

An Overview of the Model 11
COBOL Documentation Package
This binder contains the information you need to use the
Radio Shack COBOL system. lt assumes you are familiar
with the general operation of the Computer, including use of
the TRSDOS operating 'system. The package includes three
manuals.

System User's Guide
Provides general information, start-up procedures,
compiler commands, creation and use of a minimal-system
runtime diskette, sample programs and sample session .

. CEDIT User's Guide
Describes how to create and edit COBOL source files, using
the COBOL editor CEDIT. Also includes instructions on using
the text printout utility COBPRT.

RSCOBOL Language Reference Manual
A complete description of the Radio Shack version of the
COBOL programming language. Newcomers to COBOL
should consult a standard COBOL textbook for tutorial
material.

TRS-80 Model II

COBOL USER'S GUIDE

MARCH, 1980

PREFACE

This document contains the information required to compile, run
and debug COBOL language programs on the Radio Shack TRS-80 Model
II Microcomputer under the TRSDOS Disk Operating System.

It assumes the reader is familiar with the COBOL Language, the
general operation of the TRS-80 Model II Microcomputer, and the
TRSDOS Operating System. The reader is specifically referr ed to
the following publications:

TRS-80 Model II COBOL Language Manual
TRS-80 Model II Operation Manual
TRS-80 Model II Disk Operating System Reference Manual

This guide is organized such that each chapter fully describes a
particul~r operational procedure. While the experienced user need
only refer to the appropriate chapter, it is recommended that the
first-time user read the complete guide prior to operation of the
COBOL system.

COPYRIGHT NOTICES

TRS-80 MODEL II COBOL
(C) (P) 1980 by Ryan-McFarland Corporation, Aptos, Californ ia
95003; Licensed to Tandy Corporation, Fort Worth, Texas 76102.
All rights reserved.

TRS-80 MODEL II TRSDOS DISK OPERATING SYSTEM (TRSDOS)
(C) (P) 1980 by Tandy Corporation. All rights reserved.

TRS-80 MODEL II COBOL SYSTEM USER'S GUIDE
(C) 1980 by Ryan-McFarland Corporation; Licensed to Tandy
Corporation. All rights rserved.

Reproduction or use, without express permission, of editorial or
pictorial content, in any manner, is prohibited. While e very
precaution has been taken in the preparation of this book , the
publisher assumes no responsibility for errors or omiss i ons.
Neither is any liability assumed for damages resu l ting fr om t he
use of the information contained here i n.

NOTICE TO PROGRAMMERS

By your purchase of the software product described in this book,
you have obtained a license to duplicate TRSDOS and Model II
COBOL only as necessary for your personal use.

If you intend
written for the
described below
copyr i ght laws .

to sell COBOL applications programs you have
TRS-80 Model II, you must follow the procedure
to avoid violation of this license and of the

The complete Radio Shack COBOL Development System (26-4703) •
includes the TRSDOS (TM) operating system, the RSCOBOL compiler,
the RUNCOBOL runtime and numerous auxiliary files.

RSCOBOL produces an intermediate code which can only be executed
by the runtime system RUNCOBOL. Therefore your compiled program
will require that the user have TRSDOS and RUNCOBOL from Radio
Shack.

Since you may not duplicate TRSDOS or RUNCOBOL for resale, you
have two options for selling a copy of your own program:

A. Purchase a RUNCOBOL/TRSDOS runtime system diskette (Catalog
Number 26-4704) from Radio Shack. Copy your compiled program
onto this diskette, and sell this diskette to your customer. The
copyright notices affixed to that diskette must not be removed
or hidden from view. For each copy of your program you sell in
this manner, you must purchase the 26-4704 diskette and copy
your program onto it.

B. Sell your compiled program without TRSDOS and without the
COBOL runtime. Instruct your customer to purchase a
RUNCOBOL/TRSDOS runtime from Radio Shack.

TABLE OF CONTENTS

Section Pa ge

CHAPTER 1 THE COBOL COMPILER . 1
1. 1 Compiler Overview . 1
1. 2 Device Assignments . 1
1. 3 Executing the Compiler 2

1. 3. 1 Compiler Options 3
1. 3 . 2 Compiler Messages 5
1 . 3. 3 Examples . 6

1. 4 The Program Listing 7
1. 4 . 1 Listing Diagnostics . 7
1. 4 . 2 Diagnostic Messages 8

CHAPTER 2 THE COBOL RUNTIME . 14
2. 1 Runtime Overview . 14
2 . 2 Device Assignments . 14
2 . 3 Executing the Compiled Program . 15

2 . 3. 1 Runtime Options . 16
2 . 3 . 2 Runtime Messages . 17
2 . 3. 3 Examples . 18

2.4 Runtime Diagnostics 19
2 . 5 File System Considerations . 23

2. 5 . 1 COBOL Sequential Files . 23
2. 5. 2 COBOL Relative Files . 24
2 . 5 . 3 COBOL Indexed Files . 24
2 . 5 . 4 COBOL Label Processing . 25

2 . 6 Runtime Memory Usage . 26

CHAPTER 3 INTERACTIVE DEBUG . 27
3 . 1 Debug Overview . 27
3 . 2 User Interaction and Display . 27
3. 3 Debug Commands . 27

CHAPTER 4 SYSTEM CONSIDERATIONS . 29
4 . 1 The ACCEPT and DISPLAY Statements . 29
4 . 2 The CALL Statement 30
4. 3 The COPY Statement . 31
4. 4 The WRITE .. . ADVANCING ZERO ... Statement 32

CHAPTER 5 INSTALLATION PROCEDURES . 33

APPENDIX A SAMPLE PROGRAMS , . 34

APPENDIX B SAMPLE SESSION · · · · 45

COBOL User's Guide (RSCOBOL 1. 2 >

•

CHAPTER 1

THE CODOL COMPILER

1 . 1 Compiler Overview

The CODOL Compiler operates on a 64K byte TRS-80 Model II
Microcomputer under the TRSDOS Operating System.

Once executed, the Compiler makes a single
program, generating obJect and listing files
completion it reports compilation results
returns control to TRSDOS.

pass on the source
concurrently. Upon
on the console and

Compilation always proceeds to the end of the program, regardless
of the number of source errors found.

A listing of the program is generated showing the original COBOL
source statements, error information, data allocation, Interactive
Debug information and, optionally, a Cross Reference of all
program labels and data items . This listing can be directed to
the Console, the Printer and/or a disk file.

The generated obJect file is in a form ready for immediate
execution by the CODOL Runtime. ObJect code is produced such that
an attempt to execute an erroneous statement will terminate
execution with an appropriate error message.

1.2 Device Assignments

All communication between the Compiler and the User is through the
system console .

During operation, the Compiler will require one or more of the
following devices :

Console compiler command input and compiler messages

Disk source input file

Disk listing file <optional>

Disk obJect file <optional>

Disk COPY input file (optional)

Console listing display <optional>

Printer listing print <optional>

COBOL User's Guide - 1 - <RSCODOL 1 . 2)

1. 3 Executing the Compiler

To compile a COBOL source program, issue the following command to
TRSDOS :

where :

filespec

options

RSCOBOL filespec {options} comment

is the file specification of the COBOL source file to be
compiled; of the form :

filename/ext . password : d(disket te name>

'filename' is required.

'/ext ' is an optional name-extension .
default '/CBL' is used .

When omitted, the

'.password' is an optional password . Note: If the file
was created with a nonblank password, '.password'
becomes a required field.

' : d' is an optional drive specification . When omitted,
the system does an automatic search, starting with drive
0.

'(diskette name>' is optional.
name checking is performed .

When omitted, no disk

allows the user to specify compiler and/or file options .
Each option must be specified as shown below, separated
by spaces . The left and right braces are required if
any comments are present .

When no options are
automatically generate
output.

specified, the
an obJect file

compiler will
but no listing

COBOL User's Guide -· 2 - <RSCOBOL 1.2)

1. 3.1 Compiler Options

D

E

L L=d

'A=' te 11 s
generates
printed.

the compiler whether or not the line printer
an automatic line - feed a~ter each line is

Specifying 'A=Y' indicates 'Yes', the line printer does
generate an automatic line-~eed; speci~ying 'A=N'
indicates , 'No', the line printer does not generate an
automatic line-~eed. Incorrect speci~ication will cause
either overprinting or double spacing.

The de~ault is 'A=Y', the normal operating mode of Radio
Shack Line Printers .

'D' instructs the compiler to compile all CODOL "Debug"
source lines, identified by a "D" in column 7. This
allows the user selective compilation of CODOL source
statements .

This option has no relationship to the CODOL Runtime
Interactive Debug facility and need not be speci~ied to
allow such debugging .

The default is to treat such lines as comments .

'E' instructs the compiler to generate an 'Error Only'
listing instead of a full listing . This option is
effective only when a listing has been specified (L, P
and/or T options) .

The listing
information.
appropriate
information.

generated will contain
all source lines in

undermarks and messages.

the page heading
error with their

plus all summary

The default is not to generate an error listing .

'L' indicates that the compiler listing is to be written
to a disk file with the name of the source file and a
filename-extension of '/LST' . The first available disk
is used .

Speci~ying a drive number (L=d) indicates that the
1 i s t in g f i 1 e i s to be wr i t ten to d i s k ' d ' .

The default is not to generate a listing file .

COBOL User's Guide - 3 - <RSCODOL 1.2>

~O=d O=N

T

X

'0' indictes that the Compiler object output is to be
written to a disk file with the name of the source file
and a filename-extension of '/COB' . The first available
disk is used .

Specifying a drive number <O=d> indicates that the
object file is to be written to disk 'd' . When omitted
the first available disk is used .

'O=N' indicates that no object file is to be generated.

The default is to generate an object file on the first
available disk.

'P' indicates that the listing is to be printed on the
printer.

The default is not to print the listing.

'T' indicates the listing is to be displayed on the CRT
(console).

The default is not to display the listing .

'X' indicates a cross-reference of COBOL Procedure and
Data Division names is to be produced . This option is
effective only when a listing has been specified (L, P
or T options) .

The default is not to generate a cross-reference.

COBOL User's Guide - 4 - <RSCOBOL 1 . 2>

•

1. 3. 2 Compiler Messages

Messages which report the compiler's status, or its ability to
complete the compilation process are reported on the system
console as they are detected .

TRS-80 Model II COBOL Compiler <RM/COBOL ver v . r>
Copyright 1980 by Tandy Corp . Licensed from Ryan-McFarland Corp.

Indicates that the compiler has been loaded and has begun to
c o mp i 1 e t h e s p e c i f i e d p r o gram. ' v er v. r ' i d en t i f i e s t h e
version <v> and revision (r) level of the compiler .

COMPILATION COMPLETE : eeee ERRORS, wwww WARNINGS

Indicates that the compilation has been completed. The
values of 'eeee' and 'wwww' indicate the number of errors and
warnings. respectively, identified in the source program.
This message is repeated on the listing.

PARAMETER ERROR AT: vvvvvvvv

Indicates that an unrecoverable
command to execute the compiler .
the offending field.

error was detected on the
'vvvvvvvv' will identify

The user should reenter the command with the necessary
corrections.

COMPILATION CANCELLED

Compiler can~elled by operator with BREAK key .

COBOL User's Guide - 5 - <RSCOBOL 1.2)

COMPILER ERROR, NO : nnnn

An internal error has occurred which prevents continued
compilation. The value of 'nnnn' identifies the condition
which caused the error .

0001 Pointer overflow
The user program has exceeded internal compiler
pointers. Segment the program and recompile. If this
problem still exists, separate programs into main
program with multiple subroutines .

0002 Roll memory overflow
The user program has exceeded available work space.
Segment the program and recompile .

0010 Unable to locate or load a compiler overlay .
Install the RSCBLnvr program overlays as described in
the chapter on 'Installation Procedures . '

1.3. 3 Examples

RSCOBOL PAYROLL {P X}

locates and compiles the source program PAYROLL/CBL, ~
producing an obJect file <PAYROLL/COB> on the first available
disk and a listing, with cross-reference, on the printer.

RSCOBOL MORTGAGE/SRC : 1 {L=2 O=N}

compiles the source program MORTGAGE/SRC located on the disk
in drive 1, producing a listing file <MORTGAGE/LST> on the
disk i n drive 2, and no obJect file .

COBOL User's Guide - 6 - (RSCOBOL 1. 2>

1 . 4 The Program Listing

The compiler
listings if
options>.
listing is

outputs 'source', 'allocati on', and 'summary'
a listing device or file is specified (L, P or T

When the 'X' option is specified, a 'cross-reference'
also produced .

The source l f sting includes a sequential line number, sentence
address, source image, and interspersed diagnostics.

The allocation listing includes the address, size, order, type,
and name of each identifier . The identifier names are indented to
show the record structure. <The order of an identifier is the
number of subscripts it requires).

The summary listing includes the number of errors, the number of
warnings, and the size of the program.

The cross-reference listing includes all identifier names in
alphabetical order, and the line number of each declaration,
source, and destination reference . The line number is surrounded
by slashes if the reference is a declaration; asteriks if the
reference is a possible modification . References to all
paragraphs and sections are included .

In all listings, numbers in decimal are represented as ddd ... d,
numbers in hexadecimal are represented as >dd ... d.

1. 4 . 1 Listing Diagnostics

Source constructs are checked for syntax and semantic errors as
they are scanned. Errors may cause interruption in scanning . In
this case, text is ignored until a recovery point is found and a
resume message is printed. Recovery points are chosen to minimize
the amount of unanalyzed text without producing irrelevent error
messages . In any case, the constructs at fault are undermarked
and error messages listed when the source line is printed. The
error message includes either E's or W's indicating error or
warning . For example:

004030 02 STOCK PlC 9(16>PPP COMPUTATIONAL.
$

***** l>PICTURE *E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E*E

Indicates a semantic number size error but

005040 02 PART PlC X<4BX<5>
$

SYNC .
$

***** l)SYNTAX *E
***** 2>SCAN RESUME *W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W

COBOL User's Guide - 7 - < RSCOBOL 1. 2 >

indicates a syntax error at the first undermark and a recover at
the second undermark .

The number preceding the error message is the undermark number,
counting from left to right. More than one message may refer to
the same undermark .

Global errors as undefined paragraph names and illegal
control transfers are listed with the program summary at the end
or the source listing .

such

1 . 4. 2 Diagnostic Messages

ACCESS CLASH
Nonsequential access given for sequential file.

BLANK WHEN ZERO

CLASS

COPY

BLANK WHEN ZERO clause given for nonnumeric or group
item .

The referenced
condition .

identifier is not valid in a class

COPY statement failed because of permanent error
associated with the undermarked file-name.

CORRESPONDING
The CORRESPONDING phrase cannot be used with the
referenced identifier .

DATA OVERFLOW

DATA TYPE

The data area <working-storage and literals) is larger
than 65535 bytes in length .

Context d oes not allow data type of the referenced
identif i er .

DEVICE CLASH
Random characteristics given to nonrandom device .

DEVICE TYPE
OPEN or CLOSE mode inconsistent with device type .

DOUBLE DECLARATION
Multiple declaration of a file or identifier attribute.

DOUBLE DEFINITION
Multiple definition of an identifier .

COBOL User's Guide - 8 -- < RSCOBOL 1. 2 >

•

DUPLICATE
Warning only . Multiple USE procedure declared for same
function or file .

FILE DECL ERROR
The referenced file-name is SELECTed and has an invalid
or missing file description <FD> .

FILE NAME ERROR
The referenced rile-name has an invalid external file
name declaration .

FILE NAME REQUIRED
File n a me not given as referenced in I/0 verb.

FILE RECORD KEY ERROR
The referenced file-name has a RECORD KEY which is
incorrectly qualified or is not defined as a data item
of the category alphanumeric within a record description
entry associated with that file name.

FILE RECORD SIZE ERROR
The referenced file-name has a declared record size
which conflicts with the actual data record descriptions
or is a relative organization file with variable length
records .

F ILE RELATIVE KEY ERROR
The referenced file-name has a RELATIVE KEY which is
incorrectly qualified, is defined in a record
description associated with that file-name, or is not
defined as an unsigned integer.

FILE STATUS ERROR

FILE TYPE

The referenced file-name
incorrectly qualified,
WOR~ING-STORAGE SECTION,
alphanumeric item.

Access or organization
undermarked statement .

has a status item which is
is not defined in the
or is not a two-character

of file conflicts with

FILLER LEVEL
A non-elementary FILLER item is declared .

GROUP CLASH
USAGE or VALUE clause of group member conflicts with
same clause for group.

GROUP VALUE CLASH
Warning Only . An item subordinate to a group with the
VALUE IS clause is described with the SYNCHRONIZED,
JUSTIFIED, or USAGE (other than USAGE IS DISPLAY>
clause .

COBOL User's Guide - 9 - <RSCOBOL 1 . 2>

IDENTIFIER
Identifier reference is incorrectly constructed or the
identifier has an invalid or double definition .

ILLEGAL ALTER
An ALTER statement references an unalterable paragraph
or violates the rules of segmentation .

ILLEGAL PERFORM

INVALID ID

A PERFORM statement
qualified paragraph
of segmentation.

reference undefined or incorrectly
or the reference violates the rules

The referenced identifier was not su ccessfully defined .

INVALID PARAGRAPH
Context does not allow section name.

JUSTIFY
JUSTIFY clause given in conflict with other attributes.

KEY REGUIRED

LABEL

LEVEL

LINKAGE

Relative key not declared for random access relative
file or record key not declared for indexed file .

~resence or absence of
device standards .

label record conflicts with

Level-number given is invalid either intrinsically or
because of position within a group.

An identifier in the USING clalJse of the PROCEDURE title
is not a linkage item or a statement references a
linkage item not subordinate to an identifier in the
USING clause of the PROCEDURE title.

LITERAL VALUE
Literal value given is incorrect in context.

MOVE
Operands of MOVE verb specify an invalid move .

MUST BE INTEGER
Context requires decimal integer.

MUST BE PROCEDURE
Context requires procedure name either as reference or
definition, or the reference must be a nondeclarative
procedure- name .

COBOL User's Guide - 10 - <RSCOBOL 1. 2>

MUST BE SECTION
Context requires procedure-name to be section.

NESTING
Illegal nesting or condition that is not an IF
condition .

NOT IN REDEFINE

OCCURS

VALUE IS clause given in REDEFINES item.

OCCURS clause given at invalid level or after three have
been given for the same item.

OCCURS DEPENDING ERROR
The referenced obJect of a DEPENDING phrase has not been
defined correctly.

OCCURS-VALUE CLASH
VALUE IS and OCCURS in effect for the same item.

PICTURE
Invalid PICTURE syntax.

PICTURE- BWZ CLASH
Zero suppression and BLANK WHEN ZERO cannot be in effect
for the same i tem.

PICTURE- USAGE CLASH
USAGE clause or implied usage conflicts with usage
implied by picture .

PROCEDURE INDEPENDENCE
PERFORM given for procedures in independent segments not
in the current segment .

PROGRAM OVERFLOW

RECORD KEY

The instruction area is larger than 32767 bytes in
length .

Record key declared for other than an indexed
organization file or a START statement KEY phrase
references a data item not aligned on the declared key's
leftmost byte .

RECORD REQUIRED

REDEFINES

Context requires record name .

REDEFINES given within an OCCURS or not redefining the
last allocated item.

COBOL User's Guide - 11 - <RSCOBOL 1. 2>

REDEFINES ERROR
The referenced data-name redefines an item which does
not have the same number of character positions and is
not level 01.

REFERENCE INVALID
Reference given is not valid in context .

RELATION
Operands of relation test are incompatible .

RELATIVE KEY
Relative key declared for other than a relative
organization file or a START statement KEY pharase
references a data item other than the declared key .

RESERVED WORD CONFLICT
A COBOL reserved word or symbol is given where a user
uJord is required . In the summary this is only a warning
about an ANSI COBOL reserved word that is not an
implemented COBOL reserved word .

SCAN RESUME
Warning only . Scanning was terminated at previous error
message and resumes at undermarked character .

SECTION CLASH

SEGMENT

SEPARATOR

SIGN

SlZE

SIZE ERROR

SUBSCRIPT

A VALUE IS clause appears
section .

in the FILE or LINKAGE

Warning
segment
number
segment

only . Segment numbe ·r
is not the same as the
of a new independent
number is used .

given in an independent
current segment or the
segment . The current

Warning only . Redundant punctuation or a separator is
not followed by the required space .

SIGN clause given in conflict with usage and picture .

Warning only.
context .

Size of data referenced not correct for

Declared
reference.

Incorrect
reference .

size of

number of

record conflicts with present

subscripts or indices for a

COBOL User's Guide - 12 - < RSCOBOL 1. 2 >

SYNC
Synchronized clause given for a group item

SYNTAX
Incorrect character or reserved word given for context .

UNDEFINED
File referenced in FD entry was not defined.

UNDEFINED DECLARATIVE PROCEDURE
A declarative statement references a procedure not
defined within the DECLARATIVES.

UNDEFINED PROCEDURE
A GO TO statement references an undefined or incorrectly
qualified paragraph.

USE REQUIRED
A DECLARATIVES section must begin with a USE statement .

USING COUNT
Warning only . The item count in
CALL statement is different from
reference to the same program name.

the USING list of a
that of the first

VALUE ERROR

VALUE

Value given i n VALUE IS required truncation of nonzero
digits .

VALUE IS clause given in conflict with other declared
attributes .

VARIABLE RECORD
Warning only . The INTO phrase is not allowed with
variable size records .

COBOL User's Guide - 13 - <RSCOBOL 1. 2>

CHAPTER 2

THE COBOL RUNTIME

2 . 1 Runtime Overview

The COBOL runtime operates on a 64K byte TRS-80 Model II
Microcomputer under the TRSDOS Operating System.

Once invoked, the runtime loads and executes the compiled obJect
program, automatically loading any required segments.
Concurrently, it allocates memory for file buffers, and CALLed
COBOL and Assembly Language subprograms. Upon completion
appropriate messages are displayed and control is returned to the
operating system.

2. 2 Device Assignments

All communication between Runtime and
system console .

the User is through the

During operation the Runtime will require one or more of the
following devices:

Console

Console

Printer

COBOL User's Guide

runtime command input, Interactive Debug
command input, and runtime messages .

ACCEPT and DISPLAY, and Interactive Debug
display.

PR I NT out p ut, i f required .

NOTE : For PRINT output, the device name
"PRINTER" must be specified in the
SELECT statement; i . e.

SELECT filename, ASSIGN to PRINT, "PRINTER".

- 14 - <RSCOBOL 1. 2>

2 . 3 Executing the Compiled Program

To execute a compiled COBOL object program. issue the following
command to TRSDOS :

where :

filespec

options

RUNCOBOL filespec {options} comment

is the specification of the compiled COBOL object file
to be executed of the form :

filename/ext . password : d <diskette name>

'filename' is required .

'/ext' is an optional name-extension .
d e fa u 1 t ' I COB ' i s used.

When omitted the

' . password' is an optional password. Note : If the fi l e
was created with a nonblank password, ' . password'
becomes a required field.

': d' is an optional drive specification. When om i tted
the system does an automatic search, starting with drive
0.

'(diskette name)' is opt i onal .
name checking is performed .

When omitted no d isk

allows the user to specify runtime options . Each op ti on
must be specified as shown below. separated by spa c es .
The left and right braces are required if any comments
are present .

When no options are specified. the runtime will execute
the User's program without Interactive Debug, with all
switches set to Q, using all of available memory.

COBOL User's Guide - 15 - <RSCOBOL 1 . 2>

2 . 3. 1 Runtime Options

D

S ::::nn . . n

T==hhhh

'A=' te 11 s the
generates an
printed (see
be 1 ow >.

runtime whether or not the line printer
automatic line-feed after ea c h line is

WRITE. . . ADVANCING ZERO LINES . .. statement

Specifying 'A=Y' indicates 'Yes', the line printer does
generate an automatic line-feed; specifying 'A=N'
indicates 'No ' ; the line printer does not generate an
automatic line-feed. Incorrect specification will cause
either overprinting or double spacing .

The default is 'A=Y', the normal operating mode of Radio
Shack Line Printers.

'D' invokes the RSCOBOL Interactive Debug package. See
RSCOBOL Interactive Debug discuss i on, below, for
operating instructions .

The default is not to invoke Interactive Debug .

'S' sets
program.

(or resets> the value of SWITCHES in the COBOL

Each ' n' is a swit c h v alue, 0
numbered 1 to 8 , l e f t to righ t .
not be specified .

for of-f,
Trail i ng

The default is to set a ll switc hes off (0) .

1 for
zeroes

on ,
need

'T' sets the top of available memo r y t o a value
different from the highest available add r ess . Th i s is
used to protect assembly language user sub rou tines , all
of which must be created to load above the hexadecimal
address 'hhhh '.

The default is to use all available memory.

COBOL User's Guide - 16 - <RSCOBOL 1 . 2)

2 . 3 . 2 Runtime Messages

Messages which report the
execute the COBOL program,
they are detected .

runtime's status,
are reported on the

or its ability to
system console as

TRS- 80 Model II COBOL Runtime <RM/COBOL ver v. r>
Copyright 1980 by Tandy Corp . Licensed from Ryan-McFarland Corp.

Indicates that the runtime has been loaded and has begun to
execute the specified program. 'ver v.r' identifies the
version <v> and revision (r) level of the runtime.

COBOL STOP RUN AT xxyyyy IN nnnnnn

This is the normal termination message of a program.

'xxyyyy' identifies the overlay <xx>
<yyyy> where the program terminated .
six characters of the PROGRAM-ID.

If Debug was invoked on the command
command may be u s ed to cause Debug to
s ystem.

COBOL STOP literal AT xxyyyy IN nnnnnn
CONTINUE <YJN>?

and statement address
'nnnnnn' are the first

line, an 'S' Debug
exit to the operating

This message indicates that a STOP 'literal' statement has
been encountered . 'xxyyyy' identifies the overlay (xx> and
statement address <yyyy> where the program terminated.
' nnnnnn' are the first six characters of the PROGRAM-ID .

Responding with a 'Y' will be the equivalent of a "pause"
statement, returning control to the next COBOL statem~nt.

An 'N' response will cause all program files to be closed and
control will be returned to the operating system.

COBOL User's Guide - 17 - <RSCOBOL 1 . 2>

2 . 3. 3 Examples

RUNCOBOL PAYROLL {S=1011}

locates, loads, and executes the compiled
PAYROLL/COB; and sets the value of SWITCHES 1 ,
all others 'off'' .

RUNCOBOL MORTGAGE/TST : 2 {D}

COBOL program
3, and 4 'on',

loads the compiled COBOL program MORTGAGE/TST from drive 2
along with the Interactive Debug package . Control is passed
directly to Debug.

COBOL User's Guide - 18 - (RSCOBOL 1. 2 >

2. 4 Runtime Diagnostics

Diagnostic messages are displayed on the console if an internal
erT·or occurs, or if an I/0 error occurs that was not, or could
not, be processed by an appropriate USE procedure .

If Debug was invoked, Debug will be entered to allow examination
of program data values; otherwise, control will return to the
operating system.

COBOL error AT xxyyyy IN nnnnnn

Indicates an internal error condition has occurred, where
'error' identifies the error condition . 'xxyyyy' identifies
the overlay <xx) and statement address <yyyy> where the
program terminated . 'nnnnnn' are the first six characters of
the PROGRAM-ID .

COBOL filename ID ERROR = cc AT xxyyyy IN nnnnnn

Identifies that an abnormal I/0 condition, 'cc' has caused
the program to be aborted . 'xxyyyy' identifies the overlay
<xx) and statement address <yyyy> where the program
terminated. 'nnnnnn' are the first 6 characters of the
PROGRAM-ID.

The I/0 error 'cc' has a different meaning depending on
whether the file's organization is sequential, relative or
indexed.

Sequential Files:

10 AT END.
The sequential READ statement was unsuccessfully executed
as a result of an attempt to read a record when no next
logical record exists in the file.

30 PERMANENT ERROR .
The input-output statement was unsuccessfully executed as
the result of an input-output error, such as data check
parity error, or transmission error. May also indicate
attempted execution of an instruction not implemented in
the runtime <REWRITE to a variable length record (VLR>
file; CLOSE REEL> .

34 PERMANENT ERROR BOUNDARY VIOLATION.
The input-output statement was unsuccessfully executed as
the result of a boundary violation for a sequential file.

COBOL User's Guide - 19 - <RSCOBOL 1 . 2>

90 INVALID OPERATION.
An attempt has been made to execute a READ, WRITE, or
REWRITE statement that conflicts with the current open
mode or a REWRITE statement was not preceded by a
successful READ statement .

91 FILE NOT OPENED.
An attempt has
START, UNLOCK,

been made to
WRITE, REWRITE

file which is not currently open .

92 FILE NOT CLOSED.

execute a DELETE, READ,
or CLOSE statement on a

An attempt has been made to execute an OPEN statement on
a file which is currently open .

93 FILE NOT AVAILABLE.
An attempt has been made to execute an OPEN statement for
a file closed with LOCK .

94 INVALID OPEN.
An attempt has been made to execute an OPEN statement for
a file with no external correspondence or a file having
inconsistent parameters .

95 INVALID DEVICE.
been made to execute a CLOSE REEL

execute an OPEN statement for a file
to a device in conflict with the
device. Valid combinations are:

An attempt has
statement, or to
which is assigned
externally assigned

Program Assignment External Assignment

RANDOM Disk

INPUT Disk

OUTPUT Disk

PRINT Disk, line printer

INPUT-OUTPUT Disk

96 UNDEFINED CURRENT RECORD POINTER STATUS.
An attempt has been made to execute a READ statement
after the occurrence of an unsuccessful READ statement
without an intervening successful CLOSE and OPEN.

COBOL User's Guide - 20 - (RSCOBOL 1. 2)
•

97 INVALID RECORD LENGTH .
An attempt has been made to execute a REWRITE statement
when the new record length is different from that of the
record to be rewritten, or to OPEN a file that was
defined with a maximum record length different from the
externally defined maximum record length, or to execute a
WRITE statement that specifies a record with a length
smaller than the minimum or larger than the maximum
record size .

Relative and Indexed Files :

10 AT END.
The Format 1 READ statement was unsuccessfully executed
as a result of an attempt to read a record when no next
logical record exists in the file .

21 SEGUENCE ERROR FOR A SEGUENTIALLY ACCESSED INDEXED FILE .
The ascending sequence requirement of successive record
key values has been violated or the record key value has
been changed by the COBOL program between the successful
execution of a READ statement and the execution of the
next REWRITE statement for that file .

22 DUPLICATE KEY VALUE.
An attempt has been made to
create a duplicate key on a
duplicates .

23 NO RECORD FOUND.

WRITE
file

a record that would
that does not allow

An attempt has been made to access a record, identified
by a key, and that record does not exist in the file .

24 BOUNDARY VIOLATION .
An attempt has been made to WRITE beyond the
ext~rnally-defined boundaries of a file .

30 PERMANENT ERROR .
The input-output statement was unsuccessfully executed as
the result of an input-output error, such as data check,
parity error, or transmission error .

90 INVALID OPERATION.
An attempt has been made to execute a DELETE, READ,
REWRITE, START, or WRITE statement which conflicts with
the current open mode of the file or a sequential access
DELETE or REWRITE statement not preceded by a successful
read statement .

91 FILE NOT OPENED.
An attempt has been made to execute a CLOSE, DELETE,
READ, REWRITE, START, UNLOCK, or WRITE statement on a
file which is not in an open mode.

COBOL User's Guide - 21 - <RSCOBOL 1.2>

92 FILE NOT CLOSED.
An attempt has been made to execute an OPEN statement on
a file that is currently open .

93 FILE NOT AVAILABLE .
An attempt has been made to execute an OPEN statement on
a file closed with LOCK. . . 1 Fo-z"'"' r::-::-:;, f. ['-17. r..- fs oe_ 0<'5 .s"" (V/<C"6

/ '::_ '';; ,-;: OGR AM oy>x->'' <Y 0...0 1-0 <\-- No A..< -, a.-

94 INVALID OPEN. o R fp_oGQAv"" AbwtED -+ tiuoi\Tc1,sc k:.-4.
An attempt has been made to execute an OPEN statement for
a file with no external correspondence or a file having
i ne ons is tent parameters. l-rn~.~-1· , j 'f.

cY< St ~L~ ~ p:l.e_ tV().wJ. ~ ~ U. -·-'V"'• 'f 'K-'f..'J..j XX
95 INVALID DEVICE.

An attempt has been made to execute an OPEN statement on
a file whose device description conflicts with the
externally assigned device. The device must be RANDOM
and the external correspondence must be a disk.

96 UNDEFINED CURRENT RECORD POINTER .
An attempt has been made to execute a Format 1 READ
statement when the current record pointer has an
undefined state . This can occur only as the result of a
preceding unsuccessful READ or START statement.

97 INVALID RECORD LENGTH.
An attempt has been made to execute a REWRITE statement
and the new record length is different from that of the
record to be rewritten, or to OPEN a file that was
defined with a maximum record length different from the
externally defined maximum record length, or to execute a
WRITE statement that specifies a record with a length
smaller than the minimum or larger than the maximum
record size .

98 INVALID INDEX .
An input-output statement on an indexed organization file
was unsuccessful as a result of invalid data in the
index . This can result if the externally assigned file
is not an index organization file or if an undetected
input-output error has occurred.

COBOL User's Guide - 22 - < RSCOBOL 1. 2 >

2 . 5 File System Considerations

Three types or riles are supported by COBOL: sequential, relative
<random), and indexed sequential. These riles exist on the disk
as standard Model II TRSDOS disk riles, consisting of either fixed
length records <FLR>, or variable length records <VLRs>. While
the user will not typically need this information to execute COBOL
programs, he is referrred to the Technical Information Section of
the TRS-80 Model II Disk Operating System Reference Manual if
further information is desired.

Files are specified in the user's program SELECT statement in a
manner consistent with the TRSDOS filespec, or the form:

where:

rilename/ext . password : d(diskette name)

'filename' is required.

'/ext' is an optional name-extension .

1 • password I is an optional password . Note : If the rile
was create d with a nonblank password, ' . password'
becomes a required field.

' : d' is an optional drive specification. When omitted
the system does an automatic search, starting with drive
0.

'(diskette name>' is optional.
name checking is performed .

When omitted no disk

2. 5 . 1 COBOL Sequential Files

COBOL s~quential files consist of a serially accessible set or
'logical' records. These 'logical' records may exist on the disk
as either variable length <VLR> or fixed length <FLR) records .

COBOL sequential riles that are 'created' by a COBOL program
(i.e., do not already exist), are created as variable length <VLR>
records. Each 'logical' record within the rile can have a maximum
length or 255 bytes .

COBOL sequential riles that were 'created' by other than a COBOL
program can have either fixed length <FLR> or variable length
<VLR> records. In this case, the COBOL Runtime will process the
records as presented. Each 'logical' record can have a maximum
length of 255 bytes <VLR> or 254 bytes <FLR>.

COBOL User's Guide - 23 - <RSCOBOL 1. 2>

NOTE: The REWRITE statement is not valid for variable length
records <VLR's), and will generate an appropriate error message if
executed .

2. 5. 2 COBOL Relative Files

COBOL relative files are addressable randomly by
number . These files can only exist on the disk
(FLR) records .

'logical' record
as fixed length

COBOL relative rile 'logical' records are internally formatted,
and can be created and/or accessed only by COBOL programs. Each
'logical' record can have a maximum length of 254 bytes.

COBOL relative files are dynamically allocated or extended as
required by TRSDOS. If the user desires to preallocate the file,
allocate it using the CREATE program of TRSDOS, with options shown
be 1 ow :

TYPE = F (fixed length records)

LRL = 256 <record length = 256 bytes)

(record length +2) * (max # records)
NRECS =

256

2. 5 . 3 COBOL Indexed Files

COBOL indexed files
runt ime; imp 1 emented
records.

are created and maintained
on the disk using TRSDOS fixed

by the COBOL
length <FLR>

COBOL indexed files are internally formatted, and can be created
and/or accessed only by COBOL programs. Each 'logical' record can
have a maximum length of 4096 bytes.

Indexed files contain an index structure for each key specified
interspersed with the data records. The use of ALTERNATE KEYS can
cause a geometric increase in the time required to create the
file; however, access time will be relatively constant throughout
the rile .

COBOL User's Guide - 24 - <RSCOBOL 1. 2>
•

COBOL indexed files are dynamically allocated or extended as
required by TRSDOS. If the user desires to preallocate the file,
allocate it as shown below : 0 ~ \1\'SI.f'\G TR'S.Do.S '' c..R.EAie '' C.oMMA'I\U

where :

TYPE = F (fixed length records)

LRL = 256 <record length = 256 bytes)

<L + <2 * T>> * R
NRECS =

8

L = number of 32 byte records required to cover the
maximum length record

K = 8 * number of key fields in record

s = sum total of all key field lengths

T = number of 32 byte records required to cover <K+S>

R = maximum number of records expected in file

Notes : This calculation provides an approximation for
preallocating the file . TRSDOS will extend the
file as necessary to the physical limits of the
disk.

2 . 5 . 4 COBOL Label Processing

The COBOL language allows the specification of the existance, and
processing, of Label records on file type devices .

TRSDOS provides automatic maintenance and validatior of
specifications by name and file type . No additional
processing is performed unique to COBOL programs or files.

file
Label

References to Label processing in the file description entry <FD>,
OPEN statement, and CLOSE statement, are checked for correct
syntax by the compiler. They are largely ignored by the runtime
except that appropriate error codes will be returned, and any
applicable USE procedures will be executed .

COBOL User's Guide - 25 - < RSCOBOL 1. 2 >

2 . 6 Runtime Memory Usage

The TRSDOS Operating System occupies lower memory from location
OOOOH to 02800H. The CODOL Runtime is loaded starting at 02800H.
The remaining memory is allocated as follows :

The main CODOL object program is loaded immediately behind
the CODOL Runtime . Space for CODOL overlays <SECTIONS
greater than 50) are included in this area .

Additional COBOL programs are loaded behind this main program
as they are CALLed <See the CALL statement below> .

Assembly Language programs are loaded in high memory at the
address they were assigned at ' DUMP' times <See Runtime
'T=hhhh' option) .

File buffers are dynamically allocated from high memory
downward, when OPENed , deallocated (space recovered for use
by other files) when CLOSEd .

CODOL User's Guide - 26 - CRSCODOL 1.2)
•

CHAPTER 3

INTERACTIVE DEBUG

3 . 1 Debug Overview

COBOL Interactive Debug is dynamically loaded when the user
specifies the 'D ' option on the RUNCOBOL statement . Debug is then
given control and supervises the execution of the user's program.

Interactive Debug is loaded directly behind COBOL Runtime,
requiring approximately 1000 bytes .

3 . 2 User Interaction and Display

All Debug commands,
system console .

and all resultant displays, are through the

Debug will request command input by a prompt of the form

nnnnnn xxyyyy

where 'nnnnnn' are the first 6 characters of PROGRAM-ID, 'xx' is
the overlay number, and 'yyyy' is the hexadecimal location within
the specified overlay that will be executed next .

The values of ' xx' and 'yyyy' are taken directly from the Debug
column in the source listing for program 'nnnnnn'.

3. 3 Debug Commands

All commands are specified by a single character, optionally
followed by one or more arguments . Optional fields are shown
surrounded by brackets; the brackets are never entered. All
numeric arguments are in hexadecimal unless otherwise noted.

Invalid commands will be reJected with 'ERROR' displayed;
corrected input will be requested with a reprompt.

A[xxJyyyy[,nnnnnnJ Ad dress stop .

Executes obJect instructions until overlay number 'xx' and
location 'yyyy' in program nnnnnn is to be executed . Debug
will regain control immediately prior to the execution of the
specified COBOL sentence, and request further command input .

COBOL User's Guide - 27 - <RSCOBOL 1.2>

S[nJ

If 'xx' is specified . 'yyyy' mu st be fully four hexadecimal
digits; if 'xx' is not specified . then leading zeros are not
required for 'yyyy ' . If 'nnnnnn ' is omitted , it is assumed
to be the f i rst six character s of the program-id of the
currently executing program.

Single step sentence.

Execute 'n' COBOL sentences and return to the debug mon i tor .

The decimal argument ' n' spe c ifies the number of COBOL
sentences to be executed before returning the Debug.

Dxxxx . yyyyL ttttJ Dump by type .

E

Display the COBOL data item starting at hexadecimal location
'xxxx' of decimal length 'yyyy' and type 'tttt' . The values
for 'xxxx', 'yyyy ' , and ' tttt' are directly from the f irst
three columns of the allocation map . 'tttt' may be one of
the following :

NSU NPS
NSS ABS
NCU ANS
NCS GRP
NBS ANSE
NSE HEX (hexadecimal>

Dump Display has the format :

xxxx tttt dddd . ..

where dddd = data in the specified format

Note : Only
displayed .

items in the currently executing program can be
This does not include linkage items .

Quit Execution.

Terminate Debug and force an immediate STOP RUN.
to return to TRSDOS.

Exit

Enter 'S'

Exit the Debugger. Continue normal execution as if the
ebugger had not been invoked on the command line .

COBOL User's Guide - 28 - < RSCOBOL 1. 2 >
•

CHAPTER 4

SYSTEM CONSIDERATIONS

4 . 1 The ACCEPT and DISPLAY Statements

The ACCEPT and DISPLAY statements support the transfer of data
between the console and the User's prdgram data area . These
statements allow the specification of general phrases which may
not be supported on every CRT.

Phrases which are not supported will compile correctly, but will
be ignored at runtime, causing no operation to take place . The
phrases which are not supported under the Tandy Model II are :

ACCEPT HIGH, LOW, BLINK.

DISPLAY HIGH, LOW, BLINK.

The ON EXCEPTION phrase of the ACCEPT statement is executed when
an invalid character is entered . Invalid characters include the
valid control characters <CNTR/n) below 020H, and non-ASCI!
characters above and including 080H.

When an invalid character is entered, its ASCII equivalent is
placed in the specified data-name and the ON EXCEPTION phrase is
executed. To determine which control character was entered,
define the data-name as USAGE COMPUTATIONAL-! and compare for its
ASCII value .

Certain keys affect
including :

the operation of the ACCEPT statement,

BACKSPACE

ESC

COBOL User's Guide

Erases the current character and moves the
cursor back one position .

Backspace to the beginning of the field,
erasing all characters in the field .

- 29 - <RSCOBOL 1. 2)

4.2 Th e CALL Stat emen t

When 'CALLed' t h e fi r st t ime , COBOL and Assembly Language programs
are loaded by Run t ime a n d en tered at their initial location .
T hese 'called' pro grams rema in in memory as long as the 'calling'
p r ogram is active; i.e., has n o t EXITed . Therefore, subsequent
CALLs from th e 'c a lling' prog r a m wi ll enter the ' called' program
directly , without requiring the ' called ' program to be reloaded .

Once the 'calling' pr o gra m ha s EXITed, all related 'called'
p r ograms are discarded an d will be reloaded if subsequently CALLed
b y any program, inclu d ing the previous ' calling' program.
Regardless or the sequence o f 'call ed ' and 'calling ' programs, all
r e la ted files not explicitly cl osed are forced closed by the
i n t erface upon EXIT from a given 'c a ll ed' program.

COBOL program$ that are to be CALLed must have been previously
compiled . The def a ult f i l e n a me-extension for a program name in a
CALL sta tement is '/COB '. A compiled COBOL program will have the
r equired extension. If t h e e xtension used is not '/COB' , then it
must be specified i n th e CALL statement .

Assembly language programs t hat a r e to be CALLed must be in TRSDOS
LOAD command forma t as cr ea t e d by DUMP , with a filename extension
o ther than '/COB' . Assembly language programs must res i de in high
me mory, and the 'T=nnnn' option must be specified on the Runtime
command line to pr o t ect all memory required by the routine. The
user is responsi b l e for e n s uri ng that the assembler programs do
not interfere with ea ch oth er .

Assembly language p r o g r ams ar e loaded and reused while the
If the COBOL ' calling'

the assembler program will
' calling ' program r esi d es in memory .
program is r e loaded in memory , then
again be r e l oa d e d whe n i t is called .

At entry t ime t o a n a s s embly-l anguage routine register IX points
to the para meter l is t d e fin e d by the USING clause of the CALL
statement. The fi r st wo rd on the l i st contains the number of
bytes in the lis t . S u b s equen t words are addresses or the USING
argument s : e . g., i f the length wo r d specifies 6 bytes, there are 2
addresses f oll ow i ng the length word . For example:

<IX> => DW Argumen t List Length <n * 2 + 2>
DW USI NG Argument 1
DW USING Argumen t 2

DW USING Argument n

The fo rmat
defi n i t i on;

of
s ee

each argument depends on its dataname PICTURE
the COBOL Language ManuaL 'the PICTURE Clause'.

At e x i t time fr om an assembler routine,
non-z ero t o request a S TOP RUN.

COBOL User ' s Guide 30 -

register A may be set ~

(RSCOBOL 1. 2 >

4. 3 The COPY Statement

The COPY statement provides the facility to copy (include) COBOL
source text from a user-specified file into the source program.
The complete file is copied into the program. without change, at
the location of the COPY statement.

The file to be copied is identified in the COBOL program by the
statement

COPY filename

OT'

COPY "filename/ext. password : d(diskette name)"

where:

'filename' is required .

'/ext' is an optional name-extension.
default '/CBL : is used .

When omitted the

'.password' is an optional password . Note: If the file
was created with a nonblank password. '.password'
becomes a required field.

': d' is an optional drive specification . When omitted
the system does an automatic search. starting with drive
0 .

'(di!>kette name)' is optional.
name checking is performed .

When omitted no disk

A filename consisting only of letters and numbers (first character
must be letter> can be written without surrounding quotes . All
other forms must be surrounded by quotes.

Ex amp 1 es :

IDENTIFICATION DIVISION.
COPY STDID.

ENVIRONMENT DIVISION.
COPY "STDENVIR/TST".

DATA DIVISION.
COPY "STDDATA/CBL: 1" .

COBOL User's Guide - 31 - <RSCOBOL 1. 2>

4 . 4 The WRITE . .. ADVANCING ZERO . . . Statement

The sequential
positioning of
ph r a s e .

WRITE statement allows control of
each line on the printed page with

the vertical
the ADVANCING

The . . . ADVANCING ZERO LINE<s> . . . phrase allows ove·rprinting on
those print devices which support this feature. In all cases , the
phrase will compile correctly, but may operate as though
... ADVANCING 1 LINE. .. was specified.

Standard Radio Shack Line Printers automatical l y advance after
each line is printed . Therefore, the . . . ADVANCING ZERO LINES . . .
phrase will execute as ADVANCING 1 LINE. The Compiler and
Runtime defaults (see ' A=Y' options> to standard Radio Shack Line
Printer operation. For use with line printers that a l low
overprinting, specify the 'A=N' option on the command line when
executing the compiler or runtime .

COBOL User's Guide - 32 - <RSCOBOL 1. 2)

CHAPTER 5

INSTALLATION PROCEDURES

Installation of RSCOBOL requires only that the object modules be
copied from the Software Distribution Disk to the appropriate user
d i s k et t e . NOTE : 'n n ' in d i cat e s the c u r rent re 1 ease 1 eve 1 , i . e. ,
release 1.2 will be '12' .

The modules required to compile CDBOL programs are:

RSCOBOL
RSCBL2nn/OBJ
RSCBL3nn/OBJ
RSCBL4nn/OBJ

The modules required to execute compiled COBOL programs are:

RUNCOBOL
RSCBLDnn/OBJ

As with all Software Distribution Disks, the user should save it
in a secure location in case re - creation is required .

COBOL User's Guide - 33 - <RSCOBOL 1 . 2>

APPENDIX A

SAI'1PLE PROGRAI'1S

Both of the following two programs are included on the RSCOBOL
diskette.

The first program,
output, and basic
working program.

CALCXMPL, demonstrates keyboard input, video
arithmetic operation under RSC OBOL. It is a

The second program, ERRXMPL, is included solely to illustrate h ow
the compiler handles various errors. It is not a working program.

COBOL User's Guide - 34 - < RSCOBOL 1. 2 >

TRS-80 Model II COBOL CRM/COBOL 1.21
SOURCE FILE: CALCXMPL

3/28/80 16.28.56 PAGE
OPTION LIST: IL 0 T X

LINE DEBUG PG/LN

1 000000
2 000010
3 12100020
4 000030
5 12100040
6 000050
7 000060
8 000070
9 00008121

10 000090
11 000100
12 000110
13 000120
14 000130
15 000140
16 000150
17 000160
18 000170
19 000180
20 000190
21 000200
22 000210
23 000220
24 000230
25 000240
26 000250
27 00026121
28 000270
29 (2)00280
30 000290
31 000300
32 000310
33 000320
34 000330
35 000340
36 000350
37 000360

A ••• B • • •• ID ..•

IDENTIFICATION DIVISION.
PROGRAM-ID.

CALCULATOR.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER. RMC.
OBJECT-COMPUTER. RMC.

DATA DIVISION.
WORKING-STORAGE SECTION.
77 RESULT PICTURE S9C9lV9C9l VALUE ZERO.
77 OPERAND-1 PICTURE S9C9lV9C9l.
77 OPERAND-2 PICTURE S9C9lV9C9l.
77 WAIT-CHAR PICTURE X.
01 GREETING.

02 FILLER PICTURE XC18l
VALUE "CALCULATOR PROGRAM".

01 OPERATION-MESSAGE.
02 FILLER PICTURE XC37l

VALUE "CHOOSE YOUR OPERATION (+,-•*•1>
01 OPERATOR PICTURE XC2l.
01 RESULT-MESSAGE.

02 FILLER PICTURE XC12l
VALUE "RESULT IS = ".

02 RESULT-EDITED PICTURE -C9l9.9C9l.
02 FILLER PIC XC4l VALUE SPACES.
02 OVERFLOW-FIELD PlC XC8l VALUE SPACES.

01 WAIT-MESSAGE.
02 FILLER PICTURE XC36l

VALUE "HIT NEWLINE TO CONTINUE CQ TO QUIT) "
01 OPERAND-1-MESSAGE.

02 FILLER PICTURE XC12l
VALUE "OPERAND-1 = ".

01 OPERAND-2-MESSAGE.
02 FILLER PICTURE XC12l

VALUE "OPERAND-2 = "

TRS-80 Model II COBOL IRM/COBOL 1.2)
SOURCE FILE: CALCXMPL

3/28/80 16.28 . 56 PAGE
OPTION LIST: IL 0 T X

2

LINE DEBUG PG/LN A ... 8 ••••••••••••••.••••••• • ••••••••••••••••• • •.••••••••••••••••• ID

38 000370/ EJECT
39 000380 PROCEDURE DIVISION.
40 >0000 000390 RESIDENT SECTION 1.
41 >0000 000400 NOT-START.
42 >0000 000410 GO TO DISPLAY- GREETING.
43 >0004 000420 RE-TRY.
44)0004 000430 DISPLAY OPERATION-MESSAGE, LINE 2• ERASE.
45 >000C 000440 ACCEPT OPERATOR, POSITION 0, PROMPT• ECHO.
46 >0014 000450 IF OPERATOR EQUAL "+ " GO TO ADDITION.
47) 001C 000460 IF OPERATOR EQUAL " GO TO SUBTRACTION.
48 >0024 000470 IF OPERATOR EQUAL "* " GO TO MULTIPLICATION.
49 >002C 000480 IF OPERATOR EQUAL "/ " GO TO DIVI-SION.
50 >0034 000490 IF OPERATOR EQUAL "Q " GO TO END-RUN.
51 >003C 000500 GO TO RE-TRY.
52 >003E 000510 DISPLAY-RESULT.
53) 003E 000520 MOVE RESULT TO RESULT-EDITED.
54 >0042 000530 DISPLAY RESULT-MESSAGE.
55 >0046 000540 MOVE ZERO TO RESULT.
56 >004A 000550 MOVE SPACES TO OVERFLOW-FIELD.
57 >0050 000560 WAIT-ENTRY.
58)0050 000570 DISPLAY WAIT-MESSAGE.
59 >0054 000580 ACCEPT WAIT-CHAR, POSITION 0, PROMPT, ECHO.
60 >005C 000590 IF WAIT-CHAR EQUAL "Q" GO TO END-RUN.
61 >0064 000600 GO TO RE-TRY.
62 >0066 000610 GET-OPERANDS.
63 >0066 000620 DISPLAY OPERAND-1-MESSAGE, LINE 4.
64 >006C 000630 ACCEPT OPERAND-1, LINE 4, POSITION 13, SIZE 10,
65 000640 PROMPT, CONVERT.
66)0078 000650 MOVE OPERAND-i TO RESULT-EDITED .
67) 007C 000660 DISPLAY RESULT-EDITED, LINE 4, POSITION 13.
68 >0084 000670 DISPLAY OPERAND-2-MESSAGE.
69 >0088 000680 ACCEPT OPERAND-2 , LINE 5, POSITION 13• SIZE 10,
70
71
72
73
7 4
75
76

000690
)0094 000700
)0098 000710
>00A2 000720
>00A2 000730
>00A6 000740
>00A6 000750

PROMPT, CONVERT.
MOVE OPERAND-2 TO RESULT-EDITED.
DISPLAY RESULT-EDITED, LINE 5, POSITION 13.

END- RUN.
EXIT PROGRAM.

STOP-RUN.
STOP RUN.

TRS-80 Model II COBOL IRM/COBOL 1.2)
SOURCE FILE: CALCXMPL

3/28/80 16.28.56 PAGE
OPTION LIST: CL 0 T X

3

LINE DEBUG PG/LN A ... B•.••..•••...•.....••....••..•.....•...•.•..••....•••.. ID •...

77 000760/
78)0100A8 000770
79>0100A8 000780
80>0100A8 000790
81>0100AA 000800
82 000810
83)0100B8 000820
84 000830
BS>0200A8 000840
86)0200A8 000850
87>0200A8· 000860
88>0200AA 000870
89 000880
90>0200B8 000890
91 000900
92>0300A8 000910
93>0300A8 000920
94>0300A8 000930
95>0300AA 000940
96 000950
97)0300B8 000960
98 000970
99>0400A8 000980

100>0400A8 000990
101>0400A8 001000
102>0400AA 001010
103 001020
104>0400BA 001030
105 001040
106>0500A8 001050
107>0500A8 001060
108)0500A8 001070

EJECT
OVERLAY-ADDITION SECTION 51.
ADDITION.

PERFORM GET-OPERANDS.
ADD OPERAND-! OPERAND-2 GIVING RESULT

ON SIZE ERROR MOVE "OVERFLOW" TO OVERFLOW-FIELD.
GO TO DISPLAY-RESULT.

OVERLAY-SUBTRACTION SECTION 52.
SUBTRACTION.

PERFORM GET-OPERANDS.
SUBTRACT OPERAND~2 FROM OPERAND-! GIVING RESULT

ON SIZE ERROR MOVE "OVERFLOW" TO OVERFLOW-FIELD.
GO TO DISPLAY-RESULT.

OVERLAY-MULTIPLICATION SECTION 53.
MULTIPLICATION.

PERFORM GET-OPERANDS.
MULTIPLY OPERAND-! BY OPERAND-2 GIVING RESULT

ON SIZE ERROR MOVE "OVERFLOW" TO OVERFLOW-FIELD.
GO TO DISPLAY-RESULT.

OVERLAY-DIVISION SECTION 54.
DIVI-SION.

PERFORM GET-OPERANDS.
DIVIDE OPERAND-! BY OPERAND-2 GIVING RESULT ROUNDED

ON SIZE ERROR MOVE "OVERFLOW" TO OVERFLOW-FIELD.
GO TO DISPLAY-RESULT.

OVERLAY-DISPLAY-GREETING SECTION 98.
DISPLAY-GREETING.

DISPLAY GREETING.
109)0500AC
110

001080 GO TO WAIT-ENTRY.
001090

111 001100 END PROGRAM.

