4321H shifted three bits to the left. 

4321H.SHL.1
returns the number 4321H shifted one bit to the left.

2
3
3
3
3
3
3
3
4
4
5
6 
6 
7 
7 
7 
7 
7 
7 
7
7
7
7
7
7



.RES.(7FFF*7FFF)
multiplies 7FFFH by 7FFFH and returns the result. (The RES. 
operator causes the Assembler to ignore the overflow error 
this operation would normally cause.)

.SGN.SYMBOL
returns a -1 if SYMBOL is negative, 0 if it's zero, or 1 if 
it's positive.

Priority of Operators
When you use multiple operators, the Assembler evaluates 
them using the priority number indicated. If two operators 
have the same priority, the Assembler evaluates them from 
left to right.
You can use parentheses to change the priority of operators. 
Examples:

4+4/2
The division is performed first. (Division is priority 3; 
addition is priority 4.)

(4+4)/2
The addition is performed first.

4*4/2
The multiplication is performed first.

Note: You must use parentheses to separate two operators
which are both enclosed in periods. For example:

LD HL,5.AND..ABS.-4 is illegal
LD HL,5.AND.(.ABS.-4) is valid



Using Relocatable or External Symbols 
in Complex Expressions
When using complex expressions, i.e., expressions using more 
than one term, you need to be careful about using symbols 
which are:

external (defined in an external program section), 
or
relocatable (defined in a relocatable program 
section) .

Table XX shows which types of complex expressions allow 
relocatable or external symbols, and the type of value which 
the Assembler will return. If the expression is not on this 
table, you cannot use a relocatable or external symbol.
Under no conditions can you use relocatable and external 
symbols within an absolute program.

TABLE 11/ Complex Expressions Allowing 
Relocatable or External Symbols

Definition of Terms:
ABS is an absolute constant, symbol or expression 
EXT is an external symbol or expression 
REL is a relocatable symbol or expression 
ALL is any of the above

Complex Expression Resulting Type
EXT+ABS EXT 
ABS+EXT EXT 
EXT-ABS EXT 
REL+ABS REL 
ABS+REL REL 
REL-REL ABS 
REL-ABS REL 
ALL.EQ.ALL** ABS 
REL.GE.REL ABS 
REL.GT.REL ABS 
REL.LT.REL ABS 
REL.LE.REL   ABS



* these expressions cannot be used as a term in a larger 
expression. Also, they must be used only where an 8-bit 
quantity is expected.
** the terms must be of the same type (absolute, 
external, or relocatable) in order to be equal. Two 
externals are never equal, including the special case of 
comparing an external to itself.

Other Special Conditions
Regarding Relocatable or External Expressions
These are some additional considerations you need to be 
aware of when using relocatable or external expressions:

. If you attempt to fit a relocatable or
external value outside of the range of -256 to 255 
into an 8-bit field, you will not get an error 
message. The Assembler will store the low order 
byte into this field. (Absolute values outside 
this range generate an error message.)

. You can use the .HIGH., MSB., .LOW., or .LSB. 
operators only where an 8-bit value is expected.
If you use one of these operators where a 16-bit 
value is expected, the Assembler will either 
give you an error message or unpredictable 
results.

REL.UGE.REL ABS
REL.ULE.REL ABS
REL.UGT.REL ABS
REL.ULT.REL ABS
.HIGH.REL *
.MSB.REL *
.LOW.REL *
.LSB.REL *
.HIGH.EXT *
.MSB.EXT *
.LSB.EXT *
.LOW.EXT *



. If you use the .HIGH, or .MSB. operator, the
Assembler saves the entire value in the object code 
so it can properly compute the carry into the 
high order byte (which might result from adding 
the load address to the expression value during 
linking)

THE COMMENT
The comment is an optional way to document your program.
The Assembler ignores it.
To insert a comment at the end of a line, you must precede 
it with a semicolon. For example, all of these lines 
contain comments:
NAME LD A,3;This is a comment
LDIR;AND SO IS THIS 
;and here is another comment

LD A,3 ;and another
The Assembler ignores every character following the 
semicolon. However, this line produces a syntax err or:
NAME LD A,3 This is an illegal comment
since there is no semicolon preceding the comment.
Another way to insert a comment is by typing an asterisk (*) 
in column one. The Assembler ignores all lines which follow 
until it encounters another * in column one.
For example:

LD A, 3
*This begins a comment section 
which the Assembler will ignore, 
comment, comment 
comment, comment
This is the last line in the comment section *

ADD B
the Assembler ignores all lines between LD A,3 and ADD B.



Chapter 8/ ASSEMBLER DIRECTIVES

Assembler directives are commands to the Assembler or, in a 
few cases, the Linker. They are not instructions to the 
Z-80 Microprocessor and are not a part of your executable 
program. Generally, you can type them in the same form as 
the Z80 mnemonics and insert them throughout the program.
This chapter contains two parts. Part A is a tutorial. It 
describes the different types of directives —  what their 
purpose is and how they inter-relate to each other in the
program.

Part B is a reference. It contains an alphabetical listing 
of each directive. Each listing gives the syntax, a 
definition, and an example use.



INTRODUCTION TO ASSEMBLER DIRECTIVES

CHANGING NUMBER BASES
The Assembler recognizes number bases 2 (binary), 8 (octal), 
10 (decimal) and 16 (hexadecimal). The default is base 10.
You can change the default with the RADIX instruction. For
example:

RADIX 8
tells the Assembler to evaluate all subsequent numbers as
base 8.

Using a base suffix identifies a base for a particular 
number. The base suffixes are:

H Hexadecimal
d Decimal
b Binary
Q or O Octal

For example, in this instruction:
LD A,33H

the 33 is evaluated as a hexadecimal number, regardless of 
which default base you are in.

ALDS assembler directives allow you to:
. Change Number Bases
. Define Symbols
. Define Data
. Define Storage
. Initialize the Location Counter
. Manipulate the Location Counter
. Terminate or Hold the Assembly
. Use External Symbols
. Create Index Sections
. Define Macros
. Create a Conditional Section
. Control the Assembly Listing



You can use upper case "d" and "b" suffixes. Be careful 
with this, though, since the hexadecimal base interprets "D" 
and "B" as numbers. For example, in base 16, "1b" is a 
binary 1; "1B" is hexadecimal 1B.

DEFINING SYMBOLS
Defining symbols allows you to refer to data or memory 
addresses symbolically. This makes the program easier to 
read and revise.
ALDS allows you to use a symbol to label the location of any 
Z80 instruction and most directives. It also contains these 
directives which define symbols:

. EQU - equates a symbol to a constant value 

. DEFL - defines a symbol to a variable value
For example:

NUMBER EQU 12 ;EQUates NUMBER to 12
LOOP LD

• A,NUMBER ;loads A with 12
•

LD HL,LOOP ;loads HL with LOOP
This program uses NUMBER and LOOP as symbols. The first
line EQUates NUMBER to 12. The next line uses NUMBER as an 
operand.
LOOP will define the location of LD A,NUMBER. The last line 
uses LOOP to specify this location.



DEFINING DATA
Data definition directives insert data into RAM. ALDS 
contains these data definition directives:

. DEFM - 

. DEFE - 

. DEFT - 

. DEFB - 

. DEFW - 

. DEFR - 

. DATE - 

. TIME -

defines
defines
defines
defines
defines
defines
defines
defines

string data 
"encrypted data"
data and includes a length byte 
a byte 
a word
a Roman Numeral 
the current date 
the current time

For example:
LD HL,TABLE
LD  B,27
SVC  9 ;print TABLE on video screen

TABLE DEFM 'THIS BEGINS A TABLE OF DATA'
DEFM inserts the ASCII codes for THIS BEGINS A TABLE OF DATA 
in the next 27 locations. The symbol TABLE defines the 
beginning of this location.
Note: SVC is an ALDS extended Z80 mnemonic (see Chapter
10). It expands into instructions which call the Model II 
VDLINE Supervisor Routine:

LD A, 9
RST 8

DEFINING STORAGE
Defining storage reserves an area of RAM which you can use 
for such functions as inputting and outputting data. ALDS 
contains these storage definition directives:

. DEFS - reserves RAM

. FILL - sets the "fill mode" so that DEFS will 
fill the reserved area with zeroes 

. NOFILL - ends the fill mode



For example:
LD HL,BUFFER
LD  B,20
SVC  5 ;keyboard input into

;BUFFER area

FILL
BUFFER    DEFS 20 ;reserves the next 20 bytes

NOFILL
FILL sets the fill mode. DEFS reserves the next 20 
locations for storage and fills them with zeroes.
(Here, SVC 5 expands into the instructions which call the 
Model II KBLINE routine.)

INITIALIZING THE LOCATION COUNTER
The Assembler contains a "location counter" which it uses
to:

. assign locations to each executable instruction, and 

. define the symbols which identify these locations
The locations it assigns are either absolute or relocatable 
depending on how you initialize the counter.

INITIALIZING THE LOCATION COUNTER 
TO AN ABSOLUTE LOCATION
To initialize an absolute location, you must use PSECT:

START PSECT 4000H
4000 NUM LD A,5 ;begin assembling at 4000H
4002 PUSH A
4003
•

LD A,6
•

END NUM
This program section initializes the counter to an absolute 
4000H. The Assembler then assigns all the instructions 
absolute locations, beginning with 4000H.



The Assembler saves this assembly on disk as an "absolute 
object file". You can load it in the TRSDOS READY mode 
simply by typing the filespec followed by <ENTER>. Each 
instruction will load into the same (or "absolute") memory 
location the Assembler assigned it.
Many other assemblers, such as the Series I, use ORG rather 
than PSECT to accomplish the same task. If you want to 
assemble such a program with ALDS, you need to change the 
first ORG to PSECT. (See Appendix C for more details on 
converting Series I programs.)

INITIALIZING THE LOCATION COUNTER 
TO A RELOCATABLE LOCATION
PSECT without an argument initializes the location counter 
to a relocatable 0000 (the ' signs indicates that the 
locations are relocatable, rather than absolute):

0000' NUM
PSECT
LD A,5

0002 ' PUSH A
0003' LD

•
A,6

• •
END NUM

;begin assembling at 
relocatable zero

The Assembler saves this assembly on disk as a relocatable, 
rather than absolute, file. You cannot load a relocatable 
file. You need to use the Linker to convert it into an 
absolute file.

For example, if the name of the assembled relocatable file 
is PROG/REL, this Linker command:

ALLINK PROG PROG $=4000 <ENTER>
assigns absolute locations beginning with 4000H to all the 
instructions in PROG/REL. It does this by adding 4000H to 
each relocatable location. The resulting program is saved 
as an absolute file named PROG.



There are several instructions which manipulate the counter 
within a program section. They are:

. ORG - changes the value of the counter

. LITORG - changes the value of the counter and 
allows room for literal operands 

. SETLOC - manipulates the counter for symbols only 

. RESLOC - ends the SETLOC manipulation

MANIPULATING THE LOCATION COUNTER

For example:
PSECT 3000H

3000 BEGIN LD A,5 ;begin assembling at 3000H
3002 LD B,2

SECOND ORG 4000H
4000 LD HL,ADD ;increment counter to 4000H
4002 PUSH

•
AF

•
END BEGIN

This program section initializes the counter to an absolute
3000H. The Assembler begins assigning consecutive absolute 
addresses until it reaches ORG, which changes the value of 
the counter to 4000H. The Assembler assigns 4000H to the 
next instruction and continues again sequentially.
Since the above program is absolute, ORG's parameter sets an 
absolute location of 4000H.
In the relocatable mode, ORG's parameter sets a relocatable 
location of 4000H. This means that when you link the 
program, 4000H serves as an offset to the program's absolute 
start address.



For example, assume you assemble the same program in the 
relocatable mode. The Assembler assigns it these locations:

0000' BEGIN
PSECT
LD A,5 ;begin assembling at

0002' LD
;relocatable zero

B,2
4000'

SECOND ORG 4000H
LD HL,ADD ;increment counter

4002' PUSH
relocatable 4000H 

AF

END BEGIN
Now assume you link the relocatable file to the absolute 
start address of 5000H. The Linker assigns it these
addresses:

Notice that here, ORG 4000H offsets the absolute start 
address of 5000H. This causes the absolute address 
following ORG to be 9000H (5000H + 4000H).

PSECT
5000 BEGIN LD A,5 ;begin assembling at 

relocatable zero
5002 LD B,2

SECOND ORG 4000H
9000 LD HL,ADD ;increment to 

relocatable 4000H
9002 PUSH

•

AF
•

END BEGIN



ALDS contains several directives which terminate or hold the 
assembly. They are:

. END - ends the assembly and saves the output 
object file

. QUIT - quits the assembly 

. NOEND - ends assembly of a non-executable 
"load-only" program

. STOP - temporarily halts the assembly
For example, all of the above programs contain an END 
directive. This tells the Assembler to end the assembly, 
store the assembled file, and return to TRSDOS READY.
In most programs, you'll want to use a parameter with END to 
specify the transfer address (the address of the first 
executable instruction in the program). The Assembler then 
stores the transfer address so that when loaded, the program 
immediately begins execution.

ASSEMBLY TERMINATION OR HOLD INSTRUCTIONS

PROGRAM SECTIONS
All the above programs are "program sections". You can 
store several relocatable program sections in the same file. 
For example:

MAIN
0000'BEGIN

PSECT
LD A,3 ;begin first PSECT

0500'
SUB1

0000'
RET
PSECT
LD HL,DATA ;begin second PSECT

0100'
SUB2 

0000'LOOP
RET
PSECT
LD B,10 ;begin third PSECT

0200' SVC
END

36
BEGIN



Since each section is independent, it must declare its 
symbols "PUBLIC" (discussed below) for another section to 
use them. Otherwise, two sections may not share the same 
symbols. (Only the MAIN program can use BEGIN; only SUB2 
can use LOOP; and DATA must be defined in SUB1.)
Notice the Assembler initializes each program section to a 
relocatable 0000. Now assume you link the program to an
absolute start address of 3000H:
3000 BEGIN LD A,3 ;begin first PSECT
3500

•
RET

3501 LD HL,DATA ;begin second PSECT
3601

•
RET

3602 LOOP LD B,10 ;begin third PSECT
3802

•
SVC 36
END BEGIN

The Linker assigns each relocatable program section an 
address immediately following the preceding one.

USING EXTERNAL SYMBOLS
ALDS allows two or more program sections to share the same 
symbols. For example, you could write and test several 
independent subprograms —  such as PAYROLL, PAYABLES, 
RECEIVABLES, and INVENTORY. You could then mix and match 
them into separate application packages.

ALDS offers two ways of doing this:
1. By linking the programs into one file
2. By creating a "global symbol file"

The first is more common. The second is for special 
applications such as overlays where you want to use only the 
symbol definitions of an external program, but not the 
entire program itself.



1. COMBINING PROGRAM SECTIONS
For combining program sections, ALDS offers these
directives:

. PUBLIC - declares symbols public 

. EXTERN - declares symbols external 

. LINK - appends an outside program file
These are actually directives to the Linker, as well as the
Assembler.
As an example, assume you want to combine a subprogram named 
PAYROLL with a main program named ACCTG. You want both 
programs to share the same symbols. This is how you could 
go about it:
a. Declare the symbols you want shared.
You do this by using the PUBLIC or EXTERN directives at the 
beginning of your program. In the PAYROLL subprogram:

PAYROLL

SUBPAY

MENU

PSECT
PUBLIC SUBPAY,MENU ;SUBPAY and 

;MENU are for 
;PUBLIC use

EXTERN STORE1
;

;STORE1 is in 
;an EXTERNal 
;program

SVC 7 ;defines SUBPAY 
;and clears 
;screen

LD HL,MENU
LD B, 23
LD C,0DH
SVC 9 ;print MENU
LD HL,STORE1
LD B,9
SVC 9 ;print STORE1
SVC
RET

36 ;jump to TRSDOS
DEFM

END

'THIS BEGINS PAYROLL FOR' 
;defines 
;MENU



The definitions for the symbols SUBPAY and MENU are declared 
PUBLIC. This means another program can use the same 
definitions.
The definition for STORE1 is declared EXTERNal. This means 
that although the existing program uses STORE1, an external 
program defines it.
In the ACCTG program:

ACCTG PSECT
PUBLIC

EXTERN

MAIN CALL
STOREl DEFM

STORE1 ;STORE1 is for
;PUBLIC use

SUBPAY,MENU ;SUBPAY and
;MENU are in 
;EXTERNal programs

SUBPAY 
'ABC DRUGS'

This part of the program defines other stores *
LINK
END

'PAYROLL/REL 
MAIN

; insert
;PAYROLL/REL file

STORE1 is declared PUBLIC. This means that this program 
defines STORE1 and another program can use STORE1's 
definition.
SUBPAY and MENU are declared EXTERNal. They are- used in 
this program but are defined in an external program (namely, 
PAYROLL).
If you want to try this exercise, use the ALDS Editor to 
insert the above two program files. Save the first as 
PAYROLL/SRC and the second as ACCTG/SRC.

b. Insert a directive to combine the programs
Notice LINK at the end of the ACCTG program. This tells the 
Linker to link the assembled code of PAYROLL at the end of 
ACCTG.

