
Cat. No. 26-2012

-60'

LDr,(HL)
SRAm

ADDA,r
IFcc TRUE, PC 4 nn

SRLm
ADDA, (IX + d)

RRD

Custom Manufactured in USA by RADIO SHACK, A Division of TANDY CORPORATION

TERMS AND CONDITIONS OF SALE AND LICENSE OF RADIO SHACK COMPUTER EQUIPMENT AND SOFTWARE
. PURCHASED FROM A RADIO SHACK COMPANY-OWNED COMPUTER CENTER, RETAIL STORE OR FROM A

RADIO SHACK FRANCHISEE OR DEALER AT ITS AUTHORIZED LOCATION

LIMITED WARRANTY
CUSTOMER OBLIGATIONS

A. CUSTOMER assumes full responsibility that this Radio Shack computer hardware purchased (the "Equipment"!, and any copies of Radio

Shack software included with the Equipment or licensed separately (the "Software") meets the specifications, capacity, capabilities,

versatility, and other requirements of CUSTOMER.
CUSTOMER assumes full responsibility for the condition and effectiveness of the operating environment in which the Equipment and Software

are to function, and for its installation

II. RADIO SHACK LIMITED WARRANTIES AND CONDITIONS OF SALE

For a period of ninety (90) calendar days from the date of the Radio Shack sales document received upon purchase of the Equipment, RADIO
SHACK warrants to the original CUSTOMER that the Equipment and the medium upon which the Software is stored is free from manufacturing

defects, THIS WARRANTY IS ONLY APPLICABLE TO PURCHASES OF RADIO SHACK EQUIPMENT BY THE ORIGINAL CUSTOMER FROM
RADIO SHACK COMPANY-OWNED COMPUTER CENTERS. RETAIL STORES AND FROM RADIO SHACK FRANCHISEES AND DEALERS AT ITS

AUTHORIZED LOCATION The warranty is void if the Equipment's case or cabinet has been opened, or if the Equipment or Software has been

subjected to improper or abnormal use If a manufacturing defect is discovered during the stated warranty period, the defective Equipment
must be returned to a Radio Shack Computer Center, a Radio Shack retail store, participating Radio Shack franchisee or Radio Shack dealer

for repair, along with a copy of the sales document or lease agreement The original CUSTOMER'S sole and exclusive remedy in the event of

a defect is limited to the correction of the defect by repair, replacement, or refund of the purchase price, at RADIO SHACK'S election and sole

expense RADIO SHACK has no obligation to replace or repair expendable items.

RADIO SHACK makes no warranty as to the design, capability, capacity, or suitability for use of the Software, except as provided in this

paragraph. Software is licensed on an "AS IS" basis, without warranty The original CUSTOMER'S exclusive remedy, in the event of a

Software manufacturing defect, is its repair or replacement within thirty (30) calendar days of the date of the Radio Shack sales document
received upon license of the Software The defective Software shall be returned to a Radio Shack Computer Center, a Radio Shack retail store,

participating Radio Shack franchisee or Radio Shack dealer along with the sales document

Except as provided herein no employee, agent, franchisee, dealer or other person is authorized to give any warranties of any nature on behalf

of RADIO SHACK.
Except as provided herein, RADIO SHACK MAKES NO WARRANTIES, INCLUDING WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.
Some states do not allow limitations on how long an implied warranty lasts, so the above limitation(s) may not apply to CUSTOMER.

III. LIMITATION OF LIABILITY

A. EXCEPT AS PROVIDED HEREIN, RADIO SHACK SHALL HAVE NO LIABILITY OR RESPONSIBILITY TO CUSTOMER OR ANY OTHER PERSON
OR ENTITY WITH RESPECT TO ANY LIABILITY, LOSS OR DAMAGE CAUSED OR ALLEGED TO BE CAUSED DIRECTLY OR INDIRECTLY BY
"EQUIPMENT" OR "SOFTWARE" SOLD, LEASED, LICENSED OR FURNISHED BY RADIO SHACK, INCLUDING, BUT NOT LIMITED TO, ANY
INTERRUPTION OF SERVICE, LOSS OF BUSINESS OR ANTICIPATORY PROFITS OR CONSEQUENTIAL DAMAGES RESULTING FROM THE
USE OR OPERATION OF THE "EQUIPMENT" OR "SOFTWARE". IN NO EVENT SHALL RADIO SHACK BE LIABLE FOR LOSS OF PROFITS, OR
ANY INDIRECT, SPECIAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF ANY BREACH OF THIS WARRANTY OR IN ANY MANNER
ARISING OUT OF OR CONNECTED WITH THE SALE. LEASE. LICENSE, USE OR ANTICIPATED USE OF THE "EQUIPMENT" OR "SOFTWARE"

NOTWITHSTANDING THE ABOVE LIMITATIONS AND WARRANTIES, RADIO SHACK'S LIABILITY HEREUNDER FOR DAMAGES INCURRED BY
CUSTOMER OR OTHERS SHALL NOT EXCEED THE AMOUNT PAID BY CUSTOMER FOR THE PARTICULAR "EQUIPMENT" OR "SOFTWARE-
INVOLVED.

B. RADIO SHACK shall not be liable for any damages caused by delay in delivering or furnishing Equipment and or Software.

C. No action arising out of any claimed breach of this Warranty or transactions under this Warranty may be brought more than two (2) years

after the cause of action has accrued or more than four (4) years after the date of the Radio Shack sales document for the Equipment or

Software, whichever first occurs

D. Some states do not allow the limitation or exclusion of incidental or consequential damages, so the above limitation(s) or exclusion(s) may
not apply to CUSTOMER.

IV. RADIO SHACK SOFTWARE LICENSE

RADIO SHACK grants to CUSTOMER a non-exclusive, paid-up license to use the RADIO SHACK Software on one computer, subject to the following

provisions:

A. Except as otherwise provided in this Software License, applicable copyright laws shall apply to the Software

B. Title to the medium on which the Software is recorded (cassette and'or diskette) or stored (ROM) is transferred to CUSTOMER, but not title to

the Software.

C. CUSTOMER may use Software on one host computer and access that Software through one or more terminals if the Software permits this

function.

D. CUSTOMER shall not use, make, manufacture, or reproduce copies of Software except for use on one computer and as is specifically

provided in this Software License. Customer is expressly prohibited from disassembling the Software,

E. CUSTOMER is permitted to make additional copies of the Software only for backup or archival purposes or if additional copies are required in

the operation of one computer with the Software, but only to the extent the Software allows a backup copy to be made. However, for

TRSDOS Software, CUSTOMER is permitted to make a limited number of additional copies for CUSTOMER'S own use,

F. CUSTOMER may resell or distribute unmodified copies of the Software provided CUSTOMER has purchased one copy of the Software for each

one sold or distributed. The provisions of this Software License shall also be applicable to third parties receiving copies of the Software from
CUSTOMER.

G. All copyright notices shall be retained on all copies of the Software.

V. APPLICABILITY OF WARRANTY

A The terms and conditions of this Warranty are applicable as between RADIO SHACK and CUSTOMER to either a sale of the Equipment and or

Software License to CUSTOMER or to a transaction whereby RADIO SHACK sells or conveys such Equipment to a third party for lease to

CUSTOMER.
B. The limitations of liability and Warranty provisions herein shall inure to the benefit of RADIO SHACK, the author, owner and or licensor of the

Software and any manufacturer of the Equipment sold by RADIO SHACK

VI. STATE LAW RIGHTS

The warranties granted herein give the original CUSTOMER specific legal rights, and the original CUSTOMER may have other rights which vary

from state to state.

875-9186

&m ®i®\

ALDS
Assembly Language
Development System

TRSDOS* Version 6 Operating System: Copyright 1983 Logical Systems.

All Rights Reserved. Licensed to Tandy Corporation.

ALEDIT Software: Copyright 1982, 1983 Tandy Corporation. All Rights Reserved.

ALASM Software: Copyright 1982, 1983 Tandy Corporation. All Rights Reserved.

ALBUG Software: Copyright 1982, 1983 Tandy Corporation. All Rights Reserved.

ALLINK Software: Copyright 1982, 1983 Tandy Corporation. All Rights Reserved.

ALTRAN Software: Copyright 1982, 1983 Tandy Corporation. All Rights Reserved.

TRS-80®Assembly Language Development System Manual: Copyright 1982, 1983

Tandy Corporation. All Rights Reserved.

Reproduction or use without express written permission from Tandy Corporation of any

portion of this manual is prohibited. While reasonable efforts have been taken in the

preparation of this manual to assure its accuracy, Tandy Corporation assumes no lia-

bility resulting from any errors or omissions in this manual, or from the use of the

information obtained herein.

TRSDOS is a registered trademark of Tandy Corporation.

10 987654321

INTRODUCTION

To Our Customers,

This Assembly Language Development System (ALDS) is a powerful tool for

developing Z80 programs for the TRS-80 Models HI and 4.

It contains these five systems:

ALEDIT, a Text Editor, for writing and editing source programs.

ALASM, an Assembler for converting source programs to Z80 object code. The
Assembler contains more than:

• 50 powerful directives. Among many features, they allow you to build

relocatable program sections, macro sections, index sections; generate a length

byte for text storage; and control the assembly listing format.

• 30 arithmetic, logical and relational operators.

• 10 "extended" Z80 mnemonics, which expand into an entire group of Z80
mnemonics.

ALLINK, a Linker, for linking relocatable program sections into absolute object

files.

ALBUG, a Debugger, for debugging a program in memory or altering a file on

disk. ALBUG is comprised of six program files: ALBUG, ALBUG/SYS,
ALBUG/OVL, ALBUGX, ALBUGRES/REL and ALBUG/RES.

ALTRAN, a File Transfer System, for transferring a file between the Models I,

II, IU, 4, 12 and 16.

Note: Models I, II, 12 and 16 require the Model II ALDS package.

MODEL ill/4 ALDS

About This Manual

This manual assumes you already know Z80 assembly language programming

and have used an editor/assembler. It contains three sections:

Section I, Using ALDS, begins with a sample session which shows how to

create a modular program for the Models III and 4 using all five systems.

Following this session are reference chapters on each system.

Section II, ALDS Assembly Language, references the source language

acceptable to the ALDS Assembler. Chapter 7 outlines the syntax for writing

source lines. The remaining chapters reference all the directives, Z80
mnemonics, and extended Z80 mnemonics available.

Section HI, Error Messages, lists the error messages that may be generated by

the ALDS programs.

If you are new to Z80 assembly language programming, we suggest you read:

More TRS-80 Assembly Language Programming by William Barden, Jr. (Radio

Shack Catalog Number 62-2075)

Note: Before going any further, please make a backup of your ALDS diskette.

See your system's owners manual for instructions on making backups.

Notation Key

The manual uses these notational conventions:

Dot Matrix to represent what you will see on the screen or should type.

(KEY) to represent a specific key you should press.

italics to represent a value you should specify.

H to represent a hexadecimal number. (For example, 4233H

represents the hexadecimal number 4233.)

$ to represent the current value of the Assembler's location counter.

(This is actually a convention of the Assembler.)

filespec to represent a valid TRSDOS file specification. (See your

TRSDOS manual for a definition of filespec.)

SAMPLE SESSION

Section 1/

Using ALDS

INTRODUCTION

Contents

Section 1/ Using ALDS
Chapter 1/ Sample Session 3

Chapter 2/ The ALDS Editor 11

Chapter 3/ The ALDS Assembler 23

Chapter 4/ The ALDS Debugger 29

Chapter 5/ The ALDS Linker 43

Chapter 6/ The ALDS File Transfer System 47

Section 11/ ALDS Assembly Language

Chapter II Assembly Language Syntax 61

Chapter 8/ Directives 69

Chapter 9/ Z80 Mnemonics 115

Chapter 10/ Extended Z80 Mnemonics 303

Section III/ Error Messages

Error Messages 325

Appendices

Appendix A/ Undocumented Z80 Instructions 333

Appendix B/ ALDS Object Code Format 338

Appendix C/ Numeric List of Z80 Instruction Set 341

Appendix D/ Alphabetic List of Z80 Instruction Set 347

Appendix E/ Z80 Hardware 353

Tables

Table 1/ ALEDIT Command Mode Keys 13

Table 2/ ALEDIT Editor Commands 14

Table 3/ ALEDIT Insert Control functions 20

Table 4/ ALEDIT Insert Mode Special Keys 21

Table 5/ ALEDIT Line Edit Mode Subcommands 21

Table 6/ ALEDIT Line Edit Mode Special Keys 22

Table II ALASM Switches 24
Table 8/ Debugger Commands 34

Table 9/ Baud Rate Change Table 48

Table 1 0/ Operators , 64

Table 1 1/ Complex Expressions Allowing Relocatable or External Symbols 66

in

SAMPLE SESSION

Chapter 1/

Sample Session

This manual is not a tutorial. To learn Assembly Language, see your computer
dealer for information on helpful books.

This chapter is for those of you who want to try a session using the entire ALDS
package. It demonstrates how to link separate program sections for the Models
III and 4.

This session is for demonstration only. To find out how and why each system
works the way it does, you will need to refer to specific chapters in this manual.

Note for Model 4: If at any time during this procedure you receive the message,
"File Already Open," type:

RESET filename

This command closes the open file.

Creating a Source File

In this session, you need to create five source program files. To do this, use the

ALDS Editor. In the TRSDOS Ready mode, type:

ALEDIT (INTER)

this loads the ALDS Editor. After it displays its heading, type:

I

the insert command (Do not press (ENTER)). The Editor clears the screen and
prints NONAME/SRC in the upper right-hand corner. You are now in the insert

mode and can insert the first source program.

1. Main Program

To insert the first program named MAIN, type the following commands (press 3D
between columns; press (ENTER) at the end of each line.):

MAIN

BEGIN

PSECT
PUBLIC BEGIN
EXTERN PRINT , TRSDOS
LD HL»MSG1
CALL PRINT
LD HL,MSG2
CALL PRINT
JP TRSDOS

iPrint Line MSG1

I Print Line MSG2

MODEL 1114 ALDS

MSGl DEFT 'YOU WILL BE ABLE TO LINK THIS'

DEFB 0DH

MSG2 DEFT 'AS EITHER A MODEL III OR 4 PROGRAM

DEFB ODH

END BEGIN

When you are finished press (BREAK) . This puts you in the Editor command mode.

If you made mistakes, you can use the Editor commands to edit the program.

They are all listed in Chapter 2, The ALDS Editor.

After pressing (BREAK) , save this source program on disk by typing this Editor

command:

W MAIN (INTER)

this saves the program as a source file named MAIN/SRC. (The Editor changes

the top right-hand corner display to MAIN/SRC.) Clear the edit buffer by typing:

K (ENTER)

the kill command and answer Y (ENTER) to the prompt. The screen will then clear.

Now repeat the same procedures for inserting and saving MOD4, MODIII,

PROG4, and PROGII1. (If you have a Model 4, insert all of these programs on

your Model 4— even MODIII and PROGIII. Otherwise, insert all of these

programs on your Model III.)

2. MOD4 Program

M0D4 PSECT ! M o d e 1 4 Print Routines

PUBLIC PRINT)'TRSDOS

iDSPLY EOU 10

@EXIT ECU nn

PRINT INC HL

SMC @DSPLY iDisplay Line

RET

TRSDOS LD HL.0

JP @EXIT tExit

END

3. MODIII Program

MODIII PSECT ! Made 1 III Print Routines

PUBLIC PRINT >TRSD0S

MDLINE EOU 021BH

JP2D0S EOU 402DH

PRINT INC HL

CALL MDLINE iDisplay Line

RET

TRSDOS JP

END

JP2D0S !Exit

SAMPLE SESSION

4. PROG4 Program

PROGfl PSECT .Model 4 Linking Program

START
EXTERN BEGIN
JP BEGIN
LINK 'MAIN/REL' iLinKs Main Program
LINK 'M0D4/REL' iLinKs Print Routines
END START

5. PROGffl Program

PROGIII PSECT .Model III LinKin* ProsraM
EXTERN BEGIN

START JP BEGIN
LINK 'MAIN/REL' iLinKs Main Program
LINK 'MODIII/REL' iLinKs Print Routines
END START

When you have finished inserting all five source files, exit the Editor by typing:

(ENTER)

which returns you to TRSDOS Ready.

Assembling a File

You should now have stored five source files:

MAIN/SRC
MOD4/SRC
MODIII/SRC
PROG4/SRC
PROGIII/SRC

To see that they are all on your diskette, check the disk directory by typing

DIR dfffED .

These files contain three types of instructions:

• Z80 mnemonics (LD, CALL, INC, and RET), which the Assembler converts

into Z80 object code. Chapter 9 describes Z80 mnemonics.

• An extended mnemonic (SVC), which the Assembler converts into a group of

Z80 instructions. Chapter 10 describes extended mnemonics.

• Directives (PSECT, EXTERN, DEFT, PUBLIC, EQU, LINK and END), which
are instructions to the Assembler or the Linker. Chapter 8 describes directives.

To assemble the source files, use the ALDS Assembler (ALASM). In the

TRSDOS Ready mode, type:

ALASM MAIN/SRC MAIN/REL (ENTER)

MODEL 111/4 ALDS

The assembler processes the source file MAIN/SRC into an object file named
MAIN/REL. If it displays any errors, edit or re-insert MAIN/SRC and re-

assemble it. (An explanation of the Assembler error messages is in the Error

Messages Section of this manual.)

You can assemble the other source files in the same way.

Note: You can omit the /SRC and /REL extensions. The Assembler knows to

append them:

ALASM M0D4 M0D4 (INTER)

ALASM MODI 1 1 MODI 1 1 nENTER)

ALASM PR0G4 PROM (ENTER")

ALASM PROGI 1 1 PROGIII (ENTER)

When finished, the Assembler produces these object files:

MAIN/REL
MGD4/REL
MODI I I/REL
PR0G4/REL
PROGIII/REL

The extension REL means that the files are relocatable. That is, they do not have

absolute load and execution addresses. Because of this, they cannot be loaded

and executed in their present form.

The Assembler converts them into relocatable rather than absolute files because

of the PSECT directives. See Chapter 8 for more information on the directives.

See Chapter 3 for information on operating the Assembler.

Linking a Relocatable File

Two of the relocatable files created by the Assembler are:

PROG4/REL
PROGIII/REL

which consist solely of LINK directives. They are for the ALDS Linker to

process. Type:

ALLINK PR0G4/REL PR0G4 $ = 5200 (ENTER)

This causes the Linker to:

(1) process the LINK directives, LINKing MAIN/REL and MOD4/REL to

PROG4/REL.

(2) assign absolute addresses beginning with 5200H to PROG4/REL.

(3) save the resulting absolute object code PROG4.

You can link PROGIII/REL in the same way. (Notice that you can optionally omit

the /REL extension, since the Assembler will automatically append it.) Type:

ALLINK PROGIII PROGIII $=5200

SAMPLE SESSION

Using the same processes as above, the Linker creates PROGIII, an absolute

object file, composed of MAIN/REL and MODIII/REL.

Chapter 5, The Linker, discusses the Linker itself. Chapter 8, Directives,

discusses the directives which control the Linker.

Executing a File

The Linker created two absolute object files:

PROG4/CMD
PROGIII/CMD

which are actually two versions of the same main program. PROG4/CMD runs

on the Model 4; PROGIII/CMD is for the Model III. (Model III and 4 executable

programs must have the /CMD extension.)

Assuming you created these files on the Model 4, if you wish to run PROG4/
CMD on your Model 4, simply type (in the TRSDOS Ready mode):

PR0G4 (ENTER)

Transferring a File

You will, of course, need to transfer the program which does not correspond with

your computer to the model in which it can be used, before you can execute it.

For example, if PROGIII was created on the Model 4, it would need to be

transferred to the Model III. If you have a Model III and 4 and an appropriate

modem or cable, you can transfer the program with the ALDS File Transfer

System. It will produce a Model III or 4 disk file of PROGIII/CMD or PROG4/
CMD.

To transfer PROGIII/CMD to a Model III, use the following instructions:

Connect the two systems (see Chapter 6, The ALDS File Transfer System for

instructions).

Load the ALTRAN program on both the Model III and Model 4 by typing:

ALTRAN fEHTEHl

After ALTRAN displays its menu, type:

a (INTER)

This puts you in the 'Mini-Terminal' mode. To test the communication of your

computers, on your Model 4 type:

COMMUNICATION

MODEL 111/4 ALDS

This word should appear on your Model III screen as well as your Model 4

screen. Next on your Model III type:

TEST

This word should also appear on your Model III screen and your Model 4 screen.

If both computer screens have "COMMUNICATION TEST" written on them,

then ALTRAN is communicating in both directions. Otherwise, recheck your

connection procedure (see Chapter 6, The ALDS File Transfer System).

Press the© key on both the Model III and 4 to return to the ALTRAN menu.

On the Model 4 type:

1 (ENTER)

PROGIII/CMD (ENTER)

and on the Model III type:

2 (BWED
PROGIII/CMD (OTTER)

This transfers PROGIII/CMD to the Model III diskette and names it PROGIII/

CMD.

ALTRAN re-displays its menu when it has finished the transfer. Press [BREAK) or (D

to exit the ALTRAN program and return to TRSDOS Ready. You can then

execute PROGIII on the Model III in the same way PROG4 was executed on the

Model 4 above. Type:

PROGIII (OTTER)

Debugging a File

You can debug any of the object files with the ALDS Debugger on the Models III

and 4. On your Model III type:

LOAD PROGIII/CMD (OTTOT)

ALBUG (OTTER)

You can now debug PROGIII/CMD by entering:

J

On your Model 4 type:

LOAD PR0G4/CMD (OTflH)

ALBUG

You can now debug PROG4/CMD by entering:

J

SAMPLE SESSION

Answer the corresponding prompt with the following response:

Model III:

J CADRJE.BPnC.BP21C.BP31C.BPa] <E>? 5266.5266 (CTTEff)

Model 4:

J CADRH.BPHC .BP2H ,BP3H »BP43 <E>? 5266.5200 (Iffffff)

You can now single step through the program by pressing CD.

For more information on ALBUG, refer to Chapter 4.

EDITOR

Chapter 2/

The ALDS Editor (AUDIT)

The ALDS Editor allows you to enter and edit an assembly language source

program. You can save this program on disk as a source file to be assembled into

Z80 object code.

This section describes the use of the Editor itself. For information on how to

write an assembly language source program, see Section II, "ALDS Assembly
Language."

Loading the Editor

This command, typed in the TRSDOS Ready mode:

ALEDIT source filespec

loads the Editor and then loads the specified source filespec into the Editor.

The source filespec is optional. For example:

ALEDIT (ENTlff)

causes the Editor to load and display a similar heading:

TRS-80 Model 4 Text Editor Version v.r.p.

Copyright (c) 1982> 83 Tandy Corp,

(v.r.p. is the version, release and patch numbers.)

ALEDIT SORTER (ENTlff)

causes the Editor to load, display the above heading, then load a source file

named SORTER/SRC.

If the source filespec does not contain an extension, the Editor appends /SRC
to it.

The Editor loads into all of the memory above TRSDOS. It reserves

approximately the top 33K bytes in a Model III and the top 40K bytes in a Model
4 as an "edit buffer" for inserting your programs. However, if you have also

loaded one of the High Memory TRSDOS utilities the edit buffer will be smaller.

11

MODEL ill/4 ALDS

Using the Editor

The following pages define the three modes in which you can use the Editor:

• the command mode

• the insert mode

• the line edit mode

The Command Mode

When you first load the Editor, it is in the command mode. While in this mode,

you can use any of the special keys listed in Table 1 or the commands listed in

Table 2

.

All commands except I and E return to the command mode after executing. To

return to the command mode from I (insert mode) or E (line edit mode), press

(BREAK) or (ENTER) respectively.

When you enter an Editor command, it creates a blank "work line" and points to

the line just beneath it. To redisplay the screen after an error message and delete

the work line, use the N command.

Sample Use

For an example of using the command mode, use the I command to insert this

program:

5THIS IS THE FIRST LINE (ENTER)

ITHIS IS THE SECOND (ENTER)

SAND HERE IS ANOTHER (INTER)

5 AND ANOTHER (ENTER)

© END (ENTER)

Press (BREAK) to return to the command mode.

You can move the cursor and rearrange the lines of the program. For example

type the following Editor command:

T

the cursor moves to the top of the text. Type B to move it to the bottom. Press©
and© to move it to specific lines.

Move the cursor to the third line and type:

i

The < appears to the left of the line. This specifies the beginning of a block.

Move the cursor to the fourth line and type:

12

The > appears to the left of the line. This specifies the last line in the block.

Move the cursor up to the second line and type:

which is the O command. This copies the block between the first and second

line. Move the cursor to the next to last line and type:

EDITOR

delete command (executes without pressing (ENTER)). The last line is now deleted.

To save this program on disk you can use the W command. Type (it does not

matter which line the cursor is positioned at):

W TEST (INTER)

This saves this program on disk as a file named TEST/SRC. You can exit the

Editor by typing:

o (HUB
the quit command.

Q will exit the Editor without writing the text to disk. If you forgot to save the

text first, type ALEDIT * (IRTEH) to re-enter the Editor. Your text will be

retained.

Be sure you use the ALEDIT * command immediately after you exit the Editor.

It will not work predictably after you run a command which modifies memory.
Also, be sure you type one blank space between ALEDIT and the asterisk(*).

Table 1 / ALEDIT Command Mode Keys

Model 4

Keys Description

Model III

Keys

© moves the cursor one position to the

left.

©

© positions the cursor down one line

(ignored if the cursor is not in the first

column)

©

© positions the cursor up one line

(ignored if the cursor is not in the first

column)

©

(ETRDW) positions the cursor to the top of the

screen.

(SHIFT)W(BJ

(CTRL)dJ positions the cursor to the bottom of

the screen or to the first line after the

last line of text.

(SHIFTX^XO

Q displays the current line sequence
number. This number will change as

you insert and delete lines.

Q

13

MODEL 111/4 ALDS

#//ne(ENTER) positions the cursor to the specified

line sequence number and moves

that line to the top of the screen.

#//ne(ENTER)

(BREAK) cancels any command being

executed and returns to the command
mode.

(BREAK)

(SHIFT)t^) cancels the current command line if

you have not yet pressed (ENTER).

(SHIFT)©

Table 2/ ALEDIT Editor Commands

Description of Terms

current line

the line where the cursor is currently positioned.

del

(stands for delimiter) One of the following characters which marks the

beginning and ending of a string:

!"#$%&'()* + ,-./:;< = >?

string

one to 37 ASCII characters on the Model 4 and one to 29 ASCII characters

on the Model III.

text

the source program or text currently in RAM.

A fENTERl

Re-executes the last executed command. This command only works with the

Editor Commands C, F, X, L and W.

B
Moves the cursor to the bottom of the text.

C del string 1 del string2 del occurrence (ENTER)

Changes string 1 to string2 for the number of occurrences you specify.

Occurrences must range from 1 to 255. The changes begin at the current

line and are made only to the first occurrence on a given line.

If you omit occurrence, only the first occurrence of string 1 is changed. You

may specify occurrence with an asterisk, in which case the change is made

to the first occurrence of stringl in all the remaining lines.

For example:

C/TEXT/FILE/3 (ENTER)

changes the first 3 occurrences of TEXT to FILE.

14

EDITOR

C?TEXT?FILE?* (INTO

changes all occurrences of TEXT to FILE. (Change acts on only the first

occurrence within a line.) After executing the command, the cursor positions

itself at the last change or, at the top of the file if changes went through the

whole file.

Deletes the current line or block of lines. To delete a block, position the

cursor at the first line in the block and type CD. Then position it at the last line

and type the D command. (The block may be on several pages.) The cursor

must be positioned on a line within the file.

For example:

LD A,B

CD ADD A,1

ADD A,3

d) ADD A,4

DEC B

deletes all but the following:

LD A,B

DEC B

You can cancel a block deletion after pressing CD but before typing D. To do
this, press ®.

Allows you to edit the current line using line edit mode subcommands. The
line will appear in reverse video (Model 4 only). See the edit mode for a

listing of subcommands.

F del string del occurrence (ENTER)

Finds the specified occurrence of string. If you omit occurrence, finds the

first occurrence of string. If you omit string, the last string specified is found.

Occurrences must range from 1 to 255. For example:

f/text/2 mrm
finds the second occurrence of TEXT.

F/TEXT/ (ENTER)

finds the next occurrence of TEXT.

F (ENTER)

finds the next occurrence of the last specified string.

F% % (ENTER)

finds the next occurrence of five blank spaces. The Editor will search for only

one occurrence of the string in each line.

15

MODEL HI/4 ALDS

G fENTEBl

Deletes all text from the current line to the end. You will first be prompted

with:

"Are you sure?"

Type Y fERTEH) to delete; N (INTO to cancel.

H fEBTEK)

Prints the entire text if entered as the first command or the specified block on

the printer. To print a block, move the cursor to the first line of the block and

type (TJ. Move the cursor to the last line of the block and type ®. For

example;

LD A,B

cd ADD A,1

ADD A,3

(D ADD A,4

DEC B

prints a block of ADD instructions.

You can cancel a block printing after pressing CD but before typing H. To do

this, press 3).

Press (BRIM) to terminate printing. If the printer is off-line or goes off-line

during printing, some characters may be lost.

I

Enters the insert mode for inserting lines just before the current line. See

"Insert Mode" for more information.

J

Displays current size of text and how much memory remains. Memory size

does not include a small work area when the buffer is full, but the text size

may reflect some of this work area.

K CENTERl

Deletes ALL text. (Does not delete text from the disk file, only from the edit

buffer. Before deleting your text, the Editor will ask you "Are you sure". Type Y
CENTER) to execute the command; N (EHTEB) to not execute it.

L filespec $C fENTED

Loads filespec into the Editor. $C is optional. If specified, the Editor chains

the new filespec to the end of the text currently in memory. If not specified,

the new filespec overlays the current text.

For example:

LTESTdHUE)

loads TEST/SRC into the Editor.

16

EDITOR

L TEST $C CERTEff)

chains TEST/SRC to the end of the text currently in memory.

The Editor will load fixed length record (FLR) files with a record length of

one. If the file is fixed length, each line must be ended with a carriage return.

Note: When the Editor completes, the record length will be 256.

M
Moves the specified block Just ahead of the current line. Use CD and CD
to specify the block. The Editor displays a line count as it moves each line.

For example:

CD

ADD A,B

PUSH DE
PUSH HL
PUSH IY

PUSH BC
LD A,8

ADD A.10

; of PUSH instru

ADD A,B

LD A,8

PUSH DE
PUSH HL
PUSH IY

PUSH BC
ADD A.10

CD

m
moves the block of PUSH instructions just ahead of the last line:

You can cancel the block after specifying it but before typing M. To do this,

press CD-

N
Updates the display. You might want to use this after executing the J

command or cancelling the G command.

O
Copies the specified block just above the current line. (Use CD and CD
to specify a block as described in the M command.)

Moves the cursor to the next page (which is 24 lines from the top of the

screen on the Model 4 and 17 lines on the Model III).

Q CENTEI)

Exits the Editor. If you forgot to save the file first, type ALEDIT * CENTER)

immediately upon exiting the Editor. The Editor will load with your text

retained in memory.

17

MODEL 111/4 ALDS

R fERTER)

Deletes the current line and enters the insert mode. Using the J command, if

there is 0000 memory left in the buffer, executing the R command will delete

the line but will not allow it to be replaced with new text,

T
Moves the cursor to the top of the text.

U
Moves the cursor to the previous page (which is the 24 preceding lines for

Model 4 and 17 lines for Model III).

V
Scrolls current line to the top of the screen.

W filespec $option1 ... (IHTEff)

Saves all text on disk as filespec. filespec is optional; if omitted, it is the

filespec you used to load the file. The Editor appends /SRC to filespec

unless it already includes an extension.

The options are:

E Exits the Editor after saving the file unless there is an

error.

L, ML, OR LM Saves the file with line numbers in this format: ASCII

line number/dummy TAB/text.

M Saves the file as a fixed length record (FLR) file with a

LRL of 256 in this format:

text/carriage return

This option is the default. You can use ALEDIT to edit

a "DO-file" created with the TRSDOS "BUILD"

command and save this format, which can be loaded

by the TRSDOS "DO" command.

For example:

W SAMPLE fEHTEff)

saves all text as a file named SAMPLE/SRC.

W SAMPLE $E

saves text as SAMPLE/SRC. The Editor will exit back to TRSDOS Ready

after saving the file.

Without using the L or the M options, the Editor saves the file in the format

required by the ALDS Assembler:

• Each character is saved exactly as it appears on the display.

• No carriage returns or end of text code is saved.

18

EDITOR

• Each line is saved in this format: length/text/

X del string 1 del string2 del occurrence

Same as the C command, but prompts before making the change.

Occurrence must range from 1 to 255.

The Insert Mode

The I command gets you into the insert mode. Type:

I

(Do not press (ENTER) .) The editor clears the screen and positions the cursor at the

upper left-hand corner. You can now insert source lines into the edit buffer.

Do not use line numbers. The Assembler will consider them syntax errors.

Each source line may have up to 78 characters. After typing the line, press

(ENTER) to insert it. To cancel it and return to the Editor command mode, press

(BREAK) . For example:

iTHIS IS THE FIRST LINE (Bflffl)

iTHIS IS THE SECOND OTTER)

.AND HERE IS ANOTHER (BREAK)

inserts only the first two lines in the Editor's memory; then returns to the Editor

command mode.

While inserting lines, you might find it convenient to use the GD key. This key is

used as a tab key. The Editor has tabs set every eight columns.

The Editor offers certain control functions for quick insertion. To activate a

control function, press the (CTRL) on the Model 4 or (SHIFT)© on the Model III,

at the same time you press the function key. For example, pressing these keys at

the same time:

Model 4: (CTHDd)

Model III: (HUD©©
causes the Editor to insert a semicolon and the current date in the text and then

position the cursor on the next line.

Model 4: fCTRL)(El

Model III: SHED©©
causes the Editor to insert ":", tab to the next tab stop, insert "EQU", and then

tab again to the next tab stop.

If the line becomes full while inserting the control function, the Editor stops and

awaits the next insert mode instruction.

19

MODEL HI/4 ALDS

Table 3 lists all the insert control functions.

Table 4 lists the special control keys available in the insert mode.

Note: When the edit buffer is full, it will give you a buffer full message and

return to the command mode.

Table 3/ ALEDIT Insert Control Functions

Model 4

FUNCTION INSERTS
Model III

FUNCTION

(CTRL)® ;current date (ENTER)

(i.e. ;02/25/83 (ENTER)I

(SHIFT)©!)

(EIBUlfJ : CD EQU CD fSHIFT)M(E)

(CTRLXG) CD GLOBAL CD (SHIFT)M(B)

(CTRD(D CD INCLUDE CD' (SHIFTX~XU

(CTfiTXN) ; CD ENTRY: CD (SHlFDWd)

(HBDffi { (open braces) (SHIFTX*X0)

fCTRLXP) CD PUBLIC CD fSHIFTX»XP)

(CTRLXQ) } (closed braces) (SHIFTX»)(Q)

(CTRLXR) ; CD EXIT: CD (SHIFT)CXR)

{CTRLXD

(semicolon followed by 64 asterisks)

(SHIFT)(*)(£)

(CTRLKT)
-

(SHIFT)(*)(T)

(CTRLMU) ; CD USES: CD (SHIFf)M(U)

mmm [
(SHIFT)M(V)

(CTHLXX) CD EXTRN CD (SHIFTX*)(X)

mrnm displays the tab positions. Nothing is

inserted.

(SHIFT)(*J(Yj

ICTRLXD ; ...(ENTER)

(semicolon followed by 64 dashes)

(SHIFT)©®

(CTRLKSHIFTIF)
-

(SHIFT)(»X6)

fCTRLX •

)

]
(SHIFT)(»)U

20

tUI IUH

Table 4/ ALEDIT Insert Mode Special Keys

CD

(INTER]

daHB

®

moves cursor back one space and deletes a character

ends current line, carriage return, and goes to next line still in

"I" mode. Note: fENTER) inserts a blank line if executed by itself,

cancels current line, and returns to CMD-mode with the cursor

on the next line.

moves to next tab position on the line. Note: QDwill reverse

tab.

The LINE EDIT MODE
The E command enters the line edit mode for editing characters within the

current line. When you enter this mode, the Editor displays the line in reverse

video on the Model 4 only. You can then use any of the edit subcommands listed

in Table 5 or the special edit keys listed in Table 6,

For example, assume the cursor is on the following line:

5THIS IS THE FIRST LINE

To change the word FIRST to THIRD from the command mode, type:

(Do not press CENTER) .) The Editor will display the line in reverse video (Model 4
only). You are now in the line edit mode.

Use the (SPACEBAR) to position the cursor at the F in FIRST and type:

5CTHIRD (ENTER)

This stores the change and returns to the Editor command mode.

Table 5/ ALEDIT Line Edit Mode Subcommands

COMMAND DESCRIPTION

A Clears all changes and re-enters the edit mode for the

current line.

nCstring Changes the next n characters to the specified string. If n

is omitted, only one character is changed. (Press (SHIFT)®

to exit the change early.)

nD Deletes n characters. If n is omitted, one character is

deleted.

E Exits the edit mode and stores changes.

Hstring Deletes the remaining characters, enters the insert mode
and allows you to insert a string.

21

MODEL Ml/4 ALDS

\string

nKcharacter

L

Q

nScharacter

Xstring

Allows you to insert material beginning at the current

cursor position on the line. Pressing CD will delete

characters from the line. The line may be up to 78

characters in length on the Model 4 and 61 characters

in length on the Model III.

Kills all characters preceding the nth occurrence of the

character* If n is omitted, the first occurence is used. If

no match is found, the rest of the line is killed.

Moves cursor to beginning of line.

Quits the edit mode, cancelling all changes.

Positions the cursor at the nth occurrence of character.* If

no match is found, positions the cursor at the end of the

line.

Moves the cursor to the end of the line, enters the insert

mode, and allows you to insert a string.

*The compare begins on the character following the current cursor position.

Table 6/ ALEDIT Line Edit Mode Special Keys

Moves cursor one position to the right.(SPACEBAR)

(MIBD© Returns to edit command mode from the I, X, C, or H
subcommands.

CD Moves cursor to next tab position (or the end of the line)

while in the I, X, or H subcommand mode.

CD Moves cursor one position to the left.

(INTER) Identical to the E subcommand.

22

ASSEMBLER

Chapter 3/

The ALDS Assembler
(ALASM)

The ALDS Assembler produces Z80 object code. It does this by inputting a
source file— composed of Z80 instructions, assembler language directives, and
data— and assembling it into Z80 code.

In this Section, we'll show how to use the Assembler. For information on the
source file, see the sections on the ALDS Editor, Assembler Language
Directives, and Z80 Instruction Set.

The Assembler Command
This command, typed in the TRSDOS Ready mode, loads and executes the

Assembler:

ALASM filespecl filespecl {switches}

filespecl is the source file you want assembled. If you do not specify an
extension, the Assembler assigns it the extension /SRC. filespecl must not be
read protected. Do not specify a password.

filespecl is optional. It stores the assembled object code. You can specify

filesped with an asterisk (*). If so, the Assembler assigns itfilespecl's name
(less the extension).

If the program is relocatable and filespecl does not have an extension, the

Assembler assigns it the extension /REL. (The Assembler uses the PSECT
directive, discussed in Chapter 8, to determine whether the program is absolute
or relocatable.)

filesped overrides any OBJ directive you have in your program, filespecl and
filesped must be in the standard TRSDOS filespec notation.

Examples:

ALASM TEST TEST (ENTER)

assembles TEST/SRC and saves the object code as TEST if the program is

absolute or TEST/REL if it's relocatable.

ALASM TEST * (iNTEffi

does the same.

23

MODEL 111/4 ALDS

ALASM TEST/PAY * (ENTER)

assembles TEST/PAY and saves the object code as TEST or TEST/REL.

ALASM TEST/PAY FILE/ACC (ENTER)

assembles TEST/PAY and saves the object code as FILE/ACC.

ALASM TEST (ENTER)

assembles TEST/SRC. No object file is produced unless TEST/SRC contains an

OBJ directive.

Switches

You may specify one or more switches to create a listing or control the assembly

output. If you do not specify filespec2, you must enclose the switches in

parenthesis. For example:

ALASM TEST * L (INTER)

assembles TEST/SRC into TEST or TEST/REL and displays a listing (L) of the

assembly.

ALASM TEST * LXP (ENTER)

does the same as the above and also creates a cross reference listing (X) and

prints it all on the printer (P).

ALASM TEST <L> (ENTER)

assembles TEST/SRC and creates a listing. Since filespec2 is omitted, the

parenthesis are required.

The details of all the available switches are in Table 7:

Table 7/ ALASM Switches

L (Listing)

Generates a complete listing on the video display Figure 1 shows a sample

assembly listing on the Model 4.

The Assembler prints a character to the left of a line number if the line is

affected by one of these special conditions:

Character Condition

the symbol in symbol field is never referenced

p the symbol in symbol field is PUBLIC

g the symbol in symbol field is GLOBAL
+ a symbol in operand field is defined in global file

x a symbol in operand field is defined in an external file

r some or all the object data is relocatable

24

ASSEMBLER

X (Cross Reference)

Generates an alphabetical cross reference listing of all symbols defined in

the program.

P (Printer)

Outputs the listing on the printer in addition to the video display. Use this

option with the L option. You may not use this switch with the Assembler D
switch, nor can you use it with the TRSDOS SPOOL command's "capture

file" option (the "N" option). Be sure that the printer is on-line.

W (Wait On Errors)

Causes the Assembler to stop the listing at each assembly error. Press

dSUB) to continue the listing.

T (Truncate the Listing)

Truncates the listing output to the printer so that you can use 80 column

paper.

Ddrive number (Store Listing on Disk)

Stores the listing in a disk file named filesped/LST. Use this option with the

L option. If the listing will not fit on the diskette, the Assembler closes the file

and prompts you to change diskettes. Do so and press (ENTER) . (Be sure the

diskette you remove does not contain the source, object, ALASM files or

important data.)

The Assembler stores the remainder as filespedVLSU on the newly inserted

diskette. If this diskette also becomes full, the listing goes to the next diskette

as filespec 7/L.SV.

The Assembler repeats this process until it has saved the entire listing. Each

time it creates a new listing file, it will increment the third character in the

extension:

filesped/LSZ, filespec 1/LSA, filesped/filesped/LST, f/7espec7/LSU,

LSB, ... f/'/espec 7/LSS

You may optionally omit the drive number. If you do so, the Assembler

outputs the listing file to the lowest numbered write-enabled drive (usually

drive 0) and continues the listing in the next drive. This is not a good method

to use, since the Assembler might run out of work space before completing

the listing.

Files created with the D option should be printed with the LIST command.

The D switch overrides the P switch.

G(Go)
Executes the program after assembling it. The program must be absolute

and have no errors.

25

MODEL HI/4 ALDS

F (Memory image)

Causes the assembled object file to be in memory image form, rather than

the TRSDOS program file format. The program must be absolute and have

no errors. See the NOLOAD directive in Chapter 8 for more information.

Examples:

ALASM SOURCE OBJTST LDX fERTER)

assembles SOURCE/SRC into OBJTST/REL or OBJTST. Displays a listing

and a cross reference of this assembly and saves these in one or more files

named SOURCE/LST, SOURCE/LSU, SOURCE/LSV, etc.

ALASM TEST * G fENTERl

assembles TEST/SRC into TEST or TEST/REL, then executes the program

(unless it is relocatable or has errors).

ALASM MOD1 PROG/CMD LPW fERTER)

assembles MOD1/SRC into PROG/CMD and generates a listing which is

printed on the video display and the printer. Each time the Assembler

encounters an error, it stops the listing.

ALASM XYZ/COD TST/ABC:2 LD3 (INTER)

assembles XYZ/COD and stores it as TST/ABC on the diskette in drive 2.

The Assembler generates a listing which it displays and saves as XYZ/LST

on the diskette in drive 3. If the drive 3 diskette becomes full, the assembler

prompts you to insert another diskette to hold XYZ/LSU, a continuation of the

listing.

Note: Be sure the CLOCK is not turned on (CLOCK (OFF)) while running the

Assembler.

26

ASSEMBLER

Tandy Carp, ALDS ALASM copp, 1982>83 m. 03,02
Source=TEST/SRC ObJect=TEST
Pass No, 1 Complete

07/01/83

0000

'

00001 5THIS IS THE FIRST LINE
0000

'

00002 SAND HERE IS ANOTHER
0000' 00003 SAND ANOTHER
0000

'

0000a iTHIS IS THE SECOND
0000

'

00005 !AND HERE IS ANOTHER
0000' 00006 END

No Assembly Errors

Time = 0:01

Bytes =

Lines = B

Pass No. 2 Complete

Figure 1

27

DEBUGGER

Chapter 4/

The ALDS Debugger

The ALDS Debugger is an easy-to-use system for debugging absolute object

code programs. It includes all the features found on the DEBUG utility program
of your TRSDOS disk. In addition, it includes several new, powerful debugging

tools.

The Model III and Model 4 Debugger are on your system diskette in the module
ALBUG/CMD.

Note: This module resides in all memory above E000H (57344 decimal),

therefore it cannot be used by programs which exceed this amount. This also

means ALBUG should not be used on the Model III within a DO file, or on the

Model 4 when certain high memory drivers are loaded.

Among many other features, the ALDS Debugger allows you to:

• set both permanent breakpoints with pass counts and temporary breakpoints

(see the J and B commands in Table 8).

• execute one or more instructions at a time (see the I and E commands in

Table 8).

• specify a memory address as an offset. This is useful in debugging a program

which you assemble in the relocatable mode (see the O command in Table 8).

What you can debug with the ALDS Debugger:

You can debug any absolute program. The program must lie in memory between

5200H and DFFFH on the Model III and between 3000H and DFFFH on the

Model 4.

In addition, you can use the Debugger to change the contents of disk files, using

the DISK ZAP mode (see the Z command).

Loading The ALDS Debugger

To use the Model III or Model 4 Debugger you must first load the program that

you wish to debug with the TRSDOS LOAD command. Refer to your TRSDOS
III or 4 Disk System Owner's Manual for more information. For example type:

LOAD filespec (iNTEPn

Next you must turn on the ALDS Debugger by typing:

ALBUG (ENTER)

29

MODEL HI/4 ALDS

The Debugger display appears on your screen and you are now in the Debugger

command mode. You can use any of the commands listed in Table 8. In order to

begin debugging or executing your program, you must change the PC register to

the address of the beginning of your program by using the "R" command.

If you wish to enter the Debugger without loading one of your programs (i.e. to

enter the DISK ZAP mode), from the TRSDOS Ready mode type:

ALBUG (INTER)

The Debugger begins execution.

The Debugger Display

This is a sample Debugger display.

©-
U>520t

5216

®-
L>6000:

6010;

®-
<=SP-1:

SP=>;

<3>£ @PC=>i

01 2 3 4 5 67 89
0000 0000 0000 0000 0000
0000 0000 0000 0000 0000
01 23 45 67 89

0000 0000 0000 0000 0000
0000 0000 0000 0000

1 2 3 4 5 6 7

9003 1007 00F8 CAEA 9003

C5E5 78E6 0707 21DF 034F
AB CD EF 01 23

3E93 EFE1 F53E 96EF 5379

A B

0000
0000
A B

0000
0000 0000
8 9 A B

1000
7806
4 5

7374

C D

0000
0000
C D

0000
0000
C D

C6E9
0009
6 7

B56D

E F

0000
0000
E F

0000

0000

E F

50E3
4E23
8 9

2045

0123456789ABCDEF

* t * * * * » t t * *

2345S789ABCDEF

3456789ABCDEF
t*»»P«t*
. , ! ..Ox,.,N*

ABCDEF0123456789
>....>.. S'/stew E

<!>
AF BC DE HL IX . IY SP

0B5C 0420 00E0 0425 FFFF DFDD 03A0
PC @PC DISASSEMBLY
1AFA LD A»93H

,<-ZHP-->
||
BPl=OFF BP2 = 0FF BP3=0FF BP4=0FF,

6 <k)

Figure 2

Refer to Figure 2 for reference to the following explanations:

1

.

Upper Dump. This is a 32 byte section in the memory. U stands for Upper

Dump. The 5200 signifies that the memory address of the first byte in that

row is 5200H. When you load ALBUG this address is automatically set to

3000H on the Model 4 and 5200H on the Model III. To the right of the 5200

are the contents of memory locations 5200H through 520FH. To the right of

the 5210 are the contents of memory locations 5210H through 521 FH. Above

these lines are numbers which represent the memory address of the data

listed below them. For example, the byte under the 7 and in the row marked

as 5200, is the memory location 5207H.

2. Lower Dump. This is another 32 byte section of memory. It is arranged

exactly like the Upper Dump, except that it is originally set to 6000H on the

Model III and 3000H on the Model 4

.

3. The memory location pointed to by one of the register pairs (in this case SP)

is displayed here along with the 15 bytes immediately following it. The label

of this line is SP= >. Directly above it is a line labeled <SP-1. It contains

the 16 bytes preceding the memory location pointed to by the register pair.

-®

30

DEBUGGER

(The byte on the far left of the line is at the address (SP)-16 and the byte on
the far right is at the address (SP)-l.)

4. The memory location pointed to by the PC is on this line, marked @PC = >.
It is followed by the contents of the next 15 bytes in memory. Above this line

is the memory location of the respective bytes.

5. This line (here shown blank) displays certain information such as base

register addresses and math function results. When you enter a new
command, it is erased.

6. These lines show the contents of the Z80 registers. At the right side of the

lower line, below "@PC DISASSEMBLY", is a Z80 instruction. The address

pointed to by the PC contains this instruction in machine code, and the

Debugger has disassembled it into an assembly level instruction. The
Debugger uses as many bytes following the PC address as necessary to make
a complete instruction. This means that what is disassembled can be one to

four bytes long.

7. <SZHPNC> are the condition codes set in the F register. The codes are:

s sign

z zero

H half carry

P parity

N BCD condition

C carry

When a condition bit is set (i.e. when it is equal to 1) the Debugger encloses

the letter within the < > characters. Otherwise it simply displays a hyphen
(-). For example, <-Z—C> shows that the zero (Z) and the carry (C) bits

have been set and all other bits have not.

8. This area lists the status of the permanent breakpoints. BP1 = 5200/000C
translates as breakpoint 1 set at 5200H with the pass counter set at 12

decimal passes. BP2 = OFF means that breakpoint 2 is not set. (See Table 8
for more information).

9. When you first enter the Debugger, this line gives version and copyright

information. Thereafter, it displays commands and prompts used in

debugging code.

10. This area displays the ASCII value of any hexadecimal data to its left. If the

hex number has no printable value, a period (.) is displayed.

Entering Commands

Table 8 lists all the Debugger commands. You can execute most of them by
simply pressing the appropriate letter. By pressing (BREAK) , you can abort any
command in the middle of execution and return to the command level.

31

MODEL IN/4 ALDS

Most commands prompt you to specify a register or data (the prompt is in area 9

of Figure 2). The prompts use these abbreviations:

Adr Address

Asc ASCII

BP1 Breakpoint 1

CHR Character

C(lr) Clear

Decimal

<E> (INTER)

Eadr End address

H(ex) Hexadecimal

Pas Pass counter

Reg Register

SAdr Start address

Str String

The commands usually prompt you for a certain number of parameters. If you

fail to provide enough parameters, or if you use an invalid number as a parameter

(e.g. hex when a decimal number is expected), you receive the message:

Illegal Parameter

and the Debugger returns to the command mode.

Specifying Registers

Certain commands require you to input a register or register pair. For example,

the Debugger might prompt you with:

C»EiLtA(F) »B(C) »D(E) >H(L) #<I)Xf(I)Y>S(P) or P<C)

To enter a single register, you simply press the appropriate letter. To enter a

register pair, you must press the letter NOT shown in parenthesis. For example,

© enters the C register, but (£ enters the BC register pair.

Specifying Data

As a Constant

Some commands require constants. When entering a hexadecimal constant, you

must follow it with H. For example, "10" indicates the decimal number 10,

while "10H" stands for the hexadecimal number 10 (the decimal number 16).

As an Address

Other commands require addresses. These must be in hexadecimal. There is no

need to follow hex addresses with an H.

You can specify an address by referring to a register pair which contains that

address. For example, if BC contains the number 6000H, you can enter $B

32

DEBUGGER

instead of the address 6000H. The register abbreviations for this type of

addressing are:

AF *A

BC $B

DE $D

HL $H

IK $K

IY $Y

SP $S

PC $P

You can also specify any address as an "offset" to a base register. This is useful

if you assemble the program in the relocatable mode. It allows you to use a

relocatable location to specify an address. (See the O command in Table 8).

The ALDS Debugger is for debugging your own code. Hence, you cannot enter

an address which is in the system memory (i.e., below 3000H on the Model 4 or

5200H on the Model III). In addition, the Debugger protects itself by not

allowing you to interfere with the memory above E000H on the Models III and 4.

If you enter an invalid address the Debugger returns to the command mode.

Breakpoints

The Debugger allows you to set "breakpoints" within your code. Breakpoints are

commands causing the execution of your program to stop at a given point. There

are two types of breakpoints, temporary and permanent.

You can assign temporary breakpoints with the J command (Jump to an address

and execute). They apply only to this one execution of J. With them you can

execute a short section of code, or determine which way control goes at a branch

statement. (See the J command in Table 7).

With the B (Breakpoint) command, you can set permanent breakpoints. They
remain in your program until you leave the Debugger or clear them. Permanent
breakpoints may have a pass count associated with them.

You must be cautious when setting breakpoints. Set them only at the first byte of

an instruction. If you are writing a self-modifying code where the first byte of an

instruction may change during the course of running the program, be careful not

to place a breakpoint at that instruction.

Another point of caution: If you return to TRSDOS Ready other than through

the Q(quit) command, the breakpoints will not automatically clear. If you return

to ALBUG without reloading your program, the breakpoints will still be there,

although they will not be displayed in the display area. You must personally reset

them by using the M(modify memory) command.

33

MODEL HI/4 ALDS

Table 8/ Debugger Commands

n; (semicolon)

Advances the memory location of the Upper Dump. The default advance is

16 bytes. You can precede the semicolon with n, a decimal number, which

changes the default to n bytes, until you press (BREAK) , when the default

returns to 16 bytes.

n+ (plus)

Advances the memory location of the Lower Dump. The default advance is

16 bytes. You can precede the plus sign with n, a decimal number, which

changes the default to n bytes.

n- (minus)

Decrements the memory location of the Upper Dump. The default

decrement is 16 bytes. You can precede the minus sign with n, a decimal

number, which changes the default to n bytes.

n= (equal sign)

Decrements the memory location of the Lower Dump. The default decrement

is 16 bytes. You can precede the equal sign with n, a decimal number, which

changes the default to n-bytes.

B
Sets or clears permanent breakpoints and their pass counters. After you

press d), a prompt appears:

1,2,3,4 or C(lr)?

You can now choose to set or alter any of the four breakpoints, or clear all

four. To set breakpoint 1, for example, press CD. The Debugger prompts with:

0<E>or[Adr][,Pas]<E>?

You can now select the address where you want the breakpoint. You must

set it at the first byte of an instruction. You can not place a breakpoint on top

of an existing breakpoint.

Each permanent breakpoint is associated with a pass counter. Pass

counters are useful to stop execution after an instruction has been executed

a given number of times. A pass count is specified by following the

breakpoint address with a comma and then the pass count value.

To set the breakpoint at 6000H, with a pass of 12 type:

6000,1 2HHTIR)

You can clear the breakpoint by entering a value of 0:

Q tENTER)

To clear all four of the breakpoints, press © in response to the first prompt.

The Debugger asks you:

Are You Sure (Y/N)?

34

DEBUGGER

to allow you to change your command (the Debugger accepts only Y or N).

The status of all four breakpoints is displayed in area 8 of Figure 2.

When you set each breakpoint, the Debugger saves the contents of the

breakpoint address, and replaces it with an RST 18H instruction on the

Model 4 which assembles into 0DFH or an RST 30H instruction on the

Model III which assembles into 0F7H. Now, in typing Y to remove the

breakpoints, the Debugger restores the memory addresses to their original

contents.

The contents of the pass counter can be updated without respecifying the

address of the breakpoint. For example, if you had previously set a

permanent breakpoint at 5200H, you can update the pass count to 24 by

typing:

,24 (HUH)

in response to:

0<E> or [Adr][,Pas]<E>?

Whenever ALBUG executes a program instruction which is associated with a
permanent breakpoint with a nonzero pass count, the count is decremented
and execution resumes. Execution halts when a permanent breakpoint with

a pass count of zero is reached. ALBUG is designed so that once execution

is halted by reaching a pass count of zero, you may single step over a
permanent breakpoint.

The permanent breakpoint remains in the program until it is explicitly cleared

with the (D command or until ALBUG is exited with the (fl) command. Note: if

a return to DOS is executed in your program, the permanent breakpoints

remain intact and ALBUG can be re-entered by typing ALBUG.

ALBUG uses RST 18H instructions on the Model 4 and RST30H
instructions on the Model III to handle all breakpoint processing. If ALBUG
encounters an RST 18H instruction on the Model 4 or an RST 30H
instruction on the Model III, which you placed in your program, execution

will halt. To resume execution, the program counter must be reset using

the ®) command.

