
TRS-80"Model E

by Galactic Software Ltd

GALACTIC SOFTWARE LTD. MODEL II EDITOR ASSEMBLER 4.0
by Roy Soltoff, MISOSYS and Bill Schroeder, GALACTIC

Copyright 1980 by Galactic Software ltd.

GALACTIC's MODEL II EDITOR ASSEMBLER includes the following features:

1> Depression of <ENTER> without a command immediately provides
a summary listing of the Editor Assembler's available commands.
2> "Load" and "Write" text buffers from/to the disk, as well as
assembled object code filed to disk as a directly executable program file.
3> "Move" block allows the user to move lines of text from one
location to another location in the text file.
4> "Find" v/ill locate a designated string within the text. It
will stop at each location and may be manually continued to the
next occurence of the string.
5> "Global" replace allows the user to change a sequence of
characters (STRING1) to a different sequence of characters
(STRING2) throughout the entire text buffer.
6> "System" allows the user to perform any TRSDOS library
command from the editor and return to the editor. You may do a
DIR or maybe a KILL or LIST and even enter the DEBUGGER and
never leave the environment of the Editor Assembler. Use this
command to set FORMS, perform disk INIT, or CREATE files
7> "Edit" provides straightforward editing of designated text lines. The Editor maintains command syntax identical to the
Model II BASIC editor while all editing is done in reverse
video providing excellent user interface. Line insert, replace,
and renumber round out the Editor's complement of commands.
8> "Assemble" with numerous switches is provided to allow for
many different types of assembled output. PLUS the unique
assemble to memory system, so the user may effectivly debug the
object code before leaving the Editor Assembler environment.
9> "Jump" allows you to execute your program, that has been
assembled to ram, and then return to the Editor Assembler.
10> "Usage" allows quick reference to the present usage of
available ram by printing the number of bytes remaining in your
text buffer, how many are in use, plus the address of the first
free byte after the text. This last address is useful when using the ASSEMBLE TO MEMORY feature.
11> "Hardcopy" will print all or part of the text buffer.

l

12> "Type" will print the text buffer without line numbers.
13> The <F1> key is employed as a functional <CLEAR> key.
14> The symbol table is sorted in ascending alphanumeric order
and output 5-across in 80 column format.
15> The <UP ARR0W> and <DOWN ARROW> keys provide instant scroll
up or down, one line at a time, or repeated, with the repeat key.
16> The <F2> key is employed to provide instant advance of a
entire text page (23 lines). This "PAGE" function may also be used with the repeat key.
17> The <HOLD> key is employed as a functional Pause key.
18> All Editor Assembler commands may be entered in either
upper case or lower case providing ease of operation as a text editor.
19> Great amounts of time and effort were expended to give the
user of this Editor Assembler the absolute best in ease of
operation and functional efficiency. Optimize assembly
programing time, with the EDITOR ASSEMBLER designed with the
programmer in mind.

W A R R A N T Y
ALL GALACTIC SOFTWARE IS WARRANTED FOR ONE YEAR FROM THE DATE
OF PURCHASE TO BE FREE FROM CODING DEFECTS. SHOULD A PROBLEM
BE FOUND BY THE USER, GALACTIC WILL CORRECT IT AT NO CHARGE,
DURING THE WARRANTY PERIOD. THIS SERVICE SHALL ONLY BE
PROVIDED TO CUSTOMERS WHO REGISTER WITH GALACTIC, WITHIN 30
DAYS OF PURCHASE, BY RETURNING THE REGISTRATION CARD PROVIDED
IN THE REAR OF THE MANUAL. GALACTIC'S LIABILITY SHALL NOT, IN
ANY WAY, EXTEND BEYOND CORRECTION OF THE PROGRAM ITSELF. THE
USER IS TOTALLY RESPONSIBLE FOR ALL DATA ENTRUSTED TO THE
PROGRAM AND HIS HARDWARE.

ll

INTRODUCTION
The Galactic Software Editor Assembler is a RAM-resident
text editor and assembler for the Model II microcomputer
system. The Editor Assembler was designed to provide the
maximum in user interface and ease of use while providing
capabilities powerful enough for the expert Z80 assembly
language programmer.
The text editing features of the Editor Assembler facilitate
the manipulation of alphanumeric text files. The most
common use of the editing capability is in the creation and
maintenance of assembly language source programs.
The assembler portion of the Editor Assembler facilitates
the translation of symbolic language source code programs
into machine executable code. This object code may then be
executed directly from TRSDOS (tm) as a program file.
Previous knowledge of machine language and the hexadecimal
number system is assumed throughout this manual.
The Assemble command (A) supports the assembler language
specifications set forth in the ZILOG "Z80-ASSEMBLY LANGUAGE
PROGRAM MANUAL, 3.0 D.S., REL.2.1, FEB 1977, with the
following exceptions.
Macros are not supported.
Operand expressions may only contain the "+",
(logical AND), and "<" (shift) operators, and are evaluated
on a strictly left to right basis. Parentheses are not
allowed!
Conditional assembly commands, where a programmer may
control which portions of the source code are assembled, are
not supported.
Constants may only be decimal (D), hexadecimal (H), or octal
(O) .

The only Assembler commands supported are *LIST OFF and *LIST ON.
A label can contain only alphanumeric characters. (Use of
the and "?" is not supported). A label can be up to 6
characters long. The first character must be alphabetic.
The other characters must be alphanumeric.

in

NOTATION CONVENTIONS
0 Parentheses enclose optional information. They

are never input in Editor Assembler commands.
The ellipses represents repetition of a previous item.

line Any decimal number from 1 to 65529.
A period may be used in place of any line number.
It represents a pointer to the current line of
source code being assembled, printed, or edited.

T The character <T> may be used in place of any line
number. It represents the top of the text buffer.

B The character may be used in place of any line
number. It represents the bottom of the text buffer.

m e A number representing an increment between
successive line numbers.

All Editor Assembler commands may be entered in lower case
as well as upper case to facilitate its use as a general
purpose text editor. Assembler source code must be entered
in upper case only. It is suggested that CCAPS LOCK> be
used to enter source code.

A file called "Z80CODE/SOR" has been written to the diskette
containing the Galactic Software Editor Assembler. This file is a Z-80 code source file containing the entire Z-80 code instruction set which can be loaded into the Editor
Assembler. If assembled, it will produce Z-80 object code
in numeric order. The generated listing will be similar to
the NUMERIC LIST OF INSTRUCTION SET located at the rear of
your Editor Assembler manual.