*



c. Assemble the programs
Assemble both the PAYROLL and ACCTG source program files in 
the normal way. In the TRSDOS READY mode, type:

ALASM PAYROLL PAYROLL <ENTER>
ALASM ACCTG ACCTG <ENTER>

The Assembler creates two relocatable files —  PAYROLL/REL 
and ACCTG/REL.
The Assembler marks every occurrence of the PUBLIC, EXTERN, 
and LINK directives, as well as every occurrence of EXTERNal 
symbols. However, you will need to use the Linker to 
complete the processing of these directives.

d. Link the programs
To link PAYROLL to ACCTG, you can use this Linker command at 
TRSDOS READY:

ALLINK ACCTG/REL ACCTG $=3000 <ENTER>
The Linker processes the LINK, PUBLIC, and EXTERN directives 
and assigns the entire file absolute addresses beginning 
with 3000H. This is done in two passes. In pass 1 the 
Linker:

. processes the LINK directive by linking PAYROLL/REL 
to the end of ACCTG/REL

. assigns the entire file absolute addresses

. creates a Linker Symbol Table which contains the 
definitions of all the symbols declared PUBLIC.

In pass 2, the Linker:
. fills in the values of all EXTERN symbols (using 
the Linker Symbol Table created in pass 1)

. saves the resulting program as ACCTG, an absolute 
object file.



e. Executing the program
You now have an absolute file, ACCTG, which consists of both 
ACCTG/REL and PAYROLL/REL. To execute it, type at TRSDOS
READY

ACCTG <ENTER>

2. CREATING A GLOBAL FILE
Creating a global file is useful if you want to conserve 
memory by "overlaying" one program on top of the other. To 
create and use a global file, ALDS offers these directives:

. GLOBAL - declares symbols global 

. EXTERN - declares symbols external 

. GLINK - tells the Linker to use a global file 

. EXT - tells the Assembler to use a global file
As an example, assume you want to create a file name MAIN 
which consists of a number of subroutines, such as printing 
lines on the display.
You also want to create several accounting system files, one 
of which is LEDGER. Users will use only one of these 
accounting systems at a time. However, each accounting 
system uses routines from MAIN.
It is therefore necessary to have MAIN and LEDGER in memory 
at the same time. However, there is not enough room in 
memory for both programs.
The alternative is to "overlay" one program on top of the 
other. In this example, MAIN loads LEDGER. When loaded 
LEDGER overlays sections of MAIN which it will not use.



These procedures clarify how this is done:
a. Declare the symbols you want shared.

RET
END BEGIN

The definition for PRINT is declared GLOBAL. When you 
assemble this program, the Assembler will create a global 
file named MAIN/GBL which contains PRINT'S definition.
Notice that this program loads LEDGER. Also notice that it 
intends to load LEDGER on top of the ROUTINES at the end.

This time, you do this with GLOBAL and EXTERN directives. 
In the MAIN program:

MAIN  PSECT
GLOBAL PRINT

BEGIN  SVC 7 ;clear screen
CALL ROUTINE

;
;load LEDGER routine begins here 
;

LD HL,LEDGER
LD B,6
SVC 38 ;load LEDGER file

;
; PRINT routine begins here 
;

PRINT  LD B,(HL)
INC HL
LD C,0DH
SVC 9 ;print contents of

;register HL
RET

LEDGER DEFM 'LEDGER'
ROUTINE
;
;This part of the program contains 18000 bytes 
;of subroutines which only MAIN uses.
;Since LEDGER does not need them 
;LEDGER will load into this area 
;



This is the beginning of the LEDGER program:
LEDGER PSECT

EXTERN
LDBEGIN
CALL
SVC
DEFT

PRINT
HL,MENU
PRINT
36 ;jump to TRSDOS

MENU 'THIS BEGINS THE GENERAL LEDGER MENU'
; the rest of the very long 
; LEDGER program goes here
GLINK
END

'MAIN/GBL' 
BEGIN

The definition for PRINT is declared EXTERN. Another 
program (MAIN) defines it.
(If you want to try this exercise, use the Editor to insert 
and save the first file as MAIN/SRC and the second as
LEDGER/SRC.

b. Insert a directive to search the global file
Notice the GLINK directive in the above program. This tells 
the Linker to look for PRINT'S definition in a global file 
named MAIN/GBL.
c. Assemble the programs
Assemble MAIN and LEDGER in the normal way:

ALASM MAIN MAIN <ENTER>
ALASM LEDGER LEDGER <ENTER>

The Assembler creates MAIN/REL and LEDGER/REL.
d. Link the program which creates the GLOBAL file
You must link MAIN/REL before linking LEDGER/REL. This is 
because MAIN/GBL contains a GLOBAL symbol that must be 
available to link LEDGER/REL. Type:

ALLINK MAIN MAIN $=3000 <ENTER>



The Linker assigns absolute addresses to MAIN/REL beginning 
with 3000H and saves the resulting absolute file as MAIN.
It also processes the GLOBAL directive. This causes it to 
create a global file named MAIN/GBL. This file contains 
only a symbol table defining PRINT.
e. Link the program which uses the GLOBAL file
After creating MAIN/GBL, you can link LEDGER. Type:

ALLINK LEDGER LEDGER $=3100 <ENTER>
The Linker processes the EXTERN directive. This tells it to 
look for PRINT'S definition in an outside file.
It then processes the GLINK directive. GLINK tells the 
Linker to look for PRINT'S definition in a file named 
MAIN/GBL.
The Linker also assigns absolute addresses to LEDGER/REL 
beginning 3100H.
f. Executing the program
You now have two absolute program files:

MAIN and LEDGER
Type:

MAIN <ENTER>
MAIN loads beginning at address 3100H and begins executing.
It then loads LEDGER beginning at address 3100H, which
overlays the last portion of MAIN.
NOTES AND OPTIONS
ALDS offers several alternatives for linking programs:

. You can use INCLUDE rather than LINK. If you 
do this, you must include a source file rather 
than a relocatable object file. INCLUDE is 
a directive which the Assembler processes 
at assembly time. (See INCLUDE)



. You can use REF to reference only the symbol 
definitions of a source file only. (See REF)

. You can create indirect LINK files composed
solely of LINK directives. By doing this, you can 
create several files containing different 
combinations of program sections. An example 
of this is PROGII and PROGIII in Chapter 1.

. You can use EXT rather than GLINK to combine
absolute, as well as relocatable symbols. EXT is 
a directive to the Assembler (whereas GLINK 
is a directive to the Linker)

INDEX SECTIONS
ALDS contains directives which allow you to create an index 
section. They are:

. ISECT - begins an index section 

. ENDI - ends an index section

. USING - associates an index register with an 
index section

. DROP - drops the index association established 
by USING

An index section is for EQUating symbols you want to use as 
offsets from an index register. For example:

PROG PSECT 5000H
ISECT 1 ;begins index section 1

DATA  EQU 10H
ENDI ;ends index section 1
LD IX,4000H
USING 1,IX  ;associates IX

;with the symbol 
;in index 
;section 1



LD A, (DATA) ; loads A indexed 
;with IX, which 
;will be (IX+
;DATA) or 
;(4000H+10H)•

DROP 1 ;drops association 
;of IX and index 
;section 1

LD A, (DATA) ;loads A with (DATA) 
;which is (l0H)

Index section 1 (ISECT 1) equates DATA to 10H. USING 
associates all the symbol equations from ISECT 1 with index 
register IX. This means any time a symbol from ISECT 1 
appears in the program, the Assembler generates an 
instruction to access memory with the indexed addressing 
mode (IX + the displacement value).
Later in the program, the Assembler encounters the symbol 
DATA (defined in ISECT 1.) The Assembler sets DATA as an 
offset to the IX register so that when you run the program, 
the processor will add DATA to the contents of register IX 
(The contents of register IX remains unchanged.)
Then the Assembler DROPS the association between IX and 
ISECT 1. After DROPping the association, the Assembler 
interprets DATA as simply DATA.
You can temporarily clear a USING association and return to 
it later with:

. APUSH - saves the current USING associations 
in an Assembler stack

. APOP - restores the USING status saved with
APUSH by "popping" it from the Assembler 
stack

For more information, see the individual definitions of each 
directive.



ALDS allows you to define your own "macro" symbol as a group 
of Z80 instructions. Whenever the Assembler encounters this

MACRO SECTIONS

macro symbol, it 
instructions.

expands it into its defined Z80

For example:
START PSECT 3000H
DISPLAY MACRO #L ;begins macro 

;section defining 
;DISPLAY #L 
;(#L is a dummy 
;parameter)

LD HL,#L
LD  B,(HL)
INC HL
LD C,0DH
SVC 9 ;display ViDeo LINE
ENDM ;ends macro section

BEGIN DISPLAY FIRST ;call DISPLAY and
;pass it FIRST

;
DISPLAY SECOND ;call DISPLAY and

;pass it SECOND
;

SVC 36 ;Jump to TRSDOS SVC
FIRST DEFT ' THIS  IS THE FIRST SENTENCE'
SECOND DEFT 'AND THIS IS THE SECOND'

END BEGIN
The MACRO section begins with MACRO and ends with ENDM and 
in this example defines a MACRO named DISPLAY which displays 
a dummy parameter named #L.
The program then calls the DISPLAY macro and passes it the 
parameter FIRST. The Assembler expands this DISPLAY 
instruction into its macro definition, substituting FIRST 
for #L:

LD HL,FIRST
LD B,(HL)
INC HL
LD C,0DH
SVC 9



Next, the program calls the DISPLAY macro passing it the 
parameter SECOND. This expands into:

LD HL,SECOND
LD B,(HL)
INC HL
LD C,0DH
SVC 9

When you assemble this program, notice that the macro 
SECTION (not the macro CALL) is for the Assembler's memory 
only. It is not assembled as part of the executable 
program.
For more information on macros, see MACRO.

IF SECTIONS
An "IF" section is a section of your program you only want 
assembled if a certain condition is true. ALDS offers these
directives for conditional sections :

. IFT assemble if operand is a true expression

. IFF assemble if operand is a false expression

. IFZ assemble if operand equals zero

. IFNZ assemble if operand does not equal zero

. IFP assemble if operand is positive

. IFM assemble if operand is negative

. IFDEF assemble if operand is a defined symbol

. IFUND assemble if operand is an undefined symbol

. ELSE assemble if IF condition is false

. ENDIF end conditional section
For example, assume you want to create two versions of a program 
— a Model II version and a Model III:

START PSECT 7000H
MODII EQU 0 ;defines MODII 

;(any value will do)
BEGIN LD B,3
;

IFDEF MODII ;assemble the following 
;IF MODII is DEFined 
;



SVC 36 Model II SVC call
ELSE assemble the following 

if MODII is NOT defined
JP 402DH Model III SVC call
END IF END the IF section
END BEGIN

IF the program defines the symbol MODII, the Assembler 
processes SVC 36 or ELSE it processes CALL 402DH.
The above program defines MODII. The Assembler processes 
SVC 36, thereby producing a Model II version of the program. 
To have the Assembler produce a Model III version, delete 
the MODII EQU 0 directive.

ASSEMBLER LISTING COMMANDS
Assembler listing commands change the way the Assembler 
processes the listing.
ALDS offers these listing commands:

. EJECT - ejects the printer listing to the next page 

. VERSION - prints the time on the second line 

. TITLE - prints a title on the third line 

. HEADER - prints a heading on the fourth line 

. PRINT - prints or does not print what you specify 
See each directive listing for more information

OTHER ASSEMBLER COMMANDS
The remaining Assembler commands are:

. ADISP - displays or prompts you for information

. NOLOAD - assembles in memory image form

. OBJ - specifies the object file name to use

. PATCH - fills the remaining bytes in a sector  with
FF's to create a patch area



ASSEMBLER DIRECTIVES REFERENCE

The following pages list the syntax and a brief definition 
of the assembler directives available with ALDS. This is a 
definition of the terms used in the syntax:
expression
a valid assembler expression (See Chapter 7.)
absolute expression
an expression with an absolute (non-relocatable, 
non-external) value. This can include a relocatable symbol 
as long as the resulting value is absolute. See Chapter 7.
expression list
one or more expressions, separated by commas 
location
an expression designating an assembly location 
filespec
a TRSDOS file specification (see your Owner's Manual).
string
a string of ASCII characters. The entire line must be 78 
characters or less.
symbol
a one to ten character name which you may reference in your 
program.
symbol list
one or more symbols, separated by commas

ADISP
ADISP 'string^symbol' 
ADISP 'strinq~symbol'



Displays or inputs certain parameters during the assembly of 
your program. You can specify one or both of these 
parameters:

(1) a string to be displayed
(2) a symbol to be displayed or input

 ̂<SHIFT><6> causes the Assembler to 
  display the symbol's value 
~ <CTRL><6> causes the Assembler to prompt 
  you to input the symbol's value

The Assembler executes ADISP during pass one only.
Example:

ADISP 'THE VALUE OF START IS ^START'
causes the Assembler to display: THE VALUE OF START IS 
followed by the value of the symbol START.

ADISP 'WHAT IS THE VALUE OF START ~START'
displays WHAT IS THE VALUE OF START? .... You can then input
a hexadecimal value for START.

ADISP 'This is my Message'
displays the message.

ADISP '̂$'
displays the current address of the PC (program counter) 
register.

ADISP 'NEW ORIGIN ~STARTLOC'
ORG STARTLOC

displays NEW ORIGIN? and prompts you to input a value for 
STARTLOC. The next instruction resets the location counter 
to the value you input. Note that ADISP 'NEW ORIGIN ~$' 
does not accomplish the same thing.



APOP
APOP USING APOP PRINT 
APOP PRINT,USING

Restores the PRINT or USING status which was saved by a 
previous APUSH instruction.
Example:

APOP USING
restores the USING status.

APOP USING,PRINT
restores both the USING and PRINT status.

APUSH
APUSH PRINT 
APUSH USING 
APUSH PRINT, USING

Pushes the current PRINT and/or USING status into an 
assembly stack. Use APOP to get this current status back 
from the stack.
You may nest APUSH only one level deep. That is, you can 
not use APUSH twice without an APOP in between.
Examples:

APUSH USING
saves the USING status.

APUSH USING,PRINT
saves both the USING and PRINT status



APUSH is useful when you want the Assembler to treat a 
certain section of your program differently. For example:

MAIN PRINT ON
PRINT CON
PRINT SHORT

APUSH PRINT
PRINT OFF
CALL SUB1
APOP PRINT

When the Assembler encounters APUSH PRINT, the current 
status of PRINT is ON, CON, SHORT (print the first 6 bytes 
of all source lines, including conditionals).
The Assembler PUSHes this status into an assembly stack and 
turns PRINT OFF. This causes it not to print any lines in 
SUB1.

The Assembler then POPs the PRINT ON, CON, SHORT status 
back from the stack, which causes it to restore the printing 
status.

DATE
symbol DATE

Stores the current date in memory beginning with the current 
address. The optional symbol labels this address.
The Assembler stores the date as a string in the form of Day 
of Week, Month Date, Year (Model II) or MM/DD/YY (Model 
I/III).
For example, if today's date is Saturday, February 29, 1981:



DATE

stores SAT FEB 29, 1981 in Model II memory, or 02/29/81 in 
Model I/III memory.

DEFB
symbol DEFB expression 
symbol DEFB absolute expression list 
symbol DEFB absolute repeat count% 

absolute expression
Stores one or more one-byte expressions in memory beginning 
with the current address. The optional symbol labels this 
address. The optional repeat must be in the 1-255 range 
and will repeat a single absolute expression only.

TCONV DEFB NUM
stores NUM in the current memory address, defined as TCONV. 
NUM must be in the range of one byte numbers (-256 to +255 
decimal).

If you use multiple expressions, all of them must be 
absolute. For example:

QSYM: DEFB 7,9 BH,BTABLE+3
stores decimal 7 at QSYM, the current memory address. 
Hexadecimal 9B and BTABLE+3 are stored in the next two 
bytes. None of these bytes can be relocatable. BTABLE must 
be defined in the existing program unit.

DEFB 128%'*'
fills the next 128 bytes with the character '*'.
You can substitute BYTE or DB for DEFB.