Copies one section of memory to another. After you press CD, a prompt

appears:

Start Adr,End Adr.To Adr <E> ?

Type the appropriate start, ending, and destination addresses. For example,

type:

5800,582F,6000 fENTEff)

to copy the data contained in addresses 5800H-582FH to addresses

6000H-602FH.

35

MODEL 1114 ALDS

D
Dumps the data contained in the address pointed to by a register pair in the

Debugger display. (See area 3 in Figure 2). The data on either side of this

address is also displayed. After you press ffi, the Debugger displays:

Reg Dump B(C),D(E),H(L),(I)X,(I)Y,S(P) or P(C)?

To see the data referenced by the IX register pair, respond with:

®
The screen updates to display the new dump.

nE
This command is identical to the fj) command with one exception: If the

current instruction is a call the debugger executes the entire routine.

nF
Searches for a string within a given range in the memory. After you press GD,

a prompt appears:

Sadr.Eadr <E> or <E>?

After you enter a valid start and end address, the Debugger asks you:

H(ex) or A(scii)?

Depending on whether you enter (E) or ®, the Debugger then prompts

you with:

Hex Str <E>?
or

Asc Str <E>?

When you enter the appropriate type string the Debugger searches

through the given memory for it. If the Debugger finds a matching string,

the Lower Dump is set to display this part of memory. If no match is found,

the Debugger returns to the command level.

To find the next occurence of the string, you need only to press QD from the

command level and respond to the prompt with (ENTER) . You can continue to

search for matching strings until you reach the ending address (EAdr) or

until there are no more string matches in the specified range.

To specify which occurrence of the string you want to find, precede the F

command with n, a decimal number between 1 and 254. For example, to

find the fifth occurrence of 1 FH, start by entering 5F.

The F command will find an ASCII string of up to 24 characters or a HEX
string of up to 12 digits.

You may also specify a new range for the current string. Enter the new
range, abort the CD command with the (ffiMB key at the 'H(EX) or A(SCII)?

'

prompt, and press:

f (enter :!.

36

DEBUGGER

Examines a 256 byte area in memory. After you press ©, a prompt appears:

U(pper) or L(ower)?

Depending on your answer, the Debugger displays the 256 byte multiple of

memory which contains the address of the Uppper or Lower Dump. For

example, if the Upper Dump starts at 5207H and you press © and then 3D,

your screen changes so that it now contains a dump of memory starting with

5200H.

The <n;>, <n ->,<n = >, and <n + > commands may be used in this

display mode as they were in the partial screen display mode, except that

the value of n is always rounded up to a multiple of 256.

Press (BREAK) to return to the regular Debugger display.

n\

The (D and (D commands are ALBUG's single step instructions. The CD

command executes the current instruction in your program (the instruction

pointed to by the PC register.) ALBUG then increments the PC register to the

next instructions address and returns to the command mode.

By preceding CD with n, a decimal number, you can indicate the number of

times it is to be repeated. For example, if you type:

101

the CD command is executed 10 times.

There are a couple of considerations you should be aware of when single

stepping. ALBUG will not place a breakpoint in a protected area. This implies

that an attempt to single step an instruction in a protected area will cause a

jump to that instruction. Single stepping a call to a protected area will cause

the entire call to be executed at full speed. These precautions are necessary

since many of the system calls such as video and disk I/O will work properly

only when executed at full speed.

Executes a specific section of your program. After you press CD, a prompt

appears:

J [ADR][,BP1][,BP2][,BP3][,BP4] <E>?

The start address (ADR) is optional. If you omit it, the execution begins at

the contents of the PC. BP1-BP4 are temporary breakpoints and are also

optional. You can include any or all of them.

The first temporary breakpoint encountered causes the execution to

terminate. This clears all temporary breakpoints. The execution also

terminates if a permanent breakpoint with a pass of zero is encountered.

37

MODEL 111/4 ALDS

For example, suppose you want to execute the instructions between 5200H
and 5221 H, inclusively. After pressing (33, you would type:

5200,5221 fEffTlffi

Temporary breakpoints are often useful near branch points. If you set

breakpoints at the possible jump locations, you can see which way your

program goes. For example, say you have a set of conditional jumps which

could go to 6040H, 6080H or 60F0H. When you enter:

5800,6040,6080,60F0 -ENTER]

your program begins at 5800, and terminate after jumping. You can then

examine the PC to see which breakpoint caused the execution to stop (i.e.,

which way the jump went).

K
Allows you to convert between decimal, hex, and ASCII characters. With this

command, you can also perform addition and subtraction. After you press K,

a prompt appears:

Enter value or equation ?

You can then enter a value or equation. For example, to find out the ASCII

character for 32H, type:

32H fEHTEW)

The displays on the Models 4 and III (in area 5 of Figure 2) are then:

Model 4:

HEX String = 0032 DEC String = 50 CHR String = ".2"

Model III:

HEX String = 0032 DEC String = 00050 CHR String = ".2"

To do addition or subtraction, simply type in the equation. You can mix

decimal, hex, or character constants in the equation. Only single characters

are allowed, and unprintable characters are output as periods (.); all

characters must be preceded by a quote mark ("). For example, if you type

this equation:

1124-40H + "Z(IBTM)

the Debugger displays:

Model 4:

HEX String = 047E DEC String = 1150 CHR String = ".""

Model III:

HEX String = 047E DEC String = 01 150 CHR String = ".""

the result must lie between and FFFFH, or else the number is represented

modulo FFFFH. For example, -1 H is represented as FFFFH, and 1 0001 H as

1H.

38

DEBUGGER

Loads a given range of memory with a constant value. After you press CD, a
prompt appears:

SAdr,EAdr,Value <E> ?

When you enter a start address, end address, and value, the area in memory
is filled inclusively with the value. For example:

6000,6FFF,FFH(lNTEl)

fills addresses 6000H to 6FFFH with FFH.

6000,6FFF.16(FHTER1

fills addresses 6000H to 6FFFH with 10H (the hexadecimal equivalent of

decimal 16).

M
Changes values in user memory. After you press (ft, a prompt appears:

Address = ?

Enter a hexidecimal address and press (ENTER) . The Debugger then displays
a 256 byte block of memory and puts the cursor on the specified memory
location. The numbers along the left-hand side are the memory addresses
for the first byte in their respective lines. You may reposition the cursor with
the up, down, left, and right arrow keys when entering data. Press (ENTER) to

return to the debugger display.

N
Toggles the Debugger display between the primed and unprimed register

set.

O
Sets values for offset base registers. You can use these offset registers for

debugging a program you assembled in the relocatable mode. When you
press (JP a prompt appears:

1,2,3,4,5,6,7,8 or <E>?

If you press (ENTER) the Debugger displays the values of the base registers in

area 5 of the screen (see Figure 2). There are eight offset base registers.

They supply the "base" or start address of the program or module.

After you set an offset address, you can specify an address as a relocatable
location, followed by a colon, followed by the number of the offset register.

(Your Assembler listing gives the relocatable locations of each instruction.)

For example, if an instruction in the assembly listing is at relocatable 0001 A,
and you linked the program using an absolute start address of 6000H, press
CD in response to the above prompt, and you will receive:

BaseAdr<E>?

39

MODEL ID/4 ALDS

type:

6000i8TiD

This sets base register 1 to 6000H, Then, an address 1AH bytes after the

beginning of 6000H can be entered as 1 A:1.

P (Model III) or (EUD CD (Model 4)

Prints what is currently displayed on your screen. If your printer is not ready,

you must press the dffiffi) key to return to the command line.

Q
Exits the Debugger and returns to the TRSDOS Ready mode. All existing

breakpoints are cleared. The Debugger is turned off.

R
Alters the contents of any of the registers. When you press ®, a prompt

appears:

C,E,L,A(F),B(C),D(E),H(L),(I)X,(I)Y,S(P) or P(Q?

After you press the appropriate letter, the Debugger prompts you for a value

to put in the register. For example, if you are changing the C register, a

prompt appears:

(C =##or#<E>)C = ?

To change the register to FFH, type:

FF flNTEff)

The screen is updated and the C register now contains FFH.

You can also change register pairs. For example, if you were changing the

contents of the HL register pair to A064H, after you press ®, respond to the

register prompt by pressing ®. You are then prompted with:

(HL=####or###orH = ## or # <E>) HL = ?

To complete the change, simply type:

A064 fEHTEH)

If you are changing a register pair and you input only 3 digits, the Debugger

assumes leading zeros. By using the N command first, you may alter the

contents of the prime register set.

The stack pointer and the program counter may not be changed to point at

the protected areas. Keep in mind when changing the stack pointer that

ALBUG uses the stack. To be safe allow for a stack size of 256 bytes.

S
Executes a TRSDOS system command. Enter the system command after

the S. For example:

SDIRdHTI!

40

DEBUGGER

returns the directory of drive 0, and then prompts you with:

<ENTER> to continue

Note: Some commands automatically jump to TRSDOS Ready if there is an
error such as "File not found" If this occurs, be aware that the breakpoints
are not cleared.

V
Changes the start address of the Upper or Lower Dump. When you press QD,
a prompt appears:

(U)pper or (L)ower?

Depending on which you press, d) or CD, you will be prompted with either:

U Address = ?

or

L Address =?

For example, to change the start address of the Upper Dump to 6000H,
respond to "U Address = ?" with:

6000 (ENTER)

Z
Enters the DISK ZAP mode, allowing you to debug disk files. See the
explanation below.

The Disk Zap Mode
The DISK ZAP mode allows you to change the contents of your fixed length
record disk files. When you enter the Z command, the screen clears, and you are
prompted:

ALDS Disk Zap
Enter Fi lespec ?

After you enter the filespec, DISK ZAP asks you for the sector or record number.

Note: DISK ZAP on the Models III and 4 only work on files that have an LRL of
256, therefore the sector number and the record number will be the same.

Enter Sector/Record Number (* <E> or <E>) ?

You can specify a sector number, or just press CENT1W) . If you press (ENTER) , the
DISK ZAP displays the first disk sector containing your file (relative sector 0).

The display for the sector is similar to what the M (Modify memory) command
displays, except that the relative sector and starting byte numbers are listed along
the left side in hexadecimal. For example, the number 1100 refers to sector 11

hex (17 decimal) and byte 00.

You can move from sector to sector by pressing the semicolon CD which
advances the display to the next sector. The minus signQ decrements the

41

MODEL 111/4 ALDS

display to the previous sector. If you cross a file boundary (i.e. if you go to a

sector not used by your file), you will return to the DISK ZAP filespec prompt.

You can modify the data in your file much like you modify memory. When you

press UD, the Debugger puts the cursor onto the first byte of the sector. You can

then position the cursor to the correct byte with the up down , left, and right

arrows. After you have completed your change, press (ENTER) to write the change

to the disk. If you don't want the change written, press the (BREAKJ key.

Technical Note: Decimal numbers in ALBUG are treated modulo 65536. For

example, a number entered as 65537 will be treated by ALBUG as 1. Thus,

ALBUG will not let you access any sector or record above 65535.

Disk Zap Errors

If you get an error message while using DISK ZAP, it is a TRSDOS error

message. See your TRSDOS Owner's Manual for an explanation.

Leaving The DISK ZAP Mode

Pressing (BREAK) at the DISK ZAP filespec prompt returns you to the Debugger.

Pressing (BREAK) from any other level of DISK ZAP returns you to the original

DISK ZAP filespec prompt.

42

LINKER

Chapter 5/

The ALDS Linker

(ALLINK)

The ALDS Linker converts a relocatable object file into absolute object code.

Unlike many linkers, ALDS Linker receives its commands through directives in

your program. You can use these directives to get the Linker to link in external

program sections and use external symbols. The Linker directives are:

PSECT — begins a program section and determines its mode (absolute or

relocatable)

PUBLIC — declares symbol definitions PUBLIC so that other program

sections can use them
EXTERN— brings in external symbols

GLOBAL— creates a global symbol file

GLINK — brings in global symbols

LINK — links an external absolute or relocatable program section

For information and examples on how to write a relocatable program containing

Linker directives, see Chapter 8.

The Linker Command
This command, typed in the TRSDOS Ready mode, loads and executes the

Linker:

ALLINK filespecl filespecl {options}

filespecl is the relocatable file you want converted. If you do not specify an

extension, the Linker assigns it the extension /REL.

filesped is optional. If specified, it stores the converted absolute object file. If

not, the Linker will still processes the file so that you can test for undefined

symbols, missing files, or generate a listing.

On the Models III and 4, filesped must have the extension /CMD to load and

execute. You can use an asterisk (*) to specify filesped. If so, the Linker assigns

itfilespecl 's name with the extension /CMD.

You can specify one or more of these options, separated by a blank space:

$ = nnnn specifies the absolute hexadecimal start address of the program. If

omitted the start address is 3000H (Model 4) or 5200H (Model III).

43

MODEL HI/4 ALDS

MAP prints each PSECT name, its absolute start address, and the start, end,

and transfer address of the program.

SYM prints the absolute address of each PUBLIC and GLOBAL symbol,

sorted alphabetically by symbol. You cannot use this option with the

XREF option.

XREF prints an alphabetical cross-reference of each PUBLIC and GLOBAL
symbol, its absolute address, and all addresses which reference it. This

option overrides the SYM option, if both are specified.

DISK saves the listing requested by the MAP, SYM, or XREF options on

disk. The resulting disk file has the same name as filespecl with the

extension /MAP.

PRT directs the listing requested by the MAP, SYM, or XREF options to the

printer.

Examples:

ALLINK PROG/REL PROG $ = 7000 MAP SYM DISK (ENTER)

assigns absolute addresses beginning with 7000H to PROG/REL and stores the

resulting file as PROG/CMD. The Linker displays a PSECT MAP and a table of

absolute symbol definitions then stores this listing in a file named PROG/MAP.

ALLINK PROG DONE (ENTER)

assigns absolute addresses beginning with 3000H (Model 4) or 5200H (Model

III) to PROG/REL and stores the resulting file as DONE/CMD.

ALLINK PROG * (ENTED

assigns absolute addresses beginning with 3000H or 5200H to PROG/REL and

stores the resulting file as PROG/CMD.

Technical Information

Operation

The Linker processes the file in two passes. In pass 1, the Linker:

• processes any LINK directives by linking in the specified program sections.

• assigns the file absolute addresses. It does this by offsetting the relocatable

locations (assigned by the Assembler) to the absolute start address.

• processes any LINK directives by linking in the specified program sections

(PSECTs). If the PSECT to be LINKed is relocatable, the Linker assigns it

addresses which immediately follow the last relocatable PSECT. If it is

absolute, the Linker will assign it the same addresses the Assembler assigned it.

44

LINKER

• processes any PUBLIC or GLOBAL directives by inserting the declared

symbols and their corresponding definitions in a Linker symbol table.

• processes any GLINK directives by inputting the specified global file's symbols
into the Linker symbol table.

In pass 2 the Linker:

• fills in the addresses of any EXTERNal symbols, and generates error messages
for all undefined symbols.

• iffilespecl is specified, saves the resulting absolute file.

• processes any GLOBAL directives, by creating a global file.

Maximum Sizes:

The Linker links up to 200 external program sections (PSECTs).

The Linker Symbol Table holds at least 2,000 external symbols. However, if you
use symbols smaller than the maximum size of 10 characters, the Symbol table

can hold more.

The maximum absolute object file which the Linker creates can be as large as

TRSDOS will load. See your TRSDOS manual.

45

FILE TRANSFER

Chapter 6/

ALDS File Transfer System
(ALTRAN)

The ALTRAN program transfers files created under the ALDS package between
any two TRS-80S (Model I, II, III, 4, 12 or 16) by either hardwire or modem. It

transmits or receives object code, source code or data files. This chapter explains

how files can be transferred between the Models III and 4. If you wish to transfer

files on your Model I, II, 12 or 16, you will need the Model II ALTRAN
package.

Since ALTRAN was developed specifically for files created with the ALDS
package, we cannot guarantee that it will accurately transfer files created with

other software.

Set-up

You can use two types of connections in ALTRAN: modem or hardwire.

Modem

The standard RS-232C Interface is appropriate if you plan to transfer files via a

modem. You can use any TRS-80 modem provided that both ends can use the

same baud rate and can communicate with each other (i.e. both can't be originate

only or answer only modems).

See your Radio Shack modem operation manual for installation instructions.

Hardwire

If you plan to hardwire the Models III and 4, you will need:

Model III/4 to Model III/4 26-1408 RS-232C Cable

26-1496 Adapter Box
26-1497 12" Extension Cable

Baud Rate

The factory sets the baud rate at 300 for all ALTRAN packages. As a general rule

with most systems, the quality of transmissions is directly proportional to the

47

MODEL HI/4 ALDS

ratio of distance versus baud rate. In other words, the higher the baud rate, the

shorter the distance allowed.

If you want to change the factory-set baud rate, you can use the PATCH utility.

The patch for the Model III is:

PATCH ALTRAN/CMD (ADD=5200 »FIND=55 »CHG=nn) CIHTEH)

where nn is the value in Table 9.

The patch for the Model 4 is:

PATCH ALTRAN/CMD (D00 »04=nn:F00 *04=55> (ENTER)

where nn is the value in Table 9.

Table 9/ Baud Rate Change Table

Baud Rate Desired Model III and 4 Patch

75 11

110 22

150 44

300 55

600 66

1200 77

1800 88

2400 AA
3600 BB
4800 CC
7200 DD
9600 EE

The following table shows the recommended maximum distance (hardwired)

versus baud rate for high quality transmissions. The factors that govern this table

are for worse case non-modem situations.

Note: All values are approximate.

Maximum Model HI/4

Baud Rate Distance

75 -300 500 feet

600 -1200 50 feet

1800-3600 25 feet

4800 + 10 feet

Loading ALTRAN
To load ALTRAN from TRSDOS Ready, type:

ALTRAN (ENTER)

48

FILE TRANSFER

The program immediately displays the menu of operations and the settings of the

RS-232C parameter list.

Figure 3 shows the menu of ALTRAN.

Tandy Systems Desisrn Model Q File Transfer Program
Copyright 1982*1983 Tandy Corp. Mer,, vv.rr.pp
300 baud» 8 data bits* no parity* 1 stop bit

1 - Transmit OBJECT file 2 - Receive OBJECT file
3 - Transmit SOURCE file 4 - Receiue SOURCE file
5 - Transmit DATA file 6 - Receive DATA file

7 - Transmit via COMMAND file
8 - Receive via received COMMAND file or WILDCARD mask
9 - Enter 'Mini-Terminal' Mode

- Return to TRSDOS

Figure 3. THE ALTRAN MENU

Operations 1,3,5, and 7 are the transmission modes. The one you select depends
on the type of file you want to transfer.

Operations 2, 4, 6 and 8 are the receiving modes. Again, the one you select

depends on the type of file you'll be receiving.

You can use operation 9, 'Mini-Terminal', for terminal to terminal

communications.

See COMMAND FILE for instructions on creating a command file.

The transmit WILDCARD operation is only available on Model II ALTRAN.

Operation

Once you load ALTRAN, as a final test to ensure both transmitting and receiving

stations are operational, send a test message via Operation 9 - 'Mini-Terminal'

mode in both directions. ALTRAN must be able to communicate in both
directions to function properly.

Beginning the Transmission

1. Determine the type of file you want to transfer.

Use operations 1 and 2 (OBJECT file) for:

• ALDS object files (both executable and relocatable)

Use operations 3 and 4 (SOURCE file) for:

• ALDS source files

• Series I Editor/Assembler source files (the file transfer system will write the

file to the receiving station in ALDS source file format).

49

MODEL 111/4 ALDS

Use operations 5 and 6 (DATA file) for:

• fixed length record files (assembler global files, application program data

files, assembler listing files, and non-ALDS source files such as some

BASIC files.)

Please note some non-ALDS Model III and Model 4 files, with an EOF byte

which is not zero (as displayed in the directory) may not transfer properly.

This is because ALTRAN will change the EOF byte to zero, thereby

changing the length of the file.

Note: When transferring files from one model to another, you must consider

the differences between systems. It is unlikely that the same object file can run

on all models due to the difference in ROM and RAM addresses, etc. In

addition, we can't guarantee successful transfer of file formats not used by

ALDS, even though some files may transfer.

2. Select an operation.

The number of the operation you choose depends on the type of file you want

to transfer and whether you're the transmitting or receiving station. If you are

the transmitting station and plan to send an OBJECT file, type 1 CENTER) in

response to the Which? prompt. The receiving station enters a 2 in answer to

the Which? prompt. (The order in which the stations enter their operations

doesn't affect the transfer, i.e. the receiving station can specify operation 2

before the transmitting station specifies operation 1.)

3. Specify a file.

After each station selects an operation, ALTRAN prompts for a filespec with

File Name?

Both stations should enter the name of the file. Be sure to include the

extension and drive number (if not the system drive).

If you choose Operation 7, ALTRAN prompts the the transmitting station with

File Name? (See COMMAND FILE later in this section on how to

create one.)

Using Operation 8, ALTRAN prompts the receiving station with Drive

Number?. To avoid the possibility of accidently writing over a file, the

receiving station should use a blank formatted diskette.

During the Transmission

When operation actually begins, the transmitting station immediately sends the

first block of the file. During transmission, the display reads:

'TranswittiriS BlocK 1 '

As each block is sent, it increments the block number by one. (Depending on the

baud rate and LRL, this increment may take from a fraction of a second to about

a minute.) This message is not displayed if you are transferring a null file (EOF

and no other information).

50

FILE TRANSFER

At the same time, the message:

'Receiving Block 1
'

appears on the receiving station's video display. This indicates that the station is

ready to receive the first block of the file, and is not necessarily receiving it.

After each file is received, the block number displayed is one more than what

was actually received.

This message may not come on immediately in operations 5 and 6 because the

transmitting station must first send the file type and the logical record length of

the file before the receiving station can be readied to receive the first block of the

file.

After receiving each block, ALTRAN increments the block number by one, then

stores that block to disk under the filespec named in step 3.

If the receiving station is not ready, the transmitting station keeps trying to

transmit a block until it receives an acknowledgement or until the (BREAK) key

is pressed.

Once transmission actually takes place, the receiving station expects a block until

it receives an EOF marker or until the (BREAK) key is pressed. If the (BREAK) key is

pressed during transmission of a file, the file won't be valid or useable.

On SOURCE file transfer only, prior to transmission, ALTRAN at the

transmitting station checks the first line of the file for an existent line number.

If there is none, it automatically adds line numbers to the entire file before

sending the file.

The receiving station strips the bytes corresponding to the line number from all

lines of the transferred file as it stores them.

In the 'Mini-Terminal' mode, you can transmit any character except© and

(BREAK) and the receiving station will output the character to the screen. However,

not all of the TRS-80 models (at the receiving station) interpret the characters in

the same way. One model may interpret the control characters differently and

display a character other than what was transmitted. On other models, certain

characters may activate features such as dual routing, reverse video, or 40-

character mode. And, the Models III and 4 won't output tabs.

Ending the Transmission

After all transmissions are complete for operations 1 through 8, ALTRAN
returns to the menu, unless you are sending a command file ending with

operation 9.

To escape from the menu, type (D (ENTER) . To exit the 'Mini-Terminal' mode,

press© on the Model III/4.

If you want to transfer another file, return to Step 2.

51

MODEL HI/4 ALDS

When an Error Occurs

If an error occurs at one station (not including 'Unknown or unuseable baud rate

was patched' which automatically returns to TRSDOS Ready), ALTRAN will

cease transmission, close the file, return a descriptive error message, and display

the following:

Further transmission not possible

Press (ENTER) to go into Mini-Terminal mode
Press (tEHD® to return to menu
Press (1REAK) to exit to TRSDOS Ready

When an error occurs, the computer making the error will send a cancellation

message ((CIEAR)OD or 18H) which the other computer will display minus the

descriptive error message.

Under certain circumstances, such as transmitting or receiving the LRL, a byte

of data, or the checksum, this feature is disabled so that a legitimate 18H won't

cause a cancellation and an error message won't be displayed. Therefore, if your

computer remains idle for a period of time (the length depending upon your baud

rate), you can assume an error has occurred. Press (BREAK) to return to TRSDOS
Ready.

Note: It is always a good idea for both stations to arrange to go to 'Mini-

Terminal' mode if an error occurs. Because the station not causing the error isn't

always informed of an error, you should return to 'Mini-Terminal' mode if your

computer locks up for an unusual length of time.

Command File

A command file is an automatic input file. This file executes a series of

operations with one command. By building a command file, you will be able

to transmit several files with this one command.

You must enter the Editor to create a command file. The procedure is:

1

.

Load the Editor

2. Enter the Insert Mode
3. Enter the filespec you are sending

4. Tab over one position and enter the operation code number used for

transmitting the file (1, 3, or 5)

5. Repeat steps 3 and 4 until all files are entered.

6. If you want to invoke Mini-Terminal mode, enter it last. A dummy filespec

must precede it.

7. Exit insertion mode
8. Write the command file to disk. Do NOT use the line numbers option.

Example:

At TRSDOS Ready, type:

ALEDIT (MM)
to enter the Screen Editor. Then type I to enter the insertion mode.

52

FILE TRANSFER

In the insertion mode, type:

FILE1/SRC 3 OEWTgff)

FILE2/0BJ 1 (ERTIffi

FILE3/DAT 5 fEWTEH)

DUMMY 9 (ENTER]

to create the command file.

When run, this command file transmits three files in a row with one input

command. It transmits the first filespec, FILE1/SRC, as a source file, the second,

FILE2/OBJ, as an object file, and the third, FILE3/DAT, as a data file. The last

file, DUMMY, isn't transmitted. It invokes the 'Mini-Terminal' mode.

If for some reason you don't have ALEDIT, you may download the Command
File from another computer, using the SOURCE File Transfer.

Technical Information

Definitions:

ACK = Acknowledgement of receipt of correct block or inquiry and request to

transmit next block, (code 06H)

NAK = Acknowledgement of receipt of incorrect block and request for

retransmission, (code 15H)

WAK = Acknowledgement of receipt of correct block, but wait before

transmitting next block (so the computer may write out block), (code

1BH)

EOT = End of transmission of this file, (code 04H)

ENQ = Enquire for a ready to receive, (code 05H)

ETX = End of text, (code 03H)

CAN = Cancellation (aborts current transfer) (code 18H)

Algorithms

Object Files

ALTRAN transmits and receives OBJECT files as 256 byte, fixed length record

(FLR) blocks.

It uses this algorithm to transmit OBJECT files:

1 open file for read

2 read a sector into a buffer

if end of file, send EOT, receive ACK, and return to menu
3 display xmit block number
4 send ENQ

53

MODEL 111/4 ALDS

5 receive ACK
6 output sector

7 output checksum

8 receive ACK or NAK or WAK
repeat block if NAK
if WAK, wait for ACK

9 goto 2, "read a sector"

It uses this algorithm to receive OBJECT files:

1 open file for write

2 display received block number

3 receive ENQ
if EOT, send ACK, close file and exit

4 send ACK
5 receive sector

6 receive checksum

7 output ACK,NAK,WAK
repeat receive if NAK

8 send WAK
9 write sector

10 send ACK
1

1

goto 2, "display block number"

Source File

ALTRAN transmits SOURCE files as fixed length records (FLR) 256 on

Models III/4.

It uses the following algorithm to transmit the SOURCE file:

1 open file for read

2 read in a line (if MOD III/4 strip bit 7 from line numbers). If a line

number is not present on the first byte of the line, add a line number.

Be sure the source does not have numbers in column 1. They may be

accidentally deleted. If end of file, send EOT and receive ACK.

3 display xmit block number

4 send ENQ
5 receive ACK
6 send line length

7 output the line

8 output the checksum

9 receive ACK, or NAK, or WAK
repeat line if NAK
if WAK, wait for ACK

10 goto 2, "read in a line"

It uses this algorithm to receive the SOURCE file.

1 open file for write

2 display receive block number

54

FILE TRANSFER

3 receive ENQ
if EOT, send ACK, close file and exit

4 send ACK
5 receive line length

6 receive the line

7 receive the checksum

8 send ACK, or NAK, or WAK
repeat receive if NAK
send WAK
write the line, without the line number

9 goto 2, "display block number"

Data File

The ALTRAN program sends DATA files as fixed length records (FLR) on the

Models III/4.

It uses the following algorithm to transmit the DATA file:

1 open file for read

2 send file type (F) and file's LRL
3 read in one record of data

if end of file, send EOT, receive ACK, and exit.

4 display xmit block number
5 send ENQ
6 receive ACK
7 send data record length

8 send data

9 send checksum

1 receive ACK or NAK or WAK
repeat xmit if NAK
if WAK, wait for ACK

1

1

goto 3, "read in one record"

It uses this algorithm to receive the DATA file:

1 receive file type (F) and file's LRL
2 open file for write with those parameters

3 display receive block number

4 receive ENQ
if EOT, send ACK, close the file and exit

5 send ACK
6 receive data record length

7 receive data

8 receive checksum

9 send ACK or NAK or WAK
repeat receive of NAK
send WAK, write data record

55

MODEL HI/4 ALDS

10 send ACK
1

1

goto 3 ,
' 'display block number'

'

Indirect Command File

ALTRAN uses this algorithm to transmit the COMMAND file:

1

2

open IND file for read

build a text line

if end of file, send ETX, wait for ACK, and return to menu.

3

4

5

send ENQ
receive ACK
send file name and function

6 send checksum

7

8

9

receive ACK or NAK or WAK
if NAK, goto send ENQ

display file name

transmit file through functions 1, 3, or 5

10 goto 2, "build a text line"

It uses this algorithm to receive the COMMAND file:

1 receive ENQ or ETX
if ETX, send ACK and return to main menu

2 send ACK
3 receive file name and function

4 receive checksum

5 send ACK or NAK or WAK
if NAK, goto receive ENQ or ETX

6 display file name

7 receive file through functions 2, 4, or 6

8 goto 1, "receive ENQ or ETX"

Mini-Terminal Mode

ALTRAN uses the following algorithm to transmit and receive keyboard

characters:

1 scan keyboard for character

if escape character, exit mini-terminal mode
if character, then display and output to RS-232C

2 scan RS-232C input

if character, then display

3 goto 1, "scan keyboard"

56

FILE TRANSFER

Building an Adapter Connection

If you want to, you have the option to build your own adapter connection instead

of buying a Radio Shack Adapter Box (Catalog Number 26-1496).

Required Materials

Model HI/4 RS-232C Interface Board
RS-232C Cable

DB-25 Male Connector (2)

When hardwiring for Model III/4 to Model III/4, the pin connections are as

shown below:

Figure 4. / Model HI/4 Pin Connections

The pin connections are as shown:

1 1

2
~~~~~~—==~=r^-~~~~

2

57





LANGUAGE SYNTAX

Section II

ALDS Assembly Language

59





LANGUAGE SYNTAX

Chapter II

ALDS Assembly Language
Syntax

This chapter describes how the ALDS Assembler interprets source lines. The
next chapters list all the instructions available with ALDS.

An ALDS assembly language source line can contain up to four fields. They are:

• the label

• the instruction

• the operands

• the comment

The Label

The label is optional. It is a symbol which defines the location of the instruction

immediately following it. For example:

NAME LD A,5

NAME is a symbol used as a label. The Assembler uses it to store the location of
the LD A,5 instruction. For example, if LD A,5 is at location 5200H, the

Assembler assigns the value 5200H to NAME and stores this in the symbol table.

The label must begin in column one (the first character in the line) or be followed
by a colon. For example, this line produces a syntax error:

NAME LD A,5

since the label NAME is not in column one.

However, this is acceptable:

NAME: LD A,5

since NAME is followed by a colon.

Valid Symbols

A symbol can consist of up to ten of the following characters:

alpha characters

(A-Z) in either upper or lower case (the Assembler treats upper and lower case
letters differently. "NAME", for example, is a different symbol than "Name").

61



MODEL 111/4 ALDS

numeric characters

(0-9) (the symbol cannot begin with a number).

special characters

the underscore (—

)

the question mark (?)

the dollar sign ($)

the @ character

It may not contain a space character. These are examples of valid symbols:

Date? $B__? A1D2 B2345678

The following are reserved words. You cannot use them as ordinary symbols,

since this conflicts with the way the Assembler notes register names, branch

conditions, or the location counter value:

$ A B C D E H L F Z p

M I R V AF BC DE HL SP IX IY

XH XL YH YL NC NZ PE PO NV

Reserved words are reserved in both upper and lower case. For example, SP, sp,

Sp, and sP are all reserved.)

The Instruction

The instruction is usually required. It can be either:

a Z80 mnemonic

(Chapter 9), which is an instruction to the microprocessor that the Assembler

converts into a Z80 operation code.

an assembler directive

(Chapter 8), which is an instruction to the Assembler itself.

an extended Z80 mnemonic

(Chapter 10), which the Assembler expands into a group of Z80 mnemonics.

a macro call

(Chapter 8), which the Assembler expands into one or more of the above types of

instructions.

You can begin the instruction anywhere but in column one. If the line contains a

symbol, there must be at least one space, tab, or colon between the instruction

and the symbol.

For example, the Assembler interprets LDIR as an instruction in all of these

lines:

SYMBOL LDIR
SYMBOL LDIR
LDIR

LDIR

62



LANGUAGE SYNTAX

However, in these two lines:

SYMBOLLDIR
LDIR

the Assembler interprets LDIR as part of the symbol field.

You can use either upper or lower case to indicate the instruction. For example,

you can indicate the LDIR instruction as:

ldir

Of course, in the case of a macro call, you must be careful that you use the same
case that you used when you defined the macro.

The Operands

Many instructions allow you to specify data as operands. Some instructions allow

you to use a register name or a flag as an operand. Some allow you to indicate a

specific value.

You must use at least one space or tab to separate the operands from the

instruction. In these examples, A and 3 are operands:

SYMBOL LD A,3

LD A,3

LD A,3

However, this line produces an error:

SYMBOL LDA,3

since there is no space between the instruction and the operands.

Expressions

When specifying a certain value as an operand (such as "3" in the above

example), you must use a valid assembler expression. The expression can consist

of one or more terms connected by operators.

Terms

A term can be:

a number
The Assembler assumes the number is decimal (base 10) unless you use a base

suffix or the RADIX directive. Changing number bases is described in the next

chapter.

an ASCII character

You must enclose the character in single quotes. The Assembler will assemble it

into its ASCII code.

63



MODEL HI/4 ALDS

a symbol

The Assembler fills in its value using the symbol table.

$ (the dollar sign character)

The Assembler interprets this character as the location counter's current value.

For example, each of these are valid terms:

152

which represents the decimal number 152 (unless you have used the RADIX
directive described in the next chapter).

'A'

which represents the ASCII character code of decimal 65 or hexadecimal 41.

SYMBOL

which represents the value of SYMBOL.

$

which represents the current value of the Assembler's location counter.

Operators

The operators and their functions are listed on Table 10. If an asterisk (*) follows

the function, the operator is unary (acts on one operand). Otherwise it is binary

(acts on two operands).

Table 10/ Operators

OPERATOR FUNCTION PRIORITY

+ unary plus*

.NOT.

.HlGH.or.MSB.

.LOW.or.LSB.

.BIT.

unary minus*

logical not*

high order byte*

low order byte*

bit*

**or"
*

/

.MOD.

(one shifted n bits to the left)

exponentiation

multiplication

integer division

modulo

2

3

3

3

.SHR.

.SHL
logical shift right

logical shift left

3

3

.RR.

.RL
+

logical rotate right

logical rotate left

addition

3

3

4
- subtraction 4

.AND. logical and 5

64



LANGUAGE SYNTAX

.OR.

.XOR.

.ABS.

logical or

logical exclusive or

absolute value*

6

6

7
.EQ. or =
.GT. or >
.GE.

.LT. or <

equals

greater than

greater than or equal to

less than

7

7

7

7
.LE.

.RES.

less than or equal to

result*

7

7

.SGN.

.UGT.

.UGE.

.ULT.

.ULE.

(ignore overflow)

sign*

unsigned greater than

unsigned greater than or equal to

unsigned less than

unsigned less than or equal to

7

7

7

7

7

Examples:

4321H.SHL.3

returns the number 4321H shifted three bits to the left.

4321H.SHL.1

returns the number 4321H shifted one bit to the left.

,RES.{7FFF*7FFF)

multiplies 7FFFH by 7FFFH and returns the result. (The RES. operator causes

the Assembler to ignore the overflow error this operation would normally cause.)

, SGN. SYMBOL

returns a-1 if SYMBOL is negative, if it's zero, or 1 if it's positive.

Priority of Operators

When you use multiple operators, the Assembler evaluates them using the

priority number indicated. If two operators have the same priority, the Assembler
evaluates them from left to right.

You can use parentheses to change the priority of operators.

Examples:

4+4/2

The division is performed first. (Division is priority 3; addition is priority 4.)

(4+4)/2

The addition is performed first.

4*4/2

The multiplication is performed first.

65



MODEL HI/4 ALDS

Note: You must use parentheses to separate two operators which are both

enclosed in periods. For example:

LDHL,5.AND..ABS.-4 is illegal

LDHL,5.AND.(.ABS. -4) is valid

Using Relocatable or External Symbols
in Complex Expressions

When using complex expressions, i.e., expressions using more than one term,

you need to be careful about using symbols which are:

• external (defined in an external program section), or

• relocatable (defined in a relocatable program section).

Table 11 shows which types of complex expressions allow relocatable or external

symbols, and the type of value which the Assembler will return. If the expression

is not on this table, you cannot use a relocatable or external symbol. Under no

conditions can you use relocatable and external symbols within an absolute

program.

TABLE 11/ Complex Expressions Allowing

Relocatable or External Symbols

Definition of Terms:

ABS is an absolute constant, symbol or expression

EXT is an external symbol or expression

REL is a relocatable symbol or expression

ALL is any of the above

COMPLEX EXPRESSION RESULTING TYPE

EXT + ABS EXT
ABS + EXT EXT
EXT-ABS EXT
REL + ABS REL
ABS + REL REL
REL-REL ABS
REL -ABS REL
ALL. EQ.ALL" ABS
RELGE.REL ABS
RELGT.REL ABS
REL.LT.REL ABS
RELLE.REL ABS
REL.UGE.REL ABS
REL.ULE.REL ABS
RELUGT.REL ABS
REL.ULT.REL ABS
.HIGH.REL

#

66



LANGUAGE SYNTAX

.MSB.REL *

.LOW.REL *

.LSB.REL *

.HIGH.EXT *

.MSB.EXT *

.LSB.EXT *

.LOW.EXT *

"these expressions cannot be used as a term in a larger expression.

Also, they must be used only where an 8-bit quantity is expected.

**the terms must be of the same type (absolute, external, or relocatable) in order

to be equal. Two externals are never equal, including the special case of

comparing an external to itself.

Other Special Conditions
Regarding Relocatable or External Expressions

These are some additional considerations you need to be aware of when using

relocatable or external expressions:

• If you attempt to fit a relocatable or external value outside of the range of - 256
to 255 into an 8-bit field, you will not get an error message. The Assembler will

store the low order byte into this field. (Absolute values outside this range

generate an error message.)

• You can use the .HIGH., .MSB., .LOW., or .LSB. operators only where an 8-

bit value is expected. If you use one of these operators where a 16-bit value is

expected, the Assembler will either give you an error message or unpredictable

results.

• If you use the .HIGH, or .MSB. operator, the Assembler saves the entire value

in the object code so it can properly compute the carry into the high order byte

(which might result from adding the load address to the expression value during

linking)

The Comment
The comment is an optional way to document your program. The Assembler

ignores it.

To insert a comment at the end of a line, you must precede it with a semicolon.

For example, all of these lines contain comments:

NAHE LD At3)This is a comment
LDIR5AND SO IS THIS
!and here is another comment

LD A>3 Sand another

The Assembler ignores every character following the semicolon. However, this

line produces a syntax error:

NAME LD At3 This is an illesfal comment since there
is no semicolon preceding the comment.

67



MODEL HI/4 ALDS

Another way to insert a comment is by typing an asterisk (*) in column one. The

Assembler ignores all lines which follow until it encounters another * in column

one.

For example:

LD A»3

#This basins a comment section which the Assembler will

i 3 n o r e .

comment > comment
comment > comment

This is the last line in the comment section
*

ADD 6

the Assembler ignores all lines between LD A,3 and ADD B.

68



DIRECTIVES

Chapter 8/

Assembler Directives

Assembler directives are commands to the Assembler oror, in a few cases, the

Linker. They are not instructions to the Z-80 Microprocessor and are not a part of

your executable program. Generally, you can type them in the same form as the

Z80 mnemonics and insert them throughout the program.

This chapter contains two parts. Each part contains sample programs or segments

of programs which are used to help explain the use of assembler directives. You

will not be able to run these sample programs or program segments on your

computer.

Part A is a tutorial. It describes the different types of directives— what their

purpose is and how they inter-relate with each other in the program.

Part B is a reference. It contains an alphabetical listing of each directive. Each

listing gives the syntax, a definition, and an example use.

Introduction to Assembler Directives

ALDS assembler directives allow you to:

• Change Number Bases

• Define Symbols

• Define Data

• Define Storage

• Initialize the Location Counter

• Manipulate the Location Counter

• Terminate or Hold the Assembly

• Use External Symbols

• Create Index Sections

• Define Macros

• Create a Conditional Section

• Control the Assembly Listing

Changing Number Bases

The Assembler recognizes number bases 2 (binary), 8 (octal), 10 (decimal) and

16 (hexadecimal). The default is base 10.

69



MODEL HI/4 ALDS

You can change the default with the RADIX instruction. For example:

RADIX S

tells the Assembler to evaluate all subsequent numbers as base 8.

Using a base suffix identifies a base for a particular number. The base

suffixes are:

H Hexadecimal

d Decimal

b Binary

OorO Octal

For example, in this instruction:

LD A.33H

the 33 is evaluated as a hexadecimal number, regardless of which default base

you are in.

You can use upper case "d" and "b" suffixes. Be careful with this, though, since

the hexadecimal base interprets "D" and "B" as numbers. For example, in base

16, "lb" is a binary 1; "IB" is hexadecimal IB.

Defining Symbols

Defining symbols allows you to refer to data or memory addresses symbolically.

This makes the program easier to read and revise.

ALDS allows you to use a symbol to label the location of any Z80 instruction and

most directives. It also contains these directives which define symbols:

• EQU— equates a symbol to a constant value

• DEFL— defines a symbol to a variable value

For example:

iEQUates NUMBER to 12

5 loads A with 12

NUHBtK twu \L

LOOP LD
•

A .NUMBER

•

LD HL.LOOP Jloads HL with LOOP

This program uses NUMBER and LOOP as symbols. The first line EQUates
NUMBER to 12. The next line uses NUMBER as an operand.

LOOP will define the location of LD A,NUMBER. The last line uses LOOP to

specify this location.

70



DIRECTIVES

Defining Data
Data definition directives insert data into RAM. ALDS contains these data

definition directives:

• DEFM — defines string data

• DEFE — defines "encrypted data"

• DEFT — defines data and includes a length byte

•DEFB —defines a byte

• DEFW — defines a word

• DEFR — defines a Roman Numeral

• DATE — defines the current date

• TIME — defines the current time

For example:

LD HL»TABLE
CALL PRINT SPRINT TABLE ON VIDEO SCREEN

TABLE DEFM 'THIS BEGINS A TABLE OF DATA'
DEFB 0DH

DEFM inserts the ASCII codes for THIS BEGINS A TABLE OF DATA in the

next 27 locations. The symbol TABLE defines the beginning of this location.

The subroutine PRINT is used as an example for a routine that displays the

specified information on the screen.

Defining Storage

Defining storage reserves an area ofRAM which you can use for such functions

as inputting and outputting data. ALDS contains these storage definition

directives:

• DEFS — reserves RAM
• FILL — sets the "fill mode" so that DEFS will fill the reserved area

with zeroes

• NOFILL— ends the fill mode

For example:

LD HL. BUFFER
LD B»20
CALL KEY iKeyboard input into

SBUFFER area

FILL
BUFFER DEFS 20 ireserues the next 20 bytes

NOFILL

FILL sets the fill mode. DEFS reserves the next 20 locations for storage and fills

them with zeroes. NOFILL unsets the FILL mode.

71



MODEL ill/4 ALDS

Initializing The Location Counter

The Assembler contains a "location counter" which it uses to:

• assign locations to each executable instruction, and

• define the symbols which identify these locations

The locations it assigns are either absolute or relocatable depending on how you

initialize the counter.

Initializing The Location Counter

To An Absolute Location

To initialize an absolute location, you must use PSECT:

ibesin assembling at 7000H
START PSECT 7000H

7000 NUM LD A.

5

7002 PUSH A

7003 LD A »B

END NUH

This program section initializes the counter to an absolute 7000H. The

Assembler then assigns all the instructions absolute locations, beginning with

7000H.

The Assembler saves this assembly on disk as an "absolute object file". You can

load it in the TRSDOS Ready mode simply by typing the filespec followed by

CENTER) . Each instruction will load into the same (or "absolute") memory location

the Assembler assigned it.

Many other assemblers, such as the Series I, use ORG rather than PSECT to

accomplish the same task. If you want to assemble such a program with ALDS,

you need to change the first ORG to PSECT.

Initializing The Location Counter

To A Relocatable Location

PSECT without an argument initializes the location counter to a relocatable

(the ' signs indicates that the locations are relocatable, rather than absolute):

ibeSin assembling at

i relocatable ze ro

000' NUM

PSECT

LD A»5

002'

003'

PUSH

LD
*

A

A»B

•

END NUM

72



DIRECTIVES

The Assembler saves this assembly on disk as a relocatable, rather than absolute,

file. You cannot load a relocatable file. You need to use the Linker to convert it

into an absolute file.

For example, if the name of the assembled relocatable file is PROG/REL, this

Linker command:

ALLINK PROG PROG $ = 7000 (INTER)

assigns absolute locations beginning with 7000H to all the instructions in PROG/
REL. It does this by adding 7000H to each relocatable location. The resulting

program is saved as an absolute file named PROG/CMD.

Manipulating The Location Counter

There are several instructions which manipulate the counter within a program
section. They are:

• ORG — changes the value of the counter

• LITORG — changes the value of the counter and allows room for literal

operands

• SETLOC — manipulates the counter for symbols only

• RESLOC — ends the SETLOC manipulation

7000H
A*5 Sbesirt assembling at 7000H
Bf2

8000H
HL tADD ! increment counter to B000H
AF

END BEGIN

This program section initializes the counter to an absolute 7000H. The
Assembler begins assigning consecutive absolute addresses until it reaches ORG,
which changes the value of the counter to 8000H. The Assembler assigns 8000H
to the next instruction and continues again sequentially.

Since the above program is absolute, ORG's parameter sets an absolute location

of8000H.

In the relocatable mode, ORG's parameter sets a relocatable location of 8000H.
This means that when you link the program, 8000H serves as an offset to the

program's absolute start address.

For example, assume you assemble the same program in the relocatable mode.
The Assembler assigns it these locations:

for ex ample:

PSECT
7000 BEGIN LD

7002 LD

SECOND ORG
8000 LD

8002 PUSH

73



MODEL ill/4 ALDS

PSECT

0000 ' BEGIN LD A.5 •

0002' LD B»2

SECOND ORG 8000H

8000' LD HL»ADD

b e 3 i r« assembling at

5 relocatable zero

lincrewent counter to

^relocatable 8000H

B002' PUSH AF

END BEGIN

Now assume you link the relocatable file to the absolute start address of 6000H.

The Linker assigns it these addresses:

PSECT

G000 BEGIN LD A »5 ibeSin assembling at

(relocatable zero

G002 LD B»2

SECOND ORG 8000H

E000 LD HL »ADD 5 increment to

irelocatable 8Q00H

E002 PUSH AF

END BEGIN

Notice that here, ORG 8000H offsets the absolute start address of 6000H. This

causes the absolute address following ORG to be E000H (6000H + 8000H).

Assembly Termination Or Hold Instructions

ALDS contains several directives which terminate or hold the assembly.

They are:

• END — ends the assembly and saves the output object file

• QUIT — quits the assembly

• NOEND — ends assembly of a non-executable "load-only" program

• STOP — temporarily halts the assembly

For example, all of the above programs contain an END directive. This tells the

Assembler to end the assembly, store the assembled file, and return to TRSDOS
Ready.

In most programs, you'll want to use a parameter with END to specify the

transfer address (the address of the first executable instruction in the program).

The Assembler then stores the transfer address so that when loaded, the program

immediately begins execution.

74



DIRECTIVES

Program Sections

All the above programs are "program sections" You can store several relocatable

program sections in the same file.

5beSin first PSECT

ibeSin second PSECT

ibeiiti third PBECT

Since each section is independent, it must declare its symbols "PUBLIC"
(discussed below) for another section to use them. Otherwise, two sections may
not share the same symbols. (Only the MAIN program can use BEGIN; only

SUB2 can use LOOP; and DATA must be defined in SUB1.)

Notice the Assembler initializes each program section to a relocatable

Now assume you link the program to an absolute start address of 7000H:

For example:

MAIN PSECT
0000

'

BEGIN LD A.3

0500' RET

SUB! PSECT
0000' LD HLtDATA

0100' RET

SUB2 PSECT
0000

'

LOOP LD B.10

0200' SMC 36

END BEGIN

7000 BEGIN LD A»3 ibeSin first PSECT

7500 RET

7501 LD HL»DATA

7S01 RET

7602 LOOP LD B»10

7802 CALL LIST
END BEGIN

ibesfin second PSECT

ibesin third PSECT

The Linker assigns each relocatable program section an address immediately

following the preceding one.

Using External Symbols

ALDS allows two or more program sections to share the same symbols. For

example, you could write and test several independent subprograms— such as

PAYROLL, PAYABLES, RECEIVABLES, and INVENTORY. You could then

mix and match them into separate application packages.

75



MODEL HI/4 ALDS

ALDS offers two ways of doing this:

1. By linking the programs into one file

2. By creating a "global symbol file"

The first is more common. The second is for special applications such as overlays

where you want to use only the symbol definitions of an external program, but

not the entire program itself.

1. Combining Program Sections

For combining program sections, ALDS offers these directives:

• PUBLIC— declares symbols public

• EXTERN— declares symbols external

• LINK— appends an outside program file

These are actually directives to the Linker, as well as the Assembler.

As an example, assume you want to combine a subprogram named PAYROLL
with a main program named ACCTG. You want both programs to share the same
symbols. This is how you could go about it:

a. Declare the symbols you want shared.

You do this by using the PUBLIC or EXTERN directives at the beginning of your

program. In the PAYROLL subprogram:

PAYROLL PSECT
PUBLIC SUBPAY tMENU SSUBPAY and

iMENU are for

iPUBLIC use

EXTERN ST0RE1 5ST0RE1 is in

ian EKTERNal
.PROGRAM

SUBPAY CALL CLS idefines SUBPAY
iand clears

isc reen

LD HL>MENU
CALL PRINT Sprint MENU
LD HLjSTOREI
CALL PRINT iprint ST0RE1
JP EMIT ijuinp to TRSDOS

MENU;

CLS;

DEFM 'THIS BEGINS PAYROLL FOR'

DEFB 0DH
idefines

iMENU

5 The routine to clear the screen should be placed here

76



DIRECTIVES

RET

PRINT:

5 The routine to display a line should be placed here

i

RET

EXIT:

The routine to return to TRSDOS should be placed here

JP

END

*

The definitions for the symbols SUBPAY and MENU are declared PUBLIC. This

means another program can use the same definitions.

The definition for STOREl is declared EXTERNal. This means that although the

existing program uses STOREl, an external program defines it.

In the ACCTG program:

ACCTG PSECT
PUBLIC STOREl iSTOREl is for

iPUBLIC use

EXTERN SUBPAY »MENU 5SUBPAY and

iMENU are in

iEXTERNal iproSraws

MAIN
STOREl

CALL
DEFM
DEFB

SUBPAY
'ABC DRUGS'
0DH

i

iThis part of the program defines oth er stores

LINK

END

'PAYROLL/REL'

MAIN

unsert
5PAYR0LL/REL
ifile

STOREl is declared PUBLIC. This means that this program defines STOREl
and another program can use STORE l's definition.

SUBPAY and MENU are declared EXTERNal. They are used in this program but

are defined in an external program (namely, PAYROLL).

If you want to try this exercise, use the ALDS Editor to insert the above two

program files. Save the first as PAYROLL/SRC and the second as ACCTG/SRC.

b. Insert a directive to combine the programs

Notice LINK at the end of the ACCTG program. This tells the Linker to link the

assembled code of PAYROLL at the end of ACCTG.

77



MODEL 1114 ALDS

c. Assemble the programs

Assemble both the PAYROLL and ACCTG source program files in the normal
way. In the TRSDOS Ready mode, type:

ALASM PAYROLL PAYROLL (INTER)

ALASM ACCTG ACCTG (IWTEl)

The Assembler creates two relocatable files— PAYROLL/REL and ACCTG/
REL.

The Assembler marks every occurrence of the PUBLIC, EXTERN, and LINK
directives, as well as every occurrence of EXTERNal symbols. However, you will

need to use the Linker to complete the processing of these directives.

d. Link the programs

To link PAYROLL to ACCTG, you can use this Linker command at TRSDOS
Ready:

ALLINK ACCTG/REL ACCTG $ = 5200 (ENTER)

The Linker processes the LINK, PUBLIC, and EXTERN directives and assigns

the entire file absolute addresses beginning with 5200H. This is done in two
passes. In pass 1 the Linker:

• processes the LINK directive by linking PAYROLL/REL to the end of ACCTG/
REL

• assigns the entire file absolute addresses

• creates a Linker Symbol Table which contains the definitions of all the symbols

declared PUBLIC.

In pass 2, the Linker:

• fills in the values of all EXTERN symbols (using the Linker Symbol Table

created in pass 1)

• saves the resulting program as ACCTG, an absolute object file.

e. Executing the program

You now have an absolute file, ACCTG/CMD, which consists of both ACCTG/
REL and PAYROLL/REL. To execute it, type at TRSDOS Ready:

ACCTG fENTER)

Note: In order for this program to execute you must insert the CLS, PRINT and

EXIT routines. Refer to your TRSDOS manual for information on how to execute

these routines.

2. Creating A Global File

Creating a global file is useful if you want to conserve memory by "overlaying"

one program on top of the other. To create and use a global file, ALDS offers

these directives:

78



DIRECTIVES

• GLOBAL— declares symbols global

• EXTERN— declares symbols external

• GLINK— tells the Linker to use a global file

• EXT— tells the Assembler to use a global file

As an example, assume you want to create a file name MAIN which consists of a

number of subroutines, such as printing lines on the display.

You also want to create several accounting system files, one of which is

LEDGER. Users will use only one of these accounting systems at a time.

However, each accounting system uses routines from MAIN.

It is therefore necessary to have MAIN and LEDGER in memory at the same
time. However, there is not enough room in memory for both programs.

The alternative is to "overlay" one program on top of the other. In this example,

MAIN loads LEDGER. When loaded LEDGER overlays sections of MAIN
which it will not use.

These procedures clarify how this is done:

a. Declare the symbols you want shared.

This time, you do this with GLOBAL and EXTERN directives. In the MAIN

jclear screen

program:

MAIN PSECT

GLOBAL PRINT

BEGIN CALL CLS

CALL ROUTINE

load LEDGER routine be 3 ins here

LD

CALL
HL»LEDGERM
LOADER iload LEDGER file

PRINT routine beSins here

PRINT LD BtCHL)

LOOP INC HL

LD A»(HL)

CALL PRINTCHR
DJNZ LOOP

RET

LEDGERM DEFM 'LEDGER'

DEFB 0DH

ROUTINE EOU *

Sprint character

Sprint contents of

5 re3i ste r HL

79



MODEL 111/4 ALDS

This part of the program contains 18000 bytes

of subroutines which only MAIN uses.

Since LEDGER does not need them

LEDGER will load into this area

RET

LOADER:

The routine which loads and runs a disK file

should be placed here

RET

PRINTCHR;

The routine which displays characters should be

placed here

RET

CLS:

The routine which clears the screen should be

placed here

RET

END BEGIN

The definition for PRINT is declared GLOBAL. When you assemble this

program, the Assembler will create a global file named MAIN/GBL which

contains PRINT'S definition.

Notice that this program loads LEDGER. Also notice that it intends to load

LEDGER on top of the ROUTINES at the end.

This is the beginning of the LEDGER program:

LEDGER PSECT

EXTERN PRINT

BEGIN LD HL»MENU

CALL PRINT

JP EMIT iJUMP to TRSDOS

MENU DEFT 'THIS BEGINS THE GENERAL LEDGER MENU'

5

5 the rest of the uery Ion i

i LEDGER proSraw 3oes here

GLINK 'MAIN/GBL'

80



DIRECTIVES

EXIT:

i

I The routine to return to TRSDOS should be

5 placed here

5

RET

END BEGIN

The definition for PRINT is declared EXTERN. Another program (MAIN)
defines it,

(If you want to try this exercise, use the Editor to insert and save the first file as

MAIN/SRC and the second as LEDGER/SRC.)

b. Insert a directive to search the global file

Notice the GLINK directive in the above program. This tells the Linker to look

for PRINT'S definition in a global file named MAIN/GBL.

c. Assemble the programs

Assemble MAIN and LEDGER in the normal way:

ALASM MAIN MAIN (INTER)

ALASM LEDGER LEDGER (INTER)

The Assembler creates MAIN/REL and LEDGER/REL.

d. Link the program which creates the GLOBAL file

You must link MAIN/REL before linking LEDGER/REL. This is because

MAIN/GBL contains a GLOBAL symbol that must be available to link

LEDGER/REL. Type:

ALLINK MAIN MAIN $ = 5200 (ENTER)

The Linker assigns absolute addresses to MAIN/REL beginning with 5200H and

saves the resulting absolute file as MAIN.

It also processes the GLOBAL directive. This causes it to create a global file

named MAIN/GBL. This file contains only a symbol table defining PRINT.

e. Link the program which uses the GLOBAL file

After creating MAIN/GBL, you can link LEDGER. Type:

ALLINK LEDGER LEDGER $ = 5300 CENTER)

The Linker processes the EXTERN directive. This tells it to look for PRINT'S

definition in an outside file.

It then processes the GLINK directive. GLINK tells the Linker to look for

PRINT'S definition in a file named MAIN/GBL.

The Linker also assigns absolute addresses to LEDGER/REL beginning 5300H.

81



MODEL HI/4 ALDS

f. Executing the program

You now have two absolute program files:

MAIN and LEDGER

Type:

main (mm
MAIN loads beginning at address 5200H and begins executing. It then loads

LEDGER beginning at address 5300H, which overlays the last portion of MAIN.

Note: In order for this program to run you must add the routines for CLS, EXIT,

LOADER and PRINTCHR. Refer to your TRSDOS manual for information on

how to execute these routines.

Notes And Options

ALDS offers several alternatives for linking programs:

• You can use INCLUDE rather than LINK. If you do this, you must include a

source file rather than a relocatable object file. INCLUDE is a directive which

the Assembler processes at assembly time. (See INCLUDE)

• You can use REF to reference only the symbol definitions of a source file only.

(SeeREF)

• You can create indirect LINK files composed solely of LINK directives. By
doing this, you can create several files containing different combinations of

program sections. An example of this is PROG4 and PROGIII in Chapter 1

.

• You can use EXT rather than GLINK to combine absolute, as well as

relocatable symbols. EXT is a directive to the Assembler (whereas GLINK is a

directive to the Linker)

Index Sections

ALDS contains directives which allow you to create an index section. They are:

• ISECT— begins an index section

• ENDI— ends an index section

• USING— associates an index register with an index section

• DROP— drops the index association established by USING

An index section is for EQUating symbols you want to use as offsets from an

index register. For example:

PROG PSECT 5000H

ISECT 1 ibesins index section 1

82



DIRECTIVES

DATA EQU 10H

ENDI

LD IX.4000H

USING 1 »IX

Sends index section 1

iassociates IX

5 w i t h the symbol

* in index

Isection 1

LD A.(DATA) iloads A indexed

5with I X » which

iwill be (IX+

5DATA) or

5U000H+10H)

DROP Jdrops association
iof IX and index

isection 1

LD A»(DATA) floads A with (DATA)

iwhich is (10H)

Index section 1 (ISECT 1) equates DATA to 10H. USING associates all the

symbol equations from ISECT 1 with index register IX. This means any time a

symbol from ISECT 1 appears in the program, the Assembler generates an

instruction to access memory with the indexed addressing mode (IX + the

displacement value).

Later in the program, the Assembler encounters the symbol DATA (defined in

ISECT 1.) The Assembler sets DATA as an offset to the IX register so that when
you run the program, the processor will add DATA to the contents of register IX
(The contents of register IX remains unchanged.)

Then the Assembler DROPs the association between DC and ISECT 1. After

DROPping the association, the Assembler interprets DATA as simply DATA.

You can temporarily clear a USING association and return to it later with:

• APUSH— saves the current USING associations in an Assembler stack

• APOP— restores the USING status saved with APUSH by "popping" it from

the Assembler stack

For more information, see the individual definitions of each directive.

Macro Sections

ALDS allows you to define your own "macro" symbol as a group of Z80
instructions. Whenever the Assembler encounters this macro symbol, it expands

it into its defined Z80 instructions.

83



MODEL ill/4 ALDS

For example:

START

DISPLAY

BEGIf

PSECT

MACRO

7000H

*L

LD HL>*L

LD B»(HL)

INC HL

LD A»(HL)

CALL PRINTCHR
DJNZ $-5

ENDM

DISPLAY FIRST

DISPLAY SECOND

beSins Macro

section defining
DISPLAY #L

(»L is a duwwy

paramete r

)

fends macro section

Icall DISPLAY and

ipass it FIRST

icall DISPLAY and

ipass it SECOND

JP EXIT iJump to TRSDOS

IRST DEFT 'THIS IS THE FIRST SENTENC:e'

ECOND DEFT 'AND THIS IS THE SECOND'

END BEGIN

The MACRO section begins with MACRO and ends with ENDM and in this

example defines a MACRO named DISPLAY which displays a dummy parameter

named #L.

The program then calls the DISPLAY macro and passes it the parameter FIRST.

The Assembler expands this DISPLAY instruction into its macro definition,

substituting FIRST for #L:

LD HL, FIRST

LD Bi(HL)

INC HL

LD A»(HL)

CALL PRINTCHR
DJNZ $-5

Next, the program calls the DISPLAY macro passing it the parameter SECOND.
This expands into:

LD HL .SECOND

LD Bf(HL)

INC HL

LD At(HL)

84



DIRECTIVES

CALL
DJNZ

PRINTCHR
$-5

When you assemble this program, notice that the macro SECTION (not the

macro CALL) is for the Assembler's memory only. It is not assembled as part of

the executable program.

For more information on macros, see MACRO.

IF Sections

An "IF" section is a section of your program you only want assembled if a

certain condition is true. ALDS offers these directives for conditional sections;

IFT— assemble if operand is a true expression

IFF— assemble if operand is a false expression

IFZ— assemble if operand equals zero

IFNZ— assemble if operand does not equal zero

IFP— assemble if operand is positive

IFM— assemble if operand is negative

IFDEF— assemble if operand is a defined symbol

IFUND— assemble if operand is an undefined symbol

ELSE— assemble if IF condition is false

ENDIF— end conditional section

For example, assume you want to create two versions of a program— a Model 4

version and a Model III:

(defines M0D4

5(any ualue will do)

START

M0D4

PSECT
EQU

7000H

BEGIN LD B,3

J

IFDEF MOM

CALL ABCD

ELSE

JP

ENDIF
END

EMIT

BEGIN

assemble the following
IF M0D4 is DEFined

assemble the following
if ABCD is NOT defined

Jump to TRSDOS

END the IF section

IF the program defines the symbol MOD4, the Assembler processes CALL
ABCD or ELSE it processes CALL EXIT.

85



MODEL 111/4 ALDS

The above program defines MOD4. The Assembler processes CALL ABCD,
thereby producing a Model 4 version of the program. To have the Assembler
return to TRSDOS, delete the MOD4 EQU directive.

Assembler Listing Commands
Assembler listing commands change the way the Assembler processes the listing.

ALDS offers these listing commands:

• EJECT— ejects the printer listing to the next page

• VERSION— prints the time on the second line

• TITLE— prints a title on the third line

• HEADER— prints a heading on the fourth line

• PRINT— prints or does not print what you specify

See each directive listing for more information

Other Assembler Commands
The remaining Assembler commands are:

• ADISP— displays or prompts you for information

• NOLOAD— assembles in memory image form

• OBJ— specifies the object file name to use

• PATCH— fills the remaining bytes in a sector with FF's to create a patch area

Assembler Directives Reference

The following pages list the syntax and a brief definition of the assembler

directives available with ALDS. This is a definition of the terms used in the

syntax:

expression

a valid assembler expression. (See Chapter 7.)

absolute expression

an expression with an absolute (non-relocatable, non-external) value. This can

include a relocatable symbol as long as the resulting value is absolute. See
Chapter 7.

expression list

one or more expressions, separated by commas.

location

an expression designating an assembly location.

86



DIRECTIVES

filespec

a TRSDOS file specification (see your Owner's Manual).

string

a string of ASCII characters. The entire line must be 78 characters or less.

symbol

a one to ten character name which you may reference in your program.

symbol list

one or more symbols, separated by commas.

ADISP
ADISP 'string'symbol'

ADISP 'string''symbol'

Displays or inputs certain parameters during the assembly of your program. You
can specify one or both of these parameters:

(1) a string to be displayed

(2) a symbol to be displayed or input

Model 4: fCTHDQD

Model III: (HED©®
inserts the * character which causes the Assembler to display the symbols value.

Model 4: fCTRLKSHlFTlfF]

Model III: (SHIED©®

inserts the " character which causes the Assembler to prompt you to input the

symbol's value.

The Assembler executes ADISP during pass one only.

Example:

ADISP 'THE VALUE OF START IS "START'

causes the Assembler to display: THE VALUE OF START IS followed by the

value of the symbol START.

ADISP 'WHAT IS THE UALUE OF START "START

'

displays WHAT IS THE VALUE OF START? ... You can then input a

hexadecimal value for START.

ADISP 'This is my HessaSe'

displays the message.

ADISP '"*'

displays the current address of the PC (program counter) register.

87



MODEL 1114 ALDS

ADIBP 'NEW ORIGIN "STARTLOC
ORG STARTLOC

displays NEW ORIGIN? and prompts you to input a value for STARTLOC. The

next instruction resets the location counter to the value you input. Note that

ADISP 'NEW ORIGIN "$' does not accomplish the same thing.

APOP
APOP PRINT
APOP USING
APOP PRINT.USING

Restores the PRINT or USING status which was saved by a previous APUSH
instruction.

Example:

APOP USING

restores the USING status.

APOP USINGjPRINT

restores both the USING and PRINT status.

APUSH
APUSH PRINT
APUSH USING
APUSH PRINT, USING

Pushes the current PRINT and/or USING status into an assembly stack. Use

APOP to get this current status back from the stack.

You may nest APUSH only one level deep. That is, you can not use APUSH
twice without an APOP in between them.

Examples:

APUSH USING

saves the USING status.

APUSH USING .PRINT

saves both the USING and PRINT status.

APUSH is useful when you want the Assembler to treat a certain section of your

program differently. For example:

88



DIRECTIVES

MAIN PRINT ON

PRINT CON

PRINT
•

SHORT

APUSH PRINT
PRINT OFF

CALL SUB1

APOP PRINT

When the Assembler encounters APUSH PRINT, the current status of PRINT is

ON, CON, SHORT (print the first 6 bytes of all source lines, including

conditionals).

The Assembler PUSHes this status into an assembly stack and turns PRINT OFF.

This causes it not to print any lines in SUB1.

The Assembler then POPs the PRINT ON, CON, SHORT status back from the

stack, which causes it to restore the printing status.

DATE
symbol DATE

Stores the current date in memory beginning with the current address. The

optional symbol labels this address.

The Assembler stores the date as a string in the form of Day of Week, Month
Date, Year (Model 4) or MM/DD/YY (Model III).

For example, if today's date is Saturday, February 29, 1984:

DATE

stores SAT FEB 29, 1984 in Model 4 memory, or 02/29/84 in Model III memory.

DEFB
symbol DEFB expression

symbol DEFB absolute expression list

symbol DEFB absolute repeat count% absolute expression

Stores one or more one-byte expressions in memory beginning with the current

address. The optional symbol labels this address. The optional repeat must be in

the 1-255 range and will repeat a single absolute expression only.

89



MODEL 111/4 ALDS

TCONU DEFB NUM

stores NUM in the current memory address, defined as TCONV. NUM must be

in the range of one byte numbers ( — 256 to + 255 decimal).

If you use multiple expressions, all of them must be absolute. For example:

OSYM; DEFB 7 >8BH »BTABLE+3

stores decimal 7 at QSYM, the current memory address. Hexadecimal 9B and

BTABLE + 3 are stored in the next two bytes. None of these bytes can be

relocatable. BTABLE must be defined in the existing program unit.

DEFB 128%'*'

fills the next 128 bytes with the character '*'.

You can substitute BYTE or DB for DEFB.

DEFE
symbol DEFE 'string'

Stores an "encrypted" string in memory beginning with the current memory
address. The optional symbol labels this address.

Using DEFE makes it difficult for users to read the string by listing the object

code. The first byte contains the unencrypted length of the string. The following

bytes contains each character code XOR'd with 55H.

Example:

MESSAGE DEFE 'hidden data'

stores 'hidden data' in the next 12 bytes and names the first byte MESSAGE. The

first byte contains an 0BH (decimal 11). The next bytes contain codes for 'hidden

data'.

DEFL
symbol DEFL expression

Defines symbol as expression. DEFL allows you to redefine a symbol in the same

program. For example:

IMMED

IMMED

defines IMMED as 5 and adds it to the contents of register A. The next

instruction defines IMMED as 12 and adds this to the contents of A.

EFL 5

DD A»IMMED
EFL 12

DD A.IMMED

90



DIRECTIVES

Once you define a symbol with DEFL, you should not attempt to define it with

EQU, EXTRN, or use it as a label.

DEFM
symbol DEFM 'string'

Stores string in memory beginning with the current address. The optional symbol

labels this address. For example:

MESSAGE DEFM 'THIS IS THE MESSAGE'

stores 'THIS IS THE MESSAGE' in the next 19 bytes and names the first byte

MESSAGE.

You can use these two special characters in the string:

• the tilde
"""'

(typed as (ETBD(§HlFDCD on the Model 4 and dBHD©® on the

Model III) to store a carriage return (hexadecimal 0D).

• the circumflex """
(typed as (HBD(D on the Model 4 and (MED©© on the

Model III) to toggle the high bit (80H) on and off.

For example:

TEXT DEFM "J"0HN BR0WN~M STREET'

stores JOHN BROWN then a carriage return followed by M STREET in the next

19 bytes and flags the letter J by setting the high bit. J is stored as 0CAH, the

code for J, plus 80H.

You can substitute ASCII for DEFM.

DEFR
symbol DEFR 'decimal number'

Converts a decimal number into a Roman numeral string and stores it in memory
beginning at the current address. The first byte contains the hexadecimal length

of the Roman numeral string. The following bytes contain the ASCII codes for

the Roman numerals.

The decimal number must be in the range of 1 to 65535. The optional symbol

allows you to name the first address.

For example:

DEFR '1981'

stores MCMLXXXI in the next 9 bytes. The first byte contains 8, the length of

the Roman numeral string.

91



MODEL HI/4 ALDS

DEFS
symbol DEFS absolute expression

Reserves expression bytes, beginning with the current address, for storage. The
optional symbol names this storage area.

This Assembler will not insert anything in the reserved area unless the FILL
mode is in effect (see FILL).

Example:

ORG 7000H

BUFl DEFS 100H

BUF2 DEFS 50H

BUF3 DEFS 10

START LD HLiBUFl

assigns BUFl to location 7000H, BUF2 to 7100H, and BUF3 to 7150H. START
begins execution at location 7160H, loading HL with 7000H.

You can substitute DS or BLOCK for DEFS.

DEFT
symbol DEFT 'string'

Stores string in memory, beginning with the current address. The optional

symbol labels this address. The first byte contains the length of the string. You
may use the two special characters described under DEFM (the tilde and the

circumflex).

For example:

MESSAGE DEFT 'this is my message'

stores the number 12H (decimal 18) in the next byte of memory and 'this is my
message' in the following 18 bytes; then assigns the name MESSAGE to the

address of the first byte.

DEFW
symbol DEFW expression

symbol DEFW absolute expression list

symbol DEFW absolute repeat count% absolute expression

Stores one or more two-byte expressions in memory beginning with the current

memory address. The optional symbol labels this address. The least significant

92



DIRECTIVES

byte is stored first, followed by the most significant byte. The optional repeat

must be in the 1-127 range and will repeat a single absolute expression only.

Examples:

MAXCNT DEFW 1000

stores decimal number 1000 in the next two bytes and labels that location as

MAXCNT. Since 1000 decimal is 03E8H, the first byte contains E8H and the

second byte contains 03H.

DEFW 3333, UAL

stores 3333 and VAL in the next four bytes. The same rules that DEFB uses for

multiple expressions apply here. VAL must be defined in the existing program

sections. Relocatable and external expressions may be used only if DEFW has a

single, non-repeated expression.

DEFW 30X1000

fills the next 30 words with decimal 1000s, repeated 30 times.

You can substitute DW or WORD for DEFW.

DROP
DROP1
DROP 2
DROP
Terminates the index register association, specified by USING, with ISECT 1,

ISECT 2, or all the ISECTs. This allows you to change USING associations.

For example:

DROP 1

The index register is no longer associated with ISECT 1.

DROP

The index register is no longer associated with any of the ISECTs.

EJECT
EJECT

During the assembly listing, causes the printer to go to the next page before

listing the next instruction. The EJECT instruction will not appear in the listing

END
END address

Ends the assembly of the source program. The optional address causes the

Assembler to store the entry address of the program.

93



MODEL HI/4 ALDS

Examples:

END 7FFFH

ends assembly and stores address 7FFFH in the assembled file as the entry point

of the program. When you load the assembled file, it will immediately begin

execution at address 7FFFH.

END BEGIN

ends assembly and stores the address defined by BEGIN as the entry address.

END

ends assembly of the program. Since no entry point is specified, the Assembler
stores it as absolute zero. This is an invalid entry point for TRSDOS. Therefore,

you will be able only to load this program with the LOAD command— not

execute it.

ENDI
ENDI

Marks the end of an index section, initiated by ISECT.

ENDM
ENDM
Ends a macro definition, initiated by MACRO.

EQU
symbol EQU expression

Equates a symbol to an expression. For example:

START EQU 5200H

causes the symbol START to be equal to hexadecimal 5200.

POINT EQU 15+START

equates POINT to 5215, the sum of 15 and START.

Symbols defined by EQU may not be defined elsewhere in the program.

EXT
EXT 'filespec'

Tells the Assembler that the absolute definitions for certain symbols in your
program are contained in the specified global file (created by GLOBAL). Since

94



DIRECTIVES

these symbols will have an established value at assembly time, you should not

declare them EXTERNal or define them elsewhere in the program.

You can specify only one filespec per EXT instruction. It must have a /GBL
extension. If you omit /GBL, the Assembler will automatically append it.

The EXT statement allows the programmer to have several absolute object files

"talk" to each other. This requires considerable prior planning, but is useful and

powerful.

Since EXT includes only the symbol definitions of the external program and not

the program code, you will need to load the external program before attempting

to use code in it.

For example:

EXT 'PR0G1/GBL'
EXT 'PR0G2'

tells the Assembler that your program contains symbols which are defined in

PROG1/GBL and PROG2/GBL.

EXTERN
EXTERN symbol list

Declares that one or more symbols are not defined in the existing main program.

They are defined externally in either;

• an external program section (which contains a corresponding PUBLIC
instruction), or

• an external global file (which was created by a corresponding GLOBAL
instruction).

For example:

EXTERN LG0P1.L00P2

declares that LOOP1 and LOOP2 are defined externally.

You may substitute EXTRN for EXTERN.

FILL

FILL

Causes any subsequent storage areas, initiated by DEFS, to be filled with zeros.

Use NOFILL to turn it off.

95



MODEL HI/4 ALDS

For example:

FILL

BUF1 DEFS 100

NOFILL
BUF2 DEFS 200

BUF1 is filled with zeros. BUF2 is not filled with zeros.

You can use FILL only with DEFS instructions which reserve 255 or less bytes.

GLINK
GLINK 'filespec'

Tells the Linker that the absolute definitions for certain symbols in your program

are contained in the specified global file (created by GLOBAL). Your program

must also contain an EXTERN instruction for each of the symbols referenced, to

avoid undefined symbol errors.

You can specify only one filespec per GLINK instruction. It must have a /GBL
extension. If you omit /GBL, the Linker will automatically append it.

GLINK accomplishes the same function as EXT, except it is an instruction to the

Linker, rather than the Assembler. Because of this you need not have the external

file written at assembly time, but you must have it loaded when you link the

program.

For example:

GLINK 'PROGI'

GLINK 'PR0G2'

tells the Linker that your file contains certain symbols which are defined in

PROG1/GBL and PROG2/GBL.

GLINK must be the last instruction in your program before LINK, END, or

another GLINK.

GLOBAL
GLOBAL symbol list

Declares one or more symbols as global and stores their values in a "global" file.

Like PUBLIC, this permits another program section to use the same symbols.

GLOBAL, however, goes one step further. It stores these symbols in a global file.

The global file will contain a symbol table only. It will define the absolute values

of all the global symbols. If your program is absolute, the Assembler will create

this global file. If your program is relocatable, the Linker creates it.

96



DIRECTIVES

For example:

PSECT 7000H
GLOBAL DATA

DATA DEFM 'THIS STARTS A DATA TABLE'

declares that DATA is a global symbol and stores DATA'S value, hexadecimal

7000, in a global file. Since this program is absolute, the Assembler will create

the global file.

PSECT
GLOBAL L00P1 .L00P2

declares that LOOP1 and LOOP2 are global symbols to be stored in a global file.

Since this program is relocatable, the Linker will create the global file.

The global file will have the same name as the assembled object file with the

extension /GBL. You will be able to access this file with any other program,
provided it has these two instructions:

(1) GLINK, which specifies that some symbols in the global file should be used,

and

(2) EXTERN, which specifies which global (or external) symbol definitions

should be used

or simply:

(1) EXT, which tells the Assembler to look for the definitions of some symbols in

the global file

Symbols declared PUBLIC or GLOBAL must be defined on both passes, that is,

not defined with REF, ASISP, or EXT. The Linker may flag these symbols as

undefined.

Symbols defined with DEFL more than once should not be declared PUBLIC or

GLOBAL. The Linker will flag these symbols as multiply defined.

ntiMUizri

HEADER 'string'

Prints the specified string on the fourth line of each page in the assembly listing

until the Assembler encounters a new HEADER instruction. HEADER starts a

new page.

For example:

HEADER 'Electronics'

causes the Assembler to print "Electronics" on the fourth line of each page in

the assembly heading.

For the header string to appear on the first page, HEADER must precede all

listed instructions in the program. Otherwise, it ejects to the next page before

97



MODEL 111/4 ALDS

printing the header string. TITLE, HEADER, and PRINT instructions are not

listed.

You must specify a string when using HEADER. You may substitute HEADING
for HEADER.

IFDEF
symbol IFDEF symbol

Assembles the following source lines IF the symbol is defined. IF NOT, the

Assembler goes to the next ELSE or ENDIF directive. The optional symbol

labels this directive.

IFDEF SYMBOL

assembles the next lines IF the program defines SYMBOL. If not, the Assembler

goes to the next matching ELSE or ENDIF. If the symbol is defined at all, it must

be defined before the IFDEF.

The Assembler will not print the IF sections (instructions beginning with an IF

directive and ending with ENDIF) unless PRINT CON is in effect. (See PRINT.)

All IF directives are nestable to six levels.

IFF

symbol IFF expression

Same as IFDEF except the expression must be false for the next lines to be

assembled. For example:

IFF 5, GT. SYMBOL

assembles the next lines if 5 is not greater than SYMBOL.

FM
symbol IFM expression

Same as IFDEF except the expression must be negative for the next lines to be

assembled. For example:

IFM SYMBOL

assembles the next lines if SYMBOL is a negative number.

98



DIRECTIVES

IFNZ

symbol IFNZ expression

Same as IFDEF except the expression must not equal zero for the next lines to be

assembled. For example:

IFNZ SYMBOL

assembles the next lines if SYMBOL does not equal zero.

IFP

symbol IFP expression

Same as IFDEF except the expression must be positive for the next lines to be

assembled. For example:

IFP SYMBOL

assembles the next lines if SYMBOL is a positive number.

IFT

symbol IFT expression

Same as IFDEF except the expression must be true (that is, bit must be 1) for

the next lines to be assembled.

For example:

IFT 5, GT. SYMBOL

assembles the next lines IF 5 is greater than SYMBOL.

FUND
symbol IFUND symbol

Same as IFT except the symbol must not be defined for the next lines to be

assembled. For example:

IFUND SYMBOL

assembles the next lines if the program does not define SYMBOL. If the symbol

is defined at all, it must be defined before the IFDEF.

99



MODEL HI/4 ALDS

IFZ

symbol IFZ expression

Same as IFDEF except the expression must equal zero for the next lines to be

assembled. For example:

IFZ SYMBOL

assembles the next lines if SYMBOL equals zero.

INCLUDE
INCLUDE 'source filespec'

Inserts filespec at the point where INCLUDE appears in the program. The
Assembler will assemble the INCLUDEd file before processing the next

instruction.

The optional END instruction of the INCLUDEd file tells the Assembler to

continue assembling the main program. The END of the main program will

terminate the assembly.

You may specify only one filename per INCLUDE. You may use as many
INCLUDE instructions as you want.

For example:

INCLUDE 'PR0G1'

inserts and assembles PROG1, a source file, before processing the next

instruction.

INCLUDE 'PR0G1'

INCLUDE 'PROGZ'

inserts and assembles PROG1; then inserts and assembles PROG2; then proceeds

with the next instruction.

INCLUDE is nestable to five levels. That is, file 1 can call file 2; 2 can call 3; 3

can call 4; and finally, 4 can call 5. But at no time can a called file (file 5) call a

calling file (file 4). This results in an Error 37— Open attempt for a file already

open.

ISECT
ISECT name

Begins an "index section" of EQU instructions, terminated by ENDI. If you

wish, you can name the section 1 or 2 (no other names are allowed).

100



DIRECTIVES

Using an index section allows you to specify certain index symbols. You can then

use the index symbols to offset an index register.

For example, this is an index section named ISECT 1:

ISECT1

SYMBOL 1 EQU 5

SMBL3 EQU 3

5MBL2E EQU 26

SYMBL EOU 100

ENDI

It specifies four index symbols. Whenever the Assembler encounters one of these

