
Radle/baek
A Llivrs-,on of Tandy Corporat1on

ADDENDUM

CONVERSION PROGRAM FOR USE IN 50 Hz COUNTRIES

This Disk contains conversion programs for operating under 50 Hz power sources. If you
have a 60 Hz power source (USA, etc.) these programs must not be executed, and should
be removed from the Disk.

Converting to 50 Hz
The Model II diskette in this package contains a program called HER Z50. You should use
the HER Z50 modification provided BEFORE you run programs.

To perform this modification, follow these steps:

1. Power-up normally

2. After entering the Date and Time, type:

3. Press I ENTER !after each of the messages:

This conversion program will permanently convert the operating system to 50 Hertz
op/'Yation. Once a disk is converted, it cannot be converted back to 60 Hertz operation.

Removing 50 Hz Programs
Now you should remove the HE RZ50 program by following these steps:

1. After Power-up, entering the Date and Time

2. The screen will show: You type:

DOS READY [f][Q]rffi(g)~O[O!IDlYJffil(D

ENTER PASSWORD OF DISK TO PURGE (1-8) [f]@[ID[ID~[Q][ffi[Q] and presslENTERI

3.

Fl LENAME*DELETE (Y/N/0)
*Various filenames will appear, continue
to press@] until you reach the one you want.

@]and press I ENTER!(until
filename PATCH appears.

TypelYland press !ENTER I to
delete PATCH.

4. Type~and press IENTERiuntil
HERZ50 appears.

5. TypelYlto delete HERZ50, then
type [Qlto QUIT.

6. You may now run the Main Program.

875-9029

THE WORLDWIDE SUPERMARKET OF SOUND

SOFTWARE REGISTRATION CARD

IMPORTANT: In order that you can receive notification
of modifications or updates of this program you MUST
complete this card and return it immediately. This card
gets you information only and is NOT a warranty
registration.

Name ________________________________ __ 10010181
Version/Date

Company ______________________________ _

Address ______________________________ __

'"'! City ----------------------------------- Cat. No. ______________ _

State ___________________ Zip ________ _ Purchase Date __________ __

CHANGE OF ADDRESS
NOTE: If you move, please fill out this card and return it so that you may continue to
receive information regarding this program.

Purchase Date ______________ _ 10010181
Version/Date

4
ff

1
Cat. No. __________________ _

NEW ADDRESS: OLD ADDRESS:

Name ________________________ __ Name ___________________________ _

Company ______________________ _ Company ______________________ _

Address ________________________ _ Address ________________________ _

City --------------------------- City ---------------------------

State _______________ Zip ___ _ State _______________ Zip ___ _

INSTRUCTIONS FOR USE

1. Register one software package per card only.

2. Complete the Software Registration portion of this form and mail it immediately.
The Catalog No. may be found by examining the upper-right corner of your diskette.

3. For convenience a change of address card has been included. Copy all information
from the Registration Card onto it prior to sending the Registration Card.

Computer Merchandising
P.O. Box 2910
Fort Worth, Texas 76102

Attn: Software Registration

Computer Merchandising
P.O. Box 2910
Fort Worth, Texas 76102

Attn: Software Registration

PLACE
STAMP
HERE

PLACE
STAMP
HERE

An Overview of the Model D
FORTRAN Package

This manual describes Radio Shack's FORTRAN Package (Catalog
Number 26-4 701), for use with the TRS-80 Disk Operating System
(TRSDOS). It does not teach you how to write programs. You'll need to
consult another source for information on programming.

The FORTRAN Package includes four separate manuals:
• The TRS-80 FORTRAN User's Manual, an introductory manual which

describes the programs contained in the package and how they
interrelate.

• The EDIT-80 User's Manual, a guide to the text editor.
• The FORTRAN-80 Reference Manual, a guide to the compiler.
• The LINK-80 Reference Manual, a guide to the linking loader.

The FORTRAN diskette contains all TRsoos files, so it may be placed in
drive 0.

USER'S MANUAL

Section 1

The Model II TRS-80 FORTRAN package contains the following software and
documentation:

Note: Be sure to make a backup copy or copies of your FORTRAN diskette
before proceeding further.

*The package also includes the source listings for several fundamental
FORLIB interface routines. These files can be identified by their /SRC
extension. They are supplied for programmers wishing to understand the
technical details of 1/0 operations. These files may be listed with the
FORPRT utility. For further information, see the FORTRAN Reference
Manual, Appendix B.

©Copyright 1979 by Microsoft, Licensed to Radio Shack, A Division of Tandy Corporation, Fort Worth, Texas

1

MODEL II FORTRAN

1.1 Introduction

The Model II FORTRAN package consists of four separate programs. In this
section, we're going to briefly explain the purpose of each program. Then we
will take you step by step through the writing, editing, testing, compilation,
and execution of a short FORTRAN program.

FORTRAN Package Programs

The FORTRAN package programs are:
• F80, the FORTRAN compiler. FSO takes a source program written in

FORTRAN, compiles it into intermediate code, and stores the intermediate
code on disk.

• EDIT, the text editor. This program lets you write and edit the source
programs which will go into the compiler.

• LSO, the linking loader. L80 gets the intermediate code from disk that you've
created with the FORTRAN compiler, converts it into machine-readable
object code, loads it into memory, and executes it.

• FORLIB, the subroutine library. FORLIB contains a number of useful
subroutines which are used during the link process and which may be called
directly from within your FORTRAN program.

• FORPRT, a utility program that displays and/or prints out FORTRAN listing
and source files. (In fact, it will print out any ASCII file.)

FORTRAN Sample Program: TEMP/FOR

To give you an idea of how to use the FORTRAN package and how the
constituent programs interact, we present a sample FORTRAN program.
Follow these seven steps:

1. Start the Editor. From TRSDOS, type EDIT. The text editor will load and
execute. When you see

FILE:
type

TEMP/FOR £.m
This will create a file named TEMP/FOR. Now a copyright notice will appear
on the display, as well as a message informing you of the number of free bytes
in your computer. Below this you will see

The asterisk serves as the text editor's prompt. Type
r t:mi::hJ

to start the editor's automatic line-numbering facility.
0010~

will appear on the display. Take a close look at the position of the cursor. The
cursor is now in column 1 (see the FORTRAN coding form on page 10 of the
FORTRAN-SO Reference Manual) and it may not be backspaced any
further.

2

'-,-

USER'S MANUAL ~.

2. Enter the program. Type in the following program. Use the key to
skip from column to column; press at the end of each line.

c CONVERT FAHRENHEIT TO CELSIUS

5

10
2C/J

INTEGER F 8 spaces

WRITE(5,5) r
FORMAT(' FAHRENHEIT
DO 20 F=2¢,65,5
C=5./9.*(F-32)
WRITE(5, 1C/J)F,C
FORMAT(12X,I2, 11X,F6.3)
CONTINUE
END

Press when you reach line 1100.
3. Save the program. Type

E r;:ma:m

8 spaces

{CELSIUS')

which saves the file and returns you to TRSDOS. Now do a DIR. There should
be a file on your system diskette named TEMP/FOR. TEMP/FOR is your
FORTRAN source file.
4. Trial compilation. The next step is to test the source file for syntax errors.
Type

F8q, =TEMP
This causes the FORTRAN compiler F80 to load into memory and compile
TEMP/FOR, without, however, producing a disk file:lfyou haven't typed in
the FORTRAN program correctly, you will get one or more error messages. In
this case, you must load EDIT again. When it asks for a file give it the file name
TEMP/FOR followed by Ulm#fn (not !) Now you must locate the
source of the trouble and correct it. You will need to consult the EDIT -80
User's Manual for details on interline and intraline editing.

When you have corrected the file and are ready to save it: you must save it
under a new file name. The Editor will not let you save it under the old name;
in effect, it forces you to keep the old file as a backup. Decide on a new name
(other than TEMP, but with the same extension /FOR).
Now type:

E file name
-!""1"5~ and press . After the Editor saves the new file, you can start over

with step 4, substituting your new file name for TEMP in the instructions.

*"$MAIN" is not an error message. This just informs you that the compila-
~. tion is in progress.

3

MODEL II FORTRAN

5. Compile with output files. When the source file has been tested and rid of
syntax errors, if any, it's ready to compile. Assuming that the file is still named
TEMP/FOR, type

F80 TEMP ,TEMP= TEMP
Check the diskette directory. You should find two new programs on the
diskette, TEMP/REL and TEMP/LST. TEMP/LST is a listing file. It consists of the
FORTRAN statements of TEMP/FOR plus their equivalent assembly-language
code. Take a look at it with the TRSDOS LIST command. TEMP/REL is the
relocatable file. The linking loader must operate on this file before it can be
executed.

6. Run the program. Now you want to load the program and execute it. For
this you need the help of the linking loader. Type

L8pTEMP-G
This command loads and runs the linking loader, which in turn loads the
object file TEMP/REL into the proper memory locations and runs it. The
linking loader also gets any needed subroutines from FORLIB and puts them
into memory, too. The program will print a table of Fahrenheit temperatures
and their Celsius equivalents.

7. Save as a program file. A further optional step is to save the object code in
its present form as a TRSDOS file. When you've done this you can then load
the program from TRSDOS just like any other object file. Type

L8¢ TEMP-N,TEMP-E
When control returns to TRSDOS, examine the diskette directory. You will
see a file named TEMP. Simply type

TEMP
to get the same results you got in step 6.

8. To print out the listing file: For a hard copy of the FORTRAN listing file
(/LST) or the source file (/FOR), use the FORPRT program included on your
FORTRAN diskette. UnderTRSDOS READY, type:

FORPRT
The program will prompt you to enter the file name (including the extension)
and to select display and/or printer output. During the output, press

to pause the listing. Press I1I'!'lE again to continue. Press
to terminate the listing.

4

USER'S MANUAL

The TRS-80 FORTRAN Package provides a lot more capability than is
demonstrated in this short session. Keep experimenting, and you'll be
pleasantly surprised at how much computing power has been added to your
TRS-80.

1.2 Note on TRS-80 FORTRAN Manuals

The FORTRAN-SO Reference Manual is strictly a reference for the syntax and
semantics of the TRS-80 FORTRAN language. It is not intended as a tutorial on
FORTRAN programming. If you are new to FORTRAN and need help learning
the language, we suggest:

1. Guide to FORTRAN-IV Programming by Daniel McCracken (Wiley,
1965)
2. Ten Statement FORTRAN Plus FORTRAN IV by Michael Kennedy and
Martin B. Solomon (Prentice-Hall, 1975, Second Edition)
3. FORTRAN by Kenneth P. Seidel (Goodyear, 1972)
4. FORTRAN IV, A Self-Teaching Guide by Jehosua Friedmann, Philip
Greenberg, and Alan Hoftbert (Wiley, 1975)
5. FORTRAN, A Structured, Disciplined Style by Gordon B. Davis and
Thomas R. Hoffman (McGraw-Hill, 1978)

The LINK-SO Manual is strictly a reference for the commands and switches
available.

5

MODEL II FORTRAN

Section 2
TRS-80 FORTRAN Compiler

If you followed the sample session, you are becoming familiar with the
software in your TRS-80 FORTRAN Package. Now let's look specifically at the
TRS-80 FORTRAN compiler.

2.1 Running the Compiler

When you give TRSDOS the command
F80

you are running the TRS-SOFORTRAN compiler. The FORTRAN compiler takes
a FORTRAN program (source file) and compiles it to generate a relocatable
object file, that is, a file that is in machine code. When the compiler is ready to
accept commands, it prompts the user with an asterisk. To exit the compiler,
use the key.

A command may also be typed on the same line as the invocation. This is
called a "command line." We did this in the Sample Session when we typed
the command line:

F80 =TEMP
After executing a command line, the compiler automatically exits to the
operating system.

2.2 Command Format

A compiler command conveys the name of the source file you want to
compile, and what options you want to use. Here is the format for a compiler
command (square brackets indicate optional):

[object file name] [,listing file name]=source file name [-switch ...]

Note: All filenames must be in TRSDOS file name format:

file name[/ext] [.password] [:drive#]

If you are using the compiler's default extensions, it is not necessary to specify
an extension in a compiler command.

Let's look individually at each part of the compiler command:

1. Object file name
To create a relocatable object file, this part ofihe command must be
included. It is simply the name that you want to call the object file. The
default extension for the object file name is /REL.

2. Listing file name
To create a listing file, this part of the command must be included. It is simply
the name that you want to call the listing file. The default extension for the
listing file is /LST.

Note: To send the listing file to the printer (:LP) or display (:TTY),
use :LP or :TTY in place of the listing file name, e.g.,

F8~ ,:TTV=TEMP

6

USER'S MANUAL

3. Source file name

A compiler command must always include a source file name - that is how
the compiler "knows" what to compile. It is simply the name of a FORTRAN
program you have saved on disk. The default extension for a FORTRAN
source file name is /FOR. The source file name is always preceded by an equal
sign in a compiler command.

Examples (asterisk is typed by FSO):

*=TEST Compile the program TEST/FOR without creating an object file or
listing file.

*TEST, TEST= TEST Compile the program TEST/FOR. Create a relocatable
object file called TEST/REL and a listing file called TEST/LST.

*,TEST. PASS= TEST. PASS Compile the program TEST/FOR. PASS and
create a listing file called TEST/LST.PASS (No object file created.)

*TESTOBJ =TEST Compile the program TEST/FOR and create an object file
called TESTOBJ/REL. (No listing file created.)

4. Switch
A switch on the end of a command specifies a special parameter to be used
during compilation. Switches are always preceded by a dash (-). More than
one switch may be used in the same command. The available switches are:

Switch
0
H

N

p

M

Action
Print all listing addresses in octal.
Print all listing addresses in hexadecimal (default
condition).
Do not list the object code that is generated. List
only the FORTRAN source code.
Each - P allocates an extra 100 bytes of stack space
for use during compilation. Use- P if stack
overflow errors occur during compilation.
Otherwise not needed.
Specifies to the compiler that the generated code
should be in a form which can be loaded into ROMs.
When a - M is specified, the generated code will
differ from normal in the following ways:
1. FORMATs will be placed in the program area,
with a JMP around them.
2. Parameter blocks (for subprogram calls with
more than 3 parameters) will be initialized at
runtime, rather than being initialized by the loader.

7

MODEL II FORTRAN

Examples:

*CT.ME,CT.ME=CT.ME-0 Compile the program CT/FOR.ME. Create a
listing file called CT/LST.ME and an object file called CT/REL.ME. The
addresses in the listing file will be octal.

*CT,CT =CT-N Compile the program CT/FOR. Create an object file called
CT/REL and a listing file called CT/LST. The listing file will contain only the
FORTRAN source statements, not the generated object code.

*MAX1¢=MAX1lb-P-P Compile the programMAXlO/FOR and create an
object file called MAXlO/REL. The compiler is allocated 200 extra bytes of
stack space.

Note: If a FORTRAN program is intended for ROM, the programmer should be
aware of the following ramifications:
1. DATA statements should not be used to initialize RAM. Such initialization
is done by the loader, and will therefore not be present at execution.
Variables and arrays may be initialized during execution via assignment
statements, or by READing into them.
2. FORMATs should not be read into during execution.
3. If the standard library 1/0 routines are used, DISK files should not be
OPENed on anyLUNs other than 6, 7, 8, 9, 10. If otherLUNs are needed for
Disk 1/0, $LUNTB should be recompiled with the appropriate addresses
pointing to the Disk driver routine.

A library routine, $INIT, sets the stack pointer at the top of available memory
(as indicated by the operating system) before execution begins.

The calling convention is:
LD BC, return address
JP $1NIT

If the generated code is intended for some other machine, this routine should
probably be rewritten. The source of the standard initialize routine is
provided on the disk asiNIT/MAC. Only the portion of this routine which sets
up the stack pointer should ever be modified by the user. The FORTRAN
library already contains the standard initialize routine.

2.3 lnput/tlutput Device Names

In FORTRAN I/O statements (READ and WRITE), LUNS 1, 3, 4, and5 default to
the console/keyboard, LUN 2 defaults to the line printer, and LUNs 6-10
default to the disk drives .

... ! ...

8

Section 3
TRS-80 FORTRAN Disk Files

See also FORTRAN-80 Reference Manual, section 8.3.
3.1 Default Disk File Names

USER'S MANUAL

TRS-80 FORTRAN may access either random or sequential disk files. Any disk
file that is OPENed by a READ or WRITE statement is given a default filename
that depends on the LUN:

LUN Default File Name
6 FORT06/DAT
7 FORT07/DAT
8 FORT08/DAT
9 FORT09/DAT

10 FORT10/DAT

3.2 CALL OPEN

Instead of using READ or WRITE, a disk file may be OPENed by calling the
OPEN subroutine (see the FORTRAN-SO Reference Manual, Section 8.3.2).
The format of an OPEN call is:

CALL OPEN (LUN, File name, Reclen)
where:

LUN = a Logical Unit Number to be associated with the file (must be an
Integer constant or Integer variable with a value between 1 and 10).

File name = an ASCII name which TRSDOS will associate with the file. The file
name should be a Hollerith or Literal constant, or a variable or array name
where the variable or array contains the ASCII name. The file name should be
in the form normally required by TRSDOS,

file name/ext.password:drive#

and it should be terminated with a non-alpha character, preferably a blank.

Reclen = The number of bytes you wish to specify (up to 256) as the record
length. The default record length is 128 bytes. Reclen must be an Integer
constant or Integer variable. If zero is supplied for Reclen, the record
length will be 256 bytes.

The following are examples of valid OPEN calls:

CALL OPEN (6, TIME/DAT.JULY:1',0)
CALL OPEN (7, 'COUNT /NUM ',2(/Jr/J)

CALL OPEN (1, 'TESTQ/MIN:2 ',1~r/J)

9

MODEL II FORTRAN

Section 4
Error Messages

4.1 FORTRAN Compiler Error Messages

The FORTRAN-SO Compiler detects two kinds of errors: Warnings and Fatal
Errors. When a Warning is issued, compilation continues with the next
item on the source line. When a Fatal Error is found, the compiler ignores
the rest of the logical line, including any continuation lines. Warning
messages are preceded by percent signs(%), and Fatal Errors by question
marks(?). The editor line number, if any, or the physical line number is
printed next. It is followed by the error code or error message.

Example:

?Line 25: Mismatched Parentheses
%Line 16: Missing Integer Variable

When either type of error occurs, the program should be changed so that it
compiles without errors. No guarantee is made that a program that
compiles with errors will execute sensibly.

Fatal Errors:

1¢¢
1$1
1¢2
1~3
1~4
105
106
1¢7
108
109
11¢
111
112
113
114
115
116
117
118
119

10

Illegal Statement Number
Statement Unrecognizable or Misspelled
Illegal Statement Completion
Illegal DO Nesting
Illegal Data Constant
Missing Name
Illegal Procedure Name
Invalid DATA Constant or Repeat Factor
Incorrect Number of DATA Constants
Incorrect Integer Constant
Invalid Statement Number
Not a Variable Name
Illegal Logical Form Operator
Data Pool Overflow
Literal String Too Large
Invalid Data List Element in 110
Unbalanced DO Nest
Identifier Too Long
Illegal Operator
Mismatched Parenthesis

USER'S MANUAL

12~ Consecutive Operators
121 Improper Subscript Syntax
122 Illegal Integer Quantity
123 Illegal Hollerith Construction
124 Backwards DO reference
125 Illegal Statement Function Name
126 Illegal Character for Syntax
127 Statement Out of Sequence
128 Missing Integer Quantity
129 Invalid Logical Operator
13~ Illegal Item Following INTEGER or REAL or LOGICAL
131 Premature End Of File on Input Device
132 Illegal Mixed Mode Operation

133 Function Call with No Parameters
134 Stack Overflow
135 Illegal Statement Following Logical IF

Warnings:

0 Duplicate Statement Label
1 Illegal DO Termination
2 Block Name = Procedure Name
3 Array Name Misuse
4 COMMON Name Usage
5 Wrong Number of Subscripts
6 Array Multiply EQUIVALENCEd within a Group
7 Multiple EQUIVALENCE of COMMON
8 COMMON Base Lowered
9 Non-COMMON Variable in BLOCK DATA

1~ Empty List for Unformatted WRITE
11 Non-Integer Expression
12 Operand Mode Not Compatible with Operator
13 Mixing of Operand Modes Not Allowed
14 Missing Integer Variable
15 Missing Statement Number on FORMAT
16 Zero Repeat Factor
17 Zero Format Value
18 Format Nest Too Deep
19 Statement Number Not FORMAT Associated

2£/J Invalid Statement Number Usage
21 No Path to this Statement
22 Missing Do Termination
23 Code Output in BLOCK DATA
24 Undefined Labels Have Occurred
25 RETURN in a Main Program
26 STATUS Error on READ
27 Invalid Operand Usage
28 Function with no Parameter
29 Hex Constant Overflow
3Q Division by Zero
32 Array Name Expected
33 Illegal Argument to ENCODE/DECODE

11

MODEL II FORTRAN

4.2 FORTRAN Runtime Error Messages

During execution of a FORTRAN program one or more of the following errors
could occur. Fatal errors cause execution to cease. Execution continues after
a warning error. However, execution will cease after 20 warnings. Runtime
errors are surrounded by asterisks as follows:

FW

Warning Errors:

IB
TL
OB
DE

IS
BE
IN
ov
CN
SN
A2
10
Bl
RC

Input Buffer Limit Exceeded
Too Many Left Parentheses in FORMAT

Output Buffer Limit Exceeded
Decimal Exponent Overflow (Number in input stream had an
exponent larger than 99)
Integer Size Too Large
Binary Exponent Overflow
Input Record Too Long
Arithmetic Overflow
Conversion Overflow on REAL to INTEGER Conversion
Argument to SIN Too Large
Both Arguments of ATAN2 are C/J

Illegal I/O Operation
Buffer Size Exceeded During Binary 110

Negative Repeat Count in FORMAT

Fatal Errors:
ID Illegal FORMAT Descriptor
F~ FORMAT Field Width is Zero
MP Missing Period in FORMAT

FW FORMAT Field Width is Too Small
IT 110 Transmission Error
ML Missing Left Parenthesis in FORMAT

DZ Division by Zero, REAL or INTEGER

LG Illegal Argument to LOG Function (Negative or Zero)
SO Illegal Argument to SORT Function (Negative)
DT Data Type Does Not Agree With FORMAT Specification
EF EOF Encountered on READ

12

USER'S MANUAL

Sample FORTRAN Programs
Here are two sample programs. One sorts any number of integers up to 100;
the other demonstrates FOR1RAN file access techniques. Type them into
EDIT-80 and compile them the same way you did with TEMP/FOR.

0 0 :1.() 0 c
00~~00

00300 1
0 0·~'0 0
oo;:~oo

00600
00700
00800
00900
OJ.OOO
ouoo 10
ot:~~oo

O:l.~i'OO
Ol"tOO
o 1:::;o o
Ol600
01?00
iJHlOO zo
Oi<JOO
ozooo
0~::100
02~!.!)() 30
0~?.~300
0 :,;:.q () 0
0~~~-'iO 0 c

EXAMPLE FORTRAN SORT ROUTINE
DH1ENSIDN L < :t 0 0)
wrn:n::: < :3. 1 o o)
RE,~D C:l. LlO) N
IF <N.GT.100) GOTO 1
IF <N.LE.l) GOTO 200
Wl;::r:TE < ::.l t 1 :t 0)
WI:;;ITE <3.:t~::o>
DO :lO J::::t,N
READ <3.13e) L<I>
CONTINUE
NN::::N·· .. t
DO 30 I:::: f. NN
<.J::::J
.J,.J::::,.J+j,
DO ? 0 i{:::,J,J • N
IF (L(K).LT.L(J)) J=K
CONTINUE
X::::L. (..J)

L (,.J) :::L. (I)

I...(J):::X

CONTINUE
WRITE C3.1't0)

02ciOO 100 FOF~M,~T(' HO!,.j MANY INTEGE!=~ tJAUJES TO BE ~)ORTED (~~ .. -100)'? ')
OZ700 1:1.0
O:ZBOO l20
0~:~90 () 1 ~:l 0
03000 1 't {)
0 ~l:l. 0 0 1 :'j ()
0~-l~?.OO c
O~l::lO 0 200

FORMAT<' TYPE IN THE INTEGER VALUES ')
Fom•iAT <' '>
FDh~MAT (!6)
FORMAT(' THE SORTED INTEGER VALUES AREI')
FOF;:MAT (:vtX. I6)

END

13

00100 c
00200
00300
00400
OO~iOO
00600 10
00700
00800
00900
01000 20
01100
01200 100
() 1:3 0 0 l.1 0
01400
01500 200
01600

14

MODEL II FORTRAN

EXAMPLE FORTRAN FILE ACCESS ROUTINE

CALL OPEN C6,'RANREC/DAT ',11)
DO 10 1=1,20
WRITE C6,100,REC=I,ERR=Z00) I
CONTINUE
DO 20 I=::1,20
READ C6,100,REC=I,ERR=ZOO,END=20) J
WRITE (:-l til 0) J
CONTINUE

FORMAT <I10)
FORMAT (1 X, I1 0)

ENDFILE 6
END

. ·~

CHAPTER 1

1 • 1
1 • 2
1.3
1 • 4
1 • 5

CHAPTER 2

Microsoft EDIT-80 User's Guide

Contents

EDIT-80 Operation • • •
Introduction • • • • • • • •
Running EDIT-80 • • • • • • • • • • •
Ending the Editing Session •••••••
Line Numbers and Ranges • • •
Format Notation • • • • • • • • • . .

5

5
5
6
7
8

Beginning Interline Editing •• • 1 0

2.1 Insert Command ••••••••••• 10
2.2 Delete Command ••••••••••••• 11
2.3 Replace Command • • • • • • • • • • 11
2. 4 Print Command • • • • • • • • • • 12
2.5 List Command •••••••••••••• 12
2.6 Number Command ••••••••••• ~ • 13

CHAPTER 3 Intraline Editing - Alter Mode • 15

3. 1 Alter Command • • • • • • • • • • • • 1 5
3.2 Alter Mode Subcommands ••••••••• 15
3.3 Cursor Position ••••••••••••• 16
3. 4 Insert Text • • • • • • • • • • • • • • 1 6
3. 5 Delete Text • • • • • • • • • • • • • • • 7
3.6 Replace Text • • • • • • • • • • • • 8
3. 7 Find Text • • • • • • • • • • • • • • 8
3.8 Ending and Restarting Alter Mode 9
3. 9 Extend Command • • • • • • • • • 9

CHAPTER 4

4. 1
4.2

CHAPTER 5

5. 1
5.2
5.3
5.4
5.5

Find and Substitute Commands
Find Command • • •
Substitute command

.
Pages • • . . .
Specifying Page Numbers • • •
Inserting Page Marks
Deleting Page Marks • • . • • • . • .
Begin Command. . . •
Other Commands and Page Marks • .

• •

• •

• . . .
• . . • . .

