TRS-80™ MODEL Ii
DEVELOPMENT
SYSTEM

E RACET compures ‘g

702 Palmdale, Orange CA 92665

TRS-80™ MODEL I
DEVELOPMENT
SYSTEM

Written For RACET computes By
T.S. JOHNSTON

For Use On The Radio Shack® TRS-80™
Model Il Microcomputer

© COPYRIGHT 1980, RACET computes, Orange, California

IMPORTANT NOTICE

ALL RACET computes programs are distributed on an “AS 1S” basis without
warranty. Neither RACET computes nor the contributor makes any express
or implied warranty of any kind with regard to this program material, including,
but not limited to the implied warranties of merchantability and fitness for a
particular purpose. Neither RACET computes nor the contributor shall be liable
for incidental or consequential damages in connection with or arising out of
the furnishing, use or performance of this program material.

(® 1980, RACET computes, Orange, California
The Government Law (Title 17 United States Code) has been amended by a
recent Act of Congress, Public Law 92-140, protecting certain sound recordings
against unauthorized duplication. It is an infringement of this law to copy any
properly registered diskette designated with the copyright notice (e.g. @ 1980
RACET comrutes, Orange, California).

TRS-80 is a Registered Trademark of Tandy Corporation.

TABLE OF CONTENTS

I. GENERAL DISCUSSION
INntroducCtion. e eeeeeeseeeessoeccecscessosaaasanes I-1
The AULNOrS..ceeseveseeesescocsescccsssassansanss I-2

II. MACASM

Introduction.sseseeseecesecoacsccacccscccnsacecses II-=1
How To Get Started..ieeeeesescecsressccssosscsoses I1I=2
Model-II Implementation Enhancements and

0differencCesS.cieecsssccccesescscesvesssnessosscssesse LI=3
How To Save And Load A Source Program.....cc..o.. II-4
Saving Object Code On DiSKuiseseosoescssssasaseses LI=5
How To Use The "Y" Command..ecesceseccscsocccccocss II=6
How To Use The "G" Command.e.cceceececcccsccscssess LI=6
Example Use Of MACASMu:evveeeessocsncsscaseoncess JTI-T

III. SZAP - DISK READ AND MODIFY PROGRAM
Introduction.eseveveseseeeccscesososescscssanaseas III=1
How To Get Started..cecececsesccceoscasecssacanses LII=1
Now It Is Time For You To Do It...ceesceccecassss III=2
SZAP Command ReferenCe...cececeeccccscacssesssess LII=6

Iv. DIS2 - DISASSEMBLER
IntroductioN.ceeseecrsenoescacescescssvssscaccsess IVai
How To Get Started.e.ceceeecececsccoscscesnosnccese IVl
DIS2 Sub-Commands
. Object from main memory or disk?.e¢.ceceeeeoees IV=2
. Object virtual base address ?..cceeeccacecses IV=2
. FilesSpee Peeeieeececsccsosccsccsasnsscsesnsnsese IV=2
. Offset object virtual addresses by ?....000.. IV=3
. Object real base address Z..ceecceccscscceses IV=3
. Output to line printer Z.cececccscccscsoesses IV-3
. Normal display pausesS Zececscescscescscssasecaes IV=3
Any oOptions Zeceeccocscessssecsccsoosscsccssse IV=l
Operat1on Of DIS2.veeeesescoascssssassssasasnnses IVl
Format Of The Reference Table...eecececscecncssees IV=5
APPENDIX A, DEVELOPMENT PACKAGE DISTRIBUTION DISKETTE
IntroductioN.eeeeeeeeececssescasssssacssesas A=l
Loading ProceduresS...ceccesescccssscosaccsess A=l

'—'I:C)'TJF'JU QW

I. GENERAL DISCUSSION

INTRODUCTION

This development package contains the necessary tools
needed by a user for assembly language programming. These
have been collected in a single package for the convenience
of the user. These systems are major enhancements of those
previously available for the Model-I system.

This package consists of three major components.
Documentation for each component is provided in this manual,
along with an additional booklet provided. A summary of the
general capabilities available with this package is presented
below: '

MACASM - This is an enhanced editor/assembler, including
such features as macro conditional assembly capabilities,
in-memory compiles, dynamic debug facilities, and many
others. Source programs can be saved on disk and
subsequently loaded back into memory. A range of lines
can also be loaded or saved. All the previous
editor/assembler features found in the Model-I version
have been retained. Uploaded source programs from the
Model-I system can be assembled without change by MACASM.

SZAP - This utility provides the capability to read and
modify any sector on a diskette. 1In addition, it provides
a generalized facility for copying any number of sectors .
from one area (or disk) to another. This include?s
recovery from input/output erros, allowing backup of
diskette data not possible with the BACKUP command.

DIS2 - DIS2 is a system for the disassembly of Z80
machine language code. The code to be disassembled can be
from memory or from a standard DOS load module from disk.
Provisions are made to allow automatic offset for each
load address, restart options, and a cross reference list
of referenced locations.

All the above systems have been written in assembly
language for fast and convenient use.

Section I. General Discussion

THE AUTHORS

The three components of this system were implemented by
T.S. Johnston. He has written a number of systems marketed
by RACET computes. This includes the Disk Sort/Merge system
(DSM), the Utility Package (XCOPY, XHIT, XGAT, DCS, XCREATE,
DISKID, and DEBUG-II), and the Generalized Subroutine
Facility - all available for the Model-II system.

Two components of this package were uploaded from Model-I
systems. The DIS2 system is a modified version of DISASSEM
provided by APPARAT., The MACASM system is a modified version
of the Editor Assembler Plus from Microsoft. The purchase
price of the development package includes the cost of the
APPARAT DISASSEM package, as well as the Microsoft Editor
Assembler Plus system. The additional booklet provided as
part of MACASM was written by William Barden, Jr.