IV

GETTING STARTED WITH EDAS 4.0
It is strongly recommended that before using your new Editor
Assembler, you should make a BACKUP copy to use in a working
environment and retain the EDAS diskette as your MASTER copy.
The BACKUP utility procedures are found in your "TRS-80 Model
II Owner's Manual" in the section entitled "UTILITY
PROGRAMS". After creating a BACKUP copy of the EDAS diskette,
store the MASTER diskette in a safe place. Use only your"working" copy for production.
EDAS 4.0 is a directly executable program file. It is
accessed simply by entering:

EDAS40
in response to the TRSDOS query
TRSDOS READY

EDAS 4.0 will load, execute, and display the following:
GALACTIC SOFTWARE LTD. MODEL II EDITOR ASSEMBLER 4.0
By Roy Soltoff, MISOSYS and Bill Schroeder, Galactic

Copyright 1980 by Galactic Software ltd.
>
The right carat ">" which appears in reverse video, is the
prompting character displayed by EDAS whenever it is ready to
accept a command. If you would like a memory jogger as to
what commands are acceptable to EDAS, just depress <ENTER>.
The entire command repertoire will be instantly displayed.

WELCOME TO THE WORLD OF SOPHISTICATED BUSINESS SOFTWARE

v

ASSEMBLY LANGUAGE
Syntax
The basic format of an assembly language statement is:
(LABEL) OPCODE (OPERAND(S)) (COMMENT)

LABELS
A label is a symbolic name of a line of code. Labels are
always optional. A label is a string of characters no
greater than 6 characters. The first character must be a
letter (A-Z). A label may not contain the dollar sign ($)
character. The dollar sign ($) is reserved for the value of
the reference counter of the current instruction.
The following labels are reserved for referring to registers
only and may not be used for other purposes:

A, B, C, D, E, H, L, I, R,
IX, IY, SP, PC, AF, BC, DE, and HL.

The following 8 labels are reserved for branching conditions
and may not be used for other purposes (these conditions apply to status flags):
FLAG
Carry
Zero
Sign
Parity

CONDITION SET
C
Z
M (minus)
PE (even)

CONDITION NOT SET
NC
NZ
P (plus)
PO (odd)

OPCODES
The OPCODES for the Galactic Software Model II Editor
Assembler correspond to those in the Z-80-ASSEMBLY LANGUAGE
PROGRAMMING MANUAL, 3.0 D.S., REL 2.1, FEB 1977.

1-1

OPERANDS
Operands are always one or two values separated by commas.
Some instructions require no operands at all.
A value in parentheses "()" specifies indirect addressing
when used with registers, or "contents of" otherwise.
Constants may end in any of the following letters:

H - hexadecimal
D - decimal
0 - octal

A constant not followed by one of these letters is assumed
to be decimal. A constant must begin with a digit. Thus
"FFH" is not permitted, while "OFFH" is valid.
Expressions using the "+", , and "<" operators are
described in the section, Expressions.

COMMENTS
All comments must begin with a semicolon (;). If a source
line starts with a semicolon in column 1 of the line, the
entire line is a comment.

EXPRESSIONS
A value of an operand may be an expression consisting of
"+", or "<" symbols. These operations are
executed in strictly left to right order. No parentheses are allowed. All four operators are binary. Both "+" and have unary uses also.
Addition (+)
The plus will add two constants and/or symbolic values.
When used as a unary operator, it simply echoes the value.
Examples:

001E CON 30 EQU 30
0010 CON 16 EQU 1 OH
0003 CON3 EQU 3
002E A2 EQU CON30 + CON16

1-2

Subtraction (-)
The minus operator will subtract two constants and/or
symbolic values. Unary minus produces a 2's complement.
Examples:

000E A2 EQU CON30 - CON16
FFF2 A4 EQU -A2

Logical AND (&)
The logical AND
symbolic values.

operator logically adds two constants and/or

Examples:
3C00 A1 EQU 3C00H & 0FFH
0000 A2 EQU 0 & 15
0000 A3 EQU 0AAAAH & 5555H

Shift (<)
The shift operator can be used to shift a value left or
right. The form is:

VALUE < AMOUNT
If AMOUNT is positive, VALUE is shifted left. If AMOUNT is
negative, VALUE is shifted right. The magnitude of the' shift is determined from the numeric value of AMOUNT
Examples:

cooo A1 EQU 3C00H < 4

03C0 A2 EQU 3C00H < -4

BBFF A3 EQU 3CBBH < 8 + 255

03C0 A3 EQU 15 + 3C00H < -4

1-3

Z-80 STATUS INDICATORS (FLAGS)
The flag registers (F and F') supply information to the user
regarding the status of the Z-80 at any given time. The bitpositions for each flag are shown below:

7 6 5 4 3 2 1 0S Z X H X P/V N C
where:

C = Carry flag
N = Add/Subtract flag
P/V = Parity/Overflow flag
H = Half-carry flag
Z = Zero flag
S = Sign flag
X = Not used

Each of the two Z-80 flag registers contain 6 bits of status
information which are set or reset by CPU operations. Four
of these bits are testable (C, P/V, Z, and S) for use with
conditional jump, call, or return instructions. Two flags
(H, N) are not testable and are used for BCD arithmetic.
Two flag register bits (3, 5) are not used by the Z-80.

CARRY FLAG (C)
The carry flag is set or reset depending on the operation
being performed. For "ADD" instructions that generate a
carry and "SUBTRACT" instructions that generate a borrow,
the carry flag will be set. The carry flag is reset by an
"ADD" that does not generate a carry and a "SUBTRACT" that'
generates no borrow. This saved carry facilitates software
routines for extended precision arithmetic. Also, the "DAA" instruction will set the carry flag if the conditions for making the decimal adjustment are met.
For instructions RLA, RRA, RLS, and RRS, the carry bit is
used as a link between the LSB and MSB for any register or
memory location. During instructions RLCA, RLC s and SLA s,
the carry contains the last value shifted out of Bit 7 of
any register or memory location. During instructions RRCA,
RRC s, SRA s, and SRL s, the carry contains the last value
shifted out of Bit 0 of any register or memory location.
For the logical instructions AND s, OR s, and XOR s, the carry flag will be reset.
The carry flag can also be set (SCF) or complemented (CCF).