0

0
2

3

3
4
4
5
5

Copyright 1979 by Microsoft, Licensed to Radio Shack, A Division of Tandy Corporation, Fort Wort , Texas

CHAPTER 6

6. 1
6.2
6.3
6.4
6.5

Exiting EDIT-80 • • • • • • • • • • • • . . . • 26

Exit Command ••••••••••••••••• 26
Quit Command ••••••••••••••• 26
Write Command • • • • • • • • • • • • • • • 26
Index Files • • • • • • • • • • • • • • • • • • 27
Parameters • • • • • • • • • • • • • • • • • • 27

SEQ and UNSEQ Switches • • • • • • • • • • • • 28

APPENDIX A - Alphabetic Summary of Commands • • • • • • • • 30

APPENDIX B - Alphabetic Summary of Alter Mode Subcomrnands • 32

APPENDIX C - Summary of Notation • • • • • • • • • • • • • 34

APPENDIX D - EDIT-80 Special Characters • • • • • • • • • • 35

APPENDIX E - Error Messages • • • • • • • • • • 36

• 38 APPENDIX F - Output File Format

-·~-

Microsoft EDIT-80 User's Guide Page 5

CHAPTER 1

EDIT-80 Operation

1.1 Introduction

EDIT-80 is a line-oriented and character-oriented
text editor. EDIT-80 commands are simple and
straightforward, yet powerful enough to accommodate
the most demanding user. For the novice or for
those requiring only cursory use of EDIT-80, the
first four chapters of this document contain all
the information necessary to complete a fairly
extensive editing session. The remaining chapters
describe the enhancements to EDIT-80 that provide
the user with more sophisticated techniques.

1.2 Running EDIT-80

To run EDIT-80, type and enter

EDIT

at TRSDOS command level. EDIT-80 will ask for the
filename by typing

FILE:

Enter the name of your file. Use TRSDOS filename
format for the filename:

filename[/extension] [.password] [:drive#]

If the filename refers to a file that already
exists, type the filename followed by <enter>, and
EDIT-80 will read in the file. If the file does
not have line numbers, EDIT-80 will append them,
beginning with line number 100 and incrementing by
100. After EDIT-80 p~ints

Version v.r
Copyright 1979, 1980 by Tandy Corp. Licensed from Microsoft
Created: mnun-dd-yy
xxxxx Bytes Free
*

it is at commmand level, as indicated by the *
prompt. All commands to EDIT-80 are entered after
the * prompt.

If the filename refers to a new file to be created,
type the filename followed by the <ESC> key.

Microsoft EDIT-80 User's Guide Page 6

EDIT-80 will return the message
~

Creating nnnnnnnn "----·
Version v.r
Copyright 1979,1980 by Tandy Corp. Licensed from Microsoft
Created: mmm-dd-yy
xxxxx Bytes free
*

Next enter the command I
further description of
will type the first line
a tab.

*I
00100

(see Section 2.1 for a
the I command) • EDIT-80

number, 00100, followed by

Now you are ready to enter the first line of your
file. A line consists of up to 255 characters and
is terminated by <enter>. After every line
entered, EDIT-80 will type the next line number,
incrementing by 100. This is the "permanent
increment." (There are various commands that will
change the permanent increment- see Chapter 2.)
Line numbers 00000 through 99999 are available for
use in your EDIT-80 file.

NOTE

Microsoft products such as TRS-80 FORTRAN
and MACR0-80 all support input files which
include EDIT-80 line numbers.

If you type in an incorrect character, use the
BACKSPACE key to erase the mistake, then type in the
correct character.

To stop inserting new lines, press <ESC> \'ih:Lle the cu
is in its initial position (right after the line numb

Note: If you backspace over a tab, the editor will
start a new working copy of the current line; the
EDIT-80 line number will not be displayed on this lin .

1.3 Ending the Editing Session

To exit EDIT-80, enter the Exit command:

*E

The exit command writes the edited file to disk usinj ~
the file-specification of the input file. The input ··.
file is copied into a backup file with the extension /OLD.

I

Microsoft EDIT-80 User's Guide Page 7

See Section 6.1.

To exit EDIT-80 without writing the edited file to
disk, enter the Quit command:

*Q

After execution of a Quit command, all the changes
entered during the editing session are lost.

1.4 Line Numbers~ Ranges

Most commands to EDIT-80 require a reference to a
line number or a range of line numbers. A line
number is specified by using the number itself (it
is not necessary to type the leading zeros), or one
of three special characters that EDIT-80 recognizes
as line numbers. These special characters are:

(period)
A (up arrow)
* (asterisk)

refers to the current line
refers to the first line
refers to the last line

Ranges may be specified in one of two ways:

1. With a colon. The designation

200:1000

means all lines from line number 200 to
number 1000, inclusive. If lines 200 and
do not exist, the range will begin with
first line number greater than 200 and end
the last line number less than 1000.

line
1000
the

with

2. With an exclamation point. The designation

200!3

means the range of three lines that starts with
line 200. If line 200 does not exist, 200!3
means the range of three lines that starts with
the first line after 200.

Here are some examples of line and range
specifications (shown here with the Print corrmand):

P. :2000

P500

P.

Prints the range that begins with
the current line and ends with
line 2000.

Prints line 500.

Prints the current line.

Microsoft EDIT-80 User's Guide Page 8

p. ! 15 Prints the range that begins at
the current line and ends after
the next 15 lines.

P/\:1500 Prints the range that begins with
the first line and ends with
line 1500.

PI\:* Prints the entire file.

See Appendix C for more
specification.

examples of range

1.5 Format Notation

Throughout this document, generalized formats of
EDIT-80 commands are given to guide the user.
These formats employ the following conventions:

1. Items in square brackets are optional.

2. Items in capital letters must be entered as
shown.

3. Items in lower case letters enclosed in angle
brackets are to be supplied by the user:

<position>

<range>

<inc>

<filename>

supply any line number (up
to five digits) or ".","A"
or "*"
supply any <position> or
any <range> -­
<range> = <position>:<position>

or
<position>!<number>

supply a non-zero integer
to be used as an increment
between line numbers

supply any legal TRSDOS
filename as described
in Section 1.2

4. Punctuation must be included where shown.

5.

6.

Items separated by a vertical line are mutually
exclusive. Choose one.

<ESC> refers to the ESCAPE key and is echoed
as $. If you see a $ in a format notation, it
refers to the break key.

~
I

Microsoft EDIT-80 User's Guide Page 9

7. In any command format, spaces and tabs are
insignificant, except within a line number or a
filename.

8. Underlined items are typed by EDIT-80.

Microsoft EDIT-80 User's Guide Page 10

CHAPTER 2

Beginning Interline Editing

Editing a file by printing, inserting, deleting and
replacing entire lines or groups of lines is termed
interline editing. This section describes the commands used
to perform these functions.

2.1 Insert Command

The Insert command is used to insert lines of text
into the file. EDIT-80 types each line number for
you during insert mode. The format of the Insert
command is:

I[<position>[,<inc> I ;<inc>]]

Insertion of lines begins at <position> and
continues until <ESC> is typed or until the
available space at that point in the file is
depleted. (In either case, EDIT-80 returns to
command level.)

If no <inc> is included with the command, the
default is the permanent increment. ,<inc>
specifies a new increment that is then established
as the permanent increment. ;<inc> specifies a
temporary increment for use with the current
command, but does not change the permanent
increment.

If no argument is supplied with the Insert command
(I<ent~r>), inser~ion resumes where the last insert
command was terminated, using the last temporary
increment. If only <position> is supplied
(I<position><enter>), the permanent increment is
used.

EDIT-80 will not allow insertion where a line
already exists. If <position> is a line number
that already exists, the command I<position> will
add the permanent increment (or the temporary
increment, if one was specified) to <position> and
allow insertion at line nuffiber <position>+<inc>.
If line <position>+<inc> already exists, or if line
numbers exist between <position> and
<position>+<inc>, an error message will be printed.

<CTRL J> may be used to start a new
physical line without starting a new logical line,
thus providing compatibility with Microsoft BASIC

Microsoft EDIT-80 User's Guide

source files.

Here is an example using the Insert command:

*I7740,10
07740
07750
07760 $

K=K+1
GO TO 400

Page 11

Note that the insertion is terminated with< ESC>.
The < ESC > key may be typed at the end of the last
line inserted (instead of <enter>) or at the
beginning of the next line. A line is not saved if
< ESC > is the first key typed on that line.

2.2 Delete Command

The Delete command removes a line or range of lines
from the file. The format of the command is:

D<range>

Examples of the Delete Command:

D7000 delete line 7000

D. delete the current line

D200:900 delete lines 200 through 900

D2000:* delete all lines from line
2000 through the last line

2.3 Replace Command

The Replace command combines the effects of the
Delete and Insert commands. The format of the
command is:

R<range>[,<inc> I ;<inc>]

The Replace command deletes all of the lines in
<range>, then allows the user to enter new text as
if an Insert command had been issued. (EDIT-80
types the line numbers.)

The options for selecting the increment between

Microsoft EDIT-80 User's Guide Page 12

line numbers are the same as those for the Insert
command (see Section 2.1).

Here is an example using the Replace command:

*R500:600;50
00500
00550
00600 80

*

DO 80 I= 1, 7
Y(I)=ALOG(Y(I))
CONTINUE

In the above example, the lines in the range 500 to
600 were deleted and replaced by three new lines
(500, 550 and 600), using a temporary increment of
50. Insertion terminated automatically because
there was not enough room for EDIT-80 to create
line 650.

2.4 Print Command

The Print command prints lines at the terminal.
The format of the command is:

P<range>

Examples of the Print command:

P.:700

P800:*

print all lines from the
current line through line 700

print all lines from line 800
through the end of the file

Typing (~) at command level will cause
the line after the current line to be printed.
Typing ·Ct·> at command level will cause the line
before the current line to be printed. Typing
P<enter>
printed.

will cause the next 20 lines to be

2.5 List Command

The List command

L<range>

is the same as the Print command, except the output
goes to the line printer.

Note: A form feed is issued before and after the
listing.

Microsoft EDIT-80 User's Guide Page 13

2.6 Number Command

The Number command renumbers lines of text. You
may wish to renumber lines to "make room" for an
insertion, or just to organize the line numbers in
a file. The format of the Number command is

N[<start>] [,<inc> I ;<inc>] [=<range>]

where:

1. <start> is the first number of the new
sequence. If <start> is omitted but <range> is
included, <start> is set to the first line of
<range>. If <start> and <range> are omitted,
but <inc> is included, <start> is set to <inc>.
If <start> is omitted and <inc> is included and
<range> specifies only a page number (e.g.,
=/2), <start> is also set to <inc> on that
page. If <start>, <range> and <inc> are
omitted, <start> is set to the permanent
increment.

2. <inc> is the increment between line numbers in
the new sequence. The options for selection of
the increment are the same as those described
for the Insert command (see Section 2.1).

3. <range> is the range of line numbers to be
renumbered. If <range> is omitted, the entire
file is renumbered.

If the current line is renumbered, " " is reset to
the same physical line.

If a Number command would result in line numbers
being placed out of sequence, or if EDIT-80 cannot
fit all the lines using the given increment, an
"Out of order" error message is returned.

Due to EDIT-80's internal memory requirements for
executing a Number command, an attempt to renumber
a very large file may result in an "Insufficient
memory" error. If this situation arises, renumber
a smaller portion of the file, write it to disk,
renumber another portion, and so on. (See Write
Command, Section 6.3.)

Examples of the Number command:

N7000;100=200:1000 Lines tOO through 1000 will
be re~umbered to begin at
line 1000 and increment by
100. !

Microsoft EDIT-80 User's Guide

N,10=400:*

N9000=10000:*

N, 100

N,5=2350!10

Page 14

Lines 400 through the end
will be renumbered to begin
with 400 and increment by 10.

Using the permanent increment
lines 10000 through the end
will be renumbered to begin
at 9000.

Renumber the whole file using
increment 100.

This command could
make room for an
compact ing the
starting with 2350.

be used to
insert by
ten lines

Microsoft EDIT-80 User's Guide Page 15

CHAPTER 3

Intraline Editing - Alter Mode

The interline editing commands discussed thus far let you
edit by inserting, deleting or replacing entire lines. Of
course many editing situations require changes to an
existing line but not necessarily retyping of the line.
Editing a line without retyping it is called intraline
editing, and it is done in Alter mode.

3.1 Alter Command

The Alter command is used to enter Alter mode. The
format of the command is:

A< range>

In Alter mode, EDIT-80 types the line number of the
line to be altered and waits for an Alter mode
subcommand.

3.2 Alter Mode Subcommands

Alter mode subcommands are used to move the cursor;
search for text; or insert, delete or replace text
within a line. The subcommands are not echoed on
the terminal.

Many of the Alter mode subcommands may be preceded
by an integer, causing the command to be executed
that number of times. (When no integer is
specified, the default is always 1.} In many cases,
the entire command may also be prefaced with a
minus sign (-} which changes the normal direction
of the command's action. For example:

D
6D
-D
-12D

deletes the next character
deletes the next 6 characters
deletes the last character
deletes the last 12 characters

Microsoft EDIT-80 User's Guide Page 16

Each Alter mode subcommand is described below. A
summary of the subcommands is given in Appendix B.

NOTE

In the following descriptions, $ represents
<ESC> , <ch> represents any character,

<text> represents a string of characters of
arbitrary length and i represents any
integer.

3.3 Cursor Position

The following commands or terminal keys are used to
change the position of the cursor in the line. The
location of the cursor is called the "current
position."

<space> spaces over characters. i<space> moves the
cursor i characters to the right.
-i<space> moves the cursor i characters to
the left. Characters are printed as you
space over them.

<up-arrow> positions cursor to beginning of line.

<dn-arrow> positions cursor to end of line.

L

p

w

prints the remainder of the line and posi­
tions the cursor at the beginning of the
line. Proceed with the next Alter mode
subcommand.

prints the remainder of the line and recy­
cles the cursor to the current position.
Proceed with the next Alter mode
subcommand.

moves to the beginning of the next word. A
word is defined as a contiguous collection
of letters, numbers, ".", "$", or"%". iW
advances the cursor over the next i words.
-iW moves the cursor back through i words
to the left.

3.4 Insert Text

I inserts text. I<text>$ inserts the given
text beginning at the current position.
Note that the text must be followed by a
<ESC> or by <enter>.

··~

Microsoft EDIT-80 User's Guide Page 17

B

G

X

inserts spaces (blanks) at the current
position. The B command may be preceded
by an integer to insert that many spaces.
Spaces are inserted to the right of the
cursor only.

inserts characters.
copies of <ch>.

iG<ch> inserts i

extends a line. The X subcommand types
the remainder of the line, goes into
insert mode and lets you insert text at
the end of the line. The -X subcommand
moves to the beginning of the line and
goes into insert mode. (Don't forget to
end your insertion with <ESC> or
<enter>.)

3.5 Delete Text

D

<BACKSPACE>

H

K

deletes the character at the current posi­
tion. iD deletes i characters beginning
at the current position. -iD deletes i
characters to the left of the current
position. Deleted char~cters are
surrounded by backslashes

The <BA.CK.SP,A,CE> key may also be used to de­
lete characters. The character
immediately to the left of the current
position is deleted. i<BACKSPACE> is
equivalent to -iD.

deletes (hacks) the remainder of the line
to the right of the cursor (or to the left
of the cursor if -H is typed) and enters
the insert mode. Text insertion proceeds
as if an I command had been typed.

deletes (kills) characters. K<ch> deletes
all characters up to but not including
<ch>. iK<ch> deletes all characters up to
the ith occurrence of <ch>. -iK<ch>
deletes all characters up to and including
the ith previous occurrence of <ch>. If
<ch> is not found, the command is not
executed.

Microsoft EDIT-80 User's Guide Page 18

0

T

z

deletes (obliterates) text. O<text>$ de­
letes all text up to but not including the
next occurrence of <text>. iO<text>$
deletes all text up to the ith occurrence
of <text>. -iO<text>$ deletes all
characters up to and including the ith
previous occurrence of <text>.

deletes (truncates) the remainder of the
line to the right of the cursor (or to the
left of the cursor if -T is typed) and
exits Alter mode.

deletes (zaps) words. iZ deletes the next
i words. -iZ deletes words to the left of
the cursor.

3.6 Replace Text

R

c

3.7 Find Text

s

replaces text. iR<text>$ deletes the next
i characters and replaces them with
<text>. -iR<text>$ replaces text to the
left of the cursor. The deleted
characters are echoed between
backslashe~

changes characters one character at a
time. C<ch> changes the next character to
<ch>. Only the new character is echoed.
iC may be followed by i characters to
change that many characters; or it may be
followed by fewer than i characters and
terminated with <ESC> , in which case the
remaining characters will not be changed.
-ic does an i<back arrow> and then an iC.
The i<back arrow> is echoed between
backslashes

searches for a character. S<ch> searches
for the next occurrence of <ch> after the
current position and positions the cursor
before the character. iS<ch> searches for
th~ ith occurrence of <ch>. -S<ch> and
-iS<ch> search for the (ith) previous
occurrence of <ch> and position the pursor
immediately before it. The charact~r at
the cursor position is not included ~n the
search. If <ch> is not found, the cr· rnrnand
is ignored.

I

I

I

Microsoft EDIT-80 User's Guide Page 19

F finds text. F<text>$ finds the next occur­
rence of <text> and positions the cursor
at the beginning of the string. iF<text>$
finds the ith occurrence of <text>.
-F<text>$ and -iF<text>$ find the (ith)
previous occurrence of <text> and position
the cursor before it.

3.8 Ending and Restarting Alter Mode

<cr>

N

Q

carriage return. Prints the remainder of
the line, enters the changes and concludes
altering of that line.

restores the original line (changes are
not saved) and either moves to the next
line (if an A<range> command is still in
progress), or returns to command level.

restores the original line (changes are
not saved), exits (quits) Alter mode, and
returns to command level.

3.9 Extend Command

The Extend command is issued at command level and
is used to extend lines. The format of the command
is

X<range>

The effect of the X command is equivalent to typing
an A command, followed by an X subcommand. After
entering an X command, proceed by typing the text
to be inserted at the end of the line. Don't
forget you are now in Alter mode and may use any of
the Alter mode subcommands, once <ESC> has been
typed.

The Extend command is particularly useful for
placing comments in assembly language programs.

Microsoft EDIT-80 User's Guide Page 20

CHAPTER 4

Find and Substitute Commands

When it is necessary to change a certain portion of text, it
is not always immediately known where that text is located
in the file. Even with a listing of the file on hand, it is
a tiresome task to scan the listing to find the line number
of a particular item that must be changed.

The EDIT-80 Find and Substitute commands allow the user to
quickly locate text and make necessary changes.

4.1 Find Command

The Find command locates a given string of text in
the file and types the line(s) containing that
string. The format of the command is:

F[<range>] [,<limit>] <enter> I $<string>$

where $ represents the escape key and <limit> is
the number of lines containing <string> to be
found. A limit of zero will find all occurrences
of <string>. The following rules apply to the
format of the Find command:

1 •

2.

3.

4.

If $<string>$ is omitted, the last string given
in a Find command is used.

If <limit> is omitted and $<string>$ is
included, <limit> is assumed to be 1 •

If <limit> and $<string>$ are omitted, the
previous limit is assumed.

If <range> is omitted and $<string>$ is
included, the entire range from the previous
Find command is used.

5. If <range> and $<string>$ are omitted, the
search for the previous string continues from
the line where the last occurrence was found.

If the search is unsuccessful, an error message is
printed.

··~

Microsoft EDIT-80 User's Guide Page 21

Here is a sample editing session using Find:

FA:$WHI(I)$
01100 WHI(I)=O
*F<enter>
01400 IF (P.GT.WHI(I})WHI(I)=P
*A.
01400

*F,2$WLO(I)$
01200 WLO(I)=9999
01500 IF (P.LT.WLO(I))WLO(I)=P
*A.
01500

.
*F. :*AVG
Search fails
*F$MEAN$
03700 MEAN=SUM/40
*F,O
04200
06700
*A4200
04200

IF(P.GT.MEAN) M=M+1
WRITE (6,170) MEAN, M

Find the first line that
contains WHI(I). Prints line
1100. Find the next one. Prints
line 1400. Caught a mistake
in this line. Alter it.

Find the first two lines in the
file that contain WLO(I) (range
is still .:*). Prints lines
1200 and 1500. Alter line 1500.

Find the first line in the file
that contains AVG. There aren't
any. Try finding MEAN instead.
Prints line 3700.
Find all other lines contain­
ing MEAN. (Search begins at the
line after line 3700.) Finds
two more (4200 and 6700).
Alter line 4200, etc.

Microsoft EDIT-80 User's Guide Page 22

4.2 Substitute Command

The Substitute command locates a given string,
replaces it with a new string and types the new
line(s). The format of the command is:

S[<range>] [,<limit>] <enter> I $<old string>$<new string>$

where $ represents <ESC> , and <limit> is the
number of lines in which <old string> is to be
replaced by <new string>. A limit of zero will
replace all occurrences of <old string> with <new
string>. <new string> may be a null string. The
following rules apply to the format of the
Substitute command:

1. If $<old string>$<new string>$ are omitted, the
strings given in the last Substitute command
are used.

2. If <limit> is omitted and $<old string>$<new
string>$ are included, <limit> is assumed to be
zero.

3. If <limit> and $<old string>$<new string>$ are
omitted, the previous limit is assumed. ~

4. If <range> is omitted and $<old string>$<new
string>$ are included, the entire range from
the previous Substitute command is used.

5. If <range> and $<old string>$<new string>$ are
omitted, substitution continues from where the
last substitution left off.

If no occurrence of <old string> is found, an error
message is printed.

Example:

*SA:5000$ALPHA$BETA$ From the first line
to line 5000, replace
all occurrences of
ALPHA with BETA.

00950 BETA(K)=ABS(1.-LST(K))
01750 WRITE(6,400) BETA(K}
0410D IF (BETA(K).LT.O)GOTO 9000

Microsoft EDIT-80 User's Guide Page 23

CHAPTER 5

Pages

It is possible to divide an EDIT-80 file into sections
called pages, which are separated by page marks. The first
page of a file is always page 1, and EDIT-80 always enters
command level on page 1 of a multiple-page file. Each
subsequent page begins with a page mark and is numbered
sequentially. On any given page, the complete range of line
numbers (00000 to 99999 or any portion thereof) may be used.

If EDIT-80 encounters a form feed while reading in a file,
it will enter a page mark at that point in the file. If
EDIT-80 encounters a line number that is less than the
previous line number, it will automatically insert a page
mark so that proper line number sequence may be maintained.
When EDIT-80 writes a file out to disk, a form feed is
output with each page mark. Then, when the file is listed,
each new page of the file starts on a new physical page.

5.1 Specifying Page Numbers

In a single-page file, only a line number is needed
to indicate <position>. In a multiple-page file,
EDIT-80 must know the page number as well as the
line number to determine a <position>. That is,
<position> is indicated by

<line>[/<page>]

where

<line> is
digits.

II II
• I "A", "*" or a number of up to five

<page> is ".", "A", "*" or a number of up . to five
digits. When specifying a page, the characters
".", "A" and "*" refer to the current page, the
first page and the last page, respectively. If
<page> is omitted, the current page is assumed.

Consequently, in a multiple-page file a <range>,
which may be indicated by

<position>:<position>
or

<position>!<number>

may also contain page numbers. If the page number
is omitted from the first line number in the range,
it is assumed to be the current page. If the page

Microsoft EDIT-80 User's Guide Page 24

number is omitted from the second line number in
the range, it is assumed to be on the same page as
the first line number in the range.

Here are some examples of line numbers and ranges
that include page number specification:

100/2:*./*

100/2:*

100:*/5

100/*

100/.:*/3

Line 100 on page 2 through
the last line on the last page

Line 100 on page 2 through
the end of that page

Line 100 on the current page
through the last line on
page 5

Line 100 on the last page

Line 100 on the current page
through the last line on
page 3

See Appendix C for more
specification.

examples of

5.2 Inserting Page Marks

range

Page marks may be inserted in the file at the
discretion of the user. To insert a page mark, use
the Mark command. The format is:

M<position>

The page mark is inserted
<position>. <position> must
message.will be prlhted.

immediately after
exist or an error

The current line reference (".") is retained after
a Mark command is executed. That is, if <position>
is before ".", then "." will be moved to the next
page and will still point to the same physical
line.

5.3 Deleting Page Marks

Page marks are deleted with the K (Kill} commalld.
The format of the command is:

K/<page>

The K command deletes the page mark after <page>.
For example, in a four-page file, K/2 would delete

"\,

·~
\

Microsoft EDIT-80 User's Guide Page 25

the second page mark (the page mark that started
page 3), and the pages would then be numbered 1, 2 1
and 3. The last line number on <page> must be
lower than the first line number on <page>+1 before
a K/<page> command can be executed.

5.4 Begin Command

Use the Begin command to return to the beginning of
a page. The format of the Begin command is:

B [/<page>]

If <page> is omitted, the B command returns to the
beginning of page one.

5.5 Other Commands and Page Marks

1 •

2.

A Delete command that crosses over a page
boundary will delete all lines in the range,
but will not delete the page mark.

A Print command that moves off the current page
will print the new page !number prior to
printing the first line specified in the
command. I

3. When output is· being done with the List
command, a form feed will be printed with each
page mark, and the page nurr~e will be printed
on each page.

4. A range specified with an exc amation point may
cross a page boundary.

5. If the range specified in Number command
crosses page boundaries, numbering will start
over on each new page; the f~rst line number
will equal the increment. consequently, in the
Number command, <start> and the first line of
<range> must be on the same p~ge.

Microsoft EDIT-80 User's Guide Page 26

CHAPTER 6

Exiting EDIT-80

Section 1.3 introduced the Exit and Quit commands for
exiting EDIT-80. These two commands will be described more
completely in this chapter. An additional command, the
Write command, will also be presented.

6.1 Exit Command

The Exit command is used to write the file to disk
and return to TRSDOS. The format of the command
is:

E filespec {switchl
If <filename> is omitted, the edited file is saved
under the name of the input file. However, the
input file is first copied into a backup file with
the original file name and the extension /OLD. For
example, if the input file was named ECHO, typing E
<ENTER> causes the original file to be copied to
ECHO/OLD, and the edited file will be saved as
ECHO.

<switch> controls the format of the output file.
See Section 6.5.

6.2 Quit Command

The Quit command is used to return to
without writing the edited file to disk.
ed~t~ng, simply enter:

Q

TRSDOS
To Quit

After a Quit command, all changes entered during
the editing session are lost.

6.3 Write Command

The Write command writes the edited text to disk
and then returns to EDIT-80 command level. It does
not exit the editor, and the current position in
the file is not changed. The format of the command
is:

W[<filename>] [-<switch>]

If <filename> is omitted, the text is saved under the
name of the original input file. The original input
file is saved with the extension /OLD.

Microsoft EDIT-80 User•s Guide Page 27

The optional <switch> controls the format of the
output. (See Section 6.5.)

