
September 9, 1983
Re: . DP-II Series A.01

Dear DP-II Registered Owner,

PRODUCTS FROM BREEZE/OSD. INC.

11500 STEMMONS FWY.
SUITE 125

DALLAS, TEXAS 75229
(214) 484-2976

Enclosed , please find your FREE DP-II upgrad~ containing the latest version
of DP-II. The system has been renamed, as Micro Systems Software is no
longer involved in this project.

All the SYS modules have been reassembled for smoother operation, CONVERT
is now fully functional, and other obscure problems have been taken care
of, in the process.

Notes on FILES:

1} ALL files (except DISKZAP} have internal changes.
2) DO NOT MIX the OLD system or CONFIG files with NEW ones!
3) BASIC/TXT has been modified, as TRSDOS(tm) BASIC/CMD is now

licensed and on the disk. TRSDOS(tm} 2.0 is no longer needed .
4) PROFILE+/TXT,*/PF+ is no longer supported .

(as with SCRIPSIT , RSCOBOL, or RSBASIC).
5} ST80III/PAT must be reapplied to the original.
6) MOD16/CMD has been renamed to THINLINE/CMD for Mod 12/16 use .
7} EDAS/CMD is no longer included, but you may COPY over

the one you have.

Notes on COMMANDS:

CONFIG - Mod II drives need HL=Y. Mod 12 is like Mod 16 .
RENAME - Do NOT use the "TO" seperator. Example to use :

RENAME OLDNAME/BAS NEWNAME/BAS <enter>
SYSTEM(LOGO} - Logo is no longer available.

Special note on making a DOUBLE-SIDED System disk :-

1} Type THINLINE <enter>
2) FORMAT :d (a true double-sided disk as such}
3} SYSGEN :d
4} coPY 1: 0 : d, SP'i-v= I PASSWORD I

5} Place the :d disk in drive 0
6} Type: I :0,M <enter>
7) SYSTEM,SAVE= 1 THINLINE 1

We are forced to take a stand concerning support for certain Model II
software packages. We will not be able to support the following RADIO SHACK

~ programs for the reasons given afterwards:

SCRIPSIT Series
PROFILE+
RSCOBOL or any product written in RSCOBOL
RSBASIC* or any product written in RSBASIC
*/Microsoft 1 s compile~ works fine.

While most Model II/12 software will run under DP-II with little, if any
modifications, the above named products from RADIO SHACK will only be
supported by TANDY on the system that they released them on, which is
TRSDOS(tm). They have their good reasons for this. These programs contain
"un-documented '' calls to the operating system. This i s usually (actually
always) considered a NO-NO in programming, because everytime the DOS
changes , these un-documented locations change, and the result is that the
whole program either needs to be re-assembled or patched and re-released
for that new operating system. It is a FACT that most Model II/12 software
that is written for TRSDOS(tm) and containing only legal and published
calls will run under DP-II without chan~es or slight modification . BASIC
programs will run. Most machine language programs will run. Some may need a
slight modification, and some of these patches are on your disk. VISICALC
runs with the supplied patch. It uses documented calls.

SNAPPWARE will not be made compatible with DP-II either. These products,
excellent as they may be, are too tied into the TRSDOS(tm) system to work
properly under DP-II.

Please note that we will not be attempting to correct, modify, patch, or in
any way make programs "work" with DP-II. This is an impossible task. We
have provided patches for various popular programs on the diski 'There are
several new applications being developed to run under DP-II. If interested,
please write.

DP~II has come as far as it can under its present configuration. This
version you have recieved (A.01) will be the final update of this system.
It's little quirks have been taken care of, and works fast, slick, and
reliably. We havecreateda- very pract~cal useab l e system that is - =-~ \ ')
dependable and fast at the same time, but it will not allow for programs ~
that do not "follow the rules". As great as this new system is, it STILL
will NOT support undocumented calls. We are sorry if this inconviences you.
We would like to have these packages running, but as explained, it was
impossible. If and when Tandy changes versions of their DOS, they will also
have to deal with these problems. These products are labeled as working
under TRSDOS ONLY, therefore we cannot justify refunds for this purpose.
There is no reason that you can't insert a dedicated SCRIPSIT or PROFILE
disk, when using those programs.

DP-II is a system that has fantastic capabilities for NEW software
applications to be written for. Don't forget that under our version of
BASIC you get an average of 4K 'more programming area, plus
label-addressing, etc.

To serve you better we ask that your questions or comments be mailed to us.
Include screen dumps or whatever you think might help explain the problem.
You may call, but our programmers are not always available for questions on
the phone, or perhaps cannot stop what they are doing at that moment. Also,
you might have to wait a few moments while your registration is checked. On
your envelope, mark: ATTN: CUSTOMER SUPPORT (DP-II)

We will answer you as soon as possible with a personnal reply.

Thank you for your cooperation,

PowerSoft Products
Mnet#: 76703,374

To: All registered DOSPLUS II owners
He: DP-II Series A.Ol

Dear New DP-II Owner,

Enclosed please find your MASTER DISK containing the latest version of DP-II. All the SYS modules
have been reassembled for smoother operation, CONVERT is now fully functional. and other obscure
problems have been taken care of in the process.

Notes on FILES:
1) ALL files (except DISKZAP) have internal changes.
2) BASIC/TXT has been modified, as BASIC/CMD is now licensed and on the disk. TRSDOS(tm) 2.0 is

no longer needed, however, you must still type: DO BASIC <enter> to apply the patches.
(You only need to do this ONCE.)

3) PROFILE+/TXT, * /PF+ is no longer supported. (as with SCRIPS IT, RSCOBOL, or RSBASIC).
4) ST80III/PAT must be reapplied to the original.
5) MOD16/CMD has been renamed to THINLINE/CMD for Mod 12/16 use.

Notes on COMMANDS:
CONFIG- Mod II drives need HL=Y. Mod 12 is like Mod 16.
RENAME- Do NOT use the "TO" seperator. Example to use:

RENAME OLDNAME/BAS NEWNAME/BAS <enter>
(TO is assumed by system)

SYSTEM(LOGO) - Logo is no longer available.
ATTRIB- ACC and UPD parameters cannot be used with wildmasks.

Special note on making a DOUBLE-SIDED System disk:
1) Type THINLINE <enter>
2) FORMAT :d (a true double-sided disk <;~.s such)
3) SYSGBN:d
4) COPY !:0 :d,SPW='PASSWORD',I <enter>
5) Place the :d disk in drive 0
6) Type: I :O,M <enter>
7) SYSTEM,SAVE='THINLINE'

We are forced to take a stand concerning support for certain Model II software packages. We will not
be able to support the following RADIO SHACK programs for the reasons given afterwards:

SCRIPSIT Series
PROFILE+
MultiPlan
Enhanced Visicalc (regular VC will work)
RSCOBOL or any product written in RSCOBOL
RSBASIC or any product written in RSBASIC (Microsoft's compiler works fine)

While most Model II/12 software will run under DP-II with little, if any modifications, the above
named products from RADIO SHACK will only be supported by TANDY on the system that they released
them on, which is TRSDOS(tm). They have their good reasons for this. These programs contain
"un-documented" calls to the operating system. This is usually (actually always) considered a NO-NO
in programming, because everytime the DOS changes, these un-documented locations change, and the
result is that the whole program either needs to be re-assembled or patched and re-released for that
new operating system. It is a FACT that most Model II/12 software that is written for TRSDOS(tm) and
containing only legal and published calls will run under DP-II without changes or slight
modification. BASIC programs will run. Most machine language programs will run. Some may need a
slight modification, and some of these patches are on your disk. VISICALC runs with the supplied
patch. It uses documented calls.

SNAPPW ARE will not be made compatible with DP-II either. These products, excellent as they may be,
are too tied into the TRSDOS(tm) system to work properly under DP-II.

Please note that we will not be attempting to correct, modify, patch, or in any way make programs
"work" with DP-II. This is an impossible task. We have provided patches for various popular programs

on the disk. There are several new applications being developed to run under DP-II. If you are
interested, please write.

We have created a very practical usable system that is dependable and fast at the same time, but it
will not allow for programs that do not "follow the rules". As great as this new system is, it STILL
will NOT support undocumented calls. We are sorry if this inconveniences you. We would like to have
these packages running, but as explained, it was impossible. If and when Tandy changes versions of
their DOS, they will also have to deal with these problems. These products are labeled as working
under TRSDOS ONLY, therefore we cannot justify refunds for this purpose. There is no reason that you
can't insert a dedicated SCRIPSIT, MULTIPLAN or PROFILE disk, when using those programs.

DP-II is a system that has fantastic capabilities for NEW software applications to be written for.
Don't forget that under our version of BASIC you get an average of 4K more programming area, plus
label-addressing, etc. It is excellent for business applications due to its speed, reliability, and
extra memory.

One difference from TRSDOS BASIC is that our LOC and LOF functions return a bigger number than
theirs. Since different computers and DOS versions vary in this area, we suggest that you change
your LOC(x) and LOF(x) statements to add "+LO" to each. At the beginning of your program, set LO=O
for TRSDOS or L0=-1 for DP-II. The other area affected is GET and PUT without a record number
specified. Page 504 of the Tandy manual states that the LOC function returns the number used for a
GET or PUT without a record number. This is what ours returns, yet theirs always returns the LAST
record number accessed. Something is inconsistent and we recommend always specifying a record number
in GET and PUT statements. We are not making any changes at this time in order to keep compatible
with our r,revious release.

Roger Fuller has provided the changes necessary to Lewis Rosenfelder's PEEK/POKE changes for TRSDOS
BASIC. Note that applying the patches below will disable the OCT$ and NAME (or GOTO LABEL definition
keyword) functions in BASIC. Use the PATCH. utility to apply this to BASIC.

Optional PATCH to BASIC/CMD (modified version) for PEEK/POKR
First enter the command (from DP-II Ready): PATCH BASIC/CMD.BASIC.
Then, when the * prompt appears, type:

R=l B=23H D=DO
R=1 B=28H D=,1F 4B
R=2 B=35H D=DO 45 45 4B
R=51 B=CFH D=C3 FF 67
R=65 B=1BH D=CD DD 3C D5 E7 2C CD EA 3C
R=65 B=28H D~~D112 C9 CD 5D 44 7E C3 FB 3A
R=69 D=74H D=05

Now press BREAK to exit the PATCH utility.
We have several packages available to enhance the use of DP-II.
BACKREST - a hard drive BACKUP /Restore utility that is FAST! Handles files larger than a floppy with

ease. $75.00
MICROTERM - A "smart" terminal package that supports the latest state-of-the-art in modems, as well

as being able to communicate with just about any host. $75.00
PowerMOD/DP - A machine language disk utility that allows you allows you zap or alter files, memory,

the disk, and has MANY uses. $50.00
PowerMAIL+- A FAST machine language mailing/data system. Will handle over 90,000 names with proper

storage! Versatile report generator. Write for complete details! $150.00

To serve you better we ask that any questions or comments be mailed to us. Include screen dumps or
whatever you think might help explain the problem. You may call, but our programmers are not always
available for questions on the phone, or perhaps cannot stop what they are doing at that moment.
Also, you might have to wait a few moments while your registration is checked. On your envelope,
mark: ATTN: CUSTOMER SUPPORT (DP-II). We will get back to you with a personal reply.

Thank you for your cooperation,

PowerSoft Products
CIS User ID: 76703,374

DISK OPERATING SYSTEM
FOR THE TRSSO MODEL II AND ZSO MODEL 16

r,

(C) (p) 1982 BY MICRO POWER, INC.

This manual Is copyrighted (C) 1982 by
Micro POwer, Inc. All rights are reserved.
Any reproduction, In part or In whole,
without the written consent of the pub­
lisher Is prohibited by law and expressly

fOrbidden.

Acknowledgements:

DOSPLUS II is the product of three months of VERY hard work on the part of a
. talented. team of programmers and technical writers •. You are seeing the results .of
·this. DOSPLUS II is the most powerful Disk Operating System ever written for a

microcomputer. We who have had the privilege to work on this project would like to
gratef!JllY acknowledge the tireless dedication of a few and the valuable assistance of
several in the creatidn of this .system •

. The few-

.. ,·syst~m· authors : .
·· Documentation authors :

Project leaders :

The several -

Kim Watt and Steve Pagliarulo
Mark Lautenschlager and Renata Reyes ·
Dennis Brent and Larry Studdard

Pete Carr, Todd Tolhurst, Tom Price, Bill Stockwell, John Long, Lance Micklus, D.L.
Herman, and Vernon Hester

These people have either contributed time as Beta test sites or suggestions and
input toward the system

1

design. We would like them to know they are appreciated.

We hope that you w~ll like your new system. It is a great deal different than
anything else you havel ever used before, so we strongly recommend that you read
carefully the "DOS operations" section of the manual before you actually begin using
the system.

If you have problems with your DOSPLUS II, there are two companies providing
technical support for the system

Micro-Systems Software Inc.
4301-18 Oak Circle

PowerSOFT Inc.
11500 Stemmons Freeway
Suite 125 Boca Raton, FL 33431

(305) 983-3390
Mic roNet 70271,120

Dallas, TX 74229
(214) 484-5783
MicroNet 70130,203

Both companies will answer questions and offer support on the Xtra-80 SIG on
CompuServe. It is listed as the "QSD SIG" in the Special Interest Groups menu.

As much as possible, problems of a non-critical nature should be referred via mail to
· leave the telephone support lines free for serious problems of highly urgent natures.

We have enjoyed bringing you this system. We will do everything in our power to
see that you never regret the descision to switch to DOSPLUS II. If there is ever
ANYTHING that we can do to help you implement your system, please let us know. We
do reserve the right to say "NO!", but it never hurts to ask. Thank you.

The MicroPower "Team"
Boca Raton, FL and Dallas, TX
September 1982

i.--,r
LJ-:' ~ -·

DOSPLUS II User's manual table of contents

-; ,,,

Acknowledgements .~

r--\ Standard files included with DOSPLUS II ._
'•' . ..,

'
.DO.S Operations ,,

Introduction 1
, :' First time operation 2 ~'5

, Gener;al Syntax 6--.13
~ . , File and Device specifications 14 - 22

Detailed explanation of the command line 23 - 28
Built in features of DOSPLUS II 29- •' ·)

Library commands
Introduction 30
APPEND 31 - 35
ATTRIB 36 - 41
AUTO 42 - 44
BOOT 45
BUILD 46 - 48
GAT 49 -53 ,::',-~' ,·c,

-CLEAR 54 -56 .,.

ChOCK 57
C;L.S 58 -59 '
CON FIG 60 - 77
COPY 78 - 86
CREATE 87 - 93

_DATE 94 - 95

r DEBUG 96 - 99
DIR 100 - 108

,o,o 109 - 112
_DUMP 113-116
ERROR~ 117
•FIL TER 118- 121
fORMS 122 - 126
EREE 127 - 128

,_J 129 - 130
·:KILL 131 - 134
LIB 135
LINK 136 - 137
LIST 138 - 139

<LOAD 140 - 142
PAUSE ' 143
PROT 144 - 146 ~;~

RENAME 147
·RESET 148 "

ROUTE 149 - 150 ,.

-SCREEN 151 - 152
'SET 153- 155
-SETCQM 156 - 158
SYSTEM 159 - 162
TIME 163
VERIFY 164

-~ L}
,,

{''

r

Table of contents (cont)

Utility files
Introduction 165
BACKUP 166 - 170
CONY 171 - 173
DIRCHECK 174- 176
DIRFIX 177 - 178
DISK ZAP Addendum
DRAW 179- 180
FORMAT 181 - 185
HELP 186
MAP 187- 188
OFFSET 189- 191
PATCH 192- 195
SVCINT 196
SYSGEN 197 - 202

DOSPLUS BASIC
Patching BASIC 203
Introduction 204
Memory increase 205
Label addressing 205 - 206
Shorthand commands 206
Cross referencer 207 - 208
Global search and replace 209 - 210
Machine language array sort 211 - 213

The DOSPLUS II techincal manual has its own separate table of contents. Please
reference that for locating technical information.

The technical manual begins immediately after the DOSPLUS BASIC section. You
may locate it via the insert tabs.

r··

DosPLUS II - Disk Operating System - User's manual

Standard files included with DOSPLUS II

The following files are included with your DOSPLUS II and can be found on the
master diskette :

Demo/txt

Ini t2/txt

Init4/txt
Config2/ txt

Config4/txt

Basic/txt

Nb/flt

Control/6

Profile+/txt

*/pf+

Vc/pat

St80iii/pat
Atb/pat
Bta/pat
Cksum/pat
Ftype/pat
Big ben/pat

Dvorak/flt

Modl6/cmd

This is a DO file that gives a brief demonstration of the
DOSPLUS II system. It is set on an AUTO when you
receive the disk and will execute the first time that you
boot up. You may remove this AUTO via the AUTO
command or the program will do it for you after it has
run.
This is a DO file that will intialize a hard disk as two
volumes. Explained in SYSGEN.
Same as above except sets it to four volumes.
This is a DO file that will configure the rest of the disk
drives after Init2 is done.
This is a DO file that will configure the remaining
volumes after Init4 is done.
This is a DO file that copies BASIC from TRSDOS to
DOSPLUS and patches it for use under DOSPLUS with
BASICP/CMD. Consult the BASIC section for details.
Filter file that turns off the blinking cursor. Filter the
display using this file.
Filter file that moves the BREAK key to Ctl-6 and
causes the BREAK key to send an FFH code instead.
Filter the keyboard using this file.
This DO file copies all the Profile II+ modules from
TRSDOS to DOSPLUS and calls the patches one at a time.
Any file with a "/pf+" extension is a patch file for use
with the DO file Profile+/txt.
Patch file for VisiCalc. Once Visicalc is patched with
this file, it will no longer be necessary to use Svclnt
first.
Patch for ST80III program.
Patch for ST80' s ASCII to Binary program.
Patch for ST80' s Binary to ASCII program.
Patch for ST80' s Checksum program.
Patch for ST80's FTYPE module.
Patch for the file Bigben/cmd that is included with
TRSDOS.
Filter to allow operation under a DVORAK keyboard.
Filter the keyboard using this file.
Configuration file provided for you. Execute this file to
configure your machine as a two drive Model 16.

Please note that new patch files and filters will be provided as the need arises.
Such files could include patches to major programs or drivers for non-standard
hardware. All of these will be provided at nominal charge to registered owners. You
will be individually notified by form letter when such things become available. This
will only apply if you have filled out and returned the registration card included with

~. this manual. ,,
J,; We therefore suggest strongly that you do so at once. ..

DosPLUS II - Disk Operating System ,.. User's manual

Introduction

Welcome. to DOSPLUS II! DOSPLUS II is an exciting new concept in Model II Disk
Operating Systems that started with and is based on the premise that a system does
not have to be limited in features and difficult to use in order to be fast. With
DOSPLUS II, we hope to be the first to shatter the "If you can understano it, it .can't
be good" myth. DOSPLUS II is a system that provides an unprecedented level of
flexibility for the programmer along with an equally unprecedented level of
user-friendly operation for the novice,

This manual is divided into five parts :

The operations manual. This portion of the manual covers
what you need to know about the system before you can
effectively operate it. It covers first time use and explains
general synta~ arid operating concepts.

The library of commands. This portion of the manual covers
the library of commands. A library command is a function

. that is intrinsic to the system, that is, containe<;l within the
actual system itself.

The utilities manual. This portion of the· manual covers the
DOSPLUS II utilities. A utility is a program that is part of
the system, but is not containe<;l within the system. These
programs (at least some of them) may be removed by the
user jn the interests of disk space and efficiency.

The BASIC .·enhancements. This portion of the manual
describes the enhancements that the BASIC modification
package (included standard with DOSPLUS II) provides for
your MicroSoft (Radio Shack) BASIC

The technical manual. DOSPLUS II is almost 100% TRSDOS
compatible in all of the documented supervisory calls, but
has acjded many more calls you wili wish to take advantage
of in your programming. This section covers all the
supervisory calls and internal documented RAM addresses.
It also includes a section on diskette format and directory
organization.

We hope that you will be very pleased with your DOSPLUS II, and believe that you
shall find it very easy to learn to use. There ARE some differences between DOSPLUS
II and other systems, though, so we strongly suggest that you read through the manual
before attempting to implement the system.

DOS Operations - Page 1

DosPLUS II - Disk Operating System,- User's manual

First time operation

If this is the very first time you are using DOSPLUS II, you should first· make a
BACKUP of your Master diskette and then file the Master away in a s~fe location.

Booting up r:

First, make certain that all cables are connected correctly and that the machine has
power. After switching on the machine, place the DOSPLUS II Master disk in drive 0,
Close the drive door. If the system fails to boot at once or reports an error, press the
reset button on the face of the computer directly underneath· the power switch and
try again.

The DOSPI.JJS II copyright and logo will be displayed anq you will be asked for the
date. You may enter the date or pr,ess ENTER or· BREAK to skip. Then you will be
asked for the time. Again, you may ente_r the time or press ENTER or BREAK to skip.
The logo and those two questions may be disabled via the SYSTEM command if you
wish (see the library command SYSTEM).

Imrpediately after bootiqg,_ you will be taken to the "DOS c;ommand mode". The
prompt "DosPLUS II" and a c11rsor will be displayed, This mode is that which allows
you to enter commands to the system. If you are a Model 16 user, you should at ONCE
type "MOD16" ~nd press ENTER. This wiJl load a Model 16 configuration file provided
for you that sets the needed parameters for Model 16 operation. If the drive has
timed out before you have a chance to type this il1, you will receive a system error
message. Press ENTER to return to the DOS command mode and try again, Once the
configuration is loaded, the drives will never be a problem.

If you are a Model 16 user, you should set some vadety of a configuration file on
automatic execution (see the .library command AUTO) so that you will not have to
bothered. The only required configuration difference is that the "motor delay" must be
set for the Model 16 drives (see the library command CONFIG).

Hard disk owners should refer to the section on SYSGEN to obtain instructions on
how to install DOS PLUS II on their hard disks. However, even hard disk owners should
first backup their Master disks as per the instructions below.

Backing up· with multiple drives -

At this point, you should be at the DOS comm9-nd mode with your DOSPLUS II
Master disk in Drive 0. Place whatever disk you wish to use for your backup in Drive
1. It does not matter whether the disk is blank or not.

From the DOS command mode, type "BACKUP" and press ENTER. The backup
program will foad, display its header, and prompt :

Source drivespec ?

Reply with a "0" (a numeric "0", not an alphabetic "0"). This questicm is asking you
which drive the disk we are backing up FROM is located in. Since we <,ire backing up
from the Master disk in Drive O, we reply with that. You will then be asked :

DOS Operations- Page 2

DosPLUS II - Disk Operating System - User's manual

Destination drivespec ?

Reply with a "1". This question is asking you which drive the disk ·we qre backing up
TO is located in. Since we placed the disk to contain the backup in Drive 1, we reply
with that.

DOSPLUS II will then read first from the source disk and then from the destination.
If the destination disk is blank or in an incompatible format, BACKUP will format it
and proceed with the backup. If the disk was NOT blank, you will be told

Diskette contains data, use or not ?

At this point you have three options :

(1) Abort the backup.

(2) Continue using present destination format.

(3) Continue after re-formatting destination disk.

To abort the backup, type "N" and press ENTER, DOSPLUS II will then ask you to
insert a system disk and press ENTER. If the DOSPLUS II Master disk is still in Drive
0, then a system disk is already in place, so just press ENTER. You may use BACKUP
to backup between two non-system disks if you wish.

To continue with the backup and attempt to use the current destination disk format,
type "Y" or "U" and press ENTER. DOSPLUS II will then examine the destination disk
to determine whether or not the formats are compatible. The system will format just
as little of the destination disk as possible (to save time) and then proceed with the
backup. If the destination disk has a major incompatibility, then BACKUP will
automatically just re-format the entire disk.

To continue with the backup, but force DOSPLUS II to re-format the destination
disk before proceeding, type an "F" and press ENTER. BACKUP will then re-format
the destination disk and proceed with the backup. This is useful when you are not
certain of the destination disk's format or when you wish to make sure that no
vestiges of old data exist on the backup disk.

When BACKUP is backing up the disk, it will read just as many granules as it can
fit into available memory before writing them to the destination disk. It will write
every granule that it read and then come back and verify them. BACKUP only copies
granules that currently contain data, so do not be alarmed if you notice that certain
cylinders numbers got ''missed" or some change rapidly. They simply were empty or
partially full and so there was no need to copy them.

BACKUP attempts to make a mirror image backup. That is, the destination disk will
be exactly like the source. If it encounters too many flaws on the destination disk and
cannot place data in the same location as it exists on the source, it will abort with an
error.

BACKUP also will not continue after any sort of disk read error. In the event one
should occur and you cannot backup the disk, you may use COPY to remove what files

.~ you can and preserve all possible data (see the library command COPY).

DOS Operations - Page 3

DosPLUS II - Disk Operating System - User's manual

When BACKUP is finished, it will flash the message :

Insert 5Y5TEM disk (ENTER)

Verify that the DOSPLUS II Master disk in still in Drive 0 and then press ENTER.
Your backup is complete. File your Master a way in a safe location •

. Backing up with a single drive -

At this point, you should be at the DOS command mode with your DOSPLUS II
Master disk in Drive 0. Obtain whatever disk you wish to use for your backup. It does
not matter whether the disk is blank or not.

From the DOS command mode, type "BACKUP" and press ENTER. The backup
program will load, display its header, and prompt :

Source drivespec ?

Reply with a "0" (a numeric "0", not an alphabetic "0"). This question is asking you
which drive the disk we are backing up FROM is located in. Since we are backing up
from the Master disk in Drive O, we reply with that. You will then be asked :

Destination drivespec ?

Again, reply with a "0". This question is asking you which drive the disk we are
backing up TO is located in. Since we are backing up using a single drive, we will
backing TO Drive 0 as. well as FROM it. Therefore, we reply with that.

DOSPL.US II will then read first from the source disk a~d then from the destination.
Jt will pr~mpt you as to when to insert each of the disks. After inserting the' di~k
prompted for, you will press ENTER. It is MOST important that you do not confuse
the order of the two disks and insert source instead of destination or vice versa. Also
bear in mind that from time to time, DOSPLUS II will need a system disk. It will
prompt for that. At that point, you should give it the Master disk and press ENTER.
Pay attention to the prompts and be careful.

If the destination disk is blank, BACKUP will format it and proceed with the
backup. If the disk was NOT blank, you will be told :

Diskette contains data, use or not ?

At this point you have three options :

(1) Abort the backup.

(2) Continue using present destination format.

(3) Continue after re-formatting destination disk.

To abort the backup, type "N" and press ENTER. DOSPLUS II will then ask you to
insert a system disk and press ENTER. If the DOSPLUS II Master disk is still in Drive
0, then a system disk is already in place, so just press ENTER. If not, then insert the
Master disk before pressing ENTER. You may use BACKUP to backup between two
non-system disks if you wish.

DOS Operations - Page 4

DosPLUS II - Disk Operating System - User's manual

To continue with the backup and attempt to use the current destination disk format,
type "Y" or "U" and press ENTER. DOSPLUS II will then examine the destination disk
to determine whether or not the formats are compatible. The system will format just

. as little of the destination disk as possible (to save time) and then proceed with the
backup. If the destination disk has a major incompatibility, then BACKUP will
automatically just re-format the entire disk.

To continue with the backup, but force DOSPLUS II to re-format the destination
disk before proceeding, type an "F" and press ENTER. BACKUP will then re-format
the destination disk and proceed with the backup. This is useful when you are not
certain of the destination disk's format or when you wish to make sure that no
vestiges of old data exist on the backup disk.

As BACKUP makes the backup for you, it will prompt you for the source disk and
then the destination disk and every so often for the system disk. Watch these prompts
and be certain to give the machine the correct disk at the correct time. Do NOT press
ENTER repeatedly. DOSPLUS II has type-ahead and those ENTER keys will be held
until the next prompt at which time DOSPLUS II will proceed before you can switch
the disks.

Also, when BACKUP is backing up the disk, it will read just as many cylinders as it
can fit into available memory before writing them to the destination disk. It will write
every cylinder that it read and then come back and verify them. BACKUP only copies .
cylinders that currently contain data, so do not be alarmed if you notice that certain
cylinders numbers got "missed". They simply were empty and so there was no need to
copy them.

BACKUP attempts to make a mirror image backup. That is, the destination disk will
be exactly like the source. If it encounters too many flaws on the destination disk and
cannot place data in the same location as it exists on the source, it will abort with an
error.

BACK UP also will not continue after any sort of disk read error. In the event one
should occur and you cannot backup the disk, you may use COPY with the "prompt"
parameter to remove what files you can and preserve all possible data (see the library
command COPY).

When BACKUP is finished, it will flash the message :

Insert SYSTEM disk (ENTER)

Insert the DOSPLUS II Master disk (or your backup disk, it doesn't matter at this
point because both are system disks) in Drive 0 and press ENTER. Your backup is
complete. File your Master away in a safe location.

DOS Operations - Page 5

,DosPLUS II - Disk Operating System - User's manual

General Syntax

In this portion of the manual we will cover the information you will need to be
aware of in order to effectively execute commands under DOSPLUS II.

General notation:

For the sake of simplicity, we will use certain standard formats when displaying
command lines and so forth. When displaying a command line example, for instance, a
word that appears all in capitals indicates that it must be typed in exactly as it
appears. The notations are :

Capital letters

Lowercase letters

Brackets []

Braces { }

H, B,O, Q, D

Word must be typed in as shown.

Information to be entered by
user based on a list of valid
values and parameters for that
command.

Indicate an optional deli miter.
These are used to specify data
flow (i.e from which file or
device .to which othe:- file or
device). These may be omitted
unless you wish to alter the
direction of data flow.

Indicate the parameter field.
This field is used to specify
additional data that modifies the
action of the command.

These are base specifiers. They
indicate which base the number
they follow is in. "H" indicates a
hexidecimal number, "B"
indicates a binary number, "0"
and "Q" both indicate octal base
numbers, and "D" indicates a
decimal base number. If none of
these is present, decimal base is
assumed.

Some terms with which you will need to become familiar :

Separator This is a character used within a
command field to indicate the

• various portions of the field.
They are used to "separate" the
areas of the command. These are
not optional and must be present
for the command to interpret
correctly.

DOS Operations - Page 6

DosPLUS II - Disk Operating System - User's manual

Terms (cont.) :

Delimiter

Memory usage:

A word used to signal which
area of the command field
follows. These need only be
included if you are going to
enter the areas of the command
line in a non-standard order,
otherwise they are assumed.

DOSPLUS II uses memory from OOOOH to 27FFH. This area of RAM is referred to as
"system memory". User programs should never reside in this area. The memory location
2800H is the default "Lorhem". Lomem is the point at which DOSPLUS II will start user
memory. Most system (library) commands and certain specified utilities will use
memory below 2800H. If you wished to make use of this, you could locate your
program at 2800H and then adjust Lomem with SYSTEM (see the library command
SYSTEM) to cover it. OOSPLUS II would then protect that area of memory
automatically, preventing your program from being overwritten unless the loading
program specifically requests that area of memory.

The default value for the top of useable memory (called 11 Himem") is FFFFH in a
64K machine, 7FFFH in a 32K unit. This value will change as DOSPLUS II allocates
high memory for various drivers and filters that the user may call into play. In its
standard form, DOSPLUS II will refrain from using high memory whenever possible, but
the more of its special features you call upon, the more space in RAM it needs and it
will allocate high RAM for those.

The area between Lomem and Himem is called "User memory". This is the area that
the user programs and data will reside in. Whenever we refer to user memory, that is
the area we will be talking about. User memory can change, as DOSPLUS II allocates
high RAM or the user adjust Lomem, so you should check these from your programs.
The addresses in memory where the Lomem and Himem values are stored are
documented in the technical section. If you have your programs adjust these values as
they load in, then you are assured that DOSPLUS II will not overlay them with drivers
of its own at some later time.

All of this, of course, concerns only the machine language programmer. BASIC
programmers and the average user will never even know that there IS a Lomem and a
Himem, much less that they are changing.

Certain commands and utilities (specifically the library command COPY in its single
drive mode, and the utility programs FORMAT, and BACKUP) will use all available
memory when called upon. If the amount of memory free for their use is not enough to
perform whatever operation you have called upon them for, they will abort with an
"Insufficient memory" error. Free system memory is honored and all data outside this
area ~ preserved.

DOS Operations - Page 7

DosPLUS II - Disk Operating System - User's manual

Booting up the system -

To begin using DOSPLUS II, you must first "boot up the system". That term means,
simply, to load DOSPLUS II into the computer and begin. To accomplish this, insert the
DOSPLUS II diskette into Drive 0 (the internal drive), and press the reset button
located on the face of the Model II.

After a few moments, the screen will clear and the DOSPLUS II logo and copyright
notice will be displayed. The system will prompt you for the time and date.

Answer those questions with the allowable formats for each. DOSPLUS II is very
flexible when it comes to the form of input it will accept. For a detailed list of
formats that will work, consult the TIME and DATE commands in the library commands
section of this manual. To simplify matters now, enter the date in the standard
"MM/DD/YYYY" format and the time in the standard "HH:MM:SS" format.

If you wish, these initialization questions may be disabled via the SYSTEM library
command (see the library command SYSTEM). Even the logo may be turned off, if that
is your desire.

When booting up the system, after all initialization data is input (if any of them are
turned on), DOSPLUS II will automatically execute any commands that have been
placed on the AUTO function (see the library command AUTO). You may abort this
automatic execution by holding down the ENTER key. There is, however, a method to
set a "non-interruptable" AUTO function. If that is the case, then you have no choice
but to let the automatic command sequence run its course.

Assuming that there was no AUTO function engaged, after all initialization
parameters are complete, you will see the prompt:

DosPLUS II

and followed by a cursor. At this point, you may enter a command for the system to
execute. This is called the DOS command mode. That is a very important term to
remember, as we will be referring to it constantly throughout this manual.
Entering a command :

Whenever you are at the DOS command mode, you may type a command (up to 80
characters in length), press ENTER, and have DOSPLUS II evaluate and execute it.
This command may consist of either one of a couple of things:

A library command. A command that is part of the actual
DOSPLUS II system. The name of this command will not
actually correspond to any disk file name in the directory.

A program name. This would be the name of a machine
language program stored in executable format on the disk.
DOSPLUS II utilities and user programs may all fall into
this category.

DOS Operations - Page 8

DosPLUS II- Disk Operating System- User•s manual

For example, if you were to type:

11UB11 and then press ENTER

the system library commands would be displayed on the screen. The procedure flows
as follows:

(1) DOSPLUS II examines the command you have just
entered to see if there is any error contained in the
line. If you type "!0=?", for example, DOSPLUS II will
respond immediately with the error "Improper file name".
If there are no apparent errors in your command then
DOSPLUS II will proceed to the next step.

(2) DOSPLUS II checks to see if it is the name of a valid
library command. If it is, it is executed at once.

(3) If it is NOT, then DOSPLUS II checks all available drive
devices to see if what you have typed is the name of a
file located on one of them. DOSPLUS II checks the
devices in the order Device & - Device 15. If the system
is in its stock form, that will be Drives 0-7, but you may
reconfigure that if you desire. This is explained further
in the next section of the manual - "File and device
specifications".

(4) If DOSPLUS II doesn't find a matching filename, it will
give you the appropriate error message.

Types of commands [command syntax]:

When we speak of "command syntax", we are referring to the structure of the
command. How is it put together? What sort of format do we follow when entering a
command? What are the various parts of the command line?

The command syntax tells you how to put commands with parameters and make sense
to the system in doing it. In the manual we will show command syntax briefly in a
special area directly underneath the brief command description immediately following
the command name. This area will be set off from the regular text by two bars of the
"=" character.

You have three basic types of commands: (1) Direct (no I/O channel affected)
commands, (2) Simple commands (only one I/O channel), and (3) Complex commands
(more than one I/O channel used).

There are very few direct commands in DOSPLUS II. Nearly every command can at
kast have its 1/0 device specified. For example, if you type "LIB" and press ENTER,
you get a listing of the system library commands on the screen. But if you type "LIB
TO @PR" and press ENTER, you will get the same list on the line printer. That is an
example of what we mean by a simple command.

Your specific command forms are as follows:

DOS Operations - Page 9

DosPLUS 11 - Disk Operating System - User's manual

Direct commands

COMMAND {options} comment

"COMMAND" is the DOSPLUS II library command.

"{options}" is the list of parameters that may be used to in
some way modify the action of the command. They may be
switches~ in which case the mere presence of the term in
the option field will affect the command, or they may be
parameters, in which case you must specify a value or text
string along with the term.

"comment" is an optional field that may be used to display
a comment as to the intended action of the command line.
If a comment field is to be used, then the option field
MUST terminate in a right brace ("}"). If no comment field
is used,· the 'brace is optional, the command will terminate
at the end of line character.

Simple commands

COMMAND I/0 channel {options} comment

"COMMAND" - see above.

"1/0 channel" is the file or device specification that tells
DOSPLUS II where the effect of the cornmand will be. for
a more detailed explanation of the term 1/0 channel,
consult the section "File and device specifications".

"{options}" - see above.

"comment" -·.see above.

Complex commands

COMMAND [FROM] I/O channel [TO] I/O channel {options} comment

"COMMAND" - see above.

"[FROM]' indicates that the source I/O channel follows.
This is the channel that the data will be coming from, or

· the channel that is initiating the action.

"I/O channel" - see above.

"[TO]' indicates that the destination I/O channel follows.
This is the channel that the data will be flowing to, or the
channel that will be acted upon.

"{options}" - see above.

"comment" - see above.

DOS Operations - Page 10

DosPLUS II - Disk Operating System .,. User's manual

A more detailed explanation of the command ·line will be afforded in the next
section, "File and device specifications", after we have clearly defined these terms
and outlined exactly what an I/O channei is. The above information. was designed as a

. quick overview for the more experienced user, or a refresher for the novice, only.

Differences from TRSDOS -

There are two differences in the command structure between DOSPLUS II and
TRSDOS:

(1) DOSPLUS II is device independent.

(2) DOSPLUS II ignores case in commands.

TRSDOS required that all commands be issued is upper case letters only. TRSDOS is
case dependent throughout its entire system that way. DOSPLUS II, on the other hand,
will allow you to enter commands in either upper or lower case and is case
independent throughout its entire system that way (except were noted in special
cases). ·

We feel that this is a great deal more flexible and friendly to the user.

Under TRSDOS, your library commands dealt only with files. Under DOSPLUS, you
may use files and devices interchangably. DOSPLUS is completely device independant.
Because of this we have I/O channels where TRSDOS has filespecs. Again, this is far
more flexible and user friendly.

For a more detailed description of devices and device independence, see the portion
caHed noevices and device specifications" in the next section of this manual - "File
and device specifications".

Sy~tem or data disk -

Throughout the manual, we will be refer to two distinct types of disks. Distinct in
the TYPE of data they hold rather than the manner in which they hold it.

The system disk is so called because it contains the Disk Operating System or DOS.
The DOSPLUS II d.isk that we sent you was such a disk. The system disk contains the
program that actually makes the computer run.

Without this, the computer would be remarkably similar to a child without any
formal education. Capable of some very basic functions (due to the ROM) and
certainly capable of learning; but unable to perform any advance functions without
afd.

DOS Operations. ,.. Page 11

DosPLUS II - Disk Operating System - User's manual

The first drive device must ALWAYS contain an operating system! When you
execute a CON FIG display, this drive will be the first one listed. You may ·have ·~
renamed it or re-routed which drive it is referring to, but it must still be a system

. disk (even if it is the hard disk). This is covered in greater detail under the .library
command CONFIG.

A data disk is one that holds the programs and files that you have created but does
not have an operating system resident upon it. Single drive users will only be able to
make limited use of data disks. You create data disks by using FORMAT (see the
introduction section GETTING STAR TED and the utility program FORMAT).

Disk Master password -

At the time of format, each disk is assigned a Disk Master password. You have the
option of setting this password at that time. You may not set the password if you
wish (in effect making the password a string of blanks). DOSPLUS II is one of the few
systems that will allow you to enter a null password . (i.e. pressing ENTER for the
password).

The Disk Master password is used for a variety of things :

(1) Altering disk information with PROT.

(2) Password override on KILL and COPY.

(3) In place of file password.

Because DOSPLUS II will accept the Disk Master password in place of a file
password any time that it goes to open a data file or load a program, you should set
all passwords to something. To have a disk with no password set is to effectively
unprotect all files on the disk.

The Disk Master password will be required during most, if not all, global operations
affecting files and the disks themselves. It is therefore important that if you set a
password, you do NOT forget it.

The password on the DOSPLUS II disk is "PASSWORD".

DOS Operations - Page 12

DosPLUS II - Disk Operating System - User's manual

User file or System file -

DOSPLUS II has two types of files: System files and User files. For a definition of a
. file, see the "File and device specifications" section of the manual.

System files are those that are essential to the proper operation of DOSPLUS II and
its library commands. They are denoted by the "/SYS" extension and by the "S" in the
"A ttrib" column of the directory display (see File and device specifications and the
library command DIR).

A "minimum system disk" for executing programs in · single drive systems would
therefore only have to contain these files in order to operate. All other files may be
removed as space demands.

This brings us to user files. A user file is anything that is not a system file. This
includes your DOSPLUS II utilities (such as FORMAT and BACKUP). They can be
BASIC programs, data files, or anything else that is not actually a part of the
DOSPLUS II system.

None of these programs are vital to system operation and may be removed -if needed.
Be careful, though. Many functions that are just taken for granted to be part of the
system (like FORMAT and BACKUP) are actually utility programs (user files) and will
no longer function if removed from the system.

Should you need to copy or kill a protected utility file, the password on those files
is "CMD". The user may not access the system files in the standard manner at all.

,-, However, an exception has been made for the PATCH utility (see the utility program
PATCH). When patching a system file, you may use the password "SYS".

DOS Operations - Page 13

DosPLUS II - Disk Operating System - User's. manual

File and device specifications

In this section we will attempt to cover four areas of great importance to the
DOSPLUS II user :

(1) File specifications.

(2) Devices and device specifications.

(3) Detailed breakdown of the command line.

(4) Detailed explanation of the terms used.

This section is one of those "must read" portions of the manl,Jal.

File specifications. -

The only way to store information permanently and retrieve it later is to place it
into a FILE. A file can store the dat\3. on the disk until you are ready to retrieve it.
The data is then accessed via the filename that you gave it when you created or last
renamed the file. In this sense, the disk is nothing more than a large electronic file
cabinet.

A file specification. (FILESPEC for short) will be in the following general format

fileQame/ext.password:ds(diskname)

"filename" is a sequence of 1 to 8 characters
used to specify the file. These may be any
character with the exception of those listed
below as "reserved characters". The DOS will
automatically convert all lower case letters to
upper.

"/ext" is the optional filename extension
consisting of up to three characters. Like a
filename, this may be made up of any
characters with the exception of those that
are designated below as "reserved".

".password" is the optional file password
consisting of up to eight characters. This
password will be used in conjunction with your
file's protection level set via A TTRIB to
prevent unauthorized access.

":ds" is the optional drive specification noting
which drive this particular file is stored on.
This may be any two characters with the
exception, of course, of reserved characters.
If given, it must correspond to a drive
specifier currently defined within the system.

DOS Operations - Page 14

---~

DosPLUS II - Disk Operating System - User's manual

"(diskname)" is not implemented under the
DOSPLUS II system. However, TRSDOS used
this in their system and many appUcation
programs have it in them. To prevent any
incompatibility, DOSPLUS II wiJJ not return an
error if the disk name is specified. Remember,
though, it is NOT used.

Note that there can be NO blank spaces within the filespec. DOSPLUS will terminate
the filespec at the first blank space encountered. For example, "BAD NAME/DA T" will
be seen by the DOS as "BAD".

Also, all areas of the filespec that begin with a specific character (i.e. extension
with "/", password with ".", and drivespec with ":") must begin with that character. If
the character is omitted, an error will result.

There are certain characters that are reserved by the system and may not be used
in a filespec. Most of these are used elsewhere in the current system to indicate
special cases, but some of them are being reserved for future revisions and versions of
DOSPLUS II. The list is :

Exclamation point
(Left parenthesis
) Right parenthesis

Comma
. Period
I Slash mark

Semi colon
Colon

@ At sign
= Equals sign
? Question mark
" Double quotes

Single quote
{ Left brace
} Right brace
* Asterisk

Space

You also may not have an ASCII 03 (end-of-text) or an ASCII 13 (carriage return) in
your filename as either one of these is used to signal the end of the command line to
the DOS. Therefore they are also reserved.

The filename, extension, and drive specification ail serve to contribute to a file's
uniqueness. The password does not. It merely controls access to the file (see the
library command A TTRIB).

Further detail and examples regarding filespecs -

Throughout this manual will be dealing with data and program files. A file is a
group of data, which may represent a customer file, a price list, a BASIC program, a
Z-8D object code prograrr~J or ANY other type of meaningful data. In most cas.es,

.. .--..... DOSPUJS will never "know" what type of data is contained in any given file.

DOS Operations - Page 1.5

DosPLUS II ,... Disk Operating System - User's manual

All files have a name, or file specification (FILESPEC for short). A filespec consists
of up to five parts. For instance, given the filespec : \

PRICE/DA T.DOLLAR:l (DOSPLUS)

This filespec has all five parts. The first part is the name "PRICE". This name can
be up to eight characters long, any may contain any character with the exception of
the list of reserved characters already given. Some example filenames :

MONEY

Illegal

?MONEY

Reason

"?" is a reserved character

JUNSALES JUNESALES Too many characters

The second part of a filespec is the extension. In our example,
PRICE/DA T.DOLLAR:l (DOSPLUS), the extension is "/DA T". The extension is separated
from the name by a slash mark (i.e. "/"). An extension may use any non-reserved
character and may be up to three characters in length. The extension is useful in
indicating what sort of file the filespec is describing. Here are some examples : _ ··

Extension

BAS

TXT

OAT

CMD

FLT

PAT

ASM

CIM

DVR

SYS

Use

BASIC language program

Text file

Data file

Executable Z-80
Usually called
file

object code.
a "command"

A filter file used to manipulate
character I/O to the various
devices

A patch file used by the patch
utility to make corrections to
the system and modify outside
software

Assembly language source file

A "core image" file. A file that
consists of data transferred
directly from memory to disk.
Not necessarily executable code.

A driver file used by the SET
command to implement a device.

A system file. Part of the actual
DOSPLUS II operating system.

DOS Operations - Page 16

DosPLUS II - Disk Operating System - User's manual

While the extension is not a required part of the filespec, it is used often to more
completely describe a file's contents. For example, we may have a number of different
ii1es sharing the same fHename, but differing in the extension :

Filespec Contents

SALES/JAN January sales

SALES/FEB February sales

SALES/MAR March sales

SALES/APR April sales

SALES/QTD Quarterly sales

Tne one exception to all this is the Z-80 object file (also known as the "command"
file). In order for the DOS to be able to load and execute these programs directly
from the DOS command mode, they must have some form of extension. We recommend
highly that the extension "/CMD" be used, since the DOS will assume that if given no
other and that frees you from having to constantly specify the extension when
executing machine language files such as DOS utilities and BASIC itself.

In our example, PRICE/DA T.DOLLAR:l(DOSPLUS), the third part of the filespec is
".DOLLAR", and it is called the password. A password can be given to any file to
restrict access to it. You may, by using the password along with the protection level
{see the library command A TTRIB), set the level of access that a user may have to
the file. It may vary widely. You may require them to know the password before they
can access the file at all or you may require it only if they wish to modify the file in
some way. You may set up a program file so that it may be "run" only without the
password. Any attempt to load, list, or otherwise modify the file would require the
password.

A password may be
non-reserved characters.
(i.e. ". "). The password,
may be omitted.

up to eight characters in length, and can contain any
It is separated from the filename or extension by a period

like the extension, is an optional portion of the filespec and

Once you have created a file with a password, be sure to remember the password. If
you forget it, you will NOT be able to access that file again, except through the use
of the PROT command (see the library command PROT), and even then only if you
know the Disk Master password.

The fourth element of the filespec is the drive specification (DRIVESPEC for short).
In our example, PRICE/DA. T.DOLLAR:l(DOSPLUS), the drivespec was f1:1 11

• This
drivespec simply informs DOSPLUS II that the file "PRICE/DA T" the we are referring
to resides on the drive currently named "1". For a further explanation of drives, read
into the next portion of this section - "Devices and device specifications''.

For our purp~ses now, let it suffice to say that a drivespec is a one or two
cha:racter name that indicates which of the drives we are referring to. The standard
dri'V"especs that DOSPLUS II was shipped with were drivespecs 0 through 7, with 0

-~~ thr,ough 3 defined as floppy drives and 4 through 7 defined as rigid drives.

DOS Operations - Page i 7

DosPLUS II - Disk Operating System - User's manual

The drivespec is also an optional portion of the filespec. If you do not·. give a
drivespec, DOSPLUS ·will search through all the drives in the system starting with \
device 8 and moving on up (this is called a "global search"), until it finds .a filespec

that matches the one you have given.

The fifth element of a filespec is the disk name. In our example,
PRICE/DAT.DOLLAR:l(DOSPLUS), the diskname was "(DOSPLUS)". This is included in
DOSPLUS II solely for the purpose of providing compatibility with TRSDOS. The disk
name, when included in the filespec, should be the last item and be encased in
parenthesis.

Under TRSDOS, this was a valid portion of the filename and unless the disk name
matched what you had specified, an error would result. No such error will result under
DOSPLUS II. The system will not reject a filename that contains a disk name, for the
sake of compatibility, but it will not be used for anything.

What makes a filespec unique -

· It is important that we know what parts of the filespec distinguish it from· other
filespecs. If, for instance, we have written a BASIC program and we wish to store' it
on the disk, we must give it a filespec, or name. It is important to us that the
filespec we assign to the program does not conflict or duplicate another filespec
already on the disk, because if it did, DOSPLUS could not tell the difference between
them and the existing file would be destroyed and replaced with new data.

Three of the five parts .of the filespec determine uniqueness: the filename, the
extension, and the drivespec. The password does NOT. What this means· is that if two
filespecs have the same filename and drivespec, but a different extension, they are
two distinct files. If however, two files have the same filename, extension, and
drivespec, but only different passwords THEY DENOTE THE SAME FILE.

For example :

Files2ec 1 Files2ec 2 Same?.

TEST /DA T.CLOUD:l TEST /DA T.CLOUD:2 No

DATA/ONE DATA/TWO No

LEDGER/BAS.CASH LEDG ER/BAS.C REDIT Yes
I

P A YROLL/BAS:O PAYROLL/BAS Yes

ALPHA/SOR ALPHA2/SOR No

If you bear this in mind as you are saving programs and opening data files, you can
save yourself a great deal of potential problems. In this case, an ounce of caution is
truly worth a pound of recovering data lost because of carelessly overwriting a
previous file.

DOS Operations - Page 18

~·
l.

DosPLUS II - Disk Operating System - User's manual

Differences from TR5D05 -

-rhere are only three differences between DOSPUJS U and TRSDOS fHe
,specifications :

(1} DOSPLUS II removes many of the character restrictions
that TRSDOS imposed.

(2) DOSPLUS II does not use the disk name.

(3) DOSPLUS II ignores case in filespecs.

The disk name portion of the filespec was used under TRSDOS to make certain that
the file you were seeking was not only the proper file, but on the proper disk. We felt
this to be cumbersome and not useful in most cases, so it has been removed. As stated
earlier, if a disk name is specified, it will NOT produce an error. However, DOSPLUS
II will also do nothing with it.

Under TRSDOS, you had to begin each part of the filespec except the drivespec
with an alphabetic character (i.e. A-Z). This restriction has been removed under
DOSPLUS II. Portions of the filespec may begin with numbers, punctuation symbols,
almost ANY character than can be typed from the keyboard.

By including more characters (TRSDOS restricted you to A-Z and 0-9), we also give
you more potential filenames.

Also, under TRSDOS, if you specified a filespec in lower case, it was a different
file than the same filespec in upper case. If you forgot to lock the caps key down,
this could be catastrophic. DOSPLUS II wHl ignore case in a filespec.

Devices and device specifications -

The DOSPLUS II system has sixteen devices built into it. For the sake of accuracy
and ease of reference, you have the devices split up into two distinct groupings. The
first eight devices (devices 0 through 7) are called SYSTEM DEVICES. The second
eight devices (devices 8 through 15) are called DRIVE DEVICES. Following is a lis.t of
the two and whether or not it is an input or an output device :

Device

Keyboard
Display
Printer
SIO A
SIO B

Default name Class

Input
Output
Output

User defined
User defined
User defined

Kl
DO
PR
CA
CB
Ul
U2
U3

Input or output
Input or output
User defined
User defined
User defined

DOS Operations- Page 19

DosPLUS II .:.. Disk Operating System - User's manual

Devices (cont.) :

First drive 0
Second drive 1
Third drive 2
Fourth drive 3
Fifth drive 4
Sixth drive 5
Seventh drive 6
Eighth drive 7

Input or output
Input or output
Input or output
Input or output
Input or output
Input or output
Input or output
Input or output

A device name is a two character description assigned to that device. Whenever you
access that device, you must specify the device name.

The first group, system devices, are all character orientated. Which is to say that
all I/O done to these devices is done byte by byte, one character at a time. The
second group, drive devices, are what we call file orientated. Which is to say they are
used to move a file at a time.

This is not to say that a file itself cannot function as a character orientated I/O
path; it can. These (files) are special cases and the file is functioning as a "channel".
But a drive cannot. Therefore the last eight devices, the drive devices, will address
one file at a time, not one byte.

You may name your devices anything you wish. For the sake of confermity and
standardization, we recommend that you leave the default names in effect. Within the
manual, we will refer to them by their default names. To rename a device, use
RENAME (see the library command RENAME). Do NOT confuse renaming a drive with
re-routing the order in which the drives are searched. That is accomplished by using
CONFIG (see the library command CONFIG) to alter the physical drive number for
that drive device.

Some restrictions -

You may not assign two devices the same name. In order to swap two device names,
you would have to temporarily rename one of the devices to a "dummy" device name.

You must also understand clearly that although DOSPLUS II has sixteen devices and
all of them are "devices", there is a great difference between the system and drive
devices. They are not at all interchangable. Again, remember, you may address a
FILESPEC as if it were a system device (this is called a channel). You may not
address a drive as if it were a character orientated device.

DOS Operations - Page 20

DosPLUS II - Disk Operating System • User's manual

Addressing devices ~

You address a system (character orientated) device vla lts device speeitieation
(OEVICESPEC for short). You will address a drive (flle orientated) device via its drlve
specification (DRIVESPEC for short). A drivespec or devicespec will have two parts :

(1) The type indicator.

(2) The device name.

The type indicator is a single character that indicates whether we are giving a
devicespec or a drivespec. It will be very important throughout the system to keep the
two clearly separate. The type indicator for a devlcespec ls "(a" (i.e. (dKI l$ the
keyboard). For a drivespec, this is ":" (i.e. :0 is the first drive).

The device name is any two non-reserved characters used to speelfy which device
you are talking about. Remember, no two device names may be the sa'me~ even if the
devices are of different types (character /f11e).

Any time that you refer to a device, no matter what sort of operation you are
performing, you will use the devicespec. It is very important that you, if you decide
to rename devices, remember what names you have assigned what devices. To receive
a list of the current device names and status, use the ROUTE or LINK commands'
display ab111ty (se.e the library commands ROUTE and LINK).

In most cases in DOSPLUS II, you may use character orientated devices in place of
filespecs. This is part of what is called "device independence". The ability to use
devices and files interchangably creates a new termt ''1/0 channel''· Throughout· the
manual, you will. see many references to an I/O channel. Use of this term simply
indicates that at that .location you may specify either a filespec OR a devicespec.
You may not, however, specify a drivespec when asked for an I/O channel.

DO'S Operations - Page 21

DosPLUS II - Disk Operating System - User's manual

Summary of device handling in DOSPLUS II -

The principle of device handling in DOSPLUS II is really simple. There are only two
ways that data gets from point A to point B within the system :

(1) A byte at a time (character 1/0).

(2) A file at a time (file 1/0).

The two of them are not the same, and as long as we continue to remember that,
we shall have no problems with specifying an illegal I/O path for the data to move on.

When .specifying the I/O path, we can specify one of three things :

(1) A devicespec.

(2) A filespec.

(3) A drivespec.

Options one ~nd two can operate in a character I/O mode. Options two and three
can operate in a file I/O mode. So you see, the filespec is unique in that a file can
work with both styles of I/0.

If all this device handling seems foreign and confusing, do not be concerned. The
actual operation of the system is much simpler than the theories behind it. They are,
however, what makes DOSPLUS II work the way that it does and they deserve to be
documented. As a user of DOSPLUS II, you need only be concerned with "How does
this command work and what can I do with it?". This is all explained clearly, command
by command, in the library section of thi? manual. Those people who are DEVELOPING
software using DOSPLUS II will be able to make full use of the system's flexibility to
develop new and innovative methods of performing the various tasks that make up a
"program".

The next subject we will address is the explanation of the various parts of the
command line and I/O field. In that discussion, we will examine how the system views
a command line after it is entered, even to the point of taking a sample command line
and proceeding step by step through it, detailing how the DOS will react to each
portion.

DOS Operations - Page 22

DosPLUS II - Disk Operating System - User's manual

Detailed explanation of the command line -

The command line is the means by which you communicate with DOSPLUS II. When
you are at the DOS command mode (remember that term?), you may enter up to 80

'characters of text that commands DOSPLUS II to do something. This line of text is
.called the command line and has four parts:, (1) The command, (2) The I/O field, (3)
The parameter field, and (4) The optional comment field. Let1 s look at each of these
in turn.

The command. This is the actual DOSPLUS II library command. This will call in the
portion of the system that you wish to operate with. This command must be the first
data on the line (although leading spaces will be ignored) and must be followed with
either a terminator or a separator, otherwise DOSPLUS II will assume that you have
entered a program name. A terminator is a carriage return, placed into the command
line by pressing ENTER after typing in the command. You have "terminated" that
entry. An example of this would be if you typed "LIB" and pressed ENTER. A
separator, on the other hand, occurs when you follow the command name with a space
prior to entering further data.

The 1/0 field. This is the field immediately following the command. It will specify
the direction of the I/O and which files and/or devices shall be affected. The I/O
field has three parts to it: (1) The source field, (2) The destination field, and (3) The
wildmask field. These are indicated by the. delimeter words FROM, TO, and USING
respectivley. Each of these portions of the 1/0 field must be separated from their

. delimeters and each other by a space. You may omit the delimeter words if you wish,
but if you desire to change the order of the various portions of the I/O field, you
MUST include them. For example :

COPY FROM TEST/CMD:O TO TESTl/CMD:l

is the same as :

COPY TEST/CMD:O TESTl/CMD:l

But if you wanted to specify the destination file FIRST, you would have to use the
delimeter words. Therefore :

COPY TO TESTl/CMD:l FROM TEST/CMD:O

is NOT the same thing as :

COPY TESTl/CMD:l TEST/CMD:O

The wildmask field is a field that contains a filespec that has wildcard characters in
it. This field is used to make the effect of a command global to several or all files.
There are three wildcard characters: "?", "*", and "!". A question mark indicates that
the specific character at that position is not important. An asterisk terminates that
portion of the wildmask and fills the rest of the characters with question marks.

DOS Operations - Page 23

DosPLUS II - Disk Operating System - User's manual

For example :

T??T/B??

will match the files "TEST/BAS" and "TOOT/BOB" equally well. In the filename
area, we used the question marks to skip two characters and then specified another
character.

However, after the "B" in the extension area, we were through but wanted any and
all extensions to match. In that case, we could have used the asterisk. For. example :

T??T/B*

will match the same files as the previous example. The asterisk in the extension
field fills the rest of the extension area with question marks. Taking it further :

T/BAS

will only match the file "T/BAS". However :

T*/BAS

will match ANY file that has a filename beginning with the letter "T" and ending
with the extension "/BAS". If you do not wish to specify a filename, simply put an
asterisk in the filename area. The same is also true for the extension. That will fill
either area entirely with question marks and any character will match. The
exclamation mark is used to indicate that BOTH fields should be filled with question
marks past the point at which this character occurs in the command field so that ANY
character will match. This is also used when it is necessary to perform a function,
such as COPY, on an entire drive's worth if files. It saves keystrokes and is more
convenient. For example :

T!

is the same as

T*l* or T**

because "!" is the same as "**"· If you wish to use this character to replace the
entire wildmask field (such as on a COPY), you would enter :

COPY !:0 :1

This tells DOSPLUS II that you wish to copy ALL files from the disk in drive "0" to
the disk in drive "1". A very useful character. DOSPLUS II is signalled that a wildmask
is present whenever: (1) the USING delimiter precedes the wildmask, (2) the wild mask
appears in its proper area of the command line, or (3) the wildmask contains wildcard
characters.

DOS Operations - Page 24

----.._,

OosPLUS II - Disk Operating System - User's manual

The parameter field. This field allows you to specify certain additional switches and
values that modify the action of the command. This field need not be included at all
unless you elther want to use something other than the default parameters or you plan

. on including a comment field. The parameter field is set off from the I/O field by one
of two things: (1) A comma, or (2) A left brace. Within the parameter field, you must
separate your parameters from each other with a separator. In the I/O field, you had
to use a space as a separator because a comma would indicate the start of the
parameter field. Within the parameter field, though, you may use either a space OR a
comma. If you are using a comment field, you must conclude your parameter field with
a right brace; otherwise the line terminator described before will suffice. If for some
reason, you intended to use the comment field but had NOT included an I/0 field; you
would still have to place a right brace in the command line prior to the start of the
comment field to signal DOSPLUS II that the following text was a comment and not
part of the command line.

Within the parameter field, you will be entering parameters followed by expressions.
These expressions will indicate what action the parameter will take in relation to the
command. An expression will be one of three things :

(1) A string. This is in the case of a password or a disk
name or any other input that requires you to enter a
literal string for system use. These MUST be encased in
quotes (single or double).

(2) A value. This is used to pass numeric data to the
command about the parameter. An example of this
would be setting the buffer size for the print spooler.
You would specify a value at that point. Values may be
expressed in any base as long as you follow the value
with the correct base specifier. You do NOT have to
enclose a value in quotes.

(3) A switch. These are used to specify a positive or
negative condition for a parameter. If you are turning
something "on" or "off", you will use a switch. When
using a switch, the terms "yes" and "on" are equivalent
as are the terms "no" and "off". "Yes" and "No" may be
abbreviated as "Y" and nN". You will not have to
enclose a switch in quotes, either.

Remember, when you specifying parameters and expressions, you will always
separate the expression from the parameter with the equals sign ("=").

The comment field. This field allows you to place an optional comment at the end of
an executcible ·command line. This is useful when using BUILD and DO for command
chaining, because it allows you to document the command being executed. For
example, a line could say •'CREA TE TEST /DA T {LRL=4} - Create index file", i:n order
to let the user know what the command was doing (see also the library command
CREATE). For further information and some practical examples of using the comment
field, consult the library commands BUILD and DO.

DOS Operations - Page 25

DosPLUS II - Disk Operating System - User's manual

Let's take an example and see how the command interpreter will view a command
line. Given the command :

DIR :0 TO @.PR {ALPHA} - Prints alphabetized directory

DOSPLUS II will scan the command line from left to right. When, you scan the
command line and interpret what is there, you are said to "parse" the command line.
Notice please that the syntax for this command is correct. The I/O field is separated
from the command by a space. The various parts of the I/O field have spaces between
them. The parameter field begins with a left brace. The comment field follows a right
brace, indicating a completed parameter field.

DOSPLUS II will pick up the command "DIR". That tells it that we will be doing a
directory. Since the first characters in the I/O field are not a delimiter word (FROM,
TO, or USING), the system will assume that we are using the default sequence and
pick up ":0" as the source field. It finds the delimiter "TO" and therefore knows that
"(aPR" is the destination field. In this case, the destination field was in the default
position and the delimiter word TO was not needed. However, by saying "TO @.PR", we
free ourselves from the default positions. That phrase can occur anywhere in the
command line and if the delimiter is present, it will be parsed as the destination field.

Next, DOSPLUS II finds a left brace. This tells it that the I/O field is complete and
we are beginning the parameter field. To the right of the brace, DOSPLUS II finds the
parameter "ALPHA", indicating that we desire the directory listed alphabetically. The
next item found as DOSPLUS II parses the command line is the right brace. This tells
the system that the parameter field is through and that anything that follows that
brace is a comment and should be ignored.

Definition of terms -

The following is a list of DOSPLUS II terms and their definitions. It is not meant to
be a system glossary, merely to cover some often used technical expressions. Before
these terms can be understood, novice users may find it necessary to read the
preceding text on files and devices. More experienced users and programmers will find
this a good "quick reference section" for terminology.

Term

Filespec

Drivespec

Definition

A reference to a particular disk
file. This may not contain any
wildcard characters, but can
contain an optional drive
specifier. A more detailed
breakdown is afforded above.

A colon ":" followed by a one or
two character drive name. Used
to refer to a particular disk
drive. May only be used when
file I/O is specified. It is NOT a
character orientated device.

DOS Operations - Page 26

DosPLUS II .. Disk Ope'rating System - User's manual

Definition of terms (cont.) :

Term

Devices pee

Channel

Wild mask

Parameter

Definition

An at sign "@" followed by a one
or two character device name.
Used to refer to one of the eight
system devices. May only be
used when character I/O is
specified. It can be specified
when an I/O channel is
requested.

A channel is a character
orientated I/O path. When a
channel is requested, it is
indicative of the fact that the
data will be moved a byte at a
time. File by file I/O is not
allowed with channels. A channel
may be either a filespec or a
devicespec. It may NOT be a
drivespec except in cases where
a drivespec is only part of a
filespec.

A filespec containing wildcard
characters. Used to make the
effect of a command global to
several files. May not be used
when a channel is requested.
Consists of a filename and
extension only. It can be used in
conjunction with a channel, but
cannot be specifed AS the
channel. For further details on
the use of wildmasks, see the
section above- "Detailed
explanation of the command
line".

An optional control field that
can specify additional
information on exactly HOW you
want the indicated command to
function. Can be a switch (On or
Off), a string (passwords, etc.},
or a value (buffer size, record
length, number of lines per page,
etc.) If the parameter is a
switch, usually the mere mention
of the parameter will engage it
(i.e. "= Y" will be assumed).

DOS Operations .. Page 27

DosPLUS II - Disk Operating System - User's manual

Definition of terms (cont.)

Term

Separator

Delimiter

Definition

Used to separate delimiters and
channels, parameters, etc. Within
the I/O field, separators MUST
be a space. Within the parameter
field, they may either be a space
or a comma. If you use commas
within the I/O field, DOSPLUS II
will terminate the I/O field and
start looking for parameters.
Separators are NOT optional. For
the command line to be
evaluated properly, you must
separate the various portions of
the fields.

A field specifier. Will be either
FROM, TO, or USING. Indicates
direction within the I/O field.
These may not be used as
filenames (i.e. you can't call a
file TO/CMD, because "TO" is a
reserved word). Remember, these
must be surrounded by
separators. You need not
actually mention these terms in
the command line unless you
wish to specify the various
portions of the I/O field in
something other that the default
order (e.g. specify the
destination channel before the
source, etc.). If the delimiter is
present, it will override any
default positioning and re-route
I/O any way you wish.

Throughout the manual, we will be referring to these terms. Reali
ing that some of them may be un-familiar to you, we suggest that you review the
above section carefully if you run across terms that you do not understand.

There were several references made to the term "DCB". A DCB is simply a <D>evice
<C>ontrol lock. An explanation of exactly what a DCB is and does is afforded in
the technical manual. There are also "FCB"s. These are <F>ile <C>ontrol locks
and, again, the technical section will address their functions.

DOS Operations - Page 28

~

I '

DosPLUS II - Disk Operating System - User's manual

Built in features of DOSPLUS II

DOSPLUS II has several built in features that are activated by a series of
keystrokes. They are :

Command & key sequence Description

Screen printer
(CONTROL & dash "-")

Repeat last command
(Slash "/" & ENTER)

Multiple commands
(command;command)

Pausing commands
(HOLD)

Aborting commands
(BREAK)

Prints contents of screen. Useful
in providing instant hardcopy of
current display.

Repeats last DOS command.
Useful in performing multiple
executions of the same function.

Enter more than one command on
a line. Placing the semi colon
between the commands forces a
carriage return.

This allows you to suspend a
command's output. Most
DOSPLUS II commands that cause
a great deal of output can be
paused by pressing the HOLD
key. To start them again, press
the HOLD key again. Useful to
pause file listings, etc.

This allows you to abort a
command. Most DOSPLUS II
commands will also allow you to
abort bef.:>re the command is
complete. Pressing the BREAK
key should return you to the
DOS command mode. Useful in
aborting file listings, etc.

These built in features are resident at almost all times and can be accessed simply
be pressing the proper sequence of keys. Under certain special circumstances, though,
these may be disabled. That will of course be documented individually with the
command that is disabling it.

DOS Operations - Page 29

r
~· j

DosPLUS II - Disk Operating System - User's manual

DOSPLUS II Library of commands

The following are the library commands for DOSPLUS II. To execute a command,
enter the name of the command followed by any needed parameters :

APPEND
ATTRIB
AUTO
BOOT
BUILD
CAT
CLEAR
CLOCK
CLS
CON FIG
COPY
CREATE
DATE
DEBUG
DIR
DO
DUMP
ERROR
FILTER
FORMS
FREE
I
KILL
LIB
LINK
LIST
LOAD
PAUSE
PROT
RENAME
RESET
ROUTE
SCREEN
SET
SETCOM
SYSTEM
TIME
VERIFY

(Append two I/O channels together)
(Alter file's attributes)
(Set auto execute command)
(Execute system "cold-start")
(Create command chain file)
(Display diskette's file catalog)
(Clear user memory and files)
(Turn on/off system clock display)
(Clear screen)
(Alter system configuration)
(Copy device/file to device/file)
(Create and pre-allocate disk file)
(Display or change system date)
(Activate system memory monitor)
(Display detailed file listing)
(Execute command chain file)
(Save memory to disk file)
(Display detailed error message)
(Filter I/O to/from specified device)
(Alter printer driver parameters)
(Display free space data on drive)
(Initialize disk swap)
(Kill specified device or file)
(Display list of library commands)
(Join two logical devices)
(List file to device)
(Load Z80 object file into RAM)
(Pause execution of a DO file)
(Alter disk's protection status)
(Rename a device or file)
(Restore device to default driver)
(Re-direct I/O to device/file)
(Send contents of screen to device)
(Set device driver)
(Configure communications interface)
(Customize your operating system)
(Display time or set system clock)
(Toggle automatic read after write mode)

Library commands - Page 30

DosPLUS II - Disk Operating System - User's manual

APPEND

This command allows you to append a device or a file to the end of another device
or file. To append a device to a device is the same as copying that device to the
other. You may, if you wish, append a device to a file and specify load module format
(this frees you from restricting APPEND to data files and ASCII programs).

========~=~==

The command syntax is :

APPEND [FROM] channell [TO] channel2 {param}

The parameters are :

CMD=switch

STRIP=switch

"channel!'' is the source file or device
specification. This may be any valid file or
device specifier. This is the device or file
that will be appended and must be an input
channel.

"channel2" is the destination file or device
specification. This also may be any valid fife
or device specifier. This is the device or file
being appended to and must be an output
channel.

"{param}" is the optional action switch. You
have two.

Appends to destination device or
file in load module format (i.e. a
/CMD file). When you append
with .this option, the last four
bytes of the destination file will
be overwritten in order to strip
the old transfer address. The
transfer address of the appended
file will be used.

Backspaces one byte from the
end of file on the file being
appended to. This is useful in
stripping off "end-of-file"
markers on data files before
appending the new data to it.

Note that both of these parameters require that the file's End-of-file byte be
correctly set. This is covered in greater detail in the "Finally" section of this
command.

Library commands - Page 31

DosPLUS II - Disk Operating System - User's manual

Abbreviations :

As with all DOSPLUS II commands, the [FROM] and [TO] delimiters are wholly
optional on this command. You may delete either one of them or both. For example :

APPEND channell channe12 {param}

accomplishes the same exact results as the earlier example.

The parameters may be abbreviated as "C" for "(C)MD" or "S" for "(S)TRIP". Of
course, as with all DOSPLUS II commands, these are NOT case dependant. Lower case
works just as well as upper. Therefore :

APPEND channell channel2 {CMD}

is the same as :

APPEND channell channe12 {C}

which is the same as :

append channel! channe12 {c}

===========~===

The APPEND command is used primarily as a means of easily linking together two
data files. By using APPEND, you avoid the hassles of having to open both files,
position to the end of the destination file, read from the source, write to the
destination, etc., etc.

Some data ,files rriay have an "end-of-file" marker. Most data files will not, they let
their end-of-file be maintained by the DOS and the directory points to the end-of-file
in those cases. This is the case with both data files created by BASIC and with BASIC
programs themselves. However, certain programs create data files that use a one-byte
value to signal the end of the file. In those cases, when you append another data file
onto the end of the first, the end-of-file marker would inhibit the program from using
it. Therefore, to get around this, DOSPLUS Il's APPEND command has a {STRIP}
parameter. When you specify strip, it will overlay the last byte in the file being
appended to with the first byte of the file being appended, thereby stripping the
end-of-file marker.

APPEND can also be used as a sort of dynamic disk merge. You may append one
BASIC program (saved in ASCII) on to the end of another BASIC program (also saved
in ASCII) and then load the resulting file. The lines appended will overlay any lines in
the original file and the program may then be saved back to the disk under whatever
filename you choose in compressed format, if you desire.

APPEND also has an optional switch to append to the destination file in load module
format. Load module format is simply the format used to write a machine language
program to the disk so that it can be loaded in later. Every instruction in the program
is accompanied by indicators showing where in memory it will load. Because you may
now append in load module format, you may in fact append one machine language
program on to the end of another. The instructions in the appendage, if they conflict
with instructions in the initial file as to memory location, will overlay those
instructions from the initial file.

Library commands - Page 32

DosPLUS II - Disk Operating System - User's manual

Also, the last four bytes in any machine language program's disk file is called the
"transfer address". These bytes tell the CPU where to begin executing the program it
has just loaded. When the transfer address is encountered, execution begins
immediately. Therefore, you could not effectively append two machine language
programs together if the second never got loaded because the first was immediately
executed. To avoid these problems, when you append in load module format (i.e.
{CMD}), the last four bytes of the file being appended to (that file's transfer address)
will be overlaid by the first four bytes of the file being appended. When the computer
encounters no transfer address, the file will continue to be loaded and the transfer
address of the appended module will be used.

Appending a device to a file is essentially the same thing as copying that device to
the file (see COPY), except that if you append a device to a file it will position to
the end of the file after opening it instead of over-writing.

PLEASE use extreme caution when appending devices.
flexible, it can be mis-used and "hang-up" the system.
carefully when appending devices.

Examples:

APPEND FROM DA TAFILl TO DA TAFIL2

As with any system this
Think through your logic

This command will take all the data in "DATAFILl" and append it to the end of
"DATAFIL211

• You could have abbreviated that command as : APPEND DATAFILl
DATAFIL2.