1-4

ADD/SUBTRACT FLAG (N)
This flag is used by the decimal
instruction (DAA) to distinguish
"SUBTRACT" instructions. For all "ADD"
be set to a "zero". For all "SUBTRACT" be set to a "one".

adjust accumulator
between "ADD" and
instructions, N will
instuctions, N will

PARITY/OVERFLOW FLAG (P/0)
This flag is set to a particular state depending on the operation being performed.
For arithmetic operations, this flag indicates an overflow
condition when the result in the Accumulator is greater than
the maximum possible number (+127) or is less than the
minimum possible number (-128). This overflow condition can
be determined by examining the sign bits of the operands.
For addition, operands with different signs will never cause
overflow. When adding operands with like signs and the
result has a different sign, the overflow flag is set. For example:

+ 120 = 0111 1000 ADDEND
+ 105 - 0110 1001 AUGEND
+225 = 1110 0001 (-95) SUM

The two numbers added together has resulted in a number that
exceeds +127 and the two positive operands has resulted in a
negative number (-95) which is incorrect. The overflow flag
is therefore set.
For subtraction, overflow can occur for operands of unlike
signs. Operands of like sign will never cause overflow. For example:

+127 = 0111 1111
(-)-64 = 1100 0000 MINUENDSUBTRAHEND
+191 = 1011 1111 DIFFERENCE

The minuend sign has changed from a positive to a negative
giving an incorrect difference. The overflow flag is therefore set.
Another method for predicting an overflow is to observe the
carry into and out of the sign bit. If there is a carry in
and no carry out, or if there is no carry in and a carry
out, then overflow has occurred.

1-5

This flag is also used with logical operations and rotate
instructions to indicate the parity of the result. The
number of "one" bits in a byte are counted. If the total is
odd, "ODD" parity (P=0) is flagged. If the total is even, "EVEN" parity is flagged (P=1).
During search instructions (CPI, CPIR, CPD, and CPDR)
and block transfer instructions (LDI, LDIR, LDD, and
LDDR), the P/V flag monitors the state of the byte count
register (BC), When decrementing the byte counter results
in a zero value, the flag is reset to zero, otherwise the flag is a one.
During "LD A,I" and "LD A,R" instructions, the P/V flag will
be set with the contents of the interrupt enable flip-flop (IFF2) for storage or testing.
When inputting a byte from an I/O device "IN r,(C)", the
flag will be adjusted to indicate the parity of the data.

THE HALF CARRY FLAG (H)
The half carry flag (H) will be set or reset depending on
the carry and borrow status between bits 3 and 4 of an 8-bit
arithmetic operation. This flag is used by the decimal
adjust accumulator instruction (DAA) to correct the result
of a packed BCD add or subtract operation. The H flag will
be set (1) or reset (0) according to the following table:

H ADD SUBTRACT
1 There is a carry from There is no borrowBit 3 to Bit 4 from Bit 4
0 There is no carry There is a borrowfrom :Bit 3 to Bit 4 from Bit 4

THE ZERO FLAG (Z)
The Zero flag (Z) is set or reset if the result generated by
the execution of a certain instruction is a zero.
For 8-bit arithmetic and logical operations, the Z flag will
be set to a "one" if the resulting byte in the Accumulator
is zero.
For compare (search) instructions, the Z flag will be set to
a "one" if a comparison is found between the value in the
Accumulator and the memory location pointed to by the
contents of the register pair HL.

1-6

When testing a bit in a register or memory location, the Z
flag will contain the state of the indicated bit.
When inputting or outputting a byte between a memory
location and an I/O device (INI, IND, OUTI, or OUTD), if the
result of B-1 is zero, the Z flag is set, otherwise it is
reset. Also for byte inputs from I/O devices using "IN
r, (C)", the Z flag is set to indicate a zero byte input.

THE SIGN FLAG (S)
The Sign flag (S) stores the state of the most significant
bit of the accumulator (Bit 7). When the Z-80 performs
arithmetic operations on signed numbers, binary two's
complement notation is used to represent and process numeric
information. A positive number is identified by a "zero" in
bit 7. A negative number is identified by a "one". The
binary equivalent of the magnitude of a positive number is
stored in bits 0 to 6 for a total range of from 0 to 127. A
negative number is represented by the two's complement of
the equivalent positive number. The total range for
negative numbers is from -1 to -128.
When inputting a byte from an I/O device to a register, "IN
r,(C)", the S flag will indicate either positive (S=0) or negative (S=1) data.

PSEUDO-OPS
There are nine pseudo-ops (Assembler directives) which the
assembler will recognize. These assembler directives,
although written much like processor instructions, are
commands to the assembler instead of the processor. They
direct the assembler to perform specific tasks during the
assembly process but have no meaning to the Z-80 processor. These assembler pseudo-ops are:
ORG nn Sets address reference counter to thevalue nn.
EQU nn Sets the value of a label to nn in the

program: can occur only once for anylabel.
DEFL nn Sets the value of a label to nn and can be

repeated in the program with different values for the same label.

1-7

END Signifies the end of the source program so
that any following statements are ignored.
If no END statement is found, a warning is
produced. The END statement can specify a
transfer address (i.e. END LABEL or END 6000H).
The transfer address is used by the TRSDOS
program execution to transfer control to the
address specified in the END statement.

DEFB n Defines the contents of a byte at the current reference counter to be "n".
DEFB 's' Defines the content of one byte of memory to

be the ASCII representation of character "s".
DEFW nn Defines the contents of a 2-byte word to be "nn".

The least significant byte is located at the
current reference counter while the most sig­
nificant byte is located at the reference counter plus one.

DEFS nn Reserves "nn" bytes of memory starting at the
current value of the reference counter.

DEFM 's' Defines the contents of n bytes of memory to be
the ASCII representation of string "s", where n
is the length of "s" and must be in the range 0-63.

ASSEMBLER COMMANDS
The Galactic Software Editor Assembler supports only two
assembler commands. Each command must start in column one of a source line, and must start with an asterisk (*). Theassembler commands are:
*LIST OFF Causes the assembler listing to be suspended, starting with the next line.
*LIST ON Causes assembler listing to resume, starting with this line.

1-8

COMMANDS:
The GALACTIC Model II Editor Assembler can perform the
following commands. These commands may be typed after the
prompt symbol ">" which is displayed in reverse video for
clarity. The prompt symbol appearance indicates the
"command mode" of the Editor Assembler. The following list
contains all command mode instructions recognized by the
Editor Assembler with a brief description of each.

A Assemble source currently in the text buffer.
C Display the FILESPEC of the last source text file

accessed either by Load or Write.
D Delete specified line(s).
E Edit a specified line of text.
F Find a specified string of characters.
G Globally change a string of characters (STRING1)

to another string of characters (STRING2) throughout
the text buffer.