6.4 Index Files

When reading in a file to be edited, EDIT-80
generates information it needs about each block of
the disk file. With a small file, this information
is generated in a few seconds, each time the file
is read in. However, with larger files (5K or
more), the time lag required to read in the file
becomes significant. Thus, when EDIT-80 saves a
file of 42 or more records on the disk, it also
saves a small file, separate from the text file,
containing the required information about the text
file.

This small file is called the index file, and it
can be read faster than the text file. EDIT-80
saves the index file under a filename that is the
same as the text filename (passwords not included),
with a Z preceding the first two letters of the
extension. For example, if the file is called
FOO/MAC.SAM, the index file is called FOO/ZMA.

When EDIT-80 is asked to edit a file, it first
checks for an index file. If an index file exists,
EDIT-80 reads the index file instead of the text
file. Care must be taken if the text file is
modified by another editor or changed and saved in
BASIC. The user must then delete the index file
prior to editing the text file again with EDIT-80.
If the index file is not deleted, EDIT-80 will have
meaningless information about the text file.

6.5 Parameters

When reading in a file, EDIT-80 expects it to be in
its own representation~ If the file appears to be
in another representation, EDIT-80 will add line
numbers and try to convert the file to EDIT-80
standard format. There are, however, several other
representations that EDIT-80 accepts, if the proper
switch is appended to the input filename. Likewise,
files may be output in non-EDIT-80 format by
appending the switch to the output filename. The
switch is always enclosed ins ide braces { } .

filespec {switch}

For example: EDIT SPECIAL/TXT {UNSEQ}

Microsoft EDIT-80 User's Guide Page 28

UNSEQ and S~Q Switches

I~ the UNSEQ switch is appended to the input
filename, EDIT-80 will read the file using the
following algorithm:

1. All leading spaces and tabs are removed from
each line ..

2. The first non-blank character must be a digit.

3. From 1 to 5 leading digits are converted
line number. More than 5 leading
constitutes a fatal error.

to a
digits

4. A tab is inserted if the first non-digit is not
a space or a tab. If the first non-digit is a
space, it is replaced by a tab. If the first
non-digit is a tab, it is left alone.

Microsoft EDIT-80 User's Guide Page 29

Output Files

If UNSEQ was used on input, the output file will be
unsequenced--that is, EDIT-80's line-numbers and
initial tabs will not be stored. Just the text of
your file will be stored.

After using UNSEQ on input, you can output a normal
EDIT-80 file by adding the SEQ option to the ouptut
command. The EDIT-80 line number/tab sequence will
be stored in the file. (What you see on the display
will be what is stored.)

Editin~ Interpreter BASIC programs

You can load in an ASCII-format BASIC program
simply by specifying the program as the input file.
For example, suppose you have a program stored in
ASCII format in the file PROGRAM. The use this
command under TRSDOS READY:

EDIT PROGRAM <ENTER>
The program's line numbers will be
line numbers, and the trailing
converted to a tab.

taken as EDIT-80
space will be

Go ahead and edit the program, using all of
EDIT-80's features--except for the renumbering
facility. Renumbering would not be useful, since
the line references inside the program would not be
changed.

When you have finished editing the file, simply
type E. The original BASIC program will be renamed
with the extension /OLD, and the edited file will
be saved under the original file specification. In
our example, the command:

E <ENTER>
would cause the following action:

original PROGRAM --> PROGRAM/OLD
new PROGRAM contains the edited file contents.

Microsoft EDIT-80 User's Guide

Command

Alter

Begin

Delete

Exit

Find

Insert

Kill

List

Mark

Number

Print

Quit

APPENDIX A

Alphabetic Summary of Commands

Format and Description

A<range>
Enters Alter mode.

B[<page>]
Moves to the beginning of <page>.
Default is page 1.

D<range>
Deletes lines.

E[<filename>] [{ <switch> I
Writes the edited text to disk
and exits the editor.

F[<range>] [,<limit>] <enter> I $<string>$
Finds occurrences of <string>.

I [<position>] [,<inc> I ; <inc>]
Inserts lines beginning at <position>
using increment <inc>. With no
argument, continues with previous
Insert command.

K/<page>
Deletes the page mark at the end of
<page>.

L<range>
Prints lines at the line printer.

M<position>
Inserts a page mark after <position>.

N[<start>] [,<inc> I ;<inc>] [=<range>]
Renumbers the lines in <range> so
they begin at <start> and increment
by <inc>.

P[<range>]
Prints lines at the terminal.
With no argument, prints the
next 20 lines.

Q
Exits the editor without writing
the edited text to disk.

Page 30

Page

15

25

11

6, 26

20

10

24

12

24

13

12

6, 26

~
\

Microsoft EDIT-80 User's Guide Page 31

Replace

Substitute

Write

eXtend

R<range>[,<inc> I ;<inc>] 18
Replaces line(s~ using increment
<inc>.

S[<range>] [,<lirnit>J<enter>l$<old string>$<new
Replaces <old string> with <new string>. 22

W[<filenarne>] (<switch> l
Writes the edited text to disk but
does not exit the editor.

X<range>
Allows insertion of text at the
end of a line.

26

19

string>$

Microsoft EDIT-80 User's Guide Page 32

Command

B

c

D

F

G

H

I

K

L

N

0

p

Q

APPENDIX B

Alphabetic Summary of Alter Mode Subcommands

Format

[i]B

[-] [i] C<ch> [••• <ch>]

[-] (i]D

[-] (i]F <text>$

[i]G<ch>

[-]H<text>$

I<text>$

[-] [i]K<ch>

L

N

[-] [i] O<text>$

p

Q

Action

Inserts spaces

Replaces characters

Deletes characters

Finds <text>

Inserts i copies of <ch>

Deletes the remainder of
the line and enters the
insert mode

Inserts <text>

Deletes all characters up
to <ch>

Positions the cursor at the
beginning of the line

Restores the original line
and either moves to the
next line (if an A<range>
command is still in
progress} or returns to
command level

Deletes all characters up
to <text>

Recycles the cursor to the
current position

Exits Alter mode and
restores the original line

Microsoft EDIT-80 User's Guide

R

s

T

w

X

z

[-] [i]R<text>$

[-] [i] S<ch>

[-] T

[-] [i]W

[-]X

[-][i]Z

<DOWN ARROW>

<UP ARROW>

<BACKSPACE>

[-] [i] <space>

<enter>

Page 33

Replaces i characters with
<text>

Finds <ch>

Deletes the remainder of
the line and concludes
altering of the line

Moves the cursor over words

Extends the line

Deletes words

Moves the cursor to the end
of the line
Beginning of line
Deletes characters

Moves the cursor over
characters

Prints the remainder of the
line, enters changes and
concludes altering of that
line

Microsoft EDIT-80 User's Guide Page 34

APPENDIX C

Summary of Notation

The notation used in this document may be defined as follows:

<line> = <number> •

<page> = <number>

<position> = <line>[/<page>]

A I *
A I *

<range> = <position>[:<position> I !<number>]

where:

<number> = <digit> <number><digit>

<digit> =O l11213141sl6171sl9

Shorthand Notation for Ranges

The following "shorthand" forms of range specifications may be use~
·~

with EDIT-80 commands.

Shorthand
Notat~on

/<page>

/<page1>:/<page2>

<position>:

:<position>

Equivalent
To

A/<page>:*/<page>

A/<page1>:*/<page2>

A/1:*/*

<position>:*/*

A/1:<position>

Range
Specified

All of <page>.

The first line on <page1>
through the last line on
<page2>.

The entire file.

<position> through the end
of the file. e.g.,
.: is the same as ./.:*/*

The first line in the file
through <position>. e.g.,
:. is the same as A/1:./.

~\

r--' . \

Microsoft EDIT-80 User's Guide Page 35

<break>

<TAB>

<CTRL O>

APPENDIX D

EDIT-80 Special Characters

Aborts the command in progress
and returns to EDIT-80
command level.

Types a tab.

Pauses execution of an
EDIT-80 command. Press a.gain
to continue.

Microsoft EDIT-80 User's Guide Page 36

APPENDIX E

Error Messages

Fatal Errors

Disk I/0 errors are fatal. The corresponding TRSDOS error
message will be printed.

Any TRSDOS system error message is fatal.

Illegal line format
Occurs wnen-EDIT-80 finds a line with strange contents or a
strange line number. This should not normally occur when
editing a file created by EDIT-80. It is usually caused by
reading files not meant for editing, such as binary files.

Edit Error Messages

Illegal command
Tells the user a nonexistent or ill-formed command was
typed.

Insufficient memory available
Occurs when the user has made enough changes to the file to
have exhausted EDIT-80's memory area. This should only
happen when a large file has many changes or when large
portions of code are being inserted or renumbered. A W
command should be done to compress memory.

No string given
Tells the user the F or S command was given without a search
string. This usually happens when using the F or S command
with no arguments prior to issuing an F or S command with
arguments, or when an <escape> without a search string is
typed following the range.

No such line(s)
This-ffiessage is issued if a
range which does not exist.
page number is omitted from

Line too long

command references a line or
Usually occurs when the proper

the line or range.

This message is issued when the user attempts to enter a
line longer than 255 characters. This may happen when the
line is read or as a result of a command which alters the
line.

Out of order
Indicates that the line numbers in the file would not be in
ascending order if the command were to be executed. This
frequently happens when trying to insert where there is not

\.

. ·~

Microsoft EDIT-80 User's Guide

enough room or trying to delete a page mark.

Search fails

Page 37

An informat1ve message that tells the user a search was
unsuccessful.

Wrap around
This message is printed whenever a line greater than 99999
would be generated.

File Errors

File already exists
Issued if the user tries to give the name of an existing
file to a new file, or tries to rename a file using the name
of an existing file in an E or W command.

File not found
Issued if the file specified in a command could not be
found.

Illegal file specification
Informs the user that the command string contains an illegal
character of some kind •

Microsoft EDIT-80 User's Guide Page 38

APPENDIX F

Output File Format

Compilers and assemblers should ignore the line numbers
page marks included in EDIT-80 output files (except
included in listing files). Microsoft TRS-80 FORTRAN
MACR0-80 both do so.

and
when

and

A line number consists of five decimal digits followed by a
tab character. All six bytes have the high order bit (bit
7) equal to one. It is not recommended that EDIT-80 files
be listed with the TRSDOS LIST command. Graphics characters
may appear in the line numbers. Use EDIT-80's Print command
instead.

When writing a file with -BASIC set, the line numbers have
the high order bits equal to zero. Each line number is
followed by a space that has the high order bit equal to
zero.

A page mark is a form feed character with the high order bit
equal to one.

Microsoft EDIT-80 User's Guide

Index

Alter command • • • • • • • • 15
Alter mode • • • • • • • • • • 15
Alter mode sub commands • • • • 15-19,

BASIC switch . .
Begin command •

Command level
Control-0 • • •

Delete command
Delete key • • •

• • . • . 28, 38 . . • . • • . 25

• • 5
• • • 35

. . . . 11, 25 • 6, 33

Error messages • • • • • • • • 36
Exit command ••••••••• 6, 26
Extend command • • •••• 19

• • • 20

32

Find command •
Form feed • • 23, 25, 38

Index files
Insert command

Kill command •

. .

Line feed • • • • • •

• 27
• • 6 1 1 0

• • 24

10, 12
Line numbers • • • • • • • •
List command • • • • • • • •

• 5-7, 23, 27, 38
• 12, 25

Mark command • 24

Number command • • 13, 25, 28

Page mark •••••••••• 23-25, 28
Page numbers • • • •• 23
Parameters •••••••••• 27
Permanent increment ••••• 6, 10, 13
Print command • • • • •• 12, 25, 38

Quit command • . . •• 7, 26

Replace command 1 1

SEQUENCE switch • • 2 8
.

16 Space bar • • • •
Substitute command •
Switches • • • •

. . . • • 22

Tab key
TRSDOS •

.
• • 27

• • • 1 6, 35
••• 5-6, 8, 26, 36, 38

Page 39

-~-

----~~ "~-

Section

1

2

3

4

5

6

Introduction

MICROSOFT FORTRAN-SO
Reference Manual

Contents

.

Fortran Program Form

Page

6

7

2.1 Fortran Character Set .•..• 7
2.1.1 Letters. • . • • • . • ••• 7
2.1.2 Digits •.••..•..•••• 7
2.1.3 Alphanumerics. • •••••. 8
2.1.4 Special Characters •••..•• 8

2.2 FORTRAN Line Format • . . . • • . • • • 9
2.3 Statements • . • • • . • . . 13

Data Representation/Storage Format . 14

3. 1 Data names and types 14
3. 1 . 1 Names 14
3. 1 • 2 Types 14

3.2 Constants 15
3.3 Variables 19

3.4 Arrays and Array Elements 20
3.5 Subscripts 20
3.6 Data Storage Allocation 21

FORTRAN Expressions 25

4. 1 Arithmetic Expressions 25
4.2 Expression Evaluation 26
4.3 Logical Expressions 27

4. 3. 1 Relational Expressions . 28
4.3.2 Logical Operators 28

4.4 Hollerith, Literal, and Hexadecimal
Constants in Expressions 31

Replacement Statements 32

Specification Statements 34

6. 1 Specification Statements • 34

6.2 Array Declarators 34

6.3 Type Statements 35
6.4 EXTERNAL Statements . • . . 37

6.5 DIMENSION Statements 37

I
©Copyright 1979 by Microsoft, ~icensed to Radio Shack, A Division of Tandy Corporation, Fort Worth, Texas

6.6 COMMON Statements • • • . ' • . . . 37 ~
6.7 EQUIVALENCE Statements • . . • • . • • • • . 39 !
6.8 DATA Initialization Statement • . . . • • • . 41

7 FORTRAN Control Statements 0 • . • • . • • • . 0 . 44

7.1 GOTO Statements • • • . . • • . . 44
7.1.1 Unconditional GOTO • . . • . • . . . • 44
7. 1. 2 Computed GOTO . . • • • . . • 45
7. 1. 3 Assigned GOTO • • • • • . • 45

7.2 ASS!GN Statement . • . . • • • • • • • • 46
7.3 IF Statement 47

7.3.1 Arithmetic IF • • • . • . • • 47
7.3.2 Logical IF • . • • • • • . 47

7.4 DO Statement . . • • • . 48
7.5 CONTINUE Statement 0 . 51
7.6 STOP Statement . . . • . • 52
7.7 PAUSE Statement 52
7.8 CALL Statement . . • • . • . • . • • • • • • 53
7.9 RETURN Statement • 53
7.10 END Statement • • . . . • • • • 53

8 Input/Output 54

8. 1 Formatted READ/WRITE . • • • • • • . . . • • 54 /~

8. 1 • 1 Formatted READ • • . . • • • . . • . • 54
8 .. 1. 2 Formatted WRITE . . . • 57

8.2 Unformatted READ/WRITE . . • . • . . 58
8.3 Disk File I/0 . . 0 59

8.3.1 Random Disk I/0 • . • • . • • 59
8.3.2 OPEN Subroutine . • . . . 60

8.4 Auxiliary I/0 Statements • . 60
8.5 ENCODE/DECODE 0 . . • . . . 61
8.6 Input/Output List Specifications • • • • • • 62

8.6.1 List Item Types 62
8.6.2 Special Notes on List

Specif,i.cations • • • • • • • • • . . • 64
8.7 FORMAT Statements • • • • • • • • • • 0 • • • 65

8.7.1 Field Descriptors • • 65
8.7.2 Numeric Conversions • • • • • • • • • 66
8.7.3 Hollerith Conversions • • • • • . • . 71
8.7.4 Logical Conversions • • • • • • • • • 73
8.7.5 X Descriptor . . • • 74
8.7.6 P Descriptor • • . . • • 74
8.7.7 Special Control Features

of FORMAT Statements • . 75
8.7.7.1 Repeat Specifications • • 75
8.7.7.2 Field Separators • . • 0 • • • • • 77

8.7.8 FORMAT Control, List Specifications,
and Record Demarcation . . . • • • • . 78

~-
8.7.9 FORMAT Carriage Control 79

8.7.10 FORMAT Specifications in Arrays • • • 79

9

~~

Functions and Subprograms . . .
9. 1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
9.9
9. 1 0

PROGRAM Statement • • • • • • • • • • • • • •
Statement Functions • • • • • • • • • • • • •
Library Functions • • • • • • • • • . • •
Function Subprograms • • • . • .
Construction of Function Subprograms • • . •
Referencing a Function Subprogram • • • • • •
Subroutine Subprograms • • • . . • . . • • •
Construction of Subroutine Subprograms . • .
Referencing a Subroutine Subprogram • • .
Return From Function and Subroutine

82

83
83
84
88
88
90
91
91
92

Subprograms • • • • • • • • • . 93
9.11 Processing Arrays in Subprograms • . • . 94
9.12 BLOCK DATA Subroutine. • • • • • • ••• 96

APPENDIX A- Language Extensions and Restrictions . 98

APPENDIX B- I/0 Interface 100

APPENDIX c- Subprogram Linkages 102

APPENDIX D- ASCII Character Codes 104

APPENDIX E- FORTRAN-80 Library Subroutines . . 105

FORTRAN-SO Reference Manual Page 6

SECTION 1

INTRODUCTION

FORTRAN is a universal, problem oriented programming
language designed to simplify the preparation and check-out
of computer programs. The name of the language - FORTRAN
is an acronym for FORmula TRANslator.

The syntactical rules for using the language are rigorous
and require the programmer to define fully the
characteristics of a problem in a series of precise
statements. These statements, called the source program,
are translated by a system program called the FORTRAN
processor into an object program in the machine language of
the computer on which the program is to be executed.

This manual defines the FORTRAN source language for the 8080
and Z-80 microcomputers. This language includes the
American National Standard FORTRAN language as described in
ANSI document X3.9-1966, approved on .March 7, 1966, plus a
number of language extensions and some restrictions. These
language extensions and restrictions are described in the
text of this document and are listed in Appendix A.

NOTE

This FORTRAN differs from the
Standard in that it does not
include the COMPLEX data type.

Examples are included throughout
the construction and use of
programmer should be familiar
language to take full advantage

the manual to illustrate
the language elements. The
with all aspects of the

of its capabilities.

Section 2 describes the form and components of an 8080
FORTRAN source program. Sections 3 and 4 define data types
and their expressional relationships. Sections 5 through 9
describe the proper construction and usage of the various
statement classes.

~
\

FORTRAN-80 Reference Manual Page 7

SECTION 2

FORTRAN PROGRAM FORM

8080 FORTRAN source programs consist
called the Main program and any
called subprograms. A discussion of
methods of writing and using them
manual.

of one program unit
number of program units

subprogram types and
is in Section 9 of this

Programs and program units are constructed of an ordered set
of statements which precisely describe procedures for
solving problems and which also define information to be
used by the FORTRAN processor during compilation of the
object program. Each statement is written using the FORTRAN
character set and following a prescribed line format.

2.1 FORTRAN CHARACTER SET

2. 1 • 1

2. 1 • 2

To simplify reference and explanation, the FORTRAN
character set is divided into four subsets and a
name is given to each.

LETTERS

A,B,C,D,E,F,G,H,I,J,K,L,M,N,O,P,Q,R,S,T,U
V,W,X,Y,Z,$

NOTE

No distinction is made between upper and
lower case letters. However, for clarity
and legibility, exclusive use of upper case
letters is recommended.

DIGITS

0,1,2,3,4,5,6,7,8,9

NOTE

Strings of digits representing numeric
quantities are normally interpreted as
decimal numbers. However, in certain
statements, the interpretation is in the

FORTRAN-80 Reference Manual Page 8

2. 1. 3

2. 1. 4

+

*
I
(
)

Hexadecimal number system in which case the
letters A, B, C, D, E, F may also be used
as Hexadecimal digits. Hexadecimal usage
is defined in the descriptions of
statements in which such notation is
allowed.

ALPHANUMERICS

A sub-set of characters made up of all letters and
all digits.

SPECIAL CHARACTERS

Blank
Equality Sign
Plus Sign
Minus Sign
Asterisk
Slash
Left Parenthesis
Right Parenthesis
Comma
Decimal Point

NOTES:

1. FORTRAN program lines consist of 80 character
positions or columns, numbered 1 through 80.
They are divided into four fields.

2. The following special characters are classified
as Arithmetic Operators and are significant in
the unambiguous statement of arithmetic
expressions.

3.

+ Addition or Positive Value
Subtraction or Negative VAlue

* Multiplication
I Division
** Exponentiation

The other special
application in the
the FORTRAN language
FORTRAN statements.

characters have specific
syntactical expression of

and in the construction of

FORTRAN-SO Reference Manual

4. Any printable character may appear
Hollerith or Literal field.

2.2 FORTRAN LINE FORMAT

Page 9

1n a

The sample FORTRAN coding form (Figure 2.1) shows
the format of FORTRAN program lines. The lines of
the form consist of 80 character positions or
columns, numbered 1 through 80, and are divided
into four fields.

1. Statement Label (or Number) field- Columns
through 5 (See definition of statement labels).

2. ·Continuation character field­
Column 6

3. Statement field­
Columns 7 through 72

4. Indentification field­
Columns 73 through 80

The identification field is available for any
purpose the FORTRAN programmer may desire and is
ignored by the FORTRAN processor.

The lines of a FORTRAN statement are placed in
Columns 1 through 72 formatted according to line
types. The four line types, their definitions, and
column formats are:

1. Comment line-- used
annotation at the

for source program
convenience of the

programmer.

1. Column 1 contains the letter C.

2. Columns 2 - 72 are used in any desired
format to express the comment or they may
be left blank.

3. A comment line may be followed only
initial line, an END line, or
comment line.

by an
another

4. Comment lines have no effect on the object
program and are ignored by the FORTRAN
processor except for display purposes in
the listing of the program.

c
0
M C
M C
E l STATE-N
N MENT #T FORTRAN STATEMENT (COL'S 65-72 NOT SHOWN; ID SEQ. 73-80 NOT SHOWN)
T

1 2 3 4 5 'o 7 B 9 10 II 12 13 14 15 16 17 IB 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

1' . l 1 l I I I) I I
1
' I I .•. I I : l I ,, I

' . I. . • ' , ' .. !

I l I . I 1·· • ' I ! l
! I I I I i 'I I I I ! i I I I I i ! ' I 1 I ! I I I !

I I i I' I : i l ! ! I i ·. II i I i i : ' ' I ! ' ! I I ! I ' I

i I I j i I ! I I I l i I I

,. I .. s I i I I I I T I
I I I ' ! I I I 'I
l . I r 1 , j ! ,
) I ' ' I l '

; l I I i I ' I l I i I ' I I l I i I
' i I I I I I i I I . ! ; ' ' I ! I i

I I I I ! I ' ' I • ' I I I I I i

I ' I I i ! i I I i ' ! ! ' I i I I I I I : I . I I ! •
: I ' i! : ' ! I ! ! I li I I I I ' I I I • I I ' !
i I I ! I I ' I i I : j i I : ; !

I I l I ; I I I I ': : I I
1 i j 1 I 1 , '

' I I ' ! 1 i j• I I l II I: i ! : i I I
i ' I ' ' I ; I ' ' ! ! . I . ! ' ; I , I 'i ' 'I I ' ' ! I : I ' . ' .I I • I ! I I I I I I I I I ! i ' I ! I i l I I i I j I I I

' i ' I I I ' I ' I i I ' I : ' I
! I I ' ' I ! I ; ' ' I I I i I ' ' i I ' 'I

i I ' : i I ' I I i ! I ' ' ' I ' I

! ! II i ! ' ' I ! I ! I I I I ! I ! i ' I I :

' I I I ' : i i I ' I I • l :

I l i I i i I i I I ! I I : i ! I I i I ' I : i ' ! I

I I I j I! i i ! ! II I I !\ I I I : I I I i I 1 I I i
l l i I I i F i I i ! l i I l : l I ! :

I ! I I I J I I I I I ! I I i I I I I i I ' i I I I I I l :
I I ' \ I. ! I ! ! i i ! I I I' ., I I li II i I I II l :
I i I I i I I I i I I I I I I I i I I i I i '

l i ,, I I I . i i I i I I I i i ' 1 i . I
-1~-+~~+-+-~~

' I I I ! i i ! 'I I ; ' I i ' I ' i II I I I .
i ' ! I I i I ! ' ' . I I i i ' I I i i i ' i i !

. ' ' i' i ' I I. 't I i i ' I I I ! I I i I. I I I I i ' i i I i i ! : ' i I i I I i i i i I I I I I
1 2 3 4 5 6 7 B 9 10 II 12 13 141~ __ 17 1819 20 21_22 23 24 25 26 27 28 29 30 31 32 33_3435~:Ji'3B _ _:J9__4(J_41_~_43_~4 45 46 47 48 49 50 51 52 53 54 55~7_58 59 60 61 62_63_64_

)
FIGURE 2.1

.J _)

FORTRAN-SO Reference Manual Page 11

Example:

C C0~1ENT LINES ARE INDICATED BY THE
C CHARACTER C IN COLUMN 1.
C THESE ARE COMMENT LINES

2. END line -- the last line of a program unit.

1. Columns 1-5 may contain a statement label.

2. Column 6 must contain a zero or blank.

3. Columns 7-72 contain one of the characters
E, N or D, in that order, preceded by,
separated by or followed by blank
characters.

4. Each FORTRAN program unit must have an END
line as its last line to inform the
Processor that it is at the physical end of
the program unit.

5. An END line may follow any other type line.

Example:

END

3. Initial Line
statement.

the first or only line of each

1. Columns 1-5 may contain a statement label
to identify the statement.

2. Column 6 must contain a zero or blank.

3. Columns 7-72 contain all or part of the
statement.

4. An initial line may begin anywhere within
the statement field.

Example:

C THE STATEMENT BELOW CONSISTS
C OF AN INITIAL LINE
c

A= .5*SQRT(3-2.*C)

FORTRAN-SO Reference Manual Page 12

4. Continuation Line -- used when additional lines
of coding are required to complete a statement
originating with an initial line.

1. Columns 1-5 are ignored, unless Column 1
contains a c.

2. If Column 1 contains a c, it is a comment
line.

3. Column 6 must contain a character other
than zero or blank.

4. Columns 7-72 contain the continuation of
the statement.

5. There may be as many continuation lines as
needed to complete the statement.

Example:

C THE STATEMENTS BELOW ARE AN INITIAL LINE
C AND 2 CONTINUATION LINES
c

63 BETA(1 ,2) =
1 A6BAR**7-(BETA(2,2)-A5BAR*50
2 +SQRT (BETA(2,1)))

A statement label may be placed in columns 1-5 of a
FORTRAN statement initial line and is used for
reference purposes in other statements.

The following considerations govern the use of
statement labels:

1. The label is an integer from 1 to 99999.

2. The numeric value of the label, leading zeros
and blanks are not significant.

3. A label must be unique within a program unit.

4. A label on a continuation line is ignored by
the FORTRAN Processor.

/~
1

FORTRAN-80 Reference Manual

Example:

C EXAMPLES OF STATEMENT LABELS
c

1
1 01

99999
763

2.3 STATEMENTS

Page 13

Individual statements deal with specific aspects of
a procedure described in a program unit and are
classified as either executable or non-executable.

