Radio fhaek

TRS-80 “ Model |

BASIC
Reference Manual

A Description of the Model I]
BASIC Programming Language: Definitions,
Syntax, Examples and Sample Programs

CUSTOM MANUFACTURED [N THE U.S.A. BY RADIO SHACK

A DIVISION OF TANDY CORPORATION

O

TRS-80"Model i

BASIC
Reference Manudl

BASIC Version 1.2

Radlo Ihaek

v,
Y CORPORATION
IcH
O
F

TRS-80 Model II BASIC Reference Manual: ©1980 TRS-80 Model II BASIC: © 1980 Tandy
Tandy Corporation, Fort Worth, Texas 76102 U.S.A. Corporation. Licensed from Micro soft.

All Rights Reserved. All Rights Reserved.

Reproduction or use, without express written permission
from Tandy Corporation, of any portion of this manual is
prohibited. While reasonable efforts have been taken in
the preparation of this manual to assure its accuracy,
Tandy Corporation assumes no liability resulting from
any errors or omissions in this manual, or from the use of
the information obtained herein.

Printed in the United States of America

RO

Contents

CHAPTERS

1. UsingModel IBASIC 317
2. BASIC Concepts. ... 337
3. BASIC Keywords 373
4. File Access Techniques 517
5. Usingthe Line Editor................................... 531
APPENDIX

A. Error Messages ... 540
B. Character Codeso i . 543
C. Reserved Words i, 549
D. Internal Codes for BASIC Keywords 550
E.Glossary ... 552
F. Video Display Worksheet 558

INDEX

Chapter1

Using Model Il BASIC

MODEL Iii BASIC

General Information

Model IIBASIC is an easy-to-use, extended version of the BASIC programming
language. It is designed to run under the TRS-80 Disk Operating System
(TRSDOS), and is included on the System diskette.

Model I1 BASIC executes your programs directly. It does not produce a
low-level, machine-language translation. In technical terms, it is an inter-
preter, not a compiler. This makes it especially powerful for interactive use
during program development and debugging.

Model II BASIC offers all the standard features of the language, plus several
important additions, including:

Program line renumbering

Line editor for easy program corrections and changes

Ability to execute a TRSDOS command and return to BASIC with program
and variables intact

Direct and sequential access to data in disk files

Special functions to allow BASIC programs to call machine-language
subroutines

Recovery from operator errors—the System won’t stop if you attempt
output to a device (such as a Printer or Disk Drive) which is not ready.

318

USING MODEL Il BASIC

Notation

For clarity and brevity, we use some special notation and type styles in this
manual.

CAPITALS and punctuation
Indicate material which must be entered exactly as it appears. (The only

punctuation symbols not entered are ellipses, explained below.) For
example, in the line:

PRINT “THE TIME IS ” TIME$
every letter and character should be typed exactly as indicated.

lowercase italics

Represent words, letters, characters or values you supply from a set of
acceptable values for a particular command. For example, the line:

LIST line-range
indicates that you can supply any valid line-range specification after LIST.

... (ellipsis)

Indicates that preceding items can be repeated. For example:
INPUT variable, ...

indicates that several variables may be repeated after INPUT.

b

This special symbol is used occasionally to indicate a blank space character
(ASCII code 32). For example:

BASIC B PROG
The B indicates that there is a single blank space after BASIC.

[aaaa,bbbb]
Indicates a numeric range with lower limit aaaa and upper limit bbbb. Both

limits are included in the range. For example:
[—32768,32767]

represents the range of numbers from —32768 to 32767 inclusive. The context
will specify whether integers or real numbers are intended.

X’NNNN’
Indicates that NNNN is a hexadecimal number. Numbers used in this manual
are in decimal form, unless otherwise noted. For example:

X'700A’
is a hexadecimal representation of the decimal number 28682.

319

MODEL Il BASIC
L

O’NNNNN’
Indicates that NNNNN is an octal number. Numbers used in this manual are in
decimal form, unless otherwise noted. For example:

O17707

Is an octal representation of the decimal number 8135.

. For

example:
PRINT “THE TIME IS ” TIMES$ 'ENTER|

indicates you should press

Indicates a control character. To output the character, hold down
and press the specified key. For example:

Indicates that you should hold down and press {3}

320

USING MODEL Il BASIC

About This Reference Manual

This manual describes the keywords, data types, and other features which are
available in Model ITBASIC. You’ll find plenty of examples and sample
programs to help you try out the language. There is also a Glossary in the
Appendix.

The manual is organized this way:

Chapter 1. Using Model II BASIC
General Information
Memory Requirements
Loading BASIC

Modes of Operation

Using the Keyboard

Using the Video Display

mmoow e

Chapter 2. BASIC Concepts
A. Programs
B. Statements
C. Data
1. Data Storage Types
a. Numeric (Integer, Single and Double Precision)
b. String
2. Data Constants
a. Type Determination
3. Variables
a. Names
b. Types of Variables
1. Default types
ii. Tags (1,#,%,$)
c. Arrays
4. Data Conversion
D. Operations
1. Statements
2. Expressions
3. Operators
Arithmetic
Logical, Relational and Boolean
String
Evaluation of Expressions
i. Parentheses
ii. Order of Operations
iii. Type Conversions
4. Functions

o ow

321

MODEL Il BASIC

“

Chapter 3. BASIC Keywords
A. Statements
1. Command
2. Program
a. Definition and Initialization
b. Assignment
¢. Program Sequence
d. Input/Output
3. Debugging Tools
B. Functions
1. Numeric
2. String
3. Input/Output
4. Special

Chapter 4. File Access Techniques
Chapter 5. Using the Line Editor

A. Error Codes and Messages

B. Character Codes

C. Reserved Words

D Internal Codes for BASIC Keywords
E. Glossary

F

Video Display Worksheet

Index

For More Information

If you are a newcomer to BASIC, you'll probably need a good programming
manual to use along with this book. Here are a few we recommend:

COMPUTER PROGRAMMING IN BASIC FOR EVERYONE, Thomas Dwyer and
Michael Kaufman, Radio Shack Catalog Number 62-2015.

BASIC AND THE PERSONAL COMPUTER, Thomas Dwyer and Margot
Critchfield; Addison-Wesley Publishing Company, 1978.

BASIC FOR HOME COMPUTERS: A SELF-TEACHING GUIDE, Bob Albrecht,
LeRoy Finkel, and Jerald R. Brown: Wiley & Sons, 1978.

BASIC FROM THE GROUND UP, David E. Simon; Hayden Book Company,
1978.

ILLUSTRATING BASIC, Donald Alcock; Cambridge University Press, 1977.

322

TN

USING MODEL Ii BASIC

Memory Requirements

BASIC occupies 14 granules (17920 bytes) on the System diskette. It loads into
memory starting at the beginning of user memory, 10240. The amount of
memory required by BASIC depends on how many concurrent data files you
specify when you load BASIC. During loading, you can also reserve a portion
of high memory for storage of machine-language subroutines.

Here’s a memory allocation map:

DECIMAL HEX
ADDRESS — ADDRESS
0 :;j N : TR S S X’OOOO’
10240 X'2800’
12288 X'3000’
OGRAM TEXT
RESERVED FOR YOUR MACHINE-
LANGUAGE ROUTINES (OPTIONAL)
TOPt ... | TOPt
VED BY TRSDOS FOR
ROGRAMMING
32767 or e X'7FFF or
65535 L LASTMEMORY ADDRESS —— XFFFF"

*Certain TRSDOS commands use memory in the range [X'2800°,X2FFF’]. See
“Library Commands” in the TRSDOS Reference Manual for a list. Al TRSDOS
commands except for these can be called from BASIC via the BASIC command,
SYSTEM.

FTOP is a memory protect address set by TRSDOS. If TRSDOS is not protecting
high memory, then TOP is the same as LAST MEMORY ADDRESS.

]
323

MODEL Il BASIC

Loading BASIC

See the Operation Manual for instructions on connection, power-up and
inserting the System diskette.

Note: Be sure all drives are empty when you turn the Computer on or off. A
System diskette must be in Drive 0 (the built-in unit) while the Computer is

on. (If you are going to save or change data on a diskette, cover the write-
protect notch.)

After the System starts up, it will prompt you to enter the date. Type in the

date in MM/DD/YYYY form a . For example:
Br/sznsiere BN

for July 25, 1979.

Next the System will prompt you to enter the time. To skip this question, press

3 813:1 . The time will start at 00:00:00.

To set the time, type in the time in HH.MM.SS 24-hour form. Periods are used
instead of colons, since they’re easier to type in. The seconds .SS are optional.
For example:

(PN ENTER
for 2:30 PM.

The System will record the date and time internally and return with the
message:
TREDOS READY

nnanuun-nnunnununnnunnuunnununuuu nnnnnnnn # ¥ m @ & B p o8 ow U oaon M oa

You can now load and execute BASIC. The simplest way to do this is to type:

TSR ENTER

BASIC will load (takes several seconds) and display a start-up heading like
this:
TRE-80 Model 11 BASIC Yarz X.Y
Copvright 1979 byv Tandy Core, Licernsed From Microzoft
Created: lé—-dug-7
EET Botes fress @ Filas

Heady

XXXXX Bytes free tells you how much memory is available for storage and
execution of BASIC programs. 0 files tells you that no data files can be Opened
from BASIC. If you want to Open data files, you need to specify how many
when you load BASIC (see next paragraphs).

324

USING MODEL Il BASIC

Options for Loading BASIC

There are several other ways to start up BASIC, as summarized in this block:

The options allow you to specify any or all of the following:

® A program to run after BASIC is started.

e Maximum number of data files that may be Open at once. The larger the
number of files, the less area available for storing and executing your
programs. (Each file you specify takes 834 bytes of memory.) So use the
smallest value that will suit your needs.

e Highest address to be used by BASIC during program execution. Omit this
unless you are going to call machine-language subroutines.

Examples

THEDOE HEADY

BAnTO
Tells BASIC not to run a program, but to enter the command mode; to allow
for zero concurrent files; and to use all memory available from TRSDOS.

TREDOS READY

Banll ol
Just like the preceding example, except that only one file can be Open at any
given time.

BASIC won’t allow you to Open any files, and 32000 is the highest address it
will use during program execution.

TREDOS READY
BASIC PAYROLL ~Fi3

BASIC will start up, load and run the BASIC program PAYROLL; three data files
can be Opened, and BASIC can use all memory available from TRSDOS.

|
325

MODEL Il BASIC

Modes of Operation

BASIC has three modes of operation:

® Command mode—for typing in program lines and immediate lines
® Execute mode~for execution of programs and immediate lines

e Edit mode—for editing program and immediate lines

Command Mode

Whenever you enter the command mode, BASIC displays a header and a
special prompt:

Ready (header)
Y (prompt followed by blinking block “cursor”

While you are in the command mode, BASIC will display the prompt at the
beginning of the current logical line (the line you are typing in).

A logicalline is a string of up to 255 characters and is always terminated with a
carriage return (stored when you press [EffiZ3]). A physical line, on the
other hand, is one line on the Display. A physical line contains a maximum of

80 characters.

-Forexample, if you type 100 R’sand then press [INiT
physical lines, but only one logical line.

, youwill have two

The blinking block is called a cursor. It tells you where the next character you
type will be displayed.

In the command mode, BASIC does not take your input until you complete the
EXAEE] - This is called “line input””, as opposed to

logical line by pressing |
“character input”.

Interpretation of an Input Line

BASIC always ignores leading spaces in the line—it jumps ahead to the first
non-space character. If this character is not a digit, BASIC treats the line as an
immediate line. If it is a digit, BASIC treats the line as a program line.

For example:

Raady
FRIMT "THE TIME IS5 " TIMES |

BASIC takes this as an immediate line.

326

USING MODEL Il BASIC

If you type:
Ready -
1@ PRINT "THE TIME I8 " TIME$E '
BASIC takes this as a program line.

Immediate Line
An immediate line consists of one or more statements separated by colons.
The line is executed as soon as you press [Ef{d:] . For example:
Read
CLE: PRINT "THE SQUARE ROOT OF 2 I&" SOR(Z)
is an immediate line. When you press [Ffi§3:1 , BASIC executes it.

Program Line
A program line consists of a line number in the range [0,65529], followed by
one or more statements separated by colons. When you press , the
line is stored in the program text area of memory, along with any other lines
you have entered this way. The program is not executed until you type RUN or
another execute command. For example:

1@ CLE: PRINT "THE SGUARE ROOT OF 2 18" SoR{D
is a program line. When you press [F¥5§3:]
text area. To execute it, type:

, BASIC stores it in the program

LM

Special Keys in the Command Mode

When used in an immediate line, the question mark can stand for
the commonly used keyword PRINT. For example, the
immediate line:
RELE 0L
is the same as the immediate line:
FRINT PHELLO.T
Note: L? does not mean LPRINT.

This abbreviation can be used in a program, too.

The period can stand for “current program line”, i.e., the last
program line entered or edited. The period can be used in most
places where a line number would normally appear. For
example, the immediate line:

LI8T.
tells BASIC to list the current program line.

This abbreviation can be used in a program, too.

]
327

- MODEL 1l BASIC
e —

(Special Keys in the Command Mode, continued)

The single-quote tellsBASIC to ignore the rest of the logical line.
Itis an abbreviation for the BASIC keyword REM. When used in a
multi-statement line, it does not have to be preceded by a colon.
For example, when you type in the line:

PRINT 1+1 *oen
BASIC will Print the sum 1+ 1 but not 2+2.
This abbreviation can be used in a program, too.

Execute Mode

Whenever BASIC is executing statements (immediate lines or programs) it is
in the execute mode. In this mode, the contents of the Video Display are
under program control.

Special Keys in Execute Mode

LIEIEE} Pauses execution. Press again to continue.

IFYE Terminates execution and returns you to the command mode.

Edit Mode

BASIC includes a line editor for correcting command or program lines. You
can also use it to correct keyboard input to an INPUT statement.

To edit an immediate line, press before you have pressed [
edit a program line, type in the command:

EDIT line number

where line number specifies the desired line.

When the editor is working on a program line, it displays the number of the
line being edited. When the editor is working on an immediate line or a line
being input to and INPUT statement, it displays a ! symbol in the first column
on the line.

In the edit mode, Keyboard input is character-oriented, rather than line-
oriented. That is, BASIC takes characters as soon as they are typed in—without
waiting for you to press [ENEg

See Using the Line Editor for details.

328

USING MODEL Il BASIC

Using the Keyboard

BASIC has two ways of inputting data from the keyboard:

e Character Input: BASIC takes a specified number of characters w1th0ut
waiting for you to press [EYiids] -

In the Command Mode, BASIC uses line input. In the Edit Mode, it uses
character input. Both types of input are available in the Execute Mode. See
INPUT, INPUTS$, LINE INPUT, INKEYS.

Keyboard Line Input

When you type number, letter, and punctuation keys, BASIC inputs them into
the current line. Certain other keys and key combinations have special
meanings to BASIC. Control keys not mentioned below are ignored during
line input.

hne Use this to correct typing errors. is the same

code.

Enters a blank space character and advances the cursor.

Puts you in the Edit Mode. The current line will be edited. See
Using the Line Editor. [Ei;ia]

Interrupts line entry and startsover withanew line. [sf;8(e]
the same code. 44 is echoed to the Display asaC.

Advances the cursor to the next 8-character boundary. Tab
positions are at 0,8,16,24, . . . Use this for indenting program
lines. [H;1¥] is the same code.

Line feed—starts a new physical line without ending the current
logical line.

Toggles (switches the state of) the Display function, i.e., turns it
on or off.

If the Display is on, [s3i:1F turns it off. Subsequent
characters typed will not be echoed to Display, but will be
input into the current line. Any programmed output to the
Display will also be ignored.

If the Display function is off, [eg;l5lej turnsiton.
Subsequent characters typed will be echoed to the Display.

329

MODEL Il BASIC

, continued)

Whenever BASIC enters the Command Mode, it turns on the
Dlsplay function.

is echoed asAa Q.

Retypes the current logical line.

Restarts the current logical line (though the old line remains on
the Display). The key is echoed to the display as AU.

Ends the current logical line. BASIC will take the line.

For convemence when you want to repeat a single key, hold
down [IH i while pressing the desired key. For example,
to backspace halfway across the Display, hold down EIEHF#
and CIEETEE

Keyboard Character Input

In this mode, key input is not echoed to the display. Any key you press is
accepted as input, except for EZIEFTE | which interrupts the input and
returns you to the Command Mode, and [& | , which toggles the Display
function.

330

USING MODEL Il BASIC

Using the Video Display

Model IIBASIC gives you easy access to the Video Display’s full character set,
including all standard ASCII symbols and 32 special graphics codes. Every
character can also be displayed in reverse (black on white).