H Provide hard copy output (line printer) of a specified
range of text buffer lines.

I Insert source text line(s) at a specified line with a
specified line number increment.

J Jump to a specified address.
L Load a source text file from disk.
M Move a block of text from one location to another.
N Renumber source text lines in the text buffer.
P Print a specified range of source text code currentlyin the text buffer.
Q Quit the Editor Assembler and return to TRSDOS.
R Replace lines currently in the text buffer.
S System command to execute any TRSDOS command from

within the environment of the Editor Assembler.
T Type source text lines without line numbers to aline printer.

1-9

U Display the memory utilization - bytes used by the
text, bytes available, and the first free address.

W Write the current text buffer to disk.
F1 Clear the CRT screen.
F2 Page forward the display 23 lines.

Scroll up one source text line.
^ Scroll down one source text line.

HOLD Performs a functional pause of any operation.

GALACTIC EDITOR ASSEMBLER COMMAND DETAILS

1.> ASSEMBLE (A)
Syntax: A (SWITCH(/SWITCH)...)

SWITCH may be any of the following five options:
NL No assembler listing is written to the screen.
NO No assembled object code is generated to disk or memory.
NS No symbol table is printed either to the screen

or the line printer (if enabled).
LP Send assembler listing, error messages, and

symbol table (if enabled) to a line printer.
WE Cause the assembly to wait when an error occurs.

Depressing any key will continue assembly until
another error is found. If you want to continue
the assembly without stopping for additional
errors, enter the character <C>

If you want to assemble an object program to either disk or
memory, do not enter the switch parameter, "NO”. The prompt

Object code to disk or memory (D,M)?
will be displayed. A response of "M" will assemble the
object code to memory. You will not be permitted to
overwrite any region below the end of the text buffer nor

1-10

will you be permitted to overwrite the symbol table stored in high memory. The error message,
Attempt to overwrite protected region - job aborted

will be displayed if your assembled program will violate
these restrictions. Upon successful completion of the assembly to memory, the message,

Memory region loaded
XXXXX is the transfer address

will be displayed.
A response of 'D' assumes a disk object code file. The 'D'
response will issue the query,

Enter filespec
Respond with the filespec that you want to use to save the
assembled program file. The Editor Assembler will open the
file if existing and output the message,

Replaced
or create the file if non-existant and output the message,

New file
Assembly will start and the program file will be written to
disk.

2. > DISPLAY CURRENT SOURCE FILESPEC (C)
Syntax: C
This command will display the filespec used for the most
recent Load or Write command. If neither Load nor Write
were utilized, or the text buffer region was cleared, the message,

Filespec unknown
is displayed.
3. > DELETE (D)
Syntax: D (linel (,line2))
This command is used to delete the line or lines specified
from the source text buffer. The character <T> is used to
indicate the top of the text buffer and the character is

1-11

used to indicate the bottom of the text buffer.
Examples:

D 100,500

D T,B
D

D 105
4 . > EDIT (E)

Delete lines 100 through 500 (inclusive) from the text buffer.
Delete the entire text buffer.
Delete the current source text line.
A period (.) may also be used to indicate the current line.
Delete the single line 105.

Syntax: E (line)
This command permits the user to edit or modify any source
text line. While in the edit mode, the line being editted
is displayed in reverse video. The syntax and function of
all edit subcommands are identical to those implemented in the DISK BASIC editor.
Edit Subcommands:
A Abort and restart the line edit.
nC Change n characters.
nD Delete n characters.
E End editting and enter the changes.
H Delete the remainder of the line and insert the

following string. The "H" command should not be
used to delete an entire line of text. There

M U S Talways be at least one character on a line, or
future use of that line will cause problems.

I Insert string.
nKx Kill all characters up to the nth occurrence ofx.
L Print the rest of the line and go back to thestarting position of the line.
Q Quit and ignore all editting.
nSx Search for the nth occurrence of x.

1-12

BACKSPACE
ESCAPE
ENTER

Move edit pointer back one space.
Escape from any edit mode subcommand.
Enter the line in its presently editted form and exit the edit mode.

5.> FIND (F)
Syntax: F (string)
The edit buffer is searched starting at the current line+1
for the first occurrence of "string". If no string is
specified, the search is the same as that of the last Find
command in which a string was specified (provided a Global
command was not previously specified). If the search string
is found, the line containing it is displayed and period (.)
is updated to the displayed line. If the string is not found, the message,

String not found
is displayed and period (.) remains unchanged. A "p t "
command can be used to position the line pointer to the top
of the text buffer prior to use of the Find command.

6.> GLOBAL (G)
Syntax: G /string1/string2/
A string of characters can be changed throughout the text
buffer by one easy command. The GLOBAL CHANGE command will
change the appearances of STRING1 to the sequence STRING2.
No changes will be performed on the first line of the text
buffer. Also, only the first appearance of STRING1 in each line that STRING1 appears will be altered.
The first non-blank character becomes the string delimiter
(the slash character is shown above; any character is
permitted). Null strings are not permitted (i.e. the string
must contain at least one character).
It is not necessary that STRING2 be the same length as
STRING1. It can be of lesser, equal, or greater length;
however, no string can exceed 16 characters in length. If
a change would result in a line exceeding the maximum line
length (128), the change will not be performed on that line and the message,

FIELD OVERFLOW
will be issued. The search for STRING1 continues for the remaining lines.

1-13

A line which contains STRING1 will be displayed as it exists
both before and after the change. The <HOLD> key may be
used to pause the output. Use of the <BREAK> key will stop further changing.
Example:

G /MODIFY/ALTER/

7.> HARDCOPY (H)
Syntax: H (linel (,line2))
This command will print a line or a group of lines to a line
printer. If a properly paged display is desired, it is
suggested that you set the forms control by issuing the
Editor Assembler's "System" command as in:

S FORMS (P=xx,L=xx,)
Examples:

H T, B Print the entire text buffer.
H 100,500
H.

H

Print lines 100 through 500 inclusive.
Print the single line pointed to by
period (.).
Print the 23 lines starting with the current line.

8.> INSERT (I)
Syntax: I line# (,inc)
The Insert command is used to insert or add text lines in
the buffer. All lines of source text are entered with the
use of the Insert command. After using the Insert command
to specify were you wish to place new lines, the EDITOR will
generate the designated line number and allow the inserting
of that numbered text line. After entering the first text
line the editor will generate the next line number higher,
as specified by your increment selection. Incremental line
numbers will continue to be generated as long as there is
room between lines or room left in the text buffer.
The <BREAK> key will allow you to leave the insert mode at any time.
If a desired increment is not specified the last specified
increment is assumed. Period (.) may be used for "line#" to
indicate the current line.

