e
SUMMARY

We have designed an analog data collection and control board. It
was designed to be connected 10 the S100 bus. Software was written to
use the features of this D/A and A/D converter.

The buses and standards described are intended to make the job of
interfacing casier. To plug the device into a system with no extra work
is every interface designer’s dream. We have seen how the many users
of the S100, CAMAC, IEEE-488 and EIA-RS232C standards create a
large need for standard-compalible devices, modules, and systems. §f
at all possible, stay within a standard. The design will be casier and
your time may be spent on the harder problems.

Parallel and serial bus standards, methods of communication be-
tween modules, and an actual bus interface example were presented.
The S100 bus is the most popular paralle} bus used now, with over 600
differem types of compatible boards being produced. The serial
RS232C standard is the most popular standard for data communica-
tions, and versions of dala formatling are used, with modems, to
store and retrieve dala from cassetles and cartridges, as described in
Chapter 4.

Power supplies are the heart of a system. Regulation, stability, and
some design parameters have been discussed. The OEM solution is ob-
viously one of the best, as the power supply manufacturer is a
specialist in regular and custom supply requirements.

Uz 20345
(EZs=0) NO . MIT -

1022 Q)

THE MULTIPLEXER —
A CASE STUDY

INTRODUCTION

This system is intended to concentrate 32 E1A RS232C-compalible
terminals onto a single two-way high-speed transmission line. Each
terminal has buffered output and characier-by-character input. Thus,
the host computer can spend less time executing the multiplexing task.

sus

FROCRAM
- 300Y KoM
SEMAL "_" TRAL DATA MUSTERS
[y T MucEsson T conroa mm
' AUTORESTARY
— POWER FAN.
SRUL L0 IR
a) (TR
NCHANNGL
TEAMINAL
SERLAL INVEREACE
o o0 [
ustR
@’ TEMMINALS
S—— /
Fig. 7-0: A 32-Channel Multiplexer
3"

Vd

Designed for a PDP 11/70, the sysiem is also applicable, with only
code changes in the host machine, to almost any host computer. The
cost of providing this function is $50 per channel, as compared to
usually around $250 per channel. The system is also cost-effective in
clusters of fewer than 32 terminals.

The system uses the 8080 microprocessor, 8251 USRT, 8259 inter-
rupt controller, and other components in the 8080 family. The system
has no modem-control features, as it was intended to be at the site of
the terminals, saving even more money in man-hours of time and cost
of wire for connection. This does not even include the cost benefit of
fewer telephone lines and modems.

THE SPECIFICATIONS

The task of connecting a large number of tcrminals to a time-
sharing facility always presents the engineer with a number of pro-

blems. Most have to do with the interconnection headaches of.

modems, lelephone wiring, patchboards for testing, and internal
machine interfacing. .

Remotely-located concentrators would eliminate many problems.
The new problem: cost. The design goal here is to service 32 terminals
al an input rate never exceeding 30 characters-per-second, and an out-
put rate as fast as possible. Given that the 8080A could execuie
roughly 300 instructions in the time between characters at 9600 baud,
if it were 10 service 32 terminals on input, it would have 1o have fewer
than 300 instructions in the polling loop for the terminals. Any time
left over would be used for output. The code would have to be thought
out byte-by-byte, with all coding being carcfully optimized. A proto-
type was built, under the assumption that it could service at least 16
terminals in a degraded mode. :

The typical statistics of our input was a maximum of 150 baud for
any second, and a raie of S0 baud for all 32 terminals combined.
Thus, when completed, the multiplexer could handle a maximum of
150 baud on all 32 at once, or a maximum of 300 baud on one. The
outpul was a minimum'of 300 baud for all 32 at once, and typical 6000
baud when there was a specific demand from a single user.

ARCHITECTURE

The architectural block diagram is presented in Fig. 7-1. Each ter-
minal has its own USART, because each needs a dedicated serial inter-

378 .

-

face. The USART: are grouped into fours and then placed onto cards,
which are on the 80B0A system bus. There are 8,192 bytes of RAM for
data storage, and 1,024 bytes of EAROM for program, in the system. .
Lastly, there is an interrupt controiler and high-speed-channel card,
which is on the bus.

Each terminal, through its USART, has a 128-character buffer
associated with it, for buffering output 1o the terminal. This takes
4,096 bytes of the available RAM. The terminals-to-host queue is 256
characters long. These lengths were chosen to optimize the communi-
cation-channel transfers. The method will not be discussed here.