TRS-812l Model I I COBOL <RM/COBOL 1. 2) 3/28/812l 16.28.56 ·· PAGE 4
SOURCE FILE: CALCXMPL OPTION LIST: {L 0 T X

ADDRESS SIZE DEBUG ORDER TYPE NAM

>12ll2ll2l4 19 NSS l2l NUMERIC SIGNED RESULT

>12ll2l18 19 NSS l2l NUMERIC SIGNED OPERAND-1

>12ll2l2C 19 NSS l2l NUMERIC SIGNED OPERAND-2

>12ll2l412l ANS l2l ALPHANUMERIC WAIT-CHAR

>12ll2l42 18 GRP l2l GROUP GREETING

>12ll2l54 37 GRP l2l GROUP OPERATION-MESSAGE

>12ll2l7A 2 ANS l2l ALPHANUMERIC OPERATOR

>12ll2l7C 44 GRP l2l GROUP RESULT-MESSAGE
>12ll2l88 212l NSE l2l NUMERIC EDITED RESULT-EDITED
>12ll2lAI2l 8 ANS l2l ALPHANUMERIC OVERFLOW-FIELD

>12ll2lA8 36 GRP l2l GROUP WAIT- MESSAGE

>12ll2lCC 12 GRP l2l GROUP OPERAND-1-MESSAGE

>12ll2lD8 1 ~, ..,_ GRP l2l GROUP OPERAND-2-MESSAGE

READ ONLY BYTE SIZE >12l1BE

READ/WRITE BYTE SIZE >12ll2lEC

OVERLAY SEGMENT BYTE SIZE >12ll2l2E

TOTAL BYTE SIZE >12l2D8

l2l ERRORS

l2l WARNINGS

TRS-80 Model I I COBOL <RM/COBOL 1. 2) 3/28/80 16.28.56 PAGE 5
SOURCE FILE: CAL CX MPL OPTION LIST: <L 0 T X

CROSS REFERENCE /DECL/ *DEST

ADDITION 0046 /0079/
DISPLAY-GREETING 0042 /0107/
DISPLAY-RESULT /0052/ 0083 0090 0097 0104
DIVI-SION 0049 / 0100/
END-RUN 0050 0060 /0073/
GET-OPERANDS /0062/ 0080 0087 11!094 0111!1
GREETI NG /011!16/ 0108
MULTI PLICATION 0048 / 011!93/
NOT-START /0041/
OPERAND-·1 /11!11!13/ *0064* 0066 0081 *0088* 11!11!95 11!102
OPERAND-1-MESSAGE /0032/ 0063
OPERAND-2 /11!014/ *0069* 0071 0081 011!88 *0095* 0102
OPERAND- 2-MESSAGE /0035/ 0068
OPERAT I ON-MESSAGE / 0019/ 0044
OPERATOR /00 22/ *0045* 0046 11)047 0048 11)049 0050
OVERFLOW-FIELD /011!28/ *0056* *0082* *0089* *0096* *0103*
OVERLAY-ADDITION /0078/
OVERLAY-DISPLAY-GREETING /0111!6/
OVERLAY-DIVISION /11)099/
OVERLAY-MULTIPLICATION /11)092/
OVERLAY-SUBTRACTION / 11)085/
RES IDENT / 11!11)40 /
RESULT /11!012/ 11)11)53 *11ll1l55* *111081* *11l088* *11l095 * *11l102*
RESULT-EDITED /11)026/ *0053* *11l066* 11)067 *0071* 0072
RESULT - MESSAGE /011)23/ 11)054
RE-TRY / 11)043/ 0051 11)061
STOP-RUN / 11)075 /
SUBTRACTION 011)47 / 11)086/
WAIT-CHAR /0015/ *11ll1l59* 011)6(2)
WAIT-ENTRY /0057/ 0109
WAIT-MESSAGE /11)11)29/ 11)11!58

TRS-80 Model II COBOL IRM/COBOL 1.2)
SOURCE FILE: ERRXMPL/CBL

4/ 3/80 00.08.38 PAGE
OPTION LIST: lP X

LINE DEBUG PG/LN A •.. B •...•••.•.......••.••..••.•...........•.......•..•.......... ID

2

***** 1)
3

***** 1)
4
5

***** 1)
6

***** 1)
7
8
9

10
11
1 ~.

""-
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

000000 IDENTIFICATION DIVISION.
000010 IDENTI

$

SYNTAX *E
000020 PROGRAM-ID.

$

SCAN RESUME
000030

*W
ERROR-EXAMPLES.

000040 ER
$

SYNTAX *E
000050 ENVIRONMENT DIVISION.

$

SCAN RESUME *W
000060 CONFIGURATION SECTION.
000070 SOURCE-COMPUTER. RMC-MINI.
000080 OBJECT-COMPUTER. RMC-MINI.
000090 INPUT-OUTPUT SECTION.
000100 FILE-CONTROL.
000110 SELECT INPUT-FILE
000120 ASSIGN TO INPUT, INPUT-NAME;
000130 FILE STATUS IS INPUT-STATUS.
000140 SELECT OUTPUT-FILE
000150 ASSIGN TO OUTPUT, OUTPUT-NAME;
000160 FILE STATUS IS OUTPUT-STATUS.
000170
000180 DATA DIVISION.
000190 FILE SECTION.
000200 FD INPUT-FILE
000210
000220
000230 01
000240

RECORD CONTAINS 80 CHARACTERS
LABEL RECORD IS OMITTED.
INPUT-REC.
05 FILLER PI C X I 06 l.

000250
000260
000270
000280
000290
000300
000310
000320
000330
000340 01
000350
000360
000370
000380
000390
000400
000410
000420

05 INPUT-FLD
05 AREA-FLDS

10 AREA-C
10 AREA-A
10 AREA-8

PlC Xl66l.
REDEFINES INPUT-FLD.
PlC Xl01l.

FD
05 FILLER
OUTPUT-FILE
RECORD CONTAINS
LABEL RECORD IS
OUTPUT-REC.
05 SEG!-FLD
05 OUTPUT-FLD
05 FILLER

PI C X 104 l.
PlC X161l.
PI C X I 08 l.

80 CHARACTERS,
OMITTED.

PlC
PlC
PlC

9106).
X166).
X 1081.

WORf<ING-STORAGE
77 INPUT-NAME
77 OUTPUT-NAME
77 COUNT

SECTION.

77 LARGE-VALUE

PlC
PlC
PlC
PlC

X 128).
X 1281.
9106) VALUE 0.
X104l VALUE "ERROR".

\

TRS- 80 Model II COBOL CRM/COBOL 1.2)
SOURCE FILE: ERRXMPL/CBL

4/ 3/80 00.08.38 PAGE
OPTION LIST: lP X

2

LINE DEBUG PG/LN A ... B ID

44

*~***

45
46
47
48

000430 77 PlC-ERROR

11 PICTURE *E
11 SCAN RESUME *W

000440 77 INPUT-STATUS PlC XC04l.
000450 77 OUTPUT-STATUS PlC XC02l.
000460 01 SEG.-VALUE PlC 9(06).
000470 01 SE

TRS- 80 Model II COBOL CRM/COBOL 1.21
SOURCE FILE: ERRXMPL / CBL

4/ 3/80 00.08.38 PAGE­
OPTION LIST: lP X

3

LINE DEBUG PG/LN A ... B ··.····.········· ID.·····

50

51

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81

82

000480/
000490 PROCEDURE DIVISION.

$ $

11 SYNTAX *E
21 SCAN RESUME *W

000500 0100.
$

11 LEVEL *E
000510 DISPLAY "COBOL PROGRAM SEQUENCER"•
000520 LINE 1 POSITION 30 ERASE.
000530 DISPLAY SPACES LINE 2.
000540 DISPLAY "INPUT FILE:
000550 MOVE 3.5 TO OUTPUT-STATUS.
000560 ACCEPT INPUT-NAME POSITION 0 PROMPT ECHO.
000570 DISPLAY "OUTPUT FILE:
000580 ACCEPT OUTPUT-NAME POSITION 0 PROMPT ECHO.
000590 OPEN INPUT INPUT-FILE .
000600 OPEN OUTPUT OUTPUT-FILE.
000610 MOVE SPACES TO OUTPUT-REC .
000620 MOVE 0 TO SEQ- VALUE.
000630 DISPLAY "SEQUENCING BEGUN".
000640 0200.
000650 READ INPUT-FILE AT END
000660 GO TO 0300 .
000670 PERFORM INPUT- CHECK.
000680 ADD 10 TO SEQ-VALUE.
000690 MOVE SEQ-VALUE TO SEQ-FLD.
000700 MOVE INPUT- FLD TO OUTPUT- FLD.
000710 WRITE OUTPUT- REC.
000720 ADD 1 TO COUNT.
000730 GO TO 0200.
000740 0300.
000750 DISPLAY COUNT,
000760 " RECORDS SEQUENCED AND COPIED" POSITION 0.
000770 CLOSE INPUT-FILE• OUTPUT-FILE.
000780 STOP RUN.
000790 GO TO 0150 .
000800 END PROGRAM.

$

11 SCAN RESUME *W
11 SYNTAX *E
11 SCAN RESUME *W
11 SYNTAX *E

ZZZZZZ END PROGRAM. *** END OF FILE ***

TRS-80 Model I I COBOL. <RM/COBOL. 1. 2) 4/ 3/80 00.08.38 PAGE 4
SOURCE FILE: ERRXMPL/CBL OPTION LIST: <P X

ADDRESS SIZE DEBUG ORDER TYPE NAME

0 FILE INPUT-FILE
>0000 80 GRP 0 GROUP INPUT-REC
>0006 66 ANS IZl ALPHANUMERIC INPUT-FLD
>1Zl01Zl6 66 GRP IZl GROUP AREA-FLDS
>1Zl1Zl1Zl6 1 ANS IZl ALPHANUMERIC AREA-C
>1Zl1Zl1Zl7 4 ANS IZl ALPHANUMERIC AREA-A
>IZliZliZlB 61 ANS IZl ALPHANUMERIC AREA-8

IZl FILE OUTPUT-FILE
>IZliZlSIZl 81Zl GRP IZl GROUP OUTPUT-REC
>IZliZlSIZl 6 NSU IZl NUMERIC UNSIGNED SEGl-FLD
>1Zl1Zl56 66 ANS IZl ALPHANUMERIC OUTPUT-FJ_D

>1Zl0A4 28 ANS IZl ALPHANUMERIC INPUT-NAME

>IZliZlCIZl 28 ANS 0 ALPHANUMERIC OUTPUT-NAME

>1Zl0DC 6 NSU 0 NUMERIC UNSIGNED COUNT

>00E2 4 ANS 0 ALPHANUMERIC LARGE-VALUE

>00E6 166 ANS 0 ALPHANUMERIC PlC-ERROR

>00EE 4 ANS 0 ALPHANUMERIC INPUT-STATUS

>1Zl0F2 2 ANS 0 ALPHANUMERIC OUTPUT-STATUS

>00F4 6 NSU 0 NUMERIC UNSIGNED SEGl-VALUE

RESERVED WORD CONFLICT *W*W*W*W*W*W*W*W*W*W*W*W COUNT

READ ONLY BYTE SIZE = >0042

READ/WRITE BYTE SIZE >0134

OVERLAY SEGMENT BYTE SIZE

TOTAL BYTE SIZE >0176

9 ERRORS

7 WARNINGS

TRS-80 Model II COBOL CRM/COBOL 1.21
SOURCE FILE: ERRXMPL/CBL

CROSS REFERENCE /DE CL/

AREA-A /0029/
AREA-8 /0030/
AREA-C /0028/
AREA-FLDS /0027/
COUNT /0042/
INPUT-FILE /0012/
INPUT-FLD /0026/
INPUT-NAME *0013*
INPUT-REC /0024/
INPUT-STATUS *(2)17.114*
LARGE-VALUE /0(2)43/
OUTPUT- FILE /017.115/
OUTPUT-FLD /17.117.137/
OUTPUT-NAME *017.116*
OUTPUT-REC /(2)035/
OUTPUT-STATUS *1Zl17.117*
PIC-ERROR /0(2)44/
SEG!-·FLD /0(2)36/
SE0.--VALUE /0047/

DEST

/0021/
/0027/
/0040/

/(2)(2)45/

/12)12)32/

/17.117.141/

/17.1046/

4/ 3/817.1 017.1.08.38 PAGE
OPTION LIST: CP X

5

COBOL User's Guide
Appendix B

TRS-80 (TM) MODEL II COBOL
SAMPLE SESSION

- 45 - RSCOBOL 1 .2

This section will take you through a compilation and execution
session, starting with a COBOL source file. We will use the
sample program, CALCXMPL/CBL, included with your COBOL diskette.

We will also create a
contains only those
compiled program.

runtime diskette, i.e.,
COBOL files necessary

STEP ONE. Create the source file.

a diskette that
to executing a

In this session, we'll use one of the sample programs included
on the diskette, namely, CALCXMPL/CBL. To create your own source
file, follow the instructions in the COBOL Editor User's Guide.

STEP TWO. Compile.

With the COBOL diskette in drive zero, type under TRSDOS READY:
RSCOBOL CALCXMPL {Tl

The T option causes a listing to be displayed at the console.
For other options available, see section 1 .3.1 of this manual.

This command creates an object file that can be executed by the
COBOL runtime. The file will have the name CALCXMPL/COB.

STEP THREE. Execute.

Under TRSDOS READY, type:
RUNCOBOL CALCXMPL

The runtime will execute the program CALCXMPL/COB.

COBOL User's Guide
Appendix B

(Continued)

- 46 - RSCOBOL 1 .2

STEP FOUR (OPTIONAL). Create a runtime diskette.

A runtime diskette contains only those COBOL files necessary for
executing a pre-compiled COBOL program. In this example, we will
assume you have a one-drive system and are going to run the
CALCXMPL program.

4.1 First make an extra backup copy of the diskette containing
all COBOL files, including your source program.

4.2 Using the TRSDOS PURGE command, eliminate the following
COBOL file s (do not delete RUNCOBOL):

RSCOBOLnnn/OBJ (nnnn = version/release numbers)
RSCBLnnn/OBJ
RSCBLDnn/OBJ*
CALCXMPL/CBL
CALCXMPL/LST
ERRXMPL/CBL
ERRXMPL/LST
ERRXMPL/COB
COBPRT
CEDIT

*Do not delete RSCBLDnn/OBJ if you want to use the runtime debug
feature.

Note: You can also purge unnecessary system files. See "Creating
a minimal system diskette," Section 0 of the TRSDOS Reference
Manual.

COBOL User's Guide
Appendix B

- 47 - RSCOBOL 1 .2

•

------------------------TFISi-EICJ ~~ ------------------------

TRS-80 (TM) MODEL II COBOL

C E D I T C 0 B P R T

SOURCE PROGRAM EDITOR PRINTOUT UTILITY

USER'S GUIDE

(C) COPYRIGHT 1980 BY RADIO SHACK,
A DIVISION OF TANDY CORPORATION

---------------------~adte~-------------------------

TRS-80 MODEL II COBOL CEDIT

----------- TRS-BO f~ ----------

TABLE OF CONTENTS

INTRODUCTION 3
SOURCE FILE FORMAT 3
TO START THE EDITOR . . . 4
MODES OF OPERATION 5
USING THE COMMAND MODE 6
SPECIAL KEYS IN THE COMMAND MODE . . . 7
COMMANDS 8

A (AUTO RENUMBER) 8
B (PRINT BEGINNING LINE) 8
C (CHANGE) 8
D (DELETE) 9
E (EDIT)............. 9
F (FIND) 11
H (HARD COPY) 11
I (INSERT)........... . 12
L (LOAD FROM DISK) 13
M (MEMORY USED/FREE) 14
N (RENUMBER) 14
P (PRINT TO DISPLAY) 1 5
Q (QUIT SESSION) 15
R (REPLACE) 1 5
S (SYSTEM COMMAND) 1 6
W (WRITE TO DISK) 16
X (CHANGE WITH PROMPTS) 17

SAMPLE SESSION 18
COBPRT UTILITY PROGRAM 23

----------lladlolhaell----------

PAGE 2

TRS-80 MODEL II COBOL CEDIT

·----------- TRS-BO 'r~-----------

INTRODUCTION

CEDIT lets you create and edit COBOL source files (the files
that are input to the COBOL Compiler) .

. Capabilities and features:
. Allows you to load in ("chain") multiple source files .
. Single-key abbreviations for many commands
. Powerful intra-line editing mode like the edit mode in

Model II Interpreter BASIC
. "M" command informs you of memory used/free at any time
. Global string find/change commands
. Each line can contain up to 128 characters of text (COBOL

compiler accepts lines of up to 80 characters .
. Editor provides line numbers in the range 0-65535
. Line renumbering command, and special auto-renumber feature
. Execute any TRSDOS library command without exiting the

editor
. <TAB> skips over to the next four-column boundary--to match

standard COBOL field boundaries

SOURCE FILE FORMAT

Source files are written to disk in the format required by the
COBOL compiler, as follows:
1. Files are variable-length record (VLR) type, as described in
the TRSDOS Reference Manual, page 4/5.
2. Each record in the file corresponds to one line of source
program. The first six data bytes (after the length-byte) in a
record represent the line number in ASCII form. The carriage
return (<ENTER>) used to terminate the line during line
insertion is not stored.
3. Text is stored exactly as it is displayed on the video, e.g.,
spaces are stored as spaces, not as a tab character.
4. No end-of-text code is stored in the data file.

Note: Although the editor will allow lines of up to 128
characters, the COBOL compiler will not accept more than 80
characters per line.

---------ltad~elhaell---------

PAGE 3

TRS-80 MODEL II COBOL CEDIT

------------- TRS-BO rf~ -------------

TO START THE EDITOR

The editor program is included on the COBOL package diskette. It
has the file name CEDIT.

-To use the editor, put the COBOL diskette into one of your
drives (drive 0 for single-drive users), and under TRSDOS READY,
type:

CEDIT
The editor will start up with the prompt:

MODEL II COBOL EDITOR VERSION v.r
OK
>

Where v is the version and r is the release number. The >
indicates you are in the command mode.

----------ltad~elhaell---------

PAGE 4

TRS-80 MODEL II COBOL CEDIT

------------------------T~!S-EICJ ~ -------------------------

MODES OF OPERATION

There are three modes of operation:
. COMMAND, for entering the editor commands
. INSERT, for entering your text lines
. EDIT, for interactive editing of a line of text

COMMAND MODE
The > prompt followed by the blinking cursor indicates the
editor is waiting for you to type in a command. Every command
must be completed by pressing <ENTER>. To cancel a command,
press <ESC> or <BREAK>.

INSERT MODE
You enter text one line at a time; a line consists of up to 128
characters. The editor numbers each line with a reference number
from 000000 to 065535 (the leftmost digit is always zero).

The I command puts you in the insert mode. When you start
inserting a line, the editor displays the six-digit line number
followed by the blinking cursor. Your text can begin in column
seven. (See the COBOL Language Reference Manual for column-field
uses in COBOL source programs.)

To store the current line, press <ENTER>. The editor will
display the next line number, and you can begin inserting into
that line. To cancel the current line and return to the command
mode, press <ESC> or <BREAK>. See I Command for details.

EDIT MODE
There are many powerful edit sub-commands--identical in most
cases to those in Model II BASIC's Edit Mode. There is also a
sub-edit insertion mode in which the keys you type are inserted
into the line at the current cursor position.

To start editing a line, use the E command. After editing the
line, press <ENTER> to save the corrected line and return to the
command mode. To cancel all changes made and return to the
command mode, press <Q>. For further details, see E Command.

------------------------------lad~lbae~---------------------------

PAGE 5

TRS-80 MODEL II COBOL CEDIT

------------ TRS-BO f~ -----------

USING THE COMMAND MODE

Special terms used in the command descriptions:

"text", "text buffer", "text area"
All refer to the COBOL source program currently in RAM.

"current line"
The line most recently inserted, displayed or referenced in a
command. When there is no text in RAM, current line is set to
100. Immediately after a file is loaded, the current line is set
to the beginning of the text.

"increment"
The value which is added to the current line number whenever the
editor needs to compute a new line number. After startup,
loading a new file, and when there is no text in RAM, the
increment is set to 10.

"line-reference"
Either an actual line number from 0 to 65535, or one of the
following special abbreviations:

Symbol

*

"line-range"

Meaning
Beginning line of text (lowest-numbered line)
Current line
Last line of text (highest-numbered line)

This can be either a single-line reference or a pair of
line-references separated by a colon:

Sample
Command

P100
P100:300
P#: .

"delimiter"

Meaning

Prints line 100 only
Prints all lines from 100 to 300
Prints all lines from beginning to current

A special character used to delimit (mark the beginning and end
of) a string. Any of the following characters can be used:

! "#$%&' ()*+,-.I:;<=>?
These are the ASCII characters in the ranges <X'21' X'2F'> and
<X'3A', X'3F'>
----------ltad~elllaell----------

PAGE 6

TRS-80 MODEL II COBOL CEDIT

------------ TRS-BO rr~ ------------

Whichever character is used to mark the beginning of a string
must also be used to mark the end of the string.

Sample use ... To find this string ...

F'THIS " MARK' THIS " MARK
F/X'8000'/ X'8000'
F&~~~~~~~& ~~~~~~~ (seven blanks)

(The "~" s ymbol represents a blank space. It is used only where
necessary for emphasis or illustration.)

The F (find) command is explained later on.

SPECIAL KEYS IN THE COMMAND MODE

<ESC> or <BREAK>
Press either key to cancel the command you are entering, or to
abort a command which is currently being executed.

<TAB>
Advances the cursor to the next four-column boundary (boundaries
in the command mode are at columns 4, 8, 12, 16, ...

<ENTER>
Pressing this key at the beginning of a command line displays
the current line.

<up-arrow>
Pressing this key at the beginning of a command line displays
the line which precedes the current line.

<down-arrow>
Pressing this key at the beginning of a command line displays
the next line after the current line.

<-
Erases the command you are entering.

<HOLD>
Pauses H and P commands. Press any key to continue.

---------ltad.elhaell---------

PAGE 7

TRS-80 MODEL II COBOL CEDIT

-----------TRS-BO 'r~-----------

COMMANDS

Note: Spaces are not significant in command lines. For example,
p 1 : 5

has the same effect as
P1 :5

Print lines found in the range 1 to 5. (See P command for
details).

A

Enables automatic line-renumbering. Whenever a line-number
collision occurs in the insert mode, the editor will
automatically renumber the text lines, using the current line
number as start-line and the current increment as increment. See
N commmand for details on renumbering.

Note: The A command does not put you in the insert mode; only
the I and R commands do that. The A command simply sets an
auto-renumbering "switch".

This function is disabled when you execute the N or L command.

B

Displays the beginning line (first line in the text area).

C/search-string/replacement-string/n

Finds, changes, and displays the first n lines that contain
search-string. In each of these lines, search-string is changed
to replacement-string. ONLY THE FIRST OCCURRENCE OF
search-string IN A SINGLE LINE IS COUNTED AND CHANGED. If the
end of text is reached before n finds, the message "SEARCH
FAILS" will be displayed.

Upon completion of the command, the current line is set to the
line of the last find, or to the first line of text when "SEARCH
FAILS" is displayed.

/search-string/ is a sequence of characters delimited by

by

a matched pair of characters from the set:
! "#$%&I ()*+,-.I:;<=>?
replacement-string/ is a sequence of characters terminated

the same character used to delimit search-string.

n Tells the maximum number of "changes" you want. n can be a
---------ltad.elhaell---------

PAGE 8

TRS-80 MODEL II COBOL CEDIT

------------- TRS-80 @)-------------

number or an asterisk. The asterisk means change and list
all occurrences. If n is omitted, only the first occurrence
is changed and listed.

Sample
Commands Notes

C/VAR=/NET=/ Changes the first occurrence of
"VAR=" to "NET=" in the first
line that contains it.

C "VAR= "NET=" Same as above.
C/RETRY/R/4 Changes the first occurrence of

"RETRY" to "R" in the first four
lines that contain it.

C/MISPELING/MIS-SPELLING/*
Changes the first occurrence of
"MISPELING" to "MIS-SPELLING" in
every line that contains it.

C/EXTRA//* Changes the first occurrence of
"EXTRA" to "" (null string)

D line-range

Deletes lines in
the current line

Sample
Commands

D. or D
D2
D98: 11 5

D1000:*

E line-reference

i.e., deletes the first "EXTRA" in every
line that contains it.

the specified range. If line-range is omitted,
is deleted.

Notes

Deletes the current line.
Deletes line number 2.
Deletes lines found in the range 98 to
11 5 .
Deletes all lines numbered 1000 or
higher to end of text.

Starts edit mode using the specified line. If line-reference is
omitted, the current line is used.

Edit sub-commands:
<ENTER> Ends editing and returns to command mode.

<F1> Causes escape from sub-edit insertion
(X, I, and H sub-commands) and returns to
edit mode.

---------ltadiOihaell---------

PAGE 9

TRS-80 MODEL II COBOL CEDIT

----------- TRS-80 (-r~ -----------

n <SPCBAR>

<BKSPC>

L

X

I

A

E

Q

H

nD

ne

nSc

nKc

Advances cursor n columns.
If n is ami tted, 1 is used.

Backspaces the cursor one column
without erasing.

Lists working copy of the line and
starts a new working copy.

Extends line: positions cursor to end of
line and enters sub-edit insertion mode.
Use <F1> to escape to edit mode.

Enters sub-edit insertion mode at the
current cursor position; use <F1> to escape.
to edit mode.

Cancels changes and starts a new working
copy of the line.

("End") Saves edited line and exits to
command mode, > prompt.

("Quit") Cancels changes and returns to
command mode, > prompt.

"Hacks" remainder of line beginning at
current cursor position and enters sub-edit
insertion mode. Use <F1> to escape to
edit mode.

Delete n characters beginning at current
cursor position. If n is omitted, 1 is used.
The deletion is not echoed; use <L> to see
the line with characters deleted.

Change next n characters from the current
cursor position, using the next n characters
typed. If n is ami tted, 1 is used.

("Search") Move cursor to nth occurence of
character c. Search starts at next character
after the cursor. If n is omitted, 1 is
used.

Delete all characters from cu r rent
cursor position up to nth occu r ence
of character c, counting from current
cursor position. If n is omitted, 1 is
used. The deletion is not echoed; use <L>
to see the line with characters deleted.

----------- ltadiOI'IIaell-----------

PAGE 10

TRS-80 MODEL II dOBOL CEDIT
-----------TRS-80 @)-----------

See Sample Session for examples.

F/search-string/n

Finds and displays the first n lines which contain
search-string, starting at the current line. ONLY THE FIRST
OCCURRENCE OF search-string IN A SINGLE LINE IS COUNTED. If the
end of text is reached before n finds, the message "SEARCH
FAILS" will be displayed.

Upon completion of the command, the current line is set to the
line of the last find, or to the first line of text when "SEARCH
FAILS" is displayed.

/search-string/ is a sequence of characters delimited by
a matched pair of delimiters chosen from the set:
! "#$%&I ()*+'-.I:;<=>?

These are the ASCII characters in the ranges <X 1 21 1 , X 1 2F 1 > and
<X I 3A I ' X I 3F I >

n Tells the maximum number of "finds" you want. n can be a
number or an asterisk. The asterisk means find and list all
occurrences. If n is omitted, only the first occurrence is
listed.

Sample
Commands

F/VAR=/

F"VAR="
F/RETRY/4

F/MISPELING/*

H line-range

Notes

Finds and displays the first line that
contains the string "VAR="·
Same as above.
Finds and displays the first four lines
containing at least one occurrence of
"RETRY".
Finds and displays every line containing
at least one occurrence of "MISPELING".

("Hard-copy") Lists to the printer all lines found in the
specified range. If line-range is omitted, only the current
line is printed.

The printer should be initialized (with FORMS) before you
execute this command.

---------- ltad~elhaell---------

PAGE 11

TRS-80 MODEL II COBOL CEDIT

-------------- TRS-BO rr~ -------------

Sample
Commands

H#:*
H7020
H672:800

Notes

Lists all lines to the printer.
Lists line 7020 to the printer.
Lists all lines found in the range 672 to
800.

I start-line, increment

Starts the insert mode.

start-line is a line-reference telling the editor where to begin
inserting into the text. If omitted, the current line
is used.

,increment is a number telling the editor how to compute
successive line numbers. If omitted, the current increment
is used.

If start-line is already in use, the editor will start with the
next line number (start-line+ increment).

Special Keys in the Insert Mode
<TAB> Advances the cursor to the next four-column

boundary (8, 1 2 , 1 6 , 20 , etc.) .

<-

<BKSPC>

<ENTER>

Erases the line and starts over.

Backspaces the cursor and erases the character.

Marks the end of the current line. The editor will
store the current line and start a new one, using
increment to generate the next line number.

Line-Collisions
If the next line number is already in use (this is referred to
as a "collision"), the editor will display the message:

NO ROOM BETWEEN LINES
and return to the command mode. To allow further insertion at
this point in your program, either renumber the text or try
inserting with a smaller increment.

----------ltadlelhaell----------
PAGE 12

TRS-80 MODEL II COBOL CEDIT
------------ TRS-BO (fMJ ___________ _

Note: If the automatic-renumbering function is enabled when a
line collision occurs, the editor will renumber the text
automatically before displaying the next line number. See A
command.

Sample
Commands

I

I, 1

I45,2

I100

L filespec

Notes

Start inserting at current line number,
using current increment.
Start inserting at current line number,
using 1 as an increment. If current line
number is in use, start with current line
plus 1 .
Start inserting at line 45 with an
increment of 2. If line 45 is in use,
start with line 47.
Start inserting at line 100, using the
current increment. If line 100 is in
use, start with 100 plus increment.

Loads a source file from disk. If there is already text in RAM,
the editor will ask whether you want to chain the new text onto
the end of the old, or clear out the old first.

filespec is a TRSDOS file specification for a VLR text file. The
file may have been created by this COBOL editor or by
another means. However, it must be in the COBOL source file
format. (See Source File Format.)

If no extension is provided in filespec, the editor assumes
an extension of /CBL. To load a file with a blank extension,
insert ";---,, after the file name ("-" represents a blank
space).

The L command also disables the automatic renumbering function
(see A command).

Immediately after chaining a file, you must use the N command to
renumber the text. This will resolve any duplicate line numbers.

Sample
Commands

L DEMO: 1 L XDATA/ __ _

Notes

Load DEMO/CBL from drive 1.
Load XDATA (blank extension).

----------llad~elllaell---------

PAGE 13

TRS-80 MODEL II COBOL CEDIT

----------- TRS-BO TM - ---------

M

Prints number of characters in the source text (excluding the
editor's line numbers) and the amount of memory free for text
storage.

Sample
Command

M

Notes

A typical response in a 64K system might
might look like this:
000440- TEXT
046145- MEMORY
Meaning you have 440 bytes of text, a n d
46145 free bytes of memory available .

N start-line,increment

Renumbers the entire text.

start-line becomes the lowest line number when the text is
renumbered. If start-line is omitted, the current line
number is used.

increment is used in computing successive line numbers . If
omitted, the current increment is used.

After renumbering, the current l i ne is set to the highest line
number in the renumbered text.

This command disables the automatic renumbering function (see A
command).

Sample
Commands

N

N100

N100,25

N, 100

Notes

Renumbered text will start with current
line; successive lines computed with
current increment.
Renumbered text will start with line 100;
successive lines computed with the
current value of increment .
As above; line numbers a t inc r ements
of 25.
Renumbered text will start with current
line number; line numbe r s at inc r ements
of 100.

----------ltad.elhaell----------

PAGE 14

TRS-80 MODEL II COBOL CEDIT
------------ TRS-BO cri,il __________ _

P line-range

Prints the specified lines to the display. If line-range is
omitted, 20 lines starting at the current line are displayed.

Q

Sample
Commands

p

P233
P.
P*
P140:615

Notes

Prints 20 lines starting at current
line.
Prints line 233.
Prints the current line.
Prints the last line.
Prints the lines within the specified
range. Lines 140 and 615 don't have to
be existing line numbers.

Terminates session and returns to TRSDOS. The source text is not
written to disk.

R line-reference, increment

Replaces contents of the specified line and continue in insert
mode. If line-reference is omitted, the current line is used. If
increment is omitted, the current increment is used.

The R command is equivalent to the D (delete) command followed
by the I (insert) command. When you enter the command, the
editor deletes the specified line and puts you into the insert
mode, starting with the line just deleted.
After you press <ENTER>, the editor will contine in the insert
mode, prompting you to enter the text of the next line number.
To escape from the insert mode, press <ESC> or <BREAK>.

Sample
Commands

R125,3

R*

Notes

Prompts you to insert replacement
text for line 125. Subsequent line
numbers will be generated with an
increment of 3.
Prompts you to insert replacement
text for the highest numbered line in
the text area; subsequent lines will
be generated using the current increment.

----------ltad.elllaell---------

PAGE 15

TRS-80 MODEL II COBOL CEDIT

----------- TRS-BO f~----------

S lib-command

Allows you to enter any TRSDOS library command, and return to
the editor command mode upon completion. For a list of library
commands, try the TRSDOS LIB command.

Sample
Command

S FORMS W=80

W filespec

Notes

Executes the FORMS command, setting
the paper width to 80 characters. When
FORMS has completed execution, the
edit command prompt > is displayed.

Writes the text in RAM into the specified file.

filespec is a TRSDOS file specification. If file already exists,
its previous contents will be lost.

If no extension is provided in filespec, the editor assumes
an extension of /CBL. To save a file with a blank extension,
insert "/~~~" after the file name ("~" stands for a blank
space).

Sample
Commands

W DEMO: 1
W XDATA/~~~

Notes

Save DEMO/CBL from drive 1.
Save XDATA (blank extension).

----------- ftad1elhaell----------

PAGE 16

TRS-80 MODEL II COBOL CEDIT
-----------TRS-BO 'f~-----------

X/search-string/replacement-string/n

This command is exactly like the C (Change) command, except that
it displays the line to be changed and queries you (Change?)
each time it finds search-string. If you answer Y, the line will
be changed; any other answer leaves the line unchanged. In
either case, the process continues until all first occurrences
have been found.

Sample
Command Notes

X/MISPELING/MSP/*
Changes the first occurrence of
"MISPELING" to "MSP"
in every line that contains it, but asks
you to confirm each change before it
is made.

----------ltad.elhaell---------

PAGE 17

TRS-80 MODEL II COBOL CEDIT

-----------TRS-80 f~----------

SAMPLE SESSION

This section will show a simple editing session, including:
Inserting text lines

. Inserting lines in-between existing lines

. Inserting lines in-between existing lines with
auto-renumbering enabled

. Intra-line editing

. Performing a global search/change

Start the editor as explained on page 4. Type as shown under the
DIALOG column. The lowercase Notes are for explanation only.

The symbol 11 ~ 11 means a space (press space-bar). The computer's
prompts are underlined--do not type these in. Also note that
characters inside < > are keys you press that are not echoed on
the display.

DIALOG NOTES

OK Start in command mode

>I <ENTER> Begin insert mode.

000100<TAB>DEMONSTRATION OF COBOL EDITOR <ENTER>

000110<TAB><TAB>TWO TABS START THI S LINE <ENTER>

000120<TAB><TAB><TAB>THREE TABS START THIS LINE <ENTER>

000130 <ESC> Back to command mode.

OK

>P#:* <ENTER>

000100 DEMONSTRATION OF COBOL EDITOR

000110 TWO TABS START THIS LINE

000120 THREE TABS START THIS LINE

>N 10,5 <ENTER> Re numb e r text

ALL LINES RE-NUMBERED

----------ltad~elhaell---------

PAGE 18

TRS-80 MODEL II COBOL CEDIT
------------ TRS-BO rr~-----------

DIALOG NOTES

>P #:* <ENTER> Display renumbered text

000010 DEMONSTRATION OF COBOL EDITOR

000015 TWO TABS START THIS LINE

000020 THREE TABS START THIS LINE

>I 5 Insert at 5 using old increment (5)

000005THISHASNOSPACES <ENTER>

NO ROOM BETWEEN LINES Collision at line 10

>P <ENTER>

000005THISHASNOSPACES

000010 DEMONSTRATION OF COBOL EDITOR

000015 TWO TABS START THIS LINE

000020 THREE TABS START THIS LINE

---------ltadtelhaell---------

PAGE 19

TRS-80 MODEL II COBOL CEDIT
------------TRS-80 -r~-----------

DIALOG Notes

>A <ENTER> Turn on auto renumbering

>I 11,1 <ENTER> Insert in-between lines

000011<TAB>THESE FOUR LINES ARE INSERTIONS <ENTER>

000012<TAB>WHEN A LINE COLLISION OCCURS, RENUMBERING <ENTER>

000013<TAB><TAB>WILL OCCUR AUTOMATICALLY. YOU WON'T <ENTER>

000014<TAB><TAB>GET A MESSAGE UNTIL RETURNING TO THE <ENTER>

000015<TAB><TAB>COMMAND MODE <ENTER>

000016<ESC>

OK

ALL LINES RE-NUMBERED

>P #:* <ENTER>

000010THISHASNOSPACES

000011 DEMONSTRATION OF COBOL EDITOR

000012 THESE FIVE LINES ARE INSERTIONS

000013 WHEN A LINE COLLISION OCCURS, RENUMBERING

000014 WILL OCCUR AUTOMATICALLY. YOU WON'T

000015 GET A MESSAGE UNTIL RETURNING TO THE

000016 COMMAND MODE

000017 TWO TABS START THIS LINE

000018 THREE TABS START THIS LINE

----------ltad~elhaell----------

PAGE 20

TRS-80 MODEL II COBOL CEDIT
------------ TRS-BO rr~-----------

DIALOG NOTES

>E 15 <ENTER> Start editing line 15

000015<L> GET A MESSAGE UNTIL RETURNING TO THE
----------------------------~-------

Search for "G", delete 3 and list:
000015<S><G><3><D><L> A MESSAGE UNTIL RETURNING TO THE

Search for "A", insert "RECEIVE "·
000015<S><A><I>RECEIVE-<F1><ENTER>

>P 15 <ENTER> Display edited line.

000015 RECEIVE A MESSAGE UNTIL RETURNING TO THE

Set current line = beginning:
>B <ENTER>

000010THISHASNOSPACES

Find and change:
>C/TAB/TAB-CHARACTER/* <ENTER>

000017 TWO TAB-CHARACTERS START THIS LINE

000018 THREE TAB-CHARACTERS START THIS LINE

SEARCH FAILS

>P <ENTER>

000010THISHASNOSPACES

000011 DEMONSTRATION OF COBOL EDITOR

000012 THESE FIVE LINES ARE INSERTIONS

000013 WHEN A LINE COLLISION OCCURS, RENUMBERING

000014 WILL OCCUR AUTOMATICALLY. YOU WON'T

000015 RECEIVE A MESSAGE UNTIL RETURNING TO THE

000016 COMMAND MODE

000017 TWO TAB-CHARACTERS START THIS LINE

000018 THREE TAB-CHARACTERS START THIS LINE

>
---------1tad1elhaell---------

PAGE 21

---------TRS-BO (T~---------

---------llad.elllaell---------

-----------TRS-80@)-----------

TRS-80 (TM) MODEL II COBOL

C 0 B P R T
COBOL SOURCE FILE PRINT UTILITY

USER'S GUIDE

(C) COPYRIGHT 1980 BY RADIO SHACK,
A DIVISION OF TANDY CORPORATION

----------ltad.elhaell----------

TRS-80 MODEL II COBOL COBPRT UTILITY

----------- TRS-BO f~ ----------

The Model II COBOL Package includes a special file-print
utility, COBPRT. This program allows you to output COBOL source
and list files to the display and to a printer if one is
available. Note: "source files" are created by the COBOL editor;
"list files" are created by the COBOL compiler.

The listing will always go to the display; if you have
initialized a printer before starting the program, the program
will also attempt output to the printer. If you want a printout,
put the printer online before starting the program.

To use COBPRT:
Under TRSDOS READY, type:

COBPRT filespec <ENTER>
where filespec is a TRSDOS file specification for a COBOL source
or list file. If you omit filespec, COBPRINT will prompt you to
enter the listing file specification.

The program will read in the file and output a copy to the
display and line printer if available.

For example, assume you have a COBOL listing file named
CALCXMPL/CBL. Then type:

COBPRT CALCXMPL/CBL <ENTER>

----------llad~elllaell----------

PAGE 24

TRS-80 Model II

COBOL LANGUAGE MANUAL

MARCH, 1980

•

•

PREFACE

This reference document describes the
implemented on the Radio Shack TRS-80 Model
the TRSDOS Disk Operating System.

CODOL Language as
II Microcomputer under

It assumes the reader is familiar with the COBOL Language , the
general operation of the TRS-80 Model II Microcomputer, and the
TRSDOS Operating System. The reade r is specifically referred to
the following publications :

TRS- 80 Model II COBOL User 's Guide
TRS-80 Model Il Operation Manual
TRS-80 Model II Disk Operating System Referen ce Manua l

COPYRIGHT NOTICES

TRS-80 MODEL II COBOL
(C) (P) 1980 by Ryan-McFarland Corporation, Aptos, California
95003; Licensed to Tandy Corporation, Fort Worth, Texas 76102.
All rights reserved.

TRS-80 MODEL II TRSDOS DISK OPERATING SYSTEM (TRSDOS)
{C) (P) 1980 by Tandy Corporation. All rights reserved.

TRS-80 MODEL II COBOL LANGUAGE REFERENCE MANUAL
(C) 1980 by Ryan-McFarland Corporation; Licensed to Tandy
Corporation. All rights rserved.

Reproduction or use, without express permission, of editorial or
pictorial content, in any manner, is prohibited. While every
precaution has been taken in the preparation of this book, Tandy
Corporation assumes no responsibility for errors or omissions.
Neither is any liability assumed for damages resulting from the
use of the information contained herein.

ACKNOWLEDGEMENT

Much of the material in this manual
X3. 23-1974 COBOL Standard .
acknowledgement is made as required

COBOL is an industry language and
company or group of companies, or
organizations .

is extracted from
Accordingly, the
in that document.

the ANSI
following

is not the property of any
of any organization or group of

No warranty, expressed or implied, is made by any contributor o r
by the CODASYL Programming Language Committee as to the accuracy
and functioning of the programming system and language . Moreover,
no responsibility is assumed by any contributor, or by the
committee, in connection therewith.

The authors and copyright holders of the copyrighted material used
herein

FLOW-MATIC <trademark of Sperry Rand Corporation), Programming
for the UNIVAC I and II, Data Automation Systems copyrighted
1958. 1959, by Sperry Rand Corporation; IBM Commercial
Translator Form No. F28- 8013, copyrighted 1959 by IBM; FACT,
DSI 27A5260-2760. copyrighted 1960 by Minneapolis-Honeywell

have specifically authorized the use of this material in whole or
in part, in the COBOL specifications . Such authorization extends
to the reproduction and use of COBOL specifications in programming
manuals or similar publications.

•

TABLE OF CONTENTS

Page

I. INTRODUCTION 1

INTRODUCTION TO COBOL . 2
What is COBOL? . 2
The History of COBOL... 3
The Standardization of COBOL. 4

CONVENTIONS USED IN THIS MANUAL. 5
Words.. 5
Brackets and Braces.. 5
Ellipses..... 5
Punctuation. 6
Special Characters.............. 6
System Dependent Information....... 6

I I. THE STRUCTURE OF THE COBOL LANGUAGE 7

THE LANGUAGE STRUCTURE. 8
Character Set . 8
Separators . 10
Character - Strings 11
COBOL Words 11
User Words. 12
Reserved Words 15
Literals 18
Picture String 19
Comment-Entry...... .. 19
System Names 19

THE PROGRAM STRUCTURE. 20
Source Format 20
Statements . 22
Sentences . 23
Clauses and Entries. 23
Paragraphs......... 24
Sections.... 24
Divisions 24

THE COPY STATEMENT. 25

I I I.

IV .

V.

IDENTIFICATION DIVISION 27

INTRODUCTION. 28

PROGRAM IDENTIFICATION.. 28
The PROGRAM-ID Paragraph 29
The AUTHOR. INSTALLATION. DATE-WRITTEN.

SECURITY Paragraphs.. 29

ENVIRONMENT DIVISION 30

INTRODUCTION. 31

CONFIGURATION SECTION. 32
The SOURCE-COMPUTER Paragraph 32
The OBJECT-COMPUTER Paragraph 33
The SPECIAL-NAMES Paragraph 34

INPUT-OUTPUT SECTION. 36
The FILE-CONTROL Paragraph 36
The Sequential File Control Entry 37
The Relative File Control Ent r y... 39
The Indexed File Control Entry 41
The I-0 CONTROL Paragraph 44

DATA DIVISION 45

INTRODUCTION. 46

FILE SECTION... 48
The File Description Entry 49
The BLOCK CONTAINS Clause.... 50
The RECORD CONTAINS Clause. 51
The LABEL RECORD Clause .. 52
The VALUE OF Clause. 52
The DATA RECORDS Clause 53

WORKING- STORAGE SECTION. 54

LINKAGE SECTION. 54

RECORD DESCR !PT I ON ENTRY. 55
Level-Numbers . 55
Elementary Items 55

77 LEVEL DESCRIPTION ENTRY.. 56

THE DATA DESCRIPTION ENTRY.... 57
The Level-Number. 60
The Data Name or FILLER Clause....... 61
The REDEFINES Clause..... 62
The PICTURE Clause . 64
The USAGE Clause . 75
The SIGN Clause 77
The OCCURS Clause. 78
The SYNCHRONIZED Clause. 80
The JUSTIFIED Clause . 82
The BLANK WHEN ZERO Clause..... 83
The VALUE IS Clause .. 84
The RENAMES Clause. 87

DATA STRUCTURES. 89
C 1 asses of Data. 89
Representation of Numeric It ems 90
Representation of Algebraic Signs 90
Standard Alignment Rules.... 91

QUALIFICATION. 92

SUBSCR IPTING. 94

INDEXING. 95

IDENTIFIER . 96

CONDITION-NAME . 97

TABLE HANDLING. 98

VI. PROCEDURE DIVISION. 101

THE PROCEDURE DIVISION. 102
Structure . 103
Declaratives 104
Procedures.... 104
Execution. 104

PROCEDURE REFERENCES. 105

SEGMENTATION. 107
Segments. 107
Segmentation Classification 108
Segmentation Control 108
Restrictions on Program Flow.. 108

THE USE STATEMENT. 11 0

ARITHMETIC STATEMENTS 112
Arithmetic Expressions
Arithmetic Operators
Formation and Evaluation Rules

CONDITIONALS
Relation Condition
Class Condition
Condition- name <Conditional Variable)
Switch - Status Condition
Complex Conditions
Negated Simple Conditions
Combined and Negated Combined

Conditions
Condition Evaluation Rules

SEQUENTIAL ORGANIZATION INPUT-OUTPUT
Function
Organization
Access Mode
Current Record Pointer.
I - 0 Status

RELATIVE ORGANIZATION INPUT-OUTPUT
Function
Organization
Access Modes
Current Record Pointer
I-0 Status
The INVALID KEY Condition
The AT END Condition

INDEXED ORGANIZATION INPUT-OUTPUT.
Function
Organization
Access Modes
Current Record Pointer
I-0 Status
The INVALID KEY Condition
The AT END Condition

112
113
113

114
115
118
119
120
120
121

121
122

123
123
123
123
123
124

126
126
126
126
127
127
129
130

131
131
131
131
132
132
136
136

PROCEDURAL STATEMENTS. 137
ACCEPT . .. FROM Statement. 137
ACCEPT Statement <Terminal I-0> 139
ADD Statement..... 145
ALTER Statement 149
CALL Statement 150
CLOSE Statement <Sequential I-0) 152
CLOSE Statement <Relative & Indexed I-0> 154
COMPUTE Statement 155
DELETE Statement <Relative & Indexed I-0> . .. 157
DISPLAY Statement <Terminal I-0) 158
DIVIDE Statement. 162
EXIT Statement... 165
GO TO Statement . 166
IF Statement.. 167
INSPECT Statement . 169
MOVE Statement. 177
MULTIPLY Statement 182
OPEN Statement <Sequential I ·-0) 184
OPEN Statement <Relative & Indexed I-0> 188
PERFORM Statement 192
READ Statement <Sequential I-0> 203
READ Statement <Relative 8-. Indexed I-0) 205
REWRITE Statement <Se quent i a 1 I -0 >. 209
REWRITE Statement <Relative & Indexed I-0) . . 211
SET Statement 213
START Statement <Relative & Indexed I-0> 215
STOP Statement 217
SUBTRACT Statement 218
UNLOCK Statement . 222
WRITE Statement <Sequential I-0) 223
WRITE Statement <Relative & Indexed I-0) 226

APPENDIX A: ERROR MESSAGES 229

APPENDIX B: RESERVED WORDS 237

APPENDIX C: GLOSSARY 242

APPENDIX D: COMPOSITE LANGUAGE SKELETON. 267

APPENDIX E : SAMPLE PROGRAMS 298

I

INTRODUCTION

PAGE 1

INTRODUCTION TO COBOL

What is COBOL?

COBOL <COmmon Business Oriented Language) is an English oriented
programming language designed primarily for developing business
applications on computers . It is described as English oriented
because its free form enables a programmer to write in such a way
that the final result can be read easily and the general flow of
the logic can be understood by persons not necessarily as closely
allied with the details of the problem as the programmer himself.

Because COBOL is a programming language it can be translated to
serve as communication between the programmer and the computer .
The COBOL program <the source program) which has been written by
the programmer is input to the COBOL compiler. The COBOL compiler
then translates the COBOL program into a machine readable form
<the object program) .

Although each computer has i t s own unique COBOL
an industry-wide COBOL effort has resulted
compatibility so that a COBOL source program
among different computers of one manufacturer
of different manufacturers .

compiler program,
in a degree of

can be exchanged
or among computers

A COBOL program is both a readable document and an efficient
computer program. Throughout the study of the COBOL language, it
is important to keep these two basic capabilities of COBOL in mind
and to observe the close relationship between them.

The readability factor of the COBOL language facilitates
communication not only between programmer and management, but also
among programmers, with a minimum of additional documentation . The
readability factor need not affect the other equally important
capability of constituting an efficient computer program. It is
precisely here that the attention of a good COBOL programmer is
centered. He can produce a solution in the form of a
well-integrated COBOL program by combining the
following: knowledge of the problem, programming technique,
capability of the equipment, and familiarity with the available
elements of the COBOL language.

PAGE 2

The History of COBOL

Development of the COBOL programming language is a continuing
process performed by the Programming Language Committee <PLC> of
the COnference on DAta SYstems Languages <CODASYL) . This committee
is made up of representatives of computer manufacturers and
computer users.

The first version of the COBOL programming language to be
published by CODASYL was called COBOL-60. The second version,
called COBOL-61. contained changes in the organization of the
Procedure Division and thus was not completely compatible with
COBOL-60.

In 1963 the third version. called COBOL-61 Extended. was released.
It was basically COBOL-61 with the addition of the sort feature.
the addition of the report writer feature, and the modification of
the arithmetics to include multiple receiving fields and the
CORRESPONDING option.

The fourth version of the COBOL programming language. COBOL-65.
consists of COBOL-61 Extended with the inclusion of a series of
options to provide for the reading. writing. and processing of
mass storage files and the addition of table handling features .

Beginning in 1968 the CODASYL COBOL Programming Language Committee
began to report its developmental work in a Journal of
Development. The first report to be published was the CODASYL
COBOL Journal of Development -- 1968. This JOUrnal is the official
report of the CODASYL COBOL Programming Language Committee and it
documents the developmental activities of CODASYL through July
1968. COBOL-68 is based on COBOL-65 with certain additions and
deletions.

Additional COBOL Journal of Development reports were published in
1969, 1970 and 1973. Each documented the developmental activities
of CODASYL from the previous report. resulting in continually
varying COBOL definitions .

PAGE 3

The Standardization of COBOL

In September 1962 the American National Standards Institute <ANSI)
set up a committee to work on the definition of a standard COBOL
programming language. This standardization effort was based on the
technical content of COBOL as defined by CODASYL. In Augus t 1968
an American National Standard COBOL was approved which was based
upon the developmental work of CODASYL through January 1968. This
first version was called American National Standard COBOL 1968.

In May 1974 a revision of American National Standard COBOL was
approved. This revision, called American National Standard COBOL
1974, is based upon the developmental work of CODASYL through
December 1971. The COBOL programming language and compiler
described in this document is based on the American National
Standard COBOL 1974.

PAGE 4

CONVENTIONS USED IN THIS MANUAL

This manual presents the language definition and capab ilities of
COBOL in a generally accepted syntax consistent with the 1974
American National Standard COBOL document. As a result, COBOL
Syntax is specified by formats employing special notat ion .

Words

All underlined uppercase words are key words and
the functions of which they are a part are used .
which are not underlined are optional and
present in the source program . Uppercase words,
or not, must be spelled correctly .

are required when
Upperc ase words

may or may not be
whether underlined

Lowercase words are generic terms used to represent COBOL words,
literals, PICTURE character-strings, comment-entr ies, or a
complete syntactical entry that must be supplied by the user. When
generic terms are repeated in a general format, a number or letter
appendage to the term serves to identify that term for explanation
or discussion.

Brackets and Braces

When a portion of a general format is enclosed in brackets, [J,
that portion may be included or omitted at the user's cho i ce .
Braces, {}, enclosing a portion of a general format means a
selection of one of the options contained within the braces must
be made . In both cases. a choice is indicated by vertically
stacking the possibilities . When brackets or braces enclose a
portion of a format, but only one possibility is shown, the
function of the brackets or braces is to delimit that portion of
the format to which a following ellipsis applies. If an option
within braces contains only reserved words that are not key words ,
then the option is a default option <implicity selected unless one
of the other options is explicitly indicated> .

Ellipsis

The ellipsis (. . . > represents the position at which repetition may
occur at the user's option.

PAGE 5

Punctuation

The punctuation characters comma and semicolon are shown in some
formats . Where shown in the formats, they are optional and may be
includ ed or omitted by the user . In the source program these two
punctuation characters are interchangeable and either may be used
anywhere one of them is shown in the formats. Neither one may
appear immediately preceding the first clause of an entry or
paragraph.

If desired, a semicolon or comma may be used between statements 1n
the Pro cedure Division.

Paragraph s within the Identification and Procedure Divisions, and
the entries within the Environment and Data Divisions must be
terminated by the separator period .

Speci al Characters

The characters '+', '-',
although not underlined,

':>', '<:', ' =' when appearing in formats,
are required when such formats are used .

System Dependent Information

Selected features in ANSI COBOL are intended for definition by the
implementor, to accomodate the capabilities and restrictions of
the host system. These system dependent items are summarized in
the COBOL Users Guide.

PAGE 6

II

THE STRUCTURE OF THE COBOL LANGUAGE

PAGE 7

THE LANGUAGE STRUCTURE

The smallest element in the COBOL language is the character. A
ch aracter is a digit, a letter of the alphabet, or a symbol . A
COBOL word is one possible result obtained when one or more COBOL
ch a r acters are JOined in a sequence of contiguous characters. Just
a s English words are determined by rules of spelling, so COBOL
wo r ds are formed by following a specific set of rules.

Usi ng the COBOL rules of grammar, the COBOL words and COBOL
punctuation characters are combined into statements, sentences,
pa ragraphs, and sections. When writing normal English, a failure
t o follow the rules of grammar and sentence structure may cause
mis understanding; the same is true when writing COBOL. It must be
e mphasized that a thorough knowledge of the rules of COBOL
structure is a prerequisite to writing a workable COBOL program.

Character Set

The COBOL character set consists of fifty-one characters:

Digits

Letters

Punctuation

Special

11

0 through 9

A through Z

Blank <or space)
Comma
Semic o lon
Period
Guote
Left parenthesis
Right parenthesis

Greater than
< Less than
+ Plus

Minus (or hyphen)
* Asterisk
I Slash (or Stroke)
= Equal
$ Curr·ency

The s e characters determine the structure of a COBOL program. In
some constructs, such as comments, other characters may be used
but they have no grammatical meaning.

PAGE 8

Characters are combined to form either a separator
character-string .

or a

The COBOL character set is a proper subset of the ASCII character
code set native to the computer . The complete character set may be
used only within non numeric literals and comments. The chart
below gives the hexadecimal and decimal codes for the complete
character set.

Hexadecimal Decimal Hexadecimal Decimal
Character Value Value Character Value Value

Space

If

$

* +

I
0
1
2
3
4
5
6
7
8
9

=
>
?

20
21
22
23
24
25
26
27
28
29
2A
2B
2C
20
2E
2F
30
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F

32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

PAGE 9

@

A
B
c
D
E
F
G
H
I
J
K
L
M
N
0
p
G
R
s
T
u
V
w
X
y
z
[

\
]

.....

40
41
42
43
44
45
46
47
48
49
4A
4B
4C
40
4E
4F
50
51
52
53
54
55
56
57
58
59
5A
5B
5C
50
5E
SF

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

Separators

A separator is a s~ring of one or more punctuation characters .

