

An Overview of the TRS-80
Model Il Compiler BASIC Manual

The four sections in this manual contain the information you
need to use Radio Shack’s COMPILERBASIC. We suggest
that you begin by running through the steps in the first
chapter of Section 1, “Operating Compiler BASIC.”

The four sections are:

1/Operating Compiler BASIC

Takes you through the steps of operating Compiler BASIC
from starting up the system to typing, debugging, compiling,
running, and saving programs. Includes alphabetical
entries on each BASIC command.

2/Programming in RSBASIC

Shows you how to write programs using the RSBASIC
programming language. Includes alphabetical entries on
each BASIC keyword.

3/BEDIT

Explains how to use BEDIT to edit your BASIC source
programs.

4/Programmer’s Information Section

Gives background information on the Compiler BASIC
development system, memory usage, data storage, and
assembly language subprograms. Also, gives information
on how to use the stand-alone Runtime System.

This manual complements the information in your Model Il
Operations and TRSDOS manuals. If you need more
information on your Model Il computer system, we refer you
to these manuals.

COPYRIGHT NOTICES

TRS-80 MODEL I COMPILER BASIC

© ® 1980by Ryan-McFarland Corporation, Rolling Hills Estates, California
90274, Licensed to Tandy Corporation, Fort Worth, Texas 76102.

Allrights reserved.

TRS-80 MODEL Il DISK OPERATING SYSTEM (TRSDOS)
©® 1980 by Tandy Corporation. All rights reserved.

TRS-80 COMPILER BASIC MANUAL

©1980 by Tandy Corporation. All rights reserved.

Reproduction or use, without express permission, of editorial or pictorial content, in
any manner, is prohibited. While every precaution has been taken in the preparation
of this book, the publisher assumes no responsibility for errors or omissions. Neither
is any liability assumed for damages resulting from the use of the information
contained herein.

How Compiler BASIC Works

The BASIC programming language must translate all your
BASIC instructions to an object code the computer under-
stands. The means it uses to translate your instructions
depends on the form of BASIC you have.

The BASIC which comes with the TRS-80 Model Ilis an
Interpreter. It interprets each instruction to object code
everytime it runs the program.

Compiler BASIC, on the other hand, translates the program
intwo stages. First, itcompiles the entire program to an
intermediate object code. Then, when running the program,
ittranslates this intermediate code to an object code.

Compiling your program to this intermediate code will give
you several advantages:

® The program will take up much less space in memory and
on diskette.

e Noone using your program will be able to read your
“source” BASIC instructions.

Notice To Programmers

By your purchase of the software product described in this
book, you have obtained a license to duplicate TRSDOS and
Model || BASIC only as necessary for your personal use.

If you intend to sell BASIC applications programs you have
written for the TRS-80 Model Il, you must follow the
procedure below to avoid violation of this license and of the
copyright laws.

The complete Radio Shack BASIC Development System
(26-4705) includes the TRSDOS™ operating system, the
RSBASIC Compiler, the RUNBASIC runtime and numerous
auxiliary files.

RSBASIC produces an intermediate code which can only be
executed by the runtime system RUNBASIC. Therefore, your
compiled program will require that the user have TRSDOS
and RUNBASIC from Radio Shack.

Since you may not duplicate TRSDOS or RUNBASIC for
resale, you have two options for selling a copy of your own
program:

A. Purchase a RUNBASIC/TRSDOS runtime system
diskette (Catalog Number 26-4706) from Radio Shack.
Copy your compiled program onto this diskette, and sell this
diskette to your customer. The copyright notices affixed to
that diskette must not be removed or hidden from view. For
each copy of your program you sell in this manner, you must
purchase the RUNBASIC diskette and copy your program
onto it.

B. Sellyour compiled program without TRSDOS and
without the BASIC runtime. Instruct your customer to
purchase a RUNBASIC/TRSDOS runtime from Radio Shack.

The Model Il BASIC Interpreter programs are not meant to be
run under Compiler BASIC. Radio Shack does not
recommend converting BASIC Interpreter programs.

Radio fhaek®

Section 1
Operating Compiler BASIC

General Information,
Compiler Use, Start-Up, Commands.

TRS-80™

You may use Compiler BASIC in two ways:

1. As a Development System - to write, compile, run,
debug, and store programs, or

2. As a Stand-Alone Runtime System - to only run your
programs. After developing a program, you might give it to
other people to operate by simply using the Runtime System.

This section explains how to use Compiler BASIC as a Development
System. For information on the stand-alone runtime system, see
the Programmers Information Section. Also see the appendix for
information on how to create a runtime system diskette.

We suggest you begin by going through the steps in Chapter 1.

—— i —— ———— ————— ———— ———— ——— — ——— ——— —— T ————————————

TABLE OF CONTENTS
SECTION 1. OPERATING COMPILER BASIC

Chapter 1.

Using Compiler BASIC .ccceccecscssaseseasssel=l through
Takes you through the steps of loading 1-14
and operating Compiler BASIC.

Chapter 2.

COII‘IInaﬂdS .oooo-.o..o.nooonoot-olavooo00000-2'—1 through
Contains alphabetical entries on each 2-36
Compiler BASIC command.

—————— i ——— . . ol T T T T o — ———— ———— — ———— —————— —

TRS-80™

kkhkkhkhkhhkhkhhhhhhkhkkhkhkhhhkhkkhkhkhkhhhkkhhhhkhhhhk

*
* Chapter 1 *
x* %
* USING COMPILER BASIC *
* %*
* &

Je e de de de e e e o g e e de de e de e ok e e e de ok e v e e e e e de e ke ke e e e e

Radie fhaek

MODEL II COMPILER BASIC . USING COMPILER BASIC
TRS-80 ™

INTRODUCTION

This chapter quickly runs through the mechanics of loading and
operating the Model II BASIC Compiler. We only mention certain
BASIC commands to illustrate how to operate the Compiler. The
details on each command are in the Commands Chapter. Details on
the Compiler itself are in the Programmers Information Chapter.

OUTLINE OF CHAPTER 1
USING COMPILER BASIC

L Starting Up Model II Compiler BASIC
A. Setting the Date and Time
B. 1Initializing the Line Printer
C. Loading RSBASIC

II. Programming with RSBASIC
A. Typing the Program into Memory
B. Executing the Program

IIT. Using the Diskettes
A. Assigning File Specifications
B. Storing a Program on Disk
C. Clearing Memory
D. Loading Programs from Disk
E. Storing Data Files on Disk

Radie fhaek

PAGE 1 - 1

MODEL II COMPILER BASIC USING COMPILER BASIC

TRS-80™

Inserting a diskette. Label may
extend vertically across the diskette.

Setting the date and time.

Radio fhaek

PAGE 1 - 2

MODEL II COMPILER BASIC + USING COMPILER BASIC
TRS-80™

STARTING UP MODEL II COMPILER BASIC

——— . — o ———— T —

To use this Radio Shack Compiler BASIC package, you will need a
TRS-80 Model II with 64K of RAM.

Before loading Compiler BASIC, you need to initialize the Model
ITI disk operating system by setting the date and time. The
operating system, called TRSDOS, is on you RSBASIC diskette and
is loaded automatically when you insert the diskette.

The Model II operations Manual explains how to connect and
power-up the Model II, and how to properly insert a diskette.

SETTING THE DATE AND TIME

As soon as TRSDOS is loaded, it prompts you for the date. Type
in the date using the MM/DD/YYYY form and press <ENTER>. For
example:

04/01/1980 <ENTER>
sets the data for April 1, 1980.

Next, the system prompts you for the time. To skip this

question, simply press <ENTER>. TRSDOS starts the clock at
00:00:00.

If you want to set the time, type it in using the 24-hour
HH.MM.SS form. You may omit the seconds if you wish. For
example:

14.30 <ENTER>
starts the clock at 2:30 PM.

The system returns with this message:

TRSDOS READY

LI I I IR I I I I I I B I I I I B B I I I I T R I

At this point you may execute any TRSDOS command or lcad
RSBASIC.

Since all TRSDOS and BASIC commands are capitalized, you'll
probably find it convenient to operate the keyboard in the caps
mode. Press <CAPS> so the red light comes on. That way, all
the alphabet-keys are interpreted as capital letters. When you
want to change to the lower case mode, press the <CAPS> key
again.

Radio fhaek

PAGE 1 - 3

MODEL II COMPILER BASIC USING COMPILER BASIC

TRS-80™

LOADING RSBASIC
The simplest way to load RSBASIC is to type:
RSBASIC <ENTER>

After taking a few seconds to load, BASIC displays a start-up
heading like this:

TRS-80 MODEL II COMPILER BASIC (RM/BASIC ver 1.0)
(C) 1980 BY TANDY CORP. LICENSED FROM RYAN-McFARLAND CORP.
*

B S S S S S A S S S E S PP SRS S S ST E S S eSS eSS E eSS eSS
8 8 5 8 8 8 8 S 8 8 S E s 89 ES S e S E S E S eSS PSS SRS
& & & 8 ® 8 5 8 & S 8 E S S S S S ST S S S S S S EE SRS A SR AP S sS4 S s s e

You may now begin programming in BASIC.

Options for Loading RSBASIC

——— i ———————— T ——— T ————

The complete syntax for loading RSBASIC is:

RSBASIC filespec T=nnnn, S=XXXX
'filespec' is a TRSDOS file specification
'nnnn' is a hexadecimal address representing
the top memory address accessible by BASIC
'xxxx"' is a hexadecimal address representing the
size of the stack area to be used by BASIC.
'filespec' T='nnnn' and s='xxxx' are optional

This means you have several options you may use in loading
RSBASIC:

1. You may load it with an instruction to immediately load
and execute a BASIC program. To do this type RSBASIC and the
program's file specification. For example:

TRSDOS READY
RSBASIC FILE:1l

Radie fhaek

PAGE 1 - 4

MODEL II COMPILER BASIC @ USING COMPILER BASIC
TRS-80™

loads RSBASIC, then loads and executes the program file named
FILE from drive 1.

2. You may load it with an instruction to protect high
memory for your own object code programs. To do this type
RSBASIC followed by T=nnnn (where nnnn is a hexadecimal number
representing the top memory address which BASIC may use). For
example:

TRSDOS READY
RSBASIC T=E000

loads RSBASIC. E000 (decimal 57344) is the highest address BASIC
will use.

TRSDOS READY
RSBASIC PROG/CMP T=E000

Loads RSBASIC and the program PROG/CMP, and immediately executes
PROG/CMP. BASIC will not be able to use any memory addresses
over E000.

3. You may load it with an instruction to set the stack
size to greater than the default stack size of 00CO0 (decimal
192) to allow increased usage of BASIC features like GOSUB and
CALL, which use more than average amounts of stack space.

TRSDOS READY
RSBASIC S=0180

loads RSBASIC with a stack size of 0180 (decimal 386).

TRSDOS READY
RSBASIC T=E000, S=0180

loads RSBASIC with a stack size of 0180 and prevents BASIC from
utilizing any memory address over EO000.

Radio fhaek

PAGE 1 - 5

MODEL II COMPILER BASIC USING COMPILER BASIC

TRS-80™

PROGRAMMING WITH RSBASIC

T — . e} o

TYPING THE PROGRAM INTO MEMORY

To type a BASIC program line into memory, type a line number
followed by a space followed by a BASIC statement. Unless the
line contains 255 characters, you must press <ENTER> to signify
the end of the line. This is an example of how to type a
program line:

10 PRINT "THIS IS A SAMPLE BASIC PROGRAM LINE" <ENTER>

BASIC has six commands to help you in typing and editing a
program:

1. AUTO - automatically numbers each program line

2. CHANGE - replaces one group of characters on program
lines with another.

3. DELETE - deletes one or more program lines

4. DUPLICATE - duplicates one or more of your program lines
in a different part of your program.

5. RENUMBER - renumbers your program.

6. LIST - lists your program.

To use a BASIC command, type the command and then press <ENTER>.
For example:

LIST <ENTER>
Lists all the program lines you have typed.

Some commands require that you include parameters as part of the
command. For example:

CHANGE 10/LINE/

changes line 10 by deleting the word LINE. The parameters are
10 and LINE.

The Model II keyboard has certain special keys which are helpful
in typing program lines and commands:

Radio fhaek

PAGE 1 - 6

MODEL II COMPILER BASIC @ USING COMPILER BASIC
' TRS-80°

erasing any characters. Use this
to position the cursor for correct-
ing a portion of a line.

.
<ENTER> Signifies end of line.

Erases the current line. Use this

when you want to correct the entire
line.

You may want to use BEDIT to edit your program. The section on
BEDIT explains how to do this.

EXECUTING THE PROGRAM

The BASIC Compiler only executes programs which have been
compiled into object code. If you are executing a particular
BASIC program for the first time, there will be a slight delay

before that program is executed in order for BASIC to compile
the program.

The BASIC command for executing a program is RUN. To execute

Radio fmaek

PAGE 1 - 7

MODEL II COMPILER BASIC USING COMPILER BASIC

TRS-80™

this program:

10 PRINT "THIS IS A SAMPLE BASIC PROGRAM"
20 GOTO 10

Type the RUN command:

RUN <ENTER>

BASIC compiles and then executes the program. While the
program is executing, the Computer is under control of the
program. These are the two special keys you may use to
interrupt execution of the program:

Note: RUN does not initialize variable memory during the
compiling process. If you are Running the same program a number
of times, the program will start each time with the same values
it had in variable memory the last time it was Run.

Debugging the Program

—— i - o e A . —————

RSBASIC has four commands to help in debugging a program:

l. TRACE - sets up a tracer which displays each line number
as it is being executed.

2. BREAK - sets breakpoints in the program which break
program execution.

3. STEP - executes a certain number of lines in the program.

4. GO - continues program execution at the next executable
statement.

These commands are detailed in the Commands section.

Radio fhaek

PAGE 1 - 8

MODEL II COMPILER BASIC + USING COMPILER BASIC
TRS-80™

USING THE DISKETTES

——— o ————— o o e o o o S

You may use diskettes to store any programs or data files you
have created. To store data on a diskette, you must cover the
write-protect notch on the diskette. Use the gummed tape
provided with the diskette.

Label Leave Uncovered Cover to allow
for Write-Protection Disk Writes /

Sector Hole Jacket Read/Write

Notch

Before using a diskette for storage, make sure the diskette
which you want to use is properly inserted. Never insert or

remove the diskette while reading or writing to it. This might
destroy the contents of the diskette.

Radio fhaek

PAGE 1 - 9

MODEL II COMPILER BASIC USING COMPILER BASIC

TRS-80 "

ASSIGNING FILE SPECIFICATIONS

Anything you store on diskette must be stored as a disk file
with a TRSDOS file specification. Afterwards, you may load
the program by specifying the file name you gave to the file
when you stored it.

The complete syntax for a file specification is:

filename/ext .password:d

'filename' is any name up to eight characters
beginning with a letter.

'/ext' is an optional extension to the filename
consisting of up to three characters.

'.password' is an optional password with up to
eight characters.

':d' is an optional drive specification (0,1,2, or 3).

You may use this if you have a multi-drive system
to specify which disk drive you want to use in
saving and loading the program.

Only 'filename' is essential. Both '/ext' (extension) and
'.password' are optional extensions which you may add to the
filename. ':d' is also optional. If you have a multi-drive
system, it specifies which drive you are using for storage.

Examples of file specifications:

BOOK/BAS .ABCDE: 2

The filename is BOOK, the extension to the filename is BAS, the
password is ABCDE. The diskette in drive number 2 will be used
in saving or loading the program.

PROGRAM

The filename is PROGRAM. There is no extension, password, or
drive specification. Since there is no drive specification,
BASIC will use the first available drive beginning with drive 0
(the built=in drive).

ACCOUNT1/CMP:1

Radie fhaek

PAGE 1 - 10

MODEL II COMPILER BASIC . USING COMPILER BASIC
TRS-80"™

The filename is ACCOUNT1l. The extension is CMP. The diskette
in drive number 1 will be used in saving or loading the program.

PAYROLL.SECRET

The filename is PAYROLL. The password is SECRET. There is no
extension to the filename and no drive specification.

Note: See Section 1 in the Model II Disk Operating System
Manual for more information on TRSDOS file specifications.

STORING A PROGRAM ON DISKETTE

RSBASIC has two commands for storing a program on diskette: SAVE
and COMPILE. The SAVE commands stores the program in its
existing BASIC format. COMPILE compiles the program to object
code and saves it as an object code program.

Saving a Program:

To SAVE a program which is currently in memory, simply type the
SAVE command followed by the file specification you are
assigning to the program. For example, to save this program
(once it has been typed into memory):

10 PRINT "THIS IS AN EXAMPLE OF A BASIC PROGRAM"
20 GOTO 10

You may type:
SAVE EXAMPLE/BAS <ENTER>

This gives the program the file name EXAMPLE, with the extension
BAS, and saves it on the diskette in drive 0 —-- the built in
drive. (If you have a multi-drive system, RSBASIC will save it
on the first diskette available,beginning its search with the
diskette in drive 0).

A Note of Caution

If you save a file with the same file specification as an
existing file, the contents of the existing file will be
destroyed. For instance, if you save another program under the
name EXAMPLE/BAS, the program file you just created above will
be destroyed in order to make room for the new file.

Radie fhaek

PAGE 1 - 11

MODEL II COMPILER BASIC . USING COMPILER BASIC
TRS-80 ™

For this reason, you might want to check the diskette's
directory to see what files are already on the diskette before
executing the SAVE command. To do this, type:

SYSTEM "DIR" <ENTER>

This executes the TRSDOS command DIR, which displays the
contents of the diskette in drive 0.

SYSTEM "DIR:2" <ENTER>
Displays the contents in drive 2.

For more information, see SYSTEM in the Commands Chapter of this
manual and DIR in the Model II Disk Operating System Manual.

Compiling a Program

Now that the program above is saved as a BASIC program, you may
compile it to an object code disk file. Type:

COMPILE EXAMPLE/BAS, EXAMPLE/CMP <ENTER>

This compiles the program disk file named EXAMPLE/BAS and stores
it on diskette as an object code file with the name EXAMPLE/CMP.
The original source program is left unchanged. You should be
sure to save it in case you ever need to modify the program (see
below).

There are several reasons for compiling a long program:

1. The compiled program takes up less room, both on
diskette and in memory.

2. Once you have a program in final form, so that further
editing and debugging is not required, you don't need all the
overhead of the RSBASIC Development System. Instead, you may
copy the compiled program onto a diskette containing only the
RUNBASIC program. This leaves maximum disk space available for
your data files.

You cannot edit, list or otherwise modify a compiled program. If
you ever need to modify it, you simply edit the original source
program and re-compile it.

Radio fhaek

PAGE 1 - 12

MODEL II COMPILER BASIC - USING COMPILER BASIC
TRS-80™

CLEARING MEMORY

Once programs are saved on diskette, you will probably want to
clear the Computer's memory. BASIC has two commands for this:

1. NEW - erases all BASIC programs from memory but keeps
compiled object code programs in memory.

2. CLEAR - erases all BASIC and compiled programs from
memory, undefining all variables.

For example, to erase all programs from memory, type:

CLEAR <ENTER>

LOADING PROGRAMS FROM DISK

BASIC has different commands for loading BASIC and Compiled
programs from diskette.

Loading a BASIC Program

The OLD command loads a BASIC program from diskette. For
example:

OLD EXAMPLE/BAS

Loads the program from diskette named EXAMPLE/BAS, which was
stored above with the SAVE command. Once the program is
loaded, you may execute it with the RUN command.

Since memory is cleared everytime you OLD a program, BASIC
offers two commands to use in loading more than one BASIC
program: APPEND and MERGE.

Loading a Compiled Program

D e T ——

The LOAD command loads Compiled programs from diskette. For
example:

LOAD EXAMPLE/CMP <ENTER>

Loads the program from diskette named EXAMPLE/CMP, which was
stored above with the COMPILE command. Once loaded, the

Radio fhaek

PAGE 1 - 13

MODEL II COMPILER BASIC « USING COMPILER BASIC
TRS-80™

program may be executed with RUN.

Unlike OLD, LOAD does not clear memory when it loads a program.
Therefore, you may load a series of Compiled programs into
memory .

STORING DATA FILES ON DISKETTES

To store data files on diskette, see the chapter on Data Files.

Using This Package with the Model II Hard Disk (26-4150)

This software package can be used with the TRS-80 Model II
Hard Disk System.

However , before FCOPYing this package over to TRSDOS-HD (see
the Hard Disk Owner's Manual), make the following program
modifications:

PATCH RSBASIC/LIO A=377D F=FD5609FD5E08 C=014700090000
PATCH RSBASIC/LIO A=3786 F=ED53 C=0022

PATCH RSBASIC/OLF R=156 B=126 F=FD5609FD5E08 C=014700090000
PATCH RSBASIC/OLF R=156 B=135 F=ED53 C=0022

Then transfer the program has described in the Hard Disk

Owner's Manual (see FCOPY). Once the program has been
transfered, you may use it as described in this manual.

Radio fhaek

PAGE 1 - 14

TRS-80™

Ahkhkhhkkhkhkhkhhhhhkhbhbdhhhhkhkthhhhkkrhrhthhhbhhhhdd

* *
* Chapter 2 *
* *
* COMMANDS *
* *
R Y P R R R e R R R R R R R 22 AR 2 R L R R R TR XX

MODEL II COMPILER BASIC COMMANDS
TRS-80™

INTRODUCTION

Compiler BASIC is made up of commands. These commands instruct
it to do something immediately.

In this chapter, there are alphabetical entries for each

command. The next two pages explain the format for each

command. On the following page is a brief introduction to
commands.

OUTLINE FOR CHAPTER 2
COMMANDS

) Format for the Command Entries
II. Introduction to Commands

III. Alphabetical Entries for each Command

Radio fhaek

PAGE 2 - 1

®
@

O,
®

MODEL II COMPILER BASIC COMMANDS

TRS-80™

FORMAT FOR COMMAND ENTRIES

-—

l. The first line is the command itself. The second line
briefly describes what it does.

2. The information in the gray box is the syntax for the
command. The first line shows the format to use in typing the
command. This format line always contains:

a. the command itself
and may also contain:

b. parameters

c. options
If the syntax contains parameters and options, the next lines
define them. A parameter enclosed in single quotes indicates
that you must specify its value. In the syntax illustrated
here, you must specify 'startline' and 'endline', if you choose
to use these parameters.
3. This paragraph explains how to use the command.

4. These examples illustrate how the command might be used.

PAGE 2 - 2

MODEL II COMPILER BASIC COMMANDS

TRS-80®
-- COMMAND —--
LIST
Display Program Lines

LIST startline-endline string A {PRT}

'startline' is a line number specifying the lower
limit for the listing.

'endline' is a line number specifying the upper limit
for the listing. If omitted, only 'startline'
will be listed.

'string' is a string constant or a string variable.

If A is omitted, only the first statement which (:]
contains 'string' will be listed. ‘'string' A may
be omitted .

PRT causes the listing to appear on the line printer
rather than the video display.

Note: if both 'startline' and 'endline' are omitted,

the entire program will be listed.

The LIST command gets the Computer to display a program line or

a group of program lines that are currently in memory. If you

do not specify any line numbers with the LIST command, it will

list all the lines. You can use the PRT option to cause the (:)
listing to be printed on the line printer.

You may specify a certain string you would like listed by

putting it between any two non-numeric delimiting characters
except " - ",

Examples

press <HOLD>. This will freeze the display. Press <HOLD> again

Displays the entire program. To stop the automatic scrolling, <:>
to continue the listing.

LIST 50

Radie fhaek

PAGE 2 - 3

MODEL II COMPILER BASIC COMMANDS

TRS-80™

INTRODUCTION TO COMMANDS

———— o T — —— ——— " ——— ——

A command instructs the Computer to immediately do something.
For example:

*LIST <ENTER>

instructs the computer to immediately display all program lines
currently in memory. A command may not be part of the program.

All BASIC commands may be abbreviated by the first two letters
in the command. For example, LIST may be abbreviated by:

*LI <ENTER>

You may specify certain parameters for some of these commands.
For example:

*LIST 50-80

instructs the computer to immediately list lines 50 through 80.
The parameter is 50-80.

When typing a command with a parameter, there must be a space or
a comma after the command. This, for example would produce an
error:

LIST50-80
A few of the commands also include options:

*LIST 50-80 {PRT}
lists lines 50-80 on the line printer. The option is {PRT}.

Options may always be omitted from the command if you don't want
to use them.

Radie fhaek

PAGE 2 - 4

MODEL II COMPILER BASIC COMMANDS

TRS-80™

—-— COMMAND --

APPEND
Append Two Programs

APPEND joins a program from disk to the resident program. The
appended disk program is renumbered to follow the resident
program. Its first renumbered line is computed by adding ten to
the last line number of the resident program. Ten is added to
each successive line.

While the program is being appended, you may stop this process

by pressing <BREAK>. The original resident program will be
restored.

Only source programs can be appended. You can not use APPEND to

append an object program from disk which was created with the
COMPILE command.

Resident Program Disk Program

Radie fhaek

PAGE 2 - 5

MODEL II COMPILER BASIC COMMANDS

TRS-80™

Examples

APPEND PART2/BAS:1

This loads the program PART2/BAS from drive 1. It is renumbered
to follow the resident program.

APPEND PROG2

PROG2 is appended to the resident program. Since no drive is
specified, BASIC will begin searching for it in drive 0.

AP GRAPH/SUB

The subprogram GRAPH/SUB is appended to the main program in
resident memory.

Radio fhaek

PAGE 2 - 6

MODEL ITI COMPILER BASIC COMMANDS

TRS-80 "

--COMMAND -—-

AUTO
Number Lines Automatically

The AUTO command helps you type program lines faster by
automatically numbering each line. To use it, type AUTO, then
type the number you want as your first automatic line number
(startline), and then, finally, type the number of lines you
want between each program line (increment).

After you type this command and press <ENTER>, BASIC will supply
you with the first line number. All you have to do is type in
your program statement and press <ENTER>. BASIC will then
supply the next line number.

To turn off AUTO, press <ENTER> after AUTO displays a line
number. If AUTO supplies you with a line number that has an
asterisk beside it, this means you have already used this

program line. Press <ENTER> if you do not want to change the
line.

Examples

AUTO

If you have not typed any program lines yet, this will start
automatic line numbering with line 10. If you have typed any
program lines, automatic line numbering will start at 10 plus
the last program line. This command increments each line number

Radie fhaek

PAGE 2 - 7

MODEL II COMPILER BASIC COMMANDS

TRS-80™

by 10.
AUTO 100

starts numbering with 100, using increments of 10 between line
numbers.

AUTO 1000, 100

starts numbering with 1000, using inrements of 100 between line
numbers.

AU 5

starts numbering with 5 using increments of 10 between line
numbers.

Radio fhaek

PAGE 2 -~ 8

MODEL II COMPILER BASIC COMMANDS
TRS-80™

-— COMMAND --

BREAK
Set or Remove Program Breakpoints

BREAK sets a certain line or series of lines as a breakpoint in
the program. When BASIC encounters this line it will stop
executing the program and return to the command mode. This will
happen before the breakpoint line is executed. Use the GO
command to continue program execution.

You can set more than one breakpoint. To clear all the
breakpoints, use BREAK without any line numbers.

Examples

—— e e .

BREAK 120

When the program is run, BASIC will stop execution and enter the
command mode immediately before line 120.

BREAK 200, 300, 400

This sets lines 200, 300, and 400 as breakpoints. BASIC will
stop program execution when it encounters any of these lines.
The GO command continues program execution to the next
breakpoint or to the end of the program.

BR

This clears all the breakpoints. The program will execute
normally.

Radie fhaek

PAGE 2 - 9

MODEL II COMPILER BASIC COMMANDS

TRS-80 ™

-— COMMAND --

CHANGE
Change Program Lines

CHANGE edits program lines by replacing the oldstring with the
newstring. CHANGE, of course, can only be used on source
programs which are in their original BASIC form.

Examples

—_—— -

CHANGE 100-200/PRINT/LPRINT

The first occurrence of "PRINT" in all lines is changed to
"LPRINT". Notice that since the A option is not used, only the
first occurrence is changed. 1In this example, slashes are used
as delimiters, although any other character besides the hyphen
could have been used.

CHANGE, TAB(10),TAB(5),A

Every occurrence of "TAB(1l0)" is replaced by "TAB(5)" in all of
the lines. Commas are used here as delimiters.

CHANGE 500-1000/REM/

Radie fhaek

PAGE 2 - 10

MODEL II COMPILER BASIC COMMANDS

TRS-80™

The first occurrence of "REM" in all lines from 500 to 1000 is
changed to the null string; i.e., deleted.

CH 100/JOHN ANDERSON/JAMES KNIGHT

Changes the first occurrence of "JOHN ANDERSON" in line 100 to
"JAMES KNIGHT".

Radio fhaek

PAGE 2 - 11

MODEL II COMPILER BASIC COMMANDS

TRS-80™

-- COMMAND --

CLEAR
Clear All Programs from Memory

CLEAR

When CLEAR is used, all programs are deleted from memory, all
variables are undefined, and the system is returned to its
initial state. Unlike NEW, CLEAR will also delete compiled
object programs from memory.

Example

CLEAR

All programs presently in memory are cleared. All variables are
undefined.

Radio fhaek

PAGE 2 - 12

MODEL II COMPILER BASIC COMMANDS
TRS-80 ™

-—- COMMAND --

COMPILE
Compile BASIC Program

COMPILE translates and saves a BASIC program on disk as an
intermediate object code program. Once a program is compiled,
1t 1s no longer a BASIC program. It cannot be changed.

For this reason, it is adviseable to keep a disk copy of your

BASIC source program file until you are sure that you will not
want to revise it any more.

There are several advantages to having a compiled disk copy of
your BASIC program:

1. The compiled program takes up less room, both on
diskette and in memory.

2. If you will be using the stand-alond Runtime System
(described in the Programmers Information Section) to run your
program, the program must be compiled.

Radie fhaek

PAGE 2 - 13

MODEL II COMPILER BASIC TRS-80 " COMMANDS

To compile a BASIC program, follow this procedure:

l. use the SAVE command to save your BASIC source program
file on disk. Then you may ...

2. wuse the COMPILE command to create an object code program
file on disk from the BASIC source program file.

If
the file name you assign to the compiled program already exists,

the existing file's contents will be wiped out. It will be
replaced by your program.

COMPILE can be used with four options:

A, LIST generates a listing of the program containing the
relative memory location of every statement. In the listing
below:

*COMPILE DEMO/BAS. DEMO/OBJ (LIST)

nalatnlrl 10 REM *¥% SAMPLE PROGRAPM TO DEMONSTRATE COMPILE #%s%
ralralritral 20 DIM Al
BRYG 33 FOR I = 1 T 5
<§>mm1a 4@ ACTY = T + 1@
hazs 5@ NEXT I
n@A=n &0 Pd = "THIS I8 A SCALAR VARIARLE® (:)
7]V R 7@ OCu o= 4
nAa37 B D = 5,234

FINAL SUMMARY
142 (BOEE) BYTESE OF PROGRAM
FA2 (@140 BYTES OF LOCAL DATA (:)
8 SOURCE LINES
8 SOURCE STATEMENI'S
£ %% COMPILATION COMPLETE %¥%

1. the source program is displayed

2. the relative memory location of each statement is
displayed in hexadecimal notation. For instance, if the program
originates at memory location hex 4000, the code for the
statement in line 40 would begin at location hex 40l1A.