1A RSIC 1INES

L= i

S o e - usary usarl
ANNE canp
usany ese) ay w o “:“ 20AR
18y ®129) [s ;s s -
aTIaRRT @i RaM [y AND eo e AND
conTROL a0n » 23 STatus | @100 slatus rowen
i)) "n sun vsani
CARDS
FAlL
’ 1
RESTART
ien sus
-DATA
- ADORESS
-CONTROL

Fig. 7-1: Multiplexer Block Diagram

. There are three processes, running one at a time: input-output ser-
vice Polling routine, host-1o-terminal buffer interrupt process, and
terminal-holding-queue to host interrupt process. They will be des-
cribed in the following section.

SOFTWARE

A flowchart of the software appears in Figs. 7-2,7-3, 7-4 and 7-5.
The sofiware can be divided into four parts: the initialization routine,

< |) |

the polling routine, the interrupt routine to fill terminal buffers from "VSAR! AMOOCS.
the host, and the interrupt routine to empty the terminal-10-host S RSTAND.
wailing queue. GO 10 FST B0ARD

The initialization runs only when resel, then the latter processes
may run, one at a time. They communicate only through the output
data buffers and share no other common memory space, other than CHeCh S1ARIS OF -
pointer tables. e

The initialization routine clears all memory, sels up tables, finds
which boards are plugged in, rescts all USARTs, and will print out er-
rors, if a debug board is installed. This is roughly all the system

housckeeping. It sets the stack pointer, resets and sets the mode, RACE 1AG AND
speed, and number of bits-per-word on the USARTs. This section of WAITG Quete
the program is 60% of the code used for the whole application.
. SET UP FOR NEXT
GEV CHARACIER FROM
'::;"‘: w' IS':Q.&:A;M ; YES "% "5 BUFFER BOARD IN SYSTEM
Gokmi N
PROCESS O f
NO
PROCESS | llNlllAlllMlON PROGRAM . %‘m’m c'»%
AND AUTO RESTART NO IS WS YES LAS] BOARD NO CHARACTER f FLRtt
DEVECT AND ALARM Vel d fyet! CrecKivr (PRIME QUELE)
CHANNEL SERVICE
INTERUPT SUBROUTINE vEs
PROCESS 2 I ; Fig. 7-3;: Multiplexer Software: Polling Loop
TERMINAL 1O BUFFER ’ l
INTERRUPTS AND BUFFER TO TERMINAL . et
POLLING ROUTINE {MAIN) O A e
INTERRUPTS USARL
PROCESS 3
¢ YES NO NO STATUS REQUEST
BUFFER TO CHANNEL : w @ SNDsTATUS
> FULL INTERUPT :

ROUTINE YES
“MACE N LAST POAL
BUFFER POINTED aUfFR POt

TOTAL BOBOA BYTES FOR PROGRAM: 526 BYTES! LESS THAN ¥ OF THE 2708 USED

Fig. 1_1:' Multiplexer Software: Overall Program Flow : Fig. 7-4: Multiplexer Software: Host to Mux laterrupt

@

QUEUE

RETURN TO HOST FULL?

EMPTY QUEUE BY
ONE CHARACTER

RETURN

Fig. 7-5: Muldiplexer Sofiware: Mux to Host Queue Interrupt

The polling routine goes through the list set up by the initialization
prggram, testing (o see if there has been a character typed by a ier-
minal, or if there is data in a buffer, to be output (o a terminal. Thus,
cach of the 32 terminals is serviced once during each pass. If the
channel-10-host is busy (it 1akes) millisecond 10 transmit a character
al 9{)00 baud), the characters are put into a waiting queue that will be
serv.lced when the *‘channel-noi-busy’* interrupt comes in. If the chan-
nel is not busy, the waiting queue is emptied by one character, and the
character currently waiting is placed at the end of the line, in the
queuc. In this way, the queue-service routine is primed and will con-
tinue to interrupt, when not busy, 1o empty all the characters waiting
For the channel. The format used for data transmission is the follow-
ing: the tag for that terminal is sent first, and then the character is sem
to the host, via the queue routine. Each board has its own priority

382 ‘

table, so that only one input is processed, per pass, per board. After a
character is transmitted, or, if a board has no characters, the buffer
area for each terminal is then checked to find if there is an output
character pending (these are placed in the buffer by the host-interrupt
routine). If so, the buffer gives its character to the USART (o be trans-
mitted, and all the pointers are updated. When there are no incoming
characters, and no buffer is full, the system still polls each board for
input, and each USART buffer for output.

