Radio l‘haek

A [hivision of Tandy Corporation

ADDENDUM
CONVERSION PROGRAM FOR USE IN 50 Hz COUNTRIES

This Disk contains conversion programs for operating under 50 Hz power sources. If you
have a 60 Hz power source (USA, etc.) these programs must not be executed, and should
be removed from the Disk.

Converting to 50 Hz

The Model Il diskette in this package contains a program called HERZ50. You should use
the HERZ50 modification provided BEFORE you run programs.

To perform this modification, follow these steps:
1. Power-up normally
2. After entering the Date and Time, type: DOOHERIZE(@
3. Press[ENTER]after each of the messages:

This conversion program will permanently convert the operating system to 50 Hertz
op~ration. Once a disk is converted, it cannot be converted back to 60 Hertz operation.
Removing 50 Hz Programs
Now you should remove the HERZBO program by following these steps:

1. After Power-up, entering the Dateland Time

2. The screen will show: You type:
DOS READY PURGECOSVEN
ENTER PASSWORD OF DISK TO PURGE (1-8) PIABIEIWEQRID and press ENTER]

FILENAME*DELETE (Y/N/Q)
*Various filenames will appear, continue N] and press [ENTER] (until
to press N until you reach the one you want. filename PATCH appears.

3. TypeMand press [ENTER] to
: delete PATCH.

4. Type Mand press (ENTER] until
HERZ50 appears.

i

l

|

5 Typeto delete HERZ50, then
| type [@to QUIT.

|

6. You may now run the Main Program.
875-29029

THE WORLDWIDE SUPERMARKET OF SOUND

An Overview of the Model I
FORTRAN Package

This manual describes Radio Shack’s FORTRAN Package (Catalog
Number 26-4701), for use with the TRs-so Disk Operating System
(TRSDOS). It does not teach you how to write programs. You'll need to
consult another source for information on programming.

The FORTRAN Package includes four separate manuals:

® The TRs-80 FORTRAN User’s Manual, an introductory manual which
describes the programs contained in the package and how they
interrelate.

e The EbiT-80 User's Manual, a guide to the text editor.

The ForTRAN-80 Reference Manual, a guide to the compiler.

e The LiNnk-80 Reference Manual, a guide to the linking loader.

The FORTRAN diskette contains all TrRspos files, so it may be placed in
drive 0.

Radio fhaek’

TRS-80° Model Il
FORTRAN

An overview of the TRs-80
FORTRAN Package and sample session

CUSTOM MANUFACTURED IN THE U.S:A. BY RADIO SHACK ADIVISION OF TANDY CORPORATION

USER’S MANUAL i

Section 1

The Model II TRS-80 FORTRAN package contains the following software and
documentation:

File Name Program Documented in

FORLIB* FORTRAN subroutine FORTRAN-8¢ Reference Manual
Library

Note: Be sure to make a backup copy or copies of your FORTRAN diskette
before proceeding further.

*The package also includes the source listings for several fundamental
FORLIB interface routines. These files can be identified by their /SRC
extension. They are supplied for programmers wishing to understand the
technical details of I/O operations. These files may be listed with the
FORPRT utility. For further information, see the FORTRAN Reference

Manual, Appendix B.

© Copyright 1979 by Microsoft, Licensed to Radio Shack, A Division of Tandy Corporation, Fort Worth, Texas

S
1

1.1 Introduction

The Model II FORTRAN package cousists of four separate programs. In this
section, we're going to briefly explain the purpose of each program. Then we
will take you step by step through the writing, editing, testing, compilation,
and execution of a short FORTRAN program.

FORTRAN Package Programs

The FORTRAN package programs are:

® F80, the FORTRAN compiler. F80 takes a source program written in
FORTRAN, compiles it into intermediate code, and stores the intermediate
code on disk.

® EDIT, the text editor. This program lets you write and edit the source
programs which will go into the compiler.

® 180, the linking loader. L80 gets the intermediate code from disk that you’ve
created with the FORTRAN compiler, converts it into machine-readable
object code, loads it into memory, and executes it.

® FORLIB, the subroutine library. FORLIB contains a number of useful
subroutines which are used during the link process and which may be called
directly from within your FORTRAN program.

® FORPRT, a utility program that displays and/or prints out FORTRAN listing
and source files. (In fact, it will print out any ASscII file.)

FORTRAN Sample Program: TEMP/FOR

To give you an idea of how to use the FORTRAN package and how the
constituent programs interact, we present a sample FORTRAN program.
Follow these seven steps:

1. Start the Editor. From TRSDOS, type EDIT. The text editor will load and
execute. When you see
FILE:
type
TEMP/FOR
This will create a file named TEMP/FOR. Now a copyright notice will appear

on the display, as well as a message informing you of the number of free bytes
in your computer. Below this you will see

The asterisk serves as the text editor’s prompt. Type

INENTER!
to start the editor’s automatic line-numbering facility.

0g199
will appear on the display. Take a close look at the position of the cursor. The
cursor is now in column 1 (see the FORTRAN coding form on page 10 of the
FORTRAN-80 Reference Manual) and it may not be backspaced any
further.

USER’S MANUAL
. |

2. Enter the program. Type in the following program. Use the EEXE key to
skip from column to column; press [F7if=:] at the end of each line.

gp109 c CONVERT FAHRENHEIT TO CELSIUS
¢¢2¢¢ INTEGER F spaces 8 spaces ‘
06309 WRITE(S5) |/~ o [°
ddapg 5 FORMAT(’ FAHRENHEIT ' CELSIUS)
gospd -~ DO2¢F=2¢,655

ddepd C=5./9.*(F-32)

o07d8 WRITE(5,10)F,C

gasep 10 FORMAT(12X,12, 11X,F86.3)

fuluielnt) 20 CONTINUE

P 1000 END

g11pp

Press [E8 when youreach line 1100.
3. Save the program. Type

E
which saves the file and returns you to TRSDOS. Now do a DIR. There should
be a file on your system diskette named TEMP/FOR. TEMP/FOR is your
FORTRAN source file.
4. Trial compilation. The next step is to test the source file for syntax errors.
Type

F8p = TEMP

This causes the FORTRAN compiler F80 to load into memory and compile
TEMP/FOR, without, however, producing a disk file*If you haven’t typed in
the FORTRAN program correctly, you will get one or more error messages. In
this case, you must load EDIT again. When it asks for a file give it the file name
TEMP/FOR followed by [Efi{#€i} (not I 1) Now you must locate the
source of the trouble and correct it. You will need to consult the EDIT-80
User’s Manual for details on interline and intraline editing.

When you have corrected the file and are ready to save it: you must save it
under a new fiie name. The Editor will not let you save it under the old name;
in effect, it forces you to keep the old file as a backup. Decide on a new name
(other than TEMP, but with the same extension /FOR).
Now type:

E file name
and press [EkE: . After the Editor saves the new file, you can start over
with step 4, substituting your new file name for TEMP in the instructions.

*“$MAIN"’ is not an error message. This just informs you that the compila-
tion is in progress.

O O S

MODEL Il FORTRAN

5. Compile with output files. When the source file has been tested and rid of
syntax errors, if any, it’sready to compile. Assuming that the file is still named
TEMP/FOR, type

F80 TEMP, TEMP=TEMP
Check the diskette directory. You should find two new programs on the
diskette, TEMP/REL and TEMP/LST. TEMP/LST is a listing file. It consists of the
FORTRAN statements of TEMP/FOR plus their equivalent assembly-language
code. Take a look at it with the TRSDOS LIST command. TEMP/REL is the
relocatable file. The linking loader must operate on this file before it can be
executed.

6. Run the program. Now you want to load the program and execute it. For
this you need the help of the linking loader. Type

L80 TEMP-G
This command loads and runs the linking loader, which in turn loads the
object file TEMP/REL into the proper memory locations and runs it. The
linking loader also gets any needed subroutines from FORLIB and puts them
into memory, too. The program will print a table of Fahrenheit temperatures
and their Celsius equivalents.

7. Save asa program file. A further optional step is to save the object code in
its present form as a TRSDOS file. When you’ve done this you can then load
the program from TRSDOS just like any other object file. Type

L80 TEMP—N,TEMP—E
When control returns to TRSDOS, examine the diskette directory. You will
see a file named TEMP. Simply type

TEMP
to get the same results you got in step 6.

8. To print out the listing file: For a hard copy of the FORTRAN listing file
(J/LST) or the source file (/JFOR), use the FORPRT program included on your
FORTRAN diskette. Under TRSDOS READY, type:
FORPRT

The program will prompt you to enter the file name (including the extension)
and to select display and/or printer output. During the output, press

[EI®e] to pause the listing. Press again to continue. Press
ELIEY3 to terminate the listing.

USER’S MANUAL I
]

The TRS-80 FORTRAN Package provides a lot more capability than is
demonstrated in this short session. Keep experimenting, and you’ll be
pleasantly surprised at how much computing power has been added to your
TRS-80.

1.2 Note on TRS-80 FORTRAN Manuals

The FORTRAN-80 Reference Manual is strictly a reference for the syntax and
semantics of the TRS-80 FORTRAN language. It is not intended as a tutorial on
FORTRAN programming. If you are new to FORTRAN and need help learning
the language, we suggest:

1. Guide to FORTRAN-IV Programming by Daniel McCracken (Wiley,

1965)
2. Ten Statement FORTRAN Plus FORTRAN IV by Michael Kennedy and

Martin B. Solomon (Prentice-Hall, 1975, Second Edition)

3. FORTRAN by Kenneth P. Seidel (Goodyear, 1972)

4. FORTRAN 1V, A Self-Teaching Guide by Jehosua Friedmann, Philip
Greenberg, and Alan Hoffbert (Wiley, 1975)

5. FORTRAN, A Structured, Disciplined Style by Gordon B. Davis and
Thomas R. Hoffman (McGraw-Hill, 1978)

The LINK-80 Manual is strictly a reference for the commands and switches
available.

Section 2
TRS-80 FORTRAN Compiler

If you followed the sample session, you are becoming familiar with the
software in your TRS-80 FORTRAN Package. Now let’s look specifically at the
TRS-80 FORTRAN compiler.

2.1 Running the Compiler

When you give TRSDOS the command

Fag
you are running the TRS-80 FORTRAN compiler. The FORTRAN compiler takes
a FORTRAN program (source file) and compiles it to generate a relocatable
object file, that is, a file that is in machine code. When the compiler is ready to
accept commands, it prompts the user with an asterisk. To exit the compiler
use the [GTFTE key.

>

A command may also be typed on the same line as the invocation. This is
called a “‘command line.” We did this in the Sample Session when we typed
the command line:

F8Q =TEMP
After executing a command line, the compiler automatically exits to the
operating system,

2.2 Command Format

A compiler command conveys the name of the source file you want to
compile, and what options you want to use. Here is the format for a compiler
command (square brackets indicate optional):

[object file name] [,listing file name]=source file name [-switch. . .]

Note: All filenames must be in TRSDOS file name format:
file name|/ext| [.password] |:drive#]

If you are using the compiler’s default extensions, it is not necessary to specify
an extension in a compiler command.

Let’s look individually at each part of the compiler command:

1. Object file name

To create a relocatable object file, this part of the command must be
included. It is simply the name that you want to call the object file. The
default extension for the object file name is /REL.

2. Listing file name
To create a listing file, this part of the command must be included. It is simply
the name that you want to call the listing file. The default extension for the
listing file is /LST.
Note: To send the listing file to the printer (:LP) or display (:TTY),
use :LP or :TTY in place of the listing file name, e.g.,

F8¢ ,:TTY=TEMP

USER’S MANUAL
IR

3. Source file name

A compiler command must always include a source file name — that is how
the compiler “knows” what to compile. It is simply the name of a FORTRAN
program you have saved on disk. Tiie default extension for a FORTRAN
source file name is /FOR. The source file name is always preceded by an equal
sign in a compiler command.

Examples (asterisk is typed by F80):

*=TEST Compile the program TEST/FOR without creating an object file or
listing file.

*TEST, TEST=TEST Compile the program TEST/FOR. Create a relocatable
object file called TEST/REL and a listing file called TEST/LST.

“ TEST.PASS=TEST.PASS Compile the program TEST/FOR.PASS and
create a listing file called TEST/LST.PASS (No object file created.)
*“TESTOBJ=TEST Compile the program TEST/FOR and create an object file
called TESTOBI/REL. (No listing file created.)

4. Switch

A switch on the end of a command specifies a special parameter to be used
during compilation, Switches are always preceded by a dash (—). More than
one switch may be used in the same command. The available switches are:

Switch Action

O Print all listing addresses in octal.

H Print all listing addresses in hexadecimal (default
condition).

N Do not list the object code that is generated. List
only the FORTRAN source code.

P Each —P allocates an extra 100 bytes of stack space

for use during compilation. Use —P if stack
overflow errors occur during compilation.
Otherwise not needed.

M Specifies to the compiler that the generated code
should be in a form which can be loaded into ROMs.
When a —M is specified, the generated code will
differ from normal in the following ways:

1. FORMATs will be placed in the program area,
with a IMP around them.

2. Parameter blocks (for subprogram calls with
more than 3 parameters) will be initialized at
runtime, rather than being initialized by the loader.

EL

— = MODEL Il FORTRAN

SO

Examples:

*CT.ME,CT.ME=CT.ME-O Compile the program CT/FOR.ME. Create a
listing file called CT/LST.ME and an object file called CT/REL.ME. The
addresses in the listing file will be octal.

*CT,CT=CT-N Compile the program CT/FOR. Create an object file called
CT/REL and a listing file called CT/LST. The listing file will contain only the
FORTRAN source statements, not the generated object code.

*MAX10=MAX1¢—P—P Compile the program MAX10/FOR and create an
object file called MAX10/REL. The compiler is allocated 200 extra bytes of
stack space.

Note: If a FORTRAN program is intended for ROM, the programmer should be
aware of the following ramifications:

1. DATA statements should not be used to initialize RAM. Such initialization
is done by the loader, aad will therefore not be present at execution.
Variables and arrays may be initialized during execution via assignment
statements, or by READing into them.

2. FORMATs should not be read into during execution.

3. If the standard library 1/0 routines are used, DISK files should not be
OPENed on any LUNSs other than 6, 7, 8, 9, 10. If other LUNs are needed for
Disk 1/0, $SLUNTB should be recompiled with the appropriate addresses
pointing to the Disk driver routine.

A library routine, $INIT, sets the stack pointer at the top of available memory
(as indicated by the operating system) before execution begins.

The calling convention is:

LD BC, return address

JP SINIT
If the generated code is intended for some other machine, this routine should
probably be rewritten. The source of the standard initialize routine is
provided on the disk asINIT/MAC. Only the portion of this routine which sets
up the stack pointer should ever be modified by the user. The FORTRAN
library already contains the standard initialize routine.

2.3 Input/Output Device Names

In FORTRANI/O statements (READ and WRITE), LUNs 1, 3, 4, and 5 default to
the console/keyboard, LUN 2 defaults to the line printer, and LUNs 6-10
default to the disk drives.

USER’S MANUAL 7
I .

Section 3
TRS-80 FORTRAN Disk Files

See also FORTRAN-80 Reference Manual, section 8.3.

3.1 Default Disk File Names

TRS-80 FORTRAN may access either random or sequential disk files. Any disk
file that is OPENed by a READ or WRITE statement is given a default filename
that depends on the LUN:

LUN Default File Name
6 FORT@6/DAT
7 FORT@Y7/DAT
8 FORTY8/DAT
9 FORT(9/DAT
10 FORT10/DAT

3.2 CALL OPEN

Instead of using READ or WRITE, a disk file may be OPENed by calling the
OPEN subroutine (see the FORTRAN-80 Reference Manual, Section 8.3.2).
The format of an OPEN call is:

CALL OPEN (LUN, File name, Reclen)
where:

LUN = a Logical Unit Number to be associated with the file (must be an
Integer constant or Integer variable with a value between 1 and 10).

File name = an ASCII name which TRSDOS will associate with the file. The file
name should be a Hollerith or Literal constant, or a variable or array name
where the variable or array contains the ASCII name. The file name should be
in the form normally required by TRSDOS,

file name/ext. password:drive#
and it should be terminated with a non-alpha character, preferably a blank.

Reclen = The number of bytes you wish to specify (up to 256) as the record
length. The default record length is 128 bytes. Reclen must be an Integer
constant or Integer variable. If zero is supplied for Reclen, the record
length will be 256 bytes.

The following are examples of valid OPEN calls:

CALL OPEN (6, ‘TIME/DAT.JULY:1",)
CALL OPEN (7, ‘COUNT/NUM ’,2¢0)
CALL OPEN (1, TESTQ/MIN:2",1p9)

"MODEL Il FORTRAN

Section 4
Error Messages
4.1 FORTRAN Compiler Error Messages

The FORTRAN-80 Compiler detects two kinds of errors: Warnings and Fatal
Errors. When a Warning is issued, compilation continues with the next
item on the source line. When a Fatal Error is found, the compiler ignores
the rest of the logical line, including any continuation lines. Warning
messages are preceded by perceunt signs (%), and Fatal Errors by question
marks (?). The editor line number, if any, or the physical line number is
printed next. It is followed by the error code or error message.

Example:
?Line 25: Mismatched Parentheses
%Line 16: Missing Integer Variable

When either type of error occurs, the program should be changed so that it
compiles without errors. No guarantee is made that a program that
compiles with errors will execute sensibly.

Fatal Errors:

100 lllegal Statement Number

191 Statement Unrecognizable or Misspelled B
102 llegal Statement Completion -
103 llegal Do Nesting

104 lllegal Data Constant

105 Missing Name

106 llegal Procedure Name

107 Invalid bATA Constant or Repeat Factor

108 Incorrect Number of DATA Constants

109 Incorrect Integer Constant

11¢ Invalid Statement Number

111 Not a Variable Name

112 lllegal Logical Form Operator

113 Data Pool Overflow

114 Literal String Too Large

115 Invalid Data List Element in 170

116 Unbalanced DO Nest

117 Identifier Too Long

118 lllegal Operator

119 Mismatched Parenthesis

10

120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135

Warnings:

OCO~NOO U AWN S

|5 Y Y G W G G G G G G Y
S WO NOOO,A,WN S

N NN
WN =

N NN NN
o ~NO OB~

WwWwwn
W QW

”

Consecutive Operators
Improper Subscript Syntax
lllegal Integer Quantity

lliegal Hollerith Construction
Backwards DO reference

lllegal Statement Function Name
lllegal Character for Syntax
Statement Out of Sequence
Missing Integer Quantity

Invalid Logical Operator

Illegal Item Following INTEGER or REAL or LOGICAL

Premature End Of File on input Device
lllegal Mixed Mode Operation
Function Call with No Parameters
Stack Overflow

lllegal Statement Following Logical IF

Duplicate Statement Label

illegal DO Termination

Block Name = Procedure Name

Array Name Misuse

COMMON Name Usage

Wrong Number of Subscripts

Array Muitiply EQUIVALENCEd within a Group
Multiple EQUIVALENGE of COMMON
COMMON Base Lowered

Non-COMMON Variable in BLOCK DATA
Empty List for Unformatted WRITE
Non-Integer Expression

Operand Mode Not Compatible with Operator
Mixing of Operand Modes Not Allowed
Missing Integer Variable

Missing Statement Number on FORMAT
Zero Repeat Factor

Zero Format Value

Format Nest Too Deep

Statement Number Not FORMAT Associated
invalid Statement Number Usage

No Path to this Statement

Missing Do Termination

Code Qutput in BLOCK DATA

Undefined Labels Have Occurred
RETURN in a Main Program

STATUS Error on READ

Invalid Operand Usage

Function with no Parameter

Hex Constant Overflow

Division by Zero

Array Name Expected

Ilegal Argument to ENCODE/DECODE

USER’S MANUAL i

11

—i— MODEL Il FORTRAN

4.2 FORTRAN Runtime Error Messages

During execution of a FORTRAN program one or more of the following errors
could occur. Fatal errors cause execution to cease. Execution continues after
a warning error. However, execution will cease after 20 warnings. Runtime
errors are surrounded by asterisks as follows:

FW

Warning Errors:

1B Input Buffer Limit Exceeded

TL Too Many Left Parentheses in FORMAT

OB Output Buffer Limit Exceeded

DE Decimal Exponent Overflow (Number in input stream had an
exponent larger than 99)

IS Integer Size Too Large

BE Binary Exponent Overflow

IN Input Record Too Long

ov Arithmetic Overflow

CN Conversion Overflow on REAL to INTEGER Conversion

SN Argument to SIN Too Large

A2 Both Arguments of ATAN2 are @

10 lliegal 170 Operation

Bl Buffer Size Exceeded During Binary 170

RC Negative Repeat Count in FORMAT

Fatal Errors:

ID lliegal FORMAT Descriptor

Fo FORMAT Field Width is Zero

MP Missing Period in FORMAT

FW FORMAT Field Width is Too Small

T i70 Transmission Error

ML Missing Left Parenthesis in FORMAT

DZ Division by Zero, REAL or INTEGER

LG lilegal Argument to LOG Function (Negative or Zero)

SQ lllegal Argument to SQRT Function (Negative)

DT Data Type Does Not Agree With FORMAT Specification

EF EOF Encountered on READ

12

USER’S MANUAL e

Sample FORTRAN Programs

Here are two sample programs, One sorts any number of integers up to 100;
the other demonstrates FORTRAN file access techniques. Type them into
EDIT-80 and compile them the same way you did with TEMP/FOR.

peiae C EXamMfLE FORTRAN S0RT ROUTINE
poz2oo DEMENSION L1000
HRIRCSLRI 1 WHITE (3,100

pgaon BESD (3.130) N

R IY IR IF (NLGT.L60) GOTO 1
GUaA00 TF O (NLLELLY GOTO 200
gu7oo0 WRITE (3,110

aoRnn WRITE {(3.1200

gaead DO 10 T=d N

gionn READ (3,130 LI
Gitong 10 CONTINUE

pi1zao MMaN-1

Gizon DO 30 Is=1.NN

014040 el

Gi500 =l

01400 DO 20 H=ddoN

DL7ng IF LK LLT LG) J=R
Qigoo 240 CONTINUE

greod Xl ()

IR IRY LOy=1.0(1)

p2ie0 LAY =X

02200 ah CONTINUE

EAGIRY WRITE (3.,1408)

G2400 WRITE (3,180 (L{I), T=1,N)
Daseo C

02600 i00 FORMAT (7 HOW MAaMNY INTEGER VALUES TO BE SORTED (2-10037

VIR 110 FORMATCOS TYPE TN THE INTEGER VOLUES
pzeo0n 120 FORMOATC 1)
azeGa 1340 FORMAT(I6)

"}

ganeo 144 FORMAT (7 THE SORTEDR INTEGER VALUES ARED

03100 150 FORMAT (34X, 182
03200 G
pa3en 200 END

13

)

00100
00200
00300
00400
0035040
06600
00700
00800
00200
01000
61100
01200
41300
01400
01500
01600

14

C

10

100
110

200

-~ MODEL Il FORTRAN

EXAMFLE FORTRAN FILE ACCESS ROUTINE

Call. OFEN (b4, RANREC/DAT 7,119

DO 10 I=1,20

WRITE (6,100,REC=X,ERR=200) I
CONTINUE

DO 20 I=1,Z0

READ (6,100,REC=L,ERR=200,END=20) J
WRITE (3,110) J

CONTINUE

FORMAT (I10)
FORMAT (1X.I10)

ENDFILE 6
END

Radio fhaek’

TRS-80> Model I
EDIT-80 User’s Manual

A guide to the epir-so Text Editor

CUSTOM MANUFACTURED IN THE U.S.A. BY RADIO SHACK g A DIVISION OF TANDY CORPORATION

Microsoft EDIT-80 User's Guide

Contents

CHAPTER 1 EDIT-80 Operation « o« « « o o o ¢« ¢ o o o« 5
1.1 Introduction .« « « o« o 2 o o o o o & o o O
1.2 RUNNing EDIT=80 ¢ « o o o o o = o o o o & D
1.3 Ending the Editing Session . . . « ¢« « o« 6
1.4 Line Numbers and Ranges « « o« « « « o « o 7/
1.5 Format Notation « « « « a o s o ¢ « o« « o« 8

CHAPTER 2 Beginning Interline Editing . . « . « . . 10

2,1 Insert Command . o « o o o o o« o « o o o 10
2,2 Delete Command « « ¢ o o o o o o o o o o 11
2,3 Replace Command S
2.4 Print Command « « « o o « o o o o o o o o 12
2.5 List Command « « o o o o o o o o o o o o 12
2.6 Number Command o« o o« o o o o o o o o o o 13

CHAPTER 3 Intraline Editing - Alter Mode 15

3.1 Alter Command « « « o o s s o o o o o « « 15
3.2 Alter Mode Subcommands « o« o o o o o o o 15
3.3 CUrsor POSitiONn « « o« o o « o o o o o o « 16
3.4 INSETt TEXt o o o o o o o o o — o o« o o o 16
3.5 Delete TeXt o« o o o o o o o o o o o o o o 7
3.6 Replace TeXt « « o o« o o o o o o o o o = 18
3.7 Find TeXt ¢« o o o o o o o o o o o o o o o (8
3.8 Ending and Restarting Alter Mode [9
3.9 Extend Command . o« o « o o « o o o o o o [19

CHAPTER 4 Find and Substitute Commands « « « « o « 20

4. 1 Find Comand [] [] - L] L] L] L] L] [] L] L] L] L] L} 20
4,2 Substitute Command . « o o o o o s o o o 22

CHAPTER 5 PAGES o o « o o o o o o o o o o o o o o & 23

5.1 Specifying Page Numbers . . « « o o o o = 23
5.2 Inserting Page Marks . « o o o o o« o o =« 24
5.3 Deleting Page MarkS e« « o o o o o o« o o o R4
5.4 Begin Command . « « e « o s o o« 25
5.5 Other Commands and Page Marks. e o « s« o 25

Copyright 1979 by Microsoft, Licensed to Radio Shack, A Division of Tandy Corporation, Fort Worth, Texas

CHAPTER 6

AN
s o o o o
W

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

Exiting EDIT"SO e e » o

Exit Command
Quit Command
Write Command
Index Files .
Parameters .

SEQ and UNSEQ Switches

Alphabetic Summary of Commands

Alphabetic Summary of Alter Mode

Summary of Notation .

EDIT-80 Special Characters .

Error Messages . « «

Output File Format . .

Subcommands

26
26
26
26
27
217

28

30
32
34
35
36
38

Y

Microsoft EDIT-80 User's Guide Page 5

1.1

CHAPTER 1

EDIT-80 Operation

Introduction

EDIT-80 is a line-oriented and character-oriented
text editor. EDIT-80 commands are simple and
straightforward, yet powerful enough to accommodate
the most demanding user. For the novice or for
those requiring only cursory use of EDIT-80, the
first four chapters of this document contain all
the information necessary to complete a fairly
extensive editing session. The remaining chapters
describe the enhancements to EDIT-80 that provide
the user with more sophisticated techniques.

Running EDIT=-80

To run EDIT-80, type and enter

EDIT

at TRSDOS command level., EDIT-80 will ask for the
filename by typing

FILE:

Enter the name of your file. Use TRSDOS filename
format for the filename:

filename[/extension] [.password] [:drive#]

If the filename refers to a file that already
exists, type the filename followed by <enter>, and
EDIT~80 will read in the file. If the file does
not have 1line numbers, EDIT-80 will append them,
beginning with line number 100 and incrementing by
100. After EDIT-80 prints

Version v.r
Copyright 1979, 1980 by Tandy Corp. Licensed from Microsoft

Created: mmm~-dd-yy
Xxxxx Bytes Free
*

it is at commmand level, as indicated by the *

prompt. All commands to EDIT-80 are entered after
the * prompt.

If the filename refers to a new file to be created,
type the filename followed by the <ESC> key.

Microsoft EDIT-80 User's Guide Page 6

EDIT-80 will return the message

Creating nnnnnnnn

Version v.r
Copyright 1979,1980 by Tandy Corp. Licensed from Microsoft

Created: mmm-dd-yy
XXXxXxX Bytes free
*

1.3

Next enter the command I (see Section 2,1 for a
further description of the I command). EDIT-80
will type the first line number, 00100, followed by

a tab.

*T
00100

Now you are ready to enter the first line of your
file, A line consists of up to 255 characters and
is terminated by <enter>. After every line
entered, EDIT-80 will type the next line number,
incrementing by 100. This 1is the "permanent
increment." (There are various commands that will
change the permanent increment - see Chapter 2.)
Line numbers 00000 through 99999 are available for
use in your EDIT-80 file.

NOTE

Microsoft products such as TRS-80 FORTRAN
and MACRO-80 all support input files which
include EDIT-80 line numbers.

If you type in an incorrect character, use the
BACKSPACE key to erase the mistake, then type in the
correct character,

——

To stop inserting new lines, press <ESC> while the cursor
ig in its initial position (right after the line number).

Note: 1If you backspace over a tab, the editor will

start a new working copy of the current line; the
EDIT-80 line number will not be displayed on this lin

Ending the Editing Session

To exit EDIT-80, enter the Exit command:

*E

The exit command writes the edited file to disk using

the file-specification of the input file. The inpgt
file is copied into a backup file with the extension
|

W

M

/OLD.

Microsoft EDIT-80 User's Guide Page 7

See Section 6.1.

Tg exit EDIT-80 without writing the edited file to
disk, enter the Quit command:

*Q

After execution of a Quit command, all the changes
entered during the editing session are lost.

1.4 Line Numbers and Ranges

Most commands to EDIT-80 require a reference to a
line number or a range of line numbers., A line
number is specified by using the number itself (it
is not necessary to type the leading zeros), or one
of three special characters that EDIT-80 recognizes
as line numbers. These special characters are:

. (period) refers to the current line
A (up arrow) refers to the first line
* (asterisk) refers to the last line

Ranges may be specified in one of two ways:
1. With a colon. The designation
200:1000

means all lines from line number 200 to line
number 1000, inclusive. If lines 200 and 1000
do not exist, the range will begin with the
first line number greater than 200 and end with
the last line number less than 1000.

2. With an exclamation point. The designation
20013
means the range of three lines that starts with
line 200. If 1line 200 does not exist, 20013
means the range of three lines that starts with

the first line after 200,

Here are some examples of line and range
specifications (shown here with the Print command) :

P.:2000 Prints the range that begins with
: ° the current line and ends with
line 2000.
P500 Prints line 500.

P, Prints the current line.

Microsoft EDIT-80 User's Guide Page 8

P.!15 Prints the range that begins at
the current line and ends after
the next 15 lines.

PA: 1500 Prints the range that begins with
the first line and ends with
line 1500.

PA:* Prints the entire file.

See Appendix C for more examples of range
specification.

Format Notation

Throughout this document, generalized formats of
EDIT-80 commands are given to guide the user.
These formats employ the following conventions:

1. Items in square brackets are optional.

2, Items in capital letters must be entered as
shown,

3. Items in lower case letters enclosed in angle
brackets are to be supplied by the user:

<position> supply any line number (up
to five digits) or ".","A"
or "x"

<range> supply any <position> or

any <range>

<range> = <position>:<position>
‘ or
<position>!<number>

<inc> supply a non-zero integer
to be used as an increment
between line numbers

<filename> supply any legal TRSDOS
filename as described

in Section 1.2

4, Punctuation must be included where shown.

5, Items separated by a vertical line are mutually
exclusive. Choose one.

6. <ESC> refers to the ESCAPEkey and 1is echoed
as $. If you see a $ in a format notation, it

refers to the break key,.

SN

Microsoft EDIT-80 User's Guide Page 9

7. In any command format, spaces and tabs are

insignificant, except within a line number or a
filename.

8. Underlined items are typed by EDIT-80.

Microsoft EDIT-80 User's Guide Page 10

CHAPTER 2

Beginning Interline Editing

Editing a file by printing, inserting, deleting and
replacing entire 1lines or groups of 1lines is termed
interline editing. This section describes the commands used
to perform these functions.

2.1 Insert Command

The Insert command is used to insert lines of text
into the file. EDIT-80 types each line number for
you during insert mode. The format of the Insert
command is:

I[<position>[,<inc> 1 <inc>]]

Insertion of 1lines begins at <position> and
continues until <ESC> is typed or until the
available space at that point in the file 1is
depleted. (In either case, EDIT-80 returns to
command level.)

If no <inc> 1is included with the command, the

default is the permanent increment. ,<inc>
specifies a new increment that is then established
as the permanent increment. ;<inc> specifies a
temporary increment for wuse with the current
command, but does not change the permanent
increment.

If no arqument is supplied with the Insert command
(I<enter>), insertion resumes where the last insert
command was terminated, using the last temporary

increment. If only <position> is supplied
(I<position><enter>), the permanent increment is
used.

EDIT-80 will not allow insertion where a line
already exists. If <position> 1is a line number
that already exists, the command I<position> will
add the permanent increment (or the temporary
increment, if one was specified) to <position> and
allow insertion at 1line number <position>+<inc>.
If line <position>+<inc> already exists, or if line
numbers exist between <position> and
<position>+<inc>, an error message will be printed.

<CTRL J~ may be used to start a new
physical 1line without starting a new logical line,
thus providing compatibility with Microsoft BASIC

N

Microsoft EDIT-80 User's Guide Page 11

2.2
AN
2.3
N

source files,
Here is an example using the Insert command:

*I7740,10

07740 K=K+1
07750 GO TO 400
07760 $

AT

Note that the insertion is terminated with < ESC >,
The < ESC > key may be typed at the end of the last
line inserted (instead of <enter>) or at the
beginning of the next line., A line is not saved if
< ESC > is the first key typed on that line.

Delete Command

The Delete command removes a line or range of lines
from the file. The format of the command is:

D<range>

Examples of the Delete Command:
D7000 delete line 7000
D. delete the current line
D200:900 delete lines 200 through 900
D2000:* delete all lines from line

2000 through the last line

Replace Command

The Replace command combines the effects of the
Delete and Insert commands. The format of the

command is:
R<range>[,<inc> ;<inc>]

The Replace command deletes all of the 1lines in
<range>, then allows the user to enter new text as
if an Insert command had been issued. (EDTIT-80
types the line numbers.) ; :

The options for selecting the increment between

Microsoft EDIT-80 User's Guide Page 12

line numbers are the same as those for the Insert
command (see Section 2.1).

Here is an example using the Replace command:

*R500:600;50

00500 DO 80 I=1,7
00550 Y (I)=ALOG(Y(I))
00600 80 CONTINUE

*
In the above example, the lines in the range 500 to
600 were deleted and replaced by three new lines
(500, 550 and 600), using a temporary increment of
50. Insertion terminated automatically because
there was not enough room for EDIT-80 to create
line 650.

2.4 Print Command

The Print command prints lines at the terminal.
The format of the command is:

P<range>
Examples of the Print command:

P,.:700 print all lines from the
current line through line 700

P800 :* print all lines from line 800
through the end of the file

Typing (¢) at command level will cause
the 1line after the current line to be printed.
Typing <%» at command level will cause the line
before the current 1line to be printed. Typing
P<enter> will cause - the next 20 1lines to be

printed.

2.5 List Command

The List command
L<range>
is the same as the Print command, except the output

goes to the line printer.

Note: A form feed is issued before and after the
listing.

Microsoft EDIT-80 User's Guide Page 13

2.6 Number Command

- .The Number command renumbers lines of text. You
may wish to renumber lines to "make room” for an
insertion, or just to organize the line numbers in
a file, The format of the Number command is

N[<start>][,<inc> ;1<inc>] [=<range>]
where:

1. <start> is the first number of the new
sequence. If <start> is omitted but <range> is
included, <start> is set to the first 1line of
<range>, If <start> and <range> are omitted,
but <inc> is included, <start> is set to <inc>.
If <start> is omitted and <inc> is included and
<range> specifies only a page number (e.g.,
=/2), <start> 1s also set to <inc> on that
page. If <start>, <range> and <inc> are
omitted, <start> is set to the permanent
increment.

2., <inc> is the increment between line numbers in
the new sequence. The options for selection of
the increment are the same as those described
for the Insert command (see Section 2.1).

3. <range> is the range of 1line numbers to be
renumbered. If <range> is omitted, the entire
file is renumbered.

If the current line is renumbered, . is reset to
the same physical line.

If a Number command would result in 1line numbers
being placed out of sequence, or if EDIT-80 cannot
fit all the lines using the given increment, an
"Out of order" error message is returned,

Due to EDIT-80's internal memory requirements for
executing a Number command, an attempt to renumber
a very large file may result in an "Insufficient
memory" error., If this situation arises, renumber
a smaller portion of the file, write it to disk,
renumber another portion, and so on. (See Write
Command, Section 6.3.)

Examples of the Number command:

N7000;100=200:1000 Lines 200 through 1000 will
be renumbered to begin at
line 7000 and increment by

100. |

Microsoft EDIT-80 User's Guide

N,10=400:%*

N9000=10000:*

N, 100

N,5=2350110

Page 14

Lines 400 through the end
will be renumbered to begin
with 400 and increment by 10.

Using the permanent increment
lines 10000 through the end
will be renumbered to begin
at 9000.

Renumber the whole file using
increment 100.

This command could be used to
make room for an insert by
compact ing the ten lines
starting with 2350.

Microsoft EDIT-80 User's Guide Page 15

CHAPTER 3 .

Intraline Editing ~ Alter Mode

The interline editing commands discussed thus far let you
edit by inserting, deleting or replacing entire lines. of
course many editing situations require changes to an
existing 1line but not necessarily retyping of the line.
Editing a line without retyping it is <called intraline
editing, and it is done in Alter mode,

3.1 Alter Command

The Alter command is used to enter Alter mode, The
format of the command is:

A<range>
In Alter mode, EDIT-80 types the line number of the

line to be altered and waits for an Alter mode
subcommand.,

3.2 Alter Mode Subcommands

Alter mode subcommands are used to move the cursor;
search for text; or insert, delete or replace text
within a line, The subcommands are not echoed on
the terminal.

Many of the Alter mode subcommands may be preceded
by an integer, causing the command to be executed
that number of times. (When no integer is
specified, the default is always 1.) In many cases,
the entire command may also be prefaced with a
minus sign (-) which changes the normal direction
of the command's action. For example:

D deletes the next character
6D deletes the next 6 characters
~D deletes the last character

-12D deletes the last 12 characters

Microsoft EDIT-80 User's Guide Page 16

Each Alter mode subcommand is described below. A
summary of the subcommands is given in Appendix B.

NOTE

In the following descriptions, $ represents
<EsCc> , <ch> represents any character,
<text> represents a string of characters of
arbitrary length and i represents any
integer. :

3.3 Cursor Position

The following commands or terminal keys are used to
change the position of the cursor in the line., The
location of the cursor 1is called the ‘"current
position.™

<space> spaces over characters. i<space> moves the
cursor i characters to the right.
-i<space> moves the cursor i characters to
the left., <Characters are printed as you
space over them.

<up-arrow> positions cursor to beginning of line.

<dn-arrow> positions cursor to end of line.

L prints the remainder of the line and posi-
tions the cursor at the beginning of the
line. Proceed with the next Alter mode
subcommand.

P prints the remainder of the line and recy-
cles the cursor to the current position.
Proceed with the next Alter mode
subcommand.

W moves to the beginning of the next word. A
word is defined as a contiguous collection
of letters, numbers, ".", "$", or "%". iW

advances the cursor over the next i words.
-iW moves the cursor back through i words

to the left.

3.4 Insert Text

I inserts text, I<text>$ 1inserts the'g%ven
text beginning at the current position.
Note that the text must be followed by a

<ESC> or by <enter>.

,'/’_\‘

Microsoft EDIT-80 User's Guide Page 17

3.5 Delete Text

inserts spaces (blanks) at the current
position. The B command may be preceded
by an integer to insert that many spaces.
Spaces are inserted to the right of the
cursor only.

inserts characters. iG<ch> inserts 1
copies of <ch>.

extends a line. The X subcommand types
the remainder of the 1line, goes into
insert mode and 1lets you insert text at
the end of the line. The =X subcommand
moves to the beginning of the line and
goes into insert mode. (Don't forget to
end your insertion with <ESC> or
<enter>.)

D

<BACKSPACE>

deletes the character at the current posi-
tion., 1iD deletes i characters beginning
at the current position. =iD deletes i
characters to the 1left of the current
position. Deleted characters are
surrounded by backslashes

The <BACKSPACE> key may also be used to de=~
lete characters. The character
immediately to the left of the current
position is deleted. 1 «pPACKSPACE> 1S
equivalent to =~iD.

deletes (hacks) the remainder of the line
to the right of the cursor (or to the left
of the cursor if ~H is typed) and enters
the insert mode. Text insertion proceeds
as if an I command had been typed.

deletes (kills) characters. K<ch> deletes
all characters up to but not including
<ch>. 1K<ch> deletes all characters up to

"the 1ith occurrence of <ch>. -iK<ch>

deletes all characters up to and including
the ith previous occurrence of <ch>. If
<ch> 1is not found, the command is not
executed.

Microsoft EDIT-80 User's Guide Page 18

3.6

3.7

deletes (obliterates) text. O<text>$ de-
letes all text up to but not including the
next occurrence of <text>. io<text>$
deletes all text up to the ith occurrence
of <text>. ~i0<text>$ deletes all
characters up to and including the ith
previous occurrence of <text>.

deletes (truncates) the remainder of the
line to the right of the cursor (or to the
left of the <cursor if =T is typed) and
exits Alter mode.

deletes (zaps) words. 1Z deletes the next
i words. -iZ deletes words to the left of
the cursor.