DEFE
symbol DEFE 'string'

Stores an "encrypted" string in memory beginning with the 
current memory address. The optional symbol labels this
address.
Using DEFE makes it difficult for users to read the string 
by listing the object code. The first byte contains the 
unencrypted length of the string. The following bytes 
contains each character code XOR'd with 55H.
Example:

MESSAGE DEFE 'hidden data'
stores 'hidden data' in the next 12 bytes and names the 
first byte MESSAGE. The first byte contains an 0BH (decimal 
11). The next bytes contain codes for 'hidden data'.

DEFL
symbol DEFL expression

Defines symbol as expression. DEFL allows you to 
redefine a symbol in the same program. For example:

IMMED DEFL 5
ADD A,IMMED

IMMED DEFL 12
ADD A,IMMED

defines IMMED as 5 and adds it to the contents of register 
A. The next instruction defines IMMED as 12 and adds this 
to the contents of A.
Once you define a symbol with DEFL, you should not attempt 
to define it with EQU, EXTRN, or use it as a label.



DEFM
symbol DEFM 'string'

Stores string in memory beginning with the current 
address. The optional symbol labels this address. For
example:

MESSAGE DEFM 'THIS IS THE MESSAGE'
stores 'THIS IS THE MESSAGE' in the next 19 bytes and names 
the first byte MESSAGE.
You can use these two special characters in the string:

. the tilde "~" (typed as <CTRL> 6) to store a
carriage return (hexadecimal 0D).

. the circumflex "^" (typed as <SHIFT> 6) to
toggle the high bit (80H) on and off.

For example:

TEXT DEFM '^J ÔHN BROWN~M STREET'
stores JOHN BROWN <carriage return> M STREET in the next 19 
bytes and flags the letter J by setting the high bit. J is 
stored as 0CAH, the code for J, plus 80H.
You can substitute ASCII for DEFM.

DEFR
symbol DEFR 'decimal number'

Converts a decimal number into a Roman numeral string 
and stores it in memory beginning at the current address.
The first byte contains the hexadecimal length of the Roman 
numeral string. The following bytes contain the ASCII codes 
for the Roman numerals.



The decimal number must be in the range of 1 to 65535.
The optional symbol allows you to name the first address.
For example:

DEFR '1981'
stores MCMLXXXI in the next 9 bytes. The first byte 
contains 8, the length of the Roman numeral string.

DEFS
symbol DEFS absolute expression

Reserves expression bytes, beginning with the current 
address, for storage. The optional symbol names this 
storage area.
This Assembler will not insert anything in the reserved area 
unless the FILL mode is in effect (see FILL).
Example:

ORG 3000H
BUF1 DEFS 100H
BUF2 DEFS 50H
BUF3 DEFS 10
START LD HL,BUF1

assigns BUF1 to location 3000H, BUF2 to 3100H, and BUF3 to 
3150H. START begins execution at location 3160H, loading HL 
with 3000H.
You can substitute DS or BLOCK for DEFS.

DEFT
symbol DEFT 'string'

Stores string in memory, beginning with the current 
address. The optional symbol labels this address. The 
first byte contains the length of the string. You may use 
the two special characters described under DEFM (the tilde 
and the circumflex).



For example:
MESSAGE DEFT 'this is my message'

stores the number 12H (decimal 18) in the next byte of 
memory and 'this is my message' in the following 18 bytes; 
then assigns the name MESSAGE to the address of the first
byte.

DEFW
symbol DEFW expression 
symbol DEFW absolute expression list 
symbol DEFW absolute repeat count% 

absolute expression
Stores one or more two-byte expressions in memory 
beginning with the current memory address. The optional 
symbol labels this address. The least significant byte is 
stored first, followed by the most significant byte. The 
optional repeat must be in the 1-127 range and will repeat 
a single absolute expression only.
Examples:

MAXCNT DEFW 1000
stores decimal number 1000 in the next two bytes and labels 
that location as MAXCNT. Since 1000 decimal is 03E8H, the 
first byte contains E8H and the second byte contains 03H.

DEFW 3333,VAL
stores 3333 and VAL in the next four bytes. The same rules 
that DEFB uses for multiple expressions apply here. VAL 
must be defined in the existing program sections. 
Relocatable and external expressions may be used only if 
DEFW has a single, non-repeated expression.

DEFW 30%1000
fills the next 60 bytes with decimal 1000s, repeated 30 
times.
You can substitute DW or WORD for DEFW.



DROP
DROP 1 
DROP 2 
DROP

Terminates the index register association, specified by 
USING, with ISECT 1, ISECT 2, or all the ISECTs. This 
allows you to change USING associations. For example:

DROP 1
The index register is no longer associated with ISECT 1. 

DROP
The index register is no longer associated with any of the
ISECTs.

EJECT
EJECT

During the assembly listing, causes the printer to go to the 
next page before listing the next instruction. The EJECT 
instruction will not appear in the listing.

END
END address

Ends the assembly of the source program. The optional 
address causes the Assembler to store the entry address of 
the program.
Examples:

END 7FFFH
ends assembly and stores address 7FFFH in the assembled file 
as the entry point of the program. When you load the 
assembled file, it will immediately begin execution at 
address 7FFFH.



END BEGIN
ends assembly and stores the address defined by BEGIN as the 
entry address.

END
ends assembly of the program. Since no entry point is 
specified, the Assembler stores it as absolute zero. This 
is an invalid entry point for TRSDOS. Therefore, you will 
be able only to load this program with the LOAD command —  
not execute it.

ENDI
ENDI

Marks the end of an index section, initiated by ISECT.

ENDM
ENDM

Ends a macro definition, initiated by MACRO.

EQU
symbol EQU expression

Equates a symbol to an expression. For example:
START EQU 3200H

causes the symbol START to be equal to hexadecimal 3200. 
POINT EQU 15+START

equates POINT to 3215, the sum of 15 and START.
Symbols defined by EQU may not be defined elsewhere in the 
program.



EXT
EXT 'filespec'

Tells the Assembler that the absolute definitions for 
certain symbols in your program are contained in the 
specified global file (created by GLOBAL). Since these 
symbols will have an established value at assembly time, you 
should not declare them EXTERNal or define them elsewhere in 
the program.
You can specify only one filespec per EXT instruction. It 
must have a /GBL extension. If you omit /GBL, the Assembler 
will automatically append it.
The EXT statement allows the programmer to have several 
absolute object files "talk" to each other. This requires 
considerable prior planning, but is useful and powerful.
Since EXT includes only the symbol definitions of the 
external program and not the program code, you will need to 
load the external program before attempting to use code in
it.
For example:

EXT 'PROG1/GBL'
EXT 'PROG2'

tells the Assembler that your program contains symbols which 
are defined in PROGl/GBL and PROG2/GBL.

EXTERN
EXTERN symbol list

Declares that one or more symbols are not defined in the 
existing main program. They are defined externally in 
either:

. an external program section (which contains a 
corresponding PUBLIC instruction), or

. an external global file (which was created 
by a corresponding GLOBAL instruction).



For example:
EXTERN LOOPl,LOOP2

declares that LOOPl and LOOP2 are defined externally. 
You may substitute EXTRN for EXTERN.

FILL
FILL

Causes any subsequent storage areas, initiated by DEFS, to 
be filled with zeros. Use NOFILL to turn it off.
For example:

FILL
BUF1 DEFS 100

NOFILL
BUF2 DEFS 200

BUF1 is filled with zeros. BUF2 is not filled with zeros.
You can use FILL only with DEFS instructions which reserve 
255 or less bytes.

GLINK
GLINK 'filespec'

Tells the Linker that the absolute definitions for certain 
symbols in your program are contained in the specified 
global file (created by GLOBAL). Your program must also 
contain an EXTERN instruction for each of the symbols 
referenced, to avoid undefined symbol errors.
You can specify only one filespec per GLINK instruction.
It must have a /GBL extension. If you omit /GBL, the Linker 
will automatically append it.



GLINK accomplishes the same function as EXT, except it is an 
instruction to the Linker, rather than the Assembler.
Because of this you need not have the external file written 
at assembly time, but you must have it loaded when you link 
the program.
For example:

GLINK 'PROGl'
GLINK 'PROG2'

tells the Linker that your file contains certain symbols 
which are defined in PROG1/GBL and PROG2/GBL.
GLINK must be the last instruction in your program before 
LINK, END, or another GLINK.

GLOBAL
GLOBAL symbol list

Declares one or more symbols as global and stores their 
values in a "global" file. Like PUBLIC, this permits 
another program section to use the same symbols. GLOBAL, 
however, goes one step further. It stores these symbols in 
a global file.
The global file will contain a symbol table only. It will 
define the absolute values of all the global symbols. If 
your program is absolute, the Assembler will create this 
global file. If your program is relocatable, the Linker 
creates it.
For example:

PSECT 3000H
GLOBAL DATA

DATA DEFM 'THIS STARTS A DATA TABLE'
declares that DATA is a global symbol and stores DATA'S 
value, hexadecimal 3000, in a global file. Since this 
program is absolute, the Assembler will create the global
file.



PSECT
GLOBAL LOOPl,LOOP2

declares that LOOPl and LOOP2 are global symbols to be 
stored in a global file. Since this program is relocatable, 
the Linker will create the global file.
The global file will have the same name as the assembled 
object file with the extension /GBL. You will be able to 
access this file with any other program, provided it has 
these two instructions:

(1) GLINK, which specifies that some symbols 
in the global file should be used, and

(2) EXTERN, which specifies which global (or 
external) symbol definitions should be used

or simply:
(1) EXT, which tells the Assembler to look for

the definitions of some symbols in the global 
file

Symbols declared PUBLIC or GLOBAL must be defined on both 
passes, that is, not defined with REF, ASISP, or EXT. The 
Linker may flag these symbols as undefined.
Symbols defined with DEFL more than once should not be 
declared PUBLIC or GLOBAL. The Linker will flag these 
symbols as multiply defined. 
HEADER

HEADER 'string'
Prints the specified string on the fourth line of each 
page in the assembly listing until the Assembler encounters 
a new HEADER instruction. HEADER starts a new page.
For example:

HEADER 'Electronics'
causes the Assembler to print "Electronics" on the fourth 
line of each page in the assembly heading.



For the header string to appear on the first page, HEADER 
must precede all listed instructions in the program. 
Otherwise, it ejects to the next page before printing the 
header string. TITLE, HEADER, and PRINT instructions are 
not listed.
You must specify a string when using HEADER. You may
substitute HEADING for HEADER.

IFDEF
symbol IFDEF symbol

Assembles the following source lines IF the symbol is defined.
IF NOT, the Assembler goes to the next ELSE or ENDIF directive.
The optional symbol labels this directive.

IFDEF SYMBOL
assembles the next lines IF the program defines SYMBOL. If not, 
the Assembler goes to the next matching ELSE or ENDIF. If the 
symbol is defined at all, it must be defined before the IFDEF.
The Assembler will not print the IF sections (instructions 
beginning with an IF directive and ending with ENDIF) unless PRINT 
CON is in effect. (See PRINT.)
All IF directives are nestable to six levels.

IFF
symbol IFF expression

Same as IFDEF except the expression must be false for the next 
lines to be assembled. For example:

IFF 5.GT.SYMBOL
assembles the next lines if 5 is not greater than SYMBOL.



IFM
symbol IFM expression

Same as IFDEF except the expression must be negative for the 
next lines to be assembled. For example:

IFM SYMBOL
assembles the next lines if SYMBOL is a negative number.

IFNZ
symbol IFNZ expression

Same as IFDEF except the expression must not equal zero for the 
next lines to be assembled. For example:

IFNZ SYMBOL
assembles the next lines if SYMBOL does not equal zero.

IFP
symbol IFP expression

Same as IFDEF except the expression must be positive for the 
next lines to be assembled. For example:

IFP SYMBOL
assembles the next lines if SYMBOL is a positive number.

IFT
symbol IFT expression

Same as IFDEF except the expression must be true (that is, bit 0 
must be 1) for the next lines to be assembled.



For example:

IFT 5.GT.SYMBOL
assembles the next lines IF 5 is greater than SYMBOL. 

IFUND
symbol IFUND symbol

Same as IFT except the symbol must not be defined for the next 
lines to be assembled. For example:

IFUND SYMBOL
assembles the next lines if the program does not define SYMBOL. 
If the symbol is defined at all, it must be defined before the
IFDEF.
IFZ

symbol IFZ expression
Same as IFDEF except the expression must equal zero for the next 
lines to be assembled. For example:

IFZ SYMBOL
assembles the next lines if SYMBOL equals zero.

INCLUDE
INCLUDE 'source filespec'

Inserts filespec at the point where INCLUDE appears in the 
program. The Assembler will assemble the INCLUDEd file 
before processing the next instruction.
The optional END instruction of the INCLUDEd file tells the 
Assembler to continue assembling the main program. The END 
of the main program will terminate the assembly.



You may specify only one filename per INCLUDE. You may use 
as many INCLUDE instructions as you want.
For example:

INCLUDE 'PROG1'
inserts and assembles PROG1, a source file, before 
processing the next instruction.

INCLUDE 'PROG1'
INCLUDE 'PROG2'

inserts and assembles PROG1; then inserts and assembles 
PROG2; then proceeds with the next instruction.

INCLUDE is nestable to five levels. That is, file 1 can 
call file 2; 2 can call 3; 3 can call 4; and finally, 4 can 
call 5. But at no time can a called file (file 5) call a 
calling file (file 4). This results in an Error 37 —  Open 
attempt for a file already open.

ISECT
ISECT name

Begins an "index section" of EQU instructions, terminated by 
ENDI. If you wish, you can name the section 1 or 2 (no 
other names are allowed).
Using an index section allows you to specify certain index 
symbols. You can then use the index symbols to offset an 
index register.
For example, this is an index section named ISECT 1:

ISEC1 1
SYMBOL1 EQU 5
SMBL3 EQU 3
SMBL26 EQU 26
SYMBL EQU

ENDI
100



It specifies four index symbols. Whenever the Assembler 
encounters one of these index symbols enclosed in 
parentheses, it evaluates it as the expression:

(the contents of an index register + index symbol)
You must specify which index register to use with the USING 
instruction. For example:

LD IY,4000H
USING 1,IY
LD A,(SYMBOL1)

The Assembler evaluates this as:
LD IY,4000H
USING1, IY
LD A,(IY+SYMBOL1)

You cannot use a register name or a flag condition to name 
an index symbol.

LINK
LINK 'filespec'
LINK 'filespec(symbol)'

Tells the Linker to insert filespec, an absolute or 
relocatable object file, at the point where LINK is 
encountered in the current program. This instruction is 
similar to INCLUDE, except it applies only to the Linker.
It allows you to link one or more files together.
LINK must be at the end of your program section. (Only END, 
GLINK, or another LINK can follow it.) Each LINK 
instruction can specify only one filename. You can use as 
many LINK instructions as you want.



For example:
LINK 'FILE1'
LINK 'FILE2'
END PROG

inserts FILE1 and then FILE2 at the end of your main 
program. FILE1 and FILE2 must both be assembled object
files.

LINK 'TAX(TABLE)'
inserts a program section named TABLE which exists in a file 
named TAX at the end of your program. TAX must be an object 
file. TABLE is a PSECT label.
The LINK statement is nestable to five levels. That is, 
file 1 can call file 2, 2 can call 3, 3 can call 4, and 
finally, 4 can call 5. But at no time can a called file 
(file 5) call a calling file (file 4).

LITORG
symbol LITORG location

Allows you to specify where to place literals used as 
operands. LITORG should be used only once per assembly and 
placed in the same PSECT as all references to the literals, 
and after the last reference.
If you omit the optional location, the Assembler stores 
the literals in the current location. If you include it, 
LITORG resets the location counter (in the same way that ORG 
does) and stores the literals at the newly reset location.
The optional symbol labels this location. The Assembler 
assigns the remaining instructions locations immediately 
following the literals.



All literal operands must be preceded by an equal sign (=) 
and surrounded with single quotes ('). For example:

LD HL,='INPUT THE ITEM NUMBER'
This instruction uses INPUT THE ITEM NUMBER as a literal 
operand. Here is how you could use it in a program:

START
BEGIN

PSECT 3000H
LD HL,='INPUT THE ITEM NUMBER'
LD B,(HL)
INC HL
SVC 9
SVC 36
LITORG
DEFM 'THIS IS A LONG TABLE OF PROMPTS'
DEFM 'INPUT THE ITEM NUMBER'
DEFM 'INPUT THE PRICE'
DEFM 'IS THERE A DISCOUNT?'
DEFM 'INPUT THE DISCOUNT'
END BEGIN

Notice that INPUT THE ITEM NUMBER is defined by DEFM later 
in the program. The Assembler stores it in two locations:
(1) the location where LITORG appears in the program, and
(2) the location where DEFM 'INPUT THE ITEM NUMBER' appears.