The Display has two modes of operation—Scroll and Graphics. Cursor
motion and position-labeling are different in the two modes. ASCII characters
(in the range [32,127]) are always printed in the scroll mode. Graphics
characters [128-159] are always printed in the graphics mode.

Scroll Mode

In the Scroll Mode, the Display can be thought of as a sequence of 1920
display positions, as illustrated below:

Line 0
Line 1
Line 2
Line 3
Line 4
Ltine5
Line 6
Line 7
Line 8
Line 9
Line 10
Line 11
Line 12
Line 13
Line 14
Line 15
Line 16
Line 17
Line 18
Line 19
Line 20
Line 21
Line 22
Line 23

DISPLAY POSITIONS, SCROLL MODE

In Scroll Mode output, each time an acceptable display character is received,
it is displayed at the current cursor position, and the cursor advances to the
next higher numbered position.

When the cursor is on the bottom line and a line-feed or carriage return is
received, or when the bottom line is filled, the entire Display is “‘scrolled’:
e Line (isdeleted

Lines 1-23 are moved up one line

Line 23 is blanked

The cursor is set to the beginning of line 23.

331

MODEL Il BASIC

Graphics Mode

In the Graphics Mode, the Display can be thought of as an 80 by 24 matrix, as
illustrated below:

0....6....12...18...24...30...36...42...48,..54...60...66...72...79

DISPLAY POSITIONS, GRAPHICS MODE

In Graphics Mode output, the cursor “wraps” the display whenever it moves
beyond the row or column boundaries. That is:

Current position Direction New position

‘column 0, same row
column 79, same row
row 0, same column |
row 23, same column

column 0

332

USING MODEL Il BASIC

Video Display Output

All output to the Display is done via PRINT statements. To send actual codes to
the Display, use the CHR$ function.
For example:
FPRIMNT CHR® (240
Sends code 26 to the Display, which sets the reverse mode.
The table below summarizes the Model I1 BASIC Display codes.

CODE

DECIMAL DISPLAY FUNCTION

irns on cursor

2 02 Turns off cursor

4 - 04 | Turns on steady (non-blinking cursor) -

8 08 ckspaces cursor and erases
. 09 | Tabs cursor to next 8-character bound

10 0A Line feed. Moves cursor down one row

changlng column posmon
23
25 1 19 Sets normal (whlte on black) dlsplay mode
261 1A | Sets reverse (black on white) dis

27 | 1B | Erases screen and homes cursor (p
28 croll mode cursor motion:
es.cursor back one p
- 0, cursor doesn’t move.
" Scroll Mode cursor motion:
Moves cursor forward one position; if old position
= 1919, display is scrolled up one line and new
position = 1840.
| Clears display and sets 80 charactet
| Clears display and sets 40 charactel
~G3raphics-Mode cursor motion:
-cursorback one:-column;
| column-1. If column=0, new colu
ks o | is unchanged.)
253 | FD Graphics Mode cursor motion:
Moves cursor forward one column; column =
column+1. If column=79, new column=0.

254 | FE | Graphics Mode cursor motion: L
o | Moves cursor up one row; row=row-1; if row=0,
S | , new row=23. o

255 FF Graphics Mode cursor motion:

Moves cursor down one row; row=row+1; if
row=23, new row=0.

333

"MODEL Il BASIC

Graphics Characters are codes 128-159. To see them, run the program:

18 FOR I=128 T0 159
ot FRINT T3 CHRE(D) .
3B NEXT

Standard ASCII characters (upper and lowercase letters, numbers and
punctuation) are codes 32 to 127. To see them, run the program:

4@ FOR I=32 To 1327
i PRINMT I3 CHR$(I).
& MEXT

Note: You can print ASCII characters [A-Z, a-o] in the graphics mode by
using codes 160-239. Letters p through z cannot be printed in the graphics
mode.

For example, the following program turns the Video Display into a simple
“page” editor. No scrolling is done, except when a letter from p to z is printed
at position (23, 79).

This program also shows how to translate the cursor motion keys
A nto codes that will produce the desired result. Run it and try all
the cursor control keys. Also try:

Switch to reverse mode (black on white)

Switch to normal mode (white on black) ™
Erase to end of screen —
Erase to end of line
Clear screen
Turn on cursor
Turn off cursor
183
116 .
106 A AND 3 THEN f=4 GOTO 15@ foursor motion
] IF a=31 AND Ach " GOTOD 156 “drarhics mods
14@ TF aA=13 THEN PRINT (HOWI@I«BY s "o 2 GOTO @R
0@ PRINT CHRS (A s
TEE GOTOL0E
,d‘

334

USING MODEL Il BASIC i

Programming the

The i&l keyoutputsacode 1; [# outputs a code 2. If you want these keys to
serve a special purpose in a program, you must use character input techniques
(INKEY$ and INPUTS) rather than line input (INPUT and LINE INPUT). Once
your program has received a character, it can check to see whether the
character is a 1 or a 2. If it is one of these codes, the program can perform
whatever function you choose to associate with the [F] or] key.

F1

The following program shows a typical use of and [keys. Lines 330,
340 and 350 input a keyboard character and take appropriate action if the
character wasa 1 [@] ora2 [33.

O ERROR GOTC 408
CLis

FRINT "PRE
FPRINT "PRERE CURE ROOTS
FRIMT "PR L FOR L FTTHME®
FRIMNT *F oA FORANT T-LOGar T THMEY
PRINT "PRESS <4x To algre

A% o= INPUTS 1)

IF &% = "% THEN 2

IF A% = "0 THEN
IF A% = "L" THEN
CoAa% ow YA THEN 276

CoA% =Tt THEN END

017

NOMONY = SaRIONY D M$ = "SOUARE ROOT™: {070 2oy
FROMONY = NACL/ZEY S HE = "CURBE ROOT" @ G070 H
FRNCMONY = LOGINI S HE = "NATURAL LOG": GOTO ZEp
FRNOMONY = EXPONY S MHE = "NATURAL GNTI-LOGY
fOoCLET PRINT & (291@)aH$

FRIMNT @& (4«@2s CHR&O24)

ookl s PRINT TARCI@Y s Ky TAR(Z®Y 3 FHNMK)D
IF ROWO@Y < 26 THE A
PRINT @ (2201« "PRESE
Abu=INPUTHEOD

IF As=CHR$ (1) THEN %0
I ag=CHREEY THEN 116
A6 00TO
408 TF ERR = & THEN LINE INPUT "OVERFLOW--FRESS CENTERFY 1 X$: RESUME 106
418 ON ERROR GOTO @

TFL1E FOR MORE. <FZF FOR MENUY

335

Chapter 2

BASIC Concepts

This chapter contains the background information you'll need to write
programs in Model Il BAsIC. It describes the types of data (information)
BASIC can handle, and the operations BASIC can perform on the data.

= MODEL Il BASIC

Programs

A program consists of one or more numbered logical lines, each line consist-
ing of one or more BASIC statements. BASIC allows line numbers from 0 to
65529 inclusive. The program lines can include up to 255 total characters not
including the line number, and may be broken into two or more physical lines.

For example, here is a program:

line BASIC colon between BASIC

number / statement statements / statement

109 CLS: PRINT CHR$(Z&4) "THIS I8 REVERSE MODE™"
11 FOR I=1 TO 1000@: NEXT I TDELAY LOOP

120 PRINT CHR$(Z5) 3¢

138 CLS: PRINT "THIS IS NORMAL MODE"

When BASIC executes a program, it handles the statements one at a time,
starting at the first and proceeding to the last. Some statements allow you to
change this sequence. (See “Program Sequence Statements”.)

Statements

A statement is a complete instruction to BASIC, telling the Computer to
perform some operations. If the operations involve data, the statement may
include that, too. For example,
PRINT "THE SaUARE ROOT OF 7 185" SR
is a complete statement. The number 2 is the data, and the operations are:
¢ Displaying the message in quotes
¢ Computing the square root of 2
¢ Displaying the resultant value

338

BASIC CONCEPTS

Data

BASIC can handle two kinds of data:

e Numbers, representing quantities and subject to standard mathematical
operations

e Strings, representing sequences of characters and subject to special non-
mathematical string operations

Each kind of data has its own memory storage requirement and its own range
of values.

Numeric Data

BASIC allows three types of numbers: integer, single-precision and double-
precision. You can declare the type of a number, or let BASIC assign a type.
Each type serves a specific purpose in terms of precision, speed and
arithmetic operations, and range of possible values.

Integer Type
(Speed and Efficiency, Limited Range)

To be stored as an integer type, a number must be whole and in the range
[-32768,32767]. An ifteger value requires two bytes of memory for storage.
Arithmetic operations are faster when both operands are integers.

For example:
1 32000 -2 500 -12345
can all be stored as integers.

Single-Precision Type
(General Purpose, Full Numeric Range)

Single-precision numbers can include up to 7 significant digits, and can
represent normalized values* with exponents up to ¥ -38, i.e., numbers in
the range:

[-1 x 10%, -1 x 108] [1 x 10, 1 x 10%]
A single-precision value requires 4 bytes of memory for storage. BASIC
assumes a number is single-precision if you do not specify the level of
precision.

*In this reference manual, normalized value is one in which exactly one digit
appears to the left of the decimal point. For example, 12.3 expressed in
normalized form is 1.23 x 10.

339

MODEL Il BASIC
e

N
For example:
10.001 -200034 1.774E6 6.024E-23 123.4567
can all be stored as single-precision values.
Note: When used in a decimal number, the symbol E stands for “single-
precision times 10 to the power of . . .” Therefore 6.024E-23 represents the
single-precision value:
6.024 x 10
Double-Precision Type
(Maximum Precision, Slowest in Computations)
Double-precision numbers can include up to 17 significant digits, and can
represent values in the same range as that for single-precision numbers. A
double-precision value requires 8 bytes of memory for storage. Arithmetic
operations involving at least one double-precision number are slower than the
same operations when all operands are single-precision or integer.
For example:
1010234578 -8.7777651010 3.1415926535897932 8.00100708D12
can all be stored as double-precision values.
Note: When used in a decimal number, the symbol D stands for “double-
precision times 10 to the power of . . .” Therefore 8.00100708 D12 represents -
the value h
8.00100708 x 101

340

BASIC CONCEPTS

Summary of Numeric Data Types

Storage
Requirement'] Typical
Data Type Range (Bytes) Values

Single-Precision

[-1*10+%8, -1*103]
[+1*1038, +1*10+%8]
Up to seven significant
digits (Prints only six).

1,2345, 22.50,
-100.001, 201415
3.14159, 1.545E5

*For each variable you define, an additional three bytes are used as overhead.

341

~MODEL Il BASIC

String Data

Strings (sequences of characters) are useful for storing non-numeric

information such as names, addresses, text, etc. Any ASCII character can be
stored in a string. For example, the data:
Jack Brown, Age 38

can be stored as a string of 18 characters. Each character (and blank) in the

string is stored as an ASCII code, requiring one byte of storage. The above
string would be stored internally as:

A string can be up to 255 characters long. Strings with length zero are called
“null” or “empty”.

342

BASIC CONCEPTS

T

Data Constants

All data is input to a program in the form of constants—values which are not
subject to change. For example, the statement:
FRINT "1 PLUS 1 Eolalgd
contains one string constant,
IPLUSD 1 EQUsLE:
and one numeric constant,

In this example, the constants serve as “‘input’” to the PRINT statement—
telling it what values to print on the Display.

0123456789

212345D-8

343

= MODEL Il BASIC
--.---.---.-.I-III-.-.I----.---.-.-

Type Determination

When BASIC encounters a data constant in a statement, it must determine the
type of the constant (string, integer, single-precision or double-precision).
Here are the rules it uses:

Rule I. Ifthe value is enclosed in double-quotes, it is a string. For example, in
the statements:
Admt YRS
B®=" 3031 Waverly Wav"
FRINT "12345&67H90Y
the values in quotes are automatically categorized as strings. (A$ and
BS$ are variables, as explained later in this section.)

Rule II. If the value is not in quotes, it is a number. There are exceptions to
this rule. See DATA, INPUT, LINE INPUT, INKEY$, and INPUTS. For
example, in the statements:

v] A0 L

i
FRINT 12345 -7.32145E4
all the data is numeric.
Rule [II. Whole numbers in the range [-32768, 32767] are integers. For
example, the statements:

RN Y
1&
NT 1B@1E.s 21000

contain integer constants only.

Rule IV. Numbers which are not integer type and which contain seven or fewer
digits are single-precision. For example, in the statements:
A] 2RLBET
Pleme-], 203
FRINMT 118@@, 2%« 1. 333
all the numbers are single-precision.

Rule V. If the number contains more than seven digits, it is double-precision.
For example, in the statements:
MLETEYNL 34547
e | @QRROGEMAE ., 1
PRINT Z.7770@0@321
all the numbers are double-precison. (The variables A and B may be double-
precision, single-precision, or integer, as explained later on. Only the
constants are described here.)

344

BASIC CONCEPTS i
'

Type Declaration Tags

You can override BASIC’s normal typing criteria by adding the following
“tags” to the end of the numeric constant:

! Makes the number single-precision. For example, in the

statement:

Aml R, ZA5LTRIDL 234
the constant is classified as single-precision, and shortened to
seven digits: 12.34567

E Single-precision exponential format. The E indicates the
constant is to be multipled by a specified power of 10. For
example:

Al 2ES

stores the single-precision number 120000 in A.

Makes the number double-precision. For example, in statement:
FRIMNT 34/7
the first constant 1s classified as double-precision before the
division takes place.

D Double-precision exponential format. The D indicates the
constant is to be multipled by a specified power of 10. For
example: o1 2345678901
The double-precision constant has the value 0.123456789.
Hexadecimal and Octal Constants

Model II BASIC allows two additional types of constants: hexadecimal and
octal numbers.

Hexadecimal numbers are quantities represented in base 16 notation,
composed of the numerals 0-9 and the letters A-F. Hexadecimal constants
must be in the range [0,FFFF]. They are stored as two-byte integers,
corresponding to decimal integers as follows:

Hexadecimal Range Equivalent
Decimal Range
[0,7FFF] [0,32767]
[8000,FFFF] [-32768,-1]

Any number preceded by the symbol &H is interpreted as a hexadecimal
constant. For example:

EHAB LG . D &M &HEAT EHABnn
are all hexadecimal constants.

345

MODEL Il BASIC

Octal numbers are quantities represented in base 8 notation, composed of the
numerals 0-7. Octal constants must be in the range [0,177777]. They are
stored as two-byte integers, corresponding to decimal integers as follows:

Octal Range Equivalent
Decimal Range

[0,77777] [0,32767]

[100000,177777] [-32768,-1]

Any number preceded by the symbol &O or & is interpreted as an octal
constant. For example:
HOTH B0 4 BLTTV O RTLTR &1V B0 54

are all octal constants.

346

BASIC CONCEPTS

Variables

A variable is a place in memory—a sort of box or pigeonhole—where data can
be stored. Unlike a constant, a variable’s value can change. This allows you to
write programs dealing with changing quantities.

Variable Names

In BASIC, variables are represented by names. Variable names must begin
with a letter, A through Z. This letter may be followed by a digit, 0 through 9,
or another letter.

For example:
) 64 W B LT

are all valid and distinct variable names.

Variable names may be longer than two characters. However, only the first
two characters are significant in BASIC.

For example:
HL L ELIFE RNUME RARY
are all treated as the same variable by BASIC.

Reserved Words

Certain combinations of letters are reserved as BASIC keywords, and cannot
be used in variable names. For example:

RS, Lodadall BalE LENGTH MIFFED
cannot be used as variable names, because they contain the reserved words
OR, AND, NAME, LEN, and IF, respectively.

See the Appendix for a list of reserved words.

Types of Variables

As with constants, there are four types of variables. The first three are
numeric: integer, single-precision and double-precision; the fourth is string.

Depending on its type, one variable can contain values from only one of these
groups.

The first letter of the variable name determines what the type is. Initially, all
letters A through Z have the single-precision attribute. This means that all
variables are single-precision (that is, they can only hold single-precision
values).

For example:
& £ %] oy TRE H4
are all single-precision variables initially.