Punctuation characters belong to the following set :

=

11

Space
Comma
Equal sign
Left parenthesis
Period
Quotation mark (double)
Right parenthesis
Semicolon

Separators are formed according to the following rules:

1. A space is
separator,

a separator . Anywhere a space
more than one space may be used .

is used as a

2. Comma, semicolon, and period are separators when immediately
followed by a space. These separators may appear only when
explicitly permitted.

3 . Parentheses are separators which may appear only
pairs of left and right parentheses delimiting
indices, arithmetic expressions or conditions.

in balanced
subscripts,

Left parentheses must be preceded by a separator space or left
parenthesis.

Right parenthesis must be followed by one of the separators :
space, period, semicolon. comma or right parenthesis .

4 . Quotes are separators which may appear only in balanced pairs
delimiting the nonnumeric literals except when the liter al is
continued.

An opening quotation mark must be immediately
space or left parenthesis .

preceded by a

A closing quotation mark must be immediately followed by one
of the separators : space. comma, semicolon. period or right
parenthesis.

PAGE 10

5. The separator space may
separators except:

optionally immediately precede all

As specified by reference format rules.

As the separator closing quotation mark . In this case, a
preceding space is considered as part of the nonnumeric
literal and not as a separator.

The separator space may optionally immediately follow any
separator except the opening quotation mark . In this case, a
following space is considered as part of the nonnumeric
literal and not as a separator .

Any punctuation character which appears as part of the
specification of a PICTURE character-string or numeric literal is
not considered as a punctuation character, but rather as a symbol
used in the specification of that PICTURE character-string or
numeric literal. PICTURE character-strings are delimited only by
t h e separators spa c e, c o mm a, semi c o 1 on, or p er i o d .

These rules do not apply
literals, picture strings,

Character-Strings

to the characters
or comments .

within nonnumeric

A character-string is a sequence of one or more characters that
form a COBOL word, literaL picture string, or comment . A
character-string is delimited by separators .

COBOL Words

A COBOL word is a character-string of not more than 30 char·acters
which form either a user word or a reserved word. All words are
one or the other .

PAGE 11

User Words

User words are composed of the alphabetic characters, the numbers,
and the hyphen character . A user word must not begin or end with a
hyphen . With the exception of paragraph-name, section- name,
level-number and segment-number, all user - defined words must
contain at least one alphabetic character . There are twelve types
of user words :

program-name
file-name
record-name
data-name
paragraph-name
sect i on ·-name

Program-Name

condition-name
index-name
alphabet-name
text-name
leve l-number
segment - ·number

The program-name identifies the COBOL source and obJect
The name must contain at least one alphabetic character .
first 6 characters are associated with the obJect program.

File-Name

program.
Only the

File-names are the internal names for files accessed by the source
program. They are not necessarily the same as the external names
given to the files . File-names must contain at least one
alphabetic character and must be unique .

Record-Name

Record-names are used to name data records within a file . They
must contain at least one alphabetic character and, if not unique,
must be made unique by qualification with the file name .

Data ·-Name

A group of contiguous characters or a word of binary data treated
as a unit of data is called a data item, named by a data-na me . A
data-name must contain at least o ne alphabetic character .
References to data items mu s t be made unique by qualificat i on o r
the appending of subscripts (or indices) or both . Complete unique
references to data items are called identifiers .

PAGE 12 •

Paragraph-Name

A paragraph-name is a procedure name that identifies the beginning
of a set of COBOL procedural sentences . If not unique, a
paragraph - name must be made uniq u e by qualif i cation with a
section- name .

Section-Name

A section-name is a procedure name that ident i fies the beginning
of a set of paragraphs . Section-names must be unique .

Condition-Name

A condition-name may be defined in
within the Environment Division o r
description within the Data Division .

the SPECIAL- NAMES paragraph
in a level - number 88

A SPECIAL-NAMES condition- name is assigned to ON STATUS or OFF
STATUS of one or eight system software switches.

A level-number 88 condition-name is assigned to a specific value.
s et of values , or range of values within a complete set of values
tha t a data item may assume . The da t a item itself is called a
conditional variable .

A condition-name is used only in cond i tions as an abbreviation for
the relation condition which assumes that the associated switch or
conditional variable is equal to one of the set of values to which
that condition-name is assigned.

Index-Name

An index-name names an index associated with a specific table . It
must contain at least one alphabetic character and must be unique.

Alphabet - Name

An alphabet-name is used to specify a character code set . It must
contain at least one alphabetic character and must be unique .

Text - Name

A text-name is the name of a COBOL library text fil e. It must
correspond exactly to a valid file access-name as described i n the
operating system documentation.

PAGE 13

Level-Number

A level-number is used to specify the position
within a data hierarchy . A level-number is a
number in the range 01-49, 66, 77 or 88.

of a data item
on~- or two-digit

Level-numbers 66, 77 and 88 identify special properties of a data
description entry .

Segment-Number

A segment-number specifies the segmentation classification of a
section . It is a one- to two-digit number in the range 01-99.

PAGE 14

Reserved Words

The structure or COBOL governs the use of- certain COBOL words
called reserved words . Reserved words, recognized by the COBOL
compiler, aid the compiler in determining how to generate a
program. A programmer cannot devise a reserved word for a COBOL
program; he must use the word designated by the format of the
language. A reserved word must not appear as a user-defined word
within a program. A list of all reserved words recognized by the
compiler is shown in Appendix B.

Five kinds of reserved words are recognized by the compiler:

Key Words

Key words
Optional words
Connectives
Figurative constants
Special-characters

Key words are required elements of COBOL formats. Their presence
indicates specific compiler action .

Optional Words

Optional words are optional elements of COBOL formats.
presence has no effect on the obJect program.

Connectives

Their

The connectives OF and IN are used interchangeably to connect
qualifiers to a user word . The words AND and OR are logical
connectives and are used in the formation of conditions .

PAGE 15

Figurative Constants

Figurative constants identify commonly used constant values. These
constant values are generated by the compiler according to the
context in which the references occur . Note that figuratives
represent values, not literal occurrences. Thus QUOTE cannot be
used to delimit a nonnumeric literaL SPACE is not a separator,
and so forth . Singular and plural forms of figuratives are
equivalent and may be used interchangeably.

ZERO
ZEROS
ZEROES

Represents the value 0 or one or more
depending on context .

SPACE
SPACES

zero

Represents one or more space (characters .

HIGH-VALUE
HIGH-VALUES

(0) characters,

Represents one or more of the highest characters in the
collating sequence (hexadecimal FF> .

LOW-VALUE
LOW-VALUES

Represents one or
collating sequence

QUOTE
QUOTES

more of the lowest
(h e x ad e c i m a 1 00) .

characters

Represents one or more quote (") characters .

PAGE 16

in the

ALL literal

Represents one or more of the characters comprising the literal.
The literal must be either a nonnumeric literal or a figurative
constant . When a figurative constant is used, the word ALL is
redundant .

When a figurative constant represents a string of one or more
characters, the length of the string is determined by the compiler
from context according to the following rules:

1 . When a figurative constant is associated wi th another data
item, as when the figurative constant is moved to or compared
with another data item. the string of characters specified by
the figurative constant is repeated character-by-character on
the right until the size of the resultant string is equal to
the size in characters of the associated data item. Th i s is
done prior to and independent of the application of any
JUSTIFIED clause that may be associated with the data item.

2 . When a figurative
data item, as when
DISPLAY or STOP
character .

constant is not associated with another
the figurative constant appears in a

statement. the length of the string is one

A f i gurative constant may be used wherever a literal appears in a
f ormat, except that whenever the literal is restricted to having
only numeric characters in it. the only figurative constant
permitted is ZERO <ZEROS, ZEROES>.

Each reserved word which is used to reference a figurative
constant value is a distinct character-string with the exception
of the construction 'ALL literal' which is composed of two
distinct character-strings .

Special Characters

The special character words are the arithmetic
relation characters :

+ Plus sign (indexing)
Minus sign <indexing)

:> Greater than
< Less than
= Equal to

PAGE 17

operators and

Literals

A literal is a character-string whose form determines its value .
Literals are either nonnumeric or numeric .

Nonnumeric L i terals

A nonnumeric literal is a character-string enclosed in ~uotes. Any
characters in the COBOL character set may be used . Quote
characters within the string are represented by two contiguous
~uotes . The value of the literal is the string itself excluding
the delim i ting ~uotes and one of each contiguous pair of imbedded
qu otes . The value of the literal may contain from 1 to 2047
characters .

Examples :

Literal

"AGE?"
"""TWENTY""?"

Valu f'

AGE?
"TWENTY"?

1111111111 illegal (odd number of ~uotes)

Numeric Literals

A numeric literal represents a
character-string . Numeric literals are
following rules :

numeric value,
composed according

1. The literal must contain from 1 to 18 digits .

not a
to the

2 . The literal may contain a single plus or minus sign if it is
the first character .

3 . The literal may contain a single decimal point if it is not
the last character . The decimal point must be represented with
a comma if the DECIMAL-POINT IS COMMA phrase is specified in
the SPECIAL-NAMES paragraph .

Examples :

1234
+1234
-1. 234

1234
+ . 1234

PAGE 18

Picture String

A picture string consists of certain combinations
from the COBOL character set used as symbols.
character appearing as part of a picture string is
be a symbol, not a punctuation character.

Comment·-Entry

of characters
Any punctuation

considered to

A comment-entry is an entry in the Identification Division that
may contain any characters from the computer's character set .

System Names

System names identify certain hardware or software system
components. System names consist of device-names and switch-names.

Device-Names

PRINT
INPUT
OUTPUT
INPUT-OUTPUT
RANDOM

Switch-Names

SWITCH-1

SWITCH-8

Component

printer or print file
input only device
output only device
input - output device
disc

Component

software switches

PAGE 19

THE PROGRAM STRUCTURE

Source Format

COBOL programs are accepted as a sequence of formatted lines (or
records) of 80 characters or less. Each line is divided into five
areas:

Columns

1-6
7
8-11
12·-72
73-80

Area

sequence number
indicator
A
B
identification

T he sequence number and identification areas are used for clerical
and documentation purposes . They are ignored by the compiler .

The indicator area is
comments, and debugging .

Areas A and B contain
following rules :

used for

the actual

denoting line continuation,

program according to the

1 . Division headers, section headers, paragraph headers,

,..,
e.. .

section-names, and paragraph-names must begin in area A.

The Data Division level
77 must begin in area A.
A or area B, although B

indicator FD and level-numbers 01 and
Other level-numbers may begin in area

is preferable .

3 . The key word DECLARAT IVES and the key words END DECLARAT IVES,
precede and follow, respectively , the declaratives portion of
the Procedure Division . Each must appear on a line by itself
and each mu s t begin in area A and be followed by a period and
a spa c e.

4 . Any other
immediately

language
follows,

element must begin in area B unless it
on the same line, an element in area A.

PAGE 20

Continuation of Lines

Whenever a sentence, entry. phrase. or clause requires mo re than
one line, it may be continued by starting subsequent line (s) i n
area B. These subsequent lines are called the c o n ti nuat i on
line(s). The line being continued is called the continued lin e .
Any word or literal may be broken in su c h a way that part o f it
appears on a continuation line, acco r ding to the follow i ng rul es :

1 . A hyphen in the indicator area of a line indicates th a t the
first nonblank character i n area B of the current line i s the
successor of the last nonblank character of the prece di n g lin e
without any intervening space . However, if the conti nue d l ine
contains a nonnumeric literal without closing quota t i on ma rk,
the first nonblank character in area B on the cont in uat i o n
line must be a quotation mark, and the continuati on s t art s
with the character immediately af t er that quotation mark . All
spaces at the end of the continued line are conside r ed part o f
the liteT·al. Area A of continuation line must be blank .

2 . If there is no hyphen in the indicator area of a line. it is
assumed that the last character in the preceding l i ne is
followed by a space.

Blank Lines

A blank line is one that is blank in the
A blank line can appear anywhere in the
immediately preceding a continuation
indicator area .

Comment Lines

indicator, A and B areas .
source program. ex c ep t

line with a hyph e n i n the

A comment line is any line with an asterisk (*) in the indicator
area of the line. A comment line can appear as any l i ne in a
source program after the Identification Division header . Any
combination of characters from the computer's character set may be
included in area A and area B of that line . The asterisk a n d the
characters in area A and area B will be produced on the l i sting
but serve as documentation only.

Successive comment
lines is permitted,
contain an asterisk

lines are allowed .
except that each

in the indicator area .

Continuation of comment
continuation line mu st

A special form of comment line represented by a back slash <\> in
the indicator area of the line causes page eJection prio r t o
printing the comment .

PAGE 21

Debuggi ng Lines

A debugging line is any line with a D in the indicator area of the
line . Any debugging line that consists solely of spaces from area
A to the identifier area is considered to be a blank line.

A program that contains debugging lines must
correc t with or without the debugging lines.

be syntactically

A debugging line will be
characteristics of a comment line
specified at compiler invocation .

considered to
if the debug

have all
option is

the
not

Successive debugging lines are allowed. Continuation of debugging
lines is permitted, except that each continuation line must
contain a D in the indicator area, and character strings may not
be broken across two lines .

Stat ements

COBOL statements always begin with a key word called a verb . There
are three kinds of statements: directive, conditional, and
imperative.

A directive statement specifies action to be taken by the compiler
during compilation . The directive statements are:

The COPY and USE statements.

A conditional statement specifies that
conditi on is to be dete rmine d and that the
the object program is dependent on
conditional statements are:

An IF statement .

the truth
subsequent

this truth

value of a
action of

value. The

A READ statement with the AT END or INVALID KEY phrase.

A DELETE, REWRITE or START statement with
phrase.

the INVALID KEY

A WRITE statement with the INVALID KEY phrase.

An arithmetic statement <ADD, COMPUTE ,
SUBTRACT) with the SIZE ERROR phrase .

PAGE 22

DIVIDE, MUL T !PLY,

An imperative statement specifies an unconditional action to be
taken by the obJect program. The imperative statements are:

A READ statement without the AT END or INVALID KEY phrase.

A DELETE,
phrase.

REWRITE or START statement without the INVALID KEY

A WRITE statement without the INVALID KEY phrase.

An arithmetic statement <ADD, COI"1PUTE, DIVIDE,
SUBTRACT) without the ON SIZE ERROR phrase .

MULTIPLY,

An ACCEPT, ALTER, CLOSE, DISPLAY, EXIT, GO, INSPECT, MOVE,
OPEN, PERFORM, SET or STOP statement .

Whenever the term imperative-statement appears in the format of a
COBOL verb, it refers to one or more consecutive imperative
statements. The sequence ends with a period separator or an ELSE
associated with an IF verb.

Sentences

A sentence is a se~uence of one or more statements term inated by
the period separator . There are three kinds of sentences :
directive, conditionaL and imperative .

A directive sentence may contain only a single directive
statement.

A conditional sentence is
preceded by a sequence of
period followed by a space.

a conditional statement, optionally
imperative statements, termina ted by a

An imperative sentence is one or more
terminated by a period separator .

imperative statements

Clauses and Entries

An entry is an item of descriptive
of consecutive clauses . Each clause
entry. Clauses are separated by
separators. The entry is terminated

PAGE 23

or declaratory nature composed
specifies an attribute of th e

space, comma, or semicolon
by a period separator .

Paragraphs

A pa r agraph is a sequence of an arbitrary number, which may be
zero , of sentences or entries . In the Identification and
Environment Divisions, each paragraph begins with a reserved word
called a paragraph header. In the Procedure Division, each
paragraph begins with a user-defined paragraph-name .

Se c t i ons

A s ection is a sequence of an arbitrary number, which may be zero,
o f paragraphs in the Environment and Procedure Divisions and a
s equence of an arbitrary number, which may be zero , of entries in
t he Data Division . In the Environment and Data Divisions, each
s ection begins with reserved words called a section header. In the
P rocedure Division, each section begins with a user-defi n ed
s ection-name .

Di v is ions

Each COBOL program consists of four divisions; each is composed of
paragraphs or sections . These are the Identification, Environment,
Data, and Procedure d i visions, i n that order . All divisions are
requ i red . Each division beg ins with a group of reserved words
c all e d a division header.

PAGE 24

THE COPY STATEMENT

The COPY statement provides the facility for copying text from
user-specified files into the source program. Text is copied from
the file without change . The effect of the interpretation of the
COPY statement is to insert text into the source program, where it
will be treated by the compiler as part of the source program.

COBOL library text is placed on the COBOL library as a function
independent of the COBOL program and according to operating system
techniques.

FORMAT

COPY text--name .

The COPY statement must be preceded by a space and terminated by
the separator period. There must not be any additional text in
area B following the separator period.

Text-name is the external identification of the file containing
the text to be copied. Its format conforms to the rules for
filename <or pathname) construction of the host operating system.
If the external identification contains any characters that are
not letters or digits, or if the first character is not a letter,
then the text-name must be written as a nonnumeric literal and
enclosed in quotation marks .

A COPY statement may occur in the source program anywhere a
characterstring or separator may occur except that a COPY
statement must not occur within a COPY statement .

The compilation of a source program containing COPY statements is
logically equivalent to processing all COPY statements prior to
the processing of the resulting source program .

The effect of processing a COPY statement is that the librar\ text
associated with text-name is copied into the source program,
logically replacing the entire COPY statement, beginning with the
reserved word COPY and ending with the punctuation character
period, inclusive.

The library text is copied unchanged .

Debugging lines are permitted within library text. If a COPY
statement is specified on a debugging 1 i ne, then the COPY
statement will be processed only i ·r the debug option has been
specified in the compiler invocation options.

PAGE 25

The text produced as a result of processing a COPY statement may
not contain a COPY statement .

The syntactic correctness of the library text cannot be
independently determined . The syntactic correctness of the entire
COBOL source cannot be determined until all COPY statements have
been completely processed .

Library text must conform to the rules for COBOL source format .

COPY Ex amp 1 es :

FILE-CONTROL.
COPY FLCTRL.

PROCEDURE DIVISION.
COPY "INPUTP . COBOL" .

PAGE 26

I I I

IDENTIFICATION DIVISION

PAGE 27

INTRODUCTION

The Identification Division must be included in every COBOL source
program. This division identifies both the source program and the
resultant object program. In addition, the user may include other
commentary information .

FORMAT

IDENTIFICATION DIVISION.

PROGRAM-ID. program-name.

[AUTHOR. [comment-entry] . .. J

[INSTALLATION. [comment-entry] . . . J

[DATE-WRITTEN. [comment-entry] . . . J

[SECURITY. [comment-entry] ... J

PROGRAM IDENTIFICATION

The Identification Division must begin with the reserved words
IDENTIFICATION DIVISION followed by a period and a space.

Paragraph headers identify the ty pe of information contained in
the paragraph . The name of the program must be given in the first
paragraph, which is the PROGRAM-ID paragraph . The other paragraph s
are optional and may be included at the user's choice, in t he
order of presentation shown .

PAGE 28

The PROGRAM-ID Paragraph

The PROGRAM-ID paragraph, containing the program-name, identifies
the source program, the obJect program, and all listings
pertaining to a particular program . A program-name is a
user-defined word made up of only those characters from the word
set.

A program-name cannot exceed 8 characters in length, and must
contain at least one alphabetic character located in any position
within the program- name . Each program-name must be unique .

The AUTHOR, INSTALLATION, DATE-WRITTEN, SECURITY Paragraphs

The AUTHOR, INSTALLATION, DATE-WRITTEN, and SECURITY paragraphs
are optional . The programmer may use these paragraphs to document
information pertaining to the paragraph header .

The comment-entry may be any combination of characters from the
computer's character set. The continuation of the comment-entry by
the us e of the hyphen in the indicator area is not permitted;
however, the comment-entry may be contained on one or more lines.

PAGE 29

IV

ENVIRONMENT DIVISION

PAGE 30

INTRODUCTION

The Environment Division describes the hardware configuration of
the compiling computer <source computer) and the computer on which
the obJect program is run (obJect computer) . It also describes the
relationship between the files and the input/output media.

The Environment Division must be included in every COBOL source
program.

the Environment Division : There are two sections in
Configuration Section and the Input-Output Section.

FORMAT

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE-COMPUTER. camp ut er-name.

OBJECT-COMPUTER. c omp ut er-name .

[SPECIAL-NAMES. spec ia 1-names-en try J .

[INPUT-OUTPUT SECTION.

FILE-CONTROL. {file-control-entry}

CI-D-CONTROL. input-output-control-entry]] .

PAGE 31

the

CONFIGURATION SECTION

The Configuration Section deals with the characteristics of the
source computer and the obJect computer . This section is divided
into three paragraphs:

the SOURCE-COMPUTER paragraph, which describes the computer
configuration on which the source program is compiled

the OBJECT-COMPUTER paragraph,
configuration on which the
compiler is to be run

which
obJect

describes the computer
program produced by the

the SPECIAL-NAMES paragraph, which relates names used
compiler to user-names in the source program.

The SOURCE-COMPUTER Paragraph

by the

The SOURCE-COMPUTER paragraph identifies the computer upon which
the program is to be compiled .

FORMAT

SOURCE-COMPUTER. computer-name.

Computer-name is a user-defined word and is only commentary.

PAGE 32

The OBJECT-COMPUTER Paragraph

The OBJECT-COMPUTER paragraph identifies the computer on which the
program is to be executed .

FORMAT

OBJECT-COMPUTER. c omp ut er-name

[,MEMORY SIZE integer {WORDS }J

{CHARACTERS}

{MODULES }

[, PROGRAM COLLATING SEQUENCE IS alphabet-name].

Co mputer - name is a user-defined word and is only commentary .

The MEMORY SIZE definition is treated as commentary .

The PROGRAM COLLATING SEQUENCE clause specifies the program
c ollating sequence to be used in determining the truth value of
any nonnumeric comparisons . The Program Collating Sequence clause
i s treated as commentary; the collating sequence is always ASCII .

PAGE 33

The SPECIAL-NAMES Paragraph

The SPECIAL-NAMES paragraph relates names used by the compiler to
user-names in the source program .

CSPECIAL-NAMES. [, switch-name

{ON STATUS IS condition-name-1 [,OFF STATUS IS condition-name-2]}

{OFF STATUS IS condition-name-2 [,ON STATUS IS condition-name-1 J}J

[,alphabet-name IS {STANDARD--1} J.

{NATIVE }

---·----

[,CURRENCY SIGN IS literal-1J

C. DECIMAL-POINT IS COMMAJ J .
------------- - -----

Switch-name may be SWITCH-1, • I SWITCH-8.

At least one condition-name must be associated with each
switch - name given . The status of the switch is specified by
condition- names and interrogated by testing the condition-names .

The alphabet-name clause provides a means for relating a name to a
specified character code set and/or collating sequence. The
alphabet-name definition is treated as commentary; the collating
sequence is always ASCII .

PAGE 3 4

The literal which appears in the CURRENCY SIGN IS literal clause
is used in the PICTURE clause to represent the currency symbol.
The literal is limited to a single character and must not be one
of the following characters :

digits 0 through 9;

alphabetic
space;

characters A, B, C, D, L, P, R, S, V, X, z, or the

special characters '* 1 • 1 + 1 , '-",

I lt I '/', '='
I . I

'
I (I 1 I) I 1

If this clause is not present, only the currency sign ($) is used
in the PICTURE clause .

The clause DECIMAL-POINT IS COMMA means that the function of comma
and period are exchanged in the character-string of the PICTURE
clause and in numeric literals.

INPUT-OUTPUT SECTION

The INPUT-OUTPUT section names the files and external media
required by an obJect program and provides information required
for transmission and handling of data during execution of the
object program. This section is divided into two paragraphs :

the FILE-CONTROL paragraph which names and associates the
files with external media .

the I - D-CONTROL paragraph which defines special control
techniques to be used in the object program.

FORMAT

[INPUT-OUTPUT SECTION.

FILE-CONTROL.

{ f i 1 e - "t on t ·r o 1-entry }

(I --0- CONTROL.

I-0-control-entryJJ

The FILE-CONTROL Paragraph

The FILE-CONTROL paragraph names each file and allows
specification of other file-related information .

FORMAT

F ILE- CONTROL. {file-control --entry) . ..

The content of the file-control-entry
o rganization of the file named.

is dependent upon the

PAGE 36

The Sequential File Control Entry

FORMAT

SELECT file-name

ASSIGN TO device-type. {"external-file-name"}
{data-name-1 }

[;ORGANIZATION IS SEQUENTIAL]

[;ACCESS MODE IS SEQUENTIALJ

[;FILE STATUS IS data-name-2J.

The SELECT clause must be specified first in the file control
entry. The clauses which follow the SELECT clause may appear in
any order.

Each file described in the Data Division must be named once and
only once as file-name in the FILE-CONTROL paragraph. Each file
specified in the file control entry must have a file description
entry in the Data Division.

The ASSIGN clause specifies the association of the file referenced
by file-name to a storage medium.

Device-type must
OUTPUT, PRINT, or
performed.

be one of the device names INPUT, INPUT-OUTPUT,
RANDOM according to the operations to be

External-file-name specifies the file access name . It can be from
one to thirty characters in length and must be enclosed in
quotation marks. A name longer than thirty characters will be
diagnosed as an error. The name may contain any sequence of
characters supported by the operating system for file access
names.

Data-name-1 must be defined in the Data Division as a data item of
category alphanumeric and must not be defined in the Linkage
Section . Its value at the time of an OPEN statement execution will
be used as the file access name . Data-name-1 may be qualified .

PAGE 37

The ORGANIZATION clause specifies the logical structure of a file.
The file organization is established at the time a file is created
and cannot subsequently be changed .

Records in the file are accessed in the sequence dictated by the
file organization. This sequence is specified by
predeces sor-successor record relationships established by the
execution of WRITE statements when the file is created or
extended.

When the ORGANIZATION clause
SEQUENTIAL is implied.

is not specified, ORGANIZATION IS

The ACCESS MODE clause specifies the order in which records are
read or written.

If the ACCESS MODE clause is not specified, ACCESS MODE IS
SEQUENTIAL is implied.

When the FILE STATUS clause is specified, a value will be moved by
the operating system into the data item specified by data-name-2
after the execution of every statement that references that file
either explic itly or implicitly . This value indicates the status
of executi on of the statement .

Data-na me -2 must be defined in the Data Division as a
two-ch aracter data item of the category alphanumeric and must not
be defined in the File Section . Data-name-2 may be qualified .

PAGE 38

The Relative File Control Entry

FORMAT

SELECT file-name

ASSIGN TO RANDOM,

{ " e x t ern a 1 - f i 1 e ·- name " }
{data-name-1 }

;ORGANIZATION IS RELATIVE

[;ACCESS MODE IS {SEQUENTIAL [,RELATIVE KEY IS data-name-2J}]

{{RANDOM } .RELATIVE KEY IS data-name-2}

{{DYNAMIC} }

[;FILE STATUS IS data-name-3) .

The SELECT clause must be specified first in the file control
entry . The clauses which follow the SELECT clause may appear in
any order .

Each file described in the Data Divison must be named once and
only once as file-name in the FILE-CONTROL paragraph . Each file
specified in the file control entry must h a ve a file descr iption
entry in the Data Division .

The ASSIGN TO RANDOM clause specifies the association of the file
referenced by file-name to a storage medium.

External-file-name specifie s the file access name and must be
enclosed in quotation marks. It can be from one to thirty
characters in length. A name longer than thirty characters will be
diagnosed as an error. The name may contain any characters
supported by the operating system for file access names .

Data-name-1 must be defined in the Data Division as a data item of
category alphanumeric and must not be defined in the Linkage
Section. Its value at the time of an OPEN statement execution will
be used as the file access name. Data-name-1 may be qualified .

PAGE 39

The ORGANIZATION IS RELATIVE clause specifies the
structure of a file. The file organization is established
time a file is created and cannot subsequently be changed.

logical
at the

All records stored in a relative file are uniquely identified by
relative record numbers. The relative record number of a given
record specifies the record's logical ordinal position in the
file . The first logical record has a relative record number of one
(1), and subsequent logical records have relative record numbers
of 2, 3, 4, ... n.

The ACCESS MODE clause specifies the order in which records are to
be accessed .

When the
accessed
sequence
existing

ACCESS MODE IS SEQUENTIAL, records in the file are
in the sequence dictated by the file organization . This
is the order of ascending relative record numbers of

records in the file .

If the ACCESS MODE IS RANDOM, the value of the RELATIVE KEY data
item indicates the record to be accessed.

I f a relative file is to be referenced by a START statement, the
RELATIVE KEY phrase must be specified for that file.

When the ACCESS MODE IS DYNAMIC, records
accessed sequentially and/or randomly .

in the file may be

Data-name-2 must
associated with
data-name-2 must
may be qualified .

not
that

be

be defined in a record description entry
file - name . The data item referenced by
defined as an unsigned integer. Data-name-2

If the ACCESS MODE clause
SEQUENTIAL is implied.

is not specif i ed, ACCESS MODE IS

Wh en the FILE STATUS clause is specified, a value will
the operating system into the data item specified by
a fter the execution of every statement that references
either explicitly or implicitly. This value indicates
of execution of the statement.

be moved by
data-name-3
that file

that status

Data-name-3 must be defined in the Data Division as a
two-character data item of the category alphanumeric and must not
be defined in the File Section.

PAGE 40

The Indexed File Control Entry

FORMAT

SELECT file-name

ASSIGN TO RANDOM, {"external-fi le·-name"}
{data-name-1 }

[;ORGANIZATION IS INDEXED

[;ACCESS MODE IS <SEQUENTIAL}]

{RANDOM }

<DYNAMIC }

;RECORD KEY IS data-name-2

[; ALTERNATE RECORD KEY IS data-name-3 CWITH DUPLICATESJJ .

[;FILE STATUS IS data-name-4J .

The SELECT clause must be specified first in the file control
entry. The clauses which follow the SELECT clause may appear in
any order.

Each file described in the Data Division must be named once and
only once as file-name in the FILE-CONTROL paragraph.

Each file specified in the file control entry must have a file
description entry in the Data Division.

The ASSIGN TO RANDOM clause specifies the association of the file
referenced by file-name to a storage medium.

External-file-name specifies the file access name and must be
enclosed in quotation marks . It can be from one to thirty
characters in length. A name longer than thirty characters will be
diagnosed as an error . The name may contain any characters
supported by the operating system for file access names .

PAGE 41

Data-name-1 must be defined in the Data Division as a data item of
category alphanumeric and must not be defined in the Li n kage
Section . Its value at the time of an OPEN statement execution will
be used as the file access name . Data-name-1 may be qualified .

The ORGANIZATION IS INDEXED clause specifies the logical structure
of a file. The file organization is established at the time a file
is created and cannot subsequently be changed .

The ACCESS MODE clause specifies the order in which records are to
be accessed .

When the ACCESS MODE IS SEQUENTIAL, records in the file are
accessed in the sequence dictated by the file organization. For
indexed files this sequence is the order of ascending record key
values within a given key of reference.

If the ACCESS MODE IS RANDOM, the value of the RECORD KEY data
item indicates the record to be accessed.

When the ACCESS MODE IS DYNAMIC,
accessed sequentially and/or randomly.

records

If the ACCESS MODE clause
SEQUENTIAL is implied .

is not specified,

in the file may be

ACCESS MODE IS

The RECORD KEY clause specifies the record key that is the prime
record key for the file. This prime record key provides an access
path to records in an indexed file.

An ALTERNATE RECORD KEY clause specifies a record key that is an
alternate record key for the file . This alternate record key
provides an alternate access path to records in an indexed file.

The data description of data-name-2 and data-name-3 as well as
their relative locations within a record must be the same as that
used when the file was created . The number of alternate keys for
the file must also be the same as that used when the file was
created.

The data items referenced by data-name-2 and data-name-3 must each
be defined as a data item of the category alphanumeric within a
record description entry associated with that file-name.

Neither data-name-2 nor data-name-3 can describe an
size is variable.

PAGE 42

item whose

Data-name-3 cannot reference an item whose leftmost character
position corresponds to the leftmost character position or an item
referenced by data-name-2 or by any other data-name-3 associated
with this file .

Data-name-2 and data-name-3 may be qualified.

The WI TH DUPLICATES phrase specifies that the value of the
associated alternate record key may be duplicated within any of
the records in the file . If the WITH DUPLICATES phrase is not
specified, the value of the associated alternate record key must
not be duplicated among any of the records in the file .

When the FILE STATUS clause is specified, a value will be moved by
the operating system into the data item specified by data-name-4
after the execution of every statement that references that file
either explicitly or implicitly . This value indicates the status
of execution of the statement .

Data-name-4 must be defined in the Data Division as a
two-character data item of the category alphanumeric and must not
be defined in the File Section .

PAGE 43

The I-0 CONTROL Paragraph

The I-0 CONTROL paragraph specifies the memory area which is to be
shared by different files .

FORMAT

I-D-CONTROL.

[; SAME AREA FOR file-name-1 [, file-name-2J . .. J .. .

The I-D-CONTROL paragraph is optional .

The SAME AREA clause specifies that two or more files are to use
the same memory area during processing . The area being shared
includes all storage area assigned to the files specified;
therefore. it is not valid to have more than one of the files open
at the same time .

More than one SAME clause may be included in a progr·am ; however. a
file-name must not appear in more than one SAME AREA clau s e .

The files referenced in the SAME AREA clause need not all have the
same organization or access .

PAGE L'J.4

V

DATA DIVISION

PAGE 45

INTRODUCTION

The Data Division describes the data that the object program is to
accept as input, to manipulate, to create, or to produce as
output . Data to be processed falls into three categories:

That which is contained in files and
internal memory of the computer
areas.

enters or leaves the
from a specified area or

That which is developed internally
intermediate or working storage. or
format for output reporting purposes.

Constants which are defined by the user.

and
placed

placed into
into specific

The Data Division, which is one of the required
program, is subdivided into three sections:

divisions in a

The FILE SECTION defines the structure of data files . Each
file is defined by a file description entry and one or more
record descriptions. Record descriptions are written
immediately following the file description entry.

The WORKING-STORAGE SECTION describes records and
noncontiguous data items which are not part of external data
files but are developed and processed internally . It also
describes data items whose values are assigned in the source
program and do not change during the execution of the obJect
program.

The LINKAGE SECTION in a program is meaningful if and only if
the object program is to function under the control of a CALL
statement, and the CALL statement in the calling program
contains a USING phrase .

The Linkage Section is used for describing data that is
available through the calling program but is to be referred to
in both the calling and the called program . No space is
allocated in the program for data items referenced by
data-names in the Linkage Section of that program . Procedure
Division references to these data items are resolved at object
time by equating the reference in the called program to the
location used in the calling program . In the case of
index-names. no such correspondence is established.
Index-names in the called and calling program always refer to
separate indices .

PAGE 46

Data items defined in the Linkage Section of the called
program may be referenced within the Procedure Division of the
called program only if they are specified as operands of the
USING phrase of the Procedure Division header or are
subordinate to such operands, and the obJect program is under
the control of a CALL statement that specifies a USING phrase .

FORMAT

DATA DIVISION.

[FILE SECTION.

[file - description- entry3
[record - description- entry] . .. J . .

[WORKING-STORAGE SECTION.

[77-level-description-entry)
[record-description-entry J . .. J

[LINKAGE SECTION.

[77-level-description-entry)
[record-description-entry J .. . J

PAGE 47

FILE SECTION

The File Section header is followed by a file description e n try
consisting of a level indicator <FD), a file-name and a series of
independent clauses. The FD clauses specify the size of the
logical and physical records, the presence or absence of label
records, the value of label items, and the names of the data
records which comprise the file. The entry itself is terminated by
a period.

In a COBOL program the file description entry <FD> represents the
highest level or organization in the File Section .

FORMAT

FILE SECTION.

(file-description-entry
[record-description-entry) . . . J .. .

PAGE 48 •

The File Description Entry

The File Description furnishes information concerning the physical
structure. identification, and record name pertaining to a given
f i 1 e.

FORMAT

FD file-name

[;BLOCK CONTAINS [integer-1 TOJ integer-2 <RECORDS }]

{CHARACTERS}

[;RECORD CONTAINS [integer-3 TOJ integer-4 CHARACTERS]

;LABEL <RECORD IS } <STANDARD}

<RECORDS ARE} <OMITTED>

[;VALUE OF LABEL IS [literal-1JJ

(;DATA <RECORD IS } data-name-1 (, data-name-2] ... J .

<RECORDS ARE}

The level indicator FD identifies the beginning of a file
description and must precede the file-name .

The clauses which follow the name of the file are optional in many
cases. and their order of appearance is not significant.

One or more record description entries must follow the file
description entry .

A file description entry must end with a period separator.

PAGE 49

The BLOCK CONTAINS Clause

The BLOCK CONTAINS tlause specifies the size of a physical record.

FORMAT

BLOCK CONTAINS [integer-1 TOJ integer-2 {RECORDS }

{CHARACTERS}

This clause is required except when :

A physical record contains only one complete logical record .

The device assigned t o the file has only one physical record
size.

The device assign erl to th e file has a standard record size,
although the dev i c e n~ have more than one physical r ecord
s iz e . In this case, the a ~ e nce of this clause denotes the
standard physical record si ze .

Th e size of the physical record may be stated in terms of RECORDS,
unless one of the following situations exist, in which case the
RECORDS phrase must not be used :

In mass storage files where logica l records may extend across
physical records .

The physical record contains padding .

Logical records are grouped in such a manner that an
inaccurate physical record size would be implied.

When the word CHARACTERS is specified , the physical record size is
s pecified in terms of the number of character positions required
to store the physical record, regardless of the types of
characters used to represent the items within the physical record.

If only integer-2 is shown, it represents the exact size of the
physical record. If integer-1 and integer-2 are shown, they refer
to the minimum and maximum size of the physical record,
respectively .

PAGE 50

The RECORD CONTAINS Clause

The RECORD CONTAINS clause specifies the size of the data reco r ds .

FORMAT

RECORD CONTAINS [integer-1 TOJ integer-2 CHARACTERS

The size of each data record is completely defined with the record
description entry, therefore this clause is never required. When
present, hotllever , the following notes apply :

Integer-2 may not be used by itself unless all th e da t a
records in the file have the sam e size . In this ca s e int eger - 2
represents the exact number of characters in the data r ecord.

If integer-1 and integer-2 are both shown, they refer to the
minimum number of characters in the smallest size data record
and the maximum number of characters in the largest size data
record, respectively .

The size is specified in terms of the number of character
positions required to store the logical record, regardless of
the types of characters used to represent the items within the
logical record. The size of a record is determined by the sum
of the number of characters in all fixed length elementary
items plus any filler characters generated between eleme n tary
items because of the SYNCHRONIZED clause .

PAGE 51

The LABEL RECORD Clause

The LABEL RECORD clause specifies whether labels are present.

FORMAT

LABEL <RECORD IS } {STANDARD}

<RECORDS ARE} <OMITTED }

This clause is required in every file description entry.

STANDARD specifies that labels exist for the file or the device to
which the file is assigned and the labels conform to the operating
system specification. STANDARD must be specified for files
assigned to a RANDOM device.

OMITTED specifies that no explicit labels exist for the file or
the device to which the file is assigned .

The VALUE OF Clause

The VALUE OF clause particularizes the description of an item in
the label records associated with a file.

FORMAT

VALUE OF LABEL IS literal-1

This clause is treated as commentary.

This clause must not be specified if OMITTED is specified in the
LABEL RECORDS clause.

PAGE 52

The DATA RECORDS Clause

The DATA RECORDS clause serves only as documentation for the names
of data records with their associated file .

FORMAT

DATA {RECORD IS } data-name-1 [, data-name-2J . . .

<RECORDS ARE}

Data-name-1 and data-name-2 are the names of data records and must
have 01 level-number record descriptions. with the same name,
associated with them.

The presence of more than one data-name indicates that the file
contains more than one type of data record . These records may be
of differing sizes. different formats, etc. The o rder in which
they are listed is not significant.

Conceptually, all data records within a file share the same area.
This is in no way altered by the presence of more than one type of
data record within the file .

PAGE 53

WORKING-STORAGE SECTION

of the section header,
for 77 level description

The Working-Storage Section is composed
followed by data description entries
entries and/or record description entries.

The data-name of a 01-level data description entry in
Working-Storage Section must be unique since it cannot
qualified. Subordinate data-names need not be unique if they
be made unique by qualification .

FORMAT

WORKING-STORAGE SECTION.

[77-level-description-entryJ
[record-description-entry J

LINKAGE SECTION

the
be

can

The structure of the Linkage Section is the same as for the
Working-Storage Section, beginning with a section header, followed
by data description entries for noncontiguous data items and/or
record description entries .

Each Linkage Section record-name and noncontiguous item name must
be unique within the called program since it cannot be qualified.

FORMAT

LINKAGE SECTION.

[77-level-description-entryJ
[record-description-entry J

PAGE 54

RECORD DESCRIPTION ENTRY

A record description entry consists of a set of data description
entries which describe the characteristics of a particular record .
Each data description entry consists of a level-number followed by
a data-name and a series of independent clauses, as required .

FORMAT

{data-description-entry}

Level-Numbers

The first data descript i on of a record must have a level - number of
01 or 1, and must start in area A of a source line .

Each data description entry can be subdivided into multiple data
description entries, each having the same level-number; which must
be greater than the level-number of the subdivided entry. but less
than 50 . Level-numbers do not necessarily have to be su c cessive .
Thus, a record is a hierarchy of data description entries .

Elementary Items

-----·----

Any data description entry which is not further subdivided is
called an elementary item. A record i t self may be an elementa ry
item. consisting of a single level 01 data description entry . A
subdivided data description entry with its subdivisions is called
a group and is non-elementary . Therefore, a group includes all
group and elementary items following it until a level-number less
than or equal to the level - number of th a t gro u p is encountered .

Note
only
they
must
both .

that certain clauses of the data description entry may oc cur
in elementary items . They may not occur i n 01-level entry as
may affect the subdivisions of that entry . An elementary item

have either a PICTURE clause or INDEX usage; it may not have

PAGE 55

77 LEVEL DESCRIPTION ENTRY

In th e Working-Storage and Linkage Sections, a special
level-number of 77 can be used in data description entries which
are not subdivisions of other items, and are not themselves
subdivi ded . These data description entries specify noncontiguous
data i tems. Such a data description entry is elementary.

A 77 l evel description entry must contain a data name and either
the PICTURE clause or the USAGE IS INDEX clause, but cannot
contain an OCCURS clause. Other clauses are optional and can be
used to complete the description of the item if necessary.

FORMAT

data-d escription-entry

PAGE 56
•

THE DATA DESCRIPTION ENTRY

A data description entry specifies the characteristics of a
particular item of data .

FORMAT 1

level-number {data-name-1}
{FILLER }

[;REDEFINES data-name-2J

[;{PICTURE} IS character-string]

{PlC }

[;[USAGE ISJ {COMPUTATIONAL }

{COMP }

{COMPUTATIONAL-1}

{COMP-1 }

{COMPUTATIONAL-3}

{COMP-3 }

{DISPLAY }

{INDEX }]

(; CSIGN ISJ {TRAILING} [SEPARATE CHARACT~RJJ

[;{OCCURS {integer-1 TIMES }
------ {integer-1 TO integer-2 TIMES DEPENDING ON data-name-3}

[INDEXED BY index-name-1 L index-name-2J . .. JJ

[;{SYNCHRONIZED} CLEFT J

{SYNC } CRIGHTJJ

PAGE 57

[;{JUSTIFIED} RIGHTJ

{JUST }

[;BLANK WHEN ZEROJ

[;VALUE IS literal]

FORMAT 2

66 data-name-1; RENAMES data-name-2 [{THROUGH} data-name-3].

<THRU }

FORMAT 3

88 condition-name; <VALUE IS } literal-1 [{THROUGH} literal-2J

{VALUES ARE} {THRU }

L literal-3 [{THROUGH} literal-4JJ ...

{THRU }

The clauses may be written in any order with two exceptions :

the data-name-1 or FILLER clause must immediately follow the
level-number;

the REDEFINES clause, when used, must immediately follow the
data-name-1 clause .

The PICTURE clause must be specified for every elementary item
except an index data item, in which case use of this clause is
prohibited.

The words THRU and THROUGH are equivalent.

The clauses SYNCHRONIZED, PICTURE, JUSTIFIED, and BLANK WHEN ZERO,
must not be specified except for an elementary data item.

PAGE 58 •

Format 3 is used for each condition-name . Each condition-name
requires a separate entry with level-number 88. Format 3 contains
the name of the condition and the value, values, or range of
values associated with the condition-name. The condition-name
entries for a particular conditional variable must follow the
entry describing the item with which the condition-name is
associated . A condition-name can be associated with any data
description entry which contains a level-number except the
f ollowing :

Another condition-name.

A group
JUSTIFIED,
DISPLAY).

containing items
SYNCHRONIZED or

An index data item.

A 1 eve 1 66 i t em .

with
USAGE

descriptions
(other than

including
USAGE IS

Each data description entry must end with a period separator.

PAGE 59

The Level-Numbe~

The level-numbe~ shows the hie~a~chy of data within a logical
reco~d . In addition, it is used to identify entr i es for wo~king
sto~age items, linkage items, condition-names and the RENAMES
clause .

FORMAT

level-numbe~

A level-numbe~ is ~equired as the fi~st element in each data
desc~iption ent~y .

Data desc~iption entries subo~dinate to an
level-numbe~s with the values 01 th~ough 49,

FD entry
66 0~ 88.

must have

Data desc~iption ent~ies in the Wo~king-Storage Section and
Linkage Section must have level-numbe~s with the values 01 through
49, 66, 77 0~ 88.

The level -numbe~ 01 identifies the fi~st ent~y
desc~iption .

in each r eco~d

Level-numbe~ 66 is assigned to identify RENAMES ent~ies .

Level-number 77 is assigned to identify noncontiguous wo~king
sto~age data items and noncontiguous linkage data items.

Level-numbe~ 88 is assigned to identify condition-names associated
with a conditional va~iable.

Multiple level 01 ent~ies subordinate to any given level indicate~

FD, represent implicit redefinitions of the same area .

PAGE 60

The Data-Name or FILLER Clause

A data-name specifies the name of the data being described. The
word FILLER specifies an elementary item of the logical record
that cannot be referred to explicity.

FORMAT

{data-name}
<FILLER }

A data-name or the key word FILLER must be the first
following the level-number in each data description entry .

word

The key word FILLER may be used to name an elementary item in a
re c ord . Under no circumstances can a FILLER item be referred to
explicitly. However, the key word FILLER may be used as a
con ditional variable because such use does not require explicit
reference to the FILLER item, but to its value .

The k e y word FILLER may not be used in data description entries
with a 1. 01, 77, or 88 level-number .

PAGE 61

The REDEFINES Clause

The REDEFINES clause allows the same computer storage area to be
described by different data description entries.

FORMAT

level-number data-name-1; REDEFINES data-name-2

NOTE: Level-number, data-name-1 and the semicolon are shown in
the above format to improve clarity . Level-number and
data-name-1 are not part of the REDEFINES clause.

The REDEFINES clause,
data-name-1.

when specified, must immediately follow

The level-numbers of data-name-1 and data-name-2 must be identical
but must not be 66 or 88.

This clause must not be used in
Section .

level 01 entries in the File

The data description entry for data-name-2 cannot contain a
REDEFINES clause . Data-name-2 may be subordinate to an entry which
contains a REDEFINES clause . The data description entry for
data-name-2 cannot contain an OCCURS clause. However. data-name-2
may be subordinate to an item whose data description entry
contains an OCCURS clause. In this case, the reference to
data-name-2 in the REDEFINES clause may not be subscripted or
indexed . Neither the original definition nor the redefinition can
include an item whose size is variable as defined in the OCCURS
cla!Jse.

No entry having a level-number numerically lower than the
level-number of data-name-2 and data-name-1 may occur between the
data description entries of data-name-2 and data-name-1.

Redefinition starts at data-name-2 and ends when a level-number
less than or equal to that of data-name-2 is encountered.

When the level-number of data-name-1 is other than
specify the same number of character positions that
referenced by data-name-2 contains . It is important
that the REDEFINES clause specifies the redefinition
area, not of the data items occupying the area.

PAGE 62

01. it must
the data item

to observe
of a storage

Multiple redefinitions of the same character positions are
permitted. The entries giving the new descriptions of the
character positions must follow the entries defining the area
being redefined without intervening entries that define new
character positions . Multiple redefinitions of the same character
positions must all use the data-name of the entry that originally
d efined the area.

The entries giving the new description of the character positions
must not contain any VALUE clauses except in condition-name
entries .

Multiple level 01 entries subordinate to any given level indicator
represent implicit redefinitions of the same area.

PAGE 63

The PICTURE Clause

The PICTURE clause describes the general
editing requirements of an elementary item.

characteristics and

FORMAT

{PICTURE} IS character-string

{PlC }

A PICTURE clause can be specified only at the elementary item
1 eve 1.

A character-string consists of certain allowable
characters in the COBOL character set used
allowable combinations determine the category of
i tern.

combinations of
as symbols . The

the elementary

The maximum number of characters allowed in the character-string
is 30.

The PICTURE clause must be specified for every elementary item
except an index data item, in which case use of this clause is
prohibited.

PIC is an abbreviation for PICTURE.

There are five categories of data that can be described with a
PICTURE clause :

alphabetic
numeric
alphanumeric
alphanumeric edited
numeric edited

To define an item as alphabetic :

Its PICTURE character-string can only contain the symbols ' A',
and/or 'B'.

Its contents when represented in standard data format mu s t be
any combination of the twenty-six (26) letters of the Roman
alphabet and the space from the COBOL character set.

PAGE 64

•

To define an item as numeric:

Its PICTURE character-string can only contain the symbols '9',
'P', 'S', and 'V'. The number of digit positions that can be
described by the PICTURE character-string must range from 1 to
18 inclusive; and

If unsigned, its contents when represented in standard data
format must be a combination of the Arabic numerals '0', '1',
'2', '3', '4', '5', '6', '7', '8', '9'; if signed, the item
may also contain a '+', '-', or other representation of an
operational sign .

To define an item as alphanumeric:

Its PICTURE character-string is restricted to certain
combinations of the symbols 'A', 'X', '9', and the item is
treated as if the c~aracter-string contained all X's. A
PICTURE character-string which contains all A's or all 9's
does not define an alphanumeric item; and

Its contents, when represented in standard data format, are
allowable characters in the computer's character set.

To define an item as alphanumeric edited:

Its PICTURE character-string is
combinations of the following symbols :
'0', and '/' <stroke);

restricted
'A', 'X',

to certain
'9', 'B',

The character-string must contain at least one 'B' and at
least one 'X' or at least one '0' (zero) and at least one 'X'
or at least one '/' (stroke) and at least one 'X'; or

The character-string must contain at least one '0' (zero) and
at least one 'A' or at least one '/' <stroke) and at least one
'A'; and

The contents when represented in standard data format are
allowable characters in the computer's character set.

PAGE 65

To define an item as numeric edited:

Its PICTURE character-string is restricted to certain
combinations of the following symbols : 'B', '/' (stroke), 'P',
'V', 'Z', ' 0', '9', '*', '-', '+', 'CR', 'DB', and
the currency · symbol . The allowable combinations are determined
from the order of precedence of symbols and the editing rules;
and

The number of digit positions that can be represented in the
PICTURE character-string must range from 1 to 18 inclusive;
and

The character-string must contain at least
<stroke), 'Z', ' ·11-', J' +I 1

currency symbol .

one '0',
I CRI I

I B I I

'DB I I

I I /

or

The contents of the character positions of these symbols that
are allowed to represent a digit in standard data format. must
be one of the numerals.

The size of an elementary item. where size means the number of
character positions occupied by the elementary item in standard
data format, is determined by the number of allowable symbols that
represent character positions . An integer which is enclosed in
parentheses following the symbols 'A', ', ', 'X', '9', 'P', 'Z',
'*'• 'B', ' I' <stroke), '0', '+', '-', or the currency symbol
indicates the number of consecutive occurrences of the symbol.
Note that the following symbols may appear only once in a given
PICTURE : 'S', 'V', ', 'CR', and 'DB'.

The functions of the symbols used to describe an elementary item
are explained as follows :

Each 'A'
position
space.

in the character-string represents a character
which can contain only a letter of the alphabet or a

Each 'B' in the character-string represents a character
position into which the space character will be inserted.

PAGE 66

Each 'P' indicates an assumed decimal scaling position and is
used to specify the location of an assumed decimal point when
the point is not within the number that appears in the data
item. The scaling position character 'P' is not counted in the
size of the data item. Scaling position characters are counted
in determining the maximum number of digit positions (18> in
numeric edited items or numeric items. The scaling position
character 'P' can appear only to the left or right as a
continuous string of 'P's within a PICTURE description; since
the scaling position character 'P' implies an assumed decimal
point <to the left of 'P's if 'P's are leftmost PICTURE
characters and to the right if 'P's are rightmost PICTURE
characters), the assumed decimal point symbol 'V' is redundant
as either the leftmost or rightmost character within such a
PICTURE description . The character 'P' and the insertion
character <period) cannot both occur in the same PICTURE
character-string. If, in any operation involving conversion of
data from one form of internal representation to another , the
data item being converted is described with the PICTURE
character 'P', each digit position described by a 'P' is
considered to contain the value zero, and the size of the data
item is considered to include the digit positions so
described .

The letter 'S' is used in a character-string to indicate the
presence, but neither the representation nor, necessarily, the
position of an operational sign; it must be written as the
leftmost character in the PICTURE . The 'S' is counted in
determining the size (in terms of standard data format
characters> of elementary items having DISPLAY or
COMPUTATIONAL usage .

The 'V' is used in a character-string to indicate the location
of the assumed decimal point and may only appear once in a
character-string. The 'V' does not represent a character
position and therefore is not counted in the size of the
elementary item. When the assumed decimal point is to the
right of the rightmost symbol in the string the 'V' is
redundant.

Each 'X' in the character-string is used to represent a
character position which contains any allowable charact~r ft· om
the computer's character set.

Each 'Z' in a character-string may only be used to represent
the leftmost leading numeric character positions which will be
replaced by a space character when the contents of that
character position is zero. Each ' Z' is counted in the size of
the item.

PAGE 67

Each '9' in the character-string represents a
position which contains a numeral and is counted in
of the item.

character
the size

Each '0' (zero) in the character-string represents a character
position into which the numeral zero will be inserted . The ' 0'
is counted in the size of the item.

Each '/' <stroke> in the character-string represents a
character position into which the stroke character will be
inserted. The '/' <stroke) is counted in the size of the item.

Each ' , (comma) in the character-string
character position into which the character
inserted. This character position is counted
the item. The insertion character ',' must not
character in the PICTURE character- string .

represents a
wi 11 be

in the size of
be the last

When the character (period) appears in the
character-string it is an editing symbol which represents the
decimal point for alignment purposes and in addition,
represents a character position into which the character
will be inserted. The char·acter ' . ' is counted in the size of
the item. For a given program the functions of the period and
comma are exchanged if the clause DECIMAL-POINT IS COMMA is
stated in the SPECIAL-NAMES paragraph . In this exchange the
rules for the period apply to the comma and the rules f or the
comma apply to the period wherever they appear in a PICTURE
clause. The insertion character must not be the last
character in the PICTURE character-string .

+, CR, DB . These symbols are used as editing sign control
symbols . When used, they represent the character position into
which the editing sign control symbol will be placed . The
symbols are mutually exclusive in any one character-string and
each character used in the symbol is counted in determining
the size of the data item.

Each '*' (asterisk) in the character-string represents a
leading numeric character position into which an asterisk will
be placed when the contents of that position is zero . Each '*'
is counted in the size of the item.

The asterisk when used as the zero suppression symbol and the
clause BLANK WHEN ZERO may not appear in the same entry .

PAGE 68
•

The currency symbol in the character-string repr esents a
character position into which a currency symbol is to be
placed . The currency symbol in a character-str ing is
represented by either the currency sign or by the single
character specified in the CURRENCY SIGN IS clause in the
SPECIAL-NAMES paragraph . The currency symbol is counted in the
size of the item.