APPEND NEWMOD/BAS TO OLDPROG/BAS

This command would append the file "NEWMOD/BAS" on to the end of the file
"OLDPROG/BAS". In the case of two BASIC programs saved in ASCII, when the file
"OLDPROG/BAS" was loaded next, the lines in the appended module would overlay
those in the initial module. For example, let's assume that the file "OLDPROG/BAS"
contained the lines :

10 CLS : PRINT "This is the old program."
20 FOR 1=1 TO 1000
30 NEXT I

And the file "NEW MOD/BAS" contained the line :

20 FOR I= 1 TO 250

After you had saved both of these in ASCII (c-f: TRSDOS manual Disk BASIC
section) and executed the above APPEND command, the next time that you loaded in
the file "OLDPROG/BAS", you would get the following :

10 CLS : PRINT "This is the old program."
20 FOR 1=1 TO 250
30 NEXT I

Library commands - Page 33

OosPLUS II - Disk Operating System - User's manual

As you can see, the line from "NE WMOD/BAS" has become part of the program
"OLDPROG/BAS". However, if you had listed the file from the disk first (see LIST),
you would have seen :

10 CLS : PRINT "This is the old program."
20 FOR I=1 TO 1000
30 NEXT I
20 FOR I= 1 TO 250

As you see here, there are TWO lines with the line number 20. The second will
always overlay the first. After loading in the new program, you should save it out in
its altered form.

APPEND PATCH/CMD PROGRAM/CMD {C}

This command will take the load module format file "PA TCH/CMD" and append it to
the end of the load module format file "PROGRAM/CMO". It will keep the appendage
in load module format. When the file "PROGRAM/CMD" is executed from DOS, the
instructions in the file "PA TCH/CMD" will merge themselves in with the program and
modify it. This is a VERY effective way of patching programs. Simply write the patch
module and assemble it to load in at whatever address it needs to to modify the
existing code and then append it to the end of the file to be patched.

APPEND @KI DOCUFILE/TXT:l

This command will append any further data that is input from the keyboard (i.e. any
further keystrokes) on to the end of the file "DOCUFILE/TXT" that is located on
drive one. This would allow you to append further instructions onto the end of a build ·~.
file, for example.

APPEND TO SERIAL/DA T:O FROM @CA {S}

This command will open the file "SERIAL/DA T" on drive zero, position to the end of
the file, backspace one byte to strip off any end-of-file marker that your last
operation might have put there, and then append any further incoming data from the
"A" port of the serial interface to the end of that file.

The important thing to note here is that in this example the order within the I/O
field was changed. Under normal circumstances, the I/O field specifies the source first
and the the destination. By including the FROM and TO delimiters, however, you may
override the default evaluation and route the I/O any way that you want. Remember,
you must specify the delimiters FROM and TO if you wish to change the normal order
within the I/O field.

Library commands - Page 34

DosPLUS U - Disk Operating System - User's manual

Finally:

Remember, in all of times that you will use APPEND, the source file will remain
completely unaffected.

Also, unless you specify the CMD option, the appendage will always be saved in
data file format. Machine language appendages MUST be appended with the CMD
extension. There simply is no choice.

Please remember that you MUST append from an input channel (source) to an output
channel (destination). A list of default devices and their names and classes is available
in the operations section of this manual. A disk file may function as either an input or
an output channel.

Another important note on using APPEND is that the parameters (STRIP and CMD)
will not function properly if the file's End-of-file byte is not set correctly. Files that
have been transferred from TRSDOS using CONY (see the utility program CONY) may
exhibit this syndrome. To correct the problem, load the file with the OFFSET program
(see the utility program OFFSET) and save it back into itself. OFFSET will them set
the End-of-file byte properly for DOSPLUS II.

Files that are created under DOSPLUS II will always have the end-of-file byte set
correctly.

Library commands - Page 35

DosPLUS II - Disk Operating System - User's manual

ATTRIB

This command allows you to set a file's "attributes". A file's attributes include its
passwords, protection level, whether it is a system or user file, visible or invisible,
non-shrinkable, or modified. By using this command, you may change these attributes
for any file to which you have access.

==~==============

The command syntax is :

A TTRIB wildmask {param=exp,param=exp ••• }

"wildmask" is the standard DOSPLUS II
wildmask file specification that designates the
file or group of files that we are referring to.
If the file is currently password protected,
you must specify the password in this.

"param" is the optional parameter to be set or
altered. These are listed below.

"exp" is the expression which gives the new
value. Depending on the parameter, it may be
a switch (Y or N), a string, or a numeric
value. The default values are listed below.

The parameters for A TTRIB are

PW=string

ACC=string

UPD=string

PROT=value

Disk Master password. If you are
using A TTRIB on a number of
files with a wildmask, then some
of them may be protected. In
order to have access to these
files, you must specify the Disk
Master password.

Access password. Can be up to
any eight non-reserved
characters. This is the password
that will be required before the
file may even be accessed.

Update password. Again, can be
up to any eight non-reserved
characters. This is the password
that will be required before the
file is modified.

Protection level. A value 0-7
that indicates what level of
access is permitted a particular
file. Must be used in conjunction
with a password.

Library commands - Page 36

DosPLUS II - Disk Operating System - User's manual

INV=switch

KEEP:switch

MOD=switch

Invisible file. This option allows
you to make a file invisible.
That means it will not display in
a standard directory or file
catalog. The "I" option must be
used to view these files (see the
library commands DIR and CAT).

Non-shrinkable file. If a file
posesses this attribute, it will
never decrease in size on the
disk. Useful in preserving
pre-allocated sequential files'
disk space.

Modification flag. This flag
indicates the file has been
modified since it was last copied
or backed up. You may use this
parameter to manually set or
remove this flag.

The default values described below are those values that the parameter defaults to
if specified in the command line without an accompanying expression. They are :

ACC

UPD

PROT

INV

KEEP

MOD

No default. If included in a command line, an
expression MUST be included specifying the
password.

Same as ACC.

No default. If PROT is included in the
parameter field, a protection level MUST be
specified.

On. If this option is included in the parameter
field, the file will be made invisible. If this is
already the case, the file will remain
unchanged.

On. If this option is included in the parameter
field, the file will be set as non-shrinkable. If
this is already in effect, file status will
remain unchanged.

On. If this option is included in the parameter
field, the file's mod flag will be set. If it is
already set, it will be unchanged.

Library commands - Page 37

DosPLUS II - Disk Operating System - User's manual

Each of these parameters may be abbreviated by specifying only the first letter of
the parameter. ACC=A, UPD=U, PROT =P, INV=I, KEEP=K, MOD=M. For example :

ATTRIB filename {INV}

and

A TTRIB filename {I}

are the same command.

===~===

The A TTRIB command gives you total control of a disk file's attributes. You may
use it to alter the amount of access you allow to a particular file, set or remove
certain flags DOSPLUS II maintains on a file, or change a file's password.

A protection level is useless unless a password has been set for that file. You see,
if no password has been set, then in effect no password IS the password. The default
password for any file is a series of blanks. This is also the default when no password
is specified with the filespec. Therefore, when the user omits the password, they have
in actuality SPECIFIED the correct password and they are allowed full access to the
file.

Remember also, the ACCESS password controls access to the file per your
protection level. In other words, if an access password has been set, they need that
password to even get at the file. Once they have the password, they may access that
file only up to the limit that you have assigned. However, if they know the UPDATE ~,
password, it will allow full access to the file even if a protection level has been set.
Therefore, keep your update passwords in closer confidence than your access
passwords.

Also important to know is that under DOSPLUS II, the Disk Master Password may be
used at any time in place of a file password. This means that knowledge of that
password will let you in to any file on the disk (excluding protection level 7 that is set
by the DOS as "No access!"). Therefore, you should use care, when protecting files, to
not only password protect the files but also the disk. To alter the Disk Master
Password, use the library command PROT (see the library command PROT).

You have several protection levels to choose from. You refer to them and set them
by their numbers. This list will illustrate those that you have a choice of

Number

0
1
2
3
4
5
6
7

Name

Full
Kill
Rename

Write
Read
Execute
None

Protection level

No protection set. Total access.
Able to delete file.
Rename, Write, Read, Execute.
Not used at this time.
Write, Read, Execute.
Read, Execute.
Execute only.
No access. Not a user option.

Library commands - Page 38

DosPLUS II - Disk Operating System - User's manual

Protection level 1, kill, allows you complete access to a file. You may kill it,
rename it, write to it, read it without executing, or execute it. The advantage to
using level 1 instead of just omitting a protection level (thus setting level 0) is that it
lets the user know that the file is question was protected but they are specifically
allowed into the file.

Protection level 2, rename, allows you to do everything to a file EXCEPT kill it
from the disk. Protection level 3 is not implemented in this release of DOSPLUS II,
but A TTRIB will allow you to set this level. Protection level 4, write, will allow you
to write to a file or load it without executing, but you may NOT rename the file or
kill it.

Protection level 5, read, will not allow you to write to the file at all, but will allow
you to load it without executing or read it without loading. This would enable you to
examine the code but not enable you to alter it.

Protection level 6, execute, will only allow you to execute that file. If it is a
BASIC program, you may only RUN it. You may not load it or list it or interrupt
program execution while it is operating. Machine language programs may be run but
not examined or modified.

Again, remember that these protection levels work in conjunction with the ACCESS
password. They need that password to get to the file at all and once they do, THEN
the protection level restricts the amount of access. Anyone with the update password
has complete freedom to update the file no matter what protection level has been set.

The other main function of A TTRIB is to allow you to change certain status flags
that DOSPLUS II maintains about each file. These flags include whether it (the file) is
visible or invisible, whether the file's disk space can be dynamically altered, or
whether or not the file has been written to since you last copied it off or backed up
the disk.

When a file is invisible, it does not get displayed via a normal directory display. In
order to see these files, you must specify the "{INV}" option from the DIR command
(see the library command DIR). This is very useful when a file is a permanent part of
your working DOS system and you do not wish to see that filename constantly
displayed when you list the disk's directory. This option affects only that area. Simply
because a file is invisible doesn't mean that it is protected. You must set all those
items lndependantly.

When a file has the KEEP option set, that tells DOSPLUS II not to decrease the disk
space for that file. Normally, when you create a data file on a disk and then access it
later without filling up the file, the un-used space will be de-allocated (freed for
other use). This can cause problems when you have pre-allocated space in a data file
to prevent another program from using required disk space. This does not inhibit
DOSPLUS II from expanding the file, it merely prevents it from shrinking.

The final parameter that you can alter with A TTRIB is the modification flag (MOD
FLAG for short). This is one of the most useful items in DOSPLUS II's directory. This
flag tells you when a file has been updated since you last copied it or backed up the
disk that it resides on. Updating a file refers to writing to the file. If you simply read
from a file, you have done nothing to alter that file, therefore the mod flag is not
set.

Library commands - Page 39

DosPLUS II - Disk Operating System - User's manual

By using the mod flag with COPY (see the library command COPY), you may copy
off only those files needed when making duplicate copies of software. For example,
suppose you are developing a program. You wish to copy off all the files you worked
on today. You merely copy any that have the mod flag set. The rest of them have not
been overwritten since the last time you copied the file off or backed up the disk.
The same principle will apply with data files.

This parameter may, from time to time, need to be set or reset manually. A TTRIB
allows you to do that.

Examples:

ATTRIB UTILITY /PRG:l {UPD="PASSWORD",PROT =6,INV}
ATTRIB UTILITY /PRG:l {U='PASSWORD',P=6,I}

These two commands will have the same effect. In this example, we are addressing
the file "UTILITY /PRG" located on disk drive ":1 ". We are setting the update
password to "PASSWORD", the protection level to "6" (execute only), and making the
file invisible. Note that the access password was NOT set. This will allow you to run
the program without knowing a password, but you may not modify or in any way
examine the code without using the update password.

A TTRIB FILE {MOD=N}
A TTRIB FILE {M= N}
ATTRIB FILE,M=N

All three of these commands will have the same effect. They will do a global search
of all drives for the file named "FILE". When they find it, they will reset (turn off)
the mod flag. This is an example of manually resetting that flag.

A TTRIB PA YDA T A:AA {KEEP= Y}
ATTRIB PA YDA TA:AA {K}
A TTRIB P A YDA T A:AA,K

All three of these commands will also have the same effect. In this example, we are
operating on the file named "PA YDA TA" currently located on the drive named ":A A''.
We are setting (turning on) the "KEEP" flag to indicate that we do NOT want any of
that file's disk space released to the system even if the file decreases in space
actually used.

Library commands - Page 40

DosPLUS II - Disk Operating System - User's manual

Finally:

When using A TTRIB, please keep in mind that if a file already has some protection
(a passwordf whatever) on it, you MUST use this password when accessing the file to
a1 ter its attributes.

Also bear in mind that when you specify .a filespec WITHOUT a drivespec, .it will do
a global search of all drives in the system looking for that filespec. The first one that
it locates will have the prescribed action performed on it, and A TTRIB will stop at
that point. On the other hand, H you use a wildmask, the effect will be global on aH
files matching that wildmask, but ONLY on the drive specified. If a drive is NOT
specified, then A TTRIB will assume that the system drive is to be used.

For example :

A TTRIB FILE {I}

will search until it finds ''FILE" and make that file invisible. But :

A TTRIB FILE/* {I}

will search out all files that have the fl1ename 11F1LE" and any extension and make
them invisible, but it will only do this for Drive 0.

Library commands - Page 41

DosPLUS II - Disk Operating System - User's manual

AUTO

This command allows you to set an "automatic command" to be executed upon
boot-up of the system. This may be a library command, the name of a configuration
file, or a program. The maximum number of characters allowed in this statement is 32.
If you require more that that, you will have to use a "DO" file (see the library
commands BUILD and DO) and have AUTO call this file.

===

The command syntax is :

AUTO drivespec command

Command switches,:

II

"drivespec" is the optional drive specifier that
tells DOSPLUS II which disk you wish to store
this AUTO command on. If omitted, the
current system drive is used.

"command" is the AUTO command that you
wish executed upon power-up. The first 1 or 2
characters of this command can indicate the
type of AUTO to be used.

If the exclamation mark appears as the first
character of an AUTO command, the
non-breakable AUTO will be used. Under
normal circumstances, you may prevent the
AUTO from being executed by holding down
the ENTER key as the system is booted. For a
non-breakable AUTO, you do not have this
option.

If the pound sign appears, either by itself or
with the exclamation mark, as the first
character(s) of the AUTO command, then the
invisible AUTO is used. Normally, the AUTO
command is displayed as it is executed. If this
option is in effect, this will not be the case.
The command will execute unseen.

Please note that these command switches may appear in either order (!II or II!) if
you wish to specify them both. To reset an AUTO, enter the AUTO command (with the
drivespec, if you like) without specifying a command. For example :

AUTO

would reset the AUTO command currently set on the system drive. To boot the
system avoiding the AUTO, hold down the ENTER key as the system is reset.

====================================~==

Library commands - Page 42

.~·

DosPLU5 I1 - Disk Operating System - User's manual

The AUTO command allows you to define special configuration files with SYSTEM
(see the library command SYSTEM) and load them in automatically upon power-up. By
using the invisible option, you don't even have to SEE this procedure.

AUTO may be used with any valid library command (or series of library commands)
under 32 characters in length. If you use the multiple command feature (i.e.
command;command), AUTO will write these commands to the disk exactly as you enter
them, length permitting. For example, "AUTO LIB;FORMS" would write that to disk so
that when you booted the system the commands "LIB" and "FORMS" would be
executed. It will NOT write "AUTO LIB" to the disk and then execute a "FORMS"
command. Remember, the total length of the AUTO command must not exceed 32
characters.

As was explained earlier in the operations section, you may enter multiple commands
on the same line as long as you separate these commands with a semi colon ";". This
forces a carriage return and enters the command to that point. This means that you
may actually have two or more commands imbedded in your AUTO statement as long
as the TOTAL length of the command does not exceed 32 characters.

AUTO may best be summed up as saying that you may use for three main purposes :

(1) To load a configuration file (see the library command SYSTEM).

(2) To execute a program from boot-up.

(3) To begin an automatic command chaining file (see the library
commands BUILD and DO).

By using the optional drivespec, you may set an AUTO on a diskette other than the
one that is in the system drive. This is useful in preparing program diskettes for use.
You may set an AUTO on a disk without having to actually boot from that disk. When
you wish to set an AUTO on a floppy disk, but your system disk is a hard drive, this
can be an extremely important feature.

Examples:

AUTO SYSCON

This command tells DOSPLUS II that upon power-up, it is to load and excute the file
"SYSCON/CMD" (the /CMD extension is assumed). If this were a system configuration
file, the system would be automatically configured and all needed drivers loaded every
time the machine is reset.

AUTO !SYSCON

This command tells DOSPLUS II the same thing except that this time the AUTO
command will always be executed, even if the ENTER key is being held down to
indicate an abort.

Library commands - Page f4. 3

DosPLUS II - Disk Operating System - User's manual

AUTO II!SYSCON

This command also tells DOSPLUS II to load and execute the file "SYSCON/CMD"
and also tells it to ignore the abort signal. However, this command also tells DOSPLUS
II not to display the AUTO command as it is executing. In the above two examples,
the word "SYSCON" would appear on the screen as the file was being executed. In
this example, it would not.

AUTO :1 DO START

This command will set the AUTO on the disk in drive one to "DO START". Whenever
the system is booted using that disk, DOSPLUS II will attempt to execute the DO file
"START/TXT". Remember, the "/TXT" is the default extension. You may specify
differently if you wish.

AUTO :B

This command will reset the AUTO command on the disk currently in the drive
named ":B".

Finally:

When using the AUTO command on a system that is going to require the loading of a
special configuration file (see the library command SYSTEM), you must execute the
configuration FIRST. For example, let's assume that we have a configuration file
named "52201/CMD" on our system disk. ·We want to, upon boot-up, ·execute this file ~~
and run a BASIC program called "MENU". This would have to be handled at the time
the configuration file was created.

When you use the SYSTEM command to create your configuration files, you may
specify any additional statements that you wish executed with this file. You enter
these as multiple commands with the ";" separating them.

For example, to save the configuration file "52201/CMD", you would have executed
a statement similar to this :

SYSTEM {SAVE='S2201'}

To have the system execute this file and then DO (see the library command DO) a
file called STARTUP/TXT, you would type this instead

SYSTEM {SAVE='S220l'};DO STARTUP

The AUTO statement would look like this :

AUTO 52201

When you re-booted, AUTO would execute the file "S2201/CMD", which would
configure the system and the begin the DO function with the file "STARTUP/TXT".

Remember, to boot-up the system avoiding the AUTO, hold down the ENTER key.
Also remember that this will not work if the non-breakable AUTO (I.E. "!") Is selected.

Library commands - Page 44

-~

(

DosPLUS II - Disk Operating System - User's manual

BOOT

This command will allow you to perform a cold system reset from software. Calling
this command from your program or typing it in from keyboard produces the same
results as pressing the reset key on the face of the Model II.

===~================~~==~

The command syntax is

BOOT

There are no parameters for this command,

==========~===~================

Use of the BOOT command is most useful when you wish to have the system
reloaded under program control. This function is the same as pressing the reset
button. All drivers and configurations are returned to their default levels.

You must have the disk in place in the system drive when executing this command.
Failure to do so will result in a boot error.

Because this is in effect a system reset, any AUTO functions or DO files that
normally start on power-up will begin after this command also. You may abort them,
provided they are not non-breakable, by holding down the ENTER key.

You may also activate the system debugger by holding down the "D" key as
DOSPLUS II boots up. This enables you to go directly to the system's built-in memory
monitor and proceed to examine memory without having to go through any start-up
procedures or even going to the system level at all.

You may be prompted for the date and time when booting up. This is a configurable
option that may be disengaged by using the SYSTEM command. You may also disable
the opening logo, if you wish, by using the SYSTEM command (see the library
command SYSTEM).

Library commands - Page 45

DosPLUS II - Disk Operating System - User's manual

BUILD

This command offers you the ability to create an ASCII text file on the disk. These
can be used for "DO" files, patch program files, or filter files (or anything that
requires an ASCII text file).

===
The command syntax is :

BUILD filespec {param=switch}

Your parameter is :

"filespec" is the standard DOSPLUS II file
specification that you have selected to
contain your text. This may optionally contain
a drivespec, if you wish to build this file on
something other than the system drive. If you
don't specify an extension, DOSPLUS II will
automatically add the extension "/TXT" to it.

"par am" is the optional command modifier. It
will affect the action of the command when
included.

APPEND=switch Optional switch to indicate that
you wish to append the
instructions you are about to
enter on to the end of an
already existing file. May be
either "Y" or "N". If you do not
specify "Y", then BUILD will
re-use any space allocated to
that file.

Default value :

APPEND No. BUILD will re-use the file space. However,
if the parameter appears in the command line
with no switch, BUILD will assume that you
wish to append.

This parameter may be abbreviated to the letter "A". For example

BUILD filespec {APPEND= Y}

and

BUILD filespec {A= Y}

are equivalent.

======~==

Library commands - Page 46

DosPLUS II - Disk Operating System - User's manual

This command is one of the most often used commands in the entire DOSPLUS II.
system. By using this command, you may create a file on the disk that allows you to
store command lines just as you would have entered them from the DOS command
mode and execute these later with the DO command (see the library command DO). It
also allows you to create ASCII files with lists of patches in them for use with the
Patch utility (see the utility program PATCH. BUILD may also be used to create ASCII
text files that are interpreted by the Filter library command (see the library command
FILTER) and used to modify data as it moves from driver to device.

Any ASCll text file may be used for these. applications. You must only remember
never to exceed more than 79 characters without a carriage return.

This means that you may also create these files from BASIC or machine language
applications programs (such as a word processor). Therefore, your programs could
create the needed files based on information gleaned from the user and the user would
never actually interface with the DOS.

However, the BUILD command offers you the ability to create these files easily from
the DOS command mode without having to load some intermediate program to do it.
For the most part, with the exception of special cases, you will find that BUILD
handles the task adequately and there will not be a need for you to use anything else.
The oniy exception might be the fact that BUILD doesn't offer any editing capacity.

When you enter the BUILD command (i.e. BUILD TEST:O), you will see the following
initial prompt :

Enter text (79 chars/line)

At that point you are free to type up to 79 characters of text. When you have
finished typing a line, press ENTER to store that line. When you are finished, press
BREAK at the next blank line and BUILD will return to DOSPLUS II. Should you press
BREAK without pressing ENTER, the line will be stored in the file without a
terminating cardage return. This means that the partial line will be placed on the
screen but never actually entered.

Examples:

BUILD TEST:O

This command would open the file "TEST/TXT" on drive ":0" and store your
commands there. If a file by that name is already on that drive, the current
information will be overlaid.

BUILD TEST:O {APPEND= Y}
BUILD TEST:O {A= Y}
BUILD TEST:O,A

These three commands will all have the same effect. They also will open a file
"TEST /TXT" on drive ":0", but if this file already exists; they will append the new
commands to the end of the file without over-writing the current contents.

Library commands - Page 47

DosPLUS II - Disk Operating System - User's manual

BUILD STAR TUP/BLD:O <Enter>
Enter text (79 chars/line)
FORMS {W=80} <Enter>
BASIC MENU/BAS-F:l-M:65000 <Enter>
<Break>

This example would build a file called "STARTUP /BLD" on drive ":0". This file would
be accessed by the statement :

DO STARTUP/BLD

Notice that the "/BLD" extension was used because we didn't use the default
extension of "/TXT". This file, when executed, would set FORMS for 80 column paper
(see the library command FORMS) and then enter BASIC with one file buffer allocated
and memory protected at 65000. Once in BASIC, DOSPLUS II would execute the BASIC
program "MENU/BAS".

Finally:

When using BUILD and DO, if you wish to print a line if instructions or comments on
the screen, you may do so. Any line that begins with a period "." will not be executed
by DOSPLUS II. Therefore, to place non-command lines into your DO file, simply start
them off with a period. For example, ".Insert the Ill disk" is a comment line and "Dir
:4" is not.

Comment lines may also be used in patch and filter files to identify the patch or ·~
filter for future reference. the syntax is the same. Simply start the line off with a
period(".") and both PATCH and FILTER will ignore it.

The patch utility uses a default extension of "/PAT" and the FILTER command uses
a default extension of "/FL T". When creating text files for these two, you may want
to specify their default extensions when you call BUILD to begin creating the file. For
the most part, you will be using BUILD to create files for the DO command, therefore
BUILD itself uses the same default extension as DO (i.e. "/TXT").

Also, when entering lines into a file, you may press BACK SPACE to delete a
character and ESCAPE to delete a line. No other editing functions are supported.

Library commands - Page 48

~·
i.

DosPLUS II - Disk Operating System - User's manual

CAT

Tills .command wllJ display a disk's "file cata.>log". A file catalog differs from a
·directory in that it contains ONLY the filename and extension while the directory
'contains a great deal c0f information about each file. You also have the option of
;specifying a wi:ldmask so that only filespecs that match certain criteria are displayed.

=.;;;.:::;:;;.:::;;;::;:::;:;=====-:;::::;;.::;-=-=======·==================·=-=:::;:============-:::;=====:::;:::;::::;=====:::;==:;;:-::;;

Ibe command syntax is ;:

CAT [FROM] drivespec .[TO] channel [USING] wlldmask {param=exp •.. }

The parameters are :

SYS=switch

INV=switch

KILL=swltch

'"'drivespec" is the name of the drive for which
you desire the file catalog. If it is not
specified, CAT will globally display the file
catalogs of all drives.

''channel'' is the optional output channel.. That
is, where/ you want the file catalog to be
sent. I;f it is not specified, the screen (i.e. TO
@DO) is assumed.

"wildmask" is the optional wildmask to restrict
CAT to a certain group or class of files. If it
is not specified, all files will be displayed (Le.
"'!" is assumed).

"{param=exp}" is the optional action parameter
that indicates what type of flle catalog you
want to see. If no parameters are given, the
default values listed below will be in effect.

File catalog will contain system
files as well as standard entries.

File catalog will contain both
visible and invisible user files.

File catalog will contain names
of any deleted files not yet
wiped from the directory or
over-written by an active file.

ALPHA=switch File catalog will be displayed in
alphabetical order.

Library commands - Page 49

DosPLUS II - Disk Operating System - User's manual

Default values. If any of these switches are specified in a command line without. an
expression, DOSPLUS II will assume 11 Y11 and act accordingly. The default values listed
here are those that are in effect when the parameter is NOT present in the command
line.

SYS

INV

KILL

ALPHA

No. User files only will be displayed.

No. Visible files only will be displayed.

No. Active files only will be displayed.

No. File listing will be in the order that
the filenames actually appear in the
directory itself.

The FROM, TO, and USING delimiters may be omitted unless you wish to specify the
various portions of the I/O field in a non-standard order. The parameters may be
abbreviated

SYS=S, INV=I, KILL=K, and ALPHA=A

===

This command will display only the filename and extension for the files stored on
the specified disk. Under many circumstances, that is all you are interested in anyway.
This command may actually be used more than DIR by the average user.

The ability to specify an output channel when using CAT means that you may direct
the file catalog to the printer, the serial port, a disk file, or whatever is a legal I/O
channel. If you remember from the operations section, an I/O channel can be almost
anything except for a drivespec (devicespec, filespec, etc.).

The ability to use the wildmask with CAT means that if you wish to view all the
files with a "/CMD" extension on drive ":0" or all the files with a "/CMD" extension
on all the drives, it is a simple procedure.

CAT is very useful in finding which drives a specific program is on. Under DOSPLUS
II, you have the option of (on certain types of drives) up to 256 user files. That can
be an awful lot of names to read through looking for the one you want. This can make
it cumbersome to locate a single file. By setting a wildmask specific enough to weed
out any extraneous files, you may speed up the search tremendously.

The simplest form of CAT is :

CAT

Which will display a file catalog of all visible ser files on all drives. Next simplest
would be :

CAT :1

Which has the same effect, but restricts itsel t those visible user file located in
the disk drive named ":1 ".

Library commands P ge 50

DosPLUS II - Disk Operating System - User's manual

Your output should look something like this

Files drive: "ds" "disk name" -- "disk date"

filename/ext filename/ext filename/ext filename/ext

"ds" is the drivespec either you selected or it assumed, whichever the case may be.
At any rate, it is the drivespec for which the file catalog being displayed is from.

ndisk name" is the name of that disk and "disk date" is the creation date that is
stored on the directory.

Your filespecs will be displayed four across in the format "filename/ext", as shown
above. If the file has no extension, just the name will be displayed.

You may call CAT from BASIC without problems unless you wish to use the
"ALPHA" function for an alphabetical CAT. This cannot be used from within a BASIC
program inasmuch as when you ask for a sorted file catalog, the memory required to
do the sort expands past the limits of BASICs overlay area for DOS commands and it
will crash your program.

When using CAT, if you wish to specify an output channel and you have NOT
specified a source channel, you must use the delimiter "TO" to indicate data flow.
This would occur if you were going to get a prinout of the file catalogs for aU
available drives. To type

CAT (aPR

would produce an error, since "@PR" is in the source field position and n@PR'r is not
a valid drivespec. However

CAT TO @PR

would work just fine. This does not apply if you are using a source drivespec,
because then the the output channel is in its proper location. For example :

CAT :1 @PR

is fine. "@PR" is in its proper place and all will be well. The only exception to this
is the wlldmask. If the wildmask contains a wildcard character (i.e. "?'', "*", or "P'),
then the DOS will move that to the wildmask position for you and scan the rest of the
line in normal order. For instance

CAT :0 USING */BAS

is the same thing as :

CAT */BAS :0

Library commands - Page 51

DosPLUS II - Disk Operating System - User's manual

The system will move the "*/BAS" to the wildmask field and then pick up ":0" as the
source drivespec. This does not apply if the wildmask doesn't contain any wildcard
characters. If you specify a wildmask without any wildcard characters, then only files
EXACTLY matching the wildmask will be included. However, with no wildcard
characters to signal DOSPLUS II that this is a wildmask, it will simply be regarded as
an invalid source drivespec. For example :

CAT TEST /DA T

will produce an error, while :

CAT USING TEST /DA T

will not. Follow these rules of order on CAT and you should never get the message
"Parameter error". The best rule of thumb is, if you cannot remember whether or not
the delimiter is required, include it. It never hurts to have it in the command line, but
sometimes it will cost you to omit it.

Examples:

CAT :0 {SYS=Y,INV=Y,KILL=Y}
CAT :0 {SYS,INV ,KILL}
CAT :0 {S,I,K}
CAT :O,S,I,K

All four of these command lines will perform the same task. They will display a file ·~
catalog of the disk in drive ":0". The catalog will include all filespecs, whether
system, invisible, active or deleted.

CAT USING PER/DA T

This will search the directory of all available drives and printout a file catalog for
any drive having the file "PER/DA T" on it. This is an example of the method that
w6uld be used to locate all occurrences of the file.

CAT */CMD TO (aPR

This example will scan all drives and printout the filespecs of any files that have
the extension "/CMD".

CAT :1 {INV=Y,ALPHA}
CAT :1 {I, A}
CAT :l,I,A

These three commands are all equivalent. They will display, in alphabetical order,
all the user files, both visible and invisible, located on the disk in drive ":1 ".

Library commands.- Page 52

DosPLUS II - Disk Operating System - User's manual

Finally:

Remember that the default output channel is the display. If you omit the output
channel, then the file catalog will be sent to the screen. This can cause a problem
with your wildmask field if you are not careful.

You see, the wildmask field follows the output channel field in the command line. If
the following four conditions are true :

(1) You have specified a source drivespec so that the field is full in that
position.

(2) You have omitted the output channel in order to send the output to
the default channel: the video.

(3) You have omitted the delimiter USING because you feel that the
wildmask is in its proper place.

(4) You do not have any wildcard characters in your wildmask that might
show DOSPLUS II that it .IS a wildmask.

then DOSPLUS II will overwrite the file you have specified in the wildmask with the
output of the catalog. Without the USING delimiter and with the output channel not
specified, the wildmask moves into the output channel area. Because the source
drivespec WAS specified, it won't try to use the wildmask for that and generate an
error there. Finally, because there are no wildcard characters to indicate a wildmask,
DOSPLUS II takes it as a standard filespec. Since a filespec is a valid output channel,
it gets overwritten. Therefore, a little bit of carelesness can destroy the very file you
were looking to find.

What all this means is, if you are going to use a wildmask with the source drivespec
specified and you are NOT going to specify an output channel and your wildmask does
not have any wildcard characters in it, then you must use the USING delimiter.

For a more detailed explanation of wildcards and wildmasks, consult the operations
portion of the manual under "File and device specifications".

Library commands - Page 53

Dos~LUS II - Disk Operating Sy~tem - User's manual

CLEAR

This command allows you to fill either a file or user memory with user defined data.
It is used to get a "clean slq.te", so to speak. Please note that this command operat~s
in two separate and distinct manners. The two modes are mutually exclusive (if you
are clearing a file, you can't clear memory and vice versa). There are two completely
different command syntaxes given. Each should be treated as an individual. You may
not combine the parameters from the memory CLEAR with the file CLEAR and vice
versa.

===:======~=======~======~=====~======~~==================~=~=====~==~=======

The command syntax is :

CLEAR filespec {param=exp}

or

CLEAR {param=exp ..• }

Your parameters are :

START=value

END=value

"filespec" is the standard DOSPLUS II file
specification that will be used to indicate to
CLEAR that you wish to operate on a file and
direct it to the specific file that you wish to
clear. If a filespec is NOT present, then ·
CLEAR will assume that you are using the
second form (clearing memory).

This is the memory address that
you wish to begin filling memory
at. If omitted, the value set for
LOMEM will be used. This value
may not be lower than LOMEM.
This parameter applies only to
the second form of CLEAR
(clearing memory).

This is the memory address that
you wish to fill memory up to. If
omitted, the value set for
HIMEM will be used. This value
may not exceed HIMEM. Again,
this parameter only applies to
the second form of CLEAR
(clearing memory).

Library commands - Page ?4

DosPLUS II -.Disk Operating System -:- Us~r's manual

DATA""value

D,efault values :

START

END

DATA

Abbreviations:

LOMEM.

HIM EM.

00.

This is ~he op~ional value ~hat

you wish to fill memory with. It
may be expressed in any base.
Remember, if you use a base
other than decimal~ you will
need . te> affix the value type
suffix (i.e. 7FFFH). If no value is
specified, zero will be assumeq.
This parameter applies to either
form Qf CLEAR · (clearing a file
or memory).

START =5, END=E, DA TA=D

==~==~==~=~============~===

This command is used whenever you wish to clear out memory without resetting the
r· system or wish to clean up a file's disk space. The two modes of this command, as

mentioned earlier, are mutually exclusive. You cannot mix memory and file clec;iring
within this command. ·

Software deyelopers will find ln most convenient to. be. able to <;:le9-n out memory or
a file wl}en they are writing. progrq.ms. The ability to clear. out a file will allow you to
''start over" with fresh 9ata space so that you can see what the program has written
to the disk this time. Wh€m debugging machine lq.nguage programs, it is always most
convenient to be able to be assured that the program you are working on is the only
thing in memory.

The CLEAR command will not allow you to clear out memory below the value
currently set as LOMEM or above the value currently set as HIMEM. By default, it
clears out between those. two. Therefore, if yQur goal is to clear all user memory, it
would be &impler to just omit the START and EN6 parameters.

Libr:ary commands - Page 55

DosPLUS II - Disk Operating System - User's manual

E:)Cq.mples:

CLEAR

This example will fill all of user memory (the area between ~he LOMEM and HIMEM
values) with .Zeros.

CLEAR {START=5000H,END:::7000H,DATA=6CH}
CLEAR {S=5000H,E:::7000H,D:::6C!i} .
CLEAR,S:::5000H,E:::7000H,D:::6CH

The~e three commands <;ire equivalent. All three of them will fill memory between
addresses 5000 hex an9 7000 hex (inclusive) with the value 6C hex.

CLEAR TESTFILE/TXT

This command will instruct the system to fill the file "TESTFILE/TXT" with zeros.

CLEAR DA T A:TD {DA T A:::229}
CLEAR DA TA:TD {0=229}
CLEAR DA T A:TD,D=249

These three commands will <;ill ac;complish the same thing. They will search t~e drive
named ":TD" for the file named "DATA". If the file is located, CLEAR will fill it with
the value 229 dec (E5 hex).

Firially:

Remember, if you use 'cLEAR to erase a file's data on the disk, that fUe is gone!
There is no way to recover data. that has been CLEARed out. The ~arne is trj.Je tor
dat<;i resident in RAM. If you use CLEAR to ·remove it, there ·is no way to ever
recover it.

Another thing to bear in mind is that if you wi!;ih to era~e a file's data befpre you
kill it from the disk, it will be necessary to go through the extra step of clearing the
file first.

Also, please note that when specifying values for the "Data" parameter, either one
or two byte values may be used. If ypu specify a one byte value, then the byte will be
duplicated. That is, whatever one byte value you specify will be used for BOTH prats
of the two byte fill value.

Library commands - Page 56

r'·,

DosPLUS II - Disk OperatinK System. -.User's manual

CLOCK

This command aLlows you to turn on and turn off the system clock. When turned
110N", the system clock will be displayed in the upper right hand corner of the screen.
It will be in the "HH:MM:SS" format.

=====~=:=========:====================================~======================

The command syntax is :

CLOCK switch

Your switches are : . .

· QN=swltch

OFF=switch

"switch" is the optional action parameter to
inform DOSPLUS II whether to turn the clock
display on or off. ON will be assumed.

Display on.·

Display off •.

==~====~===~=~~=========~========~===============~===========================

. By using this· command, you· can display the real· time clock in the upper right hand
corner of the screen. This can be useful in certain applications to indicate to the
operator that 'the time has··not been set (if th~y .see a time of "00:00:00").

·' The system powers up with the clock turned off, unless you have the clock turned
on when you execute a "SYSTEM {SAVE}" (see the library command SYSTEM). The
time def~ults to "00:00:00" if you press ENTER at the time prompt. You may either

. set . the till'!e ".at that , promp~ upon powerup, or after power1.1p by usin~ the TIME
·command (se-e- the library command TIME). When the clock reaches "23;59:59", it will
reset itself to "00:00:00" and increment the d~te by one day. The clock display will be
updated once a second.

If you use the system command to disable the time prompt, DOSPLUS II will attempt
to recover the time last set. If, and only if, the values are out of range for a legal
time value, "00:00:00" will be used. Also, please note that the CLOCK command
affects only the display of the clock. Turning the clock off does NOT shut off the
system clock, merely the display.

Examples :

CLOCK ON
CLOCK

This command turns on the clock display.

CLOCK OFF

This command turns off the display.

Library commands - Page 57

DosPLUS II - Disk Operating System - User's man\.)al

CLS

This command clears- the display. It can be u~ed to erase information from the
screen that you don't want others to see or simply to remove cluttered data. This is
also used to clear the screen before execution df the library commands, since they
don't clear it automatically.

============~===~===========~==========

The command syntax is

CLS

·.There are no parameters for this command.

============================~=================~=====================~========

This command, when executed, will cause the display to be c!eared immediately, It
will NOT, however, reset the current video. mode. For exilmple, if you are in the
double wide (40 characters per line) mode and you execute a CLS~ the screen will
clear but you will still be in the double wide mode.

Under DOSPLUS II, the library commands do not automatically clear the screen
before execution. The reason is simple. Because DOSPLUS II is device inpependent,

;any device may be specified for the output channel, not just the video. That makes
sending a CLS first impractical. Suppose you execute a "CAT TO @PR". You wouldn't
want to senc;l a CLS instruction to the printer. Because the devices could be
completely renamed and re-routed, it is impractical to attempt to sense when the
-display is being output to (as a special case).

-· Therefore, this command becomes very useful to you, DOSPLUS II allows multiple
commands on the same line as- long as you separate the .commands. with a semi·· colon
'';". ·Preceding your command with a CLS command will clear. the screen. before the
command outputs to it. For example :.

DIR

would become :

CLS;DIR

Library commands - Page 58

DosPLUS II :.. Disk Operating System - User's manual

You may also use this command during a DO file to erase information from the
.~ screen if you do not want the operator to see it. If, for example, you were creating a

password protectEld file and you did not want the operator to see the filename, you
could place a CLS at the beggining of the command line. Such that :

CREATE DATAFILE/DAT.PASSWORD

would b~come :

CLS;CREA TE DA TAFILE/DA T.PASSWORD

The statement would be on the screen for only a split second, far too briefly for
anybody to read it. This measure of protection allows you to use a "confidential"
command chaining file.

Examples:

CLS

This command will clear the screen.

CLS;FREE :0

This command will Clear the screen and then display a free space map for the drive
named ":0" (see the library command FREE).·

Library commands·- Page 59

Do$PLUS II - Disk Operating System.- User's manual . .

<;ONFIG

This command allow:; you to ,supply DOSPLUS II with certain information about your
system's disk drive$. DOSPLUS II maintains a set of "DCT''s (<D>rive <C>ontrol
<T>able) that supply it with information about the drive such as density, number of
sides, and cylinder count. However, there are certain parameters that the DOS has no
way of ascertaining t,mless you specify them. CONFIG allows you to specify these.
CONFIG also will display the current parameters for each drive's DCT.

=====~=====~=====================~==========c=======~==================~==T==

The· co11;1mand syntax is : ,

CONFIG [drivespec] {param=exp,param=exp ••• }

"drivespec" is the drive specification that
indicates to DOSPLUS II which drive you are
CONFIGuring. Consult the section "Fii~ and
Device specifications" earlier in this manual
for a more d~tailed definition.

"param" is the optional action parameter that
indicates what aspect of the drive you are
CONFIGuring.

"exp" is _the_ modifier ;for the parameter. Its
value will modify the action of the parameter.
Depending on which parameter we are
modifying, it may be a switch ("Y" or "N") or
a value.

You have two distinct sets of parameters. One for floppy drives and one for rigid
drives. They are

Floppy drives :

FLOPPY =switch

WP=switch

MD=switch

HL=switch

Indicates that the drive being
configured is a floppy disk drive.

Sets the software write prote{:t
for that drive.

Sets the motor on delay for that
drive. Used with Model 16
computers.

Sets the head load delay for that
drive. Used with Model II
internal drives.

- Lil>r ry commands - P_age 60

DosPLUS II - Disk Operating System ::... User's manual

STEP=value

SKIP;::switch

SIZE= value

PD=value ·

Rigid drives :

RIGID=switch

SIZE= value

FIXED=switch

WP=switch

.STEP=value

HO=value

Sets drive track to track step
rate in milliseconds. Values are :

· 0 - 3ms.
1 - 6ms.
2 - 1 Oms.
3 - 15ms.

Sets "skip" parameter for that
drive. This instructs the system
to read every other track on the
disk.

Sets the size for that drive.
Allowable sizes are "5" or "8"
for five and eight inch.

Physical drive. This points to
which actual drive in the chain
that the drivespec you are
configuring will address. You
change this parameter to alter
the 0rder in which the drives are
scanned.

This indicates to the system that
the drive being configured is a
rigid drive.

Informs DOSPLUS II as to the
actual size of the disk drive (5
or 8 inch platters).

Indicates whether the rigid drive
being configured is a fixed or
removabl,e pl~tter drive.

Sets the software write protect
for that drive.

This sets a relative value for the
step rate of the hard disk. lfhis
value will not be necessarily the
millisecond step rate for that
drive, but is usually some value
output to the controller to
indicate the manner of stepping
desired for this unit. ·

Head offset~ This Value telis the
sys·tem at which phys.ical
read/write head this logiq1l
drive begins.

· Library commands - Page 61

Do&PLUS II - Disk Operating System - User's manual

CO=value

'fS=value

PO= value

Cylinder offset. This value
indicates at what cylinder the
\ogical drive starts at.

Head count. This value inoica~es
how many actual read/write
heads are in a logical drive.

Track size. This value indicates
how many sectors there are per
track on the rigid drive.

Physical drive. This parameter
indicates which actual dJ:I'ive in
the chain this logical drive is
addressing. You alter this
parameter to change the order in
which the drives are scanned or
to partition a single rigid driv~
into several logical drives,

Default values. ,Jn the case of a command like CONFIG~ there aren't really any
default parameters. Each J>YStem h~s different parameters that are considered normal.
The hard disk parameters, for the most part, will be set by the drivers ipc!uded with
DOSPLUS II for your pafticl,llar hard disk. We will explain not defq.ult, bu~ optimum
settings as we go thr0ugh each parameter in detail.

Abbreviations :

Floppy drives :

FLOPPY
WP
MD

,HL
STEP
SIZE
SKIP
PO

Rigid drives ;

RIGID
WP
STEP,
HO
co
HC
TS
PD
FIXE.D
SIZE

F
w
M
H
s
No abbreviation.
No abb~:~evlation.
p

R
w
s
H
c
No abbreviation.
T
No abbreviation.
No abbreviation.
No abbreviation.

======~====~============~~==============z=============~=======~=~============

qbrrary commands - Page 62

DosPLUS II - Disk Op~rating System ::- User's mant,~al

Displaying current settings -

To get a , display of your current system configuration settings, simply type
"CON:PIG" without any parameters and press ENTER. The disp\ay will sho\V, in
ascending order' the eight drive devices and those settings currently in ef:fect. for
~e~ .

Any drive devices that are not currently enabled will be displayed as "Nil". If you
qttempt to access one of these, you will be rewarded with an error l\lessage. To
ihitiq.lize, tb,at, . d,rive into the system, you use. the SET col'l)mand (see. the library
commc;tnd' SET) •. YoiJ would use the syntax "SET :dn :dl)" (where ":dn" is th~ driv~spec
you are engaging. · ·

Your system com~s with ~)Oly th~ floppy disks initialized. To engage the hard disks,
1,.1se. ~ET in. the manper described above to "turn on" drives 4 through 7 •. ·If you wis.~,
yc;>u may later alter the order of the drives as explained below (see the parameters
FLOBPY, RIGID~ and PD).

For a more detailed and technical . discussion of this procedure, consult the. SET
Gommand.

The. CON FIG display. line -

r lhe·,driv:e de.vke numbers are displayed in the farthest left hand column and are
preceded by a "S". There will be eight of them, numbered 8 through 15., These devices
and their order will never be changed. When doing a global search, the DOS will
always scan .. beginning wit11 device 8 and proceeding thr9ugh device p. Whatever
prder yow have ,set the disk drives in, in relation to this device order:, is the order in
whictlAhe drives will be scanned.

By far, the most important thing to remember, though, is that device 8 must
ALWAYS contain be the system drive. To. point that device to another, non-system,
~isk is to insure., :q. great deal of probiems.

\

The second column in the CONFIG display line is the drivespec. These are the two
character names assigned to the various disk drives. By default, they are named ":0"
through ":7", numbered in ascending order. This drivespec is only the name by which
you reference .the drive from program. It has nothing to do with the actual operation
of the drive.

The user may rename the drives to anything he desires (see the library command
RENAME) within the limits of the reserved character table printed in the "File and
Device. spec!flcations" section of the manual. The only restriction is, you c.:tnnot have
two disk· drives. with .·the same name. If you wanted to swap two drive names, you
would hav;e to assign one a temporary name.

After the drivespec is the write protect indicator. If you have set the WP
parameter to software write protect that drive, the !etters !'WP" will appear after the
drivespec.

Library commands - Page 63

DosPLUS II - Disl< Operating System .:. User's·tnanual

The next piece of data given in the display line is drive size. DOSPLUS II supports
two sizes of disk drives, 8 inch and 5 1 I 4 inch. In the floppy disks, at this writing, ~
there was no manner of attaching 51/4 inch drives to th~ Model II/16. Therefore, the
option js present in the system, but reserved for· future releases should" the
appropriate q.dapters become ·available. However, many of the hard disk units
supported by DOSPLUS II use the 5 1/4 inch rigid drives. For these units, the
parameter is needed.

You set drive size via the "SIZE" parameter (explained later). The display will
change to reflect 8" for 8inch drives or 5" for 5 1/4 inch driv~s, Remember, this is
currently implemented only for the rigid drives. Setting 'the' SIZE. parameter for 'q
floppy drive at this time qoes nothing.

The next statement in the display line is the media type.' This will serve to indicate
what yQtJ have cQnfigured that drive as (i.e. Floppy or hard driv~). , It will be displayed
by either the ;word· "Floppy" or the wprd "Rigid".' You alter this via the "Floppy" and
"Rigid" pq,rameters, which are detailed later.

-, You have eight drive devices in all. These eight devices can contain· ·any
combination (floppy/rigid) of drives. A rigid drive may have more than one drive
d~vice assigned to it. This is called "partitioning" the drive. Floppy disk drives may
not be partitioned, although more than one device rnay point to the same· physical
drive. In those cases, you are merely addressing the same disk drive via two different
drivespecs. This 'is NOT advisable if you ~ish to insure the integrity of 'the data
contained em that disk. · 1

••

The n'ext · information·· given is the physical drive 'number. It is· an important
par'anieter;'because'along with the Floppy or Rigid parameter, it contr'ols which actual
drive the drive devjce will address. It will be shown in the display line as "PD=nn",
where "nn" is the physical drive number.

' ; '

· 'For ·exampre, if you set device eight as a floppy drive via the "floppy'' parameter
and as physical drive 0 via the "PD" parameter~ that device will then address you'r
first floppy disk drive. Since device eight is the system drive, you will have to have a
syst~m disk in drive 0 for. the DOS to operate.

If you set device nine as a rigid drive and assigned· it physical drive number 0, it
would address the first hard disk drive. Then, when DOSPLUS II ·would perform a
global search, it wpuld first go to device elght. This would send it to the first floppy
disk drive. Then DOSPLUS II would scan device nine, which would address the first
hard disk.

You can see how easy it is to "customize" your system. If you have two floppy disK
drives and one· hard disk, and yqu want the hard disk to be in the third drive position,
just configure it that way. Set the third drive 'device, device ten, as rigid and physical
drive 0. If you want the hard disk to be the system drive, just configure device eight
as the first hard disk. Please note, however, that you MUST have already formatted
and installed the system files on the hard disk prior to this configuring to avoid ?­
system crash.

Throughout all of this re-routing, the drivespecs didn't change. They always
remained what they are unless you rename them. It doesn't matter which drive device
addresses which physical drive or which drivespec addresses that drive device.

Library commands - Pag'e 64

DosPLUS II - Disk Operating System - User's manual

Any drive positions that are currently unused may be deleted from the. table of
drives by uslng the KILL command to kill that drive device (see the. library command
KILL). For example, "KILL :2", will delete the drive that the device named ":2"
addresses.·. These will be display~d as "Nil" in the CONFIG display line. You may want
to remove any unused positions in order to speed up DOS operation slightly. If the
system knows that a drive is disabled, it will not attempt to access it during a global

·search •. This will result in slight speed increases in some operations.

The next piece of information contained in the CONFIG display line is the drive
cylinder count. This information is stored in the drive's DCT (<D>rive <C>ontrol
<T>able) and is actually written on the disk itself. If you have not accessed that drive
yet,· then the in'iprmation displayed there will be the default values (77 cylinders for a
floppy drive or ~00 cylinders for a rigid drive). Once the system has accessed that
drive and rea<:! its DCT, though, the information will be accurate for the way that
that disk was formatted. This will be displayed in the CONFIG line .as "Cyls=nnn",
where "nnn" is the number of cylinders to which the drive was formatted.

If you wish to force DOSPLUS II to read the DCT information for all drives in the
system such that the display will be accurate for the way the system is currently set
up, you may use the "mount" parameter of the "I" command (see the library command
l). Otherwise the system will adjust its configuration in memory as it accesses the
varlous drives.

Also remember that any configuration that was in effect when you did a "SYSTEM
{SAVE=}" will be; in effect, the new default values. When you load that configuration
file, the DCTs in memory for all the drives will be set to whatever their last known
values were (those at the time of the system save) •

. It is at this point that the CONFIG display line will take two compl~tely different
appearances. One for the floppy disks and one for the rigid. We will cover each in

. turn.

FloppY. disks .,..

The next piece of information given in a floppy disk configuration displc;ty is the
number of sides. Once again, this information is stored in the disk's DCT and recorded
on each disk. DO~PLUS II will pick up this information automatically the first time
. that it accesses those disks. This is merely a display. It will be shown as "Sides=nn",
where 11 nn" is the number of sides specified at the time the disk was formatted.

When DOSPLUS II is accessing disk drives, it will continue to use the last known
DCT ·information. You must tell the system manually when it is time to re-read the
DCT for a particular disk drive. The only time that this will be needed is when you
are switching between double and single headed disks. If a drive in your system
previously contained a single headed disk and you insert a double headed .disk,
DOSPLUS II must be made aware of the fact that the DCT should be re-read the next
time that drive is accessed.

All other parameters (Density, Track count, etc.) that are stored in the DCT will
become evident to the system when they have changed. On the other t)and, changing
from single to double headed will not necessarily produce an immediately evident
change. That is why you must inform the system manually. .

Lib,rary commands - Page 65

DosPLUS II - Disk Operating System - User's manual

The next piece of information, disk· density, is also contained in the DCT and will be
picked up automatically by the system. This will be represented in the display line by
either an "Den=S" or a "Den=D" (for <S>lngle or <D>ouble density). The cp,pacity to
format diskettes single density in the Model II is unique feature of DOSPLUS II.

Those parameters (Cylinders, Sides, and Density) are all set for the disk at the time
of format (see the utility program FORMAT). You do not, and can n<;)t, adjust those
parameters with CONFIG. Their purpose in the display line is to inform you of the
current status of your ~ystem.

: ! ., , • I .

The next, parameter in the floppy disk display line is step rate. This indicates how
fast; in milliseconds, you wish the disk drive to step between cylinders. Model II Disk
drives may bes~t fora maximum step rate of "1". Model 16 Disk drivesmay b~ set
for a maximum step rate of "0". The step rate value is a relative figure. Your actual
rates are : · ' ' ·

Value

0
1 '
2
3

Step rate

3 Milliseconds
5 II

10 II

20 II

: Please b'e careful that you do not set the Disk drives in the Model II for a step' rate
f<iis'ter than that which they are able to handle. This can cause extremely unreliable
operation. This parameter will be displayed as "Step=n", where "n" is the currently
defined drive step rate.

The next information given in the display line is motor delay, This parameter
instruCts OOSPLUS II to delay before accessing a disk drive in order to allow the
drive's motor to come to speed. This will be shown in the display line as either
"MDelay::;:Y" or "MDelay=N", indicating whether the delay is on or off. On the Model
II, this is not needed and this parameter should be set to 11 N". On the Model 16, this is
very definitely needed and this parameter should be set to "Y" for the system to
function correctly.

Following that parameter is the head load delay. This parameter will cause
DOSPLUS II to delay after accessing a disk drive in order that the read/write head
may "load" against the media. This parameter will be displayed as "HLoad= Y" or
"HLoad=N", depending as to whether or not you have turnec,f this option on or off. This

·parameter will be required for all Model II drives, but is NOT required for any Model
16 drives. Certain aftermarket disk drives may also require this parameter set to "Y",
consult your drive dealer for exact information.

The last parameter displayed on the line is the skip parameter. Di·splayed as either
"Skip=Y" or "Skip=N", if this parameter is set equal to 11 Y", DOSPLUS II will "double
step" the disk drives (i.e. read every OTHER track). This parameter is intended
primarily for use after the five inch drive adapters have been implemented, so that
you may read 35/4-0 track disks in 80 track drives. Currently there is no real practical
application of this parameter. If you were to set it by mistake, you could cP:use a
system read erro'r~ Leave this option disengaged (i.e. set equal to "N").

Library commands - Page 66

DosPLUS II - Disk Operating System - User's manual

Rigid disks -

The first unique parameter (i.e. after the "Cyls" display) on the rigid disk's CONFIG
line is the "Fix" or "Rem" parameter. This parameter is used to indicate whether the
rigid disk you are using is a fixed platter or a removable platter assembly. You
configure this setting via the use of the "FIXED" parameter (i.e. either "Fixed= Y" or
''Fixed=N").

At this writing, there were no removable drive systems supported by DOSPLUS II, so
.DOSPLUS II dqes not currently use this parameter. At this time, you may alter it, but
the only thing that changes is the display line. It does NOT affect system operation.

Next in the rigid drive display line is the head count. It wil! be shown in the display
line qS ''HCnt=n", where "n" is the number of read/write heads that logical drive is set
for. Remember, this parameter will be equal to the number of platters in the drive
tim.~s two. If you have not done so already, we suggest that you read the section of
the operations manual on hard disk theory before attempting to configure your hard
disk. Standard Radio Shack 8.4. megabyte hard disks (Cat. II 26-4150/51) have 4 heads.
If you are using a different drive, this may change. Consult your drive owner's manLJal
or the dealer from whom you purchased the drive to be sure.

Following the head count will be the drive step setting. This will be shown in the
displqy Hne as "Step=nnn", where "nnn" is the currently defined step setting for that
drive. This is NOT the same thing as a floppy drive's step rate (discu$sed earlier). This
'.is a one byte value between 0 and 255 (00 and FF hex) that indicates what manner of
stepping you have chosen. DOSPLUS II will output that value to the proper port to
.configure the drive. Standard Radio Shack 8.4 megabyte hard disks (Cat. II

./-, 26-4150/51) should have the step option set to "0". To discover the proper setting is
for your drive, if it is different, consult (once again) either the drive owner's manual
or the dealer from whom you purchased the unit.

The next piece of information shown in the display line is the head offset. This will
be displayed as "HOff=n", where "n" is the number of the head you wish this logical
drive to start with. Once again, if you have not read the section in the operations
manual covering the manner in which DOSPLUS II deals with hard disks, you should
read that before attempting this section. Each logical drive may begin with any
physical read/write head that you desire. The head offset parameter allows you to set
that.

This value will be exact. Since we start numbering the heads with head "0", if you
wish to begin this drive with the second head, you skip one head (i.e. a head offset of
"1" or start with head number "1 ").

Following the head offset value will be the cylinder offset value. This will appear in
the CONFIG display line as "COff=nnn", where "nnn" is the number of the cylinder you
wish this logical drive to start at. This parameter is usually used with the style of
hard disk paritioning that uses larger and fewer cylinders; therefore in most cases, it
will not be u51ed in conjunction with the head offset parameter.

Library commands - Page 67

DosPLUS Il- Disk Operating System - User's manual

Your cylinder offset parameter will be used to reflect the point on the hard disk
that you wish the next partition to begin at. For example, if you were using a 256
cylind~r hard drive with two platters (meaning that you have four surfaces and
therefore four heads), and you wanted to partition it into four equal segments, you
could do it \n the following manner.

(1) Set the head count to four for each rigid logical drive (i.e. HC=4).

(2) Since 256 divided by 4 is 64, you would set each cylinder offset to
its proper mulitple of 64. For the first drive, the cylinder offset
would, of course, be 0. For the second drive, 64. The third drive,
128 and the fourth drive, 192.

By setting· your hard disk up ih that manner, you in effect have four 64 cylinder
hard disks with four heads per drive instead of one large 256 cylinder unit. This
.allows you the same amount of total space, but it allows you to maintain four
separate directories (one for each drive), with up to 256 files in each. You could have
·set that up differently if you wished. It is at the user's discretion. You could have
·made two 128 cylinder drives or one 200 cylinder and one 56 cylinder or any other
combination that would meet your needs.

After the cylinder offset parameter is ·the sectors per track (or track size). · This
·will be expressed as "TS=nn", where "nn'' is the number of sectors on each track. This
is NOT an abitrary figure. Every hard disk is capable of a certain number of sectors
·per track and if there is no user's manual that contains that information, then the
dealer that sold you the drive should certainly know. Standard Radio Shack Model
II/16 8.4 megabyte hard disk units (Cat. II 26-4150/51) are capable of 34 sectors per
track.

Please do not confuse this with the number of sectors per cylinder. This figure is
for one track only! One track on one side of one surface. DOSPLUS II is intelligent
enough to calculate the number of sectors per cylinder from this figure and t.he head
count value.

Altering your CONFIG settings -

Now that we have covered in detail the CONFIG display line and talked a little
about each parameter contained within it, we will address the task of altering these
settings. We will cover altering the floppy disk drive parameters first and then discuss
altering the rigid disk parameters.

The general form for altering the CONFIG parameters is

CONFIG drivespec {param=exp •.. }

Library commands - Page 68

,r-->

· DosPLUS II - Disk Operating System - User's manual

Floppy disk parameters

This parameter indicates to DOSPLUS II that the disk being CONFIGured is a floppy
disk. Although this parameter will take a switch (i.e. "Y" or "N"), there is no need to
use one. "Y" will be assumed when FLOPPY is in the parameter list and "FLOPPY =N"
is the same thing as saying "RIGID". Therefore, to set this parameter, simply specify
the drive number and include the word "FLOPPY" in the parameter list.

Example

WP:

CONFIG :0 {FLOPPY}
CONFIG :O,F

This parameter sets the software write protect for the drive being configured. This
allows you to, without having to actually remove and replace the write enable tab on
the disk, protect one of your disks from being accidentally written to. It has the same
exact effect as removing the write enable tab within the DOSPLUS II system.
However, other programs that use their own disk I/O drivers may not recognize this.
Set the parameter equal to either "Y" or "N". "Y" will be assumed.

Example

MD:

CONFlG :0 {WP= Y}
CONFIG :0 {WP=N}
CONFIG :O,W

This parameter controls the motor on delay for. the disk drives. On the Model II, this
is not needed and should be left set equal to "N". On the Model 16, this IS needed and
should be set to "Y". When included in the parameter list, "Y" will be assumed.

Example :

HL:

CON FIG :0 {MD= Y}
CONFIG :0 {M}
CONFIG :O,MD=N

This parameter. controls the disk drive head load delay. If you set this parameter to
"Y", DOSPLUS II. will include an extra delay the first time that it accesses a disk
drive in order for the read/write head to "load" against the media. This is NOT needed
for any standard Radio Shack Model II or 16 drives and should be left set equal to
"N". Certain other drive manufacturers may require this delay. Consult your drive
dealer to be sure. If mentioned in the parameter line, "Y" will be assumed.

Examples : CONFIG :0 {HL=Y}
CONFIG :0 {HL=N}
CONFIG :O,H

Library commands - Page 69

DosPLUS II - Disk Operating System - User's manual

Step:

This parameter controls the speed at which DOSPLUS II will attempt to step your
disk drives between tracks. This is a relative value as the table below indicates • ·

Value

0
1
2
3

Actual step rate (track to track in milliseconds)

3 milliseconds
6 "
10 "
15 "

You must set the step parameter equal to one of those values when you include it in
a parameter list. There is no default value for such a setting. Standard Model II drives
will accept a step rate of "1". Model 16 drives can step at "0".

Example :

Skip:

CONFIG :0 {STEP=l}
CON FIG :0 {5= 1}
CONFIG :0,5=1

This parameter, when set to "Y", tells D05PLU5 II to "double step" or read every
other track. This function is really designed for the time when we will be able to
attach five inch drives to the Model II, so that we can read 40 track disks in 80 track
drives. It has no practical use with the eight inch drives, almost all of them being 77
track. It should, for standard operation, be left set to "N". If included in the
parameter list, "Y" will be assumed. ~.

Example :

Size:

CONFIG :0 {5KIP=Y}
CONFIG :0 {5KIP=N}
CONFIG :0,5KIP

This parameter informs DOSPLUS II whether the drive being CONFIGured is a five
or eight inch disk drive. At this writing, the hardware interface to enable five inch
drives on the Model II/16 was still under development. We have implemented this
parameter in the system in preparation for the day when it will be available, but the
system currently does nothing when you set a drive as five inch (other· than change
the display line). This parameter should be left set to "8". If you ·include this in the
parameter Jist, you must specify either "5" or "8". There is no default value for this
setting.

Example : CONFIG :0 {SIZE=8}
CONFIG :0 {5IZE=5}
CONFIG :0,5IZE=8

Library commands - Page 70

DosPLUS II - Disk Operating System - User's manual

PD:

This parameter controls which physical drive unit that the drive device being
configure will address. If you have four floppy drives in your system, then you have
four actual (physical) drives. These are numbered 0, 1, 2, and 3. You may have the
drive devices point to these in any order you like.

For instance, let's assume that the first four drive devices (named ":0" through ":3")
are all floppy drives. You have the four physical floppy drives mentioned earlier. You
decide that you wish to change the order of these drives (i.e. have the external. bay
drives scanned in the opposite order of normal). To do that, you would need to have
drive device ":1" address physical drive 3 and drive device ":3" address physical drive
1. Drive device ":2" will still address physical drive 2 because that is still the rniddle
drive. All you would do is set the "PD" parameter for drive device ":1" to "3" and the
"PD" parameter for drive device ":3" to "1".

~emember, you only have four physical floppy drives (0 - 3). Also· keep in mind that
this parameter has no default value. If you are going to mention "PD" in a parameter
list, you must specify a drive number (0 - 3).

Example

,----., Rigid:

CONFIG :0 {PD=O}
CONFIG :0 {PD=3}
CONFIG :O,PD=O

Rigid disk parameters

This parameter indicates to DOSPLUS II that the disk being CONFIGured is a rigid
disk. Although this parameter will take a switch (i.e. "Y" or "N"), there is no need to
use one. "Y" will be assumed when RIGID is in the parameter list and "RIGID=N" is the
same thing as saying "FLOPPY". Therefore, to set this parameter, simply specify the
drive number and include the word "RIGID" in the parameter list.

Example :

Fixed:

CONFIG :4 {RIGID}
CONFIG :4,R

This parameter indicates to DOSPLUS II whether or not the rigid disk being
CONFIGured is a fixed or removable platter drive. Currently, there are no removable
platter rigid drives availible .for the Model II/16 which are supported by DOSPLUS II.
This parameter is included for the day when these units ARE supported. You will be
advised via the addendum sheets that cover any special hard disk drivers that .you may
receive whether or not this particular driver enables this parameter. To set this
parameter to "Y" now only changes the display line. It will NOT affect system
operation and should be left as "FIXED= Y" or "FIX" (which is the default setting).

Example : CONFIG :4 {FIXED=Y}
CONFIG :4 {FIXED=N}
CONFIG :4,FIXED

Library commands - Page 71

DosPLUS II - Disk Operating System - User's manual

WP:

This· parameter sets the software write protect for the drive being configured. This
allows you to protect against an accidental write to the drive. It has the same exact
effect as removing the write enable tab on a floppy disk. With DOSPLUS II, this is 'the
only way to "write-protect" a rigid drive. However, other programs that use there own
disk I/O drivers may not recognize this. Set the parameter equal to either "Y" or "N".
"Y" will be assumed.

E'"ample

Step:

CON FIG :4 {WP= Y}
CONFIG :4 {WP=N}
CON FIG :4, W

This parameter allows you to set a relative step rate value for your rigid drives.
This Value is used to configure your pariticular hard disk for the manner of stepping
desired. This is NOT the same type of step rate value that you configure for· floppy
drives. On the floppy drives, you set a value and DOSPLUS II interpreted it and
stepped the drives accordingly. For this parameter, you enter a value and whatever
value you enter DOSPLUS II will output to the hard disk when telling it how to step.
How the drive reacts to this is a function of the disk drive controller.

There is no set value for this parameter. Each drive must have its correct settings.
This information should be in the drive owner's manual and if not there, then the
dealer wno sold you the drive should know. For standard Radio Shack 8.4 megabyte
Model II/16 hard drives (Cat. II 26-4150/51), the proper step setting is "0". There is no
default rate for this. If you include it in the parameter list, you must specify a value.

Example :

HO:

CONFIG :.4 {STEP=O}
CONFIG :4 {STEP=3}
CONFIG :4,5=0

This parameter sets the drive head offset. This informs DOSPLUS II how many heads
to skip when accessing a particular logical drive. If you choose to configure your hard
disk with each surface as a separate drive, this parameter is used. Each logical drive
would have a head count (HC) of "1" and the head offset (HO) would tell the system
which head.

For example, a two platter drive has four heads. If each surface (or head) was set
up as a separate drive, then the head count for each would be "1" and the head offset
would start at "0" and go up one for each logical drive. Therefore, the drive that you
desire to be first. would have a head offset of "0" (meaning not to skip over any
heads) to cause it to begin with the first head. The second drive would have a head

·offset of "1" (meaning skip one head) to cause it to begin with the second head. This
would continue until all logical drives had been assigned their own head.

Library commands - Page 72

DosPLUS II - Disk Operating System - User's manuai

Remember that you may never have a head offset greater than the head count of
the drive minus one. In other words, you cannot specify a head offset value that
would cause the system to begin a logical drive at a non-existent head. Also remember
that there is no default setting for this parameter either. If you specify the head
offset parameter in the list, you must assign it a value.

Example :

CO:

CONFIG :4 {HO=O}
CON FIG :5 {HOd}
CONFIG :4,H0=0

This parameter allows you to set a rigid drive's cylinder offset. It, like the head
offset, is used when you are partitioning the drive. However, this parameter is usually
used with the style of hard disk partitioning that uses larger and fewer cylinders;
therefore in most cases, it will not be used in conjunction with the head offset
parameter.

Your cylinder offset parameter will be used to reflect the point on the hard disk
where you wish to begin the next partition. For example, if you were using a 256
cylinder hard drive with two platters (meaning that you have four surfaces and
therefore four heads), and you wanted to partition it into four equal segments, you
could do it something like this. First, set the head count to four for each rigid logical
drive (i.e. HC=4). Then, since 256 divided by 4 is 64, you would set each cylinder
offset to its proper mulitple of 64. For the first drive, the cylinder offset would, of
course, be 0. For the second drive, 64. The third drive, 128 and the fourth drive, 192.

By setting your hard disk up in that manner, you in effect have four 64 cylinder
hard disks with four heads per drive instead of one large 256 cylinder unit. This
allows you the same amount of total space, but it allows you to maintain four
separate directories (one for each drive), with up to 256 files in each. You could have
set that up differently if you wished. It is at the user's discretion. You could have
made two 128 cylinder drives or one 200 cylinder and one 56 cylinder or any other
combination that would meet your needs.

Please note that you may not configure a drive with a greater cylinder offset than
it has cylinders (minus one). In other words, you may not assing a cylinder offset that
would begin a logical drive at a non-existant cylinder. Also, use extreme care when
dividing up a hard disk that your partitions do not overlap cylinders. This will cause
extreme system errors and potentially great losses of data.

Example : CONFIG :4 {CO=O}
CONFIG :5 {C0=64}
CONFIG :4,C0=0

Library commands - Page 73

DosPLUS II - Disk Operating System - User's manual

HC:

This parameter is used to set the head count for a rigid drive. Every rigid drive is
made up of platters. Each platter has two surfaces and each surface has its own
read/write head. Therefore, to determine your drive's head count, multiply the number
of platters times two. Standard Radio Shack 8.4 megabyte Model II/16 hard disk units
(Cat. II 26-4150/51) have two platters or four heads.

If you are configuring with method one (smaller and more numerous cylinders), you
will use each surface as a separate drive and each partition will have a head count of
"1". If you are configuring with method two (larger and fewer cylinders), you will use
all surfaces in each partition and split the drive using the cylinder offset parameter.
For a standard Radio Shack hard disk, this would leave each partition with a head
count of "4".

Example :

TS:

CONFIG :4 {HC=4}
CONFIG :5 {HC=l}
CONFIG :4,HC=4

This parameter allows you to instruct DOSPLUS II regarding the track size of the
rig~d drive. This value will be .set to the number of sectors that are on each track.
This is NOT an arbitrary figure. You must find out what the setting should be for the
drive that you have and set this parameter accordingly. If the drive owner's manual
does not have this information, then consult the dealer who sold you the unit.
Standard Radio Shack 8.4 megabyte Model II/16 hard disk units (Cat. II 26-4150/51)
have 34 sectors per track, so "TS" should be set to "34".

Remember, this is NOT the number of sectors per cylinder. This is CONFIGuring for
one track on one side of one surface. DOSPLUS II will automatically calculate the
number of sectors per cylinder from this parameter and the head count value.

Example :

PD:

CONFIG :4 {TS=34}
CONFIG :5 {TS=33}
CONFIG :4,TS=34

This parameter controls which physical drive unit that the drive device being
configured will address. If you have two rigid drives in your system, then you have
two actual (physical) drives. These are numbered 0 and 1. You may have the drive
devices point to these in any order you like.

For instance, let's assume that you have a standard Radio Shack 8 megabyte hard
disk unit. When connected to the computer, that would be physical rigid drive "0". If
you were to purchase an additional hard disk unit and attach it also, that would be
functioning as physical rigid drive "1 ". The PD parameter simply defines to which
actual hard disk unit the settings in that CONFIGuration line are referring.

Library commands - Page 74

,_

DosPLUS II - Disk Operating System - User's manual

If you only had the one Radio Shack drive, you could point one logical drive to it or
eight, it makes no difference. For each logical drive that you want addressing that
first physical drive, you would set the PD parameter. for that drive ~o "0" .. You would
use the other hard disk parameters to make certam that two logical dnves do not
occupy the same area of the disk.

Example : CONFIG :4 [PD=O}
CONFIG :5 {PD=O}
CONFIG :4,PD=0

Some recommended settings -

Radio Shack Model II floppy disk drives:

For these drives, the only setting that would be changed from the way that
DOSPLUS II is shipped is "Step=1 ". For all drives in your system, set this parameter.

Radio Shack Model 16 floppy disk drives:

For these drives, there are TWO parameters that need to be altered from the
default (Master disk) settings. The first is "MD= Y" and the second "Step=O". For all
floppy drives in your system, those two parameters should be set in the prescribed
manner.

When you first power-up your system, you may type "MOD16" and press ENTER if
you like. There is a pre-made configuration file stored on the disk for you that will
configure your system as a two drive Model 16, setting the "MD" and "Step"
parameters. This will give you an example of what all floppy drive configurations
should look like.

Radio Shack Model II or 16 8.4 megabyte hard disk drive:

There are two 2 ways' that we recommend you set up your hard disk : (1) as two
logical drives and (2) as four logical drives.

First, the two logical drives. Set the following parameters to the recommended
values :

Example

Drive 4
Rigid
Fixed=Y
HC=4
Step=O
HO=O
CO=O
TS=34

Drive 5
Rigid
Fixed=Y
HC=4
Step=O
HO=O
C0=128
TS=34

CON FIG :4 {R,FIXED= Y ,HC=4,S=O,H0=0,C0=0, TS=34}
CON FIG :5 {R,FIXED= Y ,HC=4,S=O,H0=0,C0=128, TS=34}

Library commands - Page 7 5

DosPLUS II - Disk Operating System - User's manual

Next, the four logical drives. Set the following parameters to the recommended
values :

Example

Drive 4
Rigid
Fixed=Y
HC=4
Step=O
HO=O
CO=O
TS=34

Drive 5
Rigid
Fixed=Y
HC=4
Step=O
HO=O
C0=64
TS=34

Drive 6
Rigid
Fixed=Y
HC=4
Step=O
HO=O
CO=l28
TS=34

Drive 7
Rigid
Fixed=Y
HC=4
Step=O
HO=O
C0=192
TS=34

CONFIG :4 {R,FIXED=Y,HC=4,S=O,H0=0,C0=0,TS=34}
. CONFIG :5 {R,FIXED=Y,HC=4,S=O,H0=0,C0=64,TS=34}
CON FIG :6 {R,FIXED=Y ,HC=4,S=O,H0=0,CO=l28,TS=34}
CONFIG :7 {R,FIXED=Y,HC=4,S=O,H0=0,CO=l92,TS=34}

If you have divided the hard disk into two logical drives, then when you RFORMAT
each of the logical drives, you will specify "128" when it asks you for cylinder count.
If you have divided it up as four logical drives, however, the proper answer to the
cylinder count question is "64". In both instances, the answer to the query regarding
the number of surfaces will be 4.