The channel-queuc-interrupt routine looks at the queue, and trans-
mits a character, if there is one waiting; otherwise it returns. This rou-
tine will not be called again by interrupt, untif the polling routine
primes it by sending a character. ,

The host-interrupt routine waits for information to come from the
11770, or host machine, before it executes. When a character is re-
ceived, and ready, an interrupt is generated thal then staris this inter-
rupt process. This process checks the incoming character and, if it is
daia, places it in the appropriate output buffer area. After this, poll-
ing resumes. Other characters from the host perform status requests,
data-tag-switch, and soft-restart commands.

The host-interrupt routine may interrupt at any time during polling.
1t first saves the status vector of the machine, then picks up the char-
acter that caused the interrupt. If the most-significant-bit (MSB) is a
‘“1'*, the character is a tag, or a command. If it is a tag, it is stored, so
that the foliowing data characters are loaded into the buffer pointed
to by the last tag. ‘

The most-significant-bit could also mean that it is a command. The
commands allowed are: ‘‘status-request,’’ *‘slatus-change,’’ and
‘‘soft-restart.” *‘Status-request’’ will send back a stalus tag followed
by the status of that USART. ‘‘Status-change’’ will take the next char-
acter, and transfer it to the USART control register. This can be used
to turn ports on or off, and change baud rate by a factor of four.
‘‘Soft-restart’” will reinitialize the entire system. Caution is advised in
the use of these conirols: do not expect the data buffers to be unaffec-
ted by their use! This is because these commands require more time
than is allowed to poll all the terminals. Thus, interrupits are locked
out and characters may be lost. These commands are usually used to
re-intitialize the system from the host, after the host crashes.

The most-significant-bit being *‘0'* means that the character repre-
sents data. This character is then loaded imo the last place in the buf-
fer pointed to by the last 1ag. ANl following characters will load into
the same buffer, until a new tag is senl.

. i

4
The CPU and PROM Module

.ln Fig. 7-6, we see the 8080 CPU board schematic. This board con-
tains all of the necessary CPU interface circuitry along with one 2708
programmable ROM and the necessary bus buffers.

NI REQ
SIoW
+5 <7~
READER ADDRESS

4

i — N
FAST WAl)

Als
Ale

Al

+
% 1] 9205
80 AN2 DECODE —ﬂ
c A1l p—\

i

|

K

11
1\/

ol e O

CONIROL

W

= ' Ww
A
-

CLoCx

CONTROL BUS

=1 |
x |

Fig. 7-6: CPU Board Schematic

Th.e 8080 nceds a clock and a system controller: These functions are
prowdcd by the 8224 and the 8228 chips, respectively. The 8224 pro-
vides the necessary timing from the 18-megahertz crystal to drive the
l\'~0-|.)hasc clock of the 8080. lt also provides the reset signal synchro-
nization necessary.

384 .

The 8228 system controller provides the system with the control bus
and also buffers the datd bus, so that all of the modules in the system
can be driven with no load limitation.

Also on this board are 1,024 bytes of EPROM provided by the
2708. Natice that the selection of this device is fully decoded. The
EPROM will only respond to addresses from *‘0000’° hexadecimal to
“+03FF"* hexadecimal. This is where the multiplexer program resides.

The selettion is done as follows: all address bits A10 through AlS
must be low, to enable the EPROM, as well as the MEMR signal. The
first four of those signals, along with this MEMR, go to a 1-of-8
decoder, an 8205. If all of these are zero, then the first output is
sclected. Then this output is checked with the last two address lines. If
all are zero, then the CS is held low, selecting the EPROM. The
EPROM bus driver, an 8212, is also enabled at this time to drive the
appropriate celis’ data onto the data bus, to be read by the processor.