There are two general methods of performing editing in the PICTURE
clause. either by insertion or by suppression and replac ement .
There are four types of insertion editing available :

Simple insertion
Special insertion
Fixed insertion
Floating insertion

There are two types of suppression and replacement editing:

Zero suppression and replacement with spaces
Zero suppression and replacement with asterisks

The type of editing which may be performed upon an item is
dependent upon the category to which the item belong s . The
following table specifies which type of editing may be peT'formed
upon a given category:

:CATEGORY TYPE OF EDITING
:--:
:Alphabetic Simple insertion 'B' only
:--:
'Numeric None
--:
Alphanumeric None
-- :
Alphanumeric
Edited

Simple insertion '0', 'B',
and '/' <stroke)

--:
Numeric
Edited

AlL subJect to rules below

Floating insertion editing and editing by zero suppress ion and
replacement are mutually exclusive in a PICTURE clause . On ly one
type of replacement may be used with zero suppression in a PICTURE
clause.

PAGE 69

Si mple Insertion Editing

The ', (comma) , 'B ' (space) , '0 ', (zero) , and 'I ' (stroke) are
used as the insertion characters . The insertion characters are
counted in the size of the item and represent the position in the
item into which the character will be inserted.

Special Insertion Editing

The <period) is used as the insertion character . In addition
to being an insertion character it also represents the decimal
point for alignment purposes . The insertion character used for the
actua l decimal point is counted in the size of the item. The use
of the assumed decimal point, represented by the symbol ' V' and
the actual decimal point, represented by the insertion character,
in the same PICTURE character-string is disallowed. The result of
speci al insertion editing is the appearance of the insertion
character in the item in the same position as shown in the
character-string .

Fix ed Insertion Editing

The currency symbol and the editing sign contro l symbols, '+',
'- ' 'CR', 'DB', are the insertion characters . Only one currency
sy mbol and only one of the editing sign control symbols can be
use d in a given PICTURE character-string . When the symbols 'CR' or
'DB' are used they represent two character positions in
de termining the size of the item and they must represent the
rig htmost character positions that are counted in the size of the
i tern.

Th e symbol '+' or '-', when used, must be either the leftmost or
rightmost character position to be counted in the size of the
i tern.

The currency symbol must be the leftmost character position to be
co unted in the size of the item except that it can be preceded by
either a '+' or a '-' symbol.

Fixed insertion editing results in the
occupying the same character position in the
occupied in the PICTURE character-string.

PAGE 70

insertion character
edited item as it

Editing sign control symbols produce the following resu lts
depending upon the value of the data item:

RESULT EDITING SYMBOL IN
PICTURE

CHARACTER-STRING
:--------------------------------:

DATA ITEM
: POSITIVE OR ZERO :

DATA ITEM
NEGATIVE

:--------------------:------------------:------------- :
+

CR
DB

Floating Insertion Editing

+
space

2 spaces
2 spaces

CR
DB

The currency symbol and editing sign control symbols,
are the floating insertion characters and as such
exclusive in a given PICTURE character-string.

I+; or ; -I I
are mut ua lly

Floating insertion editing is indicated in a PICTURE
character-string by using a string of at least two of the float ing
insertion characters. This string of floating insertion cha r acters
may contain any of the fixed insertion symbols or have f ixed
insertion characters immediately to the right of this str ing .
These simple insertion characters are part of the floating str ing .

The leftmost character of the floating insertion str i ng repres ents
the leftmost limit of the floating symbol in the data item. The
rightmost character of the float i ng string represents the
rightmost limit of the floating symbols in the data items .

The second floating character from the left represents the
leftmost limit of the numeric data that can be stored in the data
item Nonzero numeric data may replace all the characters at o r to
the right of this limit .

r~ a PICTURE character-string, there are only two ways of
representing floating insertion editing. One way is to represent
<=~i-.;; "r all of the leading iH.:m~ric character positions on the l eft
of the decimal point by the insertion chdra=tPr . The other way is
t; '::) reoresent all of the numeric c h~rarter positions in t i t~ ;.>I CTURE
character-string by the i~sertion character .

PAGE 71

l f the insertion cha1·acters are only to the left nf th~ decimal
poi nt in the PlCTURE character-string, t~~ r2~ult is that a s i ngle
flo ating insertion character •~ill be placed into thP chdracter
posi tion immediat.el~ preceding either the d~c1mal point or the
firs t non2~ro digit in the data ~ epr~sented by the inse r tion
symb ol string, ~hicltever is farther to the left in t h e PICTURE
char a c ter-string. The character position$ preceding the insertion
character are replaced with spaces .

If al l numeric character positions in the PICTURE character-s tring
~re r epresented by the insertion character, the result depe n d s
up on the value of the data . If the value is zero the ent ir e data
item will contain spaces . If the value is not zero, the res ult is
the same as when the insertion character is only to the le ft of
the decimal point .

To avoid truncation, the minimum size of the PICTURE
ch aracter-string for the receiving data item must be the num ber of
characters in the sending data i tem, plus the number of
non- floating insertion characters be i ng edited into the rece ivi ng
data item, plus one for the floating insertion character.

Zer o S uppression Editing

The s uppression of leading zeroe s i n numeric cha r acter positions
is i ndicated by the use of t he a lphabetic c haracter 'Z ' or the
character '*' (asterisk) a s s uppr es s ion symbols in a PI CTURE
ch ar a c ter- string . These symbo ls a r e mutually exclusive i n a gi v en
PICTURE character - str i n g . Ea ch suppr essi on symbol is counted in
de termin i ng the size o f t h e i tem. If 'Z' is used th e r epla ceme nt
character wi ll be the spa ce an d if t h e aster i s k is us e d, the
re pl acement character will be '* '

In a PICTURE character-string, there are only t wo way s of
repr es enting zero suppression. One way is to repre sent a n y or all
of th e leading numeric character positions to t he l e ft o f the
dec i mal point by suppression symbols . The othe r way is to
repr esent a ll of the numeric ch aracter positions i n the P I CTURE
char a cter - string by suppression symbols .

If t he suppression symbols appear only to the left of t he d e cimal
poin t, any leading zero in the data which corresponds to a symbol
in the string is replac e d by the replacement c haracter .
Su pp ression terminates at the first nonzero d i git i n the data
repr esented by the suppression symbol string or at th e de c imal
poin t, whichever is encountered fir s t.

PAGE 72
•

If all numeric character positions in the PICTURE character-string
are represented by suppression symbols and the value of the data
is not zero the result is the same as if the suppression
characters were only to the left of the decimal point . If the
value is zero and the suppression symbol is 'Z', the entire data
item will be spaces . If the value is zero and the suppression
symbol is '*'• the data item will be all '*' except for the actual
d e c i m a 1 p o in t .

The symbols '+', '-', '*', 'Z', and the currency symboL u.1hen used
as floating replacement characters, are mutually exclusive within
a given character-string.

The picture precedence chart shows the order of precedence when
using characters as symbols in a character-string. An 'X' at an
intersection indicates that the symbol(s) at the top of the column
may precede, in a given character-string, the symbol(s) at the
left of the row. Arguments appearing in braces indicate that the
symbols are mutually exclusive . The currency symbol is indicated
by the symbol 'cs'.

At least one of the symbols 'A',
least two of the symbols '+',
PICTURE string .

'X', 'Z', '9', or '*', or at
'-', or 'cs' must be present in a

Nonfloating insertion symbols '+' and '-', floating insertion
symbols 'Z', '*', '+', '-' and 'cs', and other symbol 'P' appear
twice in the PICTURE character precedence chart. The leftmost
column and uppermost row for each symbol represents its use to the
left of the decimal point position . The second appearance of the
symbol in the chart represents its use to the right of the decimal
point position .

PAGE 73

l\lst
\Sym­

l2nd\bol
lSym-\

bol \

Non-Floating
Insertion Symbols

Floating
Insertion Symbols

:-------------------------:---------------------
: B l 0 l I l-': . : {+}: {+} l {CR} l CS: {Z}: {Z}: {+}: {+} l CS l CS

l{-}l{-}l{DB}l l{*}l{*}l{-}l{-}l

Other
Symbols

9:A:s:v:P:P:
; X:

:-------:-------------------------:--------------------- -----------:
B :x:x:x:x:x: X Xl X X X X x: x:x:x: :x: :x:

:-----:-------------------------:---------------------:-----------:
0 lXlXlXlXlXl X X l X X X X x: x:x:x: :x: :x:

lNl-----:-------------------------1---------------------:-----------l
:o: I lXlXlXlXlXl X X: X X X X x: x:x:x: :x: :x:
:N:----- -------------------------:---------------------1-----------l

XlXlXlXlXl X X l X X X X X l X: X l ! X: :X!
lLl-----
10'

-------------------------:---------------------:-----------:
XlXlx:x: X X: X X x: :X:

lA ----- -------------------------:---------------------:-----------:
lT + -
I I -----I -------------------------:---------------------:-----------:
lN + - x:x:x:x:x: X l X X x: x:x: :x:x:x:
lG ·----- -------------------------:---------------------:-----------:

CR DB XlXlXlXlXl X: X X x: x:x: l X : X : X :
:----- ------------------------- ---------------------:-----------:

CS X
:-:----- ------------------------- ---------------------:-----------:

z * x:x:x:x: X X X
----- ------------------------- --------------------- -----------:

:F z * x:x:x:x:x: X X X X :X l
lL ----- -------------------------,---------------------
:o + - x:x:x:x: x: X
lA ----- -------------------------:--------------------- -----------:
lT + - x:x:x:x:x: x: X X :X: :X:
li ----- -------------------------:--------------------- -----------:
lN CS x:x:x:x: X x:
:G,-----:------------------------- 1--------------------- -----------:

CS lXlXlXlXlXl X x:x :X: ! X:
:-l-----:-------------------------1---------------------:-----------:

9 lXlXlXlXlXl X X l X X x: l X : X : X : X l l X :
l----- -------------------------:---------------------: - ----------:

A X x:x:x: :X l X l
:o ----- -------------------------:---------------------:-----------:
:T s
lH ----- -------------------------:--------------------- :-----------:
lE V x:x:x:x: X X: X X x: l X : l X: l X:
lR ----- -------------------------:---------------------:-----------:

p XlXlx:x: X X l X X x: :X : :X: :X:
----- -------------------------:---------------------:-----------:

p X x: l X l X l : X l

PICTURE Character Preced e nc e Chart

PAGE 74

The USAGE Clause

The USAGE clause specifies the format of a data item in the
computer storage .

FORMAT

[USAGE ISJ {COMPUTATIONAL }

{COMP }

{COMPUTATIONAL-1>

{COMP-1 }

{COMPUTATIONAL-3>

{COMP-3 }

<DISPLAY }

{INDEX }

This clause specifies the manner in which a data item is
represented in the storage of a computer. It does not affect the
use of the data item, although the specifications for some
statements in the Procedure Division may restrict the USAGE clause
of the operands referenced .

The USAGE clause can be written at any level . If the USAGE clause
is written at a group level, it applies to each elementary item in
the group. The USAGE clause of an elementary item cannot
contradict the USAGE clause of a group to which the item belongs .

If the USAGE clause is not specified for an elementary item, or
for any group to which the item belongs, the usage is implicitly
DISPLAY.

A COMPUTATIONAL <COMPUTATIONAL-1, COMPUTATIONAL-3) item represents
a value to be used in computations and must be numeric. If a group
is described as COMPUTATIONAL, then the elementary items in the
group are COMPUTATIONAL. The group itself is not COMPUTATIONAL
(cannot be used in computations .)

PAGE 75

The format of a COMPUTATIONAL item is one decimal digit per
character position (hexadecimal 00-09). If an 'S' appears in the
PICTURE character-string, a trailing byte contains the sign with
> 2B being generated for positive and > 2D being generated for
negative . COMPUTATIONAL items will be treated as negative if the
sign character is > 2D; otherwise they will be considered
positive.

The format of a COMPUTATIONAL-1 item (abbreviated COMP-1> is 16
bit two's complement signed binary, independent of the number of
nines or appearance of 'S' in the PICTURE character-string. The
number of nines is significant when the value is converted to
decimal during data manipulation . The value of a COMPUTATIONAL-1
item ranges between -32768 and 32767 .

The format of a COMPUTATIONAL- 3 item is two decimal digits per
character position .

The PICTURE character - string of a COMPUTATIONAL, COMPUTATIONAL- 1
or COMPUTATIONAL-3 item can contain only '9's, the operational
sign character 'S', the implied decimal point character 'V', one
or more 'P's . Since a COMPUTATIONAL-1 item must have zero scale it
cannot contain any 'P's in its PICTURE character string and if it
has a 'V' in its PICTURE character-string the 'V' must be the
rightmost character .

The USAGE IS DISPLAY clause indicates that the format of the data
is ASCII .

An elementary item described with the USAGE IS INDEX clause is
called an index data item and contains a value which must
correspond to an occurrence number of a table element. If a group
item is described with the USAGE IS INDEX clause the elementary
items in the group are all index data but the group item name
cannot be used in the SET statement or in a relation condition.

An index data item can be referenced explicitly only in a SET
statement or a relation condition .

The initial value of an index item is undefined.

The SYNCHRONIZED, JUSTIFIED, PICTURE, VALUE and BLANK WHEN ZERO
clauses cannot be used to describe group or elementary items
described with the USAGE IS INDEX clause .

An index data item can be part of a group which is referred to in
a MOVE or input-output statement. in which case no conversion will
take place .

The external and internal format of an index data item is the same
as a COMPUTATONAL-1 item.

PAGE 76
•

The SIGN Clause

The SIGN clause specifies the position and the mode of
representation of the operational sign when it is necessary to
describe these properties explicitly .

FORMAT

(SIGN ISJ {TRAILING} (SEPARATE CHARACTERJ

The optional SIGN clause, if present, specifies the position and
the mode of representation of the operational sign for the numeric
data description entry to which it applies, or for each numeric
data description entry subordinate to the group to which it
applies. The SIGN clause applies only to numeric data description
entries whose PICTURE contains the character ' S' .

The operational sign will be presumed to be the trailing character
posit ion of the elementary numeric data item; this character
position is not a digit position .

The letter 1 8'
determining the
characters).

in
size

a PICTURE character-string is counted in
of the item <in terms of standard data format

The operational signs for positive and negative are the standard
data for mat c ha r a c t er s '+ 1 and 1 - 1 , res p e c t i v e 1 y.

The numeric data description entries to which
applies must be described as usage is DISPLAY.

the SIGN clause

At most one SIGN clause may apply
description entry .

to any given numeric data

PAGE 77

The OCCURS Clause

The OCCURS clause eliminates the need
repeated data items and supplies
application of subscripts or indices.

FORMAT 1

OCCURS integer-1 TIMES

for separate entries for
information re~uired for the

[INDEXED BY index - name-1 [, index-name-2] . . . J

FORMAT 2

OCCURS integer-1 TO integer-2 TIMES DEPENDING ON data-name-1

[INDEXED BY index-name-1 [, index-name-2] J

The OCCURS clause is used in defining tables and other homogeneous
sets of repeated data items. Whenever the OCCURS clause is used,
the data-name which is the subJect of this entry must be either
subscripted or indexed whenever it is referred to in a statement .
Further, if the subJect of this entry is the name of a group item,
then all data-names belonging to the group must be subscripted or
indexed whenever they are used as operands, except as the obJect
of a REDEFINES clause.

The OCCURS clause cannot be specified in a data description entry
that:

Has an OL 66, 77, or an 88 level-number.

Describes an item whose size is variable. The size of an item
is variable if the data description of any subordinate item
contains Format 2 of the OCCURS clause.

Except for the OCCURS clause itself, all data description clauses
associated with an item whose description includes an OCCURS
clause apply to each occurrence of the item described .

PAGE 78 •

The number of occurrences of the subJect entry
follows :

is defined as

In Format the value of integer-1 represents the exact
number of occurrences .

In Format 2, the current value of the data item referenced by
data-name-1 represents the number of occurrences .

This format specifies that the subject of this entry has a
variable number of occurrences. The value of integer-2
represents the maximum number of occurrences and the value
of integer-1 represents the minimum number of occurrences .
This does not imply that the length of the subject of the
entry is variable, but that the number of occurrences is
var iab 1 e.

The value of the data item referenced by data-name-1 must
fall within the range integer-1 through integer-2.
Reducing the value of the data item referenced by
data-name-1 makes the contents of data items, whose
occurrence numbers now exceed the value of the data item
referenced by data-name-L unpredictable .

Where both integer-1 and integer-2 are used, the value of
integer-1 must be less than the value of integer-2.

The data description of data-name-1 must describe a
positive integer . Data-name-1 may be qualified .

A data description entry that contains Format 2 of the
OCCURS clause may only be followed, within that record
description, by data description entries which are
subordinate to it.

When a group item, having subordinate to it an entry
s p e c i f i e s For m a t 2 o f t h e OCCURS c 1 a u s e, i s r e f er en c e d , on 1 y
part of the table area that is specified by the value
data-name-1 will be used in the operation.

that
that

of

An INDEXED BY phrase is required if the subject of this entry, or
an entry subordinate to this entry, is to be referred to by
indexing . The index-name identified by this clause is not defined
elsewhere since its allocation and format are dependent on the
hardware, and not being data, cannot be associated with any data
hierarchy .

PAGE 79

The SYNCHRONIZED Clause

The SYNCHRONIZED clause specifies the alignment of an elementary
item on an even byte bounda r y.

FORMAT

<SYNCHRONIZED} [LEFT J

{SYNC } (RIGHTJ

This clause specifies that the subject data item is to be aligned
in the computer such that no other data item occupies any of the
~haracter positions between the leftmost and rightmost natural
boundaries delimiting this data i tem . If the number of character
positions required to store this data item is less than the number
of character positions between those natural boundaries, the
unused character positions <or portions thereof) must not be used
for any other data item. Such unused character positions, however ,
are included in:

The size of any
belongs; and

group item(s) to which the elementary item

The character positions redefined when this data item is th e
obje c t o f a REDEFI NES cl a u se .

SYNCHRONIZED LEFT specifies that the elementary item is to be
positioned such that it will begin at the left character position
of the next available even byte . If the data item contains an odd
number of bytes, one trailing byte of FILLER is implied .

SYNCHRONIZED not followed by either RIGHT or LEFT is equivalent to
the clause SYNCHRONIZED LEFT .

SYNC is an abbreviation for SYNCHRONIZED.

This clause may only appear with an elementary item.

SYNCHRONIZED RIGHT specifies that the elementary item is to be
positioned such that it will terminate on the right character
position of an integral even byte boundary . If the data item
contains an odd number o f bytes, a leading byte of FILLER is
implied .

PAGE 80

Whenever a SYNCHRONIZED item is referenced in the source program,
the original size of the item, as shown in the PICTURE c lause, is
used in determining any action that depends on size, such as
JUstifiction, truncation or overflow.

If the data description of an item contains the SYNCHRONIZED
c lause and an operational sign, the sign of the item appears in
the normal operational sign position, regardless of whether the
item is SYNCHRONIZED LEFT or SYNCHRONIZED RIGHT .

When the SYNCHRONIZED clause is specified in a data description
entry of a data item that also contains an OCCURS clause, or in a
data description entry of a data item subordinate to a data
description entry that contains an OCCURS clause, then :

Each occurrence of the data item is SYNCHRONIZED.

Any implicit FILLER generated for other data items within that
same table are generated for each occurrence of those data
i terns .

Records of a f i le and index data items are automatically
synchronized left . Records and noncontiguous data-items in
working-storage begin on the next available byte unless the first
elementary item is synchronized .

The format on external media of records or groups containing
elementary items described with the SYNCHRONIZED clause includes
any implied FILLER bytes.

When the data item preceding a data item described with the
SYNCHRONIZED clause does not terminate on a byte whose address is
even, then one implied FILLER byte is generated . Such
automatically generated FILLER positions are included in :

The size of any group to which the FILLER item belongs; and

The number of character positions allocated when the group
item of which the FILLER item is a part appears as the obJect
of a REDEFINES clause.

PAGE 81

The JUSTIFIED Clause

The JUSTIFIED clause specifies nonstandard positioning of data
within a receiving data item .

FORMAT

{JUSTIFIED} RIGHT

{JUST }

When a receiving data item is described with the JUSTIFIED clause
and the sending data item is larger than the receiving data item,
the leftmost characters are truncated. When the receiving data
item is described with the JUSTIFIED clause and it is larger than
the sending data item, the data is aligned at the rightmost
character position in the data item with space-fill for the
leftmost character positions .

When the JUSTIFIED clause is omitted, the standard rules for
aligning data within an elementary item apply.

The JUSTIFIED clause cannot be specified for any data item
described as numeric or for which editing is specified .

The JUSTIFIED clause can be specified only at the elementary item
level.

JUST is an abbreviation for JUSTIFIED.

PAGE 82

The BLANK WHEN ZERO Clause

The BLANK WHEN ZERO clause permits the blanking of an item when
its value is zero .

FORMAT

BLANK WHEN ZERO

The BLANK WHEN ZERO clause can be used only for an elementary item
whose PICTURE is specified as numeric or numeric edited .

The BLANK WHEN ZERO clause cannot appear in the same entry with a
PICTURE clause having an asterisk as the zero suppression symbol .

When the BLANK WHEN ZERO clause is used, the item will contain
nothing but spaces if the value of the item is zero.

When the BLANK WHEN ZERO clause is used for an item whose PICTURE
is numeric, the category of the item is considered to be numeric
edited.

PAGE 83

The VALUE IS Clause

The VALUE IS clause defines the initial value or working storage
items, and the values associated with a condition-name .

FORMAT 1

VALUE IS literal

FORMAT 2

CVALUE IS } literal-1 [{THROUGH} literal-2J

{VALUES ARE} {THRU)

L literal-3 [{THROUGH} literal-4JJ . . .

{THRU }

The VALUE clause cannot be stated for any
variable.

items whose size is

A signed numeric literal must have associated with it a signed
numeric PICTURE character-string .

All numeric literals in a VALUE clause of an item must have a
value which is within the range of values indicated by the PICTURE
clause, and must not have a value which would require truncation
of nonzero digits . Nonnumeric literals in a VALUE clause of an
item must not exceed the size indicated by the PICTURE clause .

The words THRU and THROUGH are equivalent .

The VALUE clause must not conflict with other clauses
description or the item or in the data description
hierarchy of the item. The following rules apply:

in the data
within the

1. If the category of the item is numeric, all literals in the
VALUE clause must be numeric . If the literal defines the value
of a working storage item, the literal is aligned in the data
item according to the standard alignment rules.

PAGE 84

2. If the category of the item is alphabetic, alphanumeric ,
alphanumeric edited or numeric edited, all literals in th e
VALUE clause must be nonnumeric literals. The literal is
aligned in the data item as if the data item had been
described as alphanumeric. Editing characters in the PICTURE
clause are included in determining the size of the data i t em
but have no effect on initialization of the data item.
Therefore, the VALUE of an edited item is presented in an
edited form.

Initialization takes place independent of any BLANK WHEN ZERO or
JUSTIFIED clause that may be specified.

A figurative constant may be substituted in both Format 1 and
Format 2 wherever a literal is specified.

Condition-Name Rules

In a condition-name entry, the VALUE clause is required. The VALUE
clause and the condition-name itself are the only two clauses
permitted in the entry . The characteristics of a condition-name
are implicitly those of its conditional variable.

Format 2 can be used only in connection with condition-names .
Wherever the THROUGH <THRU> phrase is used, literal-1 must be less
than literal-2, literal-3 less than literal-4, etc.

Data Description Entries Other Than Condition-Names

Rules governing the use of the VALUE clause differ with the
respective sections of the Data Division:

In the File Section,
condition-name entries .

the VALUE clause may be used only in

In the Working-Storage Section, the VALUE clause must be used
in condition-name entries . The VALUE clause may also be used
to specify the initial value of any other data item; in which
case the clause causes the item to assume the specified value
at the start of the obJect program. If the VALUE clause is no t
used in an item's description, the initial value is undefined .

In the Linkage Section. the VALUE clause may be used
condition-name entries.

PAGE 85

only in

The VALUE clause must not be stated in a data description entry
tha t c ontains an OCCURS clause, or in an entry that is subordinate
to a n y entry containing a REDEFINES clause . This rule does not
apply to condition-name entries .

If th e VALUE clause is used in an entry at the group level. the
literal must be a fig urative constant or a nonnumeric literal. and
the grou p a r ea is initialized without consideration for the
individ ual elementary or group i t ems contained within this group.
The VALUE c l a u se cannot be stat ed at the subordinate levels within
this grou p .

The VALUE cl ause must n ot be written for a group containing
with descri pt i ons i n cluding JUS TIFIED, SYNCHRONIZED, or
<oth er than USAGE I S DISPLAY> .

PAGE 86

items
USAGE

The RENAMES Clause

The RENAMES clause permits alternative,
groupings of elementary items.

FORMAT

66 data-name-1;

possibly

RENAMES data-name-2 [{THROUGH> data-name-3J .

{THRU }

over la pp i n g,

NOTE: Level-number 66, data-name- 1 and the semicolon a re sh own
in the above format to improve clarity . Level - number an d
data-name-1 are not part of the RENAMES clause .

All RENAMES entries referring to data items within a gi v en logical
record must immediately follow the last data description e ntry of
the associated record description entry .

Data-name-2 and data-name-3 must be names of elementary i t ems or
groups of elementary items in the same logical record, an d cannot
be the same data-name. A 66 level entry cannot rename ano ther 66
level entry nor can it rename a 77 , 88, or 01 level entry.

Data-name- 1 cannot be used as a qualifier, and c an only be
qualified by the names of the associated level 01 or FD entries.
Neither data-name-2 nor data - name - 3 may have an OCCURS c lause in
its data description entry nor be subordinate to an i tem that has
an OCCURS clause in its data description entry .

The beginning of the area described by data-name-3 must n ot be to
the left of the beginning of the area described by data-n ame-2 .
The end of the area described by data - name-3 must be to th e rig h t
of the end of the area described by data - name- 2 . Da ta-name - 3 ,
therefore, cannot be subordinate to data-name-2 .

Data-name-2 and data-name - 3 may be qualified.

None of the items within the range, including data -name-2 and
data-name-3, if specified, c an be an i t em whose size is varia b le
as defined in the OCCURS clause.

PAGE 87

One or more RENAMES entries can be written for a logical record .

When data-name-3 is specified, data-name-1 is a group item which
inclu des all elementary items starting with data-name-2 < if
data-name-2 is an elementary item) or the first elementary item in
data-name-2 (if data-name-2 is a group item), and concluding with
data-name-3 (if data-name-3 is an elementary item) or the last
elementary item in data-name-3 (if data - name-3 is a group item) .

When data-name-3 is not specified, data-name-2 can be either a
group or an elementary item; wh en data-name-2 is a group item,
data-name - 1 is treated as a group item, and when data-name-2 is an
elementary item, data-name-1 is treated as an eleme n tary item.

The words THRU and THROUGH are equivalent .

PAGE 88

DATA STRUCTURES

Classes of Data

The five categories of data items (see the PICTURE Clause) are
grouped into three classes :

alphabetic
numer·ic
alphanumeric

For alphabetic and numeric,
synonymous.

the classes and categories are

The alphanumeric class includes the categories of alphanumeric
edited, numeric edited and alphanumeric <without editing) .

Every elementary item except for an index data item belongs to one
of the classes and further to one of the categories. The class of
a group item is treated at obJect time as alphanumeric regardless
of the class of elementary items subordinate to that group item.

The following chart depicts the relationship
categories of data items :

of the class and

LEVEL OF ITEM : CLASS CATEGORY
--------------:---------------- ----------------------

Elementary

Alphabetic Alphabetic
:---------------- ----------------------

Numeric Numeric
:---------------- ----------------------

Alphanumeric Numeric Edited
Alphanumeric Edited
Alphanumeric

:--------------:---------------- ----------------------:
lNonelementary
:<Group)

Alphanumeric

PAGE 89

Alphabetic
Numeric
Numeric Edited
Alphanumeric Edited
Alphanumeric

Representation of Numeric Items

The value of a numeric item may be represented in either binary.
de c imal or packed decimal form depending on the USAGE clause
associated with the item . There are two ways of expressing
decimal : DISPLAY and COMPUTATIONAL. Binary is COMPUTATIONAL-1.
Packed decimal is COMPUTATIONAL-3.

The selection of the proper representation is dependent upon the
usage of the numeric item . Items which must be used for input and
output should be of DISPLAY usage to eliminate conversions to
external forms. For efficiency of arithmetic operations .
COMPUTATIONAL, COMPUTATIONAL-1, or COMPUTATIONAL-3 should be used .
To reduce conversions and increase efficiency. types should not be
mixed in operations except where required by program needs.

Representation of Algebraic Signs

Algebraic signs fall into two categories :

operational signs which are
data items. and signed numeric
algebraic properties; and

associated with signed numeric
literals to indicate their

editing signs which appear to identify the sign of the item.

For DISPLAY, COMPUTATIONAL, and COMPUTATIONAL-3, an
numeric item is assumed to have an operational sign
positive and will receive the absolute value of signed
signed numeric item maintains the operational sign as a
trailing character.

unsigned
which is

i terns . A
separate

For COMPUTATIONAL-1 (which is always signed), the operational sign
is maintained as part of the item in two's complement signed
binary form .

Editing signs are inserted into a data item through the use of the
sign control symbols of the PICTURE clause.

PAGE 90

Standard Alignment Rules

The standard rules o; positioning data within an elementary
depend on the category of the receiving item :

If the receiving data item is described as numeric:

item

a . The data is aligned by decimal point and is moved to the
receiving character positions with zero fill or truncation
on either end as required .

b. When an assumed decimal point is not explicitly specified,
the data item is treated as if it had an assumed decimal
point immediately following its rightmost character and is
aligned as in a. above.

If the receiving data item is a numeric edited data item, the
data moved to the edited data item is aligned by decimal point
with zero-fill or truncation at either end as required within
the receiving character positions of the data item, except
where editing requirements cause replacement of the leading
zeros.

If the receiving data item is alphanumeric <other than a
numeric edited data item), alphanumeric edited or alphabetic,
the sending data is moved to the receiving character positions
and aligned at the leftmost character position in the data
item with space-fill or truncation to the right, as required.

If the JUSTIFIED clause is specified for the receiving item, these
standard rules are modified as described in the JUSTIFIED clause.

PAGE 91

QUALIFICATION

Every user-specified name that defines an element in a COBOL
source program must be unique, either because no other name has
the identical spelling and hyphenation, or because the name exists
within a hierarchy of names such that references to the name can
be made unique by mentioning one or more of the higher levels of
the hierarchy . The higher levels are called qualifiers and this
process that specifies uniqueness is called qualification . Enough
qualification must be mentioned to make the name unique; however,
it may not be necessary to mention all levels of the hierarchy .
Within the Data Division, all data-names used for qualification
must be associated with a level indicator or a level-number .
Therefore, two identical data-names must not appear as entries
subordinate to a group item unless they are capable of being made
unique through qualification .

In the hierarchy of qualification, names associated with a level
indicator are the most significant, then those names associated
with level-number 01, then names associated with level-number 02,
. .. , 49. The most significant name in the hierarchy must be unique
and cannot be qualified.

Qualification is performed by following a data-name, by one or
more phrases composed of a qualifier preceded by IN or OF. IN and
OF are logically equivalent.

FORMAT 1

{data-name-1} [{QF} data-name- 2 J . ..

{condition- name} <IN}

FORMAT 2

paragraph-name [{OF} section-name]

{IN}

PAGE 92

The rules for qualification are as follows:

1. Each qualifier must be of a
within the same hierarchy as

successively higher
the name it qualifies .

level

2. The same name must not appear at two levels in a hierarchy.

and

3 . If a data name is assigned to more than one data item in a
source program, the data-name must be qualified each time it
is referred to in the Procedure, Environment, and Data
Divisions <except in the REDEFINES clause where qualification
is unnecessary and must not be used.)

4. A paragraph-name must not be duplicated within a section. When
a paragraph-name is qualified by a section-name, the word
SECTION must not appear. A paragraph-name need nbt be
qualified when referred to from within the same section.

5 . A data-name cannot be subscripted when it is being used as a
qualifier.

6 . A name can be qualified even though it does not need
qualification : if there is more than one combination of
qualifiers that ensures uniqueness, then any such set can be
use d . The complete set of qualifiers for a data-name must not
be the same as any partial set of qualifiers for another
data - name . Qualified data-names may have any number of
qualifiers up to a limit of 49 .

PAGE 93

SUBSCRIPTING

S ubscripts can be used only when reference is made to an
individual element within a list of table of like elements that
have not been assigned individual data-names <see The OCCURS
Clause) .

The subscript can be represented either by a numeric literal that
is an integer or by a data-name . The data name must be a numeric
elementary item that represents an integer. When the subscript is
represented by a data-name, the data - name may be qualified but not
subscripted .

The subscript may be signed and, if signed, it must be positive .
The lowest possible subscript value is 1. This value points to the
first element of the table . The next sequential elements of the
table are pointed to by subscripts whose values are 2, 3, ... n .
The highest permissible subscript value, in any particular case,
is the maximum number of occurrences of the item as specified in
the OCCURS clause .

The subscript, or set of subscripts, that identifies the table
element is delimited by the balanced pair of separators left
parenthesis and right parenthesis following the table element
data-name. The table element data - name appended with a subscript
is called a subscripted data-name or an identifier . When more than
one subscript is required, they are written in the order of
successively less inclusive dimensions of the data organization .

FORMAT

{data-name } (subscript - 1 [subscript-2 [, subscript- 3JJ)
{condition-name}

PAGE 94

INDEXING

References can be made to individual elements within a table of
like elements by specifying indexing for that reference. An index
is assigned to that level of the table by using the INDEXED BY
phrase in the definition of a table . A name given in the INDEXED
BY phrase is known as an index - name and is used to refer to the
assigned index. The value of an index corresponds to the
occurrence number of an element in the associated table. An
index - name must be initialized before it is used as a table
reference . An index-name can be given an initial value by a SET
statement , or a FORMAT 4 PERFORM statement.

Direct indexing is specified by using an index-name in the form of
a subscript . Relative indexing is specified when the index-name is
followed by the operator + or -, followed by an unsigned integer
numeric literal all delimited by the balanced pair of separators
left parenthesis and right parenthesis following the table element
data-name . The occurrence number resulting from relative indexing
is determined by incrementing (where the operator + is used) or
decrementing <when the operator - is used), by the value of the
literal, the occurr en ce number represented by the value of the
i ndex. When more t ha n one index-name is required, they are written
i n the order of successively less inclusive dimensions of the data
organization.

At the time of execution of a statement which refers to an indexed
table element, the value contained in the index referenced by the
index-name associated with the table element must neither
correspond to a value less than one (1) nor to a value greater
than the highest permissible occurrence number of an element of
t he associated table . This restriction also applies to the value
resultant from relative indexing .

FORMAT

{ data-name} ({index-name - 1 [{+} literal-2J}
{condition-name} {literal-1 { --} }

[, {index-name - 2 [{+}
{literal-3 {-}

literal-4J}
}

[, {index-name - 3 [{+} liteT' al - 6J}J])
{literal-S {-} }

PAGE 95

IDENTIFIER

An identifier is a term used to reflect that a data-name. if not
unique in a program, must be followed by a syntactically correct
combination of qualifiers, subscripts or indices necessary to
ensure uniqueness . The general formats for identifiers are :

FORMAT 1

data-name-1 [{OF} data-name - 2] ... [(subscript-1

<IN>

[, subscript-2 [, subscript - 3JJ)J

FORMAT 2

data-name-1 [{QF} data-name-2] .. . [({index-name-1 [{+} literal - 2J}
{literal-! {-} }

<IN}

[, {index-name-2 [{+}

{literal-3 { - }
literal - 4]}

}

[, {index-name-3 [{+} literal·-6J}JJ)J
{literal-5 {-} }

Restrictions on qualification, subscripting and indexing a re :

A data-name must
that data-name is
qualifier.

not itself be subscripted nor indexed when
being used as an index. subscrip t or

Indexing is not permitted where s ubscripting is not permit ted .

An index may be modified only by the SET and PER F ORM
statements . Data items described by the USAGE IS INDEX c lause
permit storage of the values associated with index-names as
data in a form specified by the compiler. Such data items are
called index data items .

Literal-!, literal - 3 , literal-5 in the above format must be
positive numeric integers . Literal-2,
must be unsigned numeric integers .

PAGE 96

literal-4, literal--6,

CONDITION-NAME

Each condition-name
~ualification and/or

must be unique, or be made unique through
indexing, or subscripting.

If qualification is used to make a condition-name unique, the
associated conditional variable may be used as the first
qualifier. If qualification is used, the hierarchy of names
associated with the conditional variable or the conditional
variable itself must be used to make the condition-name unique.

If references to a conditional variable require indexing or
subscripting, then references to any of its condition-names also
require the same combination of indexing or subscripting.

The format and restrictions on the combined use of qualification,
subscripting, and indexing of condition-names is exactly that of
'identifier' except that data-name-1 is replaced by
condition-name-! .

In the general formats, 'condition-name' refers to a
condition-name qualified, indexed or subscripted, as necessary .

PAGE 97

TABLE HANDLING

Tables of data are common components of business data processing
problems . Although items of data that make up a table could be
described as contiguous data items, there are two reasons why this
approach is not satisfactory. First, from a documentation
standpoint, the underlying homogeneity of the items would not be
readily apparent; and second, the prob l em of making available an
individual element of such a table would be severe when there is a
decision as to which element is to be made available at object
time.

Tables composed of contiguous data items are defined in COBOL by
including the OCCURS clause in their data description entries .
This clause specifies that the item is to be repeated as many
times as stated . The item is considered to be a table element and
its name and description apply to each repetition or occurrence.
Since each occurrence of a table element does not have assigned to
it a uni~ue data-name, reference to a desired occurrence may be
made only by specifying the data-name of the table element
together with the occurrence number of the desired table element.
Subscripting and indexing are the two methods that are used to
specify the occurrence number of a desired table element.

Table Definition

To define a one-dimensional table, the programmer uses an OCCURS
clause as part of the data description of the table element, but
the OCCURS clause must not appear in the description of group
items which contain the table element .

Example 1 :

01 TABLE-1.
02 TABLE-ELEMENT OCCURS 20 TIMES .

03 NAME
03 SSAN

Defining a one-dimensional table within each occurrence of an
element of another one-dimensional table gives rise to a
two-dimensional table. To define a two - dimensional table, then, an
OCCURS clause must appear in the data description of the element
of the table, and in the description of only one group item which
contains that table . In the description of a three-dimensional
table, the OCCURS clause should appear in the data description of
2 nested group items which contain the eleme nt . In COBOL, tables
of up to 3 dimensions are permitted .

PAGE 98

Example 2 shows a table which has one dimension for
CONTINENT-NAME, two dimensions for COUNTRY--NAME, and three
dimensions for CITY-NAME and CITY-POPULATION. The table includes
100, 510 data items- -10 for CONTINENT-NAME, 500 for COUNTRY- NAME,
50,000 for CITY-NAME, and 50,000 for CITY-POPULATION. Within the
table there are ten occurrences of CONTINENT-NAME. Within each
CONTINENT-NAME there are 50 occurrences of COUNTRY-NAME and within
each COUNTRY-NAME there are one hundred occurrences of CITY-NAME
and CITY-POPULATION.

Example 2 :

01 CENSUS-TABLE.
05 CONTINENT-TABLE OCCURS 10 TIMES.

10 CONTINENT-NAME PIC XXXXXX.
10 COUNTRY-TABLE OCCURS 50 TIMES.

15 COUNTRY-NAME PIC XXXXXXXX .
15 CITY-TABLE OCCURS 100 TIMES .

20 CITY-NAME PIC XXXXXXXXXX.
20 CITY-POPULATION PIC 999999999999.

References to Table Items

Whenever the user refers to a table element, the referen c e must
indicate which occurrence of the element is intended. For ac c ess
to a one-dimensional table, the occurrence number of the desired
element provides complete information. For access to tables of
more than one dimension, an occurrence number must be supplied for
each dimension of the table accessed. In Example 2 then, a
reference to the 4th CONTINENT-NAME would be complete, whereas a
reference to the 4th COUNTRY-NAME would not. To refer to
COUNTRY-NAME, which is an element of a two-dimensional table, the
user must re·Fer to, ·For example, the 4th COUNTRY-NAME within the
6th CONTINENT-TABLE.

One method by which occurrence numbers may be specified is to
append one or more subscripts to the data-name. A subscript is an
integer whose value specifies the occurrence number of an element .
The subscript can be represented either by a literal which is an
integer or by a data-name which is defined elsewhere as a numeric
elementary item with no character positions to the right of the
assumed decimal point . In either case, the subscript. enclosed in
parentheses, is written immediately following the name of the
table element. A table reference must i nclude as many subscripts
as there are dimensions in the table whose element is being
referenced. That is, there must be a subscript for each OCCURS
clause in the hierarchy containing the data-name, including the
data-name itself. In Exa~ple 2, references to CONTINENT- NAME
require only one subscript. reference to COUNTRY-NAME requires
two, and references to CITY-NAME and CITY-POPULATION require
three .

PAGE 99

When more than one subscript is required, they are written in
order of successively less inclusive dimensions of the data
organization. When a data-name is used as a subscript, it may be
used to refer to items in many different tables . These tables need
not have elements of the same size . The data-name may also appear
a s the only subscript with one item and as one of two or three
subscripts with another item. Also, it is permissible to mix
l i teral and data-name subscripts , for example : CITY-POPULATION
(10, NEWKEY, 42) .

Another method of referring to items in a table is indexing . To
u se this technique, the programmer assigns one or more index - names
(defined with the INDEXED-BY phrase of the OCCURS clause) to an
i tem whose data description contains an OCCURS clause. There is no
separate entry to describe the index-name since its definition is
c ompletely hardware-oriented and it is not considered data per se.
At obJect time the contents of the index-name will correspond to
a n occurrence number for that specific dimension of the table to
wh ich the index-name was assigned . The initial value of an
in dex - name at ObJect time i s not determinable and the index-name
must be initialized by the SET statement before use .

When a reference is made to a table element, or to an item within
a table element, and the name of the item is followed by its
related index-name or names in parentheses, then each occurrence
number required to complete the reference will be obtained from
the respective index-name. The index-name thus acts as a subscript
whose value is used in any table reference that specifies
indexing.

PAGE 100

VI

PROCEDURE DIVISION

PAGE 101

THE PROCEDURE DIVISION

The Procedure Division must be included in every COBOL source
progr am. This division may contain declaratives and nondeclarative
procedure s .

The Procedure Division
followin g header :

is identified by and must begin with the

PROCEDURE DIVISION EUSING data - name-1 [, data - name-2J ... J .

The USING phrase i s present if and only if the obJect program is
to function under the cont rol of a CALL statement. and the CALL
statement in the calling program contains a USING phrase.

Each of the operands in the USING phrase of the Procedure Division
header must be defined as a data item in the Linkage Section of
the program in which this header occurs. and it must have a 01 or
77 level-number .

Within a called program. Linkage Section data items are processed
accor ding to their descriptions given in the called program. Of
tho se items defined in the Linkage Section only data-name-1,
data-name-2, items subordinate to these data-names, and
condit ion--names and/or index-names associated with such data-names
and/ or subordinate data items, may be referenced in the Procedure
Divisi on .

When the USING phrase is present, the obJect program operates as
if data-name-1 of the Procedure Division header in the called
program and data-name-1 in the USING phrase of the CALL statement
in the calling program refer to a single set of data that is
e~ually available to both the called and calling programs . Their
definitions must contain the same data descriptions; however. they
need not be the same name . In like manner, there is an e~uivalent

rel ationship between data-name- 2, . . . , in the USING phrase of the
cal led program and data-name-2, .. . , in the USING phrase of the
CALL statement in the calling program. A data-name must not appear
more than once in the USING phrase in the Procedure Division
header of the called program; however, a given data-name may
appear more than once in the same USING phrase of a CALL
stat ement .

PAGE 102

Structure

The body of the Procedure Division must conform to one of the
following formats :

FORMAT 1

PROCEDURE DIVISION [USING data-name-1 [, data - name-2J ... J .

[DECLARAT IVES.

{section-name SECTION [segment-number] . declarative-sentence

[paragraph-name . [sentence] . . . J . .. } . ..

END DECLARATIVES. J

{section-name SECTION [segment -n umber] .

[paragraph--name . [sentence] ... J .. . } ...

[END PROGRAMJ .

FORMAT 2

PROCEDURE DIVISION [USING data-name - 1 [, data--name-2J . . . J.

{paragraph - name . (sentence J } . ..

[END PROGRAM].

The segment - number must be an
t h r 0 u g h 127 .

integer ranging in value from 0

If the segment-number is omitted from the section header, the
segment-number is assumed to be 0 .

Sections
than 50.

in the declaratives must con tain se gment -numbers less

PAGE 103

All sections which have the same segment-number constitute a
program segment . Sections with the same segment - number must be
physic ally contiguous in the sour ce program.

Segmen ts with segment-numbers 0 th rou gh 49 belong to the fix ed
portion of the obJect program. Segments with segment-numbers 50
throug h 127 are independent segments. Independent segments must
follo w fixed segments .

Declaratives

at the beginning of the
word DECLARATIVES and

Decl arative sections must be grouped
Proce dure Division preceded by the key
fo llowed by the key words END DECLARATIVES.

Pr ocedures

·--------

A procedure is composed of a paragraph. or group of successive
paragra phs, or a section, or a group of successive sections within
th e Proc edure Division. If one paragraph is in a section, then all
paragrap hs must be in sections. A procedure-name is a word used to
r efer to a paragraph or section. It consists of a paragraph -name
<which may be qualified), or a section-name.

A s ection consists of a section heade r followed by zero, or more
s u ccessive paragraphs . A section ends immediate ly before the next
s ection o r at the end of the Procedure Division or, in the
d eclara tives portion of the Pr o c edure Division, at the key words
END DECLARATIVES.

A para g ra ph consists of a paragraph -name followed by a period and
a s pac e and by zero, or more su ccessive sentences . A paragraph
en ds imme diately before the next paragraph-name or section-name or
a t t he en d of the Procedur e Division or, in the declaratives
p o rtion of the Procedure Divi sion, at the key words END
DECLARATIVES. A paragraph-name must not b e dupl icated within a
section.

Execu tion

Executi on
Divisi on,
the order
where the

begins with the first statement of the Procedure
excluding declaratives . Statements are then executed in

i n whi c h they are presented for compilation, exc ept
rules indicate s ome other order .

PAGE 104

PROCEDURE REFERENCES

A procedure is referred to by its paragraph-name or section-name .
Paragraph-names may be ~ualified by the section-name of the
section containing the paragraph. whether or not it needs
~ualification. When referring to a section- name or when using a
section-name as a ~ualifier, the word SECTION must not appear .
Qualification is performed by following a paragraph-name with a
section-name preceded by IN or OF. IN and OF are logically
e~uivalent . The general format for paragraph qualification is :

paragraph-name [{OF} section-name]

{!N}

A paragraph-name need not be qualified when referred to from
within the same section or when the paragraph-name is unique.

Explicit and Implicit Transfers of Control

The mechanism that controls program flow transfers control from
statement to statement in the sequence in which they were written
in the source program unless an explicit transfer of control
overrides this sequence or there is no next executable statement
to which control can be passed. The transfer of control from
statement to statement occurs without the writing of an explicit
Procedure Division statement, and therefore, is an implicit
transfer of control.

COBOL provides both explicit and implicit means
implicit control transfer mechanism .

of altering th e

In addition to the implicit transfer of control between
consecutive statements, implicit transfer of control also occurs
when the normal flow is altered without the execution of a
procedure branching statement . COBOL provides the following typ es
of implicit control flow alterations which override t he
statement-to-statement transfers of control :

If a paragraph is being executed under control of another
COBOL statement (for example. PERFORM and USE> and the
paragraph is the last paragraph in the range of the
controlling statement. then an implied transfer of control
occurs from the last statement in the paragraph to the control
mechanism of the last executed controlling statement . Further,
if a paragraph is being executed under the control of a
PERFORM statement which causes iterative execution and that
paragraph is the first paragraph in the range of that PERFORM
statement, an implicit transfer of control occurs between the
control mechanism associated with that PERFORM statement and

PAGE 105

the first statement in that
execution of the paragraph.

paragraph for each iterative

When any COBOL statement is executed which results in the
execution of a declarative section. an implicit transfer of
control to the declarative section occurs . Note that another
implicit transfer of control occurs after execution of the
declarative .

An explicit transfer of control consists of an alteration of the
implicit control transfer mechanism by the execution of a
procedure branching or conditional statement . An expl .icit transfer
of control can be caused only by the execution of a procedure
branching or conditional statement . The execution of the procedure
branching statement ALTER does not in itself constitute an
exp l icit transfer of control, but affects the explicit transfer of
control that occurs when the associated GO TO statement is
executed .

In this document, the term 'next executable stat ement ' is used to
refer to the next COBOL statement to which control is transferred
according to the rules above and the rules associated with each
language element in the Procedure Division.

There is no next executable statement following:

The last statement in a declarative section when the paragraph
in which it appears is not being executed under the control of
some other COBOL statement . In COBOL, the result would be an
implicit transfer of control to the first nondeclarative
statement.

The last statement in a program when the paragraph in which it
appears is not being executed under the control of some other
COBOL statement . The result would be as if an implicit STOP
RUN statement were executed .

PAGE 106

SEGMENTATION

COBOL segmentation is a facility that provides a means by which
the user may communicate with the compiler to specify object
program overlay requirements . COBOL segmentation deals only with
segmentation of procedures .

Segments

When segmentation is used. the entire Procedure Division must be
in sections . In addition. each section must be classified as
belonging either to the fixed portion or to one of the independent
segments of the object program as determined by the assignment of
segment numbers . All source paragraphs which contain the same
segment-numbers can range from 00 through 127, it is possible to
subdivide any object program into a maximum of 128 segments .
Segmentation in no way affects the need for qualification of
procedure-names to insure uniqueness .

Fixed Portion

The fixed portion is defined as that part of the object program
which is always in memory . This portion of the program is composed
of segments with segment - numbers 0 through 49.

Independent Segments

An independent segment is defined as part of the obJect program
which can overlay, and can be overlaid by, another independent
segment . An independent segment has a segment-number 50 through
127.

An independent segment is in its initial state whenever control is
transferred (either implicitly or explicitly> to that segment for
the first time during the execution of a program.

On subsequent transfers of control to the segment, an independent
segment is also in its initial state when:

Control is transferred to that segment as a result of the
implicit transfer of control between consecutive statements
from a segment with a different segment-number.

Control is transferred explicitly to that
segment with a different segment - number .

PAGE 107

segment Prom a

On subsequent transfer of control to the segment, an
segment is in its last-used state when control is
implicitly to that segment from a segment with
segment-number .

Segmentation Classification

Sections which are to be segmented are classified using
of segment-numbers and the following criteria :

independent
transferred
a different

a system

Logic Requirements--Sections which must be available for
reference at all times. or which are referred to very
frequently, are normally classified as belonging to one o f the
permanent segments; sections which are used less frequently
are normally classified as belonging to one of the independent
segments, depending on logic requirements .

Frequency of Use--Generally, the more frequently a section is
referred to, the lower its segment-number; the less frequently
it is referred to, the higher its segment-number .

Relationship to Other
communicate with one
segment-numbers .

Sections - - Sections which frequently
another should be given the same

Segmentation Control

The logical sequence of the program is the same as the physical
sequence except for specific transfers of control . Control may be
transferred within a source program to any paragraph in a section ;
that is, it is not mandatory to transfer control to the beginning
of a section .

Restrictions on Program Flow

When segmentation is used, the following restrictions are
o n the ALTER and PERFORM statements .

PAGE 108

placed

The ALTER STATEMENT

A GO TO statement in a section whose segment-number
than or equal to 50 must not be referred to by an ALTER
in a section with a different segment-number.

The PERFORM STATEMENT

is greater
statement

A PERFORM
independent
declarative
only one of

statement that appears in a section that is not in an
segment can have within its range, in addition to any
sections whose execution is caused within that range,

the following:

Sections and/or paragraphs wholly contained
fixed segments, or

in

Sections and/or paragraphs
independent segment .

wholly contained

one or more

in a single

A PERFORM statement that appears in an independent segment can
have within its range, in addition to any declarative sections
whose execution is caused within that range, only one of the
following :

Sections and/or paragraphs wholly
fixed segments, or

contained in one or more

Sections and/or paragraphs wholly contained
independent segment as that PERFORM statement .

PAGE 109

in the same

THE USE STATEMENT

The USE statement specifies procedures for input-output error
handling that are in addition to the standard procedures provided
by the input-output control system . It is a compiler directing
statement re~uired in each declarative section.

FORMAT

USE AFTER STANDARD {EXCEPTION}

{ERROR }

PROCEDURE ON {file-name-1 [, file-name-2J . . . }

{INPUT }

{OUTPUT }

<I-0 }

<EXTEND }

A USE statement, when present, must i mm e d i ate 1 y f o 1 1 o w a sec t i on
header in the declaratives section and must be followed by a
period followed by a space . The remainder of the section must
consist of zero, one or more procedural paragrahs that define the
procedures to be used .

The USE statement itself is never executed; it merely defines the
conditions calling for the execution of the USE procedure.

The same file-name can appear in only one USE statement.

The words ERROR and
interchangeably.

EXCEPTION are synonymous and may be used

The designated procedures can be executed by the input-output
system after completing the standard input-output error routine,
or upon recognition of the INVALID KEY or AT END conditions, when
the INVALID KEY phrase or AT END phrase, respectively, has not
been specified in the input-output statement.

After execution of a USE procedure, control
invoking routine.

PAGE 110

is returned to the

Within a USE procedure, there must not be any reference to any
nondeclarative procedures . Conversely, in the nondeclarative
portion there must be no reference to procedure - names that appear
in the declarative portion. except that PERFORM statements may
refer to a USE statement or to the procedures associated with such
a USE statement.

Within a USE procedure, there must not be the execution of any
statement that would cause the execution of a USE procedure that
had previously been invoked and had not yet returned control to
the invoking routine.

USE Ex amp 1 e :

PROCEDURE DIVISION.
DECLARAT IVES .
ID-ERROR SECTION.

USE AFTER STANDARD ERROR PROCEDURE ON I-0 .
ID-ERROR.

DISPLAY "Il\lPUT-OUTPUT ERROR OCCURRED" .
ACCEPT CONTINUE-FLAG POSITION ZERO.
IF CONTINUE·-FL. AG = "NO" STOP RUN .

END DECLARATIVES.

PAGE 111

ARITHMETIC STATEMENTS

The arithmetic statements ADD, COMPUTE,
SUBTRACT have several common features :

DIVIDE, MUL.T I PLY, a nd

The data descriptions of the operands need not be the same ;
any necessary conversion and decimal point alignment i s
supplied throughout the calculation.

Arithmetic operations are calculated in either binary ,
decimaL packed decimaL or mixed depending on the USAGE of
the operands and receiving item according to the following
rules:

If the receiving data item
DISPLAY or COMPUTATIONAL,
calculated in decimal with any

of a
the

divide operation is
operation is alway s

necessary COi; v ersions .

Intermediate and final results are calculated in binary 1 r

all preceding intermediate results are binary and the nex t
operand has COMPUTATIONAL-I usage <except as noted in
previous paragraph) . Othenvise, the remaining intermediate
and final results are calculated in decimal with any
necessary conversions.

The maximum size of each operand is eighteen (18) decimal
digits . The composite of operands, which is a hypothetical
data item resulting from the super-imposition of specified
operands in a statement aligned on their decimal points, must
not contain more than eighteen decimal digits .

Arithmetic Expressions

An arithmetic expression can be an identifier of a numeric
elementary item, a numeric li t eral, such identifiers and literals
separated by arithmetic operators, two arithmetic expressions
separated by an arithmetic operator, or an arithmetic expression
enclosed in parentheses . Any arithmetic expression may be preceded
by a unary operator . The permissible combinations of variables.
numeric literals, arithmetic operator and parentheses are gi ve n in
Combination of Symbols in Arithmetic Expressions Table.

Those identifiers and literals appearing in an
expression must represent either numeric elementary
numeric literals on which arithmetic may be performed.

PAGE 112

arithmetic
items or

Arithmetic Operators

There are four binary arithmetic operators and two unary
arithmetic operators that may be used in arithmetic expressions .
They are represented by specific characters that must be preceded
by a space and followed by a space.

Binary Arithmetic
Operators

+

*
I

Unary Arithmetic
Operators

+

Formation and Evaluation Rules

Meaning

Addition
Subtraction
Multiplication
Division

Meaning

The effect of multiplication
by n umeric literal +1

The effect of multiplication
by numeric literal -1 .