·The reason for this is simple, Radio Shack's 8.4 megabyte hard disk has 256 tracks
per surface. If you are dividing that into two even parts, you have 128 cylinders per

.division. If you are dividing i.t into four even parts, you have 64 cylinders per division.

As you become more experienced and used to the methods of "partitioning" hard
disks into smaller logical drives, you will be able to do more and inventive things with
your hard disk. If, as you are configuring the rigid parameters, you notice that one of
the settings in our recommended table happens to match what is already there, don't
worry. For the rigid recommendations, we gave you all information as opposed to the
floppies where we told you only what needed to be changed.

Some potential problems using CONFIG -

(1) My hard disk seems to have unexplained "crashes" after operating fine for some
time. These seem to be random (occurring almost at will) and completely destroy one
of my partitions.

(A) This sounds like "drive overlap". On the hard disk, you have sectioned off
various parts of the hard disk as being separate drives (the "logical" drives discussed
earlier). If you, by some oversight, have set the DOS such that two logical drives
"overlap" or contain the same area of the hard disk, the data can be corrupted.

The most common form of this is setting CONFIG for one size of logical drive and
RFOR MATing another. For example, if you set up you CONFIG statements for two
128 cylinder drives and then formatted for four 64 cylinder drives, this would occur.

Library commands - Page 76

·~
i

~)

~-

(

DosPLUS II - Disk Operating System - User's manual

The partition on the disk would be 64 cylinders and formatted as such, but the
CONFIG line indicates that this drive has 128 cylinders. This WILL cause problems.
First and foremost, when it seeks the second partition, the head offset ("HO")
parameter will be wrong and the DOS will not be able to find the drive. Instead, when
it looks for the second partition at cylinder 128, it will find the third.

(2) My floppy disk drive has all sorts of disk read errors, re-tries all the time, and I
can't seem to load files from it.

(A) This problem sounds like the step rate is set too fast. If you exceed the step
rate that the disk drive is capable of, then the unit will fail to respond in the manner
described above. If this is happening to you, slow down the step rate.

(3) My floppy disk refuses to read altogether and is making odd noises when the
head moves.

(A) This would seem to indicate that the "Skip" parameter has been set for that
drive. Remove it and all should be well.

(4) I can't seem to get my system up and running on the hard disk.

(A) Read the recommended settings for the hard disk that are discussed above.
Decide which to use and set your drive accordingly. Then consult RFORMAT to learn
how to intialize the drive to receive data. Once you have formatted the drive, consult
SYSGEN to learn how to install the system on it.

If you are still having problems past all these, please get in touch with MicroPower
r Technical Support team at the telephone numbers published in the "acknowledgements"

portion of this manual (immediately following the table of contents).

(5) I've changed my configuration several times, but every time I reset the machine,
what I have done is lost and I must start over.

(A) This is a misunderstanding of the way CONFIG works. CONFIG only changes the
parameters IN MEMORY! It alters how the system is running at the moment that it is
invoked. To make permanent changes, you must save the current system configuration
with the SYSTEM command (see the library command SYSTEM). You will create a disk
file that contains your configuration. Then whenever you re-load this file (by simply
executing it), the configuration will be set to EXACTLY how it was when you saved
the file. If you wish, you may put this filename on an AUTO statement.

Library commands - Page 77

DosPLUS II - Disk Operating System - User's manual

COPY

This command allows you to copy data from one point in the system to. another. It -~
operates in several modes and will copy either a byte at a time or an entire file at a
time, depending on which mode it is in. By using the wildmask feature, you may copy
all or selected files from one drive to another with a single command line. Whenever
you copy to or from a file, that file's MOD flag will be reset. Also, all file attributes
will be cloned. That is, whatever protection or attributes the source file had will be
transferred to the destination file.

===
The command syntax is:

1. COPY [FROM] channel [TO] channel
2. COPY [FROM] filespec [TO] filespec {param=exp ••• }
3. COPY [FROM] filespec [TO] drivespec {param=exp ••• }
4. COPY [FROM] drivespec [TO] drivespec [USING] wildmask {param=exp .• }

Mode 1 -

This mode is used to copy from I/O channel to I/O channel. It is here that you may
copy one device to another. This mode functions one byte at a time. An I/O channel
may be either a devicespec or a filespec, but it may not be a wildmask or drivespec.
This mode of COPY has no valid parameters. Any included from the list below will be
ignored.

·Mode 2-

This mode is used to copy one file from one drive to another when both the source
and destination filespecs are specified. You would use this mode when you are copying
a file and you wish to rename that file as you copy it. For example, "COPY TEST:O
TESTl:l" would change the name of the file as it copied it. This is a file orientated
copy and devices may not be used.

Mode 3 -

This is really little more than a shorthand version of Mode 2. Only in this mode, you
may not rename the file as you are copying it. The destination filespec is assumed to
be the same as the source filespec. Therefore, you do not need to re-specify the
destination filespec. Only the drivespec will be required. Because you cannot rename
the file, this mode must be copyin-g between two separate disks, either in two
different drives or single drive between two disks.

Mode 4 -

This mode is used to move one OR several files between two drives. It is a file by
file copy using a wildmask to affect only a selected class of files. If you do NOT
specify the wildmask (i.e. COPY :0 :1), DOSPLUS II will assume that you wish to copy
all files from one drive to another and will default to the "!" wildmask (see the
section File and Device specifications).

Library commands - Page 78

DosPLUS II - Disk Operating System - User's: mapual

Your parameters are :

DPW=string

ECHO=switch

INV=switch

KILL=switch

Destination password. When using
a wildmask copy, you may
occasionally attempt to
over-write a protected file on
the destination disk. To be
allowed access to these files,
you must specify the destination
disk's Disk Master Password. If
this is NOT given, COPY will
not allow you to copy over
protected files. This only applies
on wildmask copies. If you are
specifying the filespecs, you may
include the destination password
with it.

Display filenames as they are
copied. When using a wildmask
copy to move several files from
one drive to another, this
parameter will allow you to see
the filenames as they are copied.
If you do NOT specify ECHO, or
you specify "ECHO=N", COPY
will not display the filenames as
it copies the files. If you specify
both the QUERY and ECHO
parameters, QUERY will override
ECHO (you will not see the
filename twice). This applies
only to a wildmask copy.

Copy invisible files. When doing
a wildmask copy, normally only
visible files will be copied. If
you wish COPY to move invisible
files also, you must specify this
parameter. This applies only to a
wild mask copy.

Delete source file. If you specify
this parameter, after COPY has
copied the file to the destination
drive, it will kill it on the
source drive. Use caution when
combining this parameter with a
wild mask copy, as you may
delete more files than you mean
to. This parameter applies to all
forms of file orientated copies.

Library commands - Page 79

DosPLUS II - Disk Operating System - User's manual

MOD=switch

OVER=switch

PROMPT=switch

QUERY=switch

Copy by MOD flag. This
parameter allows you to control
COPY based on whether or not
the MOD flag is set. If you
specify "MOD" or "MOD=Y", then
only those files that have the
MOD flag set will be copied. If
you specify "MOD=N", then only
those files that do NOT have the
MOD flag set will be copied.
This applies only to wildmask
copies.

Prompt for overwrite. When
doing a wildmask copy, if COPY
encounters the same filespec on
the destination drive, it will
attempt to overwrite the file. If
you specify this parameter,
though, COPY will prompt you
first before attempting to
overwrite. If you answer "N",
then COPY will skip that file
and proceed to the next. This is
valuable in wildmask copies to
assure that you do not overwrite
files by accident. This parameter
applies only to file copies.

Prompt for disks. This parameter
allows you to do a "single drive
copy". If specified, COPY will
prompt you for the source,
destination, and system disks as
needed. If the file exists on the
destination disk, COPY will
inform you and ask if you wish
to overwrite it. This parameter
only applies to NON-wildmask
file orientated copies.

Prompt for copy. If you specify
this parameter when doing a
wildmask copy, COPY will
prompt you for each file before
copying it. If you respond "N",
then COPY will pass over that
file and proceed to the next.
This is useful when you have
many similar filespecs on a drive
and you wish to copy some, but
not all, of them. This applies
only to file copies.

Library commands - Page 80

DosPLUS II - Disk Operating System - User's manual

SPW=string

TINY=switch

Source password. When doing a
wildmask copy, you may
occasionally attempt to copy a
protected file from the source
drive. To be allowed access to
these files, you must specify the
source disk's Disk Master
Password. If this is NOT given,
COPY will not allow you to copy
those protected files. This
applies only to wildmask copies.
If you are specifying the
filespecs, you may include the
source password with it.

Copy with tiny buffer. Normally
COPY will use all available
memory when copying a file. It
will read as much as it can of a
file before writing it out. This
greatly increases the speed and
efficiency of the copy,
especially with rigid disks. There
may be certain times that you do
not want this method to be used,
however. By specifying the
"TINY" parameter, you will cause
COPY to use a much smaller
area of memory and copy a file
sector by sector. This will slow
down the copy, but it will
prevent COPY from using
memory outside of the system
overlay area and potentially
corrupting important data. This
parameter applies to all forms of
file orientated COPY.

Default values. The value for any parameter that carries a switch, if included in the
parameter field without a switch is assumed to be "Y". The default values given here
are those that are assumed for each parameter when no mention of the parameter is
made.

DPW
ECHO
INV
KILL
MOD
OVER
PROMPT
QUERY
SPW
TINY

No password set.
No. Do not display filenames.
No. Copy only visible files.
No. Do not delete source file.
No default.
No. Overwrite without asking.
No. Copy assuming system installed.
No. Copy without asking.
No password set.
No. Use all available memory.

Library commands - Page 81

DosPLUS II - Disk Operating System - User's manual

Abbreviations :

DPW
ECHO
INV
KILL
MOD
OVER
PROMPT
QUERY
SPW
TINY

D
E
I
K
M
0
p

Q
None. Must be spelled out.
T

===~===========

The average user will find themselves using COPY more than almost any other
command in DOSPLUS II. This command operates in three ways with two different
styles of data.

(1) One channel to another copying a byte at a time.

(2) One file to another copying a file at a time.

(3) Several files from one disk drive to another copying a file at a time.

In the command syntax box, we described the four "modes" of COPY. The first mode
corresponds with method (1) above. The second and third modes employ method (2).
The fourth mode uses method (3). Let's look at each of these. /~.

Mode 1 -

In this mode we are copying a :

* Device to a file.
* Device to a device.
* File to a device.

Therefore, if your copy doesn't involve a device, it is not functioning in thi~ mode.

An example of copying a device to a file would be copying the keyboard ("@KI") to
a diskfile ("FILENAME/EXT"). The format would be "COPY @KI TEXT:l ". Any output
from the keyboard (i.e. characters that you type •..) would be sent to the disk file
"TEXT" on Drive 1.

An example of copying a device to a device would be copying the keyboard ("@KI")
to the printer ("@PR"). This would, in effect, give you a typewriter (depending on the
type of the printer, of course). Any character typed on the keyboard would be copied
directly to the printer without being sent to the screen or executed. The format
would be "COPY @KI @PR".

Library commands - Page 82

DosPLUS II - Disk Operating System - User's manual

An example of copying a file to a device would be copying a text file
("FILENAME/EXT") to the comm line ("@CA" or "@CB"). This would allow you to send
data directly from a disk file out the commline. The format would be "COPY TEXT:l
@CB". This would instruct the DOS to copy the file "TEXT" located on disk drive 11 :1 n
out the first commline.

When you are using a channel to channel copy, you may abort the copy by pressing
the BREAK key. The copy will terminate if a Control-C is received from the sending
device.

Technical note : This does not apply if no characters have been received yet from the
sending device. DOSPLUS II will, in effect, "wait" at the sending device before
checking the keyboard again. In order to abort, at least one character needs to have
been copied.

Modes 2 and 3 -

In these modes, we are copying a :

* File to a file.
* File to a drive.

Therefore, if a copy involves a device or more than one file, it is not functioning in
these modes.

An example of copying a file to a file would be if you copied the file "TESTl" from
Drive 0 to Drive 1. The format would be "COPY TESTl:O TEST1:1" or "COPY TESTl:O

~· :1 ". Notice the two different manners of addressing that. Those are the two forms
that make the difference between these modes.

'~

In the first form, where the second filespec IS specified, you have the option of
changing the filespec as you copy it. For example, "COPY TESTl:O TEST2: 1" would be
perfectly legal. When the file "TEST2" on Drive 1 was examined, you would find that
is it the same as the file "TEST!" on Drive 0.

Using the second form, where the second filespec is NOT specified, you may not
rename the file while you are copying it. For example, "COPY TEST 1:0 :1" is going to
create a file "TEST1" on Drive 1. Since copying without changing the filespec is a far
more common occurrence than copying with the change, you will be using this form a
great deal.

Remember that when you are using either of these forms you are engaging a file by
file copy. This uses the "big buffer" (all available RAM) for the copy. This greatly
increases the speed and efficiency of the copy, especially between two volumes of the
hard disk, but can corrupt programs in memory.

To preserve these programs, you must specify the tiny buffer option and force
COPY to copy only one sector at a time. This will slow down the copy, but it will
force COPY to keep its buffer within the system overlay areas and out of user
memory altogether.

Library commands - Page 83

DosPLUS II - Disk Operating System - User's manual

If you are going to copy a file into a different area of the same disk, you MUST
change the filename. Therefore, the second form is only legal when moving files
between two disks. This can be within a single drive is you are using the mount
parameter.

Mode 4 -

In this mode we are copying between a :

* Drive and a drive.

Therefore, if your copy involves a device or only a single file, you should be using
one of the other forms.

An example of copying a drive to a drive would be if you wanted to move all the
files from the disk in Drive 1 to the disk in Drive 2. You would accomplish this by
instructing DOSPLUS II to move all files that match a certain wildmask from one drive
to another. You would then simply make the wildmask general enough to incorporate
ALL files.

In this area, DOSPLUS II is VERY flexible. All these commands would accomplish the
same thing :

COPY !:0 :1
(copy everything from Drive 0 to Drive 1)
COPY :0 :1 !
(copy from Drive 0 to Drive 1 using everything)
COPY FROM :0 TO :1 USING */*
(copy from Drive 0 to Drive 1 using everything)
COPY USING ! TO :1 FROM :0
(copy using everything to Drive 1 from Drive 0)
COPY TO :1 !:0
(copy to Drive 1 everything from Drive 0)
COPY :0 :1
(copy Drive 0 to Drive 1)

The phrase in parenthesis underneath the command example is there to help you get
the feel of what each command is telling the system to do. You see, DOSPLUS II
EVALUATES each command line and determines what the user wanted to do.

Please bear in mind that if a file is invisible it will NOT be copied unless the "lnv"
parameter has been specified. This will become very important when setting up
non-standard system disks with SYSGEN and COPY.

The filename will NOT be displayed during a copy unless you ask for an "Echo".
Under many circumstances, you will want to see what files COPY is moving, so you
will want to use this parameter. The "Query" and "Over" parameters become
important, also.

If you use the "Query" parameter, DOSPLUS II will ask you if you wish to copy each
file BEFORE it actually copies it. If you use the "Over" parameter, DOSPLUS II will
ask if you wish to overwrite a file (when it finds the same filespec on the destination
drive) BEFORE it actually overwrites it.

Library commands - Page 84

Examples:

DosPLUS II - Disk Operating System - User's manual

COPY FROM :0 TO :1 USING ! {INV,ECHO,OVER,SPW='PASS'}
COPY :0 :1 ! {INV,ECHO,OVER,SPW='PASS'}
COPY :0 :1 ! {I,E,O,SPW='PASS'}
COPY !:0 :l,I,E,O,SPW='PASS'

All four of these commands will have the same effect. They will cause all files from
Drive 0 to be copied to Drive 1. Invisible files will also be copied and DOSPLUS II will
NOT overwrite a file without first asking. The Source Disk Master Password is
"PASS", in case any of the files being copied are protected.

COPY FROM @KI TO @DO
COPY TO @DO FROM (.(lKI
COPY (.(lKI @DO

These three commands all instruct DOSPLUS II to copy all characters received from
the keyboard to the display. As you would type in characters, they would be echoed
to the screen, but would NOT be acted upon. Remember that you MUST copy FROM
an input device TO an output device. To do otherwise will lock up the system.

COPY MYFILE/BAS.PASSLOG:O YOURFILE/BAS:2

This example will copy the file "MYFILE/BAS" from Drive 0 to Drive 2. In the
process, it will rename it to "YOURFILE/BAS". On Drive O, the file is protected and
uses the password "PASSLOG", so this is specified in the source filespec.

COPY THISFILE/CMD:O THATFILE/CMD.CHECK:l

In this example, we have reversed the protection situation. This time, the
destination file is password protected and the password had to be included with it.
This example assumes that the destination file is already existing, but if it were not,
COPY would create it. Because COPY clones attributes when it creates files, if it
had to create the destination file it would bear the same password and protection
status as the source file.

COPY SHOR T:l :0

This command will move the file "SHORT" from Drive 1 to Drive 0. The second
filespec is assumed to be "SHORT" as well, because only the drivespec was specified.

Library commands - Page &5

DosPLUS II - Disk Operating System - User's manual

Finally:

It was stated earlier, but reinforce the fact in your mind that you MUST copy
FROM an input device TO an output device. To do otherwise is a fatal error.

Refer to the Operations Section under "File and Device specifications" for a
complete list of devices and their classes. Remember that devices such as files and
the commline can be either input OR output. Therefore, they will appear in either
position.

When using wildmask copies that affect a great number of files, please use the
"Query", "Over", and "Echo" parameters if there is any doubt at all as to whether or
not -your mask is too general. Don't wait until it is too late to discover that you have
set a mask that allows too many files to be moved and potentially corrupts valuable
data.

Library commands - P;age 86

DosPLUS II - Disk Operating System - User's manual

CREATE

This command allows you to create disk files and pre-allocate their space. You also
have the options of specifying how large to make the file, the logical record length,
etc. You may have DOSPLUS II clear out the file space and specify the data to be
used. If you wish, CREATE will verify the file space also. You may also set the KEEP
flag when creating a file. This command is most often used in creating and
pre-allocating data files for applications programs, but has many other
implementations as well.

===

The command syntax is :

CREATE filespec {param=exp ..• }

Your parameters are :

DATA=value

"filespec" is the standard DOSPLUS II file
specification that informs CREATE what the
name of the file you wish to create is. You
may also specify the drive on which to place
the file. If the file already exists, CREATE
will abort with an error.

"param" is the optional parameter indicating
what further action you might wish CREATE
to take past simply creating a directory entry.
This would include pre-allocating the file,
filling it with data, etc.

"exp" is the optional expression that modifies
the action of the parameters. This may be a
switch or a value, depending on which
parameter we are using.

Fill data. If you specify this
parameter, CREATE will fill the
file space with the specified
data after creating it. This
parameter is only valid if you
have indicated to CREATE to
pre-allocate space for the file.
This may be expressed in decimal
or hex form (append an "H" to
hex input). Values may be one or
two bytes in length.

Library commands - Page 87

DosPLUS II - Disk Operating System - User's manual

GRANS=value

KEEP=switch

KILO=value

LRL=value

Number of grans. This parameter
allows you to pre-allocate a file
for a specified number of
granules. Granules are defined as
being the "minimum unit of disk
allocation". A table of disk
formats and granule sizes is
located in the technical section
of this manual. The number of
free granules on a disk may be
discovered by using the
"DIRCHECK" utility.

Set keep flag. This parameter
allows you to set the "KEEP"
flag for a file after you create
it. When a file has this flag set,
the system will never de-allocate
that file's disk space. This flag
may also be set or removed via
the A TTRIB command (see the
library command A TTRIB).

Number of kilobytes. This
parameter allows you to
pre-allocate a file for a
specified number of kilobytes.
Specify the number of total
kilobytes that you wish the file
to take up on the disk and this
CREATE will allocate that much
space to it. Be certain to
specify the number realizing that
this value is assumed to be
kilobytes. In other words, to
specify 100 kilobytes use
"KIL0=100" and not
"KILO=l00000". Also, it must be
an integer value.

Logical record length. This will
allow you to specify the logical
record length of the file you are
creating. This will be of great
importance in creating data files
to use from BASIC, because
BASIC will not let you open a
file with a different logical
record length than it was
created with. You may use any
logical record length between 1
and 256, inclusive.

Library commands - Page 88

~I

DosPLUS II - D.isk Operating System - User's manual

SIZE=value Number of records. This
parameter allows you to
pre-ailocate a file for a
specified number of logical
records. The amount of actual
space used for the file wiH be
dependant on the file's logical
record length.

VERIFY =switch Verify disk space. This
parameter instructs CREATE to
read each sector of a file's disk
space after creating it. It is only
valid if you have both created
and pre-allocated a file and is
usuaUy used in conjunction with
the "DATA" parameter (although
it doesn't have to be). It wHl
report any encountered errors.
This parameter is useful in
detecting flawed areas of the
disk BEFORE important
.information .is stored there.

Default values. The value for any parameter that carries a switch, if included in the
parameter field without a switch is assumed to be nyn. The default values given here
are those that are assumed for each parameter when no mention of the parameter is
made.

DATA

GRANS
KEEP
KILO
LRL
SIZE
VERFIY

Abbreviations :

DATA
GRANS
KEEP
KILO
LRL
SIZE
VERIFY

No default. If included, data MUST be
specified.
0. No space allocated.
No. AHocate/de-aHocate dynamically.
0. No space allocated.
256.
0. No space aHocated.
No. Do not verify file's sectors.

D
G
K
None. Must be spelled out.
L
s
v

===
By using the CREATE command, you may create and pre-allocate (set aside space

for) a disk me. This is different than normal DOSPLUS H operation in which the file
has space allocated to it dynamically (as it is needed). Whenever data is written into
the file, if it needs more room, the system assigns it more disk space.

Library commands- Page 89

DosPLUS II - Disk Operating System - User's manual

When you CREATE a file, you have the option of setting the KEEP parameter. This
affects the allocation/de-allocation of a file still further. Normally, even if you use
CREATE to create the file, the space may be re-claimed dynamically under certain
circumstances (i.e. if the file is closed after data is written to it in the sequential
mode).

Therefore, by using CREATE, aU you have done is to start off the file. Space is
stili allocated and de-a11ocated dynamicaHy. This is, unless you use the KEEP
parameter. The KEEP parameter te11s the system to never DE-ALLOCATE space from
that file. The file may stili be extended dynamically, but DOSPLUS II will never
reclaim space from it.

If you attempt to create a file that already exists, CREATE will inform you that
the file DOES already exist and abort. If you do not specify the drivespec when giving
CREATE the filespec to be created, then CREATE will attempt to create it on the
first available drive. If there is insufficient space on a drive to hold the file, then you
will receive a error message informing you that the disk space is full and it wiH
allocate as much space as WAS available to that file.

This is, of course, assuming that you have elected to pre-al1ocate the disk file in
addition to creating it and instructed CREATE to do so. If you do not tell CREATE
to pre-a11ocate disk space, this command will simply create the directory entry. The
file wiH have no extents al1ocated to it and wi11 not take up any space on the disk.
The system wil1 'a11ocate space to the file the first time that you write to that file.

Using CREATE to pre-allocate data files can greatly increase the speed of data
handling. Because the file already exists and has its space allocated, time will not
have to be taken to do it dynamically. Also, depending on the disk, the file will tend
to be less segmented. The fewer segments the file is in, the less that the drive has to
move the head around when reading in the data.

Pre-allocation -

To determine the size of the file when you wish to pre-allocate, you have three
options. You may : (1) Allocate by the number of records, (2) allocate by the number
of granules, or (3) allocate by the number of total kilobytes.

When allocating by number of records, then the logical record length has a great
bearing on file size. The logical record length of a file in DOSPLUS II does little more
than affect how the directory entry will look. This is at system level. However, from
BASIC, this information becomes VERY important.

You can choose any logical record length between 1 and 256, inclusive. This, as just
stated, will have no effect on machine language programs under DOSPLUS II. The only
place the logical record length is vital to accessing the file is when you are using
BASIC. One of the restrictions placed on us by the Disk BASIC in the Model II is that
you may NOT open a data file for random access unless the logical record length of
the file is specified correctly when the file is opened. You may not open a sequential
data file for access at all with anything other than a logical record length of 1.

Library commands - Page 90

DosPLUS II - Disk Operating System - User's manual

Therefore, when creating a file for use by the DOSPLUS II system itself, you may
,- simply use the logical record length of 256 (unless for some reason the accurate

display in the directory is desired). However, when creating data files for BASIC 7 be
certain to determine the logical record length in advance of creating the file so that
you may set it correctly.

You will adjust the logical record length of the files you create with the "LRL"
parameter (see the command box above). When pre-allocating a file by records, you
specify the number of records you desire in that file. This is accomplished by using
the "SIZE" parameter. Simply set Size equal to however many records you anticipate.
The actual physical size of the disk file will be equal to the number of records
specified times the logical record length used. Of course, if the logical record length
is 256, then SIZE will equal the number of sectors.

Allocating a file by granule assumes that you have at least a passing familiarity
with what a "granule" is. A granule is defined as the smallest unit of disk allocation.
A disk is made up of sectors. Each sector is 256 bytes long (512 bytes on a Radio
Shack 8.4 megabyte hard disk). These sectors are grouped into tracks. The tracks are
concentric circles of data on the disk. Each track has a pre-defined number of sectors
on it. As data is written to the disk, space must be provided for this.

If DOSPLUS II were to allocate space to a file one sector at a time, the result
would be very slow. The drive would constantly be stepping out to the directory track
to ascertain where the next free sector was and assign it to the file you are writing
to. Therefore, DOSPLUS II will allocate space several sectors at a time. This unit of
allocation is called a "granule". On a standard 8 inch single sided floppy disk, a
granule is made up of 5 sectors. There are a total of six granules (or 30 sectors) on
each track.

You may allocate a file by specifying how many granules that you wish the file to
contain. You will adjust this value via the "Gran" parameter. Granules are normally
invisible to the user. The only place in the entire DOSPLUS II system that the number
of free granules on a disk is displayed is from the "Dircheck" utility (see the Utility
program DIRCHECK). When you specify the number of granules, the system will
calculate how many records to allocate and act accordingly. It does not matter what
the logical record length is, CREATE will adjust for it. There will ALWAYS be the
number of granules in the file that you have s~ecifed regardless of whether or not you
specify a logical record length of less than 256 (unless, of course, you try to allocate
more space than is on the disk).

Allocating a file by kilobytes is simple. Simply figure out how big the file should be
and intruct the system. This figure is expressed in kilobytes, so be careful not to ask
for more than you desire. For example, "Kilo=l00" is asking for 100,000 bytes, not
100. Again, it will not matter what the logical record length is. CREATE will allocate
as many records as it needs to to come up to the specifed amount of total disk space.
As shown in the example, this value will be adjusted via the "Kilo" parameter.

All of the values that we have just talked about (Size, Grans, and Kilo) MUST be
entered in the command line as positive integers (NO fractions will be accepted).

Library commands - Page 91

Examples:

DosPLUS II - Disk Operating System - User's manual

CREATE NEWDA T:O {LRL=128,SIZE=l00}
CREATE NEWDAT:O {L=128,S=l00}
CREATE NEWDAT:O,L=128,S=l00

These three commands will all have the same effect. they will create the file named
"NEWDAT" on Drive 0 with a logical record length of 128 and pre-allocate 100 records
to it. It will not write any data to the file, nor will it verify the file's disk space.

CREATE PAYROLL:B {DATA=229,GRANS=12,VERIFY}
CREATE PAYROLL:B {D=229,G=l2,V}
CREATE PA YROLL:B,D=229,G=l2,V

These three commands will also perform the same function. They will create the file
"PAYROLL" on the drive named "B" with a logical record length of 256. They will
pre-allocate 12 granules of disk space to the file and then fill each sector with a data
pattern of 229 decimal (E5 hex) and then verify each sector to make certain that the
space was readable.

CREATE DA TAFILE/DA T {DA T A=l 08,KIL0=1 OO,KEEP}
CREATE DA TAFILE/DA T {D=l 08,KIL0=100,K}
CREATE DATAFILE/DAT,D=l08,KIL0=100,K

These three commands are equivalent. They will each cause the system to attempt
to create a file called "DA T AFILE/DA T" on the first available disk drive. It will
create this file with a logical record length of 256 (because nothing else was
specified) and pre-allocate lOOK to it. Then the system will fill each sector with a
data pattern of 108 decimal (6C hex). It will NOT verify these. Finally, it will set the
"Keep" parameter, instructing the system never to de-allocate disk space from that
file.

CREATE BAD FILE {DA T A=l 08}

This is an example of an illegal command. You have specified a data pattern without
pre-allocating any disk space to the file. DOSPLUS II will simply ignore the "Data"
parameter, create the file, and proceed.

CREATE WORSEFIL {VERIFY}

This is another example of an incorrect command. You have instructed CREATE to
verify a file that you have not pre-allocated any space for.

Library commands - Page 92

DosPLUS II - Disk Operating System - User's manual

Finally:

The most important thing to remember when using CREATE is, dol1't allocate more
space than you have. If there is only 90K free on a disk, don't specify "Kilo=l00"
when pre-allocating disk space. If you DO receive an error, don't panic. That is one of
the reasons for CREATE, so that you may first test to see if you have the space for
a file and then, if you wish, to test every record of the file's disk space.

If you do a CREATE with the "Data" and "Verifyn parameters, you may be assured
that your file's disk space is safe for use.

Bear in mind that BASIC can NOT open a data file with a different logical record
length than that with was specified when the file was created and is now stored in
the directory entry for that file. Always be careful to specify the correct logical
record length the first time.

Also keep in mind that CREATE will NOT use a filespec if a file already exists on
the disk with that filespec. This is for your protection, so that you don't accidentally
destroy all data in a file.

Library commands - Page 93

DosPLUS II - Disk Operating System - User's manual

DATE

This parameter allows you to display the currently set system date and, if you wish,
to change it. The "Date :" prompt on boot-up will set the date for you, but if you
have disabled that question with SYSTEM or wish to change the date without
re-booting, this is the method to use.

===

The command syntax is :

DATE
DATE mm/dd/yy or mm/dd/yyyy

The command "DATE" by itself will cause DOSPLUS II to display the currently set
system date.

===
When using the DATE command to set the system date, the date can be specified in

a variety of ways. Allowable separators are colons (":"), commas (", "), dashes ("-"),
slashes (" /"), periods (". "), and spaces. This flexibility allows you to specify the date in
whatever format is most comfortable to you.

Also, DATE will accept either a one, two, or four digit year value when accepting a
date. This allows you to enter the date as you are used to with TRSDOS and later as
you become more familiar with DOSPLUS II, move to the more convenient two digit
format. ·~.

Examples:

DATE 9:13:82
DATE 09:13:82
DATE 09:13:1982
DATE 9-13-82
DATE 9 13 82
DATE 9.13.82
DATE 09/13/82
DATE 9,13-82

All of these commands are equivalent and will have the same exact effect. They
will set the system date to September 13th, 1982.

DATE 9

This would set the system date to September 1st, 1980. If the day and year are not
specified, DATE will set them to the lowest possible value.

DATE

This will display the current system date.

Library commands - Page 94

.DosPLUS II - Disk Operating System - User's manual

Finally:

The date in DOSPLUS II uses an offset of 80 in the years column. That is, the year
cannot go below 1980. It also may not exceed 1987. Any of you who are still using
DOSPLUS II in 1987 can receive a free patch to allow the offset to handle the next 7
years.

This means that you can take the shortand for the year one step further and express
it as 0-7 (for 1980-1987). Hence what was :

DATE 9 13 82

can become :

DATE 9 13 2

The DOS~LUS II date display format is :

day of the week - month day, year - day of year

such that October 8th, 1982 would be displayed as :

Fri - Oct 08, 1982 - 281

Library commands - Page 95

DosPLUS II - Disk Operating System - User's manual

DEBUG

DEBUG is DOSPLUS Il's built-in memory monitor to facilitate the debugging of your
machine language programs. DEBUG, when turned 'On, is a "ghost". That is, is does not
engage until one of two items happens : (1) you engage it manually by pressing the
BREAK key, or (2) you attempt to execute a non-protected program file, in which
case you are sent into DEBUG immediately after the program is loaded.

===
The command syntax is :

DEBUG [switch]

"switch" is the optional "on" or "off"
condition. If you do not specify this (i.e. type
DEBUG by itself), "on" will be assumed.

===
DEBUG is a powerful disk based monitor. With it you can examine any memory

location in RAM or any CPU register. You may also change the content of a RAM
location or register. DEBUG is so powerful that it should be used with caution,
because it is easy to accidentally destroy a program.

To reiterate, unlike the other DOSPLUS commands, when you enable DEBUG you will
not see any noticeable change on the screen. This is because DEBUG is transparent to
the execution of your program and is only entered when called. There are two ways to
call DEBUG when it has been enabled. They are:

1. Pressing <Break> at any time.

2. Automatically after a machine language program has been loaded and
before the first instruction has been executed.

Once DEBUG is called, you have the following commands:

Command

A
c
Daaaa

Gaaaa,bbbb,cccc

H
I

Operation performed

ASCII/Graphic display mode
Instruction/Call step
Set memory display address to
aaaa
Go to address aaaa, with
breakpoints optionally set at
bbbb and ecce
Set hexadecimal display mode
Single step next instruction

Library commands - Page 96

~·.
I

DosPLUS II - Disk Operating System- User's manual

Command (cont.)

Maaaa<space bar>

0

Rpr aaaa

s

u
X
; (Semi colon)
- (Dash)

Operation performed

Set memory modification mode
starting at address aaaa
(optional). ENTER records
change and aborts, space bar
records change and moves to
next address.
Exit to DOSPLUS (DEBUG still
engaged)
Alter register pair (pr) to aaaa.
Space between register pair and
value is required.
Set full screen memory display
mode
Dynamic display update mode
Set register examine mode
Display next memory page
Display previous memory page

The following is an example of a DEBUG register examine mode display (X):

AF = B6AO S-1-----
BC = 04B1: C9 7D E6 co 6F C9 DD 7E 07 B7 79 20 CD D6
DE = 0604: FE 19 28 39 FE OA co D1 77 78 B7 28 CF 7E
HL = 403C: 04 C3 FA 35 C3 FA 35 C3 FA 35 C3 30 45 C3
AF' = 1414 ---H-P--
BC' = OOE4: 70 20 CE 2B 11 14 45 DF DA 7A 19 11 CE FF
DE' = OFOD: F5 E4 3E 09 F1 EC 4D OE F1 3D C9 DS E5 F5
HL' = 5151: FE co 38 02 3E 2E CD 33 00 23 AF C4 CF 51
IX = 4015: 01 64 4C 00 01 07 00 FF 07 73 04 2F 3E 20
IY = 4C46: 06 03 12 12 12 06 05 lE lE 1E 05 04 14 OA
SP = 41CD: 00 34 40 38 94 06 15 40 AB 42 00 43 3F 3F
PC = 3000: C3 5E 32 C3 9B 32 C3 74 32 C3 DA 32 C3 co

4000: C3 96 1C C3 78 1D C3 90 1C C3 D9 25 C3 57
4010: OD 44 C3 D7 44 01 64 4C 00 01 07 00 FF 07
4020: 8D 3F 20 8C 00 06 8E 4C 42 00 42 00 00 C3
4030: C3 OD 44 C3 82 44 00 00 00 00 00 00 04 C3

Library commands - Page 97

co 28
23 CD
27 47

22 Bl
E7 F5
10 DE
8C 00
OA 08
4C 00
31 C3
4B C3
73 04
00 44
FA 35

DosPLUS II - Disk Operating System - User's manual

The general format is :

The register pairs are indicated down the left hand side of the screen, with the
standard registers listed first, and the prime registers following. Last are listed the
special registers (IX, IY, SP, and PC).

The AF register contains the system flags. They are all set in the example above.
They are :

S - Sign flag
Z - Zero flag
H - Half-carry flag
P - Parity flag
N - Overflow flag
C - Carry flag

These are indicative of system status after an operation, and of limited usefulness
to anyone save the machine language programmer.

The rest of the registers all display the contents of the register, and then
immediately to the right of the register, it displays the sixteen bytes of memory that
the contents point to.

In the case of the stack pointer (SP), this will display to you what is on the stack.
In the case of the program counter (PC), it will displayed the next instruction to be
executed.

The last four lines are simply displaying memory. You can alter these to display any ~
desired address.

The following is an example of a full screen memory display mode (S) :

4000: C3 96 1C C3 78 1D C3 90 1C C3 D9 25 C3 57 4B C3
4010: OD 44 C3 D7 44 01 64 4C 00 01 07 00 FF 07 73 04
4020: 8D 3C 20 8C 00 06 8E 4C 42 30 42 00 00 C3 00 44
4030: C3 OD 44 C3 82 44 00 01 00 00 00 00 00 C3 FA 35
4040: C3 FA 35 C3 FA 35 C3 30 45 C3 27 47 FF FF FF FF
4050: FF FF FF FF FF FF FF FF FF FF FF 91 35 91 35 Fl
4060: 35 B4 DF lD 40 00 3C 00 20 lF 02 91 35 F1 35 F3
4070: 00 C6 43 00 51 oc OF 9A 43 79 43 59 43 FF FF FF
4080: D6 00 6F 7C DE 00 67 78 DE 00 47 3E 00 C9 4A 1E
4090: 40 E6 4D DB 00 C9 D3 00 C9 00 00 00,00 40 30 02
40AO: 16 FC FF FF 70 71 00 E4 61 FF 00 00 00 00 00 03
40BO: 00 FE FF B5 40 06 29 19 01 75 73 00 00 00 00 00
40CO: FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF FF
40DO: FF FF FF 06 29 19 F5 FF 00 72 60 EA 00 00 FF 27
40EO: 75 00 FF FF FF FF El 61 03 FC 46 00 9C EA 80 72
40FO: 00 00 00 E6 72 E6 00 Dl 72 lE 75 3A 75 63 75 49

The left hand column contains the hexidecimal memory address currently being
displayed. The memory is displayed in sixteen byte rows for one 256 byte "page".

'/l
\ '

Library commands - Page 98

~'
I

DosPLUS II - Disk Operating System - User's manual

The following is an example of the ASCII/graphics display mode (A) :

5700: T h i s i s a n e X a m p
5710: l e 0 f a n A s c I I d

5720: i s p l a y m 0 d e
5730:
5740:
5750:
5760:
5770:
5780:
5790:
57AO:

·57BO:
57CO:
5700:
57 EO:
57FO:

The left hand column contains the address being displayed. To the right is the ASCII
translation of the memory contents. Unprintable characters are represented as periods
(.).

Library commands - Page 99

DosPLUS II - Disk Operating System ,... User's manual

DIR

This command will display a disk's "directory". A directory differs from a file
catalog in that it contains a great deal of information about each file while the file
catalog contains ONLY the filename and extension. You also have the option of
specifying a wildmask so that only filespecs that match certain criteria are displayed.

===

The command syntax is :

DIR [FROM] drivespec [TO] channel [USING] wildmask {param=exp ••• }

The parameters are :

SYS=switch

INV=switch

KILL=switch

"drivespec" is the name of the drive that you
wish the directory of. If it is not specified,
DIR will globally display the directories of all
drives.

"channel" is the optional output channel. That
is, where you want the directory to be sent.
If it is not specified, the screen (i.e. TO @DO)
is assumed.

"wildmask" is the optional wildmask to restrict
DIR to a certain group or class of files. If it
is not specified, all files will be displayed (i.e.
"!" is assumed).

"{param=exp ••• }" is the optional action
parameter that indicates what type of
directory you want to see. If no parameters
are given, the default values listed below will
be in effect.

Directory will contain system
files as well as standard entries.

Directory will contain both
visible and invisible user files.

Directory will contain names of
any deleted files not yet wiped
from the directory or
over-written by an active file.

ALPHA=switch Directory will be displayed in
alphabetical order.

Library commands - Page 100

~
I
i

DosPLUS II - Disk Operating System - User's manual

Default values. If any of these switches are specified in a command line without an
~·. expression, DOSPLUS II will assume "Y" and act accordingly. The default values listed

here are those that are in effect when the parameter is NOT present in the command
line.

SYS

INV

KILL

ALPHA

No. User files only will be displayed.

No. Visible files only will be displayed.

No. Active files only will be displayed.

No. File listing will be in the order that the filenames
actually appear in the directory itself.

The FROM, TO, and USING delimiters may be omitted unless you wish to specify the
various portions of the I/O field in a non-standard order. The parameters may be
abbreviated

SYS=S, INV=I, KILL=K, and ALPHA=A

===
This command will display all available information regarding a disk file. It will

detail the filename and extension, it will indicate how large the file is, whether the
file is segmented or not, whether or not the file has password protection, and what
level this protection is set at. It will give you a file's logical record length, it will
tell you if the file has been modified since last copied or backed up, and it will tell
you the date set the last time the file was updated. In short, the DIR command
reveals all the information about a disk file.

The ability to specify the output channel when using DIR means that you may direct
the directory output to the printer, the serial port, a disk file, or whatever is a legal
I/O channel. If you remember from the operations section, and I/O channel can be any
character orientated I/O path (devicespec or filespec). This allows output to almost
anything save a drivespec or a wildmask.

The ability to use a wildmask with DIR means that if you desire the information for
one specific file, or the information for a specific class of files, whether or just one
specific drive, or on all drives, it is a simple procedure.

You simply set the wildmask to be as specific as you need. If you make a wildmask
specific enough to weed out any extraneous files, then you only view the files that
you are interested in. If you wish this display to check all drives, simply omit the
drivespec from the wildmask. To restrict it to one specific drive, include the
drivespec in the wildmask.

The simplest form of DIR is :

DIR

This will display a directory of all visible user files on all available drives in the
system. The next simplest form would be :

DIR :1

Library commands - Page 101

DosPLUS II - Disk Operating System -User's manual

This accomplishes the same effect, but restricts it actions to the disk in the drive
named ":1 ".

The directory display -

The simplest way to explain the directory output is to divide it up into three lines.
These three lines will be present for all disks that are directoried.

The first line of display will be the free space summary for that drive. This line will
give you, reading from left to right, the following information :

* The drive name.
* The disk name.
* The disk date.
* The status of directory entries. (free/total).
* The amount of free space in kilobytes.

The drive name. This is the current drive specification for the drive being
directoried. The drivespec is, of course, the two character designation (preceded by a
colon ":") that you address the disk drive through.

The disk name. At time of format, both the FORMAT and RFORMA T utilities will
ask you what you wish to name the disk. This name is stored on the directory and is
displayed whenever you do a CAT, DIR, FREE, or DIRCHECK. Usually, you will use
this name to reflect the contents of the disk (i.e. "Profile" or "Gen Led"). This can be
up to eight characters in length.

The disk date. Again, at time of format, both the FORMAT and RFORMA T utility
will prompt you for the date (unless the system date is set, in which case they will
simply use that). When they format the disk, they will store this date on the
directory. This date will then be displayed in the same operations as the disk name
(see above). This allows you to get a fair idea of how old the disk is.

The directory entry status. DOSPLUS II only allows a certain number of entries per
directory (256 maximum). Once you have filled this up, you may not create any new
files on that disk regardless of its free space because there is no room to put it in
the directory. This does not necessarily mean that you cannot extend existing files. As
long as they don't need to create an extended entry and there IS some free space on
the disk, this should work. The directory entry status display tells you how many file
entry positions you have free (i.e. how many files remain) and how many possible
entries there were for that drive. The second number will never change, but when the
first number reaches 0, the directory is full.

The free space in kilobytes. This will give you, in brief, the free space remaining on
that drive. This figure will be expressed in kilobytes and will be rounded to one
decimal point.

The next line of the directory display is the header line. The directory entries
themselves are divided into columns of information. This header line titles each
column and identifies it. We will list the columns here and explain them one at a time
when we cover the directory entries.

Library commands - Page 102

··~

DosPLUS II - Disk Operating System - User's manual

* Filename.
* File attributes.
* Logical record length.
* Number of records.
* Number of physical sectors.
* Number of segments.
* Total size in kilobytes.
* Date last updated.

Following this line are the directory entry lines themselves. If there are no files to
display (i.e. no visible files and no invisible parameter, no files matching wild mask, or
whatever the reason), there will be none of these. There WILL be as many of these
display lines as there are entries to show. Let's address now the display entry line one
item at a time :

The filename. This first piece of information will consist of the file's name AND
extension. For further detail as to what are legitimate filenames and extensions,
cosnsult the operations section under "File and Device Specifications". If you don't see
the filename that you expected, perhaps you didn't use the "lnv", "Sys", or "Kill"
parameter that was needed. If you wish this display to be alphabetized, remember to
use the "Alpha" parameter.

The file attributes. These six characters represent the special "attributes" that a
file may have, such as the "Keep" parameter, the "Mod flag", and many others. Each
character means something different. If a particular attribute is NOT present (i.e. The
"Kill" attribute will not show up on an active file), the attribute character for that
position becomes a period ("."). The characters are :

Number one. The protection level. This indicates the level of protection assigned to
that file. The protection levels are detailed in the A TTRIB command, so if you wish a
complete explanation of the parameter, look there. Here we will just list the
parameters for reference sake.

Number Name Protection level

0 Full No protection set. Total access.
1 Kill Able to delete file.
2 Rename Rename, Write, Read, Execute.
3 Not used at this time. Reserved.
4 Write Write, Read, Execute.
5 Read Read, Execute.
6 Execute Execute only.
7 None No access. Not a user option.

Since there will always be at least a protection level of "Full", there will always be
a character in this first position. If no protection has been set, it will be a "0".

Number two. The password status. You may set a password for a file independantly
of the protection level (although it is really not effective to not use both). This
position will indicate to you whether or not a file has a non-blank password set for it
or not.

Library .commands - Page 103

DosPLUS II - Disk Operating System - User's manual

It will NOT differentiate between an Access and an Update password. If either or
both are set, then a "P" appears in this position. If neither of them are currently set
there will be a period there. '

Number three. The system file flag. If a file has the attributes of a system file, this
position will carry an "S". The user does NOT have the option of configuring their own
files as system files. This is reserved for the actual system files that make up
DOSPLUS II. This parameter is in no way related to the "/Sys" extension.

Number four. The keep flag. If a file has the "Keep" parameter set for it (see
CREATE and A TTRIB for a further explanation of this parameter), then an
exclamation mark ("!") will appear in this position. If this flag is not set or gets
removed, a period will be shown in that position.

Number five. The kill flag. If a file is currently deleted (i.e. inactive), there will be
a "K" in that position. If the file is active, then a period will be shown. Normally,
killed files do not appear in the directory. They only show up if you have requested
them with the "Kill" parameter.

Number six. The invisible flag. If a file is invisible to the system, then an "I" will
appear in this position. If a file is visible, a period will be there. As with the killed
files, invisible files should not appear in a directory unless you have asked for them.

Number seven. The mod flag. This flag is the most often set and reset attribute
flag. This flag indicates that the file has been modified (i.e. written to) since the disk
was last backed up or that particular file was last copied. If this IS the case, a plus
sign ("+") will appear in that position. If the mod flag is NOT set, then a period will
appear at that location. COPY will allow you to copy keying on this flag. For
instance, you may copy all the files that have been modified since the disk was last
backed up, or you may copy all the files that have NOT been modified since the disk
was last backed up. A very useful indicator to have in the directory entry.

An example of an attribute column with all the flags lit up would be "6PS!KI+".

The logical record length. For machine language programs and data files that are to
be accessed by machine language programs, this figure is essentially for display only.
For BASIC programs, though, it becomes VERY important. If the logical record length
of a file is not properly specified when you issue an OPEN command, BASIC will not
allow you to open that file. This will be expressed as a numeric value between 1 and
256. If the logical record length is less than 256, the "Number of records" display will
be a larger number than the "Number of sectors".

The number of records. This figure will give you the number of records currently in
that file. This may or may not the same as the "Number of sectors" display, depending
on the logical record length of the file. This figure will be the actual number of
records written to the file.

The number of sectors. This figure will give you the number of actual disk sectors
currently written to by that file. This will NOT reflect the number of sectors
allocated. DOSPLUS II allocates by granule (for an explanation of granule allocation,
see the library command CREATE or the technical manual under diskette formats).
Since a granule is comprised of several sectors, there will usually be more sectors
allocated than are currently written to. ~~

Library commands - Page 104

DosPLUS II - Disk Operating System - User's manual

The number of segments. When DOSPLUS II creates a file, it STARTS it at a random
place on the disk. From there, it will seek to extend the file sequentially for maximum
efficiency. When it is unable to do that, for whatever reason, it stops that extension
of the file and creates a new one at another random location on the disk. These
extensions. are called segments. When a disk is almost full, with only a few gaps of
free space here and there, files will tend to get segmented a great deal. The more
segmented a file is, the less efficient the disk access.

If the number is this column is very high and the file itself is NOT extremely large,
you could improve the efficiency of your disk access times by reducing the number of
segments in the file. The method of doing this is simple. Prepare a disk with a great
deal of free space on it. Then copy the files that need to have the number of
segments reduced to it. Copy the larger files first, as they will need the most space.
When you finish transferring the files, you should have reduced the number of
segments in them.

The total size in kilobytes. This will give you a figure to indicate what the total
size of the file is. This figure will be given rounded off to the first decimal point (i.e.
to the nearest hundred bytes). For example, if a file was 1220 bytes long, the
directory entry would indicate 1.2K. If it was 1270 bytes long, it would indicate 1.3K.
This figure represents the amount of space ALLOCATED. This is different from the
number of records and number of sectors parameters. Those two indicate the number
actually written, while this indicates not only the space already used, but also the
space that has already been allocated to be used. For that reason, the "number of
sectors * 256" formula may not always agree with this figure.

The date last updated. As you know, DOSPLUS II maintains a "system date". On
power-up, the DOS will prompt you for the date (unless you have disabled this
question by using the SYSTEM command). It will preserve this date in memory and any
time that it would normally ask you for the date (FORMAT, BACKUP, etc.), it will
skip that prompt. One additional feature of having the date set is this display in the
directory. Each time that you access a file, the current system date is updated to
that file's directory and displayed via the DIR command. If this system date is not set,
the date "01/01/80" will be used.

Using DIR -

You may call DIR from BASIC without problems unless you wish to use the "Alpha"
function for an alphabetical DIR. This cannot be used from within a BASIC program
because when you ask for a sorted directory, the memory required to do the sort
expands past the limits of BASIC's overlay area for DOS commands and it will corrupt
your program.

When using DIR, if you wish to specify an output channel and you have NOT
specified a source channel, you must use the delimiter "TO" to indicate data flow.
This would occur if you were going to get a printout of the file catalogs for all
available drives. To type

DIR (aPR

would produce an error, since "@PR" is in the source field position and 11@PR" is not
a valid drivespec. However :

Library commands - Page 105

DosPLUS II - Disk Operating System - User's manual

DIR TO @PR

would work just fine. This does not apply if you are using a source drivespec,
because then the output channel is in the proper location. For example :

DIR :1 @PR

is fine. "(aPR" is in the proper position for an output channel and all will work well.

The only exception to this rule is the wildmask. If the wildmask contains a wildcard
character (i.e. "?", "*", or "!"), then the DOS will move that to the wildmask position
for you and scan the rest of the line in normal order. For instance :

DIR :0 USING */BAS

is the same thing as :

DIR */BAS :0

The system will move the "*/BAS" to the wildmask field and then pick up ":0" as the
source drivespec. This does NOT apply if the wildmask doesn't contain any wildcard
characters. IF you were to specify a wildmask without wildcard characters, then only
files EXACTLY matching the wildmask would be displayed. However, with no wildcard
characters to signal DOSPLUS II that this is indeed a wildmask, it will simply be
regarded as an invalid source drivespec. For example :

DIR TEST /DA T

will produce an error, while :

DIR USING TEST/DA T

will not. If you follow these rules of order, you should never get an error while
using DIR. The best rule of thumb is, if you can't remember whether or not the
delimiter is required, include it. It never hurts to have it in the command line, but
sometimes it will cost you to omit it.

Library commands - Page 106

Examples:

DosPLUS II - Disk Operating System - User's .manual

DIR :0 {SYS=Y,INV=Y,KILL=Y}
DIR :0 {SYS,INV ,KILL}
DIR :0 {S,I,K}
DIR :O,S,I,K

All four of these command lines will perform the same task. They will display a
directory of the disk in drive ":0". The directory will include all files, whether system,
invisible, active or deleted.

DIR USING PER/DAT

This will search the directory of all available drives and display a directory entry
for any drive having the file "PER/DA T" on it. This is an example of the method that
would be used to locate all occurrences of the file.

DIR */CMD TO @PR

This example will scan all drives and printout the filespecs of any files that have
the extension "/CMD".

DIR :1 {INV=Y,ALPHA}
DIR :1 {I,A}
DIR :1 ,I, A

r---· These three commands are all equivalent. They will display, in alphabetical order,
all the user files, both visible and invisible, located on the disk in drive ":1 ".

Finally:

Remember that the default output channel is the display. If you omit the output
channel, then the directory will be sent to the screen. This can cause a problem with
your wildmask field if you are not careful.

You see, the wildmask field follows the output channel field in the command line. If
the following conditions are true :

Library commands - Page 107

DosPLUS II - Disk Operating System - User's manual

(1) You have specified a source drivespec so
that the field is full in that position.

(2} You have omitted the output channel in order to
send the output to the default channel: the
video.

(3) You have omitted the delimiter USING because you
feel that the wild mask is in its proper place.

(4} You do not have any wildcard characters in your
wildmask that might show DOSPLUS II that it IS
a wildmask.

Then DOSPLUS II will overwrite the file you have specified in the wildmask with the
output of the catalog. Without the USING delimiter and with the output channel not
specified, the wildmask moves into the output channel area. Because the source
drivespec WAS specified, it won't try to use the wildmask for that and generate an
error there. Finally, because there are no wildcard characters to indicate a wildmask,
DOSPLUS II takes it as a standard filespec. Since a filespec is a valid output channel,
it gets overwritten. Therefore, a little bit of carelesness can destroy the very file you
were looking to find.

What all this means is, if you are going to use a wildmask with the source drivespec
specified and you are NOT going to specify an output channel and your wildmask does
not have any wildcard characters in it, then you must use the USING delimiter.

For a more detailed explanation of wildcards and wildmasks, consult the operations ~.
portion of the manual under "File and device specifications".

Library commands - Page 108

DosPLUS II - Disk Operating System - User's manual

DO

This command allows you to begin execution of a command chaining tHe. 1\\ese are
more commonly called "DO files". They are usually created with the BUILD command
(see the library command BUILD). They can be created with any program that creates
ASCII files, though. They will contain command lines up to 79 characters in length and
terminated by a carriage return. You may abort execution of a DO file by pressing the
BREAK key at a pause prompt, unless that function has been disabled.

===
The command syntax is :

DO filespec {param=exp}

Your parameter is :

"filespec" is the standard DOSPLUS II file
specification that indicates what file the
commands to be executed are stored ln.

"param" is the optional action parameter that
modifies the operation of the command.

"exp" is the optional expression that indicates
what type of action the parameter it modifies
will take.

BREAK=switch Break enable/disable. This
parameter allows you to disable
the BREAK key abort feature of
DO. Normally, you may terminate
the execution of a DO file by
pressing the BREAK key at a
pause prompt. If you specify this
par a meter, that will be disabled.
If you set BREAK="N", then the
BREAK key abort will not
function. On the other hand,
BREAK="Y" will re-enable the
BREAK key if it has been
disabled previously either here
or with the SYSTEM command.

Abbreviation :

BREAK B

===~=====================

The DO command allows you to store, in a file on the disk, sequences of commands
that you wish the system to execute as if typed from tne keyboard. This is useful in
the case of command sequences that will be repeated often or the case of startup
procedures for "turn-key" programs.

Library commands - Page 109

DosPLUS II - Disk Operating System - User's manual

These commands may be library commands for DOSPLUS II, the name of an
applications program you wish to execute, or anything that you might normaUy enter
from the DOS command mode.

When DO reaches the end of a list of commands, it will return control to DOSPLUS
II. The "DosPLUS II" prompt will NOT be immediately re-displayed, though. Only the
cursor will be on the screen. If you wish, you may press ENTER to regain the prompt,
but it is not needed. Commands may be entered as soon as the control is returned to
the keyboard.

Applications of DO -

There are several areas that DO is used in, but perhaps the most common are :

(1) Startup for applications programs.

(2) Routine sets of often used instructions.

(3} Installing patches to the system.

(It} Automatic operation of programs.

In the first, startup for applications programs, DO is perhaps most useful. Many of
your applications programs, especially those written in BASIC, will require that you
set the FORMS command to certain values or set up a buffer for the comm line with
SETCOM, or any operation that needs to be performed before your programs will work
correctly.

DO allows you to do this automatically without forcing the novice user or
non-technical operator to remember DOS syntax. Simply set up a file with BUILD (see
the library command BUILD) that contains the needed sequence of commands.
Remember, enter these EXACTLY as you would if you were entering them in the DOS
command mode. Then you would have the last statement in your DO file call your
program (i.e. BASIC MENU/BAS-F:7).

The most convenient method of starting this file executing is to set the DO
command on an AUTO statement. For example, if we created a file to adjust FORMS
and then load our BASIC file, we might place the following statements in the file
"STARTUP/TXT" :

FORMS {BS=lOOOO,XLATE=N}
BASIC PAYROLL-F:5

Then we would set the statement

AUTO DO STARTUP

Whenever we re-booted the system, the statement "DO STARTUP" would appear and
the statements we had stored there would be executed. We would see them as they
were being executed. For more specific information on setting AUTO commands, see
the library command AUTO.

Library commands - Page 110

DosPLUS II - Disk Operating System - User's manual

For the second application, routine execution of sets of often used instructions,
perhaps the best example would be in backing up your data disk after using some
application program. You would set up a DO file with all the needed statements to
call in BACKUP and copy the disk.

By using comment lines for instructions and the PAUSE command to stop the DO file
whenever it is necessary to swap diskettes (see the library command PAUSE), you can
make the entire procedure automatic. the advantages of this are two-fold. First, it
makes it easier for you to backup the disks yourself because you're not typing in the
instructions each time you do it. Second, it makes it easier on an operator if all they
have to remember when backing up the disk is type "DO BACKUP" and follow the
directions that appear on the video, answering all questions as they are asked.

The third application, install1ng patches to the system, is a method that we will be
using to keep your DOSPLUS II up to date and supply you with patches to other
software to make it run with DOSPLUS II. The method is simple. The PATCH program
is able to accept input from a disk file containing an ASCII list of the patches. You
would simply have to have the patch file present and you could intruct PATCH from
the DO file to "patch this file using that set of patches".

Therefore, it is often easier to create a file (again, using the BUILD command), that
contains these patches and then allow DO to instruct PATCH to install them. The
reasons for this are clear. First, it allows you to review the patches before they are
actually installed. Second, it allows you to easily move the DO file to another disk
and install the same patches there. Third, it allows you an easy method of distributing
these patches (in the case of software houses, to customers) to others.

The fourth and final application, automatic execution of programs, is the one that
the average user will find the least useful. However, software manufacturers wishing
to "demo" their programs have a powerful tool at their disposal, and the function
should be described.

The method is simple. Create a DO file with all the needed information to begin
operating your program. Then, include the statements needed in order to answer any
prompts that the program might ask. Whenever your program request keyboard entry,
DO will send it the next statement from the file.

There IS one important exception to this. BASIC programs will not allow this
feature. BASIC checks for the BREAK key by scanning the keyboard. Every time that
in executes an instruction, BASIC looks to see if BREAK is being pressed. Every time
it does that, you lose a character from the DO file. Eventually, the entire file has
been used up. This is a function of BASIC, and there is no way around it at this time.

Library commands - Page 111

Examples:

DosPLUS II - Disk Operating System - User's manual

DO STARTUP {BREAK=Y}
DO STARTUP {B=Y}
DO STARTUP,B=Y

All three of these commands will execute the statements located in the file
"STARTUP /TXT". Pressing the BREAK key will abort the operation, because the
BREAK key has been enabled.

DO FREE/D0:2

This command will execute the statements located in the file "FREE/DO" on drive
":2". Notice that the extension "/TXT" was not used because another was specified.

Finally:

If you wish to create a "non-breakable" DO file, use the non-breakable AUTO
command (see the library command AUTO) and then call your DO file and turn the
BREAK key off as you do. The user will have to execute all the way through the file
and into whatever program it calls.

DO will use some memory when it executes. It needs to set up a buffer for I/O from
the file and a DCB for the file. If any of the programs you happen to load are going
to load into the area that DO is using, it will crash at once. DO will adjust the high
memory pointer to protect itself. To be safe, please have your programs honor that
value.

Remember once again, DO may NOT be used from BASIC.

Library commands - Page 112

DosPLUS II - Disk Operating System - User's manual

DUMP

Th.is command allows you to take a specified area memory and transfer it to disk as
a file. This can either be data or a program file~ There is an optional parameter to
control the installation of load file markers in the file in the case of data being
stored. Entering "DUMP filespec" will caus·e all memory between LOMEM and HIMEM
(see the library command SYSTEM), an area usually referred to as "user memory", to
be transferred to the specified disk file.

====-=·============================-===:;:=========-===============================

The command syntax is :

DUMP filespec {param=exp .•• }

Your parameters are :

DA TA=switch

"filespec11 ls the standard DOSPLUS II file
speclficati·on indicating which disk file you
would like the lnformati·on to be stored in.

"param" .is the optional action parameter that
modifies the action of the command.

''exp'l'l is the optional expression that indicates
what action the parameter it modifies will
take.

Data file forr.nat. A normal
machine language program file
contains something called "load
file format markers"~ These are
special block headers in the text
of the file that indicate to
DOSPLUS II where in memory to
load the instructions that follow.
A data file will not have these
markers. If the memory you are
dumping to disk ls NOT a
machine langurage program, then
it should be treated as a data
file and this parameter should be
engaged. If you do not specify
an extension, either the
extension "/CMD" or "/CIM" will
be used. "/CMD" if you have
NOT selected the DATA
parameter and "/CIM" if you
have.

Library commands - Page 113

DosPLUS II - Disk Operating System - User's manual

END= value

RELO=value

START =value

TRA=value

I

Ending address. This allows you
to specify at what memory
address you wish DUMP to stop
at. If this parameter is not
specified, HIMEM is assumed,
and DUMP will continue until it
reaches that point. This may be
given in any form (decimal, hex,
binary, or octal). Simply
remember to append the correct
type specifier to the value if
you are specifying something
other than decimal.

Relocation address. This
parameter allows to to specify a
different load address for a file
than the one it had when you
dumped it to disk. In other
words, if you are dumping a
program from one area of
memory to disk, but you wish
that program to load in at
another location in memory
later, then you would use this
parameter. This may also be
entered in any standard value
input notation.

Start address. This parameter
allows you to specify the address
at which you wish DUMP to
begin transferring to disk from.
If this is not specified, LOMEM
will be assumed and DUMP will
begin from that point. This may
again be entered in any standard
value input notation.

Transfer address. This parameter
allows you to set a transfer
address for the programs you
DUMP to disk. A program's
transfer address is the location
in memory that control passes to
after the program file has been
loaded. It does not have to be
the same as the load address
(and often is not). If this is not
specified, then the value OOOOH
(DOS entry point) will be used,
and you will be returned to DOS
after the file is loaded.

Librl'y commands - Page 114

I
I

DosPLUS II - Disk Operating System - User's manual

Default values :

DATA

END
RELO
START
TRA

Abbreviations :

No. Load markers will be included and the
extension "/CMD" used for a default.
HIM EM.
START.
LOMEM.
OOOOH.

DATA D
END E
RELO R
START S
TRA T

===

DUMP is used any time that you wish to transfer an area of memory to disk and
store it as a file. It applies to both machine language programs and data files. Any
area of memory (between the LOMEM and HIMEM parameters) may be dumped to disk.

Once the file is on the disk, in the case of machine language programs, you may
either execute the file directly by typing in the filename from the DOS command mode
or you may load the file via the LOAD command and execute it via DEBUG or by
specifying the "Run" parameter on LOAD (see the library commands LOAD and
DEBUG).

By using the DUMP command, you may enter machine language programs into
memory via the modification mode of the DEBUG command and then dump them into a
disk file to be executed later.

The DUMP command in DOSPLUS II is unique in the manner in which it allows you to
completely control all items of information about the file as you are saving it to disk.
You may alter the load address of the program or change the transfer address,
whichever you choose.

When transferring memory to a disk file, if you wish the system to store it as data
and not a machine language file, then you must remember to specify the "Data"
parameter. Machine language programs and data files are stored on the disk in two
completely different manners.

When a machine language program is stored on the disk, there are two pieces of
information that the CPU needs to know in order to load and execute it properly.
First, where the program loads or its "load address". Second, where in memory to pass
the program control to after the program has been loaded or its "transfer address".

Under certain circumstances, you may want to alter either or both of these. You
may wish, for example, to dump memory between 7000 hex and DOOO hex to disk, but
to have the system load it back later from 6000 hex to COOO hex. When you dumped
that file, you would use the "Relo" parameter. You .would set that parameter to
"6000H11 and from then on, when the system loaded that file, it would start at 6000
hex.

Library commands - Page 115

DosPLUS II - Disk Operating System - User's manual

Some programs also use a transfer address that is different from their load address'.
In other words, the program does not actually begin executing at the exact same --,
location in memory as it loads. This is commonly handled by the assembler creating
the object file, but in the case of a file being dumped to disk, that obviously would
not apply. Therefore, DOSPLUS II's DUMP command allows you to set a transfer
address for the file.

If you specify neither the "Relo" or the "Tra" parameter, DUMP will assume that :
(1) the program loads back into memory at the same area that it came from and (2)
the program is NOT to be executed, but instead, you wish to return to DOS after
loading the file.

Examples:

DUMP TESTFILE {START=7000H,END=DOOOH}
DUMP TESTFILE {START =28672,END=53248}
DUMP TESTFILE {S=7000H,E=DOOOH}
DUMP TESTFILE,S=7000H,E=D000H

All four of these commands will have the same effect. They will attempt to write
the area of memory between 7000 hex and DOOO hex to the first available disk drive
under the filename "TESTFILE/CMD". The load address and the transfer address for
the file will both be left set to 7000 hex. Note that the decimal input was used
interchangeably with the hexidecimal.

DUMP DATAFILE/DAT:l {START=3000H,DATA}
DUMP DATAFILE/DAT:l {S=3000H,D}
DUMP DA TAFILE/DA T:l,S=3000H,D

These three commands will all accomplish the same effect. They will move the area
of memory from 3000 hex to whatever HIMEM is currently set to a disk file named
"DA TAFILE/DA T" located on drive ":1 ". It will store the information on the disk in
data file format (as opposed to load file format).

Finally:

Because DUMP allows you to dump memory to disk as a data file, it IS possible for
you to rescue a BASIC program in memory by using this command. Possible, but very
difficult. In order for it to work, you MUST know exactly where the program text
started in RAM. BASIC uses a series of "00" bytes to keep track of the end of its
programs. So, if you know where the program started in RAM, DUMP from there to
the top of memory. BASIC will find the end of file itself when you load what you
have dumped, and then you should be able to re-save a corrected file. Not much of a
chance, true, but it is possible for the experienced programmer or user to avert
potential disaster with it.

The most important thing of all is, because of DUMP's flexibility, DOSPLUS II's
DUMP command literally makes it possible for the user who knows what they are doing
to move ANYTHING to disk!

Library commands - Page 116

DosPLUS II - Disk Operating System - User's manual

ERROR

Thi.s command aHows you to get a get a detaited message printout Of any error
number or a display of the last error displayed, depending on the syntax used. ·

===
The command syntax is :

ERROR [value]

"value" is the optional error number that you
wish to obtain a message for. If omitted, the
last error displayed will be re-displayed.

===
DOSPLUS II does provide you with detailed error messages instead of numbers, but

for TRSDOS compatibility and reference's sake, this command will still translate error
numbers into error messages. A complete list of the error messages will be published
in the technical section of the manual.

ERROR also has the unique feature of recalling the last error displayed. Simply
enter the word "ERROR" without a number and the resulting message will be the last
error the system displayed.

As stated before, DOSPLUS II itself always prints out a detailed error message.
However, some applications software, in keeping with TRSDOS tradition, may give you
simply an error number. This command allows you to quickly see what the error
message for that number is.

Other programs may use the ERROR command in TRSDOS within the actual
program. For that reason, we have left this command in DOSPLUS II.

A very useful application of the ERROR command is the error "replay". If an error
occurs and the message is scrolled off the screen, or for some other reason you are
unable to read it, this will allow you to pick up the error message later.

Examples:

ERROR

This command will print to the screen the message corresponding to the last error
displayed.

ERROR 32
ERROR 20H

These two commands are equivalent. They will both print the error message pointed
to by Error 32. Note the use of hexidecimal input. This is perfectly legal as long as

.~ you add the trailing "H".

Library commands - Page 117

DosPLUS II - Disk Operating System - User's manual

FILTER

This command allows you to set up a "filter" on any of the character orientated
system devices excluding the user defined devices (i.e. devices 0-4). This filter can
translate any given value into any other value.

==~============

The command syntax is :

FILTER [FROM] devicespec [TO] filespec {switch}

"devicespec" is the name of the device you
wish to install the filter on.

"filespec" is the name of the file that
contains the filter. "/FL T" is the default
extension if no other is given.

"switch" is the optional action switch. By
specifying a "N" in that position, you may load
a filter into high memory but not turn it on.
Later, you can use the form :

FILTER devicepec {switch}

where "{switch}" is "Y" to turn on the filter.
You may also use this to turn installed filters
on and off under program control. Because of
this, you do not have to de-install and
re-install filters to turn them on and off. This
format of the command will also display the
current filter settings.

============================~==

This command is used to install device filters. These filters are used to modify data
as it passes between the device and its driver program. DOSPLUS II was designed in
such a manner as to make this filtering easy. Filter files are simply stored in ASCII
format on the disk and the system will interpret which codes get translated to what.

DOSPLUS II comes standard with several filters. These are explained in the section
on System and BASIC enhancement files. You will find that most of these filters are
used to provide enhancement or alteration of existing functions. Filters are NOT
drivers. They simply modify the data as told. Device drivers are another thing
altogether and are installed via the SET command (see the library command SET).

A good example of using a filter is the DVORAK keyboard. If you were to
re-arrange the keys on the keyboard into the DVORAK formula, that would only
accomplish half the task. For example, the "Q" key now has a "D" label, but when you
press "D", "Q" shows up on the screen. Therefore, you have need of a filter.

Library commands - Page 118

DosPLUS II - Disk Operating System - User's manual

The device to filter in this case is the keyboard. We wish to alter the data BEFORE
~~- the system evaluates it. We could simply filter any "Q"s that went to the display into

"D"s, but then atthough we woutd see a "D", DOSPLUS U will still regard it as a "Q",
Therefore, we must filter the data after it leaves the input device and not before it
goes to the output device. In other words, the filter goes on the keyboard.

In this filter file that we install on the keyboard, we would instruct the system to
translate any "Q"s into "D"s. The end result is this. You press the key labeled "D"
which is really the "Q" key. A "Q" is sent to the filter where it gets translated to a
"D" and returned to the keyboard driver which sends it to the system. In effect, the
"Q" key has really become the "D".

For your convenience, a DVORAK keyboard filter is included with DOSPLUS II.
Should you have such a keyboard, all you would have to do is issue the statement :

FILTER @KI DVORAK

and the rest would be taken care of. Whenever you create a configuration file with
the SYSTEM command, all current filters are saved with it and re-installed
automatically when the configuration file is called.

Writing a filter file -

Some other systems may provide you with filter capability, but they almost ALWAYS
require some form of at least moderately comprehensive assembly language
filter/driver combination. DOSPLUS II will not require this of you. Filter files are
nothing more than ASCII text files.

The first step is to list the code you wish to translate. This may expressed as a
decimal, hex, octal, or binary value or it may be a quoted literal. For instance, if you
wanted to translate the letter "A", you could search for the codes :

65 decimal
4-1 hex
101 octal
01000001 binary
"A" quoted literal

This capacity makes it easy for even the novice user to create these files. The next
step is to include the equals sign ("=") to indicate that the translated value follows.
Then you may express the new value for this character. This may also be expressed in
almost any manner. Let's assume you wish to translate that capital "A" into a lower
case "a". The statements could look something like these :

65=97
41H=61H
1010=14-10
01000001B=01100001B
"A"="a"

you may also mix and match the types :

Library commands - Page 119

DosPLUS II - Disk Operating System - User's manual

65=61H
41 H="a"
"A"=llj.lO

Notice that we had to append an "H" to any hexidecimal valu~s, an "0" to any octal
values, and a "B" to any binary values. Decimal values are assumed and quoted literals
are obvious to the system. Once you have completed the first translation, separate it
from the next with either a comma or a space and proceed for as many of these as
you need.

An actual example of a filter file might be to filter out certain codes that would
cause your printer to go into special print modes. Let's assume those codes are 14
decimal and 15 decimal. Our filter file would be short (only two translations), and
would look something like this

or it could be :

Note that the leading "0" on the hex values is optional. Note that the "00" and "0"
expressions are the same. Note that in the first example we separated the translations
with a space and in the second we used a comma. Let's also assume that we store this
on the disk with a filename of "PR T/FL T". We would then say :

FILTER @PR PRT

to install the filter. You can create these filter files using the BUILD command (see
the library command BUILD).

Examples:

FILTER FROM @DO TO DISPLAY/FLT
FILTER @DO DISPLAY

These two commands are equivalent. Notice that the FROM and TO words are
optional and that the extension "/FL T" is assumed. These will install the filter
"DISPLAY /FL T" on the video device.

FILTER @DO

This command will display any filter that is currently in effect for the video device.
If one is NOT present, it will inform you that "No function exists". If one IS present,
it will list that filter to the display. It will print the character, unless it is
unprintable in which case it will print a period, followed by the value for that
character in parenthesis. The equals sign and the new value (in the same format) will
follow.

Library commands - Page 120

DosPLUS II - Disk Operating System - User's manual

FILTER @DO {NO}
FILTER @DO {N}
FILTER @DO,N

These three commands will all dis-engage the filter currently on the video device.
They will NOT deinstall the filter. Memory will still be reserved and the filter is still
there if they wish to re-engage it.

FILTER @DO {YES}
FILTER @DO {Y}
FILTER @DO,Y

These three commands will re-engage any filter installed on the video device.

Finally:

Any time that you dis-engage or re-engage a filter, the filter will be displayed just
the same as if you had requested a display for that device.

To LOAD a filter without engaging it, use the switch with the name of the filter.
For example

FILTER @DO DISPLAY {NO}

will load the filter "DISPLAY /FL T" into memory and install it on the video device,
but because of the "{NO}" parameter, it will not engage it. You may then turn the
filter on later. This "pre-loading" of filters can come in handy as an easy way of
getting all needed memory reserved for filters before loading BASIC or your
applications program.

Once a filter is installed on a device, there is no way to actually remove it from
memory short or re-booting the system. You may turn the filter "Off", but you can
never remove it and reclaim the memory.