II. MACASM

INTRODUCTION

MACASM provides the Model-II interface to the Microsoft
"Editor Assembler Plus" software package. This provides the
Model-II user with enhanced editor/assembler capabilities
including macro and dynamic debug facilities. Listed below
are the important features of this package:

Contains all the convenient facilities of the earlier
editor/assembler package available on the Model-I. This
includes a powerful assembler as well as an in-memory
edit facility. This can be used to easily build, edit,
and assemble source programs.

Provides the ability to assemble directly into memory.
This allows the user to repeatedly assemble and execute
a machine language program without reloading the editor
assembler,

Includes a powerful MACRO facility capable of
automatically generating in-line code. This facility is
used to define one or more groups of generalized
assembler statements called "macros". The assembler
will automatically insert the group of instructions when
referenced by a user defined operation code.
Conditional assembly of statements is also provided.

Provides the ability to save programs to a disk file and
subsequently reload them into memory. Facilities are
also provided to save or load portions of the source
program. This is very useful for extracting or saving
common program segements.

Includes a dynamic debug facility (ZBUG) which can be
used to trace, inspect, and change machine language
programs, ZBUG displays memory with optional user
program symbolic references.

Adds many new editor commands, including substitute,
move, copy, and extend commands. New line number range
specification formats have also been added to the
system.

Allows the user to eliminate either or both the ZBUG or
assembler portions of the system if additional memory is
required.

Extends the assembler expression capabilities to include
multiplication, division, and many logical operators.

Included with MACASM is the "Editor Assembler Plus"
instruction manual written by William Barden Jr. Additional
features or differences in operation as implemented by RACET
computes is described in this manual.

-1

vecLLon L1, MALADM = MAcCro hL4dltor Assembler

HOW TO GET STARTED

Included in the purchase price of MACASM is the cost of
the Microsoft "Editor assember plus"™ and uploading service to
a Model-II diskette. RACET computes also provides the
patches and necessary interface to make this system
operational on a Model-II system.

MACASM is shipped to the user along with several other
programs on a special distribution diskette. Appendix-A
outlines the procedure for transfering the contents of the
distribution diskette to the users diskette. This procedure
will result in a program file "MACASM", which contains both
the original "Editor Assembler Plus" package, RACET patches,
and interface.

MACASM is a program executed as a DOS mode command similar
to CQPY, DIR, FREE, etc. The user needs only enter the
following command:

MACASM

This will load MACASM into memory, producing the following
display:

MACASM - Model-II Macro Editor Assembler - V3.1
Model-II Interface Copyright 1980 by RACET computes

MICROSOFT EDITOR/ASSEMBLER-PLUS
COPYRIGHT (C) 1979 BY MICROSOFT
VERSION 1.01 CREATED 29-Dec-T79

*

The user can then enter the desired assembler commands
following the "*" prompt character. These commands are
described in detail in the instruction booklet written by
William Barden, Jr, and in the section below. The Radio
Shack TRS-80 Editor/Assembler User Instruction Manual
(Catalog Number 26-2002) provides additional information and
a description of the Z80 instructions.

11-2

Section II, MACASM - Macro Editor Assembler

MODEL-IT IMPLEMENTATION ENHANCEMENTS c

Most of the facilities described in the Microsoft
instruction booklet are available in the MACASM
implementation. The user should become familiar with the
information in the instruction booklet before proceeding.
This section indicates the differences between the cassette
version provided by Microsoft and the RACET Model-II
implementation.

The major difference between the original version and
MACASM is in the use of the escape key. The documentation
describes the Model-I escape key as a shifted up-arrow. The
MACASM Model-II implementation uses the available escape key
found on the keyboard. The "$" will still be displayed when
the escape key is pressed.

The next difference is the fact that cassette tape is not
supported on the Model-II system, and has been eliminated by
the MACASM implementation. The tape commands are substituted
by corresponding disk oriented commands. A user, therefore,
can save or reload source programs using standard disk data
files. Similarly, the assembled object program can be
written into a standard DOS program file. The format of the
commands required is discussed in detail in the next section.

A "sYstem" command has been added which allows the user to
issue any standard DOS command while in MACASM. This can be
used to obtain directory listings, perform an INIT "I"
function, list files, rename or kill files, etc.

A "Goto" command has also been added which can be used to
transfer control to a specified address. This command can be
issued directly in MACASM command mode to execute programs
assembled using the in-memory option.

The two ZBUG commands to load and save system format tapes
have been eliminated. They have not been replaced by
corresponding disk oriented commands. The new "sIstem"
command allows the user to issue DUMP and LOAD commands
directly, which provide similar capabilities.

Upper/lower-case has been reenabled in MACASM. However,
commands, Z80 operation codes and labels must still be in
uppercase. Lower-case can be used as character string
arguments within quote(') marks.

The assembler listing output for the "DEFM" operation code
has been modified to place 16-bytes on a line. This will
produce much smaller listings than the one-byte/line format
formerly used. .

-3

Section II. MACASM - Macro Editor Assembler

HOW TO SAVE AND LOAD A SOURCE PROGRAM

The write "W" and load "L" source program tape commands
have been replaced by corresponding disk commands. A two
line command sequence is now required. The first line
indicates a write or load request. This is followed by a
prompt from MACASM requesting a corresponding filespec to be
used.

Two forms of the "L" command are available. The general
formats of these commands are shown below:

L [line1:1ine2]
or
LC [linel:line2]

The first form "L" will clear memory of all previous
source programs before starting the load operation. The "LC"

operation will read a source program from disk and add it to
the end of any existing source program in memory
(C=concatenate).

The optional line number range refers to the line numbers
within the source program being loaded. The lines loaded
will always be loaded at the end of any existing program in
memory. The user may heed to renumber the entire program, if
using the "LC" format, to ensure non-repeating line numbers.
The special symbols "#" and "¥*¥" may be used as normal to
specify the first and last lines of a source program
respectively. Exact line numbers need not be specified.
Lines within the range specified will be read into memory.