index symbols enclosed in parentheses, it evaluates it as the expression:

(the contents of an index register+ index symbol)

You must specify which index register to use with the USING instruction. For

example:

LD IY »7000H

USING 1 » IY

LD A» (SYMBOL!)

The; Assembler evaluates this as:

LD IY »7000H

USING1 > IY

LD A> (IY+SYMB0L1)

You cannot use a register name or a flag condition to name an index symbol.

LINK
LINK 'filespec'

LINK 'filespec(symbol)'

Tells the Linker to insertfilespec, an absolute or relocatable object file, at the

point where LINK is encountered in the current program. This instruction is

similar to INCLUDE, except it applies only to the Linker. It allows you to link

one or more files together.

LINK must be at the end of your program section. (Only END, GLINK, or

another LINK can follow it.) Each LINK instruction can specify only one

filename. You can use as many LINK instructions as you want.

For example:

LINK 'FILE1'

LINK 'FILE2'

END PROG

101



MODEL 111/4 ALDS

inserts FILE1 and then FILE2 at the end of your main program. FILE1 and

FILE2 must both be assembled object files.

LINK 'TAX(TABLE) '

inserts a program section named TABLE which exists in a file named TAX at the

end of your program. TAX must be an object file. TABLE is a PSECT label.

The LINK statement is nestable to five levels. That is, file 1 can call file 2, 2 can

call 3, 3 can call 4, and finally, 4 can call 5. But at no time can a called file

(file 5) call a calling file (file 4).

LITORG
symbol LITORG location

Allows you to specify where to place literals used as operands. LITORG should

be used only once per assembly and placed in the same PSET as all references to

the literals, and after the last reference.

If you omit the optional location, the Assembler stores the literals in the current

location. If you include it, LITORG resets the location counter (in the same way

that ORG does) and stores the literals at the newly reset location.

The optional symbol labels this location. The Assembler assigns the remaining

instructions locations immediately following the literals.

All literal operands must be preceded by an equal sign ( = ) and surrounded with

single quotes (')• For example:

LD HL»='INPUT THE ITEM NUMBER'

This instruction uses INPUT THE ITEM NUMBER as a literal operand. Here is

how you could use it in a program:

START PSECT 5200H

BEGIN LD HL»='INPUT THE ITEM NUMBER'

LD B.(HL)

INC HL

CALL PRTCHR

CALL EXIT
LITORG
DEFM 'THIS IS A LONG TABLE OF PROMPTS'

DEFM 'INPUT THE ITEM NUMBER'

DEFM 'INPUT THE PRICE'

DEFM 'IS THERE A DISCOUNT?'
DEFM 'INPUT THE DISCOUNT'
END BEGIN

Notice that INPUT THE ITEM NUMBER is defined by DEFM later in the

program. The Assembler stores it in two locations: (1) the location where

102



DIRECTIVES

LITORG appears in the program, and (2) the location where DEFM 'INPUT
THE ITEM NUMBER' appears.

Note that if literals are used and the program ends with a LINK or GLINK,
LITORG is mandatory to place the literals before the LINK or GLINK
statement.

MACRO
name MACRO dummy parameter list

Begins a section of the program which defines a macro name. Use ENDM to end

this macro definition.

The optional dummy parameter list allows you to pass parameters to the macro.

You may use up to ten dummy parameters separated by commas. Each can be

only one character and must be preceded by a # sign.

Defining a macro allows you to "call" an entire block of instructions with a

single program line. This is useful when you will be using the same block many
times in your program.

For example, this is a macro definition:

SCROLL MACRO
LD A»5

CALL PROTECT
ENDM

which defines a macro named SCROLL, that protects 5 lines from scrolling.

Every time the Assembler encounters SCROLL, it "expands" SCROLL into the

LD A,5 and CALL PROTECT instructions. That is, if this is your source

program:

LD A»3
SCROLL
LD HL»DATA

The Assembler will interpret SCROLL as a macro call and expand it into the

appropriate instructions:

LD A»3

LD A»5

CALL PROTECT
LD HLiDATA

The next example defines a macro named ADNUM which acts on four dummy
parameters named #0, #1, #2, and #3:

103



MODEL HI/4 ALDS

ADNUM MACRO #0»#1 »#2»#3
ADD A>#0
ADD A»#l
ADD A,#2
ADD A»#3
ENDM

This definition allows you to "pass" four values to ADNUM when you call it.

For example:

ADNUM B.10>NUMB»LST

calls ADNUM and passes four values to it. The Assembler expands this macro

call into:

ADD A.B

ADD A»10

ADD A,NUMB
ADD A»LST

Notice that B, the first value, replaces #0, the first parameter; 10 replaces #1;

NUMB replaces #2; and LST replaces #3.

When using a macro, remember that you must define it before you use it. You

might want to put all the macro definitions in one file and then INCLUDE or

REF them at the beginning of your main file.

We do not recommend that you use a macro name which is the same as an

extended mnemonic or directive name. If you do this, the Assembler will use the

definition you assigned the macro. This will of course give undesirable results.

When using dummy parameters, be sure not to insert them inside quoted strings.

If you do this, the Assembler will treat them as ordinary characters.

A macro cannot call another macro.

NOEND
NOEND

Ends the assembly of a non-executable program. The Assembler marks the

assembled code as load-only and will not execute the file when used as a

TRSDOS command. This command is useful for creating overlays to be loaded

with the CMDDOS system call.

NOFILL
NOFILL

Terminates the mode initiated by FILL.

104



DIRECTIVES

NOLOAD
NOLOAD

Assembles the program sequentially in memory image form, rather than in the

standard TRSDOS object format. You must use NOLOAD as the first line of the

main source file (before comments, titles, PSECT, etc.), otherwise some
TRSDOS object code load headers may be placed into the file.

You cannot use NOLOAD with these features:

• the relocatable mode

• EXTERNal, or PUBLIC symbols

• LINK or GLINK

If you want the file to contain an accurate memory image of the program, you

must also avoid these instructions:

• DEFS(unless the FILL mode is on)

•ORG
• more than one PSECT

(These instructions change the value of the location counter but do not output

object code. This causes the load address and location counter to differ.)

OBJ
OBJ 'filespec'

Tells the Assembler that it should write the assembled filespec to disk. The
Assembler will ignore this instruction if you specify an object filespec in the

assembly command line.

Example:

OBJ 'ACCOUNTS'

Unless you specify an object filespec in the assembly command line, the above

instruction saves the assembled object program as ACCOUNTS.

ORG
symbol ORG location, boundary

Resets the Assembler's location counter to the specified location. For example, in

an absolute program:

ORG B000H

resets the location to an absolute 6000H.

105



MODEL HI/4 ALDS

In a relocatable program:

ORG S000H

resets the location counter to a relocatable 6000H. Assuming you link the

program to an absolute start address of 5200H, the Linker determines the

effective address to be B200H (the sum of 5200 and 6000.)

The second parameter allows you to reset the location counter to a boundary

divisible by decimal 2, 4, 8, 16, 32, 64, 128, or 256. For example, if the value of

the counter is currently 6005H:

ORG *»4

resets the counter to 6008H, which is the next highest number divisible by

decimal 4.

Unlike many other assemblers, ORG will not initialize the location counter. You

need to use PSECT for this purpose.

ORG will not change the location counter from the relocatable to the absolute

mode, or vice versa. You must assemble absolute and relocatable programs as

different files.

location may not be an external symbol.

PATCH
PATCH

Fills the remaining bytes in the last sector in the assembled object file with FF's.

This reserves an area for patches.

The Assembler will print a message on pass 2 giving the address and length of

the patch area (if the file produces object code).

This must be the last command prior to the END directive. You cannot use it with

LINK, and it is for use with absolute assemblies only.

PRINT
PRINT command list

Controls what is printed or not printed in the assembly listing. You may use one

or more of the following commands, separated by commas or blank spaces:

ALL — print all source lines (Same as ON,MAC,CON)
ON — print all normal open code source instructions

OFF — do not print anything except error messages and diagnostics until

(1) the end of the assembly or (2) a PRINT ON command

106



DIRECTIVES

MAC — print all source lines generated in macro expansions (except those

which might be overridden by other PRINT options).

NOMAC— do not print source lines generated by macro expansions. Only the

macro instruction itself will appear in the listing file.

CON — print all conditional assembly source lines, whether they generate

code or not.

NOCON— print only the conditional assembly source lines that generate code.

LST — output the listing, regardless of what was on the command line. The

listing will be printed on the video, and if the D or P options were

specified, the listing will also go to disk or to the printer. You cannot

save this option with APUSH.
NOLST — do not output a listing, regardless of what was on the command line.

SHORT — print only the first 6 bytes of object code generated by each line.

LONG — print all of the object code generated, even if it requires several

lines.

For example:

PRINT MAC (SHORT

prints all the macro expansions in the assembly listing. It limits printing to the

first six bytes of object code for each line.

Only PRINT instructions specifying OFF, NOMAC, and NOCON will appear in

the listing.

You can use comments with PRINT.

PRINT defaults to ON, MAC, NOCON, LONG.

PSECT
symbol PSECT location

Initializes the Assembler's location counter to a relocatable zero or to the

absolute location you specify. The Assembler assembles all subsequent

instructions sequentially throughout the program.

The optional symbol labels the program section and can be up to six characters.

This symbol is for the Linker, and will be listed on the Linker map. The symbol

will not be defined by the Assembler and cannot be used in expressions.

PSECT begins an independent, executable "program section". You can have

several relocatable program sections in one program file. One program section

cannot use symbols from another program section unless you declare them

EXTERN and PUBLIC.

For example:

PAYROLL PSECT
0000' BEGIN LD A»3

107



MODEL 111/4 ALDS

PAYABLE PSECT
0000' PUSH A

END

This program has two sections: "PAYROLL" and "PAYABLE". Both begin with

a relocatable 0000. When you link this file, the Linker assigns "PAYABLE"
addresses which immediately follow "PAYABLE". Since no symbols are

declared PUBLIC and EXTERNal, "PAYROLL" and "PAYABLE" cannot share

the same symbols.

The following instructions do not have to be part of a program section:

comments

index sections

conditional assembly instructions

macro sections

macro instructions (which will not affect the location counter)

EQU or DEFL (as long as they do not reference the location counter)

assembler directives (which do not affect the location counter)

You can define symbol (with EQU, for example) prior to your first PSECT. This

permits you to use a conditional assembly such as:

IFT RELOC
XYZ PSECT

ELSE
XYZ PSECT 5200H

ENDIF

which starts a relocatable PSECT if RELOC equals 1, and an absolute PSECT if

RELOC equals 0. Doing this will create two PSECTs with the same name, one
being zero-length. This will appear on the Linker map but it will not affect the

assembly.

The PSECTs within an assembly must either be all relocatable or all absolute.

Relocatable and EXTERN expressions cannot be used in absolute assemblies.

The PSECT location you specify cannot be an external value.

PUBLIC
PUBLIC symbol list

Declares one or more symbols as "public". This permits another program section

to use the same symbols.

When you assemble a program with public symbols, the Assembler will mark all

their definitions. Then, when you link it to an external program section, the

Linker will insert these definitions in the Linker Symbol Table.

108



DIRECTIVES

For example:

PUBLIC L00P1

declares LOOPl's definition to be public.

Another program can use the public symbol definitions provided it contains a

corresponding EXTERN directive.

You can substitute ENTRY for PUBLIC.

Symbols declared PUBLIC or GLOBAL must be defined on both passes, that is,

not defined with REF, ADISR or EXT. The Linker may flag these symbols as

undefined.

Symbols defined with DEFL more than once should not be declared PUBLIC or

GLOBAL. The linker will flag these symbols as multiply defined.

QUIT
QUIT

Quits the assembly and returns to TRSDOS Ready. This Assembler only

recognizes this instruction at the second pass of a listing (specified by the L
assembly option). It will not save the object file.

RADIX
RADIX expression

Specifies expression as the default number base. That is, the Assembler will

interpret any numbers without a base suffix in the default base.

You may use any expression with a value of 2, 8, 10, or 16. Without RADIX, the

Assembler defaults to 10 (decimal).

For example:

RADIX 16

causes the Assembler to interpret all the numbers which do not have "b" or "d"

suffixes as hexadecimal numbers.

Remember that the Assembler uses the current default base to evaluate your

RADIX instruction. For example, if you want to change the default base of 16 to

10, use RADIX 10d or 0A, not RADIX 10. While in base 16, the Assembler

would evaluate the 10 as a hexadecimal 10.

Example:

RADIK 10H fUse Hexadecimal

DEFB IB ; This is IB (hex)=27 (decimal)

109



MODEL 111/4 ALDS

DEFB lb

DEFB 25

RADIX 10

RAD IK 10D

RADIX 10d

DEFB IB

DEFB lb

DEFB 25

I This is 1 (binary)

! This is 25 (hex)=37 (decimal)
Radix is still hex (10 hex=
1G decimal )

ERROR 10D hex=2B9 decimal _

too larSe .

Radix is now decimal
This is a 1 binary
This is also a 1 binary
This is 25 ( decimal )=19 (hex)

ritir

REF 'source filename'

Includes only the symbol definitions from the specified source file. This is useful

for referencing a file of EQU directives or MACROs.

REF tells the Assembler to INCLUDE the source file during Pass 1 only. After

processing the source file, the Assembler restores the location counter to its

original value. Thus, the Assembler uses the referenced file's symbols, but not its

assembled code.

For example:

REF 'TEST/SRC

The Assembler will define macros and symbols contained in TEST/SRC. It will

not insert the code for TEXT/SRC.

The Assembler will not report any errors in the referenced file. Also, if there is a

conflict between symbols of the referenced file and the main program, the first

definitions will be used with no error message. You might want to use INCLUDE
instead of REF until all conflicts have been resolved.

Symbols defined in the REF file should not be declared PUBLIC or GLOBAL.
The Linker may flag these symbols as undefined.

RESLOC
RESLOC location

Resets the location counter to the location computed as:

the value of the counter prior

to executing SETLOC
+

the number of bytes of code
generated by the SETLOC block

For example, assuming the value of the location counter was 6000H prior to

SETLOC and there are two 3-byte instructions following SETLOC:

110



DIRECTIVES

RESLOC

resets the location counter to 6006H.

For example:

7000 LD

SETLOC
G000 POS PUSH

SETLOC
SETLOC location

Temporarily changes the location counter's value to the absolute location

specified. The Assembler uses this changed location for defining symbols only. It

does not use the changed location for assembling the instructions.

A>3
G000H
AF

The actual PUSH AF instruction is not stored at location 6000H. Rather, it is

stored at 7002H, the location which immediately follows LD A, 3. However, the

Assembler defines POS, the symbol which labels the location of PUSH AF, as

6000H.

SETLOC is useful anytime you are writing a routine which you want to load in

one location, and then move and execute at a different location. By using

SETLOC, the Assembler defines this routine's symbols as if they were already in

their execution location.

For example, you might want to run a memory test from a very low memory
address. You cannot load it on top of TRSDOS. However, after loading it, you

can move and execute it in that location. Since TRSDOS will be overwritten, the

memory test must do its own input/output.

Using SETLOC, you could write the routine this way:

PSECT 5000H

5100 MOVE EQU $

SETLOC 500H

500 LOOP LD A»3

5G0 •

RESLOC
5200 LDBLOCK EQU *-M0VE

LD HL.MQVE

LD DE .LOOP

LD BC .LDBLOCK

LDIR

JP LOOP

iSETLOC block beSins

! c o d e for Memory
5 test

iSETLOC blocK ends

sfflowe SETLOC block

5to its proper loop

111



MODEL 111/4 ALDS

Here, the Assembler defines LOOP as though it were at address 500H— the

address the program will eventually move it to. However, it actually assembles

the code for LOOP at address 5100H.

MOVE defines where the actual assembled code of the SETLOC block (ended by

RESLOC) begins. LDBLOCK defines the length of the SETLOC block by

subtracting MOVE from the current contents of the PC register. (The $ sign

indicates the current value of PC).

LD1R then moves the SETLOC block from location 5100, defined by MOVE, to

location 500. Since LOOP has already been defined as if it were at location 500,

you do not have to redefine it.

Note: If your program is relocatable, SETLOC still sets an absolute location.

You need to avoid using these instructions within the SETLOC block: ORG,
DEFS (unless the FILL mode is in effect), PSECT, and relocatable and external

expressions.

STOP
STOP

Stops the assembly listing. Press any key to continue the listing. Press (BREAK) to

abort it.

TIME
symbol TIME

Stores the time in memory as a string beginning at the current address. The
optional symbol labels this address. For example if the time is 1:45 p.m. and 55

seconds when the Assembler reaches this instruction:

TIME

it will store the string 13.45.55 (Model 4) or 13:45:55 (Model III) in the next

eight bytes of memory.

TITLE
TITLE 'string'

Prints the specified string on the third line of each page in the assembly listing.

For example:

TITLE 'THIS IS THE TITLE'

prints THIS IS THE TITLE on the third line of every page.

112



DIRECTIVES

If you are using both TITLE and HEADER, TITLE should precede HEADER
(otherwise the TITLE will not appear until the next page).

USING
USING index section name, index register

USING index register, expression

USING index register

Associates an index register— IX or IY— with the index sections. For example:

USING IX

associates IX with all the ISECTS.

You can optionally specify one (but not both) of the following:

• an index section name (1 or 2), as the only section to be associated with

the register

• an expression to be loaded into the register

For example:

USING 1»IX

associates the IX register with ISECT 1 only.

USING IX>DCB

loads IX with the value of DCB, then associates IX with all the ISECTs.

The index sections are specified with the ISECT instruction.

USING does not apply to any external program sections.

VERSION
VERSION

Prints the current time on the second line of the assembly listing heading

(block comment)

Turns on and off the block comment function. The asterisk must be in the first

column.

113



MODEL 1114 ALDS

When the Assembler encounters a line beginning with an asterisk, it begins

interpreting the lines as comments rather than instructions. The next asterisk ends

the block comment.

For example:

*

The following program is a

Note: Be careful when using the asterisk. One asterisk out of place near the

beginning of your program can cause the Assembler to treat most of your

program as a comment. If a block comment is placed before a header created by

the TITLE directive, the title will not appear on the first page of the assembly

listing.

114



Z-80 MNEMONICS

Chapter 9/

Z-80 Mnemonics

This section contains a description of each z-80 mnemonic, organized as follows:

8 Bit Load Group
16 Bit Load Group
Exchange, Block Transfer and Search Group
8 Bit Arithmetic and Logical Group
General Purpose Arithmetic and CPU Control Groups

16 Bit Arithmetic Group
Rotate and Shift Group
Bit Set, Reset and Test Group
Jump Group
Call and Return Group
Input and Output Group

Please note than you can specify the PO (parity odd) and PE (parity even)

conditions with NV and V. For example:

JP PO, 1000H
JP NV, 1000H

Both of these instructions tell the Assembler to branch to 1000H if there is the

Parity is Odd, which means there is No Overflow.

JP PE, 1000H
JP V, 1000H

These instructions tell the Assembler to branch to 1000H if the Parity is Even,

which means there is an overflow.

115





Z-80 MNEMONICS

The Z-80 Instruction Set

Notation and Other Conventions

This section includes a detailed description of all the z-80 assembly language

instructions. The first line of each of these pages shows the assembly language

opcode mnemonic followed by its operand(s). Some instructions have no

operands at all. Other instructions have one or two operands. Anything which is

capitalized should be copied exactly when you use the editor to write the

assembly language source code. Anything shown in lowercase letters will be

replaced by an appropriate register, number, or label. For example, the first

instruction described in the eight-bit load group is:

LD r,r'

ld is the mnemonic for the Load instruction. If you wish to move the contents of

register h into register a, the actual source code is

LDA,H

This should be read as "load register a with the contents of register h."

A detailed explanation of the operand notation is given below, but in general you

should note that single lowercase letters are used for eight-bit numbers or

registers and double lowercase letters are used for 16-bit numbers or registers.

Also note that parentheses around a register pair indicates that the register pair is

to be used as a pointer to a memory location. For example, the instruction inc hl

means that 1 is to be added to the hl register pair. The instruction inc (hl) means

that 1 will be added to a number in memory whose address is found in register

pair hl.

Symbol Specifies one of the registers

r A, B, C, D, E, H, or L.

Symbol Specifies a register pair

qq BC, DE, HL, or AF

ss BC, DE, HL, or SP

dd BC, DE, HL, Or SP

PP BC, DE, DC, Or SP

rr BC, DE, IY, or SP

Symbol Specifies a number or symbol in the

n
nn
d

e

to 255 (one byte)

to 65535 (two bytes)

- 128 to 127 (one byte)

- 126 to 129 (one byte)

117



MODEL HI/4 ALDS

Symbol Specifies any of the following

s r, n, (hl), (ix + d), or(iY + d)

m r, (hl) (ix + d), or (iY + d)

(nn) Specifies the contents of memory location nn
b Specifies an expression in the range (0,7)

cc Specifies the state of the Flags for conditional jr, jp, call and

ret instructions

Instruction Format Examples With Explanation

Format Example 1

LD r,(HL)

Operation: r<l(HL)

This is the shorthand description of the instruction. The arrow indicates that data

is moved into register r.

When you write the assembly language code, the lowercase r will be replaced by

A, B, C, D, E, H or L.

Format:

Mnemonic: LD Operands: r,(HL)

Object Code:

! ! ! ! ! ! !

1 r r r 1 1

I I I I I I I

The object code for this instruction is one byte long. To figure out the object

code, replace bits 3, 4 and 5 with the appropriate numbers from the table. For

example:

Source Code Object Code

LD A,(HL) 01111110
LD B,(HL) 01000110
LD C,(HL) 01001110

This instruction uses two machine (M) cycles. The first machine cycle consists of

four timing (T) states and the second machine cycle consists of three T states for

a total of seven T states. One T state takes approximately 250 nanoseconds for a

4MHz machine and 500 nanoseconds for a 2MHz machine. The execution time

(E.T.), in microseconds, is calculated for the TRS-80. (One microsecond is 10" 6

seconds or 1/1,000,000 of a second.)

118



Z-80 MNEMONICS

Description:

The eight-bit contents of memory location (HL) are loaded into register r, where

r identifies register A, B, C, D, E, H or L, assembled as follows in the object

code:

Register r

A = 111

B 000
C = 001

D = 010
E 011

H = 100

L 101

M cycles: 2 T states: 7(4,3) 4MHzE.T.: 1.75

Condition Bits Affected: None

Example:

If register pair HL contains the number 75A1H, and memory address 75 A1H
contains the byte 58H, the execution of

LD C, (HL)

will result in 58H in register C.

Format Example 2

JP cc,nn
Operation: IF CC TRUE, PC <3 nn

The jump is made only if the condition cc is true. The arrow indicates that the

number nn is moved into the program counter PC. This will cause the program to

jump to address nn.

When you write the assembly language code, cc will be replaced by one of the

following: NZ, Z, NC, C, PO, PE, P or M. nn will be replaced by a number from

to 65535 or a label.

Format:

Mnemonic: JP Operands: cc, nn

Obj«;ct Code:

1 1 cc cc
1 i -

cc 1

i

n
i

n n n
! 1

n n n n

I

n
1

n
1 1

n n
i i

n n n n

119



MODEL 111/4 ALDS

Note: The first n operand in this assembled object code is the low order byte of a

two-byte memory address.

The object code for this instruction is three bytes long. To figure out the object

code, replace bits 3, 4 and 5 of the first byte with the appropriate number from

the table. The second two bytes of the object code are the address being jumped

to. For example:

Source Code Object Code

JP NZ, 0FF00H 11000010 C2H
00000000 00H
11111111 FFH

JP M, 1002H 11111010 FAH
00000010 02H
00010000 10H

Note that the low order, or right hand byte, of the address comes first in the

object code.

Description:

If condition cc is true, the instruction loads operand nn into register pair PC
(Program Counter), and the program continues with the instruction beginning at

address nn. If condition cc is false, the Program Counter is incremented as usual,

and the program continues with the next sequential instruction. Condition cc is

programmed as one of eight status bits which correspond to condition bits in the

Flag Register (register F). These eight status bits are defined in the table below

which also specifies the corresponding cc bit fields in the assembled object code.

The Relevant Flag column shows the value the flag must have if the jump is to

occur.

Relevant

cc Condition Flag

000 NZ non zero Z =
001 Zzero Z = 1

010 NC no carry C =
011 C carry C = 1

100 PO parity odd or no overflow P/V =
101 PE parity even or overflow P/V = 1

110 P sign positive S =
111 M sign negative S = 1

M cycles: 3 T states: 10(4,3,3) 4MHzET.:2.

Condition Bits Affected: None

Example:

If the Carry Flag (C flag in the F register) is set and the contents of address 1520

are 03H, after the execution of

120



Z-80 MNEMONICS

JP C.1520H

the Program Counter will contain 1520H, and on the next machine cycle the CPU
will fetch from address 1520H the byte 03H. In other words, program execution

jumps to the instruction at 1520H.

Format Example 3

CPIR

Operation: A- (HL), HL<lHL+1, BC<|BC-1

The shorthand description indicates that three different things are happening:

1

.

BC is decremented

2. HL is incremented

3

.

A byte in memory is subtracted from the A register (but the results are not

saved).

Format:

Mnemonic: CPIR Operands:

ED

Object Code:

! 1 1 11110 1 1

1

1

I

1 1 II10 110
1 1 1 1

1

1

1

Bl

The assembly language instruction has no operands.

The object code is two bytes long.

Description:

The contents of the memory location addressed by the HL register pair is

compared with the contents of the Accumulator. In case of a true compare, a

condition bit is set. The HL is incremented and the Byte Counter (register pair

BC) is decremented. If decrementing causes the BC to go to zero or if A = (HL),

the instruction is terminated. If BC is not zero and A =£ (HL), the program

counter is decremented by 2 and the instruction is repeated. Note that if BC is set

to zero before the execution, the instruction will loop through 64K bytes, if no

match is found. Also, interrupts will be recognized after each data comparison.

ForBC¥=0andA=3t(HL):

M cycles: 5 T states: 21(4,4,3,5,5) 4 MHz E.T.: 5.25

121



MODEL III/4 ALDS

ForBC = 0orA = (HL):

M cycles: 4 T states: 16(4,4,3,5) 4 MHzE.T.: 4.00

The total execution time of this instruction depends on how long it takes to find

the byte being searched for and the length of the block being searched. If the

instruction loops three times before BC = or A = (HL), then there will be 58

(2x21 + 16) timing (T) states executed.

Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z: Set if A = (HL); reset otherwise

H: Set if borrow from Bit 4; reset otherwise

P/V: Set if BC becomes zero; reset otherwise

N: Set

C: Not affected

Example:

If the HL register pair contains 1111H, the Accumulator contains F3H, the Byte

Counter contains 0007H, and memory locations have these contents:

(1111H) : 52H
(1112H) : 00H
(1113H) : F3H

then after the execution of

CPIR

the contents of register pair HL will be 1114H, the contents of the Byte Counter

will be 0004H. Since BC i= 0, the P/V flag is still set. This means that it did not

search through the whole block before the instruction stopped. Since a match

was found, the Z flag is set.

The CPIR instruction will affect five of the six condition codes.

122



8 BIT LOAD GROUP

8 Bit Load Group

LD r,r' LoaD

Operation: X <0 X'

Format:

Mnemonic: LD Operands: r, r'

Object Code:

Olrrrrrr

Description:

The contents of any register r' are loaded into any other register r. Note: r, r'

identifies any of the registers A, B, C, D, E, H, or L, assembled as follows in the

object code:

gister r, r'

A = 111

B = 000

C = 001

D = 010

E = 011

H = 100

L = 101

M cycles: 1 T states: 4 4 MHz E.T. : 1 .0

Condition Bits Affected: None

Example:

If the H register contains the number 8AH, and the E register contains 10H, the

instruction

LD H,E

would result in both registers containing 10H.

123



MODEL HI/4 ALDS

LDr.n

Operation: f <0 fl

Format:

Mnemonic: LD Operands: r, n

Object Code:

LoaD

r r r 1 1

n n n n n n n n

Description:

The eight-bit integer n is loaded into any register r, where r identifies register A,

B, C, D, E, H or L, assembled as follows in the object code:

Register r

A = 111

B = 000

C = 001

D = 010

E = 011

H = 100

L = 101

M cycles: 2 T states: 7(4,3) 4 MHz E.T.: 1.75

Condition Bits Affected: None

Example 1:

After the execution of

LD E,A5H

the contents of register E will be A5H.

Example 2:

After the execution of

LD A,0

register A will contain zero.

124



8 BIT LOAD GROUP

LD r,(HL) LoaD

Operation: f $ (HL)

Format:

Mnemonic: LD Operands: r, (HL)

Object Code:

—

I

1 1 1 1 1

1

—

1 r r r 1 1

Description:

The eight-bit contents of memory location (HL) are loaded into register r, where

r identifies register A, B, C, D, E, H or L, assembled as follows in the object

code:

Register r

A = 111

B = 000

C = 001

D = 010

E = 011

H = 100

L = 101

M cycles: 2 T states: 7(4,3) 4MHzE.T.: 1.75

Condition Bits Affected: None

Example:

If register pair HL contains the number 75A1H, and memory address 75A1H
contains the byte 58H, the execution of

LD C,(HL)

will result in 58H in register C.

LDr,(IX+d) LoaD

Operation: r<l (IX + d)

Format:

Mnemonic: LD Operands: r, (IX + d)

125



MODEL lil/4 ALDS

Object Code:

i i I I 1 I I110 1110 1

i i i i i i i

i i i i i 1 1

1 r r r 1 1

i i i i i i i

i i i I I 1 1dddddddd
l l l I l l I

DD

Description:

The operand (IX + d) (the contents of the Index Register IX summed with a

displacement integer d) is loaded into register r, where r identifies register A, B,

C, D, E, H or L, assembled as follows in the object code:

Register r

A 111

B = 000

C = 001

D = 010

E = 011

H = 100

L = 101

M cycles: 5 T states: 19(4,4,3,5,3) 4 MHz E.T.: 4.75

Condition Bits Affected: None

Example:

If the Index Register IX contains the number 25AFH, the instruction

LD B,(IX+19H)

will cause the calculation of the sum 25AFH + 19H, which points to memory
location 25C8H. If this address contains byte 39H, the instruction will result in

register B also containing 39H.

A typical use of this instruction is shown below. If TABL is a location in memory
this program will load the first four bytes of the table into registers A, B, C and
D.

LD IX, TABL ; IX points to the table

LD A, (IX + 0) ; Load first byte

LD B, (IX +1) ; Load second byte

LD C,(IX + 2) ; Load third byte

LD D, (IX + 3) ; Load fourth byte

126



8 BIT LOAD GROUP

LD r,(IY+d)

Operation: r<l(IY + d)

Format:

Mnemonic: LD Operands: r, (IY + d)

Object Code:

1
1 1 1

1

FD1 1 1 1 1 1 1

1 r r r 1 1

d d d d d d d d

LoaD

Description:

The operand (IY + d) (the contents of the Index Register IY summed with a two's

complement displacement integer d) is loaded into register r, where r identifies

register A, B, C, D, E, H, or L, assembled as follows in the object code:

i»ister r

A = 111

B 000

C = 001

D = 010

E = 011

H = 100

L = 101

M cycles: 5 T states: 19(4,4,3,5,3) 4 MHz E.T.: 4.75

Condition Bits Affected: None

Example:

If the Index Register IY contains the number 25AFH, the instruction

LD B,(IY+I9H)

will cause the calculation of the sum 25AFH + 19H, which points to memory
location 25C8H. If this address contains byte 39H, the instruction will result in

register B also containing 39H.

127



MODEL HI/4 ALDS

LD (HL),r LoaD

Operation: (HL) ^3 T

Format:

Mnemonic: LD Operands: (HL), r

Object Code:

1 1 1 r r r

Description:

The contents of register r are loaded into the memory location specified by the

contents of the HL register pair. The symbol r identifies register A, B, C, D, E, H
or L, assembled as follows in the object code:

gister r

A = 111

B = 000

C = 001

D = 010

E = 011

H = 100

L = 101

M cycles: 2 T states: 7(4,3) 4 MHz EX: 1.75

Condition Bits Affected: None

Example:

If the contents of register pair HL specify memory location 2146H, and the B
register contains the byte 29H, after the execution of

LD (HL),B

memory address 2146H will also contain 29H.

LD(IX + d),r LoaD

Operation: (IX + d)<0r

Format:

Mnemonic: LD Operands: (DC + d), r

128



8 BIT LOAD GROUP

Object Code:

i i i i I I I110 1110 1

1 ! 1 I 1 1 1

1 1 II 1 1 1

1 1 1 r r r
I i i i i i i

iiiiiiiddddddddii

DD

Description:

The contents of register r are loaded into the memory address specified by the

contents of Index Register IX summed with d, a two's complement displacement

integer. The symbol r identifies register A, B, C, D, E, H or L, assembled as

follows in the object code:

pster r

A = 111

B 000

C = 001

D = 010

E 011

H = 100

L = 101

M cycles: 5 T states: 19(4,4,3,5,3) 4 MHz EX: 4.75

Condition Bits Affected: None

Example:

If the C register contains the byte 1CH, and the Index Register IX contains

3100H, then the instruction

LD (IX + 6H), C

will perform the sum 3100H + 6H and will load 1CH into memory location

3106H.

LD(IY+d),r

Operation: (IY + d)<ir

Format:

Mnemonic: LD Operands: (IY + d), r

LoaD

129



MODEL 111/4 ALDS

Object Code:

1111110 1

i i i i i i i

1 1 i ! 1 1 I

1 1 1 r r r

dddddddd
I I I l l l l

FD

Description:

The contents of register r are loaded into the memory address specified by the

sum of the contents of the Index Register IY and d, a two's complement

displacement integer. The symbol r is specified according to the following table.

Register r

A = 111

B 000

C = 001

D = 010

E = 011

H 100

L 101

M cycles: 5 T states: 19(4,4,3,5,3) 4 MHz E.T.: 4.75

Condition Bits Affected: None

Example:

If the C register contains the byte 48H, and the Index Register IY contains

2A11H, then the instruction

LD (IY + 4H),C

will perform the sum 2A11H + 4H, and will load 48H into memory location

2A15.

LD (HL),n

Operation: (HL) <1 D

Format:

Mnemonic: LD Operands: (HL), n

LoaD

130



8 BIT LOAD GROUP

Object Code:

1 1 !11 1 1

1 [ 1

n n n n
1 1 1

n n n n

36

Description:

Integer n is loaded into the memory address specified by the contents of the HL
register pair.

M cycles: 3 T states: 10(4,3,3) 4 MHz E.T.: 2.50

Condition Bits Affected: None

Example:

If the HL register pair contains 4444H, the instruction

LD (HL),28H

will result in the memory location 4444H containing the byte 28H.

LD(IX + d),n

Operation: (IX + d)<in

Format:

Mnemonic: LD Operands: (IX + d), n

Load

Object Code:

i

1 1

i

1

1

i

1 1 1

i

i

i

1 1

i

1 1

1

d d
i

I

d d
i

d d d d

I

n n
i

l

n n
l

n n n n

DD

36

131



MODEL III 4 ALDS

Description:

The n operand is loaded into the memory address specified by the sum of the

contents of the Index Register IX and the two's complement displacement

operand d.

M cycles: 5 T states: 19(4,4,3,5,3) 4 MHz E.T.: 4.75

Condition Bits Affected: None

Example:

If the Index Register IX contains the number 219AH the instruction

LD (IX + 5H),5AH

would result in the byte 5AH in the memory address 219FH.

(219FH = 219AH + 5H.)

LD(IY+d),n

Operation: (IY + d)<in

Format:

Mnemonic: LD Operands: (IY + d), n

LoaD

Object Code:

i i i1111
i i i

1 1 1

I 1 111
i i i

1 1

i i i

d d d d
i i i

d d d d

1 I I

n n n n
1 1 i

n n n n

FD

36

Description:

Integer n is loaded into the memory location specified by the contents of the

Index Register summed with a two's complement displacement integer d.

M cycles: 5 T states: 19(4,4,3,5,3) 4 MHz EX: 4.75

Condition Bits Affected: None

132



8 BIT LOAD GROUP

Example:

If the Index Register IY contains the number A940H, the instruction

LD (IY+10H),97H

would result in byte 97H in memory location A950H.

LD A,(BC) LoaD

Operation: A <0 (BC)

Format:

Mnemonic: LD Operands: A, (BC)

Object Code:

—

I

1 1 1
1

0A1 1

Description:

The contents of the memory location specified by the contents of the BC register

pair are loaded into the Accumulator.

M cycles: 2 T states: 7(4,3) 4 MHz E.T.: 1.75

Condition Bits Affected: None

Example:

If the BC register pair contains the number 4747H, and memory address 4747H

contains the byte 12H, then the instruction

LD A,(BC)

will result in byte 12H in register A.

LD A,(DE) LoaD

Operation: A <1 (DE)

Format:

Mnemonic: LD Operands: A, (DE)

133



MODEL HI/4 ALDS

Object Code:

110 10
I L_ I I I I I

1

1A

Description:

The contents of the memory location specified by the register pair DE are loaded
into the Accumulator.

M cycles: 2 T states: 7(4,3) 4 MHz EX: 1.75

Condition Bits Affected: None

Example:

If the DE register pair contains the number 30A2H and memory address 30A2H
contains the byte 22H, then the instruction

LD A,(DE)

will result in byte 22H in register A.

LD A,(nn)

Operation: A <](nn)

Format:

Mnemonic: LD Operands: A, (nn)

Object Code:

1 1 1

1

1

n n n n n n n n
...

n n n n n n n n

3A

LoaD

Description:

The contents of the memory location specified by the operands nn are loaded into

the Accumulator. The first n operand is the low order byte of a two-byte memory
address.

M cycles: 4 T states: 13(4,3,3,3) 4 MHz E.T.: 3.25

134



8 BIT LOAD GROUP

Condition Bits Affected: None

Example:

If the contents of memory address 8832H is byte 04H, after the instruction

LD A,(8832H)

byte 04H will be in the Accumulator.

LD (BC),A LoaD

Operation: (BC) <1 A

Format:

Mnemonic: LD Operands: (BC), A

Object Code:

I I 1 I |

0210
I I I I I I I

Description:

The contents of the Accumulator are loaded into the memory location specified

by the contents of the register pair BC.

M cycles: 2 T states: 7(4,3) 4 MHz E.T. : 1 .75

Condition Bits Affected: None

Example:

If the Accumulator contains 7AH and the BC register pair contains 1212H the

instruction

LD (BC),A

will result in 7AH being in memory location 1212H.

LD (DE),A LoaD

Operation: (DE) <]A

Format:

Mnemonic: LD Operands: (DE), A

135



MODEL HI/4 ALDS

Object Code:—
1 j ! j ! ! !10 10 12

Description:

The contents of the Accumulator are loaded into the memory location specified

by the DE register pair.

M cycles: 2 T states: 7(4,3) 4 MHz EX: 1.75

Condition Bits Affected: None

Example:

If the contents of register pair DE are 1128H, and the Accumulator contains byte

A0H, the instruction

LD (DE),A

will result in A0H being in memory location 1128H.

LD (nn),A

Operation: (nn) <0A

Format:

Mnemonic: LD Operands: (nn), A

Object Code:

1 1 1

n n n n n n n n

n n n n n n n n

32

LoaD

Description:

The contents of the Accumulator are loaded into the memory address specified by

the operands nn. The first n operand in the assembled object code above is the

low order byte of nn.

M cycles: 4 T states: 13(4,3,3,3) 4 MHz EX: 3.25

136



8 BIT LOAD GROUP

Condition Bits Affected: None

Example:

If the contents of the Accumulator are byte D7H, after the execution of

LD (3141 H),A
D7H will be in memory location 3141 H.

LD A, I LoaD

Operation: A <J I

Format:

Mnemonic: LD Operands: A, I

Object Code:

—i

—

r~-

1

—i—

i

ED1 1 1 1 1 1

1 1 1 1 1 57

Description:

The contents of the Interrupt Vector Register I are loaded into the Accumulator.

M cycles: 2 T states: 9(4,5) 4 MHz E.T. : 2.25

Condition Bits Affected:

S: Set if I-Reg. is negative; reset otherwise

Z: Set if I-Reg. is zero; reset otherwise

H: Reset

P/V: Contains contents of IFF2

N: Reset

C: Not affected

Note: If an interrupt occurs during execution of this instruction, the Parity flag

will contain a 0.

Example:

If the Interrupt Vector Register contains the byte 4AH, after the execution of

LD A,I

the accumulator will also contain 4AH.

137



MODEL Ml/4 ALDS

LDA,R
Operation: A <J R

Format:

Mnemonic: LD Operands: A, R

LoaD

Obj<;ct Code:

1

i i

1 1

i i

1 1 1

- I

I l

1 1 1 1 1 1

ED

5F

Description:

The contents of Memory Refresh Register R are loaded into the Accumulator.

M cycles: 2 T states: 9(4,5) 4 MHz E.T.: 2.25

Condition Bits Affected:

S: Set if R-Reg. is negative; reset otherwise

Z: Set if R-Reg. is zero; reset otherwise

H: Reset

P/V: Contains contents of IFF2

N: Reset

C: Not affected

Example:

If the Memory Refresh Register contains the byte 4AH, after the execution of

LD A,R

the Accumulator will also contain 4AH.

L.LJ \
f
Pi

Operation: I
<J
A

Format:

Mnemonic: LD Operands: I, A

LoaD

138



8 BIT LOAD GROUP

Object Code:

1 I i i1110 1

i i i i

1

1

1

1

1 1 I 110
1 1 1 1

1

1

1 1

1

ED

47

Description:

The contents of the Accumulator are loaded into the Interrupt Control Vector

Register, I.

M cycles: 2 T states: 9(4,5) 4 MHz E.T.: 2.25

Condition Bits Affected: None

Example:

If the Accumulator contains the number 81H, after the instruction

LD I,A

the Interrupt Vector Register will also contain 81H.

LDR,A
Operation: R ()A

Format:

Mnemonic: LD Operands: R, A

LoaD

Object Code:

1 I 1 I1110 1

i i i i

1 1

I I 1 110 1

1 1 I 1

1 1 1

ED

4F

Description:

The contents of the Accumulator are loaded into the Memory Refresh register R.

M cycles: 2 T states: 9(4,5) 4 MHz E.T.: 2.25

Condition Bits Affected: None

139



MODEL Hi/4 ALDS

Example:

If the Accumulator contains the number B4H, after the instruction

LD R,A

the Memory Refresh Register will also contain B4H.

140



16 BIT LOAD GROUP

16 Bit Load Group

LD dd,nn

Operation: dd <£ nn

Format:

Mnemonic: LD Operands: dd, nn

Object Code:

LoaD

d d 1

n n n n n n n n

n n n n n n n n

Description:

The two-byte integer nn is loaded into the dd register pair, where dd defines the

BC, DE, HL, or SP register pairs, assembled as follows in the object code:

Pair

BC
DE
HL
SP

dd

00

01

10

11

The first n operand in the assembled object code is the low order byte.

M cycles: 3 T states: 10(4,3,3) 4 MHz E.T.: 2.50

Condition Bits Affected: None

Example:

After the execution of

LD HL,5000H

the contents of the HL register pair will be 5000H.

141



MODEL Ml/4 ALDS

After the execution of

LD BC.2501H

the BC register will contain 250 1H.

LD IX,nn

Operation: IX <J nn

Format:

Mnemonic: LD Operands: IX, nn

Object Code:

1 1 1 1 1 1

1 1

n n n n n n n n

n n n n n n n n

DD

21

LoaD

Description:

Integer nn is loaded into the Index Register IX. The first n operand in the

assembled object code above is the low order byte.

M cycles: 4 T states: 14(4,4,3,3) 4 MHz EX: 3.50

Condition Bits Affected: None

Example:

After the instruction

LD IX,45A2H

the Index Register will contain integer 45A2H.

142



16 BIT LOAD GROUP

LD IY,nn

Operation: IY<|]nn

Format:

Mnemonic: LD Operands: IY, nn

LoaD

Object Code:

1 1 1 1 1 1 1

1 1

n n n n n n n n

n n n n n n n n

FD

21

Description:

Integer nn is loaded into the Index Register IY. The first n operand in the

assembled object code above is the low order byte.

M cycles: 4 T states: 14(4,4,3,3) 4 MHz EX: 3.50

Condition Bits Affected: None

Example:

After the instruction:

LD IY,7733H

the Index Register IY will contain the integer 7733H.

LD HL,(nn)

Operation: H <i (nn + 1 ), L <] (nn)

Format:

Mnemonic: LD Operands: HL, (nn)

LoaD

143



MODEL III/4 ALDS

Object Code:

i i i10
! i 1

1

1

1

i

1 1 1

n n n n
i i i

n n n n

I 1 !

n n n n
J ! 1

n n n n

2A

Description:

The contents of memory address nn are loaded into the low order portion of

register pair HL (register L), and the contents of the next highest memory
address (nn + 1) are loaded into the high order portion of HL (register H). The
first n operand in the assembled object code above is the low order byte of nn.

M cycles: 5 T states: 16(4,3,3,3,3) 4 MHz E.T.: 4.00

Condition Bits Affected: None

Example:

If address 4545H contains 37H and address 4546H contains A1H, after the

instruction

LD HL,(4545H)

the HL register pair will contain A137H.

LD dd
5
(nn)

Operation: ddH <i (nn + 1 ), ddL <j (nn)

Format:

Mnemonic: LD Operands: dd, (nn)

Object Code:

I

1 1 1

1

ED1 1 1 1 1 1

1 d d 1 1 1

n n n n n n n n

I I I
1—I—1—1

—

nnnnnnnn

LoaD

144



16 BIT LOAD GROUP

Description:

The contents of address nn are loaded into the low order portion of register pair

dd, and the contents of the next highest memory address (nn + 1) are loaded into

the high order portion of dd. Register pair dd defines BC, DE, HL, or SP register

pairs, assembled as follows in the object code:

Pair dd

BC 00

DE 01

HL 10

SP 11

The first n operand in the assembled object code above is the low order byte of

(nn).

M cycles: 6 T states: 20(4,4,3,3,3,3) 4 MHz EX: 5.00

Condition Bits Affected: None

Example 1:

If Address 2130H contains 65H and address 2131M contains 78H after the

instruction

LD BC,(2130H)

the BC register pair will contain 7865H.

Example 2:

If address FFFE contains 01H and address FFFF contains 02H, then after the

instruction

LD SP,(0FFFEH)

the SP will contain 020 1H.

LD IX, (nn) LoaD

Operation: IXH <l (nn + 1 ), IXL <l (nn)

Format:

Mnemonic: LD Operands: IX, (nn)

145



MODEL HI/4 ALDS

Object Code:

1 1 1 1 1 1

1 1 1

n. n n n n n n n

n n n n n n n n

DD

2A

Description:

The contents of the address nn are loaded into the low order portion of Index

Register IX, and the contents of the next highest memory address (nn + 1 are

loaded into the high order portion of IX. The first n operand in the assembled

object code above is the low order byte of nn.

M cycles: 6 T states: 20(4,4,3,3,3,3) 4 MHz EX: 5.00

Condition Bits Affected: None

Example:

If address 6066H contains 92H and address 6067H contains DAH, after the

instruction

LD IX,(6066H)

the Index Register IX will contain DA92H.

LD IY(nn) LoaD

Operation: IYH <0(nn + 1), IYL <i(nn)

Format:

Mnemonic: LD Operands: IY, (nn)

146



16 BIT LOAD GROUP

Object Code:

1 1 1

1

1

I

1

I

1 1

L_ .....

1 1 1

L _ .

n n n n n n n n

n n n n n n n n

FD

2A

Description:

The contents of address nn are loaded into the low order portion of Index

Register IY, and the contents of the next highest memory address (nn + 1) are

loaded into the high order portion of IY. The first n operand in the assembled

object code above is the low order byte of nn.

M cycles: 6 T states: 20(4,4,3,3,3,3) 4 MHz EX: 5.00

Condition Bits Affected: None

Example:

If address 6666H contains 92H and address 6667H contains DAH, after the

instruction

LD IY,(6666H)

the Index Register IY will contain DA92H.

LD (nn),HL LoaD

Operation: (nn + 1 )<] H, (nn) <]

L

Format:

Mnemonic: LD Operands: (nn), HL

147



MODEL HI/4 ALDS

Object Code:

10
1 1 1

1

n n n n
i i i

n n n n

1 1 1

n n n n n n n n

22

Description:

The contents of the low order portion of register pair HL (register L) are loaded

into memory address nn, and the contents of the high order portion of HL
(register H) are loaded into the next highest memory address (nn+ 1). The first n

operand in the assembled object code above is the low order byte of nn.

M cycles: 5 T states: 16(4,3,3,3,3) 4 MHz E.T.: 4.00

Condition Bits Affected: None

Example 1:

If the content of register pair HL is 483AH, after the instruction

LD (B229H),HL

address B229H will contain 3AH, and address B22AH will contain 48H.

Example 2:

If the register pair HL contains 504AH, then after the instruction

LD (PLACE),HL
the address PLACE will contain 4AH and address PLACE + 1 will contain 50H.

Note: PLACE is a label which must be defined elsewhere in the program.

LD (nn),dd LoaD

Operation: (nn + 1 )<i ddH ,
(nn) <i ddL

Format:

Mnemonic: LD Operands: (nn), dd

148



16 BIT LOAD GROUP

Object Code:

i

1 1

I

1

i

1 1 1

1

i

1

d d
i

1 1

n n
I

n n
i

n n n n

i

n n
l

i

n n
I

n n n n

ED

Description:

The low order byte of register pair dd is loaded into memory address (nn); the

upper order byte is loaded into memory address (nn + 1). Register pair dd defines

either BC, DE, HL, or SP, assembled as follows in the object code:

Pair dd

BC 00

DE 01

HL 10

SP 11

The first n operand in the assembled object code is the low order byte of a two

byte memory address.

M cycles: 6 T states: 20(4,4,3,3,3,3) 4 MHz E.T.: 5.00

Condition Bits Affected: None

Example:

If register pair BC contains the number 4644H, the instruction

LD (1000H),BC

will result in 44H in memory location 1000H, and 46H in memory
location 1001H.

LD (nn),IX LoaD

Operation: (nn + 1 )<l IXH ,
(nn) <l IXL

Format:

Mnemonic: LD Operands: (nn), IX

149



MODEL HI/4 ALDS

Object Code:

1 1 1 1 1 1

1 1

n n n n n n n n

n n n n n n n n

DD

22

Description:

The low order byte in Index Register IX is loaded into memory address nn; the

upper order byte is loaded into the next highest address (nn + 1). The first n

operand in the assembled object code above is the low order byte of nn.

M cycles: 6 T states: 20(4,4,3,3,3,3) 4 MHz E.T.: 5.00

Condition Bits Affected: None

Example:

If the Index Register IX contains 5A30H, after the instruction

LD (4392H),IX

memory location 4392H will contain number 30H and location 4393H will

contain 5AH.

LD (nn),IY LoaD

Operation: (nn + 1 )<] IYH ,
(nn) <l IYL

Format:

Mnemonic: LD Operands: (nn), IY

150



16 BIT LOAD GROUP

Object Code:

1

t

1 1

1

1

i

1

1

1

1

1

1 1

n n n n n n n n

n n n
,

n n n n n

FD

22

Description:

The low order byte in Index Register IY is loaded into memory address nn; the

upper order byte is loaded into memory location (nn + 1). The first n operand in

the assembled object code above is the low order byte of nn.

M cycles: 6 T states: 20(4,4,3,3,3,3) 4 MHz EX: 5.00

Condition Bits Affected: None

Example:

If the Index Register IY contains 4174H after the instruction

LD 8838H.IY

memory location 8838H will contain number 74H and memory location 8839H
will contain 41 H.

LD SRHL LoaD

Operation: SP<lHL

Format:

Mnemonic: LD Operands: SP, HL

Object Code:
!

! ! ! ! !

111 1110 1

I I I I I I I

F9

Description:

The contents of the register pair HL are loaded into the Stack Pointer SP.

151



MODEL HI/4 ALDS

M cycles: 1 T states: 6 4 MHz E.T. : 1.50

Condition Bits Affected; None

Example:

If the register pair HL contains 442EH, after the instruction

LD SP,HL

the Stack Pointer will also contain 442EH.

LD SRIX LoaD

Operation: SP <$ IX

Format:

Mnemonic: LD Operands: SP, IX

Object Code:

!
!

]

!

1

DD

F9
I 1 1 l I

Description:

The two-byte contents of Index Register IX are loaded into the Stack Pointer SP.

M cycles: 2 T states: 10(4,6) 4 MHz E.T.: 2.50

Condition Bits Affected: None

Example:

If the contents of the Index Register IX are 98DAH, after the instruction

LD SRIX

the contents of the Stack Pointer will also be 98DAH.

1 1 1 1 1 1

1 1 1 1 1 1

152



16 BIT LOAD GROUP

Object Code:

i i i1111
i i i

1

i i

1 1

i i i1111
1 1 1

1

I I

1

1 1

LD SRIY LoaD

Operation: SP <1 IY

Format:

Mnemonic: LD Operands: SP, IY

FD

F9

Description:

The two byte contents of Index Register IY are loaded into the Stack Pointer SP.

M cycles: 2 T states: 10(4,6) 4 MHz E.T.: 2.50

Condition Bits Affected: None

Example:

If Index Register IY contains the integer A227H, after the instruction

LD SRIY

the Stack Pointer will also contain A227H.

PUSH qq

Operation: (SP - 2)<1 qq L) (SP - 1 )<l qqH

Format:

Mnemonic: PUSH Operands: qq

Object Code:

1 1 q q i 1

153



MODEL III/4 ALDS

Description:

The contents of the register pair qq are pushed into the external memory LIFO

(last-in, first-out) Stack. The Stack Pointer (SP) register pair holds the 16-bit

address of the current "top" of the Stack. This instruction first decrements the

SP and loads the high order byte of register pair qq into the memory address now

specified by the SP, then decrements the SP again and loads the low order byte of

qq into the memory location corresponding to this new address in the SP. The

operand qq means register pair BC, DE, HL, or AF, assembled as follows in the

object code:

Pair

BC
qq

00

DE 01

HL 10

AF 11

M cycles: 3 T states: 11(5,3,3) 4 MHz E.T.: 2.75

Condition Bits Affected: None

Example:

If the AF register pair contains 2233H and the Stack Pointer contains 1007H,

after the instruction

PUSH AF

memory address 1006H will contain 22H, memory address 1005H will contain

33H, and the Stack Pointer will contain 1005H. In other words the number from

register pair AF is now on the top of the stack, and the stack pointer is pointing

to it.

Before:

Register AF Address Stack

2233 1007 FF
1008 35

Stack Pointer

1007

After: PUSH AF

Register AF Address Stack

2233 1005 33

1006 22

1007 FF
1008 35

Stack Pointer

1005

154



16 BIT LOAD GROUP

PUSH IX

Operation: (SP - 2)<l IXL) (SP- 1 )<l IXH

Format:

Mnemonic: PUSH Operands: IX

Object Code:

1 1 1 1 1

1

1

1 1 1 1 1

DD

E5

Description:

The contents of the Index Register IX are pushed into the external memory LIFO
(last-in, first-out) Stack. The Stack Pointer (SP) register pair holds the 16-bit

address of the current "top" of the Stack. This instruction first decrements the

SP and loads the high order byte of IX into the memory address now specified by

the SP, then decrements the SP again and loads the low order byte into the

memory location corresponding to this new address in the SP.

M cycles: 3 T states: 15(4,5,3,3) 4 MHz EX: 3.75

Condition Bits Affected: None

Example:

If the Index Register IX contains 2233H and the Stack Pointer contains 1007H,