If another filter is used on the same device, the previous memory will be reclaimed
and used, if possible.

Library commands - Page 121

DosPLUS II - Disk Operating System - User's manual

FORMS

The FORMS command allows you to set the defaults for your lineprinter. Parameters
such as page length, page width, and number of printed lines per page can be set with
this command. This command will also allow you to direct lineprinter output to either
the parallel printer port or to serial port B. FORMS without any parameters will
display the current settings.

==
The command syntax is:

FORMS {PARAM=exp,PARAM=exp •••• }

"P ARAM" is the parameter to be set or
altered. These are listed below. "exp" is the
expression which gives the new value.
Depending on the parameter, it may be a
switch (Y or N), or a numeric value.

The parameters for the FORMS command are:

PAGE=value

LINES= value

WIDTH=value

TOP

XLATE=switch

SERIAL=switch

BS=value

CODE=value

RESET =switch

Maximum number of lines per
page. Standard pages are normally
66 lines.
The number of lines per page that
will be used before a top-of-form
is executed (normally 60).
Number of characters, including
blank spaces, that will be printed
on a line before a carriage return
is forced (normally 132).
Sends an immediate top-of-form
to the lineprinter
Determines whether form feed
codes are changed to a series of
line feeds for printers that do not
accept the formfeed code.
LF=switchDetermines whether a
linefeed is to be sent after each
form feed, for printers that
require it.
Determines whether printer
output is to go to Serial Port B
rather than the normal printer
port.
Sets the size of the printer spool
buffer.
Sends the specified code out to
the printer immediately. Codes
may be one or two bytes.
Resets the system's line counter
to 0. Does not affect the actual
lineprinter.

Library commands - Page 122

DosPLUS II - Disk Operating System - User's manual

UCASE=switch Forces all alphabetic output to
the lineprinter to be in UPPER
CASE, for printers that do not
have lowercase.

EMPTY =switch Discards contents of the spool
buffer.

All of the above parameters may be abbreviated to their first character. Thus,
PAGE may be specified as P, LINES as L, etc.

The initial values for each of the parameters are as follows:

PAGE
LINES
WIDTH
XLATE
LF
SERIAL
BS
CODE
RESET
UCASE
EMPTY

66 lines
60 lines
132 characters
Yes. Translate form feed codes to line feeds.
No. No linefeeds after carriage returns
No. Use the standard parallel printer port
Previous value of buffer size.
None.
NO.
YES.
NO.

When the system is booted, these initial values will be set.

==

When FORMS is typed without any parameters, the current settings wi11 be
displayed on the screen.

The {PAGE=value} parameter sets the page size in terms of the number of lines that
can physically be printed on it. Standard 11 inch paper can hold a maximum of 66 lines
(6 lines to the inch). This parameter will inform the system of the page size (distance
from the top of one page to the top of the next), but the number of lines that will
actually be printed is determined by the LINES parameter.

The {LINES=value} parameter sets the number of lines which will actually be printed
on each page. The value of this parameter may not exceed the value given for PAGE.
If the value of the LINES parameter is less than the value of the PAGE parameter,
then the system will execute a top of form to the next page as soon as the number of
printed lines equals that of the LINES parameter.

If the value of LINES equals that of PAGE, then the system will not execute an
automatic top of form. However, form feed codes (OCH) and vertical tab codes (OBH)
will be translated to the correct number of carriage returns for proper pagination.

If the values of both the LINES parameter and the PAGE parameter are 0, then the
system will assume an infinite page size, and no top of forms will be executed.
However, form feed codes (OCH) and vertical tab codes (OBH) will be passed on to the
printer without translation.

Library commands - Page 123

DosPLUS II - Disk Operating System - User's manual

The {WIDTH=value} parameter determines the number of characters that will be
printed on each line. On a printer which uses normal characters, an 8-inch wide sheet
of paper will hold 80 characters per line, while 14.5 inch wide paper will hold 132
characters per line. When the number of characters printed on a line reaches the value
of the WIDTH parameter, the system will break the line at that point by inserting a
carriage return, and any remaining characters will be printed on a new line. The line
counter will also be incremented by one.

Normally, the system will translate tabs to the necessary number of spaces need to
reach the next tab field, which are 8 characters apart, and the system's character
counter will be incremented by the correct amount. However, if the WIDTH parameter
is set to 0, indicating an infinite line length, tab codes (09H) will not be translated but
will be sent out to the printer as is, and will be considered a single character when
incrementing the system's character counter.

An example of FORMS to set the printer for 80 characters per line, 60 lines per
page, on standard 8-1/2 x 11 inch paper would be:

FORMS {WIDTH=80,PAGE=66,LINES,:60}

An equivalent form would be:

FORMS {P=66,L=60, W=80}

You will note that the parameters can be given in any order.

The TOP parameter is a special parameter which immediately outputs a top-of-form
to the printer and resets the system's line counter to zero. It does not require any
switch or value. If the TOP parameter is included along with other parameters, then it
will be executed before any other parameter is evaluated.

The {XLA TE=switch} parameter determines whether or not certain control codes are
translated instead of being output directly to the lineprinter. The codes affected are
the form feed code (OCH), the vertical tab code (OBH), and under special
circumstances, carriage returns (ODH).

If XLA TE is on (XLA TE= Y), then:

(a) Form feed and vertical tab codes are translated into the necessary number of
line feeds to correctly execute a top-of-form based on the current value of the PAGE
parameter;

(b) Carriage returns which are sent out by themselves (ie, the line consists of only a
single carriage return) are translated into line feeds in order to correctly produce a
blank line on the printer.

If XLA TE is off (XLATE=N), then no translation takes place, and form feed and
vertical tab codes are treated just like any other character. They are passed through
to the printer, and the character counter is incremented by one for each form feed or
vertical tab code encountered.

Library commands - Page 124

DosPLUS II - Disk Operating System - User's manual

The {Lf=switch} parameter will permit linefeeds to be sent out after carriage
returns for those printers that need them. Normally, printers which receive a carriage
return automatically perform a line feed, but for printers which do not do so, this
parameter is available. Setting Lf=Y will not affect the line counter any differently.

The {SERIAL=switch} parameter, if turned on (SERIAL=Y) will send all lineprinter
output to the Communications Line B channel of the Model II's RS232 system. This
would normally be used if a serial printer was being used instead of a parallel printer.
Please note that the DOSPLUS II serial printer driver does not support the XON/XOFF
handshaking protocol used by other serial printer drivers.

The {BS=value} parameter allows you to set the buffer size to be used by the printer
spooler. Normally, the buffer is 2 characters long, but you can change it to any value
you want with this parameter. When you specify a value larger than 2, DOSPLUS II will
establish a buffer in high memory and lower its HIMEM pointer to protect it.

Changing the spool buffer size may be useful if you have a particularly slow printer.
The buffer size cannot be less than 2.

The {CODE=value} parameter is another special parameter. It sends the value of
CODE directly out to the printer before any other parameters are evaluated, and is
useful if you have a printer that requires special codes to set it up. CODE will take
either a one byte or a two byte value. However, if you want to send a two byte value
to the printer using this parameter, you must specify them in the reverse order. For
example, if you wish to send a CTRL-D (04H) to your printer, you would enter
CODE=04H; but if you wish to send the sequence ESC "E" (1 BH, 45H) to the printer,
you must specify CODE=451 BH.

The codes may be specified in any of the numeric bases accepted by DOSPLUS II
(decimal, octal, binary, or hexadecimal) but it is recommended that hexadecimal be
used when sending a two-byte code, since it is easier to specify in the necessary
reverse order.

The {RESET=switch} parameter will reset DOSPLUS II's internal line and character
counters back to 0 without sending any codes out to the lineprinter. This is useful if
the lineprinter paper is manually adjusted back to the top of form. RESET=Y will then
start the line counter from the first line once again.

A FORMS {T} command will also perform a RESET of the line counter, however it
will also cause the lineprinter to advance to the top of the next page.

The {UCASE=switch} parameter will force all alphabetic output to the lineprinter to
be in uppercase if Y is specified for a switch value. This is useful if the lineprinter
being used does not support lower case letters.

The {EMPTY=switch} parameter allows you to remove any characters remammg in
the printer device's spool buffer. This is useful when you assign a large buffer size
with the BS parameter and later wish to abort a long printout. Normally, printing will
continue until the spool buffer is empty. This parameter, however, provides you with a
means of discarding the buffer's contents quickly without waiting for the printer.

Library commands - Page 125

DosPLUS II - Disk Operating System - User's manual

Examples:

FORMS

Displays the current forms settings on the video display.

FORMS {PAGE=66,L=57,TOP}

Generates a top-of-form to the printer, and then sets the page length to 66 lines
with 57 printed lines per page. Note that even though TOP was the third parameter in
the list, it is acted upon first by the system.

FORMS {S= Y ,B=256, WIDTH=120,XLA TE=OFF}

This command would direct the system to send all_ .. printer output to Serial Port B
using the serial driver. In addition, it specifies a line length of 120 characters, and
establishes a spool buffer 256 characters long. Finally, it indicates to the system that
form feed codes and vertical tabs should not be translated to linefeeds.

Library commands - Page 126

DosPLUS II - Disk Operating System - User's manual

FREE

This command wiU disptay the remaining free storage space and remammg available
directory space on all mounted disks. The free disk space will be given in kilobytes. If
FREE is given a drivespec, then a map of the disk in that drive will be displayed,
showing the locations of all available as well as allocated sectors.

==,====================
The command syntax is:

FREE
FREE [FROM] drivespec [TO] channel

"drivespec" is the drive specification of the
drive for which a free space map is to be
displayed. If omitted, then free space on all
mounted disks will be displayed in summary,
not map, format.
"channel" is the output channel to which the
information is to be sent. It defaults to @DO,
the video display, but may be set to any valid
output channel.

The FREE command has no parameters.

==

The FREE command, when given without any drivespecs, will read the directory of
each mounted disk and determine the amount of space available on that disk. "Mounted
disks" includes logical drives (such as those on a hard drive which has been split up
into one or more logical drives). The free space remaining on each disk will then be
displayed, along with the number of available directory slots for new files. Free
storage space will be given in kilobytes.

It is quite possible that a disk may have free disk space remammg, but has a full
directory. In this case, even though there is storage . space remaining on the disk, no
new files may be placed on it because there is no more room in the directory to hold
information about that new file. Conversely, there may be available directory slots, but
no free storage space remaining on the disk. Dosplus II will create the file but will not
allocate any space to it in this case.

If FREE is given with a drivespec, then DOSPLUS II will read only that drive, and
then display a map of the disk. The map will show all the formatted sectors on the disk
and indicate which ones are in use, which ones are free, and which ones are
unavailable (locked out). Granules allocated to a file will be displayed with an "X",
free granules with a "." (period). The directory track will have its granules displayed
with "D."

The information generated by the FREE command is normally sent to the video
display, but may be sent to any valid output channel simply by specifying the channel.
Output channels may be the lineprinter, the RS-232 communications lines, a disk file,
or any valid user-defined output device.

Library commands - Page 127

DosPLUS II - Disk Operating System - User's manual

Examples:

FREE

This command will display free space information for all mounted disks on the video
display.

FREE TO (aPR

This command will send the free space information for all mounted drives to the
lineprinter.

FREE :Ll TO (aPR

This command will send a map of the disk in drive :Ll to the lineprinter. The "TO"
is optional; an equivalent form of the command would be FREE :Ll (aPR

FREE TO FREEINF/TXT:A

This command will send the free space information for all mounted disks to a file
called FREEINF/TXT on drive :A.

Library commands - Page 128

DosPLUS II - Disk Operating System - User's manual

I

This command win set the system up to read the DCT information from a disk into
memory. This is mandatory when switching from a double-sided floppy disk to a single
sided disk or vice versa.

==~=======

The command syntax is:

I [:ds] {MOUNT}

where :ds is the drivespec of any valid drive in the system (optional).

The parameter for the I command is:

MOUNT=switch Reads the DCT information from
the disk into memory immediately.

MOUNT may be abbreviated M, and its initial value defaults to NO.

==
When the I command is issued, the system will be flagged to read the Drive Control

information from a mounted disk into memory at the next disk access. If no drivespec
is given, then the system will flag the DCTs of all mounted disks as necessary and read
the information from each disk at the first access of that disk following the I
command. If a drivespec is specified, then the system will set the DCT just for the disk
in that drive. This is necessary only when you are using double-sided floppy disk drives
and wish to swap a single-sided disk for a double-sided one, or vice versa. DOSPLUS II
needs to know whether a disk is double-sided or not. The I command will allow it to
determine this information.

If all your disks are formatted identically, then it is not necessary to use the I
command whenever you insert a new disk into a drive.

The {MOUNT} parameter will cause the system to immediately read DCT information
from the specified drive into memory without waiting for the next disk access.

Library commands - Page 129

DosPLUS II - Disk Operating System - User's manual

Examples:

I

This command will cause DOSPLUS II to flag the OCT information in all drives. This
is necessary when switching from a double-sided disk to a single-sided disk or vice
versa in dual-headed disk drives.

I :DO {MOUNT{

This form of the I command will cause the system to flag drive :DO for its drive
control information. If the disk in drive :DO was a double sided disk and you wish to
read a single sided disk in the same drive, mount the single-sided disk and then issue
this command.

If the new disk is formatted identically to the one already in drive :DO, then this
command is unnecessary; however, issuing it will do no harm.

Library commands - Page 130

DosPLUS II - Disk Opterating System - User's manual

KILL

This command wiH delete a file or group of files from a disk. It will also disable any
active devices or drives (the system drive -- device 8 -- may NOT be killed).

===~======================

The command syntax is:

KILL filespec[:ds] [{PARAM=exp,P ARAM=exp ••. }]
KILL wildmask:ds [{PARAM=exp,P ARAM=exp •.. }]
KILL drivespec
KILL devicespec

"P ARAM" is an optional parameter affecting
the action of the KILL command. "Exp" is an
expression which declares to the system a
particular value for that parameter (a switch,
a numeric value, or a string value enclosed in
quotes).

The valid parameters for this command are:

INV=switch

ECHO=switch

SYS=switch

QUERY=switch

PW ="string"

Specifies whether or not invisible
files are to be included when a
wildcard search is done.
When doing a wildmask search,
this will display the name of each
file as it is killed.
Specifies whether or not system
files are to be included in a
wildcard search.
This will cause the system to
display the filespec and prompt
you for a yes or no reply before
proceeding. If you reply "yes" or
"y" then the file will be killed. If
you reply "no" or "n" then that
file will not be deleted.
This parameter declares the DISK
master password to the system,
which will be used in place of
file passwords when wildmasks
are specified.

Each parameter may be abbreviated to its first character.

Library commands - Page 131

DosPLUS II - Disk Operating System - User's manual

The default values for each parameter are:

INV
SYS
QUERY

PW

ECHO

NO
NO
NO (do not display the file name or prompt the
user)
Defaults to no password. However, if the P W
parameter is used, then the disk master
password must be explicitly stated. Otherwise,
it would be included as part of a single
filespec, if needed.
NO

==
When KILL is typed with a filespec, but without a drivespec, the system will

perform a global search of all mounted disks until it finds the first occurrence of the
file, which it will then delete. If a drivespec is supplied, then only that drive will be
searched.

When KILL is typed with a wildmask, and no drivespec is supplied, the current
system drive will be searched. The system will search the directory of· the specified
drive for the first filename that fits the wildmask, and kill it. It will then continue to
search for other files which will fit the mask, killing each one that it finds.

When using a wildmask, the KILL command requires that the disk's master password
be given with the PW parameter. In this case, the disk master password will be used in
place of the file passwords when a password protected file is encountered. .

The {INV=switch} and {SYS=switch} parameters are used when doing a multiple-file
kill using a wildcard mask. Normally, this type of multiple-file kill includes only visible
user files. However these two parameters allow you to include invisible and system
files. The INV parameter will include invisible files, and the SYS parameter will include
system files (except for BOOT /SYS and DIR/SYS) in the wild mask search.

The {ECHO=switch} parameter may be used when doing a wlldmask search, to display
the names of the files as they are KILLed.

The {QUERY =SWitch} parameter will force the system to display the filename before
killing it, and prompt the user for a yes or no reply. The file will be killed only if you
specifically reply "yes" or "y" when prompted.

This parameter is useful when deleting a group of files using a wildmask search.
Whenever a wild mask search is specified, QUERY will default to YES unless you
specifically enter QUERY =NO. If there are files which fit the wildmask but which you
do not wish killed, using this parameter will allow you to preserve them selectively.

The QUERY parameter will override the ECHO parameter.

The {P W ="password"} parameter declares the disk's master password to the system.
This password will be used instead of the file access and update passwords when a
wild mask search encounters a protected file. The disk's master password must be
enclosed in either single quotes or double quotes and may be in upper or lower case, or ~.
both.

Library commands - Page 132

DosPLUS II - Disk Operating System - User's manual

When doing a wildmask KILL, this parameter is REQUIRED. The disk master
password MUST be specified even though the files are not password protected if
wildmasks are used.

KILL may also be used to disable devices. If a devicespec is given, then a bit will
be set in that device's DCB indicating that it is set to NIL. It will become unavailable
until it is re-entered in the table by means of the SET command (see below). For
example, KILL @PR will remove the lineprinter device from the system.

Similarly, disk drives may be disabled with KILL, with the exception of the
currently-defined SYSTEM drive. The system drive may not be killed. When disk drives
are KILLed, they are also set to NIL.

When I/O is performed to any KILLed output device, no error message will be
returned; however the data will go nowhere.

When a disk drive is KILLed, any attempt to access that drive will return the error
message, "Device not available."

Care should be taken when using KILL to disable devices. The only way out of
injudicious use of this command may be to reboot (for example, KILL @KI will disable
the keyboard; the only possible recovery from this case would be to reset the entire
system). However, if a device is linked to another, the other device will continue to be
active even if the first device is KILLed.

KILLed devices and disk drives may be restored to an active state by SETting the
device back to itself, for example, SET @PR @PR (See the SET command, below).

Examples:

KILL FOOBAR/CMD

This command will cause the system to search the directories of all mounted disks
for the first occurrence of FOOBAR/CMD, which will then be killed.

KILL FOOBAR/CMD:l

This command will cause the system to search the directory on drive :1 for
FOOBAR/CMD. If it finds the file, the file will be killed. If the file does not exist on
that directory, the system will return a "File not found" error.

KILL */OLD:A4 {QUERY,PW='Mydisk'}

The system will search the directory of the disk on drive :A4 for every file with the
extension /OLD. It will then display the filename that it finds which fits the wildmask
and ask the user whether that file is to be killed or not. If the user replies "Y" or
"YES," then the file will be killed. Otherwise the file will be left alone, and the search
will continue for other files with the /OLD extension.

Library commands - Page 133

DosPLUS II - Disk Operating System - User's manual

KILL PROG?/BAS:Ol {PW="PASSWORD"}

This command will search the directory on drive :01 for any filename that fits the
wildmask PROG?/BAS and kill them. Files with names such as PROGl/BAS,
PROGA/BAS, PROG$/BAS, etc. would be killed. The disk's master password must be
supplied.

KILL MYDATA/DA T.SECRET:OA

This command will remove all traces of the file called MYDATA/DA T.SECRET from
the disk in drive :OA.

KILL :02

The disk drive designated as :02 will be disabled, UNLESS it is the system drive. If
drive :02 is the system drive, then this command will not be executed. If it is not the
system drive, it will be disabled and any attempts to read or write drive :02 will
produce an error.

KILL */*:Xl {P="CIA"}

This form of the KILL command is a global KILL. Any filename will fit the */*
wildmask form, so the use of this command will result in every file on drive :Xl being
killed. In this case, QUERY will automatically default to ON and the user will be
prompted as each file is killed.

KILL !:00 {P="MYFILE",Q=N,ECHO}

The ! is a special wildcard character which is the same as the wildcard combination
/. This command would result in every file on drive :00 being killed. The disk
password "MYFILE" will be used to access any file encountered which is password
protected. The name of each file will be displayed as it is KILLed, and the user will
not be prompted before a file is KILLed.

Library commands - Page 134

DosPLUS II - Disk Operating System - User's manual

LIB

The LIB command will send a list of the DOSPLUS II library commands to the
currently defined output device. This would normally be the video display;. however:- any
output device may be specified.

==
The command syntax is:

LIB [TO] channel

"channel" is any valid output device in the
system. If specified, it may not contain any
wildmasks.

==
The LIB command will display a list of the DOSPLUS II library commands, or send

the list to a user-specified output channel, which may be any output device (for
example, @PR) or filespec (for example, LIBRARY /COM:Q3). If "channel" is not
specified, it will default to @DO, the video display.

DOSPLUS II distinguishes between library commands and programs. Library commands
are routines which are within the operating system itself. These are the commands
displayed with LIB. Library commands are given priority over programs; that is, if a
program's filespec is the same as one of the library commands, the system will execute
the library command rather than the program. The system is extended by adding
programs which perform functions not covered by the library commands. These
programs are not part of the operating system itself, and the system is not affected
when they are killed. Conversely, library command routines cannot be easily removed
from the operating system.

When specifying an output channel, wildmasks should not be used, and will be
rejected. For example, the command LIB TO */LST would not be valid. When sending
the list of commands to a file, drivespecs may or may not be specified. If omitted, the
system will use the first available drive.

Examples:

LIB

This command will display a list of the library commands on the video screen. It is
identical to LIB @DO.

LIB TO LIBLIST:I4

This command will send the listing of library commands into a file called LIBLIST on
drive I4.

LIB (aPR

This command will output the library command listing to the lineprinter.

Library commands - Page 135

DosPLUS II - Disk Operating System - User's manual

LINK

This command will link together two devices within the DOSPLUS system. Once the
link is established, any output going to either device will also be sent to the other. In
the case of linked input devices, any input requested from one device may be supplied
by either device. The LINK command by itself will display the current LINKed devices
and their settings.

==
The command syntax is:

LINK [FROM] devicespec [TO] channel

"devicespec" is the primary device (0-7 only)
which is to be linked with another. "channel" is
a device or file with which the primary device
is to be linked.

Neither "devicespec" nor "channel" default to anything. If a channel is specified,
then a devicespec must also be specified. If a devicespec is specified, then a channel
must also be specified. If neither are specified, then the link settings for all devices, if
any such settings exist, will be displayed on the video screen. The I/O direction of the
linked devices must be the same, that is, input devices can only be linked to other
input devices, and output devices can only be linked to other output devices. Linking
an input device to an output device, and vice versa, is illegal.

==

The LINK command allows simultaneous I/O from two devices in the system. If, for
example, you wanted a hard copy of everything that appeared on your video display,
you could link the @DO device to the (aPR device. After the link is established, then
everything going to the display will also be sent to the printer.

It is also possible to link an output device to a file, so that everything sent to that
device will simultaneously be sent into a disk file. For example, linking @.PR to a file
will send all printer output into a disk file simultaneously.

Linking a device to itself (e.g., LINK @.PR TO @.PR) will RESET that device; that
is, any previous linking established will be removed.

Restrictions: (1) Only devices 0-7 can be the primary device. These are the system
devices taKI, @DO, (aPR, @CA, and @CB, plus the three user-definable devices @Ul,
(a U2 and (a U3 (remember that these devices may be renamed; if they are, then the
current name of the device is the one which should be used). Drives (devices 8-15) may
NOT be specified, either as the primary device or the linked channel. Drivespecs are
valid only with filenames.

(2) Input devices should only be linked to other input devices (or devices capable of
simultaneous input and output) or channels and output devices may only be linked to
other devices or channels capable of output. Linking an input device to an output
channel, or vice versa, is possible but the results are not always predictable.

Library commands - Page 136

DosPLUS II - Disk Operating System - User's manual

(3) The order in which devices are linked together is important, since the link is
essentially in one direction only. For example, if @DO was linked to @PR any output
sent to @DO would also appear on @PR, but any output sent to @PR would not appear
on @DO.

(4) When linking an output device to a file, remember that the file will remain open
until the device is reset and the link removed. If the computer is rebooted without
resetting the device, the file may not be readable.

Examples:

LINK (aPR TO @DO

This command will send all printer output to the video display simultaneously.
However, display output will not be sent to the printer.

LINK @CB FILEl/TXT

This command will send all data coming from Communications channel B to a file
called FILEl/TXT. If FILEl/TXT previously exists, then incoming data will overwrite
the previous contents of the file. If FILEl/TXT does not previously exist, it will be
created on the first available disk drive.

LINK @CA @KI
LINK @DO @CA

These two commands will link Communications channel A to the keyboard device as
well as the video display. Since @CA is capable of both input and output, these two
links are valid. After these two commands are given, any input that comes over the
@CA device will be treated as keyboard input, and any output going to the display will
be sent out the communications line. If the communications line A was set up correctly
previously, these two commands will allow your computer to be controlled from a
remote terminal. However, the keyboard remains active, so that any commands typed in
at the keyboard will also be handled normally.

LINK @PR TO @PR

This command will RESET the @PR device. Any linking or routing (see below) which
may have been active will be removed.

LINK

This command, with nothing given in the I/O field, will simply display a list of
devices with their current LINK settings if any.

EXAMPLES OF ILLEGAL FORMS OF THE LINK COMMAND:

LINK FOO/BAR:OO TO @KI
LINK @DO :01

(Only devices may be linked, not files)
(Only devices 0-7 may be linked; disk
drives are devices 8-15)

Library commands - Page 137

DosPLUS II - Disk Operating System - User's manual

LIST

This command will list data from a device or disk file to a specified output device
or channel. Non-printable ASCII codes will display as periods. Control codes (ASCII
Codes OOH to lFH) may either be displayed as periods, or sent unchanged to the output
device/ channel.

==
The command syntax is:

LIST [FROM] channel [TO] channel {PARAM=switch}

The parameter for this command is:

CTL=switch

"PARAM" is an optional parameter. "switch" is
the switch value (Y or N) which may be
supplied to P ARAM.

Determines whether or not
control codes (ASCII OOH - 1 FH)
will be output unchanged or
whether they will be displayed as
periods (".").

CTL may be abbreviated to its first letter.

If CTL is not specified, NO is assumed, that is, ASCII codes less than 20H will be
output as periods. If CTL is specified without a switch value, CTL=YES will be
assumed.

The default output device is @DO, the video display. The input channel does not
default and must be specified. Wildmask specifications may NOT be used in either the
input or the output channel.

==
The LIST command is normally used for listing a disk file to an output device such

as the video display or the lineprinter. However, it may also be used to list data
coming from other input devices such as the keyboard or the communications lines.
Non-printable characters are listed as periods. However, control codes may be passed
to the output channel without being translated to periods by specifying CTL=YES. Note
that control codes may affect the action of the output channel. For example, a
CTRL-Z (lAH) may cause the @DO device to switch to reverse video; similarly, a
CTRL-L (OCH) may cause your lineprinter to execute an unexpected form feed to the
next page.

Only the ASCII characters (or translated periods) are listed; their hexadecimal
equivalents are not listed, unlike TRSDOS.

Library commands - Page 138

DosPLUS II - Disk Operating System - User's manual

Examples:

LIST FOO/BAR

This command will list the disk file called FOO/BAR to the video display (default
output device).Control codes will be displayed as periods (".").

LIST FOO/BAR {C}

This command is identical to the first one except that now control codes (OOH to
lFH) are output unchanged. All other characters will be listed as is. Depending on the
control codes present in the file called FOO/BAR the display may or may not act
strangely.

LIST FOO/BAR:P9 TO @PR

The file called FOO/BAR on drive :P9 will be listed on the lineprinter device.

LIST FROM @KI TO (aPR {CTL:Y}

This command will echo keyboard input to the lineprinter device, in a fashion similar
to the COPY command. Keyboard input will not be passed to the DOSPLUS II system
for interpretation as commands. Control codes will be output unchanged (however, the
lineprinter may act on certain codes, for example a form feed).

All characters typed in at the keyboard will continue to be sent to the lineprinter
until BREAK is pressed.

Library commands - Page 139

DosPLUS II - Disk Operating System - User's manual

LOAD

The LOAD command will take a disk file and load it into memory. The disk file is
assLJmed to be either in program (/CMD) or core image (/CIM) format. The user may
specify where in memory the file is to load. In either type of file, the user may also
specify whether the program is to be run upon completion of loading.

==
The command syntax is:

LOAD [FROM] channel {PARAM=exp,P ARAM=exp •.. }

"PARAM" is an optional parameter which may
be specified with the command. "Exp" is an
expression defining the value to be taken by
the parameter (switch value or numeric value).

The parameters for the LOAD command are:

PROMPT=switch Determines whether the system
will prompt the user for disk
mounts or not. This will permit
loading of a file from a
non-system disk in the system
drive.

RUN=switch Determines whether the file is to
be executed upon completion of
loading.

START =address Determines the starting point in
memory for loading a core image
file.

TRA=address If a core image file is loaded into
memory, this parameter will
determine what address control is
to be transferred to if the file is
to be executed. This will also
override the transfer address in a
/CMD file.

Each parameter may be abbreviated to its first letter.

The default values for the parameters are:

PROMPT
RUN

START
TRA

NO. Do not prompt for disk mounts.
NO. Return to DOSPLUS II after loading. Do
not execute file.
NO.
NO.

==

Library commands - Page 140

DosPLUS II - Disk Operating System - User's manual

The LOAD command will take a file from disk and load it into memory. If the file is
a program file, that is, it is in executable format and has the /CMD extension, then
the address at which it is to be loaded will be taken from the file itself (this address
is saved when the program is written to disk). If the file is not in executable format,
that is, it is a "core-image" file, then the START parameter must be specified.

A "core-image" file is any file that does not contain loader codes. Executable
program files contain special codes which tell the system where in memory it is to
load, and what its starting address is. A file which does not contain these codes is
considered to be a "core-image" file. Such a file may consist of binary program
instructions, ASCII text, or binary data. It is generally given the extension /CIM.

If a file is given without an extension, the LOAD command will assume the extension
/CIM if START is specified, or the extension /CMD if not.

The {PROMPT=switch} parameter will allow you to load programs from other than a
system diskette using the system drive. You will be prompted to mount the proper
diskette in the drive. Pressing ENTER will cause the system to proceed with the load.
If the program is to be executed, you will then be prompted again to re-mount the
system disk in the drive before the program is executed.

The {RUN=switch} tells the system that you want the file to be executed after
loading.

The {START =address} parameter informs the system where to start loading a
core-image file. These files do not contain loader codes which tell the system where in
memory they are to load, so the load address must be supplied by the user.

The {TRA=address} parameter tells the system where the entry point of a
core-image file is, and is generally given with the RUN parameter. After the file has
loaded into memory, control will be transferred to the address supplied with the TRA
parameter. This parameter can also be used to override the normal entry point address
of a /CMD file.

Since programs may also be saved as core-image files without loader codes, the
LOAD command will also allow you to specify a transfer address if you wish to run
such a file after loading. This address is specified by the TRA parameter.

There is a special format for program files which allow them only to be loaded, and
not run, when their filespec is typed in at the DosPLUS II prompt (These file types are
defined under TRSDOS). These are files which contain the proper loader codes, but end
with an ASCII 03H. If you type in the name of such a file it will be loaded as though
with the LOAD command, but will not execute. However you can force such files to
execute by using the LOAD command with the RUN or TRA parameters if you know
where the entry point of the program is.

Library commands - Page 141

DosPLUS II - Disk Operating System - User's manual

Examples:

LOAD TEST/CMD:YA

This command will load the program file TEST/CMD from disk drive :Y A into
memory. The locations into which it loads will be determined from the special loader
codes within the file itself. Control is passed back to DOSPLUS II after the file is
loaded.

LOAD TEST/CMD:YA {RUN}

The file TEST /CMD is loaded into memory from drive :Y A. As soon as the file is
loaded, control is passed to it and it will begin executing. This is the same as typing
TEST:YA.

LOAD FOOBAR/CMD:O {P,R}

The program file FOOBAR/CMD is to be loaded from disk drive :0. The system will
prompt the user to mount the correct disk containing FOOBAR/CMD in drive :0 before
it begins the load. The user should insert the disk in drive :0 and press <ENTER>.
As soon as the file is loaded, you will be prompted to reinsert the system disk. Then
FOOBAR/CMD will execute.

LOAD MEMTEST {START=7COOH}

MEMTEST /CIM will be loaded into memory starting at address
7COOH (31744 decimal). Control will return to DOSPLUS II upon completion of the load. ~,
Note that a default extension of /CIM is assumed by the LOAD command.

Library commands - Page 142

DosPLUS 11 - Disk Operating System- User's manual

PAUSE

This command will pause execution until a key is pressed. It is generally used to
temporarily halt the execution of DO files to permit the operator to perform some
task, such as inserting required disks into the proper drives.

==
The command syntax is:

PAUSE [message}

"message" is an optional string. It must fit on
the command line.

==
The PAUSE command provides a convenient way to temporarily halt execution of

DOSPLUS II to give the operator a chance to perform some necessary task. It is
generally used inside a DO file. The command may optionally be followed by any string
of characters which the user wants displayed at the PAUSE. When the command is
executed, the word "PAUSE" will be displayed followed by the string. Execution will
then be suspended until the user presses any key on the keyboard. If the BREAK key is
pressed, the the DO processing will terminate.

Note that if PAUSE is inside a DO file which is executed with the BREAK key
disabled, pressing the BREAK key in response to PAUSE wiU have no effect.

Examples:

Suppose a DO file contains the following commands:

CLOCK ON
PAUSE Please insert diskette MGPDA TA.
LOAD MGP/CIM {S=5500H}
MGP

When this DO file is executed, the real-time clock display will first be turned on.
Then the PAUSE command will be executed, displaying the line:

PAUSE Please insert diskette MGPDATA.

At this point execution will be suspended. The user should then insert the proper
diskette in a drive and press any key. As soon as he presses any key execution will
continue with the next command.

If this DO file was executed with BREAK=NO, or if the BREAK key had been
disabled with the SYSTEM command (see below) then all keys EXCEPT the BREAK key
could be used to cancel the PAUSE condition. Pressing the BREAK key, however,
would not cause execution to proceed.

Library commands - Page 143

DosPLUS II - Disk Operating System - User's manual

PROT

This command allows you to change diskette information. A new disk name and date
may be assigned, as well as new disk passwords. In addition, the protection status of
files in the directory may be changed by assigning the disk master password to them.
This command can also be used to erase unused directory entries.

==

The command syntax is:

PROT drivespec {PARAM=exp,PARAM=exp •.•• }

"P ARAM" is the optional parameter whose
value is to be altered. "exp" is the value which
will be assigned to "PARAM."

The parameters for the PROT command are as follows:

PW ="string!"

MP W ="string2"

NAME="diskname"

DA TE="mm/dd/yy"

LOCK=switch

ACC;;;:switch

UPD=switch

CLEAN=sw itch

Supplies the current disk master
password to the system.
Supplies the new password to the
system, if the password is to be
changed.
Specifies the new name for the
diskette.
Specifies the new date for the
diskette. This field can be
entered in free format.
Determines whether the disk
master password is to be assigned
to, or removed from, all the files
in the directory or not.
If LOCK;;;: Y, this will cause the
disk master password to be
assigned to the ACCESS password
of all files. If LOCK=N, this will
cause the ACCESS password of
all files which have them to be
removed.
If LOCK= Y, this will cause the
disk master password to be
assigned to the UPDATE password
of all files. If LOCK=N, the
UPDATE password of all files
which have them will be removed.
Specifies whether unused slots m
the directory are to be zeroed.

Each parameter may be abbreviated to its first letter.

Library commands - Page 144

DosPLUS II - Disk Operating System - User's manual

The defaults for the parameters are as follows:

PW

MPW

NAME
DATE
LOCK
ACC
UPD
CLEAN

None. The disk master password must be
specified.
None. A new master password will not be
assigned unless explicitly stated.
None.
None.
None.
YES.
YES.
NO.

==
The PROT command allows you to change diskette attributes which were assigned at

FORMAT or BACKUP time. These attributes include the diskette name, date, and
master password. In addition, you can use the PROT command to assign the diskette
master password to all the files in the diskette directory, or, conversely, remove all
passwords from user files (system files will not be affected).

The {PW="string"} parameter supplies the diskette's current master password to the
system. The password is a string of valid characters enclosed in single or double
quotes. Any alphabetic characters in the strings are evaluated in a case-independent
fashion, that is, upper and lower case letters are treated equally. To use the PROT
command, the diskette's master password must be specified using this parameter unless
it is null or nonexistent.

The {MPW ="string"} parameter assigns a new diskette master password. The password
must consist of a string of valid characters enclosed in quotes. Either single or double
quotes may be used.

The {NAME="diskname"} parameter assigns a new name to the diskette. The name
must be a string of up to eight valid characters enclosed in quotes.

The {DA TE="mm/dd/yy"} parameter allows you to change the diskette date. Normally
this date is assigned at FORMAT or BACKUP time, but you may change it using the
PROT command. The date may actually be any string up to 8 characters in length
which the user wishes to place in this field.

The {LOCK=switch} parameter affects the protection status of the files on the
diskette. LOCK= Y assigns the disk's master password to the Access and Update
passwords of all user files on the diskette (unless used with the ACC and UPD
parameters, see below). Conversely, LOCK=N removes all Access and Update passwords
from all user files on the diskette. System files (that is, files with a file protection
level of 6) are not affected.

The {ACC=switch} and {UPD=switch} parameters are used in conjunction with LOCK
to control the assignment or removal of file passwords. For example, if ACC=NO was
specified in conjunction with LOCK= Y, then only the UPDATE password of each user
file would have the diskette's master password assigned to it. The Access passwords
would be left untouched. Similarly, if UPD=NO was specified together with LOCK=N,

,~ then only ACCESS passwords would be removed from user files.

Library commands - Page 145

DosPLUS II - Disk Operating System - User's manual

The {CLEAN=switch} parameter will determine whether unused slots in the diskette
directory will be zeroed out or not. Some unused directory slots may contain
information pertaining to KILLed files. If the directory slots are zeroed out, then no
trace of any killed files would remain, and consequently it would be impossible to
attempt the recovery of any killed files.

Examples:

PROT :AA {PW="secret",MPW="CIA"}

This command will change the master password of the diskette in drive :AA from
"secret" to "CIA". Note that the case-independent evaluation of alphabetic characters
would have allowed you to specify PW="SECRET" or MPW="cia" and still obtain the
same results.

PROT :5 {LOCK=N,UPD=N}

This command will result in the access passwords of all user files being removed.
Update passwords, however, would not be touched.

PROT :Xl {N="Fiscyr83",D="01.01.83"}

The name of the diskette in drive :Xl would be changed from whatever it was
originally to "FISCYR83", and the diskette date changed to 01.01.83.

PROT :K2 {N="New$disk",CLEAN}

The diskette in drive :K2 would be renamed to "New$disk" and all unused slots in its
directory would be zeroed out.

PROT :XX {DA TE="KEEPOUT"}

The DATE field may contain any string, not just the date.

Library commands - Page 146

. '~-~

DosPLUS ii - Disk Operating System - User's manual

RENAME

This command will permit you to rename devices, disk drives and disk files.

==
The command syntax is:

RENAME [FROM] channel/drivespecl [TO] channel/drivespec2

"channel/ drivespecl" indicates the current
logical name of a disk file, device, or disk
drive. "channel/drivespec2" indicates the new
logical name.

==
The user may rename any device, fil.e or disk drive under the DOSPLUS II system.

Names must conform to the conventions described in the Operations section of this
manual. Briefly, a device natne consists of an @-character followed by one or two valid
characters; a disk drive name consists of a : (colon) followed by one or two valid
characters. A filespec consists of a one to eight character file name, and a one to
three character extension preceded by a slash ("/"). A file's password cannot be
changed by the RENAME command. However, if a file to be renamed has a password, it
stlll must be entered in order for the RENAME to execute properly.

Duplicate device or file names are not allowed. Wildmask specifications may NOT be
used with the RENAME command.

The logical device and/or disk drive names are entered into the system's device
table. Thereafter that particular device should be referred to by the new logical name
until it is again changed by the RENAME command. New filenames replace the old ones
in the diskette directory. If the same filename exists on more than one diskette
directory, only the first one is changed if no drivespec is specified.

Examples:

RENAME @KI TO @KB

This command renames the @KI device to @KB.

RENAME :0 :ME

This command renames disk drive :0 to :ME.

RENAME FOO/BAS TO FOOBAR/BAS

This command renames the file called FOO/BAS to FOOBAR/BAS •

Library commands - Page 147

DosPLUS II - Disk Operating System - User's manual

RESET

The RESET command will restore a device or disk drive to its normal power-up
state. It will cancel all LINKing and ROUTing. RESET may be used to reset a single
device or drive or to reset all drives; however it cannot be used to cancel a NIL state.

==
The command syntax is:

RESET
RESET [FROM] devicespec/drivespec

"devicespec/drivespec" is the current logical
name of the device or disk drive to be RESET.

The RESET command has no parameters.

==

RESET without any device or drive specification will perform a GLOBAL reset of
all devices and disk drives. If a devicespec or drivespec is included on the command
line, then only that device or drive will be reset. Any linking or routing of the device
will be cancelled, and the device will be restored to its normal power-up setting.
However, any active translation (that is, the device is FILTERed) will not be affected.
Also, the current logical name of the device or drive will NOT be changed.

If a device was linked or routed to a disk file, RESET will close the disk file when ~\
the link or route is cancelled.

Examples:

RESET

This command will perform a global reset of all devices. Any devices which were
linked or routed will be restored to their powerup condition. Disk files which were the
target of linking or routing will be closed.

RESET @PR

This command will restore the @PR device to its normal condition if it had been
linked or routed to another device. If no linking or routing had been done, this
command would not have any effect.

Library commands - Page 148

DosPLUS II - Disk Operating System - User's manual

ROUTE

This command allows you to change the I/O path of the system's devices from their
default settings. You may reroute the I/O of a logical device to another device or to a
disk file. ROUTE without any device or channel specifications will display the current
device settings.

==
The command syntax is:

ROUTE
ROUTE [FROM] devicespec [TO] channel

"Devicespec" is the logical name of the device
which is to be 'rerouted. "Channel" is the
target device or file for the route.

==
The ROUTE command provides the DOSPLUS II user with the ability to redirect the

I/O paths of the system's devices. This provides unparalleled operational flexibility
with a minimum of effort. With this command, lineprinter output may be sent to the
display, or display output sent to a disk file. This avoids the need to rewrite programs
in the event that, for example, a lineprinter should fail; all lineprinter output could
merely be rerouted to the display, or to a disk file for later printing.

Unlike the LINK command, which links two I/O devices together so that data goes to
the two devices simultaneously, ROUTE actually forces data intended for one device to
another device or to a disk file. ROUTE is mainly used for output devices.

If a device is routed to itself, then that device is RESET (see above). If ROUTE is
entered without any device specification or channels, then the current device settings
will be displayed.

Wildmasks may not be used when specifying a channel for the ROUTE.

Once a device has been ROUTEd, it may be restored to its original settings with the
RESET command.

Library commands - Page 149

DosPL US II - D.isk Operating System - User's manual

Examples:

ROUTE @DO TO (aPR

This command will send all output normally going to the display to the lineprinter
instead. Once this command is given, no new data will appear on the display screen.

ROUTE (aPR PRINTFIL/TXT:3

All output to the lineprinter will be sent to a disk file called PRINTFIL/TXT on
drive :3. If PRINTFIL/TXT previously exists, then any data going to the routed @PR
device will OVERWRITE the contents of PRINTFIL/TXT. If PRINTFIL/TXT does not
previously exist, it will be created on drive :3. The disk file will remain open until the
routing is cancelled by means of the RESET command.

ROUTE (aPR TO (aPR

This will cancel any active routing or linking for the (aPR device, in effect
performing a RESET @PR.

ROUTE @Ul @CA

Any data output to user-defined device 1 will now be sent to Communications
channel A (@CA) instead.

ROUTE @DO TO @CB

This command would send all data intended for the video display to the
Communications channel B port. It may be used, for example, if a large screen monitor
was connected to the computer via this port for viewing by an audience.

Library commands - Page 150

DosPLUS II - Disk Operating System - User's manual

SCREEN

This command is used to output video data to another device or channel. When this
command is issued, whatever is on the video display will be echoed to another channel.
This will provide users with the ability to produce hard copy of their video display
screens.

==~=

The command syntax is:

SCREEN [TO] channel

"Channel" is the output device or file for the
screen print. The default is (aPR.

==
The SCREEN command will take whatever is on the video display at the time it is

issued and send it to an output channel. Normally, the default output channel is the
lineprinter device, @.PR. The user may specify other output channels, for example a
communications line, or a disk file. While the SCREEN command is processing the video
output, any other program operations will be suspended for a few seconds.

NOTE: This command may be generated directly by a CTRL-"-" (ctrl-dash). When
this form is used, the screen contents will immediately be output to the @PR device.
Since there is no means of setting an alternative output channel with this form of the

/~ command, you sh.9uld perform any necessary LINKing or ROUTing of the (aPR device
before using it.

/-\

When Ctrl-dash is used, nothing will be echoed to the screen before the video
contents are output to the printer. This may be preferable to using "SCREEN" in order
to avoid destroying the display format.

This command provides you with a convenient way of maintaining copies of screen
displays. For example, the SCREEN command can be embedded in BASIC programs, or
executed from machine language programs to keep track of user input to particular
prompts. It can also be placed at strategic points in user programs to maintain a log of
the program's I/O operations.

Library commands - Page 151

DosPLUS II - Disk Operating System - User's manual

Examples:

SCREEN

Everything that is on the video display will be sent to the @PR device. Any running
program will be temporarily suspended until the operation is completed (that is, until
all the screen data has been loaded into the @PR spool buffer -- NOT until the
lineprinter has finished printing).

SCREEN TO SCRNFILE/DA T:PO

All characters currently on the video display will be sent to the file called
SCRNFILE/DA T on drive :PO. If SCRNFILE/DA T does not previously exist, it will be
created. If the file already exists, then the screen data will overwrite the previous
contents of the file.

SCREEN @CA

Characters on the video display will be output to communications channel A.

Library commands - Page 152

DosPLUS II - Disk Operating System - User's manual

SET

The SET command installs a driver program for a specified device. Driver programs
may be installed to enable the system to use non-standard equipment. Other driver
programs can also be established for the three user-definable devices in . the system.

==
The command syntax is:

SET [FROM] devicespec [TO] filespec
SET [FROM] devicespec [TO] devicespec
SET [FROM] devicespec2 [TO] devicespec

"Filespec" is the name of the driver program.
"Devicespec" is the logical name of the device
for which the driver program is intended.
"Devicespec2" is any active device whose
driver address will be copied into the DCB of
"devicespecl ".

=================~=~=====~=====~==

Filespec and devicespec must be specified. Wildmasks are not allowed. If a filespec
is given without an extension, the system will supply a default extension of /DVR
(driver).

Setting a device to itself is the same as performing a RESET of that device. A
device previously KILLed (i.e., set to NIL) may be restored to an active state by
setting it to itself.

New driver programs can be established to handle I/O to particular devices using the
SET command. A driver program is a machine-language routine which processes the
data intended for a physical device such as a lineprinter and does the actual sending of
data to that device. Depending on the nature of the physical equipment, the driver
program may also input data or control signals from it to govern its operation, as in
the case of a lineprinter driver program. Such a program may stop sending data when it
receives a "printer not ready" or "paper out" signal. The driver program, then, acts as
the interface between a physical piece of equipment and the DOSPLUS II operating
system.

Other driver programs may be established to control the action of INPUT devices
such as the keyboard or a communications line. These driver programs may process
incoming data from such devices.

The DOSPLUS II system comes with default drivers already established for the main
system devices (@KI, @DO, @PR, @CA and @CB, as well as the disk drives). Generally,
these default drivers will be suitable for a wide variety of situations. However, a
situation may arise where the system's driver is inadequate, or incompatible with a
particular piece of equipment. Such a situation may be when a lineprinter using
non-standard symbols is connected to the system, or a modem which requires special
signals is connected to one of the serial ports. In such a case, a new driver must be
installed for the affected device. Such driver programs may be provided with the
system, or they may be specially written for the user's purposes.

Library commands- Page 153

DosPLUS II - Disk Operating System - User's manual

Driver programs are stored on disk along with other files and programs, and are
loaded by the SET command. They are given the extension /DVR to distinguish them \
from other files, but the user may give them any name and extension he chooses.
However, if a driver program file without an extension is specified in the SET
command, DOSPLUS II will append the default extension of /DVR to it.

Driver programs other than the system's default drivers normally load into high
memory, and HIMEM is adjusted downward to protect them from being wiped out by
other programs.

When a new driver is installed for a device by means of the SET command, any
previous linking or routing for that device is RESET. However, any filtering or
translation established for the device will not be affected.

If a second device is to be set to the same special driver, using the normal SET
command form will load a second copy of that driver from disk, thus wasting memory
space. However, there is a way around this. For example, if disk drive :02 was SET to
a special driver called 5INCH/DVR, and you wish to set drive :01 to the same driver,
instead of saying SET 5INCH TO :01 (which would load a second copy of the driver)
you may say SET :02 TO :01. This command will copy the driver address currently
being used by :02 into the DCB of :01. The net result is that both :01 and :02 will now
share the same copy of the driver program. After executing this form of the SET
command, however, you must CONFIG the second device to correctly reflect any new
characteristics provided by the driver routine (see CONFIG).

SETting a device to itself will restore it to its normal power-up condition. This form
of the SET command is also used to restore devices which have been killed or set to
NIL. Using this form of the command for logical disk drives 4 through 7 will activate
the DOSPLUS II hard disk drivers, which support the Radio Shack hard drive and the
QCS hard disk. Logical drives 4 through 7 will be assigned to the hard drive(s).
However, once the hard disk drivers have been set up, the drive assignments can be
changed to suit your needs.

Examples:

SET @PR TO DWII/DVR

The driver program called DWII/DVR will be loaded from disk and installed for the
@PR device. Any previous linking or routing established for @.P R will be cancelled. An
equivalent form of this command would be SET DWII TO @.PR (the /DVR extension
would be supplied by the system).

SET @CA MYMODEM/NEW:KZ

MYMODEM/NEW will be loaded from disk drive :KZ and installed for the
Communications channel A device.

Library commands - Page 154

··~

DosPLUS II - Disk Operating System - User's manual

SET FROM @KI TO DVORAK/DVR
/~

l A new driver for the keyboard device @KI will be installed using the driver program
called DVORAK/DVR.

SET :01 TO :02

This will copy the driver address being used by disk drive :02 into the Device
Control Block of disk drive :01 so that both disk drives will now share the same copy
of the driver program.

SET @CB @CB

If @CB was previously KILLed, this command will restore it to an active condition.

PARAMETER PASSING WITH THE SET COMMAND

Certain specialized device drivers may require the user to provide optional
parameters at installation time. What these parameters are will depend on the driver
program itself. For example, a specialized driver program for a smart modem connected
to communications channel A (@CA) might require the user to provide a telephone
number for its autodial function. This could be passed to the driver as a parameter
(e.g., SET SMART20 TO @CA {DIAL="555-4746"}).

The syntax for passing parameters with the SET command is identical to the other
library commands. Parameters must be separated from the I/O field either by a comma

(or a left brace, and terminated either by a carriage return, an implied carriage return
(that is, a ";"), or a right brace. It is up to the driver program to retrieve the
parameters and interpret them.

Library commands - Page 155

DosPLUS II - Disk Operating System - User's manual

SETCOM

The SETCOM command configures the serial ports of the Model II. Either channel A
or channel B may be configured using this command. SETCOM without any devicespec
or parameters will display the current settings of the serial devices.

==
The command syntax is:

SETCOM
SE TCOM [FROM] devicespec {PARAM=exp,P ARAM=exp .•. }

"Devicespec" is the logical device name of the
serial port. "PARAM" is the parameter to be
set or altered; "exp" is the value (numeric or
string) which PARAM is to be set to.

The parameters for the SETCOM library command are:

BAUD=value
WORD=value

Sets baud rate of serial device
Sets word length (number of bits
per word)

PARITY ="string" Determines type of parity to be
used by the SIO.

STOP=value

BS=value

EMPTY=switch

Determines the number of stop
bits to be used by the SIO.
Determines size of the serial
device's spool buffer in bytes.
discards conents of spool buffer.

All parameters except BS may be abbreviated to their first character.

The defaults for the above parameters are as follows:

BAUD
WORD
PARITY
STOP
BS
EMPTY

300
8 bits
None (no parity)
1 stop bit
Previous buffer size
NO

SE TCOM without any devicespec or parameters will display the current settings for
the system's two serial devices.

==

Library commands - Page 156

)
}

DosPLUS II - Disk Operating System - User's manual

SETCOM is used to initialize or change the values of various parameters of the
r~ Model II computer's two serial I/O ports. These ports are devices @CA and @CB

(Communications channels A and B) in DOSPLUS II. They are genera11y used either for
communications with remote terminals, or for driving a serial printer. I/O through the
ports are contro11ed by a SIO chip. The SIO transmits and receives data in a serial
fashion, that is, bit by bit. It can be set to transmit and receive data in a variety of
formats. The speed of transmission, number of bits per word, type of parity, and
number of stop bits all go into making up a data format. When communicating with
another terminal or serial device, the data format used by the Model II must be one
that the remote device can understand.

There are a number of standard formats which are widely used for serial
communications, and which a wide variety of serial devices can accept. However, there
are also certain serial devices, such as special printers, which can accept non-standard
formats. The SETCOM command allows you to set your computer's SIO to conform to
whatever peripheral device may be hooked up to the serial port.

The {BAUD=value} parameter determines the speed of data transmission through the
port. BAUD is a term meaning "bits per second." The baud rates to which the serial
port's SIO may be set to are: 110, 150, 300, 600, 1200, 2400, 4800, and 9600 bits per
second. The default for the SETCOM command is 300 baud, which is a standard rate
for communications over telephone lines.

The {WORD=value} parameter sets the number of bits in a data "word" and can be
from 5 bits to 8 bits. Seven or 8 bits are generally used for communications, since they
allow the full ASCII character set to be transmitted. Word lengths of less than 7 are
generally used for sending control values to peripheral equipment rather than for
communications. The default for the SETCOM command is 8 bits, which permits the
values 0 through 255 (OOH through FFH) to be transmitted.

The {PARITY ="string"} parameter determines the type of parity that will be signaled
by an extra bit transmitted with each data word. The parameter may take the values
ODD, EVEN, or NONE, and defaults to NONE (i.e., the parity bit is ignored). If ODD
parity is specified, the parity bit would be set to a 1 if the the total number of bits in
the data word set to 1 is an even number. When EVEN parity is set the parity bit of a
word will be set when the data word has an odd number of bits set to 1. Parity is used
by the SIO to check for transmission errors and generally need not concern the user.

The {STOP=value} parameter determines the number of stop bits that will be used by
the SIO. It may take the values 1 or 2.

In asynchronous serial communications, each word (from 5 to 8 bits) is framed by
start and stop elements which the SIO uses to synchronize to the start of data
elements. The start element is normally a bit set to logic 0 added to the start of each
word. Following the word are 1 or 2 stop bits set to logic 1. The transition from the
stop element to the start element (logic 1 to logic 0) signals the start of the next data
word.

The number of stop bits used by the SIO will depend on the requirements of the
peripheral equipment or the remote system being communicated with.

Library commands - Page 157

DosPLUS II - Disk Operating System - User's manual

The {BS=value} parameter allows you to set the size of the spool buffer for the
serial 1/0 devices. Normally, the buffer size is 2 bytes in length. But if you wish to set '\
up a larger butter, you can use this parameter to specify the buffer size you want. It a
buffer size larger than 2 bytes is specified, it will be established in high memory, and
the HIMEM pointer will automatically be adjusted so that other programs will not
collide with it.

IMPORTANT: The buffer space actually allocated for either of the communications
line channels is TWICE value specified in the BS parameter. This is because each data
byte to be transmitted over the serial ports has an associated status byte which must
also be spooled. Therefore if you say B5=400, the system will actually allocate 800
bytes in memory to hold both the data and status bytes.

The {EMPTY =switch} parameter permits you to reset the device's spool buffer at
any time, rather than waiting for it to be emptied normally. The action is identical to
the EMPTY parameter of the FORMS command (see above).

Examples:

SETCOM @CA {BAUD=300,WORD=7,BS=512}

Communications channel A is set up for 300 baud transmission using 7-bit words, 1
stop bit (default) and no parity (default). A 1 024-byte spool buffer is established for
the device in high memory (512 bytes for the data bytes, and another 512 bytes for the
status bytes).

SETCOM @CB {B=1200,W=7,P="EVEN",S=1}

Communications channel B is initialized for 1200 baud, 7-bit words with even parity
and one stop bit.

SETCOM @CA

Channel A is set to the default conditions of 300 baud, 8 bit words, no parity, and
one stop bit.

SETCOM

The current settings of the two serial ports will be displayed.

Library commands - Page 158

(

DosPLUS II - Disk Operating System - User's manual

SYSTEM

This command allows you to configure certain aspects of the DOSPLUS Il system to
your requirements. Once the configuration has been established, it may be saved on
disk as a program file. Any number of configurations may be saved. When a particular
one is required, all that is needed is to type the name of that file at the DosPLUS II
prompt to establish it in the system.

==
The command syntax is:

SYSTEM
SYSTEM {P ARAM=exp,P ARAM=exp ••. }

"P ARAM" is the parameter to be set or
altered. "Exp" is the value (switch value,
numeric or string) to be set for a given
parameter.

The parameters for the SYSTEM command are:

BREAK= switch

LOMEM=value
HIMEM=value
ALIVE=switch
TRACE=switch

SA V E="filespec"

DA TE=switch

TIME=switch

LOGO=switch

Enable/disable BREAK key
recognition.
Set address for LOMEM pointer.
Set address for HIMEM pointer.
Turn ALIVE character on/off.
Turn program counter trace
display on/off.
Save the current configuration to
disk as "filespec".
Enable/disable date prompt on
bootup
Enable/disable time prompt on
bootup.
Enable/disable display of the
DOSPLUS II logo on bootup.

All parameters except TRACE and LOGO may be abbreviated to their first
character. TRACE and LOGO cannot be abbreviated. The parameters do not default. If
not explicitly declared in the command, the previous value for that parameter will
remain in force.

==

The SYSTEM command permits the user to customize his DOSPLUS II configuration
according to his needs. This command can alter certain conditions within the system
but its real power is in the "SAVE" parameter. Use of the SAVE parameter allows you
to store entire configurations on disk. Saved configurations include not just the
conditions settable by the SYSTEM command, but also all Device Control Blocks, the
drive code table, and any driver routines or buffers located in high memory (above
HIMEM). All LINKing and ROUTing, along with the current logical device names, are
also preserved by the SAVE parameter. In addition, any commands given on the same
line (using the multiple command syntax) will be preserved.

Library commands - Page 159

DosPLUS II - Disk Operating System - User's manual

When you wish to restore the configuration, you simply type in the name of the file
it was saved under, as though you were running a program. The configuration will be
loaded and restored. Any commands that followed the original SYSTEM {SAVE=
"FILESPEC"} command on the same line will be executed. Thus it is possible to save
any number of configurations on disk, and call them up as required. This means that
each configuration needs to be built only once.

The SYSTEM command given without any parameters will display the current
settings of HIMEM (top of free memory), LOMEM (bottom of free memory) and
PHYMEM (top of physical memory).

The {BREAK=switch} parameter determines whether the system will respond to the
BREAK key or not. When BREAK=NO, DOSPLUS II totally ignores the BREAK key.
This condition will also apply to application programs (such as BASIC) which use the
operating system's routines to detect the BREAK key. Such a condition may be
desirable if you do not wish users to interrupt running programs by hitting the BREAK
key. This condition will remain until BREAK recognition is reset by a SYSTEM
{BREAK=Y} command, a DO command with BREAK=Y, or a reboot of the system.

The {LOMEM=address} parameter allows you to set a memory pointer called LOMEM
which defines the lowest address of FREE MEMORY in the system. Properly written
application programs which check this pointer will avoid using memory below that
pointed to by LOMEM. LOMEM cannot be given an address less than 2800H. This is the
region occupied by the resident DOSPLUS II system and is restricted.

The {HIMEM=address} parameter will allow you to set another memory pointer,
called HIMEM. This defines the highest free memory address in the system. Properly
written application programs should not use memory above that pointed to by HIMEM. ~,
When DOSPLUS II creates a buffer or loads a routine into high memory, it will always
use memory below HIMEM and then adjust HIMEM downward to protect the areas now
in use.

Due to the fact that DOSPLUS II will use high memory for certain purposes, you will
not be able to use the SYSTEM {HIMEM=address} command to specify an address
GREATER than its current value. SYSTEM {HIMEM=address} can only be used to adjust
HIMEM downward. This restriction ensures that any areas of high memory being used
by DOSPLUS II will not be inadvertently destroyed. Also, the HIMEM pointer cannot be
less than the current value of LOMEM.

The {ALIVE=switch} parameter will turn the "alive" character on or off. This is a
moving graphics character in the upper right corner of the display screen. Its
movement is determined by a background task routine (that is, a routine normally
"transparent" to the user, similar to the routine which updates the clock display), and
helps determine whether or not the interrupt task processor is working properly. Used
in conjunction with the TRACE parameter, it can help an experienced systems
programmer diagnose a malfunction in a running program.

The {TRACE=switch} parameter turns the trace display in the upper right corner of
the screen on or off. This displays the current value of the Z-80 CPU's program
counter. Like the ALIVE and the CLOCK display, this is executed as a background task
by the interrupt processing routines of DOSPLUS II. This display can be used by an
experienced programmer to diagnose any problems which may appear in a running
program.

Library commands - Page 160

DosPLUS II - Disk Operating System - User's manual

The {SAVE="filespec"} parameter tells DOSPLUS II to save the current configuration
to disk under the specified "filespec." The configuration will include the current
settings of the parameters under the SYSTEM command (BREAK key recognition,
LOMEM and HIMEM values, etc.) along with all Device Control Blocks (DCBs) in their
current condition, the Drive Code Table (OCT), and any routines or buffers residing in
high memory (the memory region above the HIMEM address). All LINKing and ROUTing
of devices will be preserved, along with their current driver routines, if any. Logical
device names will also be preserved.

The filespec under which the configuration is to be saved should be given the
extension /CMD. This will permit rapid re-installation of the configuration at some
future time by simply typing in the name of the file from the DosPLUS II prompt.

You should be extremely careful NOT to save any configuration when a disk file is
in an OPEN condition, as when a device is ROUTed to a disk file. The reason for this
is that there is no guarantee that the actual disk space that was being used by the
routed device will STILL be available when the configuration is reloaded at some
future date. This could easily result in the destruction of valuable data on the disk.

Also, when reloading a configuration file from disk, any commands which follow the
terminator (the ";") in a multiple-command line will not be executed, since the
keyboard buffer will be totally replaced by that saved in the file. That is, if
CONFIGl/CMD is a saved configuration file, then the command

CONFIG1;DIR;RESET;ROUTE @DO (aPR

will go only so far as loading the CON FIG 1 file; any following commands will not be
/~ processed since, as soon as CON FIG 1 loads, the command line buffer will already have

been replaced by the one in the CONFIGl file. To execute a string of commands upon
loading a configuration file, the commands must be saved in the file itself. For
example, if you wish to execute the commands RESET, DIR and ROUTE @DO (aPR
immediately after loading a configuration file, you would use this command line:

SYSTEM {SAVE="CONFIGl"};RESET;DIR;ROUTE @DO (aPR

When the file CONFIGl is now loaded from disk, the following commands RESET, DIR
and ROUTE @DO (aPR will be executed in sequence.

The. {DA TE=switch} and {TIME=switch} parameters will turn the date and time
prompts at bootup on or off. When these parameters are set to ON, you will be asked
to supply TIME and/or DATE whenever the system is booted. Pressing ENTER will
cause the registers for that parameter to be zeroed out. Pressing BREAK in response
to the prompt will cause the system to determine whether the time or date registers
contain valid data. If valid data is found, it will be retained. Otherwise the registers
will be zeroed out. Note that time and date are preserved through a reset of the entire
system, although the time may be off by several seconds after a reboot.

The {LOGO=switch} parameter will turn the DOSPLUS II logo at bootup time on or
off.

The condition of the TIME, DATE and LOGO parameters are saved onto the system
disk independently of the rest of the configuration. It is not necessary to do a SYSTEM
{SA VE="filespec"} to preserve the settings of these three parameters.

Library commands - Page 161

DosPLUS II - Disk Operating System - User's manual

Examples:

SYSTEM {BREAK=NO}

This command disables recognition of the BREAK key. The BREAK key will be
completely ignored by DOSPLUS II until a SYSTEM {BREAK=ON} is issued, a DO file is
executed with BREAK:::Y, or the system is rebooted.

SYSTEM {HIMEM:::EFOOH, TRACE:::ON,SAVE="CONFIGl/CMD"}

HIMEM is set to EFOOH (61184 decimal). The trace display is turned on, and the
system's current configuration is written out into a disk file called "CONFIGl/CMD."

SYSTEM {LOGO:::ON,TIME=NO,DATE:::Y}

The LOGO display and date prompt at bootup time are both enabled. The time
prompt is disabled. The settings of these three parameters will be written out to the
disk independently of a SYSTEM {SAVE= ••. }.

SYSTEM {T:::OFF, TRACE:::ON,A:::ON}

The time prompt at bootup is disabled. The TRACE and ALIVE prompts are turned
on. Note that TRACE cannot be abbreviated.

Library commands - Page 162

bosPLUS II - Disk Operating System - User's manual

TIME

This command will allow you to set or display the time in the system'S rea\-tlffie
clock.

==
The command syntax is:

TIME
TIME hh:mm:ss

The TIME command by itself will display the current time in the system's real time
clock in the format HH:MM:SS.

==

When setting the clock with the TIME command, the time can be specified in a
variety of ways. Allowable separators are colons (:), commas (,), dashes (-), slashes (/),
periods (.) and spaces. This flexibility allows you to specify the time in whatever
format is most comfortable to you.

The time is maintained by the system in 24-hour format. That is, the hours go from
0 to 23. Midnight is 00:00:00, and one p.m. is 13:00:00.

Examples:

TIME 3:5:30
TIME 03:05:30
TIME 3-05-30
TIME 03 5.30
TIME 3.05/30

All of the above are equivalent and set the system's clock to 03:05:30.

TIME 9.00
TIME 9

The system clock is set to nine o'clock. If minutes and seconds are not specified,
they default to 00.

TIME

DOSPLUS II will print the current time on the video screen.

Library commands - Page 163

DosPLUS II - Disk Operating System - User's manual

VERIFY

The VERIFY command causes DOSPLUS II to read back whatever is written onto the
disk in order to verify that it was written correctly.

==
The command syntax is:

VERIFY switch

"Switch" is either ON (Yes) or OFF (No).

==
This command will enable automatic read-after-write on all disk I/0. It will ensure

that data written to the disk can be read back without error. This will slow disk I/O
down slightly but might be desirable when writing critical data to the disk.

Examples:

VERIFY
VERIFY YES
VERIFY Y
VERIFY ON

These forms of the VERIFY command are all equivalent and enable the
read-after-write function. If VERIFY is already on, then these commands will have no
effect.

VERIFY OFF
VERIFY N
VERIFY NO

These forms of the VERIFY command will turn off the read-after-write function. If
the function was already disabled, then these commands would have no effect.

Library commands - Page 164

.~.

DosPLUS II - Disk Operating System - User's manual

DOSPLUS II Utility programs

The following utility programs are included with your DOSPLUS II. They will be
executed from the DOS command mode by entering the name of the utility program
and pressing ENTER. Some of them have additional parameters that may be input from
the DOS command line. Consult the individual program documentation for the
filenames and additional parameters.

BACKUP
CONY
DIRCHECK
DIRFIX
DISK ZAP
DRAW
FORMAT
HELP
MAP
OFFSET
PATCH
SVCINT
SYSGEN

(Duplicate a floppy diskette)
(Copy files to/from TRSDOS disks)
(Directory check utility)
(Directory repair utility)
(Sector orientated disk editor)
(Graphics editor program)
(Floppy disk formatter - includes RFORMAT)
(Quick reference utility)
(Display which sectors a file resides in)
(Relocate file's location in memory)
(Install patches into disk files)
(TRSDOS SVC simulator)
(Install system files on non-standard media)

Utilities - Page 165

DosPLUS II - Disk Operating System - User's manual

BACKUP

This program is used to copy all data from one floppy disk to another. It will make
exact or "mirror-image" copies only. To use a "copy by file" method to backup your
disk, use the library command COPY. You will also use COPY to backup the hard
disk.

===
The command syntax is :

BACKUP [FROM] :sd [TO] :dd {param=exp ••• }

Your parameters are :

DA TE=string

USE=switch

Abbreviations :

":sd" is the drive that you will be copying
FROM. If this information is not provided in
the command line, BACKUP will prompt you
for it later.

":dd" is the drive that you will be copying TO.
As above, if thi~ is not specified in the
command line, it will be prompted for.

"param" is the optional parameter that
modifies what action the parameter takes.

"exp" is the optional expression that will
supply any additional input needed by the
parameter.

Allows you to set the date
directly from the command line
when you are aware that the
system date is NOT set and you
do not wish to be prompted.

Allows you to indicate that you
wish to over-write any existing
format on the destination disk
WITHOUT being prompted during
the backup.

DATE D
USE U

===

Utilities - Page 166

DosPLUS II - Disk Operating System • User's manual

The backup utility enables you to backup your floppy diskettes. It is recommended
as a good computing practice to use this utility to make frequent copies of your
important data diskettes.

With DOSPLUS ll's BACKUP utillty, it is not necessary to pre-format your
destination diskettes. If the diskette is blank, DOSPLUS II will format it automatically.
Even if the diskette was previously formatted, DOSPLUS II w1U offer you the chance
to format it again before using it in the backup.

BACKUP allows you to optionally specify the source and destination drive from the
command line using the syntax shown above. You, of course, do not need the FROM
and TO delimiters unless you are specifying the destination drive first or only.
BACKUP will assume that the first drivespec encountered is the source drive unless it
finds a TO delimiter. It will likewise assume the second drivespec encountered to be
the destination drive unless it encounters a FROM delimiter.

If you do not specify the source and destination drives at the command line,
BACKUP will prompt you for them. If you specify one without the other, BACKUP
will prompt for the one that is missing.

Also, in addition to specifying the source and destination drives from the command
line, you have the option of specifying the date and whether or not you wish to use
the disk if it contains data.

To set the date, all you must do is use the statement "DA TE=string", where "string"
is a quoted string up to eight characters in length. When inputting the backup date,
either with this line or in response to the prompt, you are not limited to numeric
input.

To implement the "Use" parameter, simply include the word "USE" or the letter "U"
in the parameter list. This will inform BACKUP that you do not wish to be prompted
before over-writing a disk that already contains data.

You may, if you wish, operate BACKUP from within a DO file. This can allow you
to use BACKUP as a menu option from a BASIC program and then return to the menu.
The procedure is :

(1) Have the first statement of the DO file exit BASIC and return to
DOS.

(2) Execute the BACKUP.

(3) Have the DO file re-load BASIC and run your menu.

This is made simpler by virtue of the fact that you can specify all information
needed for BACKUP right from a command line. True "hands off" operation. The
computer operator doesn't even need to respond to a "Diskette contains data" prompt.
Prompting messages -

Source drivespec ?

Reply to this question with the drivespec of the drive that contains the disk you
wish to backup. Do not include the colon (":"). It is only necessary to provide BACKUP
with the one or two character drive name.

Utilities - Page 167

DosPLUS II - Disk Operating System - User's manual

Destination drivespec ?

Reply to this question with the drivespec of the drive that contains the disk you
wish to backup to. As above, you do not need to include the colon. This drivespec may
be the same as the source drivespec if you wish to execute a single drive backup.

Backup date (MM/DD/YY) ?

If the system date has not been set and you have not entered it from the command
line, BACKUP will prompt you for the date. When it does, you have three options :

(1) Press BREAK and abort the backup.

(2) Press ENTER and default to a date of "00/00/00".

(3) Type in up to any eight ASCII characters you wish for the date and
press ENTER. You are not restricted to numeric characters.

If the diskette is not blank and you have not specified the "Use" parameter from the
command line, you will receive the prompt :

Diskette contains data, Use or not ?

You may reply in one of three ways to this prompt :

(1) Press BREAK and abort the backup.

(2) Type "Y" or "U" and press ENTER. This will cause BACKUP to
attempt to use the existing format.

(3) Type "F" and press ENTER. This will cause BACKUP to re-format the
destination disk first.

Once all of these questions have been answered, BACKUP will proceed with the
copy of the disk. The destination disk will bear the same name and Disk Master
Password as the source disk. The date on the destination disk will be either the
current system date or whatever characters you entered when prompted.

Single drive vs. Multiple drive -

If the source and destination drivespec are not the same (in other words, you are
backing up between two separate disk drives), BACKUP will proceed with the copy
after all information has been provided with no further operator intervention.

If, on the other hand, the source and destination drivespecs are identical (in other
words, a single drive backup), BACKUP will proceed with the copy but will prompt
you for the source, destination, and system disks as they are needed.

Pay close attention to these prompts and insert the proper diskette. If you were to
accidentally insert the wrong disk at the wrong time, you could corrupt the data.

Utilities - Page 168

DosPLUS II - Disk Operating System .. User's manual

Examples:

BACKUP

This will execute the backup program and have it prompt for all information.

BACKUP FROM :0 TO :1
BACKUP TO :1 FROM :0
BACKUP :0 :1

These three examples are all equivalent. They instruct the BACKUP program to
backup the disk in Drive 0 to the disk in Drive 1. Note that if you ARE going to use
the drive specifiers from the command line, you will need to hae both disks (source
and destination) in place before executing BACKUP.

BACKUP FROM :0 TO :1 {DA TE="Sept 24",USE}
BACKUP :0 :1 {D="Sept 24",U}
BACKUP :0 :1,D='Sept 24',U

All of these commands will acoomplish the same results. They will backup the disk
from Drive 0 to the disk in Drive 1. They will set the backup date to "Sept 24" (note
the use of non-numeric characters) and instruct BACKUP to use the destination disk
even if it contains data.

Finally:

BACKUP will not backup between two disks of dissimilar format. For example, you
can't backup a single sided to disk to a double sided one or vice versa. For those
applications, you should use the COPY command to perform a "copy by file" type of
backup. BACKUP also will not backup between rigid and floppy disk drives.

As BACKUP is making the backup, it will ONLY copy those cylinders that have
allocated data on them and it will ONLY copy as much data from each cylinder as it
contains. Do not be alarmed if you see BACKUP skip several cylinders or it BACKUP
seems to copy some cylinders faster than others. If you wish to verify, make note of
the cylinders at which this occurs. Then use the library command FREE to display a
free space "map" of that disk. The cylinders skipped should show no "x"s at all and
cylinders that seemed to backup faster than others should have open space (i.e. not
solid "x"s). (See the library command FREE)

Utilities - Page 169

DosPLUS ll - Disk Operating System - User's manual

BACKUP attempts to make "mirror-image" copies of the source disk. If it cannot for
any reason do this (a granule allocated on the source disk is locked out on the ~,
destination), BACKUP will report an error and abort to the DOS command mode. You
may at that time either re-format the destination disk and try again or resort to a
"copy by file" backup.