Replace Text

R

Find Text

S

replaces text. iR<text>$ deletes the next

i characters and replaces them with
<text>. -iR<text>$ replaces text to the
left of the cursor. The deleted

characters are echoed between
backslashes

changes - characters one character at a
time. C<ch> changes the next character to
<ch>. Only the new character is echoed.
iC may be followed by i characters to
change that many characters; or it may be
followed by fewer than 1 characters and
terminated with <ESC> , in which case the
remaining characters will not be changed.
~iC does an i<back arrow> and then an iC.
The i<back arrow> 1is echoed between
backslashes

searches for a character. S<ch> searches
for the next occurrence of <ch> after the
current position and positions the cursor
before the character. 1iS<ch> searches for
the ith occurrence of <ch>. =S<ch> and
-iS<ch> search for the (ith) previous
occurrence of <ch> and position the cursor
immediately before it. The character at
the cursor position is not included [in the
search. If <ch> is not found, the command

is ignored.

Microsoft EDIT-80 User's Guide Page 19

F finds text. F<text>$ finds the next occur-
rence of <text> and positions the cursor
at the beginning of the string. iF<text>$
finds the ith occurrence of <text>.
-F<text>$ and -iF<text>$ find the (ith)
previous occurrence of <text> and position
the cursor before it.

Ending and Restarting Alter Mode

<cr> carriage return. Prints the remainder of
the line, enters the changes and concludes
altering of that line.

N restores the original line (changes are
not saved) and either moves to the next
line (if an A<range> command is still in
progress), or returns to command level.

0 restores the original line (changes are

not saved), exits (quits) Alter mode, and
returns to command level,

Extend Command

The Extend command is issued at command level and
is used to extend lines. The format of the command

is
X<range>

The effect of the X command is equivalent to typing
an A command, followed by an X subcommand. After
entering an X command, proceed by typing the text
to be inserted at the end of the line. Don't
forget you are now in Alter mode and may use any of
the Alter mode subcommands, once <ESC> has been
typed.

The Extend command 1s particularly useful for
placing comments in assembly language programs.

Microsoft EDIT-80 User's Guide Page 20

CHAPTER 4

Find and Substitute Commands

When it is necessary to change a certain portion of text, it
is not always immediately known where that text is located
in the file. Even with a listing of the file on hand, it is
a tiresome task to scan the listing to find the line number
of a particular item that must be changed.

The EDIT-80 Find and Substitute commands allow the user to
quickly locate text and make necessary changes.

4.1 Find Command

The Find command locates a given string of text 1in
the file and types the 1line(s) containing that
string. The format of the command is:

F[<range>][,<limit>] <enter> $<string>$

where $ represents the escape key and <limit> 1is
the number of 1lines containing <string> to be
found. A limit of zero will find all occurrences
of <string>. The following rules apply to the
format of the Find command:

1. If $<string>$ is omitted, the last string given
in a Find command is used.

2, If <limit> 1is omitted and $<string>$ is
included, <limit> is assumed to be 1.

3. If <limit> and $<string>$ are omitted, the
previous limit is assumed.,

4, If <range> 1is omitted and $<string>$ is
included, the entire range from the previous
Find command is used.

5. If <range>. and $<string>$ are omitted, the
search for the previous string continues from
the line where the last occurrence was found.

If the search is unsuccessful, an error message 1is
printed,

Microsoft EDIT-80 User's Guide

Page 21

Here is a sample editing session using Find:

FA:$WHI (I)$

01100 WHI(I)=0

*FP<lenter>

01400 IF (P,GT.WHI(I))WHI(I)=P
*A.

01400 .

*F,2$WLOZI)$

01200 WLO(I)=9999

01500 IF (P.LT.WLO(I))WLO(I)=P
*A.

01500 .

.

:E.:*AVG
Search fails

*F$MEANS

03700 MEAN=SUM/40

*F,0 :
04200 IF (P.GT.MEAN) M=M+1
06700 WRITE (6,17/0) MEAN, M
*A4200

04200

-

Find the first line that
contains WHI(I), Prints line
1100, Find the next one. Prints
line 1400, Caught a mistake

in this iine. Alter it,.

Find the first two lines in the
file that contain WLO(I) (range
is still .:*). Prints lines

1200 and 1500. Alter line 1500.

Find the first line in the file
that contains AVG. There aren't
any. Try finding MEAN instead.
Prints line 3700,

Find all other lines contain-
ing MEAN. (Search begins at the
line after line 3700.) Finds
two more (4200 and 6700).

Alter line 4200, etc.

Microsoft EDIT-80 User's Guide Page 22

4,2 Substitute Command

The Substitute command locates a given string,

replaces it with a new string and types the new

line(s). The format of the command is:

S[<range>][,<1limit>] <enter> $<0ld string>$<new string>$

where $ represents <ESC> |, and <1limit> is the
number of 1lines in which <o0ld string> is to be
replaced by <new string>. A 1limit of zero will
replace all occurrences of <old string> with <new
string>, <new string> may be a null string. The
following rules apply to the format of the

Substitute command:

1. If $<old string>$<new string>$ are omitted, the
strings given in the last Substitute command
are used.

2, If <limit> is omitted and $<o0ld string>$<new
string>$ are included, <limit> is assumed to be
Zero.

3. If <limit> and $<old string>$<new string>$ are
omitted, the previous limit is assumed.

4, If <range> is omitted and $<old string>$<new
string>$ are included, the entire range from
the previous Substitute command is used.

5. If <range> and $<old string>$<new string>$ are
omitted, substitution continues from where the
last substitution left off.

If no occurrence of <old string> is found, an error

message is printed,

Example:

*SA:5000$ALPHASBETA$ From the first line
00950 BETA (K)=ABS (1.=-LST (K)) to line 5000, replace
01750 WRITE (6,400) BETA (X) all occurrences of
04100 1F (BETA(K).LT.0JGOTO 9000 ALPHA with BETA.

PN

Microsoft EDIT-80 User's Guide Page 23

CHAPTER 5

Pages

It is possible to divide an EDIT-80 file into sections
called pages, which are separated by page marks. The first
page of a file is always page 1, and EDIT-80 always enters
command level on page 1 of a multiple-page file. Each
subsequent page begins with a page mark and 1is numbered
sequentially. On any given page, the complete range of line
numbers (00000 to 99999 or any portion thereof) may be used.

If EDIT-80 encounters a form feed while reading in a file,
it will enter a page mark at that point in the file. If
EDIT-80 encounters a line number that 1is less than the
previous line number, it will automatically insert a page
mark so that proper line number sequence may be maintained.
When EDIT-80 writes a file out to disk, a form feed is
output with each page mark. Then, when the file is 1listed,
each new page of the file starts on a new physical page.

5.1 Specifying Page Numbers

In a single-page file, only a line number is needed
to indicate <position>. 1In a multiple~page file,
EDIT-80 must know the page number as well as the
line number to determine a <position>. That is,
<position> is indicated by

<line>[/<page>]
where

<line> is ".", "A", "*" or a number of up to five

digits.
<page> is ".", "A", "*" or a number of up .to five
digits. When specifying a page, the characters

non, "A" and "*" refer to the <current page, the

first page and the last page, respectively. If
<page> is omitted, the current page is assumed.

Consequently, in a multiple-page file a <range>,
which may be indicated by

<position>:<position>
or -
<position>!<number>

may also contain page numbers. If the.page number
is omitted from the first line number in the range,
it is assumed to be the current page. If the page

Microsoft EDIT-80 User's Guide Page 24

number is omitted from the second line number in /«\
the range, it is assumed to be on the same page as T
the first line number in the range.

Here are some examples of line numbers and ranges
that include page number specification:

100/2:% /% Line 100 on page 2 through
the last line on the last page

100/2:% Line 100 on page 2 through
the end of that page

100:*/5 Line 100 on the current page
through the last line on
page 5

100/* Line 100 on the last page -

100/.:*%/3 Line 100 on the current page
through the last line on
page 3

See Appendix C for more examples of range
specification. ,

5.2 Inserting Page Marks

Page marks may be inserted in +the file at the
discretion of the user. To insert a page mark, use
the Mark command. The format is:

M<position>

The page mark is inserted immediately after
<position>, <position> must exist or an error
message.will be printed.

The current line reference (".") is retained after
a Mark command is executed. That is, if <position>
is before ".", then "." will be moved to the next
page and will still point to the same physical
line.

5.3 Deleting Page Marks

Page marks are deleted with the K (Kill) command.
The format of the command is:

K/<page> N

The K command deletes the page mark after <page>.
For example, in a four-page file, K/2 would delete

Microsoft EDIT-80 User's Guide 'Page 25

-, /f(\i
' the second page mark (the page mark that started
page 3), and the pages would then be numbered 1, 2,
and 3. The last line number on <page> must be
lower than the first line number on <page>+1 before
a K/<page> command can be executed.
5.4 Begin Command
Use the Begin command to return to the beginning of
a page. The format of the Begin command is:
B[/<page>]
If <page> is omitted, the B command returns to the
beginning of page one.
5.5 Other Commands and Page Marks
1. A Delete command +that crosses over a page
boundary will delete all lines in the range,
but will not delete the page mark.
2. A Print command that moves off the current page
N will print the new page (|number prior to
printing the first 1line specified in the
command.,

3. When output 1is° being done| with the List
command, a form feed will be|printed with each
page mark, and the page number will be printed
on each page.

4, A range specified with an excllamation point may
Cross a page boundary.

5. If the range specified 1in a Number command
crosses page boundaries, numbering will start
over on each new page; the flirst 1line number
will equal the increment. Consequently, in the
Number command, <start> and the first line of
<range> must be on the same page.

Microsoft EDIT-80 User's Guide Page 26

CHAPTER 6

Exiting EDIT~80

Section 1.3 introduced the Exit and Quit commands for
exiting EDIT-80. These two commands will be described more
completely in this chapter. An additional command, the
Write command, will also be presented.

6.1 Exit Command

The Exit command is used to write the file to disk
and return to TRSDOS. The format of the command
is:
E filespec {switch}

If <filename> is omitted, the edited file is saved
under the name of the input file. However, the
input file 1is first copied into a backup file with
the original file name and the extension /OLD. For
example, if the input file was named ECHO, typing E
{ENTER> causes the original file +to be copied to

ECHO/OLD, and the edited file will be saved as
ECHO.

{switch> controls the format of +the output file.
See Section 6.5.

6.2 Quit Command

The Quit command is used to return to TRSDOS
without writing the edited file to disk., To Quit
s v e .
editing, simply enter: ‘

Q
After a Quit command, all changes entered during

the editing session are lost.

6.3 Write Command

The Write command writes the edited text to disk
and then returns to EDIT-80 command level. It does
not exit the editor, and the current position 1in
the file is not changed. The format of the command
is:

W[<filename>] [-<switch>]

If <filename> is omitted, the text is saved under the
name of the original input file. The original input
file is saved with the extension /OLD.

Microsoft EDIT-~80 User's Guide Page 27

The optional <switch> controls the format of the
output, (See Section 6.5.)

6.4 Index Files

When reading in a file to be edited, EDIT-80
generates information it needs about each block of
the disk file. With a small file, this information
is generated in a few seconds, each time the file
is read in. However, with larger files (5K or
more), the time lag required to read in the file
becomes significant. Thus, when EDIT-80 saves a
file of 42 or more records on the disk, it also
saves a small file, separate from the text file,
containing the required information about the text
file.

This small file is called the index file, and it
can be read faster than the text file. EDIT-~80
saves the index file under a filename that is the
same as the text filename (passwords not included),
with a Z preceding the first two letters of the
extension. For example, if the file is called
FOO/MAC.SAM, the index file is called FOO/ZMA,

When EDIT-80 is asked to edit a file, it first
checks for an index file. If an index file exists,
EDIT-80 reads the index file instead of the text
file. Care must be taken 1if the text file is
modified by another editor or changed and saved in
BASIC. The wuser must then delete the index file
prior to editing the text file again with EDIT-80.
If the index file is not deleted, EDIT~80 will have
meaningless information abcut the text file.

6.5 Parameters

When reading in a file, EDIT-B0 expects it to be in
its own representation. If the file appears to be
in another representation, EDIT-80 will add 1line
numbers and try to convert the file to EDIT-80
standard format. There are, however, several other
representations that EDIT-80 accepts, if the proper
switch is appended to the input filename. Likewise,
files may be output in non-EDIT-80 format Dy
appending the switch to the output filename. The
switch is always enclosed inside braces .

filespec {switch]

For example: EDIT SPECIAL/TXT {UNSEQ}

Microsoft EDIT-80 User's Guide Page 28

UNSEQ and SFQ Switches

If the UNSEQ switch is appended to the input
filename, EDIT-80 will read the file using the
following algorithm:

All leading spaces and tabs are removed from
each line,

The first non-blank character must be a digit.

From 1 to 5 leading digits are converted to a
line number, More than 5 1leading digits
constitutes a fatal error.

A tab is inserted if the first non-digit is not
a space or a tab, If the first non-digit is a
space, it is replaced by a tab. If the first
non-digit is a tab, it is left alone,

Microsoft EDIT-80 User's Guide Page 29

Output PFiles

If UNSEQ was used on input, the output file will be
unsequenced--that 1is, EDIT-80's 1line~numbers and
initial tabs will not be stored. Just the text of
your file will be stored.

After using UNSEQ on input, you can output a normal
EDIT-80 file by adding the SEQ option to the ouptut
command. The ZEDIT-80 1line number/tab sequence will
be stored in the file. (What you see on the display
will be what is stored.)

Editing Interpreter BASIC programs
You can 1load in an ASCII-format BASIC program
simply by specifying the program as the input file.
For example, suppose you have a program stored 1in
ASCII format in the file PROGRAM. The wuse this
command under TRSDOS READY:

EDIT PROGRAM <ENTER>
The program's line numbers will be taken as EDIT-80
line numbers, and the trailing space will be
converted to a tab.

Go ahead and edit +the program, using all of
EDIT-80's features--except for the renumbering

facility. Renumbering would not be useful, since
the line references inside the program would not be
changed.

When you have finished editing the file, simply
type E. The original BASIC program will be renamed
with the extension /OLD, and the edited file will
be saved under the original file specification. In
our example, the command:

E <ENTER>
would cause the following action:

original PROGRAM --> PROGRAM/OLD

new PROGRAM contains the edited file contents.

Microsoft EDIT-80 User's Guide

Command

Alter

Begin

Delete

Exit

Find

Insert

Kill

List

Mark

Number

Print

Quit

APPENDIX A

Alphabetic Summary of Commands

Format and Description

A<range>
Enters Alter mode.

B[<page>]
Moves to the beginning of <page>.
Default is page 1.

D<range>
Deletes lines.

E[<filename>][{ <switch> }
Writes the edited text to disk
and exits the editor.

F[<range>] [,<1limit>] <enter> I $<string>$

Finds occurrences of <string>.

I[<position>][,<inc> ;<inc>]
Inserts lines beginning at <position>
using increment <inc>. With no
argument, continues with previous
Insert command. '

K/<page>
Deletes the page mark at the end of
<page>.

L<range>
Prints lines at the line printer.

M<position>
Inserts a page mark after <position>.

N[<start>] [,<inc> ;<inc>] [=<range>]
Renumbers the lines in <range> sO
they begin at <start> and increment
by <inc>.

P [<range>]

Prints lines at the terminal.
With no argument, prints the
next 20 lines.

Q
Exits the editor without writing

the edited text to disk.

Page 30

Page
15

25

11

6,

10

24

12

24

13

12

6,

26

26

Microsoft EDIT-80 User's Guide Page 31

Replace

Substitute

Write

eXtend

R<range>[,<inc> | ;<inc>] 18
Replaces line(s) using increment
<inc>.

S[<range>] [,<limit>)<enter>|$<old string>$<new string>$
Replaces <old string> with <new string>, 22

Wl<filename>]{ <switch> } 26
Writes the edited text to disk but
does not exit the editor.

X<range> 19

Allows insertion of text at the
end of a line,

Microsoft EDIT-80 User's Guide

Page 32

APPENDIX B

Alphabetic Summary of Alter Mode Subcommands

Command Format

B [i]B

C [-] [ilC<ch>[...<ch>]
D [-1[i]D

F [-][1]F <text>$%
G [1]G<ch>

H [-]H<text>$

I I<text>$

K [-] [i]K<ch>

L L

N N

0 [~] [1i]l0<text>$
P P

Q Q

Action

Inserts spaces
Replaces characters

Deletes characters

Finds <text>
Inserts i copies of <ch>

Deletes the remainder of
the line and enters the
insert mode

Inserts <text>

Deletes all characters up
to <ch>

Positions the cursor at the
beginning of the line

Restores the original line
and either moves to the
next line (if an A<range>
command is still in
progress) or returns to
command level

Deletes all characters up
to <text>

Recycles the cursor to the
current position

Exits Alter mode and
restores the original line

Microsoft EDIT-80 User's Guide

R [~] [1]R<text>$
S [~]1[i]S<ch>

T [«]T

W [-]1[i]W

X [-]1X

Z [-1[i]2

<DOWN ARROW>
<UP ARROW>
<BACKSPACE>

[-]1[i]<space>

<enter>

Page 33

Replaces i characters with
<text>

Finds <ch>

Deletes the remainder of
the line and concludes
altering of the line

Moves the cursor over words
Extends the line
Deletes words

Moves the cursor to the end
of the line

Beginning of line

Deletes characters

Moves the cursor over
characters

Prints the remainder of the
line, enters changes and
concludes altering of that
line

Microsoft EDIT-80 User's Guide

APPENDIX C

Summary of Notation

Page 34

The notation used in this document may be defined as follows:

<line> = <number> | . | A l *

<page> = <number> I . I A l *

<position> = <line>[/<page>]

<range> = <position>[:<position> | I<number>]
where:

<number> = <digit> I <number><digit>

<digit> =o0 | 1] 2|3 |als|e|7]8]09

Shorthand Notation for Ranges

The following "shorthand" forms of range specifications may be use.

with EDIT-80 commands.

Shorthand Equivalent
Notation To
/<page> A/<page>:*/<page>

/<pagel1>:/<page2> A/<pagel1>:*/<page2>

: NTe®/%
<position>: <position>:*/*
:<position> A/1:<position>

Range

Specified
All of <page>,

The first line on <pagel>
through the last line on
<page2>,

The entire file,

<position> through the end
of the file. e.qg.,
.t is the same as ./.:%/%

The first line in the file
through <position>. e.g.,
:. is the same as A/1:./.

Microsoft EDIT-80 User's Guide Page

<break>

<TAB>

<CTRL O>

APPENDIX D

EDIT-80 Special Characters

Aborts the command in progress
and returns to EDIT-80
command level.

Types a tab.

Pauses execution of an
EDIT-80 command. Press again
to continue.

35

Microsoft EDIT-80 User's Guide Page 36

APPENDIX E

Error Messages

Fatal Errors

Disk I/O errors are fatal. The corresponding TRSDOS error
message will be printed.

Any TRSDOS system error message is fatal.

Illegal line format

Occurs when EDIT-80 finds a line with strange contents or a
strange line number. This should not normally occur when
editing a file created by EDIT-80. It is usually caused by
reading files not meant for editing, such as binary files.

Edit Error Messages

Illegal command
Tells the user a nonexistent or 1ill-formed command was
typed.

Insufficient memory available

Occurs when the user has made enough changes to the file to
have exhausted EDIT-80's memory area. This should only
happen when a large file has many changes or when large
portions of code are being inserted or renumbered. A W
command should be done to compress memory.

No string given

Tells the user the F or S command was given without a search
string. This usually happens when using the F or S command
with no arguments prior to issuing an F or S command with
arguments, or when an <escape> without a search string is
typed following the range.

No such line(s)
This message 1s issued if a command references a line or

range which does not exist. Usually occurs when the proper
page number 1s omitted from the line or range.

Line too long

This message is issued when the user attempts to enter a
line longer than 255 characters. This may happen when the
line is read or as a result of a command which alters the

line.

out of order _
indicates that the line numbers in the file would not be in

ascending order if the command were to be executed. This
frequently happens when trying to insert where there is not

AN

Microsoft EDIT-80 User's Guide Page 37

enough room or trying to delete a page mark.

Search fails
An informative message that tells the user a search was
unsuccessful.

Wrap around
This message is printed whenever a line greater than 99999
would be generated.

File Errors

File already exists

Issued 1f the user tries to give the name of an existing
file to a new file, or tries to rename a file using the name
of an existing file in an E or W command.

File not found
Issued i1f the file specified in a command could not be
found.

Illegal file specification
Informs the user that the command string contains an illegal
character of some kind.

Microsoft EDIT-80 User's Guide Page 38

APPENDIX F

Output File Format

Compilers and assemblers should ignore the line numbers and
page marks included in EDIT-80 output files (except when
included in listing files). Microsoft TRS-80 FORTRAN and
MACRO-80 both do so.