Note that if literals are used and the program ends with a 
LINK or GLINK, LITORG is mandatory to place the literals 
before the LINK or GLINK statement.

MACRO
name MACRO dummy parameter list

Begins a section of the program which defines a macro name.
Use ENDM to end this macro definition.
The optional dummy parameter list allows you to pass 
parameters to the macro. You may use up to ten dummy 
parameters separated by commas. Each can be only one 
character and must be preceded by a # sign.



Defining a macro allows you to "call" an entire block of 
instructions with a single program line. This is useful 
when you will be using the same block many times in your
program.

For example, this is a macro definition:
SCROLL MACRO

LD B,10
SVC 27
ENDM

which defines a macro named SCROLL. Every time the 
Assembler encounters SCROLL, it "expands" SCROLL into the LD 
B,10 and SVC 27 instructions. That is, if this is your 
source program:

LD A,3
SCROLL
LD HL,DATA

The Assembler will interpret SCROLL as a macro call and 
expand it into the appropriate instructions:

LD A,3
LD B,10
SVC 27
LD HL,DATA

The next example defines a macro named ADNUM which acts on 
four dummy parameters named #0, #1, #2, and #3:

ADNUM MACRO
ADD 
ADD 
ADD 
ADD 
ENDM

#0,#1,#2,#3 
A,#0 
A,#1 
A,#2 
A,#3



This definition allows you to "pass" four values to ADNUM 
when you call it. For example:

ADNUM B,10,NUMB,LST
calls ADNUM and passes four values to it. The Assembler 
expands this macro call into:

ADD A,B
ADD A,10
ADD A,NUMB
ADD A,LST

Notice that B, the first value, replaces #0, the first 
parameter; 10 replaces #1; NUMB replaces #2; and LST
replaces #3.
When using a macro, remember that you must define it before 
you use it. You might want to put all the macro definitions 
in one file and then INCLUDE or REF them at the beginning of 
your main file.
We do not recommend that you use a macro name which is the 
same as an extended mnemonic or directive name. If you do 
this, the Assembler will use the definition you assigned the 
macro. This will of course give undesirable results.
When using dummy parameters, be sure not to insert them 
inside quoted strings. If you do this, the Assembler will 
treat them as ordinary characters.
A macro cannot call another macro.

NOEND
NOEND

Ends the assembly of a non-executable program. The 
Assembler marks the assembled code as load-only and will not 
execute the file when used as a TRSDOS command. This 
command is useful for creating overlays to be loaded with 
the DOSCMD supervisor call.



NOFILL
NOFILL

Terminates the mode initiated by FILL.

NOLOAD
NOLOAD

Assembles the program sequentially in memory image form, 
rather than in the standard TRSDOS object format. You must 
use NOLOAD as the first line of the main source file 
(before comments, titles, PSECT, etc.), otherwise some TRSDOS 
object code load headers may be placed into the file.
You cannot use NOLOAD with these features:

. the relocatable mode 

. EXTERNal, or PUBLIC symbols 

. LINK or GLINK
If you want the file to contain an accurate memory image of 
the program, you must also avoid these instructions:

. DEFS (unless the FILL mode is on)

. ORG

. more than one PSECT
(These instructions change the value of the location counter 
but do not output object code. This causes the load address 
and location counter to differ.)

OBJ
OBJ 'filespec'

Tells the Assembler that it should write the assembled 
filespec to disk. The Assembler will ignore this 
instruction if you specify an object filespec in the 
assembly command line.



Example:
OBJ 'ACCOUNTS'

Unless you specify an object filespec in the assembly 
command line, the above instruction saves the assembled 
object program as ACCOUNTS.

ORG
symbol ORG location, boundary

Resets the Assembler's location counter to the specified 
location. For example, in an absolute program:

ORG 4000H
resets the location to an absolute 4000H.
In a relocatable program:

ORG 4000H
resets the location counter to a relocatable 4000H.
Assuming you link the program to an absolute start address 
of 5000H, the Linker determines the effective address to be 
9000H, the sum of 5000 and 4000.)
The second parameter allows you to reset the location 
counter to a boundary divisible by decimal 2, 4, 8, 16,
32, 64, 128, or 256. For example, if the value of the 
counter is currently 4005H:

ORG $,4
resets the counter to 4008H, which is the next highest 
number divisible by decimal 4.
Unlike many other assemblers, ORG will not initialize the 
location counter. You need to use PSECT for this purpose.



ORG will not change the location counter from the 
relocatable to the absolute mode, or vice versa. You must 
assemble absolute and relocatable programs as different
files.
location may not be an external symbol.
PATCH

PATCH
Fills the remaining bytes in the last sector in the 
assembled object file with FF's. This reserves an area for
patches.
The Assembler will print a message on pass 2 giving the 
address and length of the patch area (if the file produces 
object code).
This must be the last command prior to the END directive.
You cannot use it with LINK, and it is for use with absolute 
assemblies only.

PRINT
PRINT command list

Controls what is printed or not printed in the assembly 
listing. You may use one or more of the following commands, 
separated by commas or blank spaces:

ALL  - print all source lines (Same as ON,MAC,CON)
ON - print all normal open code source instructions
OFF - do not print anything except error

messages and diagnostics until (1) the 
end of the assembly or (2) a PRINT ON 
command



MAC - print all source lines generated in macro 
expansions (except those which might be 
overridden by other PRINT options).

NOMAC - do not print source lines generated by macro 
expansions. Only the macro instruction itself 
will appear in the listing file.

CON - print all conditional assembly source lines, 
whether they generate code or not.

NOCON - print only the conditional assembly source 
lines that generate code.

LST - output the listing, regardless
of what was on the command line. The listing 
will be printed on the video, and if the D or 
P options were specified, the listing 
will also go to disk or to the printer.
You cannot save this option with APUSH.

NOLST - do not output a listing, regardless of what was 
on the command line.

SHORT - print only the first 6 bytes of object code 
generated by each line.

LONG - print all of the object code generated, even if 
it requires several lines.

For example:
PRINT MAC,SHORT

prints all the macro expansions in the assembly listing. It 
limits printing to the first six bytes of object code for 
each line.
Only PRINT instructions specifying OFF, NOMAC, and NOCON 
will appear in the listing.
You can use comments with PRINT.
PRINT defaults to ON, MAC, NOCON, LONG.



PSECT
symbol PSECT location

Initializes the Assembler's location counter to a 
relocatable zero or to the absolute location you specify. 
The Assembler assembles all subsequent instructions 
sequentially throughout the program.
The optional symbol labels the program section and can be 
up to six characters. This symbol is for the Linker, and 
will be listed on the Linker map. The symbol will not be 
defined by the Assembler and cannot be used in expressions.
PSECT begins an independent, executable "program section". 
You can have several relocatable program sections in one 
program file. One program section cannot use symbols from 
another program section unless you declare them EXTERN and 
PUBLIC.
For example:

0000'
PAYROLL
BEGIN

PSECT
LD A,3

0000'
PAYABLE PSECT

PUSH A
END

This program has two sections: "PAYROLL" and "PAYABLE".
Both begin with a relocatable 0000. When you link this 
file, the Linker assigns "PAYABLE" addresses which 
immediately follow "PAYABLE". Since no symbols are declared 
PUBLIC and EXTERNal, "PAYROLL" and "PAYABLE" cannot share 
the same symbols.



The following instructions do no have to be part of a 
program section:

. comments 

. index sections

. conditional assembly instructions 

. macro sections

. macro instructions (which will not affect the 
location counter)

. EQU or DEFL (as long as they do not reference 
the location counter)

. assembler directives (which do not affect the 
location counter)

You can define symbol (with EQU, for example) prior to 
your first PSECT. This permits you to use a conditional 
assembly such as:

IFT RELOC
XYZ  PSECT

ELSE
XYZ  PSECT 3000H

ENDIF
which starts a relocatable PSECT if RELOC equals 1, and an 
absolute PSECT if RELOC equals 0. Doing this will create 
two PSECTs with the same name, one being zero-length. This 
will appear on the Linker map but it will not affect the 
assembly.

The PSECTs within an assembly must either be all relocatable 
or all absolute. Relocatable and EXTERN expressions cannot 
be used in absolute assemblies.
The PSECT location you specify cannot be an external value.

PUBLIC
PUBLIC symbol list

Declares one or more symbols as "public". This permits 
another program section to use the same symbols.



When you assemble a program with public symbols, the 
Assembler will mark all their definitions. Then, when you 
link it to an external progam section, the Linker will 
insert these definitions in the Linker Symbol Table.
For example:

PUBLIC LOOP1
declares LOOP1's definition to be public.
Another program can use the public symbol definitions 
provided it contains a corresponding EXTERN directive.
You can substitute ENTRY for PUBLIC.
Symbols declared PUBLIC or GLOBAL must be defined on both 
passes, that is, not defined with REF, ADISP, or EXT. The 
Linker may flag these symbols as undefined.
Symbols defined with DEFL more than once should not be 
declared PUBLIC or GLOBAL. The linker will flag these 
symbols as multiply defined.

QUIT
QUIT

Quits the assembly and returns to TRSDOS READY. This 
Assembler only recognizes this instruction at the second 
pass of a listing (specified by the L assembly option). It 
will not save the object file.

RADIX
RADIX expression

Specifies expression as the default number base. That is, 
the Assembler will interpret any numbers without a base 
suffix in the default base.
You may use any expression with a value of 2, 8, 10, or 16. 
Without RADIX, the Assembler defaults to 10 (decimal).



RADIX 16
causes the Assembler to interpret all the numbers which do 
not have "b" or "d" suffixes as hexadecimal numbers.
Remember that the Assembler uses the current default base to 
evaluate your RADIX instruction. For example, if you want 
to change the default base of 16 to 10, use RADIX 10d or 0A, 
not RADIX 10. While in base 16, the Assembler would 
evaluate the 10 as a hexadecimal 10.
Example:

RADIX 
DEFB 
DEFB 
DEFB 
RADIX
RADIX
RADIX 
DEFB 
DEFB 
DEFB

For example:

REF
REF 'source filename'

Includes only the symbol definitions from the specified 
source file. This is useful for referencing a file of EQU 
directives or MACROS.
REF tells the Assembler to INCLUDE the source file during 
Pass 1 only. After processing the source file, the 
Assembler restores the location counter to its original 
value. Thus, the Assembler uses the referenced file's 
symbols, but not its assembled code.
For example:

REF 'TEST/SRC'

10H
1B
1b
25
10
10D
10d
1B
1b
25

Use Hexadecimal
This is 1B (hex) = 27 (decimal) 
This is 1 (binary)
This is 25 (hex) = 37 (decimal) 
Radix is still hex (10 hex =
16 decimal)

ERROR 10D hex = 269 decimal —  
too large.
Radix is now decimal
This is a 1 binary
This is also a 1 binary
This is 25 (decimal) = 19 (hex)



The Assembler will define macros and symbols contained in 
TEST/SRC. It will not insert the code for TEXT/SRC.
The Assembler will not report any errors in the referenced 
file. Also, if there is a conflict between symbols of the 
referenced file and the main program, the first definitions 
will be used with no error message. You might want to use 
INCLUDE instead of REF until all conflicts have been 
resolved.
Symbols defined in the REF file should not be declared 
PUBLIC or GLOBAL. The Linker may flag these symbols as
undefined.

RESLOC
RESLOC location

Resets the location counter to the location computed as:

the value of the the number of bytes
counter prior + of code generated
to executing SETLOC by_the SETLOC block

For example, assuming the value of the location counter was 
3000H prior to SETLOC and there are two 3-byte instructions 
following SETLOC:

RESLOC
resets the location counter to 3006H.
SETLOC

SETLOC location
Temporarily changes the location counter's value to the 
absolute location specified. The Assembler uses this 
changed location for defining symbols only. It does not use 
the changed location for assembling the instructions.



4000  LD A,3
SETLOC 3000H

3000 POS  PUSH AF
The actual PUSH AF instruction is not stored at location 
3000H. Rather, it is stored at 4002H, the location which 
immediately follows LD A,3. However, the Assembler defines 
POS, the symbol which labels the location of PUSH AF, as 
3000H.
SETLOC is useful anytime you are writing a routine which you 
want to load in one location, and then move and execute at a 
different location. By using SETLOC, the Assembler defines 
this routine's symbols as if they were already in their 
execution location.
For example, you might want to run a memory test from a very 
low memory address. You cannot load it on top of TRSDOS. 
However, after loading it, you can move and execute it in 
that location. Since TRSDOS will be overwritten, the memory 
test must do its own input/output.

For example:

Using SETLOC, you could write the routine this way:
PSECT 3000H

3100 MOVE
•

EQU $ ;SETLOC block begins
SETLOC 500H

2500 LOOP LD A,3• ; code for memory
2600 • ; test

RESLOC
3200 LDBLOCK EQU $-MOVE ;SETLOC block ends

LD HL,MOVE ;move SETLOC block
LD DE,LOOP ;to its proper loop
LD BC,LDBLOCK
LDIR
JP LOOP



Here, the Assembler defines LOOP as though it were at 
address 500H —  the address the program will eventually move 
it to. However, it actually assembles the code for LOOP at 
address 3100.
MOVE defines where the actual assembled code of the SETLOC 
block (ended by RESLOC) begins. LDBLOCK defines the length 
of the SETLOC block by subtracting MOVE from the current 
contents of the PC register. (The $ sign indicates the 
current value of PC).
LDIR then moves the SETLOC block from location 3100, defined 
by MOVE, to location 500. Since LOOP has already been 
defined as if it were at location 500, you do not have to 
redefine it.

Note: If your program is relocatable, SETLOC still
sets an absolute location. You need to avoid using 
these instructions within the SETLOC block: ORG, DEFS 
(unless the FILL mode is in effect), PSECT, and 
relocatable
and external expressions.

STOP
STOP

Stops the assembly listing. Press any key to continue the 
listing. Press <BREAK> to abort it.

TIME
symbol TIME

Stores the time in memory as a string beginning at the 
current address. The optional symbol labels this address. 
For example if the time is 1:45 p.m. and 55 seconds when the 
Assembler reaches this instruction:

TIME
it will store the string 13.45.55 (Model II) or 13:45:55 
(Model III) in the next eight bytes of memory.



TITLE
TITLE 'string'

Prints the specified string on the third line of each page 
in the assembly listing. For example:

TITLE 'THIS IS THE TITLE'
prints THIS IS THE TITLE on the third line of every page.
If you are using both TITLE and HEADER, TITLE should precede 
HEADER (otherwise the TITLE will not appear until the next
page).

USING
USING index section name, index register 
USING index register, expression 
USING index register

Associates an index register —  IX or IY —  with the 
index sections. For example:

USING IX
associates IX with all the ISECTS.
You can optionally specify one (but not both) of the 
following:

. an index section name (1 or 2), as the only 
section to be associated with the register

. an expression to be loaded into the register
For example:

USING 1,IX
associates the IX register with ISECT 1 only.



USING IX,DCB
loads IX with the value of DCB, then associates IX with all
the ISECTs.
The index sections are specified with the ISECT instruction. 
USING does not apply to any external program sections.

VERSION
VERSION

Prints the current time on the second line of the assembly 
listing heading.

* (block comment)
*

Turns on and off the block comment function. The asterisk 
must be in the first column.
When the Assembler encounters a line beginning with an 
asterisk, it begins interpreting the lines as comments 
rather than instructions. The next asterisk ends the block 
comment.
For example:
*

The following program is a ...

Be careful when using the asterisk. One asterisk out of 
place near the beginning of your program can cause the 
Assembler to treat most of your program as a comment.

★



Chapter 10/ EXTENDED Z80 INSTRUCTIONS

The ALDS Assembler contains a number of extended Z80 
instructions. You can use them the same way you use other 
Z80 instructions.
An extended instruction is actually an internally defined 
macro. When you assemble the instruction, the Assembler 
expands it into a group of Z80 instructions. A description 
of macros is in Chapter 8.

NOTATIONS
In addition to the notations described in Chapter 9, this 
chapter uses:

xx a register pair 
yy a register pair 
[ ] optional value

FORMAT OF EACH INSTRUCTION
This chapter uses the same format for the instructions as 
Chapter 9, with the following exceptions:

. many of the instruction formats show different 
combinations of operands. These combinations 
are listed under "Operands"

. following the description of each instruction 
is a breakdown of how the instruction expands 
when assembled

. the operation is not shown

. the object code is not shown



CPR operand ComPare double Register

Mnemonic: CPR Operand: xx (where xx=BC, DE, HL, or
SP)

Description:
Compares the contents of the operand to the contents of HL. 
If they compare, the Z bit is set.
Example: If register pair BC contains an A0H and HL
contains and A0H.