One important note. After the "Diskette contains data" prompt is on the screen, you
may NOT switch the source disk. This will cause incorrect information to be written
to the destination disk that will later corrupt data. You may switch the destination
disk at that time, if you wish.

Obviously, if you are going to invoke BACKUP with all questions answered from the
command line, you had better have the disks to be backed up all mounted and ready.
This ls doubly true if you have specifed the "Use" parameter.

As a rule of thumb, if you are going to backup two disks that are not currently
mounted and ready to go it is best to just type "BACKUP" and allow the program to
load and ask you all needed questions. Once the program is loaded, you may remove
all disks and proceed. It will tell you when it needs a system disk again.

Although BACKUP is a great deal faster than the same program in TRSDOS, we
want to inform you that it 15 doing a full verify of all copied data. There is no loss of
accuracy, simply a great gain in speed.

Utilities - Page 170

j

DosPLUS II - Disk Operating System - User's manual

CONY

The CONV utility provides a convenient means of passing files from a TRSDOS disk
to a DOSPLUS II disk and vice versa. CONY also includes facilities for viewing the

~~-e~~:::_~~~~-~~~~~-:~~k~-~-~::_~:~ld normallf be unreadable from DOSPLUS II.
-----------------------------------=========l================================

The command syntax for invoking CONY is:

CONY [FROM] :DR [TO] :DR [USING] wildmask {param,param ••. }
CONY wildmask {param,param ••• }

where channel is a filespec or drivespec,
wildmask is a file wildmask, and param is an
optional parameter.

The parameters for the CONY utility are:

QUERY

OVER

BACK

DIR

CAT

ECHO

SYS

PW ="password"

Query the user before moving a
file

Query the user if the file
already exists on the target disk
whether or not to overwrite it.

Move file from DOSPLUS II to
TRSDOS

Display directory of TRSDOS
disk

Same as DIR

Display filenames as they are
moved

The file to be moved from a
TRSDOS disk has the TRSDOS
"system file" bit on. Treat the
file as a system file.

Declares Disk Master Password
to CONY for use with password
protected files.

All parameters can be abbreviated to their first letter.

===
Since DOSPLUS II disks are formatted differently from TRSDOS disks, one cannot be

directly read from the other. The CONY utility provides a means whereby files can be
moved from one system to the other with a minimum of effort.

Utilities - Page 171

DosPLUS II - Disk Operating System - User's manual

CONY will copy over a single file, a class of files, or all of the user files
(visible/invisible) on a disk. DOSPLUS II system files may NOT be moved over to a
TRSDOS disk; however TRSDOS system files can be moved over to DOSPLUS II. When
copying program files from TRSDOS to DOSPLUS II, CONY will append the /CMD
extension to the file. When copying program files from DOSPLUS II to TRSDOS, the
/CMD extension will be stripped, and the program bit in the TRSDOS directory entry
will be set for that file.

Technical note : CONY will recognize TRSDOS 1.2 and TRSDOS 2.0 disks. It does NOT
support TRSDOS 4.0 disks or hard drive systems. If you wish to move files from
TRSDOS 4.0 to DOSPLUS II, you must first use the TRSDOS FCOPY utility to place
the files on a floppy disk in TRSDOS 2.0 format, and then transfer them to DOSPLUS
II using the CONY utility.

TRSDOS passwords are ignored, but DOSPLUS passwords are not. If an affected
DOSPLUS II file is password protected, the disk master password must be declared to
CONY with the PW parameter. TRSDOS passwords are ignored by CONY when moving
files.

If a TRSDOS password to be moved to DOSPLUS II is password protected, the
passwords and protection status will be transferred as well, and the file will be
protected on the DOSPLUS II disk. However, DOSPLUS files which are password
protected will have their passwords stripped when transferring them to TRSDOS disks.
The reason for this is that DOSPLUS encodes passwords in a different manner in the
directory entry.

The {QUERY} parameter will cause CONY to display the name of the file being
moved and ask the user whether to go ahead or not. If you reply with a "Y", then the
transfer will proceed; otherwise it will be cancelled. This is useful when doing a group
transfer using a wildmask, and only some files of those which fit the wildmask are
actually to be moved.

The {OVER} parameter will force CONY to pause if the file already exists on the
destination disk, and query the user whether that file is to be overwritten or not. If
the user replies with a "Y", then the transfer will take place. Otherwise it will be
cancelled.

The {BACK} parameter is used to indicate a DOSPLUS 11-to-TRSDOS transfer.
Normally, CONY assumes that the direction of transfer is from a TRSDOS disk to a
DOSPLUS II disk. This will force the reverse. J

The {DIR} and {CAT} parameters will display a directory listing of the iles on a
TRSDOS disk. Only the filenames will be displayed. /

The {ECHO} parameter will display the name of each file as it is copied ~ver. This
is particularly useful when performing a group transfer using a wildmask. rote that
the QUERY parameter, if present, will override ECHO.

Utilities - Page 172

DosPLUS II - Disk Operating System - User's manual

The {SYS} parameter is used when transferring TRSDOS "system" files over to
/--- DOSPLUS II. TRSDOS identifies system files by setting a bit in the directory entry.

---.

Normally such files would be ignored by CONY, but this will force it to execute the
transfer. This parameter is needed to transfer BASIC from TRSDOS to DOSPLUS, since
TRSDOS identifies BASIC as a system file.

Examples:

CONY :1 :AE,Q,OYER

All the user files on drive :1 will be transferred to drive :AE. You will be prompted
with the name of each file, once to approve the transfer, and then again if a file by
that name already exists on drive :AE.

CONY */TXT:l :02 {ECHO,BACK,PW="M02Bl "}

Files with the extension /TXT will be moved from the DOSPLUS disk in drive :1 to
the TRSDOS disk in drive :02. Each file's name will be displayed as it is moved. If any
of the files on the DOSPLUS disk are password protected, the passwords will be
overridden by the disk master password "M02Bl." Such files will have their passwords
stripped as they are moved to the TRSDOS disk.

CONY BASIC:4 :SO {SYS,O,PW="Mydisk"}

BASIC will be moved from the TRSDOS disk in drive :4 to the DOSPLUS disk in
drive :SO. Since TRSDOS considers BASIC to be a system file, it is necessary to use
the SYS parameter. The user will be prompted if a file called BASIC/CMD already
exists on drive :SO. If such a file does exist and the user orders CONY to proceed, the
disk master password "Mydisk" will override any password protection it might have.

Utilities - Page 173

DosPLUS II - Disk Operating System - User's manual

DlRCHECK

DIRCHECK is a utility program for testing the integrity of a DOSPLUS II disk
directory. It can be used to check a single directory entry or the entire directory for
errors.

===
The command syntax for invoking DIRCHECK is:

DIRCHECK filespec
DIRCHECK :dr

where filespec is the file whose directory
entry is to be checked, and :dr is the
drivespec whose directory is to be checked.

===
DIRCHECK will scan a disk directory for errors which may result in the possible

destruction of valuable data unless repaired. It will inform you of any errors it finds,
and its companion utility, DIRFIX, can be used to repair the errors.

A DOSPLUS II disk directory can be thought of as being divided into three sections:
the Granule Allocation Table (GAT), which resides on the first sector of the directory
track, the Hash Index Table (HIT), which resides on the second sector of the directory
track, and the file records, which make up the remainder of the directory. All three
sections relate to each other very closely, and an error in one can propagate to the
others.

The GAT can be thought of as a "map" of the disk, showing which granules are
allocated to files, which are available for use, and which are locked out for some
other reason. When creating a new file on a disk, DOSPLUS II uses this table to
determine where it can be placed. An error in this table may result in the same
sectors on the disk being assigned to more than one file, with potentially disastrous
results.

The HIT, or Hash Index Table, may be thought of as a map of the directory itself. In
this table are kept one-byte codes (called directory entry codes, or DECs) of each file
in the directory, positioned in such a fashion as to pinpoint a file's directory entry in
the succeeding sectors. Thus the system can access a file's directory entry in a
minimum of time and with a minimum of disk accesses. All files have at least one
DEC. If a file is assigned more than four extents, an extended directory entry is
created for it, with a corresponding DEC.

Errors in the HIT table may consist of DECs which point to empty directory records
or records containing inactive files, or DECs which do not correspond to the file entry
in the corresponding position (the encoded value, which is derived from the filespec, is
incorrect or zero). Such errors can also be potentially dangerous and may result in the
system accessing the wrong file, or simply failing to find a file.

Utilities - Page 174

DosPLUS II - Disk Operating System - User's manual

The directory records maintained in the remainder of the directory track contain
~~ information about each of the files on the diskette. Among other things, their status

(active/killed), the file name, encoded passwords if any, and the number and length of
each extent are coded for each entry. Errors here can consist of invalid characters in
file names, an end-of-file pointer specifying a position beyond the last ·allocated
sector for the file, an incorrectly linked extended directory entry, etc.

DIRCHECK will test for these types of errors in a diskette directory and list any
errors found on the screen. If errors exist, they can be repaired using the DIRFIX
utility.

When. DIRCHECK is typed with a filespec, for example, DIRCHECK BASIC/CMD, it
will display the directory information for that filespec and report any errors it finds.
When DIRCHECK is typed with a drivespec, for example, DIRCHECK :1, it will scan
the entire directory for errors and list them on the screen. If not enough memory is
available to scan an entire directory (perhaps as a result of a large chunk of high
memory being allocated) it will inform the user of the fact and abort the operation.

If DIRCHECK is typed without a drivespec or filespec on the command line, it will
return with an asterisk ("*") prompt, and you may type in the necessary information at
that point, or press BREAK to terminate the program.

Errors in the directory records are reported first, followed by GAT table errors, if
any, and finally, HIT table errors, if any. A DIRCHECK display might look like this:

DIRCHECK - DOSPLUS II DIRECTORY CHECK UTILITY - SERIES A.OO
(c) (p) Copyright 1982 by MicroPower, Inc.

00239 Free grans, Name = DOSPLUS , DATE = 08/25/82

DEO/TXT @ Directory sector 002, Relative byte 20H
Invalid filespec
HELP/CMD @ Directory sector 004, Relative byte 40H
End of file sector beyond allocated sectors
TABLE/TBL @ Directory sector 006, Relative byte COH
Multiple files assigned to granule
TABLE/TBL @ Directory sector 006, Relative byte COH
Extended directory record has a Zero HIT byte

Cylinder 016 has an invalid GAT Table byte
Cylinder 052 has an invalid GAT Table byte
HIT Byte at 74H Invalid or Extraneous
HIT Byte at 75H Invalid or Extraneous

00008 TOTAL ERRORS

Utilities - Page 175

DosPLUS II - Disk Operating System - User's manual

.In the firs~ .part of t~e DIR.CH~CK rep~rt, the offending files are displayed along
With the pos1t10n of the1r entnes m the d1rectory records. The next line contains the
actual error message containing that file. For example, the first file displayed has
been found to contain an invalid character in its filespec, which is displayed as an
underscore. DIRCHECK reports an invalid filespec for this entry.

The second part of the display reports GAT table errors. Several cylinders (tracks)
on the diskette in question have been found to be erroneously mapped in the GAT
table. These cylinders may be assigned to particular files, but the fact is not
reflected in the GAT table; or, these cylinders may in fact not be in use, but are
mapped in the GAT as being allocated to a file.

Finally, HIT table errors are reported. An invalid or extraneous HIT byte may
reflect an incorrectly coded HIT byte, or a HIT byte present with no file entry in the
corresponding position.

DIRCHECK does not do anything about these errors. It will merely scan a directory
or a file entry for errors and report them to the user. If you suspect a problem with a
disk directory, this utility can verify the fact. If problems are found, then the
companion utility, called DIRFIX can be used to repair most of the errors.

Utilities - Page 176

DosPLUS II - Disk Operating System - User's manual

DIRFIX

DIRFIX is a utitity program for repairing disk directory errors found by DIRCHECK.
DIRFIX will repair most types of directory errors with little user intervention.

===
The command syntax for invoking DIRFIX is:

DIRFIX :dr {param,param ••• }

where :dr is the drivespec whose directory is
to be checked, param is an optional
parameter.

Optional parameters for the DIRFIX utility are:

GAT
HIT
FILES
LOCK

PROMPT

Repair GAT Table errors
Repair HIT Table errors
Repair File Entry errors
Lock out track above directory
track (for rigid disk systems
only)
Prompt for additional drive
information.

These parameters may be abbreviated to their first letter, and may be specified
singly or together in any order.

===
DIR FIX is a utility which will repair most directory errors with very little input

from the user beyond specifying which section of the directory is to be repaired.
Errors found by DIRCHECK can generally be fixed by DIRFIX. It is not necessary to
run DIRCHECK before running DIRFIX, although it is a good idea to do so in order to
verify that errors really exist.

When repairing a directory, DIRFIX will use the information in the Drive Code Table
for the drive in question in order to determine the size and other characteristics of
the diskette. However, you may also supply this information to DIRFIX by including
the PROMPT filespec on the command line. It will then return with a "II" prompt, and
you may enter the drive number, the number of cylinders {tracks) on the disk, the
density of the disk (1 for single, 2 for double) and the number of surfaces on the disk
(1 or 2). For example,

II :3A,77,2,1

specifies that drive :3A contains a 77-track diskette formatted in double density, and
that it is a single-sided diskette.

Utilities - Page 177

DosPLUS II - Disk Operating System - User's manual

The parameters GAT, HIT and FILES (or G, H, and F) define which section of
directory DIRFIX is to repair. More than one section may be repaired at the same ~
time. In fact, if errors exist in the file entries, DIRFIX will NOT repair the GAT or
HIT tables until the file entries have been repaired first. If file entry errors do exist,
and the FILES parameter is not specified, DIRFIX will abort with an error message.

It is important to note that repairing file records may result in some file entries
being truncated. This will happen if a file has an extended directory entry which is
improperly linked to the primary entry, or is linked to by more than one primary file
entry. In this case, DIRFIX will simply terminate the file records at the primary entry.
Also, if the EOF byte of a file entry points to a sector beyond the last sector
allocated to the file, it will be reset to point to the last allocated sector rather than
additional sectors being assigned to the file.

After file entry errors have been repaired, DIRFIX can proceed to repair the GAT
and HIT tables. When repairing the GAT table, DIRFIX assumes that errors are not
confined to the GAT table alone but may affect the rest of the sector. Therefore it
will also repair the disk name field, the creation date field, and will insert the hash
code for "PASSWORD" (in upper case) in the master password bytes. The disk name
will be changed to *DIRFIX*, and the date will be changed to the current date to
reflect when the disk was repaired.

If any cylinders (tracks) are found allocated in the GAT table that are not assigned
to any of the files, these will be freed up and will become available for use (NOTE:
On a hard disk system, any flawed granules may be freed up, since flawed granules
are allocated without being assigned to any file). The user should note that if either
of the two file entry errors discussed above occur, forcing files to be truncated,
tracks may be flagged as "available" in the GAT which may have belonged to a file. In
this case it is up to the user to rescue as much data as he can from those tracks
before reusing the disk.

When the HIT table is repaired, it is totally reconstructed using the data in the file
directory entries. This will result in any incorrect Directory Entry Codes being
reconstructed, and any unassigned DECs being removed from the table.

There are two errors which DIRFIX will not repair. The first is when multiple files
are assigned to the same granule. Since DIRFIX has no way of knowing which file is
actually using that particular granule, it will leave this type of error alone. The user
may fix it by killing the extraneous files after determining which file the granule
should be assigned to, and then re-running DIRFIX a second time.

The second error which cannot be fixed is the presence of extraneous extended file
directory entries. Since such directory entries do not include the file name in them
(they are considered to be extensions of the primary entry only) there is no way of
knowing which file such an entry belongs to if (a) no primary file entry links to it, or
(b) more than one file links to it, and its reverse pointer (which points back to the
primary entry) has been altered or destroyed. DIRFIX will not repair this error.

Because of these possibilities, it is a good idea to rerun DIRCHECK after DIRFIX,
in order to verify that no errors remain. If any errors remain after DIRFIX has done
its job, the user should COPY all valid files on the repaired disk to a new one (do not
use BACKUP, or the errors will be transferred as well) and then reformat the first
disk. -~.

, Utilities - Page 178

DosPLUS II - Disk Operating System - User's manual

Diskzap - Disk Editor Program

Introduction

This portion of the DOSPLUS II manual is the "Diskzap Operators manual".
Diskzap is our disk editing program included with DOSPLUS II. Please bear in
mind as you read this that this portion of the manual is designed to thouroughly
acquaint you with the operation of the Diskzap program, NOT to be a tutorial on
disk editing procedures. This manual will assume some fundamental knowledge of
diskette structure. Some of the more unique features of Diskzap are :

Diskzap allows you to "set" each drive independently of the
other, and will remember a drive's configuration, eliminating
repeated asking of such questions when executing sub-options.

When modifying a sector, it displays the byte position within
the sector and the contents of the byte the cursor is
covering.

The display mode also has "wrap around". That is, when
modifying a line and the last byte is typed in, we will now
move down to the beginning of the NEXT line instead of the
beginning of the same line.

The verify option displays the track and sector that it is
reading as it verifies the disk.

The format option offers user selectable disk interleaving.

The fill option allows you to set WHAT byte it will fill the
sector with instead of arbitrarily zeroing it.

Diskzap is organized very logically into menu options. By first displaying the
menu and then covering each option in detail, we hope to thoroughly acquaint you
with basic program operation.

Utilities - Page Add/1

DosPLUS II - Disk Operating System - User's manual

The Menu

After entering the filename for the Diskzap program at the DOS command
level, it should load in and display the following :

DISKZAP - DOSPLUS II Disk Editor - Series A.OO
(c) (p) 1 982, by MicroPower Inc.

Set
Fill
Copy
Print
Verify
Format

* Display

This is the MAIN MENU. It lists all the sub-options and allows you to move
between them. The top line is the HEADER. It tells you which version of
Diskzap you are dealing with. Diskzap will default to the standard parameters for
the machine it is on. The following are the default parameters :

77 cylinders per disk
No skip option
Sector offset of 1
Eight inch drive
27 sectors on track 0
Single density track 0
128 byte sectors on track 0
30 sectors on all remaining tracks
AU remaining tracks double density
All remaining sectors 256 bytes long

Any of these may be altered via the "Set" sub-option. The asterisk that
appears to the left of the "Display" option on power-up is the "control cursor".
Whichever sub-option it is positioned next to is the one that will be invoked when
the ENTER key is pressed. It may be moved up and down the list by pressing the
<up arrow> and <down arrow> keys. To exit Diskzap, from the main menu press
"0" (as in "Out").

Utilities - Page Add/2

DosPLUS II - Disk Operating System - User's manual

Set [Alter disk drive parameters]

Diskzap powers up with the control cursor positioned for this sub-option. If
the disk you are working with is a standard DOSPLUS II system diskette, then the
configuration corresponds to t?e default parameters described on the preceding
page, then you may proceed directly to the sub-option of your choice and begin
the desired operation. If this is NOT the case, then you need to use the Set
sub-option to alter them. To function with a DOSPLUS II data diskette, all that
must be altered are the parameters for track 0. Configure track 0 for 30 double
density sectors 256 bytes in length.

To invoke this sub-option, as with any of the sub-options, simply position the
control cursor to the left of the word "Set .. and press ENTER. The first question
to be asked will be

Drive ?

Respond to this with the drivespec of the drive that you are configuring.
After setting the drive, you will be asked

Track count ?

Answer this question with the number of cylinders on the disk that you are
configuring. Enter the true cylinder count for the diskette. Answer according to
media, not hardware. This parameter is interested in how many tracks are on the
DISK, not how many your drive i.s capable of. You will have opportunity to set

,r---- the skip parameter later.

Technical note : Double headed disks are viewed as two separate disks. Sector
numbering repeats itself on the secondary side. When displaying the secondary
side of a double headed disk, you must append a "B" to the drive number (i.e. 1 B
would be the secondary side of drive one). Do not fall prey to the common trap
of entering the track count as double what it actually is when configuring double
headed disks. An 77 track double headed drive is still 77 track, it simply has a
second side.

After configuring the track count of the disk to be edited, the next question
asked will be :

Skip option ?

Reply to this question with either a "Y" for yes or "N" for no. The default
at power-up is no. The skip option will a1low you to read/edit 40 track diskettes
in 80 track drives. This parameter is designed for use with the five inch drive
adapters currently under development. Although it will function with the eight
inch drives as well, there is no practical application for an eight inch, 35 cylinder
disk.

Utilities - Page Add/3

DosPLUS II - Disk Operating System - User's manual

Techni~al no~e : There are certain inherent dangers and restrictions when using
t~e skip ~pt10n on 40 track disks in 80 track drives. Not only is the stepping
distance different between the two, but the track width itself is slightly narrower
on the 80 track units. Because of this, writing to a 40 track diskette in an 80
track drive may cause irreparable harm that will manifest itself as CRC read
er.rors when the diskette is taken back to a 40 track drive. Because of this,
M1croPower strongly recommends that you restrict "skipped" operation to reading
only.

Once you configured the skip option, you will be queried

Sector offset ?

Respond to this with a value (0-1} that will be used as the starting sector
number for each track. The remaining sectors will be numbered sequentially from
there on.

The only real use for this parameter will be for those users who wish to use
Diskzap with diskettes formatted by DOS' other than DOSPLUS. For example,
Model II TRSDOS formats its diskettes with each track numbered beginning with 1.
If you attempt to use the default setting of 0 when you are, say, verifying a
diskette formatted by TRSDOS, you would have a "Sector not found" error at the
beginning of every track. By setting the sector offset to 1, you would avoid all
this and be able to proceed with the verify unencumbered by non-existant errors.

The sector offset is not designed to allow Diskzap to read diskettes with
protected formats utilizing random sector numbering and should not be used as
such. It will seek to number every sector sequentially beginning with the offset
value.

Once you have entered the starting sector number, you will be asked

Five or eight ?

This questions sets the eight inch option on Diskzap. Diskzap will read/edit
five inch diskettes if the proper hardware is present. Answer this question with
"5" for a five inch diskette or "8" for an eight inch disk. The default value set
at power-up is "8".

Technical note : The standard Model II/Model 16 hardware as supplied by Radio
Shack does NOT have the needed hardware to support five inch disk I/0.
DOSPLUS and Diskzap will operate with five inch drives, but only if certain
hardware is present. If you are not certain whether or not you have such
hardware, you probably do not. If you are not certain whether or not the
hardware that you have is SUPPORTED, contact Micro Power Technical support
division for a list of currently supported five inch disk controllers.

After setting these parameters, you will be asked several questions regarding
track zero. In many systems, including DOSPLUS, track zero will differ from the
rest of the tracks on the disk regarding density, number of sectors, sector length,
etc. To avoid having to stop when accessing track zero and reset Diskzap, we
allow you to configure track zero separately.

The first question you will be asked is :

Utilities - Page Add/4

DosPLUS II - Disk Operating System - User1 s manual

TRK 0 sec/trk ?

This is requesting the number of sectors on track zero. ihe standard fer
data disks is 18 sectors single density, 30 sectors double density. For system
disks, this is 27 sectors single density. However, when viewing disks formatted by
alien systems such as CP/M, there could be variances. Answer the prompt with a
value (0-255) to indicate how many sectors there are on track zero. Remember,
pressing ENTER at one of these prompts leaves the parameter UNCHANGED. If it
was set to the default, then all is well. But if it is not, you will need to reset
it to the desired value.

The ability to configure the number of sectors on track zero separate from
the rest of the disk would be, by itself, of only limited usefulness. However,
Diskzap allows two other configuration parameters. The next one is :

TRK 0 density ?

This parameter allows you to configure the density of track zero separately
from the sector count and length. This can be extremely useful, again, in the
case of alien systems differing sector counts but the same density. Admittedly,
this is rare, but you must still compensate for it.

Reply to this with an "S" for single density or a "D" for double density.

Technical note : DOSPLUS II system disks use a single density track zero. This is
required by the ROM bootstrap loader. DOSPLUS II data diskettes, however,
format track zero as double density so that the granules not actually USED by the
bootstrap can be freed to the system for data storage. In order to avoid
confusion, a good rule to remember is :

System disk - Single density (S to S)
Data disk - Double density (D to D)

The next and final parameter to set for track 0 is

TRK 0 sec len ?

This option will allow you to use Diskzap with systems that format with
sector lengths of 128 or 256. 128 byte long sectors are the standard on Model II
DOSPLUS and TRSDOS system disks. However, certain systems may use sector
lengths other than 128 (such as DOSPLUS II data disks). You may adjust for that
here. Reply with the desired value (128 or 256). It will reject all other values.

Following your definition of track 0, you will be given the opportunity to
configure those same three parameters for all other tracks on the diskette.

Utilities - Page Add/5

DosPLUS II - Disk Operating System - User's manual

The first query is :

Sectors/track ?

Answer this query with a value (0-255) to indicate how many sectors there
are on all the remaining tracks. The standard, of course, will be 18 sectors per
track in single density and 30 sectors per track in double density.

However, there is the chance that some system could be using more or less
sectors on the track without altering the density that the floppy disk controller
works in. This parameter gives you the ability to compensate for that.

After configuring for the number of sectors, you will be queried as to the
density of the remaining tracks. You will be asked :

Track density ?

Respond to this question with either "S" for single density or "D" for double
density, depending, of course, on the density of the disk.

Once again, remember that the while the power-up default parameter is double
density, pressing ENTER leaves it unchanged. This means that if you have been
working with a single density disk and you switch to double density you MUST
reset this to "D". Simply pressing ENTER will leave it still set to single density.

The final parameter you will be asked for is :

Sector length ?

This option will allow you to use Diskzap with systems that format with
sector lengths of 128 or 256. 256 byte sectors are the standard on Model II
DOSPLUS and TRSDOS, and all TRSDOS like operating systems will more than
likely use them. However, certain systems may use sector lengths other than 256.
You may adjust for that here. Reply with the desired value (128 or 256). It will
reject all other values.

A final note on Set

When using the set option, you only need to look at as many prompts as are
pertinent to you. For example, if all you wanted to do was change the diskette's
track count, you could go to the set option and alter the tra<:k count. Then you
could press BREAK and return the command mode immediately. There is no need
to step through prompts that are irrelevent.

It is with this in mind that we have designed the set option. The parameters
we felt you were going to use the most (track count, skip option, and sector
offset) are close to the front, where you can alter them easily and then avoid the
rest of the prompts with the BREAK key.

Utilities - Page Add/6

DosPLUS II - Disk Operating System - User's manual

For the most part, when using set, you will reply with ENTER to questions
like "Sector length" and "Sectors/track". These parameters are only needed to
work with diskettes foreign to your system.

Because pressing ENTER leaves the parameter unchanged instead of re-loading
the original default, you do not need to re-enter a parameter that is set the way
that you want it. Set will retain this drive configuration for as long as Diskzap
is in operation, but must be re-configured upon each new entry of the program.

Fill [Fill sector with specified byte]

This option will allow the user to fill a sector with any particular byte that
may be desired. This is useful when it is desired to erase completely old data
from a sector without re-formatting the entire disk.

To invoke this sub-option, place the control cursor to the left of the word
"Fill" in the main menu and press ENTER.

The first question to be asked is :

Drive ?

Reply to this with the number of the drive that contains the diskette to be
operated on. Any valid drivespec will be allowed here. Remember that to work
with the secondary side of a double headed diskette, you must append a "B" to
the drive number. Appending an "A" to a drive number is valid, but is also
assumed and therefore superfluous.

After answering that question, you will be asked

Track ?

Answer this question with the track number that contains the first (or only)
sector to be filled. As with all input prompts in Diskzap, you may respond in any
number base. Decimal is the default and will be assumed. Be certain to append
the proper type specifier to any other base entries (e.g. "H" for hexidecimal, "B"
for binary, and "0" for octal).

Once the track is entered, you will be asked

Sector ?

Reply to this query with the number of the first (or only) sector to be filled.

The next prompt will be :

Sector count ?

Respond to this with a value that represents the number of sectors, beginning
with the sector specified in the preceding questions, to be filled.

Utilities - Page Add/7

/

DosPLUS II - Disk Operating System - User's manual

The final question will be :

Fill data ?

Answer this question with the byte that you wish to have the sector filled
with. This can be a one or two byte value. Pressing ENTER at this prompt will
use the default fill value, which is zero.

Example -

If you wanted to fill tracks 4 and 5 of a particular double density diskette
with the hexidecimal value "E5", you would answer the questions in the following
manner :

Drive ? 0
Track ? 4
Sector ? 0
Sector count ? 60
Fill data ? E5H

After inputting all data and pressing ENTER on the last prompt, the drive will
run and Diskzap will display the track and sector number as it fills each sector.

Copy [Copy sectors]

This function will allow you to copy sectors from one disk to another or from
one part of a disk to another. To invoke this command, place the control cursor
to the left of the word "Copy" in the main menu and press ENTER. The first
question to be asked is :

Drive ?

Answer this with the drivespec of the SOURCE drive. Next, you will be
asked :

Track ?

Answer this with the track number that contains the first (or only) SOURCE
SECTOR. This is the sector that is to be copied (or the first of many, whichever
you desire). After answering that question, you will be asked :

Sector ?

This is prompting you for the number of the first (or only) SECTOR TO BE
COPIED. Once you have input that, you will be prompted for :

Drive ?

This time it is seeking the drivespec of the DESTINATION DRIVE (the drive to
which you wish to copy).

Utilities - Page Add/8

DosPLUS II - Disk Operating System - User's manual

The next prompt is

Track ?

Answer this with the number of the track· on the destination drive that
contains the first (or only) DESTINATION SECTOR.

After answering that, you will be queried :

Sector ?

This is prompting you for the number of the first (or only) SECTOR TO
COPIED INTO. It does NOT necessarily have to be the same as the source sector
(i.e. you can copy the last two sectors of track 4 on drive 0 into the first two
sectors of track 7 on drive 1).

The last piece of data required will be

Sector count ?

This prompt is seeking the number of sectors that you wish to copy.

Technical note : Please remember that when you are using COPY, you are defining
a "block" of sectors. You specify the starting point of this block on both the
SOURCE and DESTINATION drives. The "sector count" prompt allows you to
define the length of the block. Pressing ENTER will copy only a single sector.
But, it must be a CONTIGUOUS block. You are copying sequentially from the
source sector to the destination sector for the number of sectors you specify.
What this means is, if you wish to copy 50 sectors, skip 200, and copy 50 more,
you will have to copy each block of 50 separately. You may, if you wish, locate
them beside each other on the destination drive, but they must be copied
independantly.

Example -

If you wished to copy track 2, sector 5 of drive 0 in to track 3, sector 12 of
drive 1, you would answer the prompts in the following manner :

Drive ? 0
Track ? 2
Sector ? 5
Drive ? 1
Track ? 3
Sector ? 12
Sector count ? 1

Utilities - Page Add/9

DosPLUS II - Disk Operating ·System - User's manual

If you wished to copy an entire DOSPLUS II, 77 track data diskette from
drive 0 to drive 1, you would answer the prompts in the following manner :

Drive ? 0
Track ? 0
Sector ? 0
Drive ? 1
Track ? 0
Sector ? 0
Sector count ? 2310

After answering the "sector count" query and pressing ENTER, Diskzap will
begin the copy. When copying sectors, Disk zap will seek to read in as many
sectors as it can (up to one complete track) before writing them, as opposed to
reading and writing a single sector at a time.

When copying a single sector, there will be no opera tiona! difference.
However, when copying more than a track (especially an entire disk), it makes
LARGE difference. Diskzap will also displays the track and sector number of
each sector as it is copied (both the SOURCE sector as it is read and the
DESTINATION sector as it is written).

If Diskzap encounters an error during the sector copy routine, it will pause
and display the error discovered. It will also ask if you wish to continue. It
would then write as much of the source sector as it could read into the proper
destination sector and proceed from there. This will allow you to copy as much
data as is absolutely possible from a disk without having to work around known
bad sectors. This "proceed after error" feature becomes a key one in repairing
blown diskettes. If you can copy a complete track save one sector, then you have
only lost 256 bytes of data as opposed to potentially much more.

Utilities - Page Add/10

DosPLUS II - Disk Operating System - User's manual

Print [Print hardcopy of selected sectors]

This command will create printed copy oi the contents of specified sectors.
You may, of course, obtain hard copy of one sector from the display mode by
using your particular machine's screen print function (<control "-">). This can be
tedious for multiple sectors, however, and that is where print is used.

To invoke this option, position the control cursor to the left of the word
"Print" in the main menu and press ENTER.

The first question asked will be :

Drive ?

Answer this with the drivespec of the drive that contains the first sector to
be printed. Next you will be asked :

Track ?

Answer with the number of the track that contains the first (or only) sector
to be printed. Following that, you will be queried :

Sector ?

Enter the number of the first (or only) SECTOR TO BE PRINTED. Finally,
you will be prompted :

Sector count ?

Reply to this with the number of sectors that you wish to print. Remember,
just as with copy, you are dealing with contiguous blocks ONLY! You may not
print 5 sectors on track 0 and then 5 on track 11 without printing them both
independantly of one another.

Example -

In order to print out all the directory sectors (assuming the directory was on
track 26 or lA hex) from the double density diskette in drive 0, you would :

Drive ? 0
Track ? 26
Sector ? 0
Sector count ? 30

As each sector is printed, it will be displayed on the screen. You may tell
by examining the track and sector indicators in the upper left hand corner of the
screen which sector is currently being printed.

Technical note : Diskzap does NOT check for printer ready status. If you engage
the print option and there is no printer available, Diskzap will simply "lock up"
and force you to either make a printer available or reset the machine.

Utilities - Page Add/11

DosPLUS II - Disk Operating System - User's manual

Verify [Read and check specified sectors]

This option will allow you to read and verify any specified setors on the disk.
It will check each sector for accuracy by verifying the CRC byte. If it
encounters an error, it will pause with the correct error message. Pressing
ENTER will cause it to continue verifying.

To invoke this option, as with any other, position the control cursor to the
left of the word "Verify" and press ENTER. The first question asked will be :

Drive ?

Reply to this question with the drivespec of the drive that contains the
diskette that you wish to verify. The next question asked will be :

Track ?

This is prompting you' for the track number that contains the sector you wish
to begin verifying at. When verifying an entire diskette, you may press ENTER at
this prompt to select track 0. After answering that, you will be asked :

Sector ?

This is asking you for the sector number on the above specified track that
you wish to begin verifying at. This would allow you to begin verifying with the
last two sectors of track 5. Following that, you will be prompted :

Sector count ?

This is seeking the number of sectors you wish to verify. Remember, if you
specify more sectors for a disk than you have configured for in "Set", it. will wrap
around from the last configured track and begin again at track 0, sector 0 and
continue from there. That is why it's important to configure for the correct
track count before beginning with any diskette.

For your convenience in verifying entire diskettes, here are some full disk
verify sector counts

DOSPLUS II System disk - 2307 sectors
DOSPLUS II Data disk - 2310 sectors

While you are verifying a diskette, you may abort and return to the main
menu by holding down the BREAK key.

Examples -

If you wanted to verify your Model II DOSPLUS system disk in drive 1, you
would answer the prompts in the following manner

Drive ? 1
Track ? 0
Sector ? 0
Sector count ? 2307

Utilities - Page Add/12

DosPLUS II - Disk Operating System - User's manual

If you wanted to verify your Model II DOSPLUS track data diskette in drive
2, you would answer the prompts in the following manner :

Drive ? 2
Track ? 0
Sector ? 0
Sector count ? 2310

Once you have answered the final question and pressed ENTER, Diskzap will
begin reading the specified sectors. It will display the track and sector number as
it verifies each sector. As each sector is read, the CRC value is calculated and
checked and any errors reported. If it detects any non-standard data address
marks, Diskzap will pause on that track and sector and print the message
"AM/WRITE FAULT!". This message serves to indicate that a non-standard data
address mark was found.

Pressing ENTER will proceed with the verify. Even though Diskzap paused
with the data address mark, the sector's CRC byte was checked and a complete
verify was done. The CRC byte and its function is explained in the "General
notes and conventions" section of this manual.

Format [Format a selected track or tracks]

This sub-option allows you to format a track or series of tracks. You may, if
you wish, use it to reformat a track somewhere in the middle of a disk to repair

~ a non-readable sector. To invoke this option, position the control cursor to the
left of the word "Format" in the main menu and press ENTER.

The first question is :

Drive ?

This is prompting you for the drivespec of the drive that contains the disk
you wish to format a track on. After answering that, you will be queried

Track ?

Respond to this with the number of the track at which you wish to begin
formatting. The next question is :

Track count ?

This is seeking the information as to how many tracks you desire to format.
Pressing ENTER at this prompt will default to one track.

The final prompt is :

Interleave factor ?

This is prompting you for the sector interleave factor. Diskzap, if formatting
more than a single track, will implement true DISK interleving.

Utilities - Page Add/13

DosPLUS II - Disk Operating System - User's manual

Technical note : Disk interleaving is simply a factor that controls how the diskette
is formatted. It concerns the sequence in which the sectors are numbered on the
track. MicroPower has done extensive research into disk interleaving and arrived
at the optimum value for the interleave factor on standard hardware (interleave
factors can be affected by processor speed). We recommend an interleave factor
of 3 in double density and an interleave factor of 2 in single density. These are
the values used by our standard floppy disk formatter utilities. However, for
special applications, you may desire to change this. This parameter allows you to
do that.

Examples -

If you wanted to repair track 10 of your Model II double density data
diskette, you would first copy what sectors were readable onto either another
diskette or a free track on the same disk. Then you would answer the prompts in
the following manner :

Drive ? 0
Track ? 10
Track count ? 1
Interleave factor ? 3

That would format the track. After re-copying the old data onto it, the
track would be as close to repaired as it was going to get. This technique can
often be used to rescue a file, losing only a sector or two (at most an entire
track), and possibly saving thousands of records and hundreds of man-hours.

After answering the last prompt and pressing ENTER, Diskzap would begin
formatting. It will display the track number it is formatting as it proceeds. We
elected not to increment the sector number on the display because the formatter
proceeds so fast that it only slowed it down to display such a number. Therefore
the sector number will always be zero and only the track number will increment.

Technical note : Diskzap's formatter does NOT write system data (a boot-strap and
a directory) to the disk. This formatter was designed for use within Diskzap. A
diskette formatted by Diskzap is NOT ready to receive data in most standard
applications. For that, you must use the FORMAT utility included with DOSPLUS.

Display [Display or modify diskette sectors]

This is perhaps the most often used option in Diskzap (followed closely by
Verify), because this is the heart of any disk editor, the edit mode. Diskzap uses
a full screen editor that has cursor wraparound.

To invoke this sub-option, position the control cursor to the left of the word
"Display" in the main menu and press ENTER.

Utilities - Page Add/14

DosPLUS II - Disk Operating System - User's manual

The first question you will be asked is :

Drive ?

Answer this query with the drivespec of the drive that contains the diskette
with the sector you wish to display/modify. The next question is :

Track ?

This is prompting you for the number of the track on the disk that contains
the sector you wish to examine.

The final question is :

Sector ?

Reply to this with the number of the sector you wish to display.

After typing in the sector number and pressing ENTER, you should see a
display that looks something like this :

270200: ClCD 831D C03E 1BB7 C93E FF12 OEOO 4679 •.•• >.7.> •••• Fy
270210: CD9E 1D28 071A C620 120C 18F3 79CD ABlD •. (•••••.. y.+.
270220: B677 lDlA 3C20 027D 121C 1A3C 12CI OBCS 6w .. < .} ••• < ••.•
270230: 78Bl C2FO lCCl 3EOO 47E6 E06F 261B CB66 xl .••• >.G .• o& .. f
270240: 2004 3E18 B7C9 DD4E lOCD 401E COCP 2703 .>.7 .• N •. @ ••. ' ..
270250: C9E6 0707 0707 F640 32A9 lDCB 40C9 E607 ••••••• @2) •• @ ••.
270260: 0707 07F6 C732 B71D AFCB C7C9 DD4E lOCD ...•• 27./ N •.
270270: 541E CODD 7Ell CDlO 1E3E lECO 457D 320B T.,,,,,,),,E}2.
270280: 1E54 DDSE lllA 77CD 661E COCD 2403 C036 .T.A •• w.f •.• $ •• 6
270290: 902C C53A 8410 772C 0614 3600 2Cl0 FBES ,.:.w, •• 6., •••
2702AO: 060A 36FF 2C10 FBDl 13Cl CD27 03CO 3A01 •. 6. , •••••• ' ••..
2702BO: 7EFC 1084 1D47 CD24 03CO 7DC6 1E6F 36FE ••• G.$.. } •• o6.
2702CO: 2C36 OOCO 2703 C96F CD17 1EC8 2EOO 7EB7 ,6 •. ' .• o ••.••• 7
270200: C83E 2085 6F30 F7FD 7E11 0603 2CBD 30EE .>oO ••••• ,=O •.•
2702EO: F6FF C9CS DSES 0600 lEOO 2100 203E 06D7 ••••...••• ! ...••
2702FO: ElOl C1C8 3E14 C9C5 OSES 0600 lEOO 2100 •••• > •.••..••. !.

The first item to notice is in the left hand column of the display. You will
see six characters followed by a colon. The first two characters are the TRACK
NUMBER (displayed in hexidec1mal format). The second two characters are the
SECTOR NUMBER (also displayed in hexidec1mal format). The final two characters
are the BEGINNING BYTE INDICATORS. Each one of those indicates the number
of the first byte in that row. Then there are rows of 16 bytes each (10 hex).
This is the HEXIDECIMAL DISPLAY AREA. These are set in groupings of two
bytes, such that you have eight columns of two separated by spaces. Immediately
to the right of the hexidecimal portion of the sector display is the ASCII
DISPLAY AREA. There are 16 ASCII characters on a row corresponding to the
bytes in the hexidecimal display row immediately to its left. Non-ASCII characters
will be displayed as periods.

Utilities - Page Add/15

DosPLUS II - Disk Operating System - User's manual

Options -

At this point, you have several options, each of which is controlled by a
single keystroke. They are

Key Function

+

=
BREAK
M

Increment display position one sector
Increment display position one track
Decrement display position one sector
Decrement display position one track
Return to main menu
Enter modify mode

If you select "M" to enter the modify mode, the display will change slightly
and you will have several other options.

If Disk zap encounters an error during a sector read in the display mode, it
will pause and display the error discovered. It will also ask you if you wish to
continue. If you respond "Y", it will display as much of the sector as it could
read. You may then enter the modify mode and make any corrections possible
before re-writing it. The sector will be re-written to the disk reflecting any
corrections you may have made. That means there will no longer be a read error
from system level. It does not mean that the data is now 100% correct. It is
correct only to the level that were able to repair it, but it will read as it is now
without an error. This "continue after error" feature will allow you to rescue bad
sectors in part or in whole, where otherwise you would have had no chance of
recovering the data.

Modify mode -

When you enter the modify mode, a reverse video cursor will appear over the
byte in the upper left hand corner. You move this within the sector by using the
arrow keys. Whatever byte is currently highlighted in reverse video, that is
referred to as the CURRENT CURSOR LOCATION. This is the byte that will be
affected should you enter a change.

Options -

At this point, you have several options, each of which is controlled by a
single keystroke. They are :

Utilities - Page Add/16

DosPLUS II - Disk Operating System - User's manual

Key

right arrow
down arrow
left arrow
up arrow
BREAK

ESC

ENTER

z

Function

Increment cursor position one byte
Increment cursor position one row
Decrement cursor position one byte
Decrement cursor position one row
Aborts modify mode and returns you to
the main menu without re-writing the
sector. Restores original contents.
Aborts modify mode and returns you to
the display mode without re-writing
the sector. Restores original
contents.
Complete modification and returns you
to the display mode after writing the
modified sector to the disk.
Fills sector from current cursor
position to the end of the sector with
zeros "00".

When in the modify mode, only valid hexidecimal characters
commands (the arrow keys) will be accepted, all others will be ignored
"Z"). All hexdedmal letters (i.e. A-F) must be entered as capitals.

or motion
(except for

When you finish modifying one byte, the cursor will move onto the next. If
/-----. that was that last byte of a row, the cursor will move onto the first byte of the

NEXT row. The only exception is the last byte of the last row. After modifying
it, the cursor will stay right where it is. To begin with the next sector, write
this one back to the disk with ENTER, advance to the next sector with ";", enter
the modify mode again with "M", and return to modifying.

General notes and conventions

When Diskzap prompts you for a track number or a sector number, these
values must always be entered in any acceptable base. Simply remember to
append the proper base specifier to the end of any non-decimal entries. Consult
the DOS Operations section for further details on this. Before you begin editing
your diskettes directly, you should at very least be familiar with hexidedmal
notation.

When Disk zap prompts you for track count, sector count, or something similar,
these values can also be entered in any base.

Any prompts that are seeking data such as "Fill byte" will require a value
either one or two bytes in length. For the sake of simplicity, you should enter
these in hexidedmal format. However, you may use any valid base here also.

Utilities - Page Add/17

DosPLUS II - Disk Operating System - User's manual

Always, when you are prompted for "Drive ?", if you wish to operate on the
secondary side of a double headed diskette, append a "B" on to the drive number.
For example, the secondary side of drive 1 would be lB. The same sector
numbers are used again on the second side, therefore you must have some method
of indicating to Diskzap with side you are referring to.

Whenever Diskzap prompts you for anything, it will always have a default
value. You obtain this default value by simply pressing ENTER in response to the
prompt.

In the case of "Set", the default value is the current setting. In other words,
there is no consistent default value. It will simply leave the current setting
unchanged. This allows you to "skip ahead" and change only the desired parameters
by pressing ENTER when the currently displayed parameter doesn't need to be
altered. This is explained in the "Set" portion of the manual.

In the case of all the other parameters, the default value will always be one
of two things, depending upon the type of question.

In the case of a "count" question, such as "Track count" or "Sector count",
the default will be one (1), the lowest possible unit. For example, if you are
formatting a disk using "Format" and you press ENTER at the track count prompt,
it will format one track. If you are copying sectors and press ENTER at the
sector count prompt, it will copy over one sector.

In the case of a "location" question, such as "Track" or "Sector", the default
will be whatever the beginning of first number would be. For example, when it
asks for the drive and you press ENTER, you get drive 0. If you are asked for ~
the track number and you press ENTER, you would get track 0. If you are asked
for sector number and you press ENTER, you would get whatever the first sector
number is (0 or 1, depending upon the sector offset).

The one exception is the "Fill data" prompt in "Fill". It is neither a count or
a location question. Its default value is "00".

~RC bytes -

CRC (cyclic redundancy check) is calculated by running all 256 bytes of
information in a sector through an algorithm which produces a two byte value for
that data. This is stored in the sector ID field during a write. During a read,
the same calculation is done. If the calculated value does not match the stored
value, then an error has occurred. Because of the way a CRC is calculated, it
gives you an exact check of your data. If even ONE BIT has changed, the CRCs
will no longer match, and an error will result.

Utilities - Page Add/18

DosPLUS II - Disk Operating System - User's manual

DRAW

DRAW is a utility program for generating screen displays using the Model ll' s
graphics characters.

==========================~========~==~======================================

The command syntax for invoking ORA W is:

DRAW

==~==============

DRAW is a graphics screen editor utility which will allow you to generate screen
displays of mixed text and graphics and save the displays to disk. Screen displays
saved to disk may be recalled at any time for further editing.

ORA W uses the alphabetic keys of the keyboard to generate each of the graphics
characters. The correspondence of keys to graphics characters may be viewed by
invoking the "help" frame with CONTROL-9. Pressing any of the alphabetic keys wiJJ
place the corresponding graphics character on the screen at the current cursor
position. If the key is held down, it will' begin to repeat. Movement of the repeating
keys is always left to right.

The cursor is positioned by means of the numeric keypad. The numeric keys are also
used to invoke ORA W mode, which will draw a line on the screen as the cursor is
moved; ERASE mode, which will reset whatever graphics are on the screen that the
cursor moves over; and SKIP mode, which will allow the cursor to move across the
screen without affecting any graphics designs in its path.

Cursor direction is determined from the following pattern (on the numeric keypad):

8
If. 5 6

2

That is, holc;ling 8 will move the cursor in an upward direction (toward the top of the
screen), If. will move it left, 6 will move it right, and 2 will move it down. Pressing 5
will cause the cursor to be moved to the "home" position in the upper left of the
screen.

Utilities - Page 179

DosPLUS II - Disk Operating System - User's manual

The other numeric keys are used as command keys, as follows:

7

9

1

3

Switches DRAW mode on.
Graphics blocks beneath the
curs<;>r will be turned ON and
left on.

Switches SKIP mode on. The
status of any graphics blocks
(on/off) that the cursor moves
over will be left unchanged.

Switches ERASE mode on. If any
graphics blocks are turned on,
moving the cursor over them
while in ERASE mode will turn
them off.

Toggles between TEXT and
GRAPHICS modes. While in
TEXT mode, the keyboard
functions normally, and
alphanumeric text will be placed
on the screen at the current
cursor position.

The following keys are used to save and load the graphics screen to disk:

<
>

Loads graphics screen from disk.
Saves graphics screen to disk.

The graphics screens are saved onto a file called ORA WSAVE on drive 0.

Utilities - Page 180

DosPLUS II - Disk Operating System - User's manual

FORMAT

This utility allows you to organize a diskette and prepare it to receive data.

===
The command syntax is :

FORMAT drivespec {param=exp ••• }

Your parameters are :

"drivespec'' specifies the drive containing the
disk to be formatted. If this is not given at
the command line, FORMAT will prompt for
it.

"param" is the optional action parameter that
modifies the effect of the command.

11exp11 is the optional expression that indicates
the function of the parameter.

DA TE="stringn Allows you to set the format
date from the command line.
This should be expressed as a
quoted literal up to eight
characters in length. You are
not restricted to numeric input.
If this is not given in the
command line and the system
date is not set, FORMAT will
prompt you for it.

PASS="string" Disk Master Password. This

NAME="string"

CYLS=value

parameter allows you to specify
the Disk's master password from
the command line. This should be
expressed as a quoted literal up
to eight characters in length.

Allows you to specify the disk
name from the command line.
This should again be expressed
as a quoted literal and may be
up to eight characters in length.

Number of cylinders. This allows
you to specify the number of
cylinders to format the disk to.
This should be expressed as a
numeric value, not a quoted
literal.

Utilities - Page 181

DosPLUS II - Disk Operating System - User's manual

SIDES= value Number of sides. This allows you
to specify single or double
headed format from the command
line. This should also be
expressed as a value (either 1 or
2), no quotes are needed.

TDEN="string" Track density. This parameter
allows you to specify the format
density from the command line.
It should be expressed as a
single character quoted literal.
Either an "S" for single density
or a "D" for double.

USE=switch This allows you to override the
prompt "Diskette contains data,
Use or not?" that appears when
the disk to be formatted is not
blank. This is your only warning,
so using this parameter can be
d a n g e r o u s i f used wit h o u t
caution. This parameter should
be expressed as a switch (either
ON, OFF, Y, or N.). Since it
defaults to "Y", though, simple
inclusion of i the word "USE" or
the letter "U" in the command
line is enoukh to override the
prompt. '

The default values will be obtained by pressing ENTER when prompted for one of
the above. You will be prompted for any fields not filled from the command line. The
defaults are :

DATE
PASS
NAME
CYLS
SIDES
TDEN
USE

Abbreviations :

DATE
PASS
NAME
CYLS
SIDES
TDEN
USE

01/01/80
No password
No name
77
1
Double density
No

D
p

N
c
s
T
u

======~=============~==

Utilities - Page 182

DosPLUS II- Disk Operating System - User's manual

The FORMAT utility is used to organize the diskette into tracks and sectors and
prepare it to receive data. You will use this both in formatting new disks and in
''starting over" with a clean slate on old ones. All disks must be formatted before they
can be used by the system. If is NOT, however, necessary to format a disk before
backing up to it (see the utility program BACKUP). BACKUP will format the
destination disk if it is blank.

The disk to be formatted may be either blank or contain data. If you format a disk
that already contains data, any data on that disk will be permanently lost. When you
format a disk, DOSPLUS II will check the disk for flawed granules. If it discovers any
areas of the disk during format that are bad, it will "lock out" those areas and
prevent the system from attempting to use them.

To format a disk, type "FORMAT" from the DOS command mode and press ENTER.
The first message to appear will be :

Target drivespec ?

Enter the drivespec of the drive that contains the disk you wish to format. You will
then be asked :

Diskette name ?

Enter the name you wish to assign to that disk. Any characters are legal (numeric
or alphabetic). You have a maximum of eight characters. Following that, you will see :

Format date ?

Enter today's date. You may, if you wish, use this field for something else. It will
be displayed whenever you execute a CAT, DIR, or FREE upon that disk. DOSPLUS II
doesn't use the disk date for anything, so this area is free for you to use. Eight
characters maximum. May be alphabetic or numeric. After entering this, FORMAT will
prompt you :

Master password ?

Enter the desired Disk Master Password. This password will be used for a variety of
functions later. Pressing ENTER will default to "null password", but from then on you
will not be able to assign effective file protection. The Disk Master Password will
always override the file password. If a Disk Master Password is NOT set, then
specifying no password will ALWAYS get you into a file. We therefore recommend
that the Disk Master Password always be set. Maximum of eight characters. Once you
have answered that prompt, you will see :

Number of cylinders (35-96) ?

Enter the number of cylinders you to which you wish to format the disk. The
standard floppy disk drives will be 77 cylinders. If you are using RFORMA T to format
the hard disk (discussed later), this value will vary greatly. Enter the number of
cylinders desired or press ENTER to default to 77. After that, you will be queried :

Utilities - Page 183

DosPLUS II - Disk Operating System - User's manual

Number of sides ?

Enter "1" for single sided (Model II) drives or "2" for double sided (Model 16) drives.
Remember that single or double sided is limited by your drive hardware. Simply
answering this prompt "2" in the Model II is NOT going to give you a double sided
disk. After answering this, you will be asked

Single or double density ?

Enter "S" for single density or "D" for double. Both Mode! II and Model 16 use
double density disk drives. Pressing ENTER defaults to "D". DOSPLUS II formats 18
sectors per track in single density and 30 in double.

After you have answered all these questions, DOSPLUS II will proceed with the
format. If the diskette was not blank, you will be warned

Diskette contains data, use or not ?

Enter "Y" to proceed or "N" to abort. Pressing BREAK will also abort.

If the disk was blank, or you have signalled FORMAT to use it anyway, you will see
the track number displayed as first they are formatted and then verified. When the
procedure is complete, you will see :

Insert SYSTEM disk (ENTER)

flashing on the screen. Make certain that a system disk is inserted and then press
ENTER to return to DOSPLUS II.

Any of those questions that you answered from the command line via the parameters
listed would not have been asked. FORMAT only prompts for what it doesn't know. If
the system date is set, the "Format date" question will not be asked.

RFORMAT

DOSPLUS II includes a utility called RFORMA T that is used to format the rigid
drives (hence the name RFORMAT). It functions identically to the standard floppy
disk formatter with two exceptions.

First, instead of limiting you to 96 cylinders, it will allow values from 35 to 200.
200 cylinders is the maximum allowed for any single volume of the hard drive.
Therefore, you will enter the correspondingly larger number.

Second, the question "number of sides?" is now "number of surfaces?" and is
referring to the number of read/write surfaces available. The standard Radio Shack
8.4 megabyte hard disk (Cat. II 26-4150/51) has 4. Also, the question regarding density
will not be asked. There are no varying densities in rigid drives.

Utilities - Page 184

DosPLUS H - Disk Operating System - User's manual

Examples:

FORMAT

This wi11 call the format utility without specifying any parameters. FORMAT will
load and prompt the operator for all information.

FORMAT :l

This accomplishes the same as the above example, except that it furnishes FORMAT
with the number of the drive to be formatted. Therefore, this information will not be
prompted for.

FORMAT :2 {DA TE="OCT",PASS="PW",NAME="Dl'',CYLS=77,SIDES=l ,TDEN="D",USE=Y}
FORMAT :2 {D="OCT'',P="PW",N="Dl'',C=77,S=l, T="D",U= Y}

FORMAT :2,D='0CT' ,P='PW',N='Dl' ,C=77,S=l,U

These three commands will produce the same results. They will format the disk in
drive 2 without prompting the operator for any further information, even if the disk is
not blank.

RFORMAT :4 {N="DRIVE A",D="l0/19/82",P="PASSWORD'',C=200,S=4,U}

In this example, we are formatting the hard disk ":5" for 200 cylinders using 4
surfaces. The drive will be formatted without further input regardless of whether or
not it contains data already.

Finally:

Remember, when using FORMAT and RFORMA T, any data that exists on a disk is
lost when the disk is re-formatted. Please be careful not to accidentally destroy
valuable data.

RFORMA T is used to format the rigid drives ONLY. FORMAT is used to format the
floppy drives ONLY. Please only use the correct program for your drive. For further,
more detailed instructions on installing the DOSPLUS II system on a hard disk, see the
utility program SYSGEN.

When using RFORMA T, the parameters given at the start of this utility for
FORMAT are still valid. Simply use the "Size" parameter for the number of surfaces
and specify the correct number of cylinders with the "Cyl" parameter.

Utilities - Page 185

DoSPLUS II - Disk Operating System - User's manual

HELP

HELP is a utility which displays information about the DOSPLUS II library
commands.

===

The command syntax for invoking HELP is:

HELP library-command

===
HELP provides on-line information about syntax and parameters for the DOSPLUS II

library commands. When entered with a library command for an argument on the
command line it will display several lines of information about that command. The
command syntax will be displayed, followed by the parameters. Abbreviations for the
parameters will also be given.

To display a list of the commands for which HELP is available, simply enter HELP
without any argument.

Utilities - Page 186

DosPLUS II - Disk Operating System - User's manual

MAP

MAP is a utility program which will display the sectors occupied by a particular file
when given a filespec, or the free/allocated status of each granule on a specified
diskette when given a drivespec. It will also display which file a particular sector is
assigned to.

===
The command syntax for invoking MAP is:

MAP filespec
MAP :dr
MAP :dr,xx,yy

where "filespec" is the file to be MAPped,
and :dr is the drivespec where the diskette to
be mapped resides. "xx" and "yy" are cylinder
and sector numbers, respectively.

===
MAP is a utility program which can locate files on a diskette or logical drive (on a

hard drive system). Given a filespec, it will display directory information for that file,
as well as the cylinders and granules that the file occupies. Given a drivespec, it will
display a map of the free and allocated granules on that disk. If a cylinder and sector
number are given with the drivespec, then MAP will display the name of the file

r' which that particular sector is assigned to, if any.

When a filespec is given as an argument to MAP, the following information will be
displayed for that file: the file's directory entry code (DEC), its logical record length
(LRL), its end-of-file byte (EOFB) and end-of-file sector (EOFS), followed by a display
of the track numbers and granules assigned to it. For example:

TEST/CMD - DEC=96H LRL=256 EOFB=OOH EOFS=0010
44, 20- 24 44, 25 -29

The first line displays the file name and directory information regarding the file. The
second line indicates which cylinders and sectors are occupied by the file.

When MAP is used with a drlvespec alone, then a map of the GAT table is
displayed. Granules allocated to files are marked with a lowercase "x" beside them,
free granules are marked with a "·" (period), and the directory cylinder is indicated
with a "D." Any locked-out granules are marked with an "L." This is very similar to
the FREE library command's map.

Utilities - Page 187

DosPLUS II - Disk Operating System - User's manual

MAP can also be specified with a drivespec, cylinder number and sector number, for
example, MAP :0,17,0. This tells MAP to examine drive :0, cylinder 17, sector 0 and
determine which file it belongs to. If the sector in question is assigned to a file, it
will display:

BASIC/CMD (d Relative Sector 00024

indicating that the sector in question is assigned to the file BASIC/CMD and is the
24th relative sector of that file.

If the sector has not been allocated to any file, MAP will display the message:

Sector NOT ASSIGNED.

MAP is useful for determining disk utilization as well as for locating a particular
file on disk prior to examining it directly using the DISK ZAP utility.

Utilities - Page 188

\.

DosPLUS II - Disk Operating System - User's manual

OFFSET

OFFSET is a utility which can identify the load addresses of a particular file, or
offset a file so that it loads into another memory location from where it normally
goes. Optionally, an appendage may be added to such a file to move it back to its old
location prior to executing.

===

The command syntax for invoking OFFSET is:

OFFSET [FROM] channel! [[TO] channel2] {param, param}

where channel! is the file to be read or
offset, channel2 is the optional filespec for
the offset file, and param is an optional
parameter.

The parameters for the OFFSET utility are:

READ

SHOW

OFFSET =address

APPEND

Read only mode. Do not alter
specified file.
Display load blocks of specified
file.
Offset specified file so it loads
into "address."
Add appendage routine to
block-move an offset file to its
old location after loading.

The parameters may be abbreviated to their first letter.

===
OFFSET is a utility which can display the address locations where a machine

language file loads into, and also change the load addresses of a machine language file
so that it loads at another location. This is useful when two files which occupy the
same memory locations must be loaded together. OFFSET can also add an appendage
routine which will block-move the file from its new load point to its former load
address for execution.

When changing the load addresses of a file, OFFSET will scan the command line for
the presence of two filespecs. The filespec in the FROM field is then used as the
source file, and the relocated program is written into the filespec in the TO field of
the command line. If no extension is given, /CMD is assumed for the destination file.
If only one filespec is given on the command line, OFFSET will write the relocated
program back into the same file.

If no filespecs are specified, then OFFSET will return with an asterisk prompt ("*").
At this point you may type in the required information.

Utilities - Page 189

DosPLUS II - Disk Operating System - User's manual

The {READ} parameter places OFFSET in read-only mode. In this mode, OFFSET will
read a file and display its starting address, ending address, and the number of "load
bytes" -- bytes actually loaded into memory. If the file has a transfer address, that is,
it can be executed by the system after loading, a second line on the display will show
the this address. If the file does not have a transfer address (it is not executable by
the system immediately after loading) this second line will not be displayed. All
address values are given in hexadecimal.

The READ parameter inhibits OFFSET from writing a file back out to disk.
Therefore if the command

OFFSET BASIC/CMD TO NEWBASIC/CMD,R

is given, the second filespec "NEWBASIC/CMD" will be ignored.

The {SHOW} parameter displays the starting and ending addresses of each load block
of a file. Load-module format files usually consist of several blocks of 256 bytes or
less, preceded by a loader code and a two-byte address which tells the system loader
where that block is to go in memory. OFFSET will read a file and display the
addresses for each load block. For example,

BLOCK LOADS FROM 2200H TO 22FEH
BLOCK LOADS FROM 22FFH TO 2350H
BLOCK LOADS FROM 2475H TO 256EH

If the SHOW and READ parameters are given together, the READ display as described
in the preceding paragraph will appear after all the block addresses have been
displayed.

The {OFFSET =address} parameter allows you to specify a new starting address for
the file. All the load block addresses will be changed to reflect the new starting
address. The transfer address, if present, will also be changed. If a destination
filespec was given, the new program will be written out under that name. Otherwise it
will be written out under the same name.

Note that the OFFSET utility will NOT alter the program itself. It only alters the
locations where the program loads. Thus, if a machine language program contains
branches to absolute memory locations (e.g., JP 2204H), these will remain unchanged,
and executing the program in its new location will more than likely have unexpected
results.

The {APPEND} parameter will add a 22-byte routine, called an appendage, to the
offset file. This routine will save all the primary Z-80 registers on the stack,
block-move the program back to its original load address, then jump to the program's
transfer address. This permits the creation of a file that will load at a different
location from its execution address, and still execute properly.

Utilities - Page 190

DosPL.US ll - Disk Operating System - User's manual

The OFFSET utility can also be used to correct the EOF offset of certain program
files. On some files, the EOF byte in the directory entry does not point to the actual
last byte of the file, but to some point beyond it. An example of this is a file whose
EOF pointer in the directory is on a sector boundary but whose actual last byte is in
the middle of the sector. The command OFFSET filename without any parameters will
cause a file to be read in and written back out under the same filename, with the
EOF byte in the directory entry now pointing to the proper location. It may be
necessary to do this to some files before the APPEND library command of DOSPLUS II
can be used properly.

Examples:

OFFSET MEM/CMD!O,R,S

OFFSET will read the file called MEM/CMD, display the addresses of each load
block, and at the end display information about starting and ending address of the
file, the number of bytes loading into memory, and the transfer address, if any.

OFFSET BASIC/CMD,OFFSET :9000H,A

The load addresses of the file BASIC/CMD will be changed so that it starts loading
at 9000H. In addition, the block-move appendage will be added to the file so that
after loading at 9000H, it will be relocated to its normal load address and executed.
The offset file will be written back out as BASIC/CMD, replacing the old file.

OFFSET TBAR/CMD 2BAR {0=571FH}

The load addresses of TBAR/CMD will be offset so that the program loads at
571 FH. The relocated file is written back out to disk under the filename 2BAR/CMD
(OFFSET supplies a default filename of /CMD).

OFFSET

The OFFSET program will return with an asterisk prompt ("*") and wait for the user
to type in the necessary information before proceeding. If the BREAK key is pressed,
the program will terminate.

Utilities - Page 191

DosPLUS. II - Disk Operating System - User's manual

PATCH

PATCH is a utility program which is used for making minor changes to disk files.

===
The command syntax is:

PATCH file! file2 [{PULL}]
PATCH file!

where file 1 is the filespec of the file to be
patched, file2 is the filespec of the file
containing the patch data, and PULL is an
optional parameter.

==·=====
PATCH allows you to make changes to disk files in a convenient manner. It is

normally used for making changes to command files (files in load module format);
however it can be used to change any kind of file. PATCH will assume an extension of
/CMD for the target file if one is not provided.

PATCH data is usually placed in a separate file which may be prepared with the
BUILD command or with a text editor. This file may be given any valid file
specification; PATCH will assume an extension of /PAT if one is not explicitly given.

PATCH Command Syntax:

The syntax for the Patch utility is as follows:

PATCH filel file2

where file 1 is the target file (file to be patched), and file2 is the /PAT file
containing the patch information. After the patches have been successfully applied,
PATCH will display the message:

Patch(s) installed

to inform you that the patch information has been placed into the target file. If file2
is not present on any mounted disks, Patch will abort with an error.

PATCH File Syntax:

Patch files may have three kinds of lines: Comment lines, null lines, and patch data
lines.

A comment line is one which begins with a period (".") as its first character and
terminates with a carriage return. PATCH will ignore such lines, and they are
provided for the user's benefit, so he can document his patches. For example,

.This is a comment line

Utilities - Page 192

DosPLUS II - Disk Operating System - User's manual

A null line is a line which consists of nothing but a carriage return. PATCH will
/"'-, also ignore such lines, and they may be used to separate patch data lines into blocks

for better readability.

Patch data lines contain the information that the PATCH utility uses in changing
the target file. There are two kinds of patch data lines:

1) ADDRESS-ORIENTED lines, and
2) SECTOR-ORIENTED lines.

ADDRESS ORIENTED Patch Lines

This type may be used only to patch files in load module format. The syntax of the
patch line is:

A=aaaa D=bb cc dd ..••

The "A=" characters must begin each patch line of this type. They are followed by the
address to be patched. The address may be specified in any of the numeric bases
accepted by DOSPLUS II so long as they follow the correct format Oe, trailing "H" for
hexadecimal numbers, trailing "0" for octal numbers).

Following the address and separated from it by a space are the characters "D=",
followed by HEXADECIMAL digit pairs or strings enclosed in single or double quotes
which represent the actual patch data. Digit pairs may be strung together or may be
separated by spaces for readability. For example, if we wanted to patch a program at
address 7CBFH with the digit pairs C3 08 5B, the patch lines

A=7CBFH D=C3085B and
A=7CBFH D=C3 08 5B

are equivalent. Note that the digit pairs following the "D=" do NOT have the trailing
"H'' character. Since only hexadecimal numbers are recognized, the trailing "H" is not
used and, if present, will result in an error.

A string patch line might look like this:

A=7CBFH D="'Hello," she said.'

Note that if single quotes are used to enclose the string, double quotes may be
embedded in the string, and vice versa. Whichever type is used to enclose the string,
they must match or an error will be generated.

This type of patch line will result in an additional load block of code being
appended to the target file which will contain the /PAT file's name (8 characters, no
extension), and the patch data itself. When the program loads into memory, the patch
bytes will overlay the data normally loading into the specified address. This is the
reason why this type of patch line can only be used on files in load module format.

Utilities - Page 193

DosPLUS II - Disk Operating System - User's manual

Address-oriented patches can be removed by means of the PULL parameter. The
syntax for removing a patch is as follows: -~

PATCH filel file2 {PULL}

where file 1 is the target file, and file2 is the name of the patch file to be PULLED
from the target file. For example, if the file XLOADER/CMD had originally been
patched with a file called XLl/PA T, the XLl patch can be removed by typing PATCH
XLOADER XLI {PULL}. When a patch is PULLed, the patch block is physically
removed from the file, and any succeeding patch blocks are bubbled up into the space
it occuppied. A successful patch removal will be signaled by the message,

Patch(s) removed

This syntax has certain implications. The first is that if more than one patch is to
be applied to a file, the patches should be given different names in order to facilitate
removal. The second implication, which is not obvious from the syntax, is that when
PULLing a patch, the original patch file on disk need NOT be present. The PATCH
utility will simply scan the target file for a load block that has the correct name and
then PULL that block. If it fails to find a block with the specified name, then Patch
will return the message,

Patch not found

and terminate. The target file will not be changed in any way.

SECTOR-ORIENTED Patch lines

The second type of patch line is a SECTOR-ORIENTED patch. This type of patch
places the data directly into the specified locations on the disk file instead of
appending it as a separate load block, and therefore may NOT be PULLed. The syntax
is:

R=SS B=bb D=dd dd dd ...

The sector-oriented patch consists of a line starting with the characters "R="
followed by the SECTOR NUMBER for the patch. The sector number is followed by
"B=" and the relative byte number within the sector where the patch is to begin, and
finally, "D=" followed by the patch data (hexadecimal digit pairs or strings).

Sectors within a file are numbered starting from O, and are assumed to be full
256-byte sectors IRRESPECTIVE of the file's logical record length. The sector number
may be given in any numeric base acceptable to DOSPLUS II, as long as proper syntax
is followed.

Bytes within a sector are also numbered starting from 0. A relative byte number
greater than 255 is invalid and will generate an error. Relative bytes within sectors
may also be specified in any acceptable numeric base.

The patch data must consist of either HEXADECIMAL digit pairs without the
trailing "H" or strings enclosed in single or double quotes.

Utilities - Page 194

DosPLUS II - Disk Operating System - User•s manual

Patches of the sector-oriented type cannot be used to ADD sectors to a file. That
is, if the record number specified in the R= field is greater than the last sector of
the target filet an error wi11 result.

Technical n.ote : You may NOT intermix Address-Oriented patch lines and
Sector-Oriented patch lines within the same /PAT file.

Patches may also be entered from the keyboard by typing PATCH followed by the
filespec of the target file alone. When PATCH does not find a filespec for a patch
file on the command line, it will print an asterisk ("*") on the screen. At this point
you can start entering patch lines using either of the forms described above. The two
types of patch lines may not be intermixed.

After typing in the last patch line from the keyboard, pressing the BREAK key will
apply the patches to the target file and control will be returned to DOSPLUS II. Care
should be taken when typing patches in from the keyboard, as there is no way to edit
a patch line after the ENTER key has been pressed to terminate that line. Also,
entering an address-oriented patch in this manner will cause it to be appended to the
target file without a name, so that the {PULL} parameter may not be used to remove
it should the need arise later.

Examples:

PATCH BASIC/CMD NEWBAS

The file BASIC/CMD will be patched using the contents of the file NEWBAS/PAT.

PATCH MONITOR XDIS,PULL

The patch load block with the name XDIS will be PULLed from the file
MONITOR/CMD if it exists.

PATCH STORY/TXT

The PATCH utility will return with an asterisk prompt, so that the user can type
patches to the file called STORY /TXT.

EXAMPLES OF PATCH FILES

. This is a patch to LOADER/CMD

A=.3.700H 8=C3 50 50
A=5050H B=3AE5CD0208C30337

<--- Carriage return here
.End of patch

.Patch to CONTRACT /TXT
R=07 B=3CH D= 11 on this 12th day of August11

R=27 B=l7H D="John B. Harrelson"

Utilities - Page 195

DosPLUS II - Disk Operating System - User's manual

SVCINT SVC Interceptor

SVCINT is a utility program which ensures that all DOSPLUS II Supervisor Calls
conform to TRSDOS specifications.

===
The command syntax for invoking SVCINT is:

SVCINT

No parameters are needed.

===
SVCINT, the Supervisory Call Interceptor, is a short program which loads into high

memory. It will intercept certain supervisory routines in DOSPLUS II and make sure
that they conform to TRSDOS standards. Some supervisory routines in DOSPLUS II do
not act in exactly the same way as the corresponding routines in TRSDOS, and must
be changed for use with certain programs. SVCINT must be run before the programs
are executed.

In particular, PROFILE II+ requires the SVC interceptor routine. This is true even
after it has been patched for DOSPLUS II execution. Also, VISICALC will require the
presence of the SVC interceptor IF the DOSPLUS patches are NOT INSTALLED.

Utilities - Page 196

DosPLUS II - Disk Operating System - User's manual

SYSGEN

This utility will allow you to install the DOSPLUS II system onto non-standard media
such as double sided floppy diskettes or rigid drives.

===
The command syntax is :

SYSGEN :td

":td11 is the target drivespec. This informs
DOSPLUS II which drive contains the disk you
wish to SYSGEN.

There are no parameters with this command

==================·============================~==============================

DOSPLUS II is shipped on an 8 inch single sided double density diskette. However,
many of you are using Model 16s and hard drives and would like to install the system
on either a double sided floppy, a rigid drive, or both. The SYSGEN utility allows you
to do this easily.

Double sided drives can function as single sided, but the reverse is not true. The
~-, double sided drives must also have a special option that allows them to read single

sided disks. All Radio Shack Model 16 drives are equ,ipped with this option.
Therefore, you can boot and use your DOSPLUS II in your Model 16.

However, in order to truly function in double headed mode, you must have a double
sided system disk. Creating a double sided data disk is a simple as answering the
FORMAT utility's nNumber of sides11 prompt with "2". Once you have created the
double sided data disk, it is a simple thing to use SYSGEN to install the system on it.

We will walk you through first the double sided floppy procedure and then the rigid
disk procedure.

Creating a double headed floppy diskette -

First, insert the disk you wish to install the system on into the double sided disk
drive (you MUST have a double sided disk drive!). Call in the FORMAT utility (see the
utility program FORMAT) and format the disk, answering the "Number of sides"
prompt with "2".

After the formatter is finished with the disk, you will have a double sided data
diskette. The next step is to install the system modules on that disk. You will
accomplish by the statement :

SYSGEN :td

where ":td" is the drivespec of the drive containing the disk you just formatted. The
SYSGEN program header will appear and the program will proceed to copy all the
system modules to the specified drive.

Utilities - Page 197

DosPLUS II - Disk Operating System - User's manual

Technical note : In order for SYSGEN to be able to copy the system modules to the
specified disk, these system modules must be available on the current system disk (i.e.
the one you used to boot the computer). If you have deleted any of the files with the
"/SYS" extension, this program will not function.

Once the program has completed installing the system modules on the new disk, you
will be returned to the DOS command mode. Now that you have installed the system
modules, the next step is to install the utility files. This step IS optional. You may
create a disk with just the system files on it if you wish. This disk will boot and run
machine language programs perfectly well, and in some instances may be the desired
item (for maximum free space).