A line number consists of five decimal digits followed by a
tab character. All six bytes have the high order bit (bit
7) equal to one. It is not recommended that EDIT-80 files
be listed with the TRSDOS LIST command. Graphics characters
may appear in the line numbers., Use EDIT-80's Print command
instead.

When writing a file with -BASIC set, the line numbers have
the high order bits equal to zero. Each line number is
followed by a space that has the high order bit equal to
zero.

A page mark is a form feed character with the high order bit
eqgual to one.

Microsoft EDIT-80 User's

Alter
Alter
Alter

command . .
mode « + . .

BASIC
Begin

switch . . .
command . .

Command level ., .
Control-0

Delete command . .
Delete key . « . .

Error messades . .
Exit command . . .
Extend command . .

Find éommand « o »
Form feed

Index files . . .
Insert command . .
Kill command . . .
feed - o * Ll

numbers . . .
command . . .

Line
Line
List

Mark command . . .

Number command
Page mark

Page numbers . . .
Parameters . . . o

Permanent increment

Print command . .
Quit command . . .
Replace command .

SEQUENCE switch .
Space bar . . .
Substitute command
Switches . « « « &

Tab key « « « o
TRSDOS L] - L] * L] .

mode subcommands

Guide

Index

15
15
15-19, 32
28, 38

25

5
35

11, 25
6, 33

36
6, 26
19

20

23, 25, 38
27

6, 10
24
10, 12

5-7, 23,
12, 25

27, 38

24

13, 25, 28

23-25, 28
23

27

6, 10,
12, 25,

13
38

7, 26
11

Page 39

Radio fhaek’

TRS-80" Model I
FORTRAN-80 Reference Manual

R

A guide to the ForTRAN-80 Compiler

CUSTOM MANUFACTURED IN THE U.S.A. BY RADIO SHACK g A DIVISION OF TANDY CORPORATION

MICROSOFT FORTRAN-80
Reference Manual

Contents

Section Page
1 INtroduction . « o « « o &+ o o o o o o s o o 0
2 Fortran Program FOrm . « o « s o o o o =+ o = 7
2.1 Fortran Character Set .+ « « « « « « « « 1

2.17.1 TLetters « « « o« o o o o o o o o o 1

2.7.2 Digits « « ¢ « ¢ o o o s e o e 7

2.1.3 Alphanumerics « « « « o ¢ « ¢ o = 8

2.1.4 Special Characters =« « « « « « = 8

2.2 PFORTRAN Line Format . « « « =« s o o « = 9

2.3 Statements « o« o o o o s o 5 e 0 s e e 13

3 Data Representation/Storage Format 14

3.1 Data names and typPeS « « « o o o « o« o o 14
3.7.7 NAMES & o o o o o o o o s o o « « 14
3.7.2 TYPES v v o v o o o s o o s o o o 14

3.2 ConsStantsS + o o o 2 o s o o o s o o o o 15

3.3 Variables '« « « . S

3.4 Arrays and Array Elements e+ e s+ e « o 20

3.5 SUDSCYIPtsS v o« « o« « o « o o o o o o+« o« 20

3.6 Data Storage Allocation 21

4 FORTRAN EXpressions . « « o« o « o o o o « o o« 25

4.1 Arithmetic Expressions « « « .« o 25
4.2 Expression Evaluation ., 26
4.3 Logical Expressions . . « « « « « o « o 27
4.3.1 Relational Expressions ., 28
4,3,2 Logical Operators « o« o 28
4.4 Hollerith, Literal, and Hexadec1mal

Constants in Expressions . . . « « . . . 31

5 Replacement Statements . . « ¢« « ¢ o ¢« « o . 32

6 Specification Statements . « .« ¢ o o o o . o 34

Specification Statements . . . « . . . & 34
Array Declarators . « « « « « « o o s o 34
Type Statements . « « o« o o ¢ o o o o 35
EXTERNAL Statements .« « o« « o o o & o 37
DIMENSION Statements « « « « o = 37

[e)WeaNe)Nea N o))

|
© Copyright 1979 by Microsoft, i.icensed to Radio Shack, A Division of Tandy Corporation, Fort Worth, Texas

6.6
6.7
6.8

COMMON Statements . . .
EQUIVALENCE Statements

DATA Initialization Statement

FORTRAN Control Statements .

7.1

w N

NN NN NN
e o o o o o o
= POoo-~JoOu &

GOTO Statements . . .
7.1.1
7.1.2 Computed GOTO .
7.1.3 Assigned GOTO
ASSIGN Statement . .
IF Statement
7.3.1 Arithmetic IF
7.3.2 Logical IF .
DO Statement . « »
CONTINUE Statement
STOP Statement .
PAUSE Statement .
CALL Statement .
RETURN Statement
END Statement . .

Input/Output « « « « ¢ o « =

8.1

o
e ®
wN

o o
. L] []
N U

8.7

Formatted READ/WRITE .
8.1.1 Formatted READ .
8.1.2 Formatted WRITE
Unformatted READ/WRITE
Disk File I/0 ¢« o o « =
8.3.1 Random Disk I/O
8.3.2 OPEN Subroutine
Auxiliary I/O Statements
ENCODE/DECODE « « « « &

Input/Output List Specificatio

* -

Unconditional GOTO

L]

1

e e o e ® o

8.6.1 List Item Types . .
8.6.2 Special Notes on List
Specifications
FORMAT Statements « « « o o o
8.7.1 Field Descriptors . .« .
8.7.2 Numeric Conversions . .
8.7.3 Hollerith Conversions .
8.7.4 Logical Conversions . .
8.7.5 X Descriptor « « + « o
8.7.6 P Descriptor « « « « . .
8.7.7 Special Control Features

of FORMAT Statements .

8.7.7. Repeat Specifications
8.7.7. Field Separators .
8.7.8 FORMAT Control, List Spec1f1cat10ns,

and Record Demarcatlon o

8.7.9 FORMAT Carriage Control
8.7.10 FORMAT Specifications in Arrays . .

e

37
39
41

44

44
44
45
45
46
47
47
47
48
51
52
52
53
53
53

54

54
54
57
58
59
59
60

61
62
62

64
65
65
66
71
73
74
74

75
75
77

78
79
79

M

TN

Functions and Subprograms .

WD WIWWWWWWLWO
.
S YW OoOJOUTLd Wl 2

o

PROGRAM Statement . . .
Statement Functions . .
Library Functions . . .
Function Subprograms . .
Construction of Function Subprograms
Referencing a Function Subprogram .
Subroutine Subprograms
Construction of Subroutine Subprograms
Referencing a Subroutine Subprogram .
Return From Function and Subroutine

Subprograms

O O
. o

—_
[(O J—

APPENDIX A-

APPENDIX B~

APPENDIX C-

APPENDIX D-

APPENDIX E-

Processing Arrays 1n Subprograms
BLOCK DATA Subroutine .

Language Extensions and Restrictions

I/0 Interface .

Subprogram Liﬁkages
ASCII Character Codes

FORTRAN-80 Library Subroutines

82

83
83
84
88
88
90
91
91
92

93

94
96

98

100

102

104

105

FORTRAN-80 Reference Manual Page 6

SECTION 1

INTRODUCTION

FORTRAN 1is a wuniversal, problem oriented programming
language designed to simplify the preparation and check-out
of computer programs, The name of the language - FORTRAN -
is an acronym for FORmula TRANslator.

The syntactical rules for using the 1language are rigorous
and require the programmer to define fully the
characteristics of a problem in a series of precise
statements, These statements, called the source program,
are translated by a system program called the FORTRAN
processor into an object program in the machine language of
the computer on which the program is to be executed.

This manual defitites the FORTRAN source language for the 8080
and Z-80 microcomputers. This 1language includes the
American National Standard FORTRAN language as described in
ANSI document X3.9~1966, approved on March 7, 1966, plus a
number of language extensions and some restrictions. These
language extensions and restrictions are described in the
text of this document and are listed in Appendix A,

NOTE

This FPORTRAN differs from the
Standard in that it does not
include the COMPLEX data type.

Examples are included throughout the manual to illustrate
the construction and use of the language elements. The
programmer should be familiar with all aspects of the
language to take full advantage of its capabilities.

Section 2 describes the form and components of an 8080
FORTRAN source program. Sections 3 and 4 define data types
and their expressional relationships. Sections 5 through 9
describe the proper construction and usage of the various

statement classes.

T

FORTRAN-80 Reference Manual Page 7

SECTION 2

FORTRAN PROGRAM FORM

8080 FORTRAN source programs consist of one program unit
called the Main program and any number of program units
called subprograms. A discussion of subprogram types and
methods of writing and using them is in Section 9 of this
manual.

Programs and program units are constructed of an ordered set
of = statements which precisely describe procedures for
solving problems and which also define information to be
used by the FORTRAN processor during compilation of the
object program. Each statement is written using the FORTRAN
character set and following a prescribed line format.

2.1 FORTRAN CHARACTER SET

To simplify reference and explanation, the FORTRAN
character set 1is divided into four subsets and a
name is given to each.

2.1.1 LETTERS

EIEIGIH’I’JIK’L’M’NIO’P’Q’R’SIT’U
Z,

NOTE

No distinction is made between upper and
lower case letters. However, for clarity
and legibility, exclusive use of upper case
letters is recommended. ’ :

2.1.2 DIGITS

0,1,2,3,4,5,6,7,8,9

NOTE
Strings of digits representing numeric
gquantities are normally interpreted as
decimal numbers. However, in certain

statements, the interpretation 1is in the

FORTRAN-80 Reference Manual Page 8

e N AN+

Hexadecimal number system in which case the
letters A, B, C, D, E, F may also be used
as Hexadecimal digits. Hexadecimal wusage
is defined in the descriptions of
statements in which such notation is
allowed.

ALPHANUMERICS

A sub-set of characters made up of all letters and
all digits.

SPECIAL CHARACTERS

Blank

Equality Sign
Plus Sign

Minus Sign
Asterisk

Slash

Left Parenthesis
Right Parenthesis
Comma

Decimal Point

NOTES :

1. FORTRAN program lines consist of 80 character
positions or columns, numbered 1 through 80.
They are divided into four fields.

2. The following special characters are classified
as Arithmetic Operators and are significant in
the unambiguous statement of arithmetic
expressions.

+ Addition or Positive Value
- Subtraction or Negative VAlue
* Multiplication
/ Division
** Exponentiation
3. The other special characters have specific

application in the syntactical expression of
the FORTRAN language and in the construction of
FORTRAN statements.

TN

FORTRAN-80 Reference Manual Page 9

2.2

4., Any printable character may appear in a
Hollerith or Literal field.

FORTRAN LINE FORMAT

The sample FORTRAN coding form (Figure 2.1) shows
the format of FORTRAN program lines. The lines of
the form consist of 80 character positions or
columns, numbered 1 through 80, and are divided
into four fields.

1. Statement Label (or Number) field- Columns 1
through 5 (See definition of statement labels).

2. Continuation character field-
Column 6

3. Statement field-
Columns 7 through 72

4. Indentification field=-
Columns 73 through 80

The identification field is available for any
purpose the FORTRAN programmer may desire and is
ignored by the 'FORTRAN processor.

The lines of a FORTRAN statement are placed .in
Columns 1 through 72 formatted according to line
types. The four line types, their definitions, and
column formats are:

1. Comment line -- used for source . program

annotation at " the convenience of the
programmer,

1. Column 1 contains the letter C.

2. Columns 2 - 72 are used in any desired
format to express the comment or they may
be left blank.

3. A comment line may be followed only by an
initial 1line, an END 1line, or another
comment line,

4, Comment lines have no effect on the object
program and are ignored by the FORTRAN
processor except for display purposes in
the listing of the program.

FBZFHZZ(DO

TH=Z 00

FORTRAN STATEMENT (COL'S 65=72 NOT SHOWN; ID SEQ. 73-80 NOT SHOWN)

o {7 8 9 10 11 12

13 1415 16 17 1819 20 21 22 23 24 25 26 27 28 29 30 3] 32 33 34 35 36 37 38 '39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

7 8 9 10 1112 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 3) 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64

| FIGURE 2.1

D) ()

FORTRAN-80 Reference Manual Page 11

\v/ 7~ ~

Examgle:

C COMMENT ‘LINES ARE INDICATED BY THE
C CHARACTER C IN COLUMN 1.
C THESE ARE COMMENT LINES

END line -- the last line of a program unit.

1. Columns 1-5 may contain a statement label.

2, Column 6 must contain a zero or blank.

3. Columns 7-72 contain one of the characters
E, N or D, in that order, preceded by,

- separated by or followed by blank
‘characters,

4, Each FORTRAN program unit must have an END
line as its 1last 1line to inform the
Processor that it is at the physical end of
the program unit.

5., An END line may follow any other type line.
Example:

END
Initial Line -- the first or only line of each

statement.

Columns 1-5 may contain a statement label
to identify the statement.

Column 6 must contain a 2zero or blank,

Columns 7-72 contain all or part of the
statement.

An initial line may begin anywhere within
the statement field.

Example:

C THE STATEMENT BELOW CONSISTS
C OF AN INITIAL LINE

C
A= 5*SQRT(3-2.*C)

FORTRAN-80 Reference Manual Page 12

4, Continuation Line -- used when additional lines
of coding are required to complete a statement
originating with an initial line.

1. Columns 1-5 are ignoréd, unless Column 1
contains a C,

2. If Column 1 contains a C, it is a comment
line,

3. Column 6 must contain a character other
than zero or blank.

4., Columns 7-72 contain the continuation of
the statement.

5, There may be as many continuation lines as
needed to complete the statement.

ExamEle:

C THE STATEMENTS BELOW ARE AN INITIAL LINE
C AND 2 CONTINUATION LINES
C
63 BETA(1,2) =
1 A6BAR**7- (BETA (2,2) -A5BAR*50
2 +SQRT (BETA(2,1)))

A statement label may be placed in columns 1-5 of a
FORTRAN statement initial 1line and is used for
reference purposes in other statements.

The following considerations govern the use of
statement labels:
1. The label is an integer from 1 to 99999.

2. The numeric value of the label, 1leading zeros
and blanks are not significant.

3. A label must be unique within a program unit.

4. A label on a continuation line 1is ignored by
the FORTRAN Processor.

N

FORTRAN-80 Reference Manual o Page 13

Example:

C EXAMPLES OF STATEMENT LABELS
C
1
1 01
99999
763

STATEMENTS
Individual statements deal with specific aspects of

a procedure described in a program unit and are
classified as either executable or non-executable.

Executable statements specify actions and cause the
FORTRAN Processor to generate object program
instructions. There are three types of executable
statements:

1. Replacement statements.
2. Control statements.

3. Input/Output statements.

Non-exeécutable statements describe to the processor
the nature and arrangement of data and provide
information about input/output formats and data
initialization to the object program during program
loading and execution. There are five types of
non-executable statements:

1. Specification statements.

2., DATA Initialization statements.

3. FORMAT statements.

4, FUNCTION defining statements.

5. Subprogram statements.

The proper usage and construction of the various

types of statements are described in Sections 5
through 9.

FORTRAN~80 Reference Manual Page 14

SECTION 3

DATA REPRESENTATION / STORAGE FORMAT

The FQRTRAN Language prescribes a definitive method for
identifying data used in FORTRAN programs by name and type.

3.1 DATA NAMES AND TYPES

3.1.1 NAMES

1. Constant - An explicitly stated datum.
2. Variable - A symbolically identified datum.

3. Array - An ordered set of data in 1, 2 or 3
dimensions.

4, Array Element - One member of the set of data
of an array.

3.1.2 TYPES
1. Integer -- Precise representation of integral
numpers (positive, negative or zero) having

precision to 5 digits in the range =32768 to +32767
inclusive (=-2**15 to 2**15-1).

2. Real ~- Approximations of real numbers (positive,
negative or zero) represented in computer storage
in 4-byte, floating-point form. Real data are

precise to 7+ significant digits and their
magnitude may lie between the approximate limits of
10**-38 and 10**38 (2**-127 and 2**127),

3. Double Precision -- Approximations of real numbers
(positive, negative or zero) represented in
computer storage in 8-byte, floating-point form.
Double Precision data are precise - to 16+
significant digits in the same magnitude range as
real data,

4, Logical =-- One byte representations of the truth
values "TRUE"Y or "FALSE" with "FALSE defined to

have an internal representation of zero. The
constant .TRUE, has the value -1, however any
non-zero value will be treated as .TRUE. in a

Logical 1IF statement. In addition, Logical types
may be used as one byte signed integers in the

P

FORTRAN-80 Reference Manual Page 15

range -128 to +127, inclusive.

Hollerith -- A string of any number of characters
from the computer's character set. All characters
including blanks are significant. Hollerith . data

require one byte for storage of each character in

the string.

CONSTANTS

FORTRAN constants are identified explicitly by
stating their actual value. The plus (+) character
need not precede positive valued constants.

Formats for writing constants are shown in Table
3_1.

FORTRAN-80 Reference Manual

TYPE

INTEGER

REAL

Table 3-1. CONSTANT FORMATS

FORMATS AND RULES OF USE

1. 1 to 5 decimal digits
interpreted as a deci-
mal number,

2. A preceding plus (+) or
minus (~) sign is op-
tional.

3. No decimal point (.) or
comma (,) is allowed.

4. Value range: -32768
through +32767 (.i.e.,
-2**15 through 2*%*15-1),

1. A decimal number with
precision to 7 digits
and represented in one
of the following forms:

or ~.f + or -i.f
or -i.E+ or -e
or ~-.fE+ or -e
or ~i,fE+ or -e

al
b.

++ + +

where i, £, and e are
each strings represent-
ing integer, fraction,
and exponent respective-

ly.

2. Plus (+) and minus (=)
characters are optional.

3. In the form shown in 1 b

above, if r represents any

of the forms preceding

E+ or -e (i.e., rE+ or -e),
the value of the constant
is interpreted as r times

10**e, where -38<=e<=38,

4, If the constant preceding

E+ or -e contains more
significant digits than

Page 16

EXAMPLES

-763
1
+00672

-32768
+32767

345,
-.345678
+345.678
+.3E3
-73E4

P

»

FORTRAN=-80 Reference Manual : Page

DOUBLE
PRECISION

LOGICAL

LITERAL

HEXADECIMAL

the precision for real
data allows, truncation
occurs, and only the

most significant digits
in the range will be rep-
- resented,

A decimal number with +345.678
precision to 16 digits. All +.3D3
formats and rules are identi- -73D4

cal to those for REAL con-
stants, except D is used in
place of E. Note that a real
constant is assumed single pre-
cision unless it contains a

"D" exponent.

.TRUE. generates a non-zero . TRUE,

byte (hexadecimal FF) and .FALSE.

.FALSE. generates a byte in
which all bits are 0.

If logical values are

used as one-byte integers, the
rules for use are the same as
for type INTEGER, except that
the range allowed is =128 to
+127, inclusive.

In the literal form, any
number of characters may be
enclosed by single guotation
marks. The form is as follows:

'X1X2X3.,..Xn'

where each Xi is any charac-
ter other than ', Two
quotation marks in succession
may be used to represent the
quotation mark character
within the string, i.e.,

if X2 is to be the guotation
mark character, the string
appears as the following:

'X1''¥3...Xn’

1. The letter Z or X z'"12!
followed by a s%ngle guote,
up to 4 hexadecimal X'AB1F'

17

FORTRAN-80 Reference Manual Page 18

digits (0-9 and A-F) and a Z'FFFF'
single quote is recognized
as a hexadecimal value. X"1F'

2. A hexadecimal constant is
right justified in its storage
value.

FORTRAN-80 Reference Manual Page 19

3.3

VARIABLES

Variable data are identified in FORTRAN statenents
by symbolic names. The names are unique strings of
from 1 to 6 alphanumeric characters of which the
first is a letter.

NOTE

System variable names and runtime
subprogram names are distinguished from
other variable names in that they begin
with the dollar sign character ($). It is
therefore strongly recommended that in
order to avoid conflicts, symbolic names in
FORTRAN source programs begin with some
letter other than "$".

Examples:

I5, TBAR, B23, ARRAY, XFM79, MAX, A1$C

. Variable data are <classified into four types:

INTEGER, REAL, DOUBLE PRECISION and LOGICAL. The
specification of type 1is accompllshed in one of the
following ways: «

1. Implicit typing in which the first 1letter of
the symbolic name specifies Integer or Real
type. Unless explicitly typed (2., below),
symbolic names beginning with I, J, K, L, M or
N represent Integer variables, and symbolic
names beginning with letters other than I, J,
K, L, M or N represent Real variables.

Integer Variables

ITEM
J1
MODE
K123
N2

EORTRAN—BO Reference Manual ‘ Page 20

Real Variables

BETA
H2
ZAP
AMAT
XID

2. Variables may be typed explicitly. That 1is,
they may be given a particular type without
reference to the first letters of their names.
Variables may be explicitly typed as INTEGER,
REAL, DOUBLE PRECISION or LOGICAL. The
‘specific statements used in explicitly typing
data are described in Section 6.