(") nl

[] LR BN B AR AN 4

ma oo

® o0 000

21002 L LY

6900

f;
AL
l‘ﬁi

%
T

—
A3 AS s 0os 0
Jl;ﬁ - P—/
—Ir L_4L
e _J. |ll'.:: L
rl,t> ____._l———'h l|L_L——'ﬂ____ ﬁ
DAVA UG L :

Fig. 7-7: RAM Board

-~

”

Ra..4 Modules

There are two memory cards in this system. They are both identical,
except one is for addresses **1000'’ hexadecimal through *‘IFFF*
hexadecimal, and the other is for addresses ‘‘2000'’ hexadecimal
through *‘2FFF’’ hexadecimal. These two cards provide 8,192 bytes of
RAM storage. '

Each card contains 32 static 1,024 x 1-bit RAM chips, bus drivers
and receivers, and address-selection logic.

A single RAM chip can store 1,024 bits of information. In order 1o
store 4,096 x B bits, we need 1o organize these chips into a memory
array. Note that we need one chip for each bit, and that we need four
scts for 4,096 bytes.

as o__m o ——0
GND
Y] o_m } CELL ARRAY °
now
SELECY 32 AOwS
32 COLUMNS
v —{]
~ o— 3 —
“ o—5] - od
COLUMN 1O
L}
~ o—{x co‘:“'"‘m COLUMN SELECT
1 1 |
L.jx y y
Ap] FY) A8 AS

Fig. 7-8: Detail of 91L02C

)

-
’

Since, for any group of 1,024 bytes, eight 91L02s will need 10 be
enabled, the chip-selects for each of the groups of eight are tied
together. From there, these four group-selects go to a 1-of-8 decoder.

AEEEREEEE

AV
A2
a)
[As
s
Al

ar

AD

cs

I

Fig. 7-9: Pinout of 91L02C

)

™

ud ;Ju
A.E :ln
nm[: :]Al
A [: ’:]cs
~ O [Joo
n[: :]D'
a4 E j-l

o180

o — |

(T |

po 1

D2

02

13

o3 |

DIEN p

pe B

0B 2

:DBS

cs

Fig. 7-10: 8216 Bidirectional Bus Drivers

7

1... data bits are bussed from each group in the direction perpen-
dicular to the chip select. All bit Os should be tied together, as well as
bit 1s, bit 25, bit s, etc. Since 91L02’s cannot drive the bus directly,
all input data lines come from an 8216 bidirectional bus driver and
receiver. In a similar fashion, all data outputs from the 91L02s go to
the 8216 bidirectional bus drivers. An illustration of the 8216 appears
in Fig. 7-10.

Two of these devices will provide a standard method of listening to,
and driving, the data bus. The DIEN signal controls whether the bus is
driven by the 8216, or whether the bus is listened to. The CS cnables
the outputs 10 drive both the bus and the DO outputs. If CA is high, all
of the DB and DO pins are in the high-impedance state.

The direction of data-flow is determined by the MEMR signal.
When it is low, the RAM will put data out onto the DI lines of the
8216s. The bus-drivers will be cnabled, 1o drive the 8080 data bus with
this data. At all other times, the memory array listens to the bus. The
only time it will write data into the memory is when the MEMW signal
goes low and the chips are selected.

The address selection is performed in a way so that the address of
the board may be sclected by jumper wires. The low ten address bits
go directly to the 91L02s. The next two bits go to a 1-of-8 decoder
(8205) to select one of the four sets of eight memory chips. The enable
line of the 8205 comes from a wire-ANDed combination of exclusive-
or (XOR) gates.

Only when all of the outputs from these four gates are high will the
memory board be enabled. Each XOR gale compares an address bit
with a jumper wired to ‘1" or **0”". If both are identical, the output
will be *“0”’. If they are different, the output will be **1°’. To set these
jumpers for the right address, we set the-jumper (0 the opposite of
what the high four address bits should be. If we want 0010, for
Al15-A12, the jumpers should be tied to **1”*, *“1"*, **0", sy, respec-
tively. In this way, the board will respond only when an address liesin
the area of 0010XXXXXXXXXXX,. This is pages *‘20°" through
“2F"* hexadecimal, or **2000" through *‘2FFF** hexadecimal. Exer-
cise for the alert reader: What should the jumpers be for **1000"’
through *'1FFF'’?

The USART Board

In Fig. 7-11, the basic card for all the terminals’ interface is shown.
This card contains four 8251 USARTSs, a baud-rate clock generator,
and a priority-encoded status-generation PROM.