L e

347

MODEL Il BASIC

T
However, you can assign different attributes to any of the letters, by means of)
DEFINT (define-integer), DEFDBL (define double-precision), and DEFSTR
(define-string) statements. DEFSNG A-Z (define single-precision) is assumed
unless other DEF statements are used.
For example:
DEFSTH L
makes all variables which start with L into string variables. After the above
statement, the variables:
L. L. F LosisT
can all hold string values only.
Type Declaration Tags
As with constants, you can always override the type of a variable name by
adding a type declaration tag at the end. There are four type declaration tags
for variables:
For example:
1% FT% MU, COUMTERY
are all integer variables, regardless of what attributes have been assigned to '/—\\ﬂ
the letters I, F, N and C.
T Ryt @AM PERCENT
are all single-precision variables, regardless of what attributes have been
assigned to the letters T, R, Q and P.
X FF FHREV L A5 T MU
are all double-precision variables, regardless of what attributes have been
assigned to the letters X, R, P and L.
n% Y WHDE ERTRY %
are all string variables, regardless of what attributes have been assigned to the
letters Q, C, W and E.
Note that any given variable name can represent four different variables. For
example:
A5 A A5 AfE
are all valid and distinct variable names.
One further implication of type declaration: Any variable name used without
a tag is equivalent to the same variable name used with one of the four tags.
For example, after the statement:
PEFSTH O
the variable referenced by the name C1 is identical to the variable referenced
by the name C18$. —

———————]
348

BASIC CONCEPTS

Array Variables

BASIC allows subscripted variables or arrays. An array name references a list
of values, or elements, instead of a single element.

The array can have one or more dimensions. Each dimension is specified by a
subscript. Array subscripts always start with zero. Therefore the statement:
DIM AallZ100
creates an array A with 13 rows (numbered 0-12) of 11 columns (0-10), for a
total of (13*11=143) elements.
AlSe7)
refers to the element at row 5, column 7 in array A.

See the DIM statement description for more information.

349

MODEL 1l BASIC

Data Conversion

Often it is necessary to convert a value from one type to another type. BASIC
will perform many conversions automatically; other conversions require that
you use special functions.

For example, suppose you want to add two numbers:

i ; AT
The first number is an integer constant; the second, a double-precision
constant. Because of different storage formats for the two types, the
operation is physically impossible until one of the numbers is converted to
match the other’s type.

PR
R S A

According to rules described later, BASIC converts the 1 to double precision.
Then the two double-precision numbers can be added to produce a double-
precision result.

What concerns us here is not the addition, or the rule for deciding which
number is converted. Here we are only interested in the conversion itself.

Illegal Conversions

BASIC cannot automatically convert numeric values to string, or vice versa.
For example, the statements:

[a%e T e
Sdhm L 2TELY

are illegal. (Use STR$ and VAL to accomplish such conversions.)

Legal Conversions

BASIC can convert any numeric type into any other numeric type. For

example:
Ot T WA Yinteder to double-precizion
FERIEFAY -] *double-rFrecizion tao A leeEracision
£ gy Tinteder to zintdle-precizion

350

BASIC CONCEPTS

Rules for Conversion

Single or double-precision to integer type
BASIC returns the largest integer that is not greater than the original value.

Note: The original value must be greater than or equal to -32768, and less
than 32768,

Examples
A,

Assigns A% the value -11.
AL=RLTET

Assigns A% the value 32767.

SN R
L IR) DI

Assigns A% the value 2500.

Assigns A% the value -124.

BB s RN 4 0
Fa g RS

Produces an Overflow Error (out of integer range).

Integer to single- or double-precision

No error is introduced. The converted value looks like the original value with
zeros to the right of the decimal place.
Examples

i F

Py [
Stores 32767.000000000000 in A#.
& U] 284

Stores -1234.000 in A!.

351

MODEL Il BASIC

Double- to single-precision

This involves converting a number with up to 17 significant digits into a number
with no more than seven. BASIC rounds the number to single precision.

Examples
Atz ZRALBETEIAL 24567

Stores 1.234567 in A! However, the statement:
FRINT &

will display the value 1.23457, because only six digits are displayed.

352

Single- to double-precision

To make this conversion, BASIC simply adds trailing zeros to the single-
precision number. If the original value has an exact binary representation in
single-precision format, no error will be introduced. For example:

Affm] 5
Stores 1.5000000000000 in A#, since 1.5 does have an exact binary
representation.

However, for numbers which have no exact binary representation, an error is
introduced when zeros are added. For example:
A=, 03

Stores 1.299999952316284 in A#.

Because most fractional numbers do not have an exact binary representation,
you should keep such conversions out of your programs. For example,
whenever you assign a constant value to a double-precision variable, you can
force the constant to be double-precision:

Al S Af=] 3D
Both store 1.3 in A#.

Here is a special technique for converting single-precision to double-precision,
without introducing an error into the double-precision value. It is useful when
the single-precision value is stored in a variable.

Take the single-precision variable, convert it to a string with STR$, then

convert the resultant string back into a number with VAL. That is, use:
VAL (STR$ (single-precision variable))

For example, the following program:

18 A 3

30 PRINT
prints a value of:
1.

Compare with this program:
18 Al=1.3 ‘rin9le-precizion

2 AEsVALISTREIAY) frpecial conversion teohnisuse

30 PRINT A%
which prints a value of:

1.3
The conversion in line 20 causes the value in A! to be stored accurately in
double-precision variable A#.

353

e

MODEL Il BASIC

Operations

An operation instructs the Computer to do something.

There are four levels of operations:
® Statements, which are complete instructions
e LExpressions, which serve as parameters and data for statements

& Operators, which act on one or two data elements (“‘operands’) and are
used in expressions

e Functions, which act on one or more data elements (“arguments”) and
are also used in expressions

Statements

Statements tell the Computer to perform some action. Statements are
complete in themselves. Once the statement has been written, no other
information needs to be added to the statement for it to be executed.

For example, the statement:
DEFIMNT N-R
1s complete as it stands.

A statement is made up of a keyword* followed by whatever parameters or

data are needed. The data is usually represented by an expression (defined
below).

For example:
FRINT "MODEL T1Y

Tells BASIC to display the message inside quotes. PRINT is the keyword;
“MODEL I1” the data.

ST 16130
Tells BASIC to list the resident program lines in the range 100-130. LIST is the
keyword; 100-130, the parameter.

Tells BASIC to give A1 the value of the expression on the right of the equals
sign.

*A keyword is any sequence of characters which has a predefined meaning for
BASIC. PRINT , INPUT ,and SOQR are all examples of keywords.

354

BASIC CONCEPTS
I N T N N R R Es

Expressions

The concept of an expression is important in this manual, since it is used in
most of the syntax descriptions. Throughout these descriptions, you will
encounter the terms numeric expression, string expression, logical expression,
etc. Understanding the concept will allow you to grasp the full potential of
BASIC’s operations.

Expressions are composed of:
e (Constants
¢ Variables
® Operators
e Functions

A simple expression consists of a single term: a constant, variable, or function
preceded by an optional + or — sign or the logical operator NOT.

For example:
A ISP - MOT A

Here’s how a term is formed (items in square boxes are defined elsewhere):

| . P CONSTANT

> VARIABLE

| () ' > FUNCTION

|

W

\ 4

A function consists of a keyword usually followed by an argument list in
parentheses. Each of the arguments can be an expression. For example:

v fOTE S E o L T & S
$E LA il { fyfh

SIMOEE R{d

Here’s how a function is formed:

©

—{ KEYWORD @ EXPRESSION ;®—1r->

355

i MODEL Il BASIC

In general, an expression consists of one term or two or more terms combined
by operators (defined below). For example:

Al N AT ® TLOGIY) MOT{A OR B

Here’s how a complex expression is formed:

elelololololcicloc!

356

v

BASIC CONCEPTS

Operators

Anoperator is a single symbol or word which signifies some action to be taken
on one or two specified values referred to as operands.

In general, an operator is used like this:

Examples:

The addition operator + connects or relates its two operands 6 and 2 to
produce the result 8.

B
-y

The negation operator—acts on a single operand 5 to produce the result
negative 5.

Neither 6+2 nor —5 can stand alone; they must be used in statements to be
meaningful to BASIC. For example:

& omm S

PRINT -7

Operators fall into three categories:

® Numeric

e Logical

e String

based on the kinds of operands they require and the results they produce.

357

MODEL II BASIC

Numeric Operators

In the descriptions below, we use the terms integer operation, single-
precision operation and double-precision operation. Integer operations
involve two-byte operands; single-precision, four-byte operands; and
double-precision, eight-byte operands. It’s very important to be aware of
what precision will be used in a given operation, since the more bytes
involved, the slower the operation.

There are nine different numeric operators. Two of them, sign + and sign —,
are unary, that s, they have only one operand. A sign operator has no effect
on the precision of its operand.

For example, in the statement:
PRINT =77y 477

the sign operators — and + produce the values negative 77 and positive 77,
respectively.

Note: When no sign operator appears in front of a numeric term, + is
assumed.

‘The other numeric operators are all binary, that is, they all take two
operands. These operators are

+ Addition

- Subtraction

* Multiplication

/ Division

\ Integer division (keyboard character
A Exponentiation (keyboard character §
MOD Modulus arithmetic

358

Addition
The + operator is the symbol for addition. The addition is done with the
precision of the more precise operand (the less precise operand is converted).

For example, when one operand is integer type and the other is single
precision, the integer is converted to single-precision and four-byte addition
is done. When one operand is single-precision and the other is double-
precision, the single-precision number is converted to double-precision and
eight-byte addition is done.

Examples:
PRIMT
Integer addition.
FRINT E.1 +
Single-precision addition.
FRINT 1.23a4548
Double-precision addition.

A

Subtraction

The — operator is the symbol for subtraction. As with addition, the operation
is done with the precision of the more precise operand (the less precise
operand is converted).

Examples:

FRIMT 33 - 11
Integer subtraction.

PRINT 33 -11.1
Single-precision subtraction.

FRINT 2. 3485470901 2 P 1]
Double-precision subtraction.

Multiplication

The * operator is the symbol for multiplication. Once again, the operation is

done with the precision of the more precise operand (the less precise operand

is converted).

Examples:
FRINT

POAE R 1)
Integer multiplication.
FRINT B3 # 1141
Single-precision multiplication.
FRHIMNT 12, 3aha7Rent.
Double-precision multiplication.

N T £ e P P AR O

359

" MODEL Il BASIC

Division

The / symbol is used to indicate ordinary division. Both operands are

converted to single or double-precision, depending on their original

precision:

e If either operand is double-precision, then both are converted to double-
precision and eight-byte division is performed.

e If neither operand is double-precision, then both are converted to single-
precision and four-byte division is performed.

Examples:
C OPRINT 374
Single-precision division.
FRINT 3.8 /7 4
Single-Precision division.
PRINT 3/ 1. 2345678901 2345467

Double-precision division.

Integer Division

The integer division operator \ (‘“‘backslash”) converts its operands into
integer type, then performs integer division, in which the remainder after
division is ignored, leaving an integer result. (If either operand is outside the
range [-32768,32767], an error will occur.)

Note: To enter the \ operator, press [Si:[#]

For example:

PRINT 7 N0 3
prints the value 2, since 7 divided by 3 equals 2 remainder 1.
Exponentiation

The symbol A (“circumflex”) denotes exponentiation. It converts both its
operands to single-precision, and returns a single-precision result.

Note: To enter the A operator, press ERIE#T .

For example:
PRINT & .3
prints 6 to the .3 power.

Modulus Arithmetic

The MOD (“modulo”) operator allows you to do modulus arithmetic, i.e.,
arithmetic in which every number is converted to its equivalent in a cyclical
counting scheme. For example, a 24-hour clock indicates the hour in modulo
24 although the hour keeps incrementing, it is always expressed as a number
from O to 23.

360

,f”\\

Yt

BASIC CONCEPTS it

MOD requires two operands, for example:

B is the modulus (the counting base) and A is the number to be converted.

(Expressed in mathematical terms, A MOD B returns the remainder after
whole-number division of A by B. In this sense, it is the converse of \, which
returns the whole number quotient and ignores the remainder.)

MOD converts both operands to integer type before performing the
operation. If either operand is outside the range [-32768,32767] an error will
occur.

Examples:
PRIMNT 155 MobD 1%
Prints 5, since 155/15 gives a whole number quotient of 10 with remainder 5.
PRIMT 7% MOD 12
Prints 7, since 79/12 equals 6 with remainder 7.
1@ TRPUT "TYPE TN AN ANGLE IMN DE SV A%
BOOPRINT A% soau N\ SR e 9B v A% MOD 9
Input a positive angle greater than 90. Line 20 expresses the angle as a
multiple of 90 degrees plus a remainder.

361

= MODEL il BASIC

The table below summarizes the precision of operations for all numeric

operators.

(I=integer, S=single-precision, D=double-precision.)

Precision of Precision of
Operator(s) Operand(s) Value Returned
+,-, " lopl lorS
lop S Sop S S
lop D SopD DopD D
/ lop i lop S SopS S
lop D SopD DopD D
\ All possible !
combinations
A All possible S
combinations S
MOD All possible I
combinations
+ (sign) opl |
— (sign) op S S
op D D

Important: For effects of conversions on accuracy, see “Data Conversion”.

362

BASIC CONCEPTS i

Logical Operators

Logical operators deal with true/false conditions, comparisons, and tests.
They allow you to build elaborate decision-making structures into programs,
to perform bit manipulations, to sort data, etc. An expression involving a
logical operator is called a logical expression.

All logical operators convert their operands to two-byte integers. If an
operand is outside of the range [-32768, 32767] an error will occur.

The logical operators include the three relational operators: <, >, =; and six
Boolean word-opcrators: AND, OR, XOR, NOT, IMP, EQV

Relational operators compare two operands for numerical precedence. Here
1s a table of the relational operators and their various combinations:

Relational Operators
< Less than
> Greater than
= Equal to

>< or <>} Not equal to
=<or«= | Less than or equal to
=>or>= | Greater than or equal to

Relational operators can return only two possible values: true or false.
Actually, BASIC returns the number -1 to indicate true, and 0 to indicate false.
But the quantity (-1 or 0) is rarely used as a number. More often, itisused asa
decision-making operator, as in the line:

TF é=E THEN 1800 ELSE END
The logical expression A = B returns negative one (-1) when A equals B, and
zero when A does not equal B. But you don’t care about the numbers -1 and 0.
What matters to you is that if the expression is true, control branches to line
1000; otherwise BASIC ends the program.

Here’s an example where the result of a logical expression is used as a
quantity:

MAX = ~ (AR EE ~ (BOmA)ES
For any two integer-type values A and B, MAX contains the larger of the two.
Note: All relational operators can also be used to compare strings for

precedence. The result of such a comparison is still either a true (logical -1) or
false (logical 0). See ““String Operators’.

363

BASIC CONCEPTS
e .

Boolean Operators

In this section, we will explain how Boolean operators are implemented in
Model I1 BASIC. However, we will not try to explain Boolean algebra,
decimal-to-binary conversions or binary arithmetic. If you need to learn
something about these topics, Radio Shack’s Understanding Digital
Electronics (Catalog Number 62-2010) and TRS-80 Assembly-Language
Programming (62-2006) are the books to start with.

Model I1 BASIC includes six Boolean operators:
AND OR XOR EQV IMP NOT

Allthe Boolean operators relate two operands, except for NOT, which acts on
a single operand.

These operators can be used to set up decision structures. For this
application, both operands are usually relational expressions, like (A < B),
and the operator is one of the following: AND, OR, XOR, NOT.

AND

If both expressions are true, then AND returns a logical true. Otherwise it
returns a logical false. For example:

TF a=E anND BCB THEMN 8@

OR

If either of the expressions is true, or both are true, this operand returns a
logical true. Otherwise it returns a logical false. For example:

TF GAME=OVER OF TIME>=LATE THEN FND

XOR (““Exclusive—OR”’)

Only when one of the expressions is true (but not both) does XOR return a
logical true. Otherwise it returns a logical false. For example:

TFOJOMN=QUT XOR JOE=0UT THEN FRINT "OMNLY ONE 18 HERE®

NOT

NOT is a unary operator (acts on one operand). When the expression is true,
NOT returns a logical false. When it is false, NOT returns a logical true. For
example:

PRONOT CARE) THEM PRINT "4 I8 NOT GREATER THAN B®

364

BASIC CONCEPTS ~

Bit Manipulation

For this application, both operands are usually numeric expressions. BASIC
does a bit-by-bit comparison of the two operands, according to predefined
rules for the specific operator.

Note: The operands are converted to integer type, stored internally as 16-bit,
two’s complement numbers. To understand the results of bit-by-bit
comparisons, you need to keep this in mind.

The following table summarizes the action of Boolean operators in bit
manipulation.

Meaning of First Second
Operator | Operation Operand Operand Result

OR Result will be 1 unless both
bits are 0.

O QO = -
O O =
QO - =

EQV Result will be 1 unless both

1 1 1
bits are different. 1 0 0
0 1 0
0 0 1

NOT Result is opposite of bit. 1 0

365

= - MODEL Il BASIC
O P S S TR

As an example of bit manipulation, suppose you want to change lowercase
characters to uppercase and vice-versa. You could do this by checking the
ASCII code of each character (See table in the appendix) and adding or
subtracting decimal 32 (hexadecimal 20) depending on whether the character
was uppercase or lower. But this routine could be done more simply, using
only the operator XOR.