Executable statements specify actions and cause the
FORTRAN Processor to generate object program
instructions. There are three types of executable
statements:

1. Replacement statements.

2. Control statements.

3. Input/Output statements.

Non-executable statements describe to the processor
the nature and arrangement of data and provide
information about input/output formats and data
initialization to the object program during program
loading and execution. There are five types of
non-executable statements:

1. Specification statements.

2. DATA Initialization statements.

3. FORMAT statements.

4. FUNCTION defining statements.

5. Subprogram statements.

The proper usage and construction of
types of statements are described
through 9.

the various
in Se1tions 5

FORTRAN-SO Reference Manual Page 14

SECTION 3

DATA REPRESENTATION / STORAGE FORMAT

The FORTRAN Language prescribes a definitive method for
identifying data used in FORTRAN programs by ~ and ~·

3. 1

3. 1 • 1

DATA NAMES AND TYPES

NAMES

1. Constant- An explicitly stated datum.

2. Variable - A symbolically identified datum.

3. Array- An ordered set of data in 1, 2 or 3
dimensions.

4. Array Element - One member of the set of data
of an array.

3.1.2 TYPES

1. Integer-- Precise representation of integral
numbers (positive, negative or zero) having
precision to 5 digits in the range -32768 to +32767
inclusive (-2**15 to 2**15-1).

2. Real -- Approximations of real numbers (positive,
negative or zero) represented in computer storage
in 4-byte, floating-point form. Real data are
precise to 7+ significant digits and their
magnitude may lie between the approximate limits of
10**-38 and 10**38 (2**-127 and 2**127).

3. Double Precision -- Approximations of real numbers
(positive, negative or zero) represented in
computer storage in 8-byte, floating-point form.
Double Precision data are precise to 16+
significant digits in the same magnitude range as
real data.

4. Logical -- One byte representations of the truth
values "TRUE" or "FALSE" with "FALSE defined to
have an internal representation of zero. The
constant .TRUE. has the value -1 , however any
non-zero value will be treated as .TRUE. in a
Logical IF statement. In addition, Logical types
may be used as one byte signed integers in the

~

FORTRAN-80 Reference Manual Page 15

range -128 to +127, inclusive.

5. Hollerith -- A string of any number of characters
from the computer's character set. All characters
including blanks are significant. Hollerith data
require one byte for storage of each character in
the string.

3.2 CONSTANTS

FORTRAN constants are identified explicitly by
stating their actual value. The plus (+) character
need not precede positive valued constants.

Formats for writing constants are shown in Table
3-1.

FORTRAN-SO Reference Manual

TYPE -
INTEGER

REAL

Table 3-1. CONSTANT FORMATS

FORMATS AND RULES OF USE

1 •

2.

3.

4.

1.

1 to 5 decimal digits
interpreted as a deci-
mal number.

A preceding plus (+) or
minus (-) sign is op-
tional.

No decimal point (.) or
comma (,) is allowed.

Value range: -32768
through +32767 (.i.e.,
-2**15 through 2**15-1).

A decimal number with
precision to 7 digits
and represented in one
of the following forms:

a. + or -.f + or -i.f
b. + or -i.E+ or -e

+ or -.fE+ or -e
+ or -i.fE+ or -e

where i, f, and e are
each strings represent­
ing integer, fraction,
and exponent respective­
ly.

2. Plus (+) and minus (-)
characters are optional.

3. In the form shown in 1 b
above, if r represents any
of the forms preceding
E+ or-e (i.e., rE+ or -e),
the value of the constant
is interpreted as r times
10**e, where -38<=e<=38.

4. If the constant preceding
E+ or -e contains more
significant digits than

Page 16

~
I

EXAMPLES

-763
1
+00672

-32768
+32767

345.
-.345678
+345.678 ~
+.3E3 '-----

-73E4

~··

FORTRAN-SO Reference Manual

DOUBLE
PRECISION

LOGICAL

LITERAL

HEXADECIMAL

the precision for real
data allows, truncation
occurs, and only the
most significant digits
in the range will be rep­
resented.

A decimal number with
precision to 16 digits. All
formats and rules are identi­
cal to those for REAL con­
stants, except D is used in
place of E. Note that a real
constant is assumed single pre­
cision unless it contains a
"D" exponent.

• TRUE. generates a non-zero
byte (hexadecimal FF) and
• FALSE. generates a byte in
which all bits are 0.

If logical values are
used as one-byte integers, the
rules for use are the same as
for type INTEGER, except that
the range allowed is -128 to
+127, inclusive.

In the literal form, any
number of characters may be
enclosed by single quotation
marks. The form is as follows:

1 X1X2X3 .•. Xn 1

where each Xi is any charac­
ter other than 1

• Two
quotation marks in succession
may be used to represent the
quotation mark character
within the string, i.e.,
if X2 is to be the quotation
mark character, the string
appe~rs as the following:

1 X 1 1 1 X 3 ... Xn 1

'
1. The letter i or X
followed by a single quote,
up to 4 hexadecimal

Page 17

+345.678
+.3D3
-73D4

.TRUE •

.FALSE •

Z I 12 I

X'AB1F'

FORTRAN-80 Reference Manual

digits (0-9 and A-F) and a
single quote is recognized
as a hexadecimal value.

2. A hexadecimal constant is
right justified in its storage
value.

Page 18

Z'FFFF'

X' 1F'

FORTRAN-80 Reference Manual Page 19

3.3 VARIABLES

Variable data are identified in FORTRAN
by symbolic names. The names are unique
from 1 to 6 alphanumeric characters of
first is a letter.

NOTE

statements
strings of
which the

System variable names and runtime
subprogram names are distinguished from
other variable names in that they begin
with the dollar sign character ($). It is
therefore strongly recommended that in
order to avoid conflicts, symbolic names in
FORTRAN source programs begin with some
letter other than "$".

Examples:

IS, TBAR, B23, ARRAY, XFM79, MAX, A1$C

Variable data
INTEGER, REAL,
specification of
following ways:

are classified into four types:
DOUBLE PRECISION and LOGICAL. The
type is accomplished in one of the

1. Implicit typing in which the first letter of
the symbolic name specifies !nteger or Real
type. Unless explicitly typed (2., below),
symbolic names beginning with I, J, K, L, M or
N represent Integer variables, and symbolic
names beginning with letters other than I, J,
K, L, M or N represent Real variables.

Integer Variables

ITEM
J1
MODE
K123
N2

FORTRAN-SO Reference Manual

Real Variables

BETA
H2
ZAP
AMAT
XID

Page 20

2. Variables may be typed explicitly. That is,
they may be given a particular type without
reference to the first letters of their names.
Variables may be explicitly typed as INTEGER,
REAL, DOUBLE PRECISION or LOGICAL. The
specific statements used in explicitly typing
data are described in Section 6.

Variable data receive their numeric value assignments during
program execution or, initially, in a DATA statement
(Section 6) •

Hollerith or Literal data may
variable. Sub-paragraph 3.6
Hollerith data storage.

be assigned to any type
contains a discussion of

3.4 ARRAYS AND ARRAY ELEMENTS

An array is an ordered set of data characterized by
the property of dimension. An array may have 1, 2
or 3 dimensions and ~s identified and typed by a
symbolic name in the same manner as a variable
except that an array name must be so declared by an
"array declarator.~ Complete discussions of the
array declarators appear in Section 6 of this
manual. An array declarator also indicates the
dimensionality and size of the array. An array
element is one member of the data set that makes up
an array. Reference to an array element in a
FORTRAN statement is made by appending a subscript
to the array name. The term array element is
synonymous with the term subscripted variable used
in some FORTRAN texts and reference manuals.

An initial value may be assigned to any array
element by a DATA statement or its value may be
derived and defined during program execution.

3.5 SUBSCRIPTS

A subscript follows an array name to uniquely

FORTRAN-80 Reference Manual Page 21

identify an array element. In use, a subscript in
a FORTRAN statement takes on the same
representational meaning as a subscript in familiar
algebraic notation.

Rules that govern the use of subscripts are as
follows:

1 • A subscript
expressions
parentheses.

contains
(see 4

1, 2 or
below)

3 subscript
enclosed in

2. If there are two or three subscript expressions
within the parentheses, they must be separated
by corrunas.

3. The number of subscript expressions must be the
same as the specified dimensionality of the
Array Declarator except 1n EQUIVALENCE
statements (Section 6).

4. A subscript expression is written in one of the
following forms:

K C*V
V C*V+K
V+K

V-K
C*V-K

where C and K are integer constants and V is an
integer variable name (see Section 4 for a
discussion of expression evaluation) .

5. Subscripts themselves may not be subscripted.
Examples:

X(2*J-3,7) A(I,J,K) ,.,. I (2 0) C (L- 2) y (I)

3.6 DATA STORAGE ALLOCATION

Allocation of storage
numbers of storage
memory space required

for FORTRAN data is made in
units. A storage unit lS the
to store one real data value

(4 bytes).

Table 3-2 defines the word formats of the three
data types.

Hexadecimal data may be associated (via a DATA
statement) with any type data. Its storage
allocation is the same as the associated datum.

Hollerith or literal data may
any data type by use of

be associated with
DATA initializaton

FORTRAN-SO Reference Manual Page 22

statements (Section 6).

Up to eight Hollerith characters may be associated
with Double Precision type storage, up to four with
Real, up to two with Integer and one with Logical
type storage.

FORTRAN-SO Reference Manual Page 23

TYPE

INTEGER

LOGICAL

REAL

TABLE 3-2. STORAGE ALLOCATION BY DATA TYPES

ALLOCATION

2 bytes/ 1/2 storage unit

S Binary Value

Negative numbers are the 2's complement of
positive representations.

1 byte/ 1/4 storage unit

Zero (false) or non-zero (true)

A non-zero valued byte indicates true (the
logical constant .TRUE. is represented by
the hexadecimal value FF). A zero valued
byte indicates false.

When used as an arithmetic value, a Logical
datum is treated as an Integer in the range
-128 to +127.

4 bytes/ 1 storage unit

Characteristic
Mantissa

S Mantissa
(continued)

The first byte is the characteristic
expressed in excess 200 (octal) notation;
i.e., a value of 200 (octal) corresponds to a
binary exponent of 0. Values less than 200
(octal) correspond to negative exponents, and
values greater than 200 correspond to
positive exponents. By definition, if the
characteristic is zero, the entire number is
zero.

The next three bytes constitute the mantissa.
The mantissa is always normalized such that
the high order bit is one, eliminating the
need to actually save that bit. The high bit
is used instead to indicate the sign of the
number. A one indicates a negative number,
and zero indicates a positive number. The
mantissa is assumed to be a binary fraction
whose binary point is to the left of the
mantissa.

FORTRAN-80 Reference Manual Page 24

DOUBLE
PRECISION

8 bytes/ 2 storage units

The internal form of Double Precision data is
identical with that of Real data except
Double Precision uses 4 extra bytes for the
matissa.

\
I

FORTRAN-80 Reference Manual Page 25

SECTION 4

FORTRAN EXPRESSIONS

A FORTRAN expression is composed of a single operand or a
string of operands connected by operators. Two expression
types --Arithmetic and Logical-- are provided by FORTRAN.
The operands, operators and rules of use for both types are
described in the following paragraphs.

4.1 ARITHMETIC EXPRESSIONS

The following rules define
arithmeiic expression forms:

all permissible

1. A constant, variable name, array element
reference or FUNCTION reference (Section 9)
standing alone is an expression.

Examples:

S (I) JOBNO 217 17.26 SQRT(A+B)

2. If E is an expression whose first character is
not an operator, then +E and -E are called
signed expressions.

Examples

-S +JOBNO -217 +17.26 -SQRT(A+B)

3. If E is an expression, then (E) means the
quantity resulting when E is evaluated.

Examples:

(-A) -(JOBNO) -(X+1) (A-SQRT (A+B))

4. If E is an unsigned expression and F is any
expression, then: F+E, F-E, F*E, F/E and F**E
are all expressions.

Examples:.

-(B(I,~)+SQRT(A+B(K,L)))
1. 7E-2** (X+S. 0)
-(B(I+3,3*J+5)+A)

FORTRAN-SO Reference Manual Page 26

5. An evaluated expression may be Integer, Real,
Double Precision, or Logical. The type is
determined by the data types of the elements of
the expression. If the elements of the
expression are not all of the same type, the
type of the expression is determined by the
element having the highest type. The type
hierarchy (highest to lowest) is as follows:
DOUBLE PRECISION, REAL, INTEGER, LOGICAL.

6. Expressions may contain nested parenthesized
elements as in the following:

A*(Z-((Y+X)/T))**J

where Y+X is the innermost element, (Y+X)/T is
the next innermost, Z-((Y+X)/T) the next. In
such expressions, care should be taken to see
that the number of left parentheses and the
number of right parentheses are equal.

4.2 EXPRESSION EVALUATION

Arithmetic expressions are evaluated according to
the following rules:

1. Parenthesized expression elements are evaluated
first. If parenthesized elements are nested,
the innermost elements are evaluated, then the
next innermost until the entire expression has
been evaluated.

2. Within parentheses and/or wherever parentheses
do not govern the order or evaluation, the
hierarchy of operations in order of precedence
is as follows:

a. FUNCTION evaluation
b. Exponentiation
c. Multiplication and Division
d. Addition and Subtraction

Example:

The expression

A*(Z-((Y+R)/T))**J+VAL

is evaluated in the following sequence:

FORTRAN-SO Reference Manual Page 27

4.3

Y+R = e1
(e1) /T = e2
z-e2 = e3
e3**J = e4
A*e4 = eS
eS+VAL = e6

3. The expression X**Y**Z is not allowed. It
should be written as follows:

(X**Y)**Z or X**(Y**Z)

4. Use of an array element reference requires the
evaluation of its subscript. Subscript
expressions are evaluated under the same rules
as other expressions.

LOGICAL EXPRESSIONS

A Logical Expression may be any of the following:

1. A single Logical Constant (i.e., .TRUE. or
.FALSE.), a Logical variable, Logical Array
Element or Logical FUNCTION reference (see
FUNCTION, Section 9).

2. Two arithmetic expressions separated by a
relational operator (i.e., a relational
expression) .

3. Logical operators
constants, logical
elements, logical
expressions or other

acting upon logical
variables, logical array

FUNCTIONS, relational
logical expressions.

FORTRAN-SO Reference Manual Page 28

4. 3. 1

4.3.2

The value of a logical expression is always either
.TRUE. or .FALSE.

RELATIONAL EXPRESSIONS

The general form of a relational expression is as
follows:

e1 r e2

where e1 and e2 are arithmetic expressions and r is
a relational operator. The six relational
operators are as follows:

.LT. Less Than
QLE. Less than or equal to
.EQ. Equal to
.NE. Not equal to
.GT. Greater than
.GE. Greater than or equal to

The value of the relational expression is .TRUE.
if the condition defined by the operator is met.
Otherwise, the value is .FALSE.

Examples:

A.EQ.B
(A**J) .GT. (ZAP*(RHO*TAU-ALPH))

LOGICAL OPERATORS

Table 4-1 lists the logical operations.
denote logical expressions.

u and V

FORTRAN-80 Reference Manual Page 29

Table 4-1. Logical Operations

.NOT.U

U.AND.V

U.OR.V

U.XOR.V

Examples:

The value of this expression is the
logical complement of U (i.e., 1
bits become 0 and 0 bits become 1).

The value of this expression is the
logical product of U and V (i.e.,
there is a 1 bit in the result only
where the corresponding bits in both
U and V are 1.

The value of this expression is the
logical sum of U and V (i.e., there
is a 1 in the result if the
corresponding bit in U or V is 1 or
if the corresponding bits in both U
and V are 1.

The value of this expression is the
exclusive OR of U and V (i.e., there
is a one in the result if the
corresponding bits in U and V are 1
and 0 or 0 and 1 respectively.

If u = 01101100 and V = 11001001 , then

.NOT.U = 10010011
U.AND.V = 01001000
u.oR.v = 11101101
U.XOR.V = 10100101

FORTRAN-80 Reference Manual Page 30

The following are additional considerations for
construction of Logical expressions:

1 • Any Logical expression may be enclosed in
parentheses. However, a Logical expression to
which the .NOT. operator is applied must be
enclosed in parentheses if it contains two or
more elements.

2. In the hierarchy of operations, parentheses may
be used to specify the ordering of the
expression evaluation. Within parentheses, and
where parentheses do not dictate evaluation
order, the order is understood to be as
follows:

3.

a. FUNCTION Reference
b. Exponentiation (**)
c. Multiplication and Division (* and /)
d. Addition and Subtraction (+ and -)
e •• LT., .LE., .EQ., .NE., .GT., .GE.
f. .NOT.
g. .AND.
h. .OR. 1 .XOR.

Examples:

The expression

X • AND. Y • OR. B (3 , 2) • GT. Z

is evaluated as I

e 1 = B (3 1 2) • GT • Z
e2 = X .AND. Y
e3 = e2 .OR. e1

The expression

X .AND. (Y .OR. B(3,2) .GT. Z)

is evaluated as

e1 = B(3,2) .GT. Z
e2 = Y .OR. e1
e3 = X .AND. e2

It is invalid to have two contiguous logical
operators except when the second operator is
.NOT.

FORTRAN-80 Reference Manual Page 31

That is,

.AND •• NOT.

and

.OR •• NOT.

are permitted.

Example:

A.AND •• NOT.B is permitted

A.AND •• OR.B is not permitted

4.4 HOLLERITH, LITERAL, AND HEXADECIMAL CONSTANTS IN
EXPRESSIONS

Hollerith, Literal, and Hexadecimal constants are
allowed in expressions in place of Integer
constants. These special constants always evaluate
to an Integer value and are therefore limited to a
length of two bytes. The only exceptions to this
are:

1. Long Hollerith or Literal constants may be used
as subprogram parameters.

2. Hollerith, Literal, or Hexadecimal constants
may be up to four bytes long in DATA statements
when associated with Real variables, or up to
eight bytes long when associated with Double
Precision variables.

FORTRAN-SO Reference Manual Page 32

SECTION 5

REPLACEMENT STATEMENTS

Replacement statements define computations and are used
similarly to equations in normal mathematical notation.
They are of the following form:

v = e

where v is any variable or array element and e is an
expression.

FORTRAN semantics defines the equality sign (=) as meaning
to be replaced ~ rather than the normal is equivalent to.
Thus-,- the object program instructions generated by a
replacement statement will, when executed, evaluate the
expression on the right of the equality sign and place that
result in the storage space allocated to the variable or
array element on the left of the equality sign.

The following conditions apply to replacement statements:

1. Both v and the equality sign must appear on the
same line. This holds even when the statement 1s
part of a logical IF statement (section 7).

Example:

C IN A REPLACEMENT STATEMENT THE '='
C MUST BE IN THE INITIAL LINE.

A {_5, 3) =
1 B(7,2} + SIN(C}

The line containing v= must be the initial line of
the statement unless the statement is part of a
logical IF statement. In that case the v= must
occur no later than the end of the first line after
the end of the IF.

2. If the data types of the variable, v, and the
expression, e, are different, then the value
determined by the expression will be converted, if
possible, to conform to the typing of the variable.
Table 5-1 shows which type expressions may be
equated to which type of variable. Y indicates a
valid replacement and N indicates an invalid
replacement. Footnotes to Y indicate conversion
considerations.

FORTRAN-80 Reference Manual Page 33

Table 5-1. Replacement By Type

Expression Types (e)
Variable
Types Integer Real Logical Double

Integer y Ya Yb Ya
Real Yc y Yc Ye
Logical Yd Ya y Ya
Double Yc y Yc y

a. The Real expression value is converted to Integer,
truncated if necessary to conform to the range of
Integer data.
b. The sign is extended through the second byte.
c. The variable is assigned the Real approximation of
the Integer value of the expression.
d. The variable is assigned the truncated value of the
Integer expression (the low-order byte is used,
regardless of sign).
e. The variable is assigned the rounded value of the
Real expression.

FORTRAN-SO Reference Manual Page 34

SECTION 6

SPECIFICATION STATEMENTS

Specification statements are non-executable, non-generative
statements which define data types of variables and arrays,
specify array dimensionality and size, allocate data storage
or otherwise supply determinative information to the FORTRAN
processor. DATA intialization statements are
non-executable, but generate object program data and
establish initial values for variable data.

6.1 SPECIFICATION STATEMENTS

There are six kinds of specification statements.
Theyare as follows:

Type, EXTERNAL, and DIMENSION statements
COMMON statements
EQUIVALENCE statements
DATA initialization statements

All specification statements are grouped at the
beginning of a program unit and must be ordered as
they appear above. Specification statements may be
preceded only by a FUNCTION, SUBROUTINE, PROGRAM or
BLOCK DATA statement. All specification statements
must precede statement functions and the first
executable statement.

6.2 ARRAY DECLARATORS

Three kinds of specification statements may specify
array declarators. These statements are the
following:

Type statements
DIMENSION statements
COMMON statements

Of t.hese, DIMENSION statements have the declaration
of arrays as their sole function. The other two
serve dual purposes. These statements are defined
in subparagraphs 6.3, 6.5 and 6.6.

Array declarators are used to specify the name,
dimensionality and sizes of arrays. An array may
be declared only once in a program unit.

An array declarator has one of the following forms:

.·~

~-' .

FORTRAN-SO Reference Manual Page 35

6.3

ui (k)
ui (k1,k2}
ui lk1 ,k2,k3)

where ui is the name of the array, called the
declarator name, and the k's are integer constants.

Array storage allocation is established upon
appearance of the array declarator. Such storage
is allocated linearly by the FORTRAN processor
where the order of ascendancy is determined by the
first subscript varying most rapidly and the last
subscript varying least rapidly.

For example, if the array declarator AMAT (3, 2, 2)
appears, storage is allocated for the 12 elements
in the following order:

AMAT(1,1,1), AMAT(2,1,1), AMAT(3,1,1), AMAT(1,2,1),
AMAT (2, 2, 1) , AMAT (3, 2, 1) , AMAT (1 , 1 , 2) , AMAT (2, 1 , 2) ,
AMAT(3,1,2), AMAT(.1,2,2), AMAT(2,2,2), AMAT(3,2,2)

TYPE STATEMENTS

Variable, array and FUNCTION names are
automatically typed Integer or Real by the
'predefined' convention unless they are changed by
Type statements. For example, the type is Integer
if the first letter of an item is I, J, K, L, M or
N. Otherwise, the type is Real.

Type statements provide for overriding or
confirming the pre-defined convention by specifying
the type of an item. In addition, these statements
may be used to declare arrays.

Type statements have the following general form:

t v1, v2, .•• vn

where t represents one of the terms INTEGER,
INTEGER*1, INTEGER*2, REAL, REAL*4, REAL*B, DOUBLE
PRECISION, LOGICAL, LOGICAL*1, LOGICAL*2, or BYTE.
Each v is an array declarator or a variable, array
or FUNCTION name. The INTEGER*1, INTEGER*2,
REAL*4, REAL*8, LOGICAL*1,and LOGICAL*2 types are
allowed for readability and compatibility with
other FORTRANs. BYTE, INTEGER*1, LOGICAL*1, and
LOGICAL are all equivalent; INTEGER*2, LOGICAL*2,
and INTEGER are equivalent; REAL and REAL*4 are
equivalent; DOUBLE PRECISION and REAL*8 are
equivalent.

FORTRAN-80 Reference Manual Page 36

Example:

REAL AMAT(3,3,5) ,BX,IETA,KLPH

NOTE

1. AMAT and BX are redundantly typed.
2. IETA and KLPH are unconditionally
declared Real.
3. AMAT(3,3,5) is a constant array
declarator specifying an array of 45
elements.

Example:

INTEGER M1, HT, JMP(15), FL

NOTE

M1 is redundantly typed here. Typing of HT
and FL by the pre-defined convention is
overridden by their appearance in the
INTEGER statement. JMP(15) is a constant
array declarator. It redundantly types the
array elements as Integer and communicates
to the processor the storage requirements
and dimensionality of the array.

Example:

LOGICAL L1, TEMP

NOTE

All variables, arrays or FUNCTIONs required
to be typed Logical must appear in a
LOGICAL statement, since-no-starting letter
indicates these types by the default
convention.

FORTRAN-SO Reference Manual Page 37

6.4 EXTERNAL STATEMENTS

EXTERNAL statements have the following form:

EXTERNAL u1,u2, ••• ,un

where each ui is a SUBROUTINE, BLOCK DATA or
FUNCTION name. When the name of a subprogram is
used as an argument in a subprogram reference, it
must have appeared in a preceding EXTERNAL
statement.

When a BLOCK DATA subprogram is to be included in a
program load, its name must have appeared in an
EXTERNAL statement within the main program unit.

For example, if SUM and AFUNC are subprogram names
to be used as arguments in the subroutine SUBR, the
following statements would appear in the calling
program unit:

EXTERNAL SUM, AFUNC

CALL SUBR(SUM,AFUNC,X,Y)

6.5 DIMENSION STATEMENTS

6.6

A DIMENSION statement has the following form:

DIMENSION u2,u2,u3, •.• ,un

where each ui is an array declarator.

Example:

DIMENSION RAT(5,5) ,BAR(20)

This statement declares two arrays - the 25 element
array RAT and the 20 element array BAR.

COMMON STATEMENTS

COMMON statements are non- xecutable, storage
allocating statements which assign variables and
arrays to a storage area calle COMMON storag~ and
provide the facility for var·ous program un1ts to
share the use of the same stor ge area.

FORTRAN-SO Reference Manual Page 38

COMMON statements are expressed in the following
form:

COMMON /Y1/A1/Y2/A2/ ••• /Yn/An

where each Yi is a COMMON block storage name and
each Ai is a sequence of variable names;-array
names or constant array declarators, separated by
commas. The elements in Ai make up the COMMON
block storage ~ specified by the name Yi. If
any Yi is omitted leaving two consecutive slash
characters (//),the block of storage so indicated
is called blank COMMON. If the first block name
(Y1) is omitted, the two slashes may be omitted.

Example:

COMMON /AREA/A,B,C/BDATA/X,Y,Z,
X FL,ZAP(30)

In this example, two blocks of COMMON storage are
allocated - AREA with space for three variables and
BDATA, with space for four variables and the 30
element array, ZAP.

Example

X
COMMON //A1,B1/CDATA/ZOT(3,3)

//T2,Z3

In this example, A1, B1, T2 and Z3 are assigned to
blank COMMON in that order. The pair of slashes
preceding A1 could have been omitted.

CDATA names COMMON block storage for the nine
element array, ZOT and thus ZOT (3,3} is an array
declarator. ZOT must not have been previously
declared. (See "Array Declarators," Paragraph
6.3.)

Additional Considerations:

1. The name of a COMMON block may appear more than
once in the same COMMON statement, or in more
than one C0~1MON statement.