1-14

9•> LOAD (L)
Syntax: L (filespec)
The Load command will read the file denoted by the FILESPEC
into the text buffer. The text file will be concatenated to
any text already in the text buffer. FILESPEC is explained
in your TRSDOS (tm) user manual under the "TRSDOS" section
entitled "file specification". It is composed of a
FILENAME, optional EXTension, optional PASSWORD, optional
DRIVE reference, and optional diskette name as in

FILENAME/EXT.PASSWORD:D(DISKETTE NAME)
(ex. YOURPROG/ASM:1). If you do not enter the FILESPEC,
Editor Assembler will use the filespec entered for the last
Load or Write command provided there is text already in the
text buffer. If the text buffer is empty and you do not
enter a filespec with the Load command, Editor Assembler
will prompt you for the filespec.

10.> MOVE (M)
Syntax: M linel, line2, line3
This command is used to move a block of lines from one
location in the text buffer to another. A large quantity of
text lines can be moved to a different position in one easy
operation. In the command syntax, "linel" and "line2" are
the beginning and ending line numbers of the text block to
be moved. "Linel" and "line2" are permitted to reference
the same line number if only one line is to be moved.
"Line3" is the line number of the line that the text block
will follow after the move. The line number references must
be offset by commas (,). If any of the entered line numbers
are non-existant, the message,

No such line
will be issued.
"Line3" is not permitted to equal "linel" or "line2".
"Line3" is not permitted to be a line interior to the range
"linel" through "line2". The message,

Command parameter(s) incorrect
will be issued if your input violates any of these
conditions.

1-15

The text to be moved is stored temporarily in the spare text
region. If this region is not large enough to store the block, the message,

Text buffer full
will be issued. Try moving the block in segments.
Upon completion of the move, all lines in the text buffer
will be renumbered starting from ten (10) and using the line
increment currently in effect. Renumbering is absolutely
essential to perform proper operation of Editor Assembler commands.
Example:
You desire to move the block of text starting at line 500
and ending at line 900 to follow line 1510. Issue thecommand,

M 500,900,1510.

11.> RENUMBER (N)
Syntax: N (line(,inc))
The "N" command is used to renumber the lines in the text
buffer. The first line in the buffer is assigned the number
specified as "line". If "line" is not specified, it
defaults to 00100. The remaining lines in the buffer are
renumbered according to the increment (inc) or the previous
increment in a RENUMBER, REPLACE, or INSERT command if the
increment was not specified. Period (.) points to the same
line as it did before the NUMBER command was used, but the
actual number of this line may be changed.
Examples:

N Renumbers
increment.

from 100. with the previous

N5 Renumbers
increment.

from 5 with the previous

N10,5 Renumbers from 1 0 in steps of 5.

12.> PRINT (P)
Syntax: P (linel (,line2))
The PRINT command will display a line or a group of lines on
the monitor screen. Period (.) is updated to point to the
last line printed.

1-16

Examples:
P T,B Displays all lines in the text buffer.
P 100,500 Displays lines 100 through 500 inclusive.
P • Displays the current line only.
P Displays 23 lines starting with the current

line. The PRINT command operates in a screen
scroll mode. If you want to "page" the screen, use the "F2" command.

13.> QUIT (Q)
Syntax: Q
The QUIT command is used to exit the Editor Assembler and
perform a proper return to TRSDOS. By using command "Q", the
<BREAK> key will be restored to TRSDOS.

14.> REPLACE (R)
Syntax: R (lineCinc))
The REPLACE command only replaces one line and enters INSERT
mode. If "line" exists, it is deleted then inserted. If
line doesn't exist, it is inserted as with the INSERT
command. If "inc" is not specified, the last increment
specified by an INSERT, REPLACE, or RENUMBER command is used.
Period (.) is always updated to the current line.
Examples:

R Replace the current line.
R 100,10 Start replacing lines beginning at line

100 and incrementing with 10.
R 100 Start replacing at line 100 using the last

specified increment.

15.> SYSTEM (S)
Syntax: S ANY-TRSDOS-COMMAND (PARAMETERS)
The SYSTEM command is used to interface with TRSDOS while in
the environment of the Editor Assembler. Any TRSDOS command
can be accessed. It is recommended that you not attempt to access the TRSDOS "COPY" nor "BACKUP" commands due to the
possibility of overwriting the Editor Assembler. IT IS

1-17

IMPORTANT TO NEVER DEPRESS THE <BREAK> KEY DURING A SYSTEM
TRSDOS COMMAND. To break any TRSDOS command, use the <ESCAPE> key.
Examples:

S DIR List the diskette directory.
S FORMS (P=51,L=42) Set printer parameters.
S LIST filespec List the contents of a file.
S PURGE :d Delete files from drive "d".

1 6.> TYPE (T)
Syntax: T (line 1(,line2))
The TYPE command prints a line or group of lines onto the
Line Printer. Period (.) is updated to point to the last
line printed. This command is much like the HARD COPY
command, only no line numbers are printed. Only the source
text is printed.

17.> MEMORY USAGE (U)
Syntax: U
This command will display the number of bytes of text buffer
in use, the number of bytes spare and the first address
available for assembly to memory.
This command is useful to ascertain requirements for storing
the text buffer to disk. Note that a disk file, which is
written in ASCII, will contain an additional four (4) bytes
per text line. The 4 bytes arise from the difference in
storage formats of text in memory versus text in an ASCII f ile.
It also is useful when assembling to memory. Since the
Assembler will not permit you to overwrite it or the text
buffer, you will have to "ORG" your program in the free text
buffer area. The first available address is output by this command.
An example of output is:

12288 bytes in use
27934 bytes spare
37292 (91AC) is the first free address

1-18

1 8 . > WRITE (W)

Syntax: W (filespec)
This command will write the text buffer to the file denoted
by FILESPEC. If no FILESPEC is entered, the filespec
referenced by the previous Load or Write command will be
used unless the text buffer is empty. If a FILESPEC is
unavailable for use, you will be prompted for it.
If the file denoted by FILESPEC is non-existant, a file will
be created and the message,

New File
will be issued.
If the file denoted by FILESPEC is an existing file, it will
be replaced by the write operation and the message,

Replaced
will be issued. YOU WILL NOT BE GIVEN AN OPPORTUNITY TO
CANCEL A WRITE REQUEST ON AN EXISTING FILE. Know what you are doing.