The general format of the "W" command is shown below:
W [linel:1ine2l

The optional line number range refers to the line numbers of
the source program in memory to be written to the disk file.
All valid methods of indicating line number ranges can be
used. This includes the new "SLN!n" and "Offset"
specifications now available. Exact numbers need not be
specified. All lines within the range specified will be
written to the disk file.

After either a "L" or "W" command the following prompt
will be issued:

FILESPEC? ticveecesnsscncsnssssssnnss
The user should then enter the appropriate name of the file
for the load or write operation. The standard DOS "filespec"

format as described in the DOS reference manual should be
used.

11-4

Section II. MACASM - Macro Editor Assembler

R R R R R R R R R X R R R R XX RN AN R R R RN RERRXXRRRRRRRR
*

*
* *
* *
% MACASM AUTOMATICALLY PERFORMS AN INIT "I" FUNCTION *
* BEFORE READING OR WRITING ¥
* TO A NEW SOURCE OR OBJECT FILE *
* *
* *

ARE R KRR R R R R R R R R RN AR R ERRE AR RN R AR R RN R R R R R RRRRRRXR

For a "W" command one of the following additional prompt
lines is issued by MACASM:

FILE ALREADY EXISTS - USE IT(Y/N)? ..
or
NEW FILE REQUESTED - CREATE IT(C/N)? ..

The user should enter the appropriate request. The "N"
response will terminate the write operation without modifying
the output file specified. The "Y" or "C" response will
allow the write operation to continue.

SAVING OBJECT CODE ON DISK

The "A" command initiates an assembly of the source
program currently in memory. The options available are
described in the Editor/Assembler-Plus manual (pages 49-55).
The "AO" option specifies that an object file is to be
written. This option is selected by default if none is
provided.

After entering an "A" command with an explicit or implied
"AO" option, MACASM will respond with the prompt:

FILESPEC 2..utiieveerenencnccecnsnns .
The user should then enter the appropriate DOS "filespec™"
where the assembled object code is to be placed. One of the
following two prompt messages will then be issued by MACASM:
FILE ALREADY EXISTS - USE IT(Y/N)? ..
or
NEW FILE REQUESTED - CREATE IT(C/N)? ..
The "N" response will terminate the assembly without

modifying the output file specified. The "Y" or "C" replies
will allow the assembly to continue.

-5

Section II., MACASM - Macro Editor Assembler

HOW TO USE THE "Y" COMMAND

One additional command has been added to MACASM for user
convenience. The system command "Y" can be entered in
command mode to execute any available DOS function. The
format of the "Y" command is as follows:

Y dos-command and required operands

The DOS command, such as DIR, LIST PROG1/ASM, etc, must be in
the expected format. Optional blank spaces may follow the
"Y" before the start of the desired DOS command.

The system command, for example, can be used to obtain a
directory listing. The following formats would be acceptable:

YI

Y DIR
YDIR

Y DIR :0
YDIR :1

Note the use of the INIT command "I" first to make sure the
correct disk is initialized by DOS (this may not be needed).

Most DOS commands may be executed in the above manner.
MACASM does not use the area from X'2800'-X'3000' used by
some of the DOS commands. Some DOS commands, such as COPY,
BACKUP, FORMAT, etc. cannot be used since they may use memory
above X'3000'.

HOW TO USE THE "G"™ COMMAND

The "G" command allows the user to transfer from MACASM
command mode directly to any address in memory. This command
is similar to the "G" command available in the Z-BUG mode of
operation, but is issued directly in MACASM command mode.
This function is very useful for executing programs which
have been assembled directly into memory using the in-memory
option (/IM).

The format of the "G" command is shown below:
G hex-address

where the hex-address is the starting location to be executed
next. The user can return to MACASM by doing a "RET"
instruction, or a JP UUCCH.

The user should be cautioned that the existing stack is
only about 50-bytes long. A separate stack should be
established if a larger area is required. It is not necessary
to restore the stack to its original value when returning
control back to MACASM.

Section II, MACASM - Macro Editor Assembler

EXAMPLE USE OF MACASM

The use of MACASM is relatively simple, as shown by the
example below., The easiest way to understand how to use
MACASM is to actually enter the sequence below. Note that

all user input is shown as boldface underlined characters.
MACASM

MACASM - Model-II Macro Editor Assembler - V3.1
Model-II Interface Copyright 1980 by RACET computes

MICROSOFT EDITOR/ASSEMBLER-PLUS
COPYRIGHT (C) 1979 BY MICROSOFT
VERSION 1.01 CREATED 29-Dec-T9
*

The "MACASM" command was entered to load and
execute the editor/assembler. MACASM then printed

the header messages as shown above. At this point
the "*" prompt was issued, and MACASM then waited

for user input.

L

00100 ORG 8000H

00110 _START: LD HL ,MESG

00120 LD B,MESGX-MESG
00130 LD C,0DH

00140 LD A,9

00150 RST 8

00160 LD A,36

00170 RST 8

00180 _MESG: DEFM 'This is your first program'
00190 DEFB ODH

00200 DEFM 'Using MACASM 111!
00210 _MESGX: EQU $

00220 END START

20230 break-ke

The above short assembly language source program
was then entered into memory. Note that the last
line was terminated by using the "break-key". This
resulted in the "¥" prompt requesting the next

command.
*W
FILESPEC ? PR SM
NEW FILE REQUESTED - CREATE IT (C/N)? C
*Df: ¥
* 00:110
FILESPEC ?PROG1/ASM
* - ¥
00100 ORG 8000H
00110 START: LD HL,MESG
¥[LC 120:%

FILESPEC ?PROG1/ASM

Section II. MACASM - Macro Editor Assembler

*

The above sequence wrote the source program created
above into the file "PROG1/ASM", This was followed
by deleting the program from memory and reloading
lines 100-110 back into memory. The resulting two
lines were printed as shown. The concatentate load
"LC" command format was then used to load the
remaining lines back into memory. This could be
verified by doing another "P #:%*" command if
desired.