388

CONTROL

ADDRESS

IR
A& - Bf
b
A E ~ Bf -1
'
A F - &L t
b
g

Fig. 7-11: USART Board

8205

8AUD

RATE

-

/

" uhe B251 is the basic serial interface element. Grouped four to a
card, they are connected on their data buses 1o form an on-card data
bus. Similar to the memory card, this on-card bus is buffered by 82165
onto the system bus. This is because the 8251 cannot drive more than
eight other LSTTL loads. The 8251 .is selected by implementing an
address-decoding technique, using an 8205. Note how these devices
are memory-mapped input-output. That is, since the same signals that
control memory (MEMW, MEMR) control the USARTsS, they appear
as memory locations. According to our memory map, when bit AlSis
high, we are addressing input-outpui. This corresponds 10 locations
from ‘‘8000"" to *‘8FFF"" hexadecimal. Note that since the lower eight
address lines are not decoded, these are ‘‘don’t cares’’ in our memory-
mapped /0 map.

The first card starts at ‘80X X"’ (where **XX"'* means that these bits
do not matter) and, since each USART has two registers (input-output
and control_;the address ends at ‘87X X"’ hexadecimal. The next card
goes from “‘B8XX* 1o *“BFXX’’, and so on, with the last card ad-
dressed by “‘B8XX" 1o “BFXX''. The even page-addresses are the
status registers, and the odd ones are the data-in and data-out
regisiers.

Note also that there is a special PROM on the card, which is de-

coded by a separate decoder. Its address is ‘70X X"’ for the first card -

and **77XX"’ for the last card. The function of this PROM is 1o place
on the data bus the actual address of the USART which has received a
character from its terminal. How is this done? Each of the ‘‘RxRdy"’
lines on the USART:S indicate whether a characier has been received.
These four lines, one from each USART, are tied to the address lines
of the PROM.

One of 16 possible bytes may be selected by the decoding. The fifth
address bit is jumpered to a one or a zero. In this way, the same
PROM can be used for board 0 or board 1, by placing in the other 16
locations the addresses for board |1, and setting the jumper on the fifth
address bit to a | (Jumper to zero for even, one for odd). What are
these 16 locations? They are simply a table of the addresses *‘81"°,
“83’, *‘85'" and ‘87" hexadecimal for board zero, and *‘89°’, ‘8B"°,
8D, ‘“8F"" for board one. Similar PROMs are made for the other
six boards.

The values are placed in such a way that the first location in the
PROM is a byte of zeroes. That way, when no USART has a character
and all RxRdy lines are low, the byte of status is all zeroes, indicating
that there is ‘‘nothing’’ to do for this board. If it is not zero, then a

390.

CAVLE IV, A D2 LNIANINLL '}nnuu'.n

character is waiting. To make sure that it is easy 10 tell which USART
is waiting, the next location contains the value *‘81°: if the first
USART is waiting, and all the others are not, the program will receive
an **81"" from the status PROM. The program can then use this value
10 directly address the actual characier waiting. What is more, the
value ‘81" can be masked, to form the tag for the data feiched.

The next two locations contain *‘83"*, the next four **85"°, and the
next cight, *‘87°'. In this way, a priority table is formed so that, as
each USART is serviced, the next one waiting will be serviced in turn.

This method of addressing the status PROM allows the program (o
use only a few instructions 10 identify which USART, out of 32 possi-
ble ones, is ready with a character, fetch the character, and generate
the proper tag from thai siatus information.

There are iwo interface chips 10 take the TTL serial inputs and out-
puts from the USARTSs and convert them to E1IA-RS232C +12 and
~ 12 voli-serial pulses. These are simple level-translator integrated cir-
cuits.

BAUD

30 RATE

XTAL { osc 19.200
1

+2 p—— 4800

L 2400

A ||wasf—— 1200

—— 600

| 300

150

10

Fig. 7-12: Baud-Rate Generator

-

4

‘I ne last section consists of an astable multivibrator, synchronized
by a crystal, to provide the timing for the serial-bit clocks. Two simple
dividers are on each board (o provide the USARTS with all of the com-
mon serial rates. This is shown in Fig. 7-12.