after the instruction

PUSH IX

memory address 1006H will contain 22H, memory address 1005H will contain

33H, and the Stack Pointer will contain 1005H. The number from the IX register

pair is now on the top of the stack.

Before:

Register IX Address Stack

2233 1007 FF
1008 35

Stack Pointer

1007

155



MODEL 111/4 ALDS

After: PUSH IX

Register IX Address Stack

2233 1005 33

1006 22

1007 FF
1008 35

Stack Pointer

1005

PUSH IY

Operation: (SP - 2)0 IYL , (SP - 1 )<J IYH

Format:

Mnemonic: PUSH Operands: IY

Object Code:

1 1 1 1 1 1 1

1 1 1 1 1

FD

E5

Description:

The contents of the Index Register IY are pushed into the external memory LIFO
(last-in, first-out) Stack. The Stack Pointer (SP) register pair holds the 16-bit

address of the current "top" of the Stack. This instruction first decrements the

SP and loads the high order byte of IY into the memory address now specified by

the SP; then decrements the SP again and loads the low order byte into the

memory location corresponding to this new address in the SP.

M cycles: 4 T states: 15(4,5,3,3) 4 MHz EX: 3.75

Condition Bits Affected: None

Example:

If the Index Register IY contains 2233H and the Stack Pointer contains 1007H,

after the instruction

PUSH IY

156



16 BIT LOAD GROUP

memory address 1006H will contain 22H, memory address 1005H will contain

33H, and the Stack Pointer will contain 1005H. The number from register pair

IY is now on the top of the stack.

Before:

Register IY Address Stack

2233 1007 FF
1008 35

Stack Pointer

1007

Register IY Address Stac

2233 1005 33

1006 22

1007 FF
1008 35

Stack Pointer

1005

POPqq
Operation: qqH <I (SP + 1 ), qqL <l (SP)

Format:

Mnemonic: POP Operands: qq

Object Code:

1 1 q q 1

Description:

The top two bytes of the external memory LIFO (last-in, first-out) Stack are

popped into register pair qq. The Stack Pointer (SP) register pair holds the 16-bit

address of the current "top" of the Stack. This instruction first loads into the

low order portion of qq, the byte at the memory location corresponding to the

contents of SP; then SP is incremented and the contents of the corresponding

adjacent memory location are loaded into the high order portion of qq and the SP

is now incremented again. The operand qq defines register pair BC, DE, HL, or

AF, assembled as follows in the object code:

157



MODEL 111/4 ALDS

Pair r

BC 00
DE 01

HL 10

AF 11

M cycles: 3 T states: 10(4,3,3)

Condition Bits Affected: None

4MHzE.T.:2.50

Example:

If the Stack Pointer contains 1000H, memory location 1000H contains 55H, and

location 1001H contains 33H, the instruction

POP HL
will result in register pair HL containing 3355H, and the Stack Pointer

containing 1002H. In other words register pair HL contains the number which

was on the top of the stack, and the stack pointer is pointing to the current top of

the stack.

Before:

Register HL Address Stack

2233 1000 55

1001 33

1002 A4
1003 62

Stack Pointer

1000

After: POP HL

Register HL Address Stack

3355 1002 A4
1003 62

Stack Pointer

1002

POP IX

Operation: IXH <l (SP + 1 ), IXL <l (SP)

Format:

Mnemonic: POP Operands: IX

158



16 BIT LOAD GROUP

Object Code:

1 1 1 1 1 1

1 1 1 1

DD

El

Description:

The top two bytes of the external memory UFO (last-in, first-out) Stack are

popped into Index Register IX. The Stack Pointer (SP) register pair holds the 16-

bit address of the current "top" of the Stack. This instruction first loads into the

low order portion of IX the byte at the memory location corresponding to the

contents of SP; then SP is incremented and the contents of the corresponding

adjacent memory location are loaded into the high order portion of IX. The SP is

now incremented again.

M cycles: 4 T states: 14(4,4,3,3) 4 MHz E.T.: 3.50

Condition Bits Affected: None

Example:

If the Stack Pointer contains 1000H, memory location 1000H contains 55H, and

location 1001H contains 33H, the instruction

POP IX

will result in the Index Register IX containing 3355H, and the Stack Pointer

containing 1002H. Register pair IX contains the number which used to be on the

top of the stack.

Before:

Register IX Address Stack

24F9 1000 55

1001 33

1002 A4
1003 62

Stack Pointer

1000

159



MODEL 1)1/4 ALDS

After: POP IX

Register IX Address Stack

3355 1002 A4
1003 62

Stack Pointer

1002

POPIY
Operation: IYH 0(SP + 1),IYL 0(SP)

Format:

Mnemonic: POP Operands: IY

Object Code: _r !
! !

FD

El

1 1 1 1 1 1 1

1 1 1 1

Description:

The top two bytes of the external memory LIFO (last-in, first-out) Stack are

popped into Index Register IY. The Stack Pointer (SP) register pair holds the

16-bit address of the current "top" of the Stack. This instruction first loads into

the low order portion of IY the byte at the memory location corresponding to the

contents of SP; then SP is incremented and the contents of the corresponding

adjacent memory location are loaded into the high order portion of IY. The SP is

now incremented again.

M cycles: 4 T states: 14(4,4,3,3) 4 MHz E.T.: 3.50

Condition Bits Affected: None

Example:

If the Stack Pointer contains 1000H, memory location 1000H contains 55H, and

location 1001H contains 33H, the instruction

POP IY

will result in Index Register IY containing 3355H, and the Stack Pointer

containing 1002H. Register pair IY contains the number which used to be on the

top of the stack.

160



16 BIT LOAD GROUP

Before:

Register IY Address Stack

24F9 1000 55

1001 33

1002 A4
1003 62

Stack Pointer

1000

After: POP IY

Register IY Address Stack

3355 1002 A4
1003 62

Stack Pointer

1002

161





EXCHANGE, BLOCK TRANSFER AND SEARCH GROUP

Exchange, Block Transfer

and Search Group

Ev HP HI rY,hanflflA L/lZ,riL Exchange

Operation: DE <$f) HL

Format:

Mnemonic: EX Operands: DE, HL

Object Code:

_^
] ! (

!

EB
—i—i

—

r~i—i—i—i

—

11101011

Description:

The two-byte contents of register pairs DE and HL are exchanged.

M cycles: 1 T states: 4 4 MHz E.T. : 1 .00

Condition Bits Affected: None

Example:

If the content of register pair DE is the number 2822H, and the content of the

register pair HL is number 499AH, after the instruction

EX DE,HL

the content of register pair DE will be 499AH and the content of register pair HL
will be 2822H.

EX AFjAF' Exchange

Operation: AF <X> AF'

Format:

Mnemonic: EX Operands: AF, AF'

163



MODEL HI/4 ALDS

Object Code:

I I I 1 ! l I10 08
I I I I l I I I

Description:

The two-byte contents of the register pairs AF and AF' are exchanged.

(Note: register pair AF' consists of registers A' and F.')

M cycles: 1 T states: 4 4 MHz E.T.: 1.00

Condition Bits Affected: None

Example:

If the content of register pair AF is number 9900H, and the content of register

pair AF' is number 5944H, after the instruction

EX AF,AF'

the contents of AF will be 5944H, and the contents of AF' will be 9900H.

EXX Exchange

Operation: (BC) <X> (BC), (DE) 00 (DP), (HL) 00 (HL')

Format:

Mnemonic: EXX Operands:

Object Code:

—I

1 1 1 1 1 1

1110 110 1 D9
I l l l l l l

Description:

Each two-byte value in register pairs BC, DE, and HL is exchanged with the two-

byte value in BC,' DE,' and HL,' respectively.

M cycles: 1 T states: 4 4 MHz E.T. : 1 .00

Condition Bits Affected: None

Example 1:

If the contents of register pairs BC, DE, and HL are the numbers 445AH,
3DA2H, and 8859H, respectively, and the contents of register pairs BC,' DE,'
and HL' are 0988H, 9300H, and 00E7H, respectively, after the instruction

164



EXCHANGE, BLOCK TRANSFER AND SEARCH GROUP

EXX
the contents of the register pairs will be as follows: BC: 0988H; DE: 9300H; HL:

00E7H; BC: 445AH; DE': 3DA2H; and HL': 8859H.

Example 2

If the contents of the registers are as shown:

BC 111 1H
DE 2222H
HL 3333H
BC 4444H
DE' 5555H
HL' 6666H

Then after an EXX instruction the registers

BC 4444H
DE 5555H
HL 6666H
BC 1111H
DE' 2222H
HL' 3333H

EX (SP), HL Exchange

Operation: H 00 (SP + 1 ), L <I> (SP)

Format:

Mnemonic: EX Operands: (SP),HL

Object Code:

1110 11
I I I I I I I

E3

Description:

The low order byte contained in register pair HL is exchanged with the contents

of the memory address specified by the contents of register pair SP (Stack

Pointer), and the high order byte of HL is exchanged with the next highest

memory address (SP+ 1).

M cycles: 5 T states: 19(4,3,4,3,5) 4 MHz EX: 4.75

Condition Bits Affected: None

165



MODEL 1114 ALDS

Example:

If the HL register pair contains 7012H, the SP register pair contains 8856H, the

memory location 8856H contains the byte 11H, and the memory location 8857H
contains the byte 22H, then the instruction

EX (SP),HL

will result in the HL register pair containing number 221 1H, memory location

8856H containing the byte 12H, the memory location 8857H containing the byte

70H and the Stack Pointer containing 8856H.

Before:

Register HL Address Stack

7012 8856 11

8857 22

8858

Stack Pointer

8856

After:

Register HL Address Stack

2211 8856 12

8857 70

8858

Stack Pointer

8856

tX (or ),IX Exchange

Operation: IXH <S> (SP + 1 ), IXL <H> (SP)

Format:

Mnemonic: EX Operands: (SP), IX

Object Code:

I I !110 1

i i I

1 1

1

1

1

l l l1110
1 1 1

1

1 1

1

DD

E3

166



EXCHANGE, BLOCK TRANSFER AND SEARCH GROUP

Description:

The low order byte in Index Register IX is exchanged with the contents of the

memory address specified by the contents of register pair SP (Stack Pointer), and
the high order byte of IX is exchanged with the next highest memory address

(SP+1).

Condition Bits Affected: None

Example:

If the Index Register IX contains 3988H, the SP register pair contains 0100H, the

memory location 0100H contains the byte 90H, and memory location 0101H
contains byte 48H, then the instruction

EX (SP),IX

will result in the IX register pair containing number 4890H, memory location

0100H containing 88H, memory location 0101H containing 39H and the Stack
Pointer containing 0100H.

Before:

Register IX Address Stack

3988 0100 90

0101 48

Stack Pointer

0100

After:

Register IX Address Stack

4890 0100 88

0101 39

Stack Pointer

0100

EX (SP),IY Exchange

Operation: IYH <0 (SP + 1 ), IYL <H> (SP)

Format:

Mnemonic: EX Operands: (SP), IY

167



MODEL ill/4 ALDS

Object Code:

1

1 11111
i i i

1 1

1

1

1

1 I i1110
i i i

1

1 1

1

FD

E3

Description:

The low order byte in Index Register IY is exchanged with the contents of the

memory address specified by the contents of register pair SP (Stack Pointer), and

the high order byte of IY is exchanged with the next highest memory address

(SP+1).

M cycles: 6 T states: 23(4,4,3,4,3,5) 4 MHz E.T.: 5.75

Condition Bits Affected: None

Example:

If the Index Register IY contains 3988H, the SP register pair contains 0100H, the

memory location 0100H contains the byte 90H, and memory location 0101H

contains byte 48H, then the instruction

EX (SP),IY

will result in the IY register pair containing number 4890H, memory location

0100H containing 88H, memory location 0101H containing 39H, and the Stack

Pointer containing 0100H.

Before:

Register IY

3988

Stack Pointer

0100

After:

Register IY

4890

Stack Pointer

0100

Address Stack

0100 90

0101 48

Address Stack

0100 88

0101 39

168



EXCHANGE, BLOCK TRANSFER AND SEARCH GROUP

LUI LoaD & Increment

Operation: (DE)<i(HL), DE<iDE + 1, HL<iHL+ 1, BC<iBC-1

Format:

Mnemonic: LDI Operands:

Object Code:

1

1

1 1

1

1

1 1 1

1 1

ED

A0

Description:

A byte of data is transferred from the memory location addressed by the contents

of the HL register pair to the memory location addressed by the contents of the

DE register pair. Then both these register pairs are incremented and the BC (Byte

Counter) register pair is decremented.

M cycles: 4 T states: 16(4,4,3,5) 4MHzE.T.: 4.00

Condition Bits Affected:

S: Not affected

Z: Not affected

H: Reset

P/V: Set if BC- 1^0; reset otherwise

N: Reset

C: Not affected

Example 1:

If the HL register pair contains 1111H, memory location 1111H contains the byte

88H, the DE register pair contains 2222H, the memory location 2222H contains

byte 66H, and the BC register pair contains 7H, then the instruction

LDI

will result in the following contents in register pairs and memory addresses:

HL : 1112H
(1111H) : 88H
DE : 2223H
(2222H) : 88H
BC : 6H

169



MODEL 111/4 ALDS

and the condition Bits will be:

1

S Z H P/V N C

Example 2:

If the contents of registers and memory are as shown:

HL : 7C00H
(7C00) : FFH
DE : 3C00H
(3C00) : 00H
BC : 1H

Then after an LDI instruction the registers and memory will contain the

following:

HL : 7C01H
(7C00) : FFH
DE : 3C01H
(3C00) : FFH
BC : 0H

and the condition bits will be:

S Z H P/V N C

Example 3:

The following program will move 80 consecutive bytes from BUF1 to BUF2:

LD HL, BUF1
LD DE, BUF2
LD BC, 80

LOOP LDI
JP NZ, LOOP

LDIR LoaD Increment & Repeat

Operation: (DE) (HL), DE<iDE + 1, HL<iHL+ 1, BC<] BC-

1

Format:

Mnemonic: LDIR Operands:

170



EXCHANGE, BLOCK TRANSFER AND SEARCH GROUP

Object Code:

1110 110 1 ED
i i i i i i i 1

10 1 10
I I 1 I I I L__

B0

Description:

This two-byte instruction transfers a byte of data from the memory location

addressed by the contents of the HL register pair to the memory location

addressed by the DE register pair. Then both these register pairs are incremented

and the BC (Byte Counter) register pair is decremented. If decrementing causes

the BC to go to zero, the instruction is terminated. If BC is not zero the program
counter (PC) is decremented by 2 and the instruction is repeated. Note that if BC
is set to zero prior to instruction execution, the instruction will loop through 64K
bytes. Also, interrupts will be recognized after each data transfer.

ForBC*0:

M cycles: 5 T states: 21(4,4,3,5,5) 4 MHz EX: 5.25

ForBC = 0:

M cycles: 4 T states: 16(4,4,3,5) 4 MHz EX: 4.00

Condition Bits Affected:

S: Not affected

Z: Not affected

H: Reset

P/V: Reset

N: Reset

C: Not affected

Example:

If the HL register pair contains 1111H, the DE register pair contains 2222H, the

BC register pair contains 0003H, and memory locations have these contents:

(1111H)

(1112H)

(1113H)

88H (2222H)

36H (2223H)

A5H (2224H)

66H
59H
C5H

then after the execution of

LDIR

171



MODEL 111/4 ALDS

the contents of register pairs and memory locations will be:

HL
DE
BC

(1111H)

(1112H)

(1113H)

1114H
2225H
0000H

88H
36H
A5H

(2222H)

(2223H)

(2224H)

and the H, P/V, and N flags are all zero.

88H
36H
A5H

LDD LoaD Decrement

operation: (DE)0(HL),DE<iDE-1,HL0HL-1,BC<3BC-1

Format:

Mnemonic: LDD Operands:

Object Code:

1 1 1

1

1

1 1 1

1 1

1

1

1

ED

A8

Description:

This two-byte instruction transfers a byte of data from the memory location

addressed by the contents of the HL register pair to the memory location

addressed by the contents of the DE register pair. Then both of these register

pairs, including the BC (Byte Counter) register pair, are decremented.

M cycles: 4 T states: 16(4,4,3,5) 4 MHz E.T.: 4.00

Condition Bits Affected:

S: Not affected

Z: Not affected

H: Reset

P/V: Set if BC - 1 * 0; reset otherwise

N: Reset

C: Not affected

172



EXCHANGE, BLOCK TRANSFER AND SEARCH GROUP

Example 1:

If the HL register pair contains 1111H, memory location 1111H contains the byte

88H, the DE register pair contains 2222H, memory location 2222H contains byte

66H, and the BC register pair contains 7H, then the instruction

LDD
will result in the following contents in register pairs and memory addresses:

HL 1110H
(huh) 88H
DE 222 1H
(2222H) 88H
BC 6H

and the condition bits will be:

1

S Z H P/V N C

Example 2:

If the contents of registers and memory are as shown:

HL : 7CFFH
(7CFF) : 3CH
DE : 3CFFH
(3CFF) : 00H
BC : 1H

Then after a LDD instruction the registers and memory will contain the

following:

HL : 7CFEH
(7CFF) : 3CH
DE : 3CFEH
(3CFF) : 3CH
BC : 0H

and the condition bits will be:

Z H P/V N C

LDDR LoaD Decrement & Repeat

Operation: (DE)<i(HL), DE<iDE- 1, HL<iHL- 1, BC<iBC-

1

Format:

Mnemonic: LDDR Operands:

173



MODEL 111/4 ALDS

Object Code:

1 1 1 1 1 1

1 1 1 1

ED

B8

Description:

This two-byte instruction transfers a byte of data from the memory location

addressed by the contents of the HL register pair to the memory location

addressed by the contents of the DE register pair. Then both of these registers

as well as the BC (Byte Counter) are decremented. If decrementing causes the

BC to go to zero, the instruction is terminated. If BC is not zero, the program

counter (PC) is decremented by 2 and the instruction is repeated. Note that if BC
is set to zero prior to instruction execution, the instruction will loop through 64K
bytes. Also, interrupts will be recognized after each data transfer.

ForBC*0:

M cycles: 5 T states: 21(4,4,3,5,5) 4 MHz EX: 5.25

ForBC = 0:

M cycles: 4 T states: 16(4,4,3,5) 4 MHz E.T.: 4.00

Condition Bits Affected:

S: Not affected

Z: Not affected

H: Reset

P/V: Reset

N: Reset

C: Not affected

Example:

If the HL register pair contains 1114H, the DE register pair contains 2225H, the

BC register pair contains 0003H, and memory locations have these contents:

(1114H)

(1113H)

(1112H)

A5H (2225H)

36H (2224H)

88H (2223H)

C5H
59H
66H

then after the execution of

LDDR

174



EXCHANGE, BLOCK TRANSFER AND SEARCH GROUP

the contents of register pairs and memory locations will be:

HL
DE
BC

: 111 1H
: 2222H
: 0000H

(1 1 14H) : A5H
(1113H) : 36H
(1112H) : 88H

(2225H) : A5H
(2224H) : 36H
(2223H) : 88H

and the H, P/V, and N flags are all zero.

CPI ComPare & Increment

Operation: A - (HL), HL HL + 1, BC <! BC - 1

Format:

Mnemonic: CPI Operands:

Object Code:

1 1 1 1 1 1

1 1 1

ED

Al

Description:

The contents of the memory location addressed by the HL register pair is

compared with the contents of the Accumulator. In case of a true compare, the

Z condition bit is set. Then HL is incremented and the Byte Counter (register

pair BC) is decremented.

M cycles: 4 T states: 16(4,4,3,5) 4 MHz E.T.: 4.00

Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z: Set if A = (HL); reset otherwise

H: Set if borrow from Bit 4; reset otherwise

P/V: Reset if BC becomes 0; set otherwise

N: Set

C: Not affected

175



MODEL III/4 ALDS

Example:

If the HL register pair contains 1111H, memory location 1111H contains 3BH, the

Accumulator contains 3BH, and the Byte Counter contains 0001 H, then after the

execution of

CPI

the Byte Counter will contain 0000H, the HL register pair will contain 1112H,

the Z flag in the F register will be set, and the P/V flag in the F register will be

reset. There will be no effect on the contents of the Accumulator or address

1111H.

If the contents of memory and registers are as shown

HL 8A00H
(8A00H) 6DH
A 75H
BC 5H

Then during the execution of a CPI instruction the Arithmetic and Logic Unit

will do the following subtraction:

Borrow needed here

8H = 0000 1000

After CPI is executed registers and memory will contain the following

o
75H == 0111 0101

-6DH == 0110 1101

HL 8A01H
(8A00H) 6DH
A 75H
BC 4H

and the condition bits would be:

result positive

match not found

borrow from bit 4

I I 1 I 1 I 1

S Z H
o

P/V

o
N
o

C
o not affected

always set

BC not zero

Example 3:

The following program is used to verify that the contents of two 80-byte buffers

are identical. Each time a mismatch is found the program calls a subroutine

called ERROR.

176



STRT

LOOP

EXCHANGE, BLOCK TRANSFER AND SEARCH GROUP

LD HL, BUF1
LD DE, BUF2
LD BC, 80

LD A, (DE)

CPI
CALL NZ, ERROR
INC DE
JR PO, LOOP

END

CPIR ComPare Increment & Repeat

Operation: A - (HL), HL <l HL + 1, BC <l BC - 1

Format:

Mnemonic: CPIR Operands:

Object Code:

1 1 1 1 1 1

I 1 1 1

ED

Bl

Description:

The contents of the memory location addressed by the HL register pair is

compared with the contents of the Accumulator. In case of a true compare, the

Z condition bit is set. The HL is incremented and the Byte Counter (register

pair BC) is decremented. If decrementing causes the BC to go to zero or if

A = (HL), the instruction is terminated. If BC is not zero and A =£ (HL), the

program counter is decremented by 2 and the instruction is repeated. Note that if

BC is set to zero before the execution, the instruction will loop through 64K
bytes, if no match is found. Also, interrupts will be recognized after each data

comparison.

ForBC*0andA#(HL):

M cycles: 5 T states: 21(4,4,3,5,5) 4 MHz EX: 5.25

ForBC*0orA = (HL):

M cycles: 4 T states: 16(4,4,3,5) 4 MHz EX: 4.00

177



MODEL HI/4 ALDS

Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z: Set if A = (HL); reset otherwise

H: Set if borrow from Bit 4; reset otherwise

P/V: Reset if BC becomes 0; set otherwise

N: Set

C: Not affected

Example:

If the HL register pair contains 1111H, the Accumulator (Register A) contains

F3H, the Byte Counter contains 0007H, and memory locations have these

contents:

(1111H)

(1112H)

(1113H)

52H
00H
F3H

then after the execution of

CPIR

the contents of register pair HL will be 1114H, and the contents of the Byte

Counter will be 0004H. Since BC * 0, the P/V flag is still set. This means that it

did not search through the whole block before the instruction stopped. Since a

match was found, the Z flag is set.

The following program uses the CPIR instruction to count the number of nulls

(00H) found in an 80-byte buffer. The count is kept in register E.

STRT LD BC, 80

LD HL, BUFF
LD A,

LD E,0
LOOP CPIR

JR NZ, FOO
INC E

FOO JP PE, LOOP
END

CPD ComPare & Decrement

Operation: A-(HL), HL<lHL-1, BC<lBC-1

Format:

Mnemonic: CPD Operands:

178



EXCHANGE, BLOCK TRANSFER AND SEARCH GROUP

Object Code:

I I I 11110 1

i i i i

1 1

1 1

! 1

i i i i10 10 1

1 1 1 1

1 ]

1

1 1

ED

A9

Description:

The contents of the memory location addressed by the HL register pair is

compared with the contents of the Accumulator. In case of a true compare, the Z
condition bit is set. The HL and the Byte Counter (register pair BC) are

decremented.

M cycles: 4 T states: 16(4,4,3,5) 4 MHz E.T.: 4.00

Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z: Set ifA = (HL); reset otherwise

H: Set if borrow from Bit 4; reset otherwise

P/V: Reset if BC becomes zero; set otherwise

N: Set

C: Not affected

Example:

If the HL register pair contains 1111H, memory location 1111H contains 3BH, the

Accumulator contains 3BH, and the Byte Counter contains 0001H, then after the

execution of

CPD

the Byte Counter will contain 0000H, the HL register pair will contain 1110H,

the Z flag in the F register will be set and the P/V flag in the F register will be

reset. There will be no effect on the contents of the Accumulator or address

1111H.

Since the CPD instruction decrements HL, it is used to search through memory
from high to low addresses. Otherwise it is similar to the CPI instruction.

Or DR ComPare Decrement & Repeat

Operation: A - (HL), HL <1 HL - 1, BC <l BC - 1

Format:

Mnemonic: CPDR Operands:

179



MODEL HI/4 ALDS

Object Code:

fill!1110 11
1 1 1 1 1

1

1

1

1 1 1 1 110 1110
1 ! i 1 I

[

1

I

ED

B9

Description:

The contents of the memory location addressed by the HL register pair is

compared with the contents of the Accumulator. In case of a true compare,

the Z condition bit is set. The HL and BC (Byte Counter) register pairs are

decremented. If decrementing causes the BC to go to zero or if A = (HL), the

instruction is terminated. If BC is not zero and A ¥= (HL), the program counter is

decremented by 2 and the instruction is repeated. Note that if BC is set to zero

prior to instruction execution, the instruction will loop through 64K bytes, if no

match is found. Also, interrupts will be recognized after each data comparison.

ForBC#0andA=£(HL):

M cycles: 5 T states: 21(4,4,3,5,5) 4 MHz E.T.: 5.25

For3C = 0orA = (HL):

M cycles: 4 T states: 16(4,4,3,5) 4 MHz E.T.: 4.00

Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z: Set if A = (HL), reset otherwise

H: Set if borrow from Bit 4; reset otherwise

P/V: Reset if BC becomes zero; set otherwise

N: Set

C: Not affected

Example:

If the HL register pair contains 1118H, the Accumulator contains F3H, the Byte

Counter contains 0003H, and memory locations have these contents:

(1118H)

(1117H)

(1116H)

52H
00H
F3H

then after the execution of

CPDR
the contents of register pair HL will be 1115H, the contents of the Byte Counter

will be 0000H, the P/V flag in the F register will be reset, and the Z flag in the

F register will be set.

180



8 BIT ARITHMETIC AND LOGICAL GROUP

8 Bit Arithmetic and Logical Group

ADD A,r

Operation: A<lA + r

Format:

Mnemonic: ADD Operands: A, r

Object Code:

1 r r r
I I I

i i i i

Description:

The contents of register r are added to the contents of the Accumulator, and the

result is stored in the Accumulator. The symbol r identifies the registers A, B, C,

D, E, H or L assembled as follows in the object code:

Register r

A 111

B 000

C 001

D 010

E 011

H 100

L 101

M cycles 1 T states: 4 4MHzET.:1.00

Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

H: Set if carry from Bit 3; reset otherwise

P/V: Set if overflow; reset otherwise

N: Reset

C: Set if carry from Bit 7; reset otherwise

Example:

If the contents of the Accumulator are 44H, and the contents of register C are

11 H, after the execution of

ADD A,C

181



MODEL Hi/4 ALDS

the contents of the Accumulator will be 55H. See Appendix K for more details of

condition bits affected.

ADD A,n

Operation: A <]A + n

Format:

Mnemonic: ADD Operands: A, n

Object Code:

—

I

1 1 1 1

C61 1 1 1

n n n n n n n n

Description:

The integer n is added to the contents of the Accumulator and the results are

stored in the Accumulator.

M cycles: 2 T states: 7(4,3) 4 MHz E.T. : 1 .75

Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

H: Set if carry from Bit 3 ; reset otherwise

P/V: Set if overflow; reset otherwise

N: Reset

C: Set if carry from Bit 7; reset otherwise

Example:

If the contents of the Accumulator are 23H, after the execution of

ADD A,33H

the contents of the Accumulator will be 56H.

182



8 BIT ARITHMETIC AND LOGICAL GROUP

ADD A,(HL)

Operation: A <)A + (HL)

Format:

Mnemonic: ADD Operands: A, (HL)

Object Code:

—

I

1 1 1
1

86
—

I

1 1 1 1 1

1

—

10 1 10

Description:

The byte at the memory address specified by the contents of the HL register

pair is added to the contents of the Accumulator and the result is stored in the

Accumulator.

M cycles: 2 T states: 7(4,3) 4 MHz EX: 1.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

H: Set if carry from Bit 3; reset otherwise

P/V: Set if overflow; reset otherwise

N: Reset

C: Set if carry from Bit 7; reset otherwise

Example:

If the contents of the Accumulator are A0H, and the content of the register

pair HL is 2323H, and memory location 2323H contains byte 08H, after the

execution of

ADD A,(HL)

the Accumulator will contain A8H.

ADDA,(IX+d)

Operation: A <]A + (IX + d)

Format:

Mnemonic: ADD Operands: A, (IX + d)

183



MODEL 111/4 ALDS

Object Code:

1

i

1 1 1

i

1 l

J

1 1 1

d d d d d d d d

DD

86

Description:

The contents of the Index Register (register pair IX) is added to a two's

complement displacement d to point to an address in memory. The contents of
this address is then added to the contents of the Accumulator and the result is

stored in the Accumulator.

M cycles: 5 T states: 19(4,4,3,5,3) 4 MHz E.T.: 4.75

Condition Bits Affected:

S:

Z:

H:

P/V:

N:

C:

Set if result is negative; reset otherwise

Set if result is zero; reset otherwise

Set if carry from Bit 3; reset otherwise

Set if overflow; reset otherwise

Reset

Set if carry from Bit 7; reset otherwise

Example:

If the Accumulator contents are 11 H, the Index Register IX contains 1000H, and
if the content of memory location 1005H is 22H, after the execution of

ADD A,(IX + 5H)

the contents of the Accumulator will be 33H.

ADDA,(IY+d)

Operation:A<]A + (IY + d)

Format:

Mnemonic: ADD Operands: A, (IY + d)

184



8 BIT ARITHMETIC AND LOGICAL GROUP

Object Code:

1 1 1 1 I 1

i

1

1 1 1

d d d d d d d d

FD

86

Description:

The contents of the Index Register (register pair IY) is added to the displacement

d to point to an address in memory. The contents of this address is then added to

the contents of the Accumulator and the result is stored in the Accumulator.

M cycles: 5 T states: 19(4,4,3,5,3) 4 MHz E.T.: 4.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

H: Set if carry from Bit 3; reset otherwise

P/V: Set if overflow; reset otherwise

N: Reset

C: Set if carry from Bit 7; reset otherwise

Example:

If the Accumulator contents are 11 H, the Index Register pair IY contains 1000H,

and if the content of memory location 1005H is 22H, after the execution of

ADD A,(IY + 5H)

the contents of the Accumulator will be 33H.

AUO /\,S ADd with Carry-

Operation: A A + s + CY

Format:

Mnemonic: ADC Operands: A, s

The s operand is any of r, n, (HL), (IX + d) or (IY + d) as defined for the

analogous ADD instruction. These various possible opcode-operand

combinations are assembled as follows in the object code:

185



MODEL HI/4 ALDS

Object Code:

ADC A, r

ADC A, n

ADC A, (HL)

ADC A, (IX + d)

ADC A, (IY + d)

1 1 1 1 1 1 !

1 1 r r r

i i i i i i i

1 1 I I I i i110 1110

nnnnnnnn
10 1110

110 1110 1

10 1110

dddddddd
1111110 1

10 1110

dddddddd

CE

8E

DD

8E

FD

8E

r identifies registers A, B, C, D, E, H, or L assembled as follows in the object

code field above:

Register r

A = 111

B = 000

C = 001

D = 010

E = 011

H = 100

L = 101

Description:

The s operand, along with the Carry Flag ("C" in the F register) is added to the

contents of the Accumulator, and the result is stored in the Accumulator.

186



8 BIT ARITHMETIC AND LOGICAL GROUP

Instruction

ADC A, r

ADCA,n
ADC A, (HL)

ADC A, (IX + d)

ADC A, (IY + d)

M
Cycles

1

2

2

5

5

T States

4

7(4,3)

7(4,3)

19(4,4,3,5,3)

19(4,4,3,5,3)

4 MHz
E.T. in (xs

1.00

1.75

1.75

4.75

4.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

H: Set if carry from Bit 3; reset otherwise

P/V: Set if overflow; reset otherwise

N: Reset

C: Set if carry from Bit 7; reset otherwise

Example 1:

If the Carry Flag is set, the Accumulator contains 16H, the HL register pair

contains 6666H, and address 6666H contains 10H, after the execution of

ADC A, (HL)

the Accumulator will contain 27H.

Example 2:

If the Carry Flag is set, the Accumulator contains 30H, and register C contains

05H, then after the execution of

ADC A, C

the Accumulator will contain 36H.

SUBs SUBtract

Operation: A <0 A - S

Format:

Mnemonic: SUB Operands: s

The s operand is any of r, n, (HL), (IX + d) or (IY + d) as defined for the

analogous ADD instruction. These various possible opcode-operand

combinations are assembled as follows in the object code:

187



MODEL 111/4 ALDS

Object Code:

SUBr

SUBn

SUB (HL)

SUB(IX + d)

SUB(IY + d)

1 1 1 1 1 1 1

1 1 r r r
i i i i i i i

l I I i i i i110 10 110
] 1 ! 1 1 1 1

1 1 1 1 1 1 Innnnnnnn
i i i i i i i

1 1 I i i I I10 10 110
1 1 1 1 1 1 1

1 1 1 1 1 I 1110 1110 1

1 1 1 1 1 1 110 10 110
1 1 1 1 1 1 1

1 1 1 1 1 1 1dddddddd
i i i i i i i

I I 1 1 1 1 I1111110 1

i i i i i i i

10 10 110
1 1 1 1 1 1 1dddddddd
l l l l l I l

D6

96

DD

96

FD

96

r identifies registers A, B, C, D, E, H or L assembled as follows in the object

code field above:

Register r

A = 111

B = 000

C = 001

D = 010

E = 011

H = 100

L = 101

Description:

The s operand is subtracted from the contents of the Accumulator, and the result

is stored in the Accumulator.

188



8 BIT ARITHMETIC AND LOGICAL GROUP

Instruction

SUBr
SUBn
SUB (HL)

SUB(IX + d)

SUB(IY + d)

M
Cycles

1

2

2

5

5

T States

4

7(4,3)

7(4,3)

19(4,4,3,5,3)

19(4,4,3,5,3)

4 MHz
E.T. in (xs

1.00

1.75

1.75

4.75

4.75

Condition Bits Affected:

S

z
H:

P/V:

N:

C:

Example:

Set if result is negative; reset otherwise

Set if result is zero; reset otherwise

Set if borrow from Bit 4; reset otherwise

Set if overflow; reset otherwise

Set

Set if borrow; reset otherwise

If the Accumulator contains 29H and register D contains 11H, after the execution

of

SUB D
the Accumulator will contain 18H.

SuBtract with borrow (Carry)SBC A,s

Operation: A <1 A - S - CY

Format:

Mnemonic: SBC Operands: A, s

The s operand is any of r, n, (HL), (IX + d) or (IY + d) as defined for the

analogous ADD instructions. These various possible opcode-operand

combinations are assembled as follows in the object code:

Object Code:

SBC A, r

SBC A, n

1 1 1 r r r

1 1 1 1 1 1

n n n n n n n n

DE

189



MODEL 1114 ALDS

SBC A, (HL)

SBC A, (IX + d)

SBCA,(IY + d)

1

1

i

I

l

1

I

1

i

1

1

i

1

1

1

j_

1

l

1

I

1

1 1 1

1

1

i__

1

l

1 1 1 1

d d d d d d d d

1 1 1 1 1 1 1

1 1 1 1 1

d d
l

d d
I

d d d d

9E

DD

9E

FD

9E

r identifies registers A, B, C, D, E, H, or L assembled as follows in the object

code field above:

Register r

A = 111

B = 000

C = 001

D = 010

E = 011

H = 100

L = 101

Description:

The s operand, along with the Carry Flag ("C" in the F register) is subtracted

from the contents of the Accumulator, and the result is stored in the

Accumulator.

190



8 BIT ARITHMETIC AND LOGICAL GROUP

M 4 MHz
Instruction Cycles T States E.T. in p.s

SBC A, r 1 4 1.00

SBC A, n 2 7(4,3) 1.75

SBC A, (HL) 2 7(4,3) 1.75

SBC A, (IX + d) 5 19(4,4,3,5,3) 4.75

SBC A, (IY + d) 5 19(4,4,3,5,3) 4.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

H: Set if borrow from Bit 4; reset otherwise

P/V: Set if overflow; reset otherwise

N: Set

C: Set if borrow; reset otherwise

Example 1:

If the Carry Flag is set, the Accumulator contains 16H, the HL register pair

contains 3433H, and address 3433H contains 05H, after the execution of

SBC A,(HL)

the Accumulator will contain 10H.

Example 2:

If the Carry Flag is set, the Accumulator contains 21H and register B contains 0,

then after the execution of

SBC A,B

the Accumulator contains 20H.

ANDs
Operation: A <JAO S

Format:

Mnemonic: AND Operands: s

The s operand is any of r, n, (HL), (IX + d) or (IY + d), as denned for the

analogous ADD instructions. These various possible opcode-operand

combinations are assembled as follows in the object code:

191



MODEL 111/4 ALDS

Object Code:

ANDr 1 1 r r r

ANDn 1110 110 E6
i i i ii l I I

nnnnnnnn

AND (HL) 10 10 110 A6

AND(IX + d)

—i—|—^n—i—i—

i

110 1110 1 DD

10 10 110 A6

] ! ! ( j ! !dddddddd

AND(IY + d) 1111110 1

i i i i
I _J l

FD

1 1 1 1 A6

dddddddd
r identifies register A, B, C, D, E, H or L assembled as follows in the object code

field above:

Register r

A = 111

B = 000

C = 001

D = 010

E = 011

H = 100

L = 101

192



8 BIT ARITHMETIC AND LOGICAL GROUP

Description:

A logical AND operation, Bit by Bit, is performed between the byte specified by

the s operand and the byte contained in the Accumulator; the result is stored in

the Accumulator.

M 4 MHz
Instruction Cycles T States E.T. in |xs

ANDr 1 4 1.00

ANDn 2 7(4,3) 1.75

AND(HL) 2 7(4,3) 1.75

AND(IX + d) 5 19(4,4,3,5,3) 4.75

AND(IY + d) 5 19(4,4,3,5,3) 4.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

H: Set

P/V: Set if parity even; reset otherwise

N: Reset

C: Reset

Table of AND Values:

IF Then
A B A (After)

1

1

1 1 1

Example:

If the B register contains 7BH (01111011) and the Accumulator contains C3H
(11000011), after the execution of

AND B

the Accumulator will contain 43H (01000011).

ORs
Operation: A <1AO S

Format:

Mnemonic: OR Operands: s

193



MODEL 111/4 ALDS

The s operand is any of r, n, (HL), (IX + d), or (IY + d), as defined for the

analogous ADD instructions. These various possible opcode-operand

combinations are assembled as follows in the object code:

Object Code:

ORr

ORn 1 1 1 1 1 I F6

OR (HL)

OR(IX + d)

OR(IY + d)

1 1 1 r r r

11110 110

nnnnnnnn
10 110 110

110 1110 1

10 110 110

dddddddd
1111110 1

10 110 110

dddddddd

DD

B6

FD

B6

r identifies register A, B, C, D, E, H or L assembled as follows in the object code
field above:

Register r

A = 111

B = 000
C = 001

D = 010
E = 011

H = 100

L = 101

194



8 BIT ARITHMETIC AND LOGICAL GROUP

Description:

A logical OR operation, Bit by Bit, is performed between the byte specified by

the s operand and the byte contained in the Accumulator; the result is stored in

the Accumulator.

Instruction

M
Cyclesi T States

4 MHz
E.T. in |xs

ORr
ORn
OR (HL)

OR(IX + d)

OR(IY + d)

1

2

2

5

5

4

7(4,3)

7(4,3)

19(4,4,3,5,3)

19(4,4,3,5,3)

1.00

1.75

1.75

4.75

4.75

Condition Bits Affected:

S: Set if result

Z: Set if result

H: Reset

P/V: Set if parity

N: Reset

C: Reset

is negative; reset otherwise

is zero; reset otherwise

even; reset otherwise

Table of OR Values:

IF Then
A B A (After)

1 1

1 1

1 1 1

Example:

If the H register contains 48H (01001000) and the Accumulator contains

12H (00010010), after the execution of

OR H
the Accumulator will contain 5AH (01011010).

XOR S exclusive OR

Operation: A <lA©S

Format:

Mnemonic: XOR Operands: s

195



MODEL HI/4 ALDS

The s operand is any of r, n, (HL), (IX + d) or (IY + d), as defined for the

analogous ADD instructions. These various possible opcode-operand

combinations are assembled as follows in the object code:

Object Code:

XORr
I I I I I l l l 1

I 1 1 1 1 1 1 1 1

XORn 1110 1110 EE

XOR (HL)

XOR(IX + d)

XOR(IY + d)

1 1 1 I 1 I 1

1 1 1 r r r
i i i i i i i

i i i i i i i1110 1110
1 I 1 1 1 1 1

IInnnnnnnn
i i i i i i i

1 1 i i i I i10 10 1110
1 1 1 1 i 1 1

110 1110 1

1 1 1 1 ! 1 I

10 10 1110
1 1 1 I 1 1 1

! 1 I 1 I 1 1dddddddd
I 1 i i i I i1111110 1

! 1 1 I 1 1 1

1 1 I 1 1 1 I

10 10 111011
1 1 1 1 1 1 1dddddddd
i i i i i i i

AE

DD

AE

FD

AE

r identifies registers A, B, C, D, E, H or L assembled as follows in the object

code field above:

gister r

A = 111

B = 000

C = 001

D = 010

E = 011

H = 100

L = 101

196



8 BIT ARITHMETIC AND LOGICAL GROUP

Description:

A logical exclusive-OR operation, bit by bit, is performed between the byte

specified by the s operand and the byte contained in the Accumulator; the result

is stored in the Accumulator.

M 4 MHz
Instruction Cycles T States E.T. in u,s

XORr 1 4 1.00

XORn 2 7(4,3) 1.75

XOR(HL) 2 7(4,3) 1.75

XOR(IX + d) 5 19(4,4,3,5,3) 4.75

XOR(IY + d) 5 19(4,4,3,5,3) 4.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

H: Reset

P/V: Set if parity even; reset otherwise

N: Reset

C: Reset

Table of XOR Values:

IF Then
A B A (After)

1 1

1 1

1 1

Note: in Table above that any two like numbers will result in zero.

Example 1:

If the Accumulator contains 96H (10010110), after the execution of

XOR 5DH (Note:5DH = 01011101)

the Accumulator will contain CBH (11001011).

Example 2:

The instruction

XOR A

will zero the Accumulator.

197



MODEL HI/4 ALDS

CPs ComPare

Operation: A — S

Format:

Mnemonic: CP Operands: s

The s operand is any of r, n, (HL), (IX + d) or (IY + d), as defined for the

analogous ADD instructions. These various possible opcode-operand

combinations are assembled as follows in the object code:

Object Code:

CPr

CPn

CP (HL)

CP(IX + d)

CP(IY + d)

1 1 1 i 1 1 1

1 1 1 1 r r r
i i i l i i i

1 1 1 1 1 1 111111110
i i i i i i i

1 1 I 1 1 I Innnnnnnn
i i i i i i i

i I I i I I i10 111110
i i i i i i i

1 1 I i i I i110 1110 1

1 1 1 1 1 1 1

1 1 1 1 1 1 110 111110
1 ! 1 1 1 1 1

11 1 1 ! 1 1dddddddd
i i i i i i i

1 1 1 I i I i1111110 1

i i i i i i i

1 1 i i i i i10 111110
1 1 1 1 1 1 1

1 1 1 1 1 1 Idddddddd
1 1 1 ! 1 1 i

FE

BE

DD

BE

FD

BE

r identifies register A, B, C, D, E, H or L assembled as follows in the object code

field above:

198



8 BIT ARITHMETIC AND LOGICAL GROUP

Register r

A 111

B 000

C = 001

D = 010

E = 011

H = 100

L = 101

Description:

The contents of the s operand are compared with the contents of the

Accumulator. If there is a true compare, a flag is set.

M 4 MHz
Instruction Cycles T States E.T. in u.s

CPr 14 1.00

CPn 2 7(4,3) 1.75

CP(HL) 2 7(4,3) 1.75

CP(IX + d) 5 19(4,4,3,5,3) 4.75

CP(IY + d) 5 19(4,4,3,5,3) 4.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

H: Set if borrow from Bit 4; reset otherwise

P/V: Set if overflow; reset otherwise

N: Set

C: Set if borrow in Bit 7; reset otherwise

Example 1:

If the Accumulator contains 63H, the HL register pair contains 6000H and

memory location 6000H contains 60H, the instruction

CP (HL)

will result in all the flags being reset except N.

Example: 2

If the Accumulator contains 65H and register C also contains 65H, then after the

execution of

CP C

the Z flag will be set.

See Appendix E for more details of condition codes affected.

199



MODEL HI/4 ALDS

INC r INCrement

Operation: r <J r + 1

Format:

Mnemonic: INC Operands: r

Object Code:

r r r 1

Description:

Register r is incremented, r identifies any of the registers A, B, C, D, E, H or L,

assembled as follows in the object code.

gister r

A = 111

B = 000

C = 001

D = 010

E = 011

H = 100

L = 101

cycles: 1 T states: 4 4 MHz EX: 1.

Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

H: Set if carry from Bit 3; reset otherwise

P/V: Set if r was 7FH before operation; reset otherwise

N: Reset

C: Not affected

Example:

If the contents of register D are 28H, after the execution of

INC D

the contents of register D will be 29H.

200



8 BIT ARITHMETIC AND LOGICAL GROUP

INC (HL)

Operation: (HL) <1 (HL) + 1

Format:

Mnemonic: INC Operands: (HL)

Object Code:

~~

1

1
1 1

1

34

INCrement

110 10

Description:

The byte contained in the address specified by the contents of the HL register

pair is incremented.

M cycles: 3 T states: 11(4,4,3) 4 MHz E.T.: 2.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

H: Set if carry from Bit 3; reset otherwise

P/V: Set if (HL) was 7FH before operation; reset otherwise

N: Reset

C: Not Affected

Example:

if the contents of the HL register pair are 3434H, and the contents of address

3434H are 82H, after the execution of

INC (HL)

memory location 3434H will contain 83H.

INC (IX + d) INCrement

Operation: (IX + d)<l (IX + d) + 1

Format:

Mnemonic: INC Operands: (IX + d)

201



MODEL HI/4 ALDS

Object Code:

1 1 1 1 1

1

I

1

1 1 1

d d d d d d d d

DD

34

Description:

The contents of the Index Register IX (register pair IX) are added to a two's

complement displacement integer d to point to an address in memory. The

contents of this address are then incremented.

M cycles: 6 T states: 23(4,4,3,5,4,3) 4 MHz E.T: 5.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

H: Set if carry from Bit 3; reset otherwise

P/V: Set if (IX + d) was 7FH before operation; reset otherwise

N: Reset

C: Not affected

Example:

If the contents of the Index Register pair IX are 2020H, and the memory location

2030H contains byte 34H, after the execution of

INC (IX+10H)

the contents of memory location 2030H will be 35H.

INC(IY+ d)

Operation: (IY + d) <1 (IY + d) + 1

Format:

Mnemonic: INC Operands: (IY + d)

INCrement

202



8 BIT ARITHMETIC AND LOGICAL GROUP

Object Code:

11111
i i i i

I i

1 1

i i

I I i i110
I 1 1 1

1 l

1

1 1

1 1 ! 1

d d d d d
l l l I

1 1

d d d
l l

FD

34

Description:

The contents of the Index Register IY (register pair IY) are added to a two's

complement displacement integer d to point to an address in memory. The

contents of this address are then incremented.

M cycles: 6 T states: 23(4,4,3,5,4,3) 4 MHz E.T.: 5.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

H: Set if carry from Bit 3; reset otherwise

P/V: Set if (IY + d) was 7FH before operation; reset otherwise

N: Reset

C: Not Affected

Example:

If the contents of the Index Register pair IY are 2020H, and the memory location

2030H contain byte 34H, after the execution of

INC (IY+10H)

the contents of memory location 2030H will be 35H.

DEC m DECrement

Operation: ITI <0 IT1 — 1

Format:

Mnemonic: DEC Operands: m

The m operand is any of r, (HL), (IX + d) or (IY + d), as denned for the

analogous INC instructions. These various possible opcode-operand

combinations are assembled as follows in the object code:

203



MODEL IN/4 ALDS

Object Code:

DECr

DEC (HL)

DEC(IX + d)

DEC(IY + d)

1
1 1 1 1 1 1 1

r r r 1 1

1 I 1 1 ! I I110 10 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1110 1110 1

1 1 1 1 1 1 1

1 I 1 1 1 1 1110 10 1

] 1 1 1 1 1 1

1 1 1 I 1 1 1dddddddd
i i i i i i i

i i i i i i i1111110 1

i i i i i i i

i i I i i I I110 10 1

1 1 1 1 1 1 1

1 1 1 I 1 1 1dddddddd
i i i i i i i

35

DD

35

FD

35

r identifies register A, B, C, D, E, H or L assembled as follows in the object code

field above:

Register r

A = 111

B = 000

C = 001

D - 010

E = 011

H = 100

L = 101

Description:

The byte specified by the m operand is decremented.

204



8 BIT ARITHMETIC AND LOGICAL GROUP

M 4 MHz
Instruction Cycles T States EX in |xs

DECr 1 4 1.00

DEC (HL) 3 11(4,4,3) 2.75

DEC(IX + d) 6 23(4,4,3,5,4,3) 5.75

DEC(IY + d) 6 23(4,4,3,5,4,3) 5.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

H: Set if borrow from Bit 4; reset otherwise

P/V: Set if m was 80H before operation; reset otherwise

N: Set

C: Not affected

Example:

If the D register contains byte 2AH, after the execution of

DEC D
register D will contain 29H.

205





GENERAL PURPOSE ARITHMETIC AND CPU CONTROL GROUPS

General Purpose Arithmetic and
CPU Control Groups

DAA
operation: Decimal-Adjust Accumulator

Format:

Mnemonic: DAA Operands:

Object Code:
1

1 1 1

1

2710 111
l I l I I I I

Description:

This instruction modifies the results of addition or subtraction so that the results

of binary arithmetic are correct for decimal numbers. The Binary Coded Decimal
(BCD) code uses the 8-bit accumulator as follows: the eight bits are broken up
into two groups of four bits, which represent a two-digit decimal number from 00
to 99. If numbers like this are added with the binary adder in the Z-80, answers

larger than 10 may result in each decimal place. The DAA instruction will

"adjust" the answer so that each decimal place has a value of 9 or less, and so

that the digits have the correct decimal value, though they were added by a binary

circuit. The carry and half-carry flags are used in this conversion, as is a circuit

that detects digits that are 10 or bigger.

HEX HEX
Value in Value in Number

C Upper H Lower Added C
Before Digit Before Digit to After

Operation DAA (bits 7-4) DAA (bits 3-0) Byte DAA
0-9 0-9 00
0-8 A-F 06
0-9 1 0-3 06

ADD A-F 0-9 60 1

ADC 9-F A-F 66 1

INC A-F 1 0-3 66 1

1 0-2 0-9 60 1

1 0-2 A-F 66 1

1 0-3 1 0-3 66 1

SUB 0-9 0-9 00
SBC 0-8 1 6-F FA
DEC 1 7-F 0-9 A0 1

NEG 1 6-F 1 6-F 9A 1

M cycles: 1 T states 4 4 MHz EX: 1.00

207



MODEL HI/4 ALDS

Condition Bits Affected:

S: Set if most significant bit of Ace. is 1 after operation; reset otherwise

Z: Set if Ace. is zero after operation; reset otherwise

H: See instruction

P/V: Set if Ace. is even parity after operation; reset otherwise

N: Not affected

C: See instruction

Example:

If an addition operation is performed between 15 (BCD) and 27 (BCD), simple

decimal arithmetic gives this result:

15

+ 27

42

But when the binary representations are added in the Accumulator according to

standard binary arithmetic,

0001 0101

+ 0010 0111

0011 1100 = 3C

the sum is not decimal. The DAA instruction adjusts this result so that the correct

BCD representation is obtained:

0011 1100

+ 0000 01 10(adding 06 from table)

0100 0010 = 42

CPL ComPLement

Operation: A <J A

Format:

Mnemonic: CPL Operands:

Object Code:

10 1111 2F

208



GENERAL PURPOSE ARITHMETIC AND CPU CONTROL GROUPS

Description:

Contents of the Accumulator (register A) are inverted (one's complement).

M cycles: 1 T states: 4 4 MHz EX: 1 .00

Condition Bits Affected:

S: Not affected

Z: Not affected

H: Set

P/V: Not affected

N: Set

C: Not affected

Example:

If the contents of the Accumulator are 1011 0100, after the execution of

CPL

the Accumulator contents will be 0100 1011.

NEG NEGate

Operation: A<lO-

A

Format:

Mnemonic: NEG Operands:

Object Code:

1 1 1 1 1

1

1

1 1

1

ED

44

Description:

Contents of the Accumulator are negated (two's complement). This is the same as

subtracting the contents of the Accumulator from zero. Note that 80H is left

unchanged.

M cycles: 2 T states: 8(4,4) 4 MHz EX: 2.00

209



MODEL 111/4 ALDS

Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

H: Set if borrow from Bit 4; reset otherwise

P/V: Set if Ace. was 80H before operation; reset otherwise

N: Set

C: Set if Ace. was not 00H before operation; reset otherwise

Example:

If the contents of the Accumulator are

10 110
after the execution of

NEG
the Accumulator contents will be

110 10

CCF
Operation: CY ^1 CY

Format:

Mnemonic: CCF Operands:

Object Code:

1 1 1 1 1 1

Complement Carry Flag

3F

Description:

The C flag in the F register is inverted.

M cycles: 1 T states: 4 4 MHz E.T. : 1 .00

Condition Bits Affected:

S: Not affected

Z: Not affected

H: Previous carry will be copied

P/V: Not affected

N: Reset

C: Set if CY was before operation; reset otherwise

210



GENERAL PURPOSE ARITHMETIC AND CPU CONTROL GROUPS

SCF

Operation: CY <J
1

Format:

Mnemonic: SCF Operands:

Object Code:

110 111
- I I I I I I I

37

Set Carry Flag

Description:

The C flag in the F register is set.

M cycles: 1 T states: 4 4 MHz E.T. : 1 .00

Condition Bits Affected:

S: Not affected

Z: Not affected

H: Reset

P/V: Not affected

N: Reset

C: Set

NOP No OPeration

Operation:

Format:

Mnemonic: NOP Operands:

Object Code:

211



MODEL Ml/4 ALDS

Description:

CPU performs no operation during this machine cycle.

M cycles: 1 T states: 4 4 MHz E.T.: 1.00

Condition Bits Affected: None

n/"VLi

Operation:

Format:

Mnemonic: HALT Operands:

Object Code:

I 1 I I |

76
—

I

1 1 1 1 1

1

—

1110 110

Description:

The HALT instruction suspends CPU operation until a subsequent interrupt or

reset is received. While in the halt state, the processor will execute NOP's to

maintain memory refresh logic.

M cycles: 1 T states: 4 4 MHz E.T.: 1.00

Condition Bits Affected: None

Dl Disable Interrupts

Operation: IFF<]0

Format:

Mnemonic: DI Operands:

Object Code:

11110 11 F3
L I I i I

i l

212



GENERAL PURPOSE ARITHMETIC AND CPU CONTROL GROUPS

Description:

DI disables the maskable interrupt by resetting the interrupt enable flip-flops

(IFF1 and IFF2). Note that this instruction disables the maskable interrupt during

its execution.

M cycles: 1 T states: 4 4 MHz E.T. : 1 .00

Condition Bits Affected: None

Example:

When the CPU executes the instruction

the maskable interrupt is disabled until it is subsequently re-enabled by an EI

instruction. The CPU will not respond to an Interrupt Request (INT) signal.

El Enable Interrupts

Operation: IFF^l 1

Format:

Mnemonic: EI Operands:

Object Code:

—I

1 1 1

1

FB1 1 1 1 1 1 1

Description:

EI enables the maskable interrupt by setting the interrupt enable flip-flops (IFF1

and IFF2). Note that this instruction disables the maskable interrupt during its

execution.

M cycles: 1 T states: 4 4 MHz EX: 1.00

Condition Bits Affected: None

Example:

When the CPU executes instruction

EI

the maskable interrupt is enabled. The CPU will now respond to an Interrupt

Request (INT) signal.

213



MODEL HI/4 ALDS

IM0 Interrupt Mode

Operation:

Format:

Mnemonic: IM

Object Code:

Operands:

1 1 1 1 1 1

1 1 1

ED

46

Description:

The IM instruction sets interrupt mode 0. In this mode the interrupting device

can insert any instruction on the data bus and allow the CPU to execute it. The

first byte of a multi-byte instruction is read during interrupt acknowledge cycle.

Subsequent bytes are read in by a normal memory read sequence.

M cycles: 2 T states: 8(4,4) 4 MHz E.T. : 2.00

Condition Bits Affected: None

IM1 Interrupt Mode 1

Operation:

Format:

Mnemonic: IM Operands: 1

Object Code:

! 1 11110
1 1 1

1 1

1 1

1 1

1

1 1 110 1

1 1 1

1 1

1 1

1 1

ED

56

214



GENERAL PURPOSE ARITHMETIC AND CPU CONTROL GROUPS

Description:

The IM instruction sets interrupt mode 1. In this mode the processor will respond

to an interrupt by executing a restart to location 0038H.

M cycles: 2 T states: 8(4,4) 4 MHz E.T.: 2.00

Condition Bits Affected: None

IM2
Operation:

Format:

Mnemonic: IM Operands: 2

Interrupt Mode 2

Object Code:

1 I I i1110 1

i i I i

1 1

i i i i10 11
1 ] 1 1

1 1

ED

5E

Description:

The IM 2 instruction sets interrupt mode 2. This mode allows an indirect call to

any location in memory. With this mode the CPU forms a 16-bit memory
address. The upper eight bits are the contents of the Interrupt Vector Register I

and the lower eight bits are supplied by the interrupting device.

M cycles: 2 T states: 8(4,4) 4 MHz EX: 2.00

Condition Bits Affected: None

215





16 BIT ARITHMETIC GROUP

16 Bit Arithmetic Group

ADD HL,ss

Operation: HL <0 HL + SS

Format:

Mnemonic: ADD Operands: HL, ss

Object Code:

s s 1 1

Description:

The contents of register pair ss (any of register pairs BC, DE, HL or SP) are

added to the contents of register pair HL, and the result is stored in HL. Operand
ss is specified as follows in the assembled object code.

egister

Pair ss

BC 00

DE 01

HL 10

SP 11

M cycles: 3 T states: 11(4,4,3) 4 MHz E.T.: 2.75

Condition Bits Affected:

S: Not affected

Z: Not affected

H: Set if carry out of Bit 11; reset otherwise

P/V: Not affected

N: Reset

C: Set if carry from Bit 15; reset otherwise

Example:

If register pair HL contains the integer 4242H and register pair DE contains

1111H, after the execution of

ADD HL, DE

the HL register pair will contain 5353H.

217



MODEL IN/4 ALDS

ADC HL,ss

Operation: HL <| HL + SS + CY

Format:

Mnemonic: ADC Operands: HL, ss

ADd with Carry

Object Code:

1 1 1 1 1 1

1 s s 1 1

ED

Description:

The contents of register pair ss (any of register pairs BC, DE, HL or SP) are

added with the Carry Flag (C flag in the F register) to the contents of register pair

HL, and the result is stored in HL. Operand ss is specified as follows in the

assembled object code.

Register

Pair

BC 00

DE 01

HL 10

SP 11

M cycles: 4 T states: 15(4,4,4,3) 4 MHz E.T.: 3.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

H: Set if carry out of Bit 1 1 ; reset otherwise

P/V: Set if overflow; reset otherwise

N: Reset

C: Set if carry from Bit 15; reset otherwise

Example:

If the register pair BC contains 2222H, register pair HL contains 5437H and the

Carry Flag is set, after the execution of

ADC HL, BC

the contents of HL will be 765AH.

218



16 BIT ARITHMETIC GROUP

SBC HL,SS SuBtract with Carry

Operation: HL<]HL-SS-CY

Format:

Mnemonic: SBC Operands: HL, ss

Object Code:

—I

1

1 n 1

ED1 1 1 1 1 1

1 s s 1

Description:

The contents of the register pair ss (any of register pairs BC, DE, HL or SP)

and the Carry Flag (C flag in the F register) are subtracted from the contents of

register pair HL and the result is stored in HL. Operand ss is specified as follows

in the assembled object code.

Register

Pair ss

BC 00

DE 01

HL 10

SP 11

M cycles: 4 T states: 15(4,4,4,3) 4 MHz E.T.: 3.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

H: Set if borrow from Bit 12; reset otherwise

P/V: Set if overflow; reset otherwise

N: Set

C: Set if borrow; reset otherwise

Example:

If the contents of the HL register pair are 9999H, the contents of register pair DE
are 1111H, and the Carry Flag is set, after the execution of