CPR BC
sets the Z bit.
Expansion of: CPR xx

PUSH HL
OR A
SBC HL,xx
POP HL



CMPD operand1,operand2,[length] CoMPare with Decrement

Mnemonic: CMPD Operands:  nn1,nn2,n    length is n
nn1,nn2 length is

contents 
of BC

nn1,nn2,(nn3) length is 
contents of 
nn3

nn1,(nn2) length is
last byte of 
the string 
beginning 
at operand2

Description:
Compares the string beginning at operand1 and ending at
(operand1 - length) with the string beginning at
operand2, and ending at (operand2 - length). The Z
bit is set according to the result of the comparison. Zero
length strings are equal.
If a mismatch occurs, HL and DE will contain the addresses 
preceeding that mismatch.
Example: If memory location 4000 - 4006 contains the
string1 "develop" and location 5000 - 5006 contains the 
string2 "envelop, the operation

CMPD 4006H,5006H,7

starts the comparison of the two strings with the last byte, 
in this case the 'p'. A mismatch occurs at the second 
letter. Because of this mismatch, the address of the 
preceding 'n' is now in register HL and the address of the 
preceding 'e' in register DE.
Exit Conditions:

all registers modified
Expansion: CMPD nn1,nn2,n

LD DE,nn1



LD
LD

X2: LD
OR
JR
LD
CP
JR
LDD
JR

X1:
Expansion:

HL,nn2 
BC,n 
A,B
C
Z,X1
A,(DE) 
(HL)
NZ,X1
X2

CMPD nn1,nn2
LD DE,nn1
LD HL,nn2
LD A,B
OR C
JR Z,X1
LD A,(DE)
CP (HL)
JR NZ ,X1
LDD
JR X2

X1:
Expansion: CMPD nn1,nn2,(nn3)

LD DE,nn1
LD HL,nn2
LD A(nn3)
LD C,A
LD B,0
LD A,B
OR C
JR Z,X1
LD A (DE)
CP (HL)
JR NZ,X1
LDD
JR X2

X1:
Expansion: CMPD nn1,(nn2)



LD
LD
LD
LD
INC

X2: LD 
OR 
JR 
LD 
CP 
JR 
LDD 
JR

X1:

DE,nn1 
HL,nn2 
C,(HL) 
B,0 
HL 
A,B 
C
Z,X1 
A(DE) 
(HL)
NZ,Xl
X2

Note: The symbols used in the expansion are shown for
clarity and are not actually defined for use by other 
statements.



CMPI operand1,operand2,length CoMPare with Increment

Mnemonic: CMPI Operands: nn1,nn2,n 
nn1,nn2 
nn1,nn2, (nn3)

nn1,(nn2)

length is 
specified. 
length in 
BC.
length is 
contents 
of nn3. 
length is 
first byte 
of nn2

Description:
Compares the string beginning at operand1 with the string 
beginning at operand2 for the given length. Depending 
on the operands, length can be specified as a constant, 
the contents of an address, or the contents of the BC 
register. If a match does not occur, HL and DE will contain 
the addresses following that mismatch. The Z bit is set 
according to the result of the comparison. Zero length 
strings are equal.
Example: If memory location 4000 - 4006 contains the
string1 "develop" and location 5000 - 5006 contained the 
string2 "envelop":
CMPI 4000H,5000H,7
starts the comparison of the two strings beginning with the 
first byte (in this case, the 'd' in string1 and the 'e' in 
string2). A mismatch occurs at the first letter. The 
address of 'd' is now in register DE and the address of 'e' 
is now in register HL where the comparison failed.
Exit Conditions:

all registers modified
(1) Expansion: CMPI nn1,nn2,n

LD DE,nnl
LD HL,nn2
LD BC,nLD A,BX2:



OR C
JR Z,X1
LD A,(DE)
CP (HL)
JR NZ,X1
LDI
JR X2

X1:
(2) Expansion: CMPI nn1,nn2

LD DE,nn1
LD HL,nn2
LD A,B
OR C
JR Z,X1
LD A,(DE)
CP (HL)
JR NZ,X1
LDI
JR X2

X1:
Expansion: CMPI
LD DE,nn1
LD HL,nn2
LD A,(nn3)
LD C ,A
LD B,0
LD A,B
OR C
JR Z,X1
LD A,(DE)
CP (HL)
JR NZ,Xl
LDI
JR X2

X1:
(4) Expansion: CMPI nn1,(nn2)

LD DE,nn1
LD HL,nn2
LD C,(HL)
LD B,0

nn1,nn2,(nn3)



INC HL 
X2: LD A,B

OR C 
JR Z,X1 
LD A,(DE)
CP (HL)
JR NZ,X1 
LDI
JR X2

X1:
Note: The labels used in the expansion are shown for
clarity and are not actually defined for use by other
statements.



TZ operand Test register for Zero-TZ

Mnemonic: TZ Operand: xx (where xx= BC, DE, HL, IX, or IY) 
Description:
Compares the contents of xx to zero. If true, the Z bit 
is set.
Example: If the contents of BC contains a 00H then the
operation
TZ BC
sets the Z bit. Any other value (i.e. A0H) sets the NZ bit.
*****************************************************
* NOTE: TZ IX and TZ IY are instructions which are not    *
* documented by ZILOG. Although they should assemble *
* properly, Radio Shack does not guarantee that they will  *
* work on all processors. You should test them in your    *
* own environment to ensure their validity. *************************************************************

Expansion: TZ xx
LD A,high order byte of xx
OR  low order byte of xx



EX operand EXchange double register with (SP)— EX

Mnemonic: EX operand: (SP),xx where xx=AF, BC, or DE
Description:
Exchanges the low order byte contained in xx with the 
contents of the memory address specified by the contents of 
the stack pointer (SP). The high order byte of xx is 
exchanged with the next highest memory address (SP + 1).
Example: If the contents of the register pair BC is 3978H
and the stack pointer (SP) and its next byte (SP+1) contains 
2357H:

EX (SP),BC
causes the register pair BC to contain 2357H and the top 
address of the stack to contain 4978H.
(1) Expansion for: EX (SP),xx where xx=AF or BC

EX (SP),HL
PUSH XX
PUSH HL
POP XX
POP HL
EX (SP),HL

(2) Expansion for:
EX DE,HL
EX (SP),HL
EX DE,HL

EX operand1,operand2

Mnemonic: EX Operand:

EX (SP),DE

Exchange double register

xx,yy where xx and yy are 
any register pairs listed under 
"Expansion" below.

Description:



Exchanges the two-byte contents of xx with the contents of
yy.

Example: The contents of BC is 6789H and the contents of DE
is 1234H. After the execution of:

EX BC,DE
the values are exchanged so that BC
contains 6789H
(1) Expansion for: EX AF,BC

EX AF,DE 
EX BC,DE

PUSH 1st Operand
PUSH 2nd Operand
POP 1st Operand
POP 2nd Operand

(2) Expansion for: EX xx,yy

PUSH 1st Operand
EX (SP),2nd Operand
POP 1st Operand

(3) Expansion for: EX HL,xx 
EX IX,IY
EX xx,HL,

PUSH 1st Operand
EX (SP),2nd Operand
POP 1st Operand

(4) Expansion for: EX (SP), xx
EX (SP), HL

(xx = AF, BC or DE 
yy = IX or IY)

(xx = IX or IY)

xx (xx=AF, BC)

(5)

PUSH
PUSH
POP
EX

Expansion
EX

for

2nd Operand 
HL
2nd Operand 
(SP), HL

EX (SP), DE
(SP), HL

contains 1234H and DE

(xx=AF or BC)



EX DE,HL
EX (SP),HL



LoaD double register— LD

Mnemonic: LD Operand:  xx,yy
 (xx),yy 
 xx,(yy)
(xx),(yy)

Description:
Loads the first operand with the second operand. The 
numbers shown in the tables (1-14) represent the coded 
expansions for the pair of operands. Details of each 
expansion follow the tables (i.e. BC,AF refer to expansion 
description #1).
Example: The operation:

LD HL,DE
copies the contents of DE to HL.



( —  ) - indicates operand pairs not applicable
(1) Expansion of:: LD xx,yy where xx and yy are

any of the
following operand pairs:

(2) Expansion of: LD xx,yy where xx and yy are any of
the following operand pairs:



BC,A ; DE,A ; HL,A ; IX,A ; IY,A
LD Low order byte of register pair,A (accumulator)
LD High order byte of register pair,0

************************************************************
* NOTE: LD IX,A and LD IY,A are instructions which are    *
* not documented by ZILOG. Although they should assemble  *
* properly, Radio Shack does not guarantee that they will *
* work on all processors. You should test them in your    *
* own environment to ensure their validity.     *************************************************************

(3) Expansion of: LD xx,yy where xx and yy are any
of the following operand pairs:

BC,BC ; BC,DE ; BC,HL 
DE,BC ; DE,DE ; DE,HL 
HL,BC ; HL,DE ; HL,HL

LD High order byte 1st Operand, High order byte 2nd Operand
LD Low order byte 1st Operand, Low order byte 2nd Operand

(4) Expansion of: LD xx,yy where xx and yy are any of
the following operand pairs:

(BC),BC ; (BC),DE 
(DE),BC ; (DE),DE
1st Operand 
(SP),HL
(HL),Low order byte 2nd Operand 
HL
(HL),High order byte 2nd Operand 
(SP),HL 
1st Operand

PUSH
EX
LD
INC
LD
EX
POP

(5)
Side Effect: First operand register is incremented by 1.

Expansion of: LD xx,yy where xx and yy are any of
the following operand pairs:

(HL),BC ; (HL),DE



(IX+DD),BC ; (IX+DD),DE ; (IX+DD),HL
(IY+DD),BC ; (IY+DD),DE ; (IY+DD),HL

LD (1st Operand),Low order byte 2nd Operand
INC     Register of 1st operand
LD (1st Operand),High order byte 2nd Operand

Side Effect: first operand register is incremented by 1.
(6) Expansion of: LD (BC),HL

PUSH AF
LD A,L
LD (BC),A
INC BC
LD A,H
LD (BC),A
POP AF

Side Effect: Register BC is incremented by 1.
(7) Expansion of: LD (DE),HL

PUSH AF
LD A,L
LD (DE),A
INC DE
LD A,H
LD (DE),A
POP AF

Side Effect: Register DE is incremented by 1.
(8) Expansion of: LD (HL),HL

PUSH AF
LD A,H
LD (HL) ,L
INC HL
LD (HL) ,A
POP AF

Side Effect: Register HL is incremented by 1.

(9) Expansion of: LD xx,yy where xx and yy are any of



the following operand pairs:
(BC),(DE ) ; (BC),(HL) ; (BC),(IX+DD) ; (BC),(IY+DD)
(DE),(BC) ; (DE),(HL) ; (DE),(IX+DD) ; (BC),(IY+DD)
(HL),(BC) ; (HL),(DE) ; (HL),(IX+DD) ; (HL),(IY+DD)
(IX+DD),(BC) ; (IX+DD),(DE) ; (IX+DD),(HL);(IX+DD),(IY+DD)
(IY+DD),(BC) ; (IY+DD),(DE) ; (IY+DD),(HL);(IY+DD),(IX+DD)

LD A,(2nd Operand)
LD (1st Operand),A

Side Effect: Register A is changed.
(10) Expansion of: LD xx,yy where xx and yy are any

of the following operand pairs:
BC,(HL) ; BC,(IX+DD) ; BC,(IY+DD)
DE,(HL) ; DE,(IX+DD) ; DE,(IY+DD)
HL,(IX+DD) ; HL,(IY+DD)

LD Low order byte 1st Operand,(2nd Operand)
INC Contents of 2nd Operand, register
LD High order byte 1st Operand,(2nd Operand)

Side Effect: 2nd operand Register is incremented 
(HL,IX or IY)

(11) Expansion of: LD xx,(yy) where xx and yy are either
of the following operand pairs: 
BC,(BC) ; DE,(DE)

PUSH Contents of 2nd Operand
EX (SP),HL
LD Low order byte of 1st Operand,(HL)
INC HL
LD High order byte of 1st Operand,(HL)
POP HL

(12) Expansion of: LD xx, (yy) where xx and yy are either
of the following operand pairs: 
BC,(DE) ; DE,(BC)

PUSH Contents,of 2nd Operand
EX (SP),HLLD Low order byte of 1st Operand,(HL)
INC HL



LD High order byte of 1st Operand,(HL)
EX (SP),HL
POP Contents of 2nd Operand

Side Effect: 2nd operand register is incremented by 1.
(13) Expansion of: LD xx,(yy) where xx and (yy) are

either of the following operand
pairs:
HL,(BC) ; HL,(DE)

PUSH AF
LD A,(2nd Operand)
LD L,A
INC Contents of 2nd Operand
LD A,(2nd Operand)
LD H,A
POP AF

Side Effect: 2nd operand Register is incremented by 1. 
(14) Expansion of: LD HL,(HL)

PUSH AF
LD A,(HL)
INC HL
LD H,(HL)
LD L,A
POP AF



MOVD operand1,operand2,length MOVe with Decrement

Mnemonic: MOVD Operand:    nn1,nn2,n length is specified
nn1,nn2 length is in BC
nn1,nn2,(nn3)length is contents 

of nn3 (byte)
nn1,(nn2) length is first  byte

of nn2.
Description:
Moves a string of a given length (implied in the operand) 
from the address of operand2 to the address of operand1.
MOVD starts at the end of the string and moves backward 
starting at the address of operand2.
You can specify the length as a constant, the contents of an 
address, or the contents of the BC register.
Example: If the address 4000 contained the string
"develop":
MOVD 5000H,4000H,7
moves "develop" from address 3FFA-4000 to 4FFA-5000 starting 
with the end of the string, (i.e. 'p ') which would be 
located at address 5000H .
(1) Expansion: MOVD nn1,nn2,n

LD DE,nn1 
LD HL,nn2 
LD BC,n 
LDDR

(2) Expansion: MOVD nn1,nn2
LD DE,nn1
LD HL,nn2 
LD A,B 
OR C 
JR Z,X1 
LDDR

X1:



(3) Expansion: MOVD nn1,nn2,(nn3)
LD
LD
LD
LD
LD
OR
JR
LDDR

X1:

DE,nn1 
HL,nn2
A,(nn3) 
C ,A
B, 0 
A
Z,X1

(4) Expansion: MOVD nn1,(nn2)
LD
LD
LD
LD
INC
LD
OR
JR
LDDR

X1:

DE,nn1 
HL,nn2 
C,(HL) 
B,0 
HL 
A,B 
C
Z,X1



MOVe with Increment

nn1,nn2,n length is 
specified.

nn1,nn2 length is in BC 
nn1,nn2,(nn3) length is 

contents of nn3 
nn1,(nn2) length is 

first byte 
of nn2.