3. the final summary displays that the entire program
uses 142 bytes of memory. The variables in the program uses 332
bytes.

Radio Shaek

PAGE 2 - 14

MODEL ITI COMPILER BASIC COMMANDS

TRS-80 ™

B. MAP shows the hexadecimal memory location of the
variables in the program. in the example below:

eCOMPILE DEMO/EASs DEMO/OBT {(MAP}
SYMBOLIC MEMORY Map
ECAalL.ARE

[l B STRING®255 eyl G INTEGEH
i Peee b Rz Al AAeE I REAL.
ARRAY S

HAa7e@ ACE) RE AL.

the program contains four scalars (simple variables) and one
array variable. 1In this example B is a string variable
containing 255 bytes. It is stored beginning at location hex
0078. A is an array of real numbers containing five elements
beginning at location hex 0070.

C. XREF generates a cross reference listing. “2ch
variable is cross referenced with all the line n'i-%:- 3 which
referenced it. In the example below:

*COMPILE DEMO/BAS, DEMOSOBT
CROSS REFERENCE LLISTING

SCALARE

B &l
G 7
0 e
I

ARRAYE

&

I is referenced on lines 30, 50, and twice on line

D. PRT causes any of the above listings to be listed on

the line printer.
B
Radio fhaek

PAGE 2 - 15

MODEL II COMPILER BASIC COMMANDS
TRS-80™

E. PRT= listing file causes the listing to be saved in the
specified disk file.

Examples

COMPILE BILLING/BAS:0, BILLING/CMP:1

The program BILLING/BAS in drive 0 is compiled and saved as a
pseudo code program named BILLING/OBJ on the disk in drive 1.

COMPILE BASIC, OBJECT

The program BASIC is compiled and saved as a pseudo code program
named OBJECT.

COMPILE PAYROLL/BAS, PAYROLL/CMP {LIST, PRT}
The source program PAYROLL/BAS is compiled and saved on disk a
the pseudo code program PAYROLL/CMP. A listing showing relative
memory locations is printed on the line printer.

CO ENTRY/BAS, ENTRY/CMP {MAP, XREF}

BASIC compiles this file and displays a memory map and a Cross
reference listing.

COMPILE PROG/BAS, PROG/CMP {LIST, PRT=FILE}

PROG/BAS is compiled and saved on disk as a pseudo-code program
named PROG/CMP. A listing is printed and is also saved on disk
in a file named FILE.

Radie fhaek

PAGE 2 - 16

MODEL II COMPILER BASIC ; COMMANDS
TRS-80 "

-— COMMAND --

DELETE
Erase Program Lines from Memory

DELETE removes one or more program lines from memory. Another

way to delete one program line is to simply type the line number
and press <ENTER>.

Examples

DELETE 70

Erases line 70 from memory. If there is no line 70, you will
get an error message.

DE 50-110
Erases lines 50 through 110, inclusive.
70

Erases line 70.

Radio fhaek

PAGE 2 - 17

MODEL II COMPILER BASIC - COMMANDS
TRS-80 ™

—-= COMMAND --

DISPLAY
Display Variable Contents

DISPLAY subname; variable list, subname; variable
name...
'subname' is the name of a subprogram. IE
omitted, the variable contents of the main
program will be displayed.

This command displays the contents of variables in the resident
source program. To display the contents of a subprogram's
variables, you must specify the name of the subprogram.

All variables are undefined until the program has been compiled.

Therefore, you must compile the program first by executing it
before using the DISPLAY command.

Examples

DISPLAY A

Displays the contents of variable A in main memory.
DISPLAY A,BS$

Displays the contents of variables A and B$ in main memory.
DI SUBPROG; X

Displays the contents of variable X in the subprogram named
SUBPROG.

DI SUBPROG; X, Y

Displays the contents of variable X in SUBPROG and variable Y in
the main program or subprogram being executed.

Radie fhaek

PAGE 2 - 18

MODEL II COMPILER BASIC COMMANDS

TRS-80 ™

-- COMMAND --

DUPLICATE
Duplicate Program Statements

DUPLICATE copies existing program statements to another area of
the program. The duplicated program statements begin at 1 + the
current program line number you specify. Each successive line
number is incremented by one. DUPLICATE does not change any of
the existing program statements.

If BASIC must wipe out an existing program statement to
duplicate a statement in the area of the program that you
specify, it will give you an error message.

As with all editing commands, this command may not be used on a
compiled object code program.

Examples

———

DUPLICATE 100-150, 300

The statements in line numbers 100-150 are copied. The
duplicated statements appear on line numbers 301, 302, with each
additional line number incrementing by 1 until all the
statements are copied.

DU 100, 50

The statement on line 100 is copied and appears on line 51.

Radio fhaek

PAGE 2 - 19

MODEL II COMPILER BASIC TRS-80 " COMMANDS

—-— COMMAND --

GO
Start or Continue Program Execution

GO continues execution of the program after a breakpoint has
been encountered. (See BREAK and STEP for information on how to
set the break program execution). The GO command can also be
used at the beginning of a program to start program execution.

Example

——— e ———

GO

Starts or continues executing the program.

Radie fhaek

PAGE 2 - 20

MODEL II COMPILER BASIC COMMANDS

TRS-80 "

== COMMAND --

KILL
Delete File from Disk

KILL deletes the file you specify from the diskette directory.
You may Kill a file you will not use again to make room for
storing another file.

If you do not specify a disk drive in the file specification,

BASIC will search for the first drive that contains the file,
and delete it.

Make sure that you do not Kill an open file. If you have used
the OPEN statement to open a file, close it before Killing the
file.

Examples

—— i —— — —

KILL FILE/BAS

deletes FILE/BAS from the diskette in the first drive that
contains 1it.

KILL DATA:2

deletes DATA from the diskette in drive 2 only.

Radie fhaek

PAGE 2 - 21

MODEL II COMPILER BASIC COMMANDS

TRS-80™

== COMMAND --

LIST
Display Program Lines

The LIST command gets the Computer to display a program line or
a group of program lines that are currently in memory. If you
do not specify any line numbers with the LIST command, it will
list all the lines. You can use the PRT option to cause the
listing to be printed on the line printer.

You may specify a certain string you would like listed by
putting it between any two non-numeric delimiting characters
except " - ".

Examples

——— i —

LIST

Displays the entire program. To stop the automatic scrolling,
press <HOLD>. This will freeze the display. Press <HOLD> again
to continue the listing.

LIST 50

Radio fhaek

PAGE 2 - 22

MODEL II COMPILER BASIC COMMANDS

TRS-80™

Displays line 50
LIST 50-85

Displays lines 50 through 85, inclusively.
LIST 50 {PRT}

Prints line 50 on the line printer.
LIST 50-85 {PRT}

Prints lines 50 through 85, inclusively, on the line printer.
LIST "PRINT" A

Lists all statements which contain the word PRINT
LI/INSERT/

Lists the first statement which contains the word "INSERT".
LI 50-80/INSERT/A {PRT}

Lists all statements between line 50 and line 80, inclusively,
which contain the word INSERT, on the line printer.

Radio fhaek

PAGE 2 - 23

MODEL II COMPILER BASIC " COMMANDS
TRS-80 ™

-- COMMAND --

LOAD
Load Compiled BASIC Programs

LOAD file _
'file' is -a TRSDOS file specification for a
compiled object code program.

The LOAD command is used to load compiled programs, which were
stored on disk using the COMPILE command, into memory. It will
only load object code programs. Use OLD to load BASIC source
programs from disk which were stored with the SAVE command.

LOAD can be used to load main programs or subprograms. Since
LOAD does not clear resident programs, more than one program can
be loaded before executing them. The loading process links the
programs together.

Examples

LOAD PROG1l/CMP:2
This loads PROGl/CMP from drive 2.
LOAD PROG1l/CMP
Since no drive specification is included in this command, BASIC
gill begin searching for this program file, starting with drive
LO SUBPROG/CMP:1

BASIC loads this subprogram from drive 1.

Radio fhaek

PAGE 2 - 24

MODEL II COMPILER BASIC COMMANDS

TRS-80 ™

-= COMMAND --

MERGE
Merge Disk Program with Resident Program

MERGE file

'file' is a TRSDOS file specification for a BASIC
source file.

You can use the MERGE command to merge two BASIC source programs
into one. MERGE takes a BASIC source program from disk and

merges it with the BASIC program you presently have resident in
memory .

Both programs must be BASIC source programs. You may not Merge
compiled programs.

The program lines from the disk program are merged into the
resident program. For an example of how this works, say the
disk program contains line numbers 75, 85, and 90. The main
program contains lines 70, 80, and 100. When MERGE is used on

the two programs, the new program will be numbered 70, 75, 80,
85, 90, 100.

If the line numbers on the disk program coincide with the
resident program, the resident lines will be replaced by the
disk program. For example, if the disk program is numbered 5,
10, and 20, and the resident program is numbered 10, 20, and 30,
the Merged program will be numbered 5, 10, 20, 30. Lines 10 and

20 of the new program will be identical to lines 10 and 20 on
the disk program.

MERGE closes all files and deletes all variables.

Radio fhaek

PAGE 2 - 25

MODEL II COMPILER BASIC

iw COMMANDS
TRS-80"
Resident Program Disk Program Merged Program
10 o . 10 -
20 s 5. -
30 ol 20
%
30
Examples
MERGE PROG
This merges the BASIC source program on disk na.0G with

whatever BASIC program is resident in memory.

ME PROG/BAS:1

This merges PROG/BAS from the disk drive number 1 with the BASIC
program resident in RAM.

Radio fhaek ——-

PAG: 2 -

MODEL II COMPILER BASIC COMMANDS

TRS-80™

-—- COMMAND --

NEW
Erase BASIC Program from Memory

NEW erases an entire BASIC source program from memory.

NEW does not erase a compiled program which was loaded with the
LOAD command.* Use CLEAR to erase all programs from memory.

*NEW will erase a compiled program which was loaded with the RUN
command.

NEW can be very helpful when you want to erase your main BASIC
program, but would like to keep your compiled subprograms in
memory to use with your next BASIC program. By executing the
command:

NEW

Your main BASIC program is erased from memory, but all object
programs remain. You may now load or type in another BASIC
program to use with your compiled subprograms.

Radie fhaek

PAGE 2 - 27

MODEL II COMPILER BASIC ;i COMMANDS
TRS-80™

-— COMMAND --

OLD
Load BASIC Source Program

OLD file _
'file' is a TRSDOS file specification for a
BASIC source program file

The OLD command loads a BASIC source program, saved on disk,
into RAM. OLD will only load BASIC source programs. Use LOAD
to load a compiled program.

Since OLD clears all resident BASIC programs before loading a
program, only one BASIC program may be loaded into memory with
this command. To get other BASIC programs into memory, use
MERGE or APPEND.

Examples

OLD PROG/BAS:2
Loads PROG/BAS into RAM from drive 2.
OL PROG/BAS

Loads PROG/BAS into RAM. Since no drive specification is
included, BASIC will begin searching for it in drive 0.

Radio fhaek

PAGE 2 - 28

MODEL II COMPILER BASIC ; COMMANDS

TRS-80 ™

== COMMAND --

RENUMBER
Renumber Program

RENUMBER newline, increment

‘newline' specifies the new line number of the first
line to be renumbered..

'increment' specifies the increment to be used
between each successive renumbered 115&1 If
'1ncrement' is omitted, 10 is used. -

If both 'newline' and 'increment' are Gmitted, 10
is used for newline and 10 for increment.

RENUMBER changes all the line numbers in your program. It also
changes all line number references appearing after GOTO, GOSUB,
THEN, ELSE, ON...GOTO, ON...GOSUB, and ON ERROR GOTO.

Examples

——— —————

RENUMBER

Renumbers the entire resident program. The first new line
number is 10 and each line is incremented by 10.

RENUMBER 6000, 100

Renumbers the program. The first new line number is 6000 and
each line is incremented by 100.

RE 10000

Renumbers the program. The first new line number is 10000 and
each line is incremented by 10.

Radie Shaek

PAGE 2 - 29

MODEL II COMPILER BASIC TRS-BD@\' COMMANDS

== COMMAND =--

RUN
Execute Program

RUN file

'file' is a TRSDOS file specification. It may
be a BASIC source program file or an object
code program file. If omitted, the resident
program will be run.

RUN is the command that executes your program. RUN compiles, if
necessary, and executes the program that is in resident memory.
If the program is in the form of a BASIC source program, there

will be a short delay while RUN is compiling the program before
running it.

If you include a file specification, BASIC will load or old the
program from disk and execute it. You may have BASIC Run either
a BASIC source program or a compiled program. If you use RUN to
run a compiled program, be sure to first clear any BASIC
programs you have in resident memory.

Examples

RUN
Executes the program in resident memory.
RUN PROGRAM/CMP :2

Loads the compiled program PROGRAM/CMP from drive 2 and executes
1€,

RUN PROGRAM/BAS
Loads the BASIC source program PROGRAM/BAS and executes it.
RU PROGRAM

Loads the program PROGRAM and executes it.

Radie fhaek

PAGE 2 - 30

MODEL II COMPILER BASIC COMMANDS

TRS-80™

-— COMMAND --

SAVE
Save BASIC Source Program on Disk

SAVE file _ _

'file' is a TRSDOS file specification., If
omitted, the program will be saved under
the file specification used in the last
OLD command.

BASIC has two commands for storing programs on a disk file:
SAVE and COMPILE. SAVE stores the program in its existing
BASIC source program format. COMPILE converts the program and
stores it as an intermediate object code program.

SAVE is the best command to use when storing programs that you
might list, revise, or add to in the future. To use it type
SAVE and the appropriate file specification. (See the section
on TRSDOS file specifications).

If you SAVE a program using a file specification that already
exists, the existing program file will be wiped out. It will be
replaced by the program file you are saving.

You may leave out the file specification with SAVE. The program
will then be saved under the same file specification that you
used to load the last program with the OLD command.

To label the files that are BASIC source programs versus the
Compiled object programs, we suggest you use the extension /BAS
for Saved programs and /CMP for Compiled programs.

A Saved program is in ASCII code or text format.

Examples

SAVE FILE1l/BAS.JOHNQDOE:3

Radio fhaek

PAGE 2 - 31

MODEL II COMPILER BASIC TRS'BD@ COMMANDS

Saves the resident BASIC program. The filename is FILEl, the
extension is /BAS, and the password is JOHNQDOE. The file is
stored on the disk in drive 3.

SAVE FILEl/BAS

Saves the resident BASIC program. The filename is FILEl and the
extension is /BAS. Since no drive is specified, BASIC will
store the program in the first drive which has room for it.

SA

Saves the resident BASIC program. It will be saved under the
same file specification used in the last OLD command.

Radie fhaek

PAGE 2 - 32

MODEL II COMPILER BASIC | COMMANDS
TRS-80™

—-— COMMAND --

SIZE
Print Used and Unused Memory

SIZE

By executing the SIZE command, BASIC will print the amount of
space being used by the resident program and the amount of space
that is unused. The values are expressed in bytes both as a
decimal and a hexadecimal value.

Example

SIZE

Prints the number of bytes the resident program is using, and
the number of unused bytes remaining in memory.

Radio Shaek

PAGE 2 - 33

MODEL II COMPILER BASIC COMMANDS

TRS-80™

== COMMAND --

STEP
Execute Portion of Program

STEP number - - |
'number' is the number of lines to execute

STEP executes the number of lines in the program you specify,
beginning with the next executable statement.

STEP is normally used in debugging a program. You may execute
the entire program portions at a time using STEP.

Example

STEP 5
Executes the next five statements in the program.

Radio fhaek

PAGE 2 - 34

MODEL II COMPILER BASIC COMMANDS

TRS-80™

-— COMMAND --

SYSTEM
Return to TRSDOS

SYSTEM del "command"
'del' is a comma or a space.
'command' is a TRSDOS command. If 'command' is
omitted, the system will return to TRSDOS READY.

SYSTEM returns you to TRSDOS, the disk operating system. If you
specify a TRSDOS command, your system will execute the command
and immediately return to BASIC. Your program and variables
will remain intact.

If you do not specify a command, SYSTEM will return you to the
TRSDOS READY mode.

Examples

SYSTEM

Returns you to TRSDOS READY. Your resident BASIC program will
be lost.

SYSTEM "DIR"
Executes the TRSDOS command DIR (print directory), and then

returns to BASIC. Your resident BASIC program will remain
intact.

Radie fhaek

PAGE 2 - 35

MODEL II COMPILER BASIC COMMANDS
TRS-80 ™

-— COMMAND --

TRACE ON, TRACE OFF
Turn Tracer On, Off

TRACE ON
TRACE OFF
TRACE

TRACE is a useful command for debugging and analyzing a program.
TRACE ON turns on a tracer. Each time the program advances to
a new program line, the line number will be displayed.

TRACE OFF turns the tracer off. TRACE prints whether the tracer
is on or off.

Examples

TRACE ON

When the program is RUN each program line number will be printed
in while that line is executing.

TR OFF
Turns off the tracer.

TRACE

Prints whether the tracer is on or off.

Radio fhaek

PAGE 2 - 36

Radio fhaek’

Section 2
Programming with RSBASIC

Information on writing
a program with RSBASIC.

CUSTOM MANUFACTURED IN THE U 5.A. BY RADIO SHACK g A DIVISION OF TANDY CORPORATION

TRS-80™

Compiler BASIC supplies the language RSBASIC to use in writing
programs. RSBASIC is a form of BASIC, and in this manual, we
refer to it as BASIC. This section has the reference
information you need to use RSBASIC.

We are assuming that you are already familiar with BASIC. If
you are a newcomer to BASIC, there are many good BASIC teaching
books available. Here are some we recommend:

COMPUTER PROGRAMMING IN BASIC FOR EVERYONE, Thomas Dwyer and
Michael Kaufman, Radio Shack Catalog Number 62-2015.

BASIC AND THE PERSONAL COMPUTER, Thomas Dwyer and Margot
Critchfield; Addison-Wesley Publishing Company, 1978.

BASIC FROM THE GROUND UP, David E. Simon; Hayden Book Company,
1978 -

ILLUSTRATING BASIC, Donald Alcock; Cambridge University Press,
1977,

e e . o i i i S T T — T — T —— —— — — — —— —— .

TABLE OF CONTENTS
SECTION 2. PROGRAMMING WITH RSBASIC

Chapter 3.

BABIC CONCOPES . connsmes sasessssanness s rd—1 LRHEOUGH
Explains how BASIC handles and 3=37
manipulates data

Chapter 4.

Building Data FileS ccecsesvesessessnessd—1 through
Shows how to create and store 4-39
data files

Chapter 5.

Segmenting Programs ...sccsseeeesssss005=1 through
Demonstrates how to divide a 5-14

long program into shorter programs
and subprograms

Chapter 6.
BASIC Keywords ..ccccccsscecsscansecssses86~1l through
Contains an alphabetical entry 6-195

for each keyword

—— e o — i — T — o ———— —

Radie fhaek

TRS-80™

SPECIAL MODEL II PROGRAMMING TIPS

Programming the Video Display

The Model II Video Display has two modes: scroll and graphics.
With the exception of graphics characters, BASIC prints all
output to the display using the scroll mode. See PRINT for
information on programming in the scroll mode. See CRTG for
information on programming in the graphics mode. (Both PRINT
and CRTG are in the Keywords Chapter).

Programming the <F1l> and <F2> Keys

. T — — T — —

You may program the <F1> and <F2> keys to be interpreted a
certain way in your program through using the ASC function. ASC
converts a character to its ASCII code. The ASCII code for the
<F1> key is 1; the code for <F2> is 2.

It is easier to program the <F1l> and <F2> keys using character
input functions (INKEY$ and INPUTS$) rather than line input
statements (INPUT and LINE INPUT).

10 PRINT "PRESS <F1> TO ENTER NEW ACCOUNTS"
20 PRINT "PRESS F2> TO REVISE ACCOUNTS"
30 AS$ = INPUTS(1)

40 TIF ASC(A$) = 1 THEN 100

50 IF ASC(AS$) = 2 THEN 200

60 STOP

100 PRINT "ACCOUNTS ENTRY PROGRAM"
110 STOP

200 PRINT "ACCOUNTS REVISION PROGRAM"

For more information, see ASC, CHR$, INPUT$, and INKEYS in the
Keywords Chapter.

Radie Sfhaek

TRS-80™

kkdkddhdhddkhhddhhhhhhhhhkdhhthhdhhhkhrhhdbhhdhhhhhhhkdhd

* *
* Chapter 3 *
* *
» BASIC Concepts *
* *
khkhkkdhkdkhkhhhhkhkhkhhhkhhhhkhhhkhhhrhkhbhbhhkk bbbk hhkk

Radie fhaek

MODEL II COMPILER BASIC BASIC CONCEPTS
TRS-80"

INTRODUCTION

This chapter explains how BASIC handles and manipulates data.
This information will prove helpful in writing programs which
handle data more efficiently.

OUTLINE OF CHAPTER 3
BASIC CONCEPTS

S Overview -- Elements of a Program
A. Program
B. Statements
C. Expressions
D. Tests

II. How BASIC Handles Data
A. Ways of Representing Data
1. Constants
2. Variables
a. Variable Names
b. Reserved Words
c. Simple and Subscripted Variables
B. How BASIC Stores Data
1. Numeric Data
a. Integers
b. Real Numbers
2. String Data
C. How BASIC Classifies Constants
D. How BASIC Classifies Variables
E. How BASIC Converts Numeric Data
1. Real Number to Integer Type
2. Integer to Real Number Type
3. Illegal Conversions

III. How BASIC Performs Operations on Data
A. Operators
1. Numeric
a. Addition
b. Subtraction
c. Multiplication
d. Division
e. Integer Division
f. Exponentiation
g. Modulus Arithmetic
2. String
3. Test Operators
a. Relational

Radie fhaek

PAGE 3 -1

MODEL II COMPILER BASIC BASIC CONCEPTS

TRS-80 ™

b. Logical
B. Functions

Iv. Syntax of Expressions
A. Simple Expression
B. Complex Expression
C. Function

Radio fhaek

PAGE 3 - 2

MODEL II COMPILER BASIC BASIC CONCEPTS
TRS-80™

OVERVIEW —-- ELEMENTS OF A PROGRAM

o — —

PROGRAM

A program is made up of one or more numbered lines. Each line
contains one or more BASIC statements. BASIC allows line
numbers from 0 to 65535 inclusive. The maximum number of lines
BASIC allows in a program are 2048 lines.

You may include up to 255 characters per line, not including the
line number. You may also have two or more statements to a
line, separated by colons.

Here is a sample program:

line BASIC colon between BASIC
number statement statements statement

100 PRINT : PRINT CHR$(26) "THIS IS REVERSE MODE"
110 FOR I = 1 TO 10000: NEXT I : 'DELAY LOOP
120 PRINT CHRS$(25);:

130 PRINT "THIS IS NORMAL MODE"

When BASIC executes a program, it handles the statements one at
a time, starting at the first and proceeding to the last. Some

statements, such as GOTO, ON...GOTO, GOSUB, change this
seguence.

STATEMENTS

A statement is a complete instruction to BASIC, telling the
Computer to perform some operations. For example:

Radie Mhaek

PAGE 3 - 3

MODEL II COMPILER BASIC BASIC CONCEPTS

TRS-80™

GOTO 100

Tells the Computer to perform the operations of (1) locating
line 100 and (2) executing the statement on that line.

STOP

Tells the Computer to perform the operation of stopping
execution of the program.

Many statements instruct the computer to perform operations with
data. For example, in the statement:

PRINT "SEPTEMBER REPORT"

the data is SEPTEMBER REPORT. The statement instructs the
Computer to print the data inside the quotes.

EXPRESSIONS

An expression is actually a general term for data. There are
two types of expressions:

1. Numeric expressions, which are composed of numeric
data. Examples:

(1 + 5.2) / 3 D
5 * B 3.7682
ABS(X) + RND(O0) SIN(3 + E)

2. String expressions, which are composed of character data.
Examples:

AS "STRING"

"STRING"™ & "DATA" MOS & "DATA"

SEGS$ (A$,2,5) & SEGS$S("MAN",1,2) MS & AS & BS
Functions

——

Functions are automatic subroutines. Most BASIC functions
perform computations on data. Some serve a special purpose such
as controlling the video display. You may use functions in the
same manner that you use any data -— as part of a statement.

Radie fhaek

PAGE 3 - 4

MODEL II COMPILER BASIC BASIC CONCEPTS

TRS-80™

These are some of BASIC's functions:

INT
ABS
STRINGS
SEGS$

TESTS

BASIC will perform two kinds of tests to see if a certain kind
of relationship exists between two or more expressions:

1. Relational tests, which test the equivalency relationship
between the two expressions. Examples:

A=1
AS$ > BS

2. Logical tests, which test the logical relationship
between relations. Examples:

A$ = "YES" AND B$ = "NO"
C>5O0RM<KBORO > 2

For the rest of this chapter, we will cover in detail the way
BASIC handles data and data operations, and how to input data
into your program. The preceding overview should give you

enough information if you are in a hurry to begin using Compiler
BASIC.

Radie fhaek

PAGE 3 - 5

MODEL II COMPILER BASIC BASIC CONCEPTS
TRS-80™

HOW BASIC HANDLES DATA

—— o —— o —— — i — — — ——— —

This section provides information on how to represent data to
BASIC and how BASIC will interpret and store it. It contains
the necessary background information for writing programs which
handle data efficiently.

WAYS OF REPRESENTING DATA

BASIC recognizes data in two forms -- either directly, as
constants, or by reference to a memory location, as variables.

Constants

All data is input into a program as "constants" -- values which
are not subject to change. For example, the statement:

PRINT "1 PLUS 1 EQUALS"; 2
contains one string constant,
1 PLUS 1 EQUALS
and one numeric constant
2

In these examples, the constants are "input" to the PRINT
statement. They tell PRINT what data to print on the Display.

PAGE 3 - 6

MODEL II COMPILER BASIC BASIC CONCEPTS
TRS-80"

These are more examples of constants:

3.14159 ",. O. SMITH"
1.775E+3 "0123456789ABCDEF"
"NAME TITLE" -123.45E-8
57 "AGE"

Variables

A variable is a place in memory -- a sort of box or pigeonhole
-- where data is stored. Unlike a constant, a variable's value
can change. This allows you to write programs dealing with
changing quantities. For example, in the statement:

A§$ = "OCCUPATION"

The variable A$ now contains the data OCCUPATION. However, if
this statement appeared later in the program:

AS$ = "FINANCE"

The variable A$ would no longer contain OCCUPATION. It would
contain the data FINANCE.

Variable Names

In BASIC, variables are represented by names. Variable names
must begin with a letter, A through Z. This letter may be upper
or lower case and may be followed by up to 5 characters --
either digits or letters -- for a total of 6 characters.

For example
AMOUNT A Al2345 Al B1AR2 aB
are all valid and distinct variable names.

Variable names may be longer than six characters. However, only
the first six characters are significant in BASIC.

Radio fhaek

PAGE 3 = 7

MODEL II COMPILER BASIC BASIC CONCEPTS

TRS-80™

For example:

SUPERN SUPERNUM SUPERNUMERARY
are all treated as the same variable by BASIC.
Reserved Words

BASIC has reserved certain words as BASIC functions. You cannot
use these or the operator NOT as variable names. For example:

ABS SIN LEN ASC
cannot be used as variable names, because they are BASIC
functions. However you can use reserved words inside variable

names. For example, ABS1 and LENGTH are okay.

A BASIC statement may be used as long as it does not start the
statement. For example:

LET LET = 10
is okay, but
LET = 10

is not.

Simple and Subscripted Variables

All of the variables mentioned above are simple variables (also
termed scalars). They can only refer to one data item.

Variables may also be subscripted so that an entire list of data
can be stored under one variable name. This method of data
storage is called an array. For example, an array named A may
contain these elements (subscripted variables):

A(0) A(l) A(2) A(3) A(4)

You may use each of these elements to store a separate data
item, such as:

A(0) = 5.3
A(l) = 7.2
A(2) = 8.3
A(3) = 6.8

Radio fhaek

PAGE 3 - 8

MODEL II COMPILER BASIC BASIC CONCEPTS
TRS-80™

A(4) = 3.7

In this example, array A is a one dimensional array, since each
element contains only one subscript. An array may also be two
dimensional, with each element containing two subscripts. For
example, a two-dimensional array named X could contain these
elements:

X(0,0)
X(1,0)

3.5

8.6 X(0,1)
7.3 32,6

X(1,1)

o

Compiler BASIC does not allow for more than two dimensions to an
array.

Arrays must always be dimensioned before they are used, to
reserve room in memory for them. The DIM statement dimensions
arrays. Array A, in the example above would be dimensioned
with:

DIM A(4)

to allow room for 5 subscripted variables (0, 1, 2, 3, and 4).
Array X would be dimensioned with:

DIM X(1,1)

to allow room for 2 subscripted variables in one dimension and 2
in the second dimension for a total of 2 * 2 = 4 subscripted
variables.

Note: See DIM for more information on arrays.

Radio fhaek

PAGE 3 - 9

MODEL II COMPILER BASIC BASIC CONCEPTS

TRS-80™

HOW BASIC STORES DATA

The way that BASIC stores data determines the amount of memory it
will consume and the speed in which BASIC can process that data.

Numeric Data

—— et . — —

BASIC stores all numbers as either integer or real.

Integers
(Speed and Efficiency, Limited Range)

To be stored as an integer, a number must be whole and in the
range of -32768 to 32767. An integer value requires only two
bytes of memory for storage. Arithmetic operations are faster
when both operands are integers.

For example:
I 32000 -2 500 -12345
can all be stored as integers.

NOTE: Integers are stored in two's complement notation. An
explanation of that is in the Programmers Information Section.

Real Numbers
(Maximum Precision, Slower in Computations)

BASIC can store up to 14 significant digits when a number is
stored as a real number. (it prints the first 6 digits,
rounding off the last digit).

This is the range of real numbers:

[-1 * 10 © -64, -1 * 10 " 63], or
[1 *10 © -64, 1 * 10 " 63]

A real number requires 8 bytes of storage. The first byte is
for the exponent. Two digits of the number are stored in each
of the next 7 bytes.

Radio fhaek

PAGE 3 - 10

MODEL II COMPILER BASIC BASIC CONCEPTS
TRS-80"

NOTE: An explanation of the way BASIC stores real numbers, in
Binary Coded Decimal format, is in the Programmers Information
Section.

String Data

Strings (sequences of characters) are useful for storing
non-numeric information such as names, addresses, text, etc. You
may store any ASCII characters as a string. (A list of ASCII
characters is in the Appendix).