SBC HL, DE

the contents of HL will be 8887H.

219



MODEL HI/4 ALDS

ADD IX,pp

Operation: IX <$ IX + pp

Format:

Mnemonic: ADD Operands: IX,pp

Obj ect(:ode

1 1

1

1

1

1 1 1

p

1

,

p 1 1

DD

Description:

The contents of register pair pp (any of register pairs BC, DE, IX or SP) are

added to the contents of the Index Register IX, and the results are stored in IX.

Operand pp is specified as follows in the assembled object code.

egister

Pair PP

BC 00

DE 01

IX 10

SP 11

M cycles: 4 T states: 15(4,4,4,3) 4 MHz EX: 3.75

Condition Bits Affected:

S: Not affected

Z: Not affected

H: Set if carry out of Bit 11; reset otherwise

P/V: Not affected

N: Reset

C: Set if carry from Bit 15; reset otherwise

Example:

If the contents of Index Register IX are 3333H and the contents of register pair

BC are 5555H, after the execution of

ADD IX, BC

the contents of IX will be 8888H.

220



16 BIT ARITHMETIC GROUP

ADD lYrr

Operation: IY <0 IY + XX

Format:

Mnemonic: ADD Operands: IY, rr

Object Code:

1 1 1 1 1 1 1

r r 1 1

FD

Description:

The contents of register pair rr (any of register pairs BC, DE, IY or SP) are

added to the contents of Index Register IY, and the result is stored in IY. Operand

rr is specified as follows in the assembled object code.

Register

Pair rr

BC 00

DE 01

IY 10

SP 11

M cycles: 4 T states: 15(4,4,4,3) 4 MHzE.T.: 3.75

Condition Bits Affected:

S: Not affected

Z: Not affected

H: Set if carry out of Bit 11; reset otherwise

P/V: Not affected

N: Reset

C: Set if carry from Bit 15; reset otherwise

Example:

If the contents of Index Register IY are 333H and the contents of register pair BC
are 555H, after the execution of

ADD IY, BC

the contents of IY will be 888H.

221



MODEL 1114 ALDS

INC SS INCrement

Operation: SS <1 SS + 1

Format:

Mnemonic: INC Operands: ss

Object Code:

s s 1 1

Description:

The contents of register pair ss (any of register pairs BC, DE, HL or SP) are

incremented. Operand ss is specified as follows in the assembled object code.

Register

Pair ss

BC 00
DE 01

HL 10

SP 11

M cycles: 1 T states: 6 4 MHz EX: 1.50

Condition Bits Affected: None

Example:

If the register pair contains 1000H, after the execution of

INC HL

HL will contain 1001H.

INC IX INCrement

Operation: IX <$ IX + 1

Format:

Mnemonic: INC Operands: IX

222



16 BIT ARITHMETIC GROUP

Object Code:

1 1 1 1 1 1

1 1 1

DD

23

Description:

The contents of the Index Register IX are incremented.

M cycles: 2 T states: 10(4,6) 4 MHz E.T.: 2.50

Condition Bits Affected: None

Example:

If the Index Register IX contains the integer 3300H after the execution of

INC IX

the contents of Index Register IX will be 3301H.

INCIY

Operation: IY<HY+1

Format:

Mnemonic: INC Operands: IY

Object Code:

1 1 1 1 1 1 1

1 1 1

FD

23

INCrement

Description:

The contents of the Index Register IY are incremented.

M cycles: 2 T states: 10(4,6) 4 MHz E.T. : 2.50

Condition Bits Affected: None

223



MODEL ID/4 ALDS

Example:

If the contents of the Index Register are 2977H, after the execution of

INC IY

the contents of Index Register IY will be 2978H.

DEC SS DECrement

Operation: SS SS — 1

Format:

Mnemonic: DEC Operands: ss

Object Code:

I i i i i i r

s s 1 1 1

i i I I I I l

Description:

The contents of register pair ss (any of the register pairs BC, DE, HL or SP) are

decremented. Operand ss is specified as follows in the assembled object code.

Register

Pair ss

BC 00

DE 01

HL 10

SP 11

M cycles: 1 T states: 6 4 MHz E.T. : 1.50

Condition Bits Affected: None

Example:

If register pair HL contains 1001H, after the execution of

DEC HL

the contents of HL will be 1000H.

224



16 BIT ARITHMETIC GROUP

DEC IX

Operation: IX ^l IX — 1

Format:

Mnemonic: DEC Operands: IX

Object Code:

1 1 1 1 1 1

1 1 1 1

DD

2B

DECrement

Description:

The contents of Index Register IX are decremented.

M cycles: 2 T states: 10(4,6) 4 MHzE.T.: 2.50

Condition Bits Affected: None

Example:

If the contents of Index Register IX are 2006H, after the execution of

DEC IX

the contents of Index Register IX will be 2005H.

DECIY
Operation: IY<JIY—

1

Format:

Mnemonic: DEC Operands: IY

Object Code:

1 1 1 1 1 1 1

1 1 1 1

FD

2B

DECrement

225



MODEL HI/4 ALDS

Description:

The contents of the Index Register IY are decremented.

M cycles: 2 T states: 10(4,6) 4 MHz EX: 2.50

Condition Bits Affected: None

Example:

If the contents of the Index Register IY are 7649H, after the execution of

DEC IY

the contents of Index Register IY will be 7648H.

226



ROTATE AND SHIFT GROUP

Rotate and Shift Group

RLCA Rotate Left Circular Accumulator

Operation:
|
CY

|

<P
| 7fr0 |

<F

A
Format:

Mnemonic: RLCA Operands:

Object Code:

1 1 1 07

Description:

The contents of the Accumulator (register A) are rotated left: the content of bit

is moved to bit 1; the previous content of bit 1 is moved to bit 2; this pattern is

continued throughout the register. The content of bit 7 is copied into the Carry

Flag (C flag in register F) and also into bit 0. (Bit is the least significant bit.)

M cycles: 1 T states: 4 4 MHz E.T. : 1.00

Condition Bits Affected:

S: Not affected

Z: Not affected

H: Reset

P/V: Not affected

N: Reset

C: Data from Bit 7 of Ace.

Example:

If the contents of the Accumulator are

7 6 5 1

10 10
after the execution of

RLCA

the contents of the Carry Flag and the Accumulator will be

C 76543210
1 10 1

227



MODEL 111/4 ALDS

RLA Rotate Left Accumulator

Operation: L|_CYJ <H 7 Q-Q
| 0- 1

A
Format:

Mnemonic: RLA Operands:

Object Code:

1 1 1 1 17

Description:

The contents of the Accumulator (register A) are rotated left: the content of bit

is copied into bit 1; the previous content of bit 1 is copied into bit 2; this pattern

is continued throughout the register. The content of bit 7 is copied into the Carry

Flag (C flag in register F) and the previous content of the Carry Flag is copied

into bit 0. Bit is the least significant bit.

M cycles: 1 T states: 4 4 MHz E.T. : 1.00

Condition Bits Affected:

S: Not affected

Z: Not affected

H: Reset

P/V: Not affected

N: Reset

C: Data from Bit 7 of Ace.

Example:

If the contents of the Carry Rag and the Accumulator are

C 76543210
1 1110 110

after the execution of

RLA

the contents of the Carry Flag and the Accumulator will be

C 76543210
1110 110 1

228



ROTATE AND SHIFT GROUP

RROA
Operation:H)

Rotate Right Circular Accumulator

h7-QO HOI CY

Format:

Mnemonic: RRCA

Object Code:

Operands:

—

I

1 1 1 1 1

1

—

1111
I I I I I I I

0F

Description:

The contents of the Accumulator (register A) are rotated right: the content of

bit 7 is copied into bit 6; the previous content of bit 6 is copied into bit 5; this

pattern is continued throughout the register. The content of bit is copied into

bit 7 and also into the Carry Flag (C flag in register F.) Bit is the least

significant bit.

M cycles: 1 T states: 4 4MHzE.T: 1.00

Condition Bits Affected:

S:

Z:

Not affected

Not affected

H: Reset

P/V:

N:

Not affected

Reset

C: Data from Bit of Ace.

Example:

If the contents of the Accumulator are

7 6 5 4 3 2 1

10 1

After the execution of

RRCA
the contents of the Accumulator and the Carry Flag will be

76543210 C

10 10 1

229



MODEL HI/4 ALDS

HKA
Operatlion:%> 7j>0 H>|CY D

Format:

Mnemonic: RRA Operands:

Object Code:

—

I

1 1 1 1 1

1

—

11111

Rotate Right Accumulator

IF

Description:

The contents of the Accumulator (register A) are rotated right: the content of

bit 7 is copied into bit 6; the previous content of bit 6 is copied into bit 5; this

pattern is continued throughout the register. The content of bit is copied into

the Carry Flag (C flag in register F) and the previous content of the Carry Flag

is copied into bit 7. Bit is the least significant bit.

M cycles 1 T states: 4 4MHzE.T. 1.00

Condition Bits Affected:

S: Not affected

Z: Not affected

H: Reset

P/V: Not affected

N: Reset

C: Data from Bit of Ace.

Example:

If the contents of the Accumulator and the Carry Flag are

76543210 C

1110 1

after the execution of

RRA
the contents of the Accumulator and the Carry Flag will be

76543210 C

1110 1

230



ROTATE AND SHIFT GROUP

RLCr Rotate Left Circular

Operation:
[
CY

|

<H
J
7<>0 |

<H
r

Format:

Mnemonic: RLC Operands: r

Object Code:

1 1 1 1 1

r r r

CB

Description:

The eight-bit contents of register r are rotated left: the content of bit is copied

into bit 1; the previous content of bit 1 is copied into bit 2; this pattern is

continued throughout the register. The content of bit 7 is copied into the Carry

Flag (C flag in register F) and also into bit 0. Operand r is specified as follows in

the assembled object code:

Register r

B 000

C 001

D 010
E 011

H 100

L 101

A 111

Note: Bit is the least significant bit.

M cycles: 2 T states: 8(4,4) 4 MHz E.T. : 2.00

Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

H: Reset

P/V: Set if parity even; reset otherwise

N: Reset

C: Data from Bit 7 of source register

231



MODEL HI/4 ALDS

Example:

If the contents of register r are

7 6 5 4 3 2 10
10 1

after the execution of

RLC r

the contents of the Carry Flag and register r will be

C 76543210
1 10 1

KLU (HL)

Operation: CY 1 7<>0 <H

Format:

Mnemonic: RLC Operands: (HL)

Rotate Left Circular

Object Code:

1 1 1 1 1 CB

1 10 06

Description:

The contents of the memory address specified by the contents of register pair

HL are rotated left: the content of bit is copied into bit 1; the previous content

of bit 1 is copied into bit 2; this pattern is continued throughout the byte. The

content of bit 7 is copied into the Carry Flag (C flag in register F) and also into

bit 0. Bit is the least significant bit.

M cycles: 4 T states: 15(4,4,4,3) 4 MHz E.T.: 3.75

232



ROTATE AND SHIFT GROUP

Condition Bits Affected:

S

z
H
P/V:

N:

C:

Example:

Set if result is negative; reset otherwise

Set if result is zero; reset otherwise

Reset

Set if parity even; reset otherwise

Reset

Data from Bit 7 of source register

If the contents of the HL register pair are 2828H, and the contents of memory
location 2828H are

7 6 5 4 3 2 1

1 1 1

after the execution of

RLC (HL)

the contents of the Carry Flag and memory locations 2828H will be

C 76543210
nil 1 1

RLC(IX+d)
Operation: [CYl 0^7 <>0 \<^

(IX + d)

Format:

Mnemonic: RLC Operands: (IX + d)

Object Code:

DD

CB

1 I 1 1 1 1

1 1 1 1 1

d d d d d d d d

1 1

Rotate Left Circular

06

233



MODEL HI/4 ALDS

Description:

The contents of the memory address specified by the sum of the contents of the

Index Register IX and a two's complement displacement integer d, are rotated

left: the contents of bit is copied into bit 1; the previous content of bit 1 is

copied into bit 2; this pattern is continued throughout the byte. The content of bit

7 is copied into the Carry Flag (C flag in register F) and also into bit 0. Bit is

the least significant bit.

M cycles: 6 T states: 23(4,4,3,5,4,3) 4 MHz EX: 5.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

H: Reset

P/V: Set if parity even; reset otherwise

N: Reset

C: Data from Bit 7 of source register

Example:

If the contents of the Index Register IX are 1000H, and the contents of memory
location 1002H are

6 5 1

10 10
after the execution of

RLC (IX + 2H)

the contents of the Carry Flag and memory location 1002H will be

C 76543210
1 10 1

RLC(IY+d)

Operation: CY <yj 7<}p
|

o-i

(IY + d)

Format:

Mnemonic: RLC Operands: (IY + d)

Rotate Left Circular

234



ROTATE AND SHIFT GROUP

Object Code:

1 1 1 1 1 1 1

1 1 1 1 1

d d d d d d d d

1 1

FD

CB

06

Description:

The contents of the memory address specified by the sum of the contents of the

Index Register IY and a two's complement displacement integer d are rotated left:

the content of bit is copied into bit 1; the previous content of bit 1 is copied into

bit 2; this process is continued throughout the byte. The content of bit 7 is copied

into the Carry Flag (C flag in register F) and also into bit 0. Bit is the least

significant bit.

M cycles: 6 T states: 23(4,4,3,5,4,3) 4 MHz EX: 5.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

H: Reset

P/V: Set if parity even; reset otherwise

N: Reset

C: Data from Bit 7 of source register

Example:

If the contents of the Index Register IY are 1000H, and the contents of memory

location 1002H are

7 6 5 4 3 2 10

10 10

235



MODEL ill/4 ALDS

after the execution of

RLC (IY + 2H)

the contents of the Cany Flag and memory location 1002H will be

C 76543210
10 10 1

RLm Rotate Left

Operation: LjjCYj <H 7<)0

Format:

2
m

Mnemonic: RL Operands: m

The m operand is any of r, (HL), (IX + d) or (IY + d), as defined for the

analogous RLC instructions. These various possible opcode-operand

combinations are specified as follows in the assembled object code:

Object Code:

RLr

RL (HL)

RL(IX + d)

1 1 1 1 1 1 1110 10 11
! 1 1 1 1 1 1

1 1 ! 1 1 1 1

1 r r r
i

1 I 1 1 I 1 1110 10 11
1 1 1 1 1 1 1

1 1 I 1 1 1 110 110
1 1 1 1 1 1 1

1 1 1 1 I 1 1110 1110 1

1 1 1 1 1 1 1

1 1 1 1 1 i 1110 10 11
1 1 1 1 1 1 1

1 1 1 1 1 1 1dddddddd
i i i i i i i

ii 10 110
1 1 1 1 1 1 1

CB

CB

16

DD

CB

16

236



ROTATE AND SHIFT GROUP

RL(IY + d) 1 1 1 1 1 1 1

1 1 1 1 1

d d d d d d d d

1 1 1

FD

CB

16

r identifies register B, C, D, E, H, L or A specified as follows in the assembled

object code above:

Register r

B 000

C 001

D 010

E 011

H 100

L 101

A 111

Description:

The contents of the m operand are rotated left: the content of bit is copied into

bit 1; the previous content of bit 1 is copied into bit 2; this pattern is continued

throughout the byte. The content of bit 7 is copied into the Carry Flag (C flag in

register F) and the previous content of the Carry Flag is copied into bit 0. Bit is

the least significant bit.

Instruction

RLr
RL (HL)

RL(lX + d)

RL (IY + d)

M
Cycles

2

4

6

6

T States

8(4,4)

15(4,4,4,3)

23(4,4,3,5,4,3)

23(4,4,3,5,4,3)

4 MHz
EX in (xs

2.00

3.75

5.75

5.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

H: Reset

P/V: Set if parity even; reset otherwise

N: Reset

C: Data from Bit 7 of source register

237



MODEL 1114 ALDS

Example:

If the contents of the Carry Flag and register D are

C 76543210
10 1111

after the execution of

RL D

the contents of the Carry Flag and register D will be

C 76543210
1 11110

RRCm Rotate Right Circular

Operatii

Format:

ion:lp
|
7-Q k [CY
m

Mnemonic: RRC Operands: m

The m operand is any of r, (HL), (IX + d) or (IY + d), as defined for the

analogous RLC instructions. These various possible opcode-operand

combinations are specified as follows in the assembled object code:

Object Code:

RRCr 110 10 11 CB

RRC (HL)

1 1

1

1

1 1 1

1 r r r

1 1 1 1 1

1 1 1

CB

0E

238



ROTATE AND SHIFT GROUP

RRC(IX + d)

RRC(IY + d)

1 1

I

I

I

I

1

1

I

1

i

1

1

!

1

I

1

l

l 1

1

i

1

I

1

1

d
l

d
1

d d d d d d

1 1 1

1 1 1 1 1 1 1

1 1 1 1 1

d d d d d d d d

l 1

I

1

l

I

1

I

1

1

l

DD

CB

0E

FD

CB

0E

r identifies register B, C, D, E, H, L or A specified as follows in the assembled

object code above:

Register r

B 000

C 001

D 010
E 011

H 100

L 101

A 111

Description :

The contents of operand m are rotated right: the content of bit 7 is copied into bit

6; the previous content of bit 6 is copied into bit 5; this pattern is continued

throughout the byte. The content of bit is copied into the Carry Flag (C flag in

the F register) and also into bit 7. Bit is the least significant bit.

239



MODEL 1114 ALDS

Instruction

RRCr
RRC (HL)

RRC(IX + d)

RRC(IY + d)

M
Cycles

2

6

6

T States

8(4,4)

15(4,4,4,3)

23(4,4,3,5,4,3)

23(4,4,3,5,4,3)

4 MHz
E.T. in (as

2.00

3.75

5.75

5.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

H: Reset

P/V: Set if parity even; reset otherwise

N: Reset

C: Data from Bit of source register

Example:

If the contents of register A are

7 6 5 4 3 2 10
1 10 1

after the execution of

RRC A

the contents of register A and the Carry Flag will be

76543210 C

10 110 1

RRm Rotate Right

Operation:^
j
7-^0 H) 1

CY
m

Format:

Mnemonic: RR Operands: m

The m operand is any of r, (HL), (IX + d) or (IY + d), as defined for the

analogous RLC instructions. These various possible opcode-operand

combinations are specified as follows in the assembled object code:

240



ROTATE AND SHIFT GROUP

Object Code:

RRr

RR (HL)

RR(IX + d)

RR(IY + d)

1 ] 1 1 1 1 I110 10 11
1 I i I 1 1 1

1 1 1 1 1 II
1 1 r r r

i i i i i i i

1 1 1 1 1 i i110 10 11
1 1 1 1 1 1 1

11 11110
1 I I I 1 1 1

""
1 1 1 1 1 1 I110 1110 1

I 1 1 1 1 1 1

1 1 1 1 1 1 1110 10 1111
1 1 1 1 1 1 1dddddddd
i i i i i i i

1 1 i i i i i

1 1110
1 1 1 1 I 1 1

1 1 I 1 1 1 11111110 1

1 I 1 1 1 1 1

1 1 1 1 1 1 1110 10 11
I 1 I 1 1 I 1

1 I 1 1 1 I Idddddddd
i i i i i i i

1 1 i i i i i11110
....... 1 1 1 1 1 1 1

CB

CB

IE

DD

CB

IE

FD

CB

IE

r identifies registers B, C, D, E, H, L or A specified as follows in the assembled

object code above:

Register r

B 000

C 001

D 010

E 011

H 100

L 101

A 111

241



MODEL Hi/4 ALDS

Description:

The contents of operand m are rotated right: the contents of bit 7 is copied into

bit 6; the previous content of bit 6 is copied into bit 5; this pattern is continued

throughout the byte. The content of bit is copied into the Carry Flag (C flag in

register F) and the previous content of the Carry Flag is copied into bit 7. Bit is

the least significant bit.

Instruction

RRr
RR (HL)

RR(IX + d)

RR(IY + d)

M
Cycles

2

4

6

6

T States

8(4,4)

15(4,4,4,3)

23(4,4,3,5,4,3)

23(4,4,3,5,4,3)

4 MHz
E.T. in (jls

2.00

3.75

5.75

5.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

H: Reset

P/V: Set if parity is even; reset otherwise

N: Reset

C: Data from Bit of source register

Example:

If the contents of the HL register pair are 4343H, and the contents of memory
location 4343H and the Carry Flag are

6 5 4 3 1

110 1110 1

after the execution of

RR (HL)

the contents of location 4343H and the Carry Flag will be

76543210 C

110 1110 1

SLAm Shift Left Arithmetic

Operation: [CYJ <H 7Q-0
[ <}0

m
Format:

Mnemonic: SLA Operands: m

242



ROTATE AND SHIFT GROUP

The m operand is any of r, (HL), (IX + d) or (IY + d), as defined for the

analogous RLC instructions. These various possible opcode-operand

combinations are specified as follows in the assembled object code:

Object Code:

SLAr

SLA (HL)

SLA(IX + d)

SLA(IY + d)

! 1 I 1 1 1 1110 10 11
1 1 1 1 1 1 1

1 1 ! 1 1 1 I

1 r r r
i i i i i i i

! 1 1 1 1 1 1110 10 11
1 1 1 1 1 1 !

Ill 1 1 1 110 110
1 1 1 1 I 1 1

1 1 1 1 1 1 1110 1110 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1110 10 11
I 1 1 1 1 1 1

1 1 1 1 1 1 1dddddddd
i i i i i i i

1 1 i i i i i10 110
1 1 1 1 1 I 1

1 1 1 1 1 1 11111110 1

1 1 1 1 1 1 1

1 1 1 1 1 1 1110 10 11
1 1 1 I 1 1 1

1 1 1 1 1 1 1dddddddd
i t i i i i i

i i i i i i i10 110
1 ! 1 1 1 1 1

CB

CB

26

DD

CB

26

FD

CB

26

r identifies registers B, C, D, E, H, L or A specified as follows in the assembled

object code field above:

243



MODEL 1114 ALDS

Register r

B 000

C 001

D 010

E 011

H 100

L 101

A 111

Description:

An arithmetic shift left is performed on the contents of operand m: bit is reset,

the previous content of bit is copied into bit 1, the previous content of bit 1 is

copied into bit 2; this pattern is continued throughout; the content of bit 7 is

copied into the Carry Flag (C flag in register F). Bit is the least significant bit.

Instruction

SLAr
SLA (HL)

SLA(IX + d)

SLA(IY + d)

M
Cycles

2

4

6

6

T States

8(4,4)

15(4,4,4,3)

23(4,4,3,5,4,3)

23(4,4,3,5,4,3)

4 MHz
E.T. in (xs

2.00

3.75

5.75

5.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

H: Reset

P/V: Set if parity is even; reset otherwise

N: Reset

C: Data from Bit 7

Example:

If the contents of register L are

7 6 5 4 3 2 10
1 1 1 1

after the execution of

SLA L

the contents of the Carry Flag and register L will be

C 76543210
1 110 10

244



ROTATE AND SHIFT GROUP

SRAm Shift Right Arithmetic

Format:

Operation: H 7-T>0 H> |
CY

_$>m

Mnemonic: SRA Operands: m

The m operand is any of r, (HL), (IX + d) or (IY + d), as denned for the

analogous RLC instructions. These various possible opcode-operand

combinations are specified as follows in the assembled object code:

Object Code:

SRAr

SRA (HL)

SRA(IX + d)

110 10 11

1 1 r r r

110 10 11

10 1110

110 1110 1

110 10 11

dddddddd

10 1110
I I I l l l l

CB

CB

2E

DD

CB

2E

245



MODEL Hi/4 ALDS

SRA(IY + d) 1 1 1

I

1 1

i

1 1

1 1 1 1 1

d d d d d d d d

1 1 1 1

FD

CB

2E

r means register B, C, D, E, H, L or A specified as follows in the assembled

object code field above:

Register r

B 000

C 001

D 010

E 011

H 100

L 101

A 111

An arithmetic shift right is performed on the contents of operand m: the content

of bit 7 is copied into bit 6; the previous content of bit 6 is copied into bit 5; this

pattern is continued throughout the byte. The content of bit is copied into the

Carry Flag (C flag in register F), and the previous content of bit 7 is unchanged.

Bit is the least significant bit.

M 4 MHz
Instruction Cycles T States E.T. in n-s

SRAr 2 8(4,4) 2.00

SRA (HL) 4 15(4,4,4,3) 3.75

SRA(IX + d) 6 23(4,4,3,5,4,3) 5.75

SRA(IY + d) 6 23(4,4,3,5,4,3) 5.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

H: Reset

P/V: Set if parity is even; reset otherwise

N: Reset

C: Data from Bit of source register

246



ROTATE AND SHIFT GROUP

Example:

If the contents of the Index Register IX are 1000H, and the contents of memory
location 1003H are

6 5 4 3 1

10 1110
after the execution of

SRA (IX + 3H)

the contents of memory location 1003H and the Carry Flag will be

76543210 C

110 1110

SRLm Shift Right Logical

Operation: 0-t)
| 7-QO H) |

CY
m

Format:

Mnemonic: SRL Operands: m

The operand m is any of r, (HL), (IX + d) or (IY + d), as defined for the

analogous RLC instructions. These various possible opcode-operand

combinations are specified as follows in the assembled object code:

Object Code:

SRLr

SRL (HL)

1 1 1

1

1

1

1

1 1 1 r r r

1 1 1 1 1

1 1 1 1

1

1

CB

CB

3E

247



MODEL HI/4 ALDS

SRL(IX + d)

SRL(IY + d)

10 1110 1 DD
1 1 I I I L_

1
1 1 1 1

110 10 1 1

—I—I—I—1—r—

I

d d d d d d d
I... I I I ....I J

1

!
! ! ! r_111110 1

10 10 11

—~1—I—I—I—I—

I

d d d d d d d
I I l l l l

111110
I 1 I I 1 1

CB

111110 3E
i i ii

I l I

FD

CB

3E

r identifies registers B, C, D, E, H, L or A specified as follows in the assembled

object code fields above:

Register r

B
C 001

D 010

E 011

H 100

L 101

A 111

Description:

The contents of operand m are shifted right: the content of bit 7 is copied into bit

6; the content of bit 6 is copied into bit 5; this pattern is continued throughout the

byte. The content of bit is copied into the Carry Flag, and bit 7 is reset. Bit is

the least significant bit.

248



ROTATE AND SHIFT GROUP

Instruction

SRLr
SRL (HL)

SRL (IX + d)

SRL(IY + d)

M
Cycles

2

4

6

6

T States

8(4,4,)

15(4,4,4,3)

23(4,4,3,5,4,3)

23(4,4,3,5,4,3)

4 MHz
E.T. in (xs

2.00

3.75

5.75

5.75

Condition Bits Affected:

S: Set if result is negative; reset otherwise

Z: Set if result is zero; reset otherwise

H: Reset

P/V: Set if parity is even; reset otherwise

N: Reset

C: Data from Bit of source register

Example:

If the contents of register B are

7 6 5 4 3 2 10
10 1111

after the execution of

SRL B

the contents of register B and the Carry Flag will be

76543210 C

10 111 1

RLD
I

Operation: A [7 4|3 0] ,7 413 01 (HL)

_ _ I

Mnemonic: RLD Operands:

Rotate Left Decimal

249



MODEL 111/4 ALDS

Object Code:

1 1 1 1 1 1

—

1

1 1 1 1 1 1

ED

6F

Description:

The contents of the low order four bits (bits 3, 2, 1 and 0) of the memory

location (HL) are copied into the high order four bits (7, 6, 5 and 4) of that same

memory location; the previous contents of those high order four bits are copied

into the low order four bits of the Accumulator (register A), and the previous

contents of the low order four bits of the Accumulator are copied into the low

order four bits of memory location (HL). The contents of the high order bits of

the Accumulator are unaffected. Note: (HL) means the memory location

specified by the contents of the HL register pair.

M cycles: 5 T states: 18(4,4,3,4,3) 4 MHz E.T.: 4.50

Condition Bits Affected:

S: Set if Ace. is negative after operation; reset otherwise

Z: Set if Ace. is zero after operation; reset otherwise

H: Reset

P/V: Set if parity of Ace. is even after operation; reset otherwise

N: Reset

C: Not affected

Example:

If the contents of the HL register pair are 5000H, and the contents of the

Accumulator and memory location 5000H are

7 6 5 4 3 2 10

1 1 1 1 1

7 6 5 4 3 2 1

1 1 1

Accumulator

(5000H)

250



ROTATE AND SHIFT GROUP

after the execution of

RLD

the contents of the Accumulator and memory location 5000H will be

7 6 5 4 3 2 10
Accumulator

(5000H)

1 1 1 1 1

7 6 5 4 3 2 1

1 1 1

RRD
lU Rotate Right Decimal

Format:

Operation: A |74l3 0] l74|30| (HL)

t
Mnemonic: RRD Operands:

Object Code:

1 1 1 1 1 1

1 1 1 1 1

ED

67

Description:

The contents of the low order four bits (bits 3,2,1 and 0) of memory location

(HL) are copied into the low order four bits of the Accumulator (register A); the

previous contents of the low order four bits of the Accumulator are copied into

the high order four bits (7, 6, 5 and 4) of location (HL); and the previous contents

of the high order four bits of (HL) are copied into the low order four bits of (HL).

The contents of the high order bits of the Accumulator are unaffected. Note:

(HL) means the memory location specified by the contents of the HL register

pair.

M cycles: 5 T states: 18(4,4,3,4,3) 4 MHz E.T.: 4.50

251



MODEL 111/4 ALDS

Condition Bits Affected:

S: Set if Ace. is negative after operation; reset otherwise

Z: Set if Ace. is zero after operation; reset otherwise

H: Reset

P/V: Set if parity of Ace. is even after operation; reset otherwise

N: Reset

C: Not affected

Example:

If the contents of the HL register pair are 5000H, and the contents of the

Accumulator and memory location 5000H are

7 6 5 4 3 2 10
Accumulator1 1

7 6 5 4 3 2 1

1 _ (5000H)

after the execution of

RRD
the contents of the Accumulator and memory location 5000H will be

7 6 5 4 3 2 10
Accumulator

(5000H)

1 1

!
1

7 6 5 4 3 2 1

1 1

252



BIT SET, RESET AND TEST GROUP

Bit Set, Reset and Test Group

BIT b, r BIT test

Operation: Z § l*t,

Format:

Mnemonic: BIT Operands: b, r

Object Code:

1 1 i i i i110 10 1

1 1 1 1 I 1

1

1 1 1 1 1 1

1 b b b r r
i i i i i i

r

CB

Description:

After the execution of this instruction, the Z flag in the F register will contain the

complement of the indicated bit within the indicated register. Operands b and r

are specified as follows in the assembled object code:

Bit

Tested b Register r

000 B 000

1 001 C 001

2 010 D 010

3 011 E 011

4 100 H 100

5 101 L 101

6 110 A 111

7 111

M cycles : 2 T states: 8(4,4) 4 MHz E.T.: 2.00

Condition Bits Affected:

S: Unknown
Z: Set if specified Bit is 0; reset otherwise

H: Set

P/V:

N:

Unknown
Reset

C: Not affected

253



MODEL 111/4 ALDS

Example:

If bit 2 in register B contains 0, after the execution of

BIT 2, B

the Z flag in the F register will contain 1, and bit 2 in register B will remain 0.

(Bit in register B is the least significant bit.)

BITb,(HL) Bit Test

Operation: Z <J (HIL^

Format:

Mnemonic: BIT Operands: b, (HL)

Object Code:

I I I I

CB1 1 1 1 1

1 b b b 1 1

Description:

This instruction tests bit b in the memory location specified by the contents of

the HL register pair and sets the Z flag accordingly. Operand b is specified as

follows in the assembled object code:

Bit

Tested b

000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

M cycles: 3 T states: 12(4,4,4) 4 MHz E.T.: 3.00

254



BIT SET, RESET AND TEST GROUP

Condition Bits Affected:

S: Unknown
Z: Set if specified Bit is 0; reset otherwise

H: Set

P/V: Unknown
H: Reset

C: Not affected

Example:

If the HL register pair contains 444H, and bit 4 in the memory location 444H
contains 1, after the execution of

BIT 4,(HL)

the Z flag in the F register will contain 0, and bit 4 in memory location 444H will

still contain 1. (Bit in memory location 444H is the least significant bit.)

BITb,(IX+d)

Operation: Z<1 (IX + d)b

Format:

Mnemonic: BIT Operands: b, (IX + d)

DD

CB

Bit Test

Ubj ectl.ode

1 1

I

i

1 1 1 1

1 1 1 1 1

d d d d d d d d

1 b b b 1 1

Description:

After the execution of this instruction, the Z flag in the F register will contain the

complement of the indicated bit within the contents of the memory location

pointed to by the sum of the contents register pair IX (Index Register IX) and the

two's complement displacement integer d. Operand b is specified as follows in

the assembled object code.

255



MODEL HI/4 ALDS

Bit

Tested b

000
1 001

2 010

3 011

4 100

5 101

6 110

7 111

M cycles: 5 T states: 20(4,4,3,5,4) 4 MHz E.T. 5.00

Condition Bits Affected:

S: Unknown
Z: Set if specified Bit is 0; reset otherwise

H: Set

P/V:

N:

Unknown
Reset

C: Not affected

Example:

If the contents of Index Register IX are 2000H, and bit 6 in memory location

2004H contains 1, after the execution of

BIT 6,(IX + 4H)

the Z flag in the F register will contain 0, and bit 6 in memory location 2004H
will still contain 1. (Bit in memory location 2004H is the least significant bit.)

BITb,(IY+d)
Operation: Z<1 (IY + d)b

Format:

Mnemonic: BIT Operands: b, (IY + d)

Object Code:

FD

CB

BIT Test

1 1 1 1 1 1 1

1 1 1 1 1

d d d d d d d d

1 b b b 1 1

256



BIT SET, RESET AND TEST GROUP

Description:

After the execution of this instruction, the Z flag in the F register will contain

the complement of the indicated bit within the contents of the memory location

pointed to by the sum of the contents of register pair IY (Index Register IY) and

the two's complement displacement integer d. Operand b is specified as follows

in the assembled object code:

Bit

ested b

000
1 001

2 010
3 011

4 100

5 101

6 110

7 111

M cycles: 5 T states: 20(4,4,3,5,4) 4 MHz EX: 5.00

Condition Bits Affected:

S: Unknown
Z: Set if specified Bit is 0; reset otherwise

H: Set

P/V: Unknown
N: Reset

C: Not affected

Example:

If the contents of Index Register are 2000H, and bit 6 in memory location

2004H contains 1, after the execution of

BIT 6,(IY + 4H)

the Z flag in the F register still contain 0, and bit 6 in memory location 2004H
will still contain 1. (Bit in memory location 2004H is the least significant bit.)

SET b,r

Operation: T^ <) 1

Format:

Mnemonic: SET Operands: b, r

257



MODEL III 4 ALDS

Object Code:

1 1 1 1 1

1 1 b b b r r r

CB

Description:

Bit b (any bit, 7 through 0) in register r (any of register B, C, D, E, H, L or A) is

set. Operands b and r are specified as follows in the assembled object code:

Bit

Tested b Register r

000 B 000

1 001 C 001

2 010 D 010

3 011 E 011

4 100 H 100

5 101 L 101

6 110 A 111

7 111

M cycles: 2 T states: 8(4,4) 4 MHz E.T. : 2.00

Condition Bits Affected: None

Example:

After the execution of

SET 4,A

bit 4 in register A will be set. (Bit is the least significant bit.)

SET b,(HL)

Operation: (HL)b <0 1

Format:

Mnemonic: SET Operands: b, (HL)

258



BIT SET, RESET AND TEST GROUP

Object Code:

i i i i110 1

i i i i

1 1

i i

111!
1 1 b b b

I I I I

1 1

1 1

1 1

CB

Description:

Bit b (any bit, 7 through 0) in the memory location addressed by the contents of

register pair HL is set. Operand b is specified as follows in the assembled object

code:

Bit

ested b

000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

M cycles: 4 T states: 15(4,4,4,3) 4 MHz E.T.: 3.75

Condition Bits Affected: None

Example:

If the contents of the HL register pair are 3000H, after the execution of

SET 4,(HL)

bit 4 in memory location 3000H will be 1. (Bit in memory location 3000H
is the least significant bit.)

SETb,(IX+d)

Operation: (IX + d)b <l1

Format:

Mnemonic: SET Operands: b, (IX + d)

259



MODEL 111/4 ALDS

Object Code:

1 1

I

1 1 1 1

1 1 1 1 1

d d d d d d d d

1 1 b b b 1 1

DD

CB

Description:

Bit b (any bit, 7 through 0) in the memory location addressed by the sum of the

contents of the IX register pair (Index Register IX) and the two's complement

integer d is set. Operand b is specified as follows in the assembled object code:

Bit

ested b

000

1 001

2 010
3 011

4 100

5 101

6 110

7 111

M cycles: 6 T states: 23(4,4,3,5,4,3) 4 MHz E.T.: 5.75

Condition Bits Affected: None

Example:

If the contents of Index Register are 2000H, after the execution of

SET 0,(IX + 3H)

bit in memory location 2003H will be 1. (Bit in memory location 2003H

is the least significant bit.)

260



BIT SET, RESET AND TEST GROUP

SET b,(IY+d)

Operation: (IY + d)D <l 1

Format:

Mnemonic: SET Operands: b, (IY + d)

Object Code:

1 1 1 1 1 1 1

1 1 1 1 1

d d d d d d d d

1 1 b b b 1 1

FD

CB

Description:

Bit b (any bit, 7 through 0) in the memory location addressed by the sum of the

contents of the IY register pair (Index Register IY) and the two's complement

displacement d is set. Operand b is specified as follows in the assembled object

code:

Bit

Tested b

000

1 001

2 010

3 011

4 100

5 101

6 110

7 111

M cycles: 6 T states: 23(4,4,3,5,4,3) 4 MHz E.T.: 5.75

Condition Bits Affected: None

261



MODEL Hi/4 ALDS

Example:

If the contents of Index Register IY are 2000H, after the execution of

SET 0,(IY + 3H)

bit in memory location 2003H will be 1. (Bit in memory location 2003H

is the least significant bit.)

RES b,m RESet

Operation: S^

Format:

Mnemonic: RES Operands: b, m

Operand b is any bit (7 through 0) of the contents of the m operand, (any of r,

(HL), (IX + d) or (IY + d) as defined for the analogous SET instructions. These

various possible opcode-operand combinations are assembled as follows in the

object code:

Object Code:

RESb.r

RES b, (HL)

RESb, (IX + d)

1 10 10 11

1 b b b r r r

110 10 11

1 b b b 1 1

110 1110 1

i i i i i i i

I I i i i i i110 10 11

1 1 1 1 1 1 [dddddddd
i i i i i i i

1 1 1 1 ! 1 1

1 b b b 1 1

i i i i i i i

CB

CB

DD

CB

262



BIT SET, RESET AND TEST GROUP

RESb, (IY + d) 1 1

I

1 1

1

i i

1 1 1 1

l

1 1

l

I I

i i

1 1 1

l

d d
i

i I

d
i

d d d d d

i

1

i

b
i

b b 1 1

Bit

Reset b Register r

000 B 000
1 001 C 001

2 010 D 010
3 011 E 011

4 100 H 100

5 101 L 101

6 110 A 111

7 111

FD

CB

Description:

Bit b in operand m is reset.

Instruction

RESr
RES (HL)

RES(IX + d)

RES (IY + d)

M
Cycles

4

4

6

6

T States

8(4,4)

15(4,4,4,3)

23(4,4,3,5,4,3)

23(4,4,3,5,4,3)

4 MHz
E.T. in (xs

2.00

3.75

5.75

5.75

Condition Bits Affected: None

Example 1:

After the execution of

RES 6,D (object code CB, B2H)

bit 6 in register D will be reset. (Bit in register D is the least significant bit.)

Example 2:

If HL contains 7000H and address 7000H contains FFH, after

RES 0,(HL)

address 7000H will contain FEH.

263





JUMP GROUP

Jump Group

JPnn JumP

Operation: PC ^1 nil

Format:

Mnemonic: JP Operands: nn

Object Code:

1 1 I

I

1

n n n n n n n n

n n n n n n n n

C3

Note: The first operand in this assembled object code is the low order byte of a

2-byte address.

Description:

Operand nn is loaded into register pair PC (Program Counter) and points to the

address of the next program instruction to be executed.

M cycles: 3 T states: 10(4,3,3) 4 MHz EX: 2.50

Condition Bits Affected: None

Example:

JP 50A1H

This instruction will cause the program to jump to the instruction at 50A1H by
loading the number 50A1H into the PC register.

265



MODEL IH/4 ALDS

JP cann JumP

Operation: IF CC TRUE, PC <! nn

Format:

Mnemonic: JP Operands: cc, nn

Object Code:

! 1 1

1 1 CC CC
I 1 1

cc 1

1 1 1

n n n n
i i i

n n n n

! 1 1

n n n n
I l I

n n n n

Note: The first n operand in this assembled object code is the low order byte of a

2-byte memory address.

Description:

If condition cc is true, the instruction loads operand nn into register pair PC
(Program Counter), and the program continues with the instruction beginning at

address nn. If condition cc is false, the Program Counter is incremented as usual,

and the program continues with the next sequential instruction. Condition cc is

programmed as one of eight status bits which correspond to condition bits in the

Flag Register (register F). These eight status bits are defined in the table below,

which also specifies the corresponding cc bit fields in the assembled object code.

Relevant

cc Condition Flag

000 NZ nonzero Z ( =
001 Zzero Z (=1
010 NCnon carry C ( =
011 Ccarry C (=1
100 PO parity odd P/V( =
101 PE parity even P/V(=l
1 10 P sign positive S ( =
111 M sign negative S ( = 1

M cycles: 3 T states: 10(4,3,3) 4 MHz EX: 2.50

Condition Bits Affected: None

266



JUMP GROUP

Example:

If the Carry Rag (C flag in the F register) is set and the contents of address 1520

are 03H, after the execution of

JP C.1520H

the Program Counter will contain 1520H, and on the next machine cycle the CPU
will fetch from address 1520H the byte 03H.

JRe Jump Relative

Operation: PC <1 PC + e

Format:

Mnemonic: JR Operands: e

Object Code:

1 10
I I I I I I I

18

1
1 1 1 1 1 1

e-2 e-2 e-2 e-2 e-2 e-2 e-2 e-2

Description:

This instruction provides for unconditional branching to other segments of a

program. The value of the displacement e is added to the Program Counter (PC)

and the next instruction is fetched from the location designated by the new
contents of the PC. This jump as measured from the address of the instruction

opcode has a range of - 126 to + 129 bytes. The assembler automatically adjusts

for the twice incremented PC.

M cycles: 3 T states: 12(4,3,5) 4 MHz E.T.: 3.00

Condition Bits Affected: None

Example 1:

To jump forward five locations from address 480, the following assembly

language statement is used:

JR $ + 5

The resulting object code and final PC value is shown below:

267



MODEL III/4 ALDS

Location Instruction

480

481

482
483

484

485

18

03

-<] PC before jump

<iPC after jump

Note: when using an assembler, $ + 5 used above would normally be replaced by

a label.

Example 2:

This program will skip around the NOP instruction.

START JR, END
NOP

END —

JH L/,G Jump Relative

Operation: If C = 0, Continue

If C = 1, PC<iPC + e

Format:

Mnemonic: JR Operands: C, e

Object Code:

i i i

1

i i i

1 1

! 1 1

e-2 e-2 e-2
l l l

e-2 e-2 e-2 e-2 e-2

38

Description:

This instruction provides for conditional branching to other segments of a

program depending on the results of a test on the Carry Flag. If the flag is equal

to a ' i; the value of the displacement e is added to the Program Counter (PC) and

the next instruction is fetched from the location designated by the new contents

of the PC. The jump as measured from the address of the instruction opcode has

a range of - 126 to + 129 bytes. The assembler automatically adjusts for the

twice incremented PC.

If the flag is equal to a '0,' the next instruction to be executed is taken from the

location following this instruction.

268



JUMP GROUP

If condition is met:

M cycles: 3 T states: 12(4,3,5) 4 MHz EX: 3.00

If condition is not met:

M cycles: 2 T states: 7(4,3) 4 MHz E.T.: 1,75

Condition Bits Affected: None

Example:

The Carry Flag is set and it is required to jump back four locations from 480.

The assembly language statement is:

JR C, $-4
The resulting object code and final PC value is shown below:

Location Instruction

47C <1 PC after jump
47D —
47E —
47F —
480 38

48

1

FA (two's complement — 6)

482 PC before jump

JR NQe
Operation: If C= 1, Continue

lfC = 0,PC<]PC + e

Format:

Mnemonic: JR Operands: NC, e

Object Code:

—

I

1 1 1 1 1

1

—

110
_J I 1 I I I 1

—I—I—I—I—I—1—1

—

e-2 e-2 e-2 e-2 e-2 e-2 e-2 e-2
I I l I I I I

30

Jump Relative

Description:

This instruction provides for conditional branching to other segments of a

program depending on the results of a test on the Carry Flag. If the flag is equal

to '0,' the value of the displacement e is added to the Program Counter (PC) and

269



MODEL 111/4 ALDS

the next instruction is fetched from the location designated by the new contents

of the PC. The jump as measured from the address of the instruction opcode has

a range of - 126 to + 129 bytes. The assembler automatically adjusts for the

twice incremented PC.

If the flag is equal to a ' 1,' the next instruction to be executed is taken from the

location following this instruction.

If the condition is met:

M cycles: 3 T states: 12(4,3,5) 4 MHz E.T.: 3.00

If the condition is not met:

M cycles: 7 T states: 7(4,3) 4 MHz EX: 1.75

Condition Bits Affected: None

Example:

The Carry Flag is reset and it is required to repeat the jump instruction.

The assembly language statement is:

JR NC,$

The resulting object code and PC after the jump are shown below:

Location Instruction

480 30<! PC after jump
FD (two's complement — 2)

— PC before jump

Note: this instruction would cause an infinite loop in the program.

481

482

JRZ,e Jump Relative

operation: Z = 0, continue

lfZ=1, PC<]PC + e

Format:

Mnemonic: JR Operands: Z, e

Object Code:

1 1

e-2 e-2 e-2 e-2 e-2 e-2 e-2 e-2

28

270



JUMP GROUP

Description:

This instruction provides for conditional branching to other segments of a

program depending on the results of a test on the Zero Flag. If the flag is equal to

a '1,' the value of the displacement e is added to the Program Counter (PC) and

the next instruction is fetched from the location designated by the new contents

of the PC. The jump as measured from the address of the instruction opcode has

a range of - 126 to + 129 bytes. The assembler automatically adjusts for the

twice incremented PC.

If the Zero Flag is equal to a '0,' the next instruction to be executed is taken from

the location following this instruction.

If the condition is met:

M cycles: 3 T states: 12(4,3,5) 4 MHz E.T.: 3.00

If the condition is not met:

M cycles: 2 T states: 7(4,3) 4 MHz EX : 1 .75

Condition Bits Affected: None

Example:

The Zero Flag is set and it is required to jump forward five locations from

address 300. The following assembly language statement is used:

JR Z, $ + 5

The resulting object code and final PC value is shown below:

Location Instruction

300 28

301 03

302 — <0 PC before jump
303 —
304 —
305 — OPC after jump

JH N^,© Jump Relative

Operation: If Z= 1, continue

lfZ = 0, PC<iPC + e

Format:

Mnemonic: JR Operands: NZ, e

271



MODEL III/4 ALDS

Object Code:

1 20

j ] j ! ( T ,

e-2 e-2 e-2 e-2 e-2 e-2 e-2 e-2ill I I J -J

Description:

This instruction provides for conditional branching to other segments of a

program depending on the results of a test on the Zero Flag. If the flag is equal to

a '0,' the value of the displacement e is added to the Program Counter (PC) and

the next instruction is fetched from the location designated by the new contents

of the PC. The jump as measured from the address of the instruction opcode has

a range of - 126 to + 129 bytes. The assembler automatically adjusts for the

twice incremented PC.

If the Zero Flag is equal to a ' 1,' the next instruction to be executed is taken from

the location following this instruction.

If the condition is met:

M cycles: 3 T states: 12(4,3,5) 4 MHz E.T.: 3.00

If the condition is not met:

M cycles: 2 T states: 7(4,3) 4 MHz EX: 1.75

Condition Bits Affected: None

Example:

The Zero Flag is reset and it is required to jump back four locations from 480.

The assembly language statement is:

JR NZ, $-4

The resulting object code and final PC value is shown below:

Location Instruction

47C <] PC after jump
47D —
47E —
47F —
480 20

481 FA (two's complement - 6)

482 —
<J PC before jump

272



JUMP GROUP

JP (HL) Jump

Operation; PC <1 HL

Format:

Mnemonic: JP Operands: (HL)

Object Code:

1 1 ! I I

E9i 1 1 1 1

Description:

The Program Counter (register pair PC) is loaded with the contents of the HL
register pair. The next instruction is fetched from the location designated by the

new contents of the PC,

M cycles: 1 T states: 4 4 MHz E.T. : 1.00

Condition Bits Affected: None

Example 1:

If the contents of the Program Counter are 1000H and the contents of the HL
register pair are 4800H, after the execution of

JP (HL)

the contents of the Program Counter will be 4800H.

The program will jump to the instruction at address 4800H.

Example 2:

A typical software routine which uses JP (HL) is a jump table lookup program.

Assume that n 16-bit addresses are listed in consecutive bytes of memory starting

at address TBL. Also assume that the Accumulator contains a number from to

n-1 representing the routine to be jumped to.

LD HL, TBL ; HL points to the first byte in the table.

ADD A, A ; double A
LD DE,
LD E,A
ADD HL, DE ; if A originally contained 5, then HL now points to the 5th

address in the table

LD E, (HL)

INC HL
LD D, (HL) ; DE now contains the 5th address of the table

LD HL, DE ; HL now contains the 5th address of the table

JP (HL)

273



MODEL HI/4 ALDS

JP (IX)

Operation: PC ^1 IX

Format:

Mnemonic: JP Operands: (IX)

JumP

Object Code:

1 1 1 1 1 1

1 1 1 1 1

DD

E9

Description:

The Program Counter (register pair PC) is loaded with the contents of the

DC Register Pair (Index Register IX). The next instruction is fetched from the

location designated by the new contents of the PC.

M cycles: 2 T states: 8(4,4) 4 MHz E.T. : 2.00

Condition Bits Affected: None

Example:

If the contents of the Program Counter are 1000H, and the contents of the

IX Register Pair are 4800H, after the execution of

JP (IX)

the contents of the Program Counter will be 4800H.

JP(IY)

Operation: PC <J I

Y

Format:

Mnemonic: JP Operands: (IY)

JumP

274



JUMP GROUP

Object Code:

1 I 11111
i i i

1

! 1

1 1

1 1

i i i1110
1,, 1 1

1

1 1

1

1 1

FD

E9

Description:

The Program Counter (register pair PC) is loaded with the contents of the

IY Register Pair (Index Register IY). The next instruction is fetched from the

location designated by the new contents of the PC.

M cycles: 2 T states: 8(4,4) 4 MHz E.T.: 2.00

Condition Bits Affected: None

Example:

If the contents of the Program Counter are 1000H and the contents of the

IY Register Pair are 4800H, after the execution of

JP (IY)

the contents of the Program Counter will be 4800H.

DJNZe Decrement Jump Not Zero

Operation:

Format:

Mnemonic: DJNZ Operands: e

Object Code:

I 1 I

1 1 1

1

1 1 1

e-2 e-2 e-2
I l I

e-2 e-2 e-2 e-2 e-2

10

Description:

The instruction is similar to the conditional jump instructions except that a

register value is used to determine branching. The B register is decremented

and if a non zero value remains, the value of the displacement e is added to

the Program Counter (PC). The next instruction is fetched from the location

275



MODEL UI/4 ALDS

designated by the new contents of the PC. The jump is measured from
the address of the instruction opcode has a range of - 126 to + 129 bytes.

The assembler automatically adjusts for the twice incremented PC.

If the result of decrementing leaves B with a zero value, the next instruction

to be executed is taken from the location following this instruction.

IfB*0:

M cycles: 3 T states: 13(5,3,5) 4 MHz E.T.: 3.25

IfB=0:

M cycles: 2 T states: 8(5,3) 4 MHz E.T.: 2.00

Condition Bits Affected: None

Example:

A typical software routine is used to demonstrate the use of the DJNZ
instruction. This routine moves a line from an input buffer (INBUF) to an output

buffer (OUTBUF). It moves the bytes until it finds a carriage return, or until it

has moved 80 bytes, whichever occurs first.

LOOP:

LD B, 80 ; Set up counter

LD HL, Inbuf ; Set up pointers

LD DE, Outbuf

LD A, (HL) ; Get next byte from

; input buffer

LD (DE), A ; Store in output buffer

CP 0DH ; Is it a CR?
JR Z, DONE ; Yes finished

INC
INC

HL
DE

; Increment pointers

DJNZ LOOP ; Loop back if 80

; bytes have not

; been moved
DONE:

276



CALL AND RETURN GROUP

Call and Return Group

CALL nn

Operation: (SP - 1 ) PCH ,
(SP - 2) <l PCL) PC <l nn

Format:

Mnemonic: CALL Operands: nn

Object Code:

CD1 1 1 1 1

n n n n n n n n

n n n n n n n n

Note: The first of the two n operands in the assembled object code above is the

least significant byte of a two-byte memory address.

Description:

After pushing the current contents of the Program Counter (PC) onto the top of

the external memory stack, the operands nn are loaded into PC to point to the

address in memory where the first opcode of a subroutine is to be fetched. (At

the end of the subroutine, a RETurn instruction can be used to return to the

original program flow by popping the top of the stack back into PC.) The push is

accomplished by first decrementing the current contents of the Stack Pointer

(register pair SP), loading the high-order byte of the PC contents into the

memory address now pointed to by the SP; then decrementing SP again, and

loading the low-order byte of the PC contents into the top of stack. Note:

Because this is a three-byte instruction, the Program Counter will have been

incremented by three before the push is executed.

M cycles: 5 T states: 17(4,3,4,3,3) 4 MHz EX: 4.25

Condition Bits Affected: None

Example:

If the contents of the Program Counter are 1 A47H, the contents of the Stack

Pointer are 3002H, and memory locations have the contents:

277



MODEL HI/4 ALDS

Location Contents

1A47H CDH
1A48H 35H
1A49H 21H

then if an instruction fetch sequence begins, the three-byte instruction CD3521H
will be fetched to the CPU for execution. The mnemonic equivalent of this is

CALL 2135H

After the execution of this instruction, the contents of memory address 3001H

will be 1AH, the contents of address 3000H will be 4AH, the contents of the

Stack Pointer will be 3000H, and the contents of the Program Counter will be

2135H, pointing to the address of the first opcode of the subroutine now to be

executed.

Before:

Stack Pointer Address Stack

3002 3002 50

3003 IB

3004 3C

Program Counter

1A47

After CALL 2135H:

Stack Pointer Address Stack

3000 3000 4A
3001 1A
3002 50

3003 IB

Program Counter

2135

CALL cc,nn

Operation: IF CC TRUE: (SP- 1 ) PCH

(SP-2)<iPCL) PC<]nn

Format:

Mnemonic: CALL Operands: cc, nn

278



CALL AND RETURN GROUP

Object Code:

1 1 cc cc cc ]

n n n n n n n n

n n n n n n n n

Note: The first of the two n operands in the assembled object code above is the

least significant byte of the two-byte memory address.

Description:

If condition cc is true, this instruction pushes the current contents of the Program

Counter (PC) onto the top of the external memory stack, then loads the operands

nn into PC to point to the address in memory where the first opcode of a

subroutine is to be fetched. (At the end of the subroutine, a RETurn instruction

can be used to return to the original program flow by popping the top of the stack

back into PC.) If condition cc is false, the Program Counter is incremented as

usual, and the program continues with the next sequential instruction. The stack

push is accomplished by first decrementing the current contents of the Stack

Pointer (SP), loading the high-order byte of the PC contents into the memory
address now pointed to by SP, then decrementing SP again, and loading the low-

order byte of the PC contents into the top of the stack. Note: Because this is a

three-byte instruction, the Program Counter will have been incremented by three

before the push is executed. Condition cc is programmed as one of eight status

bits which corresponds, to condition bits in the Flag Register (register F). Those

eight status bits are defined in the table below, which also specifies the

corresponding cc bit fields in the assembled object code:

Relevant

cc Condition Flag

000 NZ non zero Z ( = 0)

001 Zzero Z ( = 1)

010 NC non carry C ( = 0)

011 C carry C (=1)
100 PO parity odd P/V( = 0)

101 PE parity even P/V(=l)
110 P sign positive S ( = 0)

111 M sign negative S (=1)

279



MODEL HI/4 ALDS

If cc is true:

M cycles: 5 T states: 17(4,3,4,3,3) 4 MHz E.T.: 4.25

If cc is false:

M cycles: 3 T states: 10(4,3,3) 4 MHz EX: 2.50

Condition Bits Affected: None

Example:

If the C Flag in the F register is reset, the contents of the Program Counter are

1A47H, the contents of the Stack Pointer are 3002H, and memory locations have

the contents:

Location Contents

1A47H D4H
1A48H 35H
1A49H 21H

then if an instruction fetch sequence begins, the three-byte instruction D43521H
will be fetched to the CPU for execution. The mnemonic equivalent of this is

CALL NC, 2135H

After the execution of this instruction, the contents of memory address 3001H
will be 1AH, the contents of address 3000H will be 4AH, the contents of the

Stack Pointer will be 3000H, and the contents of the Program Counter will be

2135H, pointing to the address of the first opcode of the subroutine now to be

executed.

RET RETurn

Operation: PCL <1 (SP), PCH <l (SP + 1

)

Format:

Mnemonic: RET Operands:

Object Code:

110 10 1 C9

Description:

Control is returned to the original program flow by popping the previous

contents of the Program Counter (PC) off the top of the external memory stack,

where they were pushed by the CALL instruction. This is accomplished by first

loading the low-order byte of the PC with the contents of the memory address

280



CALL AND RETURN GROUP

pointed to by the Stack Pointer (SP), then incrementing the SP and loading the

high-order byte of the PC with the contents of the memory address now pointed

to by the SP. (The SP is now incremented a second time.) On the following

machine cycle the CPU will fetch the next program opcode from the location in

memory now pointed to by the PC.

M cycles: 3 T states: 10(4,3,3) 4 MHz E.T. : 2.50

Condition Bits Affected: None

Example:

If the contents of the Program Counter are 3535H, the contents of the Stack

Pointer are 2000H, the contents of memory location 2000H are B5H, and the

contents of memory location 2001H are 18H, then after the execution of

RET

the contents of the Stack Pointer will be 2002H and the contents of the Program
Counter will be 18B5H, pointing to the address of the next program opcode to be

fetched.

Before:

Program Counter Address Stack

3535 2000 B5
2001 18

2002 2E
2003 30

Stack Pointer

2000

After RET:

Program Counter Address Stack

18B5 2002 2E
2003 30

Stack Pointer

2002

RETcc RETurn

Operation: IF CC TRUE: PCL <1 (SP), PCH <l (SP + 1

)

Format:

Mnemonic: RET Operands: cc

281



MODEL HI/4 ALDS

Object Code:

1 1 cc cc cc
_J_^J _J I I I L__

Description:

If condition cc is true, control is returned to the original program flow by

popping the previous contents of the Program Counter (PC) off the top of the

external memory stack, where they were pushed by the CALL instruction. This is

accomplished by first loading the low-order byte of the PC with the contents of

the memory address pointed to by the Stack Pointer (SP), then incrementing the

SP, and loading the high-order byte of the PC with the contents of the memory

address now pointed to by the SP (The SP is now incremented a second time.)

On the following machine cycle the CPU will fetch the next program opcode