Description: Moves a string of the given length from the
address of operand2 to the address of operand1. MOVI 
starts at the beginning of the string and moves forward.
You can specify the length as a constant, the contents of a 
memory address, or the contents of the BC register.
Example: If location 4001H contains the string "develop",
the instruction:
MOVI 5000H,4000H,7
moves "develop" from address 4001H to 5000H starting with d, 
the first letter.
(1) Expansion: MOVI nn1,nn2,n

LD DE,nn1 
LD HL,nn2 
LD BC,n 
LDIR

(2) Expansion: MOVI nn1,nn2

MOVI operand1,operand2,length

Mnemonic: MOVI Operands:

LD DE,nn1
LD HL,nn2
LD A,B
OR C
JR Z,X1
LDIR

X1:
(3) Expansion: MOVI nn1,nn2,(nn3)



LD DE,nn1
LD HL,nn2
LD A,(nn3)
LD C,A
LD B,0
OR A
JR
LDIR

Z,X1
X1:
(4) Expansion: MOVI nn1,(nn2)

X1:

LD DE,nn1 
LD HL,nn2 
LD C,(HL) 
LD B,0 
INC HL 
LD A,B 
OR C 
JR Z,X1 
LDIR



POP

Mnemonic: POP Operand: none
Description:
Increments the stack pointer one full word.
Example: If the stack pointer contains the byte 39H on top
and 45H in the next location
POP
increments the stack pointer past these two bytes to the 
next point.
Expansion:

INC SP
INC SP



RSTR operand ReSToRe

Mnemonic: RSTR Operand: n where n=
none restores HL,DE 

BC
4 restores HL,DE

BC and AF
I restores HL,DE

BC,AF,IX,IY 
P restores HL,DE,

BC,AF,IX,IY,HL' 
DE',BC'

A restores HL,DE,
BC,AF,IX,IY,HL' 
DE',BC',AF'

Description:
Restores the registers specified by the operand after a 
SAVE (see extended instruction). This is often used after a 
return from a subroutine.
Example: If registers HL, DE, BC are saved (See SAVE),

RSTR
restores them to their original values.
(1) Expansion: RSTR

POP HL
POP DE
POP BC

(2) Expansion: RSTR 4
POP HL
POP DE
POP BC
POP AF

(3) Expansion: RSTR I
POP HL



POP DE
POP BC
POP AF
POP IY
POP IX

(4) Expansion: RSTR P
POP HL
POP DE
POP BC
POP AF
POP IY
POP IX
EXX
POP HL
POP DE
POP BC
EXX

(5) Expansion: RSTR A
POP HL
POP DE
POP BC
POP AF
POP IY
POP IX
EXX
POP HL
POP DE
POP BC
EXX
EX     AF,AF'
POP AF
EX     AF,AF'



SAVE operand

Mnemonic: SAVE Operand: n where n=
none saves HL,DE,BC
4 saves HL,DE,BC 

AF
I saves HL,DE,BC, 

AF,IX,IY
P saves HL,DE,BC 

AF,IX,IY,HL'
DE',BC'

A saves HL,DE,BC, 
AF,IX,IY,HL',
DE',BC',AF'

Description:
Copies the contents of the registers specified by the 
operand. This is useful before executing a subroutine.
The registers are restored with RSTR (see extended 
instruction).
Example:
SAVE

saves the contents of registers HL, DE, BC, to free them for 
use, then execute an SAVE.
(1) Expansion: SAVE

PUSH BC
PUSH DE
PUSH HL

(2) Expansion: SAVE 4
PUSH AF
PUSH BC
PUSH DE
PUSH HL

(3) Expansion SAVE I



PUSH IX
PUSH IY
PUSH AF
PUSH BC
PUSH DE
PUSH HL

(4) Expansion: SAVE P
EXX
PUSH BC
PUSH DE
PUSH HL
EXX
PUSH IX
PUSH IY
PUSH AF
PUSH BC
PUSH DE
PUSH HL

(5) Expansion: SAVE A
EX AF,AF'
PUSH AF
EX AF,AF'
EXX
PUSH BC
PUSH DE
PUSH HL
EXX
PUSH IX
PUSH IY
PUSH AF
PUSH BC
PUSH DE
PUSH HL



Supervisory Call— SVC

Mnemonic: SVC Operand: n
Performs the supervisory call specified by n. 
Expansion:

LD A,n
RST 8



Section 3
       Error Messages



SECTION III 
ERROR MESSAGES



EDITOR ERROR MESSAGES

BAD FILE FORMAT
The file is not a type ALEDIT can load, either fixed LRL 1 
or Variable, and with record length not greater than 256
bytes.

BAD FILENAME FORMAT
The filename is too long or incorrectly formatted on a load 
or a write command.

BAD PARAMETERS
The ASCII line number converted to hexadecimal is greater 
than 65535 decimal (for line number request).
The change string is zero or the length of the line to be 
changed is zero (for Change command).

BUFFER FULL
There is no more room in the edit buffer. Program returns 
from any mode back to the command mode. Note that the edit 
buffer is about 4K smaller if DO, HOST, COMM, SPOOL, DEBUG 
or ALBUG are on.

LINE LENGTH TOO LONG, TRUNCATING LINE
You are loading a file that has lines longer than 78 
characters.

LINE NUMBER TOO LARGE
The line number is larger than the last line number in the 
file.
The editor does not recognize your command. Re—type it.



NO TEXT
The edit buffer is empty, the only commands which are 
effective are:

K, L, Y, I, Q, J, S
OCCURRENCE TOO LARGE
In the Find and Change commands the occurrence is greater 
than 255.

SEARCH ARG TOO LONG
The string you want to search for is longer than 37 
characters.

SYNTAX ERROR
The command is improperly specified.

TOTAL LINE LENGTH TOO LONG
The new line created by a Change command is greater than the 
acceptable Line Length.
If the Editor returns an error code, it is a TRSDOS error 
message. You can identify it, by simply typing in the error 
number. For example, at TRSDOS READY type:

ERROR 19 <ENTER>
or at the Editor command mode, type:

S ERROR 19 <ENTER>
and your computer answers you with the correct 
identification:

IMPROPER FILE NAME (filespec)
You can do this any time your computer identifies an error 
which you are not aware of.



HIT ANY KEY TO CONTINUE
If there is an error in the load or write routines, the 
Editor waits for the user to read the entire error message.



ASSEMBLER ERROR CODES

CODE | MEANING
A Arithmetic Overflow -- result of a

multiplication is outside the range 
of -65536 - +65535

B  Balance Error of Brackets

C
Condition Error
ELSE outside an IF ... ENDIF pair
Unterminated IF
ENDIF without matching IF
Macro defined after a macro was expanded

D
Macro Definition Error 
ENDM outside a macro definition 
Macro not terminated when END statement was 

reached.
Parameter substitution (i.e. "#9") specified 

in the body of the macro for a parameter 
not listed in the heading.

Macro body too long.
E Missing END statement 

Missing ENDM statement
F Include files nested too deeply
I Illegal character

Control character in source file.
L Maximum Line Length Exceeded. The limit is 

254 characters a line
M Multiple Definition of a Symbol 

This includes defining a symbol and declaring 
it EXTRN

O Stack Overflow —  expression too complicated

P
Phase Error —  Symbol appears or changes value 

after Pass 1. This is often caused by using 
symbols in the operand field of EQU, DEFS, 
or ORG before those symbols are defined.



R Range Error in Relative Addressing.
Use a JP instead of JR, or rearrange code.

S
Syntax Error
Illegal operation code
Too few, too many, or the wrong type of 

operands
Use of an external symbol or relocatable 

expression where it is not allowed 
Use of an instruction generating object code 

within an ISECT
Use of an instruction before a PSECT 
Instruction illegal after a LINK directive

T Mixing of absolute and relocatable PSECTs
U    | Undefined Symbol

V
Illegal Value
Value too large to fit in a single byte 

(-256 - +255 permitted)
Illegal combination of relocatable or 

external symbols
W Reserved word used as a symbol. Do not use 

a register name or branch condition as a 
symbol



LINKER ERROR MESSAGES

Symbol Table Overflow
There are too many external symbols to fit in memory. 

Reduce the number of symbols declared public or global by 
assembling several modules together, or using shorter names.

Multiply Defined Entry Symbol
The indicated symbol has been defined more than once 

(and declared public and/or global). The two or more 
definitions may be in the same object file (the assembler 
will output an 'M' error) or in different files. Note that 
using the same name for a public or global symbol in one 
file and for a local symbol (not declared PUBLIC, GLOBAL or 
EXTRN) in another file is permitted.

Address Different from Pass 1
The indicated symbol changed values between Pass 1 and 

Pass 2. Normally this error is preceded by a "Multiply 
Defined Entry Symbol" message and the cause is the same.
This error may also be caused by changing disks in the 
middle of a link, inserting a disk with a different version 
of the same object file in a lower drive number during the 
link, or linking corrupted object files.

The two addresses are the values from Pass 1 and Pass 2 
respectively. These values and the PSECT map may be used to 
locate the modules containing the definitions, assuming that 
the value falls within the code area of the module.

Undefined External Symbol
The indicated symbol is declared EXTRN in at least one 

module and is never defined and declared PUBLIC or GLOBAL in 
any module included in the link. This is usually caused by 
failing to declare a label PUBLIC, omitting files that 
should have been included in the link, or linking incomplete 
programs to test just the implemented parts. In the last 
case, if the instructions referring to the undefined symbol 
are never used, the error may be ignored.



Missing External Transfer Address
The main program ends with NOEND, or the object file 

has been corrupted. The main program should terminate with 
END and a transfer address.
Illegal Addressing

The load address being computed by the linker wraps 
around from FFFF to 0000. Reduce the size of your program 
or use a lower load address.
Invalid Parameter

The LINKS are nested too deeply; an illegal character 
was specified in a filename on the command line, LINK, or 
GLINK instruction, the source filename is missing, or errors 
were found in the $=XXXX parameter.



ERROR 24 (File Not Found)
Object file not found.

Note: default extension is /REL.

LINKER TRSDOS ERRORS

ERROR 34 (Attempt to Use a Non-Program File As a Program)
The file used is incomplete or in NOLOAD format, or is not 
an object file.

ERROR 37 (Open Attempt For a File Already Open)
Another file, directly or indirectly, attempted to include 
itself with a LINK directive.

Note: default extension is /REL. Also, other errors may
include: disk read/write errors, password protection,
illegal disk change, disk full etc.



Section 4
Appendices



Appendix A/ UNDOCUMENTED Z80 INSTRUCTIONS

************************************************************
* T hese instructions are not documented by *
* ZILOG. Radio Shack does not guarantee that they will *
* work on all processors. You should test them in your *
* own environment to ensure their validity. ******************************************************



SHIFT/LOAD INSTRUCTIONS

************************************************************
* These instructions are not documented by *
* ZILOG. Radio Shack does not guarantee that they will *
* work on all processors. You should test them in your *
* own environment to ensure their validity. *************************************************************

In the following list, the undocumented instructions on the 
left perform the same function as the corresponding 
instructions on the right, except that the memory location 
data is shifted or rotated and stored in both the register 
and the memory location.

RLCLD r,m RLC m
RLLD r,m RL m
RRCLD r,m RRC m
RRLLD r,m RRL m
SLALD r,m SLA m
SLOLD r,m SLO m
SRALD r,m SRA m
SRLLD r,m SRL m



r is one of the following registers: A,B,C,D,E,H, or L 
m is one of the following: (IX+d) or (IY+d)
The operation of the condition code bits and instruction 
timing is believed to be the same as for the corresponding 
shift or rotate instruction.
OBJECT CODE:

RLCLD 0 r = 111 A
RLLD 2 000 B
RRCLD 1 001 C
RRLLP 3 010 D
SLALD 4 011 E
SLOLD 6 100 H
SRALD 5 101 L
SRLLD 7

n =



BIT SET/LOAD AND BIT RESET/LOAD INSTRUCTIONS

************************************************************
* NOTE: These instructions are not documented by *
* ZILOG. Radio Shack does not guarantee that they will *
* work on all processors. You should test them in your *
* own environment to ensure their validity. *************************************************************

In the following list, the undocumented instructions on the 
left perform the same function as the corresponding 
instructions on the right except that the resulting data 
after the bit operation is loaded in both the memory 
location and the register.

RESLD r,n,m RES n,m
SETLD r,n,m SET n,m

r is one of the following registers: A,B,C,D,E,H or L 
n is a bit number with value between 0 and 7, inclusive 
m is either (IX+d) or (IY+d)





INDEX REGISTER HALF INSTRUCTIONS

************************************************************

* NOTE: These instructions are not documented by *
* ZILOG. Radio Shack does not guarantee that they will *
* work on all processors. You should test them in your *
* own environment to ensure their validity. *
************************************************************

The upper and lower bytes of the index registers IX and IY 
may be manipulated individually. To use these instructions, 
the following register names are used:

XH High Byte of IX
XL Low Byte of IX
YH High Byte of IY
YL Low Byte of IY

The object code generated has a prefix byte of DD or FD (for 
the halves of the IX or IY register) and otherwise is the 
same as the corresponding instructions with the H or L 
register used in place of the high or low byte of an index 
register.
The XH, XL, YH and YL registers may be used in the following
instructions:

ADC A,XH LD r,XH
ADD A,XH LD XH,r
AND XH LD XH,n
CP XH OR XH
DEC XH SBC A,XH
INC XH SUB XH

C, D, or E
XOR XH

r = A, B, C, D, or E





* - Used by ALASM and ALEDIT if SPOOL, HOST, COMM,
DEBUG, and DO are not present.

** - Used only during DISK ZAP command and when first
loading ALBUG. User programs may write over it. ***
*** - Shared by the Editor and programs run with

the Editor "S" command. The Editor assumes other 
programs will use this area and sets it up when 
an "S" command completes.



To convert programs created for the Series I Editor-Assembler, so 
that they can be used with ALDS, follow these steps:
1. Load the Series I Editor-Assembler program into 

ALEDIT:
ALEDIT filespec/ext

2. Using the editor, make the following changes:
a) Change the first ORG statement to PSECT, with the 

same operand.
b) Change all '*LIST ON' statements to ' PRINT ON'
c) Change all '*LIST OFF' statements to ' PRINT OFF'
d) If the < operator is used for a shift operation,

change
value < n to value .SHL. n (n positive)
value <-n to value .SHR.(-n) (n negative)

e) Be sure the program has an END statement
f) Remove all lines that begin with '*' or change

the '*' to a ';'.
3. Write the file to disk in ALDS format (no option 

characters to specify the file format).
4. Assemble the program with the ALDS assembler.

Appendix C/ CONVERTING SERIES I EDITOR-ASSEMBLER PROGRAMS



Appendix D/ ALDS OBJECT CODE FORMAT

Each record is a variable number of bytes, packed consecutively 
in an LRL 256 file. Records may span sector boundaries. The 
file is terminated by a record with an 02 or 03 header. For 
further information, see the Model II Owner's Manual.

HEADER LENGTH 
(1 ) (1 )

Object Code n + 2 | Load address| Data bytes
| (2) | (n)

*Absolute
Entry

02 02 Absolute Entry 
Point (2)

*Relocatable
Entry

02 03 Relocatable Entry 
Offset (2)

*Load - only 03 02 0 0 0 0 
(2)

*One of 
These 

Records 
Terminates 

Each 
Object 

File
*External 03 0D FLAGS Object External
Entry 01000011 (2) Name(10)
Relocatable 
Object Data

04 03 FLAGS
0000lxxx

Object
(2)

External 
Object Data

04 0D FLAGS
0l00llxx

Object
(2)

External 
Name(10)

Public Label 
w/Object

04 0F FLAGS
l00xlxxx

Public Label 
Offset (2)

Object Public Label Name I
(2) (10)



Public Label 04 0F FLAGS Public Label
w/o Object 100x0011 Offset (2)

0 0 0 0 Public Label Name
(2) (10)

Public Label 04 19 FLAGS Public Label
w/External ll0xllxx Offset (2)

Object Public Label External Name
(2) Offset (2) (10)

LINK

GLINK

09 n + 1 FLAGS
00100000

File Name (n)

09 n + 1 FLAGS
00110000

File Name (n)

Numbers given under flags are in binary. X = varies depending on 
particular situation.



FLAGS FOR 03, 04, 07 RECORDS

0 = No public name is present (bit 4 = 0 )
1 = Public name is present
0 = External name is not present
1 = External name is present (bits 3, 2, = 1, 1) 
0 Reserved

0 = Address of public label is relocatable or
not present, or this is an absolute file

1 = Address of public label in a relocatable file
is absolute. (bit 7 = 1 )

0 = No object present (bits, 1, 0 = 0 ,  1, 1)
1 = Object code is present
0 = Object is absolute or not present
1 = Object is relocatable (bit 3 = 1 )

<
00 = Illegal combination
01 = Use only MSB of result (bit 3 = 1 )
10 = Use only LSB of result (bit 3 = 1 )
11 = Use both LSB and MSB of result (if  bit 3 =

1) or object not present (if bit 3 = 0 )

If object is absolute (bit 2 = 0 )  Result = object 
If object is relocatable (bit 2 = 1 )

Result = object + PSECTS origin (if bit 6 = 0 )  
or Result = object + External name value

(if bit 6 = 1 )



FLAGS for 05/06 Records

1 = File contains

1 = file contains
0 Reserved
1 = File contains

1 = File contains
0 Reserved
0 Reserved
0 Reserved

relocatable object 
externals

public records 
a link or glink file name



Appendix E/ MODEL I ALTRAN

The MODEL I ALTRAN diskette in this package contains a NEW 
version of TRSDOS which is not compatible with OLD versions 
of Model I TRSDOS, see below for further details.

UPGRADE UTILITY ON TRSDOS 2.3B
OLD Model I TRSDOS diskettes to be used under the NEW Model I 
TRSDOS MUST be UPGRADEd before use. Once UPGRADEd, a system 
or data diskette becomes a NEW Model I TRSDOS data diskette.
OLD diskettes used under NEW TRSDOS without UPGRADEing, may 
cause extraneous information to be read at the end of files, 
giving a false End Of File (EOF) indication. Some programs 
will not function properly under these conditions.
NEW diskettes used under OLD TRSDOS, may not access all data 
and/or NEW programs may not run correctly.
If you determine that you need to use the UPGRADE utility, 
see page titled "TIPS ON USING THE MODEL I TRSDOS 2.3B 
UPGRADE UTILITY" contained in this addendix.
NOTE: When changing from one TRSDOS to the other you must

use the RESET switch each time the diskette in drive 0 
is changed.

RADIO SHACK APPLICATION PROGRAMS WHICH WERE DELIVERED ON AN 
OLD TRSDOS DISKETTE SHOULD NOT BE UPGRADED.