For example, the data constant:

Jack Brown, Age 38

can be stored as a string of 18 characters. Each character (and
blank) in the string is stored as an ASCII code, requiring one
byte of storage. BASIC would store the above string constant
internally as:

e i T ——— . T — . o i

s e T ——————— ———— T —— . —————————— ————————————
————— o —— T ———— T ———— T L — e e —— — —— — - —

Char-

. e o Tt . o o e o o T T . o o o o T —— —— — —— it et

A string can be up to 255 characters long. Strings with length
zero are called "null" or "empty".

Badie fMaek

PAGE 3 - 11

MODEL II COMPILER BASIC BASIC CONCEPTS
TRS-80™

HOW BASIC CLASSIFIES CONSTANTS

When B@SIC encounters a data constant in a statement, it must
determine the type of the constant (string, integer, or real).
These are the rules it uses:

If the value is enclosed in double-quotes, it is a string. For
example:

“YES L]

"3331 Waverly Way"

"1234567890"

the values in quotes are automatically classified as strings.

—— e ——

If the value has a & mark in front of it, it is a hexadecimal
number. For example:

&0 &7FCO &FFFF
are all hexadecimal numbers. Hexadecimal numbers are actually

stored as integers. You may use hexadecimal numbers in special
cases such as in the EXT statement.

If the value is not in quotes, it is a number. (An exception to
this rule is during data input by an operator. See INPUT, LINE
INPUT, INKEY$, and INPUTS.)
For example:

123001

1

-7.3214E+6

are all numeric data.

Radie fhaek

PAGE 3 - 12

MODEL II COMPILER BASIC BASIC CONCEPTS
TRS-80™

Whole numbers in the range of -32768 to 32767 are integers. For
example:

12350
=12
10012

are integer constants.

If the number contains a decimal point or is outside the integer

range defined in rule 3 above, it is real. Also, if it contains
the letter E, it is real.

Note: Exponents are printed with the letter E. The E indicates
that the value printed multiplied by the specified power of 10
represents the data stored. For example:

1. E+7
Represents the value 10000000, or 1 * 10 ~ 7.

l. E-8

Represents the value .00000001 or 1 * 10 " -8.

Radio fhaek

PAGE 3 - 13

MODEL II COMPILER BASIC BASIC CONCEPTS

TRS-80™

HOW BASIC CLASSIFIES VARIABLES

When BASIC encounters a variable name in the program, it
classifies it as either a string, integer or real number. It
will only classify the variable name once in the program. You
cannot get BASIC to re-classify a particular variable name.

These are the rules BASIC uses to classify variables:

——

Unless BASIC encounters a definition statement (described in
rule 2 below) or a type declaration tag (described in rule 3
below), BASIC classifies all variable names as real number types
and stores them in 8 bytes. For example:

AB AMOUNT XY L

are all real number variables initially. If this is the first
line of your program:

LP =1.2

BASIC will classify LP as a real number variable.

If BASIC encounters a definition statement, BASIC will classify
variables according to the instructions of that statement.
There are three definition statements:

STRING
INTEGER
REAL
The STRING Statement

STRING instructs BASIC to classify all variable names as string.
For example:

STRING

Radio fhaek

PAGE 3 - 14

MODEL II COMPILER BASIC - BASIC CONCEPTS

TRS-80™

instructs BASIC to classify all variable names as string.
STRING L

instructs BASIC to classify only those variable names beginning
with the letter L as string. ' :

BASIC assumes that all string variables should be stored in 255
bytes. For example, even though this statement only assigns 4
bytes of data to L:

L = "JOHN"

BASIC stores this data in 255 bytes. This causes L to contain
251 bytes of unused space.

255 bytes I

To keep from wasting space in memory, you may specify the number
of bytes to use in storing variables. For example, in this
program:

10 STRING*4 L
20 L = JOHN
30 LAST = ALEXANDER

L and LAST will each contain 4 bytes of string data:

J O H N AL E X

4 bytes mm———— ————— 4 bytes

If you want to store all variable names beginning with the

Radio fhaek

PAGE 3 - 15

MODEL II COMPILER BASIC BASIC CONCEPTS

TRS-80™

letter L as string variables except for the variable LAST, you

can use the DIM statement:

10 STRING*4 L

20 DIM LASTS9

30 L = JOHN

40 LAST = ALEXANDER

This program stores the variable L in 4 bytes and LAST in 9

bytes. ,

4 bytes
9 bytes

Note: See DIM and STRING for more information.

The INTEGER Statement

INTEGER instructs BASIC to classify all variable names as
integer. For example: = % a

INTEGER A

instructs BASIC to classify all variable names beginning with
the letter A as integers.

INTEGER
instructs BASIC to classify all variable names as integers.

In the present form of BASIC, all integer variables are stored
in 2 bytes.

The REAL Statement

REAL instructs BASIC to classify variable names in its letter
list as real numbers. For example, this program:

10 INTEGER

Radio Shaek

PAGE 3 - 16

MODEL II COMPILER BASIC BASIC CONCEPTS
TRS-80®

20 REAL X-Z

instructs BASIC to classify all variable names, except for those
beginning with X, ¥, or 2, as integers. BASIC will classify
variable names beginning with X, Y, and Z as real.

In the present form of BASIC, all real number variables are
stored in eight bytes.

Illegal Use of Definition Statements
You cannot introduce a definition statement after an executable
statement. An executable statement is a statement other than a

definition statement. For example:

10 L = 10
20 STRING

produces an error, since STRING may not follow the executable
statement L = 10. However,

10 STRING
20 L = 10

is correct.

—— . e

If a variable name has a type declaration tag following it,
BASIC will classify it as string or integer according to the
attributes of that tag:

$ String
% Integer
Real

(However, you cannot use tags to re-classify variable names
which BASIC has already classified previously in the program.)

For example, if the variable names S, MON, FINANCE, and CHART
have not yet been used in the program:

S$ MONS FINANCES CHARTS

will all be classified as string variable names, regardless of

Radie Shaek

PAGE 3 - 17

MODEL II COMPILER BASIC BASIC CONCEPTS

TRS-80™

ghat attributes have been assigned to the letters S, M, F, and

If the variable names I, LM, NUM, and COUNTER have not yet been
used:

I% LM$ NUMS% COUNTER%®
will all be classified as integer variable names, regardless of

what attributes have been assigned to the letters I, L, N, and
C.

If the variables, LR, ER, MP235, and LITE have not yet been
used:

LR# ER# MP235% LITE#

will all be classified as real number variables, regardless of
what attributes have been assigned to the letters L, E, and M.

For example, in the program:

10 STRING A
20 AB = "NEW"

The statement:
30 AB% =1

produces an error, since AB has already been classified as a
string variable and cannot be re-classified. However:

30 AR% =1

is accepted, since the type declaration tag (%) overrides the
STRING A statement.

Once you use a type declaration tag to classify variables, you
do not need to use the tag any more in the program. For
instance, after this statement is executed:

B$ = "DATA"
You may refer to the string variable B$ as simply B. B will
retain the classification of a string variable throughout the
rest of the program.

(Even though you only need to use the tag when you introduce the
variable name, we suggest you use the tag every time you use the

Radie fhael

PAGE 3 - 18

MODEL II COMPILER BASIC BASIC CONCEPTS
TRS-80™

name. This makes the program more consistent and simplifies
editing.)

Radio fhaek

PAGE 3 - 19

MODEL II COMPILER BASIC BASIC CONCEPTS

TRS-80 "

HOW BASIC CONVERTS NUMERIC DATA

Often your program might ask BASIC to assign an integer data
constant to a real number variable, such as:

A =05
or a real number constant to an integer variable, such as:
B = 5.2

To do this, BASIC must first convert the data constant. This is
how it is done:

Real Number to Integer Type

— e e

BASIC truncates (ignores) the fractional part of the original
value. The truncated value must be in the range of [-32768,
32767].
Examples
A% = -10.5
Assigns A% the value -10.
A% = 32767.9
Assigns A% the value 32767.
A% = 2.5E+3
Assigns A% the value 2500
A% = -123.45678901234
Assigns A% the value -123.
A% = 60000
Prints an integer overflow warning and assigns A% the value

32767. (32767 is the highest number that can be stored as an
integer).

Radio fhaek

PAGE 3 - 20

MODEL II COMPILER BASIC BASIC CONCEPTS
TRS-80™

Integer to Real Number Type

— i —————————————— o ——

In converting integers to real numbers, the converted value is
equal to the original value, but it consumes 4 times as much

storage space. (Integers are stored in 2 bytes and real numbers
in 8 bytes). For example:
A=1

Stores 1.0000000000000 in A.

Illegal Conversions

BASIC cannot automatically convert numeric values to string, or
vice versa. For example, the statements:

AS = 1234
A% = "1234"

are illegal. (Use STR$ and VAL to accomplish such conversions).

Radio fhaek

PAGE 3 - 21

MODEL II COMPILER BASIC BASIC CONCEP'TS

TRS-80 "

HOW BASIC PERFORMS OPERATIONS ON DATA

This section explains how you can instruct BASIC to manipulate
or test your data. The two means you have available are
operators and functions.

OPERATORS

An operator is a single symbol or word which signifies some
action to be taken on one or two specified values referred to as
operands.

In general, an operator is used like this:

operand-1 operator operand-2
operand-1 and -2 can be expressions. A few
operations take only one operand, and are
used like this:

operator operand
This is the form for a unary operation.

Examples:
6 + 2

The addition operator + connects or relates its two operands, 6
and 2, to produce the result 8.

Radio fhaek

PAGE 3 - 22

MODEL II COMPILER BASIC o BASIC CONCEPTS
TRS-80 ™

=5

The negation operator - acts on a single operand 5 to produce
the result negative 5.

Neither 6 + 2 or -5 can stand alone; they must be used in
statements to be meaningful to BASIC. For example:

A=6+2
PRINT =5

Operators fall into three categories:

Numeric
String
Test

based on the kinds of operands they require and the results they
produce.

Numeric Operators

—————— —— i e T et

Numeric Operators are used in numeric expressions. Their
operands must always be numeric, and the result they produce is
one numeric data item.

In the descriptions below, we use the terms integer and real
operations. Integer operations involve two-byte operands, and
real operations involve eight-byte operands. Real operations
are slower, since they inveolve more bytes.

There are nine different numeric operators. Two of them, sign +
and sign -, are unary, that is, they have only one operand. A
sign operator has no effect on the precision of its operand.

For example, in the statement:

PRINT ~77y +77

the sign operators - and + produce the values negative 77 and
positive 77, respectively.

Note: When no sign operator appears in front of a numeric term,
+ is assumed.

The other numeric operators are all binary, that is, they all

Radio fhaek

PAGE 3 - 23

. MODEL II COMPILER BASIC o BASIC CONCEPTS
TRS-80"™ —

take two operands. These operators are:

+ Addition N S S
e RRER s iR
* Multlpllcatlon . -
-"1/*1*53'53';‘,‘;1‘1‘El'\hs’ioq@w; Eaaramaa *’“f i w""»% e

b Integer lelSlon (keyooard character <QIRLI 9231
(%% 'or * | " Exponentiation (keyboard character <SHIFT 6>
| MOD - Modulus arithmetic

Addition

The + operator is the symbol for addition. If both operands are
integers, BASIC will perform integer addition. Otherwise, BASIC
will convert any operands that are integers to real numbers, and
perform real number addition.
Note: See the section on How BASIC Converts Data (earlier in
this chapter) for an explanation on how integers are converted
to real numbers.
Examples:

PRINT 2 + 3
Integer addition.

PRINT 30000 + 10000

Integer addition. Since the upper limit for integers is 32767,
BASIC prints an overflow error warning.

PRINT 1.2 + 3

Real number addition. (The integer 3 is converted to a real
number).

Subtraction

The - operator is the symbol for subtraction. As in addition,
both operands must be integers to perform integer subtraction.

Examples:

Radio fhaek

PAGE 3 - 24

MODEL II COMPILER BASIC BASIC CONCEPTS

TRS-80™

PRINT 33 - 11
Integer subtraction
PRINT 12.345 - 11

Real number subtraction.

Multiplication
The * operator is the symbol for multiplication. Once again,
both operands must be integers to perform integer
multiplication.
Examples:

PRINT 33 * 11

Integer multiplication.

PRINT 32000 * 10

Integer multiplication. Since the upper limit for integers is
32767, BASIC prints an overflow error warning.

PRINT 12.345 * 11

Real number multiplication.

Division
The / symbol indicates ordinary division. Division is always
with real numbers. If an operand is an integer, BASIC will
convert it to a real number to perform real number division.
Examples:

PRINT 3/4
Real number division.

PRINT 3 / 1.2

Real number division.

Radie fhaek

PAGE 3 - 25

MODEL II COMPILER BASIC BASIC CONCEPTS

TRS-80 ™

Integer Division

The integer division operator \ is input by pressing <CTRL 9>.
It converts its operands into integer type, then performs
integer division. In integer division, the remainder is
ignored, leaving an integer result. (If either operand is
outside the range [-32768,32767], an error will occur.)

For example:
PRINT 7 \ 3

prints the value 2, since 7 divided by 3 equals 2 remainder 1.
PRINT -7 \ 3

priants =2.

Exponentiation

The symbol ~ (entered by pressing <SHIFT 6>) denotes
exponentiation. It converts both its operands to real numbers
and returns a real number result.

For example:

~

PRINT 6 «3

prints 6 to the .3 power.

Note: "**" may be used instead of " ".

Modulus Arithmetic

The MOD ("modulo") operator allows you to do modulus arithmetic.
In modulus arithmetic, every number is converted to its
equivalent in a cyclical counting scheme. For example, a
24~hour clock indicates the hour in modulo 24. Although the
hour keeps incrementing, it is always expressed as a number from
0 to 23.

MOD requires two operands, for example:

Radie fhaek

PAGE 3 - 26

MODEL II COMPILER BASIC BASIC CONCEPTS

TRS-80 ™

A MOD B

B is the modulus (the counting base) and A is the number to be
converted.

(Expressed in mathematical terms, A MOD B returns the remainder
after whole-number division of A by B. In the sense, it is the
converse of \, which returns the whole number quotient and
ignores the remainder.)
MOD converts both operands to integer type before performing the
operation. If either operand is outside the range
[-32768,32767], an error will occur.
Examples:

PRINT 155 MOD 15

Prints 5, since 155/15 gives a whole number quotient of 10 with
remainder 5.

PRINT 79 MOD 12
Prints 7, since 79/12 equals 6 with remainder 7.
PRINT -79 MOD 12
Prints -7.
10 PRINT "TYPE IN AN ANGLE IN DEGREES"
20 INPUT A%
30 PRINT A; "="; A\ 90; " * 90 +"; A MOD 90

Input a positive angle greater than 90. Line 20 expresses the
angle as a multiple of 90 degrees plus a remainder.

String Operator

BASIC has a string operator (&) which allows you to concatenate
(link) two strings into one. This operator should be used as
part of a string expression. The operands are both strings and
the resulting value is one piece of string data.

The & operator links the string on the right of the & sign to
the string on the left. For example:

Radio fhaek

PAGE 3 - 27

MODEL II COMPILER BASIC BASIC CONCEPTS

TRS-80™

PRINT "CATS " & "LOVE " & "MICE"
prints:
CATS LOVE MICE

Since BASIC does not allow one string to be longer than 255
characters, you need to be careful that your resulting string is
not too long.

Test operators

———————— T ——

You may use test operators in IF...THEN statements to test a
certain kind of relationship between two or more expressions.
This allows you to build elaborate decision-making structures
into your programs. You may test either string or numeric
expressions.

Test operators will return one of two results: True or False.
BASIC has two kinds of test operators: relational and logical.
The relational operators are <, >, and =; the logical operators
are AND, OR, XOR, and NOT.

Relational operators

Relational operators compare two numerical or two string
expressions. It then reports whether the comparison you set up
in your program is true or false.

Numerical comparisons

This is the meaning of the operators when you use them to
compare numeric expressions:

< Less than
> Greater than
= Equal to
<> or >< Not equal to
=< or <= Less than or equal to
=> or >= Greater than or equal to

Examples of true relations:

L <2

Radio fhaek

PAGE 3 - 28

MODEL II COMPILER BASIC BASIC CONCEPTS

TRS-80 ™
2 <> 5
2 <=5
2 <= 2
5> 2
7 =71

Relational operators may only be used in an IF...THEN statement.
For example

IF A = 1 THEN PRINT "CORRECT"

BASIC tests to see if A is equal to 1. If it is, BASIC prints
the message.

IF X > 100 THEN 500

If the relation is true; that is, if X is larger than 100, than
control branches to line 500.

String Comparisons

The relational operators for string expressions are the same as
above, although their meanings are slightly different. Instead
of comparing numerical magnitudes, the operators compare their
alphabetical sequence. This allows you to sort string data:

< Precedes
> Follows
= Has the same precedence
>< or <> Does not have the same precedence

= Precedes or has the same precedence
= Follows or has the same precedence

BASIC compares the string expressions on a
character-by-character basis. When it finds a non-matching
character, it checks to see which character has the lower ASCII
code. The character with the lower ASCII code is the smaller
(precedent) of the two strings.

Note: The appendix contains a listing of ASCII codes for each
character.

Examples
uAll < nBll
The ASCII code for A is decimal 65; for B it's 66.

"CODE" < "COoL"

Radie fhaek

PAGE 3 - 29

MODEL II COMPILER BASIC BASIC CONCEPTS

TRS-80™

The ASCII code for O is 79; for D it's 68.

If while making the comparison, BASIC reaches the end of one
string before finding non-matching characters, the shorter
string is the precedent. For example:

"TRAIL" < "TRAILER"
Leading and trailing blanks are significant. For example:

n A n < n A "
ASCII for the space character is 32; for A it's 65,

"Z-80" < "z-80a"

The string on the left is four characters long; the string on
the right is five.

As with the numerical comparisons, these string comparisons can
only be used in IF...THEN statements. These are examples of how
they might be used:

IF A$ < BS THEN 50

If string A$ alphabetically precedes string B$, then the program
branches to line 50.

IF R$ = "YES" THEN PRINT AS$

If R$ equals YES then the message stored as A$ is printed.

Logical Operators

Logical operators make logical comparisons. Like relational
operators, they can only be used in IF/THEN statements and will
only return a result of true or false. Except for the NOT
operator, you may only use logical operators to compare two or
more relations. For example:

IFA=1 OR C =2 THEN PRINT X

The logical operator, OR, compares the two relations A=l and
Cc=2.

Radio fhaek

PAGE 3 - 30

MODEL II COMPILER BASIC e BASIC CONCEPTS
TRS-80

Logical operators do not perform bit manipulations. Use the
functions AND, OR, and XOR for that purpose.

This is how to use the logical operators:
AND

If both relations are true, then AND returns a logical true.
Otherwise, it returns a logical false. For example:

IF A = B AND B < 0 THEN 100

OR

If either of the relations is true, or both are true, OR returns
a logical true. Otherwise it returns a logical false. For
example:

IF GAME = OVER OR TIME >= LATE 'THEN 500

XOR ("Exclusive OR")

Only when ONE of the relations is true (but not both) does XOR
return a logical true. Otherwise it returns a logical false.
For example:

IF AS = "YES™ XOR B$ = "YES" THEN PRINT "ONLY ONE YES"

NOT

NOT is a unary operator, which means it only acts on one
operand. The operand, like all the ones above, is a relation.
When the relation is true, NOT returns a logical false. When it
is false, NOT returns a logical true. For example:

IF NOT(A$ < "M") THEN PRINT A$; "DOES NOT PRECEDE M"

Hierarchy of Operators

When your expressions have multiple operators, BASIC performs
the operations according to a well-defined hierachy, so that
results are always predictable.

Radio Sfhaek

PAGE 3 - 31

MODEL II COMPILER BASIC <o BASIC CONCEPTS
TRS-80™

Parentheses

When a complex expression includes parentheses, BASIC always
evaluates the expressions inside the parentheses before
evaluating the rest of the expression. For example, the
expression:

8 - (3-2)
is evaluated like this:

3 -2=1
8 -1=7

With nested parentheses, BASIC starts evaluating the innermost
level first and works outward. For example:

4 * (2 - (3 - 4))

is evaluated like this:

Order of Operations

When evaluating a sequence of operations on the same level of
parenthesis, BASIC uses a hierachy to determine what operation
to do first.

The two listings below show the hierarchy BASIC uses. Operators
are shown in decreasing order of precedence. Operators listed
in the same entry in the table have the same precedence and are
executed as encountered FROM LEFT TO RIGHT.

Numerical operations:

~

or **
+, = (unary sign operations -- not addition or
subtraction)

Radio Shaek

PAGE 3 - 32

MODEL II COMPILER BASIC BASIC CONCEPTS

TRS-80™

NOT
AND
OR

XOR

String operations:

&
NOT
AND
OR
XOR

For example, in the line:

X *X +572.8
BASIC will find the value of 5 to the 2.8 power. Next, it will
multiply X * X, and finally add this value to the value of 5 to
the 2.8. If you want BASIC to perform the indicated operations
in a different order, you must add parentheses. For example:

X * (X + 572,8)
or

X * (X+5)%2.8
Here's another example:

IF X=0O0OR Y >0 AND Z = 1 THEN 255

The relational operators = and > have the highest precedence, so
BASIC performs them first, one after the next, from left to
right. Then the logical operations are performed. AND has a
higher precedence than OR, so BASIC performs the AND operation
before OR.

If the above line looks confusing because you can't remember
which operator is precedent over which, then you can use
parentheses to make the sequence obvious:

IF X =0 OR ((Y>0) AND (Z=1)) THEN 255

Radio fhaek

PAGE 3 - 33

MODEL II COMPILER BASIC BASIC CONCEPTS

TRS-80™

FUNCTIONS

A function is a built-in sequence of operations which BASIC will
perform on data. A function is actually a subroutine which
usually returns a data item. The BASIC Compiler's functions
save you from having to write a BASIC routine, and they operate
faster than a BASIC routine would.

A function consists of a keyword followed by the data that you
specify. This data is always enclosed in parentheses and, if
more than 1 data item is required, separated by commas.

If the data required is termed 'number' you may insert any
numerical expression. If it is termed 'string' you may insert
either a string constant or a string variable.
Examples:

SQR(A + 6)
Tells BASIC to compute the square root of A + 6.

SEGS (A$, 3, 2)

Tells BASIC to return a substring of the string A$, starting
with the third character, with a length of 2.

Functions cannot stand alone in a BASIC program. Instead they
are used in the same way you use expressions -- as the data in a
statement.
For example

A = SQR(7)
Assigns A the data returned as the square root of 7.

PRINT SEGS$(AS, 3, 2)

Prints the substring of A$ starting at the third character and
two characters long.

If the function returns numeric data, it is a numeric function
and may be used in a numeric expression. If it returns string
data, it is a string function and may be used in a string
expression.

Radio Sfhaek

PAGE 3 - 34

MODEL II COMPILER BASIC BASIC CONCEPTS

TRS-80 ™

SYNTAX OF EXPRESSIONS

—— e A S s s S . o e e i . S

Understanding the syntax of expressions will help you put

together powerful statements -- instead of using many short
ones.

As we have stated before, an expression is actually data. This
is because once BASIC performs all the operations, it returns
one data item. An expression may be either a string or numeric
expression. It may be composed of:

Constants

Variables

Operators

Functions
Expressions may be either simple or complex:
A SIMPLE EXPRESSION consists of a single TERM: a constant,
variable or function. If it is a numeric term, it may be

preceded by an optional + or - sign.

For example:
+A 3.3 -5 SQR(8)

are all simple numeric expressions, since they only consist of
one numeric term.

AS$ STRINGS (20, AS) "WORD" "M"

are all simple string expressions since they only consist of one
string term.

Radio fhaek

PAGE 3 - 35

MODEL II COMPILER BASIC i BASIC CONCEPTS
TRS-80™

Here's how a simple expression or a term is formed:

A COMPLEX EXPRESSION consists of two or more terms (simple
expressions) combined by operators. For example:

A-1 X+3,2-¥ A/3 * (LOG(Y)) ABS(B) + LOG(2)
are all examples of complex numeric expressions.

A$ & B$ "Z" & 2§ STRING$ (10, "A") & "M"
are all examples of complex string expressions.

This is how a complex numeric expression is formed:

|

—>{ TERW - —

Radio fhaek

PAGE 3 - 36

MODEL II COMPILER BASIC BASIC CONCEPTS
TRS-80 "

This is how a complex string expression is formed:

——)

—>{ TERM

-

Most functions, except functions returning system information,
require that you input either or both of the following kinds of
data:

one Or more numeric expressions
one or more string constants or string variables

This is how a function is formed:

> STRINGCONSTANT: @

CD -1 STRING VARIABLE -

If the data returned is a number, the function may be used as a
term in a numeric expression. If the data is a string, the
function may be used as a term in a string expresssion.

Radio fhaek

PAGE 3 - 37

TRS-80™

hkhkhkkhkhkkhhhAhrkhkhhhkkhkhhkhhhkhkhk kbbb bbb hkhk

*

* Chapter 4 *
* *
* BUILDING DATA FILES *
* *
khkhkhhkhkdkhkdkhkhkhkhkhhbhbhhhkbhhhhhdhhhhhkhhhkkhhkhkdhkikkk

MODEL II COMPILER BASIC BUILDING DATA FILES

TRS-80™

INTRODUCTION

This chapter explains how to write a BASIC program which will
store data files on Model II diskettes. The Overview exPLains
the different methods you can use to store data. The next
sections run through the procedures to use in building the
various types of data files.

OUTLINE FOR CHAPTER 4
BUILDING DATA FILES

5 0 Overview
A. Introduction to Data Files
B. Types of Records
1. Fixed Length Records
2. Variable Length Records
C. Ways of Accessing Records
1. Sequential Access
2. Direct Access
3. Indexed Access (ISAM)
D. Input/Output Methods
1. Stream Input/Output
2. Formatted Input/Output
3. Binary Input/Output

X Building a Sequential Access File
A. Using Stream Input/Output
B. Using Formatted Input/Qutput
C. Using Binary Input/Output

ITII. Building a Direct Access File
A, Using Formatted Input/Output
B. Using Stream Input/Output
C. Using Binary Input/Output

Iv. Building an Indexed Access File

Radio fhaek

PAGE 4 - 1

MODEL II COMPILER BASIC BUILDING DATA FILES

TRS-80™

OVERVIEW

—— o —

INTRODUCTION TO DATA FILES

Data is stored on diskette in a data file. A data file is made
up of records. Each record may contain from one to 256 bytes.
Normally, one byte can hold one character of data.

For example, if the data file is a mailing list, each record
could contain the data for one address. If the longest address
contains 50 characters of data, the record would consume a
little more than 50 bytes of space on the diskette.

A data file may contain as many records as you want and have
room for. The system allocates space for each new record as you
build the file. If you want to, you have the option of
allocating space for your file in advance. To do this, use the
TRSDOS "CREATE" command. (See the Model II Disk Operating
System).

This overview covers:
1. the types of records you can build
2. the different ways you can access these records,

3. the methods you can use to input and output data to
these records.

Radio fhaek

PAGE 4 - 2

MODEL II COMPILER BASIC BUILDING DATA FILES

TRS-80™

TYPES OF RECORDS

A data file may contain records which are fixed or varied in
length:

Fixed Length Records (FLRs)

— . e e . e e e e . . e e e i e

In a file containing FLRs, each record is the same length. This
length can be from one to 256 bytes and is set the first time
~you open the file for use. Once set, the length may not be
changed unless you are over~-writing the file with new data.

This is a picture of an FLR file containing three records:

RECORD 1 RECORD 2 RECORD 3

The advantage of using FLRs is that the position of each record
can be easily calculated. For this reason, you can immediately
access any record in the file. For instance, to access the
contents of record 3, you do not have to read the contents of
the first two records.

The disadvantages are obvious. FLRs often contain a lot of

empty space. Also, the record length must be determined in
advance.

Variable Length Records (VLRs)

T ——————— —— T —— ———— — S P —— o i

In a file containing VLRs, each record may vary in length. Here
is a picture of a VLR file containing three records:

—
RECORD 1 RECORD 2 | REC 3 '

Unlike FLRs, only the position of the first record and the end
of the file can be located. To locate any other record, you
must read each record in sequence, beginning with the first

Radio fhaek

PAGE 4 - 3

MODEL II COMPILER BASIC BUILDING DATA FILES
TRS-80"™

record, until you locate the record you want.

The advantage of using VLRs is that it is an easier and more
flexible way of building a file. Virtually no space is wasted
in a VLR file; each new record begins where the data in the last
record ended.

Radie fhaek

PAGE 4 - 4

MODEL II COMPILER BASIC s BUILDING DATA FILES
TRS-80™

WAYS OF ACCESSING RECORDS

There are three ways you may use to access a record in a file:

1. sequential access
2. direct access
3. indexed access

In sequential access, you must access each record sequentially.
With direct access, you can access a record directly by
referencing its record number. Indexed access allows you to
access a record directly by referencing a key name which is
indexed alphabetically.

Sequential Access

——— i ———— T — o

A sequential access file is normally made up of VLRs, although
it may also be made up of FLRs. Since it is equipped for VLRs,
only the first record and the end of the file can be directly
accessed. Every other record must be accessed in sequence:
record 1, record 2, record 3 ... the last record.

Using sequential access gives you the same advantages and
disadvantages of using VLRs. It is a compact, easy, and
flexible type of file to build , but it is time consuming to
access individual records.

For instance, to update the file, you must read in every record,

make any changes, and then write out each record to a new file
on the diskette.

Some good uses for sequential access are:

1. Files which do not need to be accessed often, such as
prior bookkeeping records.

2. Files which are only meant to be accessed in sequence,
such as a file containing text information.

3. Files with widely varying record lengths.

4. Files where the maximum record length cannot be
determined in advance.

Radio fhaek

PAGE 4 - 5

MODEL II COMPILER BASIC BUILDING DATA FILES

TRS-80™

Storage Format

In a variable length sequential access file, the first byte in
each record gives the actual length of the record. This equals
the amount of data plus one. Here is a picture of a record in
a sequential access file:

] 7 L_R E C 0 R D

In a fixed length sequential access file there is no count.

Direct Access

A direct access file (sometimes called random access) may only
contain FLRs and has the advantages and disadvantages of FLRs.
You assign each record a number when writing the record to the
diskette. You may then use these record numbers to read or
write to any record in the file.

Building a direct access file involves more planning than a
sequential access file, since the record length must be
determined in advance. To determine it, you need to calculate
the maximum amount of data in a record, and how much space this
record will consume on the diskette.

Some good uses for direct access are:

1. Files which contain standard sized records such as a
mailing list.

2, Files which need to be continually updated such as
inventory data.

Radie fhaek

PAGE 4 - 6

MODEL II COMPILER BASIC BUILDING DATA FILES
TRS-80"™

Storage Format

This is a picture of a record in a direct access file which has
a fixed length of 12 bytes of data for each record:

The first byte of the record contains the actual number of bytes
of data in the record. The second byte is not used in BASIC and
is always the number 0.

The next bytes are for the actual data in the record. Since
this record only has six bytes of data and the fixed record
length has been set at 12 bytes, it contains six empty bytes.

Sometimes you might have a record containing no data in it,
either because the record was deleted or no data was ever
assigned to it. For example, say you had data in record 1 and
record 3, but no data in record 2. Record 2 would still consume
the same amount of space on disk as all the other records.