from the location in memory now pointed to by the PC. If condition cc is false,

the PC is simply incremented as usual, and the program continues with the next

sequential instruction. Condition cc is programmed as one of eight status bits

which correspond to condition bits in the Flag Register F). These eight status bits

are defined in the table below, which also specifies the corresponding cc bit fields

in the assembled object code.

cc Condition

NZ non zero

Zzero
NC non carry

C carry

PO parity odd

PE parity even

P sign positive

M sign negative

If cc is true:

M cycles: 3

If cc is false:

M cycles: 1

001

010

011

100

101

110

111

Relevant

Flag

Z ( =
Z (=1
C ( =
C (=1
P/V( =
P/V(=l
S ( =
S (=1

T states: 11(5,3,3) 4 MHz E.T.: 2.75

T states: 5 4 MHz EX: 1.25

Condition Bits Affected: None

Example:

If the S flag in the F register is set, the contents of the Program Counter are

3535H, the contents of the Stack Pointer are 2000H, the contents of memory

location 2000H are B5H, and the contents of memory location 2001H are 18H,

then after the execution of

RET M

282



CALL AND RETURN GROUP

the contents of the Stack Pointer will be 2002H and the contents of the Program
Counter will be 18B5H, pointing to the address of the next program opcode to be

fetched.

RETI

Operation: Return from interrupt

Format:

Mnemonic: RETI Operands:

Object Code:

1 1 1 1 1

1

1

1 1 1 1

ED

4D

Description:

This instruction is used at the end of an interrupt service routine to:

1

.

Restore the contents of the Program Counter (PC) (analogous to the RET
instruction).

2. To signal an I/O device that the interrupt routine has been completed. The
RETI instruction facilitates the nesting of interrupts, allowing higher priority

devices to suspend service of lower priority service routines.

M cycles: 4 T states: 14(4,4,3,3) 4 MHz E.T.: 3.50

Condition Bits Affected: None

Example:

Given: Two interrupting devices, A and B, connected in a daisy chain

configuration with A having a higher priority than B.

+ A B

IEI IEO IEI IEO

B generates an interrupt and is acknowledged. (The interrupt enable out, IEO,
of B goes low, blocking any lower priority devices from interrupting while B is

being serviced). Then A generates an interrupt, suspending service of B. (The

283



MODEL 111/4 ALDS

Object Code:

1 1 I1110
i i i

1 1 1110 1

1 1 1

i I i10
1 1 1

r i i10 1

1 1 1

IEO of A goes 'low' indicating that a higher priority device is being serviced.)

The A routine is completed and a RETI is issued resetting the IEO of A,

allowing the B routine to continue. A second RETI is issued on completion of

the B routine and the IEO of B is reset (high), allowing lower priority devices

interrupt access.

RETN
Operation: Return from non maskable interrupt

Format:

Mnemonic: RETN Operands:

ED

45

Description:

Used at the end of a service routine for a non maskable interrupt, this instruction

executes an unconditional return which functions identically to the RET
instruction. That is, the previously stored contents of the Program Counter (PC)

are popped off the top of the external memory stack; the low-order byte of PC is

loaded with the contents of the memory location pointed to by the Stack Pointer

(SP), SP is incremented, the high-order byte of PC is loaded with the contents of

the memory location now pointed to by SP, and SP is incremented again. Control

is now returned to the original program flow: on the following machine cycle the

CPU will fetch the next opcode from the location in memory now pointed to by

the PC. Also the state of IFF2 is copied back into IFF1 to the state it had prior to

the acceptance of the NMI.

M cycles: 4 T states: 14(4,4,3,3) 4 MHz E.T.: 3.50

Condition Bits Affected: None

Example:

If the contents of the Stack Pointer are 1000H and the contents of the Program

Counter are 1A45H when a non maskable interrupt (NMI) signal is received, the

CPU will ignore the next instruction and will instead restart to memory address

0066H, That is, the current Program Counter contents of 1A45H will be pushed

onto the external stack address of 0FFFH and 0FFEH, high order byte first, and

284



CALL AND RETURN GROUP

0066H will be loaded onto the Program Counter. That address begins an interrupt

service routine which ends with RETN instruction. Upon the execution of

RETN, the former Program Counter contents are popped off the external

memory stack, low-order first, resulting in a Stack Pointer contents again of
1000H. The program flow continues where it left off with an opcode fetch to

address 1A45H.

RST P ReSTart

Operation: (SP - 1 )<I PCH ,
(SP - 2)<l PC L) PCH 0, PCL P

Format:

Mnemonic: RST Operands: P

Object Code:

1 1 t t t 1 1 1

Description:

The current Program Counter (PC) contents are pushed onto the external memory
stack, and the page zero memory location given by operand p is loaded into the

PC. Program execution then begins with the opcode in the address now pointed
to by PC. The push is performed by first decrementing the contents of the Stack
Pointer (SP), loading the high-order byte of PC into the memory address now
pointed to by SP, decrementing SP again, and loading the low-order byte of PC
into the address now pointed to by SP. The ReSTart instruction allows for a Call

to a subroutine at one of eight addresses as shown in the table below. The
operand p is assembled into the object code using the t column of the table.

Note: Since all addresses are in page zero of memory, the high order byte of PC
is loaded with 00H. The number selected from the "p" column of the table is

loaded into the low-order byte of PC.

At the end of the subroutine a RETurn instruction can be used to return to the

original program by popping the top of the stack back into PC.

00H 000
08H 001

10H 010
18H 011

20H 100

28H 101

30H 110

38H 111

M cycles 3 T states: 11(5,3,3) 4MHzE.T:2.75

285



MODEL HI/4 ALDS

Example:

If the contents of the Program Counter are 15B3H, after the execution of

RST 18H (Object code 11011111)

the PC will contain 0018H, as the address of the next opcode to be fetched, and

the top number on the stack will be 15B3H.

286



INPUT AND OUTPUT GROUP

Input and Output Group

INA,(n) INput

Operation: A <] (n)

Format:

Mnemonic: IN Operands: A, (n)

Object Code:

1 1 1 1 1 1

n
L

n n n n n n n

DB

Description:

The number of the input port is n. Data is input to register A. The operand n is

placed on the bottom half (A0 through A7) of the address bus to select the I/O

device at one of 256 possible ports. The contents of the Accumulator also appear

on the top half (A8 through A 15) of the address bus at this time. Then one byte

from the selected port is placed on the data bus and written into the Accumulator

(register A) in the CPU.

M cycles: 3 T states: 11(4,3,4) 4 MHz E.T.: 2.75

Condition Bits Affected: None

Example:

If the contents of the Accumulator are 23H and the byte 7BH is available at the

peripheral device mapped to I/O port address 01H, then after the execution of

IN A,(01H)

the Accumulator will contain 7BH.

287



MODEL 111/4 ALDS

IN r,(C) INput

Operation: X <J (C)

Format:

Mnemonic: IN Operands: r, (C)

Object Code:

1 1 1 1 1 1

1 r r r

ED

Description:

Register C contains the number of the input port. Data is input to register r.

The contents of register C are placed on the bottom half (A0 through A7) of the

address bus to select the I/O device at one of 256 possible ports. The contents of

Register B are placed on the top half (A8 through A 15) of the address bus at this

time. Then one byte from the selected port is placed on the data bus and written

into register r in the CPU. Register r identifies any of the CPU registers shown in

the following table, which also shows the corresponding three-bit "r" field for

each. The flags will be affected, checking the input data.

Register r

B 000

C 001

D 010

E 011

H 100

L 101

A 111

M cycles: 3 T states: 12(4,4,4) 4 MHz E.T. : 3 .00

Condition Bits Affected:

S: Set if input data is negative; reset otherwise

Z: Set if input data is zero; reset otherwise

H: Reset

P/V: Set if parity is even; reset otherwise

N: Reset

C: Not affected

288



INPUT AND OUTPUT GROUP

Example:

If the contents of register C are 07H, the contents of register B are 10H, and the

byte 7BH is available at the peripheral device mapped to I/O port address 07H,

then after the execution of

IN D,(C)

register D will contain 7BH

A typical use of the IN r, (C) instruction is for polled I/O. The following program

continually polls or inputs data from port FF until a non-zero number appears.

The program then reads in data from port FE. In this application, port FF is used

as a data ready signal for port FE.

LOOP
LD C, 0FFH ; C points at port FF
IN B,(C) ; input port FF to register B
JR Z, LOOP ; continue polling until not zero

IN A, (0FEH) ; input port FE to register A

INI INput & Increment

Operation: (HL) <l (C), B <1 B - 1, HL <3 HL + 1

Format:

Mnemonic: INI Operands:

Object Code:

1 1 1 1 1 1

1 1 1

ED

A2

Description:

Register C contains the number of the input port. Data input is placed in memory
at the address pointed at by HL. The contents of register C are placed on the

bottom half (A0 through A7) of the address bus to select the I/O device at one of

256 possible ports. Register B may be used as a byte counter, and its contents are

placed on the top half (A8 through A 15) of the address bus at this time. Then one

byte from the selected port is placed on the data bus and written to the CPU. The
contents of the HL register pair are then placed on the address bus and the input

byte is written into the corresponding location of memory. Finally the byte

counter is decremented and register pair HL is incremented.

M cycles: 4 T states: 16(4,5,3,4) 4 MHz E.T.: 4.00

289



MODEL IK/4 ALDS

Condition Bits Affected:

S: Unknown
Z: Set if B - 1 = 0; reset otherwise

H: Unknown
P/V: Unknown
N: Set

C: Not affected

Example:

If the contents of register C are 07H, the contents of register B are 10H, the

contents of the HL register pair are 1000H, and the byte 7BH is available at the

peripheral device mapped to I/O port address 07H, then after the execution of

INI

memory location 1000H will contain 7BH, the HL register pair will contain

1001H, and register B will contain 0FH.

The following program will input data from input ports 1 through 80 and place

the data into a buffer in memory.

LOOP

LD B, 80

LD C,0

LD HL, BUFF
INC C
INI

JP NZ, LOOP

INIR INput Increment & Repeat

Operation: (HL) <l (C), B <l B - 1, HL <| HL + 1

Format:

Mnemonic: INIR Operands:

Object Code:

1 1 1 1 1 1

1 1 1 1

ED

B2

290



INPUT AND OUTPUT GROUP

Description:

Register C contains the number of the input port. The data input is placed in

memory at the address pointed at by the HL register pair. The contents of register

C are placed on the bottom half (A0 through A7) of the address bus to select the

I/O device at one of 256 possible ports. Register B is used as a byte counter, and
its contents are placed on the top half (A8 through A 15) of the address bus at this

time. Then one byte from the selected port is placed on the data bus and written

to the CPU. The contents of the HL register pair are placed on the address bus

and the input byte is written into the corresponding location of memory. Then
register pair HL is incremented, the byte counter is decremented. If

decrementing causes B to go to zero, the instruction is terminated. If B is not

zero, the PC is decremented by two and the instruction repeated. Note that if B is

set to zero prior to instruction execution, 256 bytes of data will be input. Also
interrupts will be recognized after each data transfer.

IfB*8:

M cycles: 5 T states: 21(4,5,3,4,5) 4 MHz E.T.: 5.25

IfB = 0:

M cycles: 4 T states: 16(4,5,3,4) 4 MHz EX: 4.00

Condition Bits Affected:

S: Unknown
Z: Set

H: Unknown
P/V: Unknown
N: Set

C: Not affected

Example:

If the contents of register C are 07H, the contents of register B are 03H, the

contents of the HL register pair are 1000H, and the following sequence of bytes

are available at the peripheral device mapped to I/O port of address 07H:

51H
A9H
03H

then after the execution of

INIR

the HL register pair will contain 1003H, register B will contain zero, and

memory locations will have contents as follows:

Location Contents

1000H 51H
1001H A9H
1002H 03H

291



MODEL Hi/4 ALDS

Here is a program to input 80 bytes from I/O port number FF and put them into

an 80-byte buffer starting at address BUFF.

LD HL, BUFF HL points at first byte

LD B, 80 load byte counter

LD C, OFFH port FF
INIR input 80 bytes

Note: this assumes that the input port can be synchronized with the input

instructions.

IND INput & Decrement

Operation: (HL)<l(C), BOB- 1, HL<]HL-1

Format:

Mnemonic: IND Operands:

Object Code:

1 1 1 1 1 1

1 1 1 1

ED

AA

Description:

The contents of register C are placed on the bottom half (A0 through A7) of the

address bus to select the I/O device at one of 256 possible ports. Register B may
be used as a byte counter, and its contents are placed on the top half (A8 through

A 15) of the address bus at this time. Then one byte from the selected port is

placed on the data bus and written to the CPU. The contents of the HL register

pair are placed on the address bus and the input byte is written into the

corresponding location of memory. Finally the byte counter and register pair HL
are decremented.

M cycles: 4 T states: 16(4,5,3,4) 4 MHzE.T: 4.00

Condition Bits Affected:

S: Unknown
Z: Set if B — 1 =0; reset otherwise

H: Unknown
P/V: Unknown
N: Set

C: Not affected

292



INPUT AND OUTPUT GROUP

Example:

If the contents of register C axe 07H, the contents of register B are 10H, the

contents of the HL register pair are 1000H, and the byte 7BH is available at the

peripheral device mapped to I/O port address 07H, then after the execution of

IND

memory location 1000H will contain 7BH, the HL register pair will contain

0FFFH, and register B will contain 0FH.

INDR INput Decrement & Repeat

Operation: (HL) (C), B B - 1, HL OHL - 1

Format:

Mnemonic: INDR Operands:

Object Code:

r—i

1 1

1

ED

BA

Description:

The contents of register C are placed on the bottom half (A0 through A7) of the

address bus to select the I/O device at one of 256 possible ports. Register B is

used as a byte counter, and its contents are placed on the top half (A8 through

A 15) of the address bus at this time. Then one byte from the selected port

is placed on the data bus and written to the CPU. The contents of the HL
register pair are placed on the address bus and the input byte is written into

the corresponding location of memory. Then HL and the byte counter

are decremented. If decrementing causes B to go to zero, the instruction is

terminated. If B is not zero, the PC is decremented by two and the instruction

repeated. Note that if B is set to zero prior to instruction execution, 256 bytes of

data will be input. Also interrupts will be recognized after each data transfer.

IfB*0:

M cycles: 5 T states: 21(4,5,3,4,5) 4 MHz E.T.: 5.25

IfB = 0:

M cycles: 4 T states: 16(4,5,3,4) 4 MHz EX: 4,00

1 1 1 1 1 1

1 1 1 1 1

293



MODEL 111/4 ALDS

Condition Bits Affected:

S: Unknown
Z: Set

H: Unknown
P/V: Unknown
N: Set

C: Not affected

Example:

If the contents of register C are 07H, the contents of register B are 03H, the

contents of the HL register pair are 1000H, and the following sequence of bytes

are available at the peripheral device mapped to I/O port address 07H:

51H
A9H
03H

then after the execution of

INDR

the HL register pair will contain 0FFDH, register B will contain zero, and

memory locations will have contents as follows:

Location Contents

0FFEH 03H
0FFFH A9H
1000H 51H

OUT (n),A OUTput

Operation: (l"l) <0A

Format:

Mnemonic: OUT Operands: (n), A

Object Code:

1 1 1 1 1

n n n n n n n n

D3

294



INPUT AND OUTPUT GROUP

Description:

The operand n is placed on the bottom half (A0 through A7) of the address

bus to select the I/O device at one of 256 possible ports. The contents of the

Accumulator (register A) also appear on the top half (A8 through A 15) of the

address bus at this time. Then the byte contained in the Accumulator is placed on

the data bus and written into the selected peripheral device.

M cycles; 3 T states: 11(4,3,4) 4 MHz EX: 2.75

Condition Bits Affected: None

Example:

If the contents of the Accumulator are 23H, then after the execution of

OUT 01H.A

the byte 23H will have been written to the peripheral device mapped to I/O port

address 01H.

OUT (C),r ouTput

Operation: (C) <J X

Format:

Mnemonic: OUT Operands: (C), r

Object Code:

1 1 1 1 1 1

1 r r r 1

ED

Description:

The contents of register C are placed on the bottom half (A0 through A7) of the

address bus to select the I/O device at one of 256 possible ports. The contents of

Register B are placed on the top half (A8 through A 15) of the address bus at this

time. Then the byte contained in register r is placed on the data bus and written

into the selected peripheral device. Register r identifies any of the CPU registers

shown in the following table, which also shows the corresponding three-bit "r"

field for each which appears in the assembled object code:

295



MODEL III 4 ALDS

agister r

B 000

C 001

D 010
E 011

H 100

L 101

A 111

M cycles: 3 T states: 12(4,4,4) 4 MHz E.T.: 3.00

Condition Bits Affected: None

Example:

If the contents of register C are 01H and the contents of register D are 5AH, after

the execution of

OUT (C),D

the byte 5AH will have been written to the peripheral device mapped to I/O port

address 01 H.

OUTI OUTput & Increment

Operation: (C)<l(HL), B<1 B- 1, HL<lHL+ 1

Format:

Mnemonic: OUTI Operands:

Object Code:—1
1 1 1

1

ED

A3

1 1 1 1 1 1

1 1 1 1

Description:

The contents of the HL register pair are placed on the address bus to select a

location in memory. The byte contained in this memory location is temporarily

stored in the CPU. Then, after the byte counter (B) is decremented, the contents

of register C are placed on the bottom half (A0 through A7) of the address bus

to select the I/O device at one of 256 possible ports. Register B may be used as

5 byte counter, and its decremented value is placed on the top half (A8 through

296



INPUT AND OUTPUT GROUP

A15) of the address bus. The byte to be output is placed on the data bus and

written into selected peripheral device. Finally the register pair HL is

incremented.

M cycles: 4 T states: 16(4,5,3,4) 4 MHz EX: 4.00

Condition Bits Affected:

S: Unknown
Z: Set if B - 1 = 0; reset otherwise

H: Unknown
P/V: Unknown
N: Set

C: Not affected

Example:

If the contents of register C are 07H, the contents of register B are 10H, the

contents of the HL register pair are 1000H, and the contents of memory address

1000H are 59H, then after the execution of

OUTI

register B will contain 0FH, the HL register pair will contain 1001H, and the

byte 59H will have been written to the peripheral device mapped to I/O port

address 07H.

U I I

K

OuTput Increment & Repeat

Operation: (C) <1 (HL), B <] B - 1, HL <l HL + 1

Format:

Mnemonic: OTIR Operands:

Object Code:

1 1 1 1 1 1

1 1 1 1 1

ED

B3

Description:

The contents of the HL register pair are placed on the address bus to select a

location in memory. The byte contained in this memory location is temporarily

stored in the CPU. Then, after the byte counter (B) is decremented, the contents

of register C are placed on the bottom half (A0 through A7) of the address bus

297



MODEL HI/4 ALDS

to select the I/O device at one of 256 possible ports. Register B may be used as a

byte counter, and its decremented value is placed on the top half (A8 through

A 15) of the address bus at this time. Next the byte to be output is placed on the

data bus and written into the selected peripheral device. Then register pair HL
is incremented. If the decremented B register is not zero, the Program Counter

(PC) is decremented by two and the instruction is repeated. If B has gone to zero,

the instruction is terminated. Note that if B is set to zero prior to instruction

execution, the instruction will output 256 bytes of data. Also, interrupts will be

recognized after each data transfer.

If B # 0:

M cycles: 5 T states: 21(4,5,3,4,5) 4 MHz E.T.: 5.25

IfB = 0:

M cycles: 4 T states: 16(4,5,3,4) 4 MHz E.T.: 4.00

Condition Bits Affected:

S: Unknown
Z: Set

H: Unknown
P/V: Unknown
N: Set

C: Not affected

Example:

If the contents of register C are 07H, the contents of register B are 03H, the

contents of the HL register pair are 1000H, and memory locations have the

following contents:

Location Contents

1000H 51H
1001H A9H
1002H 03H

then after the execution of

OTIR

the HL register pair will contain 1003H, register B will contain zero, and a group

of bytes will have been written to the peripheral device mapped to I/O port

address 07H in the following sequence:

51H
A9H
03H

298



INPUT AND OUTPUT GROUP

OUTD OUTput & Decrement

Operation: (C) <1 (HL), B <l B - 1, HL <l HL - 1

Format:

Mnemonic: OUTD Operands:

Object Code:
~
"1 1 I 1 I

ED

AB

Description:

The contents of the HL register pair are placed on the address bus to select a

location in memory. The byte contained in this memory location is temporarily

stored in the CPU. Then, after the byte counter (B) is decremented, the contents

of register C are placed on the bottom half (A0 through A7) of the address bus to

select the I/O device at one of 256 possible ports. Register B may be used as a

byte counter, and its decremented value is placed on the top half (A8 through

A 15) of the address bus at this time. Next the byte to be output is placed on the

data bus and written into the selected peripheral device. Finally the register pair

HL is incremented.

M cycles: 4 T states: 16(4,5,3,4) 4 MHz E.T.: 4.00

Condition Bits Affected:

1 1 1

1

1 1 1

1 1 1 1 1

S: Unknown
Z: Set if B - 1 = 0; reset otherwise

H: Unknown
P/V: Unknown
N: Set

C: Not affected

Example:

If the contents of register C are 07H, the contents of register B are 10H, the

contents of the HL register pair are 1000H, and the contents of memory location

1000H are 59H, after the execution of

OUTD
register B will contain 0FH, the HL register pair will contain 0FFFH, and the

byte 59H will have been written to the peripheral device mapped to I/O port

address 07H.

299



MODEL 1114 ALDS

OTDR OUTput Decrement & Repeat

Operation: (C)0(HL),B0B-1,HL0HL-1

Format:

Mnemonic: OTDR Operands:

Object Code:

1 1 1 1 1 1

1 1 1 1 1 1

ED

BB

Description:

The contents of the HL register pair are placed on the address bus to select a

location in memory. The byte contained in this memory location is temporarily

stored in the CPU. Then, after the byte counter (B) is decremented, the contents

of register C are placed on the bottom half (A0 through A7) of the address bus to

select the I/O device at one of 256 possible ports. Register B may be used as a

byte counter, and its decremented value is placed on the top half (A8 through

A 15) of the address bus at this time. Next the byte to be output is placed on the

data bus and written into the selected peripheral device. Then register pair HL is

decremented and if the decremented B register is not zero, the Program Counter

(PC) is decremented by 2 and the instruction is repeated. If B has gone to zero,

the instruction is terminated. Note that if B is set to zero prior to instruction

execution, the instruction will output 256 byte of data. Also, interrupts will be

recognized after each data transfer.

IfB*0:

M cycles: 5 T states: 21(4,5,3,4,5) 4 MHz EX: 5.25

IfB = 0:

M cycles: 4 T states: 16(4,5,3,4) 4 MHz EX: 4.00

Condition Bits Affected:

S: Unknown
Z: Set

H: Unknown
P/V: Unknown
N: Set

C: Not affected

300



INPUT AND OUTPUT GROUP

Example:

If the contents of register C are 07H, the contents of register B are 03H, the

contents of the HL register pair are 1000H, and memory locations have the

following contents:

Location Contents

0FFEH 51H
0FFFH A9H
1000H 03H

then after the execution of

OTDR
the HL register pair will contain 0FFDH, register B will contain zero, and a

group of bytes will have been written to the peripheral device mapped to I/O port

address 07H in the following sequence:

03H
A9H
51H

301





EXTENDED Z80 INSTRUCTIONS

Chapter 10

Extended Z80 Instructions

The ALDS Assembler contains a number of extended Z80 instructions. You can

use them the same way you use other Z80 instructions.

An extended instruction is actually an internally denned macro. When you

assemble the instruction, the Assembler expands it into a group of Z80
instructions. A description of macros is in Chapter 8.

Notations

In addition to the notations described in Chapter 9, this chapter uses:

xx a register pair

yy a register pair

[ ] optional value

Format Of Each Instruction

This chapter uses the same format for the instructions as Chapter 9, with the

following exceptions:

• many of the instruction formats show different combinations of operands.

These combinations are listed under "Operands"

• following the description of each instruction is a breakdown of how the

instruction expands when assembled

• the operation is not shown

• the object code is not shown

CPR Operand ComPare double Register

Mnemonic: CPR Operands: xx (where xx = BC, DE, HL, or SP)

Description:

Compares the contents of the operand to the contents of HL. If they compare, the

Z bit is set.

303



MODEL 111/4 ALDS

Example:

If register pair BC contains an A0H and HL contains an A0H.

CPR BC

sets the Z bit.

Expansion: CPR xx

PUSH HL

OR A

SBC Hltxx

POP HL

CMPD operandi,operand2,[length]
CoMPare with Decrement

Mnemonic: CMPD Operands: nnl,nn2,n length is n.

nnl,nn2 length is contents of BC.

nnl,nn2,(nn3) length is contents of

nn3.

nnl,(nn2) length is last byte of

the string beginning at

operandi.

Description:

Compares the string beginning at operandi and ending at (operandi - length)

with the string beginning at operandi, and ending at (operandi - length) . The Z
bit is set according to the result of the comparison. Zero length strings are equal.

If a mismatch occurs, HL and DE will contain the addresses preceeding that

mismatch.

Example:

If memory location 4000-4006 contains the stringl "develop" and location 5000-

5006 contains the string2 "envelop", the operation

CMPD 4006H»500BH»7

starts the comparison of the two strings with the last byte, in this case the 'p'. A
mismatch occurs at the second letter. Because of this mismatch, the address of

the preceding 'n' is now in register HL and the address of the preceding 'e' in

register DE.

304



EXTENDED Z80 INSTRUCTIONS

Exit Conditions:

All registers modified

Expansion: CMPD nn1,nn2,n

X2;

LD DE tnnl

LD HL tnnZ

LD BC»n
LD A»B

OR C

JR Z,X1

LD A.(DE)

CP (HL)

JR NZ.X1

JR X2

XI:

Expansion: CMPD nnl,nn2

LD DE tnnl

LD HL tnnZ

LD A.B

OR C

JR ZtXl

LD A>(DE)

CP (HL)

JR NZ»X1

LDD

JR X2

XI

Expansion: CMPD nnl,nri2,(nn3)

LD DE >nnl

LD HLmnZ
LD (\(nn3)

LD C»A

LD B.0

LD A»B

OR C

JR Z>X1

LD A(DE)

CP (HL)

JR NZ.X1

LDD

JR X2

XI;

305



MODEL 111/4 ALDS

Expansion: CMPD nnl ,{nn2)

X2:

LD DE mill

LD HL.nr/2

LD C»(HLS

LD B»0
INC HL

LD A»B

OR C

JR Z»X1

LD A(DE)

CP (HL)

JR NZ»X1

LDD
JR X2

XI

Note: The symbols used in the expansion are shown for clarity and are not

actually defined for use by other statements.

CMPI operandi,operand2,length
CoMPare with Increment

Mnemonic: CMPI Operands: nnl, nnl, n

nnl,nn2

nnl,nn2 (nn3)

nnl,(nn2)

length is specified,

length in BC.

length is contents of nn3.

length is first byte of nn2

.

Description:

Compares the string beginning at operandi with the string beginning at

operandi for the given length. Depending on the operands, length can be

specified as a constant, the contents of an address, or the contents of the BC
register. If a match does not occur, HL and DE will contain the addresses

following that mismatch. The Z bit is set according to the result of the

comparison. Zero length strings are equal.

Example:

If memory location 4000-4006 contains the stringl "develop" and location 5000-

5006 contained the string2 "envelop":

CMPI 4000H»5000H»7

starts the comparison of the two strings beginning with the first byte (in this case,

the 'd' in stringl and the 'e' in string2). A mismatch occurs at the first letter. The

address of 'd' is now in register DE and the address of 'e' is now in register HL
where the comparison failed.

306



EXTENDED Z80 INSTRUCTIONS

Exit Conditions:

All registers modified

Expansion: CMPI nnl ,nn2,n

LD DE tnnl

LD HLmnZ
LD BCo?

LD A»B

OR C

JR Z>X1

LD A(DE)

CP (HL)

JR NZ»Xi

LDI

JR XZ

XI

Expansion: CMPI nnl,nn2

XZ:

LD DEtnnl

LD HL >nnZ

LD A»B

OR C

JR Z»X1

LD A»(DE)

CP (HL)

JR NZ»X1

LDI

JR X2

Xli

Expansion: CMPI nnl,nn2,(nn3)

LD DE inn 1

LD HL ,nnZ

LD Af (nn3)

LD C.A

LD B>0

LD A»B

OR C

JR Z.X1

LD A.(DE)

CP <HL)

JR NZ.H1

LDI

JR X2

XI

307



MODEL 111/4 ALDS

Expansion: CMPI nnl,(nn2)

X2;

LD DE >nnl

LD HL >nnZ

LD C.(HL)

LD B i0

INC HL

LD A >B

OR C

JR ZfKl

LD A»(DE)

CP (HL)

JR NZ>X1

LDI

JR X2

XI:

Note: The labels used in the expansion are shown for clarity and are not actually

defined for use by other statements.

I Z. OpOrStnO Test register for Zero

Mnemonic: TZ Operands: xx (where xx= BC, DE, HL, IX, or IY)

Description:

Compares the contents of xx to zero. If true, the Z bit is set.

Example:

If the contents of BC contains a 00H then the operation

TZ BC

sets the Z bit. Any other value (i.e. A0H) sets the NZ bit.

* *
* Note: TZ IX and TZ IY are instructions which are not documented by #

* ZILOG. Although they should assemble properly, Radio Shack does not *

* guarantee that they will work on all processors. You should test them in *

* your own environment to ensure their validity. *

Expansion: TZ xx

LD A»hi3h order byte of xx

OR low order byte of hx

308



EXTENDED Z80 INSTRUCTIONS

EX Operand Exchange double register

with (SP)

Mnemonic: EX Operands: (SP),xt where xx = AF, BC, or DE

Description:

Exchanges the low order byte contained in xx with the contents of the memory
address specified by the contents of the stack pointer (SP). The high order byte of

xx is exchanged with the next highest memory address (SP+ 1).

Example:

If the contents of the register pair BC is 3978H and the stack pointer (SP) and its

next byte (SP + 1) contains 2357H:

EX <SP)»BC

causes the register pair BC to contain 2357H and the top address of the stack to

contain 4978H.

Expansion: EX (SP),xx where xx= AF or BC

EX (SP) »HL

PUSH XX

PUSH HL

POP XX

POP HL

EX (SP) .HL

ion: EX (SP),DE

EX DE.HL
EX (SP) »HL

EX DE»HL

EX operandi,operand2
Exchange double register

Mnemonic: EX Operands: xx,yy where xx and yy are any register pairs

listed under "Expansion" below.

Description:

Exchanges the two-byte contents of xc with the contents of yy.

309



MODEL HI/4 ALDS

Example:

The contents of BC is 6789H and the contents of DE is 1234H. After the

execution of:

EX BC»DE

the values are exchanged so that BC contains 1234H and DE contains 6789H.

Expansion: EX AF,BC
EX AF.DE
EX BC,DE

PUSH 1st Operand
PUSH 2nd Operand
POP 1st Operand
POP 2nd Operand

Expansion: EXxx.yy (xx = AF, BC or DE
vv = IXorIY)

PUSH 1st Operand
EX (SP) >2nd Operand
POP 1st Operand

Expansion: EX HL,xx (xx = IX or IY)

EX DC,IY
EX xx,UL ,

(xx = AF or BC)

PUSH 1st Operand
EX (SP) »2nd Operand
POP 1st Operand

Expansion: EX (SP) , xx (xx = AF, BC)

EX (SP) , HL

PUSH 2nd Operand
PUSH HL

POP 2nd Operand
EX (SP) t HL

Expansion: EX (SP), DE

EX (SP) » HL

EX DE» HL

EX (SP) i HL

LD operandi,operand2 LoaD

Mnemonic: LD Operands: xx,yy

(xx),yy

xx, (yy)

(xx),(yy)

310



EXTENDED Z80 INSTRUCTIONS

Description:

Loads the first operand with the second operand. The numbers shown in the

tables (1-14) represent the coded expansions for the pair of operands. Details of

each expansion follow the tables (i.e. BC,AF refer to expansion description #1).

Example:

The operation:

LD HL.DE

copies the contents of DE to HL.

First

Operand

Second Operand

BC DE HL (BC) (DE) (HL) (IX + DD) (IY + DD)

(BC) 4 4 6 — 9 9 9 9

(DE) 4 4 7 9 9 9 9

(HL) 5 5 8 9 9 9 9 9

(IX + DD) 5 5 5 9 9 9 — 9

(IY + DD) 5 5 5 9 9 9 9 —

First

Operand

Second Operand

AF BC DE HL IX IY A

AF 1 1 1 1
—

BC 3 3 3 1 2

DE 3 3 3 1 2

HL 3 3 3 1 2

IX 1 1 1 1 2

IY 1 1 1 1 2

First

Operand

Second Operand

(BC) (DE) (HL) (IX + DD) (IY + DD)

BC 11 12 10 10 10

DE 12 11 10 10 10

HL 13 13 14 10 10

(— ) indicates operand pairs not applicable

311



MODEL HI/4 ALDS

(1) Expansion: LD xx,yy where xx and yy are any of the following operand

pairs:

AF.AF » AF,BC 5 AF »DE i AF,HL 5 AF,IX
5 AF.IY

BCAF ? BCIX i BC.IY
DE»AF 5 DE.IX I DE.IY
HL,AF > HL,IX ! HL,IY
IX»AF ! IX. BC i IX, DE 5 IX, HL i IX, IX

; i x » i y

IY»AF 5 IYtBC I IY,DE 5 IY,HL i IY.IX
! I Y » I

Y

PUSH 2nd Operand
POP 1st Operand

(2) Expansion: LD xx,yy where xx and yy are any of the following operand

pairs:

BCA i DE»A ! HL,A 5 IX, A i IY ,A

LD Low order byte of register pair»A (accumulator)
LD Hish order byte of register pair»0

* #
* Note: LD IX,A and LD IY,A are instructions which are not documented *

* by Z1LOG. Although they should assemble properly, Radio Shack does *

* not guarantee that they will work on all processors. You should test them *

* in your own environment to ensure their validity. *

(3) Expansion: LD xx,yy where xx and yy are any of the following operand

pairs:

BCBC I BC.DE i BC ,HL

DE.BC 5 DE,DE 5 DE,HL
HL,BC > HL,DE ! HL ,HL

LD HiSh order byte 1st Operand, Hish order byte 2nd

Ope rand

LD Low order byte 1st Operand, Low order byte 2nd

Ope rand

(4) Expansion: LD xx,yy where xx and yy are any of the following operand

pairs:

(BC) ,BC i (BC) ,DE

(DE) ,BC i (DE) ,DE

PUSH 1st Operand
EX (SP)»HL

LD (HL),Low order byte 2nd Operand
INC HL

312



EXTENDED Z80 INSTRUCTIONS

LD (HL)»Hish order byte 2nd Operand
EX (SP)»HL
POP 1st Operand

Side Effect: First operand register is incremented by 1.

(5) Expansion: LD xx,yy where xx and yy are any of the following operand

pairs:

(HL) iBC 5 (HL5 »DE

(IX+DD)»BC ! <IX+DD)>DE ! (IX+DD)»HL
(IY+DD)»BC i (IY+DD)>DE I (IY+DD).HL

LD (1st Operand) fLow order byte 2nd Operand
INC Register of 1st operand
LD (1st Ope rand ) »Hi tfh order byte 2nd Operand

Side Effect: first operand register is incremented by 1.

(6) Expansion: LD (BC),HL

PUSH AF

LD A»L

LD (BC) »A

INC BC

LD A»H

LD (BC) »A

POP AF

Side Effect: Register BC is incremented by 1.

(7) Expansion: LD (DE),HL

PUSH AF

LD A.L

LD (DE) »A

INC DE

LD A»H

LD (DE) »A

POP AF

Side Effect: Register DE is incremented by 1

.

(8) Expansion: LD (HL),HL

PUSH AF

LD A»H

LD (HL) ,L

INC HL

LD (HL) >A

POP AF

Side Effect: Register HL is incremented by 1

.

313



MODEL HI/4 ALDS

(9) Expansion: LD xx,yy where xx and yy are any of the following operand

pairs:

(BC)»(DE) » (BC).(HL) \ (BC)»(IX+DD)
! (BO .(IY+DD)

(DE).(BC) ! (DE).(HL) i (DE).(IX+DD)
i (BC)#(IY+DD)

(HL)f(BC) i (HL).CDE) ? (HL)»(IX+DD)
i (HL) .( IY+DD)

<IX+DD).(BC) i (IX+DD)»(DE) 5

(IX+DD5 .(HL) i(IX+DD) .(IY+DD)

(IY+DD) .(BC) i (IY+DD) .(DE) i

(IY+DD) .(HL>» (IY+DD) .(IX+DD)

LD A.(2nd Operand)

LD (1st Operand) .A

Side Effect: Register A is changed.

(10) Expansion: LD xx,yy where xx and yy are any of the following operand

pairs:

BC.(HL) 5 BC. (IX+DD) i BC. (IY + DD)

DE.(HL) 5 DE»(IX+DD) 5 DE»(IY+DD)
HL.UX+DD) i HL»(IY+DD)

LD Low order byte 1st Qperand.(2nd Operand)
INC Contents of 2nd Operand* register

LD Hi 3h order byte 1st Ope rand » (2nd Operand)

Side Effect: 2nd operand Register is incremented (HLJX or IY)

(11) Expansion: LD xx,(yy) where xx and (yy) are either of the following

operand pairs:

BC.(BC) 5 DE.(DE)

PUSH Contents of 2nd Operand

EX (SP).HL

LD Low order byte of 1st Operand i (HL)

INC HL

LD HiSh order byte of 1st Operand>(HL)
POP HL

(12) Expansion: LD xx,(yy) where xx and (yy) are either of the following

operand pairs:

BC.(DE) ! DE.(BC)

PUSH Contents of 2nd Operand

EX (SP).HL

LD Low order byte of 1st Operand.(HL)

314



EXTENDED Z80 INSTRUCTIONS

INC HL

LD Hi sh order byte of 1st Operand > (HL)

EX (SP).HL
POP Contents of 2nd Operand

Side Effect: 2nd operand register is incremented by 1.

(13) Expansion: LD xx,(yy) where xx and (yy) are either of the following

operand pairs:

HL»(BC) 5 HL.(DE)

PUSH AF

LD At(2nd Operand)
LD L>A

INC Contents of 2nd Operand
LD A»(2nd Operand)
LD H,A

POP AF

Side Effect: 2nd operand Register is incremented by 1.

(14) Expansion: LD HL,(HL)

PUSH AF

LD Ai(HL)

INC HL

LD Hf(HL)

LD L»A

POP AF

MOVD operandi,operand2,length
MOVe with Decrement

Mnemonic: MOVD Operands: nnl,nn2,n

nnl,nn2

nnl,nn2,(nn3)

nnl,(nn2)

length is specified.

length is in BC.

length is contents of

nn3 (byte).

length is first byte

of nn2.

Description:

Moves a string of a given length (implied in the operand) from the address of

operand.2 to the address of operandi . MOVD starts at the end of the string and

moves backward starting at the address of operandi.

You can specify the length as a constant, the contents of an address, or the

contents of the BC register.

315



MODEL III 4 ALDS

Example:

If the address 4000 contained the string "develop":

HOMD 5000H»a000H»7

moves "develop" from address 3FFA-4000 to 4FFA-5000 starting with the end

of the string, (i.e. 'p') which would be located at address 5000H .

Expansion: MOVD nnl,nn2,n

LD DE ,nnl

LD HL, nnZ

LD BC ,n

LDDR

ion: MOVD nnl,

LD DE ,nnl

LD HL, nnZ

LD A»B

OR C

JR Z #KI

LDDR

XI:

Expansion: MOVD nnl,nn2,(nn3)

LD DE ,nnl

LD HL, nn2

LD A ,(nn3)

LD CtA

LD B,0

OR A

JR Z fXl

LDDR

XI:

Expansion: MOVD nnl, (nnl)

LD DE, nnl

LD HL, nn2

LD C»(HL)

LD B,0

INC HL

LD A»B

OR C

JR Z»X1

LDDR

XI:

316



EXTENDED Z80 INSTRUCTIONS

MOVI operand1,operand2,length
MOVe with Increment

Mnemonic: MOVI Operands: nnl,nn2,n length is specified.

nnl,nn2 length is in BC.

nnl, nn2,(nn3) length is contents of nn3

.

nnl, (nn2) length is first byte of nnl

.

Description:

Moves a string of the given length from the address of operandi to the address of

operandi . MOVI starts at the beginning of the string and moves forward.

You can specify the length as a constant, the contents of a memory address, or

the contents of the BC register.

Example:

If location 4001H contains the string "develop", the instruction:

MOYI 5000H»4000H,7

moves "develop" from address 4001H to 5000H starting with d, the first letter.

Expansion: MOVI nnl, nnl,

n

LD DEnnl
LD HLnnZ
LD BCtn
LDIR

Expansion: MOVI nnl, nnl

LD DEmnl
LD HLmnZ
LD A»B
OR C

JR ZtXl

LDIR
XI:

Expansion: MOVI nnl,nnl,(nn3)

LD DE >nnl

LD HL. nn2
LD A >nn3

LD C.A
LD B»0
OR A

JR Z.X1

LDIR
XI;

317



MODEL HI/4 ALDS

Expansion: MOVI nnl,(nn2)

LD DE mnl
LD HL tnnZ

LD C#(HL)

LD B.0
INC HL

LD A.B
OR C

JR Z»X1

LDIR
XI:

POP
Mnemonic: POP Operands: none

Description:

Increments the stack pointer one full word.

Example:

If the stack pointer contains the byte 39H on top and 45H in the next location

POP

increments the stack pointer past these two bytes to the next point.

Expansion:

INC SP

INC SP

RSTR operand ReSToRe

Mnemonic: RSTR Operands: n where n =
none restores HL,DE

BC
4 restores HL,DE

BC and AF
I restores HL,DE

BCAFJXJY
P restores HL,DE

bc,af,ix,iy,hl'

de;bc
A restores HL,DE

BC,AF,IX,IY,HL'

DE,BC',AF'

318



EXTENDED Z80 INSTRUCTIONS

Description:

Restores the registers specified by the operand after a SAVE (see extended

instruction). This is often used after a return from a subroutine.

Example:

If registers HL, DE, BC are saved (See SAVE),

RSTR

restores them to their original values.

Expansion: RSTR

POP HL

POP DE

POP BC

Expansion: RSTR 4

POP HL

POP DE

POP BC

POP AF

Expansion: 1RSTR I

POP HL

POP DE

POP BC

POP AF

POP IY

POP IX

Expansion: RSTR P

POP HL

POP DE

POP BC

POP AF

POP IY

POP IX

EXX
POP HL

POP DE

POP BC

EXX

Expansion: RSTR A

POP HL

POP DE

POP BC

POP AF

POP IY

POP IX

319



MODEL ID/4 ALDS

tLAA

POP HL

POP DE

POP BC

E A A

EX AF »AF'

POP AF

EX AF»AF'

SAVE operand

Mnemonic: SAVE Operands: n where n =
none

4

I

saves HL,DE,BC
saves HL,DE,BC
AF
saves HL,DE,BC,
AFJX.IY
saves HL,DE,BC
af,ix,iy,hl'

de;bc
saves HL,DE,BC,
AF,IX,IY,HI4

DE',BC',AF'

Description:

Copies the contents of the registers specified by thes3Soperand. This is useful

before executing a subroutine. The registers are restored with RSTR (see

extended instruction).

Example:

SAME

saves the contents of registers HL, DE, BC, to free them for use, then executes a

SAVE.

Expansion: SAVE

PUSH BC

PUSH DE

PUSH HL

Expansion: SAVE 4

PUSH AF

PUSH BC

PUSH DE

PUSH HL

320



EXTENDED Z80 INSTRUCTIONS

Expansion: SAVE I

PUSH IX

PUSH IY

PUSH AF

PUSH BC

PUSH DE

PUSH HL

Expansion: SAVE P

EXX

PUSH BC

PUSH DE

PUSH HL

EXX

PUSH IX

PUSH IY

PUSH AF

PUSH BC

PUSH DE

PUSH HL

Expansion: SAVE A

EX AFtAF'
PUSH AF

EX AF.AF'

EXX

PUSH BC

PUSH DE

PUSH HL

EXX

PUSH IX

PUSH IY

PUSH AF

PUSH BC

PUSH DE

PUSH HL

SVC operand Supervisory Call

Mnemonic: SVC Operands: n

Description:

Performs the supervisory call specified by n.

321



MODEL 111/4 ALDS

Expansion:

Model 4:

LD A m
RST 28H

Model III:

PUSH BC

PUSH DE

PUSH HL

CALL n

POP HL

POP DE

POP BC

322







ERROR MESSAGES

lection in
Error Messages

323





ERROR MESSAGES

Error Messages

Editor Error Messages

Bad File Format

The file is not a type ALEDIT can load, either fixed LRL 1 or Variable, and with

record length not greater than 256 bytes.

Bad Filename Format

The filename is too long or incorrectly formatted on a load or a write command.

Bad Parameters

The ASCII line number converted to hexadecimal is greater than 65535 decimal

(for line number request).

The change string is zero or the length of the line to be changed is zero (for

Change command).

Buffer Full

There is no more room in the edit buffer. Program returns from any mode back to

the command mode. Note that the edit buffer is about 4K smaller if DO, HOST,
COMM, SPOOL, DEBUG or ALBUG are on.

Line Length Too Long, Truncating Line

You are loading a file that has lines longer than 78 characters.

Line Number Tbo Large

The line number is larger than the last line number in the file.

The editor does not recognize your command. Re-type it.

No Text

The edit buffer is empty, the only commands which are effective are:

K » L f Y , I . > J> 5

Occurrence Too Large

In the Find and Change commands the occurrence is greater than 255.

325



MODEL 111/4 ALDS

Search ARG Too Long

The string you want to search for is longer than 37 characters.

Syntax Error

The command is improperly specified.

Total Line Length Too Long

The new line created by a Change command is greater than the acceptable Line

Length.

If the Editor returns an error code, it is a TRSDOS error message. You can

identify it, by simply typing in the error number. For example, at TRSDOS
READY type:

ERROR IS (INTER)

or at the Editor command mode, type:

S ERROR 19 (INTED

and your computer answers you with the correct identification:

INVALID FILE NAME

You can do this any time your computer identifies an error which you are not

aware of.

Hit Any Key To Continue

If there is an error in the load or write routines, the Editor waits for the user to

read the entire error message.

326



ERROR MESSAGES

Assembler Error Codes

Code Meaning

A Arithmetic Overflow— result of a multiplication is outside

the range of - 65536 - + 65535

B Balance Error of Brackets

C Condition Error

ELSE outside an IF . . . ENDIF pair

Unterminated IF

ENDIF without matching IF

Macro defined after a macro was expanded

D Macro Definition Error

ENDM outside a macro definition

Macro not terminated when END statement was reached.

Parameter substitution (i.e. "#9") specified in the body of

the macro for a parameter not listed in the heading.

Macro body too long.

E Missing END statement

Missing ENDM statement

F Include files nested too deeply

1 Illegal character

Control character in source file.

L Maximum Line Length Exceeded. The limit is 254

characters a line

M Multiple Definition of a Symbol

This includes defining a symbol and declaring it EXTRN

Stack Overflow— expression too complicated

P Phase Error— Symbol appears or changes value after

Pass 1. This is often caused by using symbols in the

operand field of EQU, DEFS, or ORG before those

symbols are defined.

R Range Error in Relative Addressing.

Use a JP instead of JR, or rearrange code.

327



MODEL HI/4 ALDS

Code Meaning

Syntax Error

Illegal operation code

Too few, too many, or the wrong type of operands

Use of an external symbol or relocatable expression

where it is not allowed

Use of an instruction generating object code within an
ISECT

Use of an instruction before a PSECT
Instruction illegal after a LINK directive

T Mixing of absolute and relocatable PSECTs

U Undefined Symbol

V Illegal Value

Value too large to fit in a single byte ( - 256 - + 255
permitted)

Illegal combination of relocatable or external symbols

W Reserved word used as a symbol. Do not use a register

name or branch condition as a symbol

328



ERROR MESSAGES

Linker Error Messages

Symbol Table Overflow

There are too many external symbols to fit in memory. Reduce the number of

symbols declared public or global by assembling several modules together, or

using shorter names.

Multiply Defined Entry Symbol

The indicated symbol has been defined more than once (and declared public and/

or global). The two or more definitions may be in the same object file (the

assembler will output an 'M' error) or in different files. Note that using the same

name for a public or global symbol in one file and for a local symbol (not

declared PUBLIC, GLOBAL or EXTRN) in another file is permitted.

Address Different from Pass 1

The indicated symbol changed values between Pass 1 and Pass 2. Normally this

error is preceeded by a "Multiply Defined Entry Symbol" message and the cause

is the same. This error may also be caused by changing disks in the middle of a

link, inserting a disk with a different version of the same object file in a lower

drive number during the link, or linking corrupted object files.

The two addresses are the values from Pass 1 and Pass 2 respectively. These

values and the PSECT map may be used to locate the modules containing the

definitions, assuming that the value falls within the code area of the module.

Undefined External Symbol

The indicated symbol is declared EXTRN in at least one module and is never

defined and declared PUBLIC or GLOBAL in any module included in the link.

This is usually caused by failing to declare a label PUBLIC, omitting files that

should have been included in the link, or linking incomplete programs to test just

the implemented parts. In the last case, if the instructions referring to the

undefined symbol are never used, the error may be ignored.

Missing External Transfer Address

The main program ends with NOEND, or the object file has been corrupted. The

main program should terminate with END and a transfer address.

Illegal Addressing

The load address being computed by the linker wraps around from FFFFH to

0000H. Reduce the size of your program or use a lower load address.

329



MODEL HI/4 ALDS

Invalid Parameter

The LINKs are nested too deeply; an illegal character was specified in a filename

on the command line, LINK, or GLINK instruction, the source filename is

missing, or errors were found in the $ = XXXX parameter.

330



ERROR MESSAGES

Linker TRSDOS Errors

File Not Found

Object file not found.

Note: Default extension is /REL.

Attempt to Use a Non-Program File As a Program

The file used is incomplete or in NOLOAD format, or is not an object file.

Open Attempt For a File Already Open

Another file, directly or indirectly, attempted to include itself with a LINK
directive.

Note: Default extension is /REL. Also, other errors may include: disk read/write

errors, password protection, illegal disk change, disk full etc.

331









APPENDIX

Appendix A /Undocumented Z80 Instructions

* Note: These instructions are not documented by ZILOG. Radio Shack *

* does not guarantee that they will work on all processors. You should test *

* them in your own environment to ensure their validity. *

333





APPENDIX

Shift/Load Instructions

# #
* Note: These instructions are not documented by ZILOG. Radio Shack *

* does not guarantee that they will work on all processors. You should test *

* them in your own environment to ensure their validity. *

In the following list, the undocumented instructions on the left perform the same
function as the corresponding instructions on the right, except that the memory
location data is shifted or rotated and stored in both the register and the memory
location.

RLCLD r,m

RLLD r,m

RRCLD r,m

RRLLD r,m

SLALD r,m

SLOLD r,m

SRALD r,m

SRLLD r,m

RLC m
RL m
RRC m
RRL m
SLA m
SLO m
SRA m
SRL m

r is one of the following registers:

m is one of the following:

A,B,C,D,E,H, or L
(IX + d)or(IY + d)

The operation of the condition code bits and instruction timing is believed to be

the same as for the corresponding shift or rotate instruction.

Object Code:

i i i

1 1 X
i i i

1

1 1 1

I I

1

I

DDfor(IX + d)

FDfor(IY + d)

i I I

1 1

i i i

1

i

1

1

1 1

i

CB

l l I

d d d
i i i

1

d
1

d d
l

d d
i

I 1 1

n
i i i

1

n
1

n r

I

r r
i

n = RLCLD
RLLD
RRCLD
RRLLP
SLALD
SLOLD
SRALD
SRLLD

2

1

3

4

6

5

7

r -= 111A
000B
001 C
010D
01 IE
100 H
101 L

335



MODEL HI/4 ALDS

Bit Set/Load And Bit Reset/Load Instructions

* #
* Note: These instructions are not documented by ZILOG, Radio Shack *

* does not guarantee that they will work on all processors. You should test *

* them in your own environment to ensure their validity. *

*************************************************************

In the following list, the undocumented instructions on the left perform the same

function as the corresponding instructions on the right except that the resulting

data after the bit operation is loaded in both the memory location and the

register.

RESLD
SETLD

r,n,m

r,n,m

RES
SET

n,m

n,m

r is one of the following registers: A,B,C,D,E,H or l
n is a bit number with value between and 7, inclusive

m is either (IX + d) or (IY + d)

Object Code:

1 1 X 1 1 1 1

1 1 1 1 1

d d d d d d d d

X X n n n r r r

DDfor(IX + d)

FDfor(IY + d)

CB

x = 10 RESLD n = bit number r = 1 1 1 A
1 1 SETLD 000 B

001 C
010 D
011 E
100 H
101 L

336



APPENDIX

Index Register Half Instructions

i *
* Note: These instructions are not documented by ZILOG. Radio Shack *

* does not guarantee that they will work on all processors. You should test *

* them in your own environment to ensure their validity. *

####***###**##***#***##*****#****#*#*****#**##**#*****##*#**

The upper and lower bytes of the index registers IX and IY may be manipulated

individually. To use these instructions, the following register names are used:

XH High Byte of IX

XL Low Byte of IX
YH High Byte of IY
YL Low Byte of IY

The object code generated has a prefix byte of DD or FD (for the halves of the

IX or IY register) and otherwise is the same as the corresponding instructions

with the H or L register used in place of the high or low byte of an index

register.

The XH, XL, YH and YL registers may be used in the following instructions:

ADC A,XH
ADD A,XH
AND XH
CP XH
DEC XH
INC XH

LD r,XH
LD XH,r
LD XH,n
OR XH
SBC A,XH
SUB XH
XOR XH

r = A, B,C, D, orE

337



MODEL 1114 ALDS

Appendix B/ALDS Object Code Format

Each record is a variable number of bytes, packed consecutively in an LRL 256
file. Records may span sector boundaries. The file is terminated by a record

with an 02 or 03 header. For further information, see the Model III or Model 4
Owner's Manual

.

Object Code:

HEADER LENGTH
(1) (1)

01 n + 2
Load address

(2)

Data bytes

(n)

Absolute Entry*

02 02
Absolute Entry

Point (2)

Relocatable Entry *

02 03
Relocatable Entry

Offset (2)

Load— only*

03 02
(2)

External entry*

03 0D
FLAGS
01000011

Object

(2)

External

Name (10)

Relocatable Object Data

04 03
FLAGS
00001 xxx

Object

(2)

External Object Data

04 0D FLAGS Object

010011xx
1 (2)

External

Name (10)

*One of These Records Terminates Each Object File

338



APPENDIX

Public Label w/Object

04 0F
FLAGS
100xlxxx

Public Label

Offset (2)

Object

(2)

Public Label Name
(10)

Public Label w/o Object

04 0F
FLAGS
100x0011

Public Label

Offset (2)

(2)

Public Label Name
(10)

Public Label w/External

04 19
FLAGS
110xllxx

Public Label

Offset (2)

Object

(2)

Public Label Offset

(2)

External Name
(10)

LINK

09 n+1 FLAGS
00100000

File Name (n)

GLINK

09 n+1 FLAGS
00110000

File Name (n)

Numbers given under flags are in binary. X = varies depending on particular

situation.

FLAGS for 03, 04, 07 Records

= No public name is present (bit 4 = 0)

1 = Public name is present

= External name is not present

1 = External name is present (bits 3, 2, = 1, 1)

Reserved

339



MODEL ill/4 ALDS

= Address of public label is relocatable or not present, or this is an

absolute file

1 = Address of public label in a relocatable file is absolute.

(bit 7=1)

= No object present (bits, 1,0 = 0, 1, 1)

1 = Object code is present

= Object is absolute or not present

1 = Object is relocatable (bit 3 = 1)

00 = Illegal combination

01 = Use only MSB of result (bit 3 = 1)

10 = Use only LSB of result (bit 3 = 1)

11 = Use both LSB and MSB of result (if bit 3 = 1) or object not

present (if bit 3 = 0)

If object is absolute (bit 2 = 0) Result = object

If object is relocatable (bit 2=1)
Result = object + PSECTS origin (if bit 6 = 0)

or Result = object + External name value (if bit 6 = 1)

FLAGS for 05/06 Records

1 = File contains relocatable object

1 = file contains externals

= Reserved

i = File contains public records

1 = File contains a link or glink file name

Reserved

Reserved

Reserved

340



APPENDIX

Appendix C/Numeric List of Instruction Set

Following is a listing of object codes in numerical order in column two followed by the mnemonic or source

statement in column four.

LOC OBJ CODE STMT SOURCE STATEMENT LOC OBJ CODE STMT SOURCE STATEMENT
0000 00 1 NOP 004F 3620 55 LD (HL),N

0001 018405 2 LDBC.NN 0051 37 56 SCF
0004 02 3 LD (BC),A 0052 382E 57 JR C.DIS

0005 03 4 INCBC 0054 39 5k ADD HL.SP
0006 04 5 INCB 0055 3A8405 54 LD A.(NN)

0007 05 6 DECB 0058 3B 60 DECSP
0008 0620 7 LD B,N 0059 3C 61 INC A
000A 07 8 RLCA 005A 3D 62 DEC A
O00B 08 9 EX AF.AF 005B 3E20 63 LD A,N
oooc 09 10 ADD HL,BC 005D 3F 64 CCF
000D 0A 11 LDA,(BC) 005E 40 65 LDB.B
OO0E 0B 12 DECBC 005F 41 66 LDB.C
OO0F OC 13 INCC 0060 42 ft? LDB.D
0010 0D 14 DECC 0061 43 68 LDB.E
0011 OE20 15 LDC.N 0062 44 69 LDB.H
0013 OF 16 RRCA 0063 45 70 LDB.L
0014 102E 17 DJNZDIS 0064 46 71 LD B,(HL)

0016 118405 18 LD DE.NN 0065 47 72 LDB.A
0019 12 19 LD (DE),A 0066 48 73 LDC.B
001A 13 20 1NCDE 0067 49 74 LDCC
001B 14 21 INCD 0068 4A 75 LDCD
001C 15 22 DECD 0069 4B 76 LD C.E

001D 1620 23 LDD.N 006A 4C 77 LDC.H
001F 17 24 RLA 006B 4D 78 LDC.L
0020 182E 25 JRDIS 006C 4E 79 LD C(HL)
0022 19 26 ADD HL.DE 006D 4F m LDC.A