OLD:
NEW:
file:
program: 
data:
system diskette:

TRSDOS 2.1, 2.2, and 2.3.
TRSDOS 2.3B.
A collection of information stored as one 
named unit in the directory.
A file which causes the computer to 
perform a function.
Information contained in a file which is 
used by a program.
A diskette containing TRSDOS. When this 
diskette is placed in drive 0 and the 
RESET switch is pressed, TRSDOS will begin 
to run.



®

data diskette: A diskette which does not contain TRSDOS.
If this diskette is placed in drive 0 and 
the RESET switch is pressed, the screen 
will clear and "NO SYSTEM" will be 
displayed.

UPGRADE: A program contained on the TRSDOS 2.3B
diskette.

DIFFERENCES BETWEEN MODEL I TRSDOS 2.3B and TRSDOS 2.3
Differences between TRSDOS 2.3B and TRSDOS 2.3 are:
1. Variable length records have been corrected, in all 

aspects.
2. In most cases, your computer will not "hang up" when you 

attempt use of a device which is not connected and 
powered up.

3. The DEVICE command has been deleted.
4. The following commands have been added:

CLS
This command clears the display and puts it in the 64- 
character mode.
PATCH 'filespec' (ADD=aaaa,FIND=bb,CHG=cc)
This command lets you make a change to a program file. 
You need to specify:

'aaaa' - a four byte hexadecimal address specifying 
the memory location of the data you want to 
change

'bb' - the contents of the byte you want to find 
and change. You can specify the contents of 
more than one byte.

'cc' - the new contents to replace 'bb' 
For example:

PATCH DUMMY/CMD (ADD=4567,FIND=CD3300,CHG=CD3B00) 
changes CD3300, which resides at memory location 4567 
(HEX) in the file named DUMMY/CMD, to CD3B00.



If this command gives you a STRING NOT FOUND error 
message, this means that either 'bb' does not exist, or 
else 'bb' crosses a sector boundary. If 'bb' crosses a 
sector boundary, you must patch your file one byte at 
a time. For example:

PATCH DUMMY/CMD (ADD=4568,FIND=33,CHG=3B) 
replaces the contents of the second byte in the above 
example.

TAPE (S=source device,D=destination device)
This command transfers Z-80 machine-language programs 
from one device to the other. You must specify the 
'source device' and 'destination device' using these 
abbreviations:

T - Tape 
D - Disk 
R - RAM (Memory)

The only valid entries of this command are:
TAPE (S=T,D=D) TAPE (S=T,D=R) TAPE (S=D,D=T)

For example
TAPE (S=D,D=T)

starts a disk-to-tape transfer. TRSDOS will prompt you 
for the diskette file specification and ask you to press 
<ENTER> when the cassette recorder is ready for 
recording.
CAUTION: When doing a tape-to-RAM transfer, do not use a
loading address below 6000 (Hex), since this would write 
over TRSDOS or the tape command.

5. These commands have been slightly changed:
BACKUP now checks to see if the diskette which will be 
your backup copy is already formatted. If it is, BACKUP 
will ask you if you want to REFORMAT it.
CLOCK will no longer increment the date when the time 
goes beyond 23:59:59.
COPY now works with only one-drive. For example:

COPY FILE1:0 to FILE3:0
duplicates the contents of FILE1 to a file named FILE3 
on the same diskette.



KILL will now allow you to kill a protected file without 
knowing its UPDATE or protection level. To kill this 
kind of file, type an exclamation mark (!) at the end of 
the KILL command. For example:

KILL EXAMPLE !
kills the UPDATEd or protected file named EXAMPLE.
(Note the mandatory space between the file name and the 
exclamation mark.)
LIST only lists the printable ASCII characters.
PROT no longer allows you to use the UNLOCK parameter. 
DIR is now in this format:
Disk Name: TRSDOS Drive: 0 04/15/81
Filename Attrb LRL #Rec #Grn #Ext EOF
JOBFILE/BLD N*X0 256 1 1 1 1
TERMINAL/V1 N*X0 256 5 2 1 126
LOADX/CMD N*X0 256 5 2 1 0
*** 171 Free Granules ***

1. Disk name is the name which was assigned to  disk
when it was formatted.

2. File Name is the name and extension which was 
assigned to the file when it was created. The password (if 
any) is not shown.

3. Attributes is a four-character field:
a. the first character is either I (Invisible file)

or N (Non-invisable file)
b. the second character is S (System file) or *

(User file)
c. the third character is the password protection

status of the file:
X - the file is unprotected (no password)
A - the file has an access word but no 

update word
U - the file has an update word but no 

access word
B - the file has both update and access 

word



d. the fourth character specifies the level of 
access assigned to the access word:

0 - total access
1 - kill the file and everything listed

below
2 - rename the file and everything listed

below
3 - this designation is not used
4 - write and everything listed below
5 - read and everything listed below
6 - execute only
7 - no access

4. Number of Free Granules - how many free granules 
remain on the diskette.

5. Logical Record Length - the record length which was 
assigned to the file when it was created.

6. Number of Records - how many logical records have 
been written.

7. Number of Granules - how many granules have been used 
in that particular file.

8. Number of Extents - how many segments (contiguous 
blocks of up to 32 granules) of disk space are allocated to 
the file.

9. End of File (EOF) - shows the last byte number of the
file.

TIPS ON USING THE MODEL I TRSDOS 2.3B UPGRADE UTILITY
If you determine that you need to use the UPGRADE 

utility then proceed as indicated below.
Insert your TRSDOS 2.3B system diskette in drive 0, 

press the RESET switch, and when TRSDOS READY is displayed 
type UPGRADE <ENTER>. Your screen will display:

TRSDOS DIRECTORY UPGRADE UTILITY
FOR CONVERSION OF TRSDOS 2.1, 2.2, OR 2.3 TO
TRSDOS 2.3B DIRECTORY FORMAT.
ONCE UPGRADE HAS BEEN EXECUTED, YOUR DISKETTE SHOULD
NOT BE USED UNDER TRSDOS 2.1, 2.2, OR 2.3 AGAIN.



DO YOU WISH TO CONTINUE (Y/N/Q)?
This means that the directory format on your TRSDOS

2.1, 2.2, or 2.3 diskette will be converted to the TRSDOS 
2.3B format. Once you type Y to continue, the screen will 
display:

INSERT DISKETTE TO BE UPGRADED IN DRIVE 1.
PRESS <ENTER> WHEN READY.
Insert the diskette you want to convert in drive 1 and 

press <ENTER>. After successful conversion, the screen will 
display a CONVERSION COMPLETE message. If you are attempting 
to convert a diskette which has already been converted, the 
screen will display a DISKETTE IS ALREADY A 2.3B error 
message.

TECHNICAL NOTE
For all files indicated in the directory that have an End Of 
File (EOF) not equal to zero, UPGRADE will change the number 
of records to be one less than the previous record count. 
Note that in FILE1, the number of records indicated has been 
changed from 10 to 9 after UPGRADE. For FILE2 the records 
indicated remain the same since EOF=0.

BEFORE UPGRADE 
TRSDOS 2.1, 2.2, 2.3

AFTER UPGRADE 
TRSDOS 2.3B

FILE1 EOF=9 10 RECORDS 9 RECORDS
FILE2 EOF=0 10 RECORDS 10 RECORDS

If the TRSDOS 2.1, 2.2, or 2.3 diskette is a system 
diskette, part of the conversion process will prohibit 
accidental usage under the TRSDOS 2.1, 2.2, or 2.3 by 
killing the files listed below:

SYSO/SYS SYS1/SYS SYS2/SYS
SYS3/SYS SYS 4/SYS SYS5/SYS
SYS6/SYS FORMAT/CMD BACKUP/CMD
BASICR/CMD BASIC/CMD



TIPS ON GETTING OBJECT FILES FROM TRSDOS 2.3B 
ONTO TRSDOS 2.1, 2.2, OR 2.3 DISKETTES
As an alternative to UPGRADEing your entire diskette, you 
can use these procedures to move an object file from 2.3B to
2.1, 2.2 or 2.3:
1) Insert your TRSDOS 2.3B system diskette that contains the 

object file in drive 0. Press the RESET switch.
2) At TRSDOS READY enter the command:

LOAD object filespec
3) Remove your TRSDOS 2.3B diskette.
4) Insert your TRSDOS 2.3 diskette in drive 0 and press the 

RESET switch.
5) At TRSDOS READY enter the command:

DUMP object filespec (START=start address,
END=end address,TRA=transfer address)

6) The object file on this diskette may now be used as 
needed under TRSDOS 2.1, 2.2, or 2.3.



IMPORTANT NOTES
Please note the following concerning communications with 
Model I ALTRAN:
1. Radio Shack Application programs on TRSDOS 1.1, 1.2,

2.1, 2.2, or 2.3 were tested on the particular 
version of TRSDOS for which they were purchased.
No quarantee is implied that these programs will 
work correctly after being UPDATEd to MODEL I TRSDOS 
2.3B.

2. If you are transferring from Model I to Model I, 
both Model I's must be running under TRSDOS 2.3B.

3. You cannot run BASIC programs because TRSDOS 2.3B 
does not contain DISK BASIC.



Following is a listing of object codes in numerical order in column two followed by the nmemonic or source 
statement in column four.























F/Z-80 CPU Register and 
Architecture

This section gives information about the actual Z80 chip including the Central 
Processing Unit (CPU) Register configuration.

Z-80 CPU Architecture
A block diagram of the internal architecture of the z-80 cpu is shown in Figure 
2 . The diagram shows all of the major elements in the cpu and it should be 
referred to throughout the following description.

CPU Registers
The Z-80 cpu contains 208 bits of r/w memory that are accessible to the 
programmer. Figure 3 illustrates how this memory is configured into eighteen 
8-bit registers and four 16-bit registers. All Z-80 registers are implemented using 
static ram. The registers include two sets of six general purpose registers that 
may be used individually as 8-bit registers or in pairs of 16-bit registers. There 
are also two sets of accumulator and flag registers.
Special Purpose Registers

Figure 2. Z-80 CPU Block Diagram.



Figure 3. Z-80 CPU Register Configuration.

1. Program Counter (PC). The program counter holds the 16-bit address of the 
current instruction being fetched from memory. The pc is automatically 
incremented after its contents have been transferred to the address lines.
When a program jump occurs the new value is automatically placed in the pc, 
overriding the incrementer.

2. Stack Pointer (SP). The stack pointer holds the 16-bit address of the current 
top of a stack located anywhere in external system ram memory. The 
external stack memory is organized as a last-in first-out (lifo) file.
Data can be pushed onto the stack from specific cpu registers or popped off 
of the stack into specific cpu registers through the execution of push and pop 
instructions. The data popped from the stack is always the last data pushed 
onto it. The stack allows simple implementation of multiple level interrupts, 
unlimited subroutine nesting and simplification of many types of data 
manipulation.

3. Two Index Register (IX & IY) . The two independent index registers hold a 
16-bit base address that is used in indexed addressing modes. In this mode, 
an index register is used as a base to point to a region in memory from which 
data is to be stored or retrieved. An additional byte is included in indexed 
instructions to specify a displacem ent from  this base. This displacem ent is 
specified as a two’s complement signed integer. This mode of addressing 
greatly simplifies many types of programs, especially where tables of data 
are used.



4. Interrupt Page Address Register (I). The z-80 cpu can be operated in a 
mode where an indirect call to any memory location can be achieved in 
response to an interrupt. The I Register is used for this purpose to store the 
high order 8-bits of the indirect address while the interrupting device provides 
the lower 8-bits of the address. This feature allows interrupt routines to be 
dynamically located anywhere in memory with absolute minimal access time 
to the routine.

5. Memory Refresh Register (r) . The z-80 cpu contains a memory refresh 
counter to enable dynamic memories to be used with the same ease as static 
memories. Seven bits of this 8 bit register are automatically incremented after 
each instruction fetch. The eighth bit will remain as programmed as the result 
of an LD R, A instruction. The data in the refresh counter is sent out on the 
lower portion of the address bus along with a refresh control signal while the 
cpu is decoding and executing the fetched instruction. This mode of refresh is 
totally transparent to the programmer and does not slow down the cpu 
operation. The programmer can load the R register for testing purposes, but 
this register is normally not used by the programmer. During refresh, the 
contents of the I register are placed on the upper 8 bits of the address bus.

Accumulator and Flag Registers
The CPU includes two independent 8-bit accumulators and associated 8-bit flag 
registers. The accumulator holds the results of 8-bit arithmetic or logical 
operations while the flag register indicates specific conditions for 8 or 16-bit 
operations, such as indicating whether or not the result of an operation is equal 
to zero. The programmer selects the accumulator and flag pair that he wishes to 
work with a single exchange instruction so that he may easily work with either 
pair.
General Purpose Registers
There are two matched sets of general purpose registers, each set containing six 
8-bit registers that may be used individually as 8-bit registers or as 16-bit 
register pairs by the programmer. One set is called bc, de and hl while the 
complementary set is called bc ', de' and hl '.  At any one time the programmer 
can select either set of registers to work with through a single exchange 
command for the entire set. In systems where fast interrupt response is required, 
one set of general purpose registers and an accumulator/flag register may be 
reserved for handling this very fast routine. Only a simple exchange command 
need be executed to go between the routines. This greatly reduces interrupt 
service time by eliminating the requirement for saving and retrieving register 
contents in the external stack during interrupt or subroutine processing. These 
general purpose registers are used for a wide range of applications by the 
programmer. They also simplify programming, especially in rom based systems 
where little external read/write memory is available.



Arithmetic & Logic Unit (ALU)
The 8-bit arithmetic and logical instructions of the CPU are executed in the alu. 
Internally the alu communicates with the registers and the external data bus on 
the internal data bus. The type of functions performed by the alu include:
Add Left or right shifts or rotates (arithmetic and logical)
Subtract Increment
Logical and Decrement
Logical or Set bit
Logical Exclusive or        Reset bit
Compare Test Bit

Instruction Register and CPU Control
As each instruction is fetched from memory, it is placed in the instruction 
register and decoded. The control sections performs this function and then 
generates and supplies all of the control signals necessary to read or write data 
from or to the registers, control the alu and provide all required external control 
signals.

Z-80 CPU Pin Description
The Z-80 CPU is packaged in an industry standard 40 pin Dual In-Line Package.
The I/O pins are shown in Figure 4 and the function of each is described below.
A0-A15 Tri-state output, active high. A0-A15 constitute a 16-bit
(Address Bus)         address bus. The address bus provides the address for 

memory (up to 64K bytes) data exchanges and for I/O 
device data exchanges. I/O addressing uses the 8 lower 
address bits to allow the user to directly select up to 256 
input or 256 output ports. A0 is the least significant address 
bit. During refresh time, the lower 7 bits contain a valid 
refresh address.

d 0-d 7
(Data Bus)

M1
(Machine Cycle 
one)

Tri-state input/output, active high. D0-D7 constitute an 
8-bit bidirectional data bus. The data bus is used for data 
exchanges with memory and I/O devices.
Output, active low. M1 indicates that the current machine 
cycle is the OP code fetch cycle of an instruction execution. 
Note that during execution of 2-byte op-codes, M1 is 
generated as each op-code byte is fetched. These two byte 
op-codes always begin with CBH, DDH, EDH or FDH. M1 
also occurs with IORQ to indicate an interrupt acknowledge 
cycle.



Figure 4. Z-80 Pin Configuration.

MREQ
(Memory
Request)
IORQ
(Input/Output
Request)

RD
(Memory Read)

WR
(Memory Write)

Tri-state output, active low. The memory request signal 
indicates that the address bus holds a valid address for a 
memory read or memory write operation.
Tri-state output, active low. The IORQ signal indicates that 
the lower half of the address bus holds a valid I/O address 
for a I/O read or write operation. An IORQ signal is also 
generated with an M 1 signal when an interrupt is being 
acknowledged to indicate that an interrupt response vector 
can be placed on the data bus. Interrupt Acknowledge 
operations occur during M1 time while I/O operations never 
occur during M1 time.
Tri-state output, active low. RD indicates that the CPU 
wants to read data from memory or an I/O device. The 
addressed I/O device or memory should use this signal to 
gate data onto the CPU data bus.
Tri-state output, active low. WR indicates that the CPU data 
bus holds valid data to be stored in the addressed memory 
or I/O device.