2. A COMMON block name is made up of from 1 to 6
alphanumeric characters, the first of which
must be a letter.

3. A COMMON block name must be different from any
subprogram names used throughout the program.

FORTRAN-SO Reference Manual Page 39

4. The size of a COMMON area may be increased
the use of EQUIVALENCE statements.
"EQUIVALENCE Statements," Paragraph 6.7.

by
See

5. The lengths of COMMON blocks of the same name
need not be identical in all program units
where the name appears. However, if the
lengths differ, the program unit specifying the
greatest length must be loaded first (see the
discussion of LINK-80 in the User's Guide).
The length of a COMMON area is the number of
storage units required to contain the variables
and arrays declared in the COMMON statement (or
statements) unless expanded by the use of
EQUIVALENCE statements.

6.7 EQUIVALENCE STATEMENTS

Use of EQUIVALENCE statements permits the sharing
of the same storage unit by two or more entities.
The general form of the statement is as follows:

EQUIVALENCE (u1), (u2), ... , (un)

where each ui represents a sequence of two or more
variables or array elements, separated by commas.
Each element in the sequence is assigned the same
storage unit (or portion of a storage unit) by the
processor. The order in which the elements appear
is not significant.

Example:

EQUIVALENCE (A,B,C)

The variables A, B and C will share the same
storage unit during object program execution.

If an array element is used in an EQUIVALENCE
statement, the number of subscripts must be the
same as the number of dimensions established by the
array declarator, or it must be one, where the one
subscript specifies the array element's number
relative to the first element of the array.

Example:

If the dimensionaliity of an array, z, has been
declared as Z(3,3) then in an EQUIVALENCE statement
Z(6) and Z(3,2) have the same meaning.

FORTRAN-80 Reference Manual Page 40

Additonal Considerations:

1. The subscripts of array elements must be
integer constants.

2. An element of a multi-dimensional array may be
referred to by a single subscript, if desired.

3. Variables may be assigned to a COMMON block
through EQUIVALENCE statements.

Example:

COMMON /X/A,B,C
EQUIVALENCE (A,D)

In this case, the variables A and D share the
first storage unit in COMMON block X.

4. EQUIVALENCE statements can increase the size of
a block indicated by a COMMON statement by
adding more elements to the end of the block.

Example:

DIMENSION R(2,2)
COMMON /Z/W,X,Y
EQUIVALENCE (Y,R(3))

The resulting COMMON block will have the
following configuration:

Variable Storage Unit

w =R{1,1) 0
X = R(2,1) 1
y ~ R(1 ,2) 2

R(2,2) 3

The COMMON block established by the COMMON
statement contains 3 storage units. It is
expanded to 4 storage units by the EQUIVALENCE
statement.

COHMON block size may be increased only from
the last element established by the COMMON
statement forward; not from its first element
backward.

Note that EQUIVALENCE (X,R(3)) would be invalid
in the example. The COMMON statement
established w as the first element in the
COMMON block and an attempt to make X and R(3)
equivalent would be an attempt to make R(1) the
first element.

\
f

FORTRAN-80 Reference Manual Page 41

5. It is invalid to EQUIVALENCE two elements of
the same array or two elements belonging to the
same or different COMMON blocks.

Example:

DIMENSION XTABLE (20), D(5)
COMMON A,B(4)/ZAP/C,X

EQUIVALENCE (XTABLE (6) ,A(7)
X B(3) ,XTABLE(S)),
Y (B(3),D(5))

This EQUIVALENCE statement has
errors:

the following

1. It attempts to EQUIVALENCE two elements of the
same array, XTABLE(6) and XTABLE(15).

2. It attempts to EQUIVALENCE two elements of the
same COMMON block, A(7) and B(3).

3. Since A is not an array, A(7)
reference.

is an illegal

4. Making B(3) equivalent to D(5) extends COMMON
backwards from its defined starting point.

6.8 DATA INITIALIZATION STATEMENT

The DATA initialization statement is a
non-executable statement which provides a means of
compiling data values into the object program and
assigning these data to variables and array
elements referenced by other statements.

The statement is of the following form:

DATA list/u1,u2, ••. ,un/,list ••• /uk,uk+1, ... uk+n/

where "list" represents a list of variable, array
or array element names, and the ui are constants
corresponding in number to the elements in the
list. An exception to the one-for-one
correspondence of list items to constants 1s that
an array name (unsubscripted) may appear in the

FORTRAN-SO Reference Manual Page 42

list, and as many constants as necessary to fill \
the array may appear in the corresponding position
between slashes. Instead of ui, it is permissible
to write k*ui in order to declare the same
constant, ui, k times in succession. k must be a
positive integer. Dummy arguments may not appear
in the list.

Example:

DIMENSION C(7)
DATA A , B , c (1) ' c (3) I 1 4 • 7 3 ,

X -8.1,2*7.5/

This implies that

A=14.73, B=-8.1, C(1)=7.5, C(3)=7.5

The type of each constant ui must match the type of
the corresponding item in the list, except that a
Hollerith or Literal constant may be paired with an
item of any type.

When a Hollerith or Literal constant is used, the
number of characters in its string should be no
greater than four times the number of storage units
required by the corresponding item, i.e., 1
character for a Logical variable, up to 2
characters for an Integer variable and 4 or fewer
characters for a Real variable.

If fewer Hollerith
specified, trailing
remainder of storage.

or Literal characters are
blanks are added to fill the

Hexadecimal data are stored in a similar fashion.
If fewer Hexadecimal characters are used,
sufficient leading zeros are added to fill the
remainder of the storage unit.

The examples below illustrate many of the features
of the DATA statement.

FORTRAN-80 Reference Manual

DIMENSION HARY (2)
DATA HARY,B/ 4HTHIS, 4H OK.

1 ,7.86/

REAL LIT(2)
LOGICAL LT,LF
DIMENSION H4(2,2) ,PI3(3)
DATA A1,B1,K1,LT,LF,H4(1,1) ,H4(2,1)

1 H4(1,2) ,H4(2,2) ,PI3/5.9,2.5E-4,
2 64,.FALSE.,.TRUE.,1.75E-3,
3 0. 8 5E-1 , 2 * 7 5. 0, 1 • , 2. , 3. 141 59 I
4 LIT(1)/'NOGO'/

Page 43

FORTRAN-80 Reference Manual Page 44

SECTION 7

FORTRAN CONTROL STATEMENTS

FORTRAN control statements are executable statements which
affect and guide the logical flow of a FORTRAN program. The
statements in this category are as follows:

1. GO TO statements:

1. Unconditional GO TO

2. Computed GO TO

3. Assigned GO TO

2. ASSIGN

3. IF statements:

1. Arithmetic IF

2. Logical IF

4. DO

5. CONTINUE

6. STOP

7. PAUSE

8. CALL

9. RETURN

When statement labels of other statements are a part of a
control statement, such statement labels must be associated
with executable statements within the same program unit in
which the control statement appears.

7.1 GO TO STATEMENTS

7. 1 • 1 UNCONDITIONAL GO TO

Unconditional GO TO statements are used whenever
control is to be transferred unconditionally to
some other statement within the program unit.

FORTRAN-SO Reference Manual Page 45

7. 1. 2

7. 1. 3

The statement is of the following form:

GO TO k

where k is the statement label of an executable
statement in the same program unit.

Example:

GO TO 376
310 A(7) = V1 -A(3)

376 A(2) =VECT
GO TO 310

In these statements, statement 376 is ahead of
statement 310 in the logical flow of the program of
which they are a part.

COMPUTED GO TO

Computed GO TO statements are of the form:

GO TO (k 1 , k2, ... , n) , j

where the ki are statement labels, and j is an
integer variable, 1 ~ j ~ n.

This statement causes transfer of control to the
statement labeled kj. If j < 1 or j > n, control
will be passed to the next statement following the
Computed GOTO.

Example:

J=3

GO TO (7 , 7 0 , 7 0 0 , 7 0 0 0 , 7 0 0 0 0) , J
310 J=S

GO TO 325

When J = 3, the computed GO TO transfers control to
statement 700. Changing J to equal 5 changes the
transfer to statement 70000. Making J = 0 or J = 6
would cause control to be transferred to statement
310.

ASSIGNED GO TO

Assigned GO TO statements are of the following

FORTRAN-SO Reference Manual Page 46

form:

GO TO j , (k 1 , k 2 , ••• , kn)

or

GOTO J

where J is
statement
statement
statement
of J.

an integer variable name, and the ki are
labels of executable statements. This
causes transfer of control to the

whose label is equal to the current value

Qualifications

1. The ASSIGN statement must logically precede an
assigned GO TO.

2. The ASSIGN statement must assign a value to J
which is a statement label included in the list
of k's, if the list is specified.

Example:

GO TO LABEL, (80,90, 100)

Only the statement labels 80, 90 or 100 may be
assigned to LABEL.

7.2 ASSIGN STATEMENT

This statement is of the following form:

ASSIGN J TO i

where j is a statement label of an
statement and i is an integer variable.

executable

The statement is used in conjunction with each
assigned GO TO statement that contains the integer
variable i. When the assigned GO TO is executed,
control will be transferred to the statement
labeled j.

FORTRAN-80 Reference Manual Page 47

Example:

ASSIGN 100 TO LABEL

ASSIGN 90 TO LABEL
GO TO LABEL, (8 0 , 9 0 , 1 0 0)

7.3 IF STATEMENT

7. 3. 1

7. 3. 2

IF statements transfer control to one of a series
of statements depending upon a condition. Two
types of IF statements are provided:

Arithmetic IF
Logical IF

ARITHMETIC IF

The arithmetic IF statement is of the form:

IF (e) m1 ,m2 ,m3

where e is an arithmetic expression and m1, m2 and
m3 are statement labels.

Evaluation of expression e determines one of three
transfer possibilities:

If e is:
< 0
= 0
> 0

Examples:

Statement

IF (A)3,4,5
IF (N-1)50,73,9

Transfer to:
m1
m2
m3

Expression Value

IF (AMTX (2 , 1 , 2)) 7 , 2 , 1

15
0

-256

LOGICAL IF

The Logical IF statement 1s of the form:

IF (u) s

Transfer to

5
73

7

where u is a Logical expression and s is any
executable statement except a DO statement (see
7.4) or another Logical IF statement. The Logical

FORTRAN-SO Reference Manual Page 48

expression u is evaluated as .TRUE. or .FALSE.
Section 4 contains a discussion of Logical
expressions.

Control Conditions:

If u is FALSE, the statement s is ignored and
control goes to the next statement following the
Logical IF statement. If, however, the expression
is TRUE, then control goes to the statement s, and
subsequent program control follows normal
conditions.

If sis a replacement statement (v = e, Section 5),
the variable and equality sign (=) must be on the
same line, either immediately following IF(u) or on
a separate continuation line with the line spaces
following IF(u) left blank. See example 4 below.

Examples:

1 • IF (I. GT. 2 0) GO TO 115

2. IF(Q.AND.R) ASSIGN 10 TO J

3. IF(Z) CALL DECL(A,B,C)

4. IF(A.OR.B.LE.PI/2)I=J

5. IF(A.OR.B.LE.PI/2)
X I=J

7.4 DO STATEMENT

The DO statement, as implemented in FORTRAN,
provides a method for repetitively executing a
series of statement~. The statement takes of one
of the two following forms:

1) DO k i = m 1 , m2 , m3

or

2) DO k i = m1,m2

where k is a statement label, i is an integer or
logical variable, and m1, m2 and m3 are integer
constants or integer or logical variables.

If m3 is 1, it may be omitted as in 2) above.

The following conditions and restrictions govern
the use of DO statements:

FORTRAN-80 Reference Manual Page 49

1. The DO and the first comma must appear on the
initial line.

2. The statement labeled k, called the terminal
statement, must be an executable statement.

3. The terminal statement must physically follow
its associated DO, and the executable
statements following the DO, up to and
including the terminal statement, constitute
the range of the DO statement.

4. The terminal statement may not be an Arithmetic
IF, GO TO, RETURN, STOP, PAUSE or another DO.

5. If the terminal statement is a logical IF and
its expression is .FALSE., then the statements
in the DO range are reiterated.

If the expression is .TRUE., the statement of
the logical IF is executed and then the
statements in the DO range are reiterated. The
statement of the logical IF may not be a GO TO,
Arithmetic IF, RETURN, STOP or PAUSE.

6. The controlling integer variable, i, is called
the index of the DO range. The index must be
positive and may not be modified by any
statement in the range.

7. If m1, m2, and m3 are Integer*1 variables
constants, the DO loop will execute faster
be shorter, but the range is limited to
iterations. For example, ~he loop overhead
a DO loop with a constant limit and
increment of 1 depends upon the type of
index variable as follows:

Overhead

or
and
127
for

an
the

Index Variable
Type Microseconds Bytes

INTEGER*2
INTEGER*1

35.5
24

19
14

8. During the first execution of the statements in
the DO range, i is equal to m1; the second
execution, i = m1+m3; the third, i=m1+2*m3,
etc., until i is equal to the highest value in
this sequence less than or equal to m2, and
then the DO is said to be satisfied. The
statements in the DO range will always be
executed at least once, even if m1 < m2.

When the DO has been satisfied, control passes
to the statement following the terminal

FORTRAN-80 Reference Manual Page 50

statement, otherwise control transfers back to
the first executable statement following the DO
statement.

Example;

The following example computes

100
Sigma Ai where a is a one-dimensional array
i=1

100 DIMENSION A(100)

SUM = A (1)
DO 31 I= 2,100

31 SUM =SUM + A(I)

END

9. The range of a DO statement may be extended to
include all statements which may logically be
executed between the DO and its terminal
statement. Thus, parts of the DO range may be
situated such that they are not physically
between the DO statement and its terminal
statement but are executed logically in the DO
range. This is called the extended range.

Example:

DIMENSION A(SOO), B(SOO)

DO 50 I= 10, 327, 3

IF (V7 -C*C) 20,15,31
30

50 A(I) = B(I) + C

20 c = c - .05
GO TO 50

3 1 C=C+ • 0 1 2 5
GO TO 30

~--'

FORTRAN-80 Reference Manual Page 51

10. It is invalid to transfer control into the
range of a DO statement not itself in the range
or extended range of the same DO statement.

11. Within the range of a DO statement, there may
be other DO statements, in which case the DO's
must be nested. That is, if the range of one
DO contains another DO, then the range of the
inner DO must be entirely included in the range
of the outer DO.

The terminal statement of the inner DO may also
be the terminal statement of the outer DO.

For example, given a two dimensional
15 rows and 15 columns, and a
one-dimensional array B, the
statements compute the 15 elements
to the formula:

15

array A of
15 element
following

of array C

Ck =Sigma
j=1

AkjBm, k = 1,2, ••. ,15

DIMENSION A(15, 15), B(15), C (15)

DO 80 K =1,15
C(K) = 0.0
DO 80 J=1,15

80 C(K) = C(K) +A(K,J) * B(J)

7.5 CONTINUE STATEMENT

statement. CONTINUE is classified as an executable
However, its execution does nothing.
the CONTINUE statement is as follows:

The form of

CONTINUE

the CONTINUE is frequently used as
statement in a DO statement range
statement which would normally be the

terminal
when the

terminal
statement is one of those which are not allowed or
isonly executed conditionally.

FORTRAN-80 Reference Manual

Example:

DO 5 K = 1,10

IF (C 2) 5 , 6 , 6
6 CONTINUE

C2 = C2 +.005
5 CONTINUE

7.6 STOP STATEMENT

Page 52

A STOP statement has one of the following forms:

STOP

or

STOP c

where c is any string of one to six characters.

When STOP is encountered during execution of the
object program, the characters c (if present) are
displayed on the operator control console and
execution of the program terminates.

The STOP statement, therefore, constitutes the
logical end of the program.

7.7 PAUSE STATEMENT .
A PAUSE statement has one of the following forms:

PAUSE

or

PAUSE c

where c is any string of up to six characters.

When PAUSE is encountered during execution of the
object program, the characters c (if present) are
displayed on the operator control console and
execution of the program ceases.

The decision to continue execution of
is not under control of the program.

the program
If execution

FORTRAN-80 Reference Manual Page 53

is resumed through
without otherwise
processor, the normal
PAUSE, is continued.

intervention of an operator
changing the state of the
execution sequence, following

Execution may be terminated by typing a 11 T 11 at the
operator console. Typing any other character will
cause execution to resume.

7.8 CALL STATEMENT

CALL statements control transfers into SUBROUTINE
subprograms and provide parameters for use by the
subprograms. The general forms and detailed
discussion of CALL statements appear in Section 9,
FUNCTIONS AND SUBPROGRAMS.

7.9 RETURN STATEMENT

7. 10

The form, use and interpretation of the RETURN
statement is described in Section 9.

END STATEMENT

The END statement
statement of any
following form:

END

must physically
FORTRAN program.

be
It

the last
has the

The END statement is an executable statement and
may have a statement label. It causes a transfer
of control to be made to the system exit routine
$EX, which returns control to the operating system.

FORTRAN-SO Reference Manual Page 54

SECTION 8

INPUT / OUTPUT

FORTRAN provides a series of statements which define the
control and conditions of data transmission between computer
memory and external data·handling or mass storage devices
such as magnetic tape, disk, line printer, punched card
processors, keyboard printers, etc.

These statements are grouped as follows:

1. Formatted READ and WRITE statements which cause
formatted information to be transmltted between the
computer and I/0 devices.

2. Unformatted READ and WRITE statements which
transmlt unformatted binary data ln a form similar
to internal storage.

3. Auxiliary I/0 statements for
demarcation of files.

positioning and

4. ENCODE and DECODE statements for transferring data
between memory locations.

5. FORMAT statements used in conjunction with
formatted record transmission to provide data
conversion and editing information between internal
data representation and external character string
forms.

8.1 FORMATTED READ/WRITE STATEMENTS

8.1.1 FORMATTED READ STATEMENTS

A formatted READ statement is used to transfer
information from an input device to the computer.

Two forms of the statement are available, as
follows:

READ (u,f,ERR=L1,END=L2) k

or

READ (u,f,ERR=L1,END=L2)

where:

u - specifies a Physical and Logical Unit Number
and may be either an unsigned integer or an

FORTRAN-80 Reference Manual Page 55

integer variable in the range 1
If an Integer variable is used,
value must be assigned to it prior
of the READ statement.

through 255.
an Integer

to execution

Units 1, 3, 4, and 5 are preassigned to the
console Teletypewriter. Unit 2 is preassigned
to the Line Printer (if one exists). Units
6-10 are preassigned to Disk Files (see
Appendix E). These units, as well as units 11

255, may be re-assigned by the user (see
Appendix B).

f - is the statement label of the FORMAT statement
describing the type of data conversion to be
used within the input transmission or it may be
an array name, in which case the formatting
information may be input to the program at the
execution time. (See 8. 7. 1 0)

L1- is the FORTRAN label on the statement to which
the I/0 processor will transfer control if an
I/0 error is encountered.

L2- is the FORTRAN label on the statement to which
the I/0 processor will transfer control if an
End-of-File is encountered.

k - is a list of variable names, separated by com­
mas, specifying the input data.

READ (u,f)k is used to input a number of items,
corresponding to the names in the list k, from the
file on logical unit u, and using the FORMAT
statement f to specify the external representation
of these items (FORMAT statements, 8.7) The ERR=
and END= clauses are optional. If not specified,
I/0 errors and End-of-Files cause fatal runtime
errors.

The following notes further define the function of
the READ (u,f)k statement:

1 • Each time
begins, a
read.

execution of the READ statement
new record from the input file is

2. The number of records to be input by a single
READ statement is determined by the list, k,
and format specifications.

3. The list k specifies the number of items to be
read from the input file and the locations into
which they are to be stored.

FORTRAN-80 Reference Manual Page 56

4. Any number of items may appear in a single list
and the items may be of different data types.

5. If there are more quantities in an input record
than there are items in the list, only the
number of quantities equal to the number of
items in the list are transmitted. Remaining
quantities are ignored.

6. Exact specifications for the list
described in 8.6.

Examples:

k are

1. Assume that four data entries are punched in a
card, with three blank columns separating each,
and that the data have field widths of 3, 4, 2
and 5 characters respectively starting in
column 1 of the card. The statements

READ(5,20)K,L,M,N
20 FORMAT(I3,3X,I4,3X,I2,3X,I5)

will read the card (assuming the Logical Unit
Number 5 has been assigned to the card reader)
and assign the input data to the variables K,
L, M and N. The FORMAT statement could also be

20 FORMAT(I3,I7,IS,I8)

See 8.7 for complete description of FORMAT
statements.

2. Input the quantities of an array (ARRY):

READ (6 I 2 1) ARRY
-....

Only the name of the array needs to appear in
the list (see 8.6). All elements of the array
ARRY will be read and stored using the
appropriate formatting specified by the FORMAT
statement labeled 21.

READ(u,k) may be used in conjunction with a FORMAT
statement to read H-type alphanumeric data into an
existing H-type field (see Hollerith Conversions,
8.7.3).

For example, the statements

READ (I, 25)

.
25 FORMAT(10HABCDEFGHIJ)

FORTRAN-80 Reference Manual Page 57

8. 1 • 2

cause the next 10 characters of the file on input
device I to be read and replace the characters
ABCDEFGHIJ in the FORMAT statement.

FORMATTED WRITE STATEMENTS

A formatted WRITE statement is used to transfer
information from the computer to an output device.

Two forms of the statement are available, as
follows:

WRITE(u,f,ERR=L1,END=L2)k

or

WRITE (u,f,ERR=L1,END=L2)

where:

u - specifies a Logical Unit Number.

f - is the statement label of the FORMAT statement
describing the type of data conversion to be
used with the output transmission.

L1- specifies an I/0 error branch.

L2- specifies an EOF branch.

k - is a list of variable names separated by com­
mas, specifying the output data.

WRITE (u,f)k is used to output the data specified
in the list k to a file on logical unit u using the
FORMAT statement f to specify the external
representation of the data (see FORMAT statements,
8.7). The following notes further define the
function of the WRITE statement:

1. Several records may be output with a single
WRITE statement, with the number determined by
the list and FORMAT specifications.

2. Successive data are output until the data
specified in the list are exhausted •

. 3. If output is to a device which specifies fixed
length records and the data specified in the
list do not fill the record, the remainder of
the record is filled with blanks.

FORTRAN-SO Reference Manual Page 58

Example:

WRITE(2,10)A,B,C,D

The data assigned to the variables A, B, C and D
are output to Logical Unit Number 2, formatted
according to the-FORMAT statement labeled 10.

WRITE(u,f) may be used to write alphanumeric
information when the characters to be written are
specified within the FORMAT statement. In this
case a variable list is not required.

For example, to write the characters 'H CONVERSION'
on unit 1,

WRITE(1,26)

26 FORMAT (12HH CONVERSION)

8.2 UNFORMATTED READ/WRITE

Unformatted I/0 (i.e. without data conversion) is
accomplished using the statements:

READ(u,ERR=L1,END=L2) k

WRITE(u,ERR=L1,END=L2) k

where:

u - specifies a Logical Unit Number.

L1- specifies an I/O error branch.

L2- specifies an EOF branch.

k - is a list of variable names, separated by
commas, specifying the I/O data.

The following notes define the
unformatted I/0 statements.

functions of

1. Unformatted READ/WRITE statements perform
memory-image transmission of data with no data
conversion or editing.

2. The amount of data transmitted corresponds to
the number of variables in the list k.

~
\

FORTRAN-SO Reference Manual Page 59

3. The total length of the list of variable names
in an unformatted READ must not be longer than
the record length. If the logical record
length and the length of the list are the same,
the entire record is read. If the length of
the list is shorter than the logical record
length the unread items in the record are
skipped.

4. The WRITE(a)k statement writes one logical
record.

5. A logical record may extend across more than
one physical record.

A READ or WRITE to a disk file (LUN 6-10)
automatically OPENs the file for I/O. The file
remains open until closed by an ENDFILE command
(see Section S.4) or until normal program
termination.

NOTE

Exercise caution when doing sequential
output to disk files. If output is done to
an existing file, the existing file will be
deleted and replaced with a new file of the
same name.

8.3.1 RANDOM DISK I/0

SEE ALSO SECTION 3 OF YOUR MICROSOFT FORTRAN USER'S
MANUAL.

Some versions of FORTRAN-SO also provide random
disk I/0. For random disk access, the record
number is specified by using the REC=n option in
the READ or WRITE statement. For example:

I = 10
WRITE (6,20,REC=I,ERR=50) X, Y, Z

This program segment writes record 10 on LUN 6. If
a previous record 10 exists, it is written over.
If no record 10 exists, the file is extended to

FORTRAN-80 Reference Manual Page 60

create one. Any attempt to read a non-existent
record results in an I/O error.

In random access files, the record length varies
with different versions of FORTRAN. See Section 3
of your Microsoft FORTRAN User's Manual. It is
recommended that any file you wish to read randomly
be created via FORTRAN (or Microsoft BASIC) random
access statements. Files created this way (using
either binary or formatted WRITE statements) will
zero-fill each record to the proper length if the
data does not fill the record.

Any disk file that is OPENed by a
statement is assigned a default
specific to the operating system.
3 of the FORTRAN User's Manual.

8.3.2 OPEN SUBROUTINE

READ or WRITE
filename that is
See also Section

Alternatively, a file may be OPENed using the OPEN
subroutine. LUNs 1-5 may also be assigned to disk
files with OPEN. The OPEN subroutine allows the
program to specify a filenam~ and device to be
associated with a LUN.

An OPEN of a non-existent file creates a null file
of the appropriate name. An OPEN of an existing
file followed by sequential output deletes the
existing file. An OPEN of an existing file
followed by an input allows access to the current
contents of the file.

The form of an OPEN call
operating systems. See
User's Manual, Section 3.

8.4 AUXILIARY. I/0 STATEMENTS

varies under different
your Microsoft FORTRAN

Three auxiliary I/O statements are provided:

BACKSPACE u
REWIND u
ENDFILE u

The actions of all three statements depend on the
LUN with which they are used (see Appendix B).
When the LUN is for a terminal or line printer, the
three statements are defined as no-ops.

When the LUN is for a disk drive, the ENDFILE and
REWIND commands allow further program control of
disk files. ENDFILE u closes the file associated
with LUN u. REWIND u closes the file associated

FORTRAN-80 Reference Manual Page 61

with LUN u, then opens it again. BACKSPACE is not
implemented at this time, and therefore causes an
error if used.

8.5 ENCODE/DECODE

ENCODE and DECODE statements transfer data,
according to format specifications, from one
section of memory to another. DECODE changes data
from ASCII format to the specified format. ENCODE
changes data of the specified format into ASCII
format. The two statements are of the form:

where;

ENCODE(A,F) K
DECODE(A,F) K

A is an array name
F is FORMAT statement number
K is an I/O List

DECODE is analogous to a READ statement, since it
causes conversion from ASCII to internal format.
ENCODE is analogous to a WRITE statement, causing
conversion from internal formats to ASCII.