However, if you intend to use this disk as a "working" DOSPLUS, you will more than
. likely need things such as BACKUP, FORMAT, and BASIC. These are all utility files

and are not copied over automatically during the SYSGEN procedure. To move these
files from your current master disk to the new disk just SYSGENed, you will use the
COPY command (see the library command COPY). The statement will look like this :

COPY :sd :td {I,SPW="PASSWORD",E}

where ":sd" is the drivespec of the current system disk and ":td" is the drivespec of
the disk you just SYSGENed. The "I" parameter tells COPY to copy even invisible
files. The "SPW" parameter gives COPY the source Disk Master Password so that it
can copy even the protected utility files. If you have not changed the password on
your DOSPLUS master disk from when it was sent to you, then the password is
"PASSWORD". The "E" parameter tells COPY to echo the filenames of the programs
that it copies to the screen, so that you may see which files have been moved.

When COPY is done moving the programs, your task is complete. The disk is now a
complete DOSPLUS II system diskette with all modules present. The procedure is NOT
difficult or complicated. It follows three simple steps :

Format the diskette

SYSGEN the diskette (install system modules)

Copy the utility files (optional)

Any diskette that you can format, you can turn into a system disk with this
procedure.

Installing the DOSPLUS II system on a rigid disk -

The procedure for installing the DOSPLUS II system on your rigid disk is much the
same. The first step is still to format the drive. To accomplish this, you will use the
RFORMAT utility. This program is described in the same area as FORMAT. Please
note that if you are unsure of attempting this procedure, we have supplied some DO
files that contain the proper instruction sets to install the system for you. The
description and use of these will be discussed after we cover the manual installation
technique.

Once you have formatted the drive, the next step is to install the system modules.
This will be done with a statement like this :

Utilities - Page 198

DosPLUS II - Disk Operating System - User's manual

SYSGEN :td

where ":td" is the drivespec of the hard disk you just formatted. The SYSGEN program
header will appear and the program will proceed to copy all the system modules to the
specified drive.

Technical note : In order for SYSGEN to be able to copy the system modules to the
specified disk, these system modules must be available on the current system disk (i.e.
the one you used to boot up the computer). If you have deleted any of the files with
the "/SYS" extension, this program will not function.

Once the program has completed installing the system modules on the new disk, you
will be returned to the DOS command mode. Now that you have installed the system
modules, the next step is to install the utility files. This step IS optional. You may
create a disk with just the system files on it if you wish. However, on a hard disk
where space is no consideration, you should copy all the utilities to the system drive.

To move these files from your current master disk to the new disk just SYSGENed,
you will use the COPY command (see the library command COPY). The statement will
look like this :

COPY :sd :td {I,SPW="PASSWORD",E}

where ":sd" is the drivespec of the current system disk and ":td" is the drivespec of
the disk you just SYSGENed. The "I" parameter tells COPY to copy even invisible
files. The "SPW" parameter gives COPY the source Disk Master Password so that it
can copy even the protected utility files. If you have not changed the password on
your DOSPLUS master disk from when it was sent to you, then the password is
"PASSWORD". The "E" parameter tells COPY to echo the filenames of the programs
that it copies to the screen, so that you may see which files have been moved.

When COPY has finished, your task is complete. You have installed the DOSPLUS II
system and utilities on the rigid drive. It can be broken down into three easy steps :

Format the drive

SYSGEN the drive (install the system modules)

Copy the utility files to the new disk

If you are using the standard Radio Shack 8.4 megabyte hard disk drive (Cat. II
26-4150/51), then all you need to do is reset the machine. The internal modification
installed by Radio Shack with the hard disk will cause the system to be booted
directly from the rigid drive. After that, you will simply configure each of the
remaining drives to the correct settings, save your configuration file, and you are
done.

If you are using a drive other than Radio Shack's, then you will need to manually
configure the rigid drive as the system drive and use the floppy disk to boot up. Then
you would load the proper configuration file to transfer control to the hard. drive. Yo.u
will accomplish this by using CONFIG. Please consult the CONF~G: section of t.h1s
manual for a more detailed breakdown of CON FIG in general. Specifically, the actJOn
you would take is :

Utilities - Page 199

DosPLUS II - Disk Operating System - User's manual

CONFIG :0 {R,PD=O}

where ":0" is the drivespec of the system drive. If you have renamed this, use
whatever drivespec is currently correct. The "R" parameter tells DOSPLUS II that the
drive being configured is a rigid drive. The "PD=O" parameter tells DOSPLUS II that it
is the rigid drive in the first position (because you CAN have more than one rigid
drive attached).

All this statement has done is inform the DOS that the system drive (e.g. the drive
where the system modules are located) is the first rigid drive. Although this takes
effect at once, it is only a temporary change. The next time the system is reset, the
configuration will return to the default. In order to make this change permanent, you
need to create a "configuration file". But first, go through each drive with CONFlG
and make certain that the parameters set are the correct ones.

For example, the standard Radio Shack hard disks (Cat. II 26-4150/51) have 256
cylinders. DOSPLUS II will only allow hard disk "volumes" to have a maximum of 200
cylinders. That means that your Radio Shack hard drive must be divided into at least
two logical drives. You may wish to split it into four or more. At the moment, Drive 0
is the first hard disk volume. If you are going to have further volumes on the hard
disk, you may wish to assign them drivespecs sequentially beginning from 0 to avoid
later confusion.

If you decide to partition your hard disk into two volumes of 128 cylinders each,
you could have the first volume as ":0" and the second volume as ":1". You might then
call the first floppy drive ":2", etc., etc. This allows you to, when doing a global
operation, access all the hard disk volumes FIRST. Then, if the situation warrants (i.e.
the program or file searched for was not found), DOSPLUS II would move back and
operate on the floppy drives.

Once all the drives in your system are configured correctly, the next step is to
create the configuration file that stores all this. You will accomplish this via the use
of the SYSTEM library command's "Save" parameter (see the library command
SYSTEM). You might, for example, choose the filename "Cfig" for your configuration
file. The command would then look like this

SYSTEM {SAVE=''CFIG"}

this command will search all drives looking for a file called "CFIG/CMD". If it locates
one, it will overwrite it. Otherwise, it will create this file on the first available
drive. In this case, that will be the first volume of the hard disk.

With the Radio Shack drive, all is well. You will be booting up directly off the hard
disk, so the configuration file can and should be located on the first hard disk volume.
With the other drives, this is a bit of a problem. You will be booting up from the
floppy disk and loading this file to transfer control to the hard disk. Therefore, you
will want this file on the floppy disk you will be using to boot up. Use the COPY
command move it to that disk.

Then, immediately after re-booting the system, simply load that configuration file by
executing it (e.g. typing "CFIG" and pressing ENTER). This will transfer control from
the floppy disk to the hard disk. Or, in the case of the Radio Shack drive, it will
properly configure the rest of the drives.

Utilities - Page 200

DosPLUS II - Disk Operating System - User's manual

The two procedures are essentially the same. Outlined, they are :

Radio Shack drive

Reset the machine
Configure other drives correctly
Create configuration file

Other drives

Set system drive to hard disk
Configure other drives correctly
Create configuration file
Copy configuration file to floppy disk

The procedure for booting up is :

Radio Shack drive

Reset the machine and it boots from hard disk
Load configuration file

Other drives

Boot machine from floppy
Load configuration file to transfer control

The only real difference in this entire procedure is that the Radio Shack hard drive
(Cat. II 26-4150/51), when installed on your machine, comes with an internal
modification to allow you to boot directly from the hard disk. With the other drives,
you will have to boot the computer from the floppy disk first.

Example:

SYSGEN :1

This will install the DOSPLUS II system modules on the disk located in the drive
currently denoted by the drivespec ":1".

Finally:

As stated earlier, there have been some DO files provided on the disk for you that
will intialize the hard disk (e.g. Format it, Sysgen it, and copy the utilities to it), and
then after resetting the machine, configure the system for you and leave you only to
create the configuration file.

These files will only apply under the following two conditions :

(1) You must have a Radio Shack hard disk
(2) You may only partition it into two or four logical drives

Utilities - Page 201

DosPLUS II - Disk Operating System - User's manual

The files are :

Init2/txt
Init4/txt
Config2/txt
Config4/txt

Initialize two volumes
Initialize four volumes
Configure two volumes
Configure four volumes

You will execute these via the DO command (see the library command DO). Let's
assume that you have a Model II with one internal floppy drive and one hard disk. If
you desired to partition your hard disk as two volumes, you would first enter :

DO INIT2

this would call the instruction set stored in the file "lnit2/txt", which would then
format the hard disk and install the system on it. After the file finished, you woud be
instructed to press ENTER to reset the system and then enter :

DO CONFIG2

this would call the instruction set stored in the file "Config2/txt", which would
configure the remaining volumes of the hard disk and set the floppy disk drive as
Drive 3. Once this file has finished you would be instructed to create the
configuration file with the SYSTEM command.

If you wanted to divide the hard disk into four volumes instead of two, the same
instructions apply. Simply use the "lnit4" and "Config4" files instead. Even if you
choose to do the procedure manually, these files provide an excellent example of the ---,
procedure. You may use the DOSPLUS II LIST command (see the library command LIST)
to examine them. Viewing them may prove helpful in understanding the procedures.

Warning:

DOSPLUS II and TRSDOS do NOT use the same format on the hard disk. DOSPLUS II ,
will not be able to read a hard disk formatted by TRSDOS. Therefore, before
re-formatting the drive with DOSPLUS II, you must offload all data that you wish to
preserve by using TRSDOS. Later this may be copied to the hard disk under DOSPLUS
II.

Since DOSPLUS II' s CONY utility cannot read TRSDOS 4.1 disks, only 1.2 and 2.0,
you will have to use TRSDOS' FCOPY command to move everything to floppy disks
formatted by THOSE systems (1.2 or 2.0). Do NOT move the files to 4.0 or 4.1 disks
only! DOSPLUS II will not read that media later.

Remember, remove all important data before initializing the drive under DOSPLUS
II. Once the drive is re-formatted, any previous data is lost.

Utilities - Page 202

DosPLUS II - Disk Operating System - User's manual

BASIC Enhancements supplied with DosPLUS II

DOSPLUS II does not have its own BASIC interpreter. We have elected instead to
patch and use the current program from your TRSDOS 2.0 series Master diskette. In
order to make this transition as easy as possible for you, we have included a DO file
called "BASIC/TXT" on your DOSPLUS II Master diskette to accomplish both the
transfer and the patch. The actual procedure is very simple :

(1) Place the DOSPLUS II Master diskette in Drive 0 and press the reset
button, booting the system.

(2) Place your TRSDOS 2.0 series Master diskette in Drive 1.

(3) Type "DO BASIC' and press ENTER.

The DO file will use CONYER T to move th file from TRSDOS to DOSPLUS II,
OFFSET to set the end of file byte correctly, and APPEND to place the patch file
"BASICP/CMD" on to the end of the file "BASIC/CMD". When it is finished, you will
be returned to DOS. Your BASIC has been patched. A a point of reference, BASIC has
been assigned the password "BASIC" during this conversion procedure.

In the case of a user who has DOSPLUS II installed on their hard disk, the procedure
is a little different. You must first make certain that the drivespec ":1" is addressing
the first internal floppy drive and the drivespec ":0" is addressing the first volume of
the hard disk. You may accomplish this easiest by using the RENAME command.

(1) Rename whatever drive device is currently set for the first floppy
drive to ":0" if it is not that way already. If the drivespec ":1"
already exists in your system, you will have to rename that to
something else temporarily.

(2) Make certain that the first volume of the hard disk, the one with the
system installed on it, is currently named ":0". If it is not, alter it
so that it is. If there is already a drive device in your system named
":0", you will have to assign it another name temporarily.

(3) Place your TRSDOS Master diskette in the first floppy disk drive (the
one we named ": 1 ").

(4) Type "DO BASIC" and press ENTER.

DOSPLUS II will do the rest, converting the file from the floppy disk to the hard
disk and then processing it as stated above. The results will be the same. When you
are returned to DOS after executing the DO file, BASIC will be patched.

Technical note : The BASICP /CMD file is a permanent patch. That is, the file itself is
merged with the BASIC/CMD file. Therefore, once the above patching procedure is
complete you may remove the file BASICP /CM D from the disk in order to provide
more disk space. This file is ONLY needed at the time that you wish to patch a
BASIC.

DOSPLUS BASIC - Page 203

DosPLUS II - Disk Operating System - User's manual

Enhancements -

The file "BASICP/CMD", in addition to simply patching BASIC to operate on
DOSPLUS II, provides you with several enhacements built right in to BASIC. We
provide you with several more in the form of external utility files that are used with
and from BASIC. All together, they are :

Enhancement

BASICP

REF

SR

SORT

Function

Allows you more free memory,
shorthand edit commands, lower
case entry, and label addressing.

Comprehensive BASIC
reference utility.
references of line
variables, or keywords.
printer output.

program
Allows

numbers,
Optional

Global program editor. Allows
you to make changes to all
occurences of a particular string
literal or expression. Optional
display without alteration.

BASIC array sort program.
Allows you to sort BASIC arrays
of any type (integer, single or
double precision, string ...).
Capacity for a total of THIRTY
arrays. Only single dimension
arrays allowed.

DOSPLUS BASIC - Page 204

DosPLUS H - Disk Operating System - User's manual

Internal enhancements from the BASICP patch file

Increased memory -

Once you have patched your BASIC with the DOSPLUS I1 enhancement package,
there will be an additional 4,000 bytes of memory (approximately) available to the
user.

Because of problems in TRSDOS, Radio Shack was forced to "lock out" the top area
of RAM from BASIC, or there would have been conflicts with the system. DOSPLUS II
does not have these problems, therefore we release this area of memory for your use.

Label addressing -

This function allows you ta use indirect addressing within your BASIC programs. To
accomplish this, we replaced the NAME function of BASIC with our own. To rename
files from BASIC under DOSPLUS II, use the SYSTEM"RENAME'' capacity.

==-=====================================
The command syntax is :

NAME label
GOTO label
GOSUB label

"NAME" assigns whatever line number it
appears on the label you specify. After that,
you reference the label EXACTLY as you
would a line number using GOTO and GOSUB
statements.

===
Labels may now be used in place of line numbers. This frees you from having to

remember the exact line number that a particular subroutine was located at. Simply
assign the subroutine a unique name and reference it by that.

The only restrictions are : (1) labels may NOT contain any reserved words and (2)
labels may not exceed 240 characters in length.

We have also altered BASIC's RENUM function such that it will not regard labels
when renumbering a program.

Please note that a label may appear anywhere in a line. For example

10 X=l:NAME TEST:FOR A=l TO 10
20 Other program here
100 GOTO TEST

will work just fine.

DOSPLUS BASIC -Page 205

OosPLUS II - Disk Operating System - User's manual

Examples:

10 CLEAR 1000 : DEFINT I
20 NAME START
Other program lines .••
1000 GOTO START

In this example, line 20 has been assigned the label "START". Later, at line 1000,
the program issues the command to "GOTO START". This would send program control
back to line 20.

10 NAME DEFFNTESTER

This is an example of an invalid label. This label contains the reserved word
"DEFFN". BASIC will reject this as a label.

EDIT Shorthand EDITing commands -

Several new EDIT commands have been added to make it much easier to edit your
BASIC programs. You also have certain direct commands in shorthand now. In addition
to the standard TRS-80 edit commands, you now have the following:

; (Semi colon)
left arrow
I (Slash mark)
right arrow
down arrow
up arrow
I (excl. mark)
L
D
E
A
R orR"
L"
S"
K"
. (Period)
, (Comma)

List first line of program
List first line of program
List last line of program
List last line of program
List next line of program
List preceding line of program
Abbreviation for SYSTEM (!"DIR")
Abbreviation for LIST (Ll0-20)
Abbreviation for DELETE (Dl0-20)
Abbreviation for EDIT (ElO)
Abbreviation for AUTO (A10,5)
Abbreviation for RUN (R"GAMEliBAS")
Abbreviation for LOAD (L"TliBAS:l ")
Abbreviation for SAVE (S"LOANIBAS")
Abbreviation tor KILL (K"P A Y IDA T")
List current line of program
Edit current line of program.

Technical note : If you type a character (other than a shorthand command) and then
backspace, the shorthand commands will not work. They must be the FIRST character
typed on a line, not just the beginning character. If you DO type another character
and then have to backspace, press ENTER to receive a new line prompt before
attempting a shorthand command.

DOSPLUS BASIC - Page 206

DosPLUS II - Disk Operating System - Use,r's manual

REf

This utility provides you with a comprehensive, powerfut BASIC progr.am
cross-referencer capable of referencing line numbers, keywords, or variables. It can
also reference single occurences of the same and includes optional output to the line
printer ..

===

The command syntax is :

SYSTEM"REF" ,par ,par

"par" can be any of the parameters legal for
this command.

Your legal parameters are :

Parameter

s
v
L
K
p

Function

Single variable, line, or keyword
All variables
All line numbers
All keywords
Printer output

===
This will allow you to reference your BASIC program for line numbers (L), variables

(V), or keywords (K) or any combination of the above including a single reference to a
particular line number, variable, or keyword. For example :

SYSTEM"REF",K,L, V

This will reference the program for all three. If you specify a P also
(SYSTEM"REF",K,L,V,P), it will do the same thing, but it will output the result to the
line printer.

To display a single variable you use the 11 S" parameter. For example

DOSPLUS BASIC - Page 207

DosPLUS II - Disk Operating System - User's manual

SYSTEM"REF",S,A

Every time the variable "A" occurs in the text will be listed for you.
variable reference becomes as specific as you are. For example :

SYSTEM"REP',S,A$

The single

will only hunt up references to the variable "A" when it is being used as a string
variable. And still further :

SYSTEM" REF" ,S,A$(

will look up only references to "A" as an ARRAY string variable. It will also take
complex variable names like :

SYSTEM"REF" ,S,FINDIT

This will look for all occurences of the variable "FI".

The same syntax applies for a single line number or a single keyword. For example

SYS TEM"REF",S,PRIN T

Will reference all the PRINT statements.

Technical note : The referencer will display all variables specifying variable type and
whether or not it is an arrayed variable. If it occurs mutiple times in a line, it will
reference it multiple times. Also, any ASCII number in text will be treated as a line
number during a reference.

DOSPLUS BASIC - Page 208

\.

DosPLUS 0- Disk Operating System- User1s manual

SR

This utility program 'Provides you with a method of -displaying strings in text and
optionaUy replacing them. This function works with string literals, string expresslons,
or a combination of both. You have the ability to specify the starting and ending line
number in order to restrict the action to only a certain portion of the program.

==-·=================

The command syntax is -:

SYSTEMnSR'~,sexp,rexp,sln-ein

"sexp11 is the search expression. This can be
any valid string expression, a literal, or a
combination of both string variables AND
literals.

"rexp" is the replace expression. This can also
be any valid string expression, literal., or
combination.

"sln-eln11 starting line number and ending line
number. This aHows you to restrict your
editing to one block of text. If not present, it
will be a global edit of the entire text. If you
specify "sln" only, it will. do only that line
number. If you specify 11sln-", it will begin at
that line number and go to the end of text.

===
This is a great programmer's tool. It will search for and display or replace any

string variable or expression. All you have to do ls type SYSTEM"SR1
' (for search and

replace) followed by a literal ASCII string, OR any character string or other string
variable.

After it alters a line, it wiH list that line showing the change. It operates in two
modes : Search mode and Search and Replace mode.

DOSPLUS BASIC -Page 209

DosPLUS II - Disk Operating System - User's manual

For example, if you type

SYSTEM"SR", "Test"

It will look through the text and list every line with the word "Test" in it. If you
type :

SYSTEM"SR","Test","NewTest"

It will look through the text and every time that it finds the word "Test", it will
replace it with the word "NewTest".

If you type :

SYSTEM" SR"," Test", "NewT est", 100-200

It will confine this procedure to lines 100 through 200. Note : The starting line
number is inclusive, the ending line number is not. That means that this utility will
check the starting line number but will stop at the line BEFORE the ending line
number.

You can also use a combination of variables and literals. For example

SYSTEM" SR",":",C HR$(1 0)+":"

This will go through the whole text and insert a line feed in front of every colon.

DOSPLUS BASIC - Page 210

DosPLU5 II - Disk Operating System - User's manual

SORT

This utility program provides you with a fast, powerful B.I\SlC anay sort. lt can sort
up to thirty arrays, keying on up to ten. The arrays MUST be single dimension but
array type (string or numeric) doesn't matter. You may define any of the key arrays
as being sorted in ascending or descending order.

===
The command syntax is :

SYSTEM"SORT",exp,+ or- AN{se)+KA-KA,TA,TA

",exp," expression to indicate number of
elements to be sorted (integer)

"+ or -" indicates primary key array to be
sorted in ascending or descending order.
Optional, if omitted ascending order will be
assumed.

"AN(se)" primary key array.
indicates starting element number.

Subscript

"+KA" next key array. Plus (+) indicates
ascending order.

"-KA" next key array. Minus (-) indicates
descending order.

",T A'' First tag array.

",TA'' Next tag array.

===

A "key" array is defined as being an array that SORT will consider when sorting. A
"tag 11 array, on the other hand, is simply "along for the ride". When SORT finds two
elements of a key array that need to be swapped, it will swap the corresponding
elements of all other key arrays and all tag arrays.

DOSPLUS BASIC - Page 211

DosPLUS II - Disk Operating System - User's manual

You must completely define all "KEY" arrays prior to defining "TAG" arrays. Please
note that all key arrays are appended with a plus (+) or a minus (-). Do not use ',
commas. After you append the first array with a comma, SYSTEM"SOR T" will assume
that you are beginning the tag arrays and wiii consider no more key arrrays.

Exception to the "+" or "-" appendage is the PRIMARY KEY ARRAY. Primary key
array is seperated from the element count by a comma for TRSDOS compatibility. If
you wish descending order, you may insert an optional minus (-) between the comma
and the primary key array name. A plus (+) is also legal but not needed as ascending
order is assumed.

Examples:

SY S TEM"SOR T", 100 ,A$(1)+ B$-C$,D$,E$,F$

This command line would instruct SORT to sort 100 elements of string array
beginning with the first element in the array "A$". If it finds a match there, it will
attempt to sort by the corresponding two elements in "B$". If it finds a match there,
it will sort by the corresponding two elements in "C$". However, "C$" is sorted in
descending order. Any time that it swaps an element in any of the key arrays, it
swaps it in all the other ney arrays and then it also swaps the corresponding elements
in "D$", "E$", and "F$" (although the order of these is not important).

The "corresponding element" is defined as being those elements with the same
position number. For example, the corresponding elements in the above example would
be :

* A$(1) - B$(1) - C$(1) - D$(1) - E$(1) - F$(1)
* A$(9) - B$(9) - C$(9) - D$(9) - E$(9) - F$(9)

This sort is also capable of sorting integer, single precision, and double precision
arrays. You may mix and match arrays. For example, to return to the sort command
above, you could make "C$", "CII" with no problem. The syntax is identical.

SYSTEM"SOR 'P',N%,A$(1)

This will sort "A$" in ascending order starting at element one and proceeding for
"N %" elements.

In DOSPLUS II' s SORT, you may indicate ascending or descending order on a tag
array. Also, SORT allows you up to ten key arrays (counting primary key array) and
twenty tag arrays for a total of THIRTY arrays.

Technical note : This sort uses the "high" system overlay area of memory. Use caution
so that you do not cause memory conflicts with other library commands and/or
utilities. Please note that when calling SORT, you may not specify a starting element
number for any array other than primary key array. All other key arrays will be
assumed to start at the same relative position.

DOSPLUS BASIC - Page 212

DosPLUS II - Disk Operating System - User's manual

Application -

This sample program will create a sorted index for a mailing list.

5 CLEAR 2000:CLS
10 OPEN"R",l,"MAIL/DA T",52
20 FIELD 1,10 AS DUMMY$,20 AS NAME$
30 EF=LOF(l):DIM A$(EF),RN%(EF)
40 FOR l=l TOEF
50 GET l,I
60 A$(1)= NAME$:RN%(I)=LOC(l):NEXT I
70 CLOSE
80 SYSTEM"SORT",EF,A$(l),RN%
90 OPEN"R",l,"MAIL/INX",2
100 FIELD 1,2 AS NR%
110 FOR 1=1 TOEF
120 LSET NR %=MKI$(RN%(I)):PUT l,I:NEXT I
130 CLOSE

After this, whenever you want an alphabetical listing of your file, simply open the
file "MAIL/INX". Those two byte records contain integer record numbers. Get each
record in turn and then get the data record that it points to. Print that data and you
will have an alphabetical listing.

DOSPLUS BASIC - Page 213

DosPLUS II - Disk Operating System - Technical manual

Introduction to the DosPLUS II Technical manual

The DOSPLUS II technical manual is not for everyone. It is designed to be a
reference area for the programmer that needs specific information about the system in
order to facilitate interfacing programs to it.

The technical manual is logically organized from simplest to most complicated. The
first portion, Introduction to hard disks, is designed to acquaint anyone who is not
familiar with DOSPLUS II to the method behind our hard disk organization.

Following that section are sections on System organization (containing a breakdown
of the various system files and their functions), Directory Structure (giving a detailed
breakdown of both the overall directory organization and a byte for byte discussion of
a single directory entry), Device Control Blocks (giving a byte by byte description of
the DOSPLUS II DCB organization), and Drive Control Tables (explaining what
information is stored regarding the disk drives).

Those areas of information will prove to be interesting reading to the programmer
or experienced user that is seeking to learn more about the manner in which DOSPLUS
II functions internally.

The next area addressed is the DOSPLUS II Supervisory Call System. These
Supervisor calls (SVCs), for the most part, are compatible with TRSDOS. In some
areas, though, we have added a new call or improved upon an existing one. We
strongly suggest that any machine language programmer planning on writing programs
for DOSPLUS II go through these.

Wrapping up the technical manual is an explanation of the DOSPLUS II Resident
Jump Table and the Resident Disk I/O system. The last item in the manual is a list of
the DOSPLUS II error codes and messages. Included in the Resident Jump Table is a
discussion of how to calculate the Logical File Number (LFN) for a particular
directory entry.

This area of the manual is not intended to confuse the first time qomputer user. It
is not intended to mystify the novice. We have carefully separated ~t from the User's
manual so that the users who do not wish to concern themselves with technical
information don't have to.

We hope that you find this manual both informative or useful. If there is anything
that you feel we have left out, please don't hesitate to get in touch with our
technical support teams and ask. Special thanks go to Dr. Renata Reyes of
PowerSOFT for his excellent work in this area of the manual.

General information
Introduction to hard disks
System Organization
Directory Structure
Device Control Blocks
Drive Control Tables

Table of contents

The DOSPLUS II Supervisory call system
Introduction (how to call an SVC)
Call Name
= =======

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
zz
23
24
25
26
27
28
29
30
31
32
33
34
35
36

INITIO .
KBINIT
SETUSR
SETBRK
KBCHAR
KBLINE
DELAY
VDINIT
VDCHAR
VDLINE
VDGRAF
VDREAD
VDKEY
(Undefined)
(Undefined)
DIS KID
(Undefined)
PRINT
PRCHAR
PRUNE
RANDOM
BIN DEC
STCMP
MPYDIV
BIN HEX
TIMER
CURSOR
SCROLL
LOOKUP
HLDKEY
KBPUT
JPINIT
(Undefined)
LOCATE
READNX
DIRRD
JPZDOS

T/1- T/4
T/5 - T/7
T/8 - T/14
T/15-T/21
T/22- T/26

T/27 - T/28

T/29
T/30.
T/31
T/32
T/33
T/34
T/35
T/35
T/36
T/37
T/38
T/39
T/40
T/41
T/41
T/42
T/43
T/44
T/45
T/45
T/46
T/47
T/48
T/49
T/50
T/51
T/52
T/53
T/54
T/55
T/56
T/57
T/58
T/59
T/59
T/60
T/61

~.

'~

Table of contents (cont.)

Call Name
= =

37 DOSCMD T/62
38 RETCMD T/63
39 ERROR T/64
40 OPEN T/65- T/68
41 KILL T/69
42 CLOSE T/70
43 WRITNX T/71
44 DIRWR T/72
45 DATE T/73
47 RENAME T/74
48 REWIND T/75
49 STSCAN T/76
50 (Undefined) T/77
51 WILD T/78- T/79
52 ERRMSG T/80
53 RAMDIR T /81 - T /82
54 (Undefined) T/83
55 RS232C T/84
56 SORT T/85
57 CLRXIT T/86
58 FILPTR T/87
59 - 72 (Undefined) T/88
73 KBDW T/89
74 PRTS T/90
75 CLAW T/91

/....__, 76 CLBW T/92
77 GET T/93
78 PUT T/94
79 POSN T/95
80 BKSP T/96
81 REWIND T/97
82 PEOF T/98
83 EVAL T/99 - T /100
84 FSPEC T/101
85 RUN T/102
86 LOAD T/103
87 PAR AM T /104 - T /105
88 FEXT T/106
89 VALUE T/107
90 (Undefined) T/108
91 SCREEN T/109
92 NMICTL T/110
93 (Undefined) T/111
94 VIDRAM T/112
95 PRCTL T /113 - T /114
96/98 ARCV/BRCV T/115
97/99 ATX/BTX T/116
100/101 ACTRL/BCTRL T/117

DosPLUS II internal system reference points
DosPLUS II Resident Jump Table T /118 - T /119

~' Calculating the LFN for a directory entry T/120
Resident Jump Table (cont.) T /121 - T /122
Resident Disk I/O System T /123 - T /124
System error messages T /125 - T /127

DosPLUS II - Disk Operating System - Technical manual

Introduction to hard disk operation

This section of the manual is designed to acquaint you with the principles of hard
disk operation from the user's viewpoint. We believe that if you understand how your
hard disk works, you will be able to configure yours for the optimum effeciency later
on. Although this section of the manual is not required reading for anyone not using
DOSPLUS II to operate a hard disk, we recommend that all users read it anyway to
glean an understanding of hard disk operation and to see what the differences are
between a cylinder and a track.

We will cover two areas :

(1) Operation of hard disks.

(2) Cylinder vs. Track.

Operation of hard disks -

DOSPLUS II operates with a variety of controller boards and hard disk drives,
including (of course) Radio Shack's own unit. CONFIG allows you to set all the needed
parameters for your particular drive, but we felt that a more detailed description
would assist.

Each hard disk is comprised of "platters". The number of platters in your hard disk
is referred to as that hard disk's "platter count". Picture each platter as something
similar to a phonograph record. Each platter has two recording areas, top and bottom.
These areas are called "surfaces".

Each surface has a certain number of tracks it can format and read/write to. This
"track" is the same track that you have grown used to in floppy drives. For every
track on the top surface, there is a corresponding track on the bottom surface. This is
true for each platter. Therefore, a two platter hard disk would have FOUR track
zeros. Track zero on the top surface of the first platter and track zero on the bottom
surface, and again for the second platter.

Each surface has its own read/write "head". The read/write head is the part of the
drive that actually travels over the surface and "reads in" or "writes out" data. The
number of heads for each hard disk will be equal to the number of surfaces. And since
we already know that the number of surfaces is equal to (platter count * 2), we know
that head count can be acertained via the same formula. This would mean that the
head count for a two platter drive is four. This will be important later because
CONFIG will determine the size of the hard disk by its head count.

The idea in hard drives is to prevent head travel. If you can move the head as little
as possible, you will minimize data access time. And that is what we are attempting
to achieve in data processing. This brings us to "cylinders".

Obviously, to read and write to all the tracks on one surface and then begin another
surface would be terribly inefficient use of the drive and result in incredible head
travel and a slow system. Since all heads step in and out together, when the head for
the top surface of the first platter is positioned over track zero, ALL the heads of
ALL the platters are over their track zeros also. To allow you reduce head travel,
DOSPLUS II allows you to define cylinders.

Technical information - Page T /1

DosPLUS II - Disk Operating System - Technical manual

A cylinder is defined as: all correspondingly numbered tracks starting with a
user-defined head and proceeding sequentially for a user-defined number of surfaces. ~~)
That is on a hard disk. On a double-headed floppy disk, the user may not define these --'
values (because there are only two heads), and the definition· becomes: all
correspondingly numbered tracks on all available read/write surfaces.

Therefore, by defining our hard disk as "HC=4" (4 heads) and "HO=D" (no head offset
or "start with the first actual head"), we define each cylinder as having four tracks
within it. DOSPLUS II will write until it fills a cylinder before it advances to the next
cylinder. In our example, this cuts head travel to 1/4 of what it was before.

Because these drive sizes and types vary so widely, DOSPLUS II. has to be VERY
flexible. That is why so much information is required with CONFIG. You must tell us
how many heads your drive has, how many tracks there are on a surface, and how you
want your cylinders arranged. As explained earlier in this manual, you have eight
drive (file orientated) devices. You may assign as many of those as you wish to the
hard disk.

When you CONFIGure a drive (see the library command CONFIG) as being a floppy
disk drive, DOSPLUS II will restrict you from assigning any more drive devices to that
physical drive. This is not the case with the hard disk. You may partition your hard
disks with several or even all of your drive devices. This practice is recommended for
those that need more directory space, because each partition has its own directory
and may in that manner increase the number of actual disk files that you are able to
store on your hard disk.

There are two methods of configuring the hard disk into several partitions under
DO SPLUS II. They are :

(1) Fewer but larger cylinders.

(2) More but smaller cylinders.

There are advantages to each method. Generally, however, you may follow these
guidelines for the most effecient disk usage and acess times. If you are going to be
using many smaller files; use method (2). If you are going to have fewer files, but they
will be larger, ever-changing data files; use method (1).

Method (1). In this method, you will define your cylinders to include ALL read/write
heads. This will make the individual cylinders just as large as possible. You will leave
the head offset parameter set to "0" and break up the drive by assigning each drive
certain cylinders on the disk. Let's take an example. Say that we have a two platter,
153 cylinder hard disk.

Technical information - Page T /2

·~.

DosPLUS II - Disk Operating System - Technical manual

To break it into two equal units using method one, first we select which two drive
devices we wish to assign to the hard disk. \hen, on each o~ those, we would set the
CONFIGuration as rigid and point the PO (physical drive) parameter to whichever hard
disk we are referring to. After that, again for each of them separately, we would set
the HC (head count) parameter on CONFIG to "4" (two platters = four heads). We
would leave the HO (head offset) parameter set to "0" (begin with the first head). The
next step is to decide how many cylinders we want each logical drive to have. Since
153/2 is 76.5, one drive will have 76 cylinders and one 77. Let's assign the front drive
76 cylinders. That means whichever of our two logical drives we select to be the first
part of the hard disk will run fom cylinders 0-75 (76 in all). Therefore, the next
partition will start at cylinder 76 and run to cylinder 152 (77 in all). On the first
drive, CO (cylinder offset) should be set to "0" (as in start with the first cylinder).
For the second drive, however, it should be "76" (as in start with cylinder 76).

When we call up RFORMAT to format the drives, we reference them by their
dri vespecs (which are still as they were even though both of them are now pointing to
different areas of the same physical drive unit) and format the first logical drive for
76 cylinders and the second for 77. When the format is complete we have two equal
(or very nearly so) partitions for the hard disk.

Method (2). In this method, you define your cylinders such that any one cylinder
does not encompass ALL read/write heads. This can mean that each read/write head is
a separate drive or that several read/write heads can be considered a single drive
unit. This will make the individual cylinder small, but you will have a much greater
number of cylinders. In this method we will make extensive use of the HO (head
offset) parameter. Let's take our example again, a two platter, 153 cylinder drive and
split it into two equal units. This time, though, we will use method 2.

To begin, first we select which two drive devices we are going to use for this hard
disk. Using CONFIG, we define each as rigid and point the PO (physical drive)
parameter at whichever hard disk we are referring to. We know that the drive has
four read/write heads because it has two platters (remember, head count = platter
count * 2). Since it is going to be split in two parts, each logical drive will get two
heads. That's where the head offset parameter comes in. The first logical drive would
get heads 0 and 1 (the first platter) and the second would get 2 & 3 (the second
platter).

For the first drive, you would set the HO (head offset) to "0", telling DOSPLUS II to
begin with the first head. Then set the HC (head count) parameter to "2", telling the
system that this logical drive starts with head 0 and extends for two heads. For the
second drive, you would set the HO (head offset) to "2", telling DOSPLUS II that you
wish to begin this logical drive with the third head (head 2). The HC (head count)
parameter would also be set to "2", indicating that this drive will extend for two
heads also.

When we call up RFORMAT to format the drives, we reference them by their
drivespecs (which remain unchanged from when we started) and format each logical
drive for the full cylinder count of 153. Because each head is an independant drive,
all cylinders are used. Once again, when the format is complete, we have two equal
partitions for the hard disk.

The only difference is the manner in which DOSPLUS II will allocate space on the
hard disk using each of the methods. As stated earlier, for maximum efficiency use
method 1 for larger data files that will be ever-changing. When you have many smaller
files that will remain static, use method 2.

Technical information - Page T /3

DosPLUS II - Disk Operating System - Technical manual

Cylinder vs. Track -

From the above explanations, you should have a fair idea of what a cylinder is (at
least in how it pertains to the hard drives). We will now cover the relationship
between a "cylinder" and a "track" as it pertains to the floppy disk drives.

On a single headed floppy disk drive, a cylinder is the same exact thing that you
are used to in a track. Those of you who are using single headed drives need not
concern yourself with this other than to remember the new term and what it means.

However, on double headed, the cylinder functions as it did on the hard disk. It uses
the corresponding track on the second side of the disk. DOSPLUS II views a double
headed drive as a single volume. Which is to say that no special syntax for denoting
which side of the drive you wish to address is needed with DOSPLUS II. When a
diskette is formatted as double headed, it is formatted with the cylinders twice as
large. By adopting this system, we have enabled you to easily make use of the
increased storage of double headed disk drives with a minimum of software
adaptations and headaches.

Whether or not a disk is double headed is set during the time you format the disk.
When you call up FORMAT, it will ask you whether the disk is single or double
headed. You respond with whatever the case is.

When FORMAT writes the system information to the disk, it writes what we call a
OCT or <D>rive <C>ontrol <T>able. This OCT contains information about the disk that
the DOS will use when it is accessing it. For the most part, this is absolutely invisible

----\
to the user. However, if you are switching from a single to double sided (or vice ,
versa) disk in the same drive, you will need to force DOSPLUS II to re-read the OCT
and pick up the new configuration to prevent errors later. This done via the I
command (see the library command I).

If you want to create a double headed system disk, use the SYSGEN utility (see the
utility program SYSGEN).

Finally -

Please do not be intimidated by all this information. These items should be totally
invisible to the end user of the system (if the programs are written correctly).
DOSPLUS II will come with these various areas pre-configured to operate standard
hardware in the most efficient manner possible. However, there is an ever growing
number of excellent suppliers of "non-standard" hardware emerging.

We want to support just as many different types of these manufacturers as possible
with DOSPLUS II. In order to do that, we had to make the system as flexible as
possible. We have done that. Our purpose in explaining what we have explained above
is to acquaint the experienced user, programmer, or consultant with the manner is
which we handle drive operation. If you need it, the power is there.

Technical information - Page T /4

,r---

DosPLUS II - Disk Operating System - Technical manual

System Organization

The DOSPLUS II operating system consists of a resident module, which is always in
memory, and a number of overlays which are called in to perform particular functions
as needed. The use of overlays minimizes the amount of memory required by the system
without sacrificing power or flexibility.

There are two overlay regions in DOSPLUS II, called the low region (lCOOH -
21FFH) and the high region (2200H - 27FFH). Most supervisory call routines execute
from the low region, and most library command routines execute from the high region.
Generally, user programs which do not perform any calls to a library command routine
via the DOSCMD or RETCMD Supervisory Calls may make use of the high overlay
region; however, it is not recommended that the low overlay region be occupied by
user programs.

The resident system, SYSO, occupies memory from OOOOH to 19FFH. This module
contains the routines which are required for proper operation of the system, including
the default driver programs for each of the system devices, the Resident Disk I/O
system, and the overlay handler, which loads the correct overlay from disk into memory
as needed.

At lAOOH through lAFFH is a 256-byte buffer area which is available to user
programs. Immediately following it at lBOOH is the system buffer area, which should
NOT be used by programs external to the operating system.

The first eight system modules (SYSl through SYSB) occupy the low overlay region
and therefore cannot be in memory concurrently. These eight modules contain the
Supervisory call routines and the file I/O routines, among other things.

The next 8 modules (SYS9 through SYS16) load into the high overlay region. These
contain the routines necessary for executing the library commands of DOSPLUS II.

SYSl contains the system command interpreter and filespec evaluator routines. This
overlay is called in to parse and interpret commands typed in at the DosPLUS II
prompt.

SYS2 contains the necessary routines for OPENing and INITializing files, RENAMing
files, encoding file passwords and generating file hash codes.

SYS3 contains the routines for CLOSing, KILLing and PURGing devices and/or files.

SYS4 is responsible for allocating disk space to a file's extents. It contains routines
for searching a directory and creating extended directory entries for a file.

SYSS contains the system's error messages.

SYS6 contains the routines for the system's DEBUGger.

SYS7 contains code to initialize the system's devices along with routines for printer
and communications channel control.

SYSB contains the parser routine for evaluating command lines and wild card mask
specifications.

Technical information - Page T /5

DosPLUS II - Disk Operating System - Technical manual

SYS9 is the first of the high-region overlays and contains the following library
commands: DIR, CAT and FREE.

SYSlO consists of routines for channel-directed I/0. The library commands contained
in this module are COPY, APPEND and LIST.

SYSll contains the device management routines. It embodies the following library
commands: ROUTE, RESET, SET, FILTER and LINK. The routines for displaying device
status are also in this overlay,

SYS12 contains miscellaneous library commands and ancillary routines. The
commands in this module are VERIFY, TIME, I, ERROR, DEBUG (Debugger On/Off -­
the actual DEBUG code is in SYS6), DATE, AUTO, CLOCK, LIB, PAUSE, and SCREEN.

SYS13 contains initialization routines for the communications channels and printer,
along with the code for executing the DO command. The library commands contained
here are SETCOM, FORMS and DO.

SYS14 holds the file protection management routines. The library commands here are
PROT, A TTRIB and KILL.

SYS15 contains other miscellaneous file management subroutines and library
commands, namely CLEAR, CREATE, DUMP, BUILD, LOAD, and RENAME.

SYS16 contains system setup routines. The library commands handled by this module
are CONFIG and SYSTEM.

All of the modules must be present on the disk in drive 0 (or . the currently defined
system drive) for proper DOSPLUS II operation. If one or more are missing or damaged,
operation of the system can be very unpredictable.

The following are fixed memory locations in the resident module (SYSO) which may
be accessed by user programs:

DCBTBL - The Device Control Block location table

This table starts at OlOOH and consists of 15 contiguous 4-byte blocks for each
device. The first two bytes of each block contain the address of the device's DCB in
LSB/MSB format. The next two bytes of contain the two-character device name ("KI",
"DO", "PR", etc.)

RTCTBL - The Real-Time Clock Interrupt Service Table

This table is located from 014DH through 014FH and consists of 8 2-byte entries.
Each entry will hold the address of the Task Control Block (TCB) of an interrupt task
to be executed under control of the system's real-time clock. The first two slots
(0140H-0141H and 0142H-0143H) are available for user-defined tasks. The others are
used by the system and should not be pre-empted for user tasks.

Insertion and removal of user-defined tasks into the table are detailed under the
Supervisory Call section (SVC 92, NMICTL). Use of this supervisory call is
recommended over simply inserting data directly into RTCTBL.

Technical information - Page T /6

DosPLUS II - Disk Operating System - Technical manual

TIME$ - Time/Date locations

\his block is located at 0150\-\ through 0156\-\ and contains the time af\d date data
for the system. They are arranged as follows:

Ol50H
0151H
0152H
0153H
0154H
0155H
0156H

FLAGKl$ - System flag byte

ticks
seconds
minutes
hours
day of month
month
year (0 represents 1980)

This byte is located at Ol67H and is used as follows:

bit 7
6
5
4
3
2
1
0

OSVER$ - Operating System Version

unused
unused
unused
unused
verify
debug flag
force read
unused

l=On, D=Off
l=On, 0=0ff
1=0n, 0=0ff

This byte is at 016AH and encodes the operating system version number. The version
number is maintained in binary coded decimal. The high 4 bits will have the actual
VERSION number, and the lower 4 bits will contain the RELEASE number. It currently
contains 10H, for version 1.0 (ie., version 1, release 0).

LOMEM$ - Lowest free memory address

These two bytes at 0171H-0172H encode the lowest available free memory address.

HIMEM$ - Highest free memory address

These two bytes are at 0173H-0174H and encode the highest available free memory
address in LSB/MSB format. User programs should not use memory above this address.

PHYMEM$ - Top of physical memory

These two bytes at 0175H-0176H encode the highest physical memory address. In a
32K Model II they will contain BFFFH; in a 64K Model II they will contain FFFFH.

Technical information - Page T /7

DosPLUS II - Disk Operating System - Technical manual

DOSPLUS II Directory Structure

The necessary information for accessing files on a diskette, or on a logical drive in
a hard drive system, is maintained in a directory. In DOSPLUS II, each diskette, and
each logical drive on a hard disk, contains one directory cylinder. The directory can be
a maximum of 34 sectors, and the maximum number of files it can hold information on
is 256. The directory is always within one cylinder, and is never split up. Also, unlike
TRSDOS, DOSPLUS II does not maintain an alternate directory.

The directory cylinder can be thought of as consisting of three distinct sections: the
Granule Allocation Table (GAT), the Hash Index Table (HIT), and the directory records
proper. All three sections are used by the operating system when accessing a file, or
allocating space to a file.

THE GRANULE ALLOCATION TABLE (GAT)

The Granule Allocation Table, or GAT, is located in the first sector of the
directory cylinder and contains information pertaining to the allocated and avail able
space on the diskette or logical drive. It also contains information as to how many
cylinders have been formatted.

Each disk is formatted into cylinders (tracks=cylinders on single-sided disks),
containing a specific number of sectors. The sectors on each cylinder are grouped into
arbitrary units called GRANULES, or grans. The size of each gran (that is, the number
of sectors in each gran) varies according to the media that the operating system is
dealing with. In any case, when allocating space to a file, DOSPLUS II will always
allocate a minimum of one granule. Small files may be assigned more space than they
require, but disk search time is minimized.

Each byte in the GAT table represents one cylinder. The byte value is actually a bit
map of the granules in that cylinder, so that each cylinder then can contain a maximum
of eight granules. Each bit that is set to 1 represents a granule that is in use br
otherwise unavailable, and each bit set to 0 represents a granule available for
allocation. Bit 0 represents the first granule on the cylinder, bit 1 the next, and so
forth.

Depending on the formatting characteristics of the media in question, the number of
bits in each GAT byte actually used by the system will vary. For example, a standard
8" double density, single-sided diskette has 6 granules of 5 sectors each. This means
that only bits 0 through 5 of each GAT byte will be used, and bits 6 and 7 will remain
permanently set to 1 to indicate that they are not available.

In floppy disk media, relative bytes DOH through 5FH (0 through 95) of the GAT
table contain the free/allocated granule information for up to a maximum of 96
formatted cylinders. The relative byte numbers correspond to the cylinder numbers.

Technical information - Page T /8

DosPLUS II -Disk Operating System - Technical manual

Relative bytes 6DH through BFH (96 through 191 decimal) contain the lock-out
information for each cylinder and granule on the diskette. The arrangement is precisely
the same as that of bytes OOH through 5FH. In this table, any bit set to 1 indicates
that that granule is unavailable for use. If the formatting process detected any flawed
granules or cylinders, they will be mapped into this table. This table is also used by
the system during the backup process to determine if both source and destination disks
have the same capacity.

In hard drive configurations, bytes DOH through CAH (0 through 202) are all used for
the free/allocated space table. Hard drive directories do not make use of a lockout
table. Any flawed grans found during format time are simply allocated.

Relative byte CBH (203 decimal) of the Granule Allocation Table contains the
version number of the operating system. In the current release of DOSPLUS II this will
contain 10H, representing version 1.0. This number is kept in BCD (binary coded
decimal) form. The digit represented by the leftmost 4 bits is the version number, and
the digit represented by the right 4 bits is the release number.

Relative byte CCH (204 decimal) contains the formatted track count of the diskette
in excess of 35 tracks, and is used to minimize the time spent in computing the number
of tracks on a disk. On a standard 8" single-sided disk, this byte will contain 2AH, or
42 decimal (42+35 = 77).

Relative byte CDH (205 decimal) contains information pertaining to the format of
the diskette. Bit 6 indicates density. If set to 1, I then the diskette is formatted in
double density. Bit 5, if set to 1, indicates that ~he diskette is double-sided. Bits 2
through 0 encode the number of grans per cylinder t-{IINUS 1.

Relative bytes CEH and CFH contain the encoded master disk password. The
encoded password is 12 bits in length.

::

'

Relative bytes DOH through DFH contain the d~:skette name and date information
assigned to it at format or backup time, in two ,,adjacent 8-byte fields. Note that
DOSPLUS II does not require a date; therefore tt-le second 8-byte field (the "date"
field) can actually contain any ASCII information. '

Relative bytes EOH through FFH are used to ~old any AUTO command for the
diskette in question. If no auto command is present then byte EOH will contain ODH (13
decimal). !I

THE HASH INDEX TABLE (HIT)
I

The Hash Index Table, or HIT, occupies relative ~ector 01 of the directory cylinder.
This sector contains hash codes of each active file ln the directory, positioned in such
a manner as to code the location of the file's directpry record in the following sectors.
This permits the operating system to locate a particfc:' lar directory record in a minimum
amount of time and with a minimum number of disk ~ ccesses.

I
'I
:1

:i

Technical information - age T /9

DosPLUS II - Disk Operating System - Technical manual

When a file is created, its name and extension are processed by the operating
system through a special hashing algorithm which produces a one-byte value in the
range OlH through FFH (the value DOH is used to indicate an available HIT position).
The hash code is then stored in the HIT table in a position which corresponds to the
location of the main directory record. Since duplicate hash codes are possible, it may
be necessary for the operating system to make several scans of the HIT table for the
hash code of a file. After finding each, the operating system will go to the main
directory record and compare the filename with the filename in memory for a match. If
a match is found, then the scan stops. Otherwise the system returns to the HIT table
for another try.

The position of a file's hash code in the HIT is called the Directory Entry Code
(DEC) or Logical File Number (LFN). Each active file has at least one DEC. Files which
are long enough to require extended directory entries will have a DEC for each
extended entry. If the HIT table is arranged into 8 rows of 32 bytes each, then the
position of each byte determines the position of the directory entry record. Each HIT
row corresponds to the position of each 32-byte entry in the succeeding sectors, and
each column position corresponds to the actual sector number minus 2 where the
directory entry may be found. This design permits a maximum of 256 files on any one
disk drive.

The position of the directory record may also be calculated from the relative byte
position of its HIT code. The leftmost three bytes of the DEC (the relative byte
position of the file's hash code) translates into the file's relative position within a
sector. The rightmost 5 bits translates into the directory sector minus 2 where the
record for that file may be found. Thus, a file with a HIT code at position 26H (001
00110) of the table will have its main directory entry at position 01 of sector 8 (6+2)
of the directory. Relative position 01, of course, starts at byte 20H (32 decimal).

The number of DEC bytes actually used by the operating system for HIT entries will
depend on the formatting characteristics of the media again. For exam le, a 5.25"
minifloppy disk formatted in single density will only use the first 8 colu ns of each
row of the HIT table, while a logical drive on a hard disk may make se of every
possible entry in the table.

THE DIRECTORY RECORDS

The information for each file on a disk is contained in its direct ry records.
DOSPLUS II uses 32-byte directory records, which means that each dire tory sector
following the GAT and HIT sectors can contain 8 directory entries, at r lative bytes
DOH, ZDH, 4DH, 6DH, 8DH, ADH, CDH and EDH. Each active file has a dire tory record
which holds, among other things, its name and extension, the hash codes f its access
and update passwords, its protection level, the actual location of the file on the disk,
and the number of extents the file has. Each file may have two types of directory
record: a Primary record, also known as the File Primary Directory Entry r FPDE, and
an extended record, known as the File Extended Directory entry or FXDE. An FXDE is
created for a file when the primary entry runs out of space in which to c de the file's
segments.

Technical information - Page T /10

\
\

;____ --

DosPLUS II - Disk Operating System - Technical manual

The structure of a directory record in DOSPLUS II is as follows:

RECORD + 0

+ 1

+ 2

+ 3
+ 4
+ 5-12
+13-15
+16
+17

+18
+19
+20
+21
+22-31

Flag byte 1

Flag byte 2

Flag byte 3

EOF byte

Bit 7 - 1=FXDE entry, O=FPDE entry
6 - 1=5ystem file, D=User file
5 - 1=Non shrinkable, 0=5hrinkable
4 - l=Active file, O=KILLed file
3 - l=lnvisible file, O=Visible file
2 - 0 - Protection level, 0 - 7.

Bit 7 - Reserved for future use.
6 - 1=File modified O=Not modified
5 - 4 - Reserved for system use
3 - 0 - Month updated

Bit 7 - 5 - Year updated (1980 base)
4 - 0 - Day updated

Logical Record Length C0=256 bytes)
Filename, left justified and padded with blanks as necessary
Extension, left justified and padded with blanks as necessary
Update password hash code (LSB)
Update password hash code high nybble (bits 7 to 4)
Access password high nybble (bits 3 - 0)
Access password hash code (LSB)
EOF sector MSB
EOF sector LSB
EOF sector NSB
Segment descriptor list.

The structure of the FPDE and FXDE are identical, except that an FXDE does not
make use of bytes 2 through 21. Also, in an FXDE, byte 1 of the record is a backward
linking DEC which points to the preceding directory record for this file. No filename or
extension is encoded in an F XDE.

A detailed explanation of the directory record structure is given below.

RECORD+ 00

This is the first of three flag bytes maintained for each directory record. Bit 7, if
set to 1, indicates that this record is a File Extended Directory Entry (FXDE). This
means that the file is large enough to require more than one directory record entry in
order to properly code the position of all of its segments on the disk. Bit 6, when set
to 1, indicates that this file· is a SYSTEM file, i.e., part of the DOSPLUS II operating
system itself, or a file which has been given system status.

Bit 5 indicates whether or not a file is of the non-shrinkable type. DOSPLUS II
allows the user to create files with a certain minimum preallocated size, and indicate
to the system whether the file can fall below the minimum or not. If this bit is set to
1, then the file cannot be reduced to a size below its minimum allocated size at
creation.

Technical information - Page T /11

DosPLUS II - Disk Operating System - Technical manual

Bit 4 flags whether the file is active or killed. DOSPLUS II does not remove the
directory entries of KILLed files from the directory, but instead, merely resets this
bit. This permits recovery of an accidentally killed file, if necessary.

Bit 3 indicates whether or not a file has the Invisible attribute.

Bits 2, 1 and 0 code the file's protection level, as follows:
7 - No access

RECORD+ 01

6 - Execute only
5 - Read, execute
4 - Write, read, execute
3 - Unused
2 - Rename, write, read, execute
1 - Kill, rename, write, read, execute
0 - Full access

This is the second of the three flag bytes, and encodes the following conditions:

Bit 7 is reserved for future use.

Bit 6 indicates whether the file has been modified since its creation or backup. The
COPY library command and the BACKUP utility will change the setting of this bit.

Bits 4 and 5 are reserved for system use.

Bits 3 - 0 encode the month the file was updated.

RECORD+ 02

This is the third flag byte. Bits 7 through 5 encode the year that the file was
updated, with a being equivalent to 19Ba.

Bits 4 through a encode the day of the month that the file was updated.

RECORD+ a3

This is the EOF byte pointer. It points to the next available byte of the file proper
in the sector pointed to by bytes 19,20 and 21.

RECORD+ 04

This byte encodes the logical record length of this file, from 1 to 256 bytes. A zero
value implies a 256-byte LRL.

RECORD + a5 through + 12

These eight bytes contain the filename. The name is left-justified in the field, and
padded on the right with blanks if necessary.

Technical information - Page T /12

DosPLUS II - Disk Operating System - Technical manual

RECORD + 13 through + 15

These three bytes contain the fi\ets extension, teft-)ustiHed in the field and padded
on the right with blanks if necessary.

RECORD + 16, +17

Byte 16 plus the leftmost 4 bits (the high nybble) of byte 17 form the 12-bit hash
code of the file's UPDATE password. Byte 16 is the LSB of the update password hash
code, while bits 7 through 4 of byte 17 form the HIGH nybble of the hash code.

RECORD+ 17, +18

The rightmost 4 bits of byte 17 (the low nybble) plus byte 18 form the 12-bit hash
code of the file's ACCESS password.

The password hash codes are formed by passing the ASCII password (all upper case)
through the the standard encoding algorithm used by TRSDOS and most other TRS-80
Models I and III disk operating systems. The algorithm produces a two-byte hash code.
The final value of the code is arrived at by stripping the leftmost 4 bits of the hash
code's MSB, to form the 12-bit code used by DOSPLUS II. This permits both update and
access passwords to be encoded in two bytes (24 bits), thus freeing up one byte for use
as part of the three-byte EOF record pointer.

RECORD + 19, +20, +21

These three bytes form the 24-bit pointer to the EOF sector of the file. The use of
a three-byte pointer p,ermits the creation of files larger than 65535 records in length.
Byte 19 is the MSB of the pointer, byte 21 is the NSB, and byte 20 is the LSB. The
maximum file size possible under DOSPLUS II is 16 million records.

RECORD + 22 through + 29

These bytes form the segment descriptor list for the file. Segment descriptors
consist of 2 bytes each. The first byte contains the number of the cylinder where this
segment starts. The low 5 bits of the second byte co~tains the quantity of contiguous
granules in this segment in zero relative order (that is,! a "0" implies 1 gran, "1" implies
2 grans, etc.). The high 3 bits of this byte contain the granule of the cylinder where
this segment starts (files do not need to start at the ~irst granule of each track every
time). An FF byte in the segment descriptor list indica~es the end of the list.

Using this scheme, then, each file segment can be thought of as consisting of up to
32 contiguous granules.

Technical information - Page T /13

DosPLUS II - Disk Operating System - Technical manual

RECORD + 30, +31

These two bytes are used to flag the presence of an extended directory entry, as
well as its position in the directory. If the value of byte 30 is FFH, then no extended
directory records exist for this file. If the value of this byte is FEH, then an extended
directory entry exists, and byte 31 contains the DEC of the extended directory entry.

File Extended Directory Entries (FXDE)

If a file occupies more than 32 contiguous granules, then a F.ile Extended Directory
Entry is created for it. The FXDE is very similar in structure to the primary entry,
except that (a) no filename is entered for it; (b) only bits 7 and 4 of relative byte 0 of
the entry are used; and (c) relative byte 1 of the entry is not a flag byte but a
backward link to the previous entry. This byte will contain the DEC of the previous
directory entry for this file. If a file has only one FXDE, then this byte will point to
the primary entry.

Relative bytes 22 through 31 of an FXDE are identical to that of a primary entry,
or FPDE. A file may have as many FXDEs as required to map it out in its entirety.

Technical information - Page T /14

DosPLUS II - Disk Operating System - Technical manual

DEVICE CONTROL BLOCKS

The various physical devices recognized by DOSPLUS II as being a part of the
computer system are interfaced to the operating system via Device Control Blocks, or
DCBs. Each device is assigned a DCB. The DCB is a contiguous segment of memory
which may be up to 40 bytes in length. The location of a particular DCB can be gotten
by means of the LOCDCB routine in the Resident Jump Table. Users should not modify
any DCB directly, however; there are Supervisory Calls for this purpose. Modifying a
DCB indiscriminately may cause the system to crash.

The current release of DOSPLUS II has DCBs defined for the following devices: ®KI,
®DO, ®PR, ®CA, ®CB, ®U1, ®U2 and ®U3 (devices 0 through 7, respectively). The
size of each DCB varies according to the requirements of the physical device itself.

Part of each DCB is used for data common to all devices. These locations are fixed
relative to the start of the DCB. Additional bytes are used for data unique to the
device, if needed. The common DCB data are defined as follows (®CTL, ®GET and
@PUT refer to character-oriented I/O operations):

DCB +DO

+ 01,02
+ 03,04
+ 05

+ 06,07
+ 08
+ 09,10
+ 11,12
+ 13,14
+ 15,16

Bit 7: File DCB: l=Yes, D=No
6: OCT /DCB: l=DCT, D=DCB
5: DCB is Linked: l=Yes, D=No
4: DCB is Routed: l=Yes, D=No
3: DCB is NIL: l=Yes, D=No
2: ®CTL valid: 1=Yes, D=No
1: ®GET valid: l=Yes, D=No
0: ®PUT valid: l=Yes, D=No

Driver address (LSB/MSB)
Linked/Routed DCB address, if any (LSB/MSB)
Flag byte
Bit 7 through 1: dependent on device
Bit 0 - Translate: 1=Yes, O=No
Translation table address, if any (LSB/MSB)
Translation table length
Buffer start address (LSB/MSB)
Spool buffer size
Offset for adding data to buffer
Offset for taking data from buffer

A detailed explanation of each of these bytes follows.

DCB +00

This byte is a flag byte which identifies the type of DCB and also its condition. Bit
7 (the high order bit) indicates whether the DCB is a file DCB or not, that is, a DCB
for a disk file in an OPEN condition. Bit 6 indicates whether the block is a DCB or a
Drive Control Table (DCT).

If the DCB is linked to another, then bit 5 will be set to 1. If the DCB is ROUTed,
then bit 4 is set to 1. If the DCB is in a NIL condition ("killed"), then bit 3 will be set
to a 1 to indicate it.

Technical information - Page T /15

DosPLUS II - Disk Operating System - Technical manual

Bits 2 through 0 of this byte indicate the types of I/O calls from the system which
are valid for this DCB. If bit 2 is set to 1, then a @CTL call is valid, meaning that the
driver for this device will return from a call only when a character is available.

If bit 1 is set to a 1, then @GET calls are valid. This means the device is capable
of character-oriented input. Bit 0 set to a 1 would indicate that PUT calls are valid,
meaning that the device is capable of character-oriented output. Some devices are
capable of only one or the other, while other devices are capable of both input and
output.

DCB +01, +02

These two bytes hold the address of the device I/O routine (the driver routine) in
LSB /MSB format.

DCB +03, +04

If the device is LINKed or ROUTEd to another device (i.e., bit 4 or bit 5 of DCT
+00 is set), then these two bytes will contain the address of the other device's DCB in
LSB /MSB format.

DCB +05

This byte is a flag byte and its use varies depending on the device in question. Bit 0
will always indicate whether or not translation (filtering) is in effect for the device or
not. See below for use with particular devices.

DCB +06, +07

If translation is in effect, that is, the device has been FILTERed, then these two
bytes will contain the address of the translation table in LSB/MSB format.

DCB +08

If translation (filtering) is in effect, then this byte will hold the number of entries
in the translation table pointed to by the preceding two bytes. The length of the table
is the value in this byte times 2.

DCB +09, +10

These two bytes hold the starting address of the device's spool buffer, if any, in
LSB/MSB format.

DCB +11, +12

These two bytes encode the size of the spool buffer pointed to by the preceding
two bytes. Minimum size is 2 bytes.

DCB +13, +14

These bytes form the offset from the start of the device's spool buffer to the point
where an incoming data byte may be added into the buffer (next available buffer
location).

Technical information - Page T /16

DosPLUS U - Disk Operating System - Technical manual

DCB +15, +16

These form the offset to the location of the next data byte to be taken from the
buffer and spooled out to the physical device.

KEYBOARD DCB (@KI)

Flag Byte definitions (DCB + 5):

Bit 7 - unused
6 - BREAK OFF switch: l=Yes, O=No
5 - BREAK Processor active: l=Yes, O=No
4 - HOLD Processor active: 1=Yes, O=No
3 - BREAK character waiting: l=Yes, O=No
2 - HOLD character waiting: l=Yes, O=No
1 - Active CHAINing: l=Yes, O=No
0 - Translation in effect: 1=Yes, O=No

In addition to the common data bytes defined above, other bytes used by the @KI
DCB are:

DCB + 17,18
+ 19,20

FCB address of DO file, if executing.
Address of BREAK processor

Byte DCB +05 is used by the @KI device to flag conditions which involve the
keyboard.

If Bit 6 of this byte is set to 1, then the BREAK key has been disabled and will not
be responded to by the keyboard driver.

Bit 5 set to 1 means the BREAK processor (either the operating system's, or a
user's routine) is active. Bit 4 set to 1 means the system HOLD processor is active.

If bit 3 is set to 1, it means that a BREAK character has been detected (break key
pressed). How this character is processed will depend on the condition of bits 6 and 5.

Bit 2 set to 1 means a HOLD character has been detected. How it is dealt with
depends on the condition of bit 4.

Bit 1 indicates that chaining from a DO file is active. This means that input from
the DO file will be processed by the ®KI device as though they were actually typed in
from the keyboard.

Bit 0 set to 1 indicates that the device is being filtered by a translation table.

If chaining is in progress, then bytes DCB +19 and +20 will contain the address of
the File Control Block (FCB) of the active DO file. If the BREAK processor is active
(bit 5 of the flag byte set to l) then relative bytes 21 and 22 will hold the address of
the BREAK processor routine in LSB/MSB format.

Technical information - Page T /17

DosPLUS II - Disk Operating System - Technical manual

DISPLAY DCB (!§!DO)

The Video Display DCB uses relative bytes 09 through 18 differently from the other
DCBs. The use of these bytes are defined below:

DCB

DCB + 09

+ 09
+ 10
+ 11,12
+ 13,14
+ 15,16
+ 17

Character mode mask
Line length
Cursor location
Start of scroll area
End of scroll area + 1
Scroll count

This is a mask byte which indicates the character modes in effect at the current
time.

DCB + 10

This byte encodes the video line length (normally 80 characters, unless double-size
characters are being displayed).

DCB + 11, + 12

These two bytes encode the current position of the cursor. This is an offset from
the start of the video screen display.

DCB + 13, +14

These two bytes define the video scroll area, i.e., the first video position which is
not scroll-protected, in offset form from the start of the video display.

DCB +15, +16

The end of the scroll area + 1 is encoded in these two bytes, also offset from the
start of the video display.

DCB +17

This byte contains the scroll count.

LINEPRINTER DCB (!§!PR)

Flag byte (DCB + 5) definitions:

Bit 7 - Driver type:
6 - LF after CR:
5 - Unused
4 - Print lowercase:
3 - Transparent mode:
2 - Form feed type:
1 - Tab type:
0 - Translation:

l=Serial, O=Parallel
l=On, 0=0ff

1=Yes, O=No
l=On, 0=0ff
l=Real, 0= Translated
1=Real, 0= Translated
1=0n, 0=0ff

Technical information - Page T /18

DosPLUS II - Disk Operating System - Technical manual

Bit 7 encodes the type of driver routine being used with the printer. If set to 1, it
means that the serial printer driver is in use, and all output is going out through serial
channel B. If set to 0, then the default parallel printer driver is in use.

Bit 6 indicates whether the printer requires a linefeed (ASCII OAH) after each
carriage return (ASCII ODH) in order to get correct spacing. If set to one, then the
printer driver will issue a linefeed following each carriage return.

Bit 4 indicates whether the printer hooked up to the system is capable of producing
lowercase or not. If so, then lowercase letters are sent out as is; otherwise they are
translated to upper case.

Bit 3 indicates whether transparent mode is on or off. If transparent mode is on,
then all data bytes are sent out to the printer without processing or translation.

Bit 2 determines the form feed type required by the printer. If this bit is set to
one, then the ASCII formfeed code is transmitted to the printer (ASCII OCH).
Otherwise, the printer driver translates a form feed into the necessary number of
carriage returns and/or line feeds to arrive at the next top-of-form position.

Bit 1 indicates whether tab codes (ASCII 09H) are to be sent out .to the printer as is
(the printer acts on the tab code) or whether they should be translated to the correct
number of spaces to arrive at the next tab field.

Bit 0 indicates whether filtering is in effect or not.

Additional bytes used by the ®PR DCB are as follows:

DCB + 17
+ 18
+ 19
+ 20
+ 21

Printed lines/page
Page length in lines
Line counter
Maximum characters per line
Character counter (current line)

The number of printed lines per page, page length, and line length are normally set
through the FORMS library command or through the PRINIT Supervisory Call (SVC 17).

Communications Channel Serial Port DCBs (®CA and ®CB)

Flag byte definitions, (DCB + 5):

Bit 7 - Unused
6 - Unused
5 - Unused
4 - Unused
3 - Unused
2 - Unused
1 - Channel initialized:
0 - Translation:

1=No, O=Yes
1=0n, 0=0ff

Bit 1 indicates whether or not the port has been initialized or not (either through
the SETCOM library command or the RS232C Supervisory Call (SVC 55). Bit 0 indicates
whether filtering is in effect or not.

Technical information - Page T /19

DosPLUS II - Disk Operating System - Technical manual

Additional bytes used by the two SIO DCBs are:

DCB

DCB + 17

+ 17
+ 18
+ 19
+ 20
+ 21
+ 22
+ 23

Base Port 510 (command/status port)
CTC port Ill
CTC port 112
Word length mask
Stop bits
CTC Register 5 mask (for PRCTRL calls)
Baud rate/word length/parity configuration
Bit 7 reserved

6 baud rate config (high)
5 baud rate config (next)
4 baud rate config (low)
3 word config (high)
2 word config (low)
1 parity even/odd: 0=0dd, l=Even
0 parity on/off: 0=0ff, l=On

This byte identifies the command/status port for this serial channel.

DCB + 18, +19

This byte identifies Counter-Timer controller ports Ill and 112 for each channel.

DCB + 20

This byte is a word length MASK. The number of bits set to 1 determine the length
of the word, not the actual value of the byte. For example, 8-bit words would be
represented by OFFH (all bits set).

DCB + 21

This byte contains the number of stop bits being used in this channel.

DCB + 22

This is a mask byte used to set certain conditions in the serial port hardware via
CTC register 5. This byte is reserved for system use only.

DCB + 23

This byte encodes the baud rate, word length and parity configuration of this
channel. Baud rate is encoded in bits 6, 5, and 4 as follows:

0 - 110 baud
1 - 150 baud
2 - 300 baud
3 - 600, baud

I

4 - 1200 baud
5 - 2400 baud
6 - 4800 baud
7 - 9600 baud

Technical information - Page T /20

DosPLUS II - Disk Operating System - Technical manual

The word length - 5 is encoded in bits 3 and 2. Bit 1 determines whether even or
odd parity will be used. If set to 1, then even parity is used, otherwise odd parity is
used.

Bit 0 determines whether parity is enabled or disabled. If set to a 1, then parity is
enabled; otherwise parity is disabled, and the setting of bit 1 is ignored.

USER DEVICE DCBs (®Ul, ®U2, ®U3)

These devices are normally unused in the standard system and are available to the
user. The type flag (DCB +00) is set to 8, indicating a NIL device. It is up to the user
who establishes a specialized driver for these devices to handle the DCB type.

Each user DCB is 13 bytes in length, and defined as follows:

DCB + 00
+ 01,02
+ 03,04
+ 05
+ 06,07
+ 08
+ 09
+ 10
+11
+ 12

Type flag (NIL)
Driver Address
Linked/routed DCB address
Flag byte
Translation table address
Translation table length
Available
Available
Available
Avail?ble

Relative bytes 00 through 08 are used in the same fashion as the other DCBs. The
remaining bytes are available to the user routine.

Technical information - Page T /21

DosPLUS II - Disk Operating System - Technical man1..1al

DRIVE CONTROL TABLES

DOSPLUS II also maintains current information about the eight logical disk drives
(drives 0 through 7) that it supports. Information about these drives are maintained in
contiguous blocks of memory called Drive Control Tables, or DCTs. Each drive active
in the system is assigned a OCT. The system interfaces with the physical disk drive
equipment through these tables, just as it interfaces to other devices through the
device control blocks.

Certain equipment, such as high-capacity hard drives, may be subdivided into two or
more logical drives within DOSPLUS II, and each logical drive will be assigned a DCT.
Under this configuration, logical drives may start at any location on the hard drive
(DOSPLUS II allows logical drives to start anywhere, not just at a platter or surface
boundary). Information concerning the starting point of the logical drive is also
maintained in the OCT for that drive number. For example, logical drive 2 may start at
track 100, Sector 32 of a five-megabyte drive. This information will be in the OCT. If
a RST 10H instruction is used to access the drive, the offsets will automatically be
calculated. These instructions are detailed in the section on the Resident Disk I/O
system.

The DCTs are normally 23 bytes in length, and their position in memory varies
depending on the type of drive being interfaced. The address of the OCT for any
currently defined drive can be gotten through the LOCDCT call in the Resident Jump
Table. Note that drives are always accessed through this call using drive numbers 0
through 7, rather than absolute device numbers 8 through 15. The DCTs are heavily
used by the system and the user should refrain from modifying them directly.
Supervisory calls are available for this purpose.

The Drive Control Table bytes are defined as follows:

OCT +DO

+ 01,02
+ 03,04

Type Flag
Bit 7 -File DCB: l=Yes, D=No

6 - OCT /DCB: 1=DCT, D=DCB
5 - Reserved for future use
4 - Reserved for future use
3 - NIL: l=Yes, D=No
2 - Reserved
1 - Reserved
0 - Reserved

Driver ad dress
Reserved for future use.

Technical information - Page T /22

DosPLUS II - Disk Operating System - Technical manual

+ 05

+ 06
+ 07
+ 08,09
+ 10
+11
+ 12

Flag Byte
Bit 7 - 5 11/8 11 flag: 1=5", 0=8"

6 - Software Write Protect: 1=Yes, O:No
5 - \-lard/Floppy! l=Hard, G=F1opp)l
4 - Motor-on Delay: l=Yes, O:No
3 - Head load: l=Yes, O=No
2 - Skip drive: l=Yes, O:No
1 - Fixed/Removable (Hard disks only): 1=Yes, O=No
0 - Log disk: l=Yes, O:No

Step rate
Head offset
Cylinder offset
Sector offset
Head location
Binary drive number

The contents of the following bytes (relative bytes 13 through
22) will change depending on the formatting of the disk placed in that drive.

OCT +13

+14
+ 15
+ 16
+ 17
+ 18
+ 19
+ 20
+ 21,22

Bit 7 - Diskette density: l=Double, O=Single
6 - Directory protected

Surface count
Cylinder count
Sectors/track
Directory length
Directory location
Sectors/granule
Granules/cylinder
Sectors/cylinder

A detailed explanation of the OCT table follows.

OCT +00

This is a type flag byte which identifies the type of device. Bit 6, if set to 1,
identifies the block as a Drive Control Table. The condition of bit 3 will indicate
whether the drive is active or has been "killed" (set to NIL).

OCT +01, +02

These two bytes contain the address of the 1/0 driver routines for this logical drive,
in LSB/MSB format.

OCT +03, +04

Reserved for use in future implementations of DOSPLUS II.

Technical information - Page T /23

DosPLUS II - Disk Operating System - Technical manual

OCT +05

This is a flag byte which defines certain characteristics of the actual physical
hardware, along with some software conditions.