FILESPEC ? PROG1
NEW FILE REQUESTED - CREATE IT(C/N)?C

8000 00100 ORG 8000H

8000 210D80 00110 START: LD HL,MESG

8003 062B 00120 LD B, MESGX-MESG

8005 OEOD 00130 LD C,O0DH

8007 3E09 00140 LD A,9

8009 CF 00150 RST 8

8004 3E24 00160 LD A,36

800C CF 00170 RST 8

800D 54 00180 MESG: DEFM '*This is your first
program'

800E 68 69 73 20 69 73 20 79 6F 75 72 20 66 69 72 73
801E 74 20 70 72 6F 67 72 61 6D

8027 0D
8028 55

00190 DEFE ODH
00200 DEFM 'Using MACASM 111t

8029 73 69 6E 67 20 4D 41 43 A1 53 Ng 20 21 21 21

8038
8000

00210 MESGX: EQU
00220 END START

00000 TOTAL ERRORS

MESG 800D
MESGX 8038
START 8000

*B

The assembly was initiated by an "A" command. The
"pAQ" option was used by default since no other
options were specified. The output "filespec" for
the object code was specified to be written into
"PROG1". This was followed by the assembled code
as shown above.

TRSDOS READY

PROG1

This is your first program
Using MACASM 111!
TRSDOS READY

The "B"™ command was used to exit from MACASM.
Entering the command "PROG1" automatically loaded
and executed the above program. Next time try
something just a little more usefull

il-8

. SZAP — DISK READ AND MODIFY PROGRAM

INTRODUCTION

The purpose of SZAP is to allow the user to access,
modify, copy, zero, and print any sector on a Model-II
diskette. The features of SZAP include:

All tracks from 0-76 and sectors 1-26 can be read or
written using SZAP.

Hexadecimal as well as ASCII representation of the
data is shown for each sector.

A convenient screen editor allows the user to easily
update any sector on the diskette. This includes
complete cursor control and the ability to enter
changes in hexadecimal or ASCII.

Sectors can be easily scanned in either a forward or
backward direction. The desired starting location
can also be specified.

SZAP can function on a one drive system or multiple
drive system.

The current sector displayed on the screen can be
printed.

A special print mode will automatically print each
sector displayed on the screen.

A repeat mode automatically repeats the previous
command, allowing viewing and/or printing of a
series of sectors.

A powerful copy command is available allowing the
user to copy any number of sectors from one location
to another, or form one disk to another.

SZAP is a necessary utility for manipulating data
directly on the disk. Most important is the ability to
examine and modify the directory. For example, this
allows the user to recover lost files. SZAP can also be
used to backup a disk that the standard BACKUP utility
cannot because of I/0 errors. In this case SZAP will note
the errors but continue.

HOW TO GET STARTED

SZAP, along with several other programs, is shipped to
the user on a special distribution diskette. Appendix A.
outlines the procedure for transferring the contents of
the distribution diskette to a user's system diskette.

4

Section III. SZAP - Disk Read and Modify

Once SZAP has been loaded it may be copied to other
diskettes as required.

The user may execute SZAP as a DOS mode command similar
to DIR, COPY, FREE, etc. The SZAP command has no other
parameters. It is executed by simply entering the
command:

SZAP

After entering the above command SZAP will print a
header and a menu of commands, and then position the
cursor to the CMD 2 prompt. The user then enters one of
the single character commands shown in parenthesis. Some
commands will then request additional information, such as
track/sector to display. Figure(III-1) illustrates the
contents of the full screen after displaying track=1,
sector=1 on drive #0.

NOW IT IS TIME FOR YOU TO TRY IT

The easiest way for you to learn how to use SZAP is to
try it. Given below is a sequence of steps that you can
try on your own computer. Note that user input is shown
in characters.

All numeric data (track, sector, and number)
M B H ECIMAL.

Select a DOS diskette that does not contain any
important data (during the procedure below you
might blow it!). This diskette should contain a
copy of the SZAP program. Place this diskette
in drive #0, boot the system if neccessary or
use the INIT "I" function as required.

Diskettes may be switched at any time while in
SZAP., SZAP could be executed using a master DOS
diskette, and then switching to the diskette
that needed to be examined or changed. SZAP
does not need an INIT "I" function, but this
should be performed after SZAP is terminated.

SZAP
The above command should then execute SZAP.
This should print the header as shown in
Figure(III-1). You will notice that the cursor
is located just after the CMD ? .

AL o e

The first commands you should try are ";" and
"-", These, you will see, allows you to go
backwards and forwards through the disk. Notice
that SZAP assumes that you are looking at the

Hi-2

Section III., SZAP - Disk Read and Modify

diskette on drive #0, starting at track=0. It
thinks it is on sector=1, so when you press the
first ";" it goes to sector=2.

I
TRACK.SECTOR:DRIVE(DISKID)?2,5

The next most common command is "T". After you
type the "T" SZAP will respond with the prompt
line requesting - "What track, sector, drive,
and diskid do you want to look at next?". The
example above shows the request to look at
track=2, sector=5. Notice that it wasn't
necessary to specify a drive or diskid. In this
case 1t assumed the diskette already mounted in
drive=0 was to be used.

by
TRACK.SECTOR:DRIVE(DISKID)?.9

I
TRACK.SECTOR:DRIVE(DISKID)?1

The above two requests show that both the track
and sector can also be eliminated. In the first
case your display should show the contents of
track=2, sectorz9. The second case should show
track=1, sector=9. Notice that SZAP assumes the
previous value until changed.