19.> SCROLL UP
The SCROLL UP command displays the line preceding the
current line and updates period (.) to point to the line
displayed. If the current line is the first line in the text
buffer, it is displayed and period (.) remains unchanged.
SCROLL UP is an immediate command and must be the first character of a command line in order to be interpreted.

20 . > SCROLL DOWN (\ty
The SCROLL DOWN command displays the line following the
current line and updates period (.) to point to the line
displayed. If the current line is the last line in the text
buffer, the last line is displayed and period (.) remains
unchanged. SCROLL DOWN is an immediate command and must be
the first character of a command line to be interpreted.

21.> CLEAR SCREEN (F1)
The <F1> key is used to perform a functional clear screen (similar to "S CLS").

1-19

The <F2> key is used to advance the display by 23 lines.
This command is similar to the PRINT command except that the
monitor screen is cleared before displaying the 23 lines.

22. > PAGE FORWARD (F2)

23.> PAUSE (HOLD)
The <HOLD> key is used to pause the computer during a
display during any assembly or Editor Assembler printing.
When a pause is sensed, depression of any key except <HOLD>,
<5HIFT>, or <CTRL> will continue the operation paused.

1-20

Error Messages
The Galactic Software Model II Editor Assembler recognizesthree types of errors. These are:
1•> Command errors - The error message is displayed and

control is returned to command mode.
2. > TRSDOS errors - The error message (or error number) is

displayed and control is returned to command mode.
3. > Assembler errors - These three types of errors may occur

while executing an Assemble command.
a. Terminal - Assembly is terminated and control is

returned to command mode.
b. Fatal - Processing of the line containing the error

is immediately stopped and no object code is
generated for that line. Assembly proceeds with the next line.

c. Warning - The error message is displayed and assembly
of the line containing the warning continues. The
resulting object code may not be what the programmer intended.

Following is a list of all errors and an explanation of each.

COMMAND ERRORS
1. > Buffer full
There is no more room in the text buffer for adding text.
2. > Command parameter(s) incorrect
Any command line not entered according to the syntax
appropriate for that command will generate this errormessage.
3. > Illegal command
The first character of the command line entered does not
specify a valid Editor Assembler command.
4. > Invalid source file
A Load filespec command was issued where the file identified
by filespec is not a valid Editor Assembler source file.

1-21

5. > Line number too large
Renumbering with the specified starting line number and
increment would cause line(s) to be assigned numbers greater
than 65529. The renumbering is not performed. This message
would also be displayed if you attempted to INSERT a line with a line number exceeding 65529.
6. > No room between lines
The next line number to be generated by INSERT or REPLACE
would be greater than or equal to the line number of the next
line of text in the edit buffer. The increment must be
decreased or the lines in the buffer renumbered.
7. No such line
A line specified by a command does not exist. The command is not performed.
8. No text in buffer
A command requiring text in the buffer was issued when the
text buffer was empty. The commands Load, Insert, Quit,
System, Jump, <F1>, and Display current filespec can be
executed when the text buffer is empty. All other commands
require at least one line of text to be in the buffer.
9. > String not found
The string being searched for by the Find command could not
be found between the current line and the end of the text
buffer. This message will also be displayed at the
completion of a Global command.

TRSDOS ERRORS
1. > Disk drive not ready
This message will be displayed after a Load, Write, or
Assemble to disk command is executed if either the specified
drive is not ready (no diskette, diskette in backwards, drive
door not closed, etc.) or the specified drive does not exist.
2. Disk is write protected
A Write command was issued with a filespec designating a
drive loaded with a diskette that is protected from a write operation.

1-22

3.> Unusable file specification
A Load, Write, or Assemble to disk command was executed with
a filespec that did not conform to TRSDOS specifications. It
is also possible that the drive specified was not in the range 0-3.
4. > Filespec not in directory
The filespec entered for execution of a Load, Write, or
Assemble to disk command could not be located in the drive directory.
5. > Access denied (password incorrect or missing)
An attempt was made to access a TRSDOS file. Either the
password entered was incorrect or no password was entered for a password protected file.
6. > Too many files in the directory
The directory space is full on the designated diskette.
7. > No disk space available
A Write or Assemble to disk command was executed which
resulted in a file using the available disk space prior to
completion. The operation terminates and the file is closed.
NOTE: Under TRSDOS 1.2, a TRSDOS system error causes
unpredictable behavior of the system when a diskette becomes
full. It is strongly recommended that you pay close
attention to the amount of available space on a diskette by
issuing the System commands DIR or FREE. ' As a diskette's available free space diminishes, you may want to avoid
creating any new files on it and continue your operation with
a diskette that has sufficient free space. File storage
requirements for the text buffer may be ascertained using the Editor Assembler's USAGE command.
8. > Hardware failure during I/O
This message is displayed when a disk operation is
unsuccessful and TRSDOS returns error code 41 or 49.
9. > Printer is not ready for use
Any output sent to the line printer when the printer is
unavailable will generate this error. The printer may be
turned off, out of paper, in trouble, or not plugged into the system.

1-23

10.> TRSDOS error code # <xxxxx>
Any other TRSDOS error not specifically identified above will
be displayed in this form. If you want the full TRSDOS
explanation, issue the command:

S ERROR xxxxx

TERMINAL ERRORS
1. Attempt to overwrite protected region (job aborted)
During an assembly to memory, a block of code was assembled
that would load into a memory region other than the spare
text buffer area. Your program will not be permitted to load
to an address below the end of the text buffer or above the
symbol table. Use the Usage command to locate the first available memory address.
2. > Symbol table overflow
There is not enough memory for the assembler's symbol table.
You have three options:

a. Remove comment lines and/or comments following Z-80
code operands. This may free up enough space to perform the assembly.

b. TRSDOS locks out space above X'F300' for user use.
This space is utilized by the DEBUG program and
Serial port drivers. If your operation will not use
the either serial port and DEBUG is to remain OFF,
then this space can be recaptured. Do the following:

1. Save your current text buffer.
2. Return to TRSDOS via the Quit command.
3. Enter the TRSDOS command, "DEBUG ON"
4. Load the Editor Assembler program using the TRSDOS "LOAD" command.
5. Enter the TRSDOS command, DEBUG
6. Using the DEBUG command "R", change register

pair "DE" to X'FFFF'.
7. Using DEBUG's Jump command, jump to X'3403'.