The Host laterface Board

This module contains: the host USART, the interrupt controller,
and a baud-rate generator for the host-to-multiplexer communication
rates. It appears in Fig. 7-13. '

i —Do— LUES T0
J.u._oq__.. W8T

:ﬁ —_ Baud Rate
ADORESS
7 SELECTION axc Genesatos
R X RDY
1 X RDY
POWER
uw

Fig. 7-13: Host Interface Board

The units on this board arc addressed as input-output ports, instead
of memory locations. The USART is addressed as ports **F9'* and

392
®

vy

PORIS 7 AND 8 ARE PIC
CONIROL ADDRESS DATA OPERATION
whiik VO
Wik VO " n SEIS LOW ADORESS FOR CALL]
wRilt 1O] 00 SETS HIGH ADDRESS FOR CAlL] FORINT!
wailk vo [f2 SEISLOW ADDRESS FORCALL] (p w1 7
whiit ¥0 o 00 SEIS HIGH ADDRESS FOR CAlL
whilE vO (2 ” ENABLES ONLY INT) AND NI 7
WRIIE VO [A0 SEVS ROTATING PRIORITY RESET MODE
Fig. 7-14: PIC Software Load Format
0000 0B oM JINETIALIZATION STARTS
0000 00 - R8TO: wor
000 Nreae LY1 8P,27FFN ;35T THE STACK POINTER
000k 7}] ;DISABLE THE INTAMNTS
0005 C30700 Je ity /SISTEN AESTART UFON RESET
0008 ¢35 AST): es 3 ;MOST 0 MUK AST VECTOR
0009 b5 ruan o JPUBN STATUS VECTOR
0004 B3 PUSH 8
0000 5 rUSH POV
000C CPA90O CalL av70 JINTT10 GETS THE CMARACTER FROM
000F 3808 Wi a,00080 ;MOST--DECODES 1T AND ASTURNS.
0011 BIFb out 0oros ; TNTERRUPT CONTROLLER RESET 18T)
ooy i roP PV
Py ror u
0015 B} ror 0 JFLAG
0016 €3 ror s JFOP STATUS VECTOR
1] [L] PRINE QUEVE
0018 N 3]
0019 ©9 st
0BG 00208
0020 COC100 asth: CALL 38D50 +SOFTVARE NESLT
[1] AT O
0028 0NG 00288
0028 3 ASTS: Pusn Psu JSAVE A AND FLAGS
0029 DAFa 18 0OFAN JREAD THE USAT STATUS
0029 60} ANt 000} ;CNK FOR TXRDY
0020 CA3I00 2 rorar J17 USAT 13 BUSY ALTURN
o030 ry asr 7 JBLSE CALL BSTT FOR F1FO SERVICE
J70 CHK IF ANYTNING IS I8 TME
sFIFO 70 SEND 10 11/70
00N N o ror Pov
0032 ¢9 (]
0038 ORG 00300
00 ¢35 RSTT: s 8 JMUN TO WOST AST VECTOR
[N] rues »
O03A B3 fusa 8 +CHANMEL WOT BUST
[3 N7 rse rov
003C co)l02 CALL OINT ;OINT 1S QUTPUT A CHARACTER
003 w08 Wi 4,00084
[N i our 00rdM JFRON QUL
00V} N PoP POV
00k &2 ror
00b3 D1 or o

Fig. 7-15: Example of Interrupt Control

RSTY; '

RSTI;

RST4;

RSTS;

RST7;

Hardware Initialize.
Character from Host has arrived.

Soft-reset on program fail ROM
detect.

Channel to Host is not-busy check.
Munx to Host buffer qucue should be
emptied.

Channel to Host is not-busy. Check
buffer queue for characters, if any
transmit, if not, return.

Fig. 7-16: Vectors in Sofiware

»
t

“FA'" hexadecimal, for control and data, respectively. There is a
duplicate of the baud-rate circuit here to generate the “TxC’’ and
“RxC’’ signals for the host-to-multiplexer USART, as these rates may
differ from any of the others in a typical system.

The interrupt controller takes the “RxRdy’’ and TxRdy'’ signals
from the USART and generates two interrupt vectors, number 1 and
number 7. Number 1| is to signal that a character has been received
from the host and should be processed, and number 7 indicates that
the USART can be reloaded to transmit another character to the host.

The 8259 intesrupt controller is set up by the initialization routine,
to call the service routines at the proper locations and service the inter-
rupts on a rotating basis. After an interrupt has been serviced, the
sofiware will reset the corresponding bit flag in the 8259, and proceed
with polling, until a new interrupt arrives.