FORTRAN-BOReference Manual Page 62

NOTE

Care should be taken that the array A is
always large enough to contain all of the
data being processed. There is no check
for overflow. An ENCODE operatiOn wh1ch
overflows the array will probably wipe out
important data following the array. A
DECODE operation which overflows will
attempt to process the data following the
array.

8.6 INPUT/OUTPUT LIST SPECIFICATIONS

8. 6. 1

Most forms of READ/WRITE statements may contain an
ordered list of data names which identify the data
to be. transmitted. The order in which the list
items appear must be the same as that in which the
corresponding data exists (Input), or will exist
(Output) in the external I/O medium.

Lists have the following form:

m1 ,m2, ••• ,ron

where the mi are list items separated by commas, as
shown.

LIST ITEM TYPES

A list item may be a single datum identifier or a
multiple data identifier.

1 • A single datum identifier item
variable or array element.
these items may be enclosed
without changing their intended

Examples:

A
C(26,1) ,R,K,D, (I,J)
B,I (10, 10) ,S, (R,K) ,F (1 ,25)

NOTE

is the name of a
One or more of
in parentheses
meaning.

The entry (I,J) defines two items in a
list while (26,1) is a subscript.

\,

FORTRAN-SO Reference Manual Page 63

2. Multiple data identifier items are in two
forms:

a. An array name appearing in a list without
subscript(s) is considered equivalent to the
listing of each successive element of the
array.

Example:

If B is a two dimensional array, the list item
B is equivalent to: B(1,1),B(2,1),B(3,1) •••• 1

B (1 I 2) 'B (2 '2) ••• 'B (j I k) •

where j and k are the subscript limits of B.

b. DO-implied items are lists of one or more
single datum identifiers or other DO-implied
items followed by a comma character and an
expression of the form:

i = m1 1 m2 1 m3 or i = m1 1 m2

and enclosed in parentheses.

The elements i 1 m1 1 m2 1 m3 have the same
as defined for the DO statement.
implication applies to all list items
in parentheses with the implication.

meaning
The DO

enclosed

Examples:

DO-Implied Lists

(X(I),I=1 1 4)
(Q(J) 1 R(J) ,J=1 ,2)
{ G (K) , K= 1 , 7 , 3)
{ (A(I 1 J) ,I=3,5) ,J=1 ,9,4)

(R (M) ' M= 1 I 2) ' I ' zAP (3)
(R(3) ,T (I), 1=1, 3)

Equivalent Lists

X(1) 1 X(2) 1 X(3) 1 X(4)
Q(1) ,R(1) ,Q(2) 1 R(2)
G(1) 1 G(4) 1 G(7)
A(3,1) ,A(4,1) ,A(5,1)
A(3,5) ,A(4 1 5) 1 A(5,5)
A(3,9) 1 A(4,9) ,A(5,9)
R (1) , R (2) , I , ZAP (3)
R(3) ,T(1) ,R(3) ,T{2) I

R(3) ,T(3)

Thus, the elements of a matrix, for example,
may be transmitted in an order different from
the order in which they appear in storage. The
array A(3,3) occupies storage in the order
A(1,1) ,A(2,1), A(3,1) ,A(1,2) ,A(2,2) ,A(3,2),
A(1 ,3) ,A(2,3) ,A(3,3). By specifying the
transmission of the array with the DO-implied
list item ((A(I,J),J=1,3),I=1,3), the order of
transmission is:

FORTRAN-SO Reference Manual Page 64

8.6.2

A(1 I 1) IA(1 12) ,A(1 ,3) IA(21 1) ,A(2,2),
A (2, 3) ,A (3, 1) ,A (3, 2) ,A (3, 3)

~S~P~E~C~IA~L N __ OT __ E_S ~ ~ SPECIFICATIONS

1 • The ordering of a list is from left to right
with repetition of items enclosed in
parentheses (other than as subscripts) when
accompanied by controlling DO-impliea index
parameters.

2. Arrays are transmitted by the appearance of the
array name (unsubscripted) in an input/output
list.

3. Constants may appear in an input/output list
only as subscripts or as indexing parameters.

4. For input lists, the DO-implying elements i 1

m1 1 m2 and m3 may not appear within the
parentheses as list items.

Examples:

1. READ (1,20) (I 1J 1 A(I),I=1,J 12) is not allowed

2. READ(1,20)I 1J 1 (A(I) 1I=1 1J 12) is allowed

3. WRITE(1 ,20) (I,J 1A(I) 1I=1 ,J,2) is allowed

Consider the following examples:

DIMENSION A(25)

A(1) = 2.1
A(3) = 2.2
A(S) = 2.3
J = 5

WRITE (1 , 2 0) J I (I, A (I) I I= 1 I J I 2)

the output of this WRITE statement is

5,1,2.11312.2,5,2.3

1. Any number of items may appear in a single
list.

\.

FORTRAN-80 Reference Manual Page 65

2. In a formatted transmission (READ(u,f)k,
WRITE(u,f)k) each item must have the correct
type as specified by a FORMAT statement.

8.7 FORMAT STATEMENTS

8.7.1

FORMAT statements are non-executable, generative
statements used in conjunction with formatted READ
and WRITE statements. They specify conversion
methods and data editing information as the data is
transmitted between computer storage and external
media representation.

FORMAT statements
reference (f) in
statements.

require statement labels for
the READ(u,f)k or WRITE(u,f)k

The general form of a FORMAT statement is as
follows:

n FORMAT (s1,s2, ••• ,sn/s1',s2', ••• ,sn'/ ••.)

where n is the statement label and each si is a
field descriptor. The word FORMAT and the
parentheses must be present as shown. The slash
(/) and comma (,) characters are field separators
and are described in a separate subparagraph. The
field is defined as that part of an external record
occupied by one transmitted item.

FIELD DESCRIPTORS

Field descriptors describe the sizes of data fields
and specify the type of conversion to be exercised
upon each transmitted datum. The FORMAT field
descriptors may have any of the following forms:

Descriptor

rFw.d
rGw.d
rEw.d
rDw.d
riw

rLw

rAw
nHh1h2 •.• hn
'1112 ••• ln'

nX
mP

Classification

Numeric Conversion

Logical Conversion

Hollerith Conversion

Spacing Specification
Scaling Factor

FORTRAN-80 Reference Manual Page 66

8.7.2

where:

1. w and n are positive integer constants defining
the field width (including digits, decimal
points, algebraic signs) in the external data
representation.

2. d is an integer specifying
fractional digits appearing
data representation.

the number of
in the external

3. The characters F, G, E, D, I, A and L indicate
the type of conversion to be applied to the
items in an input/output list.

4. r is an optional, non-zero integer indicating
that the descriptor will be repeated r times.

5. The hi and li are characters from the FORTRAN
character set.

6. m is an integer constant (positive, negative,
or zero) indicating scaling.

NUMERIC CONVERSIONS

Input operations with any of the numeric
conversions will allow the data to be represented
in a "Free Format"; i.e., commas may be used to
separate the fields in the external representation.

F-type conversion

Form: Fw.d

Real or Double Precision type data are processed
using this conversion. w characters are processed
of which d are considered fractional.

F-output

Values are converted and output as minus sign (if
negative) , followed by the integer portion of the
number, a decimal point and d digits of the
fractional portion of the number. If a value does
not fill the field, it is right justified in the
field and enough preceding blanks to fill the field
are inserted. If a value requires more field
positions than allowed by w, the first w-1 digits
of the value are output, preceded by an asterisk.

FORTRAN-80 Reference Manual Page 67

F-Output Examples:

FORMAT
Descriptor

F10,4
F7. 1

F6.4
F7.3

Internal
Value

368.42
-4786.361

4739.76
-5.6

Output
(b=blank)

bb362.4200
-4786.4

*.7600
b-5.600

* Note the loss of leading digits in the 4th
above.

(See the description under E-Input below.)

E-type Conversion

Form: Ew.d

line

Real or Double Precision type data are processed
using this conversion. w characters are processed
of which d are considered fractional.

E-Output

Values are converted, rounded to d digits, and
output as:

1. a minus sign (if negative),

2. a zero and a decimal point,

3. d decimal digits,

4. the letter E,

5. the sign of the exponent (minus or blank),

6. two exponent digits,

in that order.
justified in
fill the field
should satisfy

w > d + 7

The values as described are right
the field w with preceding blanks to
if necessary. The field width w
the relationship:

Otherwise significant characters may be lost. Some
E-Output examples follow:

FORTRAN-SO Reference Manual

FORMAT
Descriptor

E12.5
E14.7
E13.4
E8.2

E-Input

Internal
Value

76.573
-32672.354
-0.0012321
76321.73

Output
(b=blank)

Page 68

bb.76573Eb02
-b.3267235Eb05
bb-b.1232E-02
b.76Eb05

Data values which are to be processed under E, F,
or G conversion can be a relatively loose format in
the external input medium. The format is identical
for either conversion and is as follows:

1. Leading spaces (ignored)

2. A + or - sign (an unsigned input is assumed to
be positive)

3. A string of digits

4. A decimal point

5. A second string of digits

6. The character E

7. A+ or - sign

8. A decimal exponent

Each item in the list above is optional;
following conditions must be observed:

but the

1. If FORMAT items 3 and 5 (above) are present,
then 4 is required.

2. If FORMAT item 8 is present, then 6 or 7 or
both are required.

3. All non-leading spaces are considered zeros.

Input data can be any number of digits in length,
and correct magnitudes will be developed, but
prec1s1on will be maintained only to the extent
specified in Section 3 for Real data.

FORTRAN-SO Reference Manual Page 69

E- and F- and G- Input Examples:

FORMAT Input Internal
Descriptor (b=blank) Value

E10.3 +0.23756+4 +2375.60
E10.3 bbbbb17631 +17.631
G8.3 b1628911 +1628.911
F12.4 bbbb-6321132 -632.1131

Note in the above examples that if no decimal point
is given among the input characters, the d in the
FORMAT specification establishes the decimal point
in conjunction with an exponent, if given. If a
decimal point is included in the input characters,
the d specification is ignored.

The letters E, F, and G are interchangeable in the
input format specifications. The end result is the
same.

D-Type Conversions

D-Input and D-Output are identical to E-Input and
E-Output except the exponent may be specified with
a "D" instead of an "E."

G-Type Conversions

Form: Gw.d

Real or Double Precision type data are processed
using this conversion. w characters are processed
of which d are considered significant.

G-Input:

(See the description under E-Input)

G-Output:

The method of output conversion is a function of
the magnitude of the number being output. Let n be
the magnitude of the number. The following table
shows how the number will be output:

FORTRAN-80 Reference Manual Page 70

Magnitude Equivalent Conversion

• 1 <= n 1 F(w-4).d,4X

1 <= n 10 F (w-4}. (d-1} ,4X

10d-2 <= n < 10d- 1 F(w-4}.1,4X

F(w-4).0,4X

Otherwise Ew.d

!-Conversions

Form: Iw

Only Integer data may be converted by this form of
conversion. w specifies field width.

I-Output:

Values are converted to Integer constants.
Negative values are preceded by a minus sign. If
the value does not fill the field, it is right
justified in the field and enough preceding blanks
to fill the field are inserted. If the value
exceeds the field width, only the least significant
w-1 characters are output preceded by an asterisk.

Examples:

FORMAT
Descriptor

I6
I6
I3
I4

I- Input:

Internal
Value

+281
-23261
126
-226

Output
(b=blank)

bbb281
-2 3261

126
-226

A field of w characters is input and converted to
internal integer format. A minus sign may precede
the integer digits. If a sign is not present, the
value is considered positive.

Integer values in the range -32768 to 32767 are
accepted. Non-leading spaces are treated as zeros.

FORTRAN-80 Reference Manual Page 71

8.7.3

Examples:

Format
Descriptor

I4
I4
I7
I4

Input
(b=blank)

b124
-124
bb6732b
1b2b

HOLLERITH CONVERSIONS

A-Type Conversion

Internal
Value

124
-124
67320
1020

The form of the A conversion is as follows:

Aw

This descriptor causes unmodified Hollerith
characters to be read into or written from a
specified list item.

The maximum number of actual characters which may
be transmitted between internal and external
representations using Aw is four times the number
of storage units in the corresponding list item
(i.e., 1 character for logical items, 2 characters
for Integer items, 4 characters for Real items and
8 characters for Double Precision items).

A-Output:

If w is greater than 4n (where n is the number of
storage units required by the list item), the
external output field will consist of w-4n blanks
followed by the 4n characters from the internal
representation. If w is less than 4n, the external
output field will consist of the leftmost w
characters from the internal representation.

Examples:

Format
Descriptor

A1
A2
A3
A4
A7

A-Input:

Internal

A1
AB
ABCD
ABCD
ABCD

Type

Integer
Integer
Real
Real
Real

Output
(b=blanks)

A
AB
ABC
ABCD
bbbABCD

If w is greater than 4n (where n is the number of

FORTRAN-80 Reference Manual Page 72

storage units required by the corresponding list
item), the rightmost 4n characters are taken from
the external input field. If w is less than 4n,
the w characters appear left justified with w-4n
trailing blanks in the internal representation.

Examples:

Format
Descriptor

A1
A3
A4
A1
A7

H-Conversion

Input
Characters

A
ABC
ABCD
A
ABCDEFG

Type

Integer
Integer
Integer
Real
Real

The forms of H conversion are as follows:

nHh1h2 ••• hn

'h1h2 ••• hn'

Internal
(b=blanks)

Ab
AB
AB
Abbb
DEFG

These descriptors process Hollerith character
strings between the descriptor and the external
field, where each h represents any character from
the ASCII character set.

NOTE

Special consideration is required if an
apostrophe (') is to be used within the
literal string in the second form. An
apostrophe char~ter within the string is
represented by two successive apostrophes.
See the examples below.

H-Output:

The n characters hi, are placed in the external
field. In the nHh1h2 ••• hn form the number of
characters in the string must be exactly as
specified by n. Otherwise, characters from other
descriptors will be taken as part of ~he string.
In both forms, blanks are counted as characters.

FORTRAN-SO Reference Manual Page 73

8.7.4

Examples:

Format
Descriptor

1HA or 'A'

Output
(b=blanks)

A
8HbSTRINGb or 'bSTRINGb' bSTRINGb

X(2,3)=12.0
IbSHOULDN'T

11HX(2,3)=12.0 or 'X(2,3)=12.0'
12HibSHOULDN 1 T or 'IbSHOULDN' 'T'

H-Input

The n characters of the string hi are
the next n characters from the input
results in a new string of characters
descriptor.

replaced by
record. This
in the field

FORMAT Input Resultant
Descriptor (b=blank) Descriptor

4H1234 or '1234' ABCD 4HABCD or 'ABCD'
7HbbFALSE or 1bbFALSE' bFALSEb 7HbFALSEb or 'bFALSEb'
6Hbbbbbb or 'bbbbbb' MATRIX 6HMATRIX or 'MATRIX'

LOGICAL CONVERSIONS

The form of the logical conversion is as follows:

Lw

L-Output:

If the value of an item in an output list
corresponding to this descriptor is 0, an F will be
output; otherwise, a T will be output. If w is
greater than 1, w-1 leading blanks precede the
letters.

Examples:

FORMAT
Descriptor

L1
L1
L5
L7

L-In put

Internal
Value

=0
<>0
<>O
=0

Output
(b=blank)

F
T
bbbbT
bbbbbbF

The external representation occupies w positions.
It consists of optional blanks followed by a "T" or
"F", followed by optional characters.

FORTRAN-SO Reference Manual Page 74

8.7.5

8.7.6

X DESCRIPTOR

The form of X conversion is as follows:

nx
This descriptor causes no conversion to occur, nor
does it correspond to an item in an input/output
list. When used for output, it causes n blanks to
be inserted in the output record. Under input
circumstances, this descriptor causes the next n
characters of the input record to be skipped.

Output Examples:

FORMAT Statement

3 FORMAT
7 FORMAT

(1 HA, 4X, 2HBC)
(3X, 4HABCD, 1 X}

Input Examples:

FORMAT Statement

output
(b=blanks)

AbbbbBC
bbbABCDb

Input String Resultant Input

10 FORMAT (F4.1 ,3X,F3.0) 12.5ABC120 12.5,120
012 5 FORMAT (7X,I3) 1234567012

P DESCRIPTOR

The P descriptor is used to specify a scaling
factor for real conversions (F, E, D, G). The form
is nP where n is an integer constant (positive,
negative, or zero).

The scaling factor is automatically set to zero at
the beginning of each formatted I/O call (each READ
or WRITE statement). If a P descriptor is
encountered while scanning a FORMAT, the scale
factor is changed to n. The scale factor remains
changed until another P descriptor is encountered
or the I/O terminates.

Effects of Scale Factor ~ Input:

During E, F, or G input the scale factor takes
effect only if no exponent is present in the
external representation. In that case, the
internal value will be a factor of 10**n less than
the external value (the number will be divided by
10**n before being stored).

FORTRAN-80 Reference Manual Page 75

Effect of Scale Factor on Output:

E-Output, D-Output:

The coefficient is shifted left n places relative
to the decimal point, and the exponent is reduced
by n (the value remains the same) •

F-Output:

The external value will be 10**n times the internal
value.

G-Output:

The scale factor is ignored if the internal value
is small enough to be output using F conversion.
Otherwise, the effect is the same as for E output.

8.7.7 SPECIAL CONTROL FEATURES OF FORMAT STATEMENTS

8.7.7~1 Repeat Specifications

1. TheE, F, D, G, I, Land A field descriptors
may be indicated as repetitive descriptors by
using a repeat count r in the form rEw.d,
rFw.d, rGw.d, riw, rLw, rAw. The following
pairs of FORMAT statements are equivalent:

2.

66 FORMAT (3F8.3,F9.2)
C IS EQUIVALENT TO:

66 FORMAT (F8.3,F8.3,F8.3,F9.2)

14 FORMAT (2I3, 2A5, 2E1 0. 5)
C IS EQUIVALENT TO:

14 FORMAT (I3,I3,AS,AS,E10.S,E10.5)

Repetition of a group of field descriptors is
accomplished by enclosing the group in
parentheses preceded by a repeat count.
Absence of a repeat count indicates a count of
one. Up to two levels of parentheses,
including the parentheses required by the
FORMAT statement, are permitted.

Note the following equivalent statements:

FORTRAN-SO Reference Manual

22 FORMAT (I3,4(F6.1,2X))
C IS EQUIVALENT TO:

Page 76

22 FORMAT (I3,F6.1,2X,F6.1,2X,F6.1,2X,
1 F6.1,2X)

3. Repetition of FORMAT descriptors is also
initiated when all descriptors in the FORMAT
statement have been used but there are still
items in the input/output list that have not
been processed. When this occurs the FORMAT
descriptors are re-used starting at the first
opening parenthesis in the FORMAT statement. A
repeat count preceding the parenthesized
descriptor(s) to be re-used is also active in
the re-use. This type of repetitive use of
FORMAT descriptors terminates processing o, the
current record and initiates the processing of
a new record each time the re-use begins.
Record demarcation under these circumstances is
the same as in the paragraph 8.7.7.2 below.

Input Example:

DIMENSION A(100)
READ (3,13) A
•

13 FORMAT (5F7.3)

In this example, the first 5 quantities from each
of 20 records are input and assigned to the array
elements of the array A.

Output Example:

WRITE (6,12)E,F,K,L,M,KK,LL,MM,K3,LE,
1 M3

12 FORMAT (2F9.4,(3I7))

In this example, three records are written. Record
1 contains E, F, K, L and M. Because the
descriptor 317 is reused twice, Record 2 contains
KK, LL and MM and Record 3 contains K3, L3 and M3.

··~

FORTRAN-80Reference Manual Page 77

8.7.7.2 Field Separators

Two adjacent descriptors must be separated in the
FORMAT statement by either a comma or one or more
slashes.

Example:

2HOK/F6.3 or 2HOK,F6.3

The slash not only separates field descriptors, but
it also specifies the demarcation of formatted
records.

Each slash terminates a record and sets up the next
record for processing. The remainder of an input
record is ignored; the remainder of an output
record is filled with blanks. Successive slashes
(/// ••• /) cause successive records to be ignored on
input and successive blank records to be written on
output.

Output example:
DIMENSION A(100) ,J(20)

WRITE (7,8) J,A
8 FORMAT (10I7/10I7/50F7.3/50F7.3)

In this example, the data specified by the list of
the WRITE statement are output to unit 7 according
to the specifications of FORMAT statement 8. Four
records are written as follows:

Record 1

J (1)
J (2)

J (10)

Input Example:

Record 2

J (11)
J (12)

J (20)

DIMENSION B(10)

Record 3

A (1)
A (2)

A (50)

READ (4,17) B
17 FORMAT(F10.2/F10.2///8F10.2)~

In this example, the two array ele ents
B(2) receive their values from the

Record 4

A (51)
A (52)

A (1 00)

B (1) and
first data

FORTRAN-80 Reference Manual Page 78

8.7.8

fields of successive records (the remainders of the
two records are ignored). The third and fourth
records are ignored and the remaining elements of
the array are filled from the fifth record.

FORMAT CONTROL, LIST SPECIFICATIONS AND RECORD
DEMARCATION

The following relationships and interactions
between FORMAT control, input/output lists and
record demarcation should be noted:

1. Execution of a formatted READ or
statement initiates FORMAT control.

WRITE

2. The conversion performed on data depends on
information jointly provided by the elements in
the input/output list and field descriptors in
the FORMAT statement.

3. If there is an input/output list, at least one
descriptor of types E, F, D, G, I, L or A must
be present in the FORMAT statement.

4. Each execution of a formatted READ statement
causes a new record to be input.

5. Each item in an input list corresponds to a
string of characters in the record and to a
descriptor of the types E, F, G, I, L or A in
the FORMAT statement.

6. H and X descriptors communicate information
directly between the external record and the
field descriptors without reference to list
items.

7. On input, whenever a slash is encountered in
the FORMAT statement or the FORMAT descriptors
have been exhausted and re-use of descriptors
is initiated, processing of the current record
is terminated and the following occurs:

a. Any unprocessed characters in the record
are ignored.

b. If more input is necessary to satisfy
list requirements, the next record is
read.

FORTRAN-SO Reference Manual Page 79

8.7.9

8.7.10

B. A READ statement is terminated when all items
in the input list have been satisfied if:

a. The next FORMAT descriptor is E, F, G, I,
L or A.

b. The FORMAT control has reached the last
outer right parenthesis of the FORMAT
statement.

If the input list has been satisfied, but the
next FORMAT descriptor is H or X, more data are
processed (with the possibility of new records
being input) until one of the above conditions
exists.

9. If FORMAT control reaches the last right
parenthesis of the FORMAT statement but there
are more list items to be processed, all or
part of the descriptors are reused. (See item
3 in the description of Repeat Specifications,
sub-paragraph 8.7.7.1)

10. When a Formatted WRITE statement is executed,
records are written each time a slash is
encountered in the FORMAT statement or FORMAT
control has reached the rightmost right
parenthesis. The FORMAT control terminates in
one of the two methods described for READ
termination in 8 above. Incomplete records are
filled with blanks to maintain record lengths.

FORMAT CARRIAGE CONTROL

The first character of every* formatted output
record is used to convey carriage control
information to the output device, and is therefore
never printed. The carriage control character
determines what action will be taken before the
line is printed. The options are as follows:

Control Character

0
1
+
Other

*Does not pertain to

Action Taken Before Printing

Skip 2 lines
Insert Form Feed
No advance (not implemented
Skip 1 line for line-printer)

disk file records.

FORMAT SPECIFICATIONS IN ARRAYS

The FORMAT reference, f, of
WRITE statement (See 8. 1)
instead of a statement label.

a formatted READ or
may be an array name
If such reference is

FORTRAN-80 Reference Manual Page 80

made, at the time of execution of the READ/WRITE
statement the first part of the information
contained in the array, taken in natural order,
must constitute a valid FORMAT specification. The
array may contain non-FORMAT information following
the right parenthesis that ends the FORMAT
specification.

The FORMAT specification which is to be inserted in
the array has the same form as defined for a FORMAT
statement (i.e., it begins with a left parenthesis
and ends with a right parenthesis).

The FORMAT specification may be inserted in the
array by use of a DATA initialization statement, or
by use of a READ statement together with an Aw
FORMAT. Example:

Assume the FORMAT specification

(3F10.3,4I6)

or a similar 12 character specification is to be
stored into an array. The array must allow a
minimum of 3 storage units.

The FORTRAN coding below shows the various methods
of establishing the FORMAT specification and then
referencing the array for a formatted READ or
WRITE.

~\
\

FORTRAN-80 Reference Manual

C DECLARE A REAL ARRAY
DIMENSION A(3), B(3), M(4)

C INITIALIZE FORMAT WITH DATA STATEMENT
DATA A/ 1 (3F1','0.3,', 1 4I6) '/

•

C READ DATA USING FORMAT SPECIFICATIONS
C IN ARRAY A

READ(6,A) B, M

C DECLARE AN INTEGER ARRAY
DIMENSION IA(4), B(3), M(4)

Page 81

C READ FORMAT SPECIFICATIONS
READ (7,15) IA

C FORMAT FOR INPUT OF FORMAT SPECIFICATIONS
1 5 FORMAT (4A2)

C READ DATA USING PREVIOUSLY INPUT
C FORMAT SPECIFICATION

READ (7,IA) B,M

FORTRAN-SO Reference Manual Page 82

SECTION 9

FUNCTIONS AND SUBPROGRAMS

The FORTRAN language provides a means for defining and using
often needed programming procedures such that the statement
or statements of the procedures need appear in a program
only once but may be referenced and brought into the logical
execution sequence of the program whenever and as often as
needed.

These procedures are as follows:

1. Statement functions.

2. Library functions.

3. FUNCTION subprograms.

4. SUBROUTINE subprograms.

Each of these procedures has its own unique requirements for
reference and defining purposes. These requirements are
discussed in subsequent paragraphs of this section.
However, certain features are common to the whole group or
to two or more of the procedures. These common features are
as follows:

1. Each of these procedures is referenced by its name
which, in all cases, is one to six alphanumeric
characters of which the first is a letter.

2. The first three are designated as "functions" and
are alike in that:

1. They are always single valued (i.e., they
return one value to the program unit from which
they are referenced).

2. They are referred to by
containing a function name.

an expression

3. They must be typed by type specification
statements if the data type of the
single-valued result is to be different from
that indicated by the pre-defined convention.

3. FUNCTION subprograms and SUBROUTINE subprograms are
considered program units.

FORTRAN-80 Reference Manual Page 83

In the following descriptions of these procedures, the term
calling program means the program unit or procedure in which
a reference to a procedure is made, and the term "called
program" means the procedure to which a reference is made.

9. 1 THE PROGRAM STATEMENT

9.2

The PROGRAM statement
specifying a name for
form of the statement is:

PROGRAM name

provides a means
a main program unit.

of
The

If present, the PROGRAM statement must appear
before any other statement in the program unit.
The name consists of 1-6 alphanumeric characters,
the first of which is a letter. If no PROGRAM
statement is present in a main program, the
compiler assigns a name of $MAIN to that program.