Variable data receive their numeric value assignments during
program execution or, initially, in a DATA statement
(Section 6).

Hollerith or Literal data may be assigned to any type

variable. Sub-paragraph 3.6 contains a discussion of
Hollerith data storage.

3.4 ARRAYS AND ARRAY ELEMENTS

An array is an ordered set of data characterized by
the property of dimension. An array may have 1, 2
or 3 dimensions and is identified and typed by a
symbolic: name in the same manner as a variable
except that an array name must be so declared by an

"array declarator." Complete discussions of the
array declarators appear in Section 6 of this
manual. An array declarator also indicates the

dimensionality and size of the array. An array
element is one member of the data set that makes up
an array. Reference to —an array element in a
FORTRAN statement is made by appending a subscript
to the array name. The term array element is
synonymous with the term subscripted variable used
in some FORTRAN texts and reference manuals.

An initial value may be assigned to any array

element by a DATA statement or its value may be
derived and defined during program execution.

3.5 SUBSCRIPTS

A subscript follows an array name to wuniquely

AT

FORTRAN-80 Reference Manual Page 21

identify an array element. In use, a subscript in
a FORTRAN statement takes on the same
representational meaning as a subscrlpt in familiar
algebralc notation,

Rules that govern the use of subscripts are as
follows:

1. A subscript contains 1, 2 or 3 subscript
expressions (see 4 below) enclosed in
parentheses.

2. If there are two or three subscript expressions
within the parentheses, they must be separated
by commas.

3. The number of subscript expressions must be the
same as the specified dimensionality of the
Array Declarator except in EQUIVALENCE
statements (Section 6).

4, A subscript expression is written in one of the
following forms:

K C*v V~-K
V C*V+K C*V-K
V+K

where C and K are integer constants and V is an
integer wvariable name (see Section 4 for a
discussion of expression evaluation).

5. Subscripts themselves may not be subscripted.
Examples:

X(2%3-3,7) A(I,J,K) _1(20) cC(L-2) Y(I)

DATA STORAGE ALLOCATION

Allocation of storage for FORTRAN data is made in
numbers of storage units. A storage unit is the
memory space required to store one real data value
(4 bytes).

Table 3-2 defines the word formats of the three
data types.

Hexadecimal data may be associated (via a DATA
statement) with any type data. Its storage
allocation is the same as the associated datum.

Hollerith or literal data may be associated with
any data type by use of DATA initializaton

FORTRAN-80 Reference Manual Page 22

statements (Section 6).

Up to eight Hollerith characters may be associated
with Double Precision type storage, up to four with
Real, up to two with Integer and one with Logical
type storage.

FORTRAN-80 Reference Manual : Page 23

TYPE

INTEGER

LOGICAL

REAL

TABLE 3~2. STORAGE ALLOCATION BY DATA TYPES

ALLOCATION
2 bytes/ 1/2 storage unit
S Binary Value

Negative numbers are the 2's complement of
positive representations.

1 byte/ 1/4 storage unit

Zero (false) or non-zero (true)

A non-zero valued byte indicates true (the
logical constant .TRUE, is represented by

the hexadecimal value FF), A zero valued
byte indicates false.

When used as an arithmetic value, a Logical

datum is treated as an Integer in the range
-128 to +127.

4 bytes/ 1 storage unit

Characteristic S Mantissa

Mantissa {(continued)

The first byte is the characteristic
expressed 1in excess 200 (octal) notation;

i.e., a value of 200 (octal) corresponds to a
binary exponent of 0. Values less than 200
(octal) correspond to negative exponents, and
values greater than 200 correspond to
positive exponents. By definition, if the
characteristic 1is zero, the entire number is
zero,

The next three bytes constitute the mantissa.
The mantissa is always normalized such that
the high order bit is one, eliminating the
need to actually save that bit. The high bit
is used instead to indicate the sign of the
number. A one indicates a negative number,
and zero indicates a positive number, The
mantissa 1is assumed to be a binary fraction
whose binary point is to the 1left of the
mantissa.

FORTRAN-80 Reference Manual : * " Page 24

DOUBLE
PRECISION

8 bytes/ 2 storage units

The internal form of Double Precision data is
identical with +that of Real data except
Double Precision uses 4 extra bytes for the
matissa.

L

FORTRAN-80 Reference Manual ‘ Page 25

SECTION 4

FORTRAN EXPRESSIONS

A FORTRAN expression is composed of a single operand or a
string of operands connected by operators. Two expression
types —--Arithmetic and Logical-- are provided by FORTRAN.

..The operands, operators and rules of use for both types are

described in the following paragraphs.

4.1 ARITHMETIC EXPRESSIONS

The following rules define all permissible
arithmetic expression forms:

1. A constant, variable name, array element

reference or FUNCTION reference (Section 9)
standing alone is an expression.

Examples:
sS(1) JOBNO 217 17.26 . SQRT (A+B)

2. If E is an expression whose first character is
not an operator, then +E and -E are called

signed expressions.

Examples
-S +JOBNO =~217 +17.26 ~SQRT (A+B)
3. If E is an expression, then (E) means the

gquantity resulting when E is evaluated.

Examples:
(-A) ~ (JOBNO) - (X+1) (A-SQRT (A+B))

4, If E is an unsigned expression and F 1is any
expression, then: F+E, F-E, F*E, F/E and F**E
are all expressions.

Examples:
~(B(I,J)+SQRT (A+B(K,L)))

1.7E=-2%* (X+5.0)
- (B(I+3,3*J+5)+A)

FORTRAN-80 Reference Manual Page 26

4.2

5.

An evaluated expression may be 1Integer, Real,

Double Precision, or Logical. The type is
determined by the data types of the elements of
the expression. If the elements of the

expression are not all of the same type, the
type of the expression 1is determined by the
element having the highest type. The type
hierarchy (highest to 1lowest) is as follows:
DOUBLE PRECISION, REAL, INTEGER, LOGICAL,

Expressions may contain nested parenthesized
elements as in the following:

A* (Z- ((Y+X) /T)) **J

where Y+X is the innermost element, (Y+X)/T is
the next innermost, Z-((Y+X)/T) the next. 1In
such expressions, care should be taken to see
that the number of 1left parentheses and the
number of right parentheses are equal.

EXPRESSION EVALUATION

Arithmetic expressions are evaluated according to
the following rules:

1.

Parenthesized expression elements are evaluated
first. If parenthesized elements are nested,
the innermost elements are evaluated, then the
next innermost until the entire expression has
been evaluated.

Within parentheses and/or wherever parentheses
do not govern the order or evaluation, the
hierarchy of operations in order of precedence
is as follows:

a. FUNCTION evaluation
b. Exponentiation

c. Multiplication and Division
d. Addition and Subtraction

Examgle:

The expression

A* (Z~ ((Y+R) /T)) **J+VAL

is evaluated in the following sequence:

FORTRAN-80 Reference Manual Page 27

Y+R = el
(el)/T = e2
Z=-e2 = e3
e3**] = e4
A*e4 = e5

e5+VAL = eb

3. The expression X**Y**7Z is not allowed. It
should be written as follows:

(X**Y) %7 or X** (Y**7)
4, Use of an array element reference requires the
evaluation of its subscript. Subscript

expressions are evaluated under the same rules
as other expressions.

LOGICAL EXPRESSIONS

A Logical Expression may be any of the following:

1. A single Logical Constant (i.e., .TRUE. or
.FALSE.), a Logical wvariable, Logical Array
Element or Logical FUNCTION reference (see
FUNCTION, Section 9).

2, Two arithmetic expressions separated by a
relational operator (i.e., a relational
expression).

3., Logical operators acting ' dpon logical
constants, logical variables, logical array
elements, logical FUNCTIONS, relational

expressions or other logical expressions.

FORTRAN-80 Reference Manual Page 28

The value of a logical expression is always either
.TRUE, or .FALSE.

RELATIONAL EXPRESSIONS

The general form of a relational expression is as
follows:

el r e2
where el and e2 are arithmetic expressions and r is

a relational operator. The six relational
operators are as follows:

- LT, Less Than

<LE. Less than or equal to
.EQ. Equal to

.NE. Not equal to

.GT. Greater than

.GE. Greater than or equal to

The value of the relational expression is .TRUE.
if the condition defined by the operator is met.
Otherwise, the value is .FALSE.

Examples:

A.EQ.B
(A**J) ,GT. (ZAP* (RHO*TAU-ALPH))

LOGICAL OPERATORS

Table 4-1 lists the logical operations. U and V
denote logical expressions,

FORTRAN-80 Reference Manual ‘ Page 29

Table 4-1. Logical Operations

. NOT.U : The value of this expression is the
logical complement of U (i.e., 1
bits become 0 and 0 bits become 1).

U.AND.V The value of this expression is the
logical product of U and V (i.e.,
there is a 1 bit in the result only
where the corresponding bits in both
U and V are 1.

U.OR.V The value of this expression is the
logical sum of U and V (i.e., there
is a 1 in the result 1if the
corresponding bit in U or V is 1 or
if the corresponding bits in both U
and V are 1.

U.XOR.V The value of this expression is the
exclusive OR of U and V (i.e., there
is a one in the result if the
corresponding bits in U and V are 1
and 0 or 0 and 1 respectively.

7 Examples:
If U = 01101100 and Vv = 11001001 , then

.NOT.U = 10010011
U.AND.V = 01001000
U.OR.V = 11101101
U.XOR.V = 10100101

FORTRAN=-80 Reference Manual Page 30

The following are additional considerations for
construction of Logical expressions:

1.

Any Logical expression may be enclosed in
parentheses. However, a Logical expression to
which the .NOT. operator is applied must be
enclosed 1in parentheses if it contains two or
more elements.

In the hierarchy of operations, parentheses may
be used to specify the ordering of the
expression evaluation. Within parentheses, and
where parentheses do not dictate evaluation
order, the order is understood to be as
follows:

a. FUNCTION Reference

b. Exponentiation (**)

c. Multiplication and Division (* and /)
d. Addition and Subtraction (+ and -)

e, .LT., .LE., .EQ., .NE., .GT., .GE,

f. «NOT,

g. .AND.

h. .OR., .XOR.

Examples:
The expression
X .AND. Y .OR. B(3,2) .GT. 2

is evaluated as

el = B(3,2).GT.Z2
e2 = X JAND. Y
e3 = e2 .0OR. el

The expression

X .AND. (Y ,OR. B(3,2) .GT. 2)

is evaluated as

el = B(3,2) .GT. Z
e2 = Y ,0R. el
e3 = X ,AND. e2

It is invalid to have two contiguous logical
operators except when the second operator is
.NOT,

FORTRAN-80 Reference Manual Page 31

That is,

+AND, ,NOT.
and

.OR..NOT,

are permitted.

Example:
A.AND..NOT.B is permitted
A,AND, .OR.B is not permitted

HOLLERITH, LITERAL, AND HEXADECIMAL CONSTANTS IN
EXPRESSIONS

Hollerith, Literal, and Hexadecimal constants are
allowed in expressions in place o0of Integer
constants. These special constants always evaluate
to an Integer value and are therefore limited to a
length of two bytes. The only exceptions to this
are:

1. Long Hollerith or Literal constants may be used
as subprogram parameters,

2. Hollerith, Literal, or Hexadecimal constants
may be up to four bytes long in DATA statements
when associated with Real variables, or up to
eight bytes 1long when associated with Double
Precision variables.

FORTRAN-80 Reference Manual Page 32

SECTION 5

REPLACEMENT STATEMENTS

Replacement statements define computations and are used
similarly to equations in normal mathematical notation.
They are of the following form:

v = e

where v is any variable or array element and e 1is an
expression,

FORTRAN semantics defines the equality sign (=) as meaning
to be replaced by rather than the normal is equivalent to.
Thus, the object program instructions generated by a
replacement statement will, when executed, evaluate the
expression on the right of the equality sign and place that
result 1in the storage space allocated to the variable or

array element on the left of the equality sign.

The following conditions apply to replacement statements:

1. Both v and the equality sign must appear on the
same 1line. This holds even when the statement is
part of a logical IF statement (section 7).

Example:

C IN A REPLACEMENT STATEMENT THE '='
C MUST BE IN THE INITIAL LINE.
A(5,3) =
1 B(7,2) + SIN(C)

The line containing v= must be the initial line of
the statement unless the statement is part of a
logical IF statement. In that case the v= must
occur no later than the end of the first line after
the end of the IF.

2. If the data types of the wvariable, v, and the
expression, e, are different, then the value
determined by the expression will be converted, if
possible, to conform to the typing of the variable.
Table 5-1 shows which type expressions may be
equated to which type of variable. Y indicates a
valid replacement and N indicates an invalid
replacement, Footnotes to Y indicate conversion

considerations.

TN

FORTRAN-80 Reference Manual Page 33

Table 5-1. Replacement By Type

Expression Types (e)
Variable
Types Integer Real Logical Double
Integer Y Ya Yb Ya
Real Yc Y Yc Ye
Logical Yd ‘ Ya Y Ya
Double Yc Y Yc Y

a. The Real expression value is converted to Integer,
truncated 1if necessary to conform to the range of
Integer data.

b. The sign is extended through the second byte.

c. The variable is assigned the Real approximation of
the Integer value of the expression.

d. The variable is assigned the truncated value of the
Integer expression (the low-order byte 1is used,
regardless of sign).

e. The variable is assigned the rounded value of the
Real expression.,

FORTRAN-80 Reference Manual Page 34

SECTION 6

SPECIFICATION STATEMENTS

Specification statements are non-executable, non~generative
statements which define data types of variables and arrays,
specify array dimensionality and size, allocate data storage
or otherwise supply determinative information to the FORTRAN
processor. DATA intialization statements are
non-executable, but generate object program data and
establish initial values for variable data.

6.1 SPECIFICATION STATEMENTS

‘There are six kinds of specification statements.,
Theyare as follows:

Type, EXTERNAL, and DIMENSION statements
COMMON statements

EQUIVALENCE statements

DATA initialization statements

All specification statements are grouped at the
beginning of a program unit and must be ordered as
they appear above. Specification statements may be
preceded only by a FUNCTION, SUBROUTINE, PROGRAM or
BLOCK DATA statement., All specification statements
must precede statement functions and the first
executable statement,.

6.2 ARRAY DECLARATORS
Three kinds of specification statements may specify
array declarators. These statements are the
following:

Type statements
DIMENSION statements
COMMON statements

Of these, DIMENSION statements have the declaration
of arrays as their sole function. The other two
serve dual purposes. These statements are defined
in subparagraphs 6.3, 6.5 and 6.6.

Array declarators are used to specify the name,
dimensionality and sizes of arrays., An array may
be declared only once in a program unit,

An array declarator has one of the fcllowing forms:

FORTRAN-80 Reference Manual | Page 35

uli (k)
ui (k1,k2)
ui (k1,k2,k3)

where ui is the name of the array, called the
declarator name, and the k's are integer constants.

Array storage allocation is established upon
appearance of the array declarator. Such storage
is allocated 1linearly by the FORTRAN processor
where the order of ascendancy is determined by the
first subscript varying most rapidly and the last
subscript varying least rapidly.

For example, if the array declarator AMAT(3,2,2)
appears, storage 1is allocated for the 12 elements
in the following order:

AMAT (1,1,1), AMAT(2,1,1), T(3,1,1), AMAT(1,2,1),
AMAT (2,2,1), AMAT(3,2,1), AMAT(1,1,2), AMAT(2,1,2),
AMAT (3,1,2), AMAT(1,2,2), T(2,2,2), AMAT(3,2,2)

TYPE STATEMENTS

Variable, array and FUNCTION names are
automatically typed Integer or Real by the
'predefined' convention unless they are changed by
Type statements., For example, the type is Integer
if the first letter of an item is I, J, K, L, M or
N. Otherwise, the type is Real,

Type statements provide for overriding or
confirming the pre-defined convention by specifying
the type of an item, In addition, these statements
may be used to declare arrays.

Type statements have the following general form:

t vl,v2,...vn

where t represents one of the terms INTEGER,
INTEGER* 1, INTEGER*2, REAL, REAL*4, REAL*8, DOUBLE
PRECISION, LOGICAL, LOGICAL*1, LOGICAL*2, or BYTE,
Each v is an array declarator or a variable, array
or FUNCTION name. The INTEGER*1, INTEGER*2,
REAL*4, REAL*8, LOGICAL*1,and LOGICAL*2 types are
allowed for readability and compatibility with
other FORTRANS. BYTE, INTEGER*1, LOGICAL*1, and
LOGICAL are all equivalent; INTEGER*2, LOGICAL*2,
and INTEGER are equivalent; REAL and REAL*4 are
equivalent; DOUBLE PRECISION and REAL*8 are

equivalent.

FORTRAN-80 Reference Manual Page 36

ExamEle:
REAL AMAT(3,3,5),BX,IETA,KLPH

NOTE

1. AMAT and BX are redundantly typed.

2, IJETA and KLPH are unconditionally
declared Real.

3. AMAT (3,3,5) is a constant array
declarator specifying an array of 45
elements.

Examgle:
INTEGER M1, HT, JMP(15), FL

NOTE

M1 is redundantly typed here. Typing of HT
and FL by the pre-defined convention is
overridden by their appearance in the
INTEGER statement. JMP (15) is a constant
array declarator. It redundantly types the
array elements as Integer and communicates
to the processor the storage requirements
and dimensionality of the array.

Example:

LOGICAL L1, TEMP

NOTE

All variables, arrays or FUNCTIONs required
to be typed Logical must appear in a
LOGICAL statement, since no starting letter
indicates these types’ by the default
convention. '

a

TN

FORTRAN~80 Reference Manual Page 37

6.4

EXTERNAL STATEMENTS

EXTERNAL statements have the following form:
EXTERNAL ul,u2,.,.,un

where each wi is a SUBROUTINE, BLOCK DATA or
FUNCTION name. When thé name of a subprogram is
used as an argument in a subprogram reference, it
must have appeared in a preceding EXTERNAL
statement, '

When a BLOCK DATA subprogram is to be included in a
program load, its name must have appeared in an
EXTERNAL statement within the main program unit.

For example, if SUM and AFUNC are subprogram names
to be used as arguments in the subroutine SUBR, the
following statements would appear in the calling
program unit:

EXTERNAL SUM, AFUNC

CALL SUBR(SUM,AFUNC,X,Y)

DIMENSION STATEMENTS

A DIMENSION statement has the following form:
DIMENSION u2,u2,u3,...,un
where each ui is an array declarator.
Example:
DIMENSION RAT(5,5),BAR(20)

This statement declares two arrays - the 25 element
array RAT and the 20 element array BAR.

COMMON STATEMENTS

COMMON statements are non-executable, storage
allocating statements which |assign variables and
arrays to a storage area called COMMON storage and
provide the facility for various program units to
share the use of the same storage area.

FORTRAN-80 Reference Manual Page 38

COMMON statements are expressed in the following
form:

COMMON /Y1/A1/Y2/A2/.../¥n/An

where each Yi is a COMMON block storage name and
each Al is a sequence of variable names, array
names or constant array declarators, separated by
commas . The elements in Ai make up the COMMON
block storage area specified by the name Yi, If
any Yi 1is omitted leaving two consecutive slash
characters (//), the block of storage so indicated
is called blank COMMON. If the first block name
(Y1) is omitted, the two slashes may be omitted.

Example:
COMMON /AREA/A,B,C/BDATA/X,Y,Z,
X FL,ZAP (30)

In this example, two blocks of COMMON storage are
allocated - AREA with space for three variables and
BDATA, with space for four wvariables and the 30
element array, ZAP,

Example

COMMON //A1,B1/CDATA/ZOT (3, 3)
X //T2,23

In this example, A1, B1, T2 and Z3 are assigned to
blank COMMON in that order. The pair of slashes
preceding A1 could have been omitted.

CDATA names COMMON block storage for the nine
element array, ZOT and thus ZOT (3,3) is an array

declarator. 2ZOT must not have been previously
declared. (See "Array Declarators," Paragraph
6.3.)

Additional Considerations:

1. The name of a COMMON block may appear more than
once 1n the same COMMON statement, or in more
than one COMMON statement.

2, A COMMON block name is made up of from 1 to 6
alphanumeric characters, the first of which
must be a letter.

3. A COMMON block name must be different from any
subprogram names used throughout the program.

B - N

FORTRAN-80 Reference Manual Page 39

4. The size of a COMMON area may be increased by
the use of EQUIVALENCE statements, See
"EQUIVALENCE Statements," Paragraph 6.7.