Bit 7 identifies the size of the disk drive. If set to a 1, the drive is a 5.25" drive. If
set to a O, it is an 8" disk drive. This applies to both floppy disk drives and hard
drives.

Bit 6 indicates whether this logical drive has been write-protected from software or
not. This is a software condition. If set to 1, then DOSPLUS II will make no attempt to
write to this particular drive.

Bit 5 identifies whether the logical drive is assigned to a floppy disk or a hard disk.
If set to 1, then the physical drive is a hard disk.

Bit 4 informs the system whether the physical drive needs a delay after turning on
the motor to come up to speed. Certain minifloppy drives require a one-second delay
before I/O can be attempted. If this bit s set to 1, OOSPLUS II will wait one second
before performing any I/O to the drive.

Bit 3 informs the system whether a head load signal is required by the drive. Some
drives require this signal, while others do not (the read/write heads are constantly in
contact with the disk media).

Bit 2 is used for minifloppy drives only, and indicates whether the system should
read the disk in "skip" mode. This entails reading every other tracl<, and is used to
read a 48-track-per-inch formatted diskette on a 96-track-per-inch minifloppy drive.
This allows the standard 35/40 - track minifloppy diskettes to be read on an SO-track
disk drive.

Bit 1 is used for hard drives, and indicates whether the drive media is fixed or
removable.

Bit 0 indicates whether the OCT information for the diskette in this drive has
already been read or not. If set to 1, then the next disk access for this drive will
cause the OCT information on the diskette's boot track to be read in. If set to 0, it
indicates that the DCT information is current for this diskette.

OCT +06

This byte encodes the track-to-track stepping rate that the operating system is to
use with this particular drive. Minifloppy drives can step anywhere from 40 msec. to 6
msec track-to-track, depending on manufacturer. 8" floppies normally step at 3 msec
track to track.

The next four bytes identify the starting location of a logical drive on hard disk
media. DOSPLUS II does not require that a logical drive start on a particular platter,
cylinder or sector; it can start anywhere.

Technical information - Page T /24

DosPLUS II - Disk Operating System - Technical manual

DCT + 07

This byte encodes the head offset for this logical drive. This is used when more
than one logical drive is assigned to the same piece of hardware, as in the case o~
high-capacity hard drives which are divided into two or more logical drives. Normally,
hard drives consist of several platters, and one read/write head for each platter
surface. This byte tells the system which head (and therefore which platter) this
particular logical drive begins at.

DCT +08,+09

These two bytes contain the cylinder offset for this logical drive. A logical drive
need not start on cylinder 0. The system can tell from these two bytes the starting
cylinder of the drive.

DCT +10

This is the sector offset within a cylinder where a logical drive starts.

DCT +ll

This byte codes the head location for this logical drive.

DCT +12

This is the binary drive number for this logical drive. It is the same as the physical
drive number and can take values from 0 to 7.

The next ten bytes contain information which are characteristic of the diskette in
the drive at the moment. In the case of floppy and minifloppy disk drives, the contents
of these bytes may change whenever a diskette is changed.

DCT +13

The two highest bits of this byte contain the following information concerning the
diskette format:

Bit 7 indicates the density of the diskette. If set to 1, then the diskette is
formatted in double density.

Bit 6 indicates whether the directory track of the diskette is "read protected," that
is, was written using "read-protected" data address marks, or DAMs. This does not
actually read-protect the directory, but serves to separate the directory track from all
the others for quick identification.

DCT +14

This byte encodes the number of surfaces on a disk assigned to this logical drive. A
double-sided floppy disk would have two surfaces, for example, while a lo.gical drive on
a hard disk may be assigned more than two, depending on how it is configured.

Technical information - Page T /25

DosPLUS II - Disk Operating System - Technical manual

OCT +15

This byte encodes the number of cylinders assigned to this logical drive. Minifloppy
disks can have up to 96 cylinders, where each cylinder may be composed of one or two
tracks (depending on whether the disk is formatted as single sided or double sided). An
eight-inch floppy will normally have 77 cylinders. The cylinder count for hard drives
will vary depending on how the logical drive has been configured.

OCT +16

The number of sectors per track is encoded in this byte. For non-hard disk drives,
the sector count will vary depending on the density the media has been formatted in.

OCT +17

This encodes the length of the directory, in sectors, for a particular diskette or
logical hard drive.

OCT +18

This encodes the location of the directory (cylinder number).

OCT +19

This byte encodes the number of sectors per granule for a particular diskette or
logical hard drive. A granule is an artificial unit which is the minimum amount of space
that will be allocated to a file by the system at any one time. The size of a granule
will vary according to density and media. Floppy disks formatted under DOSPLUS will ·~
normally have 5 sectors per granule. Hard disks may have up to 32 sectors per granule.

DCT +20

This byte tells the system how many granules per cylinder are on the media. A
standard single-sided 8-inch floppy disk formatted under DOSPLUS II, using 5-sector
granules, will normally have 6 granules per cylinder.

OCT +21,22

These two bytes encode the number of sectors per cylinder formatted on the media.
The standard 8-inch floppy disk formatted under DOSPLUS II will have 30 sectors;
TRSDOS disks will have 26 sectors. Sector count for hard drives will vary.

Technical information - Page T /26

DosPLUS II - Disk Operating System - Technical manual

DOSPLUS II Supervisor Call System

The system routines in DOSPLUS 11 may be accessed by user-written programs
through the Supervisory Calls (SVCs). The SVCs permit user programs to take
advantage of the operating system's routines to perform various functions such as
device and file I/O and file access.

The DOSPLUS II system can have a total of 128 Supervisory Calls, although not all
are defined in the current release. Each one is assigned a code number, from 0 to 127.
DOSPLUS II Supervisory Calls aJe compatible with the TRSDOS 2.0 and TRSDOS 4.0/4.1
SVCs. Also, slots 102 through 127 are left open for the user to define his own SVCs.

All Supervisory Calls are executed by loading the ZBO's A-register with the proper
SVC number and executing a RST 8 instruction. Depending on the call, the other
registers may need to be loaded with particular values before the RST 8 is executed.
All SVCs return to the instruction following the RST 8 in the calling program. On
return, the contents of all primary registers not defined in the explanation of the SVCs
below are assumed unchanged; however, the alternate register set is used by the
system and their contents must be assumed destroyed.

It is important to realize that while DOSPLUS II places very few restrictions on the
user insofar as memory utilization goes, users should avoid those areas which are likely
to be loaded by the system, especially when executing DOS-level commands from within
a program. DOSPLUS II uses the following areas of memory:

OOOOH - lBFFH
lCOOH - 21FFH
22DOH - 27FFH

Resident system
Low Overlay region
High Overlay region

This section details each Supervisory Call along with their entry and exit conditions.
It is assumed that the reader is an experienced programmer familiar with the Z80
instruction set.

Notational conventions used in this section:

1) Hexadecimal numbers are represented with a trailing "H", e.g., 2BH, 31H.

2) The notation LSB/MSB is used to refer to the Z80 convention of coding address
references with the least significant byte (LSB) coming first, followed by the most
significant byte (MSB).

3) Standard ZILOG mnemonics and notation are used for Z80 machine instructions. The
alternate register set of the Z80 is represented as the PRIME of the standard set,
with a trailing apostrophe, e.g., AF'.

4) When a register pair is surrounded by parentheses, e.g., (HL), it indicates that this
register pair contains an address reference to a location in memory (data outside
the ZBO chip's registers).

SVC CALLING PROCEDURE

l) Load the ZBO A-register with the number of the Supervisory Call you wish to
execute. Load any other registers required by the call.

Technical information - Page T /27

DosPLUS II - Disk Operating System - Technical manual

2) Execute a RST 8.

3) The Supervisory Call routine will return to the instruction foUowing the R.ST 8 with
the Z flag set if the routine executed properly. The contents of register A will be 0
in this case. If the Z flag is not set (NZ condition), an error has occurred and the A
register will contain the proper error code. Your routine should test the Z flag and
carry flag immediately on return from the SVC and act accordingly.

EXAMPLES

A) Output a line to the lineprinter

LD
LD
LD
LD
RST
JP

;------ continue here

HL,LINE ;point to the line buffer
B,64 ;number of chars to print
C,l3 ;Terminating character
A,l9 ;SVC code number
8 ;Execute the SVC
NZ,ERROR ;Execute error routine if NZ.

if successful ------

B) Convert a binary value to ASCII-coded hexadecimal

LD
LD
LD
LD
RST

B,O
DE,NUMBER
HL,BUFR
A,24
8

;Set for binary-hex conversion
;NUMBER = 16 bit binary number
;BUFR = 4 byte buffer for result
;SVC code
;Go perform the conversion

C) Get a character from the keyboard and display it on the video screen at the current.
cursor position

GETKEY LD A,4 ;Get-character SVC code
RST 8 ;Execute SVC
JR Z,HAVKEY ;Got a keypress, display it!
CP 2 ;check contents of register A
JR Z,GETKEY ;not an error, loop back
JR ERROR ;Register A has an error code

;B contains character code if a key was pressed
HA VKEY LD A,8 ;Display-character SVC

RST 8 ;display character on video
JR NZ,ERROR ;Process if error condition

; -- otherwise continue with program here

ERROR OR SOH ;Set high bit of error code
LD B,A ;put error code in B
LD A,39 ;load SVC number
RST 8 ;display error message

;with high bit of error code set, DOSPLUS II will take an
;immediate exit to DOS Ready after displaying the error
;message.

Technical information - Page T /28

OosPLUS H ·-Disk Operating System- Technid:~l manual

===·===·=====================·=::!====·==
INITIO (SVC 0)
Initialize DOSPLUS II 1/0 System

This routine initializes the DOSPLUS II system I/O cdrivers. It calls initialization
routines for the keyboard, video display device and printer. The video is cleared and
set to 80 characters per line and nornial {white-on-black) mode, the printer is set to 66
lines per page with 60 print lines and 132 characters per line. The keyboard type-'ahead
buffer and the printer spool buffers are emptied.

No parameters are re,quired. This routine is called by DOSPLUS U and should not
have to be calf:ed by the user unless a S'evere error condition has occurred.

ENTRY CONDITIONS
A= 0

EXIT CONDITIONS
z = No error. Register A contains 0.

NZ= Error
A = Error code if NZ.

Technical information - Page T/29

DosPLU.S II - Disk Operating System - Technical manual

===~============

KBINIT (SVC 1)
Initialize Keyboard Device

This routine initializes the DOSPLUS II default keyboard driver Calling this routine
does not affect any translation which may be in effect. Also, any device linking
involving the keyboard is not changed, and the location and size of the type-ahead
buffer is also not changed. However, the type-ahead buffer will be cleared by this
SVC, along with hardware keys.

ENTRY CONDITIONS
A = 1

Technical information - Page T /30

DosPLUS II - Disk Operating System - Technical manual

==

SETUSR (SVC 2)
Set Up User-defined SVC

This routine sets or removes a user vector in the system's SVC table •. Under
DOSPLUS II, any valid SVC code number (0 - 127) may be used to set up a user SVC.
Normally, however, users should set up t.heir routines using SVCs 102 through 127 which
are reserved for this purpose. Once set up, the user program can then be called via the
RST 8 instruction. User routines may reside anywhere in free memory. Previously
defined SVC vectors may be redefined without first removing it from the table.

ENTRY CONDITIONS
A = 2
B = SVC code to be used, 0 to 127.
C = Set/Reset .select. If C=O, remove the vector. If C <> O, insert

the vector.
HL = Transfer address of the User SVC (when C <> 0).

EXIT CONDITIONS
Z = No error. A register contains 0.

HL = Removed vector address (when C = 0).
NZ = Error.

A = Error code if NZ (parameter error, indicating a value in B greater
than 127 when SVC was called).

Technical information - Page T /31

DosPLUS II - Disk Operating System - Technical manual

==

SETBRK (SVC 3)
Set Up a Break Key Processor Routine

This routine will allow you to intercept the BREAK key and transfer control to your
own routine when BREAK is pressed. All the PRIMARY ZBO registers are preserved
when control is transferred to your routine '(your routine should not use the alternate
register set if possible, or else save them and restore them before exiting).

If the break processor is ON, and if the debugger is not active, then the break
character will not be returned by the keyboard, and the user break routine will be
executed when the key is pressed • If the debugger is active, then it will have priority
over the SETBRK user routine. If the break processor is OFF (default) then control
will not transfer to the user vector, but the break character (03H) will be returned by
the keyboard.

This routine will also permit you to disable the BREAK key by removing the address
of the processing program from the interrupt vector table.

BREAK processor vectors may be changed without first removing the previously
defined vector.

ENTRY CONDITIONS
A = 3

HL =>

EXIT CONDITIONS

Address of BREAK processor routine. When the BREAK key is
pressed, control is transferred to this address immediately.
If HL=D, then the vector to the previous processing program
is removed, disabling the BREAK key vector.

Z = No error. Register A contains 0.
NZ = Error
A = Error code if NZ.

HL => Address of old BREAK processor routine if HL was 0 on entry.

Note that on exit, the break processor will return to the instruction which was
interrupted. If the user's break processing routine saves the registers on entry and
restores them prior to executing the RET instruction, the interrupted program can take
up where it left off.

Technical information - Page T /32

DosPLUS II - Disk Operating System - Technical manual

===.===
KBCHAR (SVC 4)
Get One Character From the Keyboard

This routine will get one character from the type ahead buffer if any are available.
It will return immediately whether or not a key was pressed. If a user BREAK
processor was set, then the BREAK character will not be returned (see above). If the
system BREAK processor is not active, then the routine will return to the calling
program with the BREAK (03H) character. Similarly, if the system HOLD processor is
set, then the HOLD key character will not be returned, and the system will interpret
the HOLD. Otherwise, the HOLD (DOH) character will be returned.

ENTRY CONDITIONS
A = 4

EXIT CONDITIONS
NZ = No key was pressed, or error.
A = 2 if no character available, otherwise error code.
B = Character found, if any. If no key was pressed, B is returned

unchanged.

Technical information - Page T /33

DosPLUS II - Disk Operating System - Technical manual

==
KBLINE (SVC 5)
Get a Line of Input From the Keyboard

This routine will input a line from the keyboard into a user-defined buffer and echo
each character to the video as it is typed. The input line is terminated when a
carriage return is typed, or when BREAK is typed. If a carriage return (ASCII 13, DOH)
is used to terminate the line, it is stored in the buffer along with the rest of the
characters. If the buffer fills before a carriage return is typed, then no other keys will
be accepted EXCEPT a carriage return or break, which MUST be typed. The carriage
return will be placed in the buffer along with the rest of the input line, if the buffer
is not full.

These keys have specific actions with this SVC:

ENTER (13, or DOH)
ESC (27, or lBH)
BACKSPACE (DSH)
BREAK (03H)

ENTRY CONDITIONS
A = 5

terminates the input line
restarts input line. Previous input is erased.
Backs cursor one position, erases last character input.
terminates the input line.

B = Maximum number of characters to input from keyboard. If B=l, then
return on first key pressed. If B <> 1 then the line must be
properly terminated.

HL => Starting address of user's input buffer.

EXIT CONDITIONS
Z = No error.
C = line termination flag. If C=D then the buffer was filled before

carriage return was typed. If C contains ODH (carriage
return) then the line was terminated before the buffer was
filled, and the carriage return character is in the input
buffer.

Carry = If the carry flag is set, then BREAK was used to terminate
input. This is the only way to determine if BREAK was used
to terminate the input line.

Technical information - Page T /34

··~

DosPLUS II - Disk Operating System - Technical manual

==

DELA V (SVC 6)
Delay a User-Defined Interval

This routine provides a user-defined delay, returning control to the calling program
when the delay interval has elapsed.

ENTRY CONDITIONS
A = 6

BC = Delay multiplier. Maximum delay is 426 milliseconds, if BC=O. If BC
> O, then the delay time is determined by the following
formula:
Delay = 6.5 *(BC-1)+22 microseconds.

EXIT CONDITIONS
A = 0
Z = set

==

VDINIT (SVC 7)
Initialize Video Display

This routine initializes the Video display and should be called once before starting
any output to the video. The screen will be cleared and the cursor moved to the upper
left position. This call will not affect any translation which is already active.

ENTRY CONDITIONS
A = 7
8 = Character size select. If 8=0, then character size is set to 40

characters/line. If 8 <> 0 then character size is set to 80
characters/line.

C = Mode select. If C<>O, then set normal (white-on-black) mode. If C=O,
then set reverse video mode (black-on-white).

EXIT CONDITIONS
Z = No error. Register A contains 0.

NZ = Error
A = Error code if NZ.

Technical information - Page T /35

DosPLUS II - Disk Operating System - Technical manual

==
VDCHAR (SVC B)
Display Character on Video Screen

This routine outputs a single character to the display in Scroll Mode. ASCII codes 0
through 255 are all valid for display.

The following control codes affect the video display:

Key Hex Code

Fl OlH
F2 02H
Ctrl-C 03H
Ctrl-D 04H
BACKSPACE 08H

TAB 09H

Ctrl-J OAH
Ctrl-K OBH

ENTER ODH
Ctrl-T 14H
Ctrl-W 17H
Ctrl-X 18H
Ctrl-Y l9H
Ctrl-Z lAH
ESC lBH
Left Arrow lCH
Right Arrow lDH
Up Arrow lEH
Down-Arrow lFH

ENTRY CONDITIONS
A = 8
B = ASCII

EXIT CONDITIONS
NZ = Error

Function

Turn on corsor with SLOW BLINK
Turn cursor off
Turn on cursor with FAST BLINK
Turn on STEADY cursor
Move cursor left one column position and blank out
character there.
Move cursor to the next tab field boundary (tab fields are 8
columns wide).
Move cursor down to next row, same column position.
Position cursor at the start of previous line if not scroll
protected area.
Move cursor to start of next line
Home cursor to the first non-protected position on screen.
Erase to end of line without moving cursor
Erase to end of screen without moving cursor
Set Normal Display Mode (white-on-black).
Set Reverse Display Mode (black-on-white).
Erase screen and home cursor to row 0, column 0.
Move cursor left one column position.
Move cursor right one column position.
Set 80 characters/line mode. Display is cleared.
Set 40 characters/line mode. Display is cleared.

code for character to output to video. 0 to 255 are valid.

A = Error code if NZ.

Technical information - Page T /36

·~.

· DosJ?LUS n - Disk Operating System - Technical manual

==
(~ VDLINE (SVC 9)

Display Line on Video Screen

This routine takes characters from a user-defined buffer in memory and displays
them on the video in Scroll Mode stc;~rting at the current cursor position. ASCII
character codes from 0 to 255 are valid.

ENTRY CONDITIONS
A = 9
B = Number of characters to be displayed.
C = End of line character. This character is sent after the last

character in the buffer. If C=D, then no terminating
character is sent.

HL => Starting address of the buffer containing the display line.

EXIT CONDITIONS
Z = No error. Register A contains 0.

NZ =Error
A = Error code if NZ

On exit, the cursor is positioned immediately after the last displayed character.

Technical infqrmation - Page T /37

DosPLUS II - Disk Operating System - Technical manual

===
VDGRAF (SVC 10)
Display Characters in Graphics Mode

This routine displays a buffer of characters in Graphics Mode, 'starting at a
specified row and column on the video display. All character codes from 0 through 255
are valid.

Active control codes are as follows:

HEX CODE

F9H

FAH

FBH
FCH

FDH

FEH

FFH

FUNCTION

Sets white-on-black mode (Normal). Cursor is not moved. Display mode
reverts to previous on exit.
Sets black-on-white mode (Reverse). Cursor is not moved. Display mode
reverts to previous on exit.
Homes cursor to Row 0, Column 0
Moves cursor back one space. When column = 0, cursor moves to column
79 of preceding row.
Moves cursor forward one space. When column = 79, cursor moves to
column 0 of next row.
Moves cursor up one row, same column. If Row = 0 then cursor wraps
around to row 23.
Moves cursor down one row, same column. If Row = 23, then cursor wraps
around to Row 0.

ENTRY CONDITIONS
A = 10
B = Row on screen to start displaying buffer, 0 to 23.
C = Column on screen to start displaying, 0 to 79.
D = Length of buffer, 1 to 255. If 0=0, then cursor is positioned to the

coordinates determined by the BC register pair.
HL => Starting address of text buffer.

EXIT CONDITIONS
Z, = No error. Register A contains 0.

NZ = Error
A = Error code if NZ.

On exit, cursor is left positioned at the graphics position immediately following the
last displayed character.

Technical information - Page T /38

DosPLUS II -Disk Operating System - Technical manual

==
YDREAD(SVC 11)
Read Video Memory into User-Defined Buffer

This routine will read characters from the Video display into a user-defined buffer
in Graphics Mode. When the read goes beyond column 79, it will wrap around to column
0 of the next row. When the read goes beyond column 79 of row 23, then it wraps
around to column 0, row D.

This routine can also be used to determine the present location of the cursor.

ENTRY CONDITIONS
A = 11
B = Row on screen where read is to start, 0 to 23. If B > 23 then B mod

24 is used to determine starting row.
C = Column on screen where read is to start, 0 to 79. If C > 79 then C

mod 80 is used to determine starting column.
D = length of user's input buffer, 0 to 255. If D=D, then current cursor

position is returned in BC register pair.
HL => Starting address of input buffer.

EXIT CONDITIONS
BC = Current cursor position (B=row, C=column).
Z = No error. Register A contains D.

NZ = Error
A = Error code if NZ.

Technical information - Page T /39

DosPLUS II - Disk Operating System - Technical manual

===

VIDKEY (SVC 12)
Get Input Line from Video With Prompt Message

This routine will output a prompting message to the video display at the current
cursor position, then accept a line of input from the keyboard. The prompt message is
kept in a user-defined buffer.

The Type-Ahead buffer is NOT cleared by this routine.

ENTRY CONDITIONS
A = 12
B = Number of characters in prompt message (0 - 255)
C = maximum length of keyboard input field (0 - 255)

DE => Start of input buffer where keyboard characters are to be stored.
HL => Start of buffer containing prompt message.

EXIT CONDITIONS
NZ = Error (invalid display character)
A = Error code
Z = No error.

If Z is set, indicating no error, then
B = Number of characters input from keyboard.
C = Length of displayed prompt string.

HL => Start of display prompt string
DE => keyboard input buffer

Technical information - Page T /40

DosPLUS II - Disk Operating System - Technical manual

==

'~ SVC 13 and SVC 14 are UNDEFINED

Technical information - Page T /41

DosPLUS II - Disk Operating System - Technical manual

==

DISKID (SVC 15)
Read a Diskette ID

This routine reads the ·diskette ID from any or all drives 0 through 7. This is the ID
placed on the diskette at FORMAT or BACKUP time. This routine can be used to
determine if the operator has inserted the proper diskette.

ENTRY CONDITIONS
A = 15
B = Drive select code. B may take the values 0 through 7 and 255. If

B=255 (FFH) then the IDs of ALL mounted drives are read.
HL => Address of the buffer for the Diskette IDs. If B = 0 through 7, then

the buffer must be 8 bytes long. If 8=255, the buffer must
be 64 bytes long. The eight-byte IDs are placed into the
buffer starting from relative drive 0. Blanks are inserted for
drives not ready (no diskette, open door, etc.)

EXIT CONDITIONS
Z = No error. Register A contains 0.

NZ = An error occurred.
A = Error code if NZ

Technical information - Page T /42

DosPlUS 11 - Disk Operating System - Technical manual

==~===========

SVC 16 is UNDEFINED

Technical information - Page T I 43

DosPLUS II - Disk Operating System - Technical manual

==

PRINIT (SVC 17)
Initialize Lineprinter Device

This routine initializes the DOSPLUS II lineprinter driver. It does not check the
printer status (i.e, on/off, offline/online, etc.) or output any codes to the lineprinter
itself.

ENTRY CONDITIONS
A = 17
B = Page length (maximum number of lines per page) 66 lines is standard.
C = Printed lines per page. May not be greater than B. 60 lines is

standard.
D = Line length (maximum characters/line). 132 characters per line is

standard. If D=O then tabs (09H) will not be translated into
spaces.

If B=C and both are NOT 0, then automatic top of form will not be done; however,
a form feed (OCH) will be translated into the correct number of carriage returns or
line feeds to get the paper to the next top of form.

If B and C are both 0, then form feed codes (OCH) and vertical tabs (OBH) are
passed directly to the printer without translation. No automatic form feed will be done.

EXIT CONDITIONS
Z = No error. Register A contains 0.

NZ = Error.
A = Error code if NZ.

The character counter and line counter registers of the printer DCB are set to 0.
The user must set the top of form manually on his printer.

Technical information - Page T /44

DosPLUS II - Disk Operating System - Technical manual

==

PRCHAR (SVC 18)
Print Character

This routine will output a single character to the lineprinter device (Device 02).
Depending on the printer used, the character may or may not print at the time it is
output; many printers incorporate a print line buffer and will not print until the buffer
fills or a carriage return is received. Also, depending on the size of the current printer
spool buffer and the number of pending characters contained in it, there may be a lag
between the time this SVC is called and the time the character actually appears on the
printer.

ENTRY CONDITIONS
A = 18
B = ASCII code of character to be output.

EXIT CONDITIONS
Z = No error. Register A contains 0.

NZ =Error
A = Error code if NZ.

==

PRUNE (SVC 19)
Output a Line of Text to Lineprinter

/~ This routine will send a line of text from a user-defined buffer to the lineprinter
device (Device 02). Control codes may be included in the output line.

ENTRY CONDITIONS
A = 19
B = Buffer length, or number of characters to output
C = Terminator character, to be sent after last character in the buffer.

If C=O then no terminator is sent.
HL => Starting address of buffer containing text line to output.

EXIT CONDITIONS
Z = No error. Register A contains 0.

NZ = Error
A = Error code if NZ.

Technical information ... Page T /45

---··----

DosPLUS II - Disk Operating System - Technical manual

==
RANDOM (SVC 20)
Random Number Generator

This routine will return a one-byte random number. The routine is passed a limiting
value. The random number returned will be in the range 0 to limit value-1. For
example, if the limiting value is 100, then the number returned will be in the range 0
to 99.

ENTRY CONDITIONS
A = 20
B = Limit value, in the range 2 to 255 (2H - FFH).

EXIT CONDITIONS
C = Random number in the range 0 to (B-1) except when B=O or B=1, in

which case C=O on return.
Z = No error. Register A contains 0.

Technical information - Page T /46

\.

DosPLUS II - Disk Operating System - Technical manual

===================================~==

BINDEC (SVC 21)
Binary to Decimal/Decimal to Binary Conversion

This routine will take a 16-bit binary number and convert it to ASCII-coded decimal
in the range 0,65535 and vice-versa. The ASCII codes are placed into a 5-byte
user-defined buffer. When converting from ASCII-coded decimal to binary, the ASCII
digit codes are also taken from a 5-byte user-defined buffer. ·

ENTRY CONDITIONS
A = 21
B = Conversion select. If B=O, then convert binary to ASCII-coded

decimal. If B <> 0, then convert ASCII-coded decimal to
binary.

If B=O (binary to decimal conversion):
DE = 16-bit binary number to be converted
HL => Starting address of 5-byte buffer to receive ASCII-coded number.

If B <> 0 (decimal to binary conversion):
HL => Starting address of 5-byte buffer containing the ASCII-coded

decimal number to be converted.

EXIT CONDITIONS
z = No error (binary to ASCII decimal will always return Z). Register A

will contain 0.
NZ = Error (invalid character encountered).
A = Error code if NZ

HL => Starting address of 5-byte buffer
DE = Binary value if B <> 0

Technical information - Page T /47

DosPLUS II - Disk Operating System - Technical manual

==

STCMP (SVC 22)
Compare two strings

This routine will compare two alphanumeric strings and determine their sorted order.
All or part of the two strings may be compared.

ENTRY CONDITIONS
A = 22

BC = Number of characters to compare
DE => Starting address of buffer containing first string
HL => Starting address of buffer containing second string

EXIT CONDITIONS
Flag register bits will indicate status as follows:

Z = strings are identical
NZ = strings are not identical
Carry = If set, first string (pointed to by DE) precedes second string

(pointed to by HU in sorted order.

Register contents on Exit:

Register pairs BC, DE and HL are preserved on exit.
BC' = Number of characters remaining after mismatch, including the first

non-matching character
DE' => Address of first non-matching character in first string ~
HL' => Address of first non-matching character in second string

Note: BC', DE' and HL' are the ALTERNATE register pairs.

Technical information - Page T /48

DosPLUS II - Disk Operating System - Technical manual

==

MPVDIV (SVC 23)
Multiply/Divide Function

This routine will do multiplication or division of one 2-byte value with one 1-byte
value.

ENTRY CONDITIONS
A = 23
B = Multiply/Divide Select. If B=O then multiply; if B <> 0 then divide.

For Multiplication (B=O):

HL = Multiplicand
C = Multiplier

For Division (B <> 0)

HL = Dividend
C = Divisor

EXIT CONDITIONS
HL = Result of operation (Product if multiply, Quotient if divide)
A = Overflow byte if multiplication was performed
C = Remainder if division was performed

Status (Flag) bits affected by multiplication are:
Carry Flag = Set if overflow
Z flag = Set if result is zero

Status (Flag) bits affected by division are:
Carry Flag = Set if division by zero attempted (not performed).
Z flag = Set if quotient is zero

Technical information - Page T I 49

DosPLUS II - Disk Operating System - Technical manual

==

BINHEX (SVC 24)
Binary /Hexadecimal Conversion

This routine will allow you to convert a 16-bit binary number to four ASCII-coded
hexadecimal digits or vice versa.

ENTRY CONDITIONS
A = 24

If B=O, then

If B<>O then

B = Select. If B=D then convert binary to ASCII-coded hexadecimal,
otherwise convert hexadecimal to binary.

DE = Contains 16-bit binary number to be converted
HL => Starting address of user-defined 4-byte buffer to hold ASCII-coded

hexadecimal result.

HL => Starting address of user-defined 4-byte buffer containing
ASCII-coded hexadecimal number to convert, left-filled with
leading zeroes if necessary.

EXIT CONDITIONS
z = No error (binary to ASCII-coded hexadecimal always returns with Z

flag set). Register A contains 0.
NZ = Error (invalid characters encountered).
A = Error code if NZ.

DE = Binary resu It

Technical information - Page T /50

DosPLUS II - Disk Operating System - Technical manual

==
TIMER (SVC 25)
Timed Program Interrupt

This routine will permit a running program to be interrupted when a user-defined
time interval elapses. The TIMER routine runs concurrently with the main program,
unlike the DELAY SVC.

The user defines how many seconds the timer is to count down. The main program
will epecute normally until the interval counts down to zero, or the timer is reset.
When the time reache's zero, the timer is turned off and control is transferred to a
processing routine at the next R TC interrupt.

ENTRY CONDITIONS
A = 25

BC = Number of seconds to count down
HL => Starting address of processing routine to which control is

transferred when time runs out.

If the HL and BC register pairs are both 0, then the timer is turned off. If HL=D and
BC <> 0, then the counter is reset to the value in BC and timing continues.

EXIT CONDITIONS
Z = No error. Register A contains 0.

NZ = Error.
A = Error code if NZ.

Technical information - Page T /51

DosPLUS II - Disk Operating System - Technical manual

===

CURSOR (SVC 26)
Set Cursor Controls

This routine will switch the cursor on or off. The system will keep track of the
cursor position whether or not it is turned on or off.

ENTRY CONDITIONS
A = 26
B = Cursor function select.

If B=D then turn cursor off
If B<>D then turn cursor on

Technical information -Page T/52

DosPLUS II - Disk Operating System - Technical manual

==

SCROLL (SVC 27)
Scroll Protect the Video Display

This routine will permit you to protect a portion of the video display from scrolling.
From 0 to 22 lines from the top of the display can be protected. Scrolling will take
place only with those line below the protected area.

ENTRY CONDITIONS
A = 27
B = Number of lines to be protected (from 0 to 22).

EXIT CONDITIONS
Z = No error.

NZ = Error.
A = Error code if NZ.

Technical information - Page T /53

DosPLUS II - Disk Operating System - Technical manual

==
LOOKUP (SVC 28)
Table Lookup Routine

This routine will look up and locate an entry in a user-defined table in memory. The
table consists of 3-byte entries with the following format:

Byte 1: Search Key
Byte 2-3: Data (for example, a vector address in LSB/MSB order)

The table is terminated by a single FFH byte. This means that search keys can only
take the values DOH to FEH.

ENTRY CONDITIONS
A = 28
B = Search argument

HL => Starting address of table

EXIT CONDITIONS
NZ = Argument not found
A = Contains error code if NZ (not found).

If the Z flag is set, indicating that the argument was found,
then:

HL => matching data set.

If the second and third bytes of the table entry is a jump vector address, then a JP
(HL) instruction will transfer control to that address. For example,

LD HL, TABLE ;point to table
LD B,D7H ;07 is "key"
LD A,28 ;load SVC code
RST 8 ;execute the search
JR NZ,NOFIND ;couldn't find it

;Table search successful, HL now contains the 2nd and 3rd
;bytes of the table entry.

;process the
NOFIND

JP (HL)

error condition here.
OR SOH
LD B,A
LD A,39
RST 8

;transfer control to
;vector address in table

;set high bit
;code to B register
;disp. error SVC
;display error message and

Technical information - Page T /54

abandon ship

DosPLU5 I1 - Disk Operating System - Technical manual

===

HLDKEY (SVC 29)
Process the HOLD Key

This routine will enable or disable the HOLD key processor. It is also used for
generating an indefinite pause terminated by a second press of the HOLD key.

ENTRY CONDITIONS
A = 29
B = Function select. If 8=0, then the system HOLD key processor is shut

off and pressing the HOLD key will return keyboard code
OOH. If 8=1 then the system HOLD processor is enabled. The
HOLD key will be interpreted by DOSPLUS II. If B> 1 then
the system will check for the HOLD key. If pressed, the
routine will pause until it is pressed again.

EXIT CONDITIONS
""~ NZ = HOLD processor is disabled.

Z = HOLD processor is active.

To use this function to detect and pause on the HOLD key, first call the SVC with
B=l. Then call it again with B> 1 whenever you want to check for the HOLD key. If
HOLD is pressed, the routine will pause until HOLD is pressed a second time.

Technical information - Page T /55

DosPLUS II - Disk Operating System - Technical manual

==

KBPUT (SVC 30)
Load character into type-ahead buffer

This routine will permit you to load a character into the keyboard type-ahead buffer
for processing by the keyboard input routine of the system. The character is loaded
following any other characters already in the buffer at the time. If the buffer is full,
then an error condition results.

ENTRY CONDITIONS
B = ASCII code of character to be loaded into the type-ahead buffer.

EXIT CONDITIONS
Z = No error.

NZ = An error occurred.
A = Error code if NZ set.

Technical information - Page T /56

DosPLUS II - Disk Operating System - Technical manual

==

JPINIT (SVC 31)
Return to DOSPLUS II with Device Initialization

This is the recommended exit back to DOS Ready from programs which do their own
keyboard, display and disk I/0. Control is returned to DOSPLUS II after all the
DOSPLUS II devices are reinitialized. If this exit is not taken, it is possible that on
exit from the user program, the DOSPLUS II devices will not be active, forcing you to
reboot the system.

ENTRY CONDITIONS
A = 31

Technical information - Page T /57

DosPLUS II - Disk Operating System - Technical mariUal

===

SVC 32 is UNDEFINED

Technical information - Page T /58

DosPLUS II - Disk Operating System - Technical manual

==

LOCATE (SVC 33)
Locate Record

This routine will return the number of the last file record accessed.

ENTRY CONDITIONS
A = 33

DE => Address of File Control Block for current file
HL = Reserved for system use

EXIT CONDITIONS
Z = No error. Register A contains D.

NZ =Error
A = Error code if NZ

BC = Current record number if no error.
If the file was in Extended Access mode, then BC points to
a three-byte location in memory where the current record
number is stored.

==
READNX (SVC 34)
Read Next Record

This routine will read the next record after the current one (the current record is
defined as the last record accessed). If the file has just been opened, then READNX
will read the first file record.

ENTRY CONDITIONS
A = 34

DE => File Control Block for currently open file
HL = Reserved for system use

EXIT CONDITIONS
Z = No error. Register A contains D.

NZ = Error
A = Error code if NZ.

Technical information - Page T /59

DosPLUS II - Disk Operating System - Technical manual

===
DIRRD (SVC 35)
Direct Record Read

This routine will read the specified file record directly.

ENTRY CONDITIONS
A = 35

BC = Record number to be read. If BC=O then position to beginning of
file. If BC=FFFFH, then position to the end of file. If the
access mode of the file is "E" (see OPEN, below) then the
BC register pair points to a three-byte Extended file record
pointer in memory.

DE => File control block of currently open file
HL = Reserved for system use

EXIT CONDITIONS
Z = No error. Register A contains 0.

NZ = Error
A = Error code if NZ.

Technical information - Page T I 60

DosPLUS II - Disk Operating System - Technical manual

. - ,. . ---

JP2DOS (SVC 36)
Exit Current Program and Return to DOSPLUS II

This routine will force an immediate exit to DOS Ready. All chaining operations in
progress, and the processing of multiple-command lines, will continue. Various control
routines will be reset. It is the user's responsibility to close any open files before
calling this SVC to exit back to DOS Ready. DOSPLUS II will nat check the status of
any open files.

NOTE: When the Display Error Message SVC (number 39) is called with an error code
whose high bit has been set, it will branch to this routine after displaying the error
message. This facility will make separate explicit calls to Display Error Message and
JP 2DOS unnecessary if the user wishes to return to DOS Ready an an error.

ENTRY CONDITIONS
A = 36

Technical information - Page T /61

DosPLUS II - Disk Operating System - Technical manual

==

DOSCMD (SVC 37)
Execute a DOSPLUS II Command

This routine passes a command string back to DOSPLUS II for execution. The
command string may contain multiple commands but only the first will be executed. The
line must be terminated with a carriage return (ODH), semicolon or ETX character
(03H). Upon completion of command string processing, control is returned to DOSPLUS
II (DOS Ready). The open/closed status of any existing files are not changed by this
SYC; the user should make sure no files are left open.

This supervisory call differs from its TRSDOS counterpart in that the B register is
not used. TRSDOS loads the length of the command string into the B register and does
not make use of any terminator character; DOSPLUS II ignores the contents of B and
REQUIRES a terminator character.

ENTRY CONDITIONS
A = 37

HL => Address of command string to be passed to DOSPLUS II

Technical information - Page T /62

DosPLUS II - Disk Operating System - Technical manual

==
RETCMD (SVC 38)
Execute a DOSPLUS ll Command And Return

This routine will pass a command string to DOSPLUS II. Upon completion, control is
returned to the user program. File status will not be changed by this call. The
command string may contain multiple commands, but only the first will be executed. It
must be terminated either by a carriage return (ODH), semicolon, or ETX character
(03H). Be careful that the executing DOS command does not overlay your user program
(see the beginning of this section for memory areas used by DOSPLUS II). Also, in the
event that the DOS command executing affects the state of any open files, you shoulc;t
be aware that any information contained in the affected File Control Blocks may no
longer be valid.

This call does not use the B register to code the length of the command string,
unlike TRSDOS.

ENTRY CONDITIONS
A = 38

HL => Address of command string to be passed to DOSPLUS II

EXIT CONDITIONS
Z = No error. Register A contains 0.

NZ = Error
A = Error code if NZ.

Technical information - Page T /63

DosPLUS II - Disk Operating System - Technical manual

==

ERROR (SVC 39)
Display Error Message

This routine will display a full error message on the video screen corresponding to
the error code in the B register.

If the high bit (bit 7) of the error code is set, then this routine will branch to the
JP 2DOS SVC (number 36), thereby forcing an exit back to DOS Ready after displaying
the error message. Bit 7 can be set by the user by executing an "OR SOH" instruction
with the code in the A register (where it is normally returned by the SVC system)
before loading it into the B register and calling this routine.

ENTRY CONDITIONS
A = 39
B = Error code

On exit, if an error occurs while attempting to display an error message, then all
linking and routing to the video will be terminated. This is done so· that displaying the
error message will not cause an endless loop.

Technical information - Page T /64

DosPLUS II - Disk Operating System - Technical manual

===~====

OPEN (SVC 40)
Open a File or Device for Access

This routine will open a device or a disk file for access. The user may control how
a file is opened; that is, he can specify whether only a new file is to be opened
(created), only an old file is to be opened (no new ones reated), or whether a file
should be opened whether or not it exists previously.

ENTRY CONDITIONS
A = 40

DE => Starting address of 40-byte block of memory containing the file
name or device name.

HL => Parameter list (Not needed for devices)

EXIT CONDITIONS
Z = No error.

NZ =Error
A = Error code if NZ

When opening a disk file for access, the user must allocate space for the FCB, the
parameter list, file buffer, and record area (if LRL <> 256, see below), before
executing the call to OPEN.

When OPEN is used to open a device, then the user must allocate space for the
Device Control Block only. Although the number of bytes used for Device Control
Blocks (DCBs) vary with the device, it is recommended that a standard length of 40
bytes be used whenever a call to the OPEN SVC is to be made.

File Control Block

A File Control Block (FCB) is a 40-byte area in memory which is used to hold file
access information while a disk file is open. The name of the file to be opened is
placed left-justified in this this area of memory prior to calling OPEN. The filespec
must be terminated with either a carriage return (DOH), a semicolon or an ETX code
(03H):

FILESPEC/EXT .PASSWORD:DR(DISKETTE)$

Where $ represents either a carriage return (ASCII DOH), a semicolon or ETX (ASCII
03H) character.

Technical information - Page T /65

DosPLUS II - Disk Operating System - Technical manual

The structure of the FCB while open is as follows:

FCB Address+O
1

2

3 - 4
5 - 6
7
8
9
10
11
12
13
14
15
16
17
18
20-39

DCB type
Flag byte 1
BIT 7 = Blocked records

6 = Random Access
5 = Buffer = NRN

Flag byte 2

4 = Buffer updated
3 = File updated
2 - 0 = Access code

BIT 7 = Fixed/variable records
6 = Non-shrinkable file
5 = Read/Write access
4 = Dynamic EOF update
3 = Extended open
2 - 0 = Not used

Blocking buffer address
User buffer Address
Next Record Number (NRN) byte
NRN Most Significant Byte
NRN Next Significant Byte
NRN Least Significant Byte
Ending Record Number (ERN) byte
ERN Most Significant Byte
ERN Next Significant Byte
ERN Least Significant Byte
Logical Record Length (LRL)
Drive Number (0 - 7)
LFN/DEC
Transfer Address
Segment Descriptor List

Do not modify the contents of an OPEN FCB, or the results may be unpredictable.

Parameter List

The parameter list is an 11-byte area in memory which contains additional
information about the file. The contents of the parameter list are as follows:

Parameter List + 0 - 1 BUF ADR (buffer address)
2 - 3 RECADR (record address)
4 - 5 EODAD (End-of-Data address)
6 Access type
7 Record Length
8 Access mode
9 Creation code
10 End of list marker

BUF ADR, RECADR and EODAD are maintained in standard LSB/MSB format.

BUF ADR - Address of the user-defined data buffer. This buffer will be used by
DOSPLUS II to process file accesses. The size required is 256 bytes.

Technical information - Page T /66

DosPU)S 11 - Disk Operating System - Technical manual

RECADR - Record address. This contains the address of the record buffer area, where
disk records are stored immediately after reading and before being written out to the
disk in cases where the LRL is not 256. In DOSPLU5 II, the RECAOR area is the same
length as the logical record length for Fixed-Length Files. For variable-length files
with LRLs other than 256 it should be the same length as the longest record in the
file, to a maximum of 256 bytes.

When a file is opened with LRL=D, that is, 256 bytes, then this address is not used,
and records will be read into, and written from, the 256-byte area pointed to by
BUFADR.

EODAD - End of Data Address. This is a two-byte field containing a jump vector to a
routine in memory which will be executed when an "End of Filen error is encountered
unexpectedly during a disk read. The routine may be a user-defined error handler. If
these two bytes are 0, then the OPEN SVC will return to the calling program with the
error code in the A register.

ACCESS TYPE BYTE - This byte defines the type of access permitted for the file, and
contains the ASCII codes of the following letters:

R (52H) Read Only
W (57H) Read/Write

P (SOH) Write Program file

Under DOSPLUS II, the P access type is acceptable, but not implemented. That is, it
will not cause any errors, but neither will it cause the system to do anything
differently. Specifying P access will give Read/Write access.

RL - Record Length. This byte specifies the record length to be used for the file, and
may take values from 0 to 255 (DOH to FFH). If RL = 0, then a record length of 256
bytes is assumed.

ACCESS MODE - This is a one byte field which defines the access mode for the file. It
contains the ASCII code for one of the following letters:

V (56H) Variable Record Length Access
F (46H) Fixed Record Length Access

E (45H) Extended File Access

A file that was created with the V access mode may later be reopened and accessed as
a fixed record length file, that is, given the F access mode specifier.

The E access mode indicates that an Extended file pointer is to be used in accessing
records from the file. The extended file pointer is a three byte rather than a two-byte
pointer, which allows for files of up to 16 million records. This will affect the usage of
the BC register pair in the DIRRD (Direct Read) and DIR WR (Direct Write) SVCs. When
using these SVCs, the BC register pair normally contains the actual record number to
be read or written. However, if a file is opened in Extended Access Mode, then the BC
register pair will point to a location in memory where the actual 3-byte Extended
Record Pointer is maintained. That is,

BC => ERP: Most Significant Byte
Next Significant Byte
Least Significant Byte

Technical information - Page T /67

DosPLUS II - Disk Operating System - Technical manual

Creation Code - This byte will determine whether a new file is to be created or a
previous file opened. It may take the values 0, 1 2 or 3.

0

1

2

3

Open only a previously existing file; do not. ·create a new
file in the disk directory. Record length and end of file
pointers are not reset.
Create a new file only; if the file previously exists, do not
open it.
Open an existing file; if not found, create it on first
available disk device and reset record length and end of file
pointers.
Open an existing file and reset record length and end-of-file
pointers. Do not create a new file. This code is unique to
DOSPLUS II and is not available in TRSDOS.

Technical information - Page T /68

~\

DosPLUS II - Disk Operating System - Technical manual

==
KILL (SVC 41)
Delete a File from Disk Directory

This routine deletes the specified file from the directory. The file may be in an
Open or Closed condition when this call is issued.

ENTRY CONDITIONS
A = 41

DE => Pointer to the FCB.

EXIT CONDITIONS
Z = No error.

NZ =Error
A = Error code if NZ

Technical information - Page T /69

DosPLUS II - Disk Operating System - Technical manual

=========================~==

CLOSE (SVC 42)
Close an Open File or Device

This routine will terminate access operations to a file or device and close it. In the
case of a file, any records remaining in the BUF ADR area will be written to disk, and
the directory entry for the file will be updated. On exit, the fUespec will be placed
back in the FCB. However, the password (if any) will not be present.

ENTRY CONDITIONS
A = 42

DE => Address of the FCB of file to be closed.

EXIT CONDITIONS
Z = No error.

NZ =Error
A = Error code if NZ.

Technical information - Page T /70

DosPLUS 11 - Disk Operating System - Technical manual

==
~--.

f WRITNX (SVC 43)
Write Next Record

This routine will write the next disk record following the last record accessed, in
sequential order. If the file is newly opened, then WRITNX will write the first record.

The record to be written must be placed in the record area pointed to by RECADR
prior to calling WRITNX if LRL <> 0. If LRL=O then WRITNX will write the data from
the buffer area pointed to by BUF ADR.

ENTRY CONDITIONS
A = 43

DE => FCB for currently open file
HL = Reserved for system use

EXIT CONDITIONS
Z = No error

NZ = Error
A = Error code if NZ

Technical information - Page T /71

DosPLUS II - Disk Operating System - Technical manual

==
DIR WR (SVC 44)
Direct Record Write

This routine will write the data in the record buffer directly to the specified recor
of a currently open file. For variable length record files, you can only write to the
beginning or to the end of a file; the end-of-file pointer is reset to the last record
written. This restriction does not apply to fixed record length files.

If the file's logical record length (LRL) is not 256, then the data to be written must
be transferred to the record buffer area pointed to by RECADR (see OPEN, above)
prior to calling this routine. Otherwise the data will be written from the BUF ADR
area.

ENTRY CONDITIONS
A = 44

BC = Record number to be written. If BC=D then write first record in
file; if BC=FFFFH then write record at the end of file.
If Access Mode = "E" then BC points to a three-byte
Extended record pointer in memory which contains the
actual number of the record to be written. See OPEN,
above, for details.

DE => File Control Block of currently open file
HL = Reserved for system use

EXIT CONDITIONS
Z = No error

NZ = Error
A = Error code if NZ.

Technical information - Page T /72

DosPLUS II - Disk Operating System - T e.chnical manual.

==

DATE (SVC 45)
Read/Set Real Time Clock

This routine will either set or read the system's real-time clock. Both time and date
can be set or accessed with this routine. The data is returned as a 26-byte ASCII
string arranged as follows: ·

SATAPR28197911813:20:42045

This string is composed of 10 fields, broken down as follows:

SAT APR 28 1979 118 13: 20: 42 04 5

Field 1 = Name of day of week
Field 2 = Month
Field 3 = Day of month
Field 4 = 4-digit year
Field 5 = Numeric day of year

Field 6 = Hour
Field 7 = Minutes
Field 8 = Seconds
Field 9 = Numeric month
Field 10= Numeric day of

week (0 = Monday)

Note: All date calculations are based on the Julian calendar.

ENTRY CONDITIONS
A = 45
B = Function Select

If B=O then read time/date and store in buffer
If 8=1 then set date using data from buffer pointed to by
HL pair
If 8=2 then set time using data from buffer pointed to by
HL pair.

HL = If 8=0, then HL points to a 26-byte buffer in memory to receive the
data from the clock. If 8=1, then HL points to a buffer
containing the date. If 8=2, then HL points to a buffer
containing the time.

EXIT CONDITIONS
Z = No error

NZ = Error
A = Error code if NZ

The user is allowed great flexibility in formatting date and time when setting the
system's real time clock. Allowable separators are spaces, commas (,), dashes (-),
slashes (/), periods (.), and colons (:). The following are all equivalent forms of TIME
(column 1) and DATE (column 2):

TIME
03.05.00
03:05:00
03:05
3,5
3:5
3 05
03-5

DATE
09/01/82
9.1.1982
09/01/1982
9,1,82
9-1-1982
09 01 82
09,01,2 (modulo 1980)

Technical information - Page T /73

DosPLUS II - Disk Operating System - Technical manual

==

RENAME (SVC 47)
Rename a File

This routine will change the name and/or extension of a disk file. It will not change
any assigned passwords.

ENTRY CONDITIONS
A = 47

DE => Pointer to buffer containing new file specification, terminated by a
carriage return. A password may not be included.

HL => Pointer to buffer containing old file specification. If the file is
password-protected, the proper password must be included as
part of the file specification.

EXIT CONDITIONS
Z = No error

NZ = Error
A = Error code if NZ.

Technical information - Page T /74

DosPLUS II - Disk Operating System - Technical manual

==
REWIND (SVC 48)
Position to the beginning of a file

This routine will reset the pointer information of an open file back to the beginning.
The next READNX or WRITNX operation following this call will access the first record
of the file. In order to use this call, the FCB of the affected file must be in an OPEN
condition.

ENTRY CONDITIONS
A = 48

DE => FCB of file to "rewind"

EXIT CONDITIONS
Z = No error.

NZ = Error.
A = Error code if NZ.

Technical information - Page T /75

DosPLUS II - Disk Operating System - Technical manual

==
STSCAN (SVC 49)
String Scan Routine

This routine will scan through a user-defined buffer for a specified string. The
string can contain ASCII codes from 0 through 255 (OOH through FFH). The search will
stop with the HL ,register pair pointing to· the first character of the string in the
buffer. If no match is found, the search will stop on the first carriage return
encountered, or at the end of the buffer, whichever comes first.

ENTRY CONDITIONS
A = 49
B = Length of compare string

DE => Pointer to compare string
HL => Starting address of buffer to be searched.

EXIT CONDITIONS
Z = String found

NZ = String not found
HL => If Z flag set, points to the starting position of the matching string

in the buffer. If NZ is set, indicating an error, then HL will
be unchanged.

Technical information - Page T /76

DosPLUS ll - Disk Operating System - T echnicat manua.J.

==~~====================

SVC 50 is UNDEFINED

Technical information - Page T /77

DosPLUS II - Disk Operating System - Technical manual

==
WILD (SVC 51)
Wild Card Parser

This routine will compare a file specification with a comparison string containing
wild-card characters. The wild card characters are:

*
?

Indicates a WORD mask
Indicates a CHARACTER mask.
Indicates a FILESPEC mask (includes both
filespec and extension, equivalent to */* or **)

For example, */BAS will match with any file specification with the extension /BAS;
???ABC/BAS will match with any six-letter file specification whose last third, fourth
and fifth letters are ABC AND has the extension /BAS. A "!" will match on ANY
filespec.

ENTRY CONDITIONS
A ::::51
8 = Function select.

8 = 0
8 = 1
B = 2

8 = 3

Set wild card mask
Compare filespec with mask
Combine a filename with a separate extension
to form a full file specification.
Compare wildmask with "cracked" filespec.

When B=D, HL points to the starting address of the wild-card mask in memory, which
must be terminated by a carriage return. Examples of wild card masks may be
FOO???/BAR or */CMD. Note that wild card characters are not mandatory; an exact
match on a filename such as DO TEST /CMD is perfectly valid.

When B=l, HL points to the file specification which is to be compared with the
mask. The file specification must be terminated by a carriage return.

When 8=2, HL points to an 11-byte buffer containing an 8-character filename and a
3 character extension. The filename and extension are both left-justified in their
particular fields. For example, the file specification TYPE/S would be stored as
TYPEbbbbSbb ('b's represent blanks, ASCII 32).

DE points to a 13-byte destination buffer for holding the compressed file
specification contained in HL.

When 8=3, then HL points to an 11-byte buffer containing an 8-character filename
and 3-character extension, both left justified in their respective fields and padded with
blanks. The mask will be compared against this filespec in its "cracked" form. For
example, the wildmask DEL ??/B?S would be compared against DEL TAbbb8AS and the
routine would return with a match. This makes it unnecessary to compress a filespec
beforehand and can speed up a process of multiple comparisons.

Technical information - Page T /78

~\

DosPLUS II - Disk Operating System - Technical manual

EXIT CONDITIONS
When B=O, then :

NZ = Invalid mask specification
Z = Operation completed OK.

When B=l, then:
NZ = No match found, or no wildcard mask was set.
Z = Match found

When B=2, then:
DE =>

When 8=3, then:

Points to a 13-byte buffer containing the file specification
terminated by an ASCII 03H (ETX). Using the example above,
on exit this buffer would contain TYPE/5 followed by 03H.

NZ = No match found
Z = Match found

The user should note that to carry out a wild-card comparison, this SVC needs to be
called once with 8=0 to set the wild card mask, then once for each comparison. Unlike
TRSDOS, the mask will be retained even if another SVC is executed, so it will be
unnecessary to call WILD with 8=0 once again.

Technical information - Page T /79

DosPLUS 11 - Disk Operating System - Technical manual

==

ERRMSG (SVC 52)
Load Error Message Into Buffer

This routine will load an 80-byte error message into a user-specified buffer area in
memory. The buffer may be anywhere in free memory.

ENTRY CONDITIONS
A =52
8 = Code number of error message to be loaded

HL => 80-byte buffer for message

EXIT CONDITIONS
Z = No error.

NZ = Error
A = Error code if NZ.

Technical information - Page T /80

DosPLUS II - Disk Operating System - Technical manual

=~==~=~===

RAMDIR (SVC 53)
Load Disk Directory into RAM

This routine will load a directory entry (or an entire directory) into a user-defined
RAM buffer. Only active files are read in (that is, KILLed files will not be read).
Extended file directory entries (FXDE's) will NOT be read in by this routine.

ENTRY CONDITIONS
A =53
B = Drive number (0 - 7)
C = Function select:

If C=O, entire directory is read into memory
If C=01H to FEH (1 to 254) then the corresponding entry in
the directory will be read into memory in the format
described below.
If C=OFFH (255 decimal) then free space information will be
returned.

HL => Starting address of user's buffer where the directory is to be
loaded. The size of the buffer will vary depending on the
value of C.
If C=O, then buffer size = 34 * (number of user files) +1
If C=01H to FEH, then buffer size = 34 bytes.
If C=FFH (free space request) then buffer size = 4 bytes.
Note that the DOSPLUS II system will allow a maximum of
256 files on a pure data diskette or logical disk drive. The
largest buffer size required would then be B, 705 (220lH)
bytes.

EXIT CONDITIONS
Z = No error.

NZ = Error occurred.
A = Error code if NZ set.
Z = No error. HL registers point to the user buffer.

RAM Directory Format (contents of user buffer)

The directory in RAM will have the following format for each file record (when
C=OOH to FEH):

Buffer + 0
+ 1-15

+ 16
+ 17
+ 18
+ 19-20

":" - Colon indicates start of each directory record.
FILENAME/EXT:D(cr). The filename, extension and a drive
number from 0-7 for this record, followed by a carriage
return. Note that the drive NUMBER, and not the drive
name, is what is placed here. Any unused bytes following
the carriage return (cr) will be padded with blanks.
"F" (ASCII 46H)
Logical Record Length. 0 implies 256 bytes.
Number of extents for this file.
Number of sectors allocated to the file in LSB/MSB format.

Technical information - Page T /81

DosPLUS II - Disk Operating System - Technical manual

+ 21-22

+ 23

+ 24-25
+ 26
+ 27
+ 28-30
+ 31-33

Number of sectors actually used by the file in LSB/MSB
format.
EOF byte. Relative position of last byte of data in the last
sector. 0 implies first position.
Number of records written in LSB/MSB format
User Attribute byte (ALWAYS 00)
Protection level 0 through 7
File creation date
File creation date

When C=O, the last directory record will be followed by a "II" to signal the end of
the directory. When C=01H to FEH the directory record will always end at the 34th
byte without any trailing "II".

When C=OFFH, then free space information will be placed into a four-byte buffer in
the following format:

Byte 0-2
2-3

number of free granules, in LSB/MSB format
number of extents, in LSB/MSB format.

Technical information - Page T /82

DosPLUS II - Disk Operating System - Technical manual

==
SVC 54 is UNDEFINED.

Technical information - PageT /83

DosPLUS II - Disk Operating System - Technical manual

==

RS232C (SVC 55)
Initialize RS-232C Port

This routine will initialize either one of the Model II's two serial I/O ports, using
the settings provided in a user-specified parameter list. This routine can also be used
to turn off a serial channel.

ENTRY CONDITIONS
A =55
B = Function select. If B=O, then turn off specified channel. If B <> 0,

then turn channel on.
HL => Points to user-defined parameter list for serial I/O initialization.

EXIT CONDITIONS
Z = No error

NZ = Error
A = Error code if NZ.

The parameter list is a contiguous area in memory arranged as follows:

parameter list + 0 = channel: "A" or "a" specifies ch. A, "B" or "b"
specifies channel B.

+ 1 = Baud rate code (1 - 8):
1 - llO baud 5 - 1200 baud
2 - 150 baud 6 - 2400 baud
3 - 300 baud 7 - 4800 baud
4 - 600 baud 8 - 9600 baud

+ 2 = word length (5 - 8 bits)
+ 3 = parity: "0" or "o" = Odd parity "E" or "e" = Even

· parity "N" or "n" = No parity
+ 4 = Number of stop bits (1 or 2)
+ 5 = if 00, parameter list ends here if 01, extended

parameters follow

If parameter list+5 equals 01, then

+ 6-7 => Start of spool buffer for channel
+ 8-9 => End of spool buffer
+ 10 = 00 list terminator

The spool buffer length is calculated and automatically created and placed in high
memory beneath any other drivers or buffers that may already be there, and the
system's HIMEM pointer is lowered to protect it.

Technical information - Page T/84

DosPLUS ll - Disk Operating System - Technical manual

==
SORT (SVC 56)
RAM Sort Routine

This routine will sort the contents of a block of memory. The entries to be sorted
must all be the same length. The sort key may be shorter than or equal to the length
of an entry.

ENTRY CONDITIONS:
A =56

IX => Points to first entry of list to be sorted.
DE => Points to the start of last entry of list
B = Position of sort key relative to the first character of an entry
C = length of entry in the list
L = length of sort key (may not exceed value of C)
H = Sort flag. If H=O, then an ascending sort will be performed,

otherwise a descending sort will be performed.

EXIT CONDITIONS
Z = No error

NZ =Error
A = Error code if NZ.

Technical information - Page T /85

DosPLUS II - Disk Operating System - Technical manual

==~=====================

CLRXIT (SVC 57)
Exit to DOSPLUS II

This call will force an immediate exit to DOSPLUS II via the ABORT vector. Any
chaining operations, or processing of multiple command tines, will be terminated. The
user should make sure any open files are closed before calling this routine. This routine
is maintained for compatibility with TRSDOS.

ENTRY CONDITIONS
A =57

Technical information -Page T/86

DosPLUS II - Disk Operating System - Technical manual

/----· ===::;=========:;::;:::;::;::;::;::;::;::;::;::;::;::;::;::;::;::;::;::;

FILPTR (SVC 58)
Get File Pointers

This routine will return information about any open file.

ENTRY CONDITIONS
A =58

DE => Starting address of File Control Block. FCB must be in an open
condition.

EXIT CONDITIONS
NZ = Error.
A = Error code if NZ.
Z = No error.

If no error occurred, then:
B = Drive number where file is resident (0 - 7)
C = Logical file number (position of file in the diskette's directory).

Technical information - Page T /87

DosPLUS II - Disk Operating System - Technical manual

=====================================~==

SVCs 59 through 72 are UNDEFINED

Technical information - Page T /88

-------~

DosPLUS II - Disk Operating System - T echnicai manual

'~ ==~====~=~======~===============

KBDW (SVC 73)
Keyboard Input with Wait

This routine will get one character from the keyboard type ahead buffer. Unlike
KBCHAR, however, it will not return if there is no character available but will wait
until a key is pressed on the keyboard or an error occurs.

If BREAK is pressed and the break processor is inactive, the routine will return
with the break character (03H) in B. If the break processor is active, then control will
pass to the break processor for handling of the break.

ENTRY CONDITIONS
A = 73

EXIT CONDITIONS
Z = No error

NZ = Error other than 02, "character not available."
B = keyboard code of character pressed.

Technical information - Page r /89

DosPLUS II - Disk Operating System - Technical manual

==========~===

PR TS (SVC 7 4)
Get Printer Status

This routine will return the status of the printer in the A register. Only the high 4
bits are returned for the parallel driver. For the serial driver, only the status of the
transmit buffer is returned. The user should monitor the condition of the Z flag to
determine whether the printer is busy or not.

ENTRY CONDITIONS
A = 74

EXIT CONDITIONS
A = Printer status

NZ = Printer busy
Z = Printer not busy (can accept a new character)

Printer Status Bits (returned in the A register)
If the parallel driver is being used, then

Bit 7
6
5
4

l=printer busy, O=printer not busy
l=paper out
l=printer deselected, O=selected
l=no fault, D=printer fault

If the serial driver is in use, then the condition of the Z flag will indicate the
status of the spool buffer.

Technical information - Page T /90

DosPLUS II - E{isk Operating System - Technical manual

=============~==

CLAW (SVC 75)
Comm Line A Input with Wait

This routine will check Serial Port A for a valid INPUT character. It will not return
until a valid character has been received.

ENTRY CONDITIONS
A = 75

EXIT CONDITIONS
Z = No error.
B = Character received from Serial Port A.

NZ = Error occurred. Register A will hold error code.

Technical information - Page T /91

DosPLUS II - Disk Operating System -Technical manual

==
CL8W (SVC 76)
Comm Line 8 Wait

This routine will check Serial Port 8 for a valid INPUT character. It will not return
to the calling program until a valid input character has been received.

ENTRY CONDITIONS
A = 76

EXIT CONDITIONS
Z = No error
8 = Character received from Serial Port B.

NZ = Error occurred.
A = Error code if NZ.

Technical information - Page T /92

DosPLUS II - Disk Operating System - Technical manual

,/-----.._ ==

GET (SVC 77)
Input a Byte from a Device or File

This routine will input one byte from the specified device or open file. The device
must be capable of input or both input/output for this routine to work. When inputting
from a file, the logical record length may be any value, but this routine will still
return a single byte.

ENTRY CONDITIONS
A = 77

DE => Points to device DCB or file FCB

EXIT CONDITIONS
Z = No error
8 = Character input

NZ =Error
A = Error code if NZ.

Technical information - Page T /93

DosPLUS II - Disk Operating System - Technical manual

==
PUT (SVC 78)
Output a Single Byte to a Device or File

This routine will output a single byte to a device or open file. If the target device
is set to NIL, this ·call will not return an error (that is, output to a NIL device is
always permitted).

ENTRY CONDITIONS
A = 78
B = Byte to output

DE => points to device DCB or file FCB

EXIT CONDITIONS
Z = No error

NZ =Error
A = Error code if NZ

Technical information - Page T /94

DosPLUS II - Disk Operating System - Technical manual

==
POSN (SVC 79)
Position to a logical file Record

This routine will position to a specified logical record in a file so that the next I/O
operation performed on the file (READNX or WRITNX) will access that record. The file
must be in an OPEN condition before this SVC is called.

ENTRY CONDITIONS
A = 79

BC = record number to position to. If the file is in EXTENDED open mode
(see OPEN, above) then BC must point to a three byte area
in memory containing the record number to be positioned to.

DE => FCB of the file. The FCB must be in an OPEN condition.

EXIT CONDITIONS
Z = No error

NZ = Error
A = Error code if NZ

Technical information - Page T /95

DosPLUS II - Disk Operating System - Technical manual

==

BKSP (SVC 80)
Backspace one logical record

This routine will backspace one logical record in an open file. The pointers will be
adjusted so that the next I/O operation on the file will access the previous record.

ENTRY CONDITIONS
A = 80

DE => FCB of file. The FCB must be in an OPEN condition.

EXIT CONDITIONS
Z = No error

NZ =Error
A = Error code if NZ

Technical information - Page T /96

-~-----

DosPLUS II - Disk Operating System - Technical manual

,~~~ ==
REWIND (SVC Bl)
Rewind to beginning of file

This routine will reset the pointer information of an open file back to the beginning.
The next file I/O operation following this call will access the first record of the file.
In order to use this call, the FCB of the affected file must be in an OPEN condition.

ENTRY CONDITIONS
A = 81

DE => FCB of file to rewind

EXIT CONDITIONS
Z = No error

NZ = Error
A = Error code if NZ

Technical information - Page T /97

DosPLUS II - Disk Operating System - Technical manual

==~=====

PEOF (SVC 82)
Position to End of File

This routine will set the pointers of an open file to the logical end of file, so that
the next WRITNX operation (usually a write operation) will add a record to the file. If
the file is newly created (that is, no previous write operations have been performed on
it) then this call will set the pointers so that the next I/O operation will write the
first record.

ENTRY CONDITIONS
A = 82

DE => FCB of file. The FCB must be in an OPEN condition.

EXIT CONDITIONS
Z = No error

NZ =Error
A = Error code if NZ.

Technical inforrf!ation - Page T /98

DosPLUS II - Disk Operating System - Technical manual

~ ==

EV AL (SVC 83)
Evaluate a command string

This routine will evaluate a command string for the presence of items in the four
major fields: the SOURCE field, the DESTINATION field, the MASK field, and the
PARAMETER field. It is assumed that the string to be evaluated by this call conforms
to the DOSPLUS II command syntax. The string to be evaluated may reside anywhere in
memory and should be terminated with one of the valid DOSPLUS II terminator
characters (03H, carriage return, semi-colon or right brace).
The user should define a nine-byte EV AL block as given below before calling this
routine.

NOTE: This routine calls two other routines, FSPEC and PARAM. The user should
familiarize himself thoroughly with these two routines before attempting to use EVAL.

The first three fields of the command string are normally evaluated in a positional
manner; that is, the source is assumed to be the first field, the destination is the
second, and the mask field the third. However, the order of these fields can be
changed by using the prepositions FROM, TO and USING to denote each field. EVAL
will test for these prepositions and identify the fields correctly, so that a command
such as COPY source destination mask can also be stated as COPY TO destination
USING mask FROM source and still be correctly evaluated.

EVAL will set a bit in the first byte of the user-defined EVAL block for each field
that is filled in the command line, and calls the FSPEC routine (SVC 84) to evaluate
the contents of that field. If a comma or a left brace is encountered, then EVAL
passes control to the P ARAM routine (SVC 87) to complete the evaluation of the
parameters. The parameters must be defined by the user program (see PARAM for the
structure of the PARAMETER BLOCK).

If EVAL finds a wildmask in either the source or destination fields, it will move the
wildmask into the mask field while retaining the associated drivespec. That is, a
command such as

COPY */BAS:O TO :10
will evaluate as

COPY :0 TO :10 USING */BAS

The FSPEC routine is called by EVAL to recover the filespec and place it into a
file control block. If any parameters are present, then EVAL will pass control to the
PARAM routine (SVC 87) which will complete the evaluation of the parameters in the
command string.

ENTRY CONDITIONS
A = 83

IX => User-defined EV AL block
HL => Starting address of command string to be evaluated

EXIT CONDITIONS
z = No error (Eval and parameter blocks are loaded)

IX = Unchanged.
HL => Terminating character

Technical information - Page T /99

DosPLUS II - Disk Operating System - Technical manual

NZ => Error.
If NZ, then

A = error code
HL => character which caused the error

EVAL BLOCK: This is an 9-byte area in memory which will hold information about the
command string that was evaluated.

Eval block+ 0
+ 1-2
+ 3-4
+ 5-6
+ 7-8

work byte for flag use
Pointer to 41-byte SOURCE DCB
Pointer to 41-byte DESTINATION DCB
Pointer to 41-byte MASK DCB
Holds starting address of the
command string's parameter block.

On exit, the IX register pair points to the first byte of the EVAL block which
contains information about the command string :

IX+O: bit 2
bit 1
bit 0

Set to 1 if the source field was filled
Set to 1 if the destination field was filled
Set to 1 if the mask field was filled.

On return, the calling program can easily determine which of the fields in the
command string had data in them by executing an AND 7H with the EVAL block's first
byte, that is, byte IX+D.

The structure of the PARAMETER BLOCK is explained under PARAM (SVC 87),
below. If there are no parameters, then bytes 7 and 8 of the EVAL block must point to
a memory location which contains a DO byte. This is mandatory.

Technical information - Page T /100

\.

DosPLUS II - Disk Operating System - Technical manual

,~-~. ==

FSPEC (SVC 84)
Fetch a filespec into a FCB

This routine will place a filespec into a File Control Block. The HL register points
to the string containing the filespec, which may be anywhere in memory and should be
properly terminated with a valid terminator character recognized by the DOSPLUS II
system. DE should point to a 41 byte user-defined FCB. The first byte will be used by
FSPEC as a work byte, and the filespec will be loaded into FCB+1 and following.

ENTRY CONDITIONS
A = 84

DE => 41 byte File Control Block
HL => Starting address of string containing the filespec

EXIT CONDITIONS
NZ =Error
A = Error code if NZ

If no error occurred, then:
HL => Address of terminating character of the string. If the filespec

contains a wildmask with a drivespec then HL will point to
the ":" of the drivespec.

DE => Unchanged.

On return, the FCB will contain the following:

FCB

FCB

+ 0

+ 1 and
following

bit 7 : Set to 1 if the device field was filled.
bit 6 : Set to 1 if the filespec field was filled.
bit 5 : Set to 1 if the filespec contains wildcard characters
bits 4-0 : Device number (may take a value from 0 to 15). If

no drivespec is given, then 15 will be assumed.
This is a global default which will force a
search of all currently active drives in the
system.

File specification, terminated with an 03H character.

The DE register pair must be incremented by 1 before any call to OPEN is made, in
order to point to the proper position in the FCB for the OPEN call.

Technical information - Page T /101

DosPLUS II - Disk Operating System - Technical manual

== ~

RUN (SVC 85)
Load a Program from Disk and Execute

This routine will load a program from disk into memory and transfer control to the
program's entry point as soon as it is loaded. The name of the program must have
previously been placed in a File Control Block which may reside anywhere in
free memory.

If the file terminates with an 03, then it will be loaded into memory but not
executed, since the 03 indicates NO transfer address for that file ("load-only" files). In
this case the RUN SVC will return to the calling program with the Z flag set.

ENTRY CONDITIONS
A = 85

DE => Starting address of FCB containing filespec of program to be
executed.

EXIT CONDITIONS
NZ =Error
A = Error code if NZ.
Z = File was loaded, but ended with 03H rather than a transfer address.

Technical information - Page T /102

r
\

-~

DosPLUS II - Disk Operating System - Technical manual

==
LOAD (SVC 86)
Load a File from Disk into Memory

This routine is similar to the RUN SVC. It will load a program file from disk into
memory, however, the program will NOT be executed after loading. Control is passed
back to the calling program.

ENTRY CONDITIONS
A = 86

DE => Starting address of File Control Block containing filespec of
program file to be loaded.

EXIT CONDITIONS
Z = No error.

NZ = Error
A = Error code if NZ.

If no error occurred, then:
HL => Address of program file's entry point, if any.

Technical information - Page T /103

DosPLUS II - Disk Operating System - Technical manual

==

PARAM (SVC 87)
Evaluate a Parameter List

This routine will evaluate the parameter list of a command string. The command
string may reside anywhere in memory and is pointed to by the HL register pair. The
parameters are compared against a user-defined list in memory. Parameter words may
be from 1 to 16 characters in length.

The EVAL supervisor call will continue into this routine if no error occurred, in
order to complete the evaluation of a command string if one exists.

ENTRY CONDITIONS
A = 86

DE => Parameter list to compare string against
HL => Starting address of parameter string

EXIT CONDITIONS
Z = No error.

NZ = Error.
A = Error code if NZ.

HL => Character which caused the error.
If no error occurred, then:

DE = Unchanged
HL => Terminating character

PARAMETER LIST: This is a contiguous area in memory containing one or more
parameter blocks and terminated by a 00 byte.

PARAMETER BLOCK: This is a user-defined string in memory which defines the
parameter and the type of valid values it may take when specified in a command
string. The structure of the parameter block is as follows:

Parameter block

Parameter block

Parameter block

+ 0:

+ 1-2

+ 3

bit 7: Set to 1 if the parameter can take a
string expression.

bit 6: Set to 1 if the parameter can take a
numeric value.

bit 5: Set to 1 if the parameter can take a
switch (yes/no, on/off) value.

bits 4 - 0: Length of parameter word minus 1
Indirect address for the parameter data. These
two bytes point to a location in memory where
the parameter's value is to be loaded following
evaluation. The address is specified in
LSB/MSB format.
The parameter string. This string and following
must be in UPPER CASE, however the actual
comparison with the string in the command line
is done in a case-independent fashion. The
length of this string is determined by bits 4-0
of the first byte of the parameter block.

Technical information - Page T /104

DosPLUS II - Disk Operating System - Technical manual

If a VALID switch parameter is given in the command line without a specific value
m: expression, then FFFFH is assumed, defining a TRUE condition.

A switch value evaluates to FFFFH for true (YES/ON), and DOH for false (NO/OFF).