I
TRACK.SECTOR:DRIVE(DISKID)?0.1

I
T

pell

When you enter the above command the data from
track=0, sector=1 will be displayed. Notice
that this sector contains the diskid of the
diskette. Track=0 is special because it is
written in single density 128-byte format. SZAP
will always show the last 128-bytes as zero, and
will be ignored when rewriting back to disk in
the edit mode.

RACK.SECTOR:DRIVE(DISKID)?2,1

When you execute the above two commands you will
note that first track=2, sector=1 is displayed.
Pressing the "-" to display the previous sector
will then shown track=1, sector=z=26. Using the
";" command will similarly increment over track
boundaries. SZAP will automatically change the
track value when necessary. It is also VERY
important to note that sector=26 is processed by
SZAP, The DOS system does not normally use
sector=26. All files on the disk use sectors
1-25, leaving sector=26 unused. The one
exception to this is the directory track which
uses sector=26.

Hi-3

Section III. SZAP - Disk Read and Modify

bobs b+ bo

© kb

ny-key

ElL"REBELRE"

A
1
i

REES|

If your printer was ready, the above command
caused the data portion of the screen to be
printed. If you have followed the sequence
above, you should now have a printed listing of
track=2, sector=1.

The "P" command sets SZAP into a mode to
automatically print the data portion of the
screen when a display changes. This mode of
operation is indicated in the upper right
portion of the screen. The two ";"™ commands
will display and also print the contents of the
next two sectors. Pressing the "P" again will
turn off the print mode.

The above sequence illustrates use of the
"Repeat" function. Using the "R" command
continuously repeats the previously entered
command until any other key is pressed. You
will notice in this case that successive sectors
are displayed on the screen. If you were in "P"
print mode then the sectors would have also been
printed.

RACK.SECTOR:DRIVE(DISKID)?40.1

(the F1 key)
(down arrow)

(up arrow)
(tab key)
(enter key)

Now it is time for you to try the edit mode.
The first thing to do is to position SZAP to
some unused sector. The example above uses
track=40, sector=1. Pressing the "F1" key will
then enter the edit mode, and the cursor will be
position to the first hex byte of the sector.
The next six commands illustrate cursor
positioning. The "/" command then sets the

HILLA

Section III. SZAP - Disk Read and Modify

cursor in the ASCII portion of the display.
Repeating the same six cursor commands should
perform similar actions. The last command "esc"
will exit from the edit mode. It will also
cause the screen to be refreshed.

You can see from the above sequence that it is
easy to change data on the screen. Pressing the
"F1" key enters edit mode. Position the cursor
if necessary and enter data either in the hex
area or ASCII area. Pressing the "F2" key will
write the modified sector to disk. Note that
pressing the "esc" key without using the "F2"
will cause any changes to be ignored.

L .
ZERO TRACK.SECTOR:DRIVE(DISKID)#NUM?40,1#2

VA
ZERO TRACK.SECTOR:DRIVE(DISKID)#NUM?#2

Z
ZERO TRACK.SECTOR:DRIVE(DISKID)#NUM?_

The "Z" command is used to set every byte of one
or more sectors to X'00'. The "Z" command will
request the track, sector, drive, and diskid
similar to the "T" command. The number of
sectors to set to zero is also requestd. If the
"#NUM" field is not entered only one sector will
be set to zero. Appropriate defaults are used
if not provided, as shown in the above examples.
The sequence above will first set 40.1-2 to
zero, followed by 40.3-4, and finally 40.5 to
zero., The "-" commands are used to page back
through the disk to verify that the operation
has been performed. We hope the diskette you
used did not contain any important information
in this area (it is gone now!).

c
COPY-FROM TRACK.SECTOR:DRIVE(DISKID)#NUMBER?4Q,6#2
COPY-TO TRACK.SECTOR:DRIVE(DISKID)40.1

fe

Now try the "C" command to copy sectors 40.6 and
40.7 back to 40.1 and 40.2 as shown above. Then
enter the two "-" commands to verify that data
was indeed copied. You will notice that two

" separate prompts are displayed with the "C"

-5

Section III. SZAP - Disk Read and Modify

command. The first one tells SZAP where the
data is coming from. The second one indicates
where the data will be copied to. The from
prompt, similar to the "ZI" command, has a
"#NUMBER"™ field to indicate how many sectors
will be copied.

Break (break key)
Pressing the break key will return you to DOS.

Congratulations - if you followed the above sequence
you have tried most of the options available in SZAP. You
probably won't need to read the rest of the manual. Use
of drives 1-3 and specification of the diskid were not
illustrated. Common sense will dictate their use. For
example, copying data from one diskette to another
requires either specification of a different diskid or
drive number for the from and to areas.

SZAP can, in fact, be used to backup an entire diskette
to another diskette. The command required is:

c

COPY~-FROM TRACK.SECTOR:DRIVE(DISKID)#NUMBER?0.2:
(DISKAY#7B8

COPY-TO TRACK.SECTOR:DRIVE(DISKID)?0,2(DISKB)

Notice that the copy started at sector=2 on track=0 for a
total of 1976 sectors (X'7B8'). The diskidOOneed to be
different on a one drive system since diskettes will need
to be switched. If you tried to copy sector=0 first then
the diskid would be duplicated and SZAP would get mixed
up! The last sector written in the above case will be
track=0, sector=0 because SZAP will automatically
wrap-around when the end of disk is reached. You could
specify #7B7 if you do not want to change the diskid on
the to diskette.

The above process for backing up an entire diskette
will normally take longer than the standard BACKUP
command. SZAP copies every sector even if it is not
assigned to a file. BACKUP copies only allocated sectors.
SZAP, however, will copy diskettes with bad sectors. This
allows the user to at least partially recover a bad
diskette. This is described in greater detail in the
section "How to Recover Blown Diskettes".