STATEMENT FUNCTIONS

Statement functions are defined by a single
arithmetic or logical assignment statement and are
relevant only to the program unit in which they
appear. The general form of a statement function
is as follows:

f (a 1 , a 2 , •.. an) = e

where f is the function
arguments and e is
expression.

name, the ai
an arithmetic

are dummy
or logical

Rules for ordering, structure and use of statement
functions are as follows:

1 • Statement function definitions, if they exist
in a program unit, must precede all executable
statements in the unit and follow all
specification statements.

2. Tha ai are distinct variable names or array
elements, but, being dummy variables, they may
have the same names as variables of the same
type appearing elsewhere in the program unit.

3. The expression e is constructed according to
the rules in SECTION 4 and may contain only
references to the dummy arguments and
non-Literal constants, variable and array
element references, utility and mathematical
function references and references to

FORTRAN-SO Reference Manual Page 84

previously defined statement functions.

4. The type of any statement function name or
argument that differs from its pre-defined
convention type must be defined by a type
specification statement.

5. The relationship between f and e must conform
to the replacement rules in Section 5.

6. A statement function is called by its name
followed by a parenthesized list of arguments.
The expression is evaluated using the arguments
specified in the call, and the reference is
replaced by the result.

7. The ith parameter in every argument list must
agree in type with the ith dummy in the
statement function.

The example below shows a statement function and a
statement function call.

C STATEMENT FUNCTION DEFINITION
c

FUNC1 (A,B,C,D) = ((A+B)**C)/D

C STATEMENT FUNCTION CALL
c

A12=A1-FUNC1 (X,Y,Z7,C7)

9.3 LIBRARY FUNCTIONS

Library functions are a group of utility and
mathematical functions which are "built-in" to the
FORTRAN" system. Their names a pre-defined to the
Processor and automatically typed. The functions
are listed in Tables 9~1 and 9-2. In the tables,
arguments are denoted as a1,a2, ••• ,an, if more than
one argument is required; or as a if only one is
required.

A library function is called when its name is used
in an arithmetic expression. Such a reference
takes the following form:

f (a 1 , a 2 , • • • an }

where f is the name of the function
actual arguments. The arguments
type, number and order with the
indicated in Tables 9-1 and 9-2.

and the ai are
must agree in
specifications

FORTRAN-80 Reference Manual Page 85

In addition to the functions 1 is ted in 9-1 and 9.- 2 ,
four additional library subprograms are provided to
enable direct access to the 8080 (or Z80) hard~are.
These are:

PEEK, POKE, INP, OUT

PEEK and INP are Logical functions; POKE and OUT
are subroutines. PEEK and POKE allow direct access
to any memory location. PEEK(a) returns the
contents of the memory location specified by a.
CALL POKE(a1,a2) causes the contents of the memory
location specified by a1 to be replaced by the
contents of a2. INP and OUT allow direct access to
the I/O ports. INP(a) does an input Jfrom port a
and returns the 8-bit value input. CALL OUT(a1,a2)
outputs the value of a2 to the port specified by
a 1.

FORTRAN-80 Reference Manual

TABLE 9-1

Intrinsic Functions

Function Name Definition

ABS
IABS
DABS

AINT
INT
I DINT

AMOD
MOD

AMAXO
AMAX1
MAXO
MAX1
DMAX1

AMINO
AMIN1
MINO
MIN1
DMIN1

FLOAT

IFIX

SIGN
I SIGN
DSIGN

DIM
IDIM

SNGL

DBLE

Ia I

Sign of a times lar­
gest integer <= lal

a 1 (mod a2)

Max(a1,a2,ooo)

Min (a 1 , a2 , o o o)

Conversion from
Integer to Real

Conversion from
Real to Integer

Sign of a2 times la11

a1 - Min(a1,a2)

Types
Argument Function

Real
Integer
Double

Real
Real
Double

Real
Integer

Integer
Real
Integer
Real
Double

Integer
Real
Integer
Real
Double

Integer

Real

Real
Integer
Double

Real
Integer

Double

Real

Real
Integer
Double

Real
Integer
Integer

Real
Integer

Real
Real
Integer
Integer
Double·

Real
Real
Integer
Integer
Double

Real

Integer

Real
Integer
Double

Real
Integer

Real

Double

Page 86

FORTRAN-80 Reference Manual Page 87

TABLE 9-2

Basic External Functions

Number
of Type

Name Arguments Definition Argument Function

EXP 1 e**a Real Real
DEXP 1 Double Double

ALOG 1 ln (a) Real Real
DLOG 1 Double Double

ALOG10 1 log10(a) Real Real
DLOG10 1 Double Double

SIN 1 sin (a) Real Real
DSIN 1 Double Double

cos 1 cos (a) Real Real

/~ DCOS 1 Double Double

TANH 1 tanh (a) Real Real

SQRT 1 (a) ** 1/2 Real Real
DSQRT 1 Double Double

ATAN 1 arctan (a) Real Real
DATAN 1 Double Double

ATAN2 2 arctan (a1/a2) Real Real
DATAN2 2 Double Double

DMOD 2 a 1 (mod a2) Double Double

FORTRAN-SO Reference Manual Page 88

9.4 FUNCTION SUBPROGRAMS

A program unit which begins with a FUNCTION
statement is called a FUNCTION subprogram.

A FUNCTION statement has one of the following
forms:

t FUNCTION f(a1,a2, ••• an)

or

FUNCTION f(a1,a2, ••• an)

where:

1. t is either INTEGER, REAL, DOUBLE PRECISION or
LOGICAL or is empty as shown in the second
form.

2. f is the name of the FUNCTION subprogram.

3. The ai are dummy arguments of which there must
be at least one and which represent variable
names, array names or dummy names of SUBROUTINE
or other FUNCTION subprograms.

9.5 CONSTRUCTION OF FUNCTION SUBPROGRAMS

Construction of FUNCTION subprograms must comply
with the following restrictions:

1. The FUNCTION statement must be the
statement of the program unit.

first

2. Within the FUNCTION subprogram, the FUNCTION
name must appear at least once on the left side
of the equality sign of an assignment statement
or as an item in the input list of an input
statement. This defines the value of the
FUNCTION so that it may be returned to the
calling program.

Additional values may be returned to the
calling program through assignment of values to
dummy arguments.

/~
I

FORTRAN-SO Reference Manual

Example:

FUNCTION Z7(A,B,C)

Z7 = S.*(A-B) + SQRT(C)

C REDEFINE ARGUMENT
B=B+Z7

RETURN

END

Page 89

3. The names in the dummy argument list may not appear
in EQUIVALENCE, COMMON or DATA statements in the
FUNCTION subprogram.

4. If a dummy argument is an array name, then an array
declarator must appear in the subprogram with
dimensioning information consistant with that in
the calling program.

5. A FUNCTION subprogram may contain any defined
FORTRAN statements other than BLOCK DATA
statements, SUBROUTINE statements, another FUNCTION
statement or any statement which reterences either
the FUNCTION being defined or another subprogram
that references the FUNCTION being defined.

6. The logical termination of a FUNCTION subprogram is
a RETURN statement and there must be at least one
of them.

7. A FUNCTION subprogram must physically terminate
with an END statement.

FORTRAN-SO Reference Manual

Example:

FUNCTION SUM (BARY,I,J)
DIMENSION BARY (10,20)
SUM= 0.0
DO s K=1 I I
DOS M = 1 ,J

8 SUM= SUM+ BARY(K,M)
RETURN
END

9.6 REFERENCING A FUNCTION SUBPROGRAM

Page 90

FUNCTION subprograms are called whenever the
FUNCTION name, accompanied by an argument list, is
used as an operand in an expression. Such
references take the following form:

f (a 1 , a2 , •.. , an)

where f is a FUNCTION name and the ai are actual
arguments. Parentheses must be present in the form
shown.

The arguments ai must agree in type, order and ·~.
number with the dummy arguments in the FUNCTION
statement of the called FUNCTION subprogram. They
may be any of the following:

1 • A variable name.

2. An array element name.

3. An array name.

4. An expression.

s. A SUBROUTINE or FUNCTION subprogram name.

6. A Hollerith or Literal constant.

If an ai is a subprogram name, that name must have
previously been distinguished from ordinary
variables by appearing in an EXTERNAL statement and
the corresponding dummy arguments in the called
FUNCTION subprograms must be used in subprogram
references.

If ai is a Hollerith or Literal constant, the
corresponding dummy variable should encompass
enough storage units to correspond exactly to the
amount of storage needed by the constant.

When a FUNCTION subprogram is called, program

FORTRAN-SO Reference Manual Page 91

control goes to the first executable statement
following the FUNCTION statement.

The following examples show references to FUNCTION
subprograms.

Z10 = FT1+Z7(D,T3,RHO)

DIMENSION DAT(5,5)

S1 = TOT1 + SUM(DAT,5,5)

9.7 SUBROUTINE SUBPROGRAMS

A program
statement
SUBROUTINE
forms:

unit which begins with a SUBROUTINE
is called a SUBROUTINE subprogram. The
statement has one of the following

SUBROUTINEs (a1,a2, ••. ,an)

or

SUBROUTINE s

where s is the name of the SUBROUTINE subprogram
and each ai is a dummy argument which represents a
variable or array name or another SUBROUTINE or
FUNCTION name.

9.8 CONSTRUCTION OF SUBROUTINE SUBPROGRAMS

1. The SUBROUTINE statement must be the first statement
of the subprogram.

2. The SUBROUTINE subprogram name must not appear in
any statement other than the initial SUBROUTINE
statement.

3. The dummy argument
EQUIVALENCE, COMMON
subprogram.

names must
or DATA

not appear
statements in

in
the

4. If a dummy argument is an array name then an array
declarator must appear in the subprogram with
dimensioning iriformation consistant with that in the
calling program.

s. If any of the dummy arguments represent values that
are to be determined by the SUBROUTINE subprogram
and returned to the calling program, these dummy

FORTRAN-80 Reference Manual Page 92

arguments must appear within the subprogram on the
left side of the equality sign in a replacement
statement, in the input list of an input statement
or as a parameter within a subprogram reference.

6. A SUBROUTINE may contain any FORTRAN statements
other than BLOCK DATA statements, FUNCTION
statements, another SUBROUTINE statement, a PROGRAM
statement or any statement which references the
SUBROUTINE subprogram being defined or another
subprogram which references the SUBROUTINE
subprogram being defined.

7. A SUBROUTINE subprogram may contain any number of
RETURN statements. It must have at least one.

8. The RETURN statement(s) is the logical termination
point of the subprogram.

9. The physical termination of a SUBROUTINE subprogram
is an END statement.

10. If an actual argument transmitted to a SUBROUTINE
subprogram by the calling program is the name of a
SUBROUTINE or FUNCTION subprogram, the corresponding
dummy argument must be used in the called SUBROUTINE
subprogram as a subprogram reference.

Example:

C SUBROUTINE TO COUNT POSITIVE ELEMENTS
C IN AN ARRAY

SUBROUTINE COUNT P(ARRY,I,CNT)
DIMENSION ARRY(7)
CNT = 0
DO 9 J=1,I
~F (ARRY (J)) 9~ 5, 5

9 CONTINUE
RETURN

5 CNT = CNT+1.0
GO TO 9
END

9.9 REFERENCING A SUBROUTINE SUBPROGRAM

A SUBROUTINE subprogram may be called by using a
CALL statement. A CALL statement has one of the
following forms:

CALL s(a1,a2, .•. ,an)

or

/~\

FORTRAN-80 Reference Manual Page 93

9.10

CALL s

where s is a SUBROUTINE subprogram name and the ai
are the actual arguments to be used by the
subprogram. The ai must agree in type, order and
number with the corresponding dummy arguments ln
the subprogram-defining SUBROUTINE statement.

The arguments in a CALL statement must comply with
the following rules:

1. FUNCTION and SUBROUTINE names appearing in the
argument list must have previously appeared in
an EXTERNAL statement.

2. If the called SUBROUTINE subprogram contains a
variable array declarator, then the CALL
statement must contain the actual name of the
array and the actual dimension specifications
as arguments.

3. If an item in the SUBROUTINE subprogram dummy
argument list is an array, the corresponding
item in the CALL statement argument list must
be an array.

When a SUBROUTINE subprogram is called, program
control goes to the first executable statement
following the SUBROUTINE statement.

Example:

DIMENSION DATA(10)

C THE STATEMENT BELOW CALLS THE
C SUBROUTINE IN THE PREVIOUS PARAGRAPH
c

CALL COUNTP(DATA,10,CPOS)

RETURN FROM FUNCTION AND SUBROUTINE SUBPROGRAMS

The logical termination of a FUNCTION or SUBROUTINE
subprogram is a RETURN statement which transfers
control back to the calling program. The general
form of the RETURN statement is simply the word

RETURN

The following rules govern the use of
statement:

the

FORTRAN-SO Reference Manual Page 94

1. There must be at least one RETURN statement in
each SUBROUTINE or FUNCTION subprogram.

2. RETURN from a FUNCTION subprogram is to the
instruction sequence of the calling program
following the FUNCTION reference.

3. RETURN from a SUBROUTINE subprogram is to the
next executable statement in the calling
program which would logically follow the CALL
statement.

4. Upon return from a FUNCTION subprogram the
single-valued result of the subprogram is
available to the evaluation of the expression
from which the FUNCTION call was made.

5. Upon return from a SUBROUTINE subprogram the
values assigned to the arguments in the
SUBROUTINE are available for use by the calling
program.

Example:

Calling Program Unit

CALL SUBR(Z9,B7,R1)

Called Program Unit

SUBROUTINE SUBR(A,B,C)
READ(3,7) B
A = B**C
RETURN

7 FORMAT(F9.2)
END

In this example, Z9 and B7 are made available to
the calling program when the RETURN occurs.

9.11 PROCESSING ARRAYS IN SUBPROGRAMS

If a calling program passes an array name to a
subprogram, the subprogram must contain the
dimension information pertinent to the array. A
subprogram must contain array declarators if any of
its dummy arguments represent arrays or array

FORTRAN-SO Reference Manual Page 95

elements.

For example, a FUNCTION subprogram designed to
compute the average of the elements of any one
dimension array might be the folowing:

20

Calling Program Unit

DIMENSION Z1 (50) ,Z2(25)

A1 = AVG(Z1 ,50)

A2 = A1-AVG(Z2,25)

Called Program Unit

FUNCTION AVG(ARG,I)
DIMENSION ARG(50)
SUM= 0.0
DO 20 J= 1, I
SUM = SUM + ARG(J)
AVG = SUM/FLOAT(I)
RETURN
END

Note that actual arrays to be processed by the
FUNCTION subprogram are dimensioned in the calling
program and the array names and their actual
dimensions are transmitted to the FUNCTION
subprogram by the FUNCTION subprogram reference.
The FUNCTION subprogram itself contains a dummy
array and specifies an array decl~rator.

Dimensioning information may also be passed to the
subprogram in the paramater list. For example:

FORTRAN-80 Reference Manual Page 96

9. 12

Calling Program Unit

DIMENSION A(3,4,5)

CALL SUBR(A,3,4,5)

END

Called Program Unit

SUBROUTINE SUBR(X,I,J,K)
DIMENSION X(I,J,K)

RETURN
END

It is valid to use variable dimensions o~ly when
the array name and all of the variable d~mensions
are dummy arguments. The variable dimensions must
be type Integer. It is invalid to change the
values of any of the variable dimensions within the
called program.

BLOCK DATA SUBPROGRAMS

A BLOCK DATA subprogram has as its only purpose the
initialization of data in a COMMON block during
loading of a FORTRAN object program. BLOCK DATA
subprograms begin with a BLOCK DATA statement of
the following form:

BLOCK DATA [subprogram-name]

and end with an END statement. Such subprograms
may contain only Type, EQUIVALENCE, DATA, COMMON
and DIMENSION statements and are subject to the
following considerations:

1. If any element in a COMMON block is to be
initialized, all elements of the block must be
listed in the COMMON statement even though they
might not all be initialized.

2. Initialization of data in more than one COMMON
block may be accomplished in one BLOCK DATA
subprogram.

·~
i

.·~

.r---
(

FORTRAN-SO Reference Manual

3. There may be more than one BLOCK
subprogram loaded at any given time.

Page 97

DATA

4. Any particular COMMON block item should only be
initialized by one program unit.

Example:

BLOCK DATA
LOGICAL A1
COMMON/BETA/B(3,3)/GAM/C(4)
COMMON/ALPHA/A1,C,E,D
DATA B/1.1,2.5,3.8,3*4.96,

12*0.52,1.1/,C/1.2E0,3*4.0/
DATA A1/.TRUE/,E/-5.6/

(

FORTRAN-SO Reference Manual Page 98

APPENDIX A

Language Extensions and Restrictions

The FORTRAN-SO language includes the following extensions to
ANSI Standard FORTRAN (X3.9-1966).

1. If cis used in a 'STOP c' or 'PAUSE c' statement,
c may be any six ASCII characters.

2. Error and End-of-File branches may be specified in
READ and WRITE statements using the ERR= and END=
options.

3. The standard subprograms PEEK, POKE, INP, and OUT
have been added to the FORTRAN library.

4. Statement functions may use subscripted variables.

5. Hexadecimal constants may be used wherever Integer
constants are normally allowed.

6. The literal form of Hollerith data (character
string between apostrophe characters) is permitted
in place of the standard nH form.

7. Holleriths and Literals are allowed in expressions
in place of Integer constants.

8. There is no restriction
continuation lines.

to the number of

9. Mixed mode expressions and assignments are allowed,
and conversions are done automatically.

FORTRAN-80 places the following restrictions upon Standard
FORTRAN.

1. The COMPLEX data type is not implemented.
be included in a future release.

It may

2. The specification statements must appear in the
following order:

1. PROGRAM, SUBROUTINE, FUNCTION, BLOCK DATA

2. Type, EXTERNAL, DIMENSION

3. COMMON

4. EQUIVALENCE

·~
I

FORTRAN-SO Reference Manual Page 99

5. DATA

6. Statement Functions

3, A different amount of computer memory is allocated
for each of the data types: Integer, Real, Double
Precision, Logical.

4. The equal sign of a replacement statement and the
first comma of a DO statement must appear on the
initial statement line .i

Descriptions of these language extensions and restrictions
are included at the appropria~e points in the text of this
document.

FORTRAN-80 Reference Manual Page 100

APPENDIX B

I/O Interface

Input/Output operations are table-dispatched to the driver
routine for the proper Logical Unit Number. $LUNTB is the
dispatch table. It contains one 2-byte driver address for
each possible LUN. It also has a one-byte entry at the
beginning, which contains the maximum LUN plus one. The
initial run-time package provides for 10 LUN's (1 - 10), all
of which correspond to the TTY. Any of these may be
redefined by the user, or more added, simply by changing the
appropriate entries in $LUNTB and adding more drivers. The
runtime system uses LUN 3 for errors and other user
communication. Therefore, LUN 3 shoulq correspond to the
operator console. The initial structure of $LUNTB is shown
in the listings following this appendix.

The device drivers also contain local dispatch tables. Note
that $LUNTB contains one address for each device, yet there
are really seven possible operations per device:

1) Formatted Read
2) Formatted Write
3) Binary Read
4) Binary Write
5) Rewind
6) Backspace
7) Endfile

Each device driver contains up to seven routines. The
starting addresses of each of these seven routines are
placed at the beginning of the driver, in the exact order
listed above. The entry in $LUNTB then points to this local
table, and the runtime system indexes into it to get the
address of the appropriate routine to handle the requested
I/0 operation.

The following conventions apply to the individual I/0
routines:

1. Location $BF contains the data buffer address for
READs and WRITEs.

2. For a WRITE, the number of bytes to write is in
location $BL.

3. For a READ, the number of bytes read should be
rE~turned in $BL.

\.

,~,
I '

FORTRAN-80 Reference Manual Page 101

4. All I/0 operations set the condition codes before
exit to indicate an error condition, end-of-file
condition, or normal return:

a) CY=1, Z=don't care- I/0 error
b) CY=O, Z=O - end-of-file encountered
c) CY=O, Z=1 - normal return

The runtime system checks the condition codes after
calling the driver. If they indicate a non-normal
condition, control is passed to the label specified
by "ERR=" or "END=" or, if no label is specified, a
fatal error results.

5. $IOERR is a global routine which prints an "ILLEGAL
I/O OPERATION" message (non-fatal) • This routine
may be used if there are some operations not
allowed on a particular device (i.e. Binary I/0 on
a TTY) •

NOTE

The I/0 buffer has a fixed maximum length
of 132 bytes unless it is changed at
installation time. If a driver allows an
input operation to write past the end of
the buffer, essential runtime variables may
be affected. The consequences are
unpredictable.

The listings following this appendix contain
driver for a TTY. REWIND, BACKSPACE, and
implemented as No-Ops and Binary I/O as an error.
the TTY driver provided with the runtime package.

an example
ENDFILE are

This is

MAC80 1.0 PAGE 1

00100 0 TI'Y I/0 DRIVER ~
002f2H:'l '

0000 00300 EXT $IOERR,$BL,$BF,$ERRR5TTYIN~YOT
0012 00400 IRECER roJ 022 ;INPUT RECO TOO NG
0000 00500 ENI'RY $DRV3
0000 0013 I 00600 $DRV3: DW DRV3FR ; FORM-A-TTED READ
0002 0042 I 00700 ow DRV3FW ; FORMATTED WRI'l'E
0004 0010 I 00800 DW DRV3BR ; BINARY READ
0006 0010 I 00900 ow DRV3BW ;BINARY WRITE
0008 000E I 01000 DW DRV3RE ;REWIND
000A 000E I 01Hl0 ow DRV3BA ;BACKSPACE
000C 000E I 01200 DW DRV3EN ;ENDFILE
000E AF 01300 DRV3EN: XRA A ;THESE OPERATIONS ARE

01400 ; NO-GPS FOR TI'Y
000E 01500 DRV3RE rou DRV3EN
000E 01600 DRV3BA rou DRV3EN
000F C9 01700 RET
00Hl C3 0000 * 01800 DRV3BW: JMP $IOERR ; ILLEGAL OPERATIONS

01900 ; (PRINT ERROR AND RETURN)
0010 02000 DRV3BR mu DR"V3BW
0013 AF 02Hl0 DRV3FR: XRA A ;READ
0014 32 0000 * 02200 STA ~BL ;ZERO BUFFER LENGTH
0017 CD 0000 * 02300 DRV31: CALL TTYIN ; INPUT A CHAR
001A E6 7F 02400 ANI 177 ;AND O~F PARITY
001C FE 0A 02500 CPI 10 ;IGNORE LINE FEEDS
001E CA 0017 1 02600 JZ DRV31
0021 F5 02700 PUSH PSW ;SAVE IT
0022 2A 0015 * 02800 LHLD $BL ;GET CHAR FOSIT IN BUFFER
0025 26 00 02900 MVI H,0 ;ONLY 1 BYTE
0027 EB 03000 XCHG
0028 2A 121000 * 03100 LHLD $BF ;GET BUFFER ADDR
121028 19 03200 DAD D ;ADD OFFSET
002C F1 03300 POP PSW ;GET CHAR
0020 77 03400 MOV M,A ; PUT IT IN BUFFER
002E 13 03500 INX D ; INCREMENT $BL -~

002F EB 03600 XCHG
\

0030 22 0023 * 03700 SHLD ~BL ;SAVE IT
0033 FE 0D 03800 CPI 15 ;CR?
0035 C8 03900 RZ ;YES--OONE
0036 7D 04000 MOV A~L ;$8L
0037 FE 80 04100 CPI 1 8 ;MAX IS DECIMAL 128
0039 DA 0017 I 04200 JC DRV31 ; GET NE:lcr' CHAR
003C CD 0000 * 04300 CALL $ERR
003F 12 04400 DB IRECER ; INPUT ROCORD TOO IDNG
0040 AF 04500 XRA A ; CLEAR FLAGS
0041 C9 04600 RET
0042 3A 0031 * 04700 DRV3FW: LDA $8L ;BUFFER LENGI'H
0045 B7 04800 ORA A

-~

~

~ ... --,,

-~~,,

MAC80 1.0

0046 C8
0047 2A 0029 *
004A 3D
004B FS
004C 3E eJD
004E CD 0000 *
0051 7E
0052 FE 2B
0054 CA 0079 I

0057 FE 31
0059 C2 0064 I

005C 3E 0C
005E CD 004F *
0061 C3 0079 I

0064 3E 0A
0066 CD 005F *
0069 7E
006A FE 20
006C CA 0079 I

006F FE 30
0071 C2 0079 I

0074 3E 0A
0076 CD 0067 *
0079 Fl
007A 23
0078 C8
0f2l7C FS
007D 7E
007E 23
007F CD 0077 *
0082 F1
0083 3D
0084 C3 007B I

0087

MAC80 1.0

~IOERR 0011 *
;;>'.rrYIN 0018*
DRV3FR 0013 I

DRV3RE 00f2lE'
DR3FW2 0079 1

~BL
:;;TI'YOT
DRV3F'i\l'
DRV3BA
DR3FW1

PAGE

04900
05000
05100
05200
05300
05400
05500
05600
05700
05800
05900
06000
06100
06200
06300
06400
06500
06600
06700
06800
06900
07000
07100
07200
07300
07400
07500
07600
07700
07800
07900
08000
08100
08200

PAGE

0043*
0080*
0042 1
000E 1

0064 I

2

RZ
LHLD
OCR
PUSH
MVI
CALL
MOV
CPI
JZ
CPI
JNZ
MVI
CALL
JMP

DR3FW1: MVI
CALL
MOV
CPI
JZ
CPI
JNZ
MVI
CALL

DR3FW2: roP

DRV32:

3

$BF
IRECER
DRV3BR
DRV3EN
DRV32

INX
RZ
PUSH
MOV
INX
CALL
POP
OCR
Jr1P
END

0048*
0012
0010'
000E'
007B 1

; EMPI'Y BUFFER
$BF ;BUFFER ADDRESS
A ; OECREMENI' LENGTH
PSW ;SAVE IT

*13 ;CR
rYor ·OlJriUT IT

A,M :GET FIRST CHAR IN BUFFER
I+ I

DR3FW2 ;NO LINE FEEDS
'1'
DR3FW1 ;NOT FORM FEED
A,12 ;FORM FEED
$'1TYOT ;OUTPUT IT
DR3FW2
A,l0 ;LF
$TTY Or
A,M ;GET CHAR BACK
I I

DR3FW2
101

;NO MOR.E LINE FEEDS

DR3FW2 ;NO MORE LINE FEEDS
A,10 ;LF
$TI'YOI'
PSW ;GET LENGTH BACK
H ; INCREMENT PI'R

PSW ; SAVE CHAR COUN'r
A,M ;GET NEXT CHAR
H ; INCREMENI' PI'R
$TI'YOT ;OUTPUT CHAR
PSW ;GET comu
A ;DECREMENI' IT
DRV32 ;ONE MORE TIME

$ERR 003D*
$DRV3 0000 1
DRV3BW 0010 I

DRV31 0017'

MAC80 1.0 PAGE 1

~
00100 :COMMENI' * '

00200 i DRIVER ADDRESSES FOR LUN'S 1 THROUGH 10 '~-

00210 LPr 0001 00220 EQU 1 :UNIT 2 IS LPr

0001 00230 DSK EQU 1 ;UNITS 6-H:l ARE DSK
0000 00235 DI'C mu 0 ;DTC COMMUNICATIONS UNIT 4

00240
00300

0000 00400 ENI'RY ~LUNTB
0000 00500 EXT DRV3
0000 08 00600 $LUNTB: DB 013 ·MAX LUN + 1
0001 0000 * 00700 DW $DRV3 ;THEY ALL POINT TO $DRV3 FOR NOW
0003 00800 IFF LPI'

00900 DW $DRV3
~H103 01000 END IF
0003 01100 IFT LPI'
0003 01200 EXT LPI'DRV
0303 0000 * 01300 ow LPI'DRV
0005 01400 END IF
~10:15 0001 * 01500 ow $DRV3
00~)7 01510 IFF lJI'C
0007 0005 * 01600 ow $DRV3
0009 01602 END IF
0009 01604 IFT DI'C

01605 EXT fcMDRV
01606 OI'V' MORV

0009 01608 END IF
0009 0007 * 01700 DW $DRV3
000!3 01800 IFF DSK

01900 DT/J rV3 02000 mv DRV3
02100 DW DRV3
02200 ow DRV3
02300 ow ORV3 ~~

0003 02400 END IF
0008 02500 IFT DSK
0008 02600 EX'r DSKDRV
0008 0000 * 02700 ow DSKDRV
0000 0008 * 02800 DW DSKDRV
000F 0000 * 02900 ow DSKDRV
0011 000F * 03000 ow DSKORV
t1013 0011 * 03100 ow DSKDRV
0015 03200 ENDIF
0015 03300 END

HACtl0 1. l1 PAGE 2

·1 ._.JS.K 0001 Drc 0000 $LUNTB 0000 1

w) ,)i.) _J

:. . ,;, \; .i ljk:J[19ll" LJPrDRV. 0003* OSKDRV 0013*

~

FORTRAN-SO Reference Manual Page 105

APPENDIX C

Subprogram Linkages

This appendix defines a normal subprogram call as generated
by the FORTRAN compiler. It is included to facilitate
linkages between FORTRAN programs and those written in other
languages, ~uch as 8080 Assembly.