This is what record 2 would look like:

Often, after continually updating a direct access file, the file
will contain a lot of deleted records and hence, a lot of empty
space. To maintain this kind of file, you might periodically
need to run a program which "packs" the data by assigning all
the records new record numbers; thereby eliminating the space
being consumed by deleted records.

Indexed Access (ISAM)

Like direct access, an indexed access file may only contain FLRs
and offers the advantages and disadvantages of FLRs. Indexed
files differ in the means of accessing the record. Rather that
being accessed by a record number, the record is accessed by a
key which you assign to the record when writing it to the
diskette. This key may be any string whose length is the same as
the length specified in the line which opens the file.

Bad fhaek

PAGE 4 - 7

MODEL II COMPILER BASIC BUILDING DATA FILES

TRS-80™

For example, each record in a payroll file could be assigned the
person's last name as a key rather than a record number. This
way you can use the person's last name, rather than looking up
the record number, as a way of immediately accessing his or her
record.

Indexed files are the easiest to operate and maintain.
Operators can more easily use keys containing meaningful data
than record numbers to access individual records in the file.

Maintaining an indexed file which has been updated frequently is
also the easiest. Since a deleted record does not consume any
space on the disk, it is not necessary to periodically run
programs to pack all the records.

The disadvantage of indexed files is the amount of space they
consume on the diskette. The overhead of the key index takes
extra space. To build a file which uses disk space efficiently,
you must carefully calculate the record length, key length, and
number of records in the file. (The storage format is discussed
in the Programmers Information Section).

Some good uses for indexed access are:

1. Files which will be handled by many operators, such as
checking account data at a bank.

2. Files which will continually have records inserted and
deleted.

Radio fhaek

PAGE 4 - 8

MODEL

II COMPILER BASIC

TRS-80™

BUILDING DATA

FILES

SEQUENTIAL ACCESS

BEGINNING

FILE END
RECORD 2 RECORD 3

DIRECT ACCESS

3

RECORD 3

INDEXED ACCESS

Radio fhaek

PAGE 4 - 9

MODEL II COMPILER BASIC BUILDING DATA FILES

TRS-80"

INPUT/OUTPUT METHODS

After deciding which type of records you will use and how to
access the records, you need to decide how to input and output
data to the records.

In choosing an input/output method, there are two things to
consider:

1. how the data will be stored in the record
2. how the data will be fielded in the record

Fielding is a way of dividing data into different categories.
For example, you might divide each record in a mailing list into
five fields: (1) name, (2) address, (3) city, (4) state, (5)
zip code. A record may contain as many data fields as you can
fit in the record.

BASIC offers three methods of inputting and outputting data to a
record:

1l. Stream
2. Formatted
3. Binary

Each of these methods may be used with any type of records and
with any type of access method.

The stream and formatted methods store each character of data in
its ASCII format. This means each character consumes one byte
of space on the diskette.

The binary method stores numeric data the same way it is stored
in memory: integers in two bytes and real numbers in a maximumn
of nine bytes. For instance, the integer -23456 would consume
six bytes of disk space with stream or formatted input/output,
but only two bytes with binary.

The stream method separates each field by a comma. The
formatted method formats the fields according to your
specifications. The binary methods separates the fields by a
length byte, or, if it is an integer, no field separator is
necessary.

Note: 1In the following illustrations of stored records, only
the data portion is shown. The beginning of the record would be
in the format of the access method that is being used

Radio fhaek

PAGE 4 - 10

MODEL II COMPILER BASIC BUILDING DATA FILES

TRS-80™

(sequential, direct, or indexed).

Stream Input/Output

—— i ——— e . o

When data is input and output in a stream, the PRINT statement
outputs the data to the diskette, and the INPUT statement inputs
data from the diskette. It is called the stream method because
the length and format for the fields can differ with each
record.

For example, if you were outputting records with three fields of
data:

first name
last name
ID number

w N =
. s ®

And this was the data for the first two records:

First name Last name ID

(FIRSTS) (LASTS) (ID)
record 1 J DAY 42
record 2 JANE MILLER 2

You would input the data simply by using a comma to deliminate
the end of one field and the beginning of the next field:

FIRST$, LASTS, ID

The data for these two records would be stored on the diskette
in a stream with a comma separating each field

M } | L L E R ’ 2

Notice that each new field of data requires one extra byte of
disk space for the comma.

Radio fhaek

PAGE 4 - 11

MODEL II COMPILER BASIC ; BUILDING DATA FILES
TRS-80™

Also note that a numeric field with a positive number requires
one extra byte for a leading blank before the number. However
if you output the ID as a string (IDS$):

FIRSTS$, LASTS, IDS

no leading blank would be required in storing the number:

|
8§ 5 [JD Al Y|, | a] 2

Stream input/output is best suited for VLRs, since the fields in
each record may differ in length. However, the stream method
may also be used with FLRs.

Formatted Input/Qutput

In formatted input/output, the INPUT USING and PRINT USING
statements input and output data to the diskette. This allows
you to use the image to control exactly how and where each field
of data will be stored on the disk.

For example, you could output the same data as above using the
formatted method with this image:

<HFR<HHHH<H
to format four characters for the first field, five for the

second, and two for the third, with each field left justified.
This is how the data would be stored:

J D A ¥ 4 2
J A N E M | L 3 E 2
®
Radie fhaek

PAGE 4 - 12

MODEL II COMPILER BASIC BUILDING DATA FILES

TRS-80 ™

Notice how each field of data is formatted to match the image
line. Since the second field only allows for five left
justified characters, the R in MILLER is truncated (deleted).

This is a good method to use when you need to be able to access
any character of data in the record. For example, this method
would make it easy to change the second character in each ID
number .

Also, this is a good way to save disk space. If each field
contains the same amount of data, the fields can be packed
together in the record with no commas separating the them.

Binary Input/Output

——————— T o e, S,

In binary input/output, the READ and WRITE statements input and
output data to the diskette.

Numeric Data
Numeric data is stored much like it is in memory:

integers are stored in two bytes, two's complement
notation

real numbers are stored in binary coded decimal
format. This requires a maximum of nine bytes
(the length byte plus the eight bytes for the
number -- insignificant bytes are truncated.)

For an explanation of both of these storage formats, see the
Programmers Information Section.

Integers must be whole numbers in the range of -32768 to 32767.
For example, the integers 22, 333, 4444 would be stored as
follows:

[
6 22 333 4444
o |

The first byte tells how may bytes of data are in the three
following fields. Notice how each integer requires two bytes of

Radie fhaek

PAGE 4 - 13

MODEL II COMPILER BASIC o BUILDING DATA FILES
TRS-80 ™

storage. No extra bytes are required to separate each field.

The real numbers 2000 and 3333 would be stored in this format:

7 2 44 2 3 44 | 33 | 33

FIELD 1 FIELD 2
2000 3333

The field for the number 2000 consumes three bytes. The first
byte, 2, tells the length of the field. The second byte, 44, is
the exponent byte. The third byte, 2, contains the one
significant digit in the number.

The next field for the number 3333 begins with the length byte,
3, which says that this field is four bytes long. The second
byte, 44, is the exponent byte. The third and forth bytes
contain the four significant digits in the number, 3333.

For more information on this, refer to the Programmers
Information Section.

String Data

String data is stored in ASCII format with one byte per
character plus a length byte to give the length of the string
field.

The string data, "BINARY" and FILE" would be stored in a record
in this form:

12 6 B | N A R b 4 4 F I L E

Notice that each field contains a leading length byte.

Binary input/output is the most concise way to store a file
containing largely numeric data. For example, a file containing
sales data or accounting data would be best stored using the
binary method.

Radio fhaek

PAGE 4 - 14

MODEL II COMPILER BASIC BUILDING DATA FILES

TRS-80™

BUILDING A SEQUENTIAL ACCESS FILE

—— e o — i ——— ————— i —— —

As we discussed in the overview of this chapter, you have a
choice of three methods you may use in building a sequential
access file:

l. Stream method
2., Formatted method
3. Binary method

We will take you through the steps of building a sequential
access data file using each of these methods. You will probably
find it helpful, when going through these steps, to read about
each statement we use. A write-up of each statement is in the
Keywords Chapter of this manual.

SEQUENTIAL ACCESS
USING STREAM INPUT/OUTPUT

The stream method is the most common way of building a
sequential access file, since you do not have to format the

length of the records in advance. We will show you how to use
this method to:

1. build the file
2. read the file
3. add to the file

Radie fhaek

PAGE 4 - 15

MODEL II COMPILER BASIC . BUILDING DATA FILES
TRS-80"

4. update the file

Building the File (Output to the File)

T — T ——— T —— - —— T — T —— T " —

When building the file, you need to write a program that will do
these four things:

1. Open the disk file with OPEN
2. Print a data record to the disk file with PRINT ¢

3. Repeat step 2 until your program has printed all the
records to the disk file, and then

4. Close the file with CLOSE

Here is a sample program, along with a sample run of the
program, which builds the file using these four steps:

10 REM ¥¥% DEMO OF STREAM OUTPUT TO & SEQUENTIAL FILE #%x
20 REM
3@ OFEN #1s "ITEM/DAT", MODE=W. TYPE=H
A PRINT "INPUT (1) ITEM NO. (2) NOME (3) DESCRIPTION OF TITEM"
S ITMPUT MOSs NAMES. DEGS
HEOPRINT #1y NO$. NAMESs DEbS
7@OPRINT "18 THERE ANOTHER ITEM (Y/N)7"
8B ITNPUT ANSWERS
Q@ IF ANSWERS <H "N" THEN 4@ ELSE CLOSE #1
®RUN

INPUT (1) ITEM NO. (2) NAME (3) DESCRIPTION OF ITEM
7 111

7 PAPER

7 LEGAL PAD B 1/2 X 11 5@ SHEETS

16 THERE ANOTHER ITEM (Y/N)7

T Y

(NFUT (1) ITEM NO. (2) NAME (3) DESCRIPTION OF ITEM
7 R

7 PEN

7 BLUE INK BALL PQINT MEDIUM INK

15 THERE ANOTHER ITEM (Y/N)?

7 N

Line 30 opens the file with the OPEN statement. (See OPEN):
- it references it as file unit #1. (You may have several

Radie fhaek

PAGE 4 - 16

MODEL II COMPILER BASIC BUILDING DATA FILES

TRS-80™

files open at the same time as demonstrated later in this
section).

- it names it with the file specification of ITEM/DAT

- it sets the MODE to W since we are writing data to the
file.

- it sets the TYPE to S for sequential access

Line 60 prints the data for one record to the file. This record
has three fields: NO$, NAME$ and DES$. Notice that the PRINT #
statement can only print one record to the disk file each time
it is executed (See PRINT to a disk file).

Line 90 sets up a loop to continue printing as many records as
you want to the disk file, and ...

When all the records are printed on the disk, line 90 closes the
file.

Reading the File (Input from the File)

D T e L b L T R ———

To read all the data records you have put in your file, you need
to have your program do these five things:

1. Open the disk file with OPEN

2. Read in a data record with INPUT #

3. Use EOF to see if you have reached the end of the file
yet.

4. Repeat steps 2 and 3 until you have read in all the
records, and then

5. When you have reached the end of the file, close it
with CLOSE

Here is a program, along with a sample run, which uses these
steps to read in the file which was built above:

1@ REM #x DEMO OF STREAM INPUT FROM & SERUENTIAL FILE **x
B REM

3 OPEN #1s "ITEM/DAT"s MODE=Rs TYPE=S

4@ TNPUT #1353 NO$Ss NOMESs DESS

S8 IF EOF(H#1) < @ THEN 2@
&HAOPRINT & PRINT "ITEM NUMBBER = "3$NO%s "NAME = " 3iNAME$
78 FPRINT "DESCRIPTION OF THE ITEM ¢ "5 DES$
B0 GOTO 46
gl CLOSE #1
n I fl lo

PAGE 4 - 17

MODEL II COMPILER BASIC BUILDING DATA FILES

TRS-80™
ITEM NUMBER = 111 NAME = PAPER
DESCRIPTION OF THE ITEM @ LEGAL PAD 8 1/2 X 11 30 SHEETS
ITEM NUMBER = 222 MAME = PEN

DESCRIPTION OF THE ITEM : BLUE INK BALL POINT MEDIUM INK

STOP LINE 9@
*BYETEM "HSCREEN"

Line 30 opens the file:

- again, it is file unit #1

-~ it names ITEM/DAT as the file to be opened (the file
that was created above)

- it sets the MODE to R since we are reading data from the
file

- it sets the TYPE, of course, as S for sequential

Line 40 causes your computer to INPUT (read) one data record
from the disk file. It reads all three fields of the record.
The first field is assigned to NO$, the second to NAMES$, and the
third to DESS.

Line 50 checks to see if you have reached the end of the file
yet. If you have, it jumps to line 90 where the file is closed.

Line 40 sends the program back to INPUT or read another record,
and

Line 90 closes the file.

Adding to the file

Should you decide at a later date that you want to add some more
records to your file, you would follow a procedure almost
identical to the one discussed above in "Building the File".

The only difference is in the OPEN statement. Instead of
setting the MODE to W (write), set it to E (extend).

Here is a sample program which extends the file built above

Radio fhaek

PAGE 4 - 18

MODEL II COMPILER BASIC BUILDING DATA FILES

TRS-80"™
named ITEM/DAT.
18 HEM ®aa DEMO OF ADDING TO A SEQUENTIAL FILE #x#
20 REM
A OPEN #1s "ITEMZDAT"s MODE=E, TYPE=S
4@ PRINT "INPUT 1) ITEM NO. (2 NaME (3) DESCRIPTION OF TTEM®
S INPUT NO%s NAMES. DESS
G OPRINT #1s NOSs NaMEds DiESE
FE OPRINT "I85 THERE ANOTHER ITTEM (Y/R)7"
Bl TNPUT ANSWERS
Gl IF ANSWERS <x "N" THEN 4@ ELSE CLOSE #1
®RUN
INPUT (1 ITEM NO. (2 MAME (3) DESCRIPTION OF ITEM
T OR33
T OTYPEWRITER
?7 TAN ELECTRIC PORTARLE SELECTRIC
IS THERE AMOTHER ITEM {(Y/N)?

7N

Updating the File

. i e e e o o e

As we discussed in the overview of this chapter, updating a
sequential access file is a time consuming process. These are
the steps you need to follow:

1. Open the file you want to update (file #1) with OPEN

2. Open a second file with OPEN to write your updated
records to (file #2)

3. Read in a data record with INPUT # from file #1

4. Use EOF to see if you have reached the end of file #1

5. Use PRINT # to print the updated record to file #2

6. Repeat steps 3, 4, and 5 until you reach the end of
file #1, and then

7. Close file #1 with CLOSE

8. Kill file #1

9. Close file #2 with CLOSE

Here is a sample program which updates a sequential access file
using these nine steps:

1 REM ##% DEMO OF UPDATING & SEQUENTIAL FILE **s

2@ REM

J@ OPEN #1s "ITEM/DAT"s MODE=Rs TYPE=H

40 OPENM $#2s "NEWITEM/DAT" s MODE=Ws TYPE=S
5@ IF EOF{#1) = —-1 THEN 1460
G OTNPUT #1s NOd: NaME$s DES%

70 PRINT : PRINT "ITEM NUMBER = "3NO%y "NAME = ":3NAMES

Radio fhaek

PAGE 4 -~ 19

MODEL II COMPILER BASIC BUILDING DATA FILES

TRS-80™

8@ PRINT "DESCRIPTION OF THE ITEM : i DESS

9@ PRINT @ PRINT "DO YOU WANT TO CHANGE THIE INFORMATION (Y/N)";
10@ INPUT ANSWERS

110 IF ANSWER% = "N" THEN 140

120 PRINT "INPUT (1) ITEM NO$. (Z) NAME (3) DESCRITFTION OF ITEM"
1940 INPUT NO%s NAME4$:s DEG®

14@ PRINT #2235 NO$%s» NAMES®: DESS$

159 GOTO 5@

168 CLOSE #1

17@ KILL "ITEM/DAT"

182 CLOBE #2

ITEM NUMBER = 111 NAME = PAPER
DESCRIPTION OF THE ITEM @ LEGAL PAD 8 1/2 X 11 50 BHEETS

DO YOU WANT TO CHANGE THIS INFORMATION (Y/N)7 N

ITEM NUMBER = 222 NAME = PEN
DESCRIPTION OF THE ITEM @ BLUE INK BALL POINT MEDIUM INK

DO YOU WANT TO CHANGE THIS INFORMATION (Y/N)7 Y
INPUT (1) ITEM NO. (2) NAME (3) DESCRITPTION OF ITEM

7 T3
o ey e

Y PEN
7 BLACK INK BALL FOINT FINE LINE

i

ITEM NUMBER 333 NAME = TYPEWRITER
DESCRIPTION OF THE ITEM * TAN ELECTRIC PORTARLE SELECTRIC

DO YOU WANT TO CHANGE THIS INFORMATION (Y/N)7 N

Line 30 opens the file to be updated:

- it references it as file #1

- it names ITEM/DAT as the file to be opened

- it sets the MODE to R, since we will be reading data
records from the file

- it sets the TYPE to S

Line 40 opens the second file which will contain the updated
information:

- it references it as file #2

- it names this new file "NEWITEM/DAT"

- it sets the MODE to W, since we will be writing the
updated data records to this file

- it sets the TYPE to S

Line 50 INPUTs (reads) one data record from file #1.

Radie fhaek

PAGE 4 - 20

MODEL II COMPILER BASIC BUILDING DATA FILES

TRS-80™

Line 60 checks to see if we have reached the end of file #1. If

so, it sends program control to lines 160-180 where the two
files are closed.

Line 140 PRINTS (writes) the updated record to file #2.

Line 150 sends the program back to read the next record, update
it, and write the updated record to disk.

Line 160 closes file #1.

Line 170 kills file #1 since this file contains the old
out-of -date information.

Line 180 closes the new file.

Notice that after running this program, you have created a new
file named NEWITEM/DAT which contains your information.

Radie fhaek

PAGE 4 - 21

MODEL II COMPILER BASIC BUILDING DATA FILES

TRS-80®

SEQUENTIAL ACCESS
USING FORMATTED INPUT/OUTPUT

Since the formatted method requires that you set the length of
records in advance, it does not allow you to take advantage of
the flexible record length that sequential access offers.
However, you are still able to take advantage of the compactness
of a sequential access file.

The steps for formatted input/output are identical to sequential
input/output, except you need to replace PRINT # with PRINT
USING # and INPUT # with INPUT USING #.

Sample programs:

16 REM #E% DEMO OF FORMATTED OUTRUT TO A& SEQUENTIAL FILE ##%
20 REM
2@ OPEN #1s "ITEMZDAT": MODE=We« TYPE=S
G PRINT "INPUT (1) ITEM NO. (2) NaAaME (3) DESCRIPTION OF ITEM"
S@ OINPUT NO$s MNAMESs DESS
S PRINT USING $#15 20y NO%s NAME$®Ss DESS
70 PRINT "I1S THERE ANOTHER ITEM (Y/N)7"
BE@ INFUT ANSWERS
9@ IF ANSWER% <> "N" THEN 4@ ELSE CLOSE #1
SEEA 5 TR R
*RUN
INPUT (1) ITEM NO. (2) NAME (3) DESCRIPTION OF ITEM
% E1id
7 PAPER
7 LEGAL FAD 8 1/2 X 11 %@ SHEETS
IS THERE ANOTHER TTEM {(Y/N)?
¥
INPUT €13 ITEM NO. (2) NAME (3) DESCRIFTION OF ITEM

L I Tw T

7 PEN

7 BLUE INK BALL POINT MEDIUM POINT
IS THERE ANOTHER ITEM (Y/N)?

7N

Radie fhaek

PAGE 4 —~ 22

MODEL II COMPILER BASIC BUILDING DATA FILES

TRS-80™

1@ REM #%% DEMO OF FORMATTED INPUT FROM A SEQUENTIAL FILE =&
2@ REM
J@ OPEM #1s "ITEM/DAT"s MODE=Rs TYPE=E
4 TNPUT USTNG #1353 1008, NO%y NAMES, DES®
500 IF EQF (#1) <> @ THEM 90
HB PRINT = PRINT "ITEM MUMBER = "3$NOs "NAME = "3iNAMES
7@ PRINT "DESCRIPTION OF THE ITEM : "3 DEGS
8@ GOTO 41
@ CLOSE #1
L@@ 5 i R R
®RUN

ITEM NUMBER = 111 NAME = PAPER
DESCRIPTION OF THE ITEM & LEGAL P&D 8 L/2

ITEM NUMBER = ZZZ2 NAME = PEN
DESCRIPTION OF THE ITEM & BLUE TNK BaLL P

Radie fhaek

PAGE 4 - 23

MODEL II COMPILER BASIC BUILDING DATA FILES

TRS-80™

SEQUENTIAL ACCESS
USING BINARY INPUT/OUTPUT

To use the binary input/output method, use the same procedures
as the stream input/output method, except replace PRINT # with
WRITE and INPUT # with READ.

Sample Programs:

}% g%m *¥%% DEMO OF BINARY QUTPUT TO A SEQUENTIAL FILE *#*
3 OPEN #1. "SALES/DAT"s MODE=W, TYPE=S
48 PRINT "INPUT (1) ITEM NO. (2) JaN BALES (3) FER SALES (4) MAR
5@ INPUT NOZs JANy FEEs MAR
HO WRITE #13% NOLs JANs FEBRy MAR
70 PRINT IS THERE ANOTHER ITEM (Y/N)";3
80 INPUT ANSWERS
@ IF ANGWERS$ <> "N" THEN 4@ ELSE CLOGE #1
#RUN

INPUT (1) ITEM NO. (2) JAN SALES (3) FEB SALES (4) MAR SALES
E i

7 1068

7 2B

7 3

1§ THERE ANOTHER ITEM (Y/M)7 Y

INPUT (1) ITEM NO. (2) JaN SALES (3) FEBE BALES (4) MAR SALES

i T
"

7 150
Eae Uiy
7 EB0d
18 THERE ANOTHER ITEM (Y/N)7 N

A

PAGE 4 - 24

SALES"

MODEL II COMPILER BASIC BUILDING DATA FILES
TRS-80™

10 REM ®%% DEMO OF BINARY INPUT FROM A SEQUENTIAL FILE %%
S0 REM
3B OPEN #1, "SALES/DAT"» MODE=Rs TYPE=S
4B PRINT "ITEM NO"s “JAN SALEG", "FEBR SALES"s "MAR SALESY
S@ READ #13 NO%s JANs FEBs MAR
b TF EOF(#1) <% @ THEN 9@
70 PRINT NOY%s JANs FEBs MAR
8l GOTO 50
90 CLOSE #1
*RUN
ITEM NO JAN SALES ER SALES SALES
111 T T T
D 1500 il S5 00

Radio fhaek

PAGE 4 - 25

MODEL II COMPILER BASIC 5 BUILDING DATA FILES
TRS-80®

BUILDING A DIRECT ACCESS FILE

As with sequential access, you may either use the stream,
formatted, or binary methods to input and output data to a
direct access file. We will discuss the formatted method first.

Again, in going through these sample programs, you will find it
helpful to read about the keywords we use in the Keywords
Chapter of this manual.

DIRECT ACCESS
USING FORMATTED INPUT/OUTPUT

Formatted input/output is a common way to build direct access
files, since it will ensure that each record has the same length
and is in the same format.

Building the file

—— e — o —————— — — —

Building a direct access file is actually very similar to the
procedure of building a sequential file. The difference is:

- you must specify the length of each record in the OPEN
statement

- you must assign each record a record number

Radie fhaek

PAGE 4 - 26

MODEL II COMPILER BASIC BUILDING DATA FILES

TRS-80™

These are the procedures to use:

1. Open the disk file with OPEN

2. Print a data record to the disk file with PRINT USING
#, specifying its record number

3. Repeat step 2 until you your program has output all
records desired to the disk file, and

4. Close the file with CLOSE

Here is a sample program following these procedures:

13 REM % DEMO OF FORMATTED OUTPUT TO A DIRECT FILE %%
20 REM

30 OPEN #1s "LIST/DAT"s MODE=Ws TYPE=Ds LENGTH=3Z

4@ X =1

5@ PRINT @ INPUT PROMPT=YLAST NAME 7"3 LNAME®$

52 INPUT PROMPT="FIRST NAME ?7"3 FNAMES

S4 INPUT PROMPT="ADDRESS 7"3 ADDS$

7@ PRINT USING #1s KEY=X3 110+ LNAME®$: FNAMES$: ADDS

BB INPUT PROMPT=YI1S THERE ANOTHER ADDRESSE (Y/N) 7'3 ANSWERS$

182 IF ANSWERS = "N" THEN CLOSE #1 ELSE X = X + 1 & GOTO 5@
L@ 5 CH bt R R R
*RUN

LAST NAME 7HARRIGON

FIRGT NAME 7HATRICIA

ADDRESS 71513 NORTH MOCKINGEIRD LANE
I5 THERE ANOTHER ADDRESS (Y/N) 7Y

LAST NAME 7 JOMHNSON

FIRST NAME 7GEORGI

ADDRESE 71811 S50UTH HAMPTON

I8 THERE &NOTHER ADDRESS (Y/N) %N

Line 110 is the image line. It determines how each record's
data will be formatted on the diskette. In this program, each
record will be divided into three fields. The < character marks
the beginning of each field:

the first field has 10 characters;

the second, 7;

the third, 15.
for a total of 32 characters in each record.

Line 30 opens the file with OPEN:

Radie fhaek

PAGE 4 - 27

MODEL II COMPILER BASIC BUILDING DATA FILES

TRS-80™

- it references it as file unit #1

- it names the file "LIST/DAT

- it sets the MODE to W (write)

- it sets the TYPE to D (direct)

- it sets the LENGTH (record length) to 32 characters in
each record.

Line 70 outputs a record to the disk file using the format set
on line 110. Notice that in direct access, this PRINT USING #
statement must specify a KEY (record number) for each record.

Line 100:

- closes the file if the operator does not want to output
any more records, or

- increments the record number by 1 and sends the program
back to print the next record to the disk file.

Reading the File (Input from the File)

—— i ——— o ———————— — —— ——— T — e o o . i

To read every record in the file, you may use the same
procedures that you would use in sequential access, except:

- in the OPEN statement, you must specify the record length
= in the INPUT USING # statement, you must specify the KEY
(record number) you want to input from the file.

These are the procedures:

1. Open the disk file with OPEN, specifying the record
length

2. Read in a data record with INPUT USING #, specifying
the record number.

3. Use EOF to see if you have reached the end of the file
et.
Y 4. Repeat steps 2 and 3 until you have read in all the
records, and then

5. When you have reached the end of the file, close it
with CLOSE.

Here is a sample program following these procedures:

16 RiEM ¥ DEMO OF FORMATTED ITNPUT FROM & DIRECT FILE %%
A REM
S OOREN #1« "LIST/DAT"s MODE=Rs TYPE=Ds LENGTH=3Z
40 X = 1
A INPUT USING #1s KEY=X3 128s LNAME®: FNAME$: ADDS
HE O TF O EOFHELY Ax B OTHEMN 123
Radio fhaek

PAGE 4 - 28

MODEL II COMPILER BASIC : BUILDING DATA FILES

TRS-80™
7@ PRINT: PRINT "RECORD #"35 X

A PRINT LNAMESS "y " SENAMES v v » ADDS

110 ¥ = i + 1 1 QGOTO &8

13 O '

13 #ﬂhﬂﬁ#### HEHHEE SRS
* RN

RECORD # 1
HARRISGON « PATRIC]
1513 MORTH MOCHK

RECORD $# 2
JOHNEON s QEORGE
1811 SOUTH HAMP

Line 130 is the image line determining what format to use in
inputting each record from the disk file. This is the same
image that was used in building the file.

Line 30 opens the file with OPEN:
it references it as file unit #1
- it names it LIST/DAT
- it sets the MODE to R (read)
- it sets the TYPE to D (direct)
- it sets the LENGTH to 32 characters per record

Line 60 inputs record # X from disk, using the formatted image
set in line 30. It assigns the three fields of data to the
variables LNAMES, FNAMES$, and ADDS.

Line 65 checks to see if you have reached the end of the file
yet. If so, it jumps to line 120 where the file is closed.

Line 110 increments the record # by one and sends the program
back to input the next record from disk.

Updating and Addlng to the File

Direct access is the easiest way to update a file. Here are the
procedures:

1. Open the file with OPEN, specifying the record length
2. By specifying the record number, you may then do one of
the following:
a. input the record from the disk file by
using INPUT USING #
b. delete the record from disk file with
DELETE #, or
c. output new data to the disk file, for

Radie fhaek

PAGE 4 - 29

MODEL II COMPILER BASIC

TRS-80™

BUILDING DATA FILES

that record number with PRINT USING #

3. Repeat step 2 until you have finished updating the
file, and then
4. Close the file with CLOSE
Here is a sample program updating a direct access file:
1% FE M *6% DEMO OF UFDATING & FORMATTED DIRECT FILE =X
2@ REM
3 OPEN #1s M"LLIST/DAT": MODE=Us TYPE=Ds LENGTH=3Z
4@ PRINT @ PRINT "(1) DISPLAY RECORD" @ PRINT "42) DELETE RECORD"
S8 PRINT " (3) ADD/CHANGE" : PRINT "(4) CLOSE FILE"
HA INPUT PROMPT="SELECT ONE OF THE AROVE '35 &
7@ INPUT PROMPT="RECORD NO (B IF CLOZIING FILE) 2"3 R
B ON 5 GOTO H1@s 1&6@. ks 270
FEOREM
L@ REM
110 REM *#¥% (1) DISPLAY RECORD ROUTINE %%
2@ INPUT USING #1ly KEY=Rj 290, LNAME®: FNAMES: ADDS

130
140
150
160
17
180
190
ped 1
210
220
230
240
5

PRINT LNAME®:"2 " ;FNAME$s 55 ADDS 3 GOTO 401

REM

REM

REM #¥% (2) DELETE RECORD ROUTINE #%=
DELETE #ls KEY=R: GOTO 40

FEM

REM

RE ek (A) ADD/CHANGE RECORD ROUTINE ®es
INPUT PROMPT="LAST NAME 7"% LNOMES

INFUT PROMPT="FIRST NAME 7"% FNAMES
INPUT PROMPT="ADDRESS 7" 3 ADDS

FRINT USING #1« KEY=H: 290s LNAME$: FNAMESs ADDS © GOTO 4@

REM

REM

REM ¥¥% (4) CLOSE FILE #%¥%
CLOSE $#1

3o bbbk AR A A A < A

Here is a sample of what might happen when this program is RUN:

#RLN

(1)
)
D)
£ 4)

DISPLAY RECORD

DEL

ETE REGCORD

ADD / CHAMGE:
CLOBE FILE

Radio fhaek

PAGE 4 - 30

MODEL II COMPILER BASIC

BUILDING DATA FILES

SELECT ONE OF THE ABOVE
RECORD NO (@ IF CLOSING
LAST NAME 7ALEXANMDER
FIRST N&ME 7MARILA
ADDRESS 73337 ELK GROVE

(1) DISPLAY RECORD

(2} DELETE RECORD

(3) ADD/CHANGE

(4) CLOSE FILE

SELECT ONE OF THE ABOVE
RECORD MO (@ IF CLOBTING
ALEXANDER +MARIA

3333 ELK GROVE

(1) DISPLAY RECORD

() DELETE RECORD

(3) ADD/CHANGE

t4) CLOBE FILE

SELECT ONE OF THE ABOVE
RECORD NO (@ IF CLOGING

TRS-80 ™
T A
FILE) 73
i1
FLLE)Y 73
L
FILLE) 7

Line 290 is the image line. This is format which was used when

building the file.