SZAP COMMAND REFERENCE

Given below is a summary of all SZAP commands in
alphabetical order. The examples given in the preceeding
section provide the necessary additional information
needed to effectively use SZAP.

-6

Section ITII, SZAP - Disk Read and Modify

F1

Command Mode
Copy

This command is used to copy any number of
sectors from one location to another. SZAP will
issue the following two prompts to describe the
from and to locations:

COPY-TO TRACK.SECTOR:DRIVE(DISKID)#NUMBER?_

COPY-FROM TRACK.SECTOR:DRIVE(DISKID)?_
The track, sector, drive, diskid, and number of
sectors to copy should be entered with the ".m,
mem, o m(,,.)", and "#" separator characters as
required. At least one of the indicated
parameters needs to be entered. The defaults
for track, sector, drive, and diskid is the last
used value (or 1.1:0 and current diskette if
SZAP has just been entered). If "#NUMBER" is
not specified SZAP assumes "#1"., The from and
to diskid's need to be different on a one drive
copy.

Enter or Exit Edit Mode

This command is used either to enter or exit the
edit mode of SZAP. SZAP is initially in the
command mode when executed from DOS. Edit mode
commands are not valid in command mode, and
command mode commands are not valid in edit
mode.

Next Sector

This command is used to fetch and display the
next sector. The current track and sector
locations are used as a base. SZAP will
automatically page to the next track if
necessary.

Previous Sector

This command is used to fetch and display the
previous sector. The current track and sector
locations are used as a base. SZAP will
automatically page to the previous track if
necessary.

Print Mode On or Off

This command will either turn on or off the
print mode in SZAP., Every time the display
screen is changed the sector data will be
printed while in print mode.

Repeat Mode

This command will cause the previous ";" or "-"
commands to be automatically repeated. This
provides a method for scrolling through a
diskette in a forward or reverse direction.
This mode is terminated when any key is pressed.

-7

Section III. SZAP - Disk Read and Modify

S

Edit Mode
/

Down

Screen Print

This command will cause the sector data portion
of the screen display to be directed to a
printer.

Track/Sector Display

This command will set the current track and
sector counters, fetch the corresponding sector,
and display it on the screen. SZAP will request
the following after the "T" is entered:

TRACK.SECTOR:DRIVE(DISKID)?

The user should respond with the appropriate
track, sector, drive, or diskid. The separator
characters ".", ":", and "(..)" should be used
when entering the sector, drive, or diskid. At
least one of the four parameters must be
entered. Any parameter not specified will
default to the last used value (track=1,
sector=1, drive=0, current diskette when SZAP
first entered).

Zero Sectors

This command will set a specified number of
sectors to hexadecimal zero (X'00'). The
following prompt will be issued by SZAP:

ZERO TRACK.SECTOR:DRIVE(DISKID)#NUM?

The user should respond with the appropriate
track, sector, drive, or diskid. The separator
characters ",", ":%, nwgn and "(,.)" should be
used when entering the sector, drive, diskid, or
number of sectors to be set to zero. At least
one of the five parameters must be entered. The
track, sector, drive, or diskid will default to
the last used value if not specified. The
"#NUM" parameter will default to "#1" if not
specified.

Commands
ASCII/HEX Mode

This command changes the cursor position to
either the ASCII or hex display area, Data
entered must be in the corresponding format as
the cursor position.

Down Arrow Key - Position Down One Line
This command will position the cursor down the
current column to the next line. The cursor

will wrap around to the top of the screen if
necessary.

-8

Section III. SZAP - Disk Read and Modify

Esc

Left

F2

Right

Tab

Up

Enter Enter Key - Down Start Next Line

This command changes the cursor position to the
start of the next line down. The cursor will
wrap around when the bottom of the screen is
reached.

Escape Key - Exit Edit Mode

This command will cause SZAP to exit the edit
mode and enter the command mode. The contents
of the current track and sector will be reread
from the diskette. Any changes entered without
subsequently pressing the "F2" key will not be
written to the diskette.

Left Arrow Key - Position to the Left

This command will position the cursor one
position to the left. If the cursor is in the
hex area it will position to the previous hex
character. If the cursor is in the ASCII area
it will position to the previous ASCII
character.

Modify Sector Changes On Disk

This command will write the modified sector on
the screen back to the current location on disk.
Any changes made during edit mode must be
explicitly rewritten back to disk for the
changes to be made permanent.

Right Arrow Key - Position to the Right

This command will position the cursor one
positon to the right. If the cursor is in the
hex area it will position to the next character.
If the cursor is in the ASCII area it will
position to the next ASCII charzcter.

Tab Key - Tab to the Next 8-Byte Column

This command will position the cursor to the
next eight-byte column, either in the hex or
ASCII areas respectively. The cursor will wrap
around to the top of the screen if necessary.

Up Arrow Key - Position Up to the Next Line

This command will position the cursor up to the
next line in the same column. The cursor will
wrap around to the bottom of the screen if
necessary.

All numeric quantities entered in the commands above
must be in Hexadecimal format. The only exception to this
is in the ASCII edit mode, where ASCII data may be

entered.

All track, sector, and number of sectors to be

copied or set to zero MUST BE IN CIMAL

iti-1 SUPERZAP EXAMPLE

SUPERZAP~II COPYRIGHT 1979,

RACET COMPUTES -

V2.1 3/2/80-

Command Mode: Next(;) Prev(-) Print(P) Edit(F1) Trk/Sec(T) Repeat(R)

Edit Mode

CMD ?