You will enter the Editor Assembler with its
top-of-memory now set to X'FFFF'.

1-24

8. Enter the Editor Assembler command, S DEBUG OFF
9. Load your previously saved text buffer and

attempt to assemble it.
c. Split your source program into two or more programs

that can be assembled separately.

FATAL ERRORS
1. > Bad label
The character string found in the label field of the source
statement does not match the criteria specified under ASSEMBLY LANGUAGE - LABELS.
2. > Expression error
The operand field contains an ill-formed expression.
3. > Illegal addressing mode
The operand field does not specify an addressing mode which
is legal with the specified opcode.
4. > Illegal opcode
The character string found in the opcode field of the source
statement is not a recognized instruction mnemonic orassembler pseudo-op.
5. > Missing information
Information vital to the correct assembly of the source line
was not provided. The opcode is missing or the operands are not completely specified.

WARNINGS
1. > Branch out of range
The destination of a relative jump instruction (JR or DJNZ)
is not within the proper range for that instruction. The
instruction is assembled as a branch to itself by forcing the offset to hex X'FE*.
2. > Field overflow
A number or expression result specified in the operand field
is too large for the specified instruction operand. The
result is truncated to the largest'allowable number of bits.

1-25

3. > Multiply defined symbol
The operand field contains a reference to the symbol which
has been multiply defined. The first definition of the symbol is used to assemble the line.
4. > Multiple definition
The source line is attempting to illegally redefine a symbol.
The original definition of the symbol is retained. Symbols
may only be redefined by the DEFL pseudo-op and only if they were originally defined by DEFL.
5. > No end statement
The program END statement is missing
6. > Undefined symbol
The operand field contains a reference to a symbol which has
not been defined. A value of zero is used for the undefined symbol.

1-26

TECHNICAL SPECIFICATIONS

Object file format
The disk file object code format consists of the following
structure:
1. > A file header string consisting of:

a. The first byte in the file is a hex byte X'051
which indicates the header field of an object file.

b. The second byte is the header length byte and
indicates the length of the header following.

c. The length byte is followed by the FILENAME and
EXTENSION that was specified when the file was last written to.

d. The filename field is immediately followed by the
entire DATE string as recovered by the TRSDOS
SVC DATE - Function Code 45. By LISTing the first
sector of the file, you can determine when the file
was last written by examining this header. A TRSDOS
RENAME command will not change the filename stored in the header.

2. > Multiple blocks of object code depending on the length of
your assembled program are placed next. The object code
blocks have the following code format:

a. A beginning byte of X'01' which indicates the start-of-block
b. A 1-byte length indicating the length of the code

block following, including the block load address
(block length of 256 will show X'02'). The Editor
Assembler writes 128-byte blocks (length = X'82').

c. The block length byte is followed by the 2-byte block
load address which is the address that will be loaded
with the first byte of the block.

d. Finally the block immediately follows for as many
bytes as two less than the block length.

3. Steps 2a, 2b, 2c, and 2d are repeated for as many blocks
as are in the file. An X'02' is then written to indicate the
end of the program code and the start of the entry point or

1-27

transfer address. An X'021 is written to indicate the length
of the entry point address. This is then followed by the
2-byte entry point or transfer address generated from the
label or constant in the operand field of the assembler
source END statement.

Source file format
The source code file format is as follows:
1. > A header record as described under "Object file format"
is also used for source files with the exception that the
first byte is a hex X'53' to identify the file as source.
2. > Text lines are written in ASCII each composed of a
5-character line number (bit 7 is not set), a space, the text
line, ending with an <ENTER> (X'OD').
3. > The file end is indicated by an end-of-file mark of X'1A'
which would be in the first character position of a text line.
4. > Model I source text files follow a different format
(header start byte of X'D3', followed by a 6-character
filename with text line numbers having bit 7 set). In spite
of this difference, source files generated on a Model I
machine using the MISOSYS DISK*MODified EDTASM and uploaded
to a Model II machine can be loaded into this Editor Assembler.

LINKAGE TO DEBUGGING
In order to facilitate the debugging of user generated
programs, a number of features have been built into this
Editor Assembler. It provides the option of assembling
source code directly to memory. It provides a command to
transfer control to a user-supplied address (via the JUMP
command). It provides for the access of DEBUG through the
System command. Other subtle enhancements have been implemented.
A re-entry address to the Editor Assembler has been provided.
If at any time during the debugging phase, you want to return
to the Editor Assembler without reinitializing it (which
would have deleted the entire text buffer), and are under the
control of DEBUG, issue a DEBUG Jump command to X'3400'. A
return to the Editor Assembler will be performed and it will
take over the supervision of the <BREAK> key without
reinitializing the pointers to the text buffer.

1 - 2 8

When you exit from the Editor Assembler by means of the Jump
command, address X'3400' is pushed onto the stack just prior
to executing the jump. If your program maintains stack
integrity, an easy return to the Editor Assembler is achieved
by means of a "RET" instruction. An example of this procedure is as follows:

BEGIN LD (SPSAV),SP SAVE THE POINTER

USER PROGRAM

EXIT LD
RET SP,(SPSAV) ;RESTORE STACK

;& RETURN TO EDAS

1 - 2 9

Z-80 INDEX TO INSTRUCTION SET

Execution time (E.T.) for each instruction is given in
microseconds for an assumed 4 MHZ clock. Total machine
cycles (M) are indicated with total clock periods (T states).
Also indicated are the number of T states for each M cycle. For example:

M CYCLES: 2 T STATES: 7(4,3) 4 MHZ E.T. 1.75
indicates that the instruction consists of two machine
cycles. The first cycle contains four clock periods (T
states). The second cycle contains three clock periods for a
total of seven clock periods or T states. The instruction
will execute in 1.75 microseconds.
Register format is shown for each instruction with the most
significant bit to the left and the least significant bit to the right.
OPERAND NOTATION
The following notation is used in the assembly language:

1. "r" specifies any one of the following registers:
A, B, C, D, E, H, & L

2. "(HL)" specifies the contents of memory at the
location addressed by the contents of the register pair HL.

3. "n" specifies a one-byte expression in the range 0
to 255. "nn" specifies a two-byte expression in the range 0 to 65535.

4. "d" specifies a one byte expression in the range -128 to +127.
5. "(nn)" specifies the contents of memory at the

location addressed by the two-byte expression "nn".
6. "b" specifies an expression in the range 0 to 7.
7. "e" specifies a one-byte expression in the range -126 to 129.
8. "cc" specifies the state of the Flags for conditional JR and JP instructions.