0023 1A 27 LD A,(DE) 006E 50 Si LDD,B
0024 IB 28 DECDE 006F 51 82 LDD.C
0025 1C 29 INCE 0070 52 8< LDD.D
0026 ID 30 DECE 0071 53 U LDD,E
0027 1E20 31 LDE.N 0072 54 H5 LDD.H
0029 IF 32 RRA 0073 55 86 LDD,L
002A 202E 33 JR NZ.DIS 0074 56 87 LD D,(HL)

002C 218405 34 LDHL.NN 0075 57 '

88 LD D,A
002F 228405 35 LD (NN),HL 0076 58 89 LDE.B
0032 23 36 INCHL 0077 59 90 LDE.C
0033 24 37 INCH 0078 5A 91 LDEJD
0034 25 38 DECH 0079 5B 92 LDE,E
0035 2620 39 LDH.N 007A 5C 93 LDE.H
0037 27 40 DAA 007B 5D 04 LDE.L
0038 282E 41 JR Z.DIS 007C 5E 95 LD E.fHL)

003A 29 42 ADDHL.HL 007D 5F 96 LDE,A
003B 2A8405 43 LD HL,(NN) 007E 60 97 LDH,B
003E 2B 44 DECHL 007F 6! W LDH.C
003F 2C 45 INCL 0080 62 99 LDH.D
0040 2D 46 DECL 008! 63 !00 LDH.E
0041 2E20 47 LDL.N 0082 64 101 LDH.H
0043 2F 48 CPL 0083 65 [02 LDH.L
0044 302E 49 JRNC.DIS 0084 66 i03 LD H,(HL)

0046 318405 50 LD SP.NN 0085 67 m LDH,A
0049 328405 51 LD(NN),A 0086 68 105 LDL.B
004C 33 52 INCSP 0087 69 106 LDL.C
004D 34 53 INC(HL) 0088 6A 107 LDL.D
004E 35 54 DEC(HL) 0089 6B 108 LDL.E

341



MODEL HI/4 ALDS

LOC OBJ CODE STMT SOURCE STATEMENT LOC OBJ CODE STMT SOURCE STATEMENT
Q08A 6C 109 LDL.H 0OC9 AB 172 XORE
008B 6D 110 LDLX OOCA AC 173 XORH
008C 6E 111 LD L,(HL) OOCB AD 174 XORL
008D 6F 112 LDL.A OOCC AH 175 XOR(HL)

008E 70 113 LD (HL),B OOCD AF 176 XORA
008F 71 114 LD (HL),C OOCE BO 177 ORB
0090 72 115 LD (HL),D OOCF Bl 178 ORC
0091 73 116 LD (HL),E OODO B2 179 ORD
0092 74 117 LD(HL),H 00D1 B3 180 ORE
0093 75 118 LD(HL),L 0002 B4 181 ORH
0094 76 119 HALT 00D3 B5 182 ORL
0095 77 120 LD (HL),A 00D4 B6 183 OR (HL)

0096 78 121 LDA.B 00D5 B7 184 OR A
0097 79 122 LDA,C 00D6 B8 185 CPB
0098 7A 123 LDA.D O0D7 B9 186 CPC
0099 7B 124 LDAJE O0D8 BA 187 CPD
009A 7C 125 LDA.H 00D9 BB 188 CPE
009B 7D 126 LDA.L OODA BC 189 CPH
009C 7E 127 LD A,(HL) OODB BD 190 CPL
009D 7F 128 LDA.A OODC BE 191 CP(HL)

009E 80 129 ADD A,B OODD BF 192 CPA
009F 81 130 ADDA.C OODE CO 193 RETNZ
00A0 82 131 ADD A,D OODF CI 194 POPBC
00A

1

83 132 ADD A,E OOEO C28405 195 JPNZ.NN

00A2 84 133 ADD A,H 00E3 C38405 196 JPNN

00A3 85 134 ADDA.L O0E6 C48405 197 CALLNZ.NN
O0A4 86 135 ADD A,(HL) 00E9 C5 198 PUSH BC

00A5 87 136 ADDA.A OOEA C620 199 ADD A,N

00A6 88 137 ADCA.B OOEC C7 200 RSTO

00A7 89 138 ADCA.C OOED C8 201 RETZ
00A8 8A 139 ADCA.D OOEE C9 202 RET

00A9 8B 140 ADCA.E OOEF CA8405 203 JPZ.NN

0OAA 8C 141 ADCA.H 00F2 CC8405 204 CALLZ.NN
00AB 8D 142 ADCA.L 00F5 CD8405 205 CALLNN
OOAC 8E 143 ADC A,(HL) 00F8 CE20 206 ADCA,N
OOAD 8F 144 ADCA.A OOFA CF 207 RST8

OOAE 90 145 SUBB OOFB DO 208 RETNC
OOAF 91 146 SUBC OOFC Dl 209 POPDE
OOBO 92 147 SUBD OOFD D28405 210 JP NC.NN

00B1 93 148 SUBE 0100 D320 211 OUT N,A

0OB2 94 149 SUBH 0102 D48405 212 CALLNC.NN

00B3 95 150 SUBL 0105 D5 213 PUSHDE
00B4 96 151 SUB (HL) 0106 D620 214 SUBN
00B5 97 152 SUB A 0108 D7 215 RST 10H

0OB6 98 153 SBC A,B 0109 D8 216 RETC
00B7 99 154 SBC A,C 010A D9 217 EXX

0OB8 9A 155 SBC A,D 010B DA8405 218 JPC.NN

0OB9 9B 156 SBCA,E 010E DB20 219 IN A,N

OOBA 9C 157 SBC A,H 0110 DC8405 220 CALLC.NN

OOBB 9D 158 SBC A,L 0113 DE20 221 SBC A,N

OOBC 9E 159 SBC A,(HL) 0115 DF 222 RST 18H

OOBD 9F 160 SBC A,

A

0116 EO 223 RETPO

OOBE AO 161 ANDB 0117 El 224 POP HL

OOBF Al 162 ANDC 0118 E28405 225 JP PO.NN

OOCO A2 163 ANDD 01 IB E3 226 EX (SP),HL

00C1 A3 164 ANDE one E48405 227 CALLPO.NN

00C2 A4 165 ANDH 01 IF E5 228 PUSH HL

00C3 A5 166 ANDL 0120 E620 229 ANDN
00C4 A6 167 AND (HL) 0122 E7 230 RST 20H

0OC5 A7 168 AND A 0123 E8 231 RETPE

00C6 A8 169 XORB 0124 F.9 232 JP(HL)

0OC7 A9 170 XORC 0125 EA8405 233 JP PE.NN

0OC8 AA 171 XORD 0128 EB 234 EX DE.HL

342



APPENDIX

LOC OBJ CODE STMT SOURCE STATEMENT LOC OBJ CODE STMT SOURCE STATEMENT
0129 EC8405 235 CALLPE.NN 01A2 CB2D 298 SRAL
012C EE20 236 XORN 01 A4 CB2E 299 SRA (HL)

01 2E EF 237 RST28H 01A6 CB2F 3(j(J SRAA
01 2F FO 23S RETP 01 A8 CB38 301 SRLB
0130 Fl 239 POPAF 01AA CB39 302 SRLC
0131 F28405 240 JPP.NN 01AC CB3A 303 SRLD
0134 F3 241 DI 01AE CB3B 304 SRLE
0135 F48405 242 CALLP.NN 01B0 CB3C 305 SRLH
0138 F5 243 PUSH AF 01B2 CB3D 306 SRLL
0139 F620 244 ORN 01B4 CB3E 307 SRL (HLS

013B F7 245 RST 30H 01B6 CB3F 308 SRLA
013C F8 246 RETM 01B8 CB40 309 BITO.B

01 3D F9 247 LD SP.HL 01BA CB41 310 BIT 0,C

013E FA8405 248 JP M,NN 01BC CB42 311 BITO.D

0141 FB 249 EI 01BE CB43 312 BIT 0,E

0142 FC8405 250 CALLM.NN 01C0 CB44 313 BITO.H

0145 FE20 251 CPN 01C2 CB45 314 BIT0.L

0147 FF 252 RST 38H 01C4 CB46 315 BITO.(HL)

0148 CBOO 253 RLCB 01C6 CB47 316 BITO.A

014A CB01 254 RLCC 01C8 CB48 317 BITl.B

014C CB02 255 RLCD 01CA CB49 318 BIT1.C

014E CB03 256 RLCE 01CC CB4A 319 BITIXJ

0150 CB04 257 RLCH 01CE CB4B 320 BJTl.E

0152 CB05 258 RLCL 01D0 CB4C 321 BIT 1,H

0154 CB06 259 RLC (HL) 01D2 CB4D 322 BJTl.L

0156 CB07 260 RLCA 01D4 CB4E 323 BIT1,(HL)

0158 CB08 261 RRCB 01D6 CB4F 324 BIT 1,A

015A CB09 262 RRCC 01D8 CB50 325 BIT 2,B

015C CBOA 263 RRCD 01DA CB51 326 BIT 2,C

015E CBOB 264 RRCE 01DC CB52 327 BIT2.D

0160 CBOC 265 RRCH 01DE CB53 328 BIT 2,E

0162 CBOD 266 RRCL O1E0 CB54 329 BIT 2,H

0164 CBOE 267 RRC (HL) 01 E2 CB55 330 BIT2.L

0166 CBOF 268 RRCA 01E4 CB56 331 BIT 2,(HL)

0168 CB10 269 RLB 01E6 CB57 332 BIT 2,A
016A CB11 270 RLC 01E8 CB58 333 BIT 3,B

016C CB12 271 RLD 01EA CB59 334 BIT 3,C

016E CB13 272 RLE 01EC CB5A 335 BIT 3,D

0170 CB14 273 RLH 01EE CB5B 336 BIT3,E

0172 CB15 274 RLL OIFO CB5C 337 BIT3,H

0174 CB16 275 RL(HL) 01F2 CB5D 338 BIT3.L

0176 CB17 276 RLA 01F4 CB5E 339 BIT3,(HL)

0178 CB18 277 RRB 01F6 CB5F 340 BIT 3,A

017A CB19 278 RRC 01F8 CB60 341 BIT4.B

one CB1A 279 RRD 01FA CB61 342 BIT4,C

017E CB1B 280 RRE 01FC CB62 343 BIT4,D

0180 CB1C 281 RRH 01FE CB63 344 BIT4,E

0182 CB1D 282 RRL 0200 CB64 345 BIT4,H

0184 CB1E 283 RR(HL) 0202 CB65 346 BIT4,L

0186 CB1F 284 RRA 0204 CB66 347 BrT4,(HL)

0188 CB20 285 SLAB 0206 CB67 348 B1T4.A

018A CB21 286 SLAC 0208 CB68 349 BIT 5,B

018C CB22 287 SLAD 020A CB69 350 BIT5.C

018E CB23 288 SLAE 020C CB6A 351 BIT5.D

0190 CB24 289 SLAH 020E CB6B 352 BIT5.E

0192 CB25 290 SLAL 0210 CB6C 353 BIT5.H

0194 CB26 291 SLA (HL) 0212 CB6D 354 BIT5JL

0196 CB27 292 SLA A 0214 CB6E 355 BIT5,(HL)

0198 CB28 293 SRAB 0216 CB6F 356 BIT 5,A

019A CB29 294 SRAC 0218 CB70 357 BIT 6,B

019C CB2A 295 SRAD 021A CB71 358 BIT 6,C

OWE CB2B 296 SRAE 021C CB72 359 BIT6,D

01A0 CB2C 297 SRAH 021E CB73 360 BIT6.E

343



MODEL lil/4 ALDS

LOC OBJ CODE STMT SOURCE STATEMENT LOC OBJ CODE STMT SOURCE STATEMENT
0220 CB74 361 B1T6,H 029E CBB3 424 RES6.E
0222 CB75 362 BIT6,L 02A0 CBB4 425 RES6,H
0224 CB76 363 Brr6,(HL) 02A2 CBB5 426 RES6.L
0226 CB77 364 BU6.A 02A4 CBB6 427 RES6,(HL)

0228 CB78 365 BIT7,B 02A6 CBB7 42R RES6.A
022A CB79 366 BIT7,C 02A8 CBBS 429 RES7.B
022C CB7A 367 BIT7,D 02AA CBB9 430 RES7.C
022E CB7B 368 BIT7,E 02AC CBBA 431 RES7.D
0230 CB7C 369 BIT7.H 02AE CBBB 432 RES 7,E

0232 CB7D 370 BIT7.L 0280 CBBC 433 RES7.H
0234 CB7E 371 BIT7,(HL) 0282 CBBD 434 RES7.L
0236 CB7F 372 B1T7.A 0284 CBBE 435 RES 7,(HL)

0238 CB80 373 RESQ.B 0286 CBBF 436 RES7.A
023A CB81 374 RES0.C 0288 CBC0 437 SET0.B

023C CB82 375 RES0.D 02BA CBC1 438 SETO.C
023E CB83 376 RES 0,E 02BC CBC2 439 SETO.D
0240 CB84 377 RES0.H 02BE CBC3 440 SET0,E
0242 CB85 378 RES0.L 02C0 CBC4 441 SETO.H
0244 CB86 379 RES0,(HL) 02C2 CBC5 442 SETO.L
0246 CB87 380 RES0.A 02C4 CBC6 443 SETO.(HL)

0248 CB88 381 RES1.B 02C6 CBC7 444 SET 0,A

024A CB89 382 RES1.C 02C8 CBC8 445 SET1.B

024C CB8A 383 RES1.D 02CA CBC9 446 SET1.C
024E CB8B 384 RES1,E 02CC CBCA 447 SET1.D
0250 CB8C 385 RES1,H 02CE CBCB 448 SET1.E

0252 CB8D 386 RES1.L 02D0 CBCC 449 SET1.H
0254 CB8E 387 RES1,(HL) 02D2 CBCD 450 SET1.L

0256 CB8F 388 RES 1,A 02D4 CBCE 451 SETl.(HL)

0258 CB90 389 RES2.B 02D6 CBCF 452 SET1.A

025A CB91 390 RES2.C 02D8 CBDO 453 SET2.B

025C CB92 391 RES2.D 02DA CBD1 454 SET2.C
025E CB93 392 RES2,E 02DC CBD2 455 SET 2,D

0260 CB94 393 RES2.H 02DE CBD3 456 SET2,E

0262 CB95 394 RES2.L 02E0 CBD4 457 SET 2,H

0264 CB96 395 RES2,(HL) 02E2 CBD5 458 SET 2,L

0266 CB97 396 RES2,A 02E4 CBD6 459 SET2,(HL)

0268 CB98 397 RES 3,B 02E6 CBD7 460 SET2.A

026A CB99 398 RES3.C 02E8 CBD8 461 SET3.B

026C CB9A 399 RES3,D 02EA CBD9 462 SET3.C

026E CB9B 400 RES3.E 02EC CBDA 463 SET3.D
0270 CB9C 401 RES3,H 02EE CBDB 464 SET 3,E

0272 CB9D 402 RES3.L 02F0 CBDC 465 SET3,H
0274 CB9E 403 RES 3,(HL) 02F2 CBDD 466 SET 3,L

0276 CB9F 404 RES3.A 02F4 CBDE 467 SET 3,(HL)

0278 CBAO 405 RES4,B 02F6 CBDF 468 SET 3,A

027A CBA1 406 RES4.C 02F8 CBEO 469 SET4.B

027C CBA2 407 RES4.D 02FA CBE1 470 SET4.C

027E CBA3 408 RES4.E 02FC CBE2 471 SET4.D

02S0 CBA4 409 RES4.H 02FE CBE3 472 SET4.E

0282 CBA5 410 RES4.L 0300 CBE4 473 SET4.H

0284 CBA6 411 RES 4,(HL) 0302 CBE5 474 SET4.L

0286 CBA7 412 RES4.A 0304 CBE6 475 SET4,(HL)

0288 CBA8 413 RES5,B 0306 CBE7 476 SET4.A

028A CBA9 414 RES5.C 0308 CBE8 477 SET 5,B

028C CBAA 415 RES5.D 030A CBE9 478 SET 5,C

028E CBAB 416 RES5.E 030C CBEA 479 SET5.D

0290 CBAC 417 RES5.H 030E CBEB 480 SET5.E

0292 CBAD 418 RES5.L 0310 CBEC 48

1

SET5.H

0294 CBAE 419 RES5,(HL) 0312 CBED 482 SET5.L

0296 CBAF 420 RES5.A 0314 CBEE 483 SET 5,(HL)

0298 CBB0 421 RES6.B 0316 CBEF 484 SET 5,A

029A CBB1 422 RES6.C 0318 CBFO 485 SET 6,B

029C CBB2 423 RES6.D 031A CBF1 486 SET 6,C

344



APPENDIX

toe OBJ CODE STMT SOURCE STATEMENT LOC OBJ CODE STMT SOURCE STATEMENT
031C CBF2 487 SET6.D 03CE DDCB055E 550 B1T3,(IX + IND)

031E CBF3 488 SET 6,E 03D2 DDCB0566 551 BIT4,(IX + fND)

0320 CBF4 489 SET6.H 03D6 DDCB056E 552 BIT5.CIX + IND)

0322 CBF5 490 SET6JL 03DA DDCB0576 553 BIT6,(1X + IND)

0324 CBF6 491 SET6,(HL) 03DE DDCB057E 554 BIT7,aX + IND)

0326 CBF7 492 SET6.A 03E2 DDCB0586 555 RES0.CIX + IND)

032« CBF8 m SET 7,B 03E6 DDCB058E 556 RESUIX + IND)

032A CBF9 494 SET7.C 03EA DDCB0596 557 RES2,(IX + IND)

032C CBFA 495 SET 7,D 03EE DDCB059E 558 RES3.0X + IND)

032E CBFB 496 SET7.E 03F2 DDCB05A6 559 RES4,(IX + IND)

0330 CBFC 497 SET7.H 03F6 DDCB05AE 560 RES5,aX + IND)

0332 CBFD 498 SET7,L 03FA DDCB05B6 561 RES6,{IX + 1ND)

0334 CBFE 499 SET7,(HL) 03FE DDCB05BE 562 RES7,{IX + IND)

0336 CBFF 500 SET7.A 0402 DDCB05C6 563 SET0,(IX + IND)

0338 DD09 501 ADDIX.BC 0406 DDCB05CE 564 SET1,(IX + IND)

033A DD19 502 ADD IX.DE 040A DDCB05D6 565 SET2,(DC + IND)

033C DD218405 503 LD IX.NN 040E DDCB05DE 566 SET3,(IX + IND)

0340 DD228405 504 LD (NN),IX 0412 DDCB05E6 567 SET4,(IX + IND)

0344 DD23 505 INC IX 0416 DDCB05EE 568 SET5,(1X + IND)

0346 DD29 506 ADDIX.IX 041A DDCB05F6 569 SET6,(IX + IND)

0348 DD2A8405 507 LDIX,(NN) 041E DDCB05FE 570 SET7,(IX + IND)

034C DD2B 508 DECK 0422 ED40 571 INB,(C)

034E DD3405 509 INC(DC + IND) 0424 ED41 572 OUT (C),B

0351 DD3505 510 DEC(K + IND) 0426 ED42 573 SBCHL.BC
0354 DD360520 511 LD(IX + IND),N 0428 ED438405 574 LD (NN).BC

0358 DD39 512 ADD IX.SP 042C ED44 575 NEG
035A DD4605 513 LDB,(D( + IND) 042E EMS 576 RETN
035D DD4E05 514 LDC,(IX + IND) 0430 ED46 577 IM0
0360 DD5605 515 LDD,(IX + IND) 0432 ED47 578 LDI.A

0363 DD5E05 516 LDE,(IX + IND) 0434 ED48 579 IN C,(C)

0366 DD6605 517 LDH,(IX4-IND) 0436 ED49 580 OUT (C),C

0369 DD6E05 518 LDL,(IX + IND) 0438 ED4A 581 ADC HL,BC

036C DD7005 519 LD(IX + IND),B 043A ED4B8405 582 LD BC,(NN)

036F DD7105 520 LD(IX + IND),C 043E ED4D 583 RETI

0372 DD7205 521 LD(DC+ IND),D ED4F LDR.A
0375 DD7305 522 LD(TX + IND),E ED5F LDA,R
0378 DD7405 523 LD(IX + IND),H 0440 ED50 584 IN D,(C)

037B DD7505 524 LD(TX + IND),L 0442 ED51 585 OUT (C),D

037E DD7705 525 LD(IX + IND),A 0444 ED52 586 SBC HL.DE

0381 DD7E05 526 LDA,(DC + IND1 0446 ED538405 587 LD (NN),DE

0384 DD8605 527 ADDA,(TX + IND) 044A ED56 588 IMI

0387 DD8E05 528 ADCA,(IX + IND) 044C ED57 589 LDA.I

038A DD9605 529 SUB(IX + IND) 044E ED58 590 IN E,(C)

038D DD9E05 530 SBCA,(IX + IND) 0450 ED59 591 OUT(C),E

0390 DDA605 531 AND(TX + IND) 0452 ED5A 592 ADC HL.DE

0393 DDAE05 532 XOR(DC + IND) 0454 ED5B8405 593 LD DE,(NN)

0396 DDB605 533 ORaX + IND) 045A ED60 595 IN H,(C)

0399 DDBE05 534 CP(TX + IND) 045C ED61 596 OUT(C),H

039C DDE1 535 POP IX 045E ED62 597 SBC HL,HL

039E DDE3 536 EX (SP),IX 0460 ED67 598 RRD
03A0 DDES 537 PUSH IX 0462 ED68 599 IN L,{C)

03A2 DDE9 538 JP(IX) 0464 ED69 600 OUT(C),L

03A4 DDF9 539 LD SP.1X 0466 ED6A 601 ADC HL.HL

03A6 DDCB0506 540 RLC(IX + IND) 0468 ED6F 602 RLD
03AA DDCB050E 541 RRC(IX + IND) 046A ED72 603 SBC HL.SP

03AE DDCB0516 542 RL(IX + IND) 046C ED738405 604 LD(NN),SP

03B2 DDCB051E 543 RR(IX + IND) 0470 ED78 605 LNA,(C)

03B6 DDCB0526 544 SLA(DC + IND) 0472 ED79 606 OUT (C),A

03BA DDCB052E 545 SRA(IX + IND) 0474 ED7A 607 ADCHL.SP
03BE DDCB053E 546 SRL(IX + IND) 0476 ED7B8405 608 LD SP,(NN)

03C2 DDCB0546 547 BITO.aX + IND) 047A EDA0 609 LDI

03C6 DDCB054E 548 BIT1,(IX + IND) 047C EDA1 610 CPI

03CA DDCB0556 549 BIT2,(DC + IND) 047E EDA2 611 INI

345



MODEL HI/4 ALDS

LOC OBJ CODE STMT SOURCE STATEMENT
0480 EDA3 612 OUTI
0482 EDA8 613 LDD
0484 EDA9 614 CPD
0486 EDAA 615 IND
0488 EDAB 616 OUTD
(MSA EDBO 617 LDIR

048C EDB1 618 CPIR

048E EDB2 619 MR
0490 EDB3 620 OTIR
0492 EDB8 621 LDDR
0494 EDB9 622 CPDR
0496 EDBA 623 INDR
0498 EDBB 624 OTDR
049A FD09 625 ADDIY.BC
049C FD19 626 ADDIY.DE
049E FD218405 627 LDIY.NN
04A2 FD228405 628 LD (NN).IY

04A6 FD23 629 INCIY
04A8 FD29 630 ADD 1Y.IY

04AA FD2A8405 631 LD IY,(NN)

04AE FD2B 632 DECIY
04BO FD3405 633 INCCIY + IND)

04B3 FD3505 634 DEC(IY + IND)

04B6 FD360520 635 LD(IY + IND),N

04BA FD39 636 ADD IY,SP

04BC FD4605 637 LDB,(IY + IND)

04BF FD4E05 638 LDC,(rY+ IND)

04C2 FD5605 639 LDD,(IY + IND)

04C5 FD5E05 640 LDE,aY + IND)

04C8 FD6605 641 LDH,(IY+ IND)

04CB FD6E05 642 LDL,(IY + IND)

04CE FD7005 643 LD(IY+ IND),B

04D1 FD7105 644 LD(IY + IND),C

04D4 FD7205 645 LD(IY + IND),D

04D7 FD7305 646 LD(1Y + IND),E

04DA FD7405 647 LD(IY+ IND),H

04DD FD7505 648 LD(IY + IND),L

04E0 FD7705 649 LD{IY+ IND),A

04E3 FD7E05 650 LDA,(rY + IND)

04E6 FD8605 651 ADDA,(IY + IND)

04E9 FD8E05 652 ADCA,(IY + IND)

04EC FD9605 653 SUB(IY+ IND)

04EF FD9E05 654 SBCA,(IY+ IND)

04F2 FDA605 655 AND(IY + IND)

LOC OBJ CODE STMT SOURCE STATEMENT
04F5 FDAE05 656 XOR(TY+ IND)

04F8 FDB605 657 OROY + IND)

04FB FDBE05 658 CPOY + IND)

04FE FDE1 659 POPIY
0500 FDE3 660 EX (SP),IY

0502 FDE5 661 PUSHTY
0504 FDE9 662 JP(IY)

0506 FDF9 663 LDSP.IY
0508 FDCB0506 664 RLCOY + IND)

050C FDCB050E 665 RRC(IY + IND)

0510 FDCB0516 666 RL(IY + IND)

0514 FDCB051E 667 RR(IY + IND)

0518 FDCB0526 668 SLA0Y+ IND)

051C FDCB052E 669 SRA0Y + IND)

0520 FDCB053E 670 SRLaY + IND)

0524 FDCB0546 671 BIT0,(IY + IND)

0528 FDCB054E 672 BlTl,aY + IND)

052C FDCB0556 673 BIT2,(IY + IND)

0530 FDCB055E 674 BIT3,(IY+ IND)

0534 FDCB0566 675 BIT4,(IY + IND)

0538 FDCB056E 676 BIT5,(IY + IND)

053C FDCB0576 677 BIT6,(IY + IND)

0540 FDCB057E 678 Brr7,aY+iND)
0544 FDCB0586 679 RES0,aY + IND)

0548 FDCB058E 680 RES1,(IY + IND)

054C FDCB0596 681 RES2,(IY + IND)

0550 FDCB059E 682 RES3,aY + IND)

0554 FDCB05A6 683 RES4,(IY + IND)

0558 FDCB05AE 684 RES5,(IY + IND)

055C FDCB05B6 685 RES6,(1Y+ IND)

0560 FDCB05BE 686 RES7,(IY+ IND)

0564 FDCB05C6 687 SET0,(IY + IND)

0568 FDCB05CE 688 SET1,(IY + IND)

056C FDCB05D6 689 SET2,(IY + IND)

0570 FDCB05DE 690 SET3,(IY + IND)

0574 FDCB05E6 691 SET4,(IY + IND)

0578 FDCB05EE 692 SET5,(IY + IND)

057C FDCB05F6 693 SET6,(IY + iND)

0580 FDCB05FE 694 SET7,(IY+ IND)

0584 695 NN DEFS2
696 IND EQU5
697 M EQU 10H

698 N EQU 20H

699 DIS EQU 30H

700 END

346



APPENDIX

Appendix D/Alphabetic List of Instruction Set

Following is an alphabetical listing of the mnemonic or source statement in column four. The object code is

shown in column two.

LOC OBJ CODE STMT SOURCE STATEMENT LOC OBJ CODE STMT SOURCE STATEMEl*

0000 8E 1 ADC A,(HL) 005E CB43 57 BIT 0,E

0001 DD8E05 2 ADC A,(K + IND) 0060 CB44 58 BIT 0,H

0004 FD8E05 3 ADC A,(IY + IND) 0062 CB45 59 BIT 0,L

0007 8F 4 ADC A,A 0064 CB4E 60 BIT 1,(HL)

0008 88 5 ADC A,B 0066 DDCB054E 61 BIT 1,(IX + IND)

0009 89 6 ADC A,C 006A FDCB054E 62 BIT 1,(IY + IND)

000A 8A 7 ADC A,D 006E CB4F 63 BIT 1,A

000B 8B 8 ADC A,E 0070 CB48 64 BIT l.B

OOOC 8C 9 ADC A,H 0072 CB49 65 BIT 1,C

000D 8D 10 ADC A,L 0074 CB4A 66 BIT l.D

O0OE CE20 11 ADC A,N 0076 CB4B 67 BIT l,E

0010 ED4A 12 ADC HL.BC 0078 CB4C 68 BIT 1,H

0012 ED5A 13 ADC HL.DE 007A CB4D 69 BIT 1,L

0014 ED6A 14 ADC HL.HL 007C CB56 70 BIT 2,(HL)

0016 ED7A 15 ADC HL.SP 007E DDCB0556 71 BIT 2,(IX + IND)

0018 86 16 ADD A,(HL) 0082 FDCB0556 72 BIT 2,(IY + IND)

0019 DD8605 17 ADD A,(IX + IND) 0086 CB57 73 BIT 2,A

001C FD8605 18 ADD A,(IY + IND) 0088 CB50 74 BIT 2.B

001F 87 19 ADD A,A 008A CB51 75 BIT 2,C

0020 80 20 ADD A,B 008C CB52 76 BIT 2,D

0021 81 21 ADD A,C 008E CB53 77 BIT 2,E

0022 82 22 ADD A,D 0090 CB54 78 BIT 2,H

0023 83 23 ADD A,E 0092 CB55 79 BIT 2,L

0024 84 24 ADD A,H 0094 CB5E 80 BIT 3,(HL)

0025 85 25 ADD A,L 0096 DDCB055E 81 BIT 3,(IX + IND)

0026 C620 26 ADD A,N 009A FDCB055E 82 BIT 3,(IY+IND)

0028 09 27 ADD HL.BC 009E CB5F 83 BIT 3,A

0029 19 28 ADD HL.DE 00A0 CB58 84 BIT 3,B

002A 29 29 ADD HL.HL 00A2 CB59 85 BIT 3,C

002B 39 30 ADD HL.SP 00A4 CB5A 86 BIT 3,D

002C DD09 31 ADD DC.BC 0OA6 CB5B 87 BIT 3,E

002E DD19 32 ADD K,DE 0OA8 CB5C 88 BIT 3,H

0030 DD29 33 ADD IX,DC 0OAA CB5D 89 BIT 3,L

0032 DD39 34 ADD DC,SP 00AC CB66 90 BIT 4,(HL)

0034 FD09 35 ADD IY.BC O0AE DDCB0566 91 BIT 4,(IX + IND)

0036 FD19 36 ADD IY.DE 00B2 FDCB0566 92 BIT 4,(IY + IND)

0038 FD29 37 ADD IY,IY 00B6 CB67 93 BIT 4,A

003A FD39 38 ADD IY.SP 00B8 CB60 94 BIT 4,B

003C A6 39 AND (HL) 00BA CB61 95 BIT 4,C

003D DDA605 40 AND (IX + IND) OOBC CB62 96 BIT 4,D

0040 FDA605 41 AND (IY + IND) 0OBE CB63 97 BIT 4,E

0043 A7 42 AND A 0OC0 CB64 98 BIT 4,H

0044 A0 43 AND B 00C2 CB65 99 BIT 4,L

0045 Al 44 AND C 0OC4 CB6E 00 BIT 5,(HL)

0046 A2 45 AND D 00C6 DDCB056E 01 BIT 5,(DC + IND)

0047 A3 46 AND E OOCA FDCB056E 02 BIT 5,(IY + IND)

0048 A4 47 AND H 00CE CB6F 03 BIT 5,A

0049 A5 48 AND L 00D0 CB68 04 BIT 5,B

004A E620 49 AND N O0D2 CB69 05 BIT 5,C

004C CB46 50 BIT 0,(HL) 00D4 CB6A 06 BIT 5,D

004E DDCB0546 51 BIT 0,(D( + IND) 00D6 CB6B 07 BIT 5,E

0052 FDBC0546 52 BIT 0,(IY + IND) 00D8 CB6C 08 BIT 5,H

0056 CB47 53 BIT 0,A 0ODA CB6D 09 BIT 5,L

0058 CB40 54 BIT 0,B 00DC CB76 10 BIT 6,(HL)

005A CB41 55 BIT 0,C 00DE DDCB0576 11 BIT 6,(DC + IND)

005C CB42 56 BIT 0,D 00E2 FDCB0576 12 BIT 6,(IY + IND)

347



MODEL lil/4 ALDS

LOC OBJ CODE STMT
0OE6 CB77 113

00E8 CB70 114

OOEA CB71 115

OOEC CB72 116

OOEE CB73 117

OOFO CB74 118

00F2 CB75 119

00F4 CB7E 120

00F6 DDCB057E 121

OOFA FDCB057E 122

OOFE CB7F 123

OlOO CB78 124

0102 CB79 125

0104 CB7A 126

0106 CB7B 127

0108 CB7C 128

010A CB7D 129

010C DC8405 130

010F FC8405 131

0112 D48405 132

0115 CD8405 133

0118 C48405 134

011B F48405 135

011E EC8405 136

0121 E48405 137

0124 CC8405 138

0127 3F 139

0128 BE 140

0129 DDBE05 141

01 2C FDBE05 142

OOF BF 143

0130 B8 144

0131 B9 145

0132 BA 146

0133 BB 147

0134 BC 148

0135 BD 149

0136 FE20 150

0138 EDA9 151

013A EDB9 152

01 3C EDA1 153

01 3E EDB1 154

0140 2F 155

0141 27 156

0142 35 157

0143 DD3505 158

0146 FD3505 159

0149 3D 160

014A 05 161

014B OB 162

014C OD 163

014D 15 164

014E IB 165

014F ID m
0150 25 167

0151 2B !6K

0152 DD2B 169

0154 FD2B 170

0156 2D 171

0157 3B 172

0158 F3 173

0159 102E 174

015B FB P5

SOURCE STATEMENT
BIT 6.A

BIT 6.B

BIT 6.C

BIT 6.D

BIT 6,E

BIT 6,H

BIT 6,L

BIT 7,(HL)

BIT 7,(IX + IND)

BIT 7,(IY + IND)

BIT 7,A

BIT 7,B

BIT 7,C

BIT 7,D

BIT 7,E

BIT 7,H

BIT 7,L

CALL CNN
CALL M,NN
CALL NC.NN
CALL NN
CALL NZ.NN
CALL P.NN

CALL PE,NN

CALL PQ.NN
CALL Z,NN
CCF
CP (HL)

CP (IX + IND)

CP (IY + IND)

CP A
CP B

CP C
CP D
CP E

CP H
CP L

CP N
CPD
CPDR
CPI

CPIR

CPL
DAA
DEC (HL)

DEC (IX + IND)

DEC (IY + IND)

DEC A
DEC B

DEC BC
DEC C
DEC D

DEC DE
DEC E

DEC H
DEC HL
DEC IX

DEC IY

DEC L

DEC SP

DI

DJNZ MS
EI

LOC OBJ CODE STMT SOURCE STATEM
015C E3 176 EX (SP),HL

015D DDE3 177 EX- (SP),IX

015F FDE3 178 EX (SP),IY

0161 08 179 EX AF.AF*

0162 EB 180 EX DE.HL
0163 D9 181 EXX
0164 76 182 HALT
0165 ED46 183 IM
0167 ED56 184 IV! 1

0169 ED5E !85 IM 2

016B ED78 186 IN A,CO
016D DB20 187 IN A,(N)

016F ED40 188 IK B,(C)

0171 ED48 189 IN C(C)
0173 ED50 190 IN D,(C)

0175 ED58 191 IN E,(C)

0177 ED60 192 IN H,(C)

0179 ED68 193 IN L,(C)

017B 34 194 INC (HL)

one DD3405 195 INC (IX + IND)

017F FD3405 196 INC (IY + IND)

0182 3C 197 INC A
0183 04 198 INC B
0184 03 199 INC BC
0185 oc 200 INC C
0186 14 201 INC D
0187 13 202 INC DE
0188 1C 203 INC E
0189 24 204 INC H
018A 23 205 INC HL
018B DD23 206 INC IX

018D FD23 207 INC IY

018F 2C 208 INC L
0190 33 209 INC SP

0191 EDAA 210 IND
0193 EDBA 211 INDR
0195 EDA2 212 INI

0197 EDB2 213 MR
0199 E9 214 JP (HL)

019A DDE9 215 JP (IX)

019C FDE9 216 JP (IY)

OWE DA8405 217 JP CNN
01 A

1

FA8405 218 JP M,NN
01A4 D28405 219 JP NC.NN
01A7 C38405 220 JP NN
01AA C28405 221 JP NZ.NN
01AD F28405 222 JP P,NN
01B0 EA8405 223 JP PE.NN
01B3 E28405 224 JP PO.NN
01B6 CA8405 225 JP Z,NN
01B9 382E 226 JR C.DIS

01BB 182E 227 JR DIS

OIBD 302E 228 JR NC.DIS

01BF 202E 229 JR NZ.DIS

01C1 282E 230 JR Z,DIS

01C3 02 231 LD (BC),A

01C4 12 232 LD (DE),A

01C5 77 233 LD (HL).A

01C6 70 234 LD (HL),B

01C7 71 235 LD (HL).C

01C8 72 236 LD {HL),D

01C9 73 237 LD (HD.E
01CA 74 238 LD (HL),H

348



APPENDIX

LOC OBJ CODE STMT
01CB 75 239

01CC 3620 240

01CE DD7705 241

01D1 DD7005 242

01D4 DD7105 243

01D7 DD7205 244

OlDA DD7305 245

01DD DD7405 246

01EO DD7505 247

01E3 DD360520 248

01 E7 FD7705 249

01EA FD7005 250

01ED FD7105 251

01F0 FD7205 252

01F3 FD7305 253

01 F6 FD7405 254

01F9 FD7505 255

01FC FD360520 256

0200 328405 257

0203 ED438405 258

0207 ED538405 259

020B 228405 260

020E DD228405 261

0202 FD228405 262

0216 ED738405 263

021A OA 264

021B 1A 265

021C 7E 266

021D DD7E05 267

0220 FD7E05 268

0223 3A8405 269

0226 7F 270

0227 78 271

0228 79 272

0229 7A 273

022A 7B 274

022B 7C 275

022C ED57 276

022E 7D 277

022F 3E20 278

ED5F 278.1

0231 46 279

0232 DD4605 280

0235 FD4605 281

0238 47 282

0239 40 283

023A 41 284

023B 42 285

023C 43 286

023D 44 287

023E 45 288

023F 0620 289

0241 ED4B8405 290

0245 018405 291

0248 4E 292

0249 DD4E05 293

024C FD4E05 294

024F 4F 295

0250 48 296

0251 49 297

0252 4A 2<>8

0253 4B 299

0254 4C 300

SOURCE STATEMENT
LD (HL),L

LD (HL),N

LD (IX + INDLA
LD (IX + IND),B

LD (IX + IND),C

LD (IX + IND),D

LD (IX + IND),E

LD (IX + IND),H

LD (IX + IND),L

LD (IX + IND),N

LD {IY+ INDU
LD (IY + IND),B

LD (IY + IND),C

LD (IY + IND),D

LD (IY + IND),E

LD (IY + 1ND),H

LD (IY4-IND),L

LD (IY + IND),N

LD (NN),A

LD (NN).BC

LD (NN),DE

LD {NN),HL

LD (NN),DC

LD (NN),IY

LD (NN),SP

LD A,(BC)

LD A,(DE)

LD A,(HL)

LD A,(IX + IND)

LD A,(IY + IND)

LD A,(NN)

LD A,A

LD A,B

LD A.C

LD A,D

LD A.E

LD A.H

LD A,I

LD A,L

LD A,N

LD A,R

LD B,(HL)

LD B,(IX + IND)

LD B,(IY + IND)

LD B,A

LD B,B

LD B.C

LD B,D

LD B,E

LD B.H

LD B,L

LD B,N

LD BC(NN)
LD BC.NN
LD C(HL)
LD C,(IX + IND)

LD C,(IY + IND)

LD C,A

LD C,B

LD C,C

LD CD
LD C,E

LD C,H

LOC OBJ CODE STMT
0255 4D 301

0256 0E20 302

0258 56 303

0259 DD5605 304

025C FD5605 305

025F 57 306

0260 50 307

0261 51 308

0262 52 m
0263 53 310

0264 54 311

0265 55 312

0266 1620 313

0268 ED5B8405 314

026C 118405 315

026F 5E 316

0270 DD5E05 317

0273 FD5E05 318

0276 5F 319

0277 58 320

0278 59 321

0279 5A >, ;i ;»

027A 5B 323

027B 5C 324

027C 5D 325

027D 1E20 326

027F 66 327

0280 DD6605 328

0283 FD6605 329

0286 67 330

0287 60 331

0288 61 332

0289 62 333

028A 63 334

028B 64 335

028C 65 336

028D 2620 337

028F 2A8405 338

0292 218405 339

0295 ED47 340

0297 DD2A8405 341

029B DD2 18405 342

029F FD2A8405 343

02A3 FD2 18405 344

02A7 6E 345

02A8 DD6E05 346

02AB FD6E05 347

02AE 6F 348

02AF 68 349

02B0 69 350

02B1 6A 351

02B2 6B 352

02B3 6C 353

02B4 6D 354

02B5 2E20

ED4F
355

02B7 ED7B8405 356

02BB F9 357

02BC DDF9 358

02BE FDF9 359

02C0 318405 360

02C3 EDA8 361

02C5 EDB8 362

SOURCE STATEMENT
LD C,L

LD C,N

LD D,(HL)

LD D,(IX + IND)

LD D,(1Y + IND)

LD D,A

LD D,B

LD D.C

LD D,l)

LD D,E

LD D,H

LD D,L

LD D.N

LD DE.(NN)

LD DE.NN
LD E,{HL)

LD E,(IX + IND)

LD E,(IY + IND)

LD E,A

LD E.B

LD E.C

LD E.D

LD E,E

LD E,H

LD E.L

LD E.N

LD H,(HL)

LD H.dX + IND)

LD H,(IY + IND)

LD H,A

LD H.B

LD H.C

LD H,D

LD H.E

LD H.H

LD H.L

LD H,N

LD HL.(NN)

LD HL.NN
LD LA
LD IX,(NN)

LD 1X.NN

LD IY.(NN)

LD IY.NN

LD L,{HL)

LD L.dX + IND)

LD L.OY + IND)

LD L.A

LD LB
LD L.C

LD LD
LD L.E

LD L,H

LD LL
LD L.N

LD R.A

LD SP,(NN)

LD SP.HL

LD SP.IX

LD SP.1Y

LD SP.NN

LDD
LDDR

349



MODEL III/4 ALDS

LOC OBJ CODE STMT SOURCE STATEMENT LOC OBJ CODE STMT SOURCE STATEMENT
02C7 EDAO 363 LDI 0342 CB90 426 RES 2,B

02C9 EDB0 364 LDIR 0344 CB91 427 RES 2,C

02CB ED44 365 NEG 0346 CB92 428 RES 2,D

02CD 00 366 NOP 0348 CB93 429 RES 2,E

02CE B6 367 OR (HL) 034A CB94 430 RES 2,H

02CF DDB605 368 OR (IX + IND) 034C CB95 431 RES 2,L

02D2 FDB605 369 OR (1Y + IND) 034E CB9E 432 RES 3,(HL)

02D5 B7 370 OR A 0350 DDCB059E 433 RES 3,(IX + IND)

02D6 BO 371 OR B 0354 FDCB059E 434 RES 3,(IY + IND)

02D7 Bl 372 OR C 0358 CB9F 435 RES 3,A
02D8 B2 373 OR D 035A CB98 436 RES 3,B

02D9 B3 374 OR E 035C CB99 437 RES 3,C

02DA B4 375 OR H 035E CB9A 438 RES 3,D

02DB B5 376 OR L 0360 CB9B 439 RES 3,E

02DC F620 377 OR N 0362 CB9C 440 RES 3,H

02DE ED8B 378 OTDR 0364 CB9D 441 RES 3,L

Q2E0 EDB3 379 OTIR 0366 CBA6 442 RES 4,(HL)

02E2 ED79 380 OUT (C),A 0368 DDCB05A6 443 RES 4,(IX + IND)

02E4 ED41 381 OUT (C),B 036C FDCB05A6 444 RES 4,(IY + IND)

02E6 ED49 382 OUT (C),C 0370 CBA7 445 RES 4,A

02E8 ED51 383 OUT (C),D 0372 CBA0 446 RES 4,B

02EA ED59 384 OUT (C),E 0374 CBA1 447 RES 4,C

02EC ED61 385 OUT (C),H 0376 CBA2 448 RES 4,D

02EE ED69 386 OUT (C),L 0378 CBA3 449 RES 4,E

02F0 D320 387 OUT N,A 037A CBA4 450 RES 4,H

02F2 EDAB 388 OUTD 037C CBA5 451 RES 4,L

02F4 EDA3 389 OUTI 037E CBAE 452 RES 5,(HL)

02F6 Fl 390 POP AF 0380 DDCB05AE 453 RES 5,(IX + MD)
02F7 CI 391 POP BC 0384 FDCB05AE 454 RES 5,(IY + IND)

02F8 Dl 392 POP DE 0388 CBAF 455 RES 5,A

02F9 El 393 POP HL 038A CBA8 456 RES 5,B

02FA DDE1 394 POP IX 038C CBA9 457 RES 5,C

02FC FDE1 395 POP IY 038E CBAA 458 RES 5,D

02FE F5 396 PUSH AF 0390 CBAB 459 RES 5,E

02FF C5 397 PUSH BC 0392 CBAC 460 RES 5,H

0300 D5 398 PUSH DE 0394 CBAD 461 RES 5,L

0301 E5 399 PUSH HL 0396 CBB6 462 RES 6,(HL)

0302 DDES 400 PUSH IX 0398 DDCB05B6 463 RES 6.0X + IND)

0304 FDE5 401 PUSH IY 039C FDCB05B6 464 RES 6,(IY + IND)

0306 CB86 402 RES 0,(HL) 03A0 CBB7 465 RES 6,A

0308 DDCB0586 403 RES 0,(IX + IND) 03A2 CBB0 466 RES 6,B

030C FDCB0586 404 RES 0,(IY + IND) 03A4 CBB1 467 RES 6.C

0310 CB87 405 RES 0,A 03A6 CBB2 468 RES 6,D

0312 CB80 406 RES 0,B 03A8 CBB3 469 RES 6,E

0314 CB81 407 RES 0,C 03AA CBB4 470 RES 6,H

0316 CB82 408 RES 0.D 03AC CBB5 471 RES 6,L

0318 CB83 409 RES 0,E 03AE CBBE 472 RES 7,(HL)

031A CB84 410 RES 0,H 03B0 DDCB05BE 473 RES 7,(IX + IND)

031C CB85 411 RES 0,L 03B4 FDCB05BE 474 RES 7,(IY + IND)

031E CB8E 412 RES 1,(HL) 03B8 CBBF 475 RES 7,A

0320 DDCB058E 413 RES 1,(IX + IND) 03BA CBB8 476 RES 7,B

0324 FDCB058E 414 RES 1,(IY + IND) 03BC CBB9 477 RES 7,C

0328 CB8F 415 RES 1,A 03BE CBBA 478 RES 7,D

032A CB88 416 RES l.B 03CO CBBB 479 RES 7,E

032C CB89 417 RES 1,C 03C2 CBBC 480 RES 7,H

032E CB8A 418 RES l.D 03C4 CBBD 481 RES 7,L

0330 CB8B 419 RES 1,E 03C6 C9 482 RET
0332 CB8C 420 RES 1,H 03C7 D8 483 RET C
0334 CB8D 421 RES 1,L 03C8 F8 484 RET M
0336 CB96 422 RES 2,(HL) 03C9 DO 485 RET NC
0338 DDCB0596 423 RES 2,(IX + IND) 03CA CO 486 RET NZ

033C FDCB0596 424 RES 2,{IY + IND) 03CB F0 487 RET P

0340 CB97 425 RES 2,A 03CC E8 488 RET PE

350



APPENDIX

LOC OBJ CODE STMT SOURCE STATEMENT LOC OBJ CODE STMT SOUFICE STATEMENT
Q3CD E0 489 RET PO 044C 99 552 SBC A,C

03CE CS 490 RET z 044D 9A 553 SBC AT)

03CF ED4D 491 RETJ 044E MB 554 SBC A.E

03D1 ED45 492 RETN 044F 9C 555 SBC A.H

03D3 CB16 493 RL <HL) 0450 9D 556 SBC A.L

03D5 DDCB0516 494 RL (IX + END) 0451 DE20 55? SBC- A.N

03D9 FDCB0516 495 RL (IY + IND) 0453 ED42 5% SBC HL.BC

03DD CB17 496 RL A 0455 ED52 559 SBC HL.DE

03DF CB10 497 RL B 0457 ED62 560 SBC HL.HL

03E1 CBH 498 RL C 0459 ED72 561 SBC HL.SP

03E3 CB12 499 RL D (MSB 37 562 SCF

03E5 C813 500 RL E 045C CBC6 563 SET 0,(HL)

03E7 CB14 501 RL H 045E DDCB05C6 564 SET O.ttX + IND)

03E9 CB15 502 RL •L 0462 FDCB05C6 565 SET 0,(IY + IND)

03EB 17 503 RLA 0466 CBC7 566 SET 0,A

03EC CB06 504 RLC (HL) 0468 CBCO 567 SET O.B '

03EE DDCB0506 505 RLC (LX + IND) 046A CBC1 568 SET O.C

03F2 FDCB0506 506 RLC (IY + IND) 046C CBC2 569 SET O.D

03F6 CB07 507 RLC A 046E CBC3 570 SET O.E

03F8 CB00 508 RLC B 0470 CBC4 571 SET 0,H

03FA CB01 509 RLC C 0472 CBC5 572 SET O.L

03FC CB02 510 RLC D 0474 CBCE 573 SET l.(HL)

03FE CB03 511 RLC E 0476 DDCB05CE 574 SET 1,(IX + IND)

0400 CB04 512 RLC H 047A FDCB05CE 575 SET 1,(IY + IND)

0402 CB05 513 RLC L 047E CBCF 576 SET 1,A

0404 07 514 RLCA 0480 CBC8 577 SET l.B

0405 ED6F 515 RLD 0482 CBC9 5">8 SET 1,C

0407 CB1E 516 RR (HL! 0484 CBCA 579 SET l.D

0409 DDCB051E 517 RR (IX + IND) 0486 CBCB 580 SET l.E

040D FDCB051E 518 RR (IY + IND) 0488 CBCC 581 SET l.H

0411 CB1F 519 RR A 048A CBCD 582 SET 1,L

0413 CB18 520 RR B 048C CBD6 583 SET 2,(HL)

0415 CB19 521 RR C 048E DDCB05D6 584 SET 2,(IX + IND)

0417 CB1A 522 RR D 0492 FDCB05D6 585 SET 2,(IY-t-IND)

0419 CB1B 523 RR E 0496 CBD7 586 SET 2,A

041B CB1C 524 RR H 0498 CBDO 587 SET 2.B

041D CB1D 525 RR L 049A CBD1 588 SET 2,C

041F IF 526 RRA 049C CBD2 589 SET 2,D

0420 CBOE 527 RRC (HL) 049E CBD3 590 SET 2.E

0422 DDCB050E 528 RRC (IX + IND) 04A0 CBD4 541 SET 2,H

0426 FDCB050E 529 RRC (IY + IND) 04A2 CBD5 592 SET 2.L

042A CBOF 530 RRC A 04A4 CBD8 593 SET 3,B

042C CB08 531 RRC B 04A6 CBDE 594 SET 3,(HL)

042E CB09 532 RRC C 04A8 DDCB05DE 595 SET 3.0X + IND)

0430 CBOA 533 RRC D (MAC FDCB05DE 596 SET 3,(IY + IND)

0432 CBOB 534 RRC E 04B0 CBDF 597 SET 3.A

0434 CBOC 535 RRC H 04B2 CBD9 598 SET 3,C

0436 CBOD 536 RRC L 04B4 CBDA 599 SET 3.D

0438 OF 537 RRCA 04B6 CBDB 600 SET 3.E

0439 ED67 538 RRD 04B8 CBDC 601 SET 3.H

043B C7 539 RST (MBA CBDD 602 SET 3.L

043C D7 540 RST 10H 04BC CBE6 603 SET 4,(HL)

043D DF 541 RST 18H 04BE DDCB05E6 604 SET 4.UX + IND)

043E E7 542 RST 20H 04C2 FDCB05E6 605 SET 4,(IY + IND)

043F EF 543 RST 28H 04C6 CBE7 606 SET 4,A

0440 F7 544 RST 30H 04C8 CBEO 607 SET 4.B

0441 FF 545 RST 38H 04CA CBE1 60S SET 4.C

0442 CF 546 RST 08H 04CC CBE2 609 SET 4.D

0443 9E 547 SBC A,(HL) (MCE CBE3 610 SET 4,E

0444 DD9E05 548 SBC A,(IX + IND) 04DO CBE4 611 SET 4.H

0447 FD9E05 549 SBC A,(IY + IND) 04D2 CBE5 612 SET 4,L

044A 9F 550 SBC A,A 04D4 CBEE 613 SET 5,(HL)

044B 98 551 SBC A,B 04D6 DDCB05EE 614 SET 5.IIX + IND)

351



MODEL HI/4 ALDS

LOC OBJ CODE STMT SOURCE STATEMENT LOC OBJ CODE STMT SOURCE STATEMENT
04DA FDCB05EE 615 SET 5,(IY + IND) 0542 CB29 658 SRA C
04DE CBEF 616 SET 5,A 0544 CB2A 659 SRA D
04E0 CBE8 617 SET 5,B 0546 CB2B 660 SRA E
04E2 CBE9 618 SET 5,C 0548 CB2C 661 SRA H

04E4 CBEA 619 SET 5,D 054A CB2D 662 SRA L

04E6 CBEB 620 SET 5,E 054C CB3E 663 SRL (HL)

04E8 CBEC 621 SET 5,H 054E DDCB053E 664 bH 1, (IX+ IND)

04EA CBED 622 SET 5,L 0552 FDCB053E 665 SRL (IY + IND)

04EC CBF6 623 SET 6,{HL) 0556 CB3F 666 SRL A
04EE DDCB05F6 624 SET 6,(IX + IND) 0558 CB38 667 SRL B

04F2 FDCB05F6 625 SET 6,{1Y + IND) 055A CB39 668 SRL C
04F6 CBF7 626 SET 6,A 055C CB3A 669 SRL D
04F8 CBFO 627 SET 6,B 055E CB3B 670 SRL E

04FA CBF1 628 SET 6,C 0560 CB3C 671 SRL H
(MFC CBF2 629 SET 6,D 0562 CB3D 672 SRL L
04FE CBF3 630 SET 6,E 0564 96 673 SUB (HL)

0500 CBF4 631 SET 6,H 0565 DD9605 674 SUB (IX + IND)

0502 CBF5 632 SET 6,L 0568 FD9605 675 SUB (IY + IND)

0504 CBFE 633 SET 7,(HL) 056B 97 676 SUB A
0506 DDCB05FE 634 SET 7,(IX + IND) 056C 90 677 SUB B

050A FDCB05FE 635 SET 7,(IY + IND) 056D 91 678 SUB C
050E CBFF 636 SET 7,A 056E 92 679 SUB D
0510 CBF8 637 SET 7,B 056F 93 680 SUB E

0512 CBF9 638 SET 7,C 0570 94 681 SUB H
0514 CBFA 639 SET 7,D 0571 95 682 SUB L

0516 CBFB 640 SET 7,E 0572 D620 683 SUB N
0518 CBFC 641 SET 7,H 0574 AE 684 XOR (HL)

051A CBFD 642 SET 7,L 0575 DDAE05 685 XOR (IX + IND)

051C CB26 643 SLA (HL) 0578 FDAE05 686 XOR (IY + IND)

05 IE DDCB0526 644 SLA (IX + IND) 057B AF 687 XOR A
0522 FDCB0526 645 SLA (IY + IND) 057C A8 688 XOR B

0526 CB27 646 SLA A 057D A9 689 XOR C
0528 CB20 647 SLA B 057E AA 690 XOR D
052A CB21 648 SLA C 057F AB 691 XOR E

052C CB22 649 SLA D 0580 AC 692 XOR H
052E CB23 650 SLA E 0581 AD 693 XOR L

0530 CB24 651 SLA H 0582 EE20 694 XOR N
0532 CB25 652 SLA L 0584 695 NN DEFS 2

0534 CB2E 653 SRA (HL) 696 IND EQU 5

0536 DDCB052E 654 SRA (IX + IND) 697 M EQU 10H

053A FDCB052E 655 SRA (IY + IND) 698 N EQU 20H

053E CB2F 656 SRA A 699 DIS EQU 30H

0540 CB28 657 SRA B 700 END

352



APPENDIX

Appendix E/Z-80 CPU Register and
Architecture

This section gives information about the actual Z80 chip including the Central

Processing Unit (CPU) Register configuration.

Z-80 CPU Architecture

A block diagram of the internal architecture of the z-socpu is shown in Figure 2.

The diagram shows all of the major elements in the CPU and it should be referred

to throughout the following description.

CPU Registers

The z-80 cpu contains 208 bits of R/w memory that are accessible to the

programmer. Figure 3 illustrates how this memory is configured into eighteen

8-bit registers and four 16-bit registers. All z-80 registers are implemented using

static ram. The registers include two sets of six general purpose registers that

may be used individually as 8-bit registers or in pairs of 16-bit registers. There

are also two sets of accumulator and flag registers.

Special Purpose Registers

[8-BIT
DATA BUS

DATA BUS
CONTROL

CPU AND
SYSTEM
CONTROL
SIGNALS

INSTRUCTION
DECODE
*
CPU
CONTROL

INST.

REG c INTERNAL DATA BUS

CPU
CONTROL

0>

CPU
REGISTERS

AAA

SV GND -|.

ADDRESS
CONTROL

16BIT
ADDRESS BUS

Figure 2, Z-80 CPU Block Diagram.

353



MODEL 111/4 ALDS

MAIN REG SET

/y ,,. ...

ALTERNATE HEG SET

,
i"s

ACCUMULATOR
A

FLAGS
F

ACCUMULATOR
A'

FLAGS
F

B C B' C

D E 0' E'

M L H' L'

GENERAL
> PURPOSE

REGISTERS

INTERRUPT
VECTOR

MEMORY
REFRESH
R

INDEX REGISTER IX

INDEX REGISTER IV

STACK POINTER SP

PROGRAM COUNTER PC

SPECIAL
> PURPOSE

REGISTERS

Figure 3, Z-80 CPU Register Configuration.

1. Program Counter (PC). The program counter holds the 16-bit address of

the current instruction being fetched from memory. The pc is automatically

incremented after its contents have been transferred to the address lines.

When a program jump occurs the new value is automatically placed in the pc,

overriding the incrementer.

2. Stack Pointer (SP). The stack pointer holds the 16-bit address of the current

top of a stack located anywhere in external system ram memory. The external

stack memory is organized as a last-in first-out (lifo) file.

Data can be pushed onto the stack from specific cpu registers or popped off of

the stack into specific cpu registers through the execution of push and pop

instructions. The data popped from the stack is always the last data pushed

onto it. The stack allows simple implementation of multiple level interrupts,

unlimited subroutine nesting and simplification of many types of data

manipulation.

3. Two Index Registers (ix & iy). The two independent index registers hold a

16-bit base address that is used in indexed addressing modes. In this mode, an

index register is used as a base to point to a region in memory from which

data is to be stored or retrieved. An additional byte is included in indexed

instructions to specify a displacement from this base. This displacement is

specified as a two's complement signed integer. This mode of addressing

greatly simplifies many types of programs, especially where tables of data

are used.

354



APPENDIX

4. Interrupt Page Address Register (i). The z-80 CPU can be operated in a mode
where an indirect call to any memory location can be achieved in response to

an interrupt. The i Register is used for this purpose to store the high order

8-bits of the indirect address while the interrupting device provides the lower

8-bits of the address. This feature allows interrupt routines to be dynamically

located anywhere in memory with absolute minimal access time to the

routine.

5. Memory Refresh Register (r). The z-socpu contains a memory refresh

counter to enable dynamic memories to be used with the same ease as static

memories. Seven bits of this 8 bit register are automatically incremented after

each instruction fetch. The eighth bit will remain as programmed as the result

of an ld R, a instruction. The data in the refresh counter is sent out on the

lower portion of the address bus along with a refresh control signal while the

CPU is decoding and executing the fetched instruction. This mode of refresh is

totally transparent to the programmer and does not slow down the cpu

operation. The programmer can load the R register for testing purposes, but

this register is normally not used by the programmer. During refresh, the

contents of the i register are placed on the upper 8 bits of the address bus.

Accumulator and Flag Registers

The cpu includes two independent 8-bit accumulators and associated 8-bit flag

registers. The accumulator holds the results of 8-bit arithmetic or logical

operations while the flag register indicates specific conditions for 8 or 16-bit

operations, such as indicating whether or not the result of an operation is equal to

zero. The programmer selects the accumulator and flag pair that he wishes to

work with a single exchange instruction so that he may easily work with either

pair.

General Purpose Registers

There are two matched sets of general purpose registers, each set containing six

8-bit registers that may be used individually as 8-bit registers or as 16-bit

register pairs by the programmer. One set is called bc, de and hl while the

complementary set is called bc; de' and hl: At any one time the programmer can

select either set of registers to work with through a single exchange command for

the entire set. In systems where fast interrupt response is required, one set of

general purpose registers and an accumulator/flag register may be reserved for

handling this very fast routine. Only a simple exchange command need be

executed to go between the routines. This greatly reduces interrupt service time

by eliminating the requirement for saving and retrieving register contents in the

external stack during interrupt or subroutine processing. These general purpose

registers are used for a wide range of applications by the programmer. They also

simplify programming, especially in ROM based systems where little external

read/write memory is available.

355



MODEL 111/4 ALDS

Arithmetic & Logic Unit (ALU)

The 8-bit arithmetic and logical instructions of the CPU are executed in the alu.

Internally the alu communicates with the registers and the external data bus on

the internal data bus. The type of functions performed by the alu include:

Add

Subtract

Logical and

Logical or

Logical Exclusive OR

Compare

Left or right shifts or rotates (arithmetic and logical)

Increment

Decrement

Set bit

Reset bit

Test Bit

Instruction Register and CPU Control

As each instruction is fetched from memory, it is placed in the instruction

register and decoded. The control sections performs this function and then

generates and supplies all of the control signals necessary to read or write data

from or to the registers, control the ALU and provide all required external control

signals.

Z-80 CPU Pin Description

The z-80 cpu is packaged in an industry standard 40 pin Dual In-Line Package.

The i/o pins are shown in Figure 4 and the function of each is described below.

A -Ai5

(Address Bus)

D -D7

(Data Bus)

Mi
(Machine Cycle

one)

Tri-state output, active high. A^-A^ constitute a 16-bit

address bus. The address bus provides the address for

memory (up to 64K bytes) data exchanges and for I/O device

data exchanges. I/O addressing uses the 8 lower address bits

to allow the user to directly select up to 256 input or 256

output ports. A is the least significant address bit. During

refresh time, the lower 7 bits contain a valid refresh address.

Tri-state input/output, active high. DrD7 constitute an 8-bit

bidirectional data bus. The data bus is used for data

exchanges with memory and I/O devices.

Output, active low. Mi indicates that the current machine

cycle is the OP code fetch cycle of an instruction execution.

Note that during execution of 2-byte op-codes, Mj is

generated as each op-code byte is fetched. These two byte

op-codes always begin with CBH, DDH, EDH or FDH. M,

also occurs with IORQ to indicate an interrupt acknowledge

cycle.

356



APPENDIX

SYSTEM
CONTROL

IORQ

\ RD

CPU
CONTROL' INT

MSI

RESET

c,,u /bums
8US < __
CONTROL 1 BUSAK

GND

21

Z-80 CPU

30

31

19 32

„ 2" 33
"

21 34

m n 35
*

36

28 37

38

18 39

40
*

"•I
1

2

16 3

17 4

5

26 »

14

25

23
*

15

6 12

11 8

»Z 7

9

10

*13 "

A

* A4

*»• A
7

"11

A,

j

A 13

*,4

A15 /

ADDRESS
BUS

Figure 4, Z-80 Pin Configuration.

MREQ
(Memory
Request)

IORQ
(Input/Output

Request)

RD
(Memory Read)

Tri-state output, active low. The memory request signal

indicates that the address bus holds a valid address for a

memory read or memory write operation.

Tri-state output, active low. The IORQ signal indicates that

the lower half of the address bus holds a valid I/O address

for a I/O read or write operation. An IORQ signal is also

generated with an M
1
signal when an interrupt is being

acknowledged to indicate that an interrupt response vector

can be placed on the data bus. Interrupt Acknowledge
operations occur during M, time while I/O operations never

occur during Mj time.

Tri-state output, active low. RD indicates that the CPU wants

to read data from memory or an I/O device. The addressed

I/O device or memory should use this signal to gate data

onto the CPU data bus.

WR
(Memory Write)

Tri-state output, active low. WR indicates that the CPU data

bus holds valid data to be stored in the addressed memory or

I/O device.

357



MODEL HI/4 ALDS

RFSH
(Refresh)

Output, active low. RFSH indicates that the lower 7 bits of

the address bus contain a refresh address for dynamic

memories and the current MREQ signal should be used to do

a refresh read to all dynamic memories.

HALT
(Halt state)

Output, active low. HALT indicates that the CPU has

executed a HALT software instruction and is awaiting either

a non maskable or a maskable interrupt (with the mask
enabled) before operation can resume. While halted, the

CPU executes NOP's to maintain memory refresh activity.

WAIT
(Wait)

Input, active low. WAIT indicates to the Z-80 CPU that the

addressed memory or I/O devices are not ready for a data

transfer. The CPU continues to enter wait states for as long

as this signal is active. This signal allows memory or I/O

devices of any speed to be synchronized to the CPU.

INT
(Interrupt

Request)

Input, active low. The Interrupt Request signal is generated

by I/O devices. A request will be honored at the end of the

current instruction if the internal software controlled

interrupt enable flip-flop (IFF) is enabled and if the BUSRQ
signal is not active. When the CPU accepts the interrupt, an

acknowledge signal (IORQ during M
t
time) is sent out at the

beginning of the next instruction cycle.

NMI
(Non Maskable

Interrupt)

Input, negative edge triggered. The non maskable interrupt

request line has a higher priority than INT and is always

recognized at the end of the current instruction, independent

of the status of the interrupt enable flip-flop. NMI
automatically forces the Z-80 CPU to restart to location

0066H . The program counter is automatically saved in the

external stack so that the user can return to the program that

was interrupted. Note that continuous WAIT cycles can

prevent the current instruction from ending, and that a

BUSRQ will override a NMI.

RESET Input, active low. RESET forces the program counter to zero

and initializes the CPU. The CPU initialization includes:

1) Disable the interrupt enable flip-flop

2) Set Register I = 00H
3) Set Register R = 00H
4) Set Interrupt Mode

During reset time, the address bus and data bus go to a high

impedance state and all control output signals go to the

inactive state.

358



APPENDIX

BUSRQ
(Bus Request)

BUSAK
(Bus

Acknowledge)

O

Input, active low. The bus request signal is used to request

the CPU address bus, data bus and tri-state output control

signals to go to a high impedance state so that other devices

can control these buses. When BUSRQ is activated, the CPU
will set these buses to a high impedance state as soon as the

current CPU machine cycle is terminated.

Output, active low. Bus acknowledge is used to indicate to

the requesting device that the CPU address bus, data bus and

tri-state control bus signals have been set to their high

impedance state and the external device can now control

these signals.

Single phase TTL level clock which requires only a 330 ohm
pull-up resistor to +5 volts to meet all clock requirements.

Z-80 CUP Instruction Set

The z-80 CPU can execute 158 different instruction types including all 78 of the

8080A cpu. The instructions can be broken down into the following major

groups:

• Load and Exchange

• Block Transfer and Search

• Arithmetic and Logical

• Rotate and Shift

• Bit Manipulation (set, reset, test)

• Jump, Call and Return

• Input/Output

• Basic cpu Control

359





INDEX

Subject Page

* 113

8 bit load group 1 23-1 40

LDr.r' 123

LDr,n 124

LDr,(HL) 125

LDr,(IX + D) 125-126

LDr,(IY + d) 127

LD(HL),r 128

LD(IX + d),r 128-129

LD(IY + d),r 129-130

LD(HL),n 130-131

LD(IX + d),n 131

LD(IY + d),n 132

LDA,(BC) 133

LDA,(DE) 133-134

LDA,(nn) 134-135

LD(BC),A 135

LD(DE),A 135-136

LD(nn),A 136-137

LDA,I 137

LDA,R 138

LDI.A 138-139

LDR.A 139-140

8 bit arithmetic and logical 181 -205

ADDA,(HL) 183

ADDA,(IX + d) 183-184

ADDA,(IY + d) 184-185

ADDA.n 182

ADDA,r 181-182

ADDA.S 185-187

ANDs 191-193

CPs 198-199

DECm 203-205

INC(HL) 201

INC(IX + d) 201-202

INC(IY + d) 202-203

INCr 200

ORs 193-195

SUBs 187-189

SBCA.s 189-191

XORs 195-197

INDEX

Subject Page

16 bit load group 1 41-1 61

LDdd.nn 141-142

LDiX,nn 142

LDIY.nn 143

LDHL,(nn) 143-144

LD dd,(nn) 1 44-1 45
LDIX,(nn) 145-146

LDIY.(nn) 146-147

LD(nn),HL 147-148

LD(nn),dd 148-149

LD(nn),IX 149-150

LD(nn),IY 150-151

LDSRHL 151-152

LDSRIX 152

LDSP.IY 153

16 bit arithmetic group 21 7-226

ADDHL.ss 217
ADCHL.ss 218
ADDIX.pp 220
ADD IY,rr 221

DECss 224
DEC IX 225

DEC IY 225-226

INCss 222
INC IX 222-223

INCIY 223-224

SBCHL.SS 219
Absolute Assembly 72

ADCA.XH .337
ADCHL.ss 218

ADDA,(HL) 183

ADDA,(IX + d) 183-184

ADDA,(IY + d) 184-185

ADDA.n 182

ADDA,r 181-182

ADDA.S 185-187

ADDA.XH 337
ADDHL.ss 217

ADDIX.pp 220

ADDIYrr 221

Address Different from Pass 1 327
ALASM (see Assembler)

ALBUG (see Debugger)

361



MODEL III/4 ALDS

Subject Page

ALEDIT (see Editor)

ALLINK (see Linker)

Altran (See File Transfer)

AndS 191-193

AndXH 337

APOP ...88

APUSH 88

Arithmetic Operators 64-66

ASCII (see DEFM)
Assembler

Command 23

Description 23-27

Directives 69-1 13

Errors 327

Expressions 63-64

Labels 61-62

Object Code Format 338-340

Operands 63-67

Operators 64-67

Switches 24-26

Symbols 61-62

Assembler Listing

Description 23-26

EJECT 93

HEADER 97-98

PRINT 106-107

QUIT 109

STOP 112

TITLE 113

USING 113

VERSION 113

Attempt to Use a Non-Program File

as a Program 331

Bad File Format 325

Bad Filename Format 325

Bad Parameters 325

BLOCK (see DEFS)
block comment 113-114

BITb,(HL) 254-255

BITb,(IX + d) 255-256

BITb,(IY + d) 256-257

BITb,r 253-254

Bit.set.reset, and test group 253-263

BIT b,(HL) 254-255

BITb,(iX + d) 255-256

BIT b,(lY + d) 256-257

Subject Page

B IT b,r 253-254

RESb,m 262-263

SETb,r 257-258

SETb,(HL) 258-259

SETb,(IX + d) 259-260

SETb,(IY + d) 261-262

Buffer Full 325

BYTE (see DEFB)
CALL cc,nn 278-280

CALLnn 277-278

Call and return group 277-286

CALL cc,nn 278-280

CALLnn 277-278

RET 280-281

RETcc 281-283

RETI 283-284

RETN 284-285

RSTp 285-286

CCF 210

CMPD operand1,operand2,

[length] 304-306

CMPI operand 1,operand2,

length 306-308

comment 67-68,1 13-114

Conditional Sections (see If Sections)

CPD 178-179

CPDR 179-180

CPI 175-177

CPIR 177-178

CPL 208-209

CPs 198-199

CPXH 337

CPR operand 303-304

DAA 207-208

Data

Defining 70

DEFB 89-90

DEFE 90

DEFM 91

DEFR 91

DEFT 92

DEFW 92-93

DATE 89

DB (see DEFB)

362



INDEX

Subject Page

Debugger

Description 29-42

Loading 29-31

Display 30-31

Registers 32

Data 32-33

Breakpoints 33,34-36

Disk Zap 41-42

DEC IX 225
DEC IY 225-226

DEC m 203-205

DECss 224
DECXH 337
DEFB 89-90

DEFE 90

DEFL 90
DEFM 91

DEFR 91

DEFS 92

DEFT 92

DEFW 92-93

DS (see DEFS)
DW (see DEFW)
Di 212-213

Directives 69-1 13

Introduction 69-86

Reference 86-1 1

4

Disk Zap 40-42

DJNZ e 275-276

DROP 93
Editor

Description 11-13

Errors 325
Loading 11

Insert Mode 1 9-21

Control 20
Special Keys 21

Line Edit Mode 21-22

Subcommands 21

Special Keys 22

Command Mode ..12-18

Special Keys 13

Commands 14-18

Compatibility with other Editors 18

El 213

EJECT 93

Subject Page

END 93-94

ENDI 94
ENDM 94
ENTRY (see PUBLIC)

EQU 94
ERROR 24 331

ERROR 34 331

ERROR 37 331

Error Messages 323-331

EXAF.AF 163-164

Exchange.Search, and Transfer . . . 163-180

CPI 175-177

CPIR 177-178

CPD 178-179

CPDR 179-180

EXDE.HL 163

EXAF.AF , 163-164

EXX 164-165

EX(SP),HL 165-166

EX(SP),IX 166-167

EX(SP),IY 167-168

LDI 169-170

LDIR 170-172

LDD 172-173

LDDR 173-175

EXDE.HL 163

EX operand 309-31

Expressions 63-64

EX(SP),HL 165-166

EX(SP),IX 166-167

EX(SP),IY 167-168

EXT 94-95

Extended Z80 Mnemonics 303-321

CPR operand 303-304

CMPD operandi, operand2,

[length] 304-306

CMPI operandi, operand2,

length 306-308

TZ operand 308
EX operand 309-310

LD double register 310-315

MOVD operandi, operand2,

length 315-316

MOVI operandi, operand2,

length 317-318

POP.. 318

363



MODEL HI/4 ALDS

Subject Page

RSTR operand 318-320

SAVE operand 320-321

SVC 321-322

EXTERN 95

External Symbols 66

EXTERN 95

EXT 94-95

GLINK 96

GLOBAL 96-97

LINK 101-102

PUBLIC 108-109

EXX 164-165

FILL 95-96

GUNK 96

GLOBAL 96-97

File Transfer

Set-lip 47

Loading 48-49

Errors 52

Command File 52-53

Connector 57

Technical 53-56

Object Files 53

File Not Found 331

Hit Any Key to Continue 326

General purpose arithmetic and

CPU control groups 207-215

CCF 210

CPL 206-207

DAA 207-208

Dl 212-213

El 213

HALT 212

IM0 214

IM1 214

IM2 215

NEG 209-210

NOP 211-212

SCF 211

Global File 78-82

HALT 212

HEADER 97-98

If Section 85-86

IFDEF 98

IFF 98

IFM 98

Subject Page

IFNZ 99

IFP 99

IFT 99

IFUND 99

IFZ 100

IFUND 99

IFZ 100

IFDEF 98

IFF 98

IFM 98

IFNZ 99

IFP 99

IFT 99

Illegal Addressing 329

IMO 214

IM1 214-215

IM2 215

INA,(n) 287

INC(HL) 201

INC IX 222-223

INCIY 223-224

INC(IX + d) 201-202

INC(IY + d) 202-203

INCLUDE 100

INCr 200

INCss 222

INCXH 337

IND 292-293

Index Sections 82-83

ISECT 100-101

APOP 88

APUSH 88-89

DROP 93

INDR 293-294

INI 289-290

INIR 290-292

Initializing Location Counter 72

Input and output group 287-301

INA,(n) 287

IND 292-293

INDR 293-294

INI.. 289-290

INIR 290-292

INr,(C) 288-289

OUT(C),r 295-296

OUT(n),A 294-295

364



INDEX

Subject Page

OUTD... 299
OUTI 296-297

OTIR 297-298

INr,(C) 288-289

Invalid Parameter 330
ISECT 100-101

JP cc,nn 266-267

JP(HL) 273
JP(IX) 274
JP(IY) 274-275

JPnn 265
JRC,e 268-269

JRe 267-268

JRNC,e 269
JRNZ,e 272
JR Z,e 270
Jump group 265-276

DJNZe 275-276

JPcc,nn 266-267

JP(HL) 273
JP(IX) 274
JP(IY) 274-275

JPnn 265
JRC,e 268-269

JRe 267-268

JRNC.e 269
JRNZ.e 272
JRZ,e 270

Labels 61-62

LDA,(BC) 133

LDA,(DE) 133-134

LDA.1 137

LDA,(nn) 134-135

LDA.R 138

LD(BC),A 135

LDdd.nn 141-142

LDdd,(nn) 144-145

LD(DE),A 135-136

LD(HL),n 130-131

LDHL.(nn) 143-144

LD(HL),r 128

LDLA 137

LD(IX + d),n 131-132

LD(IX + d),r 128-129

LDIX,nn 142

LDIX,(nn) 145-146

Subject Page

LD0Y + d),n 132

LD(IY + d),r 129-130

LDIY.nn 143

LDIY.(nn) 146-147

LD(nn),A 136-137

LDR.A 139-140

LDr.n 124

LDr,r' 123

LDr,(HL) 125

LDr,(IX + D) 125-126

LDr,(IY + d) 127

LD(nn),dd 148-149

LD(nn),HL 147-148

LD(nn),IX 149-150

LD(nn),IY 150-151

LDSRHL 151-152

LDSRIX 152

LDSRIY 153

LDD 172-173

LD double register 31 1 -31

5

LDDR 173-175

LDI 169-170

LDIR 170-172

LDr.XH 337

LDXH.r 337
LDXH.n 337
Line Length Too Long, Truncating line . . 325

Line Number Too Large 325
LINK 101-102

Linker

Command 43-44

Technical 44-45

Errors 329-330

LITORG 102-103

Location Counter 72-74

MACRO 103-104

Macro Editor Assembler Compatibility ... 1

8

Macro Sections 83-85

ENDM 94

MACRO r 103-104

Missing External Transfer Address 329
MOVD operand1,operand2,

length 315-316

MOVI operand1,operand2,

length 317-318

Multiply Defined Entry Symbol 329

365



MODEL HI/4 ALDS

Subject Page

MEG 209-210

NOEND , 104

NOFILL 104

NOLOAD 105

NOP 211-212

No Text 325

Number Bases 69-70

OBJ 105

Occurrence Too Large 325

Open Attempt For a File Already Open. 331

Operands 63-67

Operators 64-67

ORG 105-106

ORs 193-195

ORXH,n 337

OTIR 297-298

OUT (C),r 295-296

OUT(n),A 294-295

OUTD 299

OUTI 296-297

overflow 115

parity odd 115

parity even 115

PATCH 106

POP 318

POP IX 158-160

POPIY 160-161

POPqq 157-158

PUSH IX 155-156

PUSHIY 156-157

PUSHqq 153-154

PRINT 106-107

Program Section 75

PSECT 107-108

Pseudo Ops (see Directives)

PUBLIC 1 08-1 09

QUIT 109

RADIX 70,109-110*

REF 110

Relocatable 72-73,75

Operators 66

RESb,m 262-263

RESLDr.n.m 336

RESLOC 110-111

RESn.m 336

RET 280-281

Subject Page

RET cc 281 -283

RETI 283-284

RETN 284-285

RL rn 236-238

RL m 335

RLA 228
RLCLD r,m 335

RLCm 335

RLCr 231-232

RLC(HL) 232-233

RLC(IX + d) 233-234

RLC(IY + d) 234-236

RLD 249-251

RLLDr.m 335

Rotate and shift group 225

RLm 236-238

RLA 228

RLCr 231-232

RLC(HL) 232-233

RLC(IX + d) 233-234

RLC(IY + d) 234-236

RLD 249-251

RRm 240-242

RRA 230

RRCm 238-240

RRCA 229

RRD 251-252

SLAm 242-244

SRAm 245-247

SRLm 247-249

RRm 240-242

RRA 230

RRC m 238-240

RRCA 229

RRCLDr.m 335

RRD 251-252

RRLLDr.m 335

RSTp 385-286

RSTR operand 318-320

Sample Session 3-9

SAVE operand 320-321

SBCA,s 189-191

SBCHL.ss 219

SBCA.XH 337

SCF , 211

Search Arg Too Long 326

366



INDEX

Subject Page

SETb,r 257-258

SETb.(HL) 258-259

SETb,(IX + d) 259-260

SETb,(IY + d) 261-262

SETLOC 111-112

SET n,m 335

SETLDr.n.m 335

SLAm.. , 242-244

SLOLD r,m 335

SRA m 245-247

SRA m 335

SRALDr.m 335

SRLm 247-249

SRLLD«r,m 335

SUBs 187-189

TZ operand 308

XORs 195-197

SLA m 335

SLALDr.m 335

SLO m 335

SRL m 335

STOP 112

Storage

Defining 71

DEFS 92

Subject Page

FILL 95-96

NOFILL 104
SUBXH 337
Symbols

Defining 70
External 66,75-82

Syntax 61

Symbol Table Overflow 329
Syntax Error 326
SVC 321

TITLE 112-113

TIME 112
Total Line Length Too Long 326
Undefined External Symbol 329
Undocumented Z80 Instructions. . . 333-337

USING 113
VERSION 113-114

WORD (see DEFW)
XORXH 337
Z80

alphabetic 347-352

extended 303-322

hardware 353-359

mnemonics 11 5-301

notations 117-118

numeric list 341 -346

undocumented 333-337

367











RADIO SHACK, A DIVISION OF TANDY CORPORATION

U.S.A.: FORT WORTH, TEXAS 76102
CANADA: BARRIE, ONTARIO L4M 4W5

TANDY CORPORATION
AUSTRALIA BELGIUM U. K.

91 KURRAJONG ROAD PARC INDUSTRIEL DE NANINNE BILSTON ROAD WEDNESBURY
MOUNT DRUITT, N.S.W, 2770 5140 NANINNE WEST MIDLANDS WS10 7JN

11/83 MP Printed in U.S.A.