Radio /hack

422



RFSH
(Refresh)

HALT 
(Halt state)

WAIT
(Wait)

INT
(Interrupt
Request)

NMI
(Non Maskable 
Interrupt)

RESET

Output, active low. RFSH indicates that the lower 7 bits of 
the address bus contain a refresh address for dynamic 
memories and the current MREQ signal should be used to 
do a refresh read to all dynamic memories.
Output, active low. HALT indicates that the CPU has 
executed a HALT software instruction and is awaiting either 
a non maskable or a maskable interrupt (with the mask 
enabled) before operation can resume. While halted, the 
CPU executes NOP’s to maintain memory refresh activity.
Input, active low. WAIT indicates to the Z-80 CPU that the 
addressed memory or I/O devices are not ready for a data 
transfer. The CPU continues to enter wait states for as long 
as this signal is active. This signal allows memory or I/O 
devices of any speed to be synchronized to the CPU.
Input, active low. The Interrupt Request signal is generated 
by I/O devices. A request will be honored at the end of 
the current instruction if the internal software controlled 
interrupt enable flip-flop (IFF) is enabled and if the BUSRQ 
signal is not active. When the CPU accepts the interrupt, an 
acknowledge signal (IORQ during M 1, time) is sent out at 
the beginning of the next instruction cycle.
Input, negative edge triggered. The non maskable interrupt 
request line has a higher priority than INT and is always 
recognized at the end of the current instruction, independent 
of the status of the interrupt enable flip-flop. NMI 
automatically forces the Z-80 CPU to restart to location 
0066H. The program counter is automatically saved in the 
external stack so that the user can return to the program that 
was interrupted. Note that continuous WAIT cycles can 
prevent the current instruction from ending, and that a 
BUSRQ will override a NMI.

Input, active low. RESET forces the program counter to 
zero and initializes the CPU. The CPU initialization 
includes:
1) Disable the interrupt enable flip-flop
2) Set Register I =  00H
3) Set Register R =  00H
4) Set Interrupt Mode 0
During reset time, the address bus and data bus go to a high 
impedance state and all control output signals go to the 
inactive state.



BUSRQ 
(Bus Request)

BUSAK
(Bus
Acknowledge)

Input, active low. The bus request signal is used to request 
the CPU address bus, data bus and tri-state output control 
signals to go to a high impedance state so that other devices 
can control these buses. When BUSRQ is activated, the 
CPU will set these buses to a high impedance state as soon 
as the current CPU machine cycle is terminated.
Output, active low. Bus acknowledge is used to indicate to 
the requesting device that the CPU address bus, data bus 
and tri-state control bus signals have been set to their high 
impedance state and the external device can now control 
these signals.
Single phase TTL level clock which requires only a 330 
ohm pull-up resistor to + 5  volts to meet all clock 
requirements.

Z-80 CPU Instruction Set
The z-80 cpu can execute 158 different instruction types including all 78 of the 
8080A cpu. The instructions can be broken down into the following major 
groups:
• Load and Exchange
• Block Transfer and Search
• Arithmetic and Logical
• Rotate and Shift
• Bit Manipulation (set, reset, test)
• Jump, Call and Return
• Input/Output
• Basic cpu Control



INDEX

* 159 LD (nn),IX 196-197
8 bit load grp 170-187 LD (nn),IY 197-198

LD r,r' 170 LD SP,HL 198-199
LD r, n 171 LD SP,IX 199
LD r,(HL) 172 LD SP,IY 200
LD r,(IX+D) 172-173 16 bit arithmetic
LD r,(IY+d) 174 group 262-271
LD (HL), r 175 ADD HL,ss 262
LD (IX+d),r 175-176 ADC HL,ss 263
LD (IY+d),r 176-177 ADD IX,pp 265
LD (HL),n 177-178 ADD IY,rr 266
LD (IX+d),n 178 DEC ss 269
LD (IY+d),n 179 DEC IX 270
LD A,(BC) 180 DEC IY 270-271
LD A,(DE) 180-181 INC ss 267
LD A,(nn) 181 INC IX 267-268
LD (BC),A 182 INC IY 268-269
LD (DE),A 182-183 SBC HL,ss 264
LD (nn),A 183-184 Absolute
LD A, I 184 Assembly 105-106
LD A, R 185 ADC A,XH 390
LD I, A 185-186 ADC HL,ss 263
LD R, A 186-187 ADD A,(HL) 229

8 bit arithmethic ADD A,(IX+d) 229-230
and logical 227-251 ADD A,(IY+d) 230-231
ADD A,(HL) 229 ADD A,n 228
ADD A,(IX+d) 229-230 ADD A,r 227-228
ADD A,(IY+d) 230-231 ADD A,S 231-233
ADD A,n 228 ADD A,XH 390
ADD A,r 227-228 ADD HL,s s 262
ADD A,S 231-233 ADD IX,pp 265
AND s 237-239 ADD IY,rr 266
CP s 244-245 Address Different from
DEC m 249-251 Pass 1 381
INC (HL) 247 ALASM (see Assembler)
INC (IX+d) 247-248 ALBUG (see Debugger)
INC (IY+d) 248-249 ALEDIT (see Editor)
INC r 246 ALLINK (see Linker)
OR s 239-241 ALTRAN
SUB s 233-235 Model I 398-405
SBC A,s 235-237 (see File Transfer)
XOR s 241-243 AND s 237-239

16 bit load grp 188-208 AND XH 390
LD dd,nn 188-189 APOP 125
LD IX,nn 189 APUSH 125
LD IY,nn 190 Arithmetic
LD HL,(nn) 190-191 Operators 95-97
LD dd,(nn) 191-192 ASCII (see DEFM)
LD IX,(nn) 192-193 Assembler
LD IY,(nn) 193-194 Command 37
LD (nn),HL 194-195 Description 37-42*
LD (nn),dd 195-196 Directives 101-159



Errors 379 CCF 256
Expressions 94-95 CMPD operand1,operand2,
Labels 91-92 [length] 349-351
Object Code CMPI operand1,operand2,

Format 394-397 length 352-254
Operands 94-100 comment 100,159
Operators 95-100 Conditional Sections
Switches 38-42 (see If Sections)
Symbols 91-92 CPD 224-225

Assembler Listing CPDR 225-226
Description 37-42 CPI 221-223
EJECT 132 CPIR 223-224
HEADER 137-138 CPL 254-255
PRINT 149-150 CP s 244-245
QUIT 153 CP XH 390
STOP 157 CPR operand 348
TITLE 158 DAA 253-254
USING 158 Data
VERSION 159 Defining 104
VERSION 159* DEFB 127

Attempt to Use a DEFE 128
Non-Program File DEFM 129
as a Program 383 DEFR 129-130

Bad File Format 376 DEFT 130-131
Bad Filename Format 376 DEFW 131-132
Bad Parameters 376 DATE 126-127
BLOCK (see DEFS) DB (see DEFB)
block comment 159 Debugger
BIT b,(HL) 299-300 Description 43-65*
BIT b,(IX+d) 300-301 Loading 44
BIT b ,(iY+d) 301-302 Display 45-47BIT b,r 298-299 Registers 48
Bit,set,reset, and Data 49

test grp 298-308 Breakpoints 40,51-54
BIT b,(HL) 299-300 Disk Zap 62-65
BIT b,(IX+d) 300-301 DEC IX 270
BIT b,(IY+d) 301-302 DEC IY 270-271BIT b,r 298-299 DEC m 249-251
RES b,m 307 DEC ss 269
SET b,r 302-303 DEC XH 390
SET b,(HL) 303-304 DEFB 127
SET b,(IX+d) 304-305 DEFE 128
SET b,(IY+d) 306-307 DEFL 128Buffer Full 376 DEFM 129

BYTE (see DEFB) DEFR 129-130
CALL cc,nn 322-324 DEFS 130CALL nn 321-322 DEFT 130-131Call and return DEFW 131-132group 321-330 DS (see DEFS)

CALL cc,nn 322-324 DW (see DEFW)CALL nn 321-322 DI 258-259RET 324-325 Directives 101-159
RET CC 325-327 Introduction 102-122
RET I 327-328 Reference 123-159
RETN 328-329
RST p 329-330



Disk Zap 62-65 Extended Z 80
DJNZ e 319-320 Mnemonics 347-374
DROP 132 CPR operand 348
Editor CMPD operand1,

Description 19-25 operand2,
Errors 376 [length] 349-351
Loading  19 CMPI operand1,
Insert Mode 20-23 operand2,
Control 22 length 352-254
Special Keys 23 TZ operand 355

Line Edit Mode 23-25 EX operand 356-358
Subcommands 24 LD double
Special Keys 26 register 359-364

Command Mode 26-36 MOVD operand1,
Special Keys 28 operand2,
Commands 29-36 length 365

Compatibility MOVI operand1,
with other operand2,
Editors 35 length 367-368

EI 259 POP 369
EJECT 132 RSTR operand 310-311
END 132-133 SAVE operand 312-313
ENDI 133 SVC 374
ENDM 133 EXTERN 134-135
ENTRY (see PUBLIC) External Symbols 98
EQU 133 EXTERN 134-135
ERROR 24 383 EXT 134
ERROR 34 383 GLINK 135-136
ERROR 37 383 GLOBAL 136-137
Error Messages 375-383 LINK 142-143
EX AF,AF' 209-210 PUBLIC 152-153
Exchange,Search, EXX 210-211
and Transfer 209-226 FILL 135
CPI 221-223 GLINK 135-136
CPIR 223-224 GLOBAL 136-137
CPD 224-225 File Transfer
CPDR 225-226 Set-Up 71
EX DE,HL 209 Loading 74
EX AF,AF' 209-210 Errors 80
EXX 210-211 Command File 80-81
EX (SP),HL 211-212 Connector 87-88
EX (SP),IX 212-213 Technical 83-86
EX (SP),IY 213-214 Object Files 83
LDI 215-216 File Not Found 383
LDIR 216-218 Hit Any Key to
LDD 218-219 Continue 378
LDDR 219-221 General purpose

EX DE,HL 209 arithmetic and CPU
EX operand 356-358 control grps 253-261
Expressions 94-95 CCF 256
EX (SP),HL 211-212 CPL 254-255
EX (SP),IX 212-213 DAA 253-254
EX (SP),IY 213-214 DI 258-259
EXT 134 EI 259

HALT 258
IM0 260



IM1 260-261 INI 333-334
IM2 261 INIR 334-336
NEG 255-256 IN r,(C) 332-333
NOP 257-258 OUT (C),r 339-340
SCF 257 OUT (n),A 338-339

Global File 114-118 OUTD 343-344
HALT 258 OUT I 340-341
HEADER 137-138 OTIR 341-342
If Sections 121-122 IN r,(C) 332-333

IFDEF 138 Invalid Parameter 382
IFF 138 ISECT 141-142
IFM 139 JP cc,nn 310-311
IFNZ 139 JP (HL) 317
IFP 139 JP (IX) 318
IFT 139 JP (IY) 318-319
IFUND 139 JP nn 309
IFZ 139 JR C , e 312-313

IFUND 139 JR e 311-312
IFZ 139 JR NC,e 313-314
IFDEF 138 JR NZ,e 315-316
IFF 138 JR Z,e 314-315
IFM 139 Jump group 309-320
IFNZ 139 DJNZ e 319-320
IFP 139 JP cc,nn 310-311
IFT 139 JP (HL) 317
Illegal Addressing 382 JP (IX) 318
IM0 260 JP (IY) 318-319
IM1 260-261 JP nn 309
IM2 261 JR C,e 312-313
IN A,(n) 331 JR e 311-312
INC(HL) 247 JR NC,e 313-314
INC IX 267-268 JR NZ,e 315-316
INC IY 268-269 JR Z,e 314-315
INC (IX+d) 247-248 Labels 91-92
INC (IY+d) 248-249 LD A,(BC) 180
INCLUDE 140-141 LD A,(DE) 180-181
INC r 246 LD A, I 184
INC SS 267 LD A,(nn) 181
INC XH 390 LD A,R 185
IND 336-337 LD (BC),A 182
Index Sections 118-119 LD dd,nn 188-189

ISECT 141-142 LD dd,(nn) 191-192
APOP 125 LD (DE),A 182-183
APUSH 125 LD (HL),n 177-178
DROP 132 LD HL,(nn) 190-191

INDR 337-338 LD (HL),r 175
INI 333-334 LD I,A 185-186
INIR 334-336 LD (IX+d),n 178
Initializing LD (IX+d),r 175-176

Location Counterl05 LD IX,nn 189
Input and output LD IX,(nn) 192-193
group 331-346 LD (IY+d),n 179
IN A,(n) 331 LD (IY+d),r 176-177
IND 336-337 LD IY,nn 190
INDR 337-338 LD IY,(nn) 193-194



LD (nn),A 183-184 NOP 257-258
LD R,A 186-187 No Text 377
LD r,n 171 Number Bases 102-103
LD r,r' 17)3 OBJ 147-148
LD r,(HL) 172 Occurrence Too LLarge377
LD r,(IX+D) 172-173 Open Attempt For a
LD r,(IY+d) 174 File Already
LD (nn),dd 195-196 Open 383
LD (nn),HL 194-195 Operands 94-100
LD (nn),IX 196-197 Operators 95-100
LD (nn),IY 197-198 ORG 148-149
LD SP,HL 198-199 OR s 239-241
LD SP,IX 199 OR XH,n 390
LD SP,IY 200 OTIR 341-342
LDD 218-219 OUT (C),r 339-340
LD double OUT (n),A 338-339

register 359-364 OUTD 343-344
LDDR 219-221 OUTI 340-341
LDI 215-216 overflow 161
LDIR 216-218 parity odd 161
LD r,XH 390 parity even 161
LD XH,r 390 PATCH 149
LD XH,n 390 POP 369
Line Length Too Long, POP IX 205-207

Truncating line 376 POP IY 207-208
Line Number Too POP qq 204-205

Large 376 PUSH IX 202-203
LINK 142-143 PUSH IY 203-204
Linker PUSH qq 200-201

Command 67-68 PRINT 149-150
Technical 69 Program Section 109-110
Errors 381-383 PSECT 151-152

LITORG 143-144 Pseudo Ops (see
Location Counter105-108 Directives)
MACRO 144-145 PUBLIC 152-153
Macro Editor Assembler QUIT 153

Compatibility 35 RADIX 153-154*
Macro Sections 120-121 102

ENDM 133 REF 154-155
MACRO 144-145 Relocatable 106, 

Memory Map 391-392 109-110
Missing External Operators 98

Transfer Address 382 RES b,m 307
Model I RESLD r,n,m 388

ALTRAN 398 RESLOC 155
MOVD operand1 ,operand2, RES n,m 388

length 365 RET 324-325
MOVI operand1 ,operand2, RET cc 325-327

length 367-368 RET I 327-328
Multiply Defined Entry RETN 328-329

Symbol 381 RL m 281-283
NEG 255-256 RL m 386
NOEND 146 RLA 273
NOFILL 147 RLCLD r,m 386
NOLOAD 147 RLC m 386



RLC r 276-277 SRA m 290-292
RLC (HL) 277-278 SRA m 386
RLC (IX+d) 278-279 SRALD r,m 386
RLC (IY+d) 279-281 SRL m 292-294
RLD 294-296 SRLLD r,m 386
RLLD r,m 386 SUB s 233-235
Rotate and shift TZ operand 355

group 272 XOR s 241-243
RL m 281-283 SLA m 386
RLA 273 SLALD r,m 386
RLC r 276-277 SLO m 386
RLC (HL) 277-278 SRL m 386
RLC (IX+d) 278-279 STOP 157
RLC (IY+d) 279-281 Storage
RLD 294-296 Defining 104-105
RR m 285-287 DEFS 130
RRA 275 FILL 135
RRC m 283-285 NOFILL 147
RRCA 274 SUB XH 390
RRD 296-297 Symbols
SLA m 287-289 Defining 103
SRA m 290-292 External 98,
SRL m 292-294 110-118*

RR m 285-287 Syntax 91-92
RRA 275 Symbol Table
RRC m 283-285 Overflow 381
RRCA 274 Syntax Error 377
RRCLD r,m 386 SVC 374
RRD 296-297 TITLE 158
RRLLD r,m 386 TIME 157
RST p 329-330 Total Line Length
RSTR operand 370-371 Too Long 377
Sample Session 11-17 TRSDOS, Model I 398-405
SAVE operand 372-373 Undefined External
SBC A,s 235-237 Symbol 381
SBC HL,ss 264 Undocumented Z80
SBC A,XH 390 Instructions 385-390
SCF 257 UPGRADE 398
Search Arg Too Long 377 USING 158
Series I Editor VERSION 159

Assembler WORD (see DEFW)
Compatibility 35 XOR XH 390
Converting 393 Z80

SET b fr 302-303 alphabetic 412-417
SET b,(HL) 303-304 extended 347-374
SET b,(IX+d) 304-305 hardware 418-424
SET b,(IY+d) 306-307 mnemonics 161-345*
SETLOC 155 notations 163-164
SET n,m 388 numeric List 406-411
SETLD r,n,m 388 undocumented 385-390
SLA m 287-289
SLOLD r,m 386