Line 30 opens the file:

it references it as file #1
- it names it LIST/DAT
- it sets the MODE to U (update)
- it sets the TYPE to D (direct)
- it sets the LENGTH to 32 characters per record

Line 70 asks the operator to input a record number (KEY)

Line 80 sends the program to the Display Routine, Delete
Routine, Add/Change Routine, or to close the file, depending on

the operators choice.

Line 120 inputs the record number the operator selected using
the format set in line 290.

Line 170 deletes the record number the operator selected.

Line 240 prints new data to the record number the operator

selected.

Line 280 closes the file.

Radie Sfhaek

PAGE 4 - 31

MODEL II COMPILER BASIC BUILDING DATA FILES

TRS-80™

DIRECT ACCESS
USING STREAM INPUT/OUTPUT

To use the stream input/output method, follow the procedures of
the formatted method replacing PRINT USING # with PRINT # and
INPUT USING # with INPUT #.

To determine the length of each record you must allot:
- one byte for each character of data.
- one byte for each comma which starts a new field of data.
- one byte preceding each positive number.
- one byte for the total length of the field.

Sample programs:

10 REM ®¥% DEMO OF STREAM OUTPUT TO & DIRECT FILE *¥%
20 REM

30 OPEN #1y "NAME/DAT"s MODE=Wy TYPE=Ds LEMETH=E

4@ % =1

S5@ PRINT 5 PRINT “FIRET IMITIAL 7"%

A FNAMES = INPUT$(1)

7@ PRINT "LAST NAME 7"3

BB LNAMES = TINFUTEH5)

R PRINT #1s KEY=X: FNAME$:s LMNAME$

1@ INPUT PROMPT="15 THERE ANOTHER NAME (Y/N)Y 7"35 ANGWERS

11@ IF ANGWERE = "N" THEN CLOGE #1 ELSE X = X + 1 ¢ GOTO 30
®RUN

FIRSET INITIAL M
LAST NAME 7TWALHI
16 THERE ANOTHER MAME (Y/NY 7Y

FIRET INITIAL 70
LAST NAME 7MILLE
18 THERE ANOTHER MaME (Y/N) 7Y

FIRST INITIAL 7J

LAST NAME YHMITH
18 THERE ANOTHER NAME (Y/M) 7N

Radio fhaek

PAGE 4 - 32

MODEL II COMPILER BASIC BUILDING DATA FILES

TRS-80%

1@ REM #4% DEMO OF STREAM INPUT FROM & DIRECT FILE s
2 REM

30 OPEN #1s "NAMEDAT"y MODE=Ry TYPE=Ds LERGETH=R

4 K o=]

6@ ITNPUT #1s RKEY=X3 FNAME$s LNAMES$

H5 TF EOFOHLY < 8 THEN 138

7@ OPRINT: PRINT "RECORD #"35 X

BO PRINT FNAMESS ". "% LNAMES

11 X = X + 1 ¢ GOTO &@

L@ CLOSE 41

N

HRECORD # 1
M. WALBH

RECORD #
Ce MILL

b

RECORD # 3
J. GMIT

PAGE 4 - 33

MODEL II COMPILER BASIC

BUILDING DATA FILES

DIRECT ACCESS
USING BINARY INPUT/OUTPUT

TRS-80"

To use the binary input/output method, follow the procedures of
the formattted method replacing PRINT USING # with WRITE and
INPUT USING # with READ.

Determining the length of each record is a little more complex.
You should alot:

See the Overview

1

Sample programs:

Lid
=1
A8
4
el
&HiA
P4"i!
i
90
1@
118

for each integer (integers are
whole numbers beteen ~32768 and

32767)

for each real number:

1 byte for the length byte
1 byte for the exponent byte

1 byte for each two signigicant

digits

for the beginning length byte

HEM #% DEMO OF BINARY OUTPUT

RE.M
INTEGER

TO & DIRECT

OPEN #1+ "SALES/DAT"s MOLE=W. TYPE=D.

(=1
INFUT PROMPT
INPUT PROMPT

SITEM NO. 7% NO ¢
"FER SALES 73 FEB

WRITE #1s KEY=X3 MOs JANs FEBE: MAR
ANOTHER TTEM (Y/N)"3

FRINT "1I& THERE

TNPUT ANGWERS

IF ANEWER =

(1] }\I 1]

THEN CLOBE #1 ELSE

Radie fhaek

LENGTH=S

TNPUT
INFUT

x P4 3

!
s

FROMPT

g

of this chapter for more information.

FILE %

= " JAN SALES 7"

PROMPT = "MAR GalLES

GOTO &

PAGE 4 - 34

L
. 2

JAN

MAR

MODEL II COMPILER BASIC BUILDING DATA FILES

TRS-80™

% RN

TTEM Na,
JAN BOLES
FER SALES 72433

MAR LalES 75543

I8 THERE ANOTHER ITEM (Y/N)7 Y
TTEM No. 7222

JAN SALES 79987

FER BalES 78888

MAR SalES

17987
15 THERE ANOTHER TTEM

7111
RS

(Y/MYT N

STOF LLINE 11@
*BYSTEM "BOREEN"

ver 2. BI/DIK

R&SBEAGTC
REM o
I
TNTEGER
OPEM #1 s
K==l
FRINT "TTEM MO".,
READ 1y KEY=X3 NOy JaMs FEE
B IF EOF(#1) <% @ THEN 11@

Gl PRINT MO« JaNs FEB« MaR

100 X = X + 1 & QOTO 7@

118 CLOSE #1

i RINARY INPUT FROM & DIRECT FILE
20
40
50
&)

7@

et DEMO OF

"EALES/DAT"y MODE=Hs TYPE=Ds LENGTH=Y

"JaN BALEER". "FEBR SALES"Y .

MAT

"MaR

SALER"

*RUN

TTEM NO
111

=y

A A,

Jan SALES
BBBn
P87

PAGE

FEBE SaLES

Ea33
pa&s

Radio fhaek

& — 3b

MAR BALES
D543
77

MODEL II COMPILER BASIC BUILDING DATA FILES

TRS-80™

BUILDING AN INDEXED ACCESS (ISAM) FILE

L L T ——

To build an indexed access file, you may use the same three
input/output methods that were shown with sequential and direct
access files: formatted, stream, and binary. We will only show
the formatted method in this chapter, but remember that the
other methods are available to you.

INDEXED ACCESS FILE
USING FORMATTED INPUT/OUTPUT

Building the File

—— i —— . ———— i

To build the file, use the same procedures that were shown in
building a formatted direct access file, except:

- .In the OPEN statement, you must specify the maximum
number of characters you will use for each KEY.

- In the PRINT USING # statement, you must assign each
record a KEY rather than a record number. This key may be any
name you choose but the length must eaual the key length you
specified in the OPEN statement.

Here is a sample program:

Radio fhaek

PAGE 4 - 36

MODEL II COMPILER BASIC BUILDING DATA FILES

TRS-80®
1@ REM ¥%% DEMO OF FORMATTED OQUTPUT TO AN INDEXED FILE %%«
2@ REM

3@ OPEN #1s "LIST/DAT"s MODE=Ws TYPE=Il: LENGTH=3Zs KEY=3
4@ PRINT : INPUT PROMPT="LAST NAME 7"35 LNAME$

5@ INPUT PROMPT="FIRST NAME 7"; FNAME$
6@ INPUT PROMPT="ADDRESS ?"; ADD$

78 FRINT "KEY (MUST BE EXACTLY 3 CHARRCTERS? 7 "i: K&=IMPUT#HC3)
86 IF LEMCKS) < 3 THEM 7@

38 PRINT USIMG #1. KEY=K$, 128, LMAMES, FHAMES, ADDE

1838 THPUT FROMPT="I% THERE AHOTHER ADCRESS C9%-H) T AMSHERS
118 IF AMSWERS="H" THEM CLOSE #1 ELSE GOTO 48
L2005 < BRI 2 A B e A 0 0

Line 120 is the image line. It formats the data output to each
record in three fields containing 10, 7, and 15 characters for a
total or 32 characters.

Line 30 opens the file:
- it references it as file unit #1.
- it names it LIST/DAT.
- it sets the MODE to W (write).
- it sets the TYPE to I (indexed).
- it sets the record LENGTH to 32.
- it sets the length of each KEY to 3 characters.

Line 70 asks the operator to specify a key name to use in
referencing the file.

Line 80 is a trap to ensure that the length of K$ equals the key
length set in the OPEN statement, If they are not equal, program
execution returns to Line 70.

Line 90 prints the record to disk file.

Line 110 closes the file if the operator is finished or goes back
to print another record to the disk file.

Reading the File

—— e —————————

To read every record in the file, follow the same procedures that
were shown in reading a formatted direct access file, except:

-~ In the OPEN statement, you must specify the number of
charaters in the KEY>

- In the INPUT USING # statement, you may leave out the key
name.

- You may use a special function named KEY$ to read the name
of the key for each record.

Sample program:

Radio fhaek

PAGE 4 - 37

MODEL II COMPILER BASIC BUILDING DATA FILES

TRS-80®

ég ggm *¥¥ DEMO OF FORMATTED INPUT FROM AN INDEXED FILE #*#%%
30 OPEN #1, "LIST/DAT"s MODE=Rs TYPE=ls LENGTH=3Z; KEY=3
40 INPUT USING #1353 208y LNAME$s FNAME$s ADD%
W TR EDFTH#ELY Sk 8 THEM 185
Bl FRIMT
7 FREIMT LHAMES: " " FHAMESE, , . A0DE
GE FRIMT FEEYS
HEGOTO A
e ZLOEsE #1
ERARY 5 R B o R B R A A A

Updating the File

To update the file, you follow the same procedures as shown in
updating a formatted direct access file, except:

- In the OPEN statement, you must specify the exact number
of characters in the KEY.

- You must specify the name of the KEY in the INPUT USING #,
PRINT USING # and DELETE # statements. (If you specify a KEY
which is not in the data file or one which is not the correct
length, then you COULD receive an "INVALID KEY" error and program
execution would cease.)

18 REM #%% DEMO OF UPDATING A FORMATTED INDEXED FILE **x

20 REM

3@ OPEN #1y "LIST/DAT"s MODE=Us TYPE=Is LENGTH=3Zs KEY=3

4@ PRINT : PRINT "{(1) DISPLAY RECORD" : PRINT "(Z) DEI.LETE RECORD"
5@ PRINT "(3) ADD/CHANGE" : PRINT "(4) CLOSE FILE"

6@ INPUT PROMPT="SELECT ONE OF THE AROVE "3 &

7@ INPUT PROMPT="KEY 7"3 K%

8@ ON 8 GOTO 11@, 160, z0Bs 270

9@ REM

100 REM

112 REM *¥%¥% (1) DISPLAY RECORD ROUTINE ###
120 INPUT USING #1y KEY=RK$3; 290s LNAME$s FNAME$s ADD%
13@ PRINT LNAME#$3":"3FNAME$sss:ADD$ 2 GOTO 40

148 REM

15@ REM

160 REM *%¥% (2) DELETE RECORD ROUTINE #*%%*

170 DELETE #1s KEY=K%$: GOTO 40

180 REM

1900 REM

=208 REM *%¥ (3) ADD/CHANGE RECORD ROUTINE *%*
218 INPUT PROMPT="LAST NAME 7"3 |I.NAME$

22@ INPUT PROMPT="FIRST NAME 7"3; FNAME$

Radio Mhaek

PAGE 4 - 38

MODEL II COMPILER BASIC . BUILDING DATA FILES
TRS-80™

23 INFUT PROMPT="aDDRESS 7" 1 ADDS

=4 PRINT USING #1. KEY=K$5 290y LNAMES: FNAMES. ADDE ¢ GOTO 40
2EE REM
L6 REM

wux (4) CLOSE FILE %%
' #1
A I SR A RS

Radio fhaek

PAGE 4 - 39

TRS-80™

khkhkhkhhkhkhhkhkkhhkhhhkhkhkhkhhhhhrhhhhhhhkhkhhhkhkhhhk

Chapter 5

*
*
*
* SEGMENTING PROGRAMS
*
*

*
*
*
*
*
*

khkhkhkkhkhkhkhkhhhhkhhkhkhdhhhkhhhkkhhhkhhkhhhhkhkkhkkii

Radio fhaek

MODEL II COMPILER BASIC) SEGMENTING PROGRAMS
TRS-80™

WHY SEGMENT PROGRAMS

— ——— ———— = > = ——

The BASIC Compiler offers two ways of segmenting long and
complicated programs into shorter, more manageable programs:

1. Subprograms are high powered subroutines which act on
data stored under different variable names. Like subroutines,
they are called from the main program, executed, and return back
to the main program.¥

Subprograms are helpful if you are performing the same
complicated operations on different variables repeatedly in
different parts of your program. For example, a subprogram that
draws graphs could be called many times from the program. Each
time, it would be sent different data.

2. Program chaining is a method of breaking a very large
program into smaller programs which will each load into memory
and execute separately. This is a solution when a program
requires too much memory to execute.

——— o o e . i e o o . o o S .

* A subprogram may also be called from another subprogram.
However, they may not be recursive (that is, a subprogram may
not call itself).

OUTLINE FOR CHAPTER 5
SEGMENTING PROGRAMS

Ls How to Build a Subprogram
A. How to Pass All Types of Data
B. Storing Subprograms
C. Calling Assembly Language Programs

IT. How to Chain Programs
EELs Subprograms VS Program Chains
®
Radie fhaek

PAGE 5 -1

MODEL II COMPILER BASIC SEGMENTING PROGRAMS

TRS-80™

HOW TO BUILD A SUBPROGRAM

—————————— — i ———— T o

All subprograms must be called from the main program with the
CALL statement. Normally, you will want the CALL statement to
"pass" data to the subprogram. For example:

CALL "ANNUAL"; F

calls a subprogram named ANNUAL and passes the data stored in F
to the subprogram.

The subprogram must begin with a SUB statement which identifies
it. If the subprogram is being passed data, this statement must
contain a variable name which can temporarly store the data.

For example:

SUB "ANNUAL"; X

begins the ANNUAL subprogram. The data in F is passed to the
subprogram, which temporarily stores it as X. Here is the
entire subprogram:

100 SUB "ANNUAL"; X
110 X = X * 52
120 SUBEND

Notice that a subprogram must always end with a SUBEND
statement. The main program must always end with an END
statement. Here is the main program and the subprogram:

5 X=5
10 F = 100

20 CALL "ANNUAL"; F
30 PRINT F
40 END

100 SUB "ANNUAL"; X
110 X =X * 52
120 SUBEND

Here, the main program passes the value of 100, which is stored
in F, to the subprogram. The subprogram temporarily stores 100
in X, performs its operation on X and passes the resulting value
of 5200 back to the variable F in the main program. When
instructed to PRINT X and F, the main program prints:

5 5200

Notice that the subprogram's variable X had no affect on the

Radio fhaek

PAGE 5 - 2

MODEL II COMPILER BASIC SEGMENTING PROGRAMS

TRS-80 ™

main programs's variable X. This is because subprogram and main
program variables are stored separately. The subprogram only
temporarily stores and acts on the value which is passed to it
e F.

Main Program Sub Program
4ot . SUB
CALL
%%
END 9= SUB END

The same subprogram may be called repeatedly in the program,

being passed different values each time.

For example:

10 F =100 : G = 52.25 : E = 26.50
20 CALL "ANNUAL"; F
30 CALL "ANNUAL"; G
40 CALL "ANNUAL"; E
50 PRINT F, G, E
60 END
100 SUB "ANNUAL"; X
110 X = X * 52
120 SUBEND

When executed, this program prints:

5200

2717 1378

One CALL statement can pass several different variables to a

subprogram. For example:
10 MONTHS$ = "JANUARY"
30 DAY% =5
50 CALL "CAL"; MONTHS$, DAY%
60 PRINT MONTHS; DAY%
90 SUB "CAL"; A$, B%
100 A$ = SEG$(AS$, 1, 3)
110 B% = B% + 7
120 SUBEND
®
Radio fMhaek
PAGE 5 - 3

MODEL II COMPILER BASIC SEGMENTING PROGRAMS
TRS-80™

Notice that the variable types in the SUB statement (line 90)
match the variables passed by the CALL statement (line 50). 1In
this particular program, CALL and SUB list the string variable
first and the integer variable second.

When executed, the program prints:
JAN 12

Subprograms may be sent the contents of an entire array. For
example:

CALL "GRAPH"; A()

calls the subprogram GRAPH and passes the entire contents of
array A to the subprogram.

SUB "GRAPH"; X()

begins the subprogram GRAPH. The entire contents of array A are
temporarily stored in the subprogram as array X.

Here is a program which passes array data to a subprogram:

5 DIM A(3)
10 DATA 5, 10, 15
20 READ A(l1l), A(2), A(3)
30 CALL "GRAPH"; A(), "GRAPH"
40 END
50 SUB "GRAPH"; X(), ¥$
60 PRINT Y$
70 FOR I =1 TO 3
75 READ Z$: PRINT Z$;
80 PRINT STRINGS(X(I), "X"); X(I)
90 NEXT I
95 DATA "MON", "TUES", "WED"
100 SUBEND

Notice how the subprogram GRAPH beginning in line 50 has its own
DATA statement (line 95). This cannot be read by the main
program. Nor can the main program's DATA statement (line 5) be
read by the subprogram. This is because before being executed,
the main program and the subprogram are compiled separately.

You may pass the entire contents of a two dimension array like
this:

CALL "TWO"; A(,)

Radio Shaek

PAGE 5 - 4

MODEL II COMPILER BASIC SEGMENTING PROGRAMS
TRS-80™

The subprogram needs a two dimensional array variable name to
accept the contents of array A, such as:

SUB "TWOo"; X(,)

HOW TO PASS ALL TYPES OF DATA

The table on the next page shows how to match up the data in the
CALL and SUB statement. The first column shows the type of data
you may pass from the main program in a CALL statement. The
second column shows the accompanying type of variable which must
be in the SUB statement of the subprogram to receive this data.

D L TR MEL il e ! L L S i o o o e ey o T T — T VA A o o o — o — T — . o o g P o o T . . S i

DATA PASSED FROM THE VARIABLE RECEIVER IN
MAIN PROGRAM SUBPROGRAM

numeric variable contents numeric variable
CALL "SUBPROG"; M SUB "SUBPROG"; S
"SUBPROG"; M$% SUB "SUBPROG"; S%

string variable
SUB "SUBPROG"; S$

empty two dimensional

numeric array contents numeric array
CALL "SUBPROG"; M(,) SUB "SUBPROG"; S(,)
CALL "SUBPROG"; M%(,) SUB "SUBPROG"; M%(,)

MODEL II COMPILER BASIC

TRS-80®-

SEGMENTING PROGRAMS

entlre one—dlmen31onal
string array contents
CALL “SUBPROG"; MS)

contents of one strlng
array element

CALL "SUBPROG"; M$(1)
CALL "SUBPROG"; M$(1,1

Radio fhaek

empty one-dimensional
string array

SUB “SUBPROG”' ss()

strlng subscrlpted
variable

SUB "SUBPROG"; S$
SUB "SUBPROG"; S$

6

MODEL II COMPILER BASIC SEGMENTING PROGRAMS
TRS-80®

STORING SUBPROGRAMS

Subprograms may either be SAVEd or COMPILEd as part of the
main program or as a separate program. If they are stored
separately, they must be loaded along with the main program.

If the subprogram and main program were both SAVEd separately
as BASIC programs, use the APPEND command to load the
subprogram. For example:

OLD MAINPRG/BAS
Loads the main BASIC program, and
APPEND SUBPRG/BAS

Appends the subprogram to the main program.

CALLING ASSEMBLY LANGUAGE PROGRAMS

RSBASIC provides a method for calling an external assembled
object code program from your BASIC program. To do this, use
these guidelines:

When writing the assembly language program ...

1. We suggest that you calculate the originating address
for your assembly language program as follows:

TRSDOS TOP memory address*
-~ number of bytes in your program

R T P ———

originating address

* your TRSDOS TOP memory address depends on the size of your
system, which version of TRSDOS you have, and whether you will
load high overlay programs such as DEBUG and SETCOM. The
lowest possible TOP memory address you could have on a 64K
system is F000.

2. If the subprogram will receive parameters passed to
it by the main BASIC program, refer to the section on
"Parameter Passing" of Assembly Language Subprograms in the
Programmers Information Section. The sample program on the
following pages demonstrates an application of how this is
done beginning on line 4000 "CALL PARAMETER DECODING ROUTINE".

Radie fhaek

PAGE 5 - 7

MODEL II COMPILER BASIC SEGMENTING PROGRAMS
TRS-80™

When writing the BASIC program...

1. Use the EXT statement to define this address and to
name the subprogram. For example:

EXT DISKID = &A000

assigns the name DISKID to the subprogram and defines its
originating address as hex A000.

The EXT statement should be at the beginning of your program.

2. Use the CALL statement to call the assembled program
in the same manner that CALL is used to call a BASIC
subprogram. For example:

CALL "DISKID"; DRIVE%, DISKIDS$

calls the subprogram named DISKID and passes the parameters
(data) stored in DRIVE% and DISKIDS.

When executing the program ...

1. Load RSBASIC specifying the top memory address it may
use. This address should be the originating address of your
assembled subprogram minus one. For example, if your
originating address is A000, you should load RSBASIC with the
T=9FFF option. (See Using the BASIC Compiler, Chapter 1 for
the correct syntax).

2. After loading RSBASIC, you may load your assembled
subprogram using the BASIC "SYSTEM" command and the TRSDOS
"LOAD" command. For example:

SYSTEM "LOAD EX/OBJ:1"

loads the assembled program EX/OBJ from the diskette in drive
ll

Radio fhaek

PAGE 5 - 8

MODEL II COMPILER BASIC SEGMENTING PROGRAMS

TRS-80™

1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180
1190
1200

01000
01100
01200
01300
01400
01500
01600
01700
01800
01200
02000
02100
02200
02300
02400
02500
024600
02700
02800
02700
03000

REM DISKID/EAS

REM

REM DEMONSTRATION OF A CALL TO AN EXTERNAL MACHINE-LANGUAGE (M-L)
REM SUBROUTINE. EEFORE RUNNING THIS FROGRAM, LOAD THE M-L

REM SUEROUTINE ‘DISKID’ INTO MEMORY. EASIC TOF OF MEMORY MgST
REM EE SET TO HEX ADDRESS 9FFF, E.G., START BASIC THIS WAY:

REM RMBASIC {T=9FFFZ
REM
REM THE M-L SUBROUTINE CHECKS FOR A VALID PARAMETER LIST AND

REM FOR VALID FARAMETERS

REM

DIM DISKID$8

EXT DISKID = RA000

FRINT "ENTER THE DRIVE NUMEER"

INFUT DRIVEZ

cALL "DISKID"; DRIVEZ, DISKID®%

LENGTHZ = LEN(DISKID$%)

FRINT "LENGTH OF DISK NAME IS"} LENGTHX

IF

LENGTHX = 0 THEN 1200

FRINT "THE DISK NAME IS "3 DISKID$
FRINT?: GOTO 1130

e B s e R BE e B e S B FE S e S

s e S S S 2 S o S S T T S S S S " —— o F S T — T o T T 300 o T o T T SO T S g T ot ot St et S . o . i i . e s e s

DISKID -- EXTERNAL SUEROUTINE FOR RSEASIC
03/31/1980

THIS EXTERNAL ROUTINE GETS THE DISKNAME AND RETURNS IT TO THE
EASIC FROGRAM. ON ENTRY TO DISKID, REGISTER CONTENTS ARE?
(EC) FARAMETER LIST
(DE) SUBROUTINE TD RETURN NECESSARY PARAMETER INFORMATION
EACH TIME THIS SUEBROUTINE IS CALLED, IT RETURNS THE
FERTINENT INFO AEOQUT THE NEXT ARGUMENT IN THE LIST.

non

B e e e e e e T e e e e e b T T e

INITIALIZATION SECTION

ASEG

ORG 0AC00H
SVCERR EQU o2 ¢+ FUNCTION CODE FOR ERRMSG-SVC
SVUCWRT EQU 09 + CODE FOR VDLINE-SVC
SVCDID EQU 15 + CODE FOR DISKID-SVC

L

Radio fhaek

PAGE 5 - 9

MODEL II COMPILER BASIC

SEGMENTING PROGRAMS

TRS-80™
03IBB Jmm e e e e e e e e e - -
03200 DISKID: s ROUTINE STARTS HERE
03300 LD HL., FDRADR 3 SAVE ADDR 0OF FARAMETER DECODING
03400 LD (HL) ,E + ROUTINE IN (FDRADR)
03500 ING HL.
3400 LD (HL) D
02700 ! NOW (FDRADR) = POINTER TO FARAMETER-DECODING ROUTINE
03800 H
03900 § ot e o s i s o e et S £ o e £ e Y e e et e e e e et o e e e
04000 ¢ CALL FARAMETER DECODING ROUTINE
04100 L.D HL,CTNU1 ; SAVE CONTINUATION ADDRESS
04200 FUSH Hi. H ON STACK
04300 LD HL ; (FDRADR) + CALL FDR
04400 JF (HL)
04500 H
044600 t NOM A = RETURN CODE (0 => MORE ITEMS LEFT: 1 => NO MORE LEFT)
04700 ; E = PARAMETER TYPE (0 =3> INTEGER, 1 =» REAL, 2 => STRING)
04800 s DE = ADDRESS OF ARGUMENT 0OR ARGUMENT DOFE
04900 H
05000 e - o e e e e e e e e e e e e e e e e e e o e s o e
05100 CTNUI ¢ + EDIT FIRST FARAMETER
05200 CF 0 + 0 => MORE FARAMETERS IN LIST
05300 JR NZ s FRMERR { ERROR IF THIS IS LAST FARAMETER
0sS400 CF E s B = FPARAMETER TYFE (0=+INTECER)
NES00 JR NZ, FRMERR s ERROR IF NOT INTEGER
05600 H
Q5700 3 NOW CHECK FOR VALID FARAMETER (MUST BE 0, 1, 2, OR 3)
0sa800 INC DE s (DE) = MSE 0OF INTEGER
05900 L.D Ay (DED
0&000 cF 0 } MSE SHOULD BE ¥
06100 JR NZ , DVERR + INVALYID DRIVE NUMEER IF NOT ©
06200 DEC DE i (DE)Y = LSE OF INTEGER
04300 LD A (DE)
06400 CF 4 y SHOULD BE <= 3
06500 JR NC , DVERR s INVALID DRIVE NUMEER IF > 3
06600 H
046700 3 NOW WE HAVE A GOOD DRIVE NUMEER IN REGISTER A
N&6800 t SAVE IT IN ‘DRIVE’
C&900 LD (DRIVE),A
7000 :
07100 B e e e e e e e e e e et et e e e b Bt S S e o Bt S S e o 2 P S et S S et e et e e s
07200 sy GET NEXT FARAMETER
07300 LD HL,CTNUZ ; SAVE CONTINUATION ADDRESS
07400 FUSH HL ; ON STACK
07500 L.D HL ; (PDRADR) s CALL FDR AGAIN
p7&400 JP (HL)?
07700 ;
®
Radio fhaek

PAGE 5 - 10

MODEL II COMPILER BASIC

SEGMENTING PROGRAMS

&

(LNTH, TEXT)

EYTE

TRS-80™
07800 ; —_— O A A - R TN U o e o T S . e o o S oA S i S T i A A K 9V i o Pt s s s S o 80 s
nN72040 ; CHECV FROR VALID PARAMETER -~ SHOULD BE A STRING WITH LENGTH &=
0goge TN LD A P2 = BTRING TYRE
0el09 i =
ngzoeo R NZ : FRMERR ¢ ERROR IF TYFE IS NOT STRING
o209 i
0e400 3 NOW (DE) = STRING DOFE?! TEXT ADODRESS, MAXLENGTH
08500 LD A, (D) o LSE OF STRING DOFE
ngas040 LD LsA H IS NOW IN L
0e7o0 INC DE s NOW (DE)Y = MSE OF STRING DOFE
08800 LD A. (DE) 7 GET IT INTO H
08200 L Ha ;3 NOW (HL) = STRING ADDR.?
eeeon L.D CEUSADR Y ; HL ; SAVE STRING ADDRESS IN (BUFADR)
geiop INC DE ¢ NOW (DE) = MAXLEN
09200 H
09340 ;7 NOW CHECK LENGTH 0OF STRING
492400 LD A (DED ¢ A = LENGTH-EYTE
09500 GF 8
Pe&00 JR C.BEFERR : BUFFER SIZE ERROR ¢ < 8)
0700 LD (HL) + A ¢ ELSE SAVE LENGTH IN CRNT. LN,
09800 H
09{?0 G : P 08 S e e b S e i S b s e b e e S e e Y B KA A APy e e e e ', o o e il e el e, 4 s il S
10000 5 NOW READ THE DIQhNﬁHt
o100 LD A, (DRIVED?
10200 LD HeA
10300 LB ML, (HUFADRRDY
104900 ING HL. { SKIF CRNT. LN. BYTE
10500 LD A, SVYCDID
10600 RAT (e : DO SUFERVISOR CALL
10700 JR NZ,SYSERRK ¢ HANDLE SYSTEM ERROR
10800 JR ALLXIT PEXIT TO BASIC
i0ea0 H
1 1 { n o e e s e il i i ot o R e 5 s e s b - i o S S it e 8, e i] e . e 5 M SRR SO 3 s Sk P S 45 o
11100 i CRRUR HﬁNDlINb ROUTINES
11200 H
11200 i+ HANDLE FARAMETER ERRORS
11400 FRMERR
11500 LD HL : RMSG1 3 FOINT TO ERROR MESSAGE
114600 LD B (HL) ¢+ B = LENGTH OQF MESSAGE
11700 INC HL. 3 (HL) = TEXT
118040 JR SHOW ;7 NOW DISFLAY THE MESSAGE
11200 ;
12000 i HANDLE DRIVE NUMEZR ERRORS
12100 DVERR ¢
12200 1.D HL., RMSG2
12300 LD By (HL)
12400 ING HL
12500 JR SHOW
12600 H
12700 + HANDLE EUFFER SIZE ERRORS
12800 EFERFR:

@
Rade fhaek

PAGE 5 - 11

MODEL II COMPILER BASIC SEGMENTING PROGRAMS

TRS-80™
12900 LD HL , RMSG3
13000 LD By (HL)
13100 INC HL.
13200
13300 §mmm e o e e e e e e e e e e

13400 ¢ DISPLAY ERROR MESSAGE (NON-SYSTEM ERRORS)
13500 SHOW DISFLAY ERROR MESSAGE

’
13600 LD C,20H ¢ ELANK SPACE AFTER TEXT
13700 L.D A, SVCWRT $ DO PRLINE-SVC
13800 RST 8
13900 LD HL , RMSG4 $ POINT TO ‘ERROR‘ LENGTH
14000 LD B, (HL) $ LENGTH
14100 INC HL. $ TEXT AREA
14200 LD C,0DH } CARRIAGE RETURN AFTER TEXT
14800 LD Ay SUCWRT { DO PRLINE-SVC
14400 RST 8
14500
14600 AFTER HANDLING NON-SYSTEM ERRORS, EXIT
14700 JR ERRXIT
14800 }
LAPO0 = m m e o o e e e o e o
15000 $ HANDLE SYSTEM ERRORS
15100 SYSERR! LD By A $ GET ERROR CODE
15200 LD HL , RMSGS } (HL) = STORAGE AREA FOR MESSAGE
15300 L.D A, SUCERK $ DO ERROR-SVC
15400 RST 8
15500 LD B, 80 JLENGTH OF MESSAGE
15600 LD C,0DH $CARRIAGE RETURN AFTER MESSAGE
15700 LD Ay SUCHRT ¢ DO PRLINE-SVC
15800 RST]
15900
16000 == e o e e e e e e e e
16100 § AFTER ALL ERRORS, MUST ZERO CRNT STRING LENGTH
16200 ERRXITS XOK A
16300 LD HL. » CEUF ADR) } (HL) = CRNT LN EYTE OF STRING
16400 LD (HL) 4 A $ SET IT TO ZEROD
16500
LBBOD = o o o e e e e e o e e e e o
16700 ALLXIT: RET ¢ RETURN TO BASIC FROGRAM
16800 }
16200 3
17000 e e oo e e e e e e e e o
17100 § DATA SECTION
17200
17300 FDRADR: DW 00 $ WILL STORE FARAM., DECODING ADDRESS
17400 EUFADR: DW 00 $ WILL STORE FOINTER TO DESTINATION TEXT
17500 DRIVE: DE 0 } WILL STORE DRIVE PARAMETER
17600 RMSG1: DB 9 $ LENGTH OF MESSAGE
17700 DE PARAME TER /
17800 RMSG2: DE 12
17900 DE ‘DRIVE NUMEER’
18000 RMSG3: DE 11
18100 DE ‘BUFFER SIZE’
18200 RMSG4: DE 5
18300 DE * ERROR /
18400 RMSGS: DS 80 ; STORAGE AREA FOR SYSTEM ERROR MESSAGE

18500 END DISKID

MODEL II COMPILER BASIC SEGMENTING PROGRAMS
TRS-80™

HOW TO CHAIN PROGRAMS

The CHAIN statement chains programs. For example:
CHAIN "PROG2/BAS"

erases the program presently in memory, loads PROG2/BAS, and
executes it.