The AsCll codes for uppercase characters are decimal 65-90 (hexadecimal 41-
5A); for lowercase, decimal 97-122 (hexadecimal 61-7A). Looking at these
ranges in binary, you can see that all capifal letters have a 0 in bit position 5,
while all lowercase letters have a 1 in bit position 5.

Note: Position 7 is the most significant bit; position 0 is least significant, as
illustrated below:

most significant least significant
bit bit

765 43210

One byte

So, to convert from lower to uppercase and vice versa, you just toggle
(reverse the state of) bit 5. Decimal 32 has the following binary
representation:

00100000

Notice that bit 5 is a 1: all others are zeroes. When you XOR decimal 32 with
any number, you will effectively toggle bit 5. For letters, this will switch cases,
upper to lower and vice versa.
For instance, since 72 is the ASCII code for “H’’:

PRINT CHRS
prints a lowercase “h”.

FEORGR 3

wal, ¢

You can check this by consulting XOR in the table above and XOR-ing the two
numbers by hand.

Sample Program

LEOEPOSram Converts urRercaze to lowerosso and vewv. "

s

al o Tmo o SE AND A% dm vpo

366

P

BASIC CONCEPTS “jjiiinm

String Operators

There are seven string operators in Model I BASIC. These operators allow
you to compare strings and to concatenate them (i.c., string them together).

Comparison
The comparison operators for strings are the same as those for numbers,
although their meanings are slightly different. Instead of comparing

numerical magnitudes, the operators compare sorting precedence (i.e.,
alphabetical sequence).

< Precedes

> Follows

= Has the same precedence

<> Does not have the same precedence
<= Precedes or has the same precedence
>= Follows or has the same precedence

Comparison is made character by character on the basis of ASCli codes. When
a non-matching character is found, the string containing the character with a
lower ASCII code is taken as the smaller (“‘precedent’’) of the two strings. See
the Appendix for an ASCII code table.

Examples:
Boa it 1 i:',:r "
] -]

The ASCIIZCOdﬂe for A is decimal 65; for B it’s 66.

CCODET 0 Coo)

ASCII for O is 79; for D it’s 68.

If, while comparison is proceeding, the end of one string is reached before any
non-matching characters are found, the shorter string is considered to be
precedent. For example:

EPErA TN WTRATI B
I L o T A W 3 PR L LR

Leading and trailing blanks are significant. For example:

1 A B A
£ i FAN

ASCil for “b;’ (space) is 32; for A it’s 65.

It

HE L, ::;;;(;;[it EL '(."];;i W

‘ILne string on the left is tour characters long; the string on the right is five.

367

MODEL Il BASIC

Here are some examples of how you might use the string comparison
operators in a program:

IF A%<BE THEN END
If string A$ is not the same as B$, the program ends.

IF A%<BS THEN PRINT A%
If A$ alphabetically precedes B$, A$ is printed.

IF NME®=" CARRUTHERS® OR CITY$="RUFFALOY THEN PRINT MMES. CITYS
If the value of NMES$ is CARRUTHERS, then CARRUTHERS plus the current
value of CITY$ will be printed, or if the value of CITY$ is BUFFALO, then
BUFFALO will be printed plus the current value of NMES.

Concatenation

Concatenation (“linking’") is represented by the symbol +. This operator
takes two strings as its operands and returns a single string as its result by
adding the string on the right of the + sign to the string on the left. If the new
string is greater than 255 characters, a String Too Long error wll occur.

For example:

PRINT "CATE + "LOVE " + "MICE®"
prints:
CaTs LOVE MICE

368

BASIC CONCEPTS

Evaluation of Expressions

When an expression involves multiple operations, BASIC performs the
operations according to a well-defined hierarchy, so that results are always
predictable.

Parentheses

When a complex expression includes parentheses, BASIC always evaluates the
expression inside the parentheses before evaluating the rest of the expression.
For example, the expression:
8—-(3-2)
is evaluated like this:
3-2=1
8-1=7
With nested parentheses, BASIC starts evaluation at the innermost level and
works outward. For example:
4% (2-34))
18 evaluated like this:
3-4=-1
2--1=3
4*3=12

Order of Operations

When evaluating a sequence of operations on the same level of parenthesis,
BASIC uses the following hierarchy to determine what operation to do first.
Operators are shown below in decreasing order of precedence. Operators
listed in the same entry in the table have the same precedence and are
executed as encountered from left to right.

A (Exponentiation) ~
+,— (Unary sign operands [not addition and subtraction])
“/
(Integer division)
MOD
+, — (Addition and subtraction)
<, > =, <=, »= <>
NOT
AND
OR
XOR
EQV
IMP

369

MODEL Il BASIC

For example, in the line
LR L

BASIC will find the value of 5 to the 2.8 power. Next it will multiply X * X, and
finally add this value to the value of 5 to the 2.8. If you want BASIC to perform
the indicated operations in a different order, you must add parentheses, e.g.:

Xow (E+Brr.en
or

XoE OXHEIEL B
Here’s another example:

IF X=0 OR Y:@ AND Z=1 THEN 29%
The relational operators=and >have the highest precedence, so they will be
performed first, one after another, left to right. Then the Boolean operations
will be performed. AND has a higher precedence than OR, so the AND

operation will be performed before the OR. Therefore, the line above means
that if X = 0, orif Y> 0 and Z = 1, control branches to line 255.

If the line above looks confusing because you can’t remember which operator
is precedent over which, then you can use parentheses to make the sequence
obvious:

TP ¥=0 OR ({Y:@) AND (Z=1)) THEN 755

Type Conversions

During evaluation of an expression, BASIC often has to perform type
conversions. Unless you're careful in forming expressions, these conversions
can produce invalid results. For example, in the expression:

A o= O

C! must be converted to double-precision before the multiplication can take
place. This will usually introduce an error into the result.

Before evaluating the expression:

A b BT 2347
BASIC must convert 1.2345678 to single-precision. You cannot expect double-
precision from a single-precision operator or function.

See “Data Conversion” for details on the effects of type conversion on
accuracy, and for special conversion techniques.

370

SN

BASIC CONCEPTS -

Functions

A function is a built-in subroutine. The functions supplied in Model 11 BASIC
save you from having to write equivalent BASIC routines, and they operate
faster than a BASIC routine would.

A function consists of a keyword followed by required input values, referred
to as arguments or parameters. The arguments are always enclosed in
parentheses and separated by commas. Some functions have no arguments;

others require up to three. The quantity output or returned by a function is
called the value of the function.

Examples:
BRI TR L]
Tells BASIC to compute the square root of the quantity A. SQR is the keyword,
and A is the argument.
MIDE(AS. G2
Tells BASIC to return a substring of the string A$, starting with the third

character, with length 2. MIDS$ is the keyword; A$, 3 and 2 are its arguments or
parameters.

Since functions are syntactically equivalent to expressions, they cannot stand
alone in a BASIC program. They must be used in statements.

For example:
BEEOR)

Assigns A the value of square root of B.

FRINT MIDS (A% 3Z. 0
Prints the substring of A$ starting at the third character and two characters
long.

FRIMT LOGISOROEY)
Prints the natural logarithm of the square root of 2.

In this manual, functions are classified as numeric when they return a
number, and string when they return a string. Wherever the syntax calls for a
numeric expression, you can use a numeric function; for a string expression,
you can use a string function.

There is another special class of functions which return information about the
allocation of memory and the location of various quantities in memory. For
example:

MEM
Returns the number of bytes of memory available for storing program text,
numeric and array variables.

371

Chapter 3

BASIC Keywords

To help you grasp the purpose of each of Model Il BASIC's many keywords,
we have divided them up into several groups, and covered each group
separately. Within each group, the keywords appear in alphabetical order.
The groups are:

e Command Statements

® Program Statements

® FError-Handling Statements
e Numeric Functions

e String Functions

e [nput/Qutput Functions

® Special Functions

MODEL Il BASIC

Note: For most keyword descriptions, we’ve provided three different
information blocks.

@ Syntax. This area is highlighted in gray and gives the most general descrip-
tion of how the keyword is used.

@ Examples. These show specific occurrences of the keyword in a complete
BASIC statement. These one-line examples are not intended to by typed in
and run.

@ Sample Programs. Run these for a demonstration of how the keyword
works.

BASIC KEYWORDS iy Ly
W

RIGHTS$
Get Right Portion of String

 rumbeér)

string expression. string not equal to null string
eric exprassion

@\ RIGHTS returns the last number characters of string. 1f1LEN (string)isless than
orequal to number, the entire string is returned.

|~

Examples:

PRINT RIGHTS ("WATERMELON"s &)
Prints the five right characters of WATERMELON, namely, MELON

PRINT RTGHTH e MT5 wpy.
Since MILKY WAY is fess than 25 characters long, the whole phrase is printed

1PE RTGHTS CADDIL Sha, <

Puts the last five characters of ADDRESSS into ZIPs,
@\ FRINT RIGHTE R TR T, Y
Prints a single ™.

Sample Program
50 RESTORC s ON ERROR o0 000
G HEAD COMPraNMy
EUECPRTHT O BIGHTSCCOMPANY S 20 G0 Sel
HHE ENMD
BT DATA UBECHMAN DUMBE R COMEANY s SEATILE« WA"

FOG DATAH CER PMORTON SEWE R SR CE e D0O0R] YR R
SO DATA "HAMMOND MANUE AL LUREMG COMPANY « HAMMOMDS 1N

This program prints the name of the state in which each company is located.

3/123

374

o~

BASIC KEYWORDS

— Command Statements

Command statements tell BASIC to enter another operation mode or to
perform various System functions (like loading a program from disk).
Although they can be included inside a program, their primary use is outside
of a program.

For example, the command statement
R

Erases the entire program currently in memory and zeroes all variables.

Keyword Purpose
AUTO ~ Number lines automatically
DELETE Erase program lines from memary
EDIT - | Edit program line
KILL Delete a disk file
LIST : - List program to display
LLIST List program to line printer
LoAD Load program from disk , S
- MERGE Merge disk program with resident program
NAME | Renameadiskfile , S
NEW Erase program from RAM
' RENUM | Renumber program
RUN Execute program
SAVE | Saveprogramondisk . .
SYSTEM Return to TRSDOS

375

MODEL Il BASIC

AUTO
Number Lines Automatically

AUTO startlme increment

is a line number specifying the first line number to be used. If
;s‘om:tted 10 is used. A period (“.”) can be substituted for
stattime* In this case, the current line number is used. If startline is
: ed and a comma is used, startline is set to 0.
i specifying the increment to be used between lines. It
ted, 10 is used.

AUTO turns on an automatic line numbering function. After you enter this
command, BASIC will supply the line number. Allyou have to dois type in the
text of the line and press 1 . Then AuTO will display the next line
number, using increment or a default increment of 10.

To turn off the AUTO function, press § atanytime. The currentline

will be cancelled.

Whenever AUTO provides a line number that is already in use, it will display
an asterisk immediately after the line number. Press | if you do not
want to change that line.

Examples

ALTO
starts automatic numbering with line 10, using increments of 10 between line
numbers.

AUTO 1158
starts numbering with 100, using increments of 10 between line numbers.

AUTO 1BBE. 1oe
starts numbering with 1000, using increments of 100 between line numbers.

SUTD ¢ 5
starts numbering with 0, using increments of 5 between line numbers.

AT,

starts numbering with the current line number, using increments of 10
between line numbers.

376

BASIC KEYWORDS

DELETE
Erase Program Lines from Memory

DELETE starﬂme-endlme
startline is a line number specitying the lower limit for the deletson If starthne
is omitted, then the first line in the program is used as startline.
endiine is a line number specifying the last line in your program that you
want to delete. endline must reference an existing program line.

A period (“.”") can be substituted for either startline or endline.
signifies the current line number. e

DELETE removes from memory the specified range of program lines.

Examples
DELETE 7@
Erases line 70 from memory. If there is no line 70, an error will occur.
DELETE H@-11@
Erases lines 50 through 110 inclusive.
DELETE ~4@
Erases all program lines up to and including line 40.
DELETE -.

Erases all program lines up to and including the line that has just been entered
or edited.

DELETE.
Erases the program line that has just been entered or edited.

377

MODEL Il BASIC

EDIT
Edit Program Line

EDIT allows the specified line to be revised without affecting any other lines.
The EDIT command has a powerful set of subcommands which are discussed
in detail in Chapter 5.

Examples
EDIT 194
Edits line 100
EOIT.
Edits the current line.

378

BASIC KEYWORDS

KILL
Delete File from Disk

ffie ss a stnng Xp ssnon defm:ng a TRSDOS ﬂle specnfncatnon
If file i ;s a constant it must be enclosed in quotes.

KILL deletes the specified file from the diskette directory.

If no drive specification is included in the file specification BASIC will search
for the first drive that contains the file, and attempt to delete it.

Do not Kill an open file. Close it first.
Example
KILL "FILE/Bagy
deletes this file from the first drive which contains it.

KILL "DaTasz
deletes this file from drive 2 only.

379

/"\\\

LIST N

either startline or

LIST instructs the Computer to display the specified range of program lines
currently in memory. The arguments are optional.

Examples

LIST
Displays the entire program. To stop the automatic scrolling, press [Z[s7&5]
This will freeze the display. Press any key to continue the listing.

LIST 56
Displays line 50.

LIST 5@-45
Displays lines in the range 50-85.
LIST HE7-
Displays line 227 and all higher-number lines.
LIsT. -

Displays the program line that has just been entered or edited, and all
higher-numbered lines.

LIST-227

Displays all lines up to and including 227.

LIST—,
Displays all lines up to and including the line that has just been entered or
edited.

LIGT.

Displays the line that has just been entered or edited.

“

380

r—

BASIC KEYWORDS

LLIST
Print Program Lines

he lower lin

e pr is used as end!
r startline or endline. The period signifies the

be substitute ‘
current line number.

LLIST works like LIST, but its output is to the Printer rather than the Display.
LLIST instructs the Computer to print the specified range of program lines
currently in memory. The arguments are optional.

Examples

LLIST
Lists the entire program to the printer. To stop this process, press (e[} This
will cause a temporary halt in the Computer’s output to the Printer. Press any
key to continue printing.

LLIST 786
Prints line 780.

LLIST &8990
Prints lines in the range 68-90.

LLIST 5@
Prints lines 50 and all higher-numbered lines.

LLIBT. -

Prints the program line that has just been entered or edited plus all higher-
numbered lines.

LLIBT-5@
Prints all lines up to and including 50.

el T8 T
Prints all lines up to and including the line that has just been entered or
edited.

LLTGT.
Prints the line that has just been entered or edited.

L |
381

-MODEL Il BASIC

’ R (opttona!) telis BASIC to RUN the program after nt is Ioaded

This command loads a BASIC program file into RAM. If the R option is used,
BASIC will proceed to RUN the program automatically. Otherwise, BASIC will
return to the command mode.

LOAD wipes out any resident BASIC program, clears all variables, and Closes
all Open files unless the R option is used, in which case open files will not be
closed.

LOAD with the R option is equivalent to the command RUN file, R. Either of
these commands can be used inside programs to allow program chaining (one
program calling another). Files currently Open are not Closed.

If you attempt to LOAD a non-BASIC file, a Direct Statement in File error will
occur.

Example

LOaD "PROGL/RBAaSs2"
This loads PROG1/BAS from drive 2. BASIC then returns to the command
mode.

LOAD "FROGIL /BASY
Since no drive specification is included in this command, BASIC will begin
searching for this program file, starting with drive zero.

382

,’/\’

BASIC KEYWORDS
o —————————————

MERGE
Merge Disk Program with Resident Program

MERGE file o | R o
~ file is a string expression specifying a BASIC file in ASCil fo
- program saved with the A option. T
If fife is a constant, it must be enclosed in quotes.

The MERGE statement takes a BASIC program from disk and merges it with
the resident BASIC program in RAM.

Program lines in the disk program are inserted into the resident program in
sequential order. For example, if three of the lines from the disk program are
numbered 75, 85, and 90, and three of the lines from the resident program are
numbered 70, 80, and 100, when MERGE is used on the two programs, this
portion of the new program will be numbered 70, 75, 80, 85, 90, 100.

Ifline numbers in the disk program coincide with line numbers in the resident
program, the resident lines will be replaced by those from the disk program.
For example, if three of the lines from the disk program are numbered 5, 10,
and 20, and three of the lines from the resident program are numbered 10, 20,
and 30, when MERGE is used on the two programs, this portion of the new
program will be numbered 5, 10, 20, 30. Lines 10 and 20 of the new program
will be identical to lines 10 and 20 on the disk program.