Parentheses may be used in arithmetic expressions to specify the
order in which elements are to be evaluated . Expressions within
parentheses are evaluated first. and within nested parentheses,
evaluation proceeds from the least inclusive set to the most
inclusive set . When parentheses are not used, or parenthesized
expressions are at the same level of inclusiveness. the following
hierarchical order of execution is implied:

1st Unary plus and minus
2nd Multiplication and division
3rd Addition and subtraction

PAGE 113

Parentheses are used either to eliminate ambiguities in logic
where consecutive operations of the same hierarchical level appear
or to modify the normal hierarchical sequence of execut i on in
expressions where it is necessary to have some deviation from the
normal precedence. When the sequence of execution is not secified
by parentheses . the order of execution of consecutive operations
of the same hierarchical level is from left to right .

The ways
combined
following

in which operators, variables. and parentheses may be
in an ar i thmetic expression are summarized in the
table. where :

The letter 'P' indicates a permissible pair of symbols .

The character '-I indicates an invalid pair .

'Variable' indicates an identifier or literal.

FIRST
SYMBOL

Variable

SECOND SYMBOL.
:--:

Variable *I-+ Unary + or -
----------•--------•--------------·---•---· ----------·--------·--------------·---·---·

p p

------------ ---------- ----~---- :--------------:---:---:
* I + - p p p

------------ ---------- -----------------------:---:---:
Unary +or- P P

:------------ ---------- --------:--------------:---:---:
p p p

:------------:------ ---- :--------:-------- ------:---:---:
p p

An arithmetic expression may only begin with the symbol '(', ' +',
or a variable and may only end with a ')' or a variable.

There must be a one-to-one correspondence between left and right
parentheses of an arithmetic expression such that each left
parenthesis is to the left of its corresponding right parenthesis.

Arithmetic expressions allow the user
operations without the restrictions on
and/or receiving data items.

CONDITIONALS

to combine arithmetic
composite of operands

The conditions are relation, class, condition-name, and
switch-status . A condition has a truth value of ' true' or 'false' .

PAGE 114

Relation Condition

----------·------

A relation condition causes a comparison of two operands, each of
which may be the data item referenced by an identifier or a
literal. A relation condition has the t ·ruth value of 'true ' if the
relation exists between the operands .

Comparison of two numeric operands is permitted regardless of the
formats specified in the i r respective USAGE clauses . However, for
all other comparisons the operands must have the same usage . If
either of the operands is a group item, the nonnumeric comparison
rules apply .

Th e general format of a re l ation condit i on is as follows :

{identifier-!} {IS CNOTJ GREATER THAN}{identifier-2 } _,. ______
{1 iteral --1 } {IS r NOTJ LESS THAN }{literal-2 }

{i ndex-·name-1} {IS CNOTJ EQUAL. TO }{index-name-2 }

---- -
{IS CNOTJ ~> }

{IS CNOTJ ·(}

{IS CNOTJ = }

The first operand (identifier-!, literal - 1 or index-name-1) is
called the subJect of the condition; the second operand
(identifier-2, literal - 2 or i ndex-na me - 2) is called the obJect of
the condition. The rela ti on condition must contain at least one
reference to a variable .

PAGE 115

The relational operator specifies the type of comparison to be
made in a relation condition . A space must precede and follow each
reserved word comprising the relational operator . When used, 'NOT'
and the next key word or relation character are one relational
operator that defines the comparison to be executed for truth
value; e. g., 'NOT EQUAL • is a truth test for an 'unequal'
comparison; 'NOT GREATER' is a truth test for an 'equal' or 'less'
comparison . The meaning of the relational operators is as follows:

Meaning Relational Operator

Greater than or not greater than IS [NOTJ GREATER THAN

IS [NOT J >

Less than or not less than IS [NOTJ LESS THAN

IS [NOTJ <

Equal to or not equal to IS [NOTJ EQUAL TO

IS [NOTJ -

NOTE: The required relational characters '>',
not underlined to avoid confusion with
as '2:.' (greater than or equal to) .

'<:', and '=' are
other symbols such

Comparison of Numeric Operands

For operands whose class is numeric a comparison is made with
respect to the algebraic value of the operands. The length of the
literals or operands, in terms of number of digits represented, is
not significant . Zero is consideted a unique value regardless of
t he sign.

Comparison of these operands is permitted regardless of the manner
in which their usage is described. Unsigned numeric operands are
considered positive for purposes of comparison.

PAGE 116

Comparison of Nonnumeric Operands

For nonnumeric operands, or one numeric and one nonn u meric
operand, a comparison is made with respect to a specified
collating sequence of characters. If one of the operands is
specified as numeric, it must be an integer data item or an
integer literal and:

If the nonnumeric operand is an elementary data item or a
nonnumeric literal, the numeric operand is treated as though
it were moved to an elementary alphanumeric data item of the
same size as the numeric data item (in terms of standard data
format characters), and the contents of this alphanumeric data
item were then compared to the nonnumeric operand .

If the nonnumeric operand is a group item. the numeric operand
is treated as though it were moved to a group item of the same
size as the numeric data item (in terms of standard data
format characters), and the contents of this group item were
then compared to the nonnumeric operand .

A noninteger numeric
operand .

operand cannot be compared to a nonnumeric

The size of an operand is the total number of standard data format
characters in the operand . Numeric and nonnumer~c operands may be
compared only when their usage is the same . There are two cases to
consider: operands of equal size and operands of unequal size .

Operands of equal size: If the operands are of equal size,
comparison effectively proceeds by comparing characters in
corresponding character positions starting from the high order end
and continuing until either a pair of unequal characters is
encountered or the low order end of the operand is reached.
whichever comes first. The operands are determined to be equal if
all pairs of characters compare equally through the last pair.
when the low order end is reached .

The first encountered pair of unequal characters is compared to
determine their relative position in the collating sequence . The
operand that contains the character that is positioned high e r in
the collating sequence is considered to be the greater operand .

Operands of unequal size: If the operands are of unequal size,
comparison proceeds as though the shorter operand were extended on
the right by sufficient spaces to make the operands of equal s ize .

PAGE 117

Comparisons of Index-Names and/or Index Data Items

If two index-names are compared the result is the same as if the
corresponding occurrence numbers were compared.

For an index-name and a data item <other than an index data item>
or literal. the comparison is made between the occurrence number
that corresponds to the value of the index-name and the data item
or literal.

When a comparison is made between
index-name or another index data item.
compared without conversion .

an index data item and an
the actual values are

The result of the comparison of an index data item with any data
item or literal not specified above is undefined.

Class Condition

The class condition determines whether the operand is numeric.
that is, consists entirely of the characters '0', '1', '2', '3',
.. . , '9', with or without the operational sign; or alphabetic,
that is. consists entirely of the characters 'A', 'B', 'C', . ,
'Z', space . The general format for· the class condition is as
follows :

identifier IS CNOTJ {NUMERIC }

{ALPHABETIC}

The usage of the operand
display. When used, 'NOT' and
condition that defines the
value, e . g . , 'NOT NUMERIC' is
operand is nonnumeric.

being tested must be described as
the next key word specify one class
class test to be executed for truth

a truth test for determining that an

PAGE 118 •

The NUMERIC test cannot be used with an item whose data
description describes the item as alphabetic or as a group item
composed of elementary items whose data descr•iption indicates the
presence of operational sign(s). If the data description of the
item being tested does not indicate the presence of an operational
sign, the item being tested is determined to be numeric only if
the contents are numeric and an operational sign is not present .
If the data description of the item does indicate the presence of
an operational sign, the item being tested is determined to be
numeric only if the contents are numeric and a valid operational
sign is present. Valid operational signs for data items are the
standard data format characters, '+' and •-•

The ALPHABETIC test cannot be used with an item whose data
description describes the item as numeric. The item being tested
is determined to be alphabetic only if the contents consist of any
combination of the alphabetic characters 'A' through 'Z' and the
space.

Condition-name <Conditional Variable)

In a condition-name condition, a conditional variable is tested to
determine whether or not its value is equal to one of the values
associated with a condition-name . The general-format for the
condition-name condition is as follows :

condition-name

If the condition-name is associated with a range of values, then
the conditional variable is tested to determine whether or not its
value falls in this range, including the end values.

The rules for
condition-name
conditions.

comparing a conditional variable with a
value are the same as those specified for relation

The result of the test is true if one of the values corresponding
to the condition-name equals the value of its associated
conditional variable.

PAGE 119

Switch-Status Condition

A switch-status condition determines the 'on' or 'off' status of a
software switch . The switch-name and the 'on' or 'off' value
associated with the condition must be named in the SPECIAL-NAMES
paragraph of the Environment Division. The general format for the
switch-status condition is as follows:

condition-name

The result of the test is true if the switch is set to the
specified position corresponding to the condition-name.

Complex Conditions

A complex condition is formed by combining simple conditions,
combined conditions and/or complex conditions with logical
connectors <logical operators 'AND' and 'OR') or negating these
c onditions with logical negation <the logical operator 'NOT'). The
truth value of a complex condition, whether parenthesized or not,
is that truth value which results from the interaction oF all the
s tated logical operators on the individual truth values of simple
conditions, or the intermediate truth values of conditions
logically connected or logically negated. The logical operators
and their meanings are:

Logical Operator

AND

OR

NOT

Meaning

Logical conJunction; the truth value
is 'true' if both of the conjoined
conditions are true; 'false' if one
or both of the conjoined conditions
is false.

Logical inclusive OR; the truth value
is ' true' if one or both of the
included conditions is true; 'false'
if both included conditions are false .

Logical negation or reversal of truth
value; the truth value is 'true'
if the condition is false ;
'false' if the condition is true .

The logical operators must be preceded by a space and followed by
a space.

PAGE 120

Negated Simple Conditions

A simple condition is negated through the use of the logical
operator ' NOT'. The negated simple condition effects the opposite
truth value for a simple condition . Thus the truth value of a
negated simple condition is ' true' if and only if the truth value
of the simple condition is 'false'; the truth value of a negated
simple condition is 'false' if and only if the truth value of the
simple condition is 'true'. The inclusion in parentheses of a
negated simple condition does not change the truth value.

The general format for a negated simple condition is:

NOT simple-condition

Combined and Negated Combined Conditions

A combined condition results from connecting conditions with one
of the 1 o g i c a 1 o p er at or s 'AND 1 or 'OR 1 • T h e g en er a 1 for mat of a
combined condition is :

condition {{AND} condition} ...

{OR }

Where 'condition' may be :

A simple condition, or

A negated simple condition, or

A combined condition, or

A negated combined condition; i.e . , the 'NOT' logical operator
followed by a combined condition enclosed within parentheses,
or

Combinations of the above .

PAGE 121

Although parentheses need never be used when either 'AND' or 'OR'
(but not both) is used exclusively in a combined condition.
parentheses may be used to affect the Final truth value when a
mixture of 'AND', 'OR' and 'NOT' is used.

Condition Evaluation Rules

Condition Evaluation Rules indicate the ways in which conditions
and logical operators may be combined and parenthesized . There
must be a one-to-one correspondence between left and right
parentheses such that each left parenthesis is to the left of its
corresponding right parenthesis.

Parentheses may be used to specify the order in which individual
conditions of complex conditions are to be evaluated when it is
necessary to depart from the implied evaluation precedence .
Conditions within parentheses are evaluated first, and, within
nested parentheses, evaluation proceeds from the least inclusive
condition to the most inclusive condition . When parentheses are
not used. or parenthesized conditions are at the same level of
inclusiveness, the following hierarchical order of logical
evluation is implied until the final truth value is determined :

Truth values for simple conditions are established.

Truth values for negated simple conditions are established .

Truth values for combined conditions are established :

'AND' logical operators, followed by
'OR' logical operators .

Truth values for negated combined conditions are established.

When the sequence of evaluation is not completely specified by
parentheses, the order of evaluation of consecutive operations
of the same hierarchical level is from left to right.

PAGE 122

SEQUENTIAL ORGANIZATION INPUT-OUTPUT

The sequential organization input-output
Prodcedure Division are the CLOSE, OPEN,
USE, and WRITE statements .

Function

statements
READ, REWRITE,

in the
UNLOCK,

Sequential organization input-output provides a capability to
access records of a file in established sequence. The sequence is
established as a result of writing the records to the file.

Organization

Sequential files are organiz~d such that each record in the file
except the first has a un i que predecessor record, and each record
except the last has a unique successor record. These
predecessor--successor relationships are established by the order
of WRITE statements when the file is created. Once established,
the predecessor-successor relationships do not change except in
the case where records are added to the end of the file.

Access Mode

In the sequential access mode, the sequence in which records are
accessed is the order in which the records were originally
written .

Current Record Pointer

The current record pointer i s a conceptual entity used in this
document to facilitate specification of the next record to be
accessed within a given file . The concept of the current record
pointer has no meaning for a file opened in the output mode. The
setting of the current rec0rd po i nter is affected only by the OPEN
and READ statements .

PAGE 123

I-0 Status

If the FILE STATUS clause is specified in a file control entry. a
value is placed into the specified two-character data item during
the execution of an OPEN, CLOSE, READ, WRITE, or REWRITE statement
and before any applicable USE procedure is executed, to indicate
to the COBOL program the status of that input-output operation .

Status Key 1

The leftmost character position of the FILE STATUS data item is
known as status key 1 and is set to indicate one of the following
conditions upon completion of the input-output operation :

1 0 1 - Successful Completion.
successfully executed.

The input-output statement was

1 1 1 - At End. The sequential READ statement was unsuccessfully
executed as a result of an attempt to read a record when no
next logical record exists in the file.

1 3 1 - Permanent Error. The input-output statement was
unsuccessfully executed as the result of a boundary violation
for a sequential file or as the result of an input-output
error. such as data check parity error, or transmission error .

1 9 1 - General Error . The input-output statement was
unsuccessfully executed as a result of a condition that is
specified by the value of status key 2 .

Status Key 2

The rightmost character position of the FILE STATUS data item is
known as status key 2 and is used to further describe the results
of the input-output operation. This character will contain a value
as follows :

If no further information is available concerning the
input-output operation, then status key 2 contains a value of
I 0 I •

When status key 1 contains a value of 1 3 ' indicating a
permanent error condition, status key 2 may contain a value of
1 4 1 indicating a boundary violation . This condition indicates
that an attempt has been made to write beyond the externally
defined boundaries of a sequential file.

PAGE 124

When status key 1 contains a
operating system error condition,
may contain a :

value of '9' indicating an
the value of status key 2

'0' indicating an invalid operation. This condition
indicates that an attempt has been made to execute a READ,
WRITE, or REWRITE statement that conflicts with the current
open mode or a REWRI TE statement not preceded by a
successful READ statement.

'1' indicating file not opened . This condition indicates
that an attempt has been made to execute a delete, start,
unlock, read, write, rewrite or close statement on a file
which is not currently open .

'2' indicating file not closed . This condition indicates
that an attempt has been made to execute an OPEN statement
on a file which is currently open .

'3' indicating file not available . This condition indicates
that an attempt has been made to execute an OPEN statement
for a file closed WITH LOCK .

' 4' indicating an invalid open . This condition indicates
that an attempt has been made to execute an OPEN statement
for a file with no external correspondence or a file having
inconsistent parameters .

'5' inidcating invalid device or no next reel. This
condition indicates that an attempt has been made to open a
file having parameters (e . g., open mode or organization>
which conflict with the device assignment <RANDOM, INPUT,
PRINT, .. .) or that an attempt has been made to execute a
CLOSE REEL statement for the last reel/unit of a multi-reel
file. In the case of a CLOSE REEL, the file has been
closed.

'6' indicating an undefined current record pointer status.
This condition indicates that an attempt has been made to
execute a READ statement after occurrence of an
unsuccessful READ statement without an intervening
successful CLOSE and OPEN .

'7' indicating an invalid record length . This condition
indicates an attempt has been made to open a file that was
defined with a maximum record length different from the
externally defined maximum record length, or to execute a
WRITE statement that specifies a record with a length
smaller than the minimum or larger than the maximum record
size, or a REWRITE statement when the new record length is
different from that of the record to be rewritten .

PAGE 125

RELATIVE ORGANIZATION INPUT-OUTPUT

The Relative input-output statements in the Procedure Division are
the CLOSE, DELETE, OPEN, READ, REWRITE, START, UNLOCK and WRITE
statements .

Function

Relative input-output provides a capability to access records of a
mass storage file in either a random or sequential manner . Each
record in a relative file is uniquely identified by an integer
value greater than zero which specifies the record's logical
position in the file.

Organization

Relative file organization
devices <RANDOM device) .

is permitted only on mass storage

A relative file consists of records which are identified by
relative record numbers . The file may be thought of as composed of
a serial string of areas, each capable of holding a logical
record . Each of these areas is denominated by a relative record
number, an integer value greater than zero. Records are stored and
retrieved based on this number . For example, the tenth record is
the one addressed by relative record number 10 and is the tenth
record area, whether or not records have been written in the first
through the ninth record areas.

Access Modes

In the sequential access mode, the sequence in which records are
accessed is the ascending order of the relative record numbers of
all records which currently exist within the file .

PAGE 126

In the random access mode, the
accessed is controlled by the
accessed by placing its relative
data item.

sequence in which records are
programmer. The desired record is
record number in a relative key

In the dynamic access mode, the programmer may change at will from
sequential access to random access using appropriate forms of
input-output statements .

Current Record Pointer

The current record pointer is a conceptual entity used in this
document to facilitate specification of the next record to be
accessed within a given file . The concept of the current record
pointer has no meaning for a file opened in the output mode . The
setting of the current record pointer is affected only by the
OPEN, READ, and START statements .

I-0 Status

If the FILE STATUS clause is specified in a file control entry, a
value is placed into the specified two-character data item during
the execution of an OPEN, CLOSE, READ, WRITE, REWRITE, DELETE, or
START statement and before any applicable USE procedure is
executed, to indicate to the ~OBOL program the status of that
input-output operation :

Status Key 1

The leftmost character position of the FILE STATUS data item is
known as status key 1 and is set to indicate one of the following
conditions upon completion of t~e input-output operation :

'0' - Successful Completion. The input-output was successfully
executed .

' 1'- At End . The statement was unsuccessfully executed as a
result of an attempt to read a record when no next logical
record exists in the file .

PAGE 127

'2 1 - Invalid Key . The
unsuccessfully executed as

input-output statement was
a result of one of the following:

Duplicate Key
No Record Found
Boundary Violation

1 3 1 - Permanent Error .
unsuccessfully executed
error, such as data
error .

The
as the

chec L

input-output
result of

parity error,

statement was
an input-output

or transmission

1 9 1 - General Error . The input-output statement was
unsuccessfully executed as a result of a condition that is
specified by the value of status key 2 .

Status Key 2

The rightmost character position of the FILE STATUS data item is
known as status key 2 and is used to further describe the results
of the input-output operation . This character will contain a value
as follows:

If no further information is available concerning the
input-output operation , then status key 2 contains a value of
I 0 I •

When status key 1 contains a value of
INVALID KEY condition, status key 2 is :

'2 I indicating an

'2' indicating a duplicate key value . An attempt has been
made to write a record that would create a duplicate key .

'3' indicating no record found. An attempt has been made
to access a record, identified by a key, and that record
does not exist in the file .

'4' indicating a boundary violation . An attempt has been
made to write beyond the externally - defined boundaries of
a file .

When status key 1
operating system
is :

contains a value of '9' indicating an
error condition, the value of status key 2

'0' indicating invalid operat i on. An attempt has been made
to execute a DELETE, READ, REWRITE, START, or WRITE
statement which conflicts with the current open mode of
the file or a sequential access DELETE or REWRITE
statement not preceded by a successful READ statement.

PAGE 128

'1' indicating file not opened. This condition indicates
that an attempt has been made to execute a delete, start.
unlock. read, write, rewrite, or close statement on a file
which is not currently open.

'2' indicating file not closed . An attempt has been made
to execute an OPEN statement on a file that is currently
open .

'3' indicating file not available. An attempt has been
made to execute an OPEN statement for a file closed with
1 oc k .

'4' indicating invalid open. An attempt has been made to
execute an OPEN statement for a file with no external
correspondence or a file having inconsistent parameters .

'5' indicating invalid device. This condition indicates
that an attempt has been made to open a file having
parameters (e . g . , open mode or organization) which
conflict with the device assignment <RANDOM, INPUT, PRINT,
. . .) .

'6' indicating an undefined current record pointer status.
This condition indicates that an attempt has been made to
execute a sequential READ statement after the occurrence
of an unsuccessful READ or START statement without an
intervening successful CLOSE and OPEN.

'7' indicating an invalid record length. This condition
indicates that an attempt has been made to open a file
that was defined with a maximum record length different
from the externally defined maximum record length, or to
execute a WRITE statement that specifies a record with a
length smaller than the minimum or larger than the maximum
record size, or a REWRITE statement when the new record
length is different from that of the record to be
rewritten .

The INVALID KEY Condition

The INVALID KEY condition can occur as a result of the execution
of a START, READ, WRITE, REWRITE, or DELETE statement.

When the INVALID KEY condition is recognized, the System takes
these actions in the following order:

PAGE 129

A value is placed into the FILE STATUS data item, if specified
for this file, to indicate an INVALID KEY condition.

If the INVALID KEY phrase is specified in the statement
causing the condition. control is transferred to the INVALID
KEY imperative statement. Any USE procedure specified for this
file is not executed .

If the INVALID KEY phrase is not specified, but a USE
procedure is specified. either explicitly or implicitly, for
this file, that procedure is executed.

When the INVALID KEY condition occurs.
input-output statement which recognized
unsuccessful and the file is not affected .

The AT END Condition

execution of the
the condition is

The AT E~D condition can occur as a result of the execution of a
READ statement. When the AT END condition occurs. execution of the
READ statement is unsuccessful.

PAGE 130

INDEXED ORGANIZATION INPUT-OUTPUT

Indexed input-output statements in the Procedure Division are the
CLOSE, DELETE, OPEN, READ, REWRITE, START, UNLOCK and WRITE
statements .

Function

Indexed input-output provides a capability to access r·ecords of a
mass storage file in either a random or sequential manner . Each
record in a nonsequential organization file is uniquely identified
by a key .

Organization

A file whose organization is indexed is a mass storage file in
which data records may be accessed by the value of a key. A record
description may include one or more key data items. each of which
is associated with an index. Each index provides a logical path to
the data records according to the contents of a data item within
each record which is the recorded key for that index .

The data item named in the RECORD KEY clause of the file control
entry for a file is the prime record key for that file . For
purposes of inserting, updating and deleting records in a file,
each record is identified solely by the value of its prime record
key . This value must, therefore, be unique and must not be changed
when updating the record .

Access Modes

In the sequential access mode, the sequence in which records are
accessed is the ascending order of the keys of all records which
currently exist within the file .

In the random access mode, the sequence in which records are
accessed is controlled by the programmer. For indexed files, the
desired record is accessed by placing the value of its record key
in a record key data item.

PAGE 131

In the dynamic access mode, the programmer may change at will from
sequential access to random access using appropriate forms of
input-output statements .

Current Record Pointer

The current record pointer is a conceptual entity used in this
document to fac i litate specification of the next record to be
accessed within a given file. The concept of the current record
pointer has no meaning for a file opened in the output mode . The
setting of the current record pointer is affected only by the
OPEN, READ, and START statements .

I -0 Status

If the FILE STATUS clause is specified in a file control entry, a
value is placed into the specified two-character data item during
the execution of an OPEN, CLOSE, READ, WRITE, REWRITE, DELETE, or
START statement and before any applicable USE procedure is
executed, to indicate to the COBOL program the status of that
input-output operation :

Status Key 1

The leftmost character position of the FILE STATUS data item is
known as status key 1 and is set to indicate one of the following
conditions upon completion of the input-output operation :

'0' - Successful Completion . The input-output was successfully
executed.

'1' - At End . The Format 1 READ statement was unsuccessfully
executed as a result of an attempt to read a record when no
next logical record exists in the file .

'2' - Invalid Key . The
unsuccessfully executed as a

Sequence Error
Dupli c ate Key
No Record Found
Boundary Violation

PAGE 132

input-output statement was
result of one of the following :

'3' - Permanent Error.
unsuccessfully executed
error , such as da t a
error .

The
as the

c hec k ,

inp u t-output
result of

pa r ity e r ro r ,

s t atement was
an input-output

or transmission

'9' - General Error . The input-outpu t sta t ement was
unsuccessfully executed as a result of a condit ion that is
specified by the value of status key 2 .

Status Key 2

The rightmost character posit i on of the FILE STATUS data item is
known as status key 2 and is used to f urther descri b e the results
of the input-output operation . This character will c ontain a value
as follows :

If no further information is available c oncerning the
input-output operation, then sta tu s key 2 contai n s a value of
1 0 I .

When status key 1 contains a value of Q, indicating a
successful completion, status key 2 may conta i n a val u e of 2,
indicating a duplicate key. This c ondition indicates :

For a READ statement, the key value for the c u r rent key o f
reference is equal to the value of that same ke y in t he
next record within the current key of referen ce.

For a WRITE or REWRITE statement, the record J ust written
created a duplicate key value for at least one alternate
record key for which duplicates are allowed .

When status key 1
INVALID KEY condition,

c ontains a value
status key 2 is :

of '2 I indi cating an

'1' indicating a sequence error for a sequentially
accessed indexed file . The ascending sequence requ irement
of successive record key values has been violate d or the
record key value has been changed by t h e COBOL program
between the successful execu t ion of a READ statement and
the execution of the next REWRITE statement fo r that file.

PAGE 133

'2' indicating a duplicate key value. An attempt has been
made to write a record that would create a duplicate key .

'3 ' indicating no record found . An attempt has been made
to access a record, identified by a key. and that record
does not exist in the file .

'4' indicating a boundary violation. An attempt has been
made to write beyond the exte r nally-defined boundar i es of
a file.

When status key 1
operat i ng system
is :

contains a value of ' 9' indicating an
error condition. the value of status key 2

'0' indicating invalid operation . An attempt has been made
to execute a DELETE, READ , REWRITE, START, or WRITE
statement which conflicts with the current open mode of
the file or a sequential access DELETE or REWRITE
statement not preceded by a successful READ statement .

'1' indicating file not opened . This condition indicates
an attempt has been made to execute a delete, start,
unlock. read. write, rewr i te. or close statement on a file
that is not currently open.

'2 ' indicating file not closed. An attempt has been made
to execute an OPEN statement on a file that is currently
open .

'3' indicating file not available . An attempt has been
made to execute an OPEN statement fdr a file closed with
LOCK.

'4' indicating invalid open. An attempt has been made to
execute an OPEN statement for a file with no external
correspondence or a file having inconsistent parameters .

' 5' indi c ating invalid device . This condition ind i cates
that an attempt has been made to open a file having
parameters (e . g., open mode or organ i zation which conflict
with the device assignment <RANDOM, INPUT, PRINT , . . >.

'6' indicating an undefined current record pointer status.
This condition indicates that an attempt has been made to
execute a sequential READ statement after the occur rence
of an unsuccessful READ or START sta~ement without an
intervening successful CLOSE and OPEN.

PAGE 134

'7' indicating an invalid record length . This condition
indicates that an attempt has been made to open a file
that was defined with a maximum record length different
from the externally defined maximum record length, or to
execute a WRITE statement that specifies a record with a
length smaller than the minimum or larger than the maximum
record size, or a REWRITE statement when the new record
length is different from that of the record to be
rewritten.

'8' indicating an invalid
indicates that the indexed
data . This is a catastrophic
recovery at the present time.

PAGE 135

indexed file. This condition
file contains inconsistent
error from which there is no

The INVALID KEY Condition

The INVAL ID KEY condition can occur as a result of the execution
of a START, READ, WRITE , REWRITE, or DELETE statement.

When the INVALID KEY condition is recognized, the System takes
these actions in the following order :

A value is placed into the FILE STATUS data item, if specified
for this file, to indicate an INVALID KEY condition.

If the INVALID KEY phrase is specified in the statement
causing the condition, control is transferred to the INVALID
KEY imperative statement. Any USE procedure specified for this
file is not executed .

If the INVALID KEY phrase is not specified, but a USE
proc edure is specified, either explicitly or implicitly, for
this file, that procedure is executed .

When the INVALID KEY condition occurs,
input-output statement which recognized
unsuccessful and the file is not affected .

The AT END Condition

execution of the
the condition is

The AT END condition can occur as a result of the execution of a
READ statement . When the AT END condition occurs, execution of the
READ statement is unsuccessful .

PAGE 136

PROCEDURAL STATEMENTS

The ACCEPT ... FROM Statement

The ACCEPT statement causes the information requested to be
transferred to the data item specified by identifier-1 according
to the rules of the MOVE statement . DATE, DAY, and TIME are
conceptual data items and, therefore, are not described in the
COBOL program.

FORMAT

ACCEPT identifier-! FROM <DATE}

{DAY }

<TIME}

DATE is composed of the data elements year of century, month of
year, and day of month. The sequence of the data element codes is
from high order to low order (left to right), year of century,
month of year, and day of month . Therefore, July L 1979 would be
expr·essed as 790701. DATE, tJJhen accessed by a COBOL program
behaves as if it had been described in the COBOL program as an
unsigned elementary numeric integer data item six digits in
length.

DAY is composed of the data elements year of century and day of
year. The sequence of the data element codes is from high order to
low order <left to right) year of century, day of year. Therefore,
July L 1979 would be expressed as 79181. DAY, when accessed by a
COBOL program as an unsigned elementary numeric integer data item
five digits in length .

PAGE 137

TIME is composed of the data elements hours, minutes, seconds and
hundredths of a second . TIME is based on elapsed time after
midnight on a 24-hour clock basis-- thus, 2 : 41 p . m. would be
expressed 14410000. TIME, when accessed by a COBOL program behaves
as if it had been described in a COBOL program as an unsigned
elementary numeric integer data item eight digits in length . The
minimum value of TIME is 00000000; the maximum value of TIME is
23595999.

ACCEPT ..

ACCEPT
ACCEPT

FROM Examples

YEAR-DAY FROM DAY.
CLOCK FROM TIME.

PAGE 138

The ACCEPT Statement <Terminal I-0)

The ACCEPT statement causes low volume data to be accepted from
the CRT terminal and transferred to the specified data item .
ACCEPT statement phrases allow the specification of position, form
and format of the accepted data .

FORMAT

ACCEPT {identifier-! [,UNIT {identifier-2}J
------ {literal-1 }

[,LINE {identifier-3}] [,POSITION {identifier-4}J
{literal-2 } -------- {literal-3 }

[,SIZE {identifier-S}] [,PROMPT [literal-5J
{literal-4 } ------

[,ECHOJ [,CONVERT] [,TABJ [,ERASEJ [,NO BEEPJ

[,OFFJ [, {HIGH}J [,BLINKJ [,REVERSEJ

{LOW }

[,ON EXCEPTION identifier-6 imperative-statement]}

The ACCEPT statement cau5es the transfer of data from the CRT
device . This data replaces the contents of the data item named by
identifier-1 . The receiving data item must have usage DISPLAY if
ECHO is specified; otherwise, it may have any usage except INDEX.

When an ACCEPT statement contains more than one operand, the
values are transferred in the sequence in which the operands are
encountered. ACCEPT phrases apply to the previously specified
identifier-1 only . A subsequent identifier-1 in the same ACCEPT
statement will be treated as if no previous phrases have been
specified .

An ACCEPT statement may contain no more than one ON EXCEPTION
phrase, and if present it must be associated with the last <or
only> identifier-1 .

Note : Features which require support of the host operating
system and/or terminal hardware may not be supported on
all systems . Any features which are not supported will
compile correctly, but will be ignored at runtime . See
the User ' s Guide for specific details.

PAGE 139

The UNIT Phrase

The UNIT phrase must be the first phrase if used . The other
phrases may be written in any order .

The value of identifier-2 or literal-1 in the UNIT phrase
specifies the station identifier of the CRT from which the data is
to be accepted. If the UNIT phrase is omitted, the CRT which
executed the program will be accessed.

The LINE Phrase

The value of identifier-3 or literal-2 in the LINE phrase
specifies the line number from which the data is to be accepted
from the screen of the CRT terminaL with 1 being the top 1 i ne . If
the value is greater than the number of lines on the CRT screen,
it is adJusted to the maximum 1 i ne number.

If the value is zero or the LINE phrase is not present in an
ACCEPT statement, then data is to be accepted from the next line
below the current position of the cursor on the CRT screen unless
the value specified in the POSITION phrase is also zero, in which
case the data is to be accepted from the line at the current
position of the cursor on the CRT screen.

The POSITION Phrase

The value of identifier-4 or literal-3 in the POSITION phrase
specifies the number of the character positions to which the
cursor is to be positioned within the specified line prior to the
accepting of data from the CRT terminal, with 1 being the leftmost
character position within a line . If the value is greater than the
maximum number of characters within a line on the CRT screen, it
is adJusted to the maximum character number.

If the POSITION phrase is not specified, a value of 1 is assumed
for the first accepted operand and 0 for each additional operand
accepted in the same statement . If a value of 0 is specified, the
data is to be accepted starting at the next field on the CRT
screen <starting character position plus size of last ACCEPT or
DISPLAY>.

PAGE 140

The SIZE Phrase

The value of identifier-S or literal-4 in the SIZE phrase
specifies the maximum number of characters to be accepted from the
CRT terminal, overriding the Data Division definition of the
field. If the SIZE phrase is not present or a value of 0 is
specified , then the size of identifier-!. (identifier-S, .. > is
used . A size greater than 80 is treated as equal to 80.

The size of the accepted field is determined by the SIZE phrase .
The number of characters transferred from the CRT is less than or
equal to the size of the accepted field . Input is terminated by
depression of the return key <which is not considered part of the
input) . The number of characters actually input is the size of the
source in the following:

If the receiving item is not numeric, the accepted input is
stored according to the rules of the MOVE statement for an
alphanumeric source and destination. If the receiving item is
described JUSTIFIED RIGHT, the clause will apply to the MOVE
rules.

If the receiving item is numeric , the accepted input is stored
ac c ording to the rules of the MOVE statement for a numeric
so urce anq destination . If the CONVERT phrase is not
specified, the source has the same scale as the receiving
item . If the receiving item has a trailing sign and the
CONVERT phrase is not specified, the input must contain digits
followed by a sign character . If the CONVERT phrase is
specified, then the input is converted according to the rules
of the CONVERT phrase . The CONVERT phrase is recommended when
accepting numeric items.

The PROMPT Phrase

The presence of the key word PROMPT in an ACCEPT statement causes
the data to ·be accepted with prompting. The action of prompting is
to display fill characters on the CRT screen in the positions from
which data is to be accepted . Literal-S must be a single character
nonnumeric literal which specifies the fill character to be used
in prompting. If literal-S i s omitted in the PROMPT phrase, then
an underscore will be used as the fill character .

When the PROMPT phrase is not specified, then the data is to be
accepted without prompting; the original contents of the field on
the CRT will be undisturbed before accepting input .

PAGE 141

The ECHO Phrase

The presence of the key word ECHO within an ACCEPT statement
causes the contents of identifier-! to be displayed on the screen
of the CRT terminal. Conversion <see CONVERT Phrase), decimal
alignment, and Justification are performed prior to display. If
the specified size is greater than the size of the receiving
data-item, the data-item is displayed right JUstified in the
accept field with leading blanks . If the specified size is less
than the size of the receiving data-item, the display is truncated
on the right . When the ECHO phrase is not specified, the original
input data remains in the accept field .

The CONVERT Phrase

If the receiving data-item is numeric, the presence of the key
word CONVERT within an ACCEPT statement causes the conversion of
an accepted field to a trailing-signed decimal field . The
trailing-sign decimal field is then stored in identifier-!. The
conversion is accomplished by a left-to-right scan and the rules:

Set the sign according to the rightmost sign given in the
input or positive if no sign is present .

Set the scale according to the rightmost period given in the
input or to zero if no period is present. If the DECIMAL POINT
IS COMMA clause was specified in the source program, a comma
replaces the period in determining the scale.

Delete all nonnumeric characters from the accepted field .

When the CONVERT phrase is not specified, or the receiving
data-item is not numeric, then the data is to be stored without
the above conversion.

The TAB Phrase

The presence of the key word TAB in an ACCEPT statement causes a
wait for a tab, return or backspace key in reaching the end of the
input field; the return will then terminate input, the backspace
character will position the cursor back one character, the tab
will reposition the cursor to the beginning of the field and all
other input will be ignored . If the key word TAB is omitted, input
will automatically be terminated if the end of the input field is
encountered.

PAGE 142

The ERASE Phrase

The presence of the key word ERASE within an ACCEPT statement
causes the screen of the CRT to be erased prior to cursor
positioning . When the ERASE phrase is not specified, then the
screen is not erased prior to cursor positioning.

The NO BEEP Phrase

The presence of the key words NO BEEP in an ACCEPT statement
causes supression of the beep signal upon cursor positioning. If
the key words NO BEEP are omitted, a beep signal will occur upon
cursor positioning prior to data input .

The OFF Phrase

The presence of the key word OFF within an ACCEPT statement causes
data to be input from the terminal keyboard but not displayed to
the screen. Blank characters are displayed to the screen in lieu
of data characters.

The HIGH/LOW Phrase

The presence of the key word HIGH or LOW causes the PROMPT
character and the accepted data (if CONVERT and/or ECHO was
specified) to be displayed at the specified intensity.

When HIGH or LOW is not specified, the default display is HIGH .

The BLINK Phrase

The presence of the key word BLINK causes the PROMPT character,
and any displayed data, to be BLINKed. When BLINK is not
specified, no BLINK is provided.

The REVERSE Phrase

The presence of the key word REVERSE causes the PROMPT character,
and any displayed data, to be displayed in a reverse image mode.
When REVERSE is not specified, normal display is provided .

PAGE 143

The ON EXCEPTION Phrase

The presence of ON EXCEPTION causes the imperative-statement to be
executed if an invalid character is entered. The invalid character
(in ASCII format) will be placed in identifier-6 prior to
execution of the imperative-statement . The invalid character may
be determined by declaring identifier-6 as USAGE COMP-1 and
testing for its ASCII value .

When ON EXCEPTION and CONVERT are both specified and a conversion
error occurs, an error code of "98" is returned in identifier-6.

ACCEPT Examples

ACCEPT ANSWER-1, ANSWER-2.

ACCEPT START-VALUE LINE 1, POSITION K,
PROMPT, ECHO, CONVERT.

ACCEPT NEXT-N POSITION O,
PROMPT, ECHO.

ACCEPT YEAR, LINE YR-LN, POSITION YR-POS;
MONTH, LINE MN-LN, POSITION MN-POS.

PAGE 144

The ADD Statement

The ADD statement causes two or more numeric operands to be summed
and the result to be stored .

FORMAT 1

ADD {identifier-!} L identifier-2]

{literal-! } L liter·al-2]

TO identifier-m [ROUNDED]

[;ON SIZE ERROR imperative-statement]

FORMAT 2

ADD {identifier-!}, {identifier-2} L identifier-3]

{literal-1 } {literal-2 } [, literal-3]

GIVING identifier-m CROUNDEDJ

[;ON SIZE ERROR imperative-statement]

FORMAT 3

ADD <CORRESPONDING} identifier-! TO identifier-2 [ROUNDEDJ

{CORR }

[; ON SIZE ERROR imperative-statement]

In Format 1, the values of the operands preceding the word TO are
added together, then the sum is added to the current value of
identifier-m storing the result immediately into identifier-m.

In Format 2, the values of the operands preceding the word GIVING
are added together, then the sum is stored as the new value of
identifier-m.

PAGE 145

In Formats 1 and 2, each identifier must refer to an elementary
numeric item, except that in Format 2 identifier-m following the
word GIVING must refer to either an elementary numeric item or an
elementary numeric edited item.

In Format 3, data items in identifier-! are added to and stored in
the corresponding data items in identifier-2.

In Format 3, each identifier must refer to a group item.

Each literal must be a numeric literal.

The ROUNDED Phrase

The ADD statement may optionally include the ROUNDED phrase.

If, after decimal point alignment, the number of places in the
fraction of the result of the arithmetic operation is greater than
the number of places provided for the fraction of the
resultant-identifier, truncation is relative to the size provided
for the resultant-identifier. When rounding is requested, the
absolute value of the resultant-identifier is increased by one
<1> whenever the most significant digit of the excess is greater
than or equal to five (5) .

When the low-order integer positions in a resultant identifier are
represented by the character 'P' in the picture for that
resultant-identifier, rounding or truncation occurs relative to
the rightmost integer position for which storage is allocated.

The SIZE ERROR Phrase

If, after appropriate decimal point alignment, the absolute value
of the result exceeds the largest value that can be contained in
the associated resultant-identifier, a size error condition
exists. If the ROUNDED phrase is specified, rounding takes place
before checking for size error .

If the CORRESPONDING phrase is specified, and any of the
individual additions produces a size error condition, the
imperative-statement is not executed until all of the individual
additions are completed.

If the resultant-identifier has COMPUTATIONAL-3 usage. size error
is correctly detected only for data items declared with an odd
length picture clause. Therefore all COMP-3 data items should be
declared with an odd number of character positions .

PAGE 146

If the SIZE ERROR phrase
exists. the condition

undefined.

is
value

not
of

specified and a size error
the resultant-identifier is

If the SIZE ERROR phrase is specified and a size error condition
exists, the value of the resultant-identifier is not altered and
the imperative statement of the SIZE ERROR phrase is executed.

The CORRESPONDING Phrase

If the CORRESPONDING phrase is
identifier-! are ADDed to. and

used,
the

selected items
result stored

within
in. the

corresponding items in identifier-2.

Data items referenced by the CORRESPONDING phrase must adhere to
the following rules:

A data item in identifier-! and a data item in identifier-2
must not be designated by the key word FILLER and must not
have the same data-name and the same ~ualifiers up to, but not
including, identifiers-! and identifier-2.

Both of the data items must be elementary numeric data items.

The description of identifier-! and
contain level-number 66, 77, or 88 or
clause.

identifier-2 must not
the USAGE IS INDEX

A data item that is subordinate to identifier-! or
identifier-2 and contains a REDEFINES, RENAMES, OCCURS or
USAGE IS INDEX clause is ignored, as well as those data items
subordinate to the data item that contains the REDEFINES,
OCCURS, or USAGE IS INDEX clause . However. identifier-! and
identifier-2 may have REDEFINES or OCCURS clauses or be
subordinate to data items with REDEFINES or OCCURS clauses.

CORR is an abbreviation for CORRESPONDING.

PAGE 147

ADD Examples

ADD SALARY TO SALARY.
(doubles the value of SALARY>

ADD JOHNS-PAY, PAULS-PAY, ALBERTS-PAY
GIVING COMPANY-PAY.

ADD ACCELERATION TO VELOCITY ROUNDED
ON SIZE ERROR GO TO SOUND- BARRIER .

ADD CORRESPONDING ELEMENT (X)
TO ELEMENT <V> .

ADD CORR SUB-TOTAL-RECORD TO TOTAL - RECORD ROUNDED
ON SIZE ERROR GO TO ERR .

PAGE 148

The ALTER Statement

- ·--·-----·------

The ALTER statement modifies a prede-cermined sequence of
o~erations .

FORMAT

~LTER p~ncedure-name-1 TO [PROCEED TOJ procedure-name-2

[, procedure-name-3 TO CPROCECD TnJ procedure- name-4J ...

Each ~r.::>;:edure-name-1. procedul't:: · n~mP-3, .. . , is the n ame of a
paragraph that coHt~ins a single sentence ~- .:J:; sisting of a GO TO
statement •.!:ititout the DEPENDING phr==~~ -

Each procedure-name-? .- ~i'ocedure-name-4, ... , is
paragraph OT ~~ction in the Procedure Division.

the n ail'. I:' of a

Execution of the ALTER statament modifies the GO TO stdtement in
the paragraph n.::med procedure-name-!. prc.c.edure-name-3, .. . , so
th~t ~ubsequent executions of the modified GO TO statements rause
transfer of control to procedure-name-2. procedure-name-4 • .. . ,
respectively. Modified GO TO statements in independent se gments
may. under some circumstances. be returned to thei r- initial
states .

A GO TO statement in a section whose segment- number is greater
than or equal to 50 must not be referred to by an ALTER sta tement
in a section with a different segment-number .

PAGE 149

The CALL Statement

The CALL statement causes control to be transferred f r om one
obJect program to another, within the run unit .

FORMAT

CALL {identifier-!} [USING data-name-1 [, data-name- 2] . . . J
{literal - 1 } -----

The execution of a CALL statement causes control to pass to the
program whose name is specified by the value of literal-1 or
identifier-1. the 'called' program.

Literal-1 must be a nonnumeric literal .

Identifier-1 must be defined as an alphanumeric
that its value can be a program name.

data item such

The called program can be another COBOL program or an assembly
language program. Refer to the User's Guide for specific details .

Called programs may contain CALL statements. However, a called
program must not contain a CALL statement that directly or
indirectly calls the calling program.

The CALL statement may appear anywhere within a segmented program.
When a CALL statement appears in a section with a segment-number
greater than or equal to 50, the EXIT PROGRAM statement returns
con trol to the calling program.

The USING Phrase

The data-names specified by the USING phrase of the CALL statement
indicate those data items available to a calling program that may
be referred to in the called program. The order of appearance of
the data-names in the USING phrase of the CALL statement and the
USING phrase in the Procedure Division header is critical .
Corresponding data-names refer to a single set of data which is
available to the called and calling program. The correspondence is
positional, not by name . In the case of index- names, no such
correspondence is established . Index-names in the called and
calling program always refer to separate indices .

PAGE 150

The USING phrase is included in the CALL statement only if there
is a USING phrase in the Procedure Division header of the c a lled
program, and the number of operands in each USING phrase must be
identical.

Each of the operands in the USING phrase must have been defined as
a data item in the File Section, Working-Storage Section, or
Linkage Section, and must have a level-number of 01 or 77.
Data-name-1. data-name-2, . , may be q_ualif-ied when they
reference data items defined in the File Section.

CALL Examples:

CALL "SUBPRGl " .

CALL REORDER
USING TABLE, INDEX-1, RESULT.

PAGE 151

The CLOSE Statement (Sequential I-0)

The CLOSE statement terminates the processing of files .

FORMAT

CLOSE file-name-1 [{REEL} [WITH NO REWINDJJ

{UNIT>

[WITH {NO REWIND} J

{LOCK >

[, file-name-2 ({REEL} CWITH NO REWINDJ J J .. .

<UNIT}

[WITH {NO REWIND> J

{LOCK }

The function of a CLOSE statement <with no options> is to cause
the operatin g system to close t he file . For files opened for
OUTPUT, the operating system als o writes an EOF as it closes the
f i 1 e.

If a STOP RUN statement is execut ed pr ior to closing the file, the
opera ting system will close the f il e without an EOF .

A CLOSE statement may only be executed for a file in an open mode.

Once a CLOSE statement has been executed for a file, no other
statemen t can be executed that references that file, either
explici tly or implicitly, unless an intervening OPEN statement for
that file is executed .

The execution of a CLOSE statement causes the value of the FILE
STATUS data - item, if any , a ssoc iated with f ile-name-1
(file-name-2, . . . > to be updated.

PAGE 152

The REEL and UNIT Phrases

The CLOSE REEL and CLOSE UNIT statements are documentaT'Y only and
may be included or omitted at the user's discretion .

The NO REWIND Phrase

CLOSE WITH NO REWIND prevents page advancing on files assigned to
the printer. It has no effect on other file .

The LOCK Phrase

The function of the CLOSE WITH LOCK statement is to perform the
CLOSE function and set a flag to prevent the file from being
OPENed again during execution of this program.

CLOSE Examples

CLOSE TRANSACTION-FILE.

CLOSE DATA-BASE WITH LOCK.

CLOSE PRINT-FILE WITH NO REWIND.

PAGE 153

The CLOSE Statement <Relative and Indexed I/U)

The CLOSE statement terminates the processing of files.

FORMAT

CLOSE file-name-1 [WITH LOCKJ

[, file-name-2 [WITH LOCKJJ

The function of a CLOSE statement (with no options) is to cause
the operating system to close the file. For files opened for
OUTPUT, the operating system also writes an EOF prior to closing
the file.

If a STOP RUN statement is executed prior to closing the file, the
operating system will close the file without an EOF.

The files referenced in the CLOSE statement need not all have the
same organization or access .

A CLOSE statement may only be executed for a file in an open mode.

If a CLOSE statement has been executed for a file, no other
statement can be executed that references that file, either
explicitly or implicitly, unless an intervening OPEN statement for
that file is executed .

The execution of the CLOSE
specified FILE STATUS
file-name-1 (file-name-2,

The LOCK Phrase

statement causes the value of
data item, if any, associated

. ..) to be updated.

the
with

The function of the CLOSE WITH LOCK statement is to perform the
CLOSE function and set a flag to prevent the file from being
OPENed during the execution of the program.

CLOSE Examples :

CLOSE TRANSACTION-FILE.

CLOSE DATA-BASE WITH LOCK.

PAGE 154

The COMPUTE Statement

The COMPUTE statement assigns the value o~

expression to a data item.
an arithmetic

FORMAT

COMPUTE identi~ier-1 CROUNDEDJ = arithmetic-expression

[; ON SIZE ERROR imperative-statement]

Identifier-! must refer to either an elementary numeric item or an
elementary numeric edited item.

An arithmetic expression consisting o~ a single identifier or
literal provides a method of setting the value of identifier-!
equal to the value of the single identifier or literal .

The COMPUTE statement
operations without the
receiving data items
SUBTRACT, MULTIPLY and

allows the user to combine arithmetic
restrictions on composite operands and/or

imposed by the arithmetic statements ADD,
DIVIDE.

Note : Exponentiation is not supported .

The ROUNDED Phrase

The COMPUTE statement may optionally include the ROUNDED phrase .
If, after decimal point alignment, the number of places in the
fraction of the result of an arithmetic operation is greater than
the number of places provided for the fraction of the
identifier-1, truncation is relative to the size provided for the
identifier-! . When rounding is requested, the absolute value of
the resultant-identi~ier is increased by one <1> whenever the most
significant digit of the excess is greater than or equal to five
(5) .

When the low-order integer positions in an identifier-1 are
represented by the character 'P' in the picture for that
identifier, rounding or truncation occurs relative to the
rightmost integer position for which storage is allocated.

PAGE 155

The SIZE ERROR Phrase

If, after appropriate decimal point alignment, the absolute v alue
of the result exceeds the largest value that can be contained in
identifier-!, a size error condition exists . If the ROUNDED phrase
is specified, rounding takes place before checking for size error.

If identifier-! has COMPUTATIONAL-3 usage , size error is detected
only for data items declared with an odd length p i cture clause .
Therefore all COMP-3 data items should be declared with an odd
number of character positions .

Division by zero always causes a size error condition .

If the SIZE ERROR phrase is not specified and a size error
condition exists, the value of the identifier-! is undefined .

If the SIZE ERROR phrase is specified and a size error condition
exists, the value identifier - ! is not altered and the
imperative-statement in the SIZE ERROR phrase is executed .

COMPUTE Examples

COMPUTE SALARY ROUNDED = WAGES * HOURS .

COMPUTE SECONDS= <<<HRS * 60> + MIN) * 60) +SEC .

COMPUTE AVERAGE = TOTAL I KOUNT
ON SIZE ERROR MOVE 0 TO AVERAGE .

COMPUTE PAY <DATE> ROUNDED

= RATE * 8 .

PAGE 156

The DELETE Statement <Relative and Indexed I-0)

- -- -·-----------· ---·----------------

The DELETE statement
storage file .

FORMAT

logically removes a record from a mass

DELETE file-name RECORD [;INVALID KEY imperative-statement)

After the successful execution of a DELETE statement. the
identified record has been logically removed from the file and can
no longer be accessed.

The execution of a DELETE statement does not affect the contents
of the record area associated with file-name .

The associated file must be opened in the I-0 mode at the time of
execution of this statement .

For files in the sequential access mode. the last input-output
statement executed for file-name prior to the execution of the
DELETE statement must have been a successfully executed READ
statement. The system logically removes from the file the record
that was accessed by that READ statement .

For a file in random or dynamic access mode, the system logically
removes from the file that record identified by the contents of
the key data item associated with file-name. If the file does not
contain the record specified by the key, an INVALID KEY condition
exists.

The execution of the DELETE statement causes the value of the
specified FILE STATUS data item. if any. associated with file-name
to be updated.

The INVALID KEY Phrase

The INVALID KEY phrase must not be specified for a DELETE
statement which references a file which is in sequential access
mode.

The INVALID KEY phrase must be specified for a DELETE statement
which references a file which is not in sequential access mode and
for which an applicable USE procedure is not specified .

The current record pointer is not affected by the execution of a
DELETE statement.

PAGE 157

The DISPLAY Statement

The DISPLAY statement causes low volume data to be displayed on
the specified CRT terminal . DISPLAY statement phrases allow the
specification of position, form and format of the displayed data .

FORMAT

DISPLAY {{identifier-1> (,UNIT {identifier-2}]

{literal-1 } {literal-2 }

(,LINE {identifier-3}] (,POSITION {identifier-4}]

{literal-3 } {literal-4 }

(,SIZE {identifier-5>J [,BEEPJ (,ERASEJ}

{literal-5 }

(,<HIGH}] (,BLINKJ [,REVERSE J >

<LOW }

The DISPLAY statement causes the contents of each operand
(identifier-1 or literal-1> to be transferred to the CRT device in
the order listed . The sen ding data item must have DISPLAY usage .

When a DISPLAY statement contains more
values of the ope r ands a r e transfer r ed
the operands are encountered .

than one operand , the
in the sequence in which

Note : Features which require support of the
system and/or terminal hardware may not
all systems . Any features which are not
compile correctly , but will be ignored
the User's Guide for specific details .

The UNIT Phrase

host operating
be supported on
supported will
at runtime . See

The UNIT phrase, if specified, must be written f i rst .
phrases may be written in any order.

The other

The value of identifier - 2 or literal-2 in the UNIT ph r ase
specifies the station identifier of the CRT upon which the data is
to be displayed. If the UNIT phrase is omitted, the CRT which
executed the program will be accessed .

PAGE 158

The LINE Phrase

The value of identifier-3 or literal-3 in the LINE phrase
specifies the line number upon which the data is to be displayed
on the screen of the CRT terminaL with one being the top line . I-f
the value is greater than the number of lines on the CRT screen,
it is adjusted to the maximum line number. If the value is zero or
the LINE phrase is not present in a DISPLAY statement, then data
is to be displayed on the next line below the current position of
the cursor on the CRT screen unless the value specified in the
POSITION phrase is also zero, in which case the data is to be
displayed on the line at the current position of the cursor on the
CRT screen. If incrementing to the next line generates a line
number greater than the maximum number of lines on the CRT screen,
the new line is displayed at the bottom.

The POSITION Phrase

The value of identifier-4 or literal-4 in the POSITION phrase
specifies the number of the character to which the cursor is to be
positioned within the specified line prior to the displaying of
data on the screen of the CRT terminal, with 1 being the leftmost
character position within a line. If the value is greater than the
maximum number of characters within a line on the CRT screen, it
is adjusted to the maximum character number.

If the POSITION phrase is not specified, a value o-f one is assumed
for the first displayed operand and zero for each additional
operand displayed in he same statement. If a value of zero is
speci-fied, the data is to be displayed starting at the next field
on the CRT screen (starting character position plus size of the
last ACCEPT or DISPLAY> .

The SIZE Phrase

The value of identifier-S or literal-5 in the SIZE phrase
specifies the number of characters to be displayed on the screen
of the CRT terminal, overriding the Data Division definition o-f
the field. If the SIZE phrase is not present or a value of zero is
specified, the size of identifier-! or literal-1 is used . If
literal-1 is a figurative constant, the literal has a size of one .
A size greater than 80 is treated as equal to 80.

PAGE 159

If the size of the display field is less than the size of the
sending data item, only the leftmost characters are displayed . If
the specified size is greater than the size of the sending date
item, the results are unpredictable . If the sending item is a
figurative constant, the constant fills the display field . No
conversions are made in the transfer to the display field .

The BEEP Phrase

The presence of the key word BEEP within a DISPLAY statemen t
causes a beep signal to occur on cursor positioning prior to the
display of the data . If the BEEP key word is omitted, no signal is
given on cursor positioning .