2-1

9. qq specifies any one of the following register pairs:
BC, DE, HL, & AF

10. ss" specifies any one of the following register pairs:
BC, DE, HL, & SP

11. pp specifies any one of the following register pairs:
BC, DE, IX, & SP

12. rr ' specifies any one of the following register pairs:
BC, DE, IY, & SP

13. specifies any one of the following:
r, n, (HL), (IX+d), & (IY+d)

14. "dd" specifies any one of the following register pairs:
BC, DE, HL, & SP

15. "m" specifies any of the following:
r, (HL), (IX+d), & (IY+d)

2-2

V / V V W M / W W W V / W W M / M / W W W W W W M / V W W W V / W W W W VJ/ VI/ ' J i w W M/ W W V V W U / W W M / M I / M / W M / V I/ W W M / \ V W W W M / W U / M / V / M / iv / r . / r . / Iv m / in / l\ / }\ / i\ ? r . /tv m /9v / ft /in m m m / Iv m m / iv r t \ / f\ /tv / iv /P , / Iv M / n m m m / is / r . /tv / iv / is m / K A \ m m m /tv / in m m /tv / iv / r\ m / iv m / K /tv /tv /1\ /tv m

\i/u/u/ \ V W W W V W u/\V vi/ v/ W W vj/ V/ WVWW/VM/W W y/\vw v/ w vy wu/ \i/ wwu/ u/wu/ w W W W V/WVW W W vj/ V vi/ w /Iv/t ; / I v m / n / n m A \ m / n m m / I S A v / r . n \ / n / r v /Tv/t v /rv /tv A v A v A v m A v A v m / r v / T v A v m m m m m A v A v A v A v / r ./ p .A v A v m

A v A v / n A v A v A v m A ' . A v / f t /rv ̂ A v /Tv /rv A v A v m / f t /Tv AV m A v A v A v /rv AV A v / r . /rv A v A v /rv /TV A v A v m A -. A v AV /rv /rv A v A v m A v A v tr\ it. A v A v /tv / r . m A v A v / n A v A v

i i / u / u / W W V / W V / VI/ VI/ M/ W VI/ VI/ V / VI/ W VI/ VI/ W W VI/ v / V / W V / W W W Vi/ VI/ i t / VI/

XOKXOtOKjXXXOSOKXOKXOlOiOK X M P 0 R T A N T XOK>K5K>K>K>K>K)K)!OK>K>K>K)K>K)J<
y y y w y y y w y y y w y y y w yA v A v A v m / r . A v A v m /rv A v A v A v A v A v A v / f t /(•. A v A v A v A v A v A v A \ / iv A v A v A v m A \ A v A v / r .

y w y y w w y y y w y y y w y y y w w y y w y y y y y y w w y y y w w y y w y y y w y w y w w y y w w y w w w y y w y y yA V /rv / r . A v A v A v /rv A v A v A v / A A v A v A v /rv A v M m / r . A ' . A v A v / r . A v A v A \ m A v A v m A \ A v A v m / s ' . A ' . A v / r i A v / n A v A \ / r . A v A v A \ / it. A v A v / A A v A v A v / A A v A v A v m A v A v m

\ i / m / m / v i/ v v v i / v / y / w u / u i w y y y y / v / v / y / v v v y m / w w w y y / w y y y w w M / v / w w j / m / v / y y w w w w w w w w w m / v / v / w m / w w w /Tv m A v m A v A v A v /rv A v A v A v m /rv A v A v / i \ A v A v /rv / rv A v A v A v A v m A v A \ sn . /Tv A \ A v /rv A v A v A v /rv A v A v A v A v A v A v A v /rv /Tv A v / f t / r . A v A v / f t A . A v A v A v A . A v A v / f t A .

V / V / W M / W W V / ' J / W V / W ' i / V . , W V / W S V W V / U ' ' W V / W \ l / V / W \ V M / M / W V / W V / V / W M / V / V / \ l / ' I / \ V W W y V / W W M / V / V / W V / V / W ' V N V V / W W M / V / A \ A v A v / Iv A v A v A v A v A v A v / iv A v A v m / n m A m / f t / l v / K / K / f t / r . m m / f t / K m m A m m r t v / i v / l v / K m A v A v A v A v A v A v A v A v A v / tv A v A v A v A v A v A v A v A v A v A \ A v A v a v

GALACTIC SOFTWARE LTD♦ 11520 N. PORT
MEQUON» WISCONSIN 53092

WASHINGTON RD.

GALACTIC SOFTWARE MOULD LIKE TO PROVIDE YOU WITH THE BEST
TECHNICAL SUPPORT POSSIBLE * TO PROVIDE THIS SUPPORT WE NEED
TO KNOW WHO OUR CUSTOMERS ARE. SO PLEASE FILL OUT- THE CARD
BELOW AND RETURN IT TO US PROMPTLY. LEAVE THE REMAINDER OF
THIS PAGE IN THIS MANUAL!! THE REGISTRATION NUMBER MUST BE
MENTIONED ON ALL CORRESPONDENCE WITH US OR WHEN PHONING OUR
CUSTOMER SERVICE DEPARTMENTr SO DON 1T LOSE IT! !

E D I T 0 R / A S S E M B L E R
SERIAL * 80402056 VER *
<C> 1980 BY GALACTIC SOFTWARE LTD.

♦ w ♦ ♦ ♦ *”* f ♦ ♦ *♦ ♦ * r ♦ ♦ r <• « ♦ r«-* « r-*-* ♦ *—♦ -♦ r ♦ ♦ ♦ ♦ o « ♦ * $ +-♦ ♦ ♦ ^

E D I T 0 R / A S 3 E M B L E R
SERIAL. # 80402056 VER #
<C> 1980 BY GALACTIC SOFTWARE LTD.

COMPANY NAME _____________________________________
NAME ___
ADDRESS __
CITY____________________ STATE_______ ZIP_______
AREA CODE________ PHONE_________________ EXT___
WHEN DID YOU PURCHASE THIS PROGRAM? MO.___YR.
WHERE WAS IT PURCHASED?
DEALER NAME _____________________________________
ADDRESS __
CITY_____________________STATE_______ ZIP______

11520 N. Port Washington Rd.
Mequon, Wisconsin 53092

Put Stamp Here.
The Post Office
will not deliver

mail without
postage.

galactic software ltd.
11520 North Port Washington Road

Mequon, Wisconsin 53092