5. The lengths of COMMON blocks of the same name
need not be identical in all program units
where the name appears. However, if the
lengths differ, the program unit specifying the
greatest length must be loaded first (see the
discussion of LINK-80 in the User's Guide).
The length of a COMMON area is the number of
storage units required to contain the variables
and arrays declared in the COMMON statement (or
statements) unless expanded by the wuse of
EQUIVALENCE statements.

EQUIVALENCE STATEMENTS

Use of EQUIVALENCE statements permits the sharing
of the same storage unit by two or more entities.
The general form of the statement is as follows:

EQUIVALENCE (uil), (u2),..., (un)

where each ui represents a sequence of two or more
variables or array elements, separated by commas.
Each element in the sequence is assigned the same
storage unit (or portion of a storage unit) by the
processor. The order in which the elements appear
is not significant.

Example:
EQUIVALENCE (A,B,C)

The variables A, B and C will share the same
storage unit during object program execution.

If an array element is wused 1in an EQUIVALENCE
statement, the number of subscripts must be the
same as the number of dimensions established by the
array declarator, or it must be one, where the one
subscript specifies the array element's number
relative to the first element of the array.

Example:

If the dimensionaliity of an array, Z, has been
declared as Z(3,3) then in an EQUIVALENCE statement

7(6) and Z(3,2) have the same meaning.

FORTRAN~-80 Reference Manual Page 40

Additonal Considerations:

1.

2.

The subscripts of array elements must be
integer constants.

An element of a multi-dimensional array may be
referred to by a single subscript, if desired.

Variables may be assigned to a COMMON block
through EQUIVALENCE statements.

Example:

COMMON /X/A,B,C
EQUIVALENCE (A,D)

In this case, the variables A and D share the
first storage unit in COMMON block X.

EQUIVALENCE statements can increase the size of

a block indicated by a COMMON statement by
adding more elements to the end of the block.

Example:
DIMENSION R(2,2)
COMMON /Z/W,X,Y
EQUIVALENCE (Y,R(3))

The resulting COMMON block will have the
following configuration:

Variable Storage Unit

W:R(1,1) 0
X = R(2,1) 1
Y = R(1,2) 2

R(2,2) 3

The COMMON block established by the COMMON
statement contains 3 storage units. It is
expanded to 4 storage units by the EQUIVALENCE
statement.

COMMON block size may be increased only from
the last element established by the COMMON
statement forward; not from its first element

backward.

Note that EQUIVALENCE (X,R(3)) would be invalid
in the example. The COMMON statement
established W as the first element 1in the
COMMON block and an attempt to make X and R(3)
equivalent would be an attempt to make R(1) the
first element.

FORTRAN-80 Reference Manual ; Page 41

5. It is invalid to EQUIVALENCE two elements of
the same array or two elements belonging to the
same or different COMMON blocks.

ExamEle:

DIMENSION XTABLE (20), D(5)
COMMON A,B(4)/ZAP/C,X

EQUIVALENCE (XTABLE (6),A(7)
X B(3) ,XTABLE(5)),
Y (B(3),D(5))

This EQUIVALENCE statement has the following
errors:

1. It attempts to EQUIVALENCE two elements of the
same array, XTABLE(6) and XTABLE (15).

2. It attempts to EQUIVALENCE two elements of the
same COMMON block, A(7) and B(3).

3. Since A is not an array, A(7) 1is an 1illegal
reference, ‘

4. Making B(3) equivalent to D(5) extends COMMON
backwards from its defined starting point.

DATA INITIALIZATION STATEMENT

The DATA initialization statement is a
non-executable statement which provides a means of
compiling data values into the object program and
assigning these data to variables and array
elements referenced by other statements.

The statement is of the following form:
DATA list/ut,u2,...,un/,list.../uk,uk+1,...uk+n/

where "1list" represents a list of wvariable, array
or array element names, and the ui are constants
corresponding in number to the elements in the
list. An exception to the one~for-one
correspondence of list items to constants is that
an array name (unsubscripted) may appear in the

FORTRAN~80 Reference Manual Page 42

list, and as many constants as necessary to fill
the array may appear in the corresponding position
between slashes. Instead of ui, it is permissible
to write k*uili in order to declare the same
constant, ui, k times in succession. k must be a
positive integer. Dummy arguments may not appear
in the list.

ExamEle:

DIMENSION C(7)
DATA A, B, C(1),C(3)/14.73,
X -8.1,2%7,5/

This implies that
A=14.73, B=-8.1, C(1)=7.5, C(3)=7.5

The type of each constant ui must match the type of
the corresponding item in the list, except that a
Hollerith or Literal constant may be paired with an
item of any type.

When a Hollerith or Literal constant is used, the
number of characters in its string should be no
greater than four times the number of storage units
required by the corresponding item, i.e., 1
character for a Logical variable, up to 2
characters for an Integer variable and 4 or fewer
characters for a Real variable.

If fewer Hollerith or Literal characters are
specified, trailing blanks are added to fill the

remainder of storage,

Hexadecimal data are stored in a similar fashion.
If fewer Hexadecimal characters are used,
sufficient leading zeros are added to fill the
remainder of the storage unit.

The examples below illustrate many of the features
of the DATA statement.

FORTRAN-80 Refer

1

B w -

ence Manual Page 43

DIMENSION HARY (2)
DATA HARY,B/ A4HTHIS, 4H OK.
,7.86/

REAL LIT(2)

LOGICAL LT,LF

DIMENSION H4(2,2),PI3(3)

DATA A1,B1,K1,LT,LF,H4(1,1) ,H4(2,1)

H4(1,2),H4(2,2),PI3/5.9,2.5E-4,

64,.FALSE.,.TRUE., 1. 75E-3,
0.85E-1,2*75.0,1.,2.,3.14159/
LIT(1)/'NOGO'/

FORTRAN-80 Reference Manual Page 44

SECTION 7

FORTRAN CONTROL STATEMENTS

FORTRAN control statements are executable statements which
affect and guide the logical flow of a FORTRAN program. The
statements in this category are as follows:
1. GO TO statements:
1. Unconditional GO TO
2. Computed GO TO

3. Assigned GO TO

2. ASSIGN
3. IF statements:
1. Arithmetic IF

2. Logical IF

4, DO

5. CONTINUE

6. STOP
7. PAUSE
8. CALL

9. RETURN

When statement labels of other statements are a part of a
control statement, such statement labels must be associated

with executable statements within the same program unit in
which the control statement appears.

7.1 GO TO STATEMENTS

7.1.1 UNCONDITIONAL GO TO

Unconditional GO TO statements are used whenever
control 1is to be transferred unconditionally to
some other statement within the program unit.

FORTRAN-80 Reference Manual Page 45

/\;\x
7.1.2
7.1.3

The statement is of the following form:
GO TO k

where k is the statement label of an executable
statement in the same program unit.

Example:
GO TO 376
310 A(7) = V1 -A(3)

376 A(2) =VECT
GO TO 310

In these statements, statement 376 1is ahead of
statement 310 in the logical flow of the program of
which they are a part.

COMPUTED GO TO
Computed GO TO statements are of the form:
GO TO (k1,k2,...,n),]j

where the ki are statement labels, and Jj 1is an
integer variable, 1 < j < n.

This statement causes transfer of control to the
statement labeled kj. If j < 1 or j > n, control
will be passed to the next statement following the
Computed GOTO.

ExamEle:
J=3

Go TO(7, 70, 700, 7000, 70000), J
3710 J=5
GO TO 325

When J = 3, the computed GO TO transfers control to
statement 700. Changing J to equal 5 changes the
transfer to statement 70000. Making J = 0 or J = 6
would cause control to be transferred to statement

310.

ASSIGNED GO TO

Assigned GO TO statements are of the following

FORTRAN~80 Reference Manual Page 46

form:
GO TO j,(k1,k2,...,kn)
or
GOTO J
where J is an integer variable name, and the ki are
statement labels of executable statements. This
statement causes transfer of control to the

statement whose label is equal to the current value
of J.

Qualifications

1. The ASSIGN statement must logically precede an
assigned GO TO.

2. The ASSIGN statement must assign a value to J

which is a statement label included in the list
of k's, if the list is specified,

Example:
GO TO LABEL, (80,90, 100)

Only the statement labels 80, 90 or 100 may be
assigned to LABEL.

ASSIGN STATEMENT

This statement is of the following form:
ASSIGN j TO i

where j is a statement label of an executable
statement and i is an integer variable.

The statement is used in conjunction with each
assigned GO TO statement that contains the integer
variable i. When the assigned GO TO is executed,
control will be transferred to the statement
labeled j.

FORTRAN-80 Reference Manual Page 47

ExamEle:
ASSIGN 100 TO LABREL

ASSIGN 90 TO LABEL
GO TO LABEL, (80,90,100)

IF STATEMENT

IF statements transfer control to one of a series
of statements depending upon a condition. Two
types of IF statements are provided:

Arithmetic IF
Logical IF

ARITHMETIC IF

The arithmetic IF statement is of the form:
IF (e) m1,m2,m3

where e is an arithmetic expression and m1, m2 and
m3 are statement labels.

Evaluation of expression e determines one of three
transfer possibilities:

If e is: Transfer to:
<0 m1
=0 m2
>0 m3
Examples:
Statement Expression Value Transfer to
IF (A)3,4,5 15 5
IF (N-1)50,73,9 0 73
IF (AMTX(2,1,2))7,2,1 =256 7

LOGICAL IF
The Logical IF statement is of the form:
IF (u)s
where u is a Logical expression and s 1is any

executable statement except a DO statement (see
7.4) or another Logical IF statement. The Logical

FORTRAN-80 Reference Manual Page 48

exprgssion u is evaluated as .TRUE. or .FALSE,
Section 4 contains a discussion of Logical
expressions,

Control Conditions:

If u is FALSE, the statement s 1is 1ignored and
control goes to the next statement following the
Logical IF statement. If, however, the expression
is TRUE, then control goes to the statement s, and
subsequent program control follows normal
conditions,.

If s is a replacement statement (v = e, Section 5),
the variable and equality sign (=) must be on the
same line, either immediately following IF(u) or on

a separate continuation line with the line spaces
following IF(u) left blank. See example 4 below.

Examples:

1. IF(I.GT.20) GO TO 115

2. IF(Q.AND,R) ASSIGN 10 TO J
3. IF(Z) CALL DECL(A,B,C)

4. IF(A.OR.B.LE.PI/2)I=J

5. IF(A.OR.B.LE.PI/2)
X I=J

DO STATEMENT

The DO statement, as implemented in FORTRAN,
provides a method for repetitively executing a
series of statements. The statement takes of one
of the two following forms:

1) DO k i = ml,m2,m3
or
2) DO kx i = ml,m2

where k is a statement label, 1 is an integer or
logical variable, and ml, m2 and m3 are integer
constants or integer or logical variables.

If m3 is 1, it may be omitted as in 2) above.

The following conditions and restrictions govern
the use of DO statements:

FORTRAN~80 Reference Manual Page 49

The DO and the first comma must appear on the
initial line.

The statement labeled k, called the terminal
statement, must be an executable statement.

The terminal statement must physically follow
its associated DO, and the executable
statements following the DO, up to and
including the terminal statement, constitute
the range of the DO statement.

The terminal statement may not be an Arithmetic
IF, GO TO, RETURN, STOP, PAUSE or another DO.

If the terminal statement is a logical IF and
its expression is .FALSE., then the statements
in the DO range are reiterated.

If the expression is .TRUE., the statement of
the logical 1IF 1is executed and then the
statements in the DO range are reiterated. The
statement of the logical IF may not be a GO TO,
Arithmetic IF, RETURN, STOP or PAUSE.

The controlling integer variable, i, is called
the index of the DO range. The index must be
positive "and may not be modified by any
statement in the range.

If m1l, m2, and m3 are Integer*1 variables or
constants, the DO loop will execute faster and
be shorter, but the range 1is limited to 127
iterations., For example, the loop overhead for
a DO loop with a constant limit and an
increment of 1 depends wupon the type of the
index variable as follows:

Index Variable Overhead
Type Microseconds Bytes
INTEGER*2 35.5 19
INTEGER*1 24 14
During the first execution of the statements in
the DO range, 1 1is egual to ml1; the second
execution, i = m1+m3; the third, i=m1+2*m3,

etc., until i is equal to the highest value in
this sequence less than or equal to m2, and
then the DO 1is said to be satisfied. The
statements in the DO range will always be
executed at least once, even if m1 < m2,

When the DO has been satisfied, control passes
to the statement following the terminal

FORTRAN~80 Reference Manual

Page 50

statement, otherwise contrecl transfers back to
the first executable statement following the DO
statement.

Example:
The following example computes

100

Sigma Ai where a is a one-dimensional array

i=1

100 DIMENSION A(100)

SUM = A(1)
DO 31 I = 2,100
31 SUM =S5UM + A(I)

END

The range of a DO statement may be extended to
include all statements which may logically be
executed between the DO and its terminal
statement. Thus, parts of the DO range may be
situated such that they are not physically
between the DO statement and its terminal
statement but are executed logically in the DO
range. This is called the extended range.

Example:

DIMENSION A(500), B(500)
DO 50 T = 10, 327, 3
IF'(V?V—C*C) ;0,15,31

50 A(I) = B(I)‘+ c

20 C=C - .05
GO TO 50

31 C=C+ .0125
GO TO 30

FORTRAN~80 Reference Manual Page 51

10. It is invalid to transfer control into the
range of a DO statement not itself in the range
or extended range of the same DO statement.

11. Within the range of a DO statement, there may
be other DO statements, in which case the DO's
must be nested. That is, if the range of one
DO contains another DO, then the range of the
inner DO must be entirely included in the range
of the outer DO.

The terminal statement of the inner DO may also
be the terminal statement of the outer DO.

For example, given a two dimensional array A of
15 rows and. 15 columns, and a 15 element
one-dimensional array B, the following
statements compute the 15 elements of array C
to the formula:

15
Ck =Sigma AkjBm, k = 1,2,...,15
j=1

DIMENSION A(15,15), B(15), C(15)

DO 80 K =1,15
C(K) = 0.0
DO 80 J=1,15
80 C(K) = C(K) +A(K,J) * B(J)

7.5 CONTINUE STATEMENT

CONTINUE is classified as an executable statement.
However, its execution does nothing. The form of
the CONTINUE statement is as follows:

CONTINUE

CONTINUE 1is frequently wused as the terminal
statement in a DO statement range when the
statement which would normally be the terminal
statement 1is one of those which are not allowed or

isonly executed conditionally.

FORTRAN-80 Reference Manual Page 52

Example:
DO 5 K= 1,10

IF (C2) 5,6,6
6 CONTINUE

C2 = C2 +,005
5 CONTINUE

STOP STATEMENT

A STOP statement has one of the following forms:
STOP
or
STOP c
where ¢ is any string of one to six characters.
When STOP is encountered during execution of the
object program, the characters c (if present) are
displayed on the operator control console and

execution of the program terminates.

The STOP statement, therefore, constitutes the
logical end of the program,

PAUSE STATEMENT

A PAUSE étatement has one of the following forms:
PAUSE
or
PAUSE c
where ¢ is any string of up to six characters.
When PAUSE is encountered during execution of the
object program, ' the characters c¢ (if present) are
displayed on the operator control console and

execution of the program ceases.

The decision to continue execution of the program
is not under control of the program. If execution

T

FORTRAN-80 Reference Manual Page 53

is resumed through intervention of an operator
without otherwise changing the state of the
processor, the normal execution sequence, following

PAUSE, is continued,

Execution may be terminated by typing a "T" at the

operator console. Typing any other character will
cause execution to resume.

CALL STATEMENT

CALL statements control transfers into SUBROUTINE
subprograms and provide parameters for use by the
subprograms., The general forms and detailed
discussion of CALL statements appear in Section 9,
FUNCTIONS AND SUBPROGRAMS.

RETURN STATEMENT

The form, use and interpretation of the RETURN
statement is described in Section 9.

END STATEMENT

The END statement must physically be the last
statement of any FORTRAN program. It has the
following form: ‘

END

The END statement is an executable statement and
may have a statement label. It causes a transfer
of control to be made to the system exit routine
$EX, which returns control to the operating system.

FORTRAN-80 Reference Manual ~ Page 54

SECTION 8

INPUT / OUTPUT

FORTRAN provides a series of statements which define the
control and conditions of data transmission between computer
memory and external data handling or mass storage devices
such as magnetic tape, disk, 1line printer, punched card
processors, keyboard printers, etc.

These statements are grouped as follows:
1. Formatted READ and WRITE statements which cause

formatted information to be transmitted between the
computer and I/0 devices.

2. Unformatted READ and WRITE statements which
transmit unformatted binary data in a form similar

to internal storage.

3. Auxiliary I/0 statements for positioning and
demarcation of files,

4, ENCODE and DECODE statements for transferring data
between memory locations.

5. FORMAT statements used in conjunction with
formatted record transmission to provide data
conversion and editing information between internal
data representation and external character string

forms.
8.1 FORMATTED READ/WRITE STATEMENTS
8.1.1 FORMATTED READ STATEMENTS

A formatted READ statement 1is wused to transfer
information from an input device to the computer.

Two forms of the statement are available, as
follows:

READ (u,f,ERR=L1,END=L2) k
or
READ (u,f,ERR=L1,END=L2)

where:

u - specifies a Physical and Logical Unit Number
and may be either an unsigned integer or an

FORTRAN-80 Reference Manual Page 55

integer variable in the range 1 through 255.
If an Integer variable is wused, an Integer
value must be assigned to it prior to execution
of the READ statement.

Units 1, 3, 4, and 5 are preassigned to the
console Teletypewriter. Unit 2 is preassigned
to the Line Printer (if one exists). Units
6-10 are preassigned to Disk Files (see
Appendix E). These units, as well as units 11
- 255, may be re-assigned by the user (see
Appendix B).

f - is the statement label of the FORMAT statement
describing the type of data conversion to be
used within the input transmission or it may be
an array name, in which. case the formatting
information may be input to the program at the
execution time. (See 8.7.10)

L1- is the FORTRAN label on the statement to which
the I/0 processor will transfer control if an
I/0 error is encountered,

L2- is the FORTRAN label on the statement to which
the I/0 processor will transfer control if an
End-of-~File is encountered.

k - is a list of variable names, separated by com-
mas, specifying the input data.

READ (u,f)k is used to input a number of items,
corresponding to the names in the list k, from the
file on logical wunit u, and wusing the FORMAT
statement f to specify the external representation
of these items (FORMAT statements, 8.7) The ERR=
and END= clauses are optional. If not specified,
I/0 errors and End-of-Files cause fatal runtime
errors.

The following notes further define the function of
the READ (u,f)k statement:

1« Each time execution of the READ statement
begins, a new record from the input file is

read.

2. The number of records to be input by a single
READ statement is determined by the list, k,
and format specifications.

3. The list k specifies the number of items to be
read from the input file and the locations into
which they are to be stored.

FORTRAN-80 Reference Manual Page 56

4.

6'

Any number of items may appear in a single list
and the items may be of different data types.

If there are more quantities in an input record
than there are items in the list, only the
number of quantities equal to the number of
items in the list are transmitted, Remaining
quantities are ignored.

Exact specifications for the 1list k are
described in 8.6.

ExamEles:

1'

Assume that four data entries are punched in a
card, with three blank columns separating each,
and that the data have field widths of 3, 4, 2
and 5 <characters respectively starting in
column 1 of the card. The statements

READ(5,20)K,L,M,N
20 FORMAT(I3,3X,I4,3X,12,3X,15)

will read the card (assuming the Logical Unit
Number 5 has been assigned to the card reader)
and assign the input data to the wvariables K,
L, M and N. The FORMAT statement could also be

20 FORMAT(I3,I7,15,18)

See 8.7 for complete description of FORMAT
statements.

Input the quantities of an array (ARRY):
READ(6,21)ARRY

Only the name of the array needs to appear in
the 1list (see 8,6). All elements of the array
ARRY will be read and stored using the
appropriate formatting specified by the FORMAT
statement labeled 21.

READ (u,k) may be used in conjunction with a FORMAT
statement to read H-type alphanumeric data into an
existing H-type field (see Hollerith Conversions,

8.7.3).

For example, the statements

READ(I,25)

25 FORMAT (10HABCDEFGHIJ)

FORTRAN-80 Reference Manual Page 57

8.1.2

cause the next 10 characters of the file on input
device I +to be vread and replace the characters

ABCDEFGHIJ in the FORMAT statement.

FORMATTED WRITE STATEMENTS

A formatted WRITE statement is used to transfer
information from the computer to an output device.

Two forms of the statement are available, as
follows:

WRITE (u, £f,ERR=L1,END=L2)k
or
WRITE (u,f,ERR=L1,END=L2)

where:

u -~ specifies a Logical Unit Number.

f - is the statement label of the FORMAT statement
describing the type of data conversion to be
used with the output transmission.

L1- specifies an I/0 error branch.

L2- specifies an EOF branch.

k - is a list of variable names separated by com=-
mas, specifying the output data.