Fig. 7-14 illustrates the initialization procedure of the PIC and Fig.
7-16 presents the interrupt-handling code at the beginning of memory.

PICTURES OF MULTIPLEXER PROTOTYPE P.C. BOARDS:

Fig. 1-17: CPU

39‘

1

“
-
L
.

widtraeserasn@
-w—'z'x\"r"'r‘.l‘.! 2 i

2

Fig. 7-17: RAM

Fig. 7-19: Terminals’ USARTs

()

Pr— e = e

Fig. 7-20: Host and Intesrupt Control

The channel-to-host was set to 9600 baud in both directions. The
characters from each terminal must be echoed, as this is a full-duplex
system. For every character generated, the host must process and
return the echo. There are 24 Lear-Sieglesr ADM-3s terminals, set to
9600-baud input and output. There are also four 300-baud terminals
and four 300-baud dial-up lines on the multiplexer.

Typical averaged input rate is ten characlers-per-second. Average
output rate is 200 characters-per-second. Buffers in the host, for char-
acters wailing for output channel, are 95% of the 1ime empty, indi-
cating the host can get rid of data as fast as the channel can handle it,
rather than as fast as the terminals can print. Maximum rates
mecasured are 15 characters-per-second on input, and 620 characters-
per-second on output. The maximum and typical figures were ob-
tained over a 17-hour period, when 90% of the terminals on the multi-
plexer were in use.

Error rates were entirely due 10 the channel, or a1 least indistin-
guishable ,'rom other errors, such as operator errors and host errors.

Photographs of the printed-circuit boards appear in Figs. 7-17,
7-18, 7-19, 7-20.

7

CONCLUSION

In this chapter, a complete interface was described. A step-by-siep
discussion of how each component was integrated into a module, how
the modules created a subsystem and then the overall system, should
enable the reader to follow through almost any other microprocessor
interface application. This particular application utilizes most of the
techniques discussed in previous chaplers: inlerrupts, memory and
170 management, integrating special techniques for software reduc-
tion in hardware, and external device interface were used here. -

THE SYSTEM OVERVIEW

TIME-SHARE SYSTEM
! 1. CENTRAL PROCESSOR
l 2. MAIN MEMORY
9 3. DISK STORAGE
4. TAPE DRIVES
5. COMMUNICATIONS PROCESSOR
3 6. PRINTER
7, REMOTE MULTIPLEXER
4 .
[REMOTE MULTIPLEXER
5 7
COMMUNICATIONS CHANNELS | .«
: Oh O
- (=L £EL2

HOST =—— — USER USER TERMINALS

Fig. 7-21: Overall System

39‘

()

e 21-45
(127220 8) NO- MIT--F-

8 GD ®
TESTING

INTRODUCTION

What do you do when it doesn't work? What went wrong and why?
The debugging process, also known as lesting or trouble-shooling, is
an integral part of any system design. Murphy's Law usually holds: if
anything can go wrong, it will.

When faced with a misbehaving system, there are a number of tech-
niques available to the designer for identifying and correcting pro-
blems. In this chapter, the causes of common problems, and their
solutions, will be presented. Problems such as component failure,
software failure, and noise-induced failure will be analyzed, and
methods for identifying them will be presented.

The 100ls necessary in order to identify and locate these problems
will also be described: voltmeter, logic probe, signalure analyzer, os-
cilloscope, digital analyzer, in-circuit emulator, emulator, and
simulator.

Finally, a case history of the *‘One Bit in 16,384" will be presented.
The example illustrates the debugging phase in the actual design of the
multiplexer presented in Chapter 7.

WHAT GOES WRONG?

Four essential problems may arise in a system: wiring fauli—a short
or open circuit; component failure—inciuding wrong value compo-
nents; software bugs; and noise or interference—either internal or ex-
ternal.

e L INSIN S .
Computer Power Supplies

VULTIPLE GUTPUT
o MICROPROCESSOR
POWER SUPPLIZS

TRIPLE QUTPUT: 7S MATO 3 AMP
MICROPROCESSOR/GENERAL PURPOSE SERIES

TEAPS SERIES

A versastile and economical solution to
many DC power applications, IC requiated.

Not availsble through Distridutors
Comtact ing Engineera:g Sinva QINCe near you
A.C. Input: 115/220V £ 10%, 47-83 Hz.