CHAIN "DRILL:2"

erases the program in memory and loads and executes DRILL from
the disk in drive 2.

This is how program chaining could be used:

10 PRINT "WHICH DRILLS TO YOU WANT TO TRY"

20 PRINT "(1)ADDITION (2)SUBTRACTION (3)MULTIPLICATION
30 INPUT X

40 ON X GOTO 100, 200, 300
100 CHAIN "ADD/CMP"
200 CHAIN "SUBTR/CMP"
300 CHAIN "MULT/CMP"

As with subprograms, you may pass data to the chained program.
This is done with the COM statement. COM must be the first
line in both the originating program and the chained program.

For example this could be the originating program:

10 COM A$

20 PRINT "TYPE YOUR NAME"
30 INPUT AS

40

50

60

70 CHAIN "TWO/BAS"

and the chained program could begin like this:
10 coM A$
20 PRINT "HELLO"; AS
30 PRINT "THESE ARE THE FIRST 5 QUESTIONS"

Becguse of the COM A$ statement, the value of A$ is retained
during the chaining process.

For more information on COM, see the Keywords Chapter.

Radio fhaek

PAGE 5 - 13

MODEL II COMPILER BASIC SEGMENTING PROGRAMS

TRS-80™

SUBPROGRAMS VS. PROGRAM CHAINS

Subprograms are a good way to perform complicated routines on
data repeatedly in the program, each time returning back to
the main program. In chaining, it is more difficult to return
back to the original program, since the main program is erased
from memory when a program is chained.

Program chaining does offer a convenient way to write a
program which requires more memory than there is available.
The amount of memory you need to run a series of program

chains is only the amount required to run the longest program
in the series.

Subprograms do not have this memory saving capability. All
subprograms must be loaded along with the main program prior

to executing the program. There must be enough memory for the
main program plus all the subprograms which will be called.

Radio fhaek

PAGE 5 - 14

=4
=

¢

TRS-80"

hkkhhkhkhkhhhh kbbb hdhbhhdhbhhhhbdhhhhhrdhhik

* *
* Chapter 6 *
* *
* BASIC KEYWORDS *
* *
khkhkkhkhkhkhhkhkhkhrrkhkhkhd bk hhkhhhhhhkkddhbhkhrhrhhhdk

Radio fhaek

MODEL II COMPILER BASIC BASIC KEYWORDS

TRS-80™

INTRODUCTION

—— e — — —

The RSBASIC programming language is made up of keywords. These
keywords, with their parameters, instruct the Computer to
perform certain operations.

This chapter contains entries for each keyword, organized
alphabetically. The first two pages show the meaning of the

format for each keyword entry. A brief introduction to BASIC's

two types of keywords —-- statements and functions -- is on the
next pages.

QUTLINE FOR CHAPTER 6
BASIC KEYWORDS

I Format for the Keyword Entries
II. Statements
III. Functions

IV. Alphabetical Entries for each Keyword

Radie fhaek

PAGE 6 - 1

MODEL II COMPILER BASIC BASIC KEYWORDS

TRS-80™

FORMAT FOR THE KEYWORD ENTRIES

. —————————— — — — — — T ——— T — i — ——

A sample keyword entry is on the next page. This is the meaning
of its format:

Cl The first line is the keyword itself. The second line
briefly describes what it does.

(2. All keywords are defined as statements or functions:

a. a STATEMENT is a line in a program. It, along with its
parameters, tells the Computer to do some operation when that
particular line in the program is executed.

b. a FUNCTION is a subroutine. It must be a part of a
statement.

(3. The information in the gray box is the syntax for the
keyword. The first line shows the format to use in typing the
keyword. This format line always contains:

a. the keyword itself - this must by typed exactly as it
appears.
And may also contain:

b. parameters
The parameters are defined on the next lines. A parameter
enclosed in single quotes means that you must specify its value.

Parameters may only be omitted if the syntax states that this

is allowed.

In the syntax illustrated on the next page, LEN is the keyword
and 'string' is the parameter. The second line gives the
meaning of 'string'. Since 'string' is enclosed in single
quotes, you must specify its value. The syntax does not state
that 'string' may be omitted. Therefore 'string' is required.

(:l This explains how to use the keyword.

(6) These examples illustrate how the keyword might be used. All
of these examples must be a line in the program to be executed.

(6. Each entry contains a sample program using the keyword. Some
of the longer sample programs illustrate a sample run of the

program.

Radio fhaek

PAGE 6 - 2

MODEL II COMPILER BASIC i BASIC KEYWORDS
TRS-80 "

LEN
Get Length of String

LEN(string) | L |
‘string' is a string cemstaat or a string variable.

BT T

LEN returns the current number of characters in the 'string'. (:)

Examples

PRINT LEN("MARY") <:>
Prints 4.

PRINT LEN("MARY HAD A")
Prints 10.

X = LEN(SENTENCES)

Stores the number of characters in SENTENCES$ in X.

Sample Program

REERSTC wer 2.2 LN A COM
i REM ¥ BAMPLE PROGRAM DEMOMSTRATING LEN %%
S REM
138 PRINT "INPUT WORDS OR A SHORT SENTEMNCE® (:)

1@ TNPUT &%
1@ PRINT "YOUR SENTENCE HAS"3 LEN(A$)3 "CHARACTERS"
L3 GOTO 106

Radie fhaek

PAGE 6 - 3

MODEL II COMPILER BASIC BASIC KEYWORDS

TRS-80™

STATEMENTS

A program is made up of lines; each containing one or more
statements. A statement instructs the computer to do some
operation when that particular line is executed. It may only be
executed when the program is run. For example:

100 sTOP

Tells the Computer to stop executing the program when it reaches
line 100.

Statements often include parameters. For example:
100 GOTO 500

Tells the Computer, when it reaches line 100, to execute the
statement on line 500 next.

BASIC statements perform the operations listed below:

VARIABLE DEFINITION

If none of the statements below are used, BASIC will treat all
variables without a type declaration tag as real numbers, and no
arrays will be allowed:

INTEGER - defines variables as integer

STRING - defines variables as string and defines the length
of the string

REAL - defines variables as real

DIM - defines array variables, the length of array
variables, and the length of string variables

The chapter on BASIC Concepts explains how BASIC handles
variable definition.

ASSIGNING VALUES TO VARIABLES

BASIC allows you to assign values to variables directly or by
using data statements:

DATA - stores data in your program so that you may assign

Radie Shaek

PAGE 6 - 4

MODEL II COMPILER BASIC BASIC KEYWORDS

TRS-80™

it to a variable.

LET - assigns a value to a variable (the keyword LET may be
omitted)

READ - reads the data stored in the DATA statement and
assigns it to a variable.

RESTORE - resores the pointer which points to a data item
in the DATA statement.

SWAP - exchanges the values of variables

PROGRAM FLOW

The Computer will execute each line in the program sequentially,
unless instructed to do otherwise. These statements change the
flow of a program, either by branching within a program or
segmenting a long program into shorter programs:

Branching within a Program

e T ——

FOR/NEXT - establishes a program loop

GOSUB - transfers program control to the subroutine

GOTO - transfers program control to the specified line
number

IF...THEN...ELSE - Performs the specified operation if the
conditions are met.

ON...GOSUB - tests the value and branches to the subroutine

ON...GOTO - tests the value and branches to the program
line specified.

RETURN - returns from the subroutine to the calling program

STOP - stops execution of the program

Segmenting Programs

CALL - transfers control to the subprogram

CHAIN - loads and executes the specified program

COM - stores variables in a common area so they may be
passed to the chained program

EXT - defines the address of an external routine

END - ends compilation of main program

SUB - defines the beginning of the subprogram

SUBEND - returns execution back to the calling program

The chapter on Segmenting Programs explains how to segment

programs.
®
Radio fhaek

PAGE 6 - 5

MODEL II COMPILER BASIC BASIC KEYWORDS

TRS-80™

INPUT/OUTPUT

Keyboard input statements allow the operator to input (type data
into memory) from the keyboard. To print data, BASIC contains
statements which output to the video display and line printer.

Data is stored on disk by using input/output statements to a
disk file.

Keyboard Input

— e ——

INPUT - inputs data from the keyboard
INPUT USING - inputs formatted data from the keyboard
LINE INPUT - inputs a line of data from the keyboard

Output to the Display and Line Printer

— e e o ——————— T ————— ————— .

LPRINT - prints data on the line printer

LPRINT USING - prints data on the line printer using the
specified format

PRINT - prints data on the display

PRINT USING - prints data on the display using the
specified format

Input/Output to a Disk File

CLOSE - closes a disk file

DELETE - deletes a record in a disk file

INPUT - inputs data from a disk file

INPUT USING - inputs data from a disk file using the
specified format

KILL - kills a disk file

LINE INPUT - inputs a line of data from a disk file

OPEN - opens a disk file

PRINT - prints data to a disk file

PRINT USING - prints data to a disk file using the
specified format

READ - reads binary data on a disk file

WRITE - writes binary data to a disk file

The chapter on Data Files explains how to use these statements.

Radie fhaek

PAGE 6 - 6

MODEL II COMPILER BASIC BASIC KEYWORDS

TRS-80™

DEBUGGING

These statements build an error trapping routine, which may be

used in debugging a program or handling errors from a computer
operator:

ERROR - simulates the specified error

ON BREAK GOTO - enables a <BREAK> handling routine
ON ERROR GOTO - enables an error trapping routine
RESET BREAK - disables the <BREAK> handling routine
RESET ERROR - disables the error trapping routine
RESET GOSUB - clears all the return addresses
RESUME - terminates the error handling routine

SPECIAL STATEMENTS

DEF - defines a function

RANDOMIZE - reseeds the random generator

REM - allows insertion of programmer's comment line
SYSTEM - returns the system to TRSDOS

Radie fhaek

PAGE 6 - 7

MODEL II COMPILER BASIC BASIC KEYWORDS

TRS-80®

FUNCTIONS

Functions are built-in subroutines. They may only be used as
part of a statement.

Most BASIC functions perform certain routines to return numeric
or string data. Special print functions are used to control the
video display.

NUMERIC FUNCTIONS

All numeric functions return a number and may be used in a
statement as numeric data. For example, the function:

SQR(9)

returns the number 3 (the square root of 9). This function may
be used in a statement as numeric data. For example:

X = SQR(9)
assigns the square root of 9 to X.

Numeric functions perform these operations:

Arithmetic Operations

ABS - computes the absolute value
SGN - computes the sign (positive, negative, zero)
SQR - computes the square root

Converting Data to a Different Data Type

CVD - converts integer data to a real number

CVI - converts real data to an integer

HVL - converts a hexadecimal string to an integer

INT - converts real data to a whole number

VAL - converts numeric characters in a string to a number

Radio fhaek

PAGE 6 - 8

MODEL II COMPILER BASIC BASIC KEYWORDS

TRS-80™

Computations on Strings

—— s i —— o o

ASC - returns the ASCII code of a string character
DIG - computes the length of numeric field in a string
LEN - computes the length of a string

POS ~ searches for a substring within a string

Bit Manipulation

— o ——— - s

AND - calculates the logical AND
OR - calculates the logical OR
XOR - calculates the exclusive XOR

Trigonometric Calculations

T —— — —— _ —— —

ATN - computes the arctangent

COS - computes the cosine

EXP - computes the natural exponential
EXP10 - computes the base 10 exponential
LOG - computes the natural logarithm
LOGl0 - computes the base 10 logarithm
SIN - computes the sine

TAN - .computes the tangent

Special System Information

—— e o Lk)

CRTX - returns the row position of the cursor

CRTY - returns the column position of the cursor
ERR - returns the error code

EOF - notifies if the end of a disk file is reached
RND - returns a pseudo-random number

STRING FUNCTIONS

All string functions return a string and may be used in a
statement as string data. For example, the function:

STRINGS(5,"*")

returns the string ***** (5 asterisks). This function may be

Radie fhaek

PAGE 6 - 9

MODEL II COMPILER BASIC - BASIC KEYWORDS
TRS-80™

used in a statement as string data. For example:
A$ = STRINGS(5,"*")
assigns ***** o AS,

String functions perform these operations:

Converting Numbers to String

. ey — —— T — o

CHR$ - returns the one-character string of the ASCII code
HEX$ - converts an integer to a hexadecimal string
STRS - converts numeric data to string

Inputting a String

———— ——— — A W S —— S S — - —

INKEYS$ - gets a keyboard character, if it has been pressed
INPUTS$ - inputs a character string from the keyboard

Manipulating a String

—— T ————

SEG$ - returns a segment of a string
STRINGS - returns a string of characters

Special System Information

——— ——— — ——— —— i —— ——————— —

DATE$ - returns the date which was set when initializing
the system

TIMES$ - returns the time recorded in the system's clock

CRTI$ - returns the characters from a specified position on
the video display

SPECIAL PRINT FUNCTIONS

Unlike numeric and string functions, the special print functions
do not return data. Instead, they are used to control the video
display. For example:

CRT(5,7)

Radio fhaek

PAGE 6 - 10

MODEL II COMPILER BASIC

) BASIC KEYWORDS
TRS-80™

Moves the cursor to the row 5, column 7 position on the video

display. This function may only be used in a PRINT statement.
For example:

PRINT CRT(5,7); "HEADING"

Prints HEADING at the row 5, column 7 position on the video
display.

These are the special print functions:

CRT - moves the cursor to a specified row and column
position

CRTR - moves the cursor relative to its current row and
column position

CRTG - moves the cursor to a specified position and prints
a string in the graphics mode

TAB - tabs the cursor to a specified column position

Radie fhaek

PAGE 6 - 11

MODEL II COMPILER BASIC 5 BASIC KEYWORDS
TRS-80 ™

—— FUNCTION --

ABS
Compute Absolute Value

ABS (number) |
‘number ' 18 any numefic ekxpression

ABS returns the absolute value of the 'number'. The absolute
value is the magnitude of the number without respect to its
sign.

ABS returns the same type of value (integer or real) as number.

Examples
PRINT ABS(3)
Prints 3.
PRINT ABS(-3)
Prints 3.
PRINT ABS(0)
Prints 0.
X = ABS(Y + 3X)
The absolute value of Y + 3X is assigned to X.
IF ABS(X) < 1E-6 THEN PRINT "TOO SMALL"

TOO SMALL is printed only if the absolute value of X is less
than the indicated number.

Radioe fhaek

PAGE 6 - 12

MODEL II COMPILER BASIC BASIC KEYWORDS

TRS-80™

Sample Program

B REM ¥%% SAMPLE PROGRAM DEMONSTRATING ABS *%x
9@ REM

180 INTEGER A - Z

11@ PRINT CHR%(Z7)

120 PRINT "GUESS MY NUMBER "3

13 X = RND(@) * 20 + 1

148 INPUT Y: IF X = Y THEN 170

158 PRINT "OFF BY"3; ABS(X-Y): ". GUESS AGAIN"3
160 GOTO 14@

170 PRINT "RIGHT'! GUESS MY NEXT NUMBER" 3

186 GOTO 130

Radio fhaek

PAGE 6 - 13

MODEL II COMPILER BASIC _ BASIC KEYWORDS
TRS-80™

—= FUNCTION --

AND
Calculate Logical AND

AND is a logical operation performed on the binary
representations of the two 'numbers'. AND compares each bit of
the two numbers. A binary 1 is returned if both bits are a 1; a
0 is returned in any other case:

If 'number' is real, AND will convert it to an
integer. The binary number that AND returns is always
expressed as an integer.

Note: See also OR and XOR.

PRINT AND (51, 15)

Prints a 3. The operation is performed on the binary
representation of the two arguments:

Binary
Integer Representation
51 00110011
15 00001111
3 00000011
®
Radie fhaek

PAGE 6 - 14

MODEL II COMPILER BASIC BASIC KEYWORDS

TRS-80™

A = AND (51, 3)
Performs AND operation and assigns the value of 3 to A.

The two examples below illustrate a common use of AND. All
other bits can be masked out to see if one particular bit is
"on” (1)s

IF AND (128, 64) = 64 PRINT "TRUE" ELSE PRINT "FALSE"
Prints "FALSE".

If AND (96, 64) = 64 PRINT "TRUE" ELSE PRINT "FALSE"

Prints "TRUE".

Sample Program

———————— — ——— ——

1@ REM *%% AND FUNCTION *¥**

20 INPUT PROMPT="ENTER AN INTEGER VALUE (-327&8 T0 32767)
3@ PRINT "LLSB IE "3 AND(X%y&DOFF)

4@ GOTO =@

Radio Sfhaek

-
3

PAGE 6 - 15

X%

MODEL II COMPILER BASIC BASIC KEYWORDS

TRS-80"™

== PUNCTION =

ASC
Get ASCII Code

ASC returns the ASCII code of the first character in the
'string'. The ASCII codes are listed in the Appendix.

Examples

PRINT ASC("A")
PRINT ASC("AB")

Both lines will print 65, the ASCII code for "A".
X = ASC(BS$)

Assigns the ASCII code for B$ to X.

Sample Program

8@ REM *#%% SAMPLLE PROGRAM DEMONSTRATING ASC %%

9@ REM

1@ REM *%% CHANGING THE OUTPUT OF A CHARACTER ON YOUR KEYROARD %%
11@ REM

120 PRINT "TYPE THE CHARACTER YOU WANT TO CHANGE"
13@ INPUT A%

Radio fhaek

PAGE 6 - 16

MODEL II COMPILER BASIC BASIC KEYWORDS

TRS-80™

14@ PRINT "TYPE THE CHARACTER YOU WANT IT TO REPRESENT"
15@ INPUT B%

16@ PRINT "NOW TYPE ANY CHARACTERE ON YOUR KEYBOARD"
17@ PRINT "NOTICE THAT YOUR CHARACTER HAS BEEN CHANGED"
18@ C% = INKEY%: IF C% "" THEN 180

198 IF C$ = A% THEN C% CHR$ (AGCIR%))

2@@ PRINT C#3

210 GOTOo 180

i

Radie fhaek

PAGE 6 - 17

MODEL II COMPILER BASIC % BASIC KEYWORDS
TRS-80™

-- FUNCTION --

ATN
Compute Arctangent

ATN(number) : -
'number ' is a numeric expression

ATN returns the angle of the 'number'. The number is the
tangent. The angle will be in radians. To convert to degrees,
multiply ATN(X) by 57.295779513082.

The result is always a real number.

Examples

X = ATN(Y/3)

Assigns the value of the arctangent of Y/3 to X.
PRINT ATN(1.0023) * 57.2

Prints 44.9905.
R =N * ATN(-20 * F2/F1)

Assigns the indicated value to R.

NOTE: Trigonometric functions are not loaded when you load the
BASIC Compiler; they are loaded upon demand. This might cause a
slight delay when using these functions, since they must be
loaded into the system first.

Sample Program

Radie fhaek

PAGE 6 - 18

MODEL II COMPILER BASIC BASIC KEYWORDS

TRS-80™
80 REM *%% SAMPLE PROGRAM DEMONSTRATING ATN *¥*¥
2@ REM
100 PRINT "INPUT TANGENT"
11@ INPUT T

120 PRINT "ANGLE I8"35 ATN(T) * 57.29378
130 GOTO 120

Radie fhaek

PAGE 6 - 19

MODEL II COMPILER BASIC BASIC KEYWORDS

TRS-80 ™

—-— STATEMENT --

CALL
Execute External Subroutine

CALL "subname"; data list
'subname' is a 1-6 character string constant
'data list' consists of any of the following
separated by commas:
numeric expression
string variable
string constant
subscripted variable

A CALL statement instructs the computer to run a subprogram. In
addition, it sends the list of data that you specify to the
subprogram. The subprogram performs its operations on this
data and sends the resulting values back to the main program.

A subprogram like an internal subroutine is called from the main
program$ executed, and returns to the main program. It may be
as many lines as you want and may have its own local variables,
independent of the main program.

A subprogram has the added flexibility of performing the same
operations on whatever data is sent to it by the main program.
This is especially helpful if you are performing the same
complicated computations with different variables repeatedly in
different parts of your program.

CALL will not "Load" or "Old" a subprogram. All subprograms
must be Loaded or Appended into memory before the main program
is executed.

CALL may also be used to call an external machine language
routine. To do this, you must have an EXT statement in your
program defining the memory address of the routine. See EXT and
the chapter on Segmenting Programs.

* A subprogram may also be CALLed from another subprogram.

Radio fhaek

PAGE 6 - 20

MODEL II COMPILER BASIC - BASIC KEYWORDS
TRS-80™

Examples

- — ———

If you have a subprogram beginning with the statement:
SUB "ADD"; X, ¥$

The following CALL statements could be used:
CALL "ADD"; 5, "HEADS"

Executes the subprogram named "ADD". This statement also passes
the data 5 and "HEADS" to the subprogram. The subprogram
assigns 5 to X and "HEADS" to YS$. It then performs its routine

on this data.
CALL "ADD"; A, BS$

This statement also executes the subprogram "ADD". It passes
the data A and B$ to the subprogram. The subprogram assigns the
value of A to X and B$ to Y$, performs its operations on X and
Y$, and sends the resulting values back to the main program as A
and BS.

If a subprogram begins with the statement:

SUB "CHART"; M(), N$(,)
Then:

CALL "“CHART"; C(), D$(,)
Executes the subprogram "CHART" sending all the data in the
one-dimensional array C and the two-dimensional array D$ to the
subprogram. The subprogram performs its routine on the data and
sends the resulting data back to the main program.

CALL "CHART"; SALES(), ITEMSS$(,)
Executes the same subprogram CHART, which will perform the same

routine on all the data in the SALES and ITEMS$ arrays and send
the resulting data back to the main program.

NOTE: For information on how to use subprograms, see the
section on Segmenting Programs. See also END, SUB, and SUBEND.

Radio fhaek

PAGE 6 - 21

MODEL II COMPILER BASIC ; BASIC KEYWORDS
TRS-80™

Sample Programs

—— e ———— —

Bg REM *#¥% SAMPLE PROGRAM #1 DEMONSTRATING CALL **%
9@ REM

100 X = 2 1 Y =3 1 Z =4
11@ CALL "SUBPROG"3 X

128 CALL "SUBPROG"3; Y

130 CALL "SUBPROG"3 Z

14@ PRINT XsYsZ

158 END

160 BUBR "SUBPROG": A

170 A = A * 2
180 SUBEND

gg Sgﬁ ##% SAMPLE PROGRAM #2 DEMONSTRATING CALL #*%x
128 PRINT "INPUT WEEKLY GROCERY EXPERNSES"

11@ INPUT F

128 CALL "ANNUAL"3 F

138 PRINT "INPUT WEEKLY GASOLINE EXPENSES*

14@ INPUT G

158 CALL "ANNUAL"3: G

168 PRINT "ANNUAL EXPENSES ARE ———- "

17@ PRINT F3 "FOR GROCERIES"s G35 "FOR GASOLINE™"
18@ END

19@ SUB "ANNUAL"3 X
200 X = X%*52
210 SUBEND

#RUN
INPUT WEEKLY GROCERY EXPERNSES
7 32
INPUT WEEKLY GASOLINE EXPENSES
7 20
ANNUAL EXPENSES ARE -~—-
1664 FOR GROCERIES 1248 FOR GABOL.INE

Radio fhaek

PAGE 6 - 22

MODEL II COMPILER BASIC BASIC KEYWORDS

TRS-80 "

8@ REM *¥%% SAMPLE PROGRAM #3 DEMONSTRATING CALL *¥¥
90 REM

100 DIM U(1z)
110 DIM 0O(12)

120 FOR I =1 TO 12 : READ U(I) & NEXT I
130 FOR I =1 TO 12 : READ O(I) : NEXT I

140 CALL "CHART"3 "UTILITIES"s UC()

158 CALL "CHART"3; "OFFICE SUPPLIES", O()

160 DATA 150517552005 120+ 130+ 2205145, 1805190200+ 1355145
17@ DATA 10@+75+6519351045120+110+92,88+90+70+ 60
18@ END

190 SUB "CHART": A% B()

208 DIM C&(12)

21@ PRINT CHR$(Z7)

220 PRINT CRT(@:3@)3 "EXPENSES --- "3 A%

230 PRINT: PRINT: PRINT

248 FOR I = 1 TO 12

250 READ C#(I): X = B(I)/3
260 PRINT C&#{I)s " "3

270 PRINT STRING$(Xs"X")
280 NEXT I

290 PRINT CRT(Z0:@)3 "PRESS <ENTER>"3

300 A% = INPUT$(1)

310 DATA "JAN","FEB"s"MAR"s "APR" s "MAY" s "JUN"s "JUL" s "AUG" s "SEP"
320 DATA "OCT"s"NOV","DEC"

330 SUBEND

Radie Sfhaek

PAGE 6 - 23

MODEL II COMPILER BASIC BASIC KEYWORDS

TRS-80™

—-— STATEMENT --

CHAIN
Load and Execute Next Program

CHAIN loads a program stored on disk into memory and executes
it. When the chained program is loaded, the resident program is
deleted from memory.

Note: See also COM and the chapter on Segmenting Programs.

CHAIN"NEXT/BAS"
Loads the program NEXT/BAS and executes it.
CHAIN"PROG2/CMP:1"

Loads the program PROG2/CMP from the diskette in drive 1 and
executes it.

CHAIN AS

Loads the filespec A$ and executes it.

Sample Program

1@ REM *%% SAMPLE PROGRAM DEMONSTRATING CHAIN *¥¥
20 REM #%% PROGZ/BAS MUST FIRST BE SAVED ON DISK *¥¥
3@ REM

4@ PRINT "ENDING PROGRAM 1 ---- BEGINNING PROGRAM Z"

5@ CHAIN "PROGZ/BAS"

Radio fhaek

PAGE 6 - 24

MODEL II COMPILER BASIC " BASIC KEYWORDS
TRS-80™

—= FUNCTION --

CHRS
Get Character for ASCII or Control Code

CHRS$ (number)
'number' is a numeric expression in the range
=32768 to 32767,

CHRS$ is the inverse of the ASC function. By specifying an ASCII
code, CHR$ returns the code's corresponding one-character
string. This one-character string may either be one of the keys
on your keyboard or a control character. A list of ASCII codes
is in the Appendix.

Note: To produce graphics characters, see CRTG

Examples

PRINT CHRS$(35)
Prints a # on the display.
P$ = CHRS$(T)

The number represented by T is converted into its ASCII
character equivalent assigned to PS.

PRINT CHRS (26)

Puts the Display into its black-on-white mode. (Use CHR$(25) to
return to normal).

AS = AS & CHRS(I)

The character whose ASCII code is I is added to the end of AS.

Sample Programs

Radio fhaek

PAGE 6 - 25

MODEL II COMPILER BASIC BASIC KEYWORDS

TRS-80™

8@ REM *%% SAMPLE PROGRAM #1 FOR CHR% *%*
7@ REM

188 PRINT CHR#%(27)

11@ PRINT "TYPE IN THE CODE(B-127)"

12@ INPUT C
13@ PRINT CHR#$(C)s * JUST PRINTED THE CODE "3 C

140 GOTO 11@

8@ REM *%% SAMPLE PROGRAM #2 DEMONSTRATING CHR$ *%%*

9@ REM

1@ REM *%¥%¥ 1 IS THE ASCII CODE FOR <F1> KEYs; 2 IS THE CODE FOR <F2>»
118 REM

120 PRINT "TYPE SENTENCES ON YOUR KEYBOARD"
13@ PRINT "PRESS <F1> WHEN YOU WANT A WHITE BACKGROUND®"
14@ PRINT "PRESS <F2> FOR A NORMAL DISPLAY"
158 A% = INKEY$: IF A% = "" THEN 150
160 IF A% = CHR$(1) THEN A$ = CHR$(Z24)
17@ IF A% = CHR%$(2) THEN A% = CHR$(25)
18@ PRINT A%;
198 GOTO 150

*RUN

TYPE SENTENCES ON YOUR KEYBOARD

PREGS <F1» WHEN YOU WANT A WHITE BACKGROUND

PRESS <FZ> FOR A NORMAL DISPLAY
A LONGs LONG TIME AGOs IN A GALAXY FARs FAR AWAY: THERE LIVED A GIRL WHO GOT TIR

ED OF TYPING IN SENTENCES THAT ALWAYS START WITH A LONGy LONG TIME AGOs IN A GA
LAXY FARs FAR AWAY.