MERGE closes all files and clears all variables. Upon completion, BASIC
returns to the command mode.

Example

Let’s say we have a BASIC program on disk, PROG2/TXT, which we want to
merge with the program we’ve been working on in RAM. Then we use:

MERGE "PROGZ/TLT"

383

MODEL Il BASIC

Sample Uses

MERGE provides a convenient means of putting program modules together.
For example, an often-used set of BASIC subroutines can be tacked onto a
variety of programs with this command.

Suppose the following program is in RAM:

8@ REM MAIN FROGRAM
Q@ GOEUE 1066

18@ REM PROGRAM L INE
118 REM FROGRAM LINE
128 REM FROGRAM L INE

138 END

And suppose the following subroutine, SUB, TXT, is stored on disk in ASCII
format:

1808 REM BEGINNING OF SUBROUTINE
1818 REM SUBROUTINE LINE
1@z8 REM SUBROUTINE L INE
1838 REM SUBROUTINE LINE

1840 RETURN

We can MERGE the subroutine with the main program using the statement
MERGE "SUB/TXT"
and the new program in RAM would be:

MATHM PROGRAM
REINIY

SROUTTNE

384

BASIC KEYWORDS

NAME
Rename a Disk File

oldname is a string expression containingthe currentname o

newname pression containing the new name t
. file. tmay n ssword or drive specificatio
‘Botholdname e valid TRsDOS file spe

This command allows you to rename a disk file without returning to TRSDOS. The
file name is changed, but the data in the file is left unchanged.

Examples
NAME “FILE” TO "FILE/OLD"

NAME B$ TO AS$

In this example, B$ contains the old file name and A$ contains the new file name.

385

"MODEL Il BASIC
 ———————— ..

NEW
Erase Program from Memory

NEW erases all program lines, sets numeric variables to zero and strin g variables to
null, and clears the screen.

Example
ME 1

386

T

BASIC KEYWORDS
L e e e

RENUM
Renumber Program

RENUM changes all line numbers in the specified range, as well as all line
number references appearing after GOTO, GOSUB, THEN, ON. . . GOTO, ON. . .
GOSUB, ON ERROR GOTO, RESUME, and ERL [relational operator] — throughout
the program.

All the RENUM arguments are optional.

Examples

REMNUM
Renumbers the entire resident program, incrementing by 10’s. The new
number of the first line will be 10.

RENUM 4000y 5000, 100
Renumbers all lines numbered from 5000 up. The first renumbered line will
become 6000, and an increment of 100 will be used between subsequent lines.

RENUM 120868, 1000
Renumbers line 1000 and all higher-numbered lines. The first renumbered
line will become line 10000. An increment of 10 will be used between
subsequent line numbers.

RENUM 1@y« 106
Renumbers the entire program, starting with a new line number of 100, and
incrementing by 100’s. Notice that the commas must be retained even though
the middle argument is gone.

RENUMY » 5
Renumbers the entire program, starting with a new line number of 10, and
incrementing by 5s.

387

"MODEL Il BASIC

Error Conditions

1.

388

RENUM cannot be used to change the order of program lines. For example,

if the original program has lines numbered 10, 20 and 30, then the
command:

REMUM 15, 35
is illegal, since the result would be to move the third line of the program

ahead of the second. In this case, an FC (illegal function call) error will
result, and the original program will be left unchanged.

- RENUM will not create new line numbers greater than 65529. Instead, an

FC error will result, and the original program will be left unchanged.

If an undefined line number is used inside your original program, RENUM
will print a warning message, UNDEFINED LINE XXXX in YYYY, where
XXXX 1s the original line number reference and YYYY is the original
number of the line containing XxXXx.

Note that RENUM will renumber the program in spite of this warning
message. It will replace the number XXXX with 5 blanks, and will
renumber YYYY, according to the parameters in your RENUM command.

For example, if your original program includes the line:
I GOTO 1@an

but does not include a line 1000, then RENUM will print a warning,
UNDEFITMED 1806 1n 119

and renumber the program. The text of original line 110 will be changed to:

GOTO

BASIC KEYWORDS

RUN
Execute Program

fying where you want p
d, the first line in the prograr

ion specifying a BASIC program stored
nust be enclosed in quotes. : :
If used, BasIC leaves all previ
oses all Open files. :

RUN followed by a line-number or nothing at all simply executes the program
in memory, starting at the specified line or at the beginning of the program.

RUN followed by a file specification loads a program from disk and then runs
it. Any resident BASIC program will be replaced by the new program.

RUN automatically CLEARS all variables.

Examples

RN
Execution starts at lowest line number.

RUN 166
Execution starts at line 100.

RUN " FROGRAM/ &
When you type the above line and press
program will be loaded and executed.

, the specified BASIC

UM "EDTTDATAY «
Loads and executes EDITDATA, leaving Open files Open.

389

" MODEL Il BASIC

-IlI-IIII-I-I-IIIIlIIIIIIIII-IIIIII-IIIIIIIIIIIIII

Sample Uses

Suppose you have two programs in memory. One of them begins at line 100
and ends at line 180; the other begins at 200 and ends at 350. Furthermore, the
first program has been appropriately terminated (i.e., 180 END). You want to
run the second program, stop, observe its output, and then run the first.
Type:
RUN 260
and the second program will execute. When you want to begin execution of
the first program, simply type:
Ri

Sample Program
Suppose you save the following program on disk with the name “PROG1/BAS”:

2@ PRINT "PROGI EXECUTING,.."
1@ RUN "PROGZ/RASGY

And save this program on disk with the name “PROG2/BAS”:

SE@0 PRINT "PROGE EXECUTING, .."
230 RUN "PROGL/BASGY

Now type:
RUN "PROGL/BAGY

and you'll see a simple example of program chaining. Hold down the EEIIAR
key to interrupt the program chain.

390

BASIC KEYWORDS =

SAVE
Save Program in a Disk File

The SAVE command lets you save your BASIC programs on disk. If the file you
use as the argument of SAVE already exists, its contents will be lost as the file is
re-created.

You can save a program in compressed or ASCII format. Using compressed
format takes up less disk space and is faster during SAVEs and LOADs. BASIC
programs are stored in RAM using compressed format.

Using the ASCII option makes it possible to do certain things that can’t be
done with compressed-format BASIC files. For example:

o A disk file must be in ASCII form before the MERGE command can be used.

e Programs which read in other programs as data typically require that the
data programs be stored in ASCII.

For compressed-format programs, a useful convention is to use the extension
BAS. For ASCIi-format programs, use /TXT.

Examples

SAVE "FILEL/BAE, JOHNGDOE : 39
saves the resident BASIC program in compressed format. The file name is

FILE1; the extension is/BAS; the password is JOHNQDOE. The file is placed on
drive 3.

EAVE "MATHPAK/TET"s A
saves the resident program in ASCII form, using the namc MATHPAK/TXT, on
the first non-write-protected drive.

Note: BASIC compressed-format files have a record length 0f 256. This record
length allows fastest saving, loading and copying (TRSDOS COPY
command). BASIC ASCII-format files (SAVE with A option) have a record
length of 1).

391

BASIC KEYWORDS

SYSTEM
Return to TRSDOS

ifying a TRSDOS command

P
‘be enclosed in quotes.
any of the TRSDOS “high memory commands”

0S ‘Reference Manual, Library Commands section.
3, to call DEBUG from BASIC, you must turn DEBUG on before

SYSTEM is used to return to TRSDOS, the disk operating system. The argument
command causes the System to execute the specified TRSDOS command and
immediately return back to BASIC. Your program and variables will be
unaffected.

If command is omitted, SYSTEM returns you to the TRSDOS READY mode.

Examples

S5YSTEM
Returns you to TRSDOS. Your resident BASIC program will be lost.

BYSETEM "DIRY
Causes the TRSDOS command, DIR (print directory) to be run, and then
returns to BASIC. Your resident BASIC program will remain intact.

Sample Program

5@ PRINT "THI® IS A PROGRAM FILE."

A0 PRINT "BEFORE SAVING 1T I WaNT T0O SEE@
A65 PRINT "WHAT FILENAMES HAVE BEEN USED., "
S7@ FOR N = 1 TO 1008 NEXT

280 SYSTEM "DIRY

S39@ FRINT "MOW T CAN CHOC
395 PRINT "WHICH HASN'T F
48 END

A FTLENAME"
BN USED, "

392

BASIC KEYWORDS
L e

Program Statements

These are generally used inside programs, rather than in the command mode.
They are divided into four categories:

® Definition and initialization

® Assignment

® Program sequence

¢ Input/output

Definition and Initialization

These statements perform several functions, including changing the default
values set initially by BASIC, and reserving or allocating memory space for
your program to use. Such statements generally are used at the beginning of a
program (Exceptions: DATA, ERASE, REM, RESTORE).

Keyword Purpose

[CLEAR | Clear variables and allocate string spac
DATA Store program data
DEFDBL | Define variables as double-precision
DEFFN Define function

| DEFINT - Define variables as integers
DEFSNG Define variables as single-precision
DEFSTR | Define variables as strings
DEFUSR Define entry point for USR routine

' DIM Dimension an array
ERASE Erase an array
RANDOM | Reseed random number generator
REM Comment line (remarks)
RESTORE | ResetDATA pointer

393

CLEAR
Clear Variables and Allocate String Space

: i stfihgjépébéi'ié :o", ittes

expression. If,memory-size is omitte

When used without an argument, CLEAR sets all numeric variables to zero,
and all string variables to null. When used with a single argument, this
command performs a second function in addition to the one just described: it
causes the Computer to set aside for string storage the specified number of
bytes. When BASIC is initialized 100 bytes are automatically set aside for
strings.

The amount of string storage CLEARed must equal or exceed the greatest
number of characters stored in string variables during execution; otherwise an
Out of String Space error will occur. By setting string storage to the exact
amount needed, your program can make more efficient use of memory. A
program which uses no string variables could include a CLEAR 0 statement, for
example.

You can also change the memory-protect address, i.e. the highest memory
address BASIC will use. This will be useful when you want to load a machine-
language routine from BASIC, and have BASIC not use that memory area.

Since CLEAR initializes all variables, you must use it near the beginning of
your program, before any variables have been defined and before any DEF
statements.
Examples

CLEMR
All variables are cleared but string space is unchanged.

CLEAR 75
All variables are cleared and 75 bytes of memory are reserved for string
storage.

394

BASIC KEYWORDS

Sample Program
A8 CLEAR 100
78 PRINT FRE(A%)
80 CLEAR @
9@ PRINT FRE(A%$)
108 CLEAR 100

CLEAR ZEB®. &1008
Clears variables, sets string space to 200 bytes, and makes 61000 the highest
address BASIC can use to run your programs. Memory contents above this
address will not be changed by BASIC. If you loaded BASIC in a 64K RAM
Computer but did not reserve any memory, you might like to reserve memory
while you are in BASIC. For example, suppose you have a machine-language
subroutine stored in a file named USRO/SUB. If the subroutine loads at 61001,
then you might put the following lines at the beginning of your program:

After BASIC executes lines 10 and 20, the subroutine will be in memory and
will be protected from over-writing by BASIC. Line 30 sets up a USRO call to
the subroutine.

395

MODEL Il BASIC

DATA
Store Program-Data

The DATA statement lets you store data inside your program to be accessed by
READ statements. The data items will be read sequentially, starting with the
firstitem in the first DATA statement, and ending with the last item in the last
DATA statement. Expressions are not allowed in a DATA list. If your string
values include leading blanks, colons, or commas, you must enclose these
values in quotes.

DATA statements may appear anywhere it is convenient in a program.
Generally, they are placed consecutively, but this is not required. It is
important that the data types in a DATA statement match up with the variable
types in the corresponding READ statement.

Examples

1348 DATA MEW YORKS CHICAGD. LOS ANGELES: PHILADELPHIAs DETROIT
This line contains five string data items. Note that quote marks aren’t needed,

since the strings contain no delimiters and the leading blanks are not

significant.

LA50 DATA Z2.72 3.1415% B.@174533 57, 29578

This line contains four numeric data items.

136 DATA "SMITHs T.H."s 38 "THORNs J.R."s 4]

The quote marks are required around the first and third items.

396

BASIC KEYWORDS i
_

Sample Program

CLG PRINT: READ MEADINGS: PRINT HEADINGS: PRINT STRING
ERROR GOTO 5@@

[READ DOBs READ N

] DOBS MNED GOTO 190

DaTH TP OEER DATE OF BIRTH M&TIONSLITY

DATA CCHERTINT 17403, ITALTAN

BaTAE GLUCK, 1 abs HMAN

DATH HAYDN. 17 AUGTRI AN

DATH MOZANRT . 17 AUETRIAN

R 411 S S S 4 THEN END

1@ ON ERROR GOTO @

i

A

This program prints a list of some major composers of the late 18th Century.
Notice we use an ON ERROR GOTO statement to allow the inclusion of data
lists of unknown length. For a different means of achieving the same end, see
the sample program for READ.

397

MODEL Il BASIC

DEFDBL
Define Variables as Double-Precision

DEFDBL causes variables beginning with any letter specified in letter list to be
classified as double-precision, unless a type declaration character is added
to the variable name. Double-precision values include 17 digits of precision,
though only 16 are printed out.

DEFDBL is ordinarily used at the beginning of a program. Otherwise, it might
suddenly change the meaning of a variable that lacks a type declaration
character.

Examples
DEFDRL. K
causes any variable beginning with the letter K to be double-precision.

DEFDEL @ S-7s A-E

causes any variable beginning with the letters Q, S through Z, or A through E
to be double-precision.

Sample Program

DEFDBL. ¥
A = 3, 14159265 IREY TR
Xom 3, L4 1EYReDIREYT 9

PRINT "PI IN SINGLE
FRINT "PI INM DOURLE

PRECISION 18" A
PRECISION IS" X

398

BASIC KEYWORDS

DEF FN
Define Function

pression sually ihvolving;trieja’grumeni(, pass

 formula is an exp
leftside of the e

quals sign.

The DEF FN statement lets you create your own function. That is, you only
have to call the new function by name, and the associated operations will
automatically be performed. Once a function has been defined with the DEF
FN statement, you can call it simply by inserting FN in front of function name.
You can use it exactly as you might use one of the built-in functions, like SIN,
ABS and STRINGS.

The type of variable used for function name determines the type of value the
function will return. For example, if function name is single precision, then
that function will return a single-precision value, regardless of the precision of
the arguments.

The particular variables you use as arguments in the DEF EN statement
(argument-1, . . .) are not assigned to the function. When you call the function
later, any variable name of the same type can be used.

Furthermore, using a variable as an argument in a DEF FN statement has no
effect on the value of that variable. So you can use that particular variable in
another part of your program without worrying about interference from DEF
FN.

The function can be defined with no arguments at all, if none are required. For
example:

DEFFNR=RND (90) + 9

defines a function to return a random value between 10 and 99.

399

MODEL Il BASIC

Examples

GEF FNRGASBE)Y = A& + INTC((B ~ (A —~ 1)) % RND(@)Y)
This statement defines function FNR which returns a random number between

integers A and B. The values for A and B are passed when the function is
“called”, i.e., used in a statement like:

Y o= FNR(Rls R2)

If R1 and R2 have been assigned the values 2 and 8, this line would assign a
random number between 2 and 8 to Y.

DEF FNL&H(X) = STRINGH{Xs "-")
Defines function FNL$ which returns a string of hyphens, X characters long.
The value for X is passed when the function is called:

FRINT FNL% (300
This line prints a string of 30 hyphens.

Here’s an example showing DEF FN used for a complex computation — in
double precision.

DEF FNAX#(A#s B = (A% ~ B#) = (A# - B
Detfines function FNX# which returns the double-precision value of the
square of the difference between A# and B#. The values for A# and B# are
passed when the function is called:

H

SH FMYX# CAHS B
We assume that values for A# and B# were assigned elsewhere in the
program.

Sample Program

710 DEF FNVAT) = (1087 + SOR(Z7I + T))/1é. 5%

EOOINPUT "AIR TEMPERATURE TN DEGREES CELSIUS": T

73 FRINT "THE SPEED OF SOUND IN AIR OF" T "DEGREES"
"OCELSIUS IS FNV(T) "FEET PER SECOND.®

400

[

BASIC KEYWORDS

DEFINT
Define Variables as Integers

DEFINT letter list -
letter list is a sequenceof individual letters or letter-ral
the list must be separated by commas. A letter-rang
letter1 - letter2 :

DEFINT causes variables beginning with any letter specified in letter list to be
classified as integer, unless a type declaration character is added to the

variable name. Integer values must be in the range [-32768,32767]. They are
stored internally in two-byte, two’s complement form.