The ERASE Phrase

The presence of the key word ERASE within a DISPLAY statement
causes the screen of the CRT terminal to be erased before the
content of identifier-1 or literal-1 is displayed on the screen .
When the ERASE phrase is not specified, then the screen is not
erased prior to the display of the data .

The HIGH/LOW Phrase

The presence of HIGH or LOW cause s the data to be displayed at the
specified intensity . When HIGH or LOW is not specified, the
default display is HIGH .

The BLINK Phrase

The presence of thekey word BLINK causes the displayed data to be
BLINKed . the normal mode is no blink .

The REVERSE Phrase

The REVERSE key word causes the data to be displayed in REVERSE
video. The normal mode is no reverse .

PAGE 160

DISPLAY Examples

DISPLAY "FLIGHT ARRIVING AT GATE" , LINE FLT-LN,
POSITION 1, ERASE; GATE-NUMBER, HIGH, BLINK.

DISPLAY "ENTER JOB CODE : ".

DISPLAY CRT-HEADER LINE 1 ERASE.

DISPLAY ZEROES SIZE 5 .

DISPLAY QUOTE.

PAGE 161

The DIVIDE Statement

The DIVIDE statement divides one numeric data item into another
and stores the quotient .

FORMAT 1

DIVIDE {identifier-1} INTO identifier-2 [ROUNDEDJ

{literal-1 }

[;ON SIZE ERROR imperative-statement]

FORMAT 2

DIVIDE {identifier-!} INTO {identifier-2}

<literal-1 } {literal-2 }

GIVING identifier-3 [ROUNDEDJ

[;ON SIZE ERROR imperative- statement]

FORMAT 3

DIVIDE {identifier-!} BY {identifier-2}

{literal-1 } {literal-2 }

GIVING identifier-3 [ROUNDED]

[;ON SIZE ERROR imperative-statement]

In Format 1, the value of identifier-! or literal-1 is divided
into the value of identifier-2. The value of the dividend
(identifier-2) is replaced by this quotient.

In Format 2, the value of identifier- 1
into the value of identifier-2 or
stored in identifier-3.

PAGE 162

or literal-1 is divided
literal - 2 and the result is

In Format 3, the value of identifier - ! or liter a l-1 is divided by
the value of identifier - 2 or literal-2 and t h e result is stored in
identifier-3.

Each identifier must refer to an eleme n ta ry numeric item, except
that any identifier associated with the GIVING phrase must refer
to either an elementary numeric i tem o r an elementary numeric
edited item.

Each literal must be a numeric literal.

The ROUNDED Phrase

The DIVIDE statement may optionally include th e ROUNDED phrase .

If, after decimal point alignment, the number o f pl a ces in the
fraction of the result of an arithmetic operation is greater than
the number of places provided for the fra c t ion of the
resultant-identifier, truncation is relative t o the size provided
for the resultant-identifier . When roundi n g is requested, the
absolute value of the resultant-identif i e r is increased by one
<1> whenever the most significant digit of th e e xcess is greater
than or equal to five (5) .

When the low-order integer positions in a resultant identifier are
represented by the character 'P' in the p i c ture for that
resultant-identifier, rounding or truncation occu r s relative to
the rightmost integer position for which storag e i s allocated .

The SIZE ERROR Phrase

If, after appropriate decimal point alignme nt, t he absolute value
of the result exceeds the largest value that c a n b e contained in
the associated resultant-identifier, a s i ze error condition
exists . If the ROUNDED phrase is specified , ro u nd ing takes place
before checking for size error .

If the resultant-identifier has COMPUTATIONAL-3 u sage, size error
is detected only for data items declared wi t h an odd length
picture clause . Therefore all COMP-3 data items s h o uld be declared
with an odd number of character positions .

Division by zero always causes a size error c o nd i t ion.

If the SIZE ERROR
condition exists,
undefined .

phrase is not specified and a size error
the value of the resultant- i d ent i fier i s

PAGE 163

If the SIZE ERROR phrase is specified and a size error condition
exists, the value of the resultant-identifier is not altered and
the imperative statement in the SIZE ERROR phrase is executed .

DIVIDE Examples

DIVIDE 10 INTO TOTAL-WORK-LOAD
GIVING MORRISS-WORK-LOAD

DIVIDE TOTAL- WORK- LOAD BY 2 . 5
GIVING ALFREDS-WORK-LOAD ROUNDED
ON SIZE ERROR GO TO ALFRED-QUIT.

DIVIDE 2 . 5 INTO TOTAL.

PAGE 164

The EXIT Statement

The EXIT statement provides a common end po i nt f or a series o~
procedures or the logical end of a c alled prog r am.

FORMAT

EXIT [PROGRAMJ.

The EXIT statement must ap p ear in a sen t ence b y it s elf .

The EXIT sentence must be the only sentence in the paragraph .

An EXIT statement without the word PROGRAM ser ves o n ly to wnable
the user to assign a procedure - name to a given poi nt in a program.
Such an EXIT statement has no other effect on t h e c ompilation or
execution of the program.

An execution of an EXIT PROGRAM s tatement in a CALLED program
causes control to be passed to the calling pro gram. Execution of
an EXIT PROGRAM statement in a program which is not cal led behaves
as if the statement were an EXIT statement withou t the word
PROGRAM.

PAGE 165

The GO TO Statement

The GO TO statemen t causes control to b e transferred from one part
of the Procedure Division to another .

FORMAT 1

GO TO procedure-name-1 .

FORMAT 2

GO TO procedure-name-! [,procedure-name-2] . . . ,

procedure-name-n DEPENDING ON identifier-!.

If a Format 1 GO TO statement appears in a consecutive sequence of
imperative statements within a sentence, it must appear as the
last statement in that sequence.

When a Format 1 GO TO statement is executed, control is
transferr ed to procedure-name-1 or to another procedure-name if
the GO TO statement has been modified by an ALTER statement .

When a paragraph is referenced by an ALTER statement, that
paragraph can consist only of a paragraph header followed by a
Format-1 GO TO statement .

The DEPENDING ON Phrase

When a Format 2 GO TO statement is executed, control is
transferred to procedure-name-!. procedure ···name-2, etc . , depending
on the value of the identifier-! being 1. 2, ... , n . If the value
of the identifier-1 is anything other than the positive or
unsigned integers L 2, ... , n, then no transfer occurs and
contro l passes to the next statement in the normal sequence for
execution.

Identif ier-! is the name of a numeric integer elementary item.

PAGE 166

The IF Statement

The IF statement causes a specified condition to be evaluated . The
subsequent action of the obJect program depends on whether the
value of the condition is true or false .

FORMAT

IF condition; {statement-1 } {;ELSE statement-2 }

{NEXT SENTENCE} {;ELSE NEXT SENTENCE}

Statement·-1 and statement-2 represent either an imperative
statement or a conditional statement, and either may be followed
by a conditional statement .

When an IF statement
control occur:

is executed, the following transfers of

If the condition is true. statement-! is executed if
specified. If statement-1 contains a procedure branching or
conditional statement. control is explicitly transferred in
accordance with the rules of that statement . If statement-1
does not contain a procedure branching or conditional
statement, the ELSE phrase, if specified, is ignored and
control passes to the next executable sentence .

If the condition is true and the NEXT SENTENCE phrase is
specified instead of statement-!, the ELSE phrase, if
specified, is ignored and control passes to the next
executable sentence .

PAGE 167

If the condition is false, statement-! or its surrogate NEXT
SENTENCE is ignored, and statement-2, if specified, is
executed. If statement-2 contains a procedure branching or
conditional statement, contro l is explicitly transferred in
accordance with the rules of that statement. If statement-2
does not contain a procedure branching or conditional
statement, control passes to the next executable sentence . If
the ELSE statement-2 phrase is not specified, statement-! is
ignored and control passes to the next executable sentence.

If the condit ion is false, and the ELSE NEXT SENTENCE phrase
is specified, statement-1 is ignored, if specified , and
control passes to the next executable sentence .

S tatement-! and/or statement-2 may contain an IF statement. In
t his case the IF statement is said to be nested.

IF statements within IF statements may be considered as paired IF
and ELSE combinations, proceeding from left to right . Thus, any
ELSE encountered is considered to apply to the immediately
p receding IF that has not been already paired with an ELSE .

The ELSE NEXT SENTENCE phrase may be omitted
precedes the terminal period of the sentence.

IF Examples

IF CHAR-STR IS ALPHABETIC,
MOVE CHAR-STR TO ALPHA-STR;

ELSE IF CHAR-STR IS NUMERI C,
MOVE CHAR-STR TO NUM;
DISPLAY NUM;

ELSE NEXT SENTENCE .

IF NUM = OLD-NUM GO TO RE·-SET.

IF ALPHA-STR NOT = "TEST"
ADD 1 TO ERROR·-CNT .

IF NUM < LIMIT, ADD 1 TO NUM.

IF NUM IS LESS TI·-IAN LIMIT
ADD 1 TO NUM.

IF PRINT-SWITCH PERFORM PRINT-ROUTINE.

PAGE 168

if it immediately

The INSPECT Statement

The INSPECT statement provides the ability to tally <Format 1),
replace <Format 2>, or tally and replace <Format 3) occurrences of
single characters or groups of characters in a data item.

FORMAT 1

INSPECT identifier-1

TALLYING identirier-2 FOR {{ALL } {identifier-3}}
-------- {literal-1 }

{{LEADING} }

{ CHARACTERS }

({BEFORE} INITIAL {identifier-4J}J
------ {literal-2 }

{AFTER }

FORMAT 2

INSPECT identifier-1

REPLACING {{ALL } {identifier-S}} BY {identifier-6}
--------- {literal-3 } {literal - 4 }

<<LEADING} }

{{FIRST } }

{ CHARACTERS }

({BEFORE} INITIAL {identifier-?}]
------ {literal-S }

<AFTER }

PAGE 169

FORMAT 3

INSPECT identifi er-!

TALLYING identifier-2 FOR {{ALL } {identifier-3}}
{literal-1 }

{{LEADING} }

{ CHARACTERS }

[{BEFORE} INITIAL {identifier-4}J
------ {literal-2 }

<AFTER }

REPLACING {{ALL } {identifier-5}} BY {identifier-6}
--------- {literal-3 } <literal-4 }

<<LEADING} }

<<FIRST } }

{ CHARACTERS }

[{BEFORE} INITIAL {identifier-?}]
------ {literal-5 }

{AFTER }

Identifier-! must reference either a group item or
elementary item, described (either implicitly or
usage is DISPLAY.

any category of
explicitly) as

Identifier-3
alphabetic,
implicitly
character.

identifier-n must reference either an elementary
alphanumeric or numeric item described (either

or explicitly) as usage is DISPLAY and a size of one

Each literal may be either a figurative constant (which is treated
as a one-character data item) or a nonnumeric literal one
character in length.

The general rules that apply to the INSPECT statement are:

1 . Inspection <which includes the comparison cycle, the
establishment of boundaries for the BEFORE or AFTER phrase,
and the mechanism for tallying and/or replacing> begins at the
leftmost character position of the data item referenced by
identifier-1. regar dless of its class, and proceeds from left
to right to the rightmost character position as described in
general rules 4 through 6.

PAGE 170

,.,
"- · For use in the INSPECT statement, the contents of the data

item referenced by identifier - 1, identifier-3, identifier-4,
identifier-5 , identifier-6 or i dentifier-? will be treated as
follows :

a . If any of identifier-!, identifier-3, identifier-4,
identifier - 5, identifier - 6, or identifier-? are described
as alphanumeric, the INSPECT statement treats the contents
of each such identifier as a character-string .

b. If any of identifier-!. identifier-3, id ent if i er-4,
identifier - 5, identifier-6, or identifier-? are described
as alphanumeric edited, numeric edited or unsigned numeric,
the data item is inspected as though it had been redefined
as alphanumeric <see general rule 2a> and the INSPECT
statement had been written to reference the redefined data
item.

c. If any of the identifier-L identifier-3, identi ·f!ier - 4,
identifier-5, identifier-6, or identifier-? are described
as signed numeric, the data item is inspected as though it
had been moved to an unsigned numeric data item of the same
length and then the rules in general rule 2b had been
applied . (See the MOVE statement .)

3. In general rules 4 through 10 all references to literal-1,
literal-2, literal-3, literal-4, and literal-5 apply equally
to the contents of the data item referenced by identifier-3,
identifier-4, identifier-5, identifier-6, and identifier-?,
respectively.

4 . During inspection of the contents of the data item referenced
by identifier-! , each properly matched occurrence of literal-1
is tallied (Formats 1 and 3) and/or each properly matched
occurrence of literal-3 is replaced by literal-4 <Formats 2
and 3 >.

5. The comparison operation to determine the occurrences of
literal-1 to be tallied and/or occurrences of literal-3 to be
replaced , occurs as f-ollows :

a . The character specified by l iteral-!. literal - 3 is compared
to successive characters, starting with the leftmost
character position in the data item referenced by
identifier-1. Literal-L literal - 3 and that portion of the
contents of the data item referenced by identif-ier-1 match
if, and only if, they are equa l.

PAGE 171

b. If no match occurs in the comparison of literal-1,
literal-3, the comparison is repeated starting with the
next character position of identifier-!.

c . Whenever a match occurs, tallying and/or replacing takes
place as described in general rules 8 through 10 . The
character position in the data item referenced by
identifier-! immediately to the right of the character
position that caused the match is now considered to be the
leftmost character position of the data item referenced by
identifier-1, and the comparison cycle starts again with
literal-!. literal-3.

d . The comparison operation continues unt il t he r i ghtmost
character position of the da t a item re fe r enced by
identifier-1 has participated in a match or has been
considered as the leftmost character position . When this
occurs, inspection is terminated.

e. If the CHARACTERS phrase is specified, an implied
one-character operand participates in the cycle described
in paragraphs 5a through 5d above. except that no
comparison to the contents of the data item referenced by
identifier-1 takes place . This implied character is
considered always to match the leftmost character of the
contents of the data item referenced by identifier-1
participating in the current comparison cycle .

6. The comparison operation defined in general rule 5 is affected
by the BEFORE and AFTER phrases as follows :

a. If the BEFORE and AFTER phrase is not specified, literal-!.
literal-3 or the implied operand of the CHARACTERS phrase
participates in the comparison operation as described in
general rule 5.

PAGE 172

b. If the BEFORE phrase is specified, the associated
literal-!. literal-3 or the implied operand of the
CHARACTERS phrase participates only in those comparison
cycles which involve that portion of the contents of the
data item referenced by identifier-1 from its leftmost
character position up to, but not including the first
occurrence of literal-2, literal-S within the contents of
the data item referenced by identifier-! . The position of
this first occurrence is determined before the first cycle
of the comparison operation described in general rule S is
begun. If, on any comparison cycle, literal-1, literal-3 or
the implied operand of the CHARACTERS phrase is not
eligible to participate, it is considered not to match the
contents of the data item referenced by identifier-1 . If
there is no occurrence of literal-2, literal-S within the
contents of the data item referenced by identifier-1, its
associated literal-1, literal-3, or the implied operand of
the CHARACTERS phrase participates in the comparison
operation as though the BEFORE phrase had not been
specified.

c . If the AFTER phrase is specified, the associated literal-!.
literal-3 or the implied operand of the CHARACTERS phrase
may participate only in those comparison cycles which
involve that portion of the contents of the data item
referenced by identifier-1 from the character position
immediately to the right of the rightmost character
position of the first occurrence of literal-2, literal-S,
within the conten ts of the data item referenced by
identifier-1 and the rightmost character position of the
data item referenced b~ identifier-1. The position of this
first occurrence is determined before the first cycle of
the comparison operation described in general rule S is
begun. If, on any comparison cycle, literal-!. literal-3,
or the implied operand of the CHARACTERS phrase is not
eligible to par t icipate, it is considered not to match the
contents of the data item referenced by identifier-1. If
there is no occurrence of literal-2, literal-S within the
contents of th e data item referenced by identifier-1, its
associated l ite r al-1, literal-3, or the implied operand of
the CHARACTERS phrase is n e ver eligible to participate in
the comparison operation .

Format 1

7 . The contents of the data item referenced by identifier-2 is
not initialized by the execution of the INSPECT statement.

PAGE 173

8. The rules for tallying are as follows:

a . If the ALL phrase is specified, t h e contents of the data
item referenced by identifier-2 is incremented by one (1)
for each occurrence of literal--! matched within the
contents of the data item referenced by identifier·-!.

b . If the LEADING phrase is spec i f i e d, the contents of t he
data item referenced by identifier-2 is incremented by one
(1) for each contiguous occurrence of literal-1 matched
within the contents of the data item referenced by
identifier-!, provided that the leftmost such occurrence is
at the point where comparison began in the first comparison
cycle in which literal-! was eligible to participate.

c . If the CHARACTERS phrase is specified, the contents of the
data item referenced by identifier-2 is incremented by one
(1) for each character matched, in the sense of general
rule 5e, within the contents of the data item referenced by
identifier-1.

Format 2

9 . The rules for replacement are as follows:

a . When the CHARACTERS phrase is specified ,
matched, in the sense of general rule 5e,
of the data item referenced by identifier-!
literal-4.

each character
in the contents
is replaced by

b . When ALL is specified, each occurrence of literal-3 matched
in the contents of the data item referenced by identifier-!
is replaced by literal-4.

c . When LEADING is specified, each contiguous occurrence of
literal-3 matched in the contents of the data item
referenced by identifier-! is replaced by literal-4,
provided that the leftmost occurrence is at the point where
comparison began in the first comparison cycle in which
literal-3 was eligible to participate.

d. When FIRST is specified, the leftmost occurrence of
literal - 3 matched within the contents of the data item
referenced by identifier-1 is replaced by literal-4.

PAGE 174

Format 3

10. A Format 3 INSPECT statement is interpreted and executed as
though two successive INSPECT statements specifying the same
identifier-! had been written with one statement being a
Format 1 statement with TALLYING phrases identical to those
specified in the Format 3 statement, and the other statement
being a Format 2 statement with REPLACING phrases identical to
those specified in the Format 3 statement . The general rules
given for matching and counting apply to the Format 1
statement and the general rules given f-or matching and
replacing apply to the Format 2 statement.

PAGE 175

INSPECT Examples:

INSPECT word TALLYING count FOR LEADING "L" BEFORE INITIAL "A",

Where word=LARGE, count=l.
Where word=ANALYST, count=O.

INSPECT word TALLYING count FOR LEADING "A" BEFORE INITIAL. "L" .

Where word=LARGE, count=O.
Where word=ANALYST , count=l .

INSPECT word TALLYING count FOR ALL "L", REPLACING LEADING "A" BY
"E" AFTER INITIAL "L".

Where word=CALLAR, count=2, word=CALLER .
Where word=SALAMI, count= 1, word =SALEMI.
Where word=LATTER, count=!, word=LETTER.

INSPECT word REPLACING ALL "A" BY "G" BEFORE INITIAL "X".

Where word=ARXAX, word=GRXAX .
Where word=HANDAX, word=HGNDGX .

INSPECT word TALLYING count FOR CHARACTERS AFTER INITIAL "J"
REPLACING ALL "A" BY "B" .

Where word=ADJECTIVE, count=6, word=BDJECTIVE.
Where word=JACI<'., count=3, word= \.JI3CK .
Where word=JUJMAB, count=5, word=JUJMBB .

INSPECT word REPLACING ALL "W" BY "G" AFTER
INITIAL "R" .

Where word=RXXBGWY, word=RXXBGGY.
Where word=YZACDWBR, word=YZACDWBR .
Where word=RAWRXEB, word=RAGRXEB.

INSPECT word REPLACING CHARACTERS BY "B" BEFORE INITIAL "A" .

word berore :
word after:

12 XZABCD
BBBBBABCD

PAGE 176

•

The MOVE Statement

The MOVE statement transfers data, in accordance with the rules of
editing, to one or more data areas .

FORMAT 1

MOVE {identifier-1} TO identifier-2 Sidentifier-3] .. .

{literal }

FORMAT 2

MOVE <CORRESPONDING} identifier-! TO identifier-2

<CORR

Identifier-!
identifier-2,

}

and literal-1 represent the sending area;
identifier-3, represent the receiving area(s).

An index
statement.

data item cannot appear as an operand of a MOVE

The data designated by literal-1 or identifier-1 is moved first to
identifier-2, then to identifier-3, The rules referring to
identifier-2 also apply to the other receiving areas. Any
subscripting or indexing associated with identifier-2, ... , is
evaluated immediately befor· e the data is moved to the respective
data item.

Any subscripting or indexing associated with identifier-1 is
evaluated only once, immediately before data is moved to the first
of the receiving operands. The result of the statement

MOVE a < b > TO b , c < b)

is equivalent to:

MOVE a (b) TO temp
MOVE temp TO b
MOVE temp TO c (b) .

PAGE 177

Any MOVE in which the sending and receiving items are both
elementary items is an elementary move. Every elementary item
belongs to one of the following categories: numeric , alphabetic,
alphanumeric, numeric edited, alphanumeric edited . Thes e
categories are described in the PICTURE clause. Numeric literals
belong to the category numeric, and nonnumeric literals belong to
the category alphanumeric . The figurative constant ZERO belongs to
the category numeric. The figurative constant SPACE belongs to the
category alphabetic . All other figurative constants belong to the
category alphanumeric .

The following
categories :

rules apply to an elementary move between these

1. The figurative constant SPACE, a numeric edited,
alphanumeric edited , or alphabetic data item must not be
moved to a numeric or numeric edited data item.

2. A numeric literaL the figurative constant ZERO, a numeric
data item or a numeric edited data item must not be moved
to an alphabetic data item.

3 . A non integer numeric literal or a non integer numeric data
item must not be moved to an alphanumeric or alphanumeric
edited data item.

4. All other elementary moves are legal and are performed
according to the rules given below.

Any necessary conversion of data from
representation to another takes place
moves, along with any editing specified
item :

one form of internal
during legal elementary

for the receiving data

1. When an alphanumeric edited or alphanumeric item is a
receiving item, alignment and any necessary space-filling
takes place as defined under Standard Alignment Rules . If
the size of the sending item is greater than the size of
the receiving item, the excess characters are truncated on
the right after the receiving item is filled. If the
sending item is described as being signed numeric, the
operational sign will not be moved; if the operational sign
occupies a separate character position <see the SIGN
clause), that character will not be moved and the size of
the sending item will be considered to be one less than its
actual size <in terms of standard data format characters) .

PAGE 178

2. When a numeric or n u mer ic edited item is the receiving
item, alignment by d ecimal point and any necessary
zero-filling take s place as defined under the Standard
Alignment Rules ex cept where zeroes are replaced because or
editing requ i reme nts.

When a signed i t e m is the receiving item, the sign of the
sending item is pl ac ed in the receiving item. <See the SIGN
clause) . Conversion o f t he r e presentation of the sign takes
place as necessary . If the sending item is unsigned, a
positive sign is g ene rat ed for the receiving item.

When an u nsign ed numer ic item is the receiving item, the
absolute value of th e sending item is moved and no
operational sign i s ge n er ated for the receiving item.

When a data item described as alphanumeric is the sending
item, data is moved as if th e sending item were described
as an unsigned numeric int eger.

3 . When a receiv in g fi eld is described as alphabetic,
JUstification and any nec essary space-filling takes place
as defined under the Stand ard Alignment Rules. If the size
of the sending item i s greater than the size of the
receiving item, the ex ces s characters are truncated on the
right after the rece i ving i t em is filled.

Any move that is not an elementary move is treated exactly as if
it were an alphanumeric to alp hanumeric elementary move, except
that there is no conversion of data from one form of internal
representation to another . In su c h a move, the receiving area will
be filled without consideration for the individual elementary or
group items contained within either the sending or receiving area,
e~cept as noted in the OCC URS c l ause.

When a sending and receiving
areas, the result of the
undefined .

i t em share a part of
e x e cution of- such

PAGE 179

their storage
a statement is

The CORRESPONDING Phrase

When the CORRESPONDING phrase is specified, data items in
identifier-! are moved to corresponding data items in identifier-2
according to the following rules:

A data item in identifier-1 and a data item in identifier-2
are not designated by the key word FILLER and have the same
qualifiers up to, but not including, identifier-! and
identifier-2.

At least one of the data items is an elementary data item.

The description of identifier-!
contain level-number 66, 77,
clause.

and identifier-2 must not
or 88 or the USAGE IS INDEX

A data item that is subordinate to identifier-! or
identifier-2 and contains a REDEFINES, RENAMES, OCCURS or
USAGE IS INDEX clause is ignored, as well as those data items
subordinate to the data item that contains the REDEFINES,
OCCURS, or USAGE IS INDEX clause. However, identifier-! and
identifier-2 may have REDEFINES or OCCURS clauses or be
subordinate to data items with REDEFINES or OCCURS clauses .

PAGE 180

Data in the following chart summarizes the legal i ty of- the various
types of MOVE statements.

CATEGORY OF RECEIVING DATA ITEM
:---:

CATEGORY OF
SENDING

DATA ITEM

lALPHANUMERIClNUMERIC INTEGER
EDITED :NUMERIC NON-INTEGER:

lALPHABETIClALPHANUMERIClNUMERIC EDITED
•----------------------•----------•------------ •-------------------· ,----------------------·----------.------------·-------------------·
: .~LPHABETIC YES YES NO
:----------------------:---------- :------------ :-------------------:
:ALPHANUMERIC YES YES YES
:----------------------:----------:------------ -------------------:
lALPHANUMERIC EDITED YES YES 1\10
:----------------------:----------: ------------ -------------------:

:INTEGER NO YES YES
:NUMERIC : -------------: - ---- --- --:------------ ---- - ---- ----------:

lNON-INTEGER NO NO YES
:- ---------------------:-- --------: ------------ -------------------:
: NUt1ER I C EDITED NO YES

MOVE Examples

MOVE INCOME TO TOTAL-INCOME.

MOVE 1 TO PAGE-COUNT, LINE-NUM

MOVE "MARMACK INDUSTRI ES" TO TITLE-HEADER .

MOVE PERSON IN FILE- RECORD TO
PERSON OF ALABAMA CI-A OF ALABAMA>,
PERSON OF CROSS-CENSUS.

MOVE NUM TO NUM-EO

MOVE TABLE-ELT (N, 1, M) TO NEXT- ENTRY
PREVIOUS-ENTRY

MOVE -36. 7 TO DEFICIT.

MOVE QUOTES TO SECTION-DIVIDER .

MOVE ZERO TO COUN-TER

MOVE ZEROES TO COUN-TER .

PAGE 181

NO

The MULTIPLY Statement

The MULTIPLY statement causes numeric data items to be mult ipli ed
and stores the result.

FORMAT 1

MULTIPLY {identifier-!}

{lit e ral-1 }

BY identifier-2 [ROUNDED]

[;ON SIZE ERROR imperative-statement]

FORMAT 2

MULTIPLY {identifier-!} BY {identifier-2}

{literal-1 } { 1 i t er a 1 ··-2 }

GIVING identifier-3 [ROUNDEDJ

[;ON SIZE ERR OR imperative-statement]

In Format 1, the value of identifier-! or literal-! is multiplied
by the value of identifier-2. The value of the multiplier
(identifi er-2) is replaced by this product.

In Format 2, the valu e of identifier-! or literal-1 is
by identifier- 2 or literal-2 and the result is
identifier-3.

multiplie d
stored in

Each identifier must refer to a numeric elementary item, except
that in Format 2 the identifier following the word GIVING GIVING
must refer to either an elementary numeric item or an elementary
numeri c edited item.

Eac h literal must be a numeric literal .

PAGE 182
•

The ROUNDED Phrase

The MULTIPLY statement may optionally include the ROUNDED phrase.

If, after decimal point alignment. the number of places in the
fraction of the result of an arithmetic operation is greater than
the nu~ber of places provided for the fraction of the
resultant-identifier. truncation is relative to the size provided
for the resultant - identifier. When rounding is requested. the
absolute value of the resultant-identifier is increased by one
(1) whenever the most significant digit of the excess is greater
than or equal to five (5).

When the low-order integer positions in a resultant-identifier are
represented by the character 'P' in the picture for that
resultant-identifier. rounding or truncation occurs relative to
the rightmost integer position for which storage is allocated .

The SIZE ERROR Phrase

If, after appropriate decimal point alignment, the absolute value
of the result exceeds the largest value that can be contained in
the associated resultant-identifier. a size error condition
ex i s t s . I f the ROUNDED phrase i s spec if i e d , round in g takes p 1 ace
before checking for size error.

If the resultant-identifier has COMPUTATIONAL-3 usage. size error
is detected only for data items declared with an odd length
picture clause. The r efore all COMP-3 data items should be declared
with an odd number of character positions.

If the SIZE ERROR phrase
exists, the condition

undefined.

is not
value of

specif-ied and a size error
the resultant - identifier is

If the SIZE ERROR phrase is specified and a size error condition
exists, the value of the resultant-identifier is not altered and
the imperative statement is the SIZE ERROR phrase is executed .

MULTIPLY Examples

MULTIPLY 10 BY INCOME.

MULTIPLY PRINCIPAL BY INTEREST-RATE
GIVING INTEREST ROUNDED .

MULTIPLY INFLATION-RATE BY EXPENSES
ON SIZE ERROR MOVE 0 TO ECONOMY- RATING.

PAGE 183

The OPEN Statement (Sequential I-0)

·-·-·-------·------------

The OPEN statement initiates the processing of sequential files.

FORMAT

OPEN {{INPUT {fil e ·-name--1 [WITH NO REWINDJ } ... } ...

{OUTP UT {file·-name-2 [WITH NO REWINDJ } ... } ...

{1-0 {file-name-3 }. } ...

{EXTEND {file-name-4 }. } . . } .

The successful execution of an OPEN statement determines the
availability of the file and results in the file being in an open
mode.

The succe s sful execution of an OPEN statement makes the a ssociat ed
record area available to the program.

The files referenced in the OPEN statement need not all
same organization or access.

have the

Prior to the su ccessful execution of an OPEN statement for a given
file, no statement can be executed that r e ferences that file,
either explici tly or implicitly.

An OPEN statement must be successfully executed prior to the
ex ecution of any of the permissible input-output statements. In
t he Permissible Statements Table below, 'X' at an intersection
in di c ates that the specified statemen t , used in the sequential
ac cess mode, may be used with the se quential file organi zation and
open mode given at the top of the column.

PAGE 184

Open Mode
:--------------------------------------- :

:statement :Input Output Input-Output Extend
:------------:------ --------:-------------- --------:
lREAD X X
:------------:------ --------:-------------- --------:
lWRITE X X
:------------:------ --------:-------------- --------:
:REWRITE X

Permissible Statements Table

A f i 1 e may be opened with the INPUT, OUTPUT. EXTEND, and I -0
phrases in the same program. Following the initial execution of an
OPEN statement for a file, each subsequent OPEN statement
execution for that same file must be preceded by the execution of
a CLOSE statement. without the LOCK phrase. for that file.

Execution of the OPEN statement does not obtain or release the
first data record .

The file description
file-name-4 must be
created.

entry for
equivalent

file-name-1, file-name-3 or
to that used when this file was

The execution of
specified FILE
f i 1 e·-name-1 .. .

The INPUT Phrase

an OPEN statement
STATUS data item,

to be updated .

causes the
if any,

value of
associated

the
with

For files being opened with the INPUT phrase, the OPEN statement
sets the current record pointer to the first record currently
existing within the file . If no records exist in the file, the
current record pointer is set such that the next executed READ
statement for the file will result in an AT END condition .

The OUTPUT Phrase

Upon successful execution of an OPEN
phrase specified. a file is created .
file contains no data records.

PAGE 185

statement with the OUTPUT
At that time the associated

The EXTEND Phrase

When the EXTEND phrase
the file immediately
file. Subsequent WRITE
records to the file
OUTPUT phrase.

is specifi ed, the OPEN statement positions
following the last logical record of that

statements referencing the file will add
as though the file has been opened with the

The EXTEND phrase and NO REWIND phrase can be used only for
sequential files. The EXTEND phrase must not be specified for a
file whose device-type is INPUT.

When the EXTEND phrase is specified and the LABEL RECORDS clause
indicates label records are present, the execution of the OPEN
statement includes the following:

The beginning file labels are processed only in the case of a
single reel/unit file.

Processing then proceeds as though the file has been opened
with the OUTPUT phrase.

The I - 0 Phrase

T he I-0 phrase permits the openin g of a mass storage file for both
input and output operations. Since this phrase implies the
existence of the file, it cannot be used if the mass storage file
is b eing initially created.

The I-0 phrase can be used only for mass storage files
assigned to the RANDOM device-type).

(files

When the I-D phrase is specified and the LABEL RECORDS clause
indicates that label records are present, the execution of the
OPEN includes the following:

The labels are checked.

New labels are written.

The OPEN statement sets the curr ent record pointer to the fiT·st
record currently existing in the file. If no records exist in the
file, the current record pointer is set such that the next
executed READ statement for that file wil l result in an AT END
condition .

PAGE 186

The NO REWIND Phrase

The NO REWIND phrases can only be used with sequential single
reel/unit files. Both phrases will be ignored if they do not apply
to the storage media on which the file resides.

If the storage medium for the file permits rewinding, the
following rule applies :

When neither the EXTEND nor the NO REWIND phrase
execution of the OPEN statement causes the
positioned at its beginning .

is specified,
file to be

When the NO REWIND phrase is specified, execution of the OPEN
statement does not cause the file to be repositioned; the file
must be already positioned at its beginning prior to the
execution of the OPEN statement.

PAGE 187

The OPEN Statement <Relative and Indexed I-0)

The OPEN statement initiates the processing of mass storage files.

FORMAT

OPEN {{INPUT {file-name-1 }. }.

{OUTPUT {file-name-2 }. } .

{I-0 {file-name-3 }. }.

The successful execution of an OPEN statement determines the
availability of the file and result s in the file being in an open
mode.

The successful execution of the OPEN statement
associated record area available to the program.

makes the

The files referenced in the OPEN statement need not all have t he
same organization or access .

Prior to the successful execution of
file, no statement can be executed
either explicitly or implicitly.

an OPEN statement for a given
that references that file,

A file may be opened with the INPUT, OUTPUT, and I--0 phrase s in
the same program. Following the initial execution of an OPEN
statement for a file, each subsequent OPEN statement executio n for
that same file must be preceded by the execution of a CLOSE
statement, without the LOCK phrase, for that file .

Execution of the OPEN statement does not obtain or release the
first data record .

If label records are specified for the file, the beginning labels
are processed as follows:

When the INPUT phrase is specified, the execution of the OPEN
statement causes the labels to be checked in accordance with
the System conventions for input label checking .

When the OUTPUT phrase is specified, the execution of the OPEN
statement causes the labels to be written in accordance with
the System conventions for output label writing.

PAGE 188

•

•

statement when label records are
or when label records are not

is undefined.

The behavior of the OPEN
specified but not present,
specified but are present,

The file description entry for file-name-1 or file-name-3 must be
e~uivalent to that used when this file was created.

The execution of the OPEN statement
specified FILE STATUS data item,
file-name-1 ... to be updated.

causes the
if any,

value of
associated

the
with

An OPEN statement must be successfully executed prior to the
execution of any of the permissible input-output statements . In
the Permissible Statements Table below. 'X' at an intersection
indicates that the specified statement, used in the access mode
yiven for that row, may be used with the open mode given at the
top of the column.

PAGE 189

Open Mode • :-------------------------:
File Access:

Mode Statement InputlOutputlinput-Output:
-----------:-----------:-----:------:------------:
Sequential READ X X

:-----------:-----:------:------------:
WRITE X

:-----------:-----:------:------------:
REWRITE X

:-----------:-----:------:------------:
START X X

:-----------:-----:------ ------------:
DELETE X

:-----------:-----------:-----:------ ------------:
:Random READ X X

:-----------: -----:------ ------------ :
WRITE X X

:-----------:-----:------ ------------:
REWRITE X

:----------- -----:------ ------------:
START

:----------- -----:------,------------:
DELETE X

-----------: ----------- -----:------:------------:
Dynamic READ X X

:----------- -----:------:------------:
WRITE X X

:----------- -----:------:------------:
REWRITE X

:----------- -----:------:------------:
START X X

:-----------,-----:------:------------:
DELETE X

Permissible Statements Table

The INPUT Phrase

For files being opened with the INPUT phrase. the OPEN statement
sets the current record pointer to the first record currently existin
within the file . If no records exist in the file. the current record
pointer is set such that the next executed Format 1 READ statement
for the file will result in an AT END condition.

PAGE 190

The OUTPUT Phrase

Upon successful execution of an OPEN statement with the OUTPUT phrase
specified, a file is created. At that time the associated file
contains no data records .

The I-0 Phrase

For files being opened with the I-0 phrase, the OPEN statement
sets the current record pointer to the first record currently
existing within the file. If no records exist in the file, the
current record pointer is set such that the next executed Format 1
READ statement for the file will result in an AT END condition.

PAGE 191

The PERFORM Statement

The PERFORM statement is used to transfer control explicitly to
one or more procedures and to return control implicitly whenever
execution of the specified procedure is complete.

FORMAT 1

PERFORM procedure-name-1 [{THROUGH} procedure-name-2]

{THRU }

FORMAT 2

PERFORM procedure-name-1 [{THROUGH} procedure-name-2J

<THRU }

{identifier-!} TIMES

{integer }

FORMAT 3

PERFORM procedure-name-1 [{THROUGH} procedure-name-2]

{THRU }

UNTIL condition-1

PAGE 192

•

FORMAT 4

PERFORM procedure-name-! [{THROUGH} procedure-name-2]

<THRU }

VARYING {identifier-2} FROM {identifier-3}

{index-name-1} {index-name-2}
{literal-! }

BY {identifier-4} UNTIL conditi on-!

{literal-2 }

[AFTER {identifier-S} FROM {identifier-6}

{ i nd e x·-name-3} {index-name-4}
{literal-3 }

BY {identifier-?} UNTIL condition-2

{literal-4 }

[AFTER {identifier-S} FROM {identifier-9}

{index-name-5} {index-name-6}
{literal-5 }

BY {identifier-10} UNTIL condition-3JJ

{literal-6 }

Format 1 is the basic PERFORM statement. A procedure referenced by
this type of PERFORM statement is executed once and then control
passes to the next executable statement following the PERFORM
statement .

Format 2 is the PERFORM . . . TIMES . The procedures are performed the
number of times specified by integer or by the initial value of
the data item referenced by identifier-1 for that execution . If,
at the time of execution of a PERFORM statement, the value of the
data item referenced by identifier-1 is equal to zero or is
negative, control passes to the next executable statement
following the PERFORM statement. Following the execution of the
procedures the specified number of times, control is transferred
to the next executable statement following the PERFORM statement.

PAGE 193

During execution of the PERFORM statement, references to
identifier-! cannot alter the number of times the procedures are
to be executed from that which was indicated by the initial value
of identifier-!.

Format 3 is the PERFORM . . . UNTIL . The specified procedures are
performed until the condition specified by the UNTIL phrase is
true. When the condition is true, control is transferred to the
next executable statement after the PERFORM statement. If the
condition is true when the PERFORM statement is entered, no
transfer to procedure-name-! takes place , and control is passed to
the next executable statement following the PERFORM statement .

Format 4 is the PERFORM ... VARYING. This variation of the PERFORM
statement is used to augment the values referenced by one or more
identifiers or index-names in an orderly fashion during the
execution of a PERFORM statement . In the following discussion,
every reference to identifier as the obJect of the VARYING, AFTER
and FROM (current value) phrases also refers to index-names. When
index-name appears in a VARYING and/or AFTER phrase , it is
initialized and subsequently augmented (as described below)
according to the rules of the SET statement. When index-name
appears in the FROM phrase, identifier. when it appears in an
associated VARYING or AFTER phrase, is initialized according to
the rules of the SET statement; subsequent augmentation is as
described below.

In Format 4, when one identifier is varied, identifier- 2 is set to
the value of literal-1 or the current value of identifier-3 at the
point of initial execution of the PERFORM statement; then. if the
condition of the UNTIL phrase is false, the sequence of
procedures, procedure-name-! through procedure-name-2, is executed
once. The value of identifier-2 is augmented by the specified
increment or decrement value <the value of identifier-4 or
literal-2) and condition-! is evaluated again . The cycle continues
until this condition is true; at which point, control is
transferred to the next executable statement following the PERFORM
statement . If condition-! is true at the beginning of execution of
the PERFORM statement, control is transferred to the next
executable statement following the PERFORM statement .

Each identifier represents a numer ic elementary item described in
the Data Division. In Format 2, identifier-! must be described as
a numeric integer .

Each literal represents a numeric literal .

The words THRU and THROUGH are equivalent .

PAGE 194

If an index-name is specified in
then:

the VARYING or AFTER phrase,

The identifier in the associated FROM and BY phrases must be
an integer data item.

The literal in the associated FROM phrase must be a
integer.

positive

The literal in the associated BY phrase must be a non zero
integer.

If an index-name is specified in the FROM phrase, then :

The identifier in the associated VARYING or AFTER phPase must
be an integer data item.

The identifier in the associated BY phrase must be an integer
data item.

The literal in the associated BY phrase must be an integer.

Literal in the BY phrase must not be zero.

Condition-1,
expression.

condition-2, condition-3 may be any conditional

When procedure-name-1 and procedure-name-2 are both specified and
either is the name of a procedure in the declarative section of
the program then both must be procedure-names in the same
declarative section.

The data items referenced by identifier-4, identifier-?, and
identifier-10 must not have a zero value.

If an index-name is specified in the VARYING or AFTER phrase, and
an identifier is specified in the associated FROM phrase, then the
data item referenced by the identifier must have a positive value.

When the PERFORM statement is executed, control is transferred to
the first statement of the procedure named procedure-name-! . This
transfer of control occurs only once for each execution of a
PERFORM statement. For those cases when a transfer of control to
the named procedure does take place, an implicit transfer of
control to the next executable statement following the PERFORM
statement is established as follows:

PAGE 195

If procedure-name-! is a paragraph-name and procedure-name-2
is not specified, then the return is after the last statement
of procedure-name-1.

If procedure-name-1 is a section-name and procedure-name-2 is
not specified, then the return is after the last statement of
the last paragraph in procedure-name-!.

If procedure-name-2 is specified and it is a paragraph-name,
then the return is after the last statement of the paragraph .

If procedure-name-2 is
then the return is after
paragraph in the section.

specified
the last

and it is a section-name,
statement of the last

There is no necessary relationship between procedure-name-- ! and
procedure-name-2 except that a consecutive sequence of operations
is to be executed beginning at the procedure named
procedure-name-1 and ending with the execution of the procedure
named procedure-name-2. In particular, GO TO and PERFORM
sta tements may occur between procedure-name-! and the end of
procedure-name-2. If there are two or more logical paths to the
return point, then procedure-name-2 may be the name of a paragraph
consisting of the EXIT statement. to which all of these paths must
lead.

If control passes to these procedures by means other than a
PERFORM statement, control will pass through the last statement of
the procedure to the next executable statement as if no PERFORM •
statement mentioned these procedures.

• PAGE 196

ENTRANCE

V

:set identifier-2 equal to:
current FROM value

V
1-----------\ True

----------------------> Condition-1 : ---- --- ------) Ex i t
\---------- - 1

V False

Execute procedure-name-1:
THRU procedure-name-2

V

:----------------:Augment identifier-2 with:
current BY value

Flowc hart for the VARYING Phrase of a PERFORM Statement Having One
Condition .

PAGE 197

In Format 4,
i dentifier-S
i dentifier-6,

when two identifiers
are set to the
respectively .

are var i ed, identifier-2 and
curre n t value of identifier-3 and

After the identifiers have been set, c o ndition-! is evaluated; if
t r ue , control is transferred to th e next executable statement ; if
f alse, condition-2 is evaluated. If condition-2 is false,
p r o c edure-name-1 through procedure-name-2 is executed once, then
i d entifer-S is augmented by identifier-? or literal-4 and
co nd i tion- 2 is e valuated again . This cycle of evaluation and
a ugme n tation continues until this c ondition is true . When
c ond i tion - 2 is true, identifier-S is set to the value of literal-3
or t he curr e n t value of identifier - 6, i dentifier - 2 is augmented by
id e n tifier-4 and condition-! is re-evalua ted . The PERFORM
st a t ement i s completed if c o ndition-1 is true; if not, the c y cles
c o nt in u e until co n dition-1 is true .

Dur i ng the execution of the procedures ass o ciated with the PERFORM
statement, any change to the VARYING variable (identifier- 2 and
in dex - name - 1), the BY variable (identifier-4), the AFTER variable
(i dentifier-5 and index-name-3), or the FROM var i able
(identifier-3 and index-name-2) will be taken into consideration
and will affect the operation of the PERFORM statement .

P AGE 198

ENTRANCE

V

:set identifier-2 and identifier-5:
to current FROM values

V
1·-- - -- - - ------ \ True

------------->: Condition-1 :----------------> Exit
\-·---------·-----·-I

V False
I-------------- ·--\ True

----------->: Condition-2 :----------------
\-·---·------------I

V False

:Execute procedure-name-1:
lTHRU procedure-name-2

V

--: Augment identifier-5 withl
current BY value

V

:set identifier-5 to its:
current FROM value

V

:Augment identifier-2 withl
current BY value

Flowchart for the VARYING Phrase of a PERFORM Statement Having Two
Conditions.

PAGE 199

ENTRANCE

V

Set
: identifier-2, identifier-S,

identifier-8
to current FROM values

V
1----------\ True

---- ---- ----->: Conditon-1 :-----------------> Exit
\----------1

False
V

1----------·- \ True
- ------ --->: Condition-2 :--------- ----- ---------- ------

\-----------/
False

V
/ ·-----·-------\ True

-------->: Condition-3 :-----------
\------ ---------I

False
V

Execute
:procedur e -name-!
:THRU procedure­

name ·-2

Augment
:identifier - S with:

current BY value:

V

Set
:identifier--a
: t o its current:

FROM value

V

Augmen t
:identifier-S with:

current BY value:

V

Set
:identifier-S
:to its current:

FROM value

V

Augment
identifier-2 with:
current BY value

F lowchart for the VARYING Phrase of a PERFORM Statement Having
Thre e Conditions.

PAGE 200

At the termination of the PERFORM statement identifier-S contains
the current value of identifier - 6 . Identifier-2 has a value that
exceeds the last setting by an increment or decrement value,
unless condition-! was true when the PERFORM statement was
entered, in which case identifier-2 contains the current value of
identifier-3.

When two identifiers
complete cycle <FROM,

are varied, identifier-S goes through a
BY, UNTIL) each time identifier-2 is varied.

For three identifiers the mechanism is the same as for two
identifiers except that identifier-S goes through a complete cycle
each time that identifier-S is augmented by identifier-7 or
literal-4, which in turn goes through a complete cycle each time
identifier-2 is varied.

After the completion of a Format 4 PERFORM statement, identifier-S
and identifier-S contain the current value of identifier-6 and
identifier-9 respectively . Identifier-2 has a value that exceeds
its last used setting by one increment or decrement value, unless
condition-! is true when the PERFORM statement is entered, in
which case identifier-2 contains the current value of
identifier-3.

If a sequence of statements referred to by a PERFORM statement
includes another PERFORM statement, the sequence oF procedures
associated with the included PERFORM must itself either be totally
included in, or totally excluded from. the logical sequence
referred to by the first PERFORM . Thus an active PERFORM
statement, whose execution point begins within the range of
another active PERFORM statement, must not allow control to pass
to the exit of the other active PERFORM statement; furthermore,
two or more such active PERFORM statements may not have a common
exit. See the valid illustrations below.

x PERFORM a THRU m

a -----------------------------

d PERFORM f THRU J

h

m -----------------------------

f ----------

J ----------

PAGE 201

x PERFORM a THRU m

a ---------------------------

d PERFORM f THRU J

f ----------

J ----------

m ---------------------------

X PERFORM a THRU m

a

m --------:-----------------
J ----------

d PERFOR M f THRU J

A PERFORM statement that appears in a section that is not in an
independent segment can have within its range, in addition to any
declarati ve sections whose execution is caused within that range,
only one of the following :

Sections and/or paragraphs
non-independent segments .

wholly contained in one or more

Sections and/or paragraphs wholly
independent segment.

contained in a single

A PERFORM statement
have within its range,
whose execution is
foll owing :

that appears in an independent segment can
in addition to any declarative sections

caused within that range, only one of the

Sections and/or paragraphs wholly contained
non- independent segments.

in

Sec tions and/or paragraphs wholly contained
ind ependent segment as the PERFORM statement.

PAGE 202

one or more

in the same

The READ Statement <Sequential I/0)

The READ statement makes available the next logical record from a
f i 1 e.

FORMAT

READ file-name RECORD CINTO identifier]

[;AT END imperative-statement]

The associated file must be open in the INPUT or I-0 mode at the
time this statement is executed .

The record to be made available by
determined as follows :

the READ statement is

If the current record pointer was positioned by the execution
of the OPEN statement. the record pointed to by the current
record pointer is made available .

If the current record pointer was positioned by the execution
of a previous READ statement. the current record pointer is
updated to point to the next existing record in the file and
then that record is made available .

The execution of the READ statement causes the value of the FILE
STATUS data item. if any. associated with file-name to be updated.

When the logical records of a file are described with more than
one record description the contents of any data items which lie
beyond the range of the current data record are undefined at the
completion of the execut i on of the READ statement.

If, at the time of execution of a READ statement, the position
the current record pointer for that file is undefined,
execution of that READ statement is unsuccessful.

of
the

Following the unsuccessful execution of any READ statement, the
c ontents of the associated record area and the position of the
current record pointer are undefined.

PAGE 203

The INTO Phrase

If the INTO phrase is specified, the record being read is moved
from the record area to the area specified by identifier according
to the rules specified for the MOVE statement . The implied MOVE
does not occur if the execution of the READ statement was
unsuccessful. Any subscripting or indexing associated with
identifier is evaluated after the record has been read and
immediately before it is moved to the data item.

When the INTO phrase is used, the record being read is available
in both the input record area and the data area associated with
identifier.

The INTO phrase must not be used when the input file contains
logical records of various sizes as indicated by thier record
descriptions . The storage area associated with identifier and the
record area associated with file-name must not be the same storage
area .

The AT END Phrase

If, at the time of the execution of a READ statement, no next
logical record exists in the file, the AT END condition occurs,
and the execution of the READ statement is considered
unsuccessful.

When the AT END condition is re c ognized the following actions are
taken in the specified order .

A value is placed into the FILE STATUS data item, if specified
for this file, to indicate an AT END condition.

If the AT END phrase is specified in the statement causing the
conditio n, control is transferred to the AT END
imperative- statement . Any USE procedure specified for this
file is not executed.

If the AT END phrase is not specified, then a USE procedure
must be specified, either explicitly or implicitly, for this
file and that procedure is executed.

When the AT END condition has been recognized, a READ statement
for that file must not be executed without first executing a
successful CLOSE statement followed by the execution of a
successful OPEN statement for that file .

The AT END phrase must be specified if no applicable USE procedure
is specified for file-name.

PAGE 204

•

The READ Statement <Relative and Indexed I-0)

----·----------·-----------------

The READ statement makes available a specified record from a mass
storage file.

FORMAT 1

READ file-name [NEXTJ RECORD (WITH NO LOCKJ (INTO identifier]

(;AT END imperative-statement]

FORMAT 2

READ file-name RECORD (WITH NO LOCK] CINTO identifier]

(;KEY IS data-name]

(;INVALID KEY imperative - statement]

Format 1 must be used for all files in sequential access mode.

The NEXT phrase must be specified for files in dynamic access
mode, when records are to be retrieved sequentially.

Format 2 is used for files in random access mode or for files in
dynamic access mode when records are to be retrieved randomly .

The INVALID KEY phrase or the AT END phrase must be specified if
no applicable USE procedure is specified for file-name.

The associated files must be open in the INPUT or I-0 mode at the
time this statement is executed .

The KEY phrase may be specified only when the organization of
file-name is index. When the KEY clause is present, data-name must
be the name of one of the record keys associated with file-name.
Data-name may be qualified.

PAGE 205

The record to be made available by a Format 1 READ statement is
determined as follows:

The record, pointed to by the current record pointer, is made
available provided that the current record pointer was
positioned by the START or OPEN statement and the record is
still accessible through the path indicated by the current
record pointer . If the record is no longer accessible, which
may have been caused by the deletion of the record , the
current record pointer is updated to point to the next
existing record in the file and that record is then made
available .

If the current record pointer was positioned by the execution
of a previous READ statement. the current record pointer is
updated to point to the next existing record in the file and
then that record is made available.

The execution of the READ statement causes the value of the FILE
STATUS data item, if any, associated with file-name to be updated .

When the logical records of a file are described with more than
one record description. these records automatically share the same
storage area; this is equivalent to an implicit redefinition of
the area. The contents of any data items which lie beyond the
range of the current data record are undefined at the completion
of the execution of the READ statement .

If, at the time of execution of a Format 1 READ statement, the
position of current record pointer for that file is undefined, the
execution of that READ statement is unsuccessful .

The INTO Phrase

If the INTO phrase is specified, the record being read is moved
from the record area to the area specified by identifier according
to the rules specified for the MOVE statement . The implied MOVE
does not occur if the execution of the READ statement was
unsuccessful . Any subscripting or indexing associated with
identifier is evaluated after the record has been read and
immediately before it is moved to the data item.

When the INTO phrase is used, the record being read is available
in both the input record area and the data area associated with
identifier.

The INTO phrase must not be usd when the input file contains
logical records of various sizes as indicated by their record
descriptions. The storage area associated with identifier and the
record area associated with file-name must not be the same storage
area .

PAGE 206

Following the unsuccessful execution of any READ statement, the
contents of the associated record area and the position of the
current record pointer are undefined .

For relative files if the RELATIVE KEY phrase is specified, the
execution of a Format 1 READ statement updates the contents of the
RELATIVE KEY data item such that it contains the relative record
number of the record made available .

For relative files the execution of a Format 2 READ statement sets
the current record pointer to, and makes available, the record
whose relative record number is contained in the data item named
in the RELATIVE KEY phrase for the file. If the file does not
contain such a record, the INVALID KEY condition exists and
execut i on of the READ statement is unsuccessful .

For an indexed file being sequentially accessed, records having
the same duplicate value in an alternate record key which is the
key of reference are made available in the same order in which
they are released by execution of WRITE statements, or by
execution of REWRITE statements which create such duplicate
values .

For an indexed file if the KEY phrase is specified in a Format 2
READ statement, data-name is established as the key of reference
for this retrieval. If the dynamic access mode is specified, this
key of reference is also used for retrievals by any subsequent
executions of Format 1 READ statements for the file until a
different key of reference is established for the file.

If the KEY phrase is not specified in a Format 2 READ statement,
the prime record key is established as the key of reference for
this retrieval.

If the dynamic access mode is specified, this key of reference is
also used for retrievals by any subsequent executions of Format 1
READ statements for the file until a different key of reference is
established for the file.

For indexed files the execution of a Format 2 READ statement
causes the value of the key of reference to be compared with the
value contained in the corresponding data item of the stored
records in the file, until the first record having an equal value
is found . The current record pointer positioned to this record
which is then made available. If no record can be so identified,
the INVALID KEY condition exists and execution of the READ
statement is unsuccessful .

PAGE 207

The AT END Phrase

If, at the time of the execution of a Format 1 READ statement. no
next logical record exists in the file, the AT END condition
occurs. and the execution of the READ statement is considered
unsuccessful .

When the AT END condition is recognized, the following actions are
taken in the specified order :

A value is placed into the FILE STATUS data item. if specified
for this file. to indicate an AT END condition .

If the AT END phrase
condition, control
imperative-statement.
file is not executed .

is spe c ified in the statement causing the
is transferred to the AT END
Any USE procedure specified for this

If the AT END phrase is not specified, then a USE procedure
must be specified , either explicitly or implicitly, for this
file, and that procedure is executed .

When the AT
input-output
unsuccessful .

END condition occurs , execution of the
statement which caused the condition is

When the AT END condition has been recognized, a
statement for that file must not be executed
executing one of the following :

Format 1 READ
without first

A successful CLOSE statement followed by the execution of a
successful OPEN statement for that f i le .

A successful START statement for that file .

A successful Format2 READ statement for that file.

For a file for which dynamic access mode is specified,
READ statement with the NEXT phrase specified causes
logical record to be retrieved from the file.

PAGE 208

a Format 1
the next

The REWRITE Statement <Sequential I/0)

The REWRITE statement
mass storage file .

FORMAT

logically replaces a record existing in a

REWRITE record-name [FROM identiferJ

Record-name and identifier must not refer to the same storage
area .