A subprogram reference with no parameters generates a simple
"CALL'' instruction. The corresponding subprogram should
return via a simple "RET." (CALL and RET are 8080 opcodes
see the assembly manual or 8080 reference manual for
explanations.)

A subprogram reference with parameters results in a somewhat
more complex calling sequence. Parameters are always passed
by reference (i.e., the thing passed is actually the address
of the low byte of the actual argument). Therefore,
parameters always occupy two bytes each, regardless of type.

The method of passing the parameters depends upon the number
of parameters to pass:

1. If the number of parameters is less than or equal
to 3, they are passed in the registers. Parameter
1 will be in HL, 2 in DE (if present), and 3 in BC
(if present).

2. If the number of parameters is greater than 3, they
are passed as follows:

1. Parameter 1 in HLw

2. Parameter 2 in DE.

3. Parameters 3 through .n in a contiguous data
block. BC will point to the low byte of this
data block (i.e., to the low byte of parameter
3) •

Note that, with this scheme, the subprogram must know how
many parameters to expect in order to find them.
Conversely, the calling program is responsible for passing
the correct number of parameters. Neither the compiler nor
the runtime system checks for the correct number · of
parameters.

If the subprogram expects more than 3 parameters, and needs
to transfer them to a local data area, there is a system

FORTRAN-80 Reference Manual Page 106

subroutine which will perform this transfer. This argument
transfer routine is named $AT, and is called with HL '\
pointing to the local data area, BC pointing to the third
parameter, and A containing the number of arguments to
transfer (i.e., the total number of arguments minus 2). The
subprogram is responsible for saving the first two
parameters before calling -$AT. For example, if a subprogram
expects 5 parameters, it should look like:

SUBR:

P1 :
P2:
P3:

SHLD P1 ;SAVE PARAMETER 1
XCHG
SHLD 'P2 ;SAVE PARAMETER 2
MVI A, 3 ;NO. OF PARAMETERS LEFT
LXI H,P3 ;POINTER TO LOCAL AREA
CALL $AT ;TRANSFER THE OTHER 3 PARAMETERS

[Body of subprogram]

RET
DS
DS
DS

2
2
6

;RETURN TO CALLER
;SPACE FOR PARAMETER 1
;SPACE FOR PARAMETER 2
;SPACE FOR PARAMETERS 3-5

When accessing parameters in a subprogram, don't forget that
they are pointers to the actual arguments passed.

NOTE

It is entirely up to the
programmer to see to it that
the arguments in the calling
program match in number, type,
and length with the parameters
expected by the subprogram.
This applies to FORTRAN
subprograms, as well as those
written in assembly language.

FORTRAN Functions (Section 9) return their values in
registers or memory depending upon the type. Logical
results are returned in (A), Integers in (HL), Reals in
memory at $AC, Double Precision in memory at $DAC. $~C and
$DAC are the addresses of the low bytes of the mantissas.

~
I

FORTRAN-80 Reference Manual Page 107

-~- APPENDIX D

ASCII CHARACTER CODES

DECIMAL CHAR. DECIMAL CHAR. DECIMAL CHAR.

000 NUL 043 + 086 v
001 SOH 044 '

087 w
002 STX 045 - 088 X

003 ETX 046 . 089 y

004 EOT 047 I 090 z
005 ENQ 048 0 091 [

006 ACK 049 1 092 \

007 BEL 050 2 093]

008 BS 051 3 094 A (or 1')

009 HT 052 4 095 < (or+-)

010 LF 053 5 096

011 VT 054 6 097 a

012 FF 055 7 098 b

013 CR 056 8 099 c
014 so 057 9 100 d

015 SI 058 . 1 0 1 e .
016 DLE 059 . 102 f

I

~- 017 DC1 060 < 103 g

018 DC2 061 = 104 h

019 DC3 062 > 105 i

020 DC4 063 ? 106 j

021 NAK 064 @ 107 k

022 SYN 065 A 108 1

023 ETB 066 B 109 m

024 CAN 067 c 110 n

025 EM 068 D 1 1 1 0

026 SUB 069 E 112 p

027 ESCAPE 070 F 1 1 3 q

028 FS 071 G 114 r

029 GS 072 H 1 1 5 s
030 RS 073 I 116 t

031 us 074 J 117 u

032 SPACE 075 K 118 v

033 ! 076 L 119 w

034 II 077 M 120 X

035 # 078 N 121 y

036 $ 079 0 122 z

037 % 080 p 123 {
038 & 081 Q 124 I
039 I 082 R 125 }
040 (083 s 126 ,....,
041) 084 T 127 DEL

042 * 085 u
~-

LF=Line Feed FF=Form Feed CR=Carriage Return DEL=Rubout

FORTRAN-SO Reference Manual Page 108

APPENDIX E

FORTRAN-80 Library Subroutines

The FORTRAN-80 library contains a number of subroutines that
may be referenced by the user from FORTRAN or assembly
programs. In the following descriptions, $AC refers to the
floating accumulator; $AC is the address of the low byte of
the mantissa. $AC+3 is the address of the exponent. $DAC
refers to the DOUBLE PRECISION accumulator; $DAC is the
address of the low byte of the mantissa. $DAC+7 is the
address of the DOUBLE PRECISION exponent.

All arithmetic routines (addition,
multiplication, division, exponentiation)
following calling conventions.

subtraction,
adhere to the

1. Argument 1 is passed in the registers:
Integer in [HL]
Real in $AC
Double in $DAC

2. Argument 2 is passed either in registers, or in
memory depending upon the type:

a. Integers are passed in [HL], or [DE] if
[HL] contains Argument 1.

b. Real and Double Precision values are
passed in memory pointed to by [HL].
([HL] points to the low byte of the
mantissa.)

~~

~·
(

FORTRAN-80 Reference Manual Page 109

The following arithmetic routines are contained in the
Library;

Function Name Argument 1 Type Argument 2 Type

Addition $AA Real Integer
$AB Real Real
$AQ Double Integer
$AR Double Real
$AU Double Double

Division $D9 Integer Integer
$DA Real Integer
$DB Real Real
$DQ Double Integer
$DR Double Real
$DU Double Double

Exponentiation $E9 Integer Integer
$EA Real Integer
$EB Real Real
$EQ Double Integer
$ER Double Real
$EU Double Double

Multiplication $M9 Integer Integer
$MA Real Integer
$MB Real Real
$MQ Double Integer
$MR Double Real
$MU Double Double

Subtraction $SA Real Integer
$SB Real Real
$SQ Double Integer
$SR Double Real
$SU Double Double

FORTRAN-SO Reference Manual Page 110

Additional Library routines are provided for converting
between value types. Arguments are always passed to and
returned by these conversion routines in the appropriate
registers:

Logical in [A]

Integer in [HL]

Real in $AC

Double in $DAC

Name Function

$CA Integer to Real
$CC Integer to Double
$CH Real to Integer
$CJ Real to Logical
$CK Real to Double
$CX Double to Integer
$CY Double to Real
$CZ Double to Logical

FORTRAN-SO Reference Manual

INDEX

Arithmetic Expression •••• 25-26, 47
Arithmetic IF •••••••• 44, 47, 49
Arithmetic Operators ••••• 8
Array •••••••••• 14, 20, 34-35, 37-38, 40-41,

56, 79, 89-90, 94-95
Array Declarator • • • • • 20
Array Element • • • • • • 14, 20, 27, 32, 39
ASCII Character Codes •••• 104
ASSIGN •••••••••••• 44, 46
Assigned GOTO • • • • • • • • 44-45

BACKSPACE • • • • • • • • • • 60
BLOCK DATA •••••••••• 34, 37, 92, 96

CALL • • • • • • • • • •• 44, 53, 92
Character Set • • • • • • • • 7
Characteristic •••••••• 23
Comment Line • • • • • • • • • 9
COMMON • • • • • • • • • • 34, 37, 39-41, 89, 91, 96
Computed GOTO • • • • ,• • 44-45
Constant ••••••••••• 14-15
Continuation ••••••••• 9, 12
CONTINUE • • • • • 44, 51
Control Statements • • • • • • 44

DATA • • • • • • • • • •• 34, 41, 89, 91, 96
Data Representation ••••• 14
Data Storage ••••••••• 21
DECODE •••••••••••• 61
DIMENSION •••••••••• 20, 34, 37, 96
Disk Files • • • • • • • • 59
DO • • • • • • • • • • •
DO Implied List • • •
Double precision • • •
Dummy • • • • • • •

••• 44, 47-49
• • 6 3

14
• •• 91-93, 95

ENCODE •••••••••••• 61
END • • • • ••••••• 53, 89, 92, 96
END Line • • • • ••• 11
ENDFILE • • • • • • • • • • • 60
EQUIVALENCE ••••••• 34, 39-41, 89, 91, 96
Executable • • • • • • •• 13, 34, 44
Expression • • • • •••• 25-26, 31-32
Extended Range • • • • • • 50
EXTERNAL ••••••••••• 34, 37, 90, 93
External Functions • • • • 87

Field Descriptors • • • • • • 65
FORMAT •••••••••••• 55-57, 65, 69, 71-75, 77-80
Formatted READ • • • • • • • • 54

. • 57 Formatted WRITE
FUNCTION • • • • • 34, 37, 82, 88-95

GOTO • • • • 44, 49

. •• 8, 21, 31, 42 Hexadecimal
Hollerith •••• 9, 15, 20-21, 31, 42, 56,

71-72, 90

I/0 • .
I/0 List
IF
Index
Initial Line •
INP • • • • . • . .
Integer . • • • • • • .
Intrinsic Functions . • • •

Label • • • • • • • • • • •
Library Function • • • • • •
Library Subroutines • • •
Line Format • • • • • •
List Item • • •

• 54, 100 . 62 . 44, 47 . 49 . 11
• 85 . 14, 19, 23 . 86

• 9, 12, 44-45, 48
• 82, 84

105
• 9
• 62

Literal •••••••• • 9, 20-21, 31, 42, 72, 90
Logical • • • • • • • •
Logical Expression •

• 14, 19, 23, 73

Logical IF • • • • •
Logical Operator • • • • • •
Logical Unit Number ••
LUN • • • • • • . .
Mantissa • • • •

. . . Nested • • • •
Non-executable • • • •
Numeric Conversions • • •

Operand
Operator •
OUT • • •

PAUSE . .
PEEK • • 0

POKE .
PROGRAM .
Range . .
READ . . .
Real . .
Relational
Relational
Replacement
RETURN • •
RE\HND • .

.
• • • • . •
. • . . . • • • •
Expression . . .
Operator . .

Statement . . .
• • • . •
• • . . • . .

• 27, 30, 48
• 44, 47, 49
• 28
• 54, 58, 100
• 54, 58, 100

• 23

• 51
1 3, 34
66

• 25
25

• 85

. 44,
• 85

• 85 . 34,

. 49 . 56,
1 4 , . 27 . 27 . 32, . 44, . 60

49,

83,

58,
1 9 1

48
49,

52

92

65,
23

53,

Scale Factor ••••••••• 74-75
Specification Statement • • • 34
Statement Function • • • • 34, 82-83

74,

89,

78-80

92-94

STOP • • • • • 44,
Storage • • • • • • • • • • • 35
Storage Format • • • • • • • • 14
Storage Unit • • • . • • • • • 21 ,
Subprogram . . • • • • 37,
SUBROUTINE • • • • • • • • • • 34,
Subscript • • • • • • • • • • 2!>,
Subscript Expression • • • • • 21 1

Type • • • • • • • • • • • • • 96
Type Statement • • • • • • • • 35

Unconditional GOTO •••••• 44
Unformatted I/0 • • • • • • • 58

49, 52

23, 39
53, 82, 88-96, 102
37, 53, 82, 89-94
27
27

Variable • . . .
WRITE . . . • •

• • . .
• •

• • •

. . .
14, 19, 32, 38, 90

57-58, 65, 74, 78-80

Contents

LINK-80 Linking Loader
Reference Manual

1. Running LINK-80••.••..••.•..•.•••••.• • .. • • • • 5
1 • 1 LINK-80 Comrn.ands •••••••••••••••••••••••••••• • • • 5
1.2 LINK-80 Switches ••••••••••••••••••••••••••••••• 6

2. Sample L.ink . . . • • • . . • • • • . . • 8
3. Format of LINK Compatible Object Files ••••••••••••• 9
4. LINK-80 Error Messages ••••••••••••••••••••••••••••• 11
5. Program Break Information •.•••••••••••••••••••••••• 12

@Copyright 197~1 by Microsoft, licensed to Radio Shack, A Division of Tandy Corporation, Fort Worth, Texas

LINK-80 Reference Manual Page 5

SECTION 2

LINK-80 Linking Loader

The LINK-80 Linking Loader takes the relocatable object
files generated by the FORTRAN compiler and MACR0-80
assembler and loads them into memory in a form that can be
executed. In addition, LINK-80 automatically searches the
system library (FORLIB} and loads the library routines
needed to satisfy any undefined global references (i.e.,
calls generated by the compiled program to subroutines in
the system library).

LINK-80 provides the user with several loading options.
Programs may be loaded at user-specified locations, and
program areas and data areas may be separated in memory. A
memory image of the executable file produced by LINK-80 can
be written to disk. The default extension for the name of
the executable file is ~~~~ (i.e., blank extension).

1 • 1

1. 1. 1

Running LINK-80

When you give TRSDOS the command

L80

you are
running the LINK-80 linking loader. When the
loader is ready to accept commands, it prompts the
user with an asterisk. The loader will exit back
to TRSDOS after a command containing an E or G
switch (see Section 2.1.1), or after a <break> is
done at command level.

Command lines are also supported by LINK-80.

LINK-80 Commands

A command to LINK-80 consists of a string of
filenames and/or switches. The command format is:

[filename 1] [-switch 1] [1 filename2] [-swi tch2] •••

All filenames must be in TRSDOS filename format.

After LINK-80 receives the command, it will load or
search (see the S switch) the specified files.
Then.~ it will list all the symbols that remained
undefined, with each followed by an asterisk.

LINK-80 Reference Manual Page 7

1. 1. 2

Example:

*MAIN
DATA
SUBRl*

*SUBRl
DATA

*-G

3000 3100
(SUBRl is undefined)

3000 3300
(Starts execution - see below)

Typically, to execute a FORTRAN program and
subroutines, the user types the list of filenames
followed by -G (begin execution) • Before execution
begins, LINK-80 will always search the system
library (FORLIB/REL) to satisfy any unresolved
external references. If you wish to first search
libraries of your own, append the filenames that
are to be searched followed by -s to the end
of the loader command string.

LINK-80 Switches

A number of switches may be given in the LINK-80
command string to specify actions affecting the
loading process. Each switch must be preceded by a
dash (-). These switches are:

Switch-

R

E or E:Name

G or G:Name

Action

Reset. Put loader back in its
initial state. Use -R if you
loaded the wrong file by mistake
and want to restart. -R takes
effect as soon as it is encountered
in a command string.

Exit LINK-80 and return to the
Operating System. The system
library will be searched on the
current dsk to satisfy any existing
undefined globals. The optional
form E:Name (where Name is a global
symbol previously defined in one of
the modules) uses Name for the
start address of the program. Use
-E to load a program and exit back
to the monitor.

Start ex1cution of the program a~
soon as fhe current command llne
has been interpreted. The system

LINK-80 Reference Manual

N

P and D

u

Page 8

library will be searched on the
current disk to satisfy any
existing undefined globals. Before
execution actually begins, LINK-80
prints two numbers and a BEGIN
EXECUTION message. The two numbers
are the start address and the
address of the next available byte.
The optional form G~Name (where
Name is a global symbol previously
defined in one of the modules) uses
Name for the start address of the
program.

If a <filename>-N is specified, the
program will be saved on disk under
the selected name

when a -E or -G
is doneo

-P and -D allow the origin(s} to be
set for the next program loaded.
-P and -D take effect when seen
(not deferred) , and they have no
effect on programs already loade~
The form is -P:<address> or
-D:<address>, where <address> is
the desired origin in the current
typeout radix. (Default radix is
hexadecimal. -o sets radix to
octal; -H to hex.} LINK-80 does a
default -P:<link origin> (i.e.,
3000) •

If no -D is givenv data areas are
loaded before program areas for
each module. If a -D is given, all
Data and Common areas are loaded
starting at the data origin and the
program area at the program origin.
Example:

*-P:200~FOO
Data 200 300
*-R
*-P:200 -D:400,FOO
Data 400 480
Program 200 280

List the origin and end of the pro­
gram and data area and all
undefined globals as soon as the
current command line has been
interpreted. The program informa-

LINK-80 Reference Manual Page 9

,~ tion is only printed if a -D has
been done. Otherwise, the program
is stored in the data area.

M List the origin and end of the pro­
gram and data area, all defined
globals and their values, and all
undefined globals followed by an
asterisk. The program information
is only printed if a -D has been
done. Otherwise, the program is
stored in the data area.

S Search the filename immediately
preceding the -s in the command
string to satisfy any undefined
globals.

Examples:

*-M List all globals

*MYPROG,SUBROT,MYLIB-S

*-G

Load MYPROG.REL and SUBROT.REL and
then search MYLIB.REL to satisfy
any remaining undefined globals.

Begin execution of main program

1 • 2 S<:mple Link

TRSDOS READY
LBO
*EXAMPL,EXMPL-G
DATA 3000 d0AC
[3000 30AC]
[BEGIN EXECUTION]

1792
14336

-16383
14

112
TRSDOt' EF ... ADY

14336
-16383

14
112
896

LINK-SO Reference Manual Page 10

1.3 Format of LINK Compatible Object Files

NOTE

Section 1.3 is reference material for users
who wish to know the load format of LINK-80
relocatable object files. Most users will
want to skip this section, as it does not
contain material necessary to the operation
of the package.

LINK-compatible object files consist of a bit
stream. Individual fields within the bit stream
are not aligned on byte boundaries, except as noted
below. Use of a bit stream for relocatable object
files keeps the size of object files to a m1n1mum,
thereby decreasing the number of disk reads/writes.

There are two basic types of load items: Absolute
and Relocatable. The first bit of an item
indicates one of these two types. If the first bit
is a 0, the following 8 bits are loaded as an
absolute byte. If the first bit is a 1, the next 2
bits are used to indicate one of four types of
relocatable items:

00 Special LINK item (see below).

01 Program Relative. Load the following 16
bits after adding the current Program
base.

10 Data Relative. Load the following 16
bits after adding the current Data base.

11 Common Relative. Load the following 16
bits after adding the current Common
base.

Special LINK items consist of the bit stream 100
followed by:

a four-bit control field

an optional A field consisting
of a two-bit address type that
is the same as the two-bit field
above except 00 specifies
absolute address

an optional B field consisting

LINK-80 Reference Manual

of 3 bits that give a symbol
length and up to 8 bits for
each character of the symbol

Page 11

A general representation of a special LINK item is:

1 00 xxxx yy nn zzz + characters of symbol name

xxxx
yy
nn
zzz

A field B field

Four-bit control field (0-15 below)
Two-bit address type field
Sixteen-bit value
Three-bit symbol length field

The following special types have a B-field only:

0 Entry symbol (name for search)
1 Select COMMON block
2 Program name
3 Request library search
4 Reserved for future expansion

The following special LINK items have both an A
field and a B field:

5
6

7
8

Define COMMON size
Chain external (A is head of address chain,
B is name of external symbol)
Define entry point (A is address, B is name)
Reserved for future expansion

The following special LINK items have an A field
only:

9 External + offset. The A value will
be added to the two bytes starting
at the current location counter
immediately before execution.

10 Define size of Data area (A is size)
11 Set loading location counter to A
12 Chain address. A is head of chain,

replace all entries in chain with current
location counter.
The last entry in the chain has an
address field of absolute zero.

13 Define program size (A is size)
14 End program (forces to byte boundary)

The following special Link item has neither an A nor
a B field:

15 End file

LINK-80 Reference Manual Page 12

1. 4 LINK-80 Error Messages

LINK-80 has the following error messages:

?No Start Address

?Loading Error

?Out of Memory

?Command Error

?<file> Not Found

A -G switch was issued,
but no main program
had been loaded.

The last file given for input
was not a properly formatted
LINK-80 object file.

Not enough memory to load
programo

Unrecognizable LINK-80
command.

<file>, as given in the command
string, did not exist.

%2nd COMMON Larger /XXXXXX/
The first definition of
COMMON block /XXXXXX/ was not
the largest definition. Re­
order module loading sequence
or change COMMON block
definitionso

%Mult. Def. Global YYYYYY
More than one definition for
the global (internal! symbol
YYYYYY was encountered during
the loading process.

%Overlaying [Program] Area ['Start = xxxx]
Data , Public = <symbol name> (xxxx)

,External = <symbol name>(xxxx)
A -D or -P will cause already
loaded data to be destroyed.

?Intersecting
[
Program] Area
Data

The program and data area
intersect and an address or
external chain entry is in
this intersection. The
final value cannot be con­
verted to a current value
since it is in the area
intersection.

LINK-80 Reference Manual Page 13

?Start Symbol - <name> - Undefined
After a -E: or -G: is given,
the symbol specified was not
defined.

Origin [Above] Loader Memory, Move Anyway (Y or N)?
Below

?Can't Save Object File

After a -E or -G was given,
either the data or program
area has an origin or top
which lies outside loader
memory (i.e., loader origin
to top of memory). If a
Y <cr> is given, LINK-80
will move the area and con­
tinue. If anything else is
given, LINK-80 will exit.
In either case, if a -N was
given, the image will already
have been saved.

A disk error occurred when
the file was being saved.

1.5 Program Break Information

LINK-80 stores the address of the first free
location in a global symbol called $MEMRY if that
symbol has been defined by a program loaded.
$MEMRY is set to the top of the data area +1.

NOTE

If -D is given and the data origin is less
than the program area, the user must be
sure there is enough room to keep the
program from being destroyed. This is
particularly true with the disk driver for
FORTRAN-SO which uses $MEMRY to allocate
disk buffers and FCB's.

IMPORTANT NOTICE
ALL RADIO SHACK COMPUTER PROGRAMS ARE LICENSED ON AN
"AS IS" BASIS WITHOUT WARRANTY.

Radio Shack shall have no liability or responsibility to customer or any
other person or entity with respect to any liability, loss or damage caused
or alleged to be caused directly or indirectly by computer equipment or
programs sold by Radio Shack, including but not limited to any interrup­
tion of service, loss of business or anticipatory profits or consequential
damages resulting from the use or operation of such computer or
computer programs.
NOTE: Good data processing procedure dictates that the user test the

program, run and test samp~e sets of data, and run the system in
parallel with the system previously in use for a period of time
adequate to insure that results of operation of the computer or
program are satisfactory.

RADIO SHACK SOFTWARE LICENSE
A. Radio Shack grants to CUSTOMER a non-exclusive, paid up license to
use on CUSTOMER'S computer the Radio Shack computer software
received. Title to the media on which the software is recorded (cassette
and/or disk) or stored (ROM) is transferred to the CUSTOMER, but not
title to the software.

B. In consideration for this license, CUSTOMER shall not reproduce
copies of Radio Shack software except to reproduce the number of copies
required for use on CUSTOMER'S computer (if the software allows a
backup copy to be made), and shall include Radio Shack's copyright
notice on all copies of software reproduced in whole or in part.

C. CUSTOMER may resell Radio Shack's system and applications soft­
ware (modified or not, in whole or in part), provided CUSTOMER has
purchased one copy of the software for each one resold. The provisions
of this software License (paragraphs A, B, and C) shall also be applicable
to third parties purchasing such software from CUSTOMER.

RADIO SHACK !! A DIVISION OF TANDY CORPORATION

U.S.A.: FORT WORTH, TEXAS 76102
CANADA: BARRIE, ONTARIO L4M 4W5

AUSTRALIA
280-316 VICTORIA ROAD
RYDALMERE, N.S.W. 2116

TANDY CORPORATION

BELGIUM
PARC INDUSTRIEL DE NANINNE

5140 NANINNE

U.K.
BILSTON ROAD WEDNESBURY
WEST MIDLANDS WS10 7JN

PRINTED IN U.S.A.

	Untitled.PDF.pdf
	Untitled.PDF.pdf
	Binder1.pdf
	Fortran Use
	Fortran fortran80
	Fortran edit80
	Fortran link80
	Fortran-80
	Untitled.PDF.pdf
	Untitled.PDF.pdf
	Untitled.PDF.pdf
	Untitled.PDF.pdf
	Untitled.PDF.pdf
	Untitled.PDF.pdf
	Untitled.PDF.pdf