DEFINT may be placed anywhere in a program, but it may change the meaning
of variable references without type declaration characters. Therefore, it is
normally placed at the beginning of a program.

Examples

DEFINT As I+ N
After the above line, all variables beginning with A, I, or N will be treated as
integers. For example, A1, AA and I3 will be integer variables. However,
Al#, AA# and I3# would still be double-precision variables, because type-
declaration characters always override DEF statements.

PEFINT I-N

causes any variable beginning with the letters I through N to be treated as an
integer variable.

Sample Program

401

iz MODEL II BASIC

DEFSNG
Define Variables as Single-Precision

dividual letters or letter-ranges
)y commas. A letter-range

DEFSNG causes variables beginning with any letter specified in letter list to be
classified as single-precision, unless a type declaration character is added to

the variable name. Single-precision values include 7 digits of precision,
though only 6 are printed out.

Example
DEFSNG Ty W7
causes any variables beginning with the letters [or W through Z to be treated

as single-precision. However, 1% would still be an integer variable, and 1# a
double-precision variable, because of their type declaration characters.

Sample Program
FCLE DEFINT Pr Pl

5 PRINMT "all. F*S ARE INT) LOONLY Ml
: IMPUT PWANT TO Make P HION WITH Y
&%

CRCTHERN
GG PP

JORE ALL, ETONY WE CAN MARKE PI

402

———

BASIC KEYWORDS

DEFSTR
Define Variables as Strings

d by commas. A lette

the list must be separal
o letter1 — letter2

DEFSTR causes variables beginning with any letter specified in letter-list to be
classified as strings, unless a type declaration character is added to the
variable name.

Example

causes any variables beginning with the letters C or L through Z to be string
variables, unless a type declaration character is added. After this line is
executed, L1 = “WASHINGTON” will be valid.

| Sample Program

7@ 5 = 555: PRINT "8§ =" &

B DEFSTR &

@ 5 = "SALTON SEA": PRINT "&§ = " §
~

403

=~ MODEL Il BASIC

DEFUSR
Define Point of Entry for USR Routine

igits 0.1,...,9; if n is omitted, 0 is assum
‘address to a machine-language routine. a
must be i (—32768,32767]. address may be any nu

- expression or constant from —32768 to 32767.

DEFUSR lets you define the entry points for up to 10 machine-language
routines.

Examples

assigns the entry point X'7D00’, 32000 decimal, to the USR3 call. When your
program calls USR3, control will branch to your subroutine beginning at
X7D0O0’.

DEFUSR = {(RASE + 16)
assigns start address (BASE + 16) to the USRO routine.

404

BASIC KEYWORDS

DIM
Set Up Array

ay2(dimension list), ...
 which name the arr

a numeric expression specifying;‘the»

This statement sets up one or more arrays for structured data processing.
Each array has one or more dimensions.

Arrays may be of any type: string, integer, single-precision or double-
precision, depending on the type of variable name used to name the array.

When the array is created, BASIC reserves space in memory for each element
of the array. (For string arrays, BASIC reserves space for pointers to the string
elements, not for the elements themselves.) All elements in a newly created
array are set to zero (numeric arrays) or the null string (string arrays).

Arrays can be created implicitly, without explicit DIM statements. Simply
refer to the desired array in a BASIC statement, e.g.,

If this is the first reference to array A(), then BASIC will create the array and
assign element A(5) the value of 300. Each dimension of an implicitly defined
array is defined to be 11 elements deep, subscripts 0-10.

When an array has been defined, it cannot be re-dimensioned. You must clear
the array first (with ERASE, CLEAR or NEW or other variable-clearing
operation).

Examples

I

Sets up a one-dimensional array AR(), containing 101 elements: A(0), A(1),
A(2), ..., A(98), A(99), and A(100). The type of the array depends on the type of
the name AR. Unless previously changed by a DEFINT, DEFDBL or DEFSTR
statement, AR is a single-precision variable.

Note: The array AR() is completely independent of the variable AR.

Sets up a two-dimensional array L1%(,), containing 9 X 26 integer elements,
L19%(0,0), L19%(1.0), L1%(2,0), . . ., L1%(8,0). L1% (0,1),L1% (1,1), . . ., L1% (8.1), . . .,
L19(0,25).L1%(1.25), . . ., L1%(8.25).

405

MODEL Ii BASIC

Two-dimensional arrays like AR(,) can be thought of as a table in which the

first subscript specifies a row position, and the second subscript specifies a
column position:

0.0 0,1 0,2 0.3 . 0,23 0,24 0,25
1,0 1,1 1,2 1.3 . 1,23 1,24 1,25

7,0 7,1 7,2 7,3 - 7,23 7,24 7,25
8.0 8.1 8.2 8.3 - 8,23 8,24 8,25

DIF iz

i s i be o R
Sets up three arrays:
B1(,,)andCR(, ,) are three-dimensional, each containing
3%6*9 elements.
LY (,) is two-dimensional, containing 51*3 string elements.

Sample Program
17E CLEAR 4B@@E: CLE
: TRPUT "HOW MANY MEMBERS
DTN L (s a)

STER R T E I /
PRINT "NAME OF MEMBER #° T:1: LINE INPUT"? "3 L#(ls1)

oAy

IN THE LTy M

Rt R
REONE g 3
THPUT " abhRrpe RN IO

INT
IR PTHE LIET I8
PRAMET T AGE
BTHINGS (8 ")
oM

= 1 Ty 4

S FRINT LE(lsd0

i

406

s

BASIC KEYWORDS

ERASE
Delete Array

ERASE array1 array2 : '
arra y1 arrayz are vanable names for currently defmed arrays

The ERASE statement eliminates arrays from a program and allows their
space in memory to be used for other purposes. ERASE will only operate on
arrays. It can’t be used to delete single elements of an array.

If one of the arguments of ERASE is a variable name which is not used in the
program, an Illegal Function Call will occur.

Arrays deleted in an ERASE statement may be re-dimensioned.

Example

Erases the three specified arrays.

Sample Program

The array that is set up in line 400 is destroyed by the ERASE A statement in
line 470. The memory space which is thereby released is now available for
further use. The array may be re-dimensioned, as we’ve chosen to do in line

480.

407

MODEL Il BASIC

RANDOM
Reseed Random Number Generator

RANDOM

RANDOM reseeds the random number generator. If your program uses the
RND function, the same sequence of pseudorandom numbers will be
generated every time the Computer is turned on and the program loaded.
Therefore, you may want to put RANDOM at the beginning of the program.
This will help ensure that you get a different sequence of pseudorandom
numbers each time you run the program.

Random needs to execute just once.

Sample Program

@00 CLE: RANDOM

1@ INPUT "PICK A NUMPER BETWEEM 1 AND =v: 4
Gl Bo= BMD(E)

3@ IF A = B THEN &5@

&40 PRINT "YOU LOSEs THE ANSWER 18" B " TRY AGAIN."
645 GOTO 616
H3@ PRINT "YOU PICKED THE RIGHT NUMPER -~ YOU WIN!'": GOTO

408

&Hid

T

BASIC KEYWORDS
R e

REM
Comment Line (Remarks)

REM

REM instructs the Computer to ignore the rest of the program line. This allows
you to insert remarks into your program for documentation. Then, when you
look at a listing of your program, or someone else does, it will be easier to
figure out.

IfREM is used in a multi-statement program line, it must be the last statement.

An apostrophe (’) may be used as an abbreviation for :REM.

Example
THIS I8 A REMARK

Sample Program

ZRAG INPUT & fREM Input zin@le-precizion
S1OE & o= BSE sREM Find smaller valuss
SRl PRINT A SREM Print

AAGR GOTO zlae SHREM Loor for ne=xt

The above program shows some of the graphic possibilities of REM
statements. Any alphanumeric character may be included in a REM
statement, and the maximum length is the same as that of other statements:
255 characters total.

409

MODEL Il BASIC

“

RESTORE
Reset Data Pointer

RESTORE causes the next READ statement to be executed to start over with

the first item in the first DATA statement. This lets your program re-use the
same DATA lines.

Sample Program

When this program is run,
THIS 16 THE FIRET ITEM THIS IS THE FIRST 1TEM

will be printed on the Display. Because of the RESTORE statement in line 170,
the second READ statement starts over with the first DATA item.

410

BASIC KEYWORDS

Assignment

An assignment statement puts a certain value into a variable or field or trades
the value of one variable with another.

CUBE e e v e
This statement assigns the value VERMILION to CLR$

DhAF Ak BR

A% and B% exchange values with one another.

Keywords Purpose

LET Assign value to variable

LSET Left-set data in direct access disk buffer
MID$= : Replace mid-string

READ Get value from DATA statement

RSET Right-set data in direct access disk buffer
SWAP Exchange values of variables

411

MODEL Il BASIC

LET
Assign Value to Variable

LET may be used when assigning values to variables. Model I BASIC doesn’t
require assignment statements to begin with LET, but you might want to use it

to ensure compatibility with those versions of BASIC that do require it.

Examples

i
fo
|
L

In each case, the variable on the left side of the equals sign is assigned the
value of the constant or expression on the right side.

Sample Program

S50 P = 1021 PRINT "p =v p
6B LET P o= 2001 PRINT "NOW P o= » p

412

BASIC KEYWORDS 7

LSET and RSET
Place Data in a Direct Access Buffer Field

yname
ssion) to be placed

These two statements let you place string data into fields previously set up by
aFIELD statement.

Examples

Suppose NM$ and ADS$ have been defined as field names for a direct access
file buffer. NMS$ has a length of 18 characters; AD$ has a length of 25
characters. The statements

fod

put the data in the buffer as follows:
[JIMp CRICKET,JR.BBY) [2000pEASTPPECANBST.bbBHbb|

Notice that filler blanks were placed to the right of the data strings in both
cases. If we had used RSET statements instead of LSET, the filler spaces would
have been placed to the left. This is the only difference between LSET and
RSET.

If a string item is too large to fit in the specified buffer field, it is always
truncated on the right. That is, the extra characters on the right are ignored.

413

- MODEL Il BASIC

MID$=
Replace Portion of String

MID$ (oldstring, position, length) = replacement-string ,
oldstring is the vanable -name of the string you wantto change
position is the numeric expression specnfymg the position of the furst charﬁ

ter to be changed ,
fength is a numeric expressuon specifying the number of characters ¢
replaced : ,
replacement~strtng isa stnng expressaon to replace the specmed pom
oldstring

Note: If replacement»stnng is shorter than /ength, then the entu’e repl
ment-stnng will be used.

This statement lets you replace any part of a string with a specitied new string,
giving you a powerful string editing capability.

Note that the length of the resultant string is always the same as the original
string.

Examples:
A$ = “LINCOLN” in the examples below:

This program uses INSTR to search for the slash (/). When it finds it (if it
finds it), it uses MID$=to substitute a “—" (CHR$(45)) for it.

PREIm A
414

BASIC KEYWORDS

READ
Get Value from DATA Statement

READ variable, . ..

READ instructs the Computer to read a value from a DATA statement and
assign that value to the specified variable. The first time a READ is executed,
the first value in the first DATA statement will be used; the second time, the
second value in the DATA statement will be read. When all the items in the
first DATA statement have been read, the next READ will use the first value in
the second DATA statement, etc. (An Out of Data error occurs if there are
more attempts to READ than there are DATA items.)

Examples

.....

reads a numeric value from a DATA statement.

HEAD D%y To U
reads values for S$, T and U from a DATA statement.
Sample Program

This program illustrates a common application for READ and DATA
statements.

RIAME " r Y AGE "
N

SORMDTOTHERN FRINT "ENMD OF LIST": END

POTHEM FPRINT Ngs AGE

S U ANDE

I X

aTA

415

MODEL 1l BASIC

RSET
Place Data in a Direct Access Buffer Field

RSET name = d

ssion) to be placed in the buffer field. .

See LSET for details.

416

BASIC KEYWORDS

SWAP
Exchange Values of Variables

SWAP variable1, variable 2

The SWAP statement allows the values of two variables to be exchanged.
Either or both of the variables may be elements of arrays. If one or both of the
variables are non-array variables which have not had values assigned to them,
an Illegal Function Call error will result. Both variables must be of the same
type or a Type Mismatch error will result.

The contents of F2# are put into F1#, and the contents of F1# are put into
F2#.

Sample Program

TER PRURBLE SORT USING SWAP
118 DEFINT &-2: DIM A5
126 ald@)y=f
125 PRINT "HERE ARE 30 NUMBERS BETWEEN 1 AND 18@"
13230 FOR I=1 TO 5@: A(D)=RND{I@@ ¢ PRINT A{I)3r NEXT
178 PRINTEPRINT:

FRINTYMOW SORTING DATA. START TIME = " TaR{48)y TIMES
1868 F={ K@ Fods ozet when a SWaF iz mades K oilz counter
190 IF AR 8 (K+1) THEN SHAP A(KYs A{RK+1Y: F=i FOWAP & zet F
S ReRels IR RKCO5@ THEN 198
IF F=1 THEN 186 9o throudgh data again until F=@
FRINT: PRINT"DATA SORTED. END TIME = " TaR{48) TIiMEs
FRIMT: PRINTUHERE I7 IS IN ORDERs®
FOR I= 1 TO 5@: PRINTAI» s NEXT

417

MODEL Il BASIC

Program Sequence

Control in a BASIC program normally proceeds from one line to the next
higher-numbered line to the next higher-numbered line, until the end of the
program is reached. The program sequence statements can be used to alter
thic step-by-step process. With the help of these statements, you can alter the
transfer of control in your BASIC program to produce jumps to other parts of
the program, iterative loops, and other useful control structures.

For example, the statement
IFNOT X >5 AND NOT Y > 8 THEN 100

transfers control to line 100 if X is not greater than 5, and, at the same time, Y
is not greater than 8.

FOR I = 1TO 10000: NEXT I

Program control will pass back and forth between the FOR statement and the
NEXT statement ten thousand times before moving on to the next line,
causing a delay of approximately eleven seconds.

Keyword Purpose

END End program
FOR/NEXT Set up loop

GOsuB Call subroutine
GOTO Branch to line number

IF.THEN.ELSE| Test conditional expression
ON...GOSuB Multi-way subroutine call
ON...GOTO Multi-way branch to line numbers
RETURN Return from subroutine

418

N

BASIC KEYWORDS

END
Terminate Program

END terminates execution of a program. Some versions of BASIC require END
as the last statement in a program. In Model II BASIC it is optional. END is
primarily used in Model II BASIC to force execution to terminate at some
point other than the last sequential line in the program.

Sample Program

The END statement in line 60 prevents program control from ““crashing” into
the subroutine. Now line 100 can only be accessed by a branching statement
such as line 50.

e

419

FOR/NEXT
Establish Program Loop

FOR variable =

lue TO final value STEP increment

or single-precision variable name; var

opttonal aft : ; : ;
mlt:al value ;‘lu , and increment are numeric constants, variat

y

STEP mcrement !S optlonal if STEP increment is omitted, a value of 1is
assumed.

FOR...TO... STEP/NEXT opens an iterative (repetitive) loop so that a
sequence of program statements may be executed over and over a specified
number of times.

The first time the FOR statement is executed, variable is set to initial value.
Execution proceeds until a NEXT is encountered. At this point, variable is
incremented by the amount specified in step increment. (If increment has a
negative value, then variable is actually decremented.) STEP increment is

often omitted, in which case an increment of 1 is used.

Then variable is compared with final value. If variable is greater than final
value, the loop is completed and execution continues with the statement
following NEXT. (If increment is a negative number, the loop ends when
variable is less than final value.) If variable has not yet exceeded final value,
control passes to the statement following the FOR statement.

Sample Programs

When this program is run, the following output is produced:
LR I A - B B SR SRR |

FOR/NEXT loops may be “nested”:

NEXT can be used to close nested loops, by listing the counter-variables. For
example, delete line 920 and change 930 to:

Biiext Te

BASIC KEYWORDS

GOSUB
Go to Specified Subroutine

GOSUB transfers program control to the subroutine beginning at the specified
line number. When the Computer encounters a RETURN statement in the
subroutine, it then returns control to the statement which follows GOSUB.
GOSUB is similar to GOTO in that it may be preceded by a test statement.
Every subroutine must end with a RETURN.

Example

H

When this line is executed, control will automatically branch to the sub-
routine at 1000.

Sample Program

Control is transferred from line 260 to the subroutine beginning at line 280.
Line 290 instructs the Computer to return to the statement immediately
following GOSUB.

421

MODEL Il BASIC

GOTO
Go To Specified Line Number

GOTO transfers program control to the specified line number. Used alone,
GOTO line number results in an unconditional (automatic) branch. However,
test statements may precede the GOTO to effect a conditional branch.