D.C. Outputs: See table. Qutputs #2°and #3 are independent
and isolated, sither output may be grounded poOsitive Or negative
Like voitage CuUtPUts Mey be parsiieied 10 provide higher

current outputs.

Trensiort Response: Less than 50 m
Tempersture Coefticiont: 0.02%/°C (0.0005%/°C typical).
Overshoot: No turmon, turn-off or power failure overshoots.

Coantrol: Screwdriver adiust potentiometers for autput #1.
Outputs #2 anck 83 are fixed outputs.

Protection: Autamatic foldback current limiting for overioad
through short circuit. Overvoitage pratection an SV outputs;
opticnsi on othar outputs.

Cooling: Convection, mnamin froe sie. Derate 2.8%/°C
above 409C,

Opaersting Tempersture: 0 to §5°C.

Storsqe Temperacure: -20 10 +80°C, -

MOOSL T OUTAYT =1 QUTPUT =2} OUTPUT #3
KUMBER Vds Amgs| Vée | mA | Vis | ma
TEAPS1 | 4.7%w0 5.2% 3 12| 100§ =12 | 100
TEAPS-2 | 4.7%t05.2% 3 151 100 | ~15] 100
TEAPS 3 | 47810828 3 121 1%0]| -85} 78
TEAPS 4 | 4.79¢05.2% 3 o12] 1Al 12114

Riople: Smw (PR/PK). Requistion. 20.08% une: :0. 10% losd.

-4
7%
Mounung Heles L
198 Ois. 1.290
12 Maces t
. 80 .= 9.2%0]
79 o --1.290 - 10.2% -
'y : \
s
400
1
r 1]
n
Msa. TLAPS & SOV

THaPS | 7 g j UMENSIONS Wesght

343 4
Teaps 4

Teaps 1. 2,3 2.6ibs.
$.25 (bs.

TRIPLE OUTPUT:4TO 12 AMP
MICROPROCESSOR/GENERAL PURPOSE SERIES

TAPS SERIES

Economy supplies with IC regulation and
top quality components {or iong term reliability.

U.L. Recognized (File No. £E58512)
CSA Certitied (File No. LR44914)

AC. Ingut: 115/230V £ 10%.

D.C. Qutput: See tabie below. All cutnuts sre independent and
isolated, any output may be grounded positive or negative. Like
voitage outputs may be parsileied tn provide higher ouwut
voltage.

Transient Response: Loss than 50 microseconds. *
Stability: £0.7% (or 24-hour period after 30-Minute warrm-up,
Overshoot: No turn-on, turn-aff or power failure overshoots.
Tempersture Cosfficient: 0.02%/2C (0.0008%/°C 1ypical).
Control: Screwdriver adjust potentiometer iar £ 5% voitsge
adjustment on 8V ovtcut, Outputs 2 and 3 are nwum 29w
12V standard: £ 12 10 15V if specified.

Remots Sensing: Provided on all SV outputs.

Protection: Autometic foldback current limiting overioad and
short circuit Srotection; Crowbar OVervoitage protection is
inciuded on SV outputs. .

Coaling: Convection, rateg at SO°C in frew air. Derate 2.8%/°C
whin opersting sbove S00C up 10 859C. Optional 70°C unts are
swailable.

Opersting Temperature: 0 to 859C.

Storage Temperature: 20 10 +80°C.

MOOSL RATING REGULATION nroLs
NUMBER Vde A Line Losd {PKPK)
TAPS | 5V 40 | :01% | 0% S

RPNy S 0s | 0% | 01% v
TAPS 2 sv €0 | win | 00 sw
912 10 Q1% 1% Sy
TAPS 3 sv 20 | | a1 S
r———— 1 2 1.8 ~0.1% :2 1% Swmv

TAPS ¢ sv 120 | coim | 1% | mme—
‘ :212° | 30 | s00% | :a1% amv

’AMmMmm:lZﬁVommSmlydd.mbym trad

model number.
MODEL | OINENSION | OIMENSION ,[r————
A 8
TAPS | | 362 9 00 ! H
TAPS2 | 162 10.00) I
| TAPS.D-3- 682 1180. |/ |
{Tarse | 50 1500 l -

Weight: Mounting i4oles:
Tapst 75ibs. Taps 1.2 3 .187

Taps 2 7.75ibs.c_Taps 4 2187
12 1bs.

Taps 3
Taps 4 16ibs. ™
~—————— —————T