Radio fhaek

PAGE 6 - 26

MODEL II COMPILER BASIC BASIC KEYWORDS

TRS-80™

—— STATEMENT --

CLOSE
Close Disk File

This statement closes access to the file or files referenced by
‘file-unit', assigned when the file is opened.

CLOSE #1
Closes file-unit 1.
CLOSE #START + NCRMT
Close file-unit (START + NCRMT).
CLOSE

Closes all open file-units.
Sample Program

See the chapter on data files.

Radio Sfhaek

PAGE 6 - 27

MODEL II COMPILER BASIC BASIC KEYWORDS

TRS-80™

—-— STATEMENT --

COM
Allocate Common Variable Area

coMm varlable list :
'varlable list' is one or more varlables ‘separated
by commas. Each variable may be a:
numeric variable
string variable
- numeric array
string array

You may use COM to pass one or more variables to the next
program. COM allocates a common area in the program for
variables so that they may be passed to the next program.

Note: See also CHAIN and the chapter on Segmenting Programs.

Program 1 Program 2

COM _data data L COM

CHAIN fj—-—

Examples

COM C, DS

Allocates a common area for storing the variables

Radio fhaek

PAGE 6 - 28

MODEL II COMPILER BASIC i BASIC KEYWORDS

L

TRS-80

C and D$ so they may be accessed by the next program.

COM B$(50)

Allocates a common
(0-50) so that the

COM A(10,10)

Allocates a common

Sample Program

30 REM * XK
4@ REM
5@ REM ¥
&0 REM
7@ REM ¥ ¥
80 REM *¥H
@ REM

100 COM A%, B

area for storing array B$ with 51 elements
array may be accessed by the next program.

storage area for the two dimensional array A.

SAMPLE PROGRAM DEMONSTRATING COM ***

PROGZ/BAS MUST FIRST BE SAVED ON DISK #*x%

PROGZ/BAE WILL RETAIN WHATEVER VALUES #%x
THIS PROGRAM SETS FOR A% AND B * KK

11@ PRINT "INPUT A NAME AND A NUMBER"

120 INPUT A%, B

138 CHAIN "PROGZ/BAGE"

Radio fhaek

PAGE 6 - 29

MODEL II COMPILER BASIC . BASIC KEYWORDS
TRS-80™

== FUNCTION --

Ccos
Compute Cosine

COS (number)
'number ' is a numeric expression.

COS returns the cosine of the 'number'. The 'number' should be
an angle, which must be given in radians. When the 'number' is
in degrees, use COS('number' * ,01745329251993).

The result is always a real number.

Examples

Y = COS(X)
Assigns the value of COS(X) to Y.
Y = COS(X * ,01745329251994)

If X is an angle in degrees, the above line will give its
cosine.

PRINT COS(5.8) - COS(85 * .42)
Prints the difference of the two cosines.
G2 = Gl * ((Ccos(Aa)) * 15)

Computes the indicated cosine and stores it in G2.

NOTE: Trigonometric functions are not loaded when you load the
BASIC Compiler; they are loaded upon demand. This might cause a
slight delay when using these functions, since they must be
loaded into the system first.

Radio fhaek

PAGE 6 - 30

MODEL II COMPILER BASIC BASIC KEYWORDS

TRS-80™

Sample Program

———— e —— e ————— —

8 REM *%*% SAMPLE PROGRAM DEMONSTRATING COS %%
9@ REM

12@ PRINT "INPUT ANGLE IN RADIANS"

113 INPUT A

128 PRINT "COSINE 18": COS(A)

1386 GOTO 1@

Radio fhaek

PAGE 6 - 31

MODEL II COMPILER BASIC . BASIC KEYWORDS
TRS-80™

—— FUNCTION --

CRT
Position Cursor

CRT(row, column)
'row' is a number between 0 and 23. If outside
that range BASIC performs a MOD 24. _ 2
'column' is a number between 0 and 79. If outside
~that range, BASIC performs a MOD 80.

CRT, used in a PRINT statement, positions the cursor at the
'row' and 'column' specified on the video display. It may only
be used in a PRINT statement.

Note: The Model II video display consists of 24 rows (0 to 23)
and 80 columns (0 to 79):

COLUMN

0....6....12,..18...24.1.30...36...42...48...54...60...66...72...79

DENINLEWN =D

03

[1T] i
21 T i I Imlm
2 T I L]
23 LTI _ LHiRnnis R RRRENRRRRARDIY

/-

'row' and 'column' refer to a row and column on the video

Radio Shaek

PAGE 6 - 32

MODEL II COMPILER BASIC BASIC KEYWORDS

TRS-80™

display.

Examples:

PRINT CRT(0,79);"&"

Positions the cursor at the top right hand corner and prints

H&ll'
PRINT CRT(23, 0);"THIS IS LOCATION 23, 0"

Positions the cursor at the bottom left-hand corner of the
display and prints the message beginning at that position.

PRINT CRT(25, 0);"###"

Positions the cursor at the beginning of row 1 in position 1,0
and prints ###. (Since 25 is outside the range 0 -23, BASIC
performs a MOD 24 and reduces the 25 to a 1).

Sample Program

—— i — o —————— —

1@ PRINT CHR$(Z7)

20 PRINT "WHAT IS YOUR LAST NAME"

25 PRINT CRT(2+@)3

30 INPUT A%

4@ PRINT CRT(Bs@)35 "YOUR FIRST NAME"

43 PRINT CRT(10:0);
50 INPUT B$

6@ PRINT CRT(14s1@)35 "THANK YOUs "3 B$; " "3 Ass; "'V

Radio fhaek

PAGE 6 - 33

MODEL II COMPILER BASIC

WHAT IS YOUR LAST NAME
7 WILLIAMS

YOUR FIRST NAME

7 SANDY

BASIC KEYWORDS

TRS-80™

THANK YOUs SANDY WILLIAMS!

Radie fhaek

PAGE 6 - 34

MODEL II COMPILER BASIC TRS- P BASIC KEYWORDS

—= FUNCTION --

CRTG
Print in Graphics Mode

CRTG (row, column, string)
'row' is a whole number in the range of [0,32767].
If larger than 23, BASIC reduces it by MOD 24.
'column' is a whole number in the range of
[0,32767]. 1If larger than 79, BASIC reduces it
by MOD 80.

'string' is a string constant or a string variable.

CRTG used in a PRINT statement, prints 'string' in the graphics
mode. The 'string' is printed as follows:

1. The first character of the string is printed at the
'row', and 'column' position specified.

2. The cursor is then advanced to the next column position
on the same row. If the next position is 80, the cursor wraps
the display to column 0 of the next row. If the next row is 24,
the cursor wraps the display to row 0.

3. The next character in the string, if there is one, is

then printed at the cursor position. Steps 2 and 3 are then
repeated.

Note: See CRT for an illustration of 'row' and
'column'positions on the video display.

The 'string' may contain up to 255 characters which may be
printed in graphics mode. The characters are listed in the
Appendix. The first 32 are special graphics characters. The
rest are alphanumeric or control characters.

As shown in the listing, all of the alphanumeric characters may
be referenced either by the keyboard character itself, or by the
character's ASCII code. For example:

AS
AS$

nMn
CHR$(77)

nn

Radio fhaek

PAGE 6 - 35

MODEL II COMPILER BASIC . BASIC KEYWORDS
TRS-80™

both assign the character M to AS.

Special graphics characters may be referenced by a control
character on the keyboard, or by the character's ASCII code:

AS$
A$

both assign the special graphics character which looks like a
bar to AS.

"SCTRL><T> "
CHRS$ (20)

[

Note: In this example, the <CTRL> and <T> keys should be
pressed simultaneously.

The easiest way to print graphics images on the display is to
build a string of graphics characters. For example:

10 AS$ = CHRS$(12)
20 BS$ = CHRS$(30)
30 CS = BS&AS&ASSASKASEBS

40 PRINT CHRS$(27)
50 PRINT CRTG(0,0,CS)

Prints an image which looks like a railroad track at the top
left hand corner of the screen.

The sample programs for CRTG illustrate different ways of
printing in the graphics mode.

Note: See also CRT, PRINT, and CHRS

Examples

PRINT CRTG(23,0,C$)

Prints the contents of string C$ at the bottom left hand corner
of the display.

PRINT CRTG(11l,40,"<CTRL zZ>")
Prints a tiny square in the center of the display.
PRINT CRTG(11,40,"X")

Prints an X in the center of the display.

Radio fhaek

PAGE 6 - 36

MODEL II COMPILER BASIC BASIC KEYWORDS

TRS-80™

Sample Programs

5 DIM CHAR%1:20

1 FOR I%Z = 8 TO 127

2@ CHAR® = CHAR% & CHR%(I1X)

48 NEXT I%

5@ PRINT CRTG(CRTXs CRTYs CHR%$)

10 REM CRTG DEMO: USE OF GRAPHICS FOR GRAPHS
2@ INTEGER

30 DIM TOP%4@sBOT$41:sMDL$4@s CDO%15 CD1%1, CDE%1

40 CHB% = CHR$(24): CD1% = CHR®(27): CD2% = CHR$(15)

5@ TOP$ = STRINGS (4@, CDO%)
6@ BOTS = CHR$(Z5@) & STRINGH(4@,CD1%) & CHR$(Z49)
70 MDL% = CHR#%(11) & STRING®(38sCDZ%) & CHR%(@9)

8@ PRINT CHR$(Z7) tREM CLEAR SCREEN
@ PRINT CRTG(ZsZ@sTOP$) 3
188 FOR LLIN = 3 TO 20
ii@ PRINT CRTG(LINsZ@sMDL%)3
120 NEXT LIN
130 PRINT CRTG(Z1:20@:BO0T$)3
140 PRINT CRT(@,0)3"TYPE TO CHANGE GRAPH3; USE ARROW REYS FOR CURSOR CONTROL™
158 PRINT CRT(352@)35 CHR%(26)3 : REM POSITION CURSOR AND REVERSE MODE
160 ON BREAK GOTO Z60
178 CD@B% = INKEY$
iB@ IF CD@% = "" THEN 170
19@ IF (CHR$(27) < CD@%) AND (CHR$(3Z) > CD@$) THEN 22
200 PRINT CD@%s
210 GOTO 170
220 CD@% = CHR$(ASC(CDO%$)+724)
230 PRINT CRTG(CRTXsCRTYs CDO$) 3
240 GOTO 170
68 PRINT CHR$(Z5) 3 : REM NORMAL MODE

Radie fhaek

PAGE 6 - 37

MODEL II COMPILER BASIC BASIC KEYWORDS

TRS-80™

4 DIM A%l
8 PRINT CHR#(Z7)
1@ PRINT "ENTER GRAPHICS CODE (1-32)"
2@ INPUT CODEZ
38 A% = CHR$%(CODEZ)
4@ PRINT CRTG(1Z:40sA%)
5@ GOTO 1@

PAGE 6 - 38

MODEL II COMPILER BASIC p BASIC KEYWORDS
TRS-80™

—— FUNCTION --

CRTIS$
Read Video Display

CRTIS (row, colomn, length)

'row' is a row on the video display from 0 to 23
'column' is a column on the video display from
0 to 79

'length' is the number of characters you want
read into the string.

CRTI$ reads the characters on the video display in the area of

the display that you specify. It returns a string of characters
beginning on 'row' and 'column' with the length that you
specify.

Note: See CRT for an illustration of row and column positions.

If, immediately before executing the statements below, this is
printed on your video display beginning at position row 1,
column O:

(c) 1979 by Ryan-McFarland Corp. All rights reserved.
Then:

PRINT CRTIS$(1,0,10)
Prints "(c) 1979 b"

A$ = CRTI$(1,0,54)

Stores "(c¢) 1979 by Ryan-McFarland Corp. All rights reserved."
in AS.

PRINT CRTIS$(1,12,42)

Prints "Ryan-McFarland Corp. All rights reserved."

Radie fhaek

PAGE 6 - 39

MODEL II COMPILER BASIC

BASIC KEYWORDS

Sample Programs

8@ REM
2@ REM
9% REM
96 REM
108 DIM A$BQA(Z3)
1186 FOR Z = @ TO 23
120 A%(Z) =
130 LLPRINT A%(Z)
140 NEXT Z

8@ REM
70 REM
100 PRINT CHR$(27)
11@ PRINT
12@ PRINT CRT(3:0);
130 A% = INPUT$(BO)
140 PRINT:PRINT:PRINT
15@ PRINT
168 PRINT =
108 PRINT CHR%(Z7)
11@ PRINT
1280 PRINT CRT(12s25)
130 A% = INPUT$(1@)
140 PRINT CRT(Z:8)3
158 PRINT CRT(12,
160 B% = INPUT$(10)
170 PRINT CRT(Z3+68);
188 GOTO 180

*%% SAMPLE PROGRAM #1 DEMONSTRATING

*»#% PROGRAM

"THIS IS THE LINE YOU
PRINT CRTI$(3:@,80)

TRS-80™

CRTI$ #*#%

TO FPRINT VIDEO DISPLAY TO THE LINE PRINTER **x

CRTI®(Z-0,80)

*¥% SAMPLE PROGRAM DEMONSTRATING CRTI$ *%*x*

"TYPE IN ONE LINE OF TEXT"

TYPED: ™

"WHAT IS5 YOUR FIRST NAME"

"YOUR LAST NAME"
LEN{A%) +

26)

"THANK You"

Radie fhaek

PAGE 6 - 40

MODEL II COMPILER BASIC BASIC KEYWORDS

TRS-80™

80 REM *%% SAMPLE PROGRAM #Z DEMONSTRATING CRTI%$ *x*
9@ REM

168 INTEGER A-Z

11@ DIM V480(24)

120 PRINT CHR$(27):

138 PRINT "TYPE IN AS MUCH AS YOU WISH-~PRESS <F1i>» TO STORE DISPLAY"
140 A$ = INKEY$: IF A% < " " THEN 140

158 PRINT CHR$(27)35 A%$:

160 A% = INKEY$: IF A% < " " THEN 190

170 PRINT A%3

180 GOTO 1460

198 REM CHECK FOR VALID CONTROL KEY

20@ IF A% = CHR%(8) OR A% = CHR%(13) THEN 170

21@ IF A% = CHR#(1) THEN 230

220 GOTO 160

230 REM *%% READ VIDEO *x%%

24@ ROW = CRTX: COL = CRTY

250 FOR LN = 8 TO ROW - 1

=260 VE(LN) = CRTI$(LNs s 80)

270 NEXT LN

80 VE(ROW) = CRTI$(ROWs @s COL)

290 PRINT CHR#®(27)3 "TEXT STORED-—-PRESS ANY KEY TO BEE IT"
200 A% = INPUT$(1)

S0 FOR LN = @& TD ROW

R PRINT V& (LN)3

330 NEXT LN

Radie Shaek

PAGE 6 - 41

MODEL II COMPILER BASIC a BASIC KEYWORDS
TRS-80™

—— FUNCTION --

CRTR
Move Cursor

CRTR (row,column)
'row' is a number in the range of [0,32767]
Ycolumn' is a number in the range of [0,32767]}

CRTR may only be used in a PRINT statement. PRINT CRTR makes
the cursor move in relation to its present position on the video
screen. If this causes the cursor to "move off the display",
the cursor will wrap around.

CRTR works by performing this calculation:

the number of 'rows' and 'columns' you specify
+ the cursor's present row and column position

e e e e e e e i — e —— — — —————————— T — ——

the cursor's new row and column position

If the sum of the rows is greater than 24, BASIC will perform a
MOD 24. If the sum of the columns is greater than 79, BASIC
will perform a MOD 80.

For example, if the cursor is presently at row 20, column 70,
and you execute a CRTR(10,20) statement, BASIC will compute the
sum of the two rows and the two columns:

Row Column
CRTR specification: 10 20
Present cursor position: +20 + 70
Totals: 30 90

The results are both outside the range of the video screen.
BASIC will then perform a MOD 24 on the row total (30 / 24 =1
remainder 6) and a MOD 80 on the column total (90 / 80 =1
remainder 10). The result of this is row 6, column 10.

Note: See CRT for an illustration of row and column positions.

Radio Shaek

PAGE 6 - 42

MODEL II COMPILER BASIC i BASIC KEYWORDS
TRS-80™

Examples

If the cursor is currently at row 20, column 50 ----

PRINT CRTR(2, 10)

causes the cursor to more to row 22, column 60.

PRINT CRTR(2, 10);"X"

causes the cursor to move to row 22, column 60. It prints the X
at the next column position -- row 22, column 61.

PRINT CRTR(4,40);"*%%xn

causes the cursor to wrap around to row 0, column 10. The ***%

is printed at beginning at the next column position -- row 0,
column 11.

Sample Program

——— o . e e

80 REM *%%¥ SAMPLE PROGRAM DEMONSTRATING CRTR *¥%%
93 REM

180 PRINT CHR$(27)

11@ PRINT CRT(@sB)5"X"3

120 PRINT CRTR(1s@)s3"X"3

138 FOR I = 1 TO 50 : REM %% THESE TWO LINES SET A PAUSE #*x*¥%

148 NEXT I = REM *%¥ AFTER EACH X IS PRINTED *¥*¥
158 GOTO 120

Radie fhaek

PAGE 6 - 43

MODEL II COMPILER BASIC " BASIC KEYWORDS
TRS-80™

== FUNCTION --

CRTX
CRTY

Find Cursor Position

CRTX
CRTY

CRTX returns the row and CRTY returns the column of the current
cursor position.

Note: See CRT for an illustration of row and column positions.

Examples

——— . o

If the cursor is currently on row 10, column 15 of the video
display:

R = CRTX
Stores 10 in R
C = CRTY
Stores 15 in C
PRINT "CURSOR IS IN ROW "; CRTX; " COLUMN "; CRTY

Prints CURSOR IS IN ROW 10 COLUMN 15.

Sample Program

8@ REM **¥¥ SAMPLE PROGRAM DEMONSTRATING CRTXs CRTY %%
S@ REM

18@ PRINT CHR%(27))
11@ PRINT "TYPE AN <X> ANYWHERE ON THE SCREEN --"
12@ PRINT "YOU MAY USE <SPACE BAR> AND <ENTER> TO POSITION CURSOR"

Radio fhaek

PAGE 6 - 44

MODEL II COMPILER BASIC BASIC KEYWORDS

TRS-80™

138 A% = INKEYS

140 PRINT A%

158 IF A% <> "X" THEN 130

168 PRINT

17@ PRINT "YOUR <X> I& ON ROW"3 S5CRTX3 " AND COLUMN"3 CRTY

TYPE AN <X> ANYWHERE ON THE SCREEN --
YOU MAY UBE <SPACE BAR» AND <ENTER> TO POSITION CURSOR

X
YOUR «<X> I5 ON ROW 7 AND COLUMN @

Radio fhaek

PAGE 6 - 45

MODEL II COMPILER BASIC - BASIC KEYWORDS
TRS-80"

—-= FUNCTION --

CVD
Convert to Real Value

CVD (number)
'number ' is an integer in the range of [-32768,32767]

CVD converts the 'number' to a real number.

——— . —

PRINT CVD(30000) + CVD(10000)

Converts 30000 and 10000 to real numbers, performs real number
addition, and gives the correct answer. (See explanation on
numeric operations in the chapter on BASIC Concepts).

Sample Program

———

8@ REM *%% SAMPLE PROGRAM DEMONSTRATING CVD %**%
7@ REM

122 PRINT "SINCE 30020 IS AN INTEGER"

11@ PRINT "BUT &000@ IS QUTSIDE THE INTEGER RANGE"

172@ PRINT “"THE PROBLEM 30000 + 32002 CAUSEE THiS TO HAPPEN ..."
130 PRINT "30000 + 30000 = "3; 30000 + 30000

140 PRINT

150 PRINT

160 PRINT "USING CVD TO CONVERT BOTH OPERANDS TO REAL NUMBERS"
17@ PRINT "THE PROBLEM IS SOLVED CORRECTLY ..."

180 PRINT "30000 + 30000 = "3 CVD(30222) + CVD(300008)

*RUN

Radio fhaek

PAGE 6 - 46

MODEL II COMPILER BASIC BASIC KEYWORDS

TRS-80™

SINCE 30000 IS AN INTEGER
BUT 6020@ IS OUTSIDE THE INTEGER RANGE
THE PROBLEM 30000 + 30000 CAUSES THIS TO HAPPEN ...

NUMERIC OVERFLOW ERROR LINE 130
S0 + 300008 = 32767

USING CVD TO CONVERT BOTH OPERANDS TO REAL NUMBERS
THE PROBLEM IS SOLVED CORRECTLY ...
30002 + 30000 = 60BO0

Radio fhaek

PAGE 6 - 47

MODEL II COMPILER BASIC , BASIC KEYWORDS

TRS-80™

—-= FUNCTION -—-

CVI
Convert to Integer Representation

CVI (number’)

'number ' is a numeric expression in the range of
-32768 to 32767.

CVI returns the largest integer not greater than the 'number'.
For example, CVI(l1.5) returns 1; CVI(-1.5) returns -2. The
result is always a two-byte integer.

Since integers are stored in two bytes and real numbers are
stored in eight bytes, converting a number to its integer
representation changes its storage format. BASIC will execute
numeric operations, such as addition, subtraction,

multiplication, and division, much more quickly with integers
than with real numbers.

Examples

—— i — o —

PRINT CVI(15.0075)
Prints 15.
PRINT CVI(-15.0075)
Prints -16.
PRINT CVI(6.1 + 2.2)
Prints 8.
A = CVI(X)

Assigns the integer representation of X to A.

Radie fhaek

PAGE 6 - 48

MODEL II COMPILER BASIC i BASIC KEYWORDS
TRS-80™

Sample Program

8@ REM *¥% SAMPLE PROGRAM DEMONSTRATING CVI #*¥%
9@ REM

1@ PRINT “"ENTER A NUMBER WITH A FRACTIONAL VALUE (LIKE DDDD.DDDD)*
11@ INPUT N

120 PRINT "INTEGER PORTION IS"3 CVI(N)
138 GOTO 100

Radio fhaek

PAGE 6 - 49

MODEL II COMPILER BASIC BASIC KEYWORDS
TRS-80™

—= STATEMENT --

DATA
Store Program-Data

DATA item-list
'item list' is a list of string and/or numeric
constants, separated by commas. String
constants must be in quotes.

The DATA statement lets you store data inside your program to be
accessed by READ statements. The data items will be read
sequentially, starting with the first item in the first DATA
statement, and ending with the last item in the last DATA
statement.

DATA statements may appear anwhere it is convenient in the
program. Generally, they are placed together, but this is not
required. It is important that the types of data match up with
the corresponding variable types in the READ statement.

The data in DATA statements may only be constants. No variables
or expresssions are allowed.

10 DATA 5,6

20 READAB,C

30

40

50 DATA 7

Radie Shaek

PAGE 6 - 50

MODEL II COMPILER BASIC BASIC KEYWORDS

TRS-80"

Examples

o

DATA "NEW YORK", "CHICAGO","LOS ANGELES", "PHILADELPHIA"
This line contains four string data items.

DATA 3.72,3.14159,47.29578,378,535
This line contains five numeric data items.

DATA "SMITH, T.H.",38,"THORN,J.R.",41

This line contains two string and two numeric data items.

Sample Program

——— i ——

8@ REM *%% SAMPLE PROGRAM DEMONSTRATING DATA *¥x

@ REM

108 DIM SALES(6&)

11@ FOR X = 1 TO 6

120 READ DEPT%

130 PRINT “INPUT AMT. SOLD IN THE "3 DEPT$3 " DEPT. "3
140 INPUT SALES(X)

150 NEXT X

16@ DATA “"PRODUCE" s "MEAT"s "BAKERY"s " CANNED GOODS"s"DAIRY"s"FROZEN FOODS"

Radio fhaek

PAGE 6 - 51

MODEL II COMPILER BASIC BASIC KEYWORDS
TRS-80™

—=— FUNCTION —-

DATES
Get Today's Date

DATES

This function lets you display today's date and use it in the
program.

The operator sets the date initially when TRSDOS is started up.
When you request the date, BASIC will display it in the fashion:

SATAPR281979118 45

which means Saturday, April 28, 1979, 118th day of the year, 4th
month of the year, 5th day of the week (Monday
is the 0th day of the week.

Example

PRINT DATES
which returns:

MONAPR171980108 40

Sample Program

80 REM *%%* SAMPLE PROGRAM DEMONSTRATING DATE%® %%
9@ REM

100 PRINT DATES

11® PRINT “INVENTORY CHECK: "

120 IF DATE® = "THUJAN3119860 31" THEN PRINT "Toaday is the last
dav of Januvary 1980. Time ta pPerform monthly in

ventory": STOP

Radio Shaek

PAGE 6 - 52

MODEL II COMPILER BASIC BASIC KEYWORDS

TRS-80®

130 D% = DATEY® : A% = SEG$(D%s 7+ 2)
140 B = VAL(AS)
15@ PRINT 31 - Bs5s " dawz until inventory time."

Radio fhaek

PAGE 6 - 53

MODEL II COMPILER BASIC o BASIC KEYWORDS
TRS-80™

== STATEMENT --

DEF
Define Function

DEF function name(dummy variable, ...) = formula
'function name' is any valid variable name.
‘dummy variable' is any valid variable name which
- the formula will perform operations on.
'formula' is a numeric or string expression usually

involving the 'dummy variable(s)' on the left side
of the equals sign.

The DEF statement lets you create your own function. Once you
have defined the operations your function will do, all you have
to do is call the new function by name and the operations will
be automatically performed. To call it by name, after it has
been defined with the DEF statement, simply reference the
'function name' in an expression. You can use it exactly as you

might use one of the built-in functions, like SIN, ABS and
STRINGS.

The type of variable used for function name determines the type
of value the function will return. For example, if 'function

name' is an integer variable, then that function will return an
integer even if the data used in the function are real numbers.

You may pass any data with the same type of value to the 'dummy
variable'. Furthermore, you may use the same variable name as
the 'dummy variable' in your program without the 'dummy
variable' interfering with your program variables.

DEF R(A) = INT(RND(O) * (A) + 1)

This statement defines a function which returns a random whole
number between 1 and A. The value for A is passed in a
statement using R such as this:

Y = R(X)

Radie fhaek

PAGE 6 - 54

MODEL II COMPILER BASIC BASIC KEYWORDS

TRS-80"

If X equals 10, a random whole number between 1 and 10 will be
assigned to Y.

DEF SL$(X) = STRINGS(X, "-")

Defines the function names SL$ which returns a string of hyphens
X characters long. The value for X is passed in a statement
using SL$ such as:

PRINT SL$(30)

Which prints a string of 30 hyphens.

DEF DIV(X,Y) = SQR(X)/SQR(Y)

Defines a function named DIV which divides the square root of X
by the square root of Y. It can be used like this:

PRINT DIV(100, 25)

Which prints 2.

Sample Programs

80 REM *%¥% SAMPLE PROGRAM #1 DEMONSTRATING DEF * KK
9@ REM

12® DEF DOUBLE(N) = N * 2
11® PRINT "INPUT A NUMBER"
120 INPUT N

13@ PRINT DOUBLE(N)

14@ GOTO 110

Radio fhack

PAGE 6 - 55

MODEL II COMPILER BASIC

BASIC KEYWORDS

TRS-80™
80 REM ##% SAMPLE PROGRAM #2 DEMONSTRATING DEF %%
9@ REM
130 DEF SOUND(T) = (1@87 + SBQR(=73 + T))/16.52

110
120
130
140

PRINT "INPUT AIR TEMPERATURE IN DEGREES CELGIUG®
INPUT T

PRINT "THE SPEED OF SOUND IN AIR OF "3 T3 "DEGREES CELSIUS
PRINT SOUND(T)3 "FEET PER SECOND"

Radie fhaek

PAGE 6 - 56

MODEL II COMPILER BASIC BASIC KEYWORDS

TRS-80™

~= STATEMENT --

DELETE
Delete Record From Disk File

DELETE #file-unit, KEY = record

'file-unit' specifies the file in terms of the

'file-unit' assigned when the file was
opened.

'KEY = record' specifies which record is to
be deleted; for ISAM records, 'record'
is a string expression; for direct-access
records, it is a numeric expression.

This statement deletes a record from a disk file. After a record
has been deleted, it is unreadable.

S, T — — —

DELETE #1, KEY=2
Deletes the 2nd record in file-unit #1.
DELETE #A%, KEY=NAMESS

Deletes in file-unit A% the ISAM record with a key matching the
value of NAMES.

DELETE #START% + INC%, KEY=RECORDS%

Deletes in file-unit START% + INC% the record numbered as
RECORD%.

Sample Program

—— o — . —

See the chapter on data files.

Radio fhaek

PAGE 6 - 57

MODEL II COMPILER BASIC

. BASIC KEYWORDS
TRS-80™

DIG

—— FUNCTION --

Compute Number of Numeric Characters

DIG(string)

'string' is a string constant or a string variable.

DIG computes the number of numeric characters in the 'string'.
It will quit searching for numeric characters as soon as it hits
a non-numeric character. For example, in DIG("16A5"), DIG will

quit counting numeric

characters when it reaches the A, since A

is non-numeric, and will return the current total, 2.

DIG treats blanks, signs, decimals, and exponents as numeric

characters.

Examples

PRINT DIG("1.2E5")
Prints 5

PRINT DIG("33 44")
Prints 5. (The blank

A = DIG("-32")
Prints 3.

X = DIG(BS)
Assigns the number of

PRINT DIG("B5")

Prints 0. (DIG quits
reads the non-numeric

PRINT DIG("5B324")

is considered part of the numeric field).

numeric characters in B$ to X.

searching for numeric characters after it
character, B).

Radio fhaek

PAGE 6 - 58

MODEL II COMPILER BASIC BASIC KEYWORDS

TRS-80™

Prints

Sample

100
200
205

) o

Program

REM *%% DEMO OF DIG FUNCTION TO EDIT A STREAM OF DATA
REM

REM T® CONTAINS THE INPUT STREAM

210 REM MAXPENZ CONTAINS THE LENGTH OF THE INPUT STREAM

220

REM PSN% POINTS TO THE CURRENT START-EDIT POSITION

230 REM CRNTS CONTAINS THE CURRENT STRING TO BE EDITED
248 REM VLULEN IS THE LENGTH OF THE FIRST NUMERIC FIELD

250 REM A ZERO LENGTH INDICATES A NON-NUMERIC FIELD
260 REM VLU VALUE OF THE FIRST NUMERIC FIELD

27@ REM

300 DIM T#B8@s CRNT$802

400

PRINT "ENTER A STREAM OF NUMBERSs SEPARATED BY COMMAS"

50@ LPRINT "ENTER A STREAM OF NUMBERSs SEPARATED BY COMMAS"
600 LINE INPUT T%

700 LPRINT T%

808 MAXPSNZ = LEN(T$)

908 PSNZ = 1

1000 CRNT$ = SEG$(T$s PSNZ)
1100 VLULENYZ = DIG(CRNT%)

1280 IF VLULENZ = @ THEN 1600

1300 VLU = VAL (CRNT®$)
140@ PRINT "FOUND THIS NUMBER: "3 VLU
150@ LPRINT "FOUND THIS NUMBER: "3 VLU

1680 PSNZ = PSNZ + VLULEN$ + 1
178B IF PSNZ > MAXPSNZ THEN PRINT:LPRINT: GOTO 400

1800 GOTO 1000

ENTER

2y 23
FOUND
FOUND

FOUND
FOUND

FOUND
FOUND
FOUND
FOUND

FOUND
FOQUND

ENTER

A STREAM OF NUMBERS: SEPARATED BY COMMAS

34y 454 55 &7s 67Bs 5by 6789+ 456
THIS NUMBER: 2
THIS NUMBER: =23

THIS NUMBER: 34
THIS NUMBER: 45

THIS NUMBER: 5

THIS NUMBER: &7
THIS NUMBER: 6478

THIS NUMBER: 56

THIS NUMBER: 6789
THIS NUMBER: 456

A STREAM OF NUMBERSs SEPARATED BY COMMAS

Radio fhaek

PAGE 6 -~ 59

MODEL II COMPILER BASIC BASIC KEYWORDS

TRS-80™

-— STATEMENT --

DIM

Define String Variables and Arrays

DIM variable list
'variable list' can consist of the following
separated by commas:
string variable length
'string variable' is any valid string
variable name
'length' is an integer constant specifying
the maximum number of characters
in string variable
array string length(subscriptl, subscript2)
'string length' is the length of each
element in a string array. If omitted,
each element will be stored as 255
characters. ‘'string length' is omitted
in numeric arrays.
'array' is any valid variable name
'subscriptl' and 'subscript2' are integer
constants specifying the maximum
number of subscripts in that dimension
of the array. If subscript2 is
omitted, it is a single dimensioned
array.