You can use GOTO in the command mode as an alternative to RUN. GOTO line
number causes execution to begin at the specified line number, without an
automatic CLEAR. This lets you pass values assigned in the command mode to
variables in the execute mode.

Example

When this line is executed, control will automatically be transferred to line
100.

Sample Program

URL e ERD

422

BASIC KEYWORDS

IF...THEN...ELSE
Test Conditional Expression

IF test THEN statement or line number ELSE statement or line number
ELSE - statement or line number is optional.

The IF... THEN... ELSE statement instructs the Computer to test the
following logical or relational expression. If the expression is true, control will
proceed to the THEN clause immediately following the expression. If the
expression is false, control will jump to the matching ELSE statement (if one is
included) or down to the next program line.

Examples

R
RSt R I

If X 1s greater than 127, control will pass to PRINT and then to END. If X is not
greater than 127, control will jump down to the next line in the program,
skipping the PRINT and END statements.

IF X 5 B AMD Y <% © THEN Y = X + 1@
If both expressions are true, then Y will be assigned the value X + 180.

Otherwise control will pass directly to the next program line, skipping the
THEN clause.

| B

If A'isless than B, the Computer prints the fact and then proceeds down to the
next program line, skipping the ELSE statement. If A is not less than B, the
Computer jumps directly to the ELSE statement and prints the specified
message. Then control passes to the next statement in the program.

TF &% = 5yREEY OTHERN 218 BELSE
If A$ is YES then the program branches to line 210. If not, the program skips
over to the first ELSE, which introduces a new test. If A$ is NO then the

program branches to line 400. If A$ is any value besides NO or YES, the
program skips to the second ELSE and the program branches to line 370.

TF oA = UNOY THEN 400 BLSE

N

423

MODEL Il BASIC

IF A .00l THEN B o= 17483 A = A/5%: ELSE 1510
If the value of A is indeed greater than .001, then the next two statements will
be executed, assigning new values to B and A. Then the program will drop
down to the next line, skipping the ELSE statement. But if A is less than or
equal to .001, then the program jumps directly over to ELSE, which then
instructs it to branch to 1510. Note that GOTO is not required after ELSE.

Sample Program

IF THEN ELSE statements may be nested. However, you must take care to
match up the IFs and ELSEs.

1@34@ INFUT "ENTER TWO NUMBERSY: A, B

1@3@ IF & <= B THEN IF & < B THEN PRINT &% ELSE
PRINT "NEITHER "3 BELSE PRINT B

1@6 PRINT "I& S8MALLER THAM THE OTHER.,®

For any pair of numbers that you enter, this program will pick out and print
the smaller of the two.

424

BASIC KEYWORDS -

I

ON...GOSUB
Test and Branch to Subroutine

On test-value GO

ine number, line number, . . .
test-value is

eric expression between 0 and 255.

ON... GOSUB is a multi-way branching statement like ON GOTO, except that
control passes to a subroutine rather than just being shifted to another part of
the program. For further information, see ON GOTO.

Example

Uil

When program execution reaches the line above, if Y = 1, the subroutine
beginning at 1000 will be called. If Y = 2, the subroutine at 2000 will be called.
It Y = 3, the subroutine at 3000 will be called.

Sample Program

425

= MODEL Il BASIC

ON...GOTO
Test and Branch to Different Program Line

ON test-valie GOTOfl‘in‘enumber, line number, . ..
‘test-value is a numeric expression between 0 and 255.

ON... GOTO is a multi-way branching statement that is controlled by a test
value.

WhenoON. . .GOTOis executed, test-value is evaluated and the integer portion
is obtained. We’ll refer to this integer portion as J. The Computer counts over
to the Jth line number in the list of line numbers after GOTO, and branches to
this line number. If there is no Jth line number, then control passes to the next
statement in the program.

Notice that if test-value is less than zero, an error will occur. There may be any
number of line numbers after GOTO.

Examples

Sy Wl NSNS RLIR L 1 AR L 1R
VA L

says “Evaluate MI.

If integer portion of MI equals 1 then go to line 150;
If it equals 2, then go to 160;

If it equals.3, then go to 170;

If it equals 4, then go to 150;

If it equals 5, then go to 180;

If the integer portion of MI doesn’t equal any of the numbers 1 through 5, advance to
the next statement in the program.”

Sample Program

F RN

SGN(X) returns —1 for X less than zero; 0 for X equal to zero; and +1 for X
greater than 0. By adding 2, the expression takes on the values 1, 2, and 3,
depending on whether X is negative, zero, or positive. Control then branches
to the appropriate line number. '

426

T

BASIC KEYWORDS
o

RETURN
Return Control to Calling Program

RETURN ends a subroutine by returning control to the statement immediately
following the most-recently executed GOSUB. If RETURN is encountered
without execution of a matching GOSUB, an error will occur.

Sample Program

i T i1

427

MODEL Il BASIC
S

Input/Output

These statements perform input/output to the keyboard, video display, line
printer, and disk files. They are grouped accordingly in this section.

Note: Before attempting any input/output to BASIC data files, you should
read Chapter 4, File Access Techniques, and try out the sample programs
given there.

Keyword Purpose

keyboard
LINE INPUT Input line from keyboard

 disk buffer (direct access)
Get a record from a disk file (direct access)

rom a disk file (sequen'nal access)k
i ea(dnrect or sequential acce :
PRINT#

428

BASIC KEYWORDS

INPUT
Input Data to Program

: tN je”; var) ":Iéff,fvariab/e 2,...

When BASIC encounters the INPUT statement in a program it stops execution
of the program until you enter certain values from the keyboard. The INPUT
statement may specify a list of string or numeric variables, indicating string or
numeric values to be input. For instance, INPUT X$, X1, Z$, Z1 calls for you
to input a string literal, a number, another string literal, and another number,
in that order.

When the statement is encountered, the Computer will display a 2. You may
then enter the values all at once or one at a time. To enter values all at once,
separate them by commas. (If your string literal includes leading blanks,
colons, or commas, you must enclose the string in quotes.)

If you | il the values one at a time, the Computer will display a 22,
indicating that more data is expected. Continue entering data until all the
variables have been set, at which time the Computer will advance to the next
statement in your program.

Be sure to enter the correct type of value according to what is called for by the
INPUT statement. For example, you can’t input a string-value into a numeric
variable. If you try, the Computer will display a ’REDO FROM START and give
you another chance to enter the correct type of data value, starting with the
first value to be called for by the INPUT list.

Ifyou i more data elements than the INPUT statement specifies, the
Computer will display the message PEXTRA IGNORED and continue with
normal execution of your program.

You can include a “prompting message” in your INPUT statement. This will
make it easier to input the data correctly. The prompting message must
immediately follow INPUT. It must be enclosed in quotes, and it must be
followed by a semicolon.

You can enter any valid constant. 2, 105, 1, 3#, etc. are all valid constants.

429

MODEL Il BASIC

Examples

T B s
LD Y

If this line were part of your program, when this line is reached, you must type
any number and press ENTER before the program will continue.

IRPLT

Here you would have to type in a string when this line is reached. The string
wouldn’t have to be enclosed in quotation marks unless it contained a
comma, a colon, or a leading blank.

-
i

This line would print a message on the screen which would help the person at
the keyboard to enter the right sort of data.

Sample Program

SEOCINPUT PHOW MUCH DO YOU WE
U FPRINT "ON MaRS

RETR R T o

YOUD WD WETGH GROUTY DINTOX

430

TROUNDE Y

LINE INPUT
Input a Line from Keyboard

LINE INPUT [“prompt”] ;variable
prompt is a prompting message o
- variable is the name that will be assigned to the line you type in

LINEINPUT (or LINEINPUT — the space is optional) is similar to INPUT, except:

® The Computer will not display a question mark when waiting for your
operator’s input

® Each LINE INPUT statement can assign a value to just one variable

® Commas and quotes your operator can use as part of the string input

¢ Leading blanks are not ignored — they become part of variable

® The only way to terminate the string input is to press [EI{E

LINE INPUT is a convenient way to input string data without having to worry
about accidental entry of delimiters (commas, quotation marks, colons, etc.).
The il key serves as the only delimiter. If you want anyone to be able
to input information into your program without special instructions, use the
LINE INPUT statement.

Some situations require that you input commas, quotes and leading blanks as
part of the data. LINE INPUT serves well in such cases.

Examples:

DUTRIED T RIEMIT Ao

Input A$ without displaying any prompt.

LEET DoTLAnY

Lo i

Displays a prompt message and inputs data. Commas will not terminate the
input string, as they would in an input statement.

431

Notice that when line 210 is executed, a question mark is not displayed after
the statement, “Type in your name”’. Also, notice on line 230 you can answer
the question “Why” with a statement full of delimiters, commas and quotes.

432

N

BASIC KEYWORDS

CLS
Clear Screen

CLS clear the screen. It fills the Display with blanks and moves the cursor to
the upper-left corner. Alphanumeric characters are wiped out as well as

graphics blocks. CLS can be very useful if you should want to present an
attractive Display output.

Sample Program

R ";r 1; i

433

- MODEL Il BASIC

PRINT, PRINT@, PRINT TAB,
PRINT USING
Output to Display

PRINT@ position, item list
@ position is a number between 0 and 191 9, 0r
@ position is two numbers, (row, column), row between 0 and 23 and
column between 0 and 79. If @ position is omitted, the current cursor
position is used.
item list is a list composed of any of the following items:
TAB (number)

number is a numeric expression between 0 and 255
expressions,

where any of these items may be separated by the optional delimiters *,”
and“;”.

PRINT@ position, USING format: item list
format is one or more of the field specifiers #,*, $, \ , !, “” (space),
or any alphanumeric character.
item list is a list composed of string or numeric expressions, which must be
separated by the delimiters “,” or “:”

y -

PRINT prints an item or a list of items on the Display. The items to be printed
may be separated by commas or semicolons.

If commas are used, the cursor automatically advances to the next tab
position before printing the next item. If semicolons are used, spaces are not
inserted between the items printed on the Display. There are five tab
positions to a line, at columns 0, 14, 28, 42 and 56.

Use semi-colon as delimiter between items to avoid ambiguities. For example,
a semi-colon is required in A;B but not in A$BS.

A semicolon or comma at the end of a line overrides the cursor-return so
that the next PRINT begins where the last one left off. If no trailing

punctuation is used with PRINT., the cursor drops down to the beginning of
the next line.

Positive numbers are printed with a leading blank, instead of a plus sign. All
numbers are printed with a trailing blank. No blanks are inserted before or
after strings; you can insert them with the help of quotation marks.

434

BASIC KEYWORDS

Examples
"DEWEY "

“I” is printed at tab position 0. “VOTEDFORTHATRASCAL” is printed at 28;
“DEWEY” at 56.
PRIMT A% e O%

This line is fully equivalent to

PRINT &%

Sample Program

When run. this program gives
TOOWN & BEDEELD AND MY WIFE ORNS &,

PRINT @ n,
PRINT @ (row, column),

PRINT@ specifies exactly where printing is to begin. The location specified
must be a number between 0 and 1919, or a pair of numbers (r, ¢) with0 < =r<=
79 and 0 <= ¢ <24,

Whenever you cause something to PRINT@ on the bottom line of the Display,
there is an automatic line feed; everything on the Display moves up one line.
To suppress this automatic line feed, use a trailing semicolon at the end of the
statement.
Examples
PRIMNT @ (11+3%)s "x®
Prints an asterisk in the middle of the Display.

PRINT @ @ "#%"
Prints an asterisk at the top left corner of the Display.

See *“Using the Video Display” in Chapter 1 for an illustration of the print
positions.

PRINT "I" w4y "VOTEDY 3 "FOR"™ 35 "THAT" = "TRASCALY

435

FRIMTL e ML R

Run this to find out where position 550 is.

PRINTE 106,

Let’s say the value of X in the above example is 7. ““7”" will be printed at
location 1001, not 1000. Recall that a positive number will be printed with a
leading blank to indicate its sign rather than a plus sign. So a space is printed
at 1000 and the number itself is printed at 1001,

Sample Program

13@ LINE INPUT "TYPE SOMETHING ING YOUPLL GET AN ECHO.

1535 CLs

168 PRINTa 500 L$
7@ PRINTA 1000, 1%
18@ PRINTS 1500, L&

PRINT TAB (n)

PRINT TAB moves the cursor to the specified position on the current line (or
on succeeding lines if you specify TAB positions greater than 79). TAB may be
used more than once in a print list.

Since numerical expressions may be used to specify a TAB position, TAB can
be very useful in creating tables, graphs of mathematical functions, etc.

TAB can’t be used to move the cursor to the left. If the cursor is to the right of
the specified position, the TAB statement will simply be ignored.

Example

Notice that no punctuation is needed after the TAB modifiers.

Sample Program
2 OCLS
SA@CFRINT TAB(Z) "CATALOG NO,"s TAR(16) "DE
240 PRINT TAB(39) "QUANTITY"; TAB(S1) "PRIC
245 PRINT TAB(&S) "TOTAL PRICE®

SCRIPTION OF
E PER ITEM®;

436

i L%

ITEM" s

BASIC KEYWORDS
e ———— .

PRINT USING format

The PRINT USING statenient allows you to specify a format for printing string
and numeric values. It can be used in applications such as printing report

headings, accounting reports, checks, or wherever a specific print format is
required,

The PRINT USING statement ordinarily takes this form:

PRINT USING format, item list
PRINT USING takes the value item list, inserts it into the expression format as
directed by the field specifiers of format, and prints the resulting expression.
format may be expressed as a variable as well as a constant.

Note: PRINT USING does not automatically print leading and trailing blanks
around numbers, except as indicated in format.

Examples of Field Specifiers

Inall the examples below, the first line representsa program line as you might
type it in; the second line is the value returned after the first line has been run.

The following field specifiers may be used as part of format:

Thissignspecifies the position of each digit located in the numeric value.
The number of # signs you use establishes the numeric field. If the
numeric field is greater than the number of digits in the numeric value,
then the unused field positions to the left of the number will be displayed
as spaces and those to the right of the decimal point will be displayed as
zeros. If the numeric field is too small to hold a particular number, the

number will be displaved with a leading % sign.

e The decimal point can be placed anywhere in the numeric field
established by the # sign. Rounding-off will take place when digits to the
right of the decimal point are suppressed.

ORI L X N O T = o SO
AL K R I

BT LK L W

’ The comma — when placed in any position between the first digit and
the decimal point — will display a comma to the left of every third digit

s required. The comma establishes an additional position in the field.
A L i

RN TN N
g

v rme s -
S B lndyy RN

** Two asterisks placed at the beginning of the field will cause all unused

positions to the left of the decimal to be filled with asterisks. The two asterisks
will establish two more positions in the field.

437

- MODEL Il BASIC

$$ ‘Two dollar signs placed at the beginning of the field will act as a
floating dollar sign. That is, the dollar sign will occupy the first
position preceding the number.

By 1L

**§ If these three signs are used at the beginning of the field, then the
vacant positions to the left of the number will be filled by the * sign
and the $ sign will again position itself in the first position preceding
the number.

+ When a + sign is placed at the beginning or end of the field, it will be
printed as specified as a + for positive numbers or as a — for negative
numbers.

When a — sign is placed at the end of the field, it will cause a negative
sign to appear after all negative numbers. A space will appear after
positive numbers.

438

BASIC KEYWORDS

. This causes the Computer to use the first string character of the current
value.

PRINT UBING "1y P TANTANTAY

T

\ spaces \ To specify a string field of more than one character,\ spaces\
is used. The length of the field will be the number of spaces between the

\ signs plus 2. Use to enter the backslash character.

One space between the backslashes:

PRINT USTHG "\ N': "TaNZaNIa"
Tk

Four spaces between the backslashes:

“\ N's CTAMZAMIA®s CETHIORIA®

Any other character that you include in format will be displayed as a string
literal.

SN EIRE

If item list is a numeric value, the % sign is automatically printed if the field
is not large enough to contain the digits to the left of the decimal point. The
entire number will be displayed preceded by the percent sign.

A AA A Indicates the number should be printed out in exponential (E or D)
format.

FRINT UST]

Bk b A

439

MODEL Il BASIC

In line 480, each ! picks up the first character of one of the following strings
(F$, =.””, M$, and ".” again). Notice the two spaces in “*!!§§!!”. These two
spaces insert the appropriate spaces after the initials of the name (see below).
Also notice the use of the variables A$ for format and P for item list in line 500.
Any serious use of the PRINT USING statement would probably require the use
of variables at least for item list rather than constants. (We've used
constants in our examples for the sake of better illustration.)