24
FF

Screen(S) Copy(C) Zero(Z)
Mode(/) Left(<=~) Right(-=>)
Esc(ESC) Modify(F2) Tab(TAB) Ent(ENT)

-10

Up(UP) Down(DOWN)

Jdyaol(L¥
5 ,>0..> ...I1C.#4
%.0.6.5;. ...10..7%
oo (2000008
LIRS LGS 1 P PO
[O & Do
* q18..N(<,...G.!¥
*A,:U.... 6.#.x2.%
¥, ~,0..8.pH.:¥*

IV. DISZ - UISASSEMMBLEKR

INTRODUCTION

DIS2 is a system for the disassembly of Z80 machine
language code. The features of DIS2 are essentially
identical to the original version distributed by Apparat.
These features include:

Disassembles Z80 machine language code into standard
mnemonics.

Disassembles code either directly from memory, or from a
standard DOS load module previously saved on disk.

Provides an option to automatically offset each load
address of the machine code being disassembled. This
allows a module to be disassembled which resides in one
location, but actually executes from another location.

Provides a restart option which allows a large disassembly
to begin at a specified location.

Produces a cross reference list of referenced locations.
This is useful in determining which areas of a program are
being referenced by other locations.

Allows the reference table to be written to a file. This
can then be processed by other programs.

DIS2 is executed as a standard DOS command followed by
additional sub-commands as required.

HOW TO GET STARTED

Included in the purchase price of DIS2 is the cost of the
Apparat DISASSEM system and uploading service to a Model-II
diskette. RACET computes also provides the patches and
necessary interface to make this system operational on a
Model-II system.

DIS2 is shipped to the user along with several other
programs on a special distribution diskette. Appendix-A
outlines the procedure for transferring the contents of the
distribution diskette to the users diskette. This procedure
will result in the program file "DIS2", which contains both
the original "DISASSEM" system, RACET patches, and interface.

DIS2 is a program executed as a DOS mode command similar
to COPY, DIR, FREE, etc. The user needs only enter the
following command:

DIS2

V-1

Section IV, DIS2 - Disassembler

This will load DIS2 into memory, producing the following
display:

APPARAT DISASSEMBLER 2.0
OBJECT FROM MAIN MEMORY OR DISK?_
The user then respondes with the appropriate response(M or

D). This is followed by other prompts by DIS2 as described
in the next section.

DIS2 SUB-COMMANDS

A series of prompts will be issued by DIS2 when executed.
These prompts solicit from the user the parameters to be used
for the disassembly. The prompt messages and the possible
replies are described below.

A. OBJECT FROM MAIN MEMORY OR DISK?...

Purpose: To define the location of the machine code to be
disassembled.

Responses available: none, D, or M
1. none - Same as 'D' below.
2. 'D' - Disk module to be disassembled. A separate
prompt will be issued for the filespec of the module to
be disassembled.
3. 'M' - Module in memory to be disassembled.
B. OBJECT VIRTUAL BASE ADDRESS (HEX)? ...
Purpose: To specify a value where the object code is
considered to be executed from. This prompt is issued
only for an 'M!' response to item-A above. This is
necessary when machine code in one location of memory
actually is executed from a different location.
Responses available: None or four-digit hex value. If
none (just an ENTER) is specified then then the real base
address is used.
C. FILESPEC? ...

Purpose: To solicit the name of the file containing the
object module to be processed.

Responses available: Filename in standard DOS "filespec™”
format.

1v-2

Section IV. DIS2 - Disassembler

D.

OFFSET OBJECT VIRTUAL ADDRESSES BY (HEX)? ...

Purpose: To specify a value which will be added to each
load address before processing by DIS2. This parameter is
needed when an object module loads to one loaction in main
memory, but actually executes from another location.

Responses available: None or a four-digit hex value.
Wrap-around is allowed to effectively provide a method for
subtracting. The value '0000' is assumed if nothing is
entered.

OBJECT REAL BASE ADDRESS (HEX)? ...

Purpose: To specify the absolute location in memory where
the machine code to be disassembled will be located. This
prompt is issued for the "M" in-memory disassembly option
(Item-A above).

Responses Available: 1-4 hex digit location value where
DIS2 will actually find the object code to be
disassembled.

OUTPUT TO LINE PRINTER ? ...

Purpose: To specify if a listing of the disassembled code
is also to be printed. All disassembled code is displayed
on the screen. The cross reference table is printed only
if the machine code being disassembled is from a disk file
('D' option from A. above).

Responses Available: none, Y

none (just an ENTER) - If nothing is specified then no
printed listing will be produced.

Y - A "Y" response will cause a printed listing to
be produced. This will be followed by a "SET PRINTER
TO TOP OF PAGE" prompt, allowing the user to adjust the
paper accordingly.

NORMAL DISPLAY PAUSES? ...

Purpose: To specify to DIS2 whether the display of
disassembled code is stop after every full screen. This
allows the user a chance to look at the disassembled code
before proceding. The "hold" key can also be used at any
time to temporarily halt the display.

Responses available: none, Y

none (just an ENTER) - The display of disassembled code
will continue until done, the "X" key is pressed to
terminate the function, or the "hold" key is pressed to
temporarily halt the display. In the latter case
pressing the "enter™ key will resume the display.

Y - The display of disassembled code will proceed
until the screen is full, the "X" key is pressed to
terminate the funciton, or the "hold" key is pressed to
temporarily halt the display. The display can be
resumed in the first and last cases by pressing the
"enter™ key. :

LAV}

Sectien IV, DIS2 - Disassembler

H.

ANY OPTIONS ?...

Purpose: The purpose of this prompt is to provide
additional options available only if the machine code
being disassembled is from a disk file.

Responses available: none, NIP, RTD, REA, RE&, RIA, RI&
1. none (just an ENTER) - No more options.

2. NIP - Do not print or display the disassembled
instructions. This does not affect the display of the
location cross reference table.

3. RTD - Location reference table is to be stored on
disk. After the location cross reference pass of DIS2,
the program will query 'REFERENCE TABLE FILESPEC?'.
The user should respond with a standard DOS format
"filespec" where the cross reference table is to be
stored. The format of the cross reference table is
described later.