Record-name is the name of a logical record in the File Section of
the Data Division and may be qualified.

The file associated with record-name must be a mass storage file
and must be open in the I-0 mode at the time of execution of this
statement .

The last input-output statement executed for the associated file
prior to the execution of the REWRITE statement must have been a
successfully executed READ statement .

The number of character positions in the record referenced by
record-name must be equal to the number of character positions in
the record being replaced .

The logical record released by successful execution of the REWRITE
statement is no longer available in the record area .

The current record pointer is not affected by the execution of a
REWRITE statement.

The execution of the REWRITE statement causes the value of the
FILE STATUS data item, if any, associated with the file to be
updated .

PAGE 209

The FROM Phrase

The execution of a REWRITE statement with
equivalent to the execution of:

MOVE identifier TO record-name

the FROM phrase is

followed by the execution of the same REWRITE statement without
the FROM phrase . The contents of the record area prior to the
execution of the implicit MOVE statement have no effect on the
execution of the REWRITE statement.

PAGE 210

The REWRITE Statement <Relative and Indexed I-0>

The REWRITE statement logically replaces a record
mass storage file.

existing in a

FORMAT

REWRITE record-name CFROM identifier]

[;INVALID KEY imperative-statement]

Record-name and
area.

identifier must not refer to the same storage

Record-name is the name of a logical record in the File Section of
the Data Division and may be qualified.

For relative files the INVALID KEY phrase must not be
for a REWRITE statement which references a file in
access mode .

specified
sequential

The INVALID KEY phrase must be specified in the REWRITE statement
for files in the random or dynamic access mode for which an
appropriate USE procedure is not specified.

For indexed files the INVALID KEY phrase must be specified in the
REWRITE statement for files for which an appropriate USE procedur·e
is not specified .

The file associated with record-name must be open in the I-0 mode
at the time of execution of this statement .

For files in the sequential access mode, the last input-output
statement executed for the associated file prior to the execution
of the REWRITE statement must have been a successfully executed
READ statement without the WITH NO LOCK phrase .

The number of character positions in the record referenced by
record-name must be equal to the number of character positions in
the record being replaced .

The logical record released by a successful execution of the
REWRITE statement is no longer available in the record area.

PAGE 211

The current record pointer is not affected by the execution of a
REWRITE statement .

The execution of the
FILE STATUS data item,
updated.

The INVALID KEY Phrase

REWRITE statement causes the value of the
if any, associated with the file to be

For a relative file accessed in either random or dynamic access
mode, the System logically replaces the record specified by the
contents of the key data item associated with the file . If the
file does not contain the record specified by the key, the INVALID
KEY condition exists.

For indexed files the INVALID KEY condition exists when:

The access mode is sequential and the value contained in the
prime record key data item of the record to be replaced is not
equal to the value of the prime record read from the field, or

The value contained in the prime record key item does not
equal that of any record stored in the file .

When the INVALID KEY condition exists the updating operation does
not take place and the data in the record area is unaffected .

The FROM Phrase

The execution of a REWRITE statement with the FROM phrase is
equivalent to the execution of:

MOVE identifier TO record-name

followed by the execution of the same REWRITE statement without
the FROM phrase. The contents of the record area prior to the
execution of the implicit MOVE statement have no effect on the
execution of the REWRITE statement.

PAGE 212

•

•

The SET Statement

The SET statement establishes reference points for table handling
operations by setting index-names associated with table elements .

FORMAT 1

SET {identifier-1} [, identifier-2J . .. } TO {identifier-3}
{index-name-3}

{index-name- 1} [, index-name-2J {integer-1 }

FORMAT 2

SET index-name- 4 (, index-name-5] ... {UP BY } {identif- ier-4}

{DOWN BY} {integer-2 }

All references to index-name-1, identifier-1, and index-name-4
apply equally to index-name-2, identifier-2, and index -name-5,
respectively .

Identifier-1 and identifier-3 must name either index data
or elementary items described as an integer.

items,

Identifier-4 must be dec l ared as an elementary numeric integer.

Integer-1 and integer-2 may be signed . Integer-1 must be positive.

Index-names are considered related to a given table and are
defined by being specified in the INDEXED BY clause .

If index-name-3 is specified, the value of the index before the
execution of the SET statement must correspond to an occurrence
number of an element in the associated table.

If index-name-4, index-name-5 is specified, the value of the index
both before and after the execution of the SET statement must
correspond to an occurrence number of an element in the associated
table. If index-name-1, i ndex-name-2 is specified, the val ue of
the index after the execution of the SET statement must correspond
to an occurrence number of an element in the associated table. The
value of the index associated with an index-name a fter the
execution of a PERFORM statement may be undefined .

PAGE 213

In Format 1. the following action occurs:

Index-name-1 is set to a value causing it to refer to the
t able element that corresponds in occurrence number to the
table element referenced by index-name-3. identifier-3. or
in t eger-1 . If identifier-3 is an index data item. or if
index-name-3 is related to the same table as index-name-1 . no
conversion takes place .

If identifier-1 is an i n dex data item. it may be set equal to
ei t her the contents of index-name-3 or identifier-3 where
identifier-3 is also an index data item; no conversion takes
place in either case .

I f identifier-! is not an index data item. it may be set only
to an occurrence numbe r that co r responds to the value of
index-name-3. Neither identifier-3 nor integer-1 can be used
i n this case .

T he process is repeated for index-name-2. identifier-2. etc . ,
i f specified . Each time the value of index-name-3 or
identifier-3 is used as it was at the beginning of the
execution of the statement . Any subscripting or indexing
associated with identifier-!. etc . , i s evaluated immediately
before the value of the respective data item is changed.

In Fo r mat 2, the contents of index-name-4 are incremented <UP BY>
or decremented (DOWN BY> by a value that corresponds to the number
of occurrences represented by the value of integer-2 or
identifier-4; thereafter. the process is repeated for
index - name-5. et c. Each time the value of identifier-4 is used as
it was at the beginning of the execution of the statement .

Data in the following chart represents the validity of various
operand combinations in the SET statement.

Receiving Item
:----------------------------------:

:sending Item :Integer Data:
Item

Index
Name

:Index Data:
Item

:------------------:------------:----------:----------:
: Integer Literal
: Integer Data Item
: Index-Name
: Index Data Item

No
No

Valid
No

*No conversion takes place

PAGE 214

Valid
Valid
Va l id
Valid*

No
No

Valid*
Valid*

The START Statement <Relative and Indexed I-0)

The START statement provides a basis for logical positioning
within a file, for subsequent sequential retrieval of records .

FORMAT

START file-name [KEY {IS
--- --

{IS
{IS

·CIS
{IS

{IS

EQUAL TO
----·-
=
GREATER
--------__ ,

NOT LESS

NOT -< ..

} data-name]

}

THAN }

}

THAN}

}

[;INVALID KEY imperative - statement]

Note: The required relational characters')', '<'and ' = ' are
not underlined to avoid confusion with other symbols .

File-name must be the name of a file with
access .

Data-name may be qualified .

sequential or dynamic

The INVALID KEY phrase must be specified if no applicab l e USE
procedure is specified for file-name .

If file-name is the name of a relative file then data-name. if
specified, must be the data i tem specified in the RELAT I VE KEY
phrase of the associated file control entry .

If file-name is the name of an indexed file then data-name, if
specified, may reference the data items specified as the record
keys associated with file-name or it may reference any data item
of category alphanumeric whose leftmost character position
corresponds to the leftmost character position of a record key
data item.

File-name must be open in the INPUT or I-0 mode at the time that
the START statement is executed .

If the KEY phrase is not specified
EQUAL TO' is implied .

PAGE 215

the relational operator I IS

Th e type of comparison specified by the relational operator in the
KEY phrase occurs between a key associated with a record in the
file referenced by file-name and a data item.

I f file-name references a relative file, the data item used in
the comparison is the relative key associated with file-name .

If file-name references an indexed file, the data item used in
the comparison is either the prime record key associated with
file-name or. if the KEY phrase is specified, the data item
referenced in the KEY phrase . If the operands of the
comparison are of unequal size, comparison proceeds as though
the longer one were truncated on the right such that its
length is equal to that of the shorter . All other nonnumeric
comparison rules apply except that the presence of the PROGRAM
COLLATING SEQUENCE clause will have no effect on the
comparison.

The current record pointer is positioned to the first logical
record currently existing in the file whose key satisfies the
c omparison .

If the comparison is not satisfied by any record in the file,
an INVALID KEY condition exists. the execution of the START
statement is unsuccessful, and the position of the current
rec ord pointer is undefined.

The execution of the START statement causes the value of the FILE
STATUS data item, if any, associated with file-name to be updated.

PAGE 216

The STOP Statement

The STOP statement causes a permanent or temporary suspension of
the execution of the object program .

FORMAT

STOP {RUN }

{literal}

The literal may be numeric or nonnumeric or may be any
constant.

fig ut· at i ve

If a STOP RUN statement appears in a consecutive sequence of
imperative statements within a sentence, it must appear as the
last statement in that sequence.

If the RUN phrase is used, then a STOP RUN message is logged and
the execution is terminated .

If STOP literal is specified, the literal is logged in a STOP
"literal-value" message and the execution is suspended .

STOP Examples :

STOP RUN.
STOP "END OF PROCEDURE" .

PAGE 217

The SUBTRACT Statement

The SUBTRACT statement is used to subtract one, or the sum of two
or more, numeric data items from a nu meric data item and store the
result.

FORMAT 1

SUBTRACT {identifier-!} [,identifier-).]

{literal -1 } [, literal-2]

FROM identifier-m [ROUNDED]

[;ON SIZE ERROR imperative-statement]

FORMAT 2

SUBTRACT {identifier-!} [, identifier-2J

{literal-1 } [, literal-2 J

FROM {identifier-m} GIVING identifier-n [ROUNDEDJ

{literal-m }

[;ON SIZE ERROR imperative-statement]

FORMAT 3

SUBTRACT {CORRESPONDING} identifier-1

{CORR }

FROM identifi er-2 [ROUNDED]

[; ON SIZE ERROR imperative-statement]

In Format 1, all literals or identifiers preceding the word FROM
are added togeth er and this total is subtracted from the current
value of identifier-m storing the result immediately into
identifier-m.

PAGE 218

•

In Format 2, all literals or
are added together, the sum
identifier-m and the result
new value of identifier-n.

identifiers preceding the word FROM
is subtracted from literal-m or
of the subtraction is stored as the

If Format 3 is used, data items in identifier-! are subtracted
from and stored into corresponding data items in identifier-2.

Each identifier must refer to a numeric elementary item except
that:

In Format 2, the identifier following the word GIVING must
refer to either an elementary numeric item or an elementary
numeric edited item.

In Format 3, the identifiers must refer to group items .

Each literal must be a numeric literal.

The ROUNDED Phrase

The ' SUBTRACT statement may optionally include the ROUNDED phrase.

If, after decimal point alignment, the number of places in the
fraction of the result of an arithmetic operation is greater than
the number of places provided for the fraction of the
resultant-identifier, truncation is relative to the size provided
for the resultant-identifier. When rounding is requested, the
absolute value of the resultant-identifier is increased by one (1)
whenever the most significant digit of the excess is greater than
or equal to five (5) .

When the low-order integer positions in a resultant-identifier are
represented by the character 'P' in the picture for that
resultant-identifier, rounding or truncation occurs relative to
the rightmost integer position for which storage is allocated .

The SIZE ERROR Phrase

If, after appropriate decimal point alignment. the absolute value
of the result exceeds the largest value that can be contained in
the associated resultant-identifier, a size error condition
exists . If the ROUNDED phrase is specified, rounding takes place
before checking for size error.

PAGE 219

If the resultant-identifier has COMPUTATION-3 usage , size error is
detected only for data items declared with an odd length picture
clause . Therefore, all COMP-3 data items should be declared with
an odd number of character positions . exceeds the largest value
that can be contained in the resultant-identifier, a size error
condition exists .

If the SIZE ERROR phrase
exists, the condition

undefined .

is
value

not
of

specified and a size error
the resultant-identifier is

If the SIZE ERROR phrase is specified and a size error condition
exists, the value of the resultant-identifier(s) affected by the
size error is not altered .

If the CORRESPONDING phrase is specified, and any of the
individual subtractions produce a size error condition, the
imperative-statement is not executed until all of the individual
subtractions are completed .

The CORRESPONDING Phrase

If the CORRESPONDING phrase i s used, selected items within
identifier-1 are ADDed to, and the result stored in , the
corresponding items in identifier-2 . Data items referenced by the
CORRESPONDING phrase must adhere to the following rules :

A data item in identifier-1 and a data item in identifier-2
must not be designated by the key word FILLER and must not
have the same data-name and the same qualifiers up to, but not
including, identifier-! and identifier-2 .

Both of the data items must be elementary numeric data items .

The description of identifier-1
contain level-numbers 66, 77
clause .

and identifier-2 must not
or 88 or the USAGE IS INDEX

A data item that is subordinate to identifier-! or
identifier-2 and contains a REDEFINES, RENAMES, OCCURS or
USAGE IS INDEX clause is ignored, as well as those data items
subordinate to the data item that contains the REDEFINES,
OCCURS, or USAGE IS INDEX clause . However, identifier-1 and
identifier-2 may have REDEFINES or OCCURS clauses or be
subordinate to data items with REDEFINES or OCCURS clauses .

CORR is an abbreviation for CORRESPONDING .

PAGE 220

•

•

SUBTRACT EXAMPLES

SUBTRACT TAXES FROM INCOME .

SUBTRACT 1 FROM TALLY GIVING TALLY-1.

SUBTRACT 2.68, INTEREST, PENALTY
FROM PRINCIPAL ROUNDED
ON SIZE ERROR GO TO ERROR-HANDLER.

PAGE 221

The UNLOCK Statement

The UNLOCK statement makes available to other programs the most
recently accessed record in a file that was read and locked .

FORMAT

UNLOCK file-name RECORD.

Note: The UNLOCK statement is nonstandard, but provides for
compatibility with existing programs written for
environments that allow multiple programs to concurrently
update a data file . For systems that do not provide this
capability, the UNLOCK statement will not affect execution
except as described below.

The file associated with the file-name must be open
mode .

in the I-0

If no record in the file is locked, execution of an UNLOCK
statement causes no action to be taken . If a record in the file is
locked (unavailable to other programs), the last record to be
locked is then made available to any o ther program upon execution
of the UNLOCK statement .

The current record pointer is not affe c ted by the execution of the
UNLOCK statement . The FI LE STATUS data item associated with the
file, if one exists, is updated .

The UNLOCK statement may not be used to unlock records locked by
other programs .

Note : Records that are read and locked are automatically unlo c ked
by any subsequent operation on that file from the same
program.

PAGE 222

The WRITE Statement <Sequential I/0)

The WRITE statement releases a logical record for an output file.
It can also be used for vertical positioning of lines within a
logical page.

FORMAT

WRITE record-name [FROM identifier-!]

[{BEFORE} ADVANCING {{identifier-2} [LINE J}J

{AFTER } {{integer } [LINESJ}

{ PAGE }

Record-name and identifier-! must not reference the same storage
area.

The record-name is the name of a logical record in the File
Section of the Data Division and may be qualified .

When identifier-2 is used in the ADVANCING phrase, it must be the
name of an elementary integer data item.

Integer or the value of the data item referenced by identifier-2
may be zero.

The associated file must be open in the OUTPUT or EXTEND mode at
the time of the execution of this statement .

The logical record released by the execution of the WRITE
statement is no longer available in the record area .

Upon completion of a WRITE statement.
referenced by identifier-! is
information in the area referenced
available .

the information in the
available even though

by record-name may not

area
the

be

The current record
WRITE statement.

pointer is unaffected by the execution of a

The execution of the WRITE statement causes the value of the FILE
STATUS data item. if any, associated with the file to be updated.

The maximum record size for a file is established at the time the
file is created and must not subsequently be changed .

PAGE 223

The number of character positions on a mass storage device
required to store a logical record in a file may or may not be
equal to the number of character positions defined by the logical
description of that record in the program .

The execution of the WRITE statement releases a logical record to
the operating system. The contents of the record area are not
changed .

When an attempt is made to wr i te beyond the externally defined
boundaries of a sequential file, an exception condition exists .
The following action takes place :

The value of the
associated file is
violation .

FILE STATUS data item, if any, of the
set to a value indicating a boundary

If a USE AFTER STANDARD EXCEPTION declarative is explicitly or
implicit ly specified for the file, that declarative procedure
will then be executed .

If a USE
explicitly or
undefined .

The FROM Phrase

AFTER STANDARD EXCEPTION declarative is not
implicitly specified for the file, the result is

The results of the execution of the WRITE statement with the FROM
phrase is equivalent to the execution of the statement

MOVE identifier-! TO record-name

according to the rules specified for the MOVE statement, followed
by the same WRITE statement without the FROM phrase .

The contents of the record area prior to the execution of the
implicit MOVE statement have no effect on the execution of this
WRITE statement .

PAGE 224

The ADVANCING Phrase

The ADVANCING phrase allows control of the vertical positioning of
each line on a representation of a printed page. If the ADVANCING
phrase is not used, automatic advancing will be provided by the
compiler to act as if the user had specified AFTER ADVANCING 1
LINE . If the ADVANCING phrase is used, advancing is provided as
follows :

If identifier-2 is specified, the representation of the
printed page is advanced the number of lines equal to the
current value associated with identifier-2.

If integer is specified,
page is advanced the
integer .

the representation of the printed
number of lines equal to the value of

If the BEFORE phrase is used, the line is presented before the
representation of the printed page is advanced .

If the AFTER phrase is used, the line is presented after the
representation of the printed page is advanced .

If PAGE is specified, the record is presented on the logical
page before or after <depending on the phrase used) the device
is repositioned to the next logical page .

The ADVANCING phrase is valid only if the device-type assigned to
the file is PRINT.

PAGE 225

THE WRITE STATEMENT <Relative and Indexed I-0>

The WRITE statement releases a log i cal record for an out pu t or
input-output file .

FORMAT

WRITE record-name CFROM identifier]

[;INVALID KEY imperative-statement]

Record-name and identifier must not reference the same storage
area .

The record-name is the name of a logical record in the File
Section of the Data Division and may be qualified.

The INVALID KEY phrase must be specified if an applicable USE
procedure is not specified for the associated file .

The associated file must be open in the OUTPUT or I-0 mode at the
time of the execution of this statement .

The logical record released by the execution of the WRITE
statement is no longer available in the record area.

The current record
WRITE statement .

pointer is unaffected by the execution of a

The execution of the WRITE statement causes the value of the FILE
STATUS data item, if any, associated with the file to be updated .

The maximum record size for a file is established at the time the
file is created and must not subsequently be changed.

The number of character positions on a mass storage device
required to store a logical record in a file may or may not be
equal to the number of character positions defined by the logical
description of that record in the program.

The execution of the WRITE statement releases a logical record to
the operating system.

PAGE 226

•

When a relative rile is opened in the output mode, records may be
placed into the rile by one of the following:

If the access mode is sequential, the WRITE statement will
cause a reco rd to be released to the System. The first record
will have a relative record number of one <1> and subsequent
records released will have relative record numbers of 2 , 3, 4,

If the RELATIVE KEY data item has been specified in the
file control entry for the associated file, the relative
record number of the record JUSt released will be placed into
the RELATIVE KEY data item by the System during execut i on df
the WRITE statement .

If the access mode is random or dynamic, prior to the
execution of the WRITE statement the value of the RELATIVE KEY
data item must be initialized in the program with
record number to be associated with the record in
area. That record is then released to the System
of the WRITE statement.

the relative
the record

by execution

When a relative file is opened in the I-0 mode and the access mode
is random or dynamic, records are to be inserted in the associated
file. The value of the RELATIVE KEY data item must be initialized
by the program with the relative record number to be associated
with the record in the record area . Execution of a WRITE
statement then causes the contents of the record area to be
released to the System.

For an indexed file, the data item specified as the prime record
key must set by the program to the desired value prior to the
execution of the WRITE statement. Records may be placed into the
file by one of the following:

If the access mode is sequential, records must be released to
the Syste m in ascending order of prime record key values .

If the access mode is random or dynamic, records may be
released to the System in any program-specified order.

The FROM Phrase

The results of the execution of the WRITE statement with the FROM
phrase is equivalent to the execution of the statement:

MOVE identifier-! TO record-name

according to the rules specified for the MOVE statement,
by the same WRITE statement without the FROM phrase.

PAGE 227

followed

The contents of the record area prior to the execution of the
implicit MOVE statement have no effect on the execution of this
WRITE statement.

The INVALID KEY Phrase

The INVALID KEY condition exists under the following
circumstances :

When the access mode is sequential for an indexed file opened
in the output mode, and the value of the prime record key is
not greater than the value of the prime record key of the
previous record, or

When an indexed file is opened in the output or I-0 mode, and
the value of the prime record key is equal to the value of a
prime record key of a record already existing in the file, or

When a relative file has random or dynamic access mode and the
RELATIVE KEY data item specifies a record which already exists
in the file, or

When an attempt is made to write beyond the externally defined
boundaries of the file .

When the INVALID KEY condition is recognized the execution of the •
WRITE statement is unsuccessful, the contents of the record area
are unaffected and the FILE STATUS data item, if any, associated
with file-name of the associated file is set to a value indicating
the cause of the condition .

PAGE 228

APPENDIX A

ERROR MESSAGES

PAGE 229

ERROR MESSAGES <Compile T i me)

Th e te xt of the sourc~ program is checked fo~ s ~ntax and semantic
cr~ors as i t i s scanned . E rr ore may cause interruption in
scannin g . I n thi~ c ase , text is ignored until a recovery point is
found and a resume messd~ ~ i ~ printed . Recovery points ar~ c h osPn
to min im i ze Lh c ~mount of unanalyz~d ~ext without producing
irrelev an t err nr ~~ ssages . In any c a se th e ~unstructs at fa u lt are
undPrma, · ~ ed an d er r or me s~ 3ges l isted when the source li n P i3
printed. Th e errn~ me»s a ge includes either E's or W'~ indicating
error or war n i ng . For e xample :

004030 02 S TOCK P lC 9 (16)PPP COMPUTATIONAL
$

*~~** !)PICTURE *E*E*F.~ExE~E*E*E*E*E*E*E*E*E*E*E*E*E*E

in d ic ates a csema 11G ic number size error but

005040 02 PAR T PIC X<4BX(5)
$

SYNC .
$

***** ! >SYNTAX *E
* **** 2>SCAN RESUME *W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W*W

indicates a syntax error at the first undermark and a recovery to
the second undermark .

The number preceding the error message is the undermark nu mber,
c ount i ng from left to right . Mo r e t han one message may ref e r to
the same undermark.

Global errors such as undefined paragraph names and illegal
control transfers are listed with the program summary at the end
of the source listing .

Compilation always proceeds to the end of the program. regar dless
of the number of errors found. ObJe c t code is produced such that
a n attempt to execute an erroneous statement will terminate
execution with an appropriate error message .

PAGE 230

COMPILER ERROR MESSAGES

ACCESS CLASH
Nonsequential access given for sequential f i le .

BLANK WHEN ZERO

CLASS

COPY

BLANK WHEN ZERO clause given for nonnumeric or group
item.

The referenced
condition .

identifier is not valid in a c lass

COPY statement failed because of permanent er ror
associated with the undermarked file-name .

CORRESPONDING
The CORRESPONDING phrase cannot be us e d wi th the
referenced identifier .

DATA OVERFLOW

DATA TYPE

The data area <working - storage and literals) is larger
than 65535 bytes in length.

Context does not allow data type of the refe re n c ed
identifier .

DEVICE CLASH
Random characteristics given to nonrandom device .

DEVICE TYPE
OPEN or CLOSE mode inconsistent with device type .

DOUBLE DECLARATION
Multiple declaration of a file or identifier attribute .

DOUBLE DEFINITION

DUPLICATE

Multiple definition of an identifier .

Warning only . Multiple USE procedure declared for same
function or file .

FILE DECL ERROR
The referenced file-name is SELECTed and has an invalid
or missing file description <FD> .

PAGE 231

FILE NAME ERROR
The referenced
nam e declaration .

file-name has an invalid external file

FILE NAME REQUIRED
File name not given as reference in I/0 verb .

FILE RECORD KEY ERROR
The referenced file-name has a RECORD KEY which is
incorrectly qualified or is not defined as a data item
of the category alphanumeric within a record description
entry associated wit h that file name .

FILE RECORD SIZE ERROR
The referenced file-name has a declared record size
which conflicts with the actual data record des c rip tio ns
or is a relative organization file with variable length
records .

FILE RELATI VE KEY ERROR
The referenced file-name has a RELATIVE KEY
incorrectly qualified, is defined in
description associated with that file-name, or
defined as an unsigned integer.

which is
a record

is not

FILE STATUS ERROR

FILE TYPE

The referenced file-name
incorr ectly qualified,
WORKING-STORAGE SECTION,
alphanumeric item .

Access o r organization
undermarked statement.

has a status item which is
is not defined in the
or is not a two-character

of file conflicts with

FILLER LEVEL
A nonelementary FILLER item is declared .

GROUP CLASH
USAGE or
same cla use

VALUE clause
for group.

of group member conflicts with

GROUP VALUE CLASH

IDENTIFIER

Warning only . An item subordinate to a group with the
VALUE IS clause is described with the SYNCHR ON IZED ,
JUSTIFIED, or USAGE (other than USAGE IS DISPLAY>
clause .

Identifier reference is incorrectly constructed or the
identifier has an invalid or double definition .

PAGE 232
•

ILLEGAL ALTER
An ALTER statement references an unalterable paragraph
or violates the rules of segmentation.

ILLEGAL PERFORM

INVALID ID

A PERFORM statement references undefined or incorrectly
qualified paragraph or the reference violates the rules
of segmentation.

The referenced identifier was not successfully defi ne d .

INVALID PARAGRAPH
Context does not allow section name .

JUSTIFY
JUSTIFY clause given in conflict with other attributes .

KEY REQUIRED

LABEL

LEVEL

LINKAGE

Relative key not declared for random access relative
file or record key not declared for indexed file .

Presence or absence of
device standards .

label record conflicts with

Level-number given is inva l id either intrinsically or
because of position within a group .

An identifier in the USING clause of the PROCEDURE title
is not a linkage item or a statement references a
linkage item not subordinate to an identifier in the
USING clause of the PROCEDURE title .

LITERAL VALUE
Literal value given is incorrect in context .

t10VE
Operands of MOVE verb specify an invalid move .

MUST BE INTEGER
Context requires decimal integer .

MUST BE PROCEDURE
Context requires procedure name either as reference or
definition, or the reference must be a nondeclarative
procedure-name .

MUST BE SECTION
Context requires procedure - name to be section.

PAGE 233

NESTING
Illegal nesting of condition that is not
condition .

an IF

NOT IN REDEFINE

OCCURS

VALUE IS clause given in REDEFINES item.

Occurs clause given at invalid level or after three have
been given for the same item.

OCCURS DEPENDING ERROR
The referenced obJect of a DEPENDING phrase has not been
defined correctly .

OCCURS-VALUE CLASH
VALUE IS and OCCURS in effect for the same item.

PICTURE
Invalid picture syntax.

PICTURE-BWZ CLASH
Zero suppression and BLANK WHEN ZERO cannot be in effect
for the same item.

PICTURE-USAGE CLASH
USAGE clause or implied
implied by picture.

usage conflicts with usage

PROCEDURE INDEPENDENCE
PERFORM given for procedures in independent segments not
in the current segment.

PROGRAM OVERFLOW

RECORD KEY

The instruction area is larger than 32767 bytes in
length.

Record key declared for other than an indexed
organization file or a START statement KEY phrase
references a data item not aligned on the declared key's
leftmost byte .

RECORD REQUIRED

REDEFINES

Context requires record name.

REDEFINES given within an OCCURS or not redefining the
last allocated item.

PAGE 234

•

REDEFINES ERROR
The referenced data-name redefines an item which does
not have the same number of character positions and is
not level 01 .

REFERENCE INVALID
Reference given is not valid in context .

RELATION
Operands of relation test are incompatible .

RELATIVE KEY
Relative key declared for other than a relative
organization file or a START statement KEY phrase
references a data item other than the declared key.

RESERVED WORD CONFLICT
A COBOL reserved word or symbol is given where a user
word is required. In the summary this is only a warning
about an ANSI COBOL reserved word that is not an
implemented COBOL reserved word.

SCAN RESUME
Warning only . Scanning was terminated at previous error
message and resumes at undermarked character.

SECTION CLASH

SEGMENT

SEPARATOR

SIGN

SIZE

SIZE ERROR

A VALUE IS clause appears
section.

in the FILE or LINKAGE

Warning only . Segment number given in an independent
segment is not the same as the current segment or the
number of a new independent segment.

Warning only . Redundant punctuation or a separator is
not followed by the required space .

SIGN clause given in conflict with usage and picture.

Warning only . Size of data referenced not correct for
context.

Declared
reference .

size of

PAGE 235

record conflicts with present

SUBSCRIPT

SYNC

SYNTAX

UNDEFINED

Incorrect number of subscripts or indices
reference .

Synchronized clause given for a group item.

for

Incorrect character or reserved word given for context .

File referenced in FD entry was not defined.

a

UNDEFINED DECLARATIVE PROCEDURE
A declarative statement references a procedure not
defined within the DECLARATIVES .

UNDEFINED PROCEDURE
A GO TO statement references an undefined or incorrectly
qualified paragraph .

USE REQUIRED
A DECLARATIVES section must begin with a USE statement .

USING COUNT
Warning only . The item count in the USING list of a CALL
statement is different from that of the first reference
to the same program name.

VALUE ERROR

VALUE

VARIABLE

Value given in VALUE IS required truncation of nonzero
digits .

VALUE IS clause given in con ·Plict with other declared
attributes .

RECORD
Warning on 1 y . The INTO phrase is not allowed with
variable size records .

PAGE 236
•

APPENDIX B

RESERVED WORDS

PAGE 237

RESERVED WORD LIST

The following is a list of RM/COBOL reserved words where :

* denotes reserved words not reserved in ANSI standard COBOL

+ denotes ANSI COBOL reserved words not reserved by the
compiler . Their appearance will generate a warning at the end
of the compilation listing .

** denotes system-name.

ACCEPT
ACCESS
ADD
ADVANCING
AFTER
ALL

*BEEP
BEFORE
BLANK

CALL
+CANCEL
+CD
+CF
+CH

CHARACTER
CHARACTERS

+CLOCK-UNITS
CLOSE

+COBOL
+CODE

DATA
DATE

+DATE-COMPILED
DATE-WRITTEN
DAY

+DE
+DEBUG-CONTENTS
+DEBUG-ITEM
+DEBUG-LINE
+DEBUG-NAME

ALPHABETIC
+ALSO

ALTER
ALTERNATE
AND
ARE

*BLINK
BLOCK

+BOTTOM

+CODE--SET
COLLATING

+COLUMN
COMMA

+COMMUNICATION
COMP

*COMP-1
*COMP-3

COMPUTATIONAL
*COMPUTATIONAL-!
*COMPUTATIONAL-3

+DEBUG-SUB-1
+DEBUG-SUB-2
+DEBUG-SUB-3
+DEBUGGING

DECIMAL-POINT
DECLARATIVES
DELETE

+DELIMITED
+DELIMITER

DEPENDING

PAGE 238

AREA
+AREAS
+ASCENDING

ASSIGN
AT
AUTHOR

BY

COMPUTE
CONFIGURATION
CONTAINS

+CONTROL
+CONTROLS
*CONVERT

COPY
CORR
CORRESPONDING

+COUNT
CURRENCY

+DESCENDING
+DESTINATION
+DETAIL
+DISABLE

DISPLAY
DIVIDE
DIVISION
DOWN
DUPLICATES
DYNAI"IIC

*ECHO +END-OF-PAGE ERROR
+EGI +ENTER +ESI

ELSE ENVIRONMENT +EVERY
+EMI +EOP EXCEPTION
+ENABLE EQUAL EXIT

END *ERASE EXTEND

FD FILLER +FOOTING
FILE +FINAL FOR
FILE-CONTROL FIRST FROM

+GENERATE GO +GROUP
GIVING GREATER

+HEADING HIGH-VALUE
*HIGH HIGH-VALUES

I-0 INDEXED INSPECT
I-Q-CONTROL +INDICATE INSTALLATION
IDENTIFICATION INITIAL INTO
IF +INITIATE INVALID
IN INPUT IS
INDEX INPUT-OUTPUT

JUST JUSTIFIED

KEY

LABEL +LIMIT LINES
+LAST +LIMITS LINKAGE

LEADING +LINAGE LOCK
LEFT +LINAGE-COUNTER LOW

+LENGTH LINE LOW-VALUE
LESS +L I NE·-COUNTER LOW-VALUES

MEMORY MODE +MULTIPLE
+I"IERGE MODULES MULTIPLY
+MESSAGE MOVE

NATIVE NO NUMERIC
+NEGATIVE NOT

NEXT +NUMBER

PAGE 239

OBJECT-COMPUTER OMITTED OR
OCCURS ON ORGANIZATION
OF OPEN OUTPUT
OFF +OPTIONAL +OVERFLOW

PAGE +PLUS +PROCEDURES
+PAGE-COUNTER +POINTER PROCEED

PERFORM POSITION PROGRAM
+PF +POSITIVE PROGRAM-ID
+PH *PRINT *PROMPT

PIC +PRINTING
PICTURE PROCEDURE

+QUEUE QUOTE QUOTES

RANDOM +REMAINDER *REVERSE
+RD +REMOVAL +REVERSED

READ RENAI"IES REWIND
+RECEIVE REPLACING REWRITE

RECORD +REPORT +RF
RECORDS +REPORTING +RH
REDEFINES +REPORTS RIGHT
REEL +RERUN ROUNDED

+REFERENCES +RESERVE RUN
RELATIVE +RESET

+RELEASE +RETURN

SAME SIZE +SUB-GUEUE-2
+SD +SORT +SUB-QUEUE-3
+SEARCH +SORT ·-1"1ER GE SUBTRACT

SECTION +SOURCE +SUM
SECURITY SOURCE-COMPUTER +SUPPRESS

+SEGt1ENT SPACE ·IHSWITCH-1
+SEGMENT-LIMIT SPACES ·11-*SW I TCH-2

SELECT SPEC I AL·-NAMES
+SEND STANDARD

SENTENCE STANDARD-!
SEPARATE START **SWITCH-8
SEQUENCE STATUS +SYMBOLIC
SEQUENTIAL STOP SYNC
SET +STRING SYNCHRONIZED
SIGN +SUB-QUEUE-1

PAGE 240

*TAB
+TABLE

TALLYING
+TAPE
+TERMINAL
+TERMINATE

UNIT
*UNLOCK
+UNSTRING

VALUE

WHEN
WITH

ZERO

+

=

+TEXT
THAN
THROUGH
THRU
TIME
TIMES

UNTIL
UP

+UPON

VALUES

WORDS
WORKING-STORAGE

ZEROES

>
...-,_

PAGE 241

TO
+TOP

TRAILING
+TYPE

USAGE
USE
USING

VARYING

WRITE

ZEROS

*
I
**

APPENDIX C

GLOSSARY

PAGE 242

GLOSSARY

The terms in this appendix are defined in accordance with their
meaning as used in this document describing COBOL and may not have
the same meaning for other languages .

These definitions are also intended to be either reference
material or introductory material to be reviewed prior to reading
the detailed language specifications . For this reason, these
definitions are, in most instances, brief and do not include
detailed syntactical rules .

Access Mode :
The manner in which records are to be operated upon within a file .

Actual Decimal Point:
The physical representation,
characters period <.) or comma
in a data item.

using either of the decimal point
(,), o ·f the decimal point position

Alphabet - Name :
A user-defined word, in the SPECIAL - NAMES paragraph of the
Environment Division, that assigns a name to a specific character
set and/or collating sequence.

Alphabetic Character :
A character that belongs
D, E, F, G, ' H, I, J, K,
Z, and the space .

Alphanumeric Character :

to the following set of letters:
L, M, N, O, p, Q, R, S, T, U, V,

Any character in the computer's character set .

Alternate Record Key :

A,
w.

B,
x.

c.
y,

A key, other than the prime record ke•J• whose contents identify a
record within an indexed file .

Arithmetic Expression :
An arithmetic expression
elementary item. a numeric
separated by arithmetic
separated by an arithmetic
enclosed in parentheses .

can be an
literaL such

identifier or
identifiers and

a numeric
literals

operators, two arithmetic expressions
operator, or an arithmetic expression

PAGE 243

Arithmetic Operator:
A single character that belongs to the following set :

Character

+

*
I

Ascending Key:

Meaning

addition
subtraction
multiplication
division

A key upon the values of which data is ordered starting with the
lowest value of key up to the highest value of key in accordance
with the rules for comparing data items .

Assumed Decimal Point :
A decimal point position which does not involve the existence of
an actual character in a data item. The assumed decimal point has
logical meaning but no physical representation.

At End Condition :
A condition caused during the execution of a READ statement for a
sequentially accessed file .

Block :
A physical unit of data that is normally composed of one or more
logical records . For mass storage files, a block may contain a
portion of a logical record. The size of a block has no direct
relationship to the size of the file within which the block is
contained or to the size of the logical record(s) that are either
continued within the block or that overlap the block. The term is
synonymous with physical record.

Called Program :
A program which is the object of a CALL statement combined at
object time with the calling program to produce a run unit.

Calling Program:
A program which executes a CALL to another program.

Character :
The basic indivisible unit of the language .

PAGE 244 •

Character Position :
A character position is the amount of physical storage required to
store a single standard data format character described as USAGE
is DISPLAY <one byte).

Character-String :
A sequence of contiguous characters which form a COBOL word , a
literal, a PICTURE character-string, o r a comment-entry .

Class Condition :
The proposition, for which a truth value can be determined. that
the content of an item is wholly alphabetic or is wholly numeric .

Clause:
A clause is an ordered set of consecutive COBOL character-strings
whose purpose is to specify an attribute of an entry .

COBOL Character Set:
The complete COBOL character set consists of the 51 characters
listed below.

Character

O, L .
A, B, .

+

*
I
=
$

11

(

)

,­.,_

.9
I z

COBOL Word. <See Word)

Collating Sequence :

Meaning

digit
letter
space <blank)
plus sign
minus sign (hyphen)
asterisk
stroke <virgule, slash)
equal sign
currency sign
comma (decimal point>
semicolon
period (decimal point>
quotation mark
left parenthesis
right parenthesis
greater than symbol
less than symbol

The sequence in which the characters that are acceptable
computer are ordered for purposes of comparing .

PAGE 245

in a

Column :
A ch aracter position within a print line . The columns are numbered
from 1 , by 1, starting at the leftmost character position o f the
print l i ne and extending to the rightmost position of the print
1 i ne .

Combin ed Cond i tion:
A con d i tion that
conditi ons with the

Commen t -Entr y :

is the
'AND' or

result of connecting two
the 'OR ' l ogical operator.

or· more

An e n t r y i n the Identification Division that may be any
combi nat i on of c haracters from the computer character set.

Comme n t Line:
A so urce program line represented by an asterisk in the indicator
area of the l ine a nd any characters from the computer's character
se t in area A and area B of that line . The comment line serves
onl y fo r documentation in a program. A special form of comment
l i n e represented by a stroke (/) in the indicator area of the line
and any characters from the computer ' s character set in area A and
area B of that line causes page ejection prior to printing the
comm e n t .

Compile-Time:
The time at which a COBOL source program is translated, by a COBOL
c ompi l er , to a COBOL object program.

Compiler Di recting Statement :
A s tatement, beginning with a compiler directing verb, that causes
the compiler to take a specific action during compilation .

Complex Condition :
A c ondition in which one or more logi cal operators act upon one or
mo r e conditions .

Co mputer-Name :
A system-name that identifies the computer upon which the
i s to be compiled or run (c ommentary only> .

PAGE 246

program

Condition:
A status of a program at execution time for which a truth value
can be determined. Where the term 'condition' (condit i on-1,
condition-2, . ..) appears in these language specifications in or
in reference to 'condition' (condition-!, condition-2, ...) of a
general format, it is a conditional expression consisting of a
simple condition, optionally parenthesized, consisting of the
syntactically correct combination of simple conditions, logical
operators, and parentheses, for which a truth value can be
determined.

Condition-Name:
A user-defined word assigned to a specific value, set of values,
or range of values, within the complete set of values that a
conditional variable may possess; or the user-defined word
assigned to a status of a system software switch .

Condition-Name Condition :
The proposition, for which a truth value can be determined, that
the value of a conditional variable is a member of the set of
values attributed to a condition-name associated with the
conditional variable .

Conditional Expression :
A simple condition or a complex condition specified in an IF or
PERFORM statement.

Conditional Statement:
A conditional statement specifies that the truth value of a
condition is to be determined and that the subsequent action of
the object program is dependent on this truth value .

Conditional Variable:
A data item one or more values
assigned to it.

Configuration Section:

of which has a condition name

A section of the Environment Division that describes o v erall
specifications of source and object computers .

PAGE 247

Connective:
A reserved word that is used to:

Associate a data-name, paragraph-name or condition-name with
its q_ualifier.

Link two or more operands written in a series .

Form conditions (logical connectives).

Contiguous Items:
Items that are described by consecutive entries in the Data
Division, and that bear a definite hierarchic relationship to each
other.

Counter:
A data item used for storing numbers or number representations in
a manner that permits these numbers to be increased or decreased
by the value of another number, or to be changed or reset to zero
nr to an arbitrary positive or negative value.

Currency Sign :
The character '$' of the COBOL character set.

Currency Symbol :
The character defined by the CURRENCY SIGN clause in the
SPECIAL-NAMES paragraph. If no CURRENCY SIGN clause is present in
a COBOL source program, the c urrency symbol is identical to the
currency sign .

Current Record :
The record which is available in the record area
the file.

associated with

Current Record Pointer:
A conceptual entity that
record .

Data Clause :
A clause that appears in a
Division and provides
attribute of a data item.

is used in the selection of the next

data description entry
_ inform at i on des cri b in g

in
a

the Data
particular

PAGE 248

•

Data Description Entry:
An entry in the Data Description that is composed
level-number followed by a data-name, if required,
followed by a set of data clauses, as required.

Data Item :

of a
and then

A character or a set of contiguous characters <excluding in either
case literals) defined as a unit of data by the COBOL program.

Data-Name:
A user-defined word that names a data item described in a data
description entry in the Data Division . When used in the general
formats, 'data-name' represents a word which can neither be
subscripted, indexed, nor qualified unless specifically permitted
by the rules for that format .

Debugging Line:
A debugging line is any line with 'D' in the indicator area of the
1 i ne.

Declaratives:
A set of one or more special purpose sections, written at the
beginning of the Procedure Division, the first of which is
preceded by the key word DECLARATIVES and the last of which is
followed by the key words END DECLARATIVES. A declarative is
composed of a section header, followed by a USE compiler directing
sentence , followed by a set of zero, one or more associated
paragraphs .

Declarative-Sentence :
A compiler-directing sentence consisting of a single USE statement
terminated by the separator period .

Delimiter:
A character or a sequence of contiguous characters that identify
the end of a string of characters and separates that string of
characters from the following string of characters . A delimiter is
not part of the string of characters that it delimits .

Digit Position :
A digit position is the amount of physical storage required to
store a single digit. This amount may vary depending on the usage
of the data item describing the digit position .

PAGE 249

Division :
A set of zero, one or more sections of paragraphs, called the
division body, that are formed and combined in accordance with a
specific set of rules. There are four (4) divisions in a COBOL
program : Identification, Environment, Data, and Procedure .

Division Header :
A combination of words followed by a
indicates the beginning of a division.

period and a space that
The division headers are :

IDENTIFICATION DIVISION.
ENVIRONMENT DIVISION.
DATA DIVISION.
PROCEDURE DIVISION [USING data-name-1 [data·-name-2J .. . J .

Dynamic Access:
An access mode in which specific logical records can be obtained
from or placed into a mass storage file in a non sequential manner
(see Random Access) and obtained from a file in a sequential
manner <see Sequential Access), during the scope of the same OPEN
statement .

Editing Character :
A single character or fixed two-character combination belonging to
the following set :

Character

B
0
+

CR
DB
z
* $

I

Elementary Item :

Meaning

space
zero
plus
minus
credit
debit
zero suppress
check protect
currency sign
comma <de c i m a 1 point)
period (decimal point)
stroke <virgule, slash)

A data item that is described as not being
subdivided.

further

End of Procedure Division :

logically

The physical position in a COBOL source program after which no
further procedures appear .

PAGE 250

Entry :
Any descriptive set of consecutive c l auses terminated by a period
and written in the Identification Division, Environment Division,
or Data Division of a COBOL source program.

Environment Clause:
A clause that appears as part of an Environment Division entry .

Execution Time . (See ObJect Time>

Extend Mode :
The state of a file afte r execut i on of an OPEN statement, with the
EXTEND phrase specified, for that file and before the execution of
a CLOSE statement for that file .

F igurative Constant :
A compiler generated value referenced through the use of certain
reserved words .

File :
A collection of records.

File Clause:
A clause that appears as part of the file description <FD> entries
in the Data Division .

FILE-CONTROL :
The name of an Environment Division paragraph in which the data
files for a given source program are declared .

File Description Entry :
An entry in the File Section of the Data Division that is composed
of the level indicator FD, followed by a file-name , and then
followed by a set of file clauses as required.

File-Name :
A user-defined word that names a file described in a file
description entry within the File Section of the Data Division.

F ile Organization :
The permanent logical file structure established at the time that
a file is created .

PAGE 251

File Section:
The section of the Data Division that contains file description
entries together with their associated record descriptions.

Format :
A specific arrangement of a set of data .

Group Item:
A named contiguous set of elementary or group items.

I-D-CONTROL:
The name of an Environment Division paragraph in which sharing of
same areas by several data files is specified.

I-0- Mode :
The state of a file after execution of an OPEN statement, with the
I-0 phrase specified, for that file and before the execution of a
CLOSE statement for that file.

Identifier:
A data-name, followed as required, by the
combination of qualifiers, subscripts,
make unique reference to a data item.

Imperative Statement:

syntactically correct
and indices necessary to

A statement that begins wit h an imperative verb and specifies an
unconditional action to be taken . An imperative statement may
consist of a sequence of imperative statements .

Index :
A data item, the contents of which represent the identification of
a particular element in a table .

Index Data Item :
A data item in which the value associated with an
be stored .

Index-Name :

index-name can

A user - defined word that names an index associated with a s p e cific
table .

PAGE 252

Indexed Data-Nam
An identifier t at is composed of a data-name, followed by one or
more index-names enclosed in parentheses .

Indexed File:
A file with inde ed organization .

Indexed Organization:
The permanent logical file
identified by the value
record .

Input File :

structure in
of one fixed

A file that is opened in the input mode .

Input Mode :

which each record is
length key within that

The state of a file after execution of an OPEN statement, with the
INPUT phrase specified, for that file and before the execution of
a CLOSE statement for that file .

Input-Output File :
A file that is opened in the I-0 mode .

Input-Output Section:
The section of the Environment Division that names the files and
the external media required by an object program and which
provides information required for transmission and handling of
data during execution of the object program.

Integer:
A numeric literal or a numeric data item that does not include any
character positions to the right of the assumed decimal point .
Where the term 'integer' appears in general formats, integer must
not be a numeric data item, and must not be signed, nor zero,
unless explicitly allowed by the rules of that format.

Invalid Key Condition :
A condition, at object time,
key associated with an indexed
be invalid .

Key :

caused when a specific value of the
or relative file is determined to

A data item which identifies the location of a record .

PAGE 253

Key Word:
A reserved word whose presence is required when the format in
which the word appears is used in a source program.

Level Indicator :
Two alphabetic characters that identify a specific type of file or
a position in hierarchy .

Level-Number :
A user-defined word which indicates the position of a data item in
the hierarchical structure of a logical record or which ind i cates
special properties of a data description entry . A level-number is
expressed as a one- or two-digit number. Level-numbers in the
range 1 through 49 indicate the position of a data item in the
hierarchical structure of a logical record . Level-numbers in the
range 1 through 9 may be written either as a single digit or as a
zero followed by a significant digit . Level-numbers 77 and 88
identify special properties of a data description entry .

Library-Name :
A user--defined word that names a COBOL library that is to be used
by the compiler for a given source program compilation .

Linkage Section :
The section in the Data Division of the called program that
describes the data items available from the calling program. These
data items may be referred to by both the calling and called
program.

Literal :
A character-string whose value is implied by the ordered
characters comprising the string .

Logical Operator :

set of

One of the reserved words AND, OR, or NOT . In the formation of a
condition, both or neither of AND and OR can be used as logical
connectives. NOT can be used for logical negation .

Mass Storage :
A storage medium on which data may be organized and maintained in
both a sequential and nonsequential manner .

PAGE 254

Mass Storage File:
A collection of records that is assigned to a mass storage medium.

Mnemonic-Name :
A user - defined word that is associated in the Environment Division
witha specified system-name.

Native Character Set :
The character set associated with the COBOL Compiler <ASCII) .

Native Collating Sequence :
The collating sequence associated with the native character set.

Negated Combined Condition :
The 'NOT' logical operator immediately followed by a parenthesized
combined condition .

Negated Simple Condition :
The ' NOT' logical operator
condition .

Next Executable Sentence :

immediately followed by a simple

The next sentence to which control will be transferred after
execution of the current statement is complete .

Next Executable Statement :
The next statement to which control will be transferred after
execution of the current statement is complete.

Next Record :
The record which logically follows the current record of a file .

Noncontiguous Items:
Elementary data items, in the
Sections. which bear no hierarchic
i terns .

Nonnumeric Item :

Working-Storage
relationship to

and Linkage
other data

A data item whose description permits its contents to be composed
of any combination of characters taken from the computer's
character set . Certain categories of nonnumeric items may be
formed from more restricted character sets.

PAGE 255

Nonnumeric Literal :
A character-string bounded by quotation marks . The string of
characters may include any character i n the computer's character
set. To represent a single quotation mark character within a
nonnumeric literal, two contiguous quotation marks must be used .

Numeric Character :
A character that belongs to the following set of digits: Q, L 2,
3, 4 , 5, 6, 7, 8 , 9 .

Numeric Item :
A data item whose description restricts its contents to a value
represented by characters chosen from the digits 1 0 1 through '9 1 i

i f signed, the item may a 1 so c on t a i n a 1 + ', ' ·- 1 , or o t h er
representation of an operational sign .

Numeric Litera 1 :
A literal composed of one or more nume r ic characters that al s o may
contain either a decimal poi n t, or an algebraic sign, or both . The
decimal point must not be the rightmost character . The a l ge braic
sign, if present, must be the leftmost character .

OBJECT-COMPUTER :
The name of an Environment Divi s ion paragraph in wh i ch the
computer environment, within which the object program is exec u ted,
is described.

Object of Entry:
A set of operands and reserved wo r ds, within a Data Div i s i on
entry, that immediately follows t he subject of the entry.

Object Program:
A set or group o f executable instruct i ons and other material
designed to interact with data to provide problem solut i ons . In
this context, an obje c t program is generally the result of the
operation of a COBOL compiler o n a s ource program. Where t h er e is
no danger of ambiguity , the word ,pro g ram' alone may be used in
place of the phrase 'object program' .

Object Time:
The time at which an object program is executed.

PAGE 256

Open Mode:
The state of a file after execution of an OPEN statement for that
file and before the execution of a CLOSE statement for that file .
The particular open mode is specified in the OPEN statement as
either INPUT, OUTPUT, I-0, or EXTEND.

Occurrence Number :
The relative data item number in a table.

Operand:
Whereas the general definition of operand
is operated upon', for the purposes of
lowercase word <or words) that appears
format may be considered to be an operand
implied reference to the data indicated by

Operational Sign :
An algebraic sign, associated with a
numeric literal, to indicate whether its
negative.

Optional Word:

is 'that component which
this publication, any
in a statement or entry
and, as such, is an
the operand.

numeric
value is

data item or a
positive or

A reserved word that is included in a specific format only to
improve the readability of the language and whose presence is
optional to the user when the format in which the word appears is
used in a source program.

Output File:
A file that is opened in either the output mode or extend mode .

Output Mode:
The state of a file after execution of an OPEN statement, with the
OUTPUT or EXTEND phrase specified, for that file and before the
execution of a CLOSE statement for that file .

Paragraph:
In the Procedure Division, a paragraph-name followed by a period
and a space and by zero, one, or more sentences . In the
Identification and Environment Divisions, a paragraph header
followed by zero, one, or more entries .

PAGE 257

Paragraph Header :
that ind i cates A reserved word, followed by a pe r iod and a space

the beginning of a paragraph in the Iden tification
Di visions. The permissible paragraph headers are :

and Envi r· on me nt

In the Identifi c at i on Division :

PROGRAM- I D.
AUTHOR .
INSTALLAT ION.
DATE-WRITTEN.
SECURITY.

In the Environment Division :

SOURCE-COMPUTER .
OBJECT-COMPUTER .
SPEC IAL·-NA1'1ES.
FILE-CONTROL .
I - 0 - CONTROL.

Paragraph-Name :
A user-defined word that identifies and begins a pa r agraph i n the
Procedure Division .

Phrase :
A phrase is an ordered
character-strings that
statement or of a COBOL

set of
form a

clause.

Physical Record . <See Block>

Prime Record Key:

one or more
portion of

consecutive COBOL
a COBOL procedural

A key whose contents uniquely identify a record within an
f i 1 e .

indexed

Procedure :
A paragraph or group of logically successive paragraphs, or a
section or group of logically successive sections , within the
Procedure Division .

Procedure-Name :
A user-defined word which is u s ed to name a paragraph or section
in the Procedure Division . It consists of a paragraph-name <which
may be qualified), or a section-name .

PAGE 258

Program-Name:
A user - defined word that identifies a COBOL source program.

Punctuation Character:
A character that belongs to the following set :

ChaT·acter

11

==

Qualified Data-Name:

Meaning

comma
semicolon
period
quotation mark
left parenthesis
right parenthesis
space
equal sign

An identifier that is composed of a data-name followed by
more sets of either of the connectives OF and IN followed
data-name qualifier .

Guali ·Pier :

one or
by a

A data-name which is used in a reference together with another
data name at a lower level in the same hierarchy . A section-name
which is used in a reference together with a paragraph-name
specified in that section.

Random Acce 'ss :
An access mode in which the program- specified value of a key data
item identifies the logical record that is obtained from. deleted
from. or placed into a relative or indexed file .

Hecord Area:
A storage area allocated for the purpose of processing the record
described in a record descr i ption entry in the File Section .

Record Description . <See Record Description Entry)

Record Description Entry :
The total set of data
particular record .

description

PAGE 259

entries associated with a

Record Key :
The prime record key whose contents uniquely
within an indexed file .

Record-Name:

identify a record

A user-defined word that names a record described in a record
description entry in the Data Division.

Reference Format :
A format that provides a standard method
source programs.

Relation. <See Relational Operator)

Relation Character :

for describing COBOL

A character that belongs to the following set :

Character

=

Relation Condition :

Meaning

greater than
less than
equal to

The proposition, for which a truth value can be determined, that
the value of a data item has a specific relationship to the value
of another data item. <See Relational Operator)

PAGE 260

Relational Operator:
A reserved word, a relation character, a group of consecutive
reserved words, or a group of consecutive reserved words and
relation characters used in the construction of a relation
condition. The permissible operators and their meanings are:

F~elational Operator Meaning

·- ------·-- -- --.. -

IS CNOTJ GREATER THAN Greater than or not
IS [NOTJ

-·· greater than

IS CNOTJ LESS THAN Less than or not
IS [NOTJ ·::: less than

IS CNOTJ EQUAL TO Equal to or not
IS ENOTJ = equal to

Relative File:
A file with relative organization.

Relative Key:
A key whose contents identifies a logical
f i 1 e.

record

Relative Organization :

in a relative

The permanent logical file structure in which each record is
uniquely identified by an integer value greater than zero, which
specifies the record ! s logical ordinal position in the file.

Reserved Word:
A COBOL word specified in the list of words which may be used in
COBOL source programs, but which must not appear in the programs
as user-defined words or system-names .

Run Unit:
A set of
time, as a

Section :

one or more object programs which function at object
unit to provide problem solutions.

A set of zero, one, or more paragraphs or entries, called a
section· body, the first of which is preceded by a section header .
Each section consists of the section header and the related
section body.