When the program above is run, the output should look something like this:

AT
WHAT 15

440

BASIC KEYWORDS -

LPRINT, LPRINT TAB, LPRINT USING
Output to Printer

LPRINT item list
item list is a list composed of any of the following items:

TAB (number)
number is a numeric expression between 0 and 1919

string or numeric expressions
where any of these items may be separated by commas or semi-colons

LPRINT USING format; item list
format is one or more of the field specifiers #, *, $,\ , |, or other characters.

item list is a list composed of string or numeric expressions, which must be
separated by commas or semi-colons.

LPRINT, LPRINT TAB, and LPRINT USING allow you to output to the Line

Printer.

Examples

i § PR B A E S I
Sends the formatted value BbbY 2.2 to the Line Printer.

For more examples and a more detailed explanation of how to use these

statements, see PRINT.
Sample Program

Note: Before using LPRINT, you must initialize the printer software with the
TRSDOS FORMS command.

I
441

MODEL Il BASIC

Close Access to File

CLOSE buffer-number, buffer-number, . . .
buffer-number = 1,2,3,...,15
If buffer-number is omitted, all open files will be closed.

This command terminates access to a file through the specified buffer or
buffers. If buffer-number has not been assigned in a previous OPEN
statement, then

CLOSE buffer-number

has no effect.

Do not remove a diskette which contains an Open file. Close the file first. This
is because the last records may not have been written to disk yet. Closing the
file will write the data, if it hasn’t already been written.

The following actions and conditions cause all files to be closed:
CLEAR or CLEARn
NEW
RUN (except RUN file, R)
LOAD (except LOAD file, R)
MERGE
Editing a program line
Adding or deleting a program line

Examples

CLooily Le et
Terminates the file assignments to buffers 1, 2, and 8. These buffers can now
be assigned to other files with OPEN statements.

CLOBE FIRSTY + COURNTY

Terminates the file assignment to the buffer specified by the sum FIRST% +
COUNT%.

442

T

TN

BASIC KEYWORDS

FIELD
Organize a Direct File-Buffer Into Fields

FIELD buffer-number, length AS name, length AS name, . . .
buffer-number specifies a direct-access file buffer (1,2,3, . . .15)
length gives the number of bytes in the field
name defines a variable name for the field

The FIELD statement is used to organize a direct file buffer so data can

be passed from BASIC to disk and disk to BASIC. Before fielding a buffer, you
must use an OPEN statement to assign that buffer to a particular disk file.
(The direct access mode, i.e., OPEN “D”, . . . must be used.) The sum of all
lengths should equal the record length assigned when the file was opened.

You may use the FIELD statement any number of times to “‘re-organize” a
file buffer. FIELDing a buffer does not clear the contents of the buffer; only
the means of accessing the buffer (the field names) are changed.

Furthermore, two or more field names can reference the same area of the
buffer.

Examples

FIELD 1. 128 AB A%y 128 A5 P4

This statement tells BASIC to assign two 128-byte fields to the variables

A$ and BS$. If you now print A$ or B$, you will see the contents of the field.
Of course, this value would be meaningless unless you’ve previously used
GET to read a 256-byte record from disk.

Note: Alldata — both strings and numbers — must be placed into the bufferin
string form. There are three pairs of functions (MKI$/CVI, MKS$/CVS, and
MKD$/CVD) for converting numbers to strings and strings to numbers.

The first 16 bytes of buffer 3 are assigned the field name NM$; the next 25
bytes, ADS$; the next 10, CY$; the next 2, ST$; the next 7, ZP$.

443

MODEL Il BASIC

GET
Get a Record from Disk (Direct Access)

GET buffer-number, record number A
buftfer-number specifies a direct access file buffer (1,2,3, . . 18)
record n ecifies which record to GET in the file; if omit

current re beread. - o

This statement gets a data record from a disk file and places it in the

specified buffer. Before using GET, you must open the file and assign a buffer
toit.

When BASIC encounters the GET statement, it reads the record number
from the file and places it into the buffer. If you omit record number it will

read the next record. The actual number of bytes read equals the record
length, set when the file is Opened.

The next record is the record whose number is one greater than that of the last

record accessed. The first time you access a file via a particular buffer, the
current record is set to 1.

GET with a Default Record Number

The first time you use GET or PUT after opening a file, you must specify the
record number. For subsequent GET or PUT statements, you can omit the

record number, in which case BASIC will use the record following the last
record accessed. In short:

1. For the first direct access of a file, use:

GET buffer-number, record-number
2. For subsequent accesses, you may use

GET buffer-number
to get the next record (the record following the last record accessed).

Examples

e

Gets the next record into buffer 1.
GET Lo

Gets record 25 into buffer 1.

444

INPUT#
Sequential Read from Disk

This statement inputs data from a disk file.

With INPUT#, data is input sequentially. That is, when the file is opened, a
pointer is set to the beginning of the file. The pointer advances each time data
1s input. To start reading from the beginning of the file again, you must close
the file buffer and re-open it.

INPUT# doesn’t care how the data was placed on the disk — whether a single
PRINT# statement put it there, or whether it required ten different PRINT#
statements. What matters to INPUT# is the position of the terminating
characters and the EOF marker.

When inputting data into a variable, BASIC ignores leading blanks. When the
first non-blank character is encountered, BASIC assumes it has encountered
the beginning of the data item.

The data item ends when a terminating character is encountered or when a
terminating condition occurs. The terminating characters vary, depending on
whether BASIC is inputting to a numeric or string variable.

Examples

Flale Aa

Sequentially inputs two numeric data items from disk and places them in A
and B. File-buffer #1 is used.

INFUTHA4s A%y BE. 0%

Sequentially inputs three string data items from disk and places them in AS$,
B$, and C$. File-buffer #4 is used.

445

- MODEL Il BASIC

LINE INPUT#
Read Line of Text from Disk

LINE INPUT# buffer-number, name
buffer-number specifies a sequential input file buffer (1,2,3, .. .15)
variable is the variable name to contain the string data

Similar to LINE INPUT from the keyboard, LINE INPUT# reads a “line” of

string data into name. LINE INPUT# is useful when you want to read an ASCII-
format BASIC program file as data, or when you want to read in data without
following the usual restrictions regarding leading characters and terminators.

LINE INPUT# reads everything from the first character up to

® a carriage return character which is not preceded by a line feed character
e the end-of-file
e the 255th data character (the 255th character is included in the string)

Other characters encountered — quotes, commas, leading blanks, line feed —
carriage return sequences — are included in the string.

Example
If the data on disk looks like

1@ CLEAR 500
SEOOPEN YTI's La UPROGY

then the statement

could be used repetitively to read each program line, one line at a time.

446

TN

BASIC KEYWORDS -..

OPEN
Open a Disk File

OPEN mode, buffer-number, file, record-length

mode is a string expression or constant of which only the first character is
significant; this character specifies the mode in which the file is to be
opened: | for sequential input, O for sequential output, D for direct-
access input-output. “R” can also be used for direct (“random”) 1/0.

buffer-number specifies a buffer to be assigned the file specified by filespec

file defines a TRSDOS file specification

record-length = 0,1,2. . .256. Ifrecord-length is omitted or if a value of 0 is
used, the record length will be 256.

This statement makes it possible to access a file. mode determines what kind
of access you’'ll have via the specified buffer. buffer-number determines which
bufter will be assigned to the file. file names the file to be accessed. If file does
not exist, then TRSDOS may or may not create it, depending on the access
mode.

When a file is open, it is referenced by the buffer-number which was assigned
to it. GET buffer-number, PUT buffer-number, PRINT# buffer-number,
INPUT# buffer-number, all reference the file which was opened via buffer-
number. The mode must be correct.

Once a buffer has been assigned to a file with the OPEN statement, that buffer
can’t be used in another OPEN statement. You have to Close it first.

Examples

WRERD T L R e
Opens the file CLIENTS/TXT for sequential output. Buffer 1 will be used. If the
file does not exist, it will be created. If it already exists, then its previous
contents are lost.

DREERD VDN e PR O T ALY

Opens the file DATA/BAS with the password SPECIAL in the direct access
mode. Buffer number2 is used. IfDATA/BAS does not exist, it will be created
on the first non write-protected drive.

OPEN "D"y 5. "TEST/RAS": &4
Opens the file TEXT/BAS for direct access. Buffer number 5 is used. The

record length is 64. If this record-length does not match the record-length
assigned to TEXT/BAS when the file was originally opened, an error will occur.

See Chapter 4 for programming information.

-

447

PRINT#
Sequential Write to Disk File

PRINT# buffer-number, item list

buffer-number specifies a sequential output file buffer (1,2,3,...15)
item list specifies the data to be written to disk
It is analogous to item list used in a normal PRINT statement. See PRINT.

This statement writes data sequentially to the specified file. When you first
open a file for sequential output, a pointer is set to the beginning of the file.
Thus the first PRINT# places data at the beginning of the file. At the end of
each PRINT# operation the pointer advances, so values are written in
sequence.

A PRINT# statement creates a disk image similar to what a PRINT to the
Display creates on the screen. Remember this, and you’ll be able to set up
your PRINT# list correctly for access by one of more INPUT statements.

PRINT# does not compress the data before writing it to disk. It writes an

. /‘J\

ASCII-coded image of the data.
Examples
It A =123.45
will write a nine-byte character sequence onto disk:

P'123.45 0 carriage return
where “f” indicates a blank.
The punctuation in the PRINT list is very important. Unquoted commas and
semicolons have the same effect as they do in regular PRINT to Display
statements. For example, if A = 2300 and B = 1.303, then

BRIMTHL . Sl
places the data on disk as

Y 2300 BbBBBbBBYIYE 1.3038 carriage return

T~

448

BASIC KEYWORDS

The comma between A and B in the PRINT# list causes 10 extra spaces in the
disk file. Generally you wouldn’t want to use up disk space this way, so you
should use semicolons instead of commas.

Files can be written in a carefully controlled format using PRINT# USING. Or

you can use this option to control how many characters of a value are written
to disk.

For example, suppose A$ = “LUDWIG”, B$ = “VAN", and C$ =
“BEETHOVEN”. Then the statement

PRINTH#I:USING" 1, 1.\ \e $AHIPE 0%
would write the data in nickname form:

1

(In this case, we didn’t want to add any explicit delimiters.) See PRINT for
more information on the USING option.

449

MODEL Il BASIC
O S

PUT
Write a Record to Disk (Direct Access)

This statement moves data from the buffer of a file into a specified place in the
file. Before putting data into a file, you must

I. Open a file, which assigns a buffer and defines the access mode (which
must be D)

2. Field the buffer, so you can

3. Place data into the buffer with LSET and RSET statements.

The first time you access a file via a particular buffer, the next record is set
equal to 1. (The next record is the record whose number is one greater than
the last record accessed.)

If record number is higher than the end-of-file record number, then record
number becomes the new end-of-file record number.

PUT with a Default Record Number

The first time you use GET or PUT after opening a file, you must specify the
record number. For subsequent GET or PUT statements, you can omit the
record number, in which case BASIC will use the record following the last
record accessed. In short:

1. For the first direct access of a file, use:

PUT buffer-number, record-number

2. For subsequent accesses, you may use

PUT buffer-number
to put the next record (the record following the last record accessed).
Examples

Puts the next record into buffer 1.
BUT 1w

R RN

Puts record 25 into buffer 1.
]

450

P

BASIC KEYWORDS -

Debug Statements

These statements can help you debug (isolate errors in) programs you are

developing. They can also be used to create routines that trap errors without
provoking BASIC error messages.

Purpose

Get line number after error

Simulate error

RESUME End error trap

Turn trace off

451

MODEL Il BASIC

CONT
Resume Execution of Program

When program execution has been stopped (by the key or by a

STOP statement in the program), type CONT and to continue

execution at the point where the stop or break occurred. During such a break

or stop in execution, you may examine variable values (using PRINT) or

change these values. Then type CONT and and execution will

continue with the current variable values. CONT, when used with STOP and the
key, is primarily a debugging tool.

Note: You cannot use CONT after EDITing your program lines or otherwise
changing your program. CONT is also invalid after execution has ended
normally. .

See also STOP.

.

452

BASIC KEYWORDS

ERL
Get Line Number of Error

ERL returns the line number in which an error has occurred. This function is
primarily used inside an error-handling routine. If no error has occurred
when ERL is called, line number 0 is returned. Otherwise, ERL returns the
line number in which the error occurred. If the error occurred in the
command mode, 65535 (the largest number representable in two bytes) is

returned.

Examples
FRINT

Stores the error’s line number for future use.

Sample Program

s

453

MODEL Il BASIC

ERR
Get Error Code

ERR is similar to ERL, except that ERR returns the code of the error rather than
the line in which the error occurred. ERR is normally used inside an error-
handling routine accessed by ON ERROR GOTO. See the section on error codes
in the Appendix.

Examples

b ¥
AR S

If the error is an Out of Memory error (code 7) the program branches to line
1000; if it is any other error, control will instead go to line 2000.

Sample Program

This program ““traps” the Out of Data error, since 4 is the code for that error.

454

BASIC KEYWORDS
L

ERROR
Simulate Error

ERROR lets you simulate a specified error during program execution. The
major use of this statement is for testing an ON ERROR GOTO routine. When
the ERROR code statement is encountered, the Computer will proceed exactly
as if that error had occurred. Refer to the Appendix for a listing of error codes
and their meanings.

Example

L i

When the program reaches this line, a Next Without For error (code 1) will
“occur”, and the Computer will print a message to this effect.

Sample Program

When you input one of the error code numbers, that error will be simulated in
line 2250.

455

MODEL Il BASIC

ON ERROR GOTO
Set Up Error-trapping Routine

When the Computer encounters any kind of error in your program, it
normally breaks out of execution and prints an error message. With ON
ERROR GOTO, you can set up an error-trapping routine which will allow your
program to “recover” from an error and continue, without any break in
execution. Normally you have a particular type of error in mind when you use
the ON ERROR GOTO statement.

For example, suppose your program performs some division operations and
you have not ruled out the possibility of division by zero. Y ou might want to
write a routine to handle a division-by-zero error, and then use ON ERROR
GOTO to branch to that routine when such an error occurs. S

The ON ERROR GOTO must be executed before the error occurs or it will have
no effect. The ON ERROR GOTO statement can be disabled by executing the
statement, ON ERROR GOTO 0. If you use this inside an error-trapping routine,
BASIC will handle the current error normally. The error handling routine
must be terminated by a RESUME statement. See RESUME.

Examples

If an error occurs in your program anywhere after this line, control will branch
to line 1500.

Sample Program

For the use of ON ERROR GOTO in a program, see the sample programs for
ERL and ERR.

456

BASIC KEYWORDS -

RESUME
Terminate Error-Trapping Routine

RESUME terminates an error-handling routine by specifying where normal
execution is to resume. Place a RESUME statement at the end of an error-
trapping routine. That way later errors can also be trapped.

RESUME without an argument and RESUME 0 both cause the Computer to
return to the statement in which the error occurred.

RESUME followed by a line number causes the Computer to branch to the
specified line number.

RESUME NEXT causes the Computer to branch to the statement following the
point at which the error occurred.

Examples

RESUME
If an error occurs, when program execution reaches the line above, control
will be transferred to the statement in which the error occurred.

RESUME 1@
If an error occurs, control will be transferred to line 10 after the problem has
been fixed.

Sample Program

For the use of RESUME in a program, see the sample programs for ERL and
ERR.

457

MODEL Il BASIC

.

STOP w
Interrupt Execution of Program

STOP interrupts the execution of your program and prints the words BREAK IN
followed by the number of the line that contains the STOP. STOP is primarily a
debugging aid. During the break in execution, you can examine variables or
change their values.

The CONT command is used to resume execution at the point where it was
halted. But if the program itself is altered during the break, CONT can’t be
used.

Sample Program N

W

A random number between 1 and 10 will be assigned to X and program
execution will halt at line 2270. You can now examine the value of X with
PRINT X. Type CONT to start the cycle again.

458

BASIC KEYWORDS
e

TROFF, TRON
Turn Trace Function Off, On

TRON turns on a trace function that lets you follow program flow for
debugging and for analysis of the execution of the program. Each time the
program advances to a new program line, that line number will be displayed
inside a pair of brackets. TROFF turns trace off.

Sample Program

The above three lines might be helpful in assuring you that line 2300 is actually
being executed, since each time it is executed [2300] will be printed on the
Display. (We assume the program doesn’t jump directly to line 2300 without
passing through line 2290, which would execute the assignment statement
without turning the trace on.)

After a program is debugged, the TRON and TROFF statements can be
removed.

459

MODEL Il BASIC
I

Numeric Functions

All of these functions return a number. You can use them anywhere a
numeric expression is called for. Notice that several string-related functions
(ASC, INSTR, LEN, VAL) are included in this group.

Purpose

]
Get ASCIl code

Compute cosine

S

Search for specified string

Get length of string
ompute natura /
Return pseudorandom number

Compute sine
R % ;