NOTE: the lowest element in a dimension is always 0.

This statement defines the length of string variables and
arrays.

Defining String Variables

In Compiler BASIC, each string variable is stored according to
the length specified in the STRING statement. If you do not
have a STRING statement in the program, each string variable is
stored as if it contains 255 characters.

To override this, you may use DIM to specify the length of a

Radio fhaek

PAGE 6 - 60

MODEL II COMPILER BASIC BASIC KEYWORDS

TRS-80™

particular string variable name. For example:
DIM NAMES10

alots 10 characters for NAMES.

Defining Arrays

An array is a way of storing an entire list of data under one
variable name. Each data element is identified by one or two
subscripts. If each data element is identified by only one
subscript, it is called a single dimensioned array; if it is
identified by two subscripts, it is a two-dimensioned array.
No more than two dimensions are allowed in Compiler BASIC.

All arrays must be defined with a DIM statement before they can
be used in the program. For example:

DIM A(2)
Alots room in memory for an array named A which can contain up

to 3 numeric data elements (0,1,and 2). For example, each of
these subscripted variables could be assigned:

A(0) = 3.5
A(l) = 40000
A(2) = 5.15

A double dimensioned array is defined in this manner:
X(1,1)

This alots room for a double dimensioned array named X which
can contain up to 2 numeric data elements in the first
dimension and 2 numeric data elements in the second dimension.
This real number array might be programmed to contain:

X(0,0) 25.1 X(0,1) 13.7

X(1,0) 22.2 X(1.1) 32.6
Arrays may also be integer or string with the proper type
declaration tag. A string array will alot 255 characters for
each data element unless the string length is defined. For
example:

A$(10)

(|
nn

Alots room for an array named A$ with up to 1l string data
elements. Memory is set aside for each of the 11 data elements

Radie fhaek

PAGE 6 - 61

MODEL II COMPILER BASIC BASIC KEYWORDS

TRS-80™

to contain 255 characters for a total of 255xll=
2805 characters.

A$5(10)

This also alots room for an array named AS$ with up to 11 string
data elements. However, in this array, each element may contain
only 5 characters for a total of 5x11=55

characters.

DIM A(100), B$5, C%(9,9)

The numeric array A is defined with 10l elements, and C% is
defined containing 100 (10 * 10) elements. The string B$ can
contain no more than 5 characters.

DIM DATAS$3, DAVISS$6, DVIS1

The strings DATA§, DAVISS$, and DVI$ are defined containing 3, 6,
and 1 characters respectively.

DIM M$1(200), C$2(100)

The array M$ is defined to contain 201 one-character string data
elements. Array C$ may contain 101 two-character string data
elements.

Sample Programs

80 REM *##% SAMPLE PROGRAM #1 DEMONSTRATING DIM *%*

2@ REM

160 DIM AZ(1@y1@)

110 PRINT "SALES DATA WILL BE STORED IN ARRAY AZ AS FOLLOWS"

120 PRINT CHR%(27): PRINT " ", "MONTH 1"s "MONTH 2", "MONTH 3"

130 FOR X =1 TO 4
14@ PRINT @ PRINT "ITEM "3 X»

150 FORY =1 T0 3
1460 READ AZ(XsY)
i78 PRINT AZ(XsY)s
180 NEXT Y

190 NEXT X

Z@0® PRINT: PRINT “INPUT ITEM # AND MONTH #"

210 INPUT X»Y
®
Radio fhaek

PAGE 6 - 62

MODEL II COMPILER BASIC

BASIC KEYWORDS

TRS-80™

220 PRINT "SALES DATA FOR ITEM "3 X3

238 GOTO 200

u

AND MONTH *3

240 DATA 343633555663 33322911:99+88+77+664+55

MONTH 1
ITEM 1 34
ITEM 2 b4
ITEM 3 11
ITEM 4 T
INPUT ITEM # AND MONTH #
T 292

SALES DATA FOR ITEM

INPUT ITEM # AND MONTH #

88 REM
9@ REM

100 REM
110 DIM I$7(3)
120 REM

140 READ I#%(X)
150 NEXT X
16@ REM

17@ PRINT "INPUT AN ITEM NUMBER"

188 INPUT X
198 PRINT I$(X)
208 GOTO 170

MONTH 2
63
33
99
bb
AND MONTH 2 18

MONTH 3

55
22
88
o

: 33

*¥% READ IN LIST OF ITEMS *¥x
130 FOR X = 1 TO 5

%% SEE HOW EACH ITEM IS INDEXED #¥*%

7

*%% SAMPLE PROGRAM #2 DEMONSTRATING DIM %%

210 DATA "APPLES"s "ORANGES"s"GRAPES" s "PEACHES" s " PLUMS"

*RUN

INPUT AN ITEM NUMBER

? 3
GRAPES

INPUT AN ITEM NUMBLR

7 4
PEACHES

INPUT AN ITEM NUMBER

? 2
ORANGES

INPUT AN ITEM NUMBER

?

Radio fhaek

PAGE 6 - 63

IS

H =
3

##% DIMENSION ARRAY I%$ FOR FIVE 7-CHARACTER ITEMS ¥*#%

AZ(XY)

MODEL II COMPILER BASIC

BASIC KEYWORDS

TRS-80™
1@ REM *%% SAMPLE PROGRAM #3 DEMONSTRATING DIM #xx
20 REM
3@ PRINT CHR$(27)

40

50

60

70

80

90
100
11@
120
130
140
150
160
170
180
190
200
210
220
230
240

DIM L$(10@:3)
M=0
PRINT "MEMBERSHIP ARRAY IS DIMENSIONED FOR UP TO 1@ MEMBERS"
M=M+1
PRINT "“INPUT NAMEs ADDRESSs AND PHONE # OF MEMBER "3 M
FOR X = 1 TO 3
INPUT L$(MsX)
NEXT X
IF M = 10 THEN 160
PRINT "IS5 THERE ANOTHER MEMBER (Y/N)"

INPUT A%
IF A$ = "Y" THEN 7@

PRINT: PRINT "THE LIST IS STORED AS FOLLOWS & "
PRINT "NAME"s "ADDRESS"s "PHONE"
PRINT STRING$(8@s "~-")3
FOR I =1TOM

FOR J =1 TO 3

PRINT L#$(I»J)»

NEXT J

PRINT
NEXT I

Radio fhaek

PAGE 6 - 64

MODEL ITI COMPILER BASIC BASIC KEYWORDS

TRS-80™

== STATEMENT --

END
Terminate Program Compilation

END terminates compilation of your main program. This means,
when you are RUNning or COMPILEing a program, the Compiler will
quit compiling and assume the program has ended as soon as it
encounters an END statement. Since this is different from the
way END works in the BASIC Interpreter, it is important that you
remember not to use END in the middle of a program if you want
to use the lines following the END statement. Use STOP for that
purpose.

Some versions of BASIC require END as the last statement in a
program. In Compiler BASIC this is optional. However, when
using a subprogram, you must put an END statement as the last
statement in your main program. Otherwise, BASIC will not be
able to separate your main program from the subprogram.

Note: See also SUB, SUBEND, CALL, and the chapter on Segmenting
Programs.

Example

END

This statement "turns off" the compiling of your program. BASIC
then assumes there are no more main program lines following this
statement.

Sample Program

——— e o o o e

Radio fhaek

PAGE 6 - 65

MODEL II COMPILER BASIC BASIC KEYWORDS

TRS-80™

8@ REM *%¥% SAMPLE PROGRAM DEMONSTRATING END #%#*
2@ REM

100 PRINT "EXECUTING MAIN PROGRAM"

11@ CALL "SUBPROG"3; "NOW EXECUTING THE SUBPROGRAM"
120 PRINT "BACK TO THE MAIN PROGRAM"

13@ END

140 SUR "SUBPROG": A$

15@ PRINT A%

160 SUBEND

Radio fhaek

PAGE 6 - 66

MODEL II COMPILER BASIC BASIC KEYWORDS

TRS-80™

== FUNCTION --

EOF
Notify if End of File

This function tells whether the end-of-file (EOF) has been
reached during sequential input. If the EOF has been reached, it
returns a value of -1 (TRUE). Otherwise, it returns a value of 0
(FALSE).

Examples

—— i —

IF EOF(#1) = =1 THEN CLOSE #1
If the end of file has been reached in file-unit 1, the file is
closed.

STATUS% = EOF(#A%)

File-unit A%'s EOF status (-1/TRUE or 0/FALSE) is stored in
STATUS%.

Sample Program

See Chapter 4.

Badio fhaek

PAGE 6 - 67

MODEL II COMPILER BASIC BASIC KEYWORDS
TRS-80™

== FUNCTION ==

ERR
Get Error Code

ERR

ERR returns the code of the error that happened in the program.
It is normally used inside an error-handling routine accessed by
ON ERROR GOTO. The section on error codes in the Appendix gives
the error code for each error.

Examples

—— e

IF ERR = 7 THEN 1000 ELSE 2000

If the error is an Out of Data error (code 7) the program
branches to line 1000; if it is any other error, control will
instead go to line 2000.

Sample Program

80 REM *¥% SAMPLE PROGRAM DEMONSTRATING ERR %%
& REM
100 ON ERROR GOTO 150
11@ DATA 1y 2
120 READ Ay By C
13@ PRINT " A= "3 As "B = "s Bs " C= "3 C
14@ STOP
15@ IF ERR <* 7 THEN ERROR ERR
168 PRINT "YOU DON’T HAVE ENOUGH DATA FOR ALL THE VARIABLES"
178 GOTO 138
#RUN
YOU DON’T HAVE ENOUGH DATA FOR ALL THE VARIABLES
A= 1 B= 2 C= 3.918< E-74

Radio fhaek

PAGE 6 - 68

MODEL II COMPILER BASIC BASIC KEYWORDS

TRS-80®

== STATEMENT --

ERROR
Simulate Error

ERROR code
'code' is a numeric expression defining the
error code

An ERROR statement in your program causes BASIC to act exactly
as if the specified error had occurred. You can specify an

error with its error code. The Appendix has a listing of error
codes and their meanings.

ERROR is primarily used in ON ERROR GOTO routines: either for
simulating the error that occurred or for testing the routine.

Examples

ERROR 7

When your program reaches this line, an Out of Data error (code
7) will "occur", and the Computer will print a message to this
effect.

IF ERR <> 5 THEN ERROR ERR

This line could be in the error handling routine initiated by ON
ERROR GOTO. It tells the Computer that if the error which
caused it to come to this routine was not an Input Syntax error
(code 5), then print the appropriate error message.

Sample Program

———— ———— — o

1@ INPUT N
11® ERROR N

Radie Maek

PAGE 6 - 69

MODEL II COMPILER BASIC BASIC KEYWORDS

TRS-80™

—— FUNCTION --

EXP
Compute Natural Exponential

EXP (number)
'number' is a numeric expression.

EXP returns the natural exponential of the ‘number', that is, e
to the power of 'number'. This is the inverse of the LOG
function; therefore, X = EXP(LOG(X)). The result is always a
real number.

Examples

H = EXP(A)
Assigns the value of EXP(A) to H.
PRINT EXP(-2)
Prints the value .135335.
E = (Gl + G2 - .07) * EXP(.055 * (Gl + G2))

Performs the required calculation and stores it in E.

Sample Program

———

1@ PRINT "INPUT A NUMBER"

20 INPUT N
3@ PRINT “"E RAISED TO THE N POWER IS§"3 EXP(N)

4@ GOTO 10

Radie fhaek

PAGE 6 - 70

MODEL II COMPILER BASIC " BASIC KEYWORDS
TRS-80™

—— FUNCTION --

EXP10
Compute Base 10 Exponential

EXP10 (number)
'number' is a numeric expression

EXP1l0 raises 10 to the power of 'number'. As the inverse of
LOG10, X=EXP1l0(LOGl0(X)). The result is always a real number.

Examples

X = EXP10(Y)

Raises 10 to the Y power and assigns that value to X.
PRINT EXP10(3)

Prints 1000.
X = (A + B) + EXP10(A)

Performs the calculation and records the result in X.

Sample Program

5 INTEGER R
1@ PRINT "TABLE OF RANDOM NUMBERS ... "
2@ PRINT "ENTER MAXIMUM NUMBER OF DIGITS YOU WANT (UP TO 4)"
25 INPUT L
30 X = EXP1@(L) = R= X ~ 1
48 FOR I =1 TO 100
5@ PRINT INT(RND{(@) * R)»
6@ NEXT 1
7@ PRINT: GOTO 1@

Radio fhaek

PAGE 6 - 71

MODEL II COMPILER BASIC BASIC KEYWORDS

TRS-80™

—-—- STATEMENT =--

EXT
Define Address of External Program

EXT subname=address
'subname' is a 1-6 character name for the external
subroutine
'address' is the memory address, in hexadecimal
or integer notation, where the external subroutine
originates.

You may interface an external object code program with your
BASIC program by using EXT. EXT names the external subroutine
and defines the memory address where the subroutine originates.
To call the routine, use CALL.

Note: See the chapter on Segmenting Programs.

Examples

EXT SUBPROG=&E000

the external routine named SUBPROG originates at the memory
address of hex E000.

Sample Program

See the chapter on Segmenting Programs.

Radio fhaek

PAGE 6 -~ 72

MODEL II COMPILER BASIC il BASIC KEYWORDS
TRS-80™

—— STATEMENT --

FOR/NEXT
Establish Program Loop

FOR variable = initial value TO final value STEP
increment
'variable' is any numeric variable name;
'variable' is optional after NEXT
'initial value', 'final value', and 'increment'
are numeric constants, variables, or
expressions.
STEP 'increment' is optional; if STEP 'increment'
is omitted, a value of 1 is assumed.

FOR...TO...STEP/NEXT opens a repetitive loop so that a sequence
of program statements may be executed over and over a specified

number of times.

10 FOR X=1TO 5

15 FORY=1TO 3

5 times
3 times

~ 20 NEXT Y

30 NEXT

e

When BASIC executes the FOR statement for the first time, it
sets the 'variable' to 'initial value'. Then 'wvariable' is
compared with 'final value'. If 'variable' is greater than

Radio fhaek

PAGE 6 - 73

MODEL II COMPILER BASIC BASIC KEYWORDS
TRS-80

'final value', BASIC completes the loop and goes to the
statement following NEXT. (if 'increment' is a negative number,
the loop ends when 'variable' is LESS than 'final value'.)

If 'variable' has not yet exceeded 'final value' BASIC
continues executing the next statements until it encounters
NEXT. At this point, BASIC goes back to FOR and increments the
'variable' by the amount specified in step 'increment'. (If
'increment' has a negative value, the 'variable' is actually
decremented). STEP 'increment' is often omitted, in which case

BASIC uses 1 as an increment. BASIC then repeats the whole
process, Comparing 'variable' with 'final value'.

Examples

FOR X=1T0 3
Sets up a loop which will be repeated 3 times: when X is 1, 2,
and 3. (Since no STEP increment is specified, an increment of 1
is used).
This loop is closed by the following statement:

NEXT X

FOR I = 2 TO 6 STEP 2
Sets up a loop to be repeated 3 times: when I is 2, 4, and 6.
FOR I = 8 TO 5 STEP -1

Sets up a loop to be repeated 4 times: when I is 8, 7, 6, and
5.

Both of the loops above are closed by the statement:

NEXT I

Sample Programs

PAGE 6 - 74

MODEL II COMPILER BASIC BASIC KEYWORDS

TRS-80™

80 REM *%% SAMPLLE PROGRAM #1 DEMONSTRATING FOR/NEXT #*%%
7@ REM

120 FOR I = 1@ TO 1 STEP -1

110 PRINT 13

120 NEXT I

8@ REM *%% SAMPLE PROGRAM #2 DEMONSTRATING FOR/NEXT #*%#
98 REM
120 FOR I =1 T0 3
11@ PRINT "QUTER LOQP"
120 FORJ =1 TO 2
130 PRINT " INNER LOOP"
140 NEXT J
158 NEXT I
*RUN
OUTER LOOP

INNER LOQOP
INNER LOOP

OUTER LOOP

INNER LOOP
INNER LOOP

QUTER LOOP
INNER LOOP
INNER LOOP

STOP LINE 150
*8Y "SCREEN"

Radie fhaek

PAGE 6 - 75

MODEL II COMPILER BASIC BASIC KEYWORDS
TRS-80™

~— STATEMENT --

GOSUB
Go to Specified Subroutine

GO SUB line number
GOSUB line number

GO SUB or GOSUB (the space is optional) transfers program
control to the subroutine beginning at the specified line
number. Like GOTO, GOSUB is an unconditional or automatic
program branch which may be conditional if it follows a test
statement.

RETURN ends the subroutine by sending program control back to

the line immediately following the GOSUB statement.
All subroutines are ended by a RETURN statement.

NOTE: See also RETURN.

10

20

35 GOSUB 80
o

100 RETURN

w*’**uh___ﬂ,z’”ﬂd

Radio fhaek

PAGE 6 - 76

MODEL II COMPILER BASIC BASIC KEYWORDS

TRS-80™

Examples

GOSUB 1000

When this line is executed, control will automatically branch to
the subroutine at 1000.

IF A§ = "YES" THEN GOSUB 2000

Here, GOSUB is a conditional branch. If the condition is true,
then control will branch to the subroutine at line 2000.
However, if the condition is false, the program will immediately
advance to the next line. GOSUB 2000 will be ignored.

80 REM *##% SAMPLE PROGRAM DEMONSTRATING GOSUB *%*%
9@ REM

106 GOSUB 120

11®@ PRINT "BACK FROM THE SUBROUTINE" = STOP

12@ PRINT "EXECUTING THE SUBROUTINE"

130 RETURN
*RUN

EXECUTING THE SUBROUTINE
BRACK FROM THE SUBROUTINE

Radio fhaek

PAGE 6 - 77

MODEL II COMPILER BASIC BASIC KEYWORDS

TRS-80™

-~ STATEMENT --

GOTO
Go To Specified Line Number

GO TO line number
GOTO line number

GO TO or GOTO (the space is optional) transfers program control
to the specified line number. Used alone, GOTO results in an
unconditional or automatic branch. However, a test may precede
the GOTO to effect a conditional branch.

——— — i

GOTO 100

When this line is executed, control will automatically be
transferred to line 100.

IF A = 1 THEN PRINT "CORRECT": GOTO 50

In this statement, GOTO is used as a conditional branch. If A =
1, the Computer will print "CORRECT" and transfer control to
line 50. However if A does not equal 1, control will drop to
the next program line. GOTO 50 will be ignored.

Sample Program

S — —— .t . S

1@ REM *%% SAMPLE PROGRAM DEMONSTRATING GOTO x#
20 GOTO 40
25 PRINT "LINE 25"
27 STOP
3@ PRINT "LINE 30"
35 GOTO 25
4@ PRINT “LINE 4@"
50 GOTO 30
®
Radio fhaek

PAGE 6 - 78

MODEL II COMPILER BASIC BASIC KEYWORDS

TRS-80

== FUNCTION --

HEXS$
Compute Hexadecimal Value

HEXS (number)
'number ' is a numeric expression in the range
-32768 to 32767.

HEX$ is the inverse of the HVL function. It returns a string
which represents the hexadecimal value of the 'number'. Since
the hexadecimal value is returned as a string, it cannot be used
in a numeric expression. You cannot add, subtract, multiply or
divide hex strings. You can concatenate them, though.

The hexadecimal string returned represents the value of the
stored 'number'. Since the 'number' is an integer, it is stored
in two's complement notation. HEX$(-1l) returns the hexadecimal
string "FFFF", since this is the way -1 is stored in two's

complement notation. An explanation on the storage of integers
is in the Programmers Information Section.

PRINT HEX$(30), HEX$(50), HEX$(90)
Prints the following strings:

001E 0032 005A

PRINT HEX$(-1), HEX$(-16), HEXS$(-32768)
Prints the following strings:

FFFF FFFO0 8000

Y$ = HEX(X/16)

Y$ is the hexadecimal string representing the integer quotient

Radio fhaek

PAGE 6 - 79

MODEL II COMPILER BASIC BASIC KEYWORDS

TRS-80™

X/16.

Sample Program

——— e g o o e o o . s

B@ REM **¥%¥ S5AMPLLE PROGRAM DEMONSTRATING HEX$ ***

9% REM

12@ PRINT "INPUT A DECIMAL NUMBER FROM 1 TO 32767"
112 INPUT DEC

128 PRINT "HEXADECIMAL VALUE IS "3 HEX$(DEC)

130 GOTO 106

Radio fhaek

PAGE 6 - 80

MODEL II COMPILER BASIC BASIC KEYWORDS

TRS-80™

—= FUNCTION =--

HVL
Convert Hexadecimal String

HVL(string)
'string' is a string constant or a string variable.

HVL is the inverse of the HEX$ function. It returns the integer
value of a hexadecimal string. Since integers are stored in
two's complement notation, hexadecimal values over 7FFF will
return negative integers.

NOTE: An explanation on the Storage of Integers is included in
the Programmers Information Section

- — —— — ——

PRINT HVL("7FFF")
Prints 32767.

PRINT HVL("8000")
Prints -32768.

PRINT HVL("4C IS THE CODE FOR L")
Prints 76. (HVL read the hexadecimal number "4C" and then
stopped its search since the next character was not a
hexadecimal character).

H = HVL("F")

Assigns the value 15 to H.

Sample Program

——— i — — .

Radio fhaek

PAGE 6 - 81

MODEL II COMPILER BASIC BASIC KEYWORDS

TRS-80™

80 REM *%% SAMPLE PROGRAM DEMONSTRATING HVL *%%

9@ REM
128 PRINT “TYPE A HEXADECIMAL NUMBER"

110 INPUT A%

120 N = HVL(A%)
138 IF N { @ THEN D = N + 465536 ELSE D = N
14@ PRINT "THE INTEGER REPRESENTATION FOR "3 A$3; " I8 "3 N

158 PRINT
168 PRINT A$5; " CONVERTED TO A DECIMAL NUMBER IS"3; D

17@ PRINT
180 GOTO 100

Radie fhaek

PAGE 6 - 82

MODEL II COMPILER BASIC BASIC KEYWORDS

TRS-80

—— STATEMENT --

IF,...THEN...ELSE
Test Conditional Expression

IF test THEN statement or line number ELSE statement or
line number
'test' is one or more relations connected by logical

operators

'relation' is two numeric or two string
expressions separated by a relational
operator

'statement' is one or more BASIC statements
separated by colons. A line number may
be substituted for 'statement'.
ELSE statement is optional

Note that 'statement' must be executable, e.q.,
not a REM or DIM statement.

IF...THEN...ELSE tests the 'relation' to see if it is true. If
it is true and there is more than one relation separated by
logical operators, BASIC will continue testing each relational
and logical operation in the statement.

If the 'test' returns a true result, the statement or
statements following THEN will be executed. If the test returns
a false result, control will jump to the statement or statements
fgllowing ELSE, or, if ELSE is omitted, to the next program
line.

The conditional statement GOTO 50 may be replaced by simply a
line number.

Examples

S ——————

IF X > 127 THEN PRINT "OUT OF RANGE" : STOP

If X is greater than 127, the statement will be printed and
program execution will stop. If X is not greater than 127,
control will jump down to the next program line, skipping the

Radie Shaek

PAGE 6 - 83

MODEL II COMPILER BASIC - BASIC KEYWORDS
TRS-80®

PRINT and STOP statements.
IF X > 0 AND Y <> 0 THEN Y = X + 180

If both expressions are true, then Y will be assigned the value
X + 180. Otherwise, control will pass directly to the next
program line, skipping the THEN clause.

IF A < B THEN PRINT "A < B" ELSE PRINT "B <= A"

If A is less than B the Computer prints the fact and then
proceeds down to the next program line, skipping the ELSE
statement. If A is not less than B, the Computer jumps directly
to the ELSE statement and prints the "B <= A". Then control
passes to the next statement in the program.

IF A§ = "YES" THEN 210 ELSE IF A$ = "NO" THEN 400 ELSE 370.

If A$ is YES then the program branches to line 210. If not, the
program skips over to the first ELSE, which introduces a new
test. If A$ is NO then the program branches to line 400. If AS
is any value besides NO or YES, the program skips to the second
ELSE and the program branches to line 370.

IFA > .001 THEN B=1/A : A = A/5 : ELSE 1510

If the value of A is greater than .001, then the next two
statements will be executed, assigning new values to B and A.
Then the program will drop down to the next line, skipping the
ELSE statement. But if A is less than or equal to .00l1, then
the program jumps directly over to ELSE, which then instructs it
to branch to 1510. Note that GOTO is not required after ELSE.

Sample Programs

80 REM **%* SAMPLE PROGRAM #1 DEMONSTRATING IF/THEN *¥%
2@ REM

10@ PRINT "INPUT THE NUMBER @ OR 1"

118 INPUT N

120 IF N=0 OR N=1 THEN STOP ELSE PRINT "NOT A BINARY DIGIT"

Radie fMaek

PAGE 6 - 84

MODEL II COMPILER BASIC BASIC KEYWORDS

TRS-80™

8@ REM *%#% SAMPLE PROGRAM #2 DEMONSTRATING IF/THEN *¥%

9@ REM
18@ PRINT "DO YOU WANT TO TEST THE IF/THEN STATEMENT"

110 INPUT A%
120 IF A% = "YES" THEN PRINT "YOU INPUT YES": GOTO 1@@: ELSE IF

10
2@
30
35
4@

50

A%$ = "NO" THEN STOP ELSE PRINT "INPUT YES OR NO" : GOTO 110

REM *%%* JF...THEN...ELSE STATEMENT #*%*%
INPUT PROMPT="YES OR NO (Y/N)? "3 R$
IF R$ = "Y" THEN 4@ ELSE IF R$="N" THEN 50

GOTO 20
PRINT "THAT'S BEING POSITIVE!"
PRINT "WHY S50 NEGATIVE?*

Radie fhaek

PAGE 6 - 85

MODEL II COMPILER BASIC _ BASIC KEYWORDS
TRS-80™

—= FUNCTION -~

INKEYS
Get Keyboard Character if Available

INKEYS

Returns a one-character string from the keyboard without the
necessity of having to press ENTER. If no key is pressed, a
null string (length zero) is returned. Characters typed to
INKEY$ are not echoed to the Display.

A$ = INKEY$

When put into a loop, the above program fragment will get a key

from the keyboard and store it in A$. If the line above is used
by itself, when control reaches it and no key is being pressed,

a null string ("") will be stored in AS.

—— e — —— ——— — —— -

1@ REM *%% INKEY$ FUNCTION %%

20 DIM Cs1

3@ PRINT CHR$(27)

4@ PRINT "ECHO PROGRAM ~ TYPE ANY TEXT KEY AND IT WILL BE ECHOED*
50 A% = INKEY%

6@ IF A$ = "" THEN 50
65 IF A% < " " THEN 9@

7@ PRINT A%;

8@ GOTO 50

9@ PRINT CHR$(26)

100 PRINT "CONTROL CHARACTERS ARE IGNORED - PRESS <BREAK> TO QUIT"
11@ PRINT CHR%(23)3

128 GOTO 50

ECHO PROGRAM - TYPE ANY TEXT KEY AND IT WILL BE ECHOED
0

CONTROL CHARACTERS ARE IGNORED - PRESS,<BREAK> TO QUIT
Radio

PAGE 6 - 86

MODEL II COMPILER BASIC BASIC KEYWORDS
TRS-80™

--= STATEMENT --

INPUT
Input Data

INPUT LENGTH=number, PROMPT=string; variable-list

'string' is a string constant or a string variable.
PROMPT=string; may be omitted.

'variable-list' is a list of variables, with a comma
after each but the last. The variable-types
(string, integer, real) should match the data
to be input.

'number' is an integer value 1-255 specifying the
maximum number of charactes to input. If omitted,
default is 255.

LENGTH=number is optional.

This statement inputs data from the keyboard.

When executed, INPUT displays a question mark followed by an
input buffer composed of 'number' dots. When you press <ENTER>
or £ill the input buffer, INPUT edits the input stream until it
satisfies the input 'variable-list'. If the expected number of
data items are found, INPUT is complete. If more are needed,
INPUT displays another input buffer composed of 'number' dots,
and waits for further input.

Special Keys During INPUT

<ENTER> Ends the line at the current cursor position.
<ESC> Erases the line and starts over.
<SPACEBAR> Advances the cursor and types a blank space.
<BKSP> Backspaces the cursor and erases character.
<= Moves the cursor back without erasing.
-> Moves the cursor forward without typing
a space. '
<CTRL W> Erases to the end of line.
<CTRL 2> Erases to the end of input buffer.
<BREAK> Cancels input. The <BREAK> is not recognized
until you press <ENTER> or fill the input
buffer.
®
Radio fhaek

PAGE 6 - 87

MODEL II COMPILER BASIC BASIC KEYWORDS

TRS-80™

All other keys are accepted as data for the input line. Control
keys are echoed as '+/-', but are input correctly.

—— — ——— — —

INPUT A, B, C, D
Inputs values for the four variables listed.

INPUT AS$
Inputs .a string value for A$

Sample Program
10 REM k%% INPUT STATEMENT **¥
20 DIM NAMES$25
30 PRINT "ENTER DATA LIKE THIS: name, age"
40 INPUT NAMES$, AGES$
50 PRINT: PRINT "HERE'S HOW THE DATA WAS EVALUATED:"
60 PRINT "NAME: '"; NAMES; "'"
70 PRINT "AGE: '"; AGEg%; "'"
80 PRINT
90 GOTO 30

Input Stream Edit Process

——— —————— — ———— ——— T —— ——

Leading spaces are always ignored. Beyond that, the editing
process used depends on whether the target variable is string o