PAGE 261

Section Header :
A combination of words followed
indicates the beginning of a section
Procedure Division.

by a period and a space that
in the Environment, Data and

I n the Environment and Data Divisions, a section header is
c omposed of reserved words followed by a period and a space . The
permissible section headers are :

In the Environment Division :

CONFIGURATION SECTION.
INPUT-OUTPUT SECTION.

In the Data Division :

FILE SECTION.
WORKING-STORAGE SECTION.
LINKAGE SECTION.

In the Procedure Division, a section header is composed of a
section-name, followed by the reserved word SECTION, followed by a
segment-number <optional), followed by a period and a space .

S ection-Name :
A user-defined
Division .

word which names a section in the Procedure

Segment-Number :
A user-defined word which classifies sections in the Procedure
Di vision for purposes of segmentation . Segment-numbers may contain
only the characters '0', '1 ', . . . , '9'. A segment --number may be
expressed either as a one- or two - digit number.

Sentence :
A sequence of one or more statements,
terminated by a period followed by a space.

the last of which is

Separator :
A punctuation character used to delimit character-strings .

Se quential Access :
An access mode in which logical records
placed into a file in a consecutive
logical record sequence determined by the
f i 1 e .

PAGE 262

are ob t ained from or
predecessor-to-successor
order of records in the

Sequential File:
A file with sequential organization .

Sequential Organization:
The permanent logical file structure
identified by a predecessor-successor
when the record is placed into the file .

Simple Condition :
Any single condition chosen from the set :

relation condition
class condition
condition-name condition
switch-status condition
<simple-condition)

SOURCE-COMPUTER:

in which a
relationship

record is
established

The name of an Environment Division paragraph in which the
computer environment, within which the source program is compiled,
is described .

Source Program:
A syntactically correct set of COBOL statements beginning with an
Identification Division and ending with the end of the Procedure
Division. In contexts where there is no danger of ambiguity, the
word 'program' alone may be used in place of the phrase 'source
program. '

PAGE 263

Special Character :
A character that belongs to the following set:

Character

+

*
I
=
$

11

Special-Character Word :
A reserved word which is an
character.

SPECIAL -NAI'1ES :

Meaning

plus sign
minus sign
asterisk
stroke (virgule, slash)
equal sign
currency sign
comma (decimal point)
semicolon
period <decimal point)
quotation mark
left parenthesis
right parenthesis
greater than symbol
less than symbol

arithmetic operator or

The name of an Environment Division paragraph
switch-names are related to user-defined words.

S tandard Data Format :

a relation

in which

The concept used in describing t he characteris t ics of data in a
COBOL Data Division under the characteristics or properties of the
data are expressed in a form oriented to the appearance of the
data on a printed page of infinite length and breadth, rather than
a form oriented to the manner in which the data is stored
internally in the computer, or on a particular external medium.

Statement:
A syntactically valid combination of words and symbols written in
the Procedure Division beginning with a verb .

S ubJect of Entry :
An operand or reserved word that appears immediately following the
level indicator or the level-number in a Data Division entry.

Subprogram. (See Called Program)

PAGE 264

Subscript:
An integer whose value identifies a particular element in a table .

Subscripted Data-Name:
An identifier that is composed of a data-name followed by
more subscripts enclosed in parentheses .

Switch-Status Condition :

one or

The proposition, for which a truth value can be determined that a
switch, capable of being set to an 'on' or 'off' status, has been
set to a specific status .

System-Name :
A COBOL word
environment .

which is used to communicate with the operating

Table :
A set of logically consecutive items of data that are
the Data Division by means of the OCCURS clause.

Table Element:

defined in

A data item that belongs to the set of repeated items comprising a
table .

Text-Name :
A file access name that identifies library text.

Truth Value :
The representation of the result of the evaluation of a condition
in terms of one of two values:

true
false

Unary OperatoT· :
A plus (+) or a minus
left parenthesis in
effect of multiplying

User-Defined Word :

(-) sign, which precedes a variable or a
an arithmetic expression and which has the

the expression by +1 or -1 respectively .

A COBOL word that must be supplied by
format of a clause or statement.

the user to satisfy the

PAGE 265

Variable:
A data item whose value may be changed by execution of the object
program. A variable used in an arithmetic expression must be a
numeric elementary item.

Verb :
A word that expresses an action to be taken by a COBOL compiler or
obJect program.

Word :
A character-string
user-defined word,

of not more than 30 characters which forms a
a system-name, or a reserved word .

Working-Storage Section :
The section of the Data Division that describes working storage
data items, composed either of noncontiguous items or of working
storage records or of both .

77-Level-Description-Entry :
A data desccription entry that describes a noncontiguous data item
with the level-number 77.

PAGE 266

APPENDIX D

COMPOSITE LANGUAGE SKELETON

PAGE 267

COMPOSITE LANGUAGE SKELETON

·--- --------

This section contains the composite l anguage skeleton of t he
American National Standard COBOL . It i s intend e d to di s play
complete and syntactically correct fo r mats .

For the general formats of the four divisions the leftmost ma r gin
is equivalent to margin A in a COBOL source program. The first
indentation after the leftmost margin is equivalent to margin B in
a COBOL source program.

For the general formats of the verbs and conditions the leftmost
margin indicates the beginning of the format for a new COBOL verb .
The first indentation after the leftmost margin indicate s
continuation of the format of the COBOL verb.

The following is a summary of the formats shown on
pages :

Identification Division gen e r a l fo r mat
Environment Division general format
The three fo r mats of the file c ontrol entry
Data Division gene r al format
The three fo r mats fo r a data description entry
The format for a field definit i on entry
Procedure Division general format

the f ollowing

General format of ve r bs li s ted in alphabetical order
General format for conditions
Formats for qualification , sub s cripting , indexing , and

an identifier
General format for a COPY s tatement

PAGE 268

RM/COBOL LANGUAGE SYNTAX

T he RM/COBOL language is based u pon the ANSI X3 . 23- 1974 COBOL
st andard . Minor departures fr o m th a t document are reflected in the
s yntax descript i on which follows but are not separately noted.
S emantic rules are not changed .

The description is in a conden se d form of the standard COBOL
syntax notation. In s o me cases se parate formats are combined and
general terms are employed for user names.

System- names and implementation rest r ictions are :

computer --name :
program-name :
switch --names :
device-types :

external-file-name :

User-defined word
8 -c haracter name
SWITCH-1 • . . . , SWITCH-8
PRINT
INPUT
OUTPUT
INPUT ·-OUTPUT
RANDOM
One - to thirty - character name

PAGE 269

IDENTIFICATION DIVISION GENERAL FORMAT

IDENTIFICATION DIVISION.

PROGRAM-ID. program-name .

[AUTHOR. [comment ·-entryJ . .. J

[INSTALLATION. [comment - entry]]

[DATE-WRITTEN. [c omment --entr tj J]

[SECUR ITV. [comment - entry] J

PAGE 270

ENVIRONMENT DIVISION GENERAL FORMAT
- - - -·--------·-- - -- ·-

ENVIRONMENT DIVISION.

CONFIGURATION SECTION.

SOURCE·-COt·1PUTER . c o m p u t er .. _name .

OBJECT--COMPUTER . c omp ut er ·-name

[, MEI"'ORY SIZE integeT' {WORDS }]

{CI-·IARACTERS}

{MODULES }

[, PROGRAM COLLATING SEQUENCE IS alphabet - name].

[SPECIAL--NAMES. [, switch .. -n a me

{ON STATUS IS condition - name-1 [, OFF STATUS IS condition-name-2J}J

{OFF STATus' I S condition·-name ·-2 [, ON STATUS IS condition·-n ame - 1J } J

[, alphabet - name IS {STANDARD-1,}J

{NATIVE }

L CURI~ENCY SIGN IS literal - 1J

[, DECIMAL- POINT IS COMMAJ. J

PAGE 271

[INPUT-OUTPUT SECTION .

FILE -CONTROL.

{file-control - entry}

[I -0·-CONTROL.

[; SAME AREA FOR file ·-name-1 L file·-name-2J . .. J JJ

PAGE 272

FILE CONTROL ENTRY GENERAL FORMAT

FORMAT 1

SELECT file-name

ASSIGN TO device-type {"external-file-name"}
------ {data-name-1 }

[; ORGANIZATION IS SEQUENTIAL]

[; ACCESS MODE IS SEQUENTIAL]

[; FILE STATUS IS data-name-2J .

FORMAT 2

SELECT file-name

ASSIGN TO RANDOM , {"external-file-name"}
{data-name-1 }

ORGANIZATION IS RELATIVE

[; ACCESS MODE IS { SEQUENTIAL [, RELATIVE KEY IS data-name-2]} J

{{RANDOM } , RELATIVE KEY IS data-name-2 }

{{DYNAMIC} }

[; FILE STATUS IS data-name-3J.

PAGE 273

FORMAT 3

SELECT f i l e·-name

ASSIGN TO RANDOM, {"external-file--name"}
------ ------ {data-name-1 }

ORGANIZATION IS INDEXED

[; ACCESS MODE IS <SEQUENTIAL}]

<RANDOM }

{DYNAMIC }

RECORD KEY IS data-name-2

[; ALTERNATE RECORD KEY IS data-name-3 [WITH DUPLICATESJJ ...

[; FILE STATUS IS data-name-4J .

PAGE 274

DATA DIVISION GENERAL FORMAT

Dl\TA DIVISION.

CFIL.E SECTION.

[FD f i 1 e --name

[; BLOCK CONTAINS Cinteger-1 TOJ integer-2 <RECORDS }J

{CHARACTERS}

[; RECORD CONTAINS Cinteger-3 TOJ integer-4 CHARACTERS]

LABEL {RECORD IS } {STANDARD}

<RECORDS ARE} {OMITTED }

[; VALUE OF LABEL IS ~onnumeric-literal-lJJ

[; DATA {RECORD IS } data-name-1 [, data-name-2] . . . J

{RECORDS ARE}

[re c or d- de s'c r i p t i on-en t T' y J] ...

[WORKING-STORAGE SECTION .

[77-level-description-entryJ J
[record-description - entry J

[L INKAGE SECTION.

[77-level-description-entryJ J
[record-description-entry J

PAGE 275

DATA DESCRIPTION ENTRY GENERAL FORMAT

·-------------·------ -

FORMAT 1

l e ve l - number {data-name-1}
<FILLER }

[; REDEFINES data-name- 2J

[; <PICTURE} IS character-string]

<PIC }

[; [USAGE ISJ {COMPUTATIONAL. }J

{COMP }

<COMPUTATIONAL-1}

<COMP-1 }

<COMPUTATI ONAL- 3}

{C0i"1P--3 }

{ DISPLAY }

{II\IDEX }

[; [SIGN ISJ TRAILING [SEPt~RATE CH,,~RAC TERJ J

[; OCCURS {integer-1 TIMES }
----- - { i nteger-1 TO intege r-2 T I MES DEPENDING ON data -name-3}

[INDEXED BY index-name-1 [, i nde x-na me-2] .. . J J

• PAGE 276

[; <SYNCHRONIZED} [LEFT J J

{SYNC } CRIGHTJ

[; {JUSTIFIED} RIGHT J

[; BLANK WHEN ZEROJ

[; VALUE IS literalJ

FORt1AT 2

66 data-name-1; RENAMES data-name-2 [{THROUGH} data-name-3] 0

{THRU }

FORMAT 3

i38 conditiono-n.3me; {VALUE IS }

{VALUES ARE}

literal-! ({THROUGH} literal-2J

{THRU }

[, literal-3 [{THROUGH} literal-4J J 0 0 0

{THRU }

PAGE 277

PROCEDURE DIVISON GENERAL FORMAT

---·-------

FORMAT 1

PROCEDURE DIVISION [USING data-name-1 [, data-name-2J . . . J .

[DECLARATIVES.

{s ection-name SECTION [segment-number] . declarative-sentence

[paragraph-name . [sentence]] } ...

END DECLARATIVES. J

{s ection-name SECTION (segment-number].

[paragraph-name . [sentence]] ... } ...

END PROGRAM.

FORMAT 2

PROCEDURE DIVISION [USING data-name-1 [, data-name-2] . .. J .

{paragraph-name. [sentence] }

END PROGRAM.

PAGE 278

GENER AL FORMAT FOR VERBS

ACCEPT {identifier- 1 [, UNIT {identifier-2}J
- ----- {literal-1 }

[, LINE {identi.fier-3}] [I POSITION {identifier-4}]
{literal-2 }

___ ___ .. ____
Oiteral-3 }

[' SIZE {identifier - S}] [, PROMPT [literal - 5JJ
{literal-4 } --·-- ·---

L ECHOJ [, CONVERT] [, TABJ [, ERASEJ L NO BEEPJ

[, {OFF}] [, ON EXCEPTION identifier ·-6 imperative statement]} .. .

ACCEPT identifier FROM {DATE}

{DAY }

{ T IME}

ADD {identifi e r-1} [, identifier-2J TO identifier-m CROUNDEDJ
{literal-1 } (, literal-2 J

[; ON SIZE ERROR imperati ve·- statementJ

' ADD {identifier-!},
{literal--1 }

{identifi e r-2} [, identifier-3]
{literal -2 } [, literal-3 J

GIVING identifier-m [ROUNDEDJ

[; ON SIZE ERROR imperative ·- statementJ

ADD {CORRESPONDING} identifier --1 TO identifier-2

{CORR }

[ROUNDED] [; ON SIZE ERROR imperative-statement]

PAGE 279

ALTER procedure-name-1 TO [PROCEED TOJ procedure-name-2

[, procedure-name-3 TO [PROCEED TOJ procedure-name-4] .. .

CALL {identifier-!} [USING data-name-1 [, data-name-2] ... J
{literal-! } -----

CLOSE file-name-1 [{REEL} [WITH NO REWINDJ J

{UNIT}

WITH {NO REWIND}

{LOCK }

[, file-name-2 [{REEL} [WITH NO REWINDJ J J .. .

{UNIT}

WITH {NO REWIND}

{LOCK }

COMPUTE identifier-! [ROUNDED] = a rithmetic-expression

[; ON SIZE ERROR imperati ve-statement]

DELETE file-name RECORD [;

DISPLAY {{identifier-!} [,
- ------ {literal-! }

INVALID KEY imperative-statement]

UNIT {identifier-2} J
{literal - 2 }

L LINE {identifier·-3})[, POSITION {identifier·-4}]
{literal-3 } -------- {literal-4 }

L SIZE {identifier-5}][, BEEP][, ER/~SEJ

{literal-5 } -----

[,<H IGH}][, BLI NK][, REVERSEJ}

{LOW }

PAGE 280

DIVIDE {identifier-1} INTO identifier-2 [ROUNDEDJ
------ {literal-1 } ----- --

[; ON SIZE ERROR imperative-statement)

DIVIDE {identifier-1} INTO {identifier-2} GIVING identifier-3
------ {l i teral-1 } {literal -2 } ------

[ROUNDEDJ [; ON SIZE ERROR imperative-statement]

DIVIDE {identifier-1} BY {identifier-2} GIVING identifier - 3 [ROUNDEDJ
- ----- {literal-1 } {literal-2 } ------ -------

[; ON SIZE ERROR imperative-statement]

EXIT CPROGRAMJ.

GO TO procedure - name-1

GO TO procedure-name-1 [, procedure - name-2] ... procedure-name-n

DEPENDING ON identifier

IF condition; {statement-1 } {; ELSE statement-2 }

<NEXT SENTENCE> {; ELSE NEXT SENTENCE>

PAGE 281

INSPECT identifier-1

NOTE :

[TALLYING identifier-2 FOR {{ALL } {identif i er - 3}}
{literal-l }}

{{LEADING}

{ CHARACTERS }

[{BEFORE} INITIAL {identifier- 4}JJ
- ----- {literal-2 }

<AFTER }

[REPLACING {{ALL } {identifier-S}} BY { i dentifie r -6}
{literal - 3 } { l iteral-4 }

{{LEADING} }

{{FIRST } }

{ CHARACTERS }

[{BEFORE} INITIAL {identifier-7}JJ
------ {literal-S }

<AFTER }

The TALLYING option. the REPLACING option. or both
options must be sel e cted .

PAGE 282

t··1QIJE {identifier-!} TO identi ·F:ieT·-2 [, identifier-3] . . .
{literal }

MOVE {CORRESPONDING} identifier-1 TO identifier-2

<CORR }

MULTIPLY {identifier-1} BY identifier-2 [ROUNDEDJ
-------- {literal-1 } -------

[; ON SIZE ERROR imperative-statement]

MULTIPLY {identifier-!} BY {identifier-2} GIVING identifier - 3
-------- {literal-1 } <literal-2 } ---- --

[ROUNDED] [; ON SIZE ERROR imperative-statement]

OPEN {{INPUT file-name-1 [WITH NO REWINDJ}

[, file ··-name-2 [WITH NO REWINDJ.

<OUTPUT file -name-3 [WITH NO REWIND]}

[, file ·--name-4 [WITH NO REWINDJJ ..

{I -0 f i 1 e-name- 5} [, f i 1 e .. -name-6] . ..

<EXTEND f i l e ·- name-7} [, f i 1 e-name-8] .. . } .. .

PAGE 283

PERFORM procedure-name-! [{THROUGH} procedure-name-2]

<THRU }

PERFORM procedure-name-! [{THROUGH} procedure-name-2]

{identifier-!} TIMES
{literal-1 } -----

<THRU }

PERFORM procedure - name - 1 [{ THROUGH} procedure - name -2]

<THRU }

UNTIL condition-!

PERFORM procedure - name-! [{THROUGH> procedure - name-2]

<THRU }

VARYING {identifier- 2} FROM {identifier-3}
------- {index-name- 1} {index - name-2}

{literal-1 }

BY <identifier-4} UNTIL conditi on - !
{literal - 3 } - - - --

[AFTER {identifier-5} FROM {identifier-6}
--- -- { index - name-3} {index-name-4}

{literal - 3 }

BY {identifier-7} UNTIL condition-2
{literal-4 } -----

[AFTER { identifier-S} FROM {ident i fier-9}
---- - {index-name- 5} { i ndex-name-6}

{literal-5 }

BY {identifier-10} UNTIL condition-3 J J
{literal-6 } --- --

PAGE 284

READ file-name RECORD [INTO identifier]

[; AT END imper·ative - stateme n tJ

RE AD f i le - name CNEXTJ RECORD CWITH NO LOCKJ CINTO identifier]

[; AT END i mperative-statement]

READ file - name RECORD [WITH NO LOCKJ [INTO identifier]

[; KEY IS data -name]

[; INVAL ID KEY imperative -- stat e ment]

REWRITE record-name [FROM identifier]

[; INVALID KEY imperative--statement]

SET { i dent i fier - 1 L identifiel'-2]
{ ind e x-name - 1 [, ind e x- name--2]

. } TO {i dentifier-3}

. } {index-name-3}
{integer-1 }

SET i ndex - name-4 [, index - name-5] . . . {UP BY } {identifier-4}
{integer-2 }

{DOWN BY}

PAGE 285

START file-name [KEY {IS EQUAL TO } data-name]
--- --- --- .. -·-

{IS -· }

{IS GREATER THAN }

---- ---
{IS :> }

{IS NOT LESS THAN}

{IS NOT -::: }

L INVALID KEY imperative--statement]

STOP {RUN }

{literal }

SUBTRACT {identifier-!} [,
-------- {literal-1 } [,

identifier-2J
literal-2 J

FROM identifier-m

[ROUNDEDJ [; ON SIZE ERROR imperative-statement]

SUBTRACT {identifier-!} [, identifier-2J
- -------- {literal-1 } [, literal-2 J

GIVING identifier-n [ROUNDEDJ

[; ON SIZE ERROR imperative-statement]

FROM {identifier-m}
{literal - m }

SUBTRACT {CORRESPONDING} identifier --! FROM identifier-2 [ROUNDEDJ

{CORR }

L ON SIZE ERROR imperative - statement]

UNLOCK file-name-1 RECORD

PAGE 286

USE AFTER STANDARD <EXCEPTION>

<ERROR }

PROCEDURE ON { f i 1 e ·-name-1 L f i 1 e-name-2J ... }

<INPUT }

{OUTPUT }

{ I ·-0 }

<EXTEND }

WRITE record-name [FROM identifier-1J

<BEFORE> ADVANCING {{identifier-2} {LINE }}
- --- -- {{integer } <LINES}}

<AFTER } { PAGE }

WRITE record-name [FROM identifier]

[; INVALID KEY imperative--statement]

PAGE 287

GENERAL FORMAT FOR CONDITIONS

RELATION CONDITION :

{identifier-1 } {IS [NOTJ GREATER THAN} {identifier-2 }

{literal-1 } -------H-- {literal-2 }

{index-name-1 } {IS [NOTJ LESS THAN } {index ·-name·-2 }

{IS [NOTJ EQUAL TO '\.
J

{IS [NOTJ ... ::- }

<IS [NOTJ .:.- } -

{IS [NOTJ = }

CLASS CONDITION :

identifier IS [NOTJ {NUMERIC }

{ALPHABETIC}

CONDITION-NAME CONDITION:

c ond it i on·-name

SWITCH-STATUS CONDITION :

condition --name

NEGATED SIMPLE CONDITION:

NOT simple-condition

PAGE 288

COMBINED CONDITION:

condition {{AND} condition} .. .

{OR }

PAGE 289

MISCELLANEOUS FORMATS

QUALIFICATION :

{data-name-1 } [{OF} data-name-2] . . .
{condition-name}

<IN}

paragraph-name [{OF} section-name]

<IN>

SUBSCRIPTING :

{data-name } <subscr· ipt-1 L subscript-2 [, subscript-3] J)
{condition-name}

INDEXING :

{data-name } ({index-name-1 [{+} literal-2]}
{condition-name} <literal- 1 { - } }

[, {index-name-2({+} literal - 4]}
{literal - 3 {-} }

L {index-name-3 [{+} literal-6J } J J)
{literal-S {-} }

PAGE 290

IDENTIFIER :

FORMAT 1

data - name-1 [{QF} data - name-2] ...

<IN}

((subscript-1 (, subscript-2 (, subscript-3] J) J

FORMAT 2

data-name-1 ({QF} data-name-2J . . . [({index-name-1 [{+} literal-2J
{literal-1 {-}

<IN>

L {index-name-2 [{+} literal - t1J}
<literal-3 {-} }

[, {index-name-3 [{+} literal-6]} JJ)J
{literal-5 <-> >

PAGE 291

GENERAL FORMAT FOR COPY STATEMENT

COPY text-name

•

PAGE ;;:92

Function Module

Nucleus
Table Handling
Sequential I/0
Relative I/0
Indexed I/0
So ·rt--Merge
Report Writer
Segmentation
Library
Debug

COBOL LEVEL OF IMPLEMENTATION

Implementation

Level 2 .
Level 1+.
Level 2.
Leve 1 2 .
Leve 1 2 .
Null.
Null.
Level 1.
Level 1.

Inter-program Communication
Communication

N/S. Conditional compile and
execution time interactive debugger.
L.eve 1 1.
Modified ACCEPT and DISPLAY for
terminal communication .

MODULE

ANSI COBOL X3 . 23 1974

FEDERAL INFORMATION
PROCESSING STANDARD <FIPS)

:--
HIGH LOW RM

: HIGH : INTERMEDIATE INTERMEDIATE : LOW COBOL:
:-----------------:------:-------------- --------------:----- -----:

NUCLEUS 2
TABLE HANDLING 2
SEQUENTIAL I/0 2
RELATIVE I/0 2
INDEXED I/0 2
SORT-MERGE 2
REPORT WRITER
SEGMENTATION 2
LIBRARY 2
DEBUG 2
INTER-PROGRAM

COMMUNICATION 2
COMMUNICATION 2

N/S = Nonstandard

2
2
2
2

1

1
1
2

'") ... _
2

PAGE 293

1
1
1
1

1
1
1

1

1
1
1

2
1+
2
2
2

1
1

N/S

1+
N/S

EXTENSIONS BEYOND STATED LEVELS

Level 2 Nucleus (2 NUC):

- Data description includes a USAGE type of COMPUTATIONAL-1 or
COMP-1 for describing single word twos complement signed
binary data (nonstandard) .

- Data description includes a USAGE type of COMPUTATIONAL-3 or
COMP-3 for describing packed decimal data (nonstandard) .

-The ACCEPT statement allows multiple operands (nonstandard).

- The ACCEPT statement includes syntax for specifying CRT
control information (nonstandard) .

- The DISPLAY statement includes syntax for specifying CRT
control information <nonstandard) .

Level 1 Table Handling (1 TBL> :

- Variable group size <OCCURS DEPENDING) .

Level 2 SeQuential I-0 <2 SEG>:

The file control SELECT clause allows specification of the
external file name as a literal or data item (nonstandard).

The READ statement includes the WITH NO LOCK option
<nonstandard) .

The UNLOCK statement is included (nonstandard).

Level 2 Relative I-0 (2 REL>:

- The file control SELECT clause allows specification of the
external file name as a literal or data item (nonstandard).

- The READ statement includes the WITH NO LOCK option
(nonstandard) .

The UNLOCK statement is included . (nonstandard).

PAGE 294

Level 2 Indexed I-0 <2 INX):

The file control SELECT clause allows specification of the
external file name as a literal or data item (nonstandard) .

The READ statement includes the WITH NO LOCK option
(nonstandard) .

The UNLOCK statement is included (nonstandard).

Level 1 Debug (1 DEB>:

An interactive execution time debug
<nonstandard> .

Level 1 Inter-Program Communication <1 IPC> :

facility is provided

The CALL statement allows literals in USING phrase
<nonstandard) .

The CALL statement allows identifiers in the USING phrase to
be described with level number 01 through 49 and level
number 77 <nonstandard).

- The CALL statement supports specification of a variable
program name as identifier-! <level 2 IPC).

Level 1 Communication <1 COM) ;

ACCEPT and DISPLAY allow specification of complete screen
format in the Procedure Division <nonstandard) .

PAGE 295

EXCEPTIONS TO STATED LEVELS

Level 2 Nucleus <2 NUC):

DATE-COMPILED
Divison.

is not supported in the Identification

In data description the SIGN clause cannot specify LEADING
for the operational sign; omission of the SEPARATE phrase
has no effect; all operational signs are separate trailing
characters .

Alphabet-name IS literal or implementor-name may not be
specified in SPECIAL- NAMES paragraph .

Multiple results are not supported in arithmetic statements.

REMAINDER is not supported in DIVIDE statement .

A procedure-name is required in GO TO statements .

INSPECT data items are restricted to single character.

Compound TALLYING and REPLACING clauses
statement are not supported .

in the INSPECT

When used in the Procedure Division, the numeric literal in
the ALL form of a figurative constant may not contain more
than one character.

Arithmetic
statements .

expres sions may be used only in COMPUTE

Exponentiation to a noninteger power i s not supported .

Sign conditions are not supported .

Abbreviated combined relation conditions are not supported .

The STRING and UNSTRING statements are not supported .

Level 2 Sequential I-0 <2 SEG>:

OPTIONAL and RESERVE may not be specified
clause .

in th e S ELECT

RERUN, SAME AREA or MULTIPLE FILE clauses are not supported
in I -0-CONTROL.

PAGE 296

CODE-SET and LINAGE clauses may not be specified in a file
description entry .

The me nmonic - name and EOP options of the WRI TE statemen t are
not supported .

The REVERSED option of t h e OPEN statement is not supported .

- The FOR REMOVAL option of the CLOSE statement is not
supported .

Level 2 Relative I-0 (2 REL> :

The RESERVE clause of the SELECT entry is not supporte d.

- RERUN, SAME AEA or MULTIPLE FILE clauses a r e not su pp orte d
in I-D-CONTROL.

The VALUE OF clause in an FD entry must not specify a data
name.

Level 2 Indexed I-0 (2 INX) :

The RESERVE clause of the SELECT entry is not supporte d .

RERUN, SAME AREA or MULTIPLE FILE clauses are not supported
in I - D-CONTROL.

Level 1 Segmentation (1 SEG) :

- All independent segments must physica l ly follow the f ixed
permanent se gments in the source program.

Level 1 L i brary (1 LIB> :

A copy sentence must be the last entry in area B of a so urce
record .

L e vel 1 Inter-Program Communication (1 IPC>:

- A CALLed prog r am is automatically cancelled upon execution
of the EXIT PROGRAM statement.

PAGE 297

•

APPENDIX E

SAMPLE PROGRAMS

PAGE 298

TRS-80 Model II COBOL CRM/COBOL 1.2)
SOURCE FILE: EXAMPLE1

4/ 8/80 08.33.41 PAGE
OPTION LIST: IL 0 T X

LINE

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
L11

42
43
44
45
46
47
48
49
50
51
52
53

DEBUG PG/LN A. • .B ••••••••••• • ••••••.•••••••••••••••••••••••• • .••••••••••• • • •• ID. • ...

IDENTIFICATION DIVISION.
PROGRAM-ID.
AUTHOR.
INSTALLATION.
DATE- WRITTEN.

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.

SOURCE-COMPUTER.
OBJECT-COMPUTER.

INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT NAME- ADDRESS,

EXAMPLE1.
D.H.WEISS.
RADIO SHACfC
JAN 80.

MODEL I I.
MODEL I I -64f'\.

FOR A RELATIVE FILE:
ORGANIZATION MUST BE RELATIVE
ACCESS MODE MAY BE SEQUENTIAL OR RANDOM
THE RELATIVE KEY DATA-NAME MUST BE

DEFINED IN WORKING-STORAGE AS
AN UNSIGNED INTEGER

000100
000110
000120
000130
000140
000150
000160
000170
000180
000190
000200
000210
000220
000230*
{2)0024121*
00025121*
000260*
000270*
0012128121*
000290
000300
000310
000320
000330
00034121
000350
000360
000370
00038121*
00039121*
000400*
01210410*
000420*
000430*

ASSIGN TO RANDOM, "COBNAMES/REL"•
ORGANIZATION IS RELATIVE
ACCESS MODE IS RANDOM
RELATIVE KEY IS WST-REL-KEY.

DATA DIVISION.
FILE SECTION.

00044121*
000450 FD NAME-ADDRESS

EACH RECORD OF THE FILE WILL CONTAIN:
FULL NAME
TWO LINES OF ADDRESS
AND A SEPARATE FIELD FOR ZIPCODE

FILLER IS INCLUDED TO ALLOW ROOM FOR
EXPANSION WITHOUT THE NEED TO RESIZE
THE RECORD

000460
00{2)470
000480
000490
000500 01
000510
000520
{2)12)0530
000540
000550
000560

BLOCK CONTAINS 1 RECORDS
RECORD CONTAINS 12121 CHARACTERS
LABEL RECORDS ARE STANDARD
DATA RECORD IS NAME- RECD.

NAME-RECD.
03 NAM-NAME
03 NAM-ADD1
03 NAM-ADD2
03 NAM-ZIPC
03 FILLER

000570 WORKING-STORAGE
000580*
000590
000600*
000610
000620*

77

77

WST-COUNT

WST-THIRTY

SECTION.

PlC
PlC
PlC
PlC
PlC

X C30).
XC30l.
XC3121>.
9(5).
XC 25).

COUNT OF NUMBER OF RECORDS PROCESSED
PlC S999 COMP-3 VALUE 0.

CONSTANT FOR USE AS DISPLAY SIZE
PlC S99 COMP-3 VALUE 30.

SCREEN LINE COUNT TO FACILITATE CLEARING

TRS- 80 Model II COBOL <RM/COBOL 1.2)
SOURCE FILE: EXAMPLEl

4/ 8/80 08.33.41 PAGE
OPTION LIST: CL 0 T X

LINE DEBUG PG/LN A ... B ...••••..•.••.•..•.•...•...•..•••....••......••.•.•.••.••.•• ID •••••

54 1Zl0!i.l6~312l* LINES AFTER EACH RECORD IS WRITTEN
=·5 000640 77 l>JST-L..INE PIC S99 COMP-3.
56 1Zl00650* MUST BE DEFINED FOR RELATIVE FILE TO
57 000660·~ ACCESS A RECORD RANDOMLY
58 11)12)0670 T1 WST --REL --hEY PlC 9 VALUE 1.

=·9 000680* FIELD WITH USAGE OF DISPLAY TO HOLD
61Zl 1Zl01Zl691Zl·ll- l>JST-COUNT FOR DISPLAYING ON SCREEN
6l. 1Zl1Zl1Zl700 77 DSP-COUNT PlC 999.
62 12!00710
63 IZH2ll2l720

TRS-80 Model II COBOL CRM/COBOL 1.2)
SOURCE FILE: EXAMPLE!

4/ 8/80 08.33.41 PAGE
OPTION LIST: IL 0 T X

3

LINE DEBUG PG/LN A ... B•... ID •...•

6Lt
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
B1
82
8:3
8'+
F:~')

86
87
88
El 'l
90
91
92
93
9Lt
95
t{6
97
98
99

100
101
102
1(2)3

1 0Lt
105
106
107
108
109
110
111
11:2
113
11Lt
1 l5
116

000730/
000740 PROCEDURE DIVISION.

>0000
>00012.1

000750 A00S-INITIALIZE.
000760 DISPLAY "BEGIN
0007"70

EXAMPLE1"• LINE 1, POSITION 1, ERASE.

>000C 000780 A010-MAINLINE.
000790* STRUCTURED PROGRAM DESIGN USING
000800M-
000810*
000820*
0012.18312)*
00121840*
012)0850*
12100860*
01210870*

>12li2l0C 012.1121880
>01211:2 01210890
>0020 0012.1900
>0026 0(()0910
>12112.12C 1210121920
>0030 000930
>121038 0009Lt0
> 00Lt0 00~~9~:i 0

000960
000970

>012.1LI·2 0012l9B0
000990*
0011Zl012l*
001010*
001 020·M-
12)01030*
12)0104121*

> 00Lt2 001050
001060

>0056 121010712)
>0058 001080
>005C 001090

001100
>005E 001110

001120*
0011:30*
00 11Lt0i!·
001150*

>005E 001160
>0066 001170
>006E 001180
>0076 001190
>0080 001200

001210
>i2l082 001220

001230*
001240*
0012~)0*

OPEN OUTPUT NAME-ADDRESS.

ONE MAINLINE PARAGRAPH TO CONTROL
ALL THE PROCESSING

OPENS & CLOSES FILE
DISPLAYS ENDING MESSAGE
PERFORMS EXTENDED PROCESSING THRU

OTHER MODULES

PERFORM 8005-PROCESS- INPUT THRU 8005-EXIT 3 TIMES.
CLOSE NAME-ADDRESS.
DISPLAY "END EXAMPLE! -WROTE •, LINE 23.
MOVE WST-COUNT TO DSP-COUNT.
DISPLAY DSP-COUNT, LINE :23, POSITION 2:2.
DISPLAY " RECORDS", LINE 23• POSITION 25.
STOP RUN.

B01Zl5-PROCESS-INPUT.
SUB-CONTROL MODULE

PERFORMS CLEAR MODULE USING FORMAT 4
PERFORMS EXTENDED PROCESSING THRU

OTHER MODULES

PERFORM U0112l-CLEAR-LINES THRU U010-EXIT
VARYING WST-LINE FROM 10 BY 2 UNTIL WST-LINE > 16.

PERFORM 8010-DISPLAY-CAPTIONS THRU 8010-EXIT.
PERFORM 8030-ENTER-NAMES THRU B030-EXIT.

8005-EXIT. EXIT.

B010-DISPLAY-CAPTIONS.
SELF-CONTAINED DISPLAY MODULE

DISPLAYS FIELD CAPTIONS

DISPLAY "ENTER NAME C30>"• LINE 10, POSITION 10.
DISPLAY "ENTER ADD1 <30)", LINE 12• POSITION 10.
DISPLAY "ENTER ADD2 C30)", LINE 14• POSITION 10.
DISPLAY "ENTER ZIPC (5)", LINE 16• POSITION 10.

B010-EXIT. EXIT.

8030-ENTER-NAMES.
INPUT MODULE

CLEARS BUFFER FOR NEW RECORD

TRS-80 Model 11 COBOL CRM/COBOL 1.2)
SOURCE FILE: EXAMPLE!

4/ 8/80 08.33.41 PAGE
OPTION LIST: IL 0 T X

4

LINE DEBUG PG/LN A ••• B ••.•.•••••..•...•..••.....•......•••..•.•..••...•..•..••.•.• ID ••...

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
14B
l't9
150
151
152
153
154
155

001260*
001270*
001280*
001290*
001300*

>0082 001310
>0086 001320

001330
>0092 001340

001350
>009E 001360

001370
>00AA 001380

001390
>00B6 001 '+00
>00BA 001410

001420
001430

>00BC 001440
001450*
001460*
001470*
001480*
00149121*

>1210BC 00151210
>012!C8 12!01510

001520
001530

>00CA 001540
001550*
00156121*
001570*
001580*
1210159121*

>12ll2lCA 12ll2l1612112l
>12l0D8 12ll2!16112l
>12ll2lDE 1210162121
>12ll2lE6 001630

12)12)1640
156 0016512!

MOVE SPACES TO NAME-RECD.

ACCEPTS THE FOUR FIELDS OF THE RECORD
ECHOING THE DATA BACK TO THE SCREEN

PERFORMS OTHER MODULE TO WRITE NEW
RECORD

ACCEPT NAM-NAME, LINE 112), POSITION 42,
SIZE WST-THIRTY, ECHO.

ACCEPT NAM - ADDl, LINE 12, POSITION 42,
SIZE WST-THIRTY, ECHO.

ACCEPT NAM-ADD2, LINE 14, POSITION 42,
SIZE WST-THIRTY, ECHO.

ACCEPT NAM-ZIPC, LINE 16, POSITION 42,
SIZE 5, ECHO.

PERFORM Wl2l112l-WRITE-NAME THRU Wl2l112l-EXIT.
Bl2l312l-EX IT. EX IT.

Ul2l112l-CLEAR-LINES.
SELF-CONTAINED CLEAR MODULE

CLEARS DATA FROM PREVIOUSLY
ACCEPTED FIELDS

DISPLAY SPACES, LINE WST-LINE, POSITION 42, SIZE 38.
Ul2l112l-EXIT.

Wl2l1121- WR ITE -NAME.
SELF-CONTAINED WRITE MODULE

WRITES NEW RECORD TO FILE
hEEPS COUNT

WRITE NAME-RECD INVALID KEY GO TO Z999-ABORT.
ADD 1 TO WST-COUNT.
ADD 1 TO WST- REL-KEY.

Wl2l112l-EXIT. EXIT.

157 >12ll2lE8 12ll2l16612l Z999-ABORT.
158 12ll2l16712l* ABNORMAL TERMINATION OF PROGRAM
159 12!12l16812l*
1612l >12112lE8 12ll2l16912l DISPLAY "INVALID KEY- ABORT".
161 >1210EC 12ll2l1712ll2l STOP RUN.
162 12ll2l17112l
163 12ll2l1720 END PROGRAM.

TRS-80 Model II COBOL CRM/COBOL 1.2)
SOURCE FILE: EXAMPLEl

ADDRESS SIZE DEBUG ORDER TYPE

120 FILE
>0002 120 GRP Ill GROUP
>0002 317.l ANS l7.l ALPI·-tANUMERI C
>002(7.) 3(7.) ANS Ill ALPHANUMERIC
>17.li2!~3E ~'30 ANS Ill ALPHANUMERIC
>eJeJ5C 5 NSU Ill NUMERIC UNSIGNED

>12l07E 2 NPS 12) PACf\ED SIGNED

>1Zllll81Zl 2 NPS Ill PACf\ED SIGNED

>eJ082 2 NPS 12) PACf\ED SIGNED

)eJeJBLf NSU IZ) NUMERIC UNSIGNED

>0086 3 NSU (ill NUMERIC UNSIGNED

READ ONLY BYTE SIZE >1Zl2B2

READ / WRITE BYTE SIZE >00EJt

OVERLAY SEGMENT BYTE SIZE >eJeJIZ)(ll

TOTAL BYTE SIZE >0366

(ill ERRORS

12) WARNINGS

4/ 8/80 08.33.4 1 PAGE
OPTION LIST: CL 0 T X

NAM

NAME-ADDRESS
NAME-RECD

NAM--NAME
NAM-ADD1
NAM-ADD2
NAM-ZIPC

WST-COUNT

WST-THIRTY

WST-LINE

WST-REL.-KEY

DSP-COUNT

5

TRS-··80 Model I I COBOL CRM/COBOL.
SOURCE FILE: EXAMPLE!

CROSS REFERENCE

A005-INITIALI ZE
A010-MA I NLI NE
8005-EXIT
B005-PROCESS-INPUT
8010-DISPLAY-CAPTIONS
B~110-EX IT
8030-ENTER-NAMES
Bl2l30-EXIT
DSP-COUNT
NAME-ADDRESS
NAME-RECD
NAM-ADD1
NAM-ADD2
NAM-·NAME
NAM-ZIPC
Ul2l10-CLEAR-LINES
U010-EX IT
WST-COUNT
WST-LINE
WST-REL-f\EY
WST-THIRTY
L-J010-EX IT
W010-WRITE-NAME
Z999-ABORT

1. 2)

/DE CL/

/0066/
/0069/
0080
0080
0098
0098
0099
0099

/0061/
/0020/
/00411
/ 00Lf3/
/0044/
/00Lf2/
/00'+5/

0096
liJ096

/0050/
/0055/
0024
/0052/

0131
0131
0151

*DEST

/0100/
/0089/
/0102/
/0111/
/0113/
/0132/
0083
/0036/
0122
0125
*0127·lE-
0123
0129
/0135/
/0142/

0083
0097
/0058/

01:24
/0154/
/0145/
/0157/

4/ 8/80 08.33.41 PAGE 6
OPTION LIST: CL 0 T X

00B't
0079 0081

0151

0152
0097 0141

0153
0126 0128

TRS- 80 Model II COBOL CRM / COBOL 1.2)
SOURCE FILE: EXAMPLE2

4/ 8/80 08.35.27 PAGE
OPTION LIST: CL 0 T X

LINE DEBUG PG / LN A ••. B •.•..••.•.••.•••••.••••.•.•••••••••••••••••.•.•••• • .•••.•••• ID •.•••

1

3
4
5
6
7
B
9

10
1l
1 ·:J

13
1 Lt

15
16
17
18
19
20
2 1
. ·-,.·-. .. ·: . .. ~:.

12)((.101.00
12)00110
0001.20
0001 :m
0001 '+0
12l001512l
0012)160
000170
0001:30
12liZ\IZI1912l
~~12l021Z112l
12)12)12)2112)
12)12)022 12)
12)00230*

IDENTIFICATION DIVISION.
PROGRAI"I--·ID.
AUTHOR .
INSTALLATION.
DATE--WHITTEN.

ENVIRONMENT DIVISION.
CONFIGURATION SE CTION.

SOURCE--C01'1PUTER.
OBJECT····COMPUTER .

INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT NAME-ADDRESS,

EXAMPLE2.
D.H.WEISS.
RADIO SHACf\.
JAN 80.

MODEL I I.
MODEL I I -6'+~\.

SAME AS EXAMPLE 1
012l02'tl2l
012ll2l 25 12l
000260
012)02712)
IZI002B0
000290
0003m~

ASSIGN TO RANDOM, "COBNAMES/REL",
ORGANIZATION IS RELATIVE
ACCESS MODE IS RANDOM
RELATIVE ~EY IS WST-REL-KEY.

000310 DATA DIVISION .
000320 F ILE SECTION.
12l012l3312l*

NAME-·-ADDRESS
SAME AS EXAMPLE 1

12l003'+12l FD
12)00350
12)0121360
12l012l3 7IZI
12l003B0
IZII2l039 IZI 01

BLOCK CONTAINS 1 RECORDS
RECORD CONTAINS 120 CHARACTERS
LABEL RECORDS ARE STANDARD
DATA RECORD IS NAME- RECD.

012)01.t00
12l01Z1Lt10
12l012l'+212l
IZII2l04312l
IZII2l044IZI
IZ)Ii:')0Lt50
IZII2l0461i:'l
12liZIIZI47 IZI
12l0'-1Lt8IZI
IZI012l't90
01ZliZI=•IZIIi'l
IZ)Ii')IZ)~j 10
12liZIIZI52IZI*
12)00530*
li:'ll2l0540
0005512)
012ll2l5612l

NAME-·RECD.
0:3 NAM-NAME
03 NAM -·· ADD1
IZI3 NAM ·· ADD2
03 NAM- ZIPC
03 FILLER

WORKING- STORAGE SECTION.
77 WST-COUNT
77 W~n-THIRTY
T 1 WST- LINE
T7 WST - REL·-·~\EY

TT DSP--COUNT

7 7 ANSI.-JER

PIC
PIC
PlC
PIC
PIC

X <30).
X (30).
XC30).
9(5).
XC25) .

Pl C 8999 COMP-3 VALUE 0.
PIC S99 COMP-3 VALUE 30.
PlC S99 COMP-3 .
PlC 9 VALUE 1.
PIC 999.

NEW FIELD "ANSWER" PROVIDES A PAUSE
TO FACILITATE OPERATOR CONTROL
PIC X.

TRS-80 Model II COBOL IRM/COBOL 1.2)
SOURCE FILE: EXAMPLE2

4/ 8/80 08.35.27 PAGE
OPTION LIST: IL 0 T X

2

LINE DEBUG PG/LN A ... B•..................................... ID

48
Lt9
5 ~.

5 1
52
53
54
55
56
57
58
59
60
61
62

>0000
>0000

>000C

>000C
>0012
>0020
>0026
>002C
>0030

000570/
000580 PROCEDURE DIVISION.
000590 A005-INITIALIZE.
000600 DISPLAY "BEGIN
000610

EXAMPLE2"• LINE 1, POSITION 1, ERASE.

000620
000630*
000640*
000650
000660
000670
000680
000690
000700

A010-MAINLINE.
MAINLINE PARAGRAPH

OPEN INPUT NAME-ADDRESS.
PERFORM 8005-PROCESS-INPUT THRU 8005-EXIT
CLOSE NAME-ADDRESS.
DISPLAY "END EXAMPLE2- READ "• LINE 23.
MOVE WST-COUNT TO DSP-COUNT.

3 TIMES.

>0038 000710
DISPLAY DSP-COUNT, LINE 23• POSITION 22.
DISPLAY " RECORDS", LINE 23, POSITION 25.

63 >~040 ~~~720 STOP RUN.
64 000730
65 000740
66 >0042 000750 8005-PROCESS-INPUT .
67 000760*
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
9 2
93
9Lt
95
96
97
98
99

100

000770*
>0042 000780

000790
>0056 000800
>0058 000810
>005A 000820
>005E 000830

000840
>0060 000850

0012186121*
121012187121*

>0060 121121088121
>12112168 12112112189121
>12107121 1210091210
>12112178 0121091121
>12112182 121121121920

12112112193121
>0084 1210094121

12112112195121*
12112112196121*
12112112197121*
000980*
00121990*
0121100121*
0121112110*
012111212121*

>0084 00112130
>0086 121121104121

01211050
>1211219121 0011216121

001070
>009A 121121108121

00112190

SUB-CONTROL MODULE

PERFORM U01121- CLEAR-LINES THRU U1211121-EXIT
VARYING WST- LINE FROM 10 BY 2 UNTIL WST- LINE > 16.

PERFORM 81211121-DISPLAY-CAPTIONS THRU 8010-EXIT.
PERFORM 81213121-ENTER- NAMES THRU B03121-EXIT.
PERFORM 812150-SUSPEND-PROCESSING THRU 812150-EXIT.

801215-EX IT. EX IT.

812110-DISPLAY-CAPTIONS.
SAME AS EXAMPLE

DISPLAY "ENTER NAME 13121)", LINE 10, POSITION 10.
DISPLAY "ENTER ADD1 130)", LINE 12 , POSITION 1121.
DISPLAY "ENTER ADD2 130)", LINE 14, POSITION 1121.
DISPLAY "ENTER ZIPC 15)", LINE 16• POSITION 10.

812110- EXIT. EXIT.

812130- ENTER-NAMES.

PERFORM R01121-· READ-NAME
DISPLAY NAM- NAME, LINE

SIZE WST- THIRTY.
DISPLAY NAM- ADD1, LINE

SIZE WST-THIRTY.
DISPLAY NAM-ADD2, LINE

SIZE WST-THIRTY.

THRU
1121·

12.

14.

DISPLAY MODULE

PERFORMS OTHER MODULE TO READ
NEXT RECOr~D

DISPLAYS EACH FIELD,
OPTION FOR REVERSE VIDEO USED
ON ZIPCODE FIELD

R010-EXIT.
POS ITION 42 .

POSITION 42.

POSIT I ON 42.

TRS-8~ Model II COBOL CRM/ COBOL 1.2)
SOURCE FILE: EXAMPLE2

4/ 8/8~ ~8.35.27 PAGE
OPTION LIST: IL 0 T X

3

NE DEBUG PG/LN A ... B •.•• .• .•.•. ••••• ••••••••.•••••••. •• ..•••.••.•••••.•• ID ••••.

101
1~2

10:3
1~4
1~5

106
1~7

H'lB
H~9

11 ~
111
112
11:3
114
115
116
117
118
119
12~

121
122
1:?3
124
125
1 ~?6
127
128
129
30
31

132
133
1;3Lt

>~0A4 ~~11~~
12)12)111~

>~~B3 12l01120
~~11:3~
012l11L•~

>12l0BS 0011512)
~01160*

001170*
001180*
(2)0119(2)*
001200*
~(2)1210*

>00BS 001220
~12)1:~:::30

>00C7 001240
0~1250
001260

>00C9 001::210
001 ~-;;:B0*
001290*

>00C9 012l1312l0
>0~DS ~01:310

001320
12)01330

>012lD7 012l1::Vt0
Qlf2) l. :~50*
001360*

>00D7 001 :H0
>012lE3 ll.112l1380
>00E9 001390
>012lF1 12)01400

0014112)
12l0 1 '+20

> 00F3 0(2) 1Lt30
135 001440*
136 12ll2l1451Zl*
137 >00F3 001460
138 >012lF7 12l1Zl14112l

12)12)1 LtBI2l

DISPLAY NAM-ZIPC, LINE 16• POSITION 42,
SIZE s, REVERSE.

B0312l-EXIT. EXIT.

B050-SUSPEND-PROCESSING.
SELF-CONTAINED SUSPEND MODULE

PROVIDES OPERATOR CONTROL OF
DISPLAY SO HE CAN VIEW EACH
RECORD AS LONG AS HE WISHES

DISPLAY "NEXT RECORD?", LINE 20• POSITION 20
ACCEPT ANSWER, LINE Ql, POSITION 12l.

B050-EXIT. EXIT.

U0112l-CLEAR-LINES.
SAME AS EXAMPLE 1

DISPLAY SPACES• LINE WST-LINE, POSITION 42, SIZE 38.
Ul2l112l--EXIT.

Rl2l10-· READ·- NAME.
SELF-CONTAINED READ MODULE

READ NAME-ADDRESS INVALID KEY GO TO Z999-ABORT.
ADD 1 TO WST-CC~NT.
ADD 1 TO WST-REL-KEY.

R~1~-EXIT. EXIT.

Z999-·ABORT.
SAME AS EXAMPLE 1

DISPLAY "INVALID KEY- ABORT".
STOP RUN.

001490 END PROGRAM.

TRS-80 Model II COBOL CRM/COBOL 1.21
SOURCE FILE: EXAMPLE2

ADDRESS SIZE DEBUG ORDER TYPE

121Zl FILE
>1Zll2l1Zl2 120 GRP Q) GROUP
>1Zl1Zl1Zl2 3Ql ANS Q) ALPHANUMERIC
>12l1Zl21Zl :31Zl ANS Q) ALPHANUMERIC
>1Zl1Zl3E 311.! ANS Q) ALPHANUMERIC
>II.!IZJSC 5 NSU 11.) NUMERIC UNSIGNED

>12l1Zl7E 2 NPS 11.) PAChED SIGNED

>IZliZlBII.! 2 NPS Q) PACf\ED SIGNED

>1Zl1Zl82 2 NPS 11.) PACf\ED SIGNED

>1Zll2l84 NSU Q) NUMERIC UNSIGNED

>1Zl086 3 NSU 0 NUMERIC UNSIGNED

>1Zl1Zl8A ANS Ill ALPHANUMERIC

READ ONLY BYTE SIZE = >12l2BIZl

READ/WRITE BYTE SIZE >II.!IZJEA

OVERLAY SEGMENT BYTE SIZE >11.!000

TOTAL BYTE SIZE >1Zl39A

0 ERRORS

0 WARNINGS

4/ 8/80 08 . 35.27 PAGE
OPTION LIST: CL 0 T X

NAM

NAME -ADDRE!:'3S
NAME-RECD

NAM-NAME
NAM-·ADD 1
NAM-ADD2
NAM-ZIPC

WST-COUNT

WST-THIRTY

WST-LINE

WST-REL-·f\EY

DSP--COUNT

ANSWER

4

TRS- 80 Model II C080L <RM/C080L 1.2)
SOURCE FILE: EXAMPLE2

CROSS REFERENCE /DECL /

ANSWER / 012)45/
A005-· INITIALI ZE /12)050 /
A0112l-MA I NLI NE /012)5 :3/
812)05 - EXIT 12)12)57
812)05-PROCESS-INPUT 12)12)5 7
8010- DISPLAY-CAPTIONS 12)071
812l10- EXIT 12)12)71
812l30-ENTER- NAMES 12)12)72
812l312l-EXIT 12)072
B050-EXIT 0073
80512l- SUSPEND- PRO CESS ING 012)73
DSP-COUNT /12)042 /
NAME-ADDRESS / 012l15 /
NAME-RECD /00312)/
NAM-ADD1 / 00:3:2 /
NAM-·ADD2 / 00:B/
NAM- NAME / 012l3 1 /
NAM- ZIPC /0034/
R0112l- EX IT 12l094
Rl2l 112l -- READ- NAME 12)12)9Lt
U0112l - CLEAR- LINES 12)12)69
U0112l- EX IT 012)69
WST-COUNT / 012)3 8 /
1.-JST-LINE /012)412) /
WST-- REL - f\EY *0019*
WST --THIRTY / 12)12)3 9 /
Z999- A80RT 12)128

*DEST

0114

/ 12ll2l74/
/ 0066 /
/012)76/
/12)083 /
/ 0085 /
/ 12)112)3 /
/0115 /
/12)112)6 /
12ll2l6 12l
/ 12l025/

0097
0099
00'"/ 5
0112)1

/ 12l1:31 I
/12)125/
/0118 /
/12)122/

00612l
12l0712l
/ 12)041/

12)12)96
/ 0134/

4 / 8/80 12) 8 .35.27 PAGE
OPTION LI ST: (L 0 T X

0061
12)12)56 12)12)58 01 :28

0129
12)12)70 12)121

-M·01 3 0*
12)09 8 12)112)0

5

IMPORTANT NOTICE

ALL RADIO SHACK COMPUTER PROGRAMS ARE DISTRIBUTED ON AN
"AS IS" BASIS WITHOUT WARRANTY

Radio Shack shall have no liability or responsibilit y to customer or any other
person or entity with respect to any liability , loss or damage caused or alleged to
be caused directly or indirectly by computer equipment or programs sold by
Radio Shack , including but not limited to any interruption of service, loss of
business or anticipatory profits or co nseque ntial damages resulting from the use
or operation of such co mputer or computer programs.
NOTE: Good data processing procedure dictate s that the user test the program,

run and test sample sets of data, and run the system in parallel with the
system previously in use for a period of tim e adequate to insure that
result s of operation of the co mputer or program are satisfactory.

RA~IO SHACK M A DIVI ~ION OF TANDY. CORPORATION

U.S .A .: FORT WORTH , TEXAS 76102
CANADA : BARRIE , ONTARIO L4M 4W5

AUSTRALIA

280·3 16 VICTORIA ROAD
RYDALMERE , N.S.W. 2116

PRINTED IN U.S.A.

TANDY CORP'ORATION

BELGIUM '

PARC INDUSTRIEL DE NANINNE
5140 NANINNE

U. K.

BI LSTON ROAD WEONESBURY
WEST MIDLANDS WS10 7JN

	Cobol Dev System - Spine
	Cobol Dev System - Notes for Users
	Cobol Dev System - USE Tab
	Cobol Dev System - CEDIT Tab
	Cobol Development System - Part 1
	Cobol Dev System - RSCOBOL Tab
	Cobol Development System - Part 2.pdf