WRITE (u,f)k is used to output the data specified
in the list k to a file on logical unit u using the
FORMAT statement f to specify the external
representation of the data (see FORMAT statements,
8.7). The following notes further define the
function of the WRITE statement:

1. Several records may be output with a single
WRITE statement, with the number determined by
the list and FORMAT specifications.

2. Successive data are output until the data
specified in the list are exhausted.

3. If output is to a device which specifies fixed

length records and the data specified in the
list do not fill the record, the remainder of
the record is filled with blanks.

FORTRAN~-80 Reference Manual Page 58

Example:
WRITE(2,10)A,B,C,D

The data assigned to the variables A, B, C and D
are output to Logical Unit Number 2, formatted
according to the FORMAT statement labeled 10.

WRITE(u,f) may be used to write alphanumeric
information when the characters to be written are
specified within the FORMAT statement. In this
case a variable list is not required.

For example, to write the characters 'H CONVERSION'
on unit 1,

WRITE (1,26)

26 FORMAT (12HH CONVERSION)

8.2 UNFORMATTED READ/WRITE

Unformatted I/0 (i.e. without data conversion) is
accomplished using the statements:

READ (u,ERR=L1,END=L2) k

WRITE (u,ERR=L1,END=L2) k

where:

u - specifies a Logical Unit Number.

L1- specifies an I/O error branch.

L2- specifies an EOF branch.

k - is a list of variable names, separated by
commas, specifying the I/O data.

The following notes define the functions of

unformatted I/0 statements.

1. Unformatted READ/WRITE statements perform
memory-image transmission of data with no data

conversion or editing,

2. The amount of data transmitted corresponds to
the number of variables in the list k.

FORTRAN~80 Reference Manual Page 59

3. The total length of the list of variable names
in an unformatted READ must not be longer than
the record 1length. If the 1logical record
length and the length of the list are the same,
the entire record is read. If the 1length of
the 1list is shorter than the logical record
length the wunread items in the record are
skipped.

4. The WRITE(a)k statement writes one logical
record.

5. A logical record may extend across more than
one physical record.

8.3 DISK FILE I/O

A READ or WRITE to a disk file (LUN 6-10)
automatically OPENs the file for I/O. The file
remains open until closed by an ENDFILE command
(see Section 8.4) or until normal program
termination.

NOTE

Exercise caution when doing sequential
output to disk files. If output is done to
an existing file, the existing file will be
deleted and replaced with a new file of the
same name.

8.3.1 RANDOM DISK I/O

SEE ALSO SECTION 3 OF YOUR MICROSOFT FORTRAN USER'S
MANUAL.

Some versions of FORTRAN-80 also provide random
disk 1I/0. For random disk access, the record
number is specified by using the REC=n option in
the READ or WRITE statement. For example:

I =10
WRITE (6,20,REC=I,ERR=50) X, Y, Z

This program segment writes record 10 on LUN 6, If
a previous record 10 exists, it is written over.
If no record 10 exists, the file 1s extended to

FORTRAN-80 Reference Manual Page 60

create one. Any attempt to read a non-existent
record results in an I/0 error.

In random access files, the record 1length varies
with different versions of FORTRAN. See Section 3
of your Microsoft FORTRAN User's Manual. It is
recommended that any file you wish to read randomly
be created via FORTRAN (or Microsoft BASIC) random
access statements. Files created this way (using
either binary or formatted WRITE statements) will
zero-fill each record to the proper length if the
data does not fill the record.

Any disk file that is OPENed by a READ or WRITE
statement 1s assigned a default filename that is
specific to the operating system. See also Section
3 of the FORTRAN User's Manual.

8.3.2 OPEN SUBROUTINE

Alternatively, a file may be OPENed using the OPEN
subroutine. LUNs 1-5 may also be assigned to disk
files with OPEN. The OPEN subroutine allows the
program to specify a filename and device to be
associated with a LUN.

An OPEN of a non-existent file creates a null file
of the appropriate name. An OPEN of an existing
file followed by sequential output deletes the
existing file. An OPEN of an existing file
followed by an input allows access to the current
contents of the file.

The form of an OPEN call varies under different

operating systems. See your Microsoft FORTRAN
User's Manual, Section 3.

8.4 AUXILIARY I/0 STATEMENTS

Three auxiliary I/O statements are provided:

BACKSPACE u
REWIND u
ENDFILE u

The actions of all three statements depend on the
LUN with which they are used (see Appendix B).
When the LUN is for a terminal or line printer, the
three statements are defined as no-ops.

When the LUN is for a disk drive, the ENDFILE and
REWIND commands allow further program control of
disk files. ENDFILE u closes the file associated
with LUN u. REWIND u closes the file associated

FORTRAN=80 Reference Manual Page 61

With LUN u, then opens it again. BACKSPACE is not
implemented at this time, and therefore causes an
error if used.

8.5 ENCODE/DECODE

ENCODE and DECODE statements transfer data,
according to format specifications, from one
section of memory to another. DECODE changes data
from ASCII format to the specified format. ENCODE
changes data of the specified format into ASCII
format. The two statements are of the form:

ENCODE (A,F) K
DECODE (A,F) K

where;

A is an array name
F is FORMAT statement number
K is an I/0 List

DECODE is analogous to a READ statement, since it
causes conversion from ASCII to internal format.
ENCODE is analogous to a WRITE K statement, causing
conversion from internal formats to ASCII.

FORTRAN-80Reference Manual Page 62

8.6

8.6.1

NOTE

Care should be taken that the array A is
always large enough to contain all of the
data being processed. There 1is no check
for overflow. An ENCODE operation which
overflows the array will probably wipe out
important data following the array. A
DECODE operation which overflows will
attempt to process the data following the
array.

INPUT/OUTPUT LIST SPECIFICATIONS

Most forms of READ/WRITE statements may contain an
crdered 1list of data names which identify the data
to be transmitted. The order in which the 1list
items appear must be the same as that in which the
corresponding data exists (Input), or will exist
(Output) in the external I/0O medium.

Lists have the following form:
mit,m2,...,Mn

where the mi are list items separated by commas, as
shown.

LIST ITEM TYPES

A list item may be a single datum identifier or a
multiple data identifier.

1. A single datum identifier item is the name of a
variable or array element. One or more of
these items may be enclosed in parentheses
without changing their intended meaning.

ExamEles:

A
c(26,1),R,K,D, (1,J)
B,I1(10,10),S,(R,K),F(1,25)

NOTE

The entry (I,J) defines two items in a
list while (26,1) is a subscript.

SN

e N

FORTRAN-80 Reference Manual : Page 63

2,

Multiple data identifier items are in two
forms:

a. An array name appearing in a 1list without
subscript(s) 1is considered egquivalent to the
listing of each successive element of the
array.

Example:

If B is a two dimensional array, the list item
B 1is equivalent to: B(1,1),B(2,1),B(3,1) ...,
B(1,2),B(2,2)...,B(3,k).

where j and k are the subscript limits of B.
b. DO-implied items are lists of one or more
single datum identifiers or other DO-implied
items followed by a comma character and an
expression of the form:

i =ml,m2,m3 or i = ml,m2

and enclosed in parentheses.

The elements i,m1,m2,m3 have the same meaning
as defined for the DO statement, The DO
implication applies to all list items enclosed
in parentheses with the implication.

Examgles:

DO~Implied Lists Eguivalent Lists
(X(I),I=1,4) X(1),x(2),x(3),X(4)
(Q(J),R(J),J=1,2) Q(1),RrR(1),Q(2),R(2)
(G(X),K=1,7,3) G(1),G(4),G(7)

((a(1,J),1=3,5),3=1,9,4) A(3,1),A(4,1),A(5,1)
A(3,5),A(4,5),A(5,5)
aA(3,9),A(4,9),A(5,9)

(R(M) ,M=1,2),I,zAP(3) R(1),R(2),1I,2AP(3)
(R(3),T(1),I=1,3) R(3),T(1),R(3),T(2),
R(3),T(3)

Thus, the elements of a matrix, for example,
may be transmitted in an order different from
the order in which they appear in storage. The
array A(3,3) occupies storage in the order
A(1,1),A(2,1), A(3,v),A(1,2),A(2,2),A(3,2),
A(1,3),A(2,3),A(3,3). By specifying the
transmission of the array with the DO-implied
list item ((A(I,J),J=1,3),I=1,3), the order of
transmission is:

FORTRAN~80 Reference Manual Page 64

8.6.2

A(1,1),a(1,2),a(1,3),A(2,1),A(2,2),
A(2,3),a(3,1),A(3,2),A(3,3)

SPECIAL NOTES ON LIST SPECIFICATIONS

1.

The ordering of a list is from 1left +to right
with repetition of items enclosed in
parentheses (other than as subscripts) when
accompanied by controlling DO-implied index
parameters,

Arrays are transmitted by the appearance of the
array name (unsubscripted) in an input/output
list.

Constants may appear in an input/output 1list
only as subscripts or as indexing parameters.

For input lists, the DO~implying elements i,
m1l, m2 and m3 may not appear within the
parentheses as list items.

ExamEles:

1.
2,

3.

READ (1,20) (I,J,A(I),I=1,J3,2) is not allowed
READ(1,20)I,J, (A(I),I=1,TJ,2) is allowed

WRITE(1,20) (X,J3,A(X),I=1,3,2) is allowed

Consider the following examples:

DIMENSION A(25)

A(1)
A(3)
A(5)
J =25

.
.2
.3

nnu
NN

WRITE (1,20) J,(I,A(I),I=1,J,2)

the output of this WRITE statement is

1.

5,1,2.1,3,2.2,5,2.3

Any number of items may appear in a single
list,

FORTRAN-80 Reference Manual Page 65

2. In a formatted transmission (READ(u, f)k,
WRITE(u,f)k) each item must have the correct
type as specified by a FORMAT statement.

FORMAT STATEMENTS

FORMAT statements are non-executable, generative
statements wused in conjunction with formatted READ
and WRITE statements. They specify conversion
methods and data editing information as the data is
transmitted between computer storage and external
media representation.

FPORMAT statements require statement labels for
reference (f) in the READ(u,f)k or WRITE(u,f)k
statements,

The general form of a FORMAT statement 1is as
follows:

n FORMAT (s1,s2,...,sn/s1',s2',...,sn'/...)

where n is the statement label and each si 1is a
field descriptor. The word FORMAT and the
parentheses must be present as shown, The slash
(/) and comma (,) characters are field separators
and are described in a separate subparagraph. The
field is defined as that part of an external record
occupied by one transmitted item.

FIELD DESCRIPTORS

Field descriptors describe the sizes of data fields
and specify the type of conversion to be exercised
upon each transmitted datum. The FORMAT field
descriptors may have any of the following forms:

Descriptor Classification

rFw.d

rGw.d

rEw.d Numeric Conversion
rDw.d

rIw

rLw Logical Conversion
rAw

nHh1h2...hn Hollerith Conversion
*1112...1n'

nX Spacing Specification

mP Scaling Factor

FORTRAN=80 Reference Manual Page 66

where:

1« w and n are positive integer constants defining
the field width (including digits, decimal
points, algebraic signs) in the external data
representation,

2, d is an integer specifying the number of
fractional digits appearing in the external
data representation.

3. The characters F, G, E, D, I, A and L indicate
the type of conversion to be applied to the
items in an input/output list.

4, r is an optional, non-zero integer indicating
that the descriptor will be repeated r times.

5. The hi and 1i are characters from the FORTRAN
character set.

6. m is an integer constant (positive, negative,
or zero) indicating scaling.

NUMERIC CONVERSIONS

Input operations with any of the numeric
conversions will allow the data to be represented
in a "Free Format"; i.e., commas may be wused to
separate the fields in the external representation.

F-type conversion

Form: Fw.d

Real or Double Precision type data. are processed
using this conversion. w characters are processed
of which 4 are considered fractional.

F-output

Values are converted and output as minus sign (if
negative), followed by the integer portion of the
number, a decimal point and d digits of the
fractional portion of the number. If a value does
not fill the field, it is right Jjustified in the
field and enough preceding blanks to fill the field
are inserted. If a value requires more field
positions than allowed by w, the first w-1 digits
of the value are output, preceded by an asterisk,

e

FORTRAN-80 Reference Manual Page 67

F-Output Examples:

FORMAT Internal Output
Descriptor Value (b=blank)
F10.4 368,42 bb362,4200
F7.1 -4786,361 -4786.4
F6.4 4739.76 *,7600
F7.3 -5.6 b-5.600

* Note the loss of leading digits in the 4th 1line
above.

F-Input
(See the description under E-Input below.)

E~type Conversion

Form: Ew.d
Real or Double Precision type data are processed

using this conversion. w characters are processed
of which d are considered fractional.

E-Output

Values are converted, rounded to d digits, and
output as:

1. a minus sign (if negative),
2. a zero and a decimal point,
3. d decimal digits,

4. the letter E,

5. the sign of the exponent (minus or blank),

6. two exponent digits,

in that order. The values as described are right
justified in the field w with preceding blanks to
fill the field if necessary. The field width w
should satisfy the relationship:

w>a+ 7

Otherwise significant characters may be lost. Some
E~-Output examples follow:

FORTRAN=-80 Reference Manual Page 68

FORMAT Internal Output
Descriptor Value (b=blank)
E12.5 76.573 bb.76573Eb02
E14.7 -32672.354 -b.3267235Eb05
E13.4 -0.0012321 bb-b.1232E-02
E8.2 76321.73 b.76Eb05
E-Input

Data values which are to be processed under E, F,
or G conversion can be a relatively loose format in
the external input medium. The format is identical
for either conversion and is as follows:

1. Leading spaces (ignored)

2. A + or - sign (an unsigned input is assumed to
be positive)

3. A string of digits

4, A decimal point

5. A second string of digits
6. The character E

7. A + or - sign

8. A decimal exponent

Each item in the list above is optional; but the
following conditions must be observed:

1. If FORMAT items 3 and 5 (above) are present,
then 4 is reqguired.

2. If FORMAT item 8 is present, then 6 or 7 or
both are required.

3. All non-leading spaces are considered zeros,

Input data can be any number of digits in length,
and correct magnitudes will be developed, but

- precision will be maintained only to the extent
specified in Section 3 for Real data.

TN

FORTRAN-80 Reference Manual Page 69

E- and F- and G- Input Examples:

FORMAT Input Internal
Descriptor (b=blank) Value
E10.3 +0.23756+4 +2375.60
E10.3 bbbbb 17631 +17.631
G8.3 b1628911 +1628.911
F12.4 bbbb=6321132 -632,1131

Note in the above examples that if no decimal point
is given among the input characters, the d in the
FORMAT specification establishes the decimal point
in conjunction with an exponent, if given. If a
decimal point is included in the input characters,
the d specification is ignored.

The letters E, F, and G are interchangeable in the

input format specifications., The end result is the
same.

D-Type Conversions

D-Input and D-Output are identical to E=~Input and
E-Output except the exponent may be specified with
a "D" instead of an "E." ‘

G-Type Conversions

Form: Gw.d

Real or Double Precision type data are processed
using this conversion. w characters are processed
of which d are considered significant.

G-Input:

(See the description under E-Input)

G=Output:

The method of output conversion is a function of
the magnitude of the number being output. Let n be

the magnitude of the number. The following table
shows how the number will be output:

FORTRAN-80 Reference Manual Page 70

Magnitude Equivalent Conversion ™
1 <=n 1 F(w-4).4,4X i
1<=n 10 F(w-4).(d-1),4X
10972 <= n < 10971 F(w-4) .1, 4X
10971 <= n < 10¢ F(w-4).0,4X
Otherwise Ew.d

I-Conversions

Form: Iw

Only Integer data may be converted by this form of
conversion., w specifies field width.

I-Output:
Values are converted to Integer constants. N
Negative values are preceded by a minus sign., If
the value does not f£fill the field, it 1is right
justified in the field and enough preceding blanks
to £ill the field are inserted. If the value
exceeds the field width, only the least significant
w=1 characters are output preceded by an asterisk,.
Examples:
FORMAT Internal Output
Descriptor Value (b=blank)

I6 +281 bbb281

I6 -23261 -23261

I3 126 126

I4 -226 ~226
I-Input:
A field of w characters is input and converted to
internal integer format. A minus sign may precede
the integer digits. If a sign is not present, the
value is considered positive.
Integer values in the range -32768 to 32767 are ™

accepted., Non-leading spaces are treated as zeros.

FORTRAN-80 Reference Manual Page 71

8.7.3

ExamEles:

Format Input Internal
Descriptor (b=blank) Value

I4 b124 124

I4 ~-124 -124

I7 bb6732b 67320

I4 1b2b 1020

HOLLERITH CONVERSIONS

A-Type Conversion

The form of the A conversion is as follows:
Aw

This descriptor causes unmodified Hollerith
characters to be read into or written from a
specified list item.

The maximum number of actual characters which may
be transmitted between internal and external
representations using Aw is four times +the number
of storage units 1in the corresponding list item
(i.e., 1 character for logical items, 2 characters
for 1Integer items, 4 characters for Real items and
8 characters for Double Precision items).

A-Output:

If w is greater than 4n (where n is the number of
storage wunits required by the 1list item), the
external output field will consist of w-4n Dblanks
followed by the 4n characters from the internal
representation. If w is less than- 4n, the external
output field will consist of the leftmost w
characters from the internal representation.

Examples:
Format Internal Type Output
Descriptor (b=blanks)
A1 Al Integer A
A2 AB Integer AB
A3 ABCD Real ABC
A4 ABCD Real ABCD
A7 ABCD Real bbbABCD
A-TInput:

If w is greater than 4n (where n is the number of

FORTRAN-80 Reference Manual Page 72

storage wunits required by the corresponding list
item), the rightmost 4n characters are taken from
the external input field. If w is less than 4n,
the w characters appear left justified with w-4n
trailing blanks in the internal representation.

Examples:
Format Input Type Internal
Descriptor Characters (b=blanks)
Al A Integer Ab
A3 ABC Integer AB
A4 ABCD Integer AB
Al A Real Abbb
A7 ABCDEFG Real DEFG
H-Conversion

The forms of H conversion are as follows:
nHh1h2,..hn

'h1h2...hn'

These descriptors process Hollerith character
strings between the descriptor and the external
field, where each h represents any character from
the ASCII character set.

NOTE

Special consideration is required if an
apostrophe (') 1is to be used within the
literal string in the second form., An
apostrophe character within the string is
repreéentedkby two successive apostrophes.
See the examples below.

H-Output:

The n characters hi, are placed in the external
field. In the nHhlh2...hn form the number of
characters in the string must be exactly as
specified by n. Otherwise, characters from other
descriptors will be taken as part of the string.
In both forms, blanks are counted as characters.

FORTRAN~-80 Reference Manual Page 73

Examples:

Format Output

Descriptor (b=blanks)
1HA or 'A' A
8HbSTRINGD or 'bSTRINGD' bSTRINGDb
11HX(2,3)=12.0 or 'X(2,3)=12.0" X(2,3)=12.0
12HIbSHOULDN'T or 'IbSHOULDN''T! IbSHOULDN'T

H-Input

The n characters of the string hi are replaced by
the next n characters from the input record. This
results in a new string of characters in the field

descriptor.

FORMAT Input Resultant

Descriptor {b=blank) Descriptor
4H1234 or '1234" ABCD 4HABCD or 'ABCD'
7THbbFALSE or 'bbFALSE' bFALSED 7JHbFALSEb or 'bFALSEDL'
6Hbbbbbb or 'bbbbbb' MATRIX 6HMATRIX or 'MATRIX'

8.7.4 LOGICAL CONVERSIONS

The form of the logical conversion is as follows:
Lw
L-Output:

If the value of an item in an output list
corresponding to this descriptor is 0, an F will be

output; otherwise, a T will be output. If w 1is
greater than 1, w-1 leading blanks precede the
letters. :
Examples:
FORMAT Internal Output
Descriptor Value (b=blank)
L1 =0 F
L1 <>0 T
L5 . <>0 bbbbT
L7 =0 bbbbbbF .
L-Input

The external representation occupies w positions,
It consists of optional blanks followed by a "T" or
"p" followed by optional characters.

FORTRAN-80 Reference Manual Page 74

8.7.5 X DESCRIPTOR ™

The form of X conversion is as follows:

nX

This descriptor causes no conversion to occur, nor
does it correspond to an item in an input/output
list. When used for output, it causes n blanks to
be inserted in the output record. Under input
circumstances, this descriptor causes the next n
characters of the input record to be skipped.

Output Examples:

FORMAT Statement Output
(b=blanks)

3 FORMAT (1HA,4X,2HBC) AbbbbBC

7 FORMAT (3X,4HABCD, 1X) bbbABCDb

Input Examples:

FORMAT Statement Input String Resultant Input
10 FORMAT (F4.1,3X,F3.0) 12.5ABC120 12.5,120 .