4, REA - Enable listing of all types of references.
This is the default condition.

5. RE& - Enable listing of the specified reference
type, where "&" is one of the following: L, P, R, S, T,
u, vV, W, or X. Reference types are defined at the
beginning of each location table listing.

6. RIA - Disable list of all types of references.
7. RI& - Disable listing of the specified reference

type, where "&" is one of the following: L, P, R, S, T,
u, v, W, or X.

OPERATION OF DIS2

DIS2 operates in the following phases:

1. (Object from disk). Build location reference table.
If insufficient memory is available, "INSUFFICIENT MEMORY'
will be printed and the disassembly terminated.

2. Write reference table file only if the "RTD" option was
specified (See H. above).

3. Display and optionally print the disassembled
instructions. If specified, display pauses will occur.

4, Print the location reference table only if the object
code is from a disk file and the printer use was
specified.

If the DOS operating system detects a disk or other
error, then an appropriate message will be displayed and
the disassembly terminated. The 'DISK OBJECT FILE FORMAT
NOT AS EXPECTED' error message will be displayed if DIS2
finds something wrong with the object module format.

nroa

Section IV. DIS2 - Disassembler

. While instruction displaying or printing is in process,
holding down the "X" or "hold" keys will cause DIS2 to
terminate the disassembly, or temporarily pause
respectively. The "enter" key can be pressed to continue
a disassembly., The "break" key can be used to return to
DOS at any time.

Suffixed to each reference location value is a
reference type code (defined at the top of each reference
listing), giving the type of Z-80 instruction making the
reference.

Column-1 of the disassembled instruction print line
indicates the number of references to bytes of the

instructions. This value is hexadecimal, with "F" meaning
fifteen or more references.

Column-2 of the print line indicates which bytes of the
instruction have been referenced. If this column is blank
and column-~1 is non-blank, then only the first byte of the
instruction has been referenced. Otherwise, the hex digit
represents a 4-bit binary mask indicating which relative
byte has been referenced.

FORMAT OF THE REFERENCE TABLE

The "RTD"™ option will write the reference table created
by DIS2 to a specified disk file. The format of this
files is as follows:

1. 1-byte = X'C0'. Backward EOF - ignore it.
2. 1 or more entries of the form:
a. 'Location' low value byte.

b. 'Location' high value byte.
c. Control byte, Bits 7-0 (7 is leftmost).

T-6 =11 Dummy last entry in table. Ignore all
other bits and bytes of entry.

7-6 =01 Reference entry: ‘'Location!' ref-

5-6 =00 erenced by one or more of the
following entries.

7-6 =00 Reference entry: The instruction

5-6 =00~-1F at this 'Location' referenced

'Location! in the previous ref-
erence entry. Bits 5-6 contain a
code indicating the type of instruc-
tion making the reference: 0=S,

1=T, 2=U, 3=V, U4=W, 5=X, 6-T=none,
8=P, 9zL, A=R, and B-1Fznone.

See a reference table listing for
definitions of above.

[AVAN

APPENDIX A.
DEVELOPMENT PACKAGE DISTRIBUTION DISKETTE

INTRODUCTION

The development package consists of a number of
independent programs. These programs are contained on a
special distribution diskette in a non-standard format.
They must first be transferred to a DOS diskette before
they can be used.

FERERE RN E R R R LR AR R R AR R ER AR R RN

% *
* THE DISTRIBUTION DISKETTE IS NOT A *
* STANDARD DOS SKETTE ! *
: NO ENTRIES WILL BE FOU IN THE DIRECTORY :
* %

2222 2 22 2222222222222 222222222222 222222222]

The purpose of this appendix is to describe the procedures
required to accomplish this task.

LOADING PROCEDURES

The following procedure should be used to transfer the
contents of the distribution diskette to a users DOS
diskette. Only drive #0 will be used in the sequence
below. Note that all user input is shown below in
boldface underlined characters.

A. - The development programs will be transferred to a
standard DOS diskette. The DOS diskette selected for this
purpose should contain all the DOS system modules so that
it can be used in drive #0. This diskette should have
about 25-granules (125 sectors) of available free space.

B. = Turn the power on if it is not already on.

C. - Insert the development package distribution diskette
in drive #0. Toggle the reset switch if the power was
already on before Step B, above.

D. - Wait for about 15 seconds. The following message
should then be displayed at the top of the screen:

RACET computes BOOT System Loaded - Release 6/11/80 -
REBOOT DOS!!!

The release date will change based upon the order date
of the product.

E. - Remove the distribution diskette from drive #0

Appendix A, Distribution Diskette Procedure

G. - Toggle the reset switch and enter time and date as
required to get to TRSDOS READY status.

H. - Enter the following, using an "enter" key after each
entry except where specifically noted:

DEBUG ON
DEBUG
d (no "enter" key)
F00Q0 (F zero zero zero zero)
I. - This should result in the sequence shown below.

When requested you should mount the RACET distribution
diskette or your DOS diskette, and then press the enter
key.

L 4
RACET computes Distribution System - Copyright 1980
MOUNT DISKETTE * RACET 1IN DRIVE #0_
MOUNT DISKETTE ¥ DOS IN DRIVE #0_
¥CAT LOADED OK
*¥MACASM LOADED OK
¥OPCODE/ASM LOADED OK
¥SZAP LOADED 0K
*¥DIS2 LOADED 0K
PROCESSING COMPLETED

J. - The debug system can then be turned off by entering:
DEBUG OFF
After the above sequence has been completed
successfully the develcpment programs should be on your
DOS diskette. This can be verified by entering a "DIR"
command,
All of the development programs can be immediately used

by entering the commands as described in this manual.
They can also be copied to other diskettes as required.

A-2

Py

oo

-

S—

oy