If a parameter takes a string expression, then the starting address of the string
expression (NOT the quotation mark) is placed into the location pointed to by bytes 1
and 2 of the parameter block.

Parameters may take numeric values from 0 to 65535 (DOH to FFFFH) only. The
numeric values supplied as arguments to parameters may be in any of the acceptable
bases recognized by DOSPLUS II, with the trailing base specifiers (H for hexadecimal,
0 or Q for octal, D for decimal, B for binary). The default base is decimal.

The PARAM routine will permit the use of only the first character of the
parameter; that is, given the parameter SECTORS, it is not necessary to define a
second parameter "S" if you want to be able to use the first letter of the parameter
only. Defining SECTORS automatically makes both SECTORS and S valid parameters. If
more than one parameter starts with the same letter, then the first-letter abbreviation
will be valid for the FIRST parameter in the list which begins with that letter. That is,
given two parameters SECTORS and SIDES, defined in the parameter list in that order,
"S" would be valid only for SECTORS, which precedes SIDES in the list.

Technical information - Page T /105

DosPLUS II - Disk Operating System - Technical manual

== ,--....._,

FEXT (SVC 88)
Add a File Extension to a Filename

This routine will add a three-letter extension to a filename in an FCB if required,
and may be used for adding default extensions. The filename in memory is pointed to
by DE when this routine is called. The extension will only be added if none previously
exists; if an extension is already present, then it will NOT be replaced.

ENTRY CONDITIONS
A = 88

DE => Starting address of filename in memory
HL => Starting address of string containing extension to the added (3

characters)

EXIT CONDITIONS
Z = The Z flag is set if the extension was NOT added (i.e., an extension

already exists in the FCB)
NZ = If the Z flag is NOT set, then the extension was added to the

filename in the FCB.
Register pairs HL and DE are unchanged on exit from this call.

Technical information - Page T /106

DosPLUS II - Disk Operating System - Technical manual

==
VALUE (SVC 89)
Evaluate a Numeric Value from a String

This routine will take a a numeric value in ASCII string form and convert it to a
binary value using the base specifier associated with the string. The acceptable base
specifiers are H for hexadecimal, 0 or Q for octal, D for decimal, and B for binary. If
no base specifier is given then decimal is assumed.

Examples of numeric strings are:

07F8H
6773Q
77770
12387
1982D
10100118

(hexadecimal)
(octal)
(octal)
(decimal default)
(decimal)
(binary)

The value of any numeric string may not exceed 65535 decimal (FFFFH), since it will
be converted into 16 bits. If the numeric string exceeds FFFFH, then it will be
evaluated using the modulo if the defined base (decimal default). Also, numeric strings
which exceed the maximum length will have the excess digits on the LEFT dropped;
that is, OF 47252H will evaluate to 7252H. Overflow is NOT flagged on exit from this
routine.

ENTRY CONDITIONS
A = 89

HL => Starting address of the ASCII-coded number in memory.

EXIT CONDITIONS
Z = No error.

NZ = Error. Invalid character was found in the numeric string.
A = Contains error code if NZ.

HL => Points to invalid character in string

If no error (Z set), then:
BC = Binary value of the numeric string.
HL = Points to string terminator character (carriage return, space,

semicolon, right brace, etc.).

Technical information - Page T /107

DosPLUS II - Disk Operating System - Technical manual

===

SVC 90 is UNDEFINED

Technical informatjon - Page T /108

DosPLUS II - Disk Operating System - Technical manual

===
SCREEN {SVC 91)
Screen Print

This routine will send the contents of the video display to any output device. Any
character translation required (such as changing video graphics characters) must be
done by filtering the destination device.

ENTRY CONDITIONS
A = 91

DE => Address of output device DCB or file FCB

EXIT CONDITIONS
Z = No error.

NZ = Error
A = Error code if NZ.

Technical information - Page T /109

DosPLUS II - Disk Operating System - Technical manual

===
NMICTL (SVC 92)
Add/remove Interrupt Tasks

This routine will insert or remove vectors into the RTC interrupt task table. The
vectors point to a user-defined block in memory, called the Task Control Block or
TCB. The TCB contains in its first two bytes the entry address of the user routine in
memory which is to be executed under interrupt control. Other bytes may be assigned
for data as required by the user routine. On entry to the user routine, the IX register
will point to the TCB. The user routine can then recover any byte in the TCB by using
IX plus an appropriate offset value as a pointer. ·

The TCB may reside anywhere in memory and need not be contiguous with the user
routine, although for purposes of loading the routine from disk it may be easier to have
the TCB and user routine contiguous.

Removing an already existing vector will effectively disable the routine. The RTC
(real-time clock) Interrupt Task Table in DOSPLUS II has room for eight vectors (0 - 7),
of which the first two (0 and 1) are available for user routines. The rest are used by
the system for various background tasks such as the clock display, the printer spooler,
the trace display, etc.

ENTRY CONDITIONS
A = 92
B = Insert/Remove flag. If B<> 0 then insert a vector into the interrupt

task table. If B=O, then remove a vector from the table.
C = Slot number (0 to 7)

DE => Address of user routine if B<>O.

EXIT CONDITIONS
Z = No error

NZ = Error
A = Error code if NZ (parameter error)

Technical information - Page T /110

DosPLUS 11 - Disk Operating System - Technical manual

~~=~~~==

SVC 93 is UNDEFINED

Technical infonmation - Page T /111

DosPLUS II - Disk Operating System - Technical manual

===

VIDRAM (SVC 94)
Copy Video Memory into a RAM Buffer

This routine will copy the contents of video memory into a user defined buffer or
vice versa. The user buffer in free memory must be large enough to hold a full screen
of data, that is, 1920 bytes (24 lines x 80 characters).

ENTRY CONDITIONS
A = 94
B = Function select. If B=O then copy the RAM buffer's contents into

video memory. If B<>O then copy the contents of video
memory into the RAM buffer.

HL => Starting address of user's RAM buffer.

EXIT CONDITIONS
Z = No error.

NZ = Error
A = Error code if NZ.

Technical information - Page T /112

DosPLUS II - Disk Operating System - Technical manual

==========~===

PRCTRL (SVC 95)
Printer Control Routine

This SVC permits the user to set various printer control options and check the
status of printer-related functions. The options are selected by passing a option code
in the B register. It may be necessary to call this routine several times, each time with
a different code in B, to set up the printer control functions completely.

Printer control status is returned in the various registers on exit from the routine
when option code 0 is passed to the routine.

ENTRY CONDITIONS
A = 95
B = Option code (0 - OAH).

0 - Get printer status.
1 - Select serial printer driver (Serial Port B previously

initialized).
2 - Select parallel printer driver
3 - Reset line counter to value in C.
4 - Reset character counter on current line to value in C.
5 - Begin transparent mode
6 - End transparent mode.
7 - Begin dummy mode
8 - End dummy mode
9 - Begin auto-LF mode
A - End auto-LF mode

C = When B=3, contains value for line counter when B=4, contains value
for character counter for current line.

EXIT CONDITIONS
NZ = Error
A = Error code if NZ.
Z = No error.

If B=O on entry, then:
B = Page length
C = Maximum number of printed lines per page
D = Line length (max. Number of characters per line)
E = ASCII "P" if parallel printer driver selected; ASCII "S" if serial

printer driver selected.
H = Number of characters printed since last carriage return
L = Number of lines printed since last top-of-form

Technical information - Page T /113

DosPLUS II - Disk Operating System - Technical manual

Printer Control Options

Select Serial Printer Driver (B=l)
This will select a routine that will output all characters to Serial Port B. Serial

Port B will have been initialized previously. It is not necessary to reinitialize Serial
Port B unless you are changing any of the settings (baud rate, word length, etc.).

Select Parallel Printer Driver (B=2)
This will cause the output to go to the parallel printer port. DOSPLUS II comes

preconfigured to select this port.

Set Line Count/ Set Character Count (B=3/B=4)
When B=3, the system's line counter will be reset to the value in the C register.

When 8=4, the system's character counter for the current line will be reset to the
value in the C register.

Begin Transparent Mode/End Transparent Mode
Normally, DOSPLUS II translates certain printer control codes rather than sending

them out to the lineprinter as is. One example is a tab code (09H), which is translated
to the appropriate number of spaces. Another example is a Form Feed code (OCH)
which is translated into the appropriate number of carriage returns to achieve a top of
form.

Setting transparent mode will override all translation by the system, and every
character will be sent to the printer as is. -\

Set Dummy Mode/End Dummy Mode
Setting dummy mode will cause all printer output to be discarded without returning

an error. This is analogous to setting the @PR device to NIL from DOSPLUS II
command level.

The line and character counters will not be affected when output is discarded in
this fashion.

Set Auto-LF /End Auto-LF
This option will cause each carriage return sent to the lineprinter to be followed by

a line feed for those printers that need the CR-LF combination in order to linespace
properly.

When this option is set, a linefeed COAH) will always follow a carriage return (ODH),
even in transparent mode.

Technical information - Page T /114

DosPLUS II - Disk Operating System - Technical manual

==~=============~===

ARCV (SVC 96)/BRCV (SVC 98)
· Serial Port A/B Receive

These two routines perform character-oriented input from serial port A or B. The
specified channel will have been previously initialized by the system. If you are going
to use settings other than the power-up defaults, you must reinitialize the port with
RS232C (SVC 55). In the DOSPLUS II system, each serial port is assigned a two
character buffer by the system, but the user may establish a larger buffer through the
SETCOM library command. Note that for each character, two bytes of buffer are
required; one for the actual character data itself, and another for the status byte
associated with that character.

When a character is input via either of these two SVCs, the oldest character in the
buffer is returned in register B, and its associated status byte in register A. If the
buffer is empty then the status byte returned in register A will contain the current
status of the serial interface.

ENTRY CONDITIONS
A = 96 (for ARCV)

= 98 (For BRCV)

EXIT CONDITIONS

If NZ, then
NZ = Error, or no character found

IF A = 2, no character was found. Any other value is an error code.
Z = No error.
B = Character found in buffer, if any
A = Status byte associated with character in B

Bit 7: break sequence received
6: Framing error on last received character
5: Data lost due to buffer overflow
4: Parity error on last character received
3: No modem carrier present
2 - 0: Not used

Technical information - Page T /115

DosPLUS II - Disk Operating System - Technical manual

==

A TX (SVC 97)/BTX (SVC 99)
·Serial Port A/B Transmit

These routines will perform character-oriented output to serial ports A or B. The
serial ports will have been previously initialized by the system, and need not be
reinitialized with the RS232C SVC (number 55) unless different settings are to be used.

Data will be transmitted whether or not a carrier tone is present. The Z-80 status
flags and A register will return information about error conditions. The character to be
transmitted must be loaded into register B before calling the appropriate SVC.

ENTRY CONDITIONS
A = 97 (for ATX)

= 99 (For BTX)
B = ASCII code of character to transmit.

EXIT CONDITIONS
Z = No error.

NZ = No character sent.
A = Status byte

Bit 7: Break sequence received
6: Framing error on last received character
5: Data lost
4: Parity error on last received character
3: No modem carrier present
2: Transmitter busy
1: Not used
0: Clear to Send (CTS) signal not present

Technical information - Page T /116

DosPLUS II - Disk Operating System - Technical manual

=============~==

ACTRL (SVC 100)/BCTRL (SVC 101)
·Serial Channel A/B Control

These two routines control the RS232C interface for channels A and B.

ENTRY CONDITIONS
A = 100 (for ACTRL)

= 101 (For BCTRL)
B = Command code:

EXIT CONDITIONS

B"' 0: Get status of serial channel into register B
1: Always returns 0.
2: Turn on Request to Send (R TS)
3: Turn off Request to Send
4: Begin transmission of break sequence
5: Turn off break sequence
6: Reset input buffer count to zero
7: Reset SIO error condition

Z = No error.
NZ = Error occurred.
A = Error code if NZ

If no error occurred, then
B = Status of serial port:

Bit 7: Break sequence now being received
6: Framing error in byte being received
5: Data overflow on byte being received
4: Parity error on byte being received
3: Modem carrier not present
2: Transmitter busy
1: Not used
0: Clear to Send (CTS) not present

Technical information - Page T /117

DosPLUS II - Disk Operating System - Technical manual

==

The DOSPLUS II Resident Jump Table

DOSPLUS II has a number of system routines which may be utilized by user
programs, although they are not part of the SVC Calls. These routines are accessed via
a jump table on page 3 of memory (0300H). To use these routines, you should load the
Z80 register pairs as indicated below, and execute a CALL to the specific address of
the routine that you want to execute.

JPINIT (0300H)

This is the system return vector, which is used to reinitialize the various devices
prior to exiting back to DOSPLUS II from a user program which uses its own I/0
drivers. If the DOSPLUS II devices are not reinitialized, exiting from a user program
may leave the devices inactive, forcing you to reboot the system.

This vector is the same as SVC 31 (JPINIT) and may be called either with a jump to
300H or loading the A register with 31 and executing a RST 8 instruction.

REGSAV$ (0303H)

This routine will save all the primary registers on the stack. The contents of the AF
registers are not preserved on return from this call. The contents of the AF' registers
are destroyed. A RET instruction will restore all the registers.

SA VERN$ (0306H)

Reserved for system use only. Do not use.

SAVER$ (0309H)

Reserved for system use only. Do not use.

SMUL T$ (03DCH)

This routine will multiply two eight-bit values and return with the result in the A
register. On entry, register E must contain the multiplicand, and Register A the
multiplier. The result of the operation cannot exceed FFH.

SDIVD$ (030FH)

This routine will divide the 8-bit value in the E register by the value in the A
register and return the result in A. The remainder, if any, will be returned in E.

DMUL T$ (0312H)

This routine will multiply a 16-bit value in the HL registers by an 8-bit value in the
A register. The result is returned as three bytes. The HL register pair contains the
highest and next significant bytes, in that order, and the A register contains the least
significant byte.

Technical information - Page T /118

~\

DosPLUS II - Disk Operating System - Technical manual

DDIVD$ (0315H)

This routine will divide a 16-bit value in the HL registers by an 8-bit value in the A
-register. On return, the HL register pair will contain the 16-bit quotient, and the A
register will contain the remainder, if any.

TMUL T$ (0318H)

This routine will multiply a 24-bit value by an 8-bit value. The 24-bit multiplicand is
contain in the 8, H and L registers, with 8 containing the most significant byte, H the
next significant, and L the least significant byte. The multiplier must be placed in the
A register.

The operation returns a 32-bit result. On return, the 8, H and L registers contain
the most significant bytes in that order, and the A register contains the least
significant byte.

TDIVD$ (0318H)

This routine will divide a 24-bit value in the 8, H, and L registers by an 8-bit value
in the A register. The result is a 24-bit value also returned in the 8, H and L registers
with the remainder, if any, in register A.

UCASE$ (031EH)

This routine converts a lower-case alpha character to uppercase. The ASCII code of
the character to be converted must be in the A register, and its upper case equivalent
is returned also in A.

Note that ASCII codes less than 61H (97 decimal) or greater than 7 AH (122 decimal)
will NOT be converted.

DBLOCK$ (0321H)

Reserved for system use only. Do not use.

DIRRED$ C0324H)

This routine will read the directory entry for a specific file into the system's file
buffer. The Logical File Number (LFN) must be placed in the 8 register, and the C
register must contain the drive number of the disk drive to be read (0 to 7). On exit,
the BC register pairs are unchanged, and the HL register pair will be pointing to the
system buffer where the directory entry is located.

The LFN is byte is calculated as follows: the leftmost three bits form the directory
entry offset within a sector (each directory sector contains eight 32-byte directory
entries) and the rightmost five bits form the sector within the directory MINUS TWO
where the file entry is found. To get the correct sector number, add 2 to this value.

Thus an LFN of 00 points to the first entry position (byte offset 0) of sector 2 of
the directory (0 +2), and an LFN of D7H points to the 6th directory entry (relative
byte COH) in sector 19H of the directory.

Technical information - Page T /119

DosPLUS II - Disk Operating System - Technical manual

CALCULATING THE LOGICAL FILE NUMBER FOR A DIRECTORY ENTRY

LFN=OD7H

Field -->

1 1 0 1 0 1 1 1 = D7H (215 decimal)

A B

FIELD A: Farms the directory entry offset within a sector,
and can take the values 0-7. The starting position of the
directory entry in the sector may be found by ANDing the
LFN byte with EOH.

FIELD B: Forms the SECTOR NUMBER - 2 within the
directory where the file is located (5 Bits). The sector
number can be derived by loading the LFN into the A
register and performing the following instructions:

AND 1FH
ADD A,2

The resulting value in the A register will be the sector
number where the directory entry is located.

In the example above, if D7H is ANDed with EOH, the result will point to the file
entry that begins at relative byte COH. If D7H is ANDed with lFH the result is 17H.
Adding 2 to this value yields 19H, which is the directory sector where the entry is
located.

Technical information - Page T /120

DosPLUS II - Disk Operating System - Technical manual

DIRWRT$ (0327H)

This routine peforms the converse of DIRRED$. It will write a directory entry for a
specific file. The directory information must be contained in the system's buffer. The
LFN is placed in the B register, and the drive number to be written (0 through 7) in
the C register.

LOCDCB$ (032AH)

This routine will return the location of the Device Control Block of any device. The
device number must be placed in the A register. On return the IX register will contain
the starting address of the specified device's DCB. The valid device numbers are from
0 to 7 (Disk devices are not included).

LOCDCT$ (032DH)

This routine will return the location of the Drive Control Table for any active disk
drive. The drive number (0 through 7) is placed in the C register prior to calling this
routine. On return, the IY register will contain the starting address of that drive's
OCT.

FETMEM$ (0330H)

This routine will create a protected block in high memory for use by your programs.
The number of bytes needed for the block is placed in the BC register pair prior to
calling this routine. On return, the Z flag will indicate the status of the operation. If
NZ, then an error occurred (insufficient memory), and A contains the error code.

If the z flag is set, then the operation was successful. The contents of the BC
register pair will be unchanged, and HL points to the first free memory address in the
block. This value will be HIMEM+l (HIMEM is adjusted accordingly).

Technical information - Page T /121

DosPLUS II - Disk Operating System - Technical manual

RECMEM$ (0333H)

This routine will reclaim blocks of protected high memory. Only the lowest
protected block can be reclaimed. Place the start address the block to be reclaimed in
the HL registers (if FETMEM$ was called, this value will already be correct), and the
number of bytes to reclaim in the BC registers, then call RECMEM$. On return,
HIMEM will be reset to the new value. If HL equals the contents of HIMEM+l then the
operation was successful.

VDON$ (0336H)

This routine will enable the video memory, which is bank
switched with the high 4K of memory. This routine should be used to switch video
memory rather than any other user routine, or changing the DCB values. This routine
will also relocate the stack. Do not change the stack pointer while video memory is
enabled!

The contents of the AF registers are destroyed by this call.

VDOFF$ (0339H)

This routine will deselect video memory and restore normal memory in the top 41<. It
will also restore the stack to its normal location. The contents of AF are destroyed.

BRKVEC (033CH)

This is the system break vector. It is used to set the break processor to exit to
DOS. Taking this exit will ensure that the break processor status is not disturbed on
exit.

Technical information - Page T /122

\

(

DosPLUS II - Disk Operating System - Technical manual

==
The Resident Disk I/O System

DOSPLUS II has an 1/0 package in its resident module which permits direct access
to the disk drives independently of the file-oriented 1/0 routines. The disk routines are
accessed by a RST lOH instruction, with the routine number in the A register, and the
other registers loaded as appropriate. The Resident Disk I/O system supports all
DOSPLUS II supported devices.

Register usage is as follows (some calls may not require that ALL of these registers
be loaded):

HL => Starting address of user's buffer
E = LSB of sector number to access
D = Cylinder number to access
C = Drive number to access (0 - 7)
B = MSB of sector number
A = I/O routine number

Note that the B and E registers are used to code the sector number which is bo be
accessed.

On return, the state of the Z flag will signal whether or not the operation was
completed successfully. If NZ is set, then an error occurred during the operation, and
the A register contains the error number. If Z is set, then the operation was successful
and HL will point to the user's data buffer.

The available routines are as follows:

A= 0

A= 1

A= 2

A=3

A=4

A=5

A=6

A= 7

A= 8

A=9

Check if drive ready. On return, if the Carry flag is set,
then the disk is write-protected. Registers required: C
Register A returns drive status.
Home drive head to cylinder 0 and initialize drive. Registers
required: C
Seek specified cylinder/sector address. Registers required:
B, C, D, E
Read specified sector with Seek operation. Registers
required: B, C, D, E, HL.
Register A returns status.
Verify specified sector with Seek operation. Registers
required: B, C, D, E, HL.
Write specified sector with Seek operation. Registers
required: B, C, D, E, HL.
Register A returns status.
Read Directory sector with Seek. Registers required: B, C,
E, HL.
Write directory sector with Seek. Registers required: B, C,
E, HL
Format specified cylinder with Seek. Registers required: C,
D, HL.
Write directory sector using data address marks as flagged
in drive's DCT. Registers required: B,C, E, HL.

Technical information - Page T /123

DosPLUS II - Disk Operating System - Technical manual

Routines 3 through 9 will execute a seek to the specified cylinder/sector location
before proceeding with the I/O operation.

Routines 6 and 7 will go automatically to the directory cylinder; that is, the
cylinder number specified in the DCT when the call is made will be ignored. The
location of the directory cylinder will be taken from the disk's boot sector. Routine 9
will write a directory sector after checking the appropriate DCT for the type of data
address marks (DAMs) to use. If the DCT indicates that "read-protected" data address
marks are to be used, then the directory sector will be written out with those DAMs.

"Read-protected" DAMs do not actually prevent a directory sector from being read;
rather they serve to differentiate the directory cylinder and sectors from all other
tracks on the disk for easy identification by the system.

These I/O routines do not make use of the disk directory to locate any particular
file. It is the user's responsibility to keep track of the locations being accessed. He
should not assume that merely reading or writing a sector to the disk will cause its
location to be coded somewhere in the operating system.

It is important to note that when using these calls, the DCT (Drive Control Table)
for a particular drive must NOT be assumed to hold current information. A drive's DCT
is NOT updated until a directory sector is read. Reading any other sector will not
force a DCT update. For example, using routine 0 to check a drive's ready status does
not update the DCT.

To ensure that the OCT is correct for that particular diskette, set bit 0 of byte
OCT +5 (using the OCT for the particular drive being operated on) to 1 and execute a
read of a directory sector, prior to performing any. disk I/O operations.

Technical i~formation - Page T /124

·--~

DosPLUS II - Disk Operating System - Technical manual

System Error Messages

These are the error codes returned by the system in the A register when the NZ
flag is set on return from a Supervisor Call. The corresponding error messages are
given for each error code. These messages are the same ones returned by the ERROR
library command.

Dec Hex

000 (DOH)
001 (01H)
002 (02H)
003 (03H)
004 C04H)
005 (05H)
006 (06H)
007 (07H)
008 (OSH)
009 (09H)
010 (OAH)
011 (OBH)
012 (OCH)
013 (ODH)
014 (OEH)
015 (OFH)
016 (10H)
017 (llH)
018 (12H)
019 (l3H)
020 (14H)
021 (15H)
022 (16H).
023 (17H)
024 (18H)
025 (19H)
026 (lAH)
027 (lBH)
028 (1CH)
029 (1DH)
030 (1EH)
031 (1FH)
032 (20H)
033 (21H)
034 (22H)
035 (23H)
036 (24H)
037 (25H)
038 (26H)
039 (27H)

Error
=

No error
Bad function code on SVC call
Character nqt available
Parameter error
CRC error on disk I/O operation
Disk sector not found
Unknown error
Illegal disk change
Disk drive not ready
Invalid data provided
Unknown error
File already exists
No drive available to open file
Write attempt to Read-Only file
Write fault on disk I/O
Write-protected disk
DCB has been modified
Directory read error
Directory write error
Invalid filespec
GAT read error
GAT write error
Hit read error
HIT write error
File not found
File access denied
Directory space full
Disk space full
End of file encountered
Record number out of range
Directory space full -- cannot extend file
Program not found
Invalid drivespec
Unknow error
Load file format error
Memory fault
Unknown error
Open attempt to an Open file
I/O attempt to an Unopen file
Illegal I/0 attempt

Technical information - Page T /125

DosPLUS II - Disk Operating System - Technical manual

Dec Hex Error -'"
040 (28H) Seek error
041 (29H) Lost data on disk I/O
042 (2AH) Printer not ready
043 (2BH) Printer out of paper
044 (2CH) Printer fault
045 (2DH) Printer not available
046 (2EH) Invalid 1/0 attempt to VLR type file
047 (2FH) Required command parameter not found
048 (30H) invalid command parameter
049 (31H) Hardware fault on disk I/O
050 (32H) Unknown error
051 (33H) CRC error on header read
052 (34H) Seek error on read
053 (35H) Lost data on read
054 (36H) CRC error on read
055 (37H) Data record not found on read
056 (38H) Attempt to read System data record
057 (39H) Attempt to read deleted data record
058 (3AH) Device not available
059 (3BH) CRC error on header write
060 (3CH) Seek error on write
061 (3DH) Lost data on write
062 (3EH) CRC error on write
063 (3FH) Data record not found on write
064 (40H) Write fault on disk drive
065 (41H) Disk write protected
066 (42H) No function exists
067 (43H) Drive not in system
068 (44H) Invalid devicespec
069 (45H) No device space available
070 (46H) Device not available
071 (47H) Device in use
072 (48H) Protected system device
073 (49H) Modem carrier lost
074 (4AH) Transmitter not available
075 (4BH) Framing error
076 (4CH) Serial data lost
077 (4DH) Serial parity error
078 (4EH) Clear to Send not detected
079 (4FH) Illegal Logical File Number
080 (50H) Invalid input channel
081 (51H) Invalid output channel
082 (52H) Insufficient memory
083 (53H) Device already exists
084 (54H) Data set member not found
085 (55H) Terminated
086 (56H) Program terminated
087 (57H) Invalid data set member

--·'

Technical information - Page T /126

DosPLUS II - Disk Operating System - Technical manual

Dec Hex

088 (58H)
089 (59H)
090 (5AH)
091 (5BH)
092 (5CH)
093 (5DH)
094 (5EH)
095 (5FH)
096 (60H)
097 (61H)
098 (62H)
099 (63H)
100 (64H)
101 (65H)
102 (66H)
103 (67H)
104 (68H)
105 (69H)

106 (6AH)

Error =
Function not available
Illegal Input/Output channel
GAT table corrupt
HIT table corrupt
No extent terminator on file
Directory links to record not linking back to it
Track assigned beyond disk boundary
Forward dir·ectory link to inactive entry
Forward link to non-extension entry
Cannot establish disk type
Illegal data range
End of File sector beyond allocated sectors
Extension assigned before end of extent
Extension record not assigned to any file
Multiple files assigned to granule
Directory record has an invalid HIT byte
Directory record has a Zero HIT byte
Extended directory record has an invalid HIT
byte
Extended directory record has a Zero HIT byte

Some of these error codes are used by the utilities that are supplied with the
DOSPLUS II system. In particular, error codes 84 through 106 are used by utilities such
as DIRFIX (see Utilities manual).

Technical information - Page T /127

TRS-80™
Model II

by Galactic Software Ltd.

******** GALACTIC SOFTWARE EDITOR ASSEMBLER 4.0 *******
******** COPYRIGHT 1980, BY GALACTIC SOFTWARE *******

TABLE OF CONTENTS

Section 1

. EDAS Features ••
Introduction ••
Notation Conventions ••••
Getting started with EDAS 4.0 •••
Assembly Language Syntax ••
Labels •••••

. ..
Operands... • •••••••••••••••
Comments. • •••.
Expressions •.••••••••
Z-80 Status Indicators (Flags)

.

.
Pseudo-Ops •••••••••
Assembler Commands •••
EDAS Commands ••••••••• .
EDAS Command Details •• ...
Error Messages ••••••••••••••••••••
Technical Specifications.

Section 2

Z-80 Index to Instruction Set.
8-Bit Load Group •••••••••••••••
16-Bit Load Group •••••••••••••• . . .
Exchange, Block Transfer and Search Group ••
8-Bit Arithmetic and Logical Group •••••••••
General Purpose Arithmetic and CPU Control ••
16-Bit Arithmetic Group •••••••••••••••

and Shift Group . ..•....... . . .
.

. .
Set, Reset,

Rotate
Bit,
Jump
Call

and Test Group.
Group •.•••....•..
and Return Group •••

Input and Output Group.
Z-80 Hardware Configuration ••••••
Numeric List of Instruction Set ••
Tables ~
Alphabetic List of Instruction Set •.

First Edition 1980

. .

.i
iii
iv

v
1
1
2
2
2
4
7
8
9

10
21
27

1
13
24
34
43
56
63
69
81
86
92
98

108
114
119
120

(~

GALACTIC SOFTWARE LTD. MODEL II EDITOR ASSEMBLER 4.0
by Roy Soltoff, MISOSYS and. Bill Schroeder, GALACTIC

Copyright 1980 by Galactic Software ltd.

GALACTIC's .HODEL II EDITOR ASSEMBLER includes the following
features:

1> Depression of <ENTER> without a command immediately provides
a summary listing of the Editor Assembler's available con~ands.

2:> "Load" and "Write" text buffers from/to the disk,
assembled object code filed to disk as a directly
program file.

as well as
executable

3> "Move" block allows the user to move lines of text from one
location to another location in the text file.

4> "Find" will locate a designated string within the text. It
will stop at each location and may be manually continued to the
next occurence of the string.

5> "Global" replace allows the user to change a sequence of
characters (STRING1) to a different sequence of characters
(STRING2) throughout the entire text buffer.

6> "System" allows the user to perform any TRSDOS library
command from the editor and return to the editor. You may do a
DIR or maybe a KILL or LIST and even enter the DEBUGGER and
never leave the environment of the Editor Assembler. Use this
command to set FORMS, perform disk INIT, or CREATE files

7> "Edit" provides straightforward editing of designated text.
lines. The Editor maintains command syntax identical to the
Model II BASIC editor while all editing is done in reverse
video providing excellent user interface. Line insert, replace,
and renumber round out the Editor's complement of commands.

8> "Assemble" with numerous switches is provided to allow for
many different types of assembled output. PLUS the unique
assemble to memory system, so the user may effectivly debug the
object code before leaving the Editor Assembler environment.

9> "Jump" allows you to execute your program, that has been
assembled to ram, and then return to the Editor Assembler.

10> "Usage" allows quick reference to the present usage of
available ram by printing the number of bytes remaining in your
text buffer, how many are in use, plus the address of the first
free byte after the text. This last address is useful when
using the ASSEMBLE TO MEMORY feature.

11> "Hardcopy" will print all or part of the text buffer.

i

12> "Type" will print the text buffer without line numbers.

13> The <F1> key is employed as a functional <CLEAR> key.

14> The symbol table is sorted in ascending alphanumeric order
and output 5-across in 80 column format.

15> The <UP ARROW> and <DOWN ARROW> keys provide
up or down, one line at a time, or repeated,
key.

instant scroll
with the repeat

16> The <F2> key is employed to provide
entire text page (23 lines). This "PAGE"
used with the repeat key.

instant advance of a
function may also be

17> The <HOLD> key is employed as a functional Pause key.

18> All Editor Assembler commands may be entered in either
upper case or lov1er case providing ease of operation as a text
editor.

19> Great
user of
operation
programing
programmer

amounts of time and effort were expended to give the
this Editor Assembler the absolute best in ease of

and functional efficiency. Optimize assembly
time, with the EDITOR ASSEMBLER designed with the

in mind.

WARRANTY

ALL GALACTIC SOFTWARE IS WARRANTED FOR ONE YEAR FROM THE DATE
OF PURCHASE TO BE FREE FROM CODING DEFECTS. SHOULD A PROBLEM
BE FOUND BY THE USER, GALACTIC WILL CORRECT IT AT NO CHARGE,
DURING THE WARRANTY PERIOD. THIS SERVICE SHALL ONLY BE
PROVIDED TO CUSTOMERS WHO REGISTER WITH GALACTIC, WITHIN 3.0
DAYS OF PURCHASE, BY RETURNING THE REGISTRATION CARD PROVIDED
IN THE REAR OF THE MJU~UAL. GALACTIC'S LIABILITY SHALL NOT, IN
ANY WAY, EXTEND BEYOND CORRECTION OF THE PROGRAM ITSELF. THE
USER IS TOTALLY RESPONSIBLE FOR ALL DATA ENTRUSTED TO THE
PROGRAM AND HIS HARDWARE.

ii

INTRODUCTION

The Galactic Software Editor Assembler is a RAM-resident
text editor and assembler for the Model II microcomputer
system. The Editor Assembler was designed to provide the
maximum in user interface and ease of use while providing
capabilities powerful enough for the expert Z80 assembly
language programmer.

The text editing features of the Editor Assembler facilitate
the manipulation o£ alphanumeric text files. The most
common use of the editing capability is in the creation and
maintenance of assembly language source programs.

The assembler portion of the Editor Assembler facilitates
the translation of symbolic language source code programs
into machine executable code. This object code may then be
executed directly from TRSDOS (tm) as a program file.
Previous knowledge of machine languag·e and the hexadecimal
number system is assumed throughout this manual.

The Assemble command (A) supports the assembler language
specifications set forth in the ZILOG "Z80-ASSEMBLY LANGUAGE
PROGRAM MANUAL, 3.0 D.S., REL.2.1, FEB 1977, with the
following exceptions.

Macros are not supported.

Operand expressions may
(logical AND), and "<"
on a strictly left to
allowed!

only contain the "+", "-", "&"
(shift) operators, and are evaluated
right basis. Parentheses are not

Conditional assembly commands, where a programmer may
control which portions of the source code are assembled, are
not supported.

Constants may only be decimal (D), hexadecimal (H), or octal
(0) •

The only Assembler commands supported are *LIST OFF and
*LIST ON.

A label can contain only alphanumeric characters. (Use o£
the "-" and "?" is not supported). A label can be up to 6
characters long. The first character must be alphabetic.
The other characters must be alphanumeric.

iii

!.---....,.
NOTATION CONVENTIONS

()

• • •

line

T

B

1nc

Parentheses enclose optional information. They
are never input in Editor Assembler commands.

The ellipses represents repetition of a previous
item.

Any decimal number from 1 to 65529.

A period may be used in place of any line number.
It represents a pointer to the current line of
source code being assembled, printed, or edited.

The character <T> may be used in place of any line
number. It represents the top of the text buffer.

The character may be used in place of any line
number. It represents the bottom of the text
buffer.

A number representing an increment between
successive line numbers.

All Editor Assembler commands may be entered in lower case
as well as upper case to facilitate its use as a general
purpose text editor. Assembler source code must be entered
in upper case only. It is suggested that <CAPS LOCK> be
used to enter source code.

A file called "ZBOCODE/SOR" has been written to .the diskette
containing the Galactic Software Editor Assembler. This
file is a Z-80 code source file containing the entire Z-80
code instruction set which can be loaded into the Editor
Assembler. If assembled, it will produce z-80 object code
in numeric order. The generated listing will be similar to
the NUMERIC LIST OF INSTRUCTION SET located at the rear of
your Editor Assembler manual.

iv

GETTING STARTED WITH EDAS 4.0

It is strongly recommended that before using your new Editor
Assembler, you should make a BACKUP copy to use in a working
environment and retain the EDAS diskette as your MASTER copy.
The BACKUP utility procedures are found in your "TRS-80 Model
II Owner's Manual" in the section entitled "UTILITY
PROGRAHS". After creating a BACKUP copy of the EDAS diskette,
store the MASTER diskette in a safe place. Use only your
"working" copy for production.

EDAS 4.0 is a directly executable program file. It is
accessed simply by entering:

EDAS40

in response to the TRSDOS query

TRSDOS READY
.
EDAS 4.0 will load, execute, and display the following:

GALACTIC SOFTWARE LTD. MODEL II EDITOR ASSEMBLER 4.0
By Roy Soltoff, MISOSYS and Bill Schroeder, Galactic

Copyright 1980 by Galactic Software ltd.
>

The right carat ">" which appears in reverse video, is the
prompting character displayed by EDAS whenever it is ready to
accept a command. If you would like a memory jogger as to
what commands are acceptable to EDAS, just depress <ENTER>.
The entire command repertoire will be instantly displayed.

WELCOME TO THE WORLD OF SOPHISTICATED BUSINESS SOFTWARE

v

ASSEMBLY LANGUAGE

Syntax

The Rasic format of an assembly language statement is:

(LABEL) OPCODE (OPERAND (S)) (COMMENT)

LABELS

A label is a symbolic name
ahvays optional. A label
greater than 6 characters.
letter (A-Z). A label may
character. The dollar sign
the reference counter of the

of a line of code. Labels are
is a string of characters no
The first character must be a
not contain the dollar sign ($)
($) is reserved for the value of
current instruction.

The following labels are reserved for referring to registers
only and may not be used for other purposes:

A, B, C, D 1 E 1 H, L, I, R,
IX, IY, SP, PC, AF, BC, DE, and HL.

The following 8 labels are reserved for branching conditions
and may not be used for other purposes (these conditions
apply to status flags):

FLAG CONDITION SET CONDITION NOT SET
------- ------------- -----------------
Carry c NC

Zero z NZ

Sign M (minus) p (plus)

Parity PE (even) PO (odd)

OPCODES

The OPCODES for the Galactic Software Model
Assembler correspond to those in the Z-80-ASSEMBLY
PROGRN~1ING MANUAL, 3.0 D.S., P£L 2.1, FEB 1977.

II Editor
LANGUAGE

1-1

OPERANDS

Operands are always one or two values separated by commas.
Some instructions require no operands at all.

A value in parentheses "()"specifies indirect addressing
when used with registers, or "contents of" otherwise.

Constants may end in any of the following letters:

H - hexadecimal

D - decimal

0 - octal

A constant not followed by one of these letters is assumed
to be decimal. A constant must begin with a digit. Thus
"FFH" is not permitted, while "OFFH" is valid.

Expressions using the "+", "-", "&", and "<" operators are
described in the section, Expressions.

COMMENTS

All comments must begin with a semicolon
line starts with a semicolon in column 1
entire line is a comment.

(;) .
of

If a source
the line, the

EXPRESSIONS

A value of an operand may be an expression
"+", "-", "&", or "<" symbols. These
executed in strictly left to right order.
are allowed. All four operators are binary.
"-" have unary uses also.

Addition (+)

consisting of
operations are

No parentheses
Both "+" and

The plus will add two constants and/or symbolic values.
When used as a unary operator, it simply echoes the value.

Examples:

001E CON30 EQU 30

0010 CON16 EQU 10H

0003 CON3 EQU 3

OOZE A2 EQU CON30 + CON16

1-2

Subtraction (-)

The minus operator will subtract two constants and/or
symbolic values. Unary minus produces a 2's complement.

Examples:

OOOE A2 EQU CON30 - CON16

FFF2 A4 EQU -A2

Logical AND (&)

The logical AND operator logically adds t\vo constants and/or
symbolic values.

Examples:

3COO A1

0000 A2

0000 A3

Shift (<)

EQU

EQU

EQU

3COOH & OFFH

0 & 15

OAAAAH & 5555H

The shift operator can be used to shift a . ~alue left or
right. The form is:

VALUE < AMOUNT

If AMOUNT is positive, VALUE is shifted le£t. If AMOUNT is
negative, VALUE is shifted right. The magnitude of the'
shift is determined from the numeric value of AMOUNT

Examples:

cooo A1 EQU 3C00H < 4

03CO A2 EQU 3COOH < -4

BBFF A3 EQU 3CBBH < 8 + 255

03CO A3 EQU 15 + 3COOH < -4

1-3

I~

,~.

Z-80 STATUS INDICATORS (FLAGS)

The flag registers lF ana F') supply information to the user
regarding the status of the Z-80 at any given time. The bit
positions for each flag are shown below:

where:

c
N
P/V
H
z
s
X

=
=
=
=
=
=
=

7
s

6
z

Carry

5
X

flag

4
H

3 2 1
X P/V N

Add/Subtract flag
Parity/Overflow flag
Half-carry flag
Zero flag
Sign flag
Not used

0
c

Each of the two Z-80 flag registers contain 6 bits of status
information which are set or reset by CPU operations. Four
of these bits are testable (C, P/V, z, and S) for use with
conditional jump, call, or return instructions. Two flags
(H, N) are not testable and are used for BCD arithmetic.

Tv;ro flag register bits (3, 5} are not used by the Z-80.

CARRY FLAG (C)

The carry flag is set or reset depending on the operation
being performed. For "ADD 11 instructions that generate a
carry and 11 SUBTRACT" instructions that generate a borrow,
the carry flag will be set. The carry flag is reset by an
"ADD" that does not generate a carry and a 11 SUBTRACT" that'
generates no borrow. This saved carry facilitates software
routines for extended precision arithmetic. Also, the "DAA"
instruction will' set the carry fiag if the conditions for
making the decimal adjustment are met.

For instructions RLA, RRA, RLS, and RRS, the carry bit is
used as a link between the LSB and MSB for any register or
memory location. During instructions RLCA, RLC s and SLA s,
the carry contains the last value shifted out of Bit 7 of
any register or memory location. During instructions RRCA,
RRC s, SRA s, and SRL s, the carry contains the last value
shifted out of Bit 0 of any register or memory location.

For the logical instructions AND s, OR s, and XOR s, the
carry flag will be reset.

The carry flag· can also be set (SCF) or complemented (CCF).

1-4

.~

ADD/SUBTRACT FLAG (N)

This flag is used by
instruction (DAA) to
"SUBTRACT" instructions.
be set to a "zero". For
be set to a "one".

PARITY/OVERFLOW FLAG (P/0)

the decimal
distinguish
For all 11 ADD"

all "SUBTRACT"

adjust accumulator
between "ADD" and
instructions, N will
instuctions, N will

This flag is set to a particular state depending on the
operation being performed.

For arithmetic operations, this flag indicates an overflow
condition when the result in the Accumulator is greater than
the maximum possible number (+127) or is less than the
minimum possible number (-128). This overflow condition can
be determined by examining the sign bits of the operands.

For addition, operands with different signs will never cause
overflow. When adding operands with like signs and the
result has a different sign, the overflow flag is set. For
example:

+120 =
+105 =

0111 1000
0110 1001

+225 = 1110 0001

ADDEND
AUGEND

(-95) SUM

The two numbers added
exceeds +127 and the
negative number (-95)
is therefore set.

together has resulted in a number that
two positive operands has resulted in a
which is incorrect. The overflow flag

For subtraction,
signs. Operands
For example:

overflow
of like

+127 =
(-)-64

0111 1111
1100 0000

+191 = 1011 1111

can occur for operands of unlike
sign will never cause overflow.

MINUEND
SUBTRAHEND

DIFFERENCE

The minuend sign has changed from
giving an incorrect difference.
therefore set.

a positive to a negative
The overflow flag is

Another method for predicting an overflow is to observe the
carry into and out of the sign bit. If there is a carry in
and no carry out, or if there is no carry in and a carry
out, then overflow has occurred.

1-5

This flag is also used with logical operations and rotate
instructions to indicate the parity of the result. The
number of "one" bits in a byte are counted. If the total is
odd, "ODD" parity (P=O) is flagged. If the total is even,
"EVEN" parity is flagged (P=1).

During search instructions (CPI, CPIR, CPD, and CPDR)
and block transfer instructions (LDI, LDIR, LDD, and
LDDR), the P/V flag monitors the state of the byte count
register (BC), When decrementing the byte counter results
in a zero value, the flag is reset to zero, otherwise the
flag is a one.

During "LD A,I" and "LD A,R" instructions, the P/V flag will
be set with the contents of the interrupt enable flip-flop
(IFF2) for storage or testing.

When inputting a byte from an I/O device "IN r, (C)", the
flag will be adjusted to indicate the parity of the data.

THE HALF CARRY FLAG (H)

The half carry flag (H) will be set or reset depending on
the carry and borrow status between bits 3 and 4 of an 8-bit
arithmetic operation. This flag is used by the decimal
adjust accumulator instruction (DAA) to correct the result
of a packed BCD add or subtract operation. The H flag \vill
be set (1) or reset (0) according to the follow.ing table:

H ADD SUBTRACT

1 There is a carry from There is no borrow
Bit 3 to Bit 4 from Bit- 4

0 There is no carry There is a borrow
from Bit 3 to Bit 4 from Bit 4

THE ZERO FLAG (Z)

The Zero flag (Z) is set or reset if the result generated by
the execution of a certain instruction is a zero.

For 8-bit arithmetic and logical operations, the Z flag will
be set to a "one" if the resulting byte in the Accumulator
is zero.

For compare (search) instructions, the Z flag will be set to
a "one" if a comparison is found between the value in the
Accumulator . and the memory location pointed to by the
contents of the register pair HL.

1-6

,.-.......

When testing a bit in a register or memory location, the z
flag will contain the state of the indicated bit.

When inputting or outputting a byte between a memory
location and an I/O device (INI, IND, OUTI, or OUTD), if the
result of B-1 is zero, the z flag is set, otherwise it is
reset. Also for byte inputs from I/O devices using "IN
r,(C)", the Z flag is set to indicate a zero byte input.

THE SIGN FLAG (S)

The Sign flag (S) stores the state of the most significant
bit of the accumulator (Bit 7). When the Z-80 performs
arithmetic operations on signed numbers, binary two's
complement notation is used to represent and process numeric
information. A positive number is identified by a "zero" in
bit 7. A negative number is identified by a "one". The
binary equivalent of the magnitude of a positive number is
stored in bits 0 to 6 for a total range of from 0 to 127. A
negative number is represented by the two's complement of
the equivalent positive number. The total range for
negative numbers is from -1 to -128.

When inputting a byte from an I/0 device to a register, "IN
r, (C)", the S flag will indicate either positive (S=O) or
negative (S=1) data.

PSEUDO-OPS

There are nine pseudo-ops (Assembler directives) which the
assembler will recognize. These assembler directives,
although written much like processor instructions, are
commands to the assembler instead of the processor. They
direct the assembler to perform specific tasks during the
assembly process but have no meaning to the Z-80 processor.
These assembler pseudo-ops are:

ORG nn

EQU nn

DEFL nn

Sets address reference counter to the
value nn.

Sets the value of a label to nn in the
program: can occur only once for any
label.

Sets the value of a label to nn and can be
repeated in the program with different values
for the sMae label.

1-7

END

DEFB n

DEFB 's'

DEFW nn

DEFS nn

DEFM 's'

Signifies the end of the source program so
that any following statements are ignored.
If no END statement is found, a 'l;ifarning is
produced. The END statement can specify a
transfer address (i.e. END LABEL or END 6000H).
The transfer address is used by the TRSDOS
program execution to transfer control to the
address specified in the END statement.

Defines the contents of a byte at the current
reference counter to be "n".

Defines the content of one byte of memory to
be the ASCII representation of character "s".

Defines the contents of a 2-byte word to be "nn".
The least significant byte is located at the
current reference counter while the most sig­
nificant byte is located at the reference counter
plus one.

Reserves "nn" bytes of memory starting at the
current value of the reference counter.

Defines the contents of n bytes of memory to be
the ASCII representation of string "s", where n
is the length of "s" and must be in the range

0-63.

ASSEMBLER COMMANDS

The Galactic Software Editor Assembler supports only two
assembler commands. Each command must start in column one
of a source line, and must start with an asterisk (*). The
assembler commands are:

*LIST OFF causes the assembler listing to be suspended,
starting with the next line.

*LIST ON Causes assembler listing to resume, starting
with this line.

1-8

r"'

('

COMMANDS:

The GALACTIC Model II Editor Assembler can perform
following commands. These commands may be typed after
prompt symbol ">" which is displayed in reverse video
clarity. The prompt symbol appearance indicates
"command mode" of the Editor Assembler. The following
contains all command mode instructions recognized by
Editor Assembler with a brief description of each.

A Assemble source currently in the text buffer.

C Display the FILESPEC of the last source text file
accessed either by Load or \'lri te.

D Delete specified line(s).

E Edit a specified line of text.

F Find a specified string of characters.

G Globally change a string of characters (STRING1)

the
the
for
the

list
the

to another string of characters (STRING2) throughout
the text buffer.

H

I

J

L

M

N

p

Q

R

s

T

Provide hard copy output (line printer) of a specified
range of text buffer lines.

Insert source text line(s) at a specified line with a
specified line number increment.

Jump to a specified address.

Load a source text file from disk.

Move a block of text from one location to another.

Renumber source text lines in the text buffer.

Print a specified range of source text code currently
in the text buffer.

Quit the Editor Assembler and return to TRSDOS.

Replace lines currently in the text buffer.

System command to execute any TRSDOS command from
within the environment of the Editor Assembler.

Type source text lines without line numbers to a
line printer.

1-9

u Display the memory utilization - bytes used by the
text, bytes available, and the first free address.

W Hrite the current text buffer to disk.

F1 Clear the CRT screen.

F2 Page forward the display 23 lines.

~ Scroll up one source text line.

\V Scroll down one source text line.

HOLD Performs a functional pause of any operation.

GALACTIC EDITOR ASSEMBLER COMMAND DETAILS

1 • > ASSEMBLE (A)

Syntax: A (SWITCH(/SWITCH) •••)

SWITCH may be any of the following five options:

NL No assembler listing is 'i.vritten to the screen.

NO No assembled object code is generated to disk
or memory.

NS No symbol table is printed either to the screen
or the line printer (if enabled) .

LP Send assembler listing, error messages, and
symbol table (if enabled) to a line printer.

WE Cause the assembly to wait when an error occurs.
Depressing any key will continue assembly until
another error is found. If you want to continue
the assembly without stopping for additional
errors, enter the character <C>

If you want to assemble an object program to either disk or
memory, do not enter the switch parameter, "NO". The prompt

Object code to disk or memory (D,M)?

will be displayed. A response of "M" will assemble the
object code to memory. You will not be permitted to
overwrite any region below the end of the text buffer nor

1-10

will you be permitted to overwrite the symbol table stored
in high memory. The error message,

Attempt to overwrite protected region - job aborted

will be displayed if your assembled
these restrictions. Upon successful
assembly to memory, the message,

Hemory region loaded
XXXXX is the transfer address

will be displayed.

program will
completion

violate
of the

A response of 'D' assumes a disk object code file. The 'D'
response will issue the query,

Enter filespec

Respond with the filespec that you want to use to save the
assembled program file. The Editor Assembler will open the
file if existing and output the message,

Replaced

or create the file if non-existant and outpu~ the message,

New file

Assembly will start and the program file will be v.rri tten to
disk.

2.> DISPLAY CURRENT SOURCE FILESPEC (C)

Syntax: C

This command will display the filespec used for the most
recent Load or Write command. If neither Load nor Write
were utilized, or the text buffer region was cleared, the
message,

Filespec unknown

is displayed.

3.> DELETE (D)

Syntax: D (line 1 (,line2))

This command is used to delete the line or lines specified
from the source text buffer. The character <T> is used to
indicate the top of the text buffer and the character is

1-11

used to indicate the bottom of the text buffer.

Examples:

D 100,500 Delete lines 100 through 500 (inclusive)
from the text buffer.

D T,B

D

D 105

Delete the entire text buffer.

Delete the current source text line.
A period (.) may also be used to indicate
the current line.

Delete the single line 105.

4. > EDIT (E)

Syntax: E (line)

This command permits the user to edit or modify any source
text line. While in the edit mode, the line being editted
is displayed in reverse video. The syntax and function of
all edit subcommands are identical to those implemented in
the DISK BASIC editor.

Edit Subcommands:

A

nC

nD

E

H

I

nKx

L

Q

nSx

Abort and restart the line edit.

Change n characters.

Delete n characters.

End editting and enter the changes.

Delete the remainder of the line and insert the
following string. The "H" command should not be
used to delete an entire line of text. There

MUST
always be at least one character on a line, or
future use of that line will cause problems.

Insert string.

Kill all characters up to the nth occurrence of
x.

Print the rest of the line and go back to the
starting position of the line.

Quit and ignore all editting.

Search for the nth occurrence of x.

1-12

BACKSPACE Move edit pointer back one space.

ESCAPE Escape from any edit mode subcommand.

ENTER Enter the line in its presently editted form
and exit the edit mode.

5.> FIND (F)

Syntax: F (string)

The edit buffer is searched starting at the current line+1
for the first occurrence of "string". If no string is
specified, the search is the same as that of the last Find
command in which a string was specified (provided a Global
command was not previously specified) . If the search string
is found, the line containing it is displayed and period (.)
is updated to the displayed line. If the string is not
found, the message,

String not found

is displayed and period (.) remains unchanged. A "PT"
command can be used to position the line pointer to the top
of the text buffer prior to use of the Find command.

6. > GLOBAL (G)

Syntax: G /string1/string2/

A string of characters can be changed throughout the text
buffer by one easy command. The GLOBAL CHANGE command will
change the appearances of STRING1 to the sequence STRING2.
No changes will be performed on the first line of the text
buffer. Also, only the first appearance of STRING1 in each
line that STRING1 appears will be altered.

The first non-blank character becomes the string delimiter
(the slash character is shown above; any character is
permitted). Null strings are not permitted (i.e. the string
must contain at least one character) •

It is not necessary that STRING2 be the same length as
STRING1. It can be of lesser, equal, or greater length;
however, no string can exceed 16 characters in length. If
a change would result in a line exceeding the maximum line
length (128), the change will not be performed on that line
and the message,

FIELD OVERFLOW

will be issued.
remaining lines.

The search for STRING1 continues for the

1-13

A line which contains STRING1 will be displayed as it exists
both before and after the change. The <HOLD> key may be
used to pause the output. Use of the <BREAK> key will stop
further changing.

Example:

G /MODIFY/ALTER/

7.> HARDCOPY (H)

Syntax: H (line 1 (, line2))

This command will print a line or a group of
printer. If a properly paged display is
suggested that you set the forms control
Editor Assembler's "System" command as in:

lines to a line
desired, it is
by issuing the

S FORMS (P=xx,L=xx,)

Examples:

H T,B

H 100,500

H.

H

8. > INSERT (I)

Print the entire text buffer.

Print lines 100 through 500 inclusive.

Print the single line pointed to by
period (.).

Print the 23 lines starting with the
current line.

Syntax: I line# (,inc)

The Insert command is used to insert or add text lines in
the buffer. All lines of source text are entered with the
use of the Insert command. After using the Insert command
to specify were you wish to place new lines, the EDITOR will
generate the designated line number and allow the inserting
of that numbered text line. After entering the first text
line the editor will generate the next line number higher,
as specified by your increment selection. Incremental line
nuniliers will continue to be generated as long as there is
room between lines or room left in the text buffer.

The <BREAK> key will allow you to leave the insert mode at
any time.
If a desired increment is not specified the last
increment is assumed. Period {.) may be used for
indicate the current line.

specified
"line#" to

1-14

9.> LOAD (L)

syntax: L (filespec)

The Load command will read the file denoted by the FILESPEC
into the text buffer. The text file will be concatenated to
any text already in the text buffer. FILESPEC is explained
in your TRSDOS (tm) user manual under the "TRSDOS" section
entitled "file specification". It is composed of a
FILENAME, optional EXTension, optional PASSWORD, optional
DRIVE reference, and optional diskette name as in

FILENAME/EXT.PASSWORD:D(DISKETTE NAME)

(ex. YOURPROG/ASM:1). If you do not enter the FILESPEC,
Editor Assembler will use the filespec entered for the last
Load or Write command provided there is text already in the
text buffer. If the text buffer is empty and you do not
enter a filespec with the Load command, Editor Assembler
will prompt you for the filespec.

1 0 • > .HOVE (M)

Syntax: M line1, line2,' line3
'

This command is used to move a block of lines from one
location in the text buffer to another. A large quantity of
text lines can be moved to a different position in one easy
operation. In the command syntax, "line1" and "line2" are
the beginning and ending line numbers of the text block to
be moved. "Line1" and "line2" are permitted to reference
the same line number if only one line is to be moved.
"Line3" is the line number of the line that the text block
will follow after the moVe. The line number references must
be offset by commas (,). If any of the entered line numbers
are non-existant, the message,

No such line

will be issued.

"Line3" is not permitted to equal
"Line3" is not permitted to be a line
"line1" through "line2". The message,

Command parameter(s) incorrect

"line1" or "line2".
interior to the range

will be issued if your input
conditions.

violates any of these

1-15

The text to be moved is stored temporarily in the spare text
region. If this region is not large enough to store the
block, the message,

Text buffer full

will be issued. Try moving the block in segments.

Upon completion of the move, all lines in the text buffer
will be renumbered starting from ten (10) and using the line
increment currently in effect. Renumbering is absolutely
essential to perform proper operation of Editor Assembler
commands.

Example:

You desire
and ending
command,

to move the block of text starting at line 500
at line 900 to follow line 1510. Issue the

M 500,900,1510.

11.> RENUMBER (N)

Syntax: N (line(,inc))

The "N" command is used to renumber the lines in the text
buffer. The first line in the buffer is assigned the number
specified as "line". If "line" is not sp~cified, it
defaults to 00100. The remaining lines in the buffer are
renumbered according to the increment (inc) or the previous
increment in a RENUMBER, REPLACE, or INSERT command if the
increment was not specified. Period (.) points to the same
line as it did before the NUMBER command was used, but the
actual number of this line may be changed.

Examples:

N

NS

N10,5

12.> PRINT (P)

Renumbers from 100. with the previous
increment.

Renumbers from
increment.

5 with the

Renumbers from 10 in steps of 5.

previous

Syntax: P (line1 (,line2))

The PRINT command will display a line or a group of lines on
the monitor screen. Period (.) is updated to point to the
last line printed.

1-16

Examples:

P T,B Displays all lines in the text buffer.

P 100,500 Displays lines 100 through 500 inclusive.

p •

p

13.> QUIT (Q)

Syntax: Q

Displays the current line only.

Displays 23 lines starting with the current
line. The PRINT command operates in a screen
scroll mode. If you want to "page" the screen,
use the "F2" command.

The QUIT command is used to exit the Editor Assembler and
perform a proper return to TRSDOS. By using command "Q", the
<BREAK> key will be restored to TRSDOS.

14. > REPLACE (R}

Syntax: R (line<inc))

The REPLACE command only replaces one line and enters INSERT
mode. If "line" exists, it is deleted then inserted. If
line doesn't exist, it is inserted as with the INSERT
command. If "inc" is not specified, the last increment
specified by an INSERT, REPLACE, or P~NUMBER command is used.
Period (.) is always updated to the current line.

Examples:

R

R 100,10

R 100

15.> SYSTEM (S)

Replace the current line.

Start replacing lines beginning at line
100 and incrementing with 10.

Start replacing at line 100 using the last
specified increment.

Syntax: S ANY-TRSDOS-COMMAND (PARAMETERS)

The SYSTEM command is used to interface with TRSDOS while in
the environment of the Editor Assembler. Any TRSDOS comraand
can be accessed. It is recommended that you not attempt to
access the TRSDOS "COPY" nor "BACKUP" commands due to the
possibility of overwriting the Editor Assembler. IT IS

1-17

IMPORTANT TO NEVER DEPRESS THE <BREAK> KEY DURING A SYSTEM
TRSDOS co~~ND. To break any TRSDOS command, use the
<ESCAPE> key.

Examples:

S DIR List the diskette directory.

S FORMS (P=51,L=42) Set printer parameters.

S LIST filespec List the contents of a file.

SPURGE :d Delete files from drive "d".

16. > TYPE (T)

Syntax: T (line1 (,line2))

The TYPE command prints a line or group of lines onto
Line Printer. Period (.) is updated to point to the

the
last
COPY line printed. This command is much like the HARD

command, only no line numbers are printed. Only the source
text is printed.

1 7 . > MEMORY USAGE (U)

Syntax: U

This command will display the number of bytes of text buffer
in use, the number of bytes spare and the first address
available for assembly to memory.

This command is useful to ascertain requirements for storing
the text buffer to disk. Note that a disk file, which is
written in ASCII, wil_l contain an additional four (4) bytes
per text line. The 4 bytes arise from the difference in
storage formats of text in memory versus text in an ASCII
file.

It also is useful when assembling to memory. Since the
Assembler will not permit you to overwrite it or the text
buffer, you will have to "ORG" your program in the free text
buffer area. The first available address is output by this
command.

An example of output is:

12288 bytes in use
27934 bytes spare
37292 (91AC) is the first free address

1-18

1 8 • > WRITE (W)

Syntax: W (filespec)

This command will write the text
by FILESPEC. If no FILESPEC
referenced by the previous Load
used unless the text buffer is
unavailable for use, you will be

buffer to the file denoted
is entered, the filespec

or Write command will b~
empty. If a FILESPEC ~s
prompted for it.

If the file denoted by FILESPEC is non-existant, a file will
be created and the message,

New File

will be issued.

If the file denoted by FILESPEC is an existing file, it will
be replaced by the write operation and the message,

Replaced

will be issued. YOU WILL NOT BE GIVEN AN
CANCEL A WRITE REQUEST ON AN EXISTING FILE.
are doing.

OPPORTUNITY TO
Know what you

1 9. > SCROLL UP (f\}

The SCROLL UP command displays the line preceding the
current line and updates period (.} to point to the line
displayed. If the current line is the first line in the text
buffer, it is displayed and period (.) remains unchanged.
SCROLL UP is an immediate command and must be the first
character of a command line in order to be interpreted.

20. > SCROLL DOWN (,J/)

The SCROLL DOWN command displays the line following the
current line and updates period l.) to point to the line
displayed. If the current line is the last line in the text
buffer, the last line is displayed and period (.) remains
unchanged. SCROLL DOWN is an immediate command and must be
the first character of a command line to be interpreted.

21.> CLEAR SCREEN (F1)

The <F1> key is used to perform a functional clear screen
(similar to "S CLS").

1·-19

22.> PAGE FORWARD (F2)

The <F2> key is used to advance the display by 23 lines.
This command is similar to the PRINT command except that the
monitor screen is cleared before displaying the 23 lines.

23.> PAUSE (HOLD)

The <HOLD> key is used to pause the computer during a
display during any assembly or Editor Assembler printing.
When a pause is sensed, depression of any key except <HOLD>,
<SHIFT>, or <CTRL> will continue the operation paused.

1-20

Error Messages

~he Galactic software Model II Editor Assembler recognizes
three types of errors. These are:

1.> Command errors- The error message is displayed and
control is returned to command mode.

2.> TRSDOS errors - The error message (or error number) is
displayed and control is returned to command mode.

3.> Assembler errors - These three types of errors may occur
while executing an Assemble command.

a. Terminal - Assembly is terminated and control is
returned to command mode.

b. Fatal - Processing of the line containing the error
is inwediately stopped and no object code is
generated for that line. Assembly proceeds with the
next.line.

c. Warning - The error message is displayed and assembly
of the line containing the warning continues. The
resulting object code may not be what the programmer
intended.

Following is a list of all errors and an explanation of each.

COMMAND ERRORS

1.> Buffer full

There is no more room in the text buffer for adding text.

2.> Command parameter(s) incorrect

Any command
appropriate
message.

line not
for that

3.> Illegal command

entered
command

according to
will genera·te

the
this

syntax
error

The first character of the command line entered does not
specify a valid Editor Assembler command.

4.> Invalid source file

A Load filespec command was issued where the file identified
by filespec is not a valid Editor Assembler source file.

1-21

(~

5.> Line number too large

Renumbering with the specified starting line number and
increment would cause line(s) to be assigned numbers greater
than 65529. The renuniliering is not performed. This message
would also be displayed if you attempted to INSERT a line
with a line number exceeding 65529.

6.> No room between lines

The next line number to be generated by INSERT or
would be greater than or equal to the line nunilier of
line of text in the edit buffer. The increment
decreased or the lines in the buffer renumbered.

7. No such line

REPLACE
the next
must be

A line specified by a command does not exist. The command is
not performed.

8. No text in buffer

A command requiring text in the buffer was issued when the
text buffer was empty. The commands Load, Insert, Quit,
System, Jump, <F1>, and Display current filespec can be
executed when the text buffer is empty. All other commands
require at least one line of text to be in the buffer.

9.> String not found

The string being searched for by the Find command could not
be found between the current line and the end of the text
buffer. This message will also be displayed at the
completion of a Global command.

TRSDOS ERRORS

1.> Disk drive not ready

This message will be displayed after a Load, Write, or
Assemble to disk command is executed if either the specified
drive is not ready (no diskette, diskette in backwards, drive
door not closed, etc.) or the specified drive does not exist.

2. Disk is write protected

A Write command was issued with a
drive loaded with a diskette that
operation.

1-22

filespec designating a
is protected from a write

3.> Unusable file specification

A Load, ~rite, or Assemble to disk command was executed with
a filespec that did not conform to TRSDOS specifications. It
is also possible that the drive specified was not in the
range 0-3.

4.> Filespec not in directory

The filespec
Assemble to
directory.

entered for execution of a Load, Write, or
disk command could not be located in the drive

5.> Access denied (password incorrect or missing)

An attempt was made to access a TRSDOS file. Either the
password entered was incorrect or no password was entered for
a password protected file.

G.> Too many files in the directory

The directory space is full on the designated diskette.

7.> No disk space available

A Write or Assemble to disk command- was executed which
resulted in a file using the available disk space prior to
completion. The operation terminates and the file is closed.

NOTE: Under TRSDOS 1.2, a TRSDOS system error causes
unpredictable behavior of the system when a diskette becomes
full. It is strongly recommended that you pay close
atten-tion to the amount of available space on a diskette by
issuing the System commands DIR or FREE. As a diskette's
available free space diminishes, you may want to avoid
creating any new files on it and continue your operation with
a diskette that ,has sufficient free space. File storage
requirements for the text buffer may be ascertained using the
Editor Assembler's USAGE command.

8.> Hardware failure during I/0

This message is displayed when a disk operation is
unsuccessful and TRSDOS returns error code 41 or 49. ,

9.> Printer is not ready for use

Any output sent to the line printer when the printer is
unavailable will generate this error. The printer may be
turned off, out of paper, in trouble, or not plugged into the
system.

1-23

10.> TRSDOS error code # <xxxxx>

Any other TRSDOS error not specifically identified above will
be displayed in this form. If you want the full TRSDOS
explanation, issue the command:

S ERROR xxxxx

TERMINAL ERRORS

1 • Attempt to overwrite protected region (job aborted)

During an assembly to memory, a block of code was assembled
that would load into a memory region other than the spare
text buffer area. Your program will not be permitted to load
to an address below the end of the text buffer or above the
symbol table. Use the Usage command to locate the first
available memory address.

2.> Symbol table overflow

There is not enough memory for the assembler's symbol table.
You have three options:

a. Remove comment lines and/or comn1ents following Z-80
code operands. This may free up enough space to
perform the assembly.

b. TRSDOS locks out space above X'F300' for user use.
This space is utilized by the DEBUG program and
Serial port drivers. If your operation will not use
the either serial port and DEBUG is to remain OFF,
then this space can be recaptured. Do the following:

1. Save your current text buffer.

2. Return to TRSDOS via the Quit command.

3. Enter the TRSDOS command, "DEBUG ON"

4. Load the Editor Assembler program using the
TRSDOS "LOAD" command.

5. Enter the TRSDOS command, DEBUG

6. Using the DEBUG command "R", change register
pair "DE" to.X'FFFF'.

7. Using DEBUG's Jump command, jump to X'3403'.
You will enter the Editor Assembler with its
top-of-memory now set to X' FFFF' .

1-24

8. Enter the Editor Assembler command, s DEBUG OFF

9. Load your previously saved text buffer and
attempt to assemble it.

c. Split your source program into two or more programs
that can be assembled separately.

FATAL ERRORS

1.> Bad label

The character string found in the
statement does not match the
ASSEMBLY LANGUAGE - LABELS.

2.> Expression error

label field of the source
criteria specified under

The operand field contains an ill-formed expression.

3.> Illegal addressing mode

The operand field does not specify an addressing mode which
is legal with the specified opcode.

4.> Illegal opcode

The character string found in the opcode field of the source
statement is not a recognized instruction mnemonic or
assembler pseudo-op.

5.> Missing information

Information vital to the correct assembly of the source line
was not provided. The opcode is missing or the operands are
not completely sp,ecified.

WARNINGS

1.> Branch out of range

The destination of a relative jump instruction (JR ·or DJNZ)
is not within the proper range for that instruction. The
instruction is assembled as a branch to itself by forcing the
offset to hex X'FE'.

2.> Field overflow

A number or expression result speci£ied in t:he operand field
is too large for the specified instruction operand. The
result is truncated to the largest'allowable number of bits.

1-25

.~.

3.> Multiply defined symbol

The operand field contains a reference
has been multiply defined. The first
symbol is used to assemble the line.

to the symbol which
definition of the

4.> Multiple definition

The source line is attempting to illegally redefine a
The original definition of the symbol is retained.
may only be redefined by the DEFL pseudo-op and only
were originally defined by DEFL.

5.> No end statement

The program END statement is missing

6.> Undefined symbol

symbol.
Symbols
if they

The operand field contains a
not been defined. A value
symbol.

reference to a symbol \vhich has
of zero is used for the undefined

1-26

TECHNICAL SPECIFICATIONS

Object file format

The disk file object code format consists of the following
structure:

1.> A file header string consisting of:

a. The first byte in the file is a hex byte X'OS'
which indicates the header field of an object file.

b. The second byte is the header length byte and
indicates the length of the header following.

c. The length byte is followed by the FILENAME and
EXTENSION that vms specified when the file \vas
last written to.

d. The filename field is immediately followed by the
entire DATE string as recovered by the TRSDOS
SVC DATE - Function Code 45. By LISTing the first
sector of the file, you can determine when the file
was last v1ri tten by examining this header. A TRSDOS
RENAME command will not change the filename stored in
the header.

2.> Multiple blocks of object code depending on the length of
your assembled program are placed next. The object code
blocks have the following code format:

a. A beginning byte of X'01' which indicates the
start-of-block

b. A 1-byte length indicating the length of the code
block following, including the block load address
(block length of 256 will show X'02'). The Editor
Assembler writes 128-byte blocks (length= X'82').

c. The block length byte is followed by the 2-byte block
load address which is the address that will be loaded
with the first byte of the block.

d. Finally the block immediately follows for as many
bytes as two less than the block length.

3. Steps 2a, 2b, 2c, and 2d are repeated for as many blocks
as are in the file. An X'02' is then written to indicate the
end of the program code and the start of the entry point or

1-27

transfer address. An X'02' is written to indicate the length
of the entry point address. This is then followed by the
2-byte entry point or transfer address generated from the
label or constant in the operand field of the assembler
source END statement.

Source file format

The source code file format is as follows:

1.> A header record as described under "Object file format"
is also used for source files with the exception that the
first byte is a hex X'53' to identify the file as source.

2. > Text lines are vlri tten in ASCII each composed of a
5-character line number (bit 7 is not set), a space, the text
line, ending with an <ENTER> (X'OD').

3.> The file end is indicated
which would be in the first
line.

by an end-of-file mark of X1 1A'
character position of a text

4.> Model I source text files follow a different format
(header start byte of X'D3', followed by a 6-character
filename with text line numbers having bit 7 set). In spite
of this difference, source files generated on a Model I
machine using the MISOSYS DISK*MODified EDTASM and uploaded
to a Model II machine can be loaded into this Editor
Assembler.

LINKAGE TO DEBUGGING

In order to facilitate the debugging of user generated
programs, a number of features have been built into this
Editor Assembler. It provides the option of assembling
source code directly to memory. It provides a command to
transfer control to a user-supplied address (via the JUMP
command). It provides for the access of DEBUG through the
System command. Other subtle enhancements have been
implemented.

A re-entry address to the Editor Assembler has been provided.
If at any time during the debugging phase, you want to return
to the Editor Assembler without reinitializing it (which
would have deleted the entire text buffer) , and are under the
control of DEBUG, issue a DEBUG Jump conwand to X'3400'. A
return to the Editor Assembler will be performed and it will
take over the supervision of the <BREAK> key without
reinitializing the pointers to the text buffer.

1-28

~-.

When you exit from the Editor Assembler by means of the Jump
command, address X1 3400 1 is pushed onto the stack just prior
to executing the jump. If your program maintains stack
integrity, an easy return to the Editor Assembler is achieved
by means of a "RET" instruction. An example of this
procedure is as follows:

BEGIN

EXIT

LD (SPSAV) ,SP

USER PROGRAM

LD
RET

SP I (SPSAV)

1-29

;SAVE THE POINTER

;RESTORE STACK
i & RETURN TO EDAS

Z-80 INDEX TO INSTRUCTION SET

Execution time (E.T.) for
microseconds for an assumed
cycles (M) are indicated with
Also indicated are the number
For example:

each instruction is given in
4 HHZ clock. Total machine
total clock periods (T states).
of T states for each M cycle.

M CYCLES: 2 T STATES: 7(4,3) 4 MHZ E. T. 1 • 7 5

indicates that the instruction consists of two machine
cycles. The first cycle contains four clock periods (T
states). The second cycle contains three clock periods for a
total of seven clock periods or T states. The instruction
will execute in 1.75 microseconds.

Register format is shown for each instruction with the most
significant bit to the left and the least significant bit to
the right.

OPERAND NOTATION

The following notation is used in the assembly language:

1. "r" specifies any one of the following registers:

A, B, C, D, E, H, & L

2. "(HL)" specifies the contents of memory at the
location addressed by the contents of the register
pair HL.

3. "n" specifies a one-byte expression in the range 0
to 255. "nn" specifies a two-byte expression in the
range 0 to 65535.

4. "d" specifies a one byte expression in the range
-128 to +127.

5. "(nn)" specifies the contents of memory at the
location addressed by the two-byte expression "nn".

6. "b" specifies an expression in the range 0 to 7.

7. "e" specifies a one-byte expression in the range
-126 to 129.

8. "cc" specifies the state of the Flags for conditional
JR and JP instructions.

2-1

r-'
9. "gg" specifies any one of the following register

pairs:

BC, DE, HL, & AF

1 0 • "ss" specifies any one of the following register
pairs:

BC, DE, HL, & SP

11 • "pp" specifies any one of the following register
pairs:

BC, DE, IX, & SP

12. "rr" specifies any one of the following register
pairs:

BC, DE, IY, & SP

13. II I fl specifies any one of the following:

r, n, (HL) I (IX+d) I & (IY+d)

1 4. "dd" specifies any one of the following register
pairs:

BC, DE, HL, & SP

15. "m" specifies any of the following:

r, (HL) I. (IX+d) I & (IY+d)

2-2

0

	Binder3.pdf
	Dosplus II.pdf
	Dosplus II (Part 1).pdf
	Dosplus II Date Patch Notice
	Dosplus II Date Patch Notice (MicroTerm Advert)
	Dosplus II (Part 1)
	Untitled.PDF.pdf
	Untitled.PDF.pdf
	Untitled.PDF.pdf
	Untitled.PDF.pdf

	Untitled.PDF.pdf
	Untitled.PDF.pdf
	Untitled.PDF.pdf
	Untitled.PDF.pdf
	Untitled.PDF.pdf
	Untitled.PDF.pdf
	Untitled.PDF.pdf
	Untitled.PDF.pdf

	Dosplus II DOS Operations
	Dosplus II Library Commands
	Dosplus II Utilities
	Dosplus II Dosplus Basic.pdf
	Dosplus II Tech Information

	Dosplus II Library Commands.pdf