5 FORMAT (7X,I3) 1234567012 012

8.7.6 P DESCRIPTOR

The P descriptor 1is wused to specify a scaling
factor for real conversions (F, E, D, G). The form
is nP where n is an 1integer constant (positive,
negative, or zero).

The scaling factor is automatically set to zero at
the beginning of each formatted I/O call (each READ
or WRITE statement). If a P descriptor is
encountered while scanning a FORMAT, the scale
factor is changed to n. The scale factor remains
changed until another P descriptor is encountered

or the I/0 terminates.

Effects of Scale Factor on Input:

During E, F, or G input the scale factor takes
effect only if no exponent 1is present in the
external representation. In that case, the
internal value will be a factor of 10**n less than
the external value (the number will be divided by
10**n before being stored). N

FORTRAN~-80 Reference Manual Page 75

8.7.7

8.7.7.1

Effect of Scale Factor on Output:

E-Output, D-Output:

The coefficient is shifted left n places relative
to the decimal point, and the exponent is reduced
by n (the value remains the same).

F-Qutput:

The external value will be 10**n times the internal
value.

G~-Output:

The scale factor is ignored if the internal value

'is small enough to be output using F conversion.

Otherwise, the effect is the same as for E output.

SPECIAL CONTROL FEATURES OF FORMAT STATEMENTS

Repeat Specifications

1« The E, F, D, G, I, L and A field descriptors
may be indicated as repetitive descriptors by
using a repeat count r in the form rEw.d,
rFw.d, rGw.d, rIw, rLw, rAw., The following
pairs of FORMAT statements are equivalent:

66 FORMAT (3F8.3,F9.2)
C IS5 EQUIVALENT TO:
66 FORMAT (F8,3,F8,.3,F8,3,F9,2)

14 FORMAT (2I3,2A5,2E10.5)
C IS EQUIVALENT TO:
14 FORMAT (I3,13,A5,A5,E10.5,E10.5)

2. Repetition of a group of field descriptors is
accomplished by enclosing the group in
parentheses preceded by a repeat count.,
Absence of a repeat count indicates a count of
one, Up to two levels of parentheses,
including the parentheses required by the

FORMAT statement, are permitted.

Note the following equivalent statements:

FORTRAN-~80 Reference Manual Page 76

22 FORMAT (I3,4(F6.1,2X))
C IS EQUIVALENT TO:
22 FORMAT (I3,F6.1,2X,F6.1,2X,F6.1,2X,
1 F6.1,2X)

3. Repetition of FORMAT descriptors is also
initiated when all descriptors in the FORMAT
statement have been used but there are still
items in the input/output list that have not
been processed. When this occurs the FORMAT
descriptors are re~used starting at the first
opening parenthesis in the FORMAT statement. 2
repeat count preceding the parenthesized
descriptor(s) to be re-used is also active in
the re-use. This type of repetitive use of
FORMAT descriptors terminates processing o, the
current record and initiates the processing of
a new record each time the re-use begins,
Record demarcation under these circumstances is
the same as in the paragraph 8.7.7.2 below.

Input Example:

DIMENSION A(100)
READ (3,13) A

13 FORMAT (5F7.3)

In this example, the first 5 quantities from each
of 20 records are input and assigned to the array
elements of the array A.

Output Example:

WRITE (6,12)E,F,X,L,M,KK,LL,MM,K3,LE,
1 M3

12 FORMAT (2F9.4, (3I7))

In this example, three records are written, Record
1 contains ¥, ¥, K, L and M, Because the
descriptor 3I7 is reused twice, Record 2 contains
KK, LL and MM and Record 3 contains K3, L3 and M3.

FORTRAN-8QReference Manual Page 77

8.7.7.2

Field Separators

Two adjacent descriptors must be separated in the
FORMAT statement by either a comma or one or more
slashes.,

Example:
2HO0K/F6.3 or 2HOK,F6.3

The slash not only separates field descriptors, but
it also specifies the demarcation of formatted
records.

Each slash terminates a record and sets up the next
record for processing. The remainder of an input
record is ignored; the remainder of an output
record 1is filled with blanks. Successive slashes
(///«../) cause successive records to be ignored on
input and successive blank records to be written on
output.

Output example:
DIMENSION A{100),J(20)

WRITE (7,8) J,A
8 FORMAT (10I17/101I7/50F7.3/50F7.3)

In this example, the data specified by the list of
the WRITE statement are output to unit 7 according
to the specifications of FORMAT statement 8. Four
records are written as follows:

Record 1 Record 2 Record 3 Record 4
J(1) J(11) A(T) A(51)
J(2) J(12) A(2) A(52)
I(10) 7(20) A (50) a(100)

Input Example:

DIMENSION B(10)

ﬁEAD (4,17) B
17 FORMAT(F10.2/F10.2///8F10.2)

In this example, the two array elements $(1) and
B(2) receive their values from | the first data

FORTRAN-80 Reference Manual Page 78

8.7.8

fields of successive records (the remainders of the
two records are ignored). The third and fourth
records are ignored and the remaining elements of
the array are filled from the fifth record.

FORMAT CONTROL, LIST SPECIFICATIONS AND RECORD
DEMARCATION

The following relationships and interactions
between FORMAT control, input/output 1lists and
record demarcation should be noted:

1. Execution of a formatted READ or WRITE
statement initiates FORMAT control.

2, The conversion performed on data depends on
information jointly provided by the elements in
the input/output list and field descriptors in
the FORMAT statement.

3. If there is an input/output list, at least one
descriptor of types E, F, D, G, I, L or A must
be present in the FORMAT statement.

4, Each execution of a formatted READ statement
causes a new record to be input.

5. Each item in an input 1list corresponds to a
string of characters in the record and to a
descriptor of the types E, F, G, I, L or A in
the FORMAT statement.

6. H and X descriptors communicate information
directly between the external record and the
field descriptors without reference to 1list

items.

7. On input, whenever a slash 1is encountered in
the FORMAT statement or the FORMAT descriptors
have been exhausted and re-use of descriptors
is initiated, processing of the current record
is terminated and the following occurs:

a. Any unprocessed characters in the record
are ignored.

b. If more input is necessary to satisfy
list requirements, the next record is
read.

FORTRAN-80 Reference Manual ’ Page 79

,rm\\\ 8 R

A READ statement is terminated when all items
in the input list have been satisfied if:

a. The next FORMAT descriptor is E, F, G, I,
L or A.

b. The FORMAT control has reached the last
outer right parenthesis of the FORMAT
statement.

If the input list has been satisfied, but the
next FORMAT descriptor is H or X, more data are
processed (with the possibility of new records
being input) until one cof the above conditions
exists.

9. If FORMAT control reaches the last right
parenthesis of the FORMAT statement but there
are more list items to be processed, all or
part of the descriptors are reused. (See item
3 in the description of Repeat Specifications,
sub-paragraph 8.7.7.1)

10. When a Formatted WRITE statement is executed,
records are written each time a slash is
R encountered in the FORMAT statement or FORMAT
control has reached the rightmost right
parenthesis. The FORMAT control terminates in
one of the two methods described for READ
termination in 8 above. Incomplete records are
filled with blanks to maintain record lengths.

8.7.9 FORMAT CARRIAGE CONTROL

The first character of every* formatted output
record is used to convey carriage control
information to the output device, and is therefore
never printed. The carriage control character
determines what action will be taken before the
line is printed. The options are as follows:

Control Character Action Taken Before Printing
0 Skip 2 lines
1 Insert Form Feed
+ No advance (not lmplgmenteq
Other Skip 1 line for line-printer)

*Does not pertain to disk file records.

8.7.10 FORMAT SPECIFICATIONS IN ARRAYS

The FORMAT reference, £, of a formatted READ or
WRITE statement (See 8.1) may be an array name
instead of a statement label. If such reference 1is

FORTRAN-~80 Reference Manual Page 80

made, at the time of execution of the READ/WRITE
statement the first part of the information
contained in the array, taken in natural order,
must constitute a valid FORMAT specification. The
array may contain non-FORMAT information following
the right parenthesis that ends the FORMAT
specification,

The FORMAT specification which is to be inserted in
the array has the same form as defined for a FORMAT
statement (i.e., it begins with a left parenthesis
and ends with a right parenthesis).

The FORMAT specification may be inserted in the
array by use of a DATA initialization statement, or
by use of a READ statement together with an Aw

FORMAT, Examgle:
Assume the FORMAT specification

(3F10.3,416)

or a similar 12 character specification 1is to be
stored into an array. The array must allow a
minimum of 3 storage units.

The FORTRAN coding below shows the various methods
of establishing the FORMAT specification and then
referencing the array for a formatted READ or

WRITE,

FORTRAN-80 Reference Manual Page 81

C DECLARE A REAL ARRAY
DIMENSION A(3), B(3), M(4)

C INITIALIZE FORMAT WITH DATA STATEMENT
DATA A/'(3F1','0.3,','416)"'/

C READ DATA USING FORMAT SPECIFICATIONS
C IN ARRAY A
READ (6,A) B, M

C DECLARE AN INTEGER ARRAY
DIMENSION IA(4), B(3), M(4)

C READ FORMAT SPECIFICATIONS
READ (7,15) IA
C FORMAT FOR INPUT OF FORMAT SPECIFICATIONS
15 FORMAT (4A2)

¢ READ DATA USING PREVIOUSLY INPUT
c FORMAT SPECIFICATION
READ (7,IA) B,M

FORTRAN~80 Reference Manual Page 82

SECTION 9

FUNCTIONS AND SUBPROGRAMS

The FORTRAN language provides a means for defining and using
often needed programming procedures such that the statement
or statements of the procedures need appear 1in a program
only once but may be referenced and brought into the logical
execution sequence of the program whenever and as often as
needed.

These procedures are as follows:

1. Statement functions.
2, Library functions.
3. FUNCTION subprograms.

4. SUBROUTINE subprograms.

Each of these procedures has its own unique requirements for
reference and defining purposes. These requirements are
discussed in subsequent paragraphs of this section.
However, certain features are common to the whole group or
to two or more of the procedures. These common features are
as follows:

1. Each of these procedures is referenced by its name
which, in all cases, 1is one to six alphanumeric
characters of which the first is a letter.

2, The first three are designated as "functions”" and
are alike in that:

1. They are always single valued (i.e., they
return one value to the program unit from which

they are referenced).

2. They are referred to by an expression
containing a function name.

3. They must be typed by type specification
statements if the data type of the
single-valued result is to be different from
that indicated by the pre-defined convention.

3. TFUNCTION subprograms and SUBROUTINE subprograms are
considered program units.

FORTRAN-80 Reference Manual Page 83

In the following descriptions of these procedures, the term
calling program means the program unit or procedure in which
a reference to a procedure is made, and the term "called
program” means the procedure to which a reference is made.

9.1

9.2

THE PROGRAM STATEMENT

The PROGRAM statement provides a means of
specifying a name for a main program unit, The
form of the statement is:

PROGRAM name

If present, the PROGRAM statement must appear
before any other statement in the program unit.
The name consists of 1-6 alphanumeric characters,
the first of which is a letter. TIf no PROGRAM
statement 1is present in a main program, the
compiler assigns a name of $MAIN to that program.

STATEMENT FUNCTIONS

Statement functions are defined by a single
arithmetic or logical assignment statement and are
relevant only to the program unit in which they
appear. The general form of a statement function
is as follows:

f(al,a2,...an) =.e

where f is the function name, the ai are dummy
arguments and e 1is an arithmetic or logical
exXpression.

Rules for ordering, structure and use of statement
functions are as follows:

1. Statement function definitions, if they exist
in a program unit, must precede all executable
statements 1in the unit and follow all
specification statements.

2. The. ai are distinct variable names or array
elements, but, being dummy variables, they may
have the same names as variables of the same
type appearing elsewhere in the program unit.

3. The expression e is constructed according to
the rules in SECTION 4 and may contain only
references . to the dummy arguments and
non-Literal constants, variable and array
element references, utility and mathematical
function references and references to

FORTRAN-80 Reference Manual Page 84

previously defined statement functions.

4. The type of any statement function name or
argument that differs from its pre-defined
convention type must be defined by a type
specification statement.

5. The relationship between f and e must conform
to the replacement rules in Section 5.

6. ‘A statement function is <called by 1its name
followed by a parenthesized list of arguments.,
The expression is evaluated using the arguments
specified in the call, and the reference is
replaced by the result.

7. The ith parameter in every argument list must
agree in type with the ith dummy in the
statement function.

The example below shows a statement function and a
statement function call.

C STATEMENT FUNCTION DEFINITION
c

FUNC1(A,B,C,D) ((A+B) **C) /D

C STATEMENT FUNCTION CALL
o
A12=A1~-FUNC1(X,Y,27,C7)

LIBRARY FUNCTIONS

Library functions are a group of wutility and
mathematical functions which are "built-in" to the
FORTRAN' system. Their names a pre-defined to the
Processor and automatically typed. The functions
are listed in Tables 9-1 and 9-2, In the tables,
arguments are denoted as al,a2,...,an, if more than
one argument is required; or as a if only one is
required.

A library function is called when its name is used
in an arithmetic expression. Such a reference
takes the following form: ‘

f(aj,a2,...an)

where f is the name of the function and the ai are
actual arguments. The arguments must agree in
type, number and order with the specifications
indicated in Tables 9-1 and 9-2.

N

FORTRAN-80 Reference Manual Page 85

In addition to the functions listed in 9-1 and 9-2,
four additional library subprograms are provided to
enable direct access to the 8080 (or 780) hardware.
These are:

PEEX, POKE, INP, OUT

PEEK and INP are Logical functions; POKE and OUT

are: subroutines., PEEK and POKE allow direct access

to any memory location. PEEK(a) returns the
contents of the memory location specified by a.
CALL POKE (al,a2) causes the contents of the memory
location specified by al to be replaced by the
contents of a2, INP and OUT allow direct access to
the 1I/O ports. INP(a) does an input from port a
and returns the 8-bit value input. CALL OUT(al,aZ2)
outputs the value of a2 to the port specified by
aftl. '

- FORTRAN-80 Reference Manual

Function Name

TABLE 9-1

Intrinsic Functions

Definition

ABS
IABS
DABS

AINT
INT
IDINT

AMOD
MOD

AMAXO
AMAX1
MAXO0
MAX1
DMAX 1

AMINO
AMIN1
MINO

MIN1
DMIN1

FLOAT

IFIX

SIGN
ISIGN
DSIGN

DIM
IDIM

SNGL

DBLE

fal

Sign of a times lar-

gest integer <=lal

al(mod a2)

Max (al,a2,...)

Min(al,a2,...)

Conversion from
Integer to Real

Conversion from
Real to Integer

Sign of a2 times lall

al - Min(atl,a2)

Types
Argument Function
Real Real
Integer Integer
Double Double
Real Real

" Real Integer
Double Integer
Real Real
Integer Integer
Integer Real
Real Real
Integer Integer
Real Integer
Double Double -
Integer Real
Real Real
Integer Integer
Real Integer
Double Double
Integer Real
Real Integer
Real Real
Integer Integer
Double Double
Real Real
Integer Integer
Double Real
Real Double

Page 86

TN

FORTRAN-80 Reference Manual

TABLE 9-2

Basic External Functions

Definition Argument

Number
of
Name Arguments
EXP 1
DEXP 1
ALOG 1
DLOG 1
ALOG10 1
DLOG10 1
SIN 1
DSIN 1
COSs 1
DCOS 1
TANH 1
SQRT 1
DSQRT 1
ATAN 1
DATAN 1
ATAN2 2
DATAN2 2
DMOD 2

e**a

In (a)
log10(a)
sin (a)
cos (a)

tanh (a)

(a) ** 1/2
arctan (a)
arctan (a1/a2)

atl{mod az)

Real
Double

Real
Double

Real
Double

Real
Double

Real
Double

Real

‘Real

Double

Real
Double

Real
Double

Double

Page B7

Function

Real
Double

Real
Double

Real
Double

Real
Double

Real
Double

Real

Real
Double

Real
Double

Real
Double

Double

FORTRAN-80 Reference Manual Page 88

9.4

FUNCTION SUBPROGRAMS M

A program unit which begins with a FUNCTION
statement is called a FUNCTION subprogram,

A FUNCTION statement has one of the following
forms:

t FUNCTION f(al,a2,...an)
or

FUNCTION f(al,a2,...an)
where:

1. t is either INTEGER, REAL, DOUBLE PRECISION or
LOGICAL or is empty as shown in the second
form. '

2. f is the name of the FUNCTION subprogram.
3. The ai are dummy arguments of which there must
be at 1least one and which represent variable

names, array names or dummy names of SUBROUTINE
or other FUNCTION subprograms. 3

CONSTRUCTION OF FUNCTION SUBPROGRAMS

Construction of FUNCTION subprograms must comply
with the following restrictions:

1. The FUNCTION statement must be the first
statement of the program unit.

2. Within the FUNCTION subprogram, the FUNCTION
name must appear at least once on the left side
of the equality sign of an assignment statement
or as an item in the input list of an input
statement. This defines the value of the
FUNCTION so that it may be returned to the
calling program.

Additional wvalues may be returned to the
calling program through assignment of values to
dummy arguments.

FORTRAN-80 Reference Manual Page 89

Example:
FUNCTION 27 (A,B,C)

Z7 = 5.*%(A-B) + SQRT(C)

C REDEFINE ARGUMENT
B=R+Z7

RETURN

END

The names in the dummy argument list may not appear
in EQUIVALENCE, COMMON or DATA statements in the
FUNCTION subprogram.

If a dummy argument is an array name, then an array
declarator must appear in the subprogram with
dimensioning information consistant with that in
the calling program.

A FUNCTION subprogram may contain any defined
FORTRAN statements other than BLOCK DATA
statements, SUBROUTINE statements, another FUNCTION
statement or any statement which retrerences either
the FUNCTION being defined or another subprogram
that references the FUNCTION being defined.

The logical termination of a FUNCTION subprogram is
a RETURN statement and there must be at least one
of them,

A FUNCTION subprogram must physically terminate

with an END statement.

FORTRAN-80 Reference Manual , Page 90

9.6

Example:

FUNCTION SUM (BARY,I,J)
DIMENSION BARY (10,20)

SUM = 0.0 J
DO 8 K=1,I
DO8 M = 1,J
8 SUM = SUM + BARY (K,M)
RETURN
END

REFERENCING A FUNCTION SUBPROGRAM

FUNCTION subprograms are called whenever the
FUNCTION name, accompanied by an argument list, is
used as an operand in an expression. Such
references take the following form:

f(al,a2,...,an)

where f is a FUNCTION name and the ai are actual
arguments. Parentheses must be present in the form
shown.

The arguments ai must agree 1in type, order and
number with the dummy arguments in the FUNCTION

. statement of the called FUNCTION subprogram. They
- may be any of the following:

1. A variable name.

2., An array element name.

3. An array name,

4. An expression,

5. A SUBROUTINE or FUNCTION subprogram name.

6. A Hollerith or Literal constant.

If an ai is a subprogram name, that name must have
previously been distinguished from ordinary
variables by appearing in an EXTERNAL statement and
the corresponding dummy arguments 1in the called
FUNCTION subprograms must be used in subprogram

references.

If ai is a Hollerith or Literal constant, the
corresponding dummy variable should encompass
enough storage units to correspond exactly to the
amount of storage needed by the constant.

When a FUNCTION subprogram is called, program

AN

FORTRAN-80 Reference Manual Page 91

control goes to the first executable statement
following the FUNCTION statement.

The following examples show references to FUNCTION
subprograms.

Z10 = FT1+27(D,T3,RHO)

DIMENSION DAT (5,5)

S1 = TOT1 + SUM(DAT,5,5)

SUBROUTINE SUBPROGRAMS

A program unit which begins with a SUBROUTINE
statement 1s called a SUBROUTINE subprogram. The
SUBROUTINE statement has one of the following
forms:

SUBROUTINE s (al,a2,...,an)

or

SUBROUTINE s

where s is the name of the SUBROUTINE subprogram
and each ai is a dummy argument which represents a

variable or array name or another SUBROUTINE or
FUNCTION name.

CONSTRUCTION OF SUBROUTINE SUBPROGRAMS

The SUBROUTINE statement must be the first statement
of the subprogram.

The SUBROUTINE subprogram name must not appear in
any statement other than the initial SUBROUTINE
statement.,

The dummy argument names must not appear in
EQUIVALENCE, COMMON or DATA statements in the
subprogram.

If a dummy argumént is an array name then an array
declarator must appear in the subprogram with
dimensioning information consistant with that in the

calling program,

If any of the dummy arguments represent values that
are to be determined by the SUBROUTINE subprogram
and returned to the calling program, these dummy

FORTRAN-80 Reference Manual Page 92

10.

arguments must appear within the subprogram on the
left side of the equality sign in a replacement
statement, in the input list of an input statement
or as a parameter within a subprogram reference.

A SUBROUTINE may contain any FORTRAN statements
other than BLOCK DATA statements, FUNCTION
statements, another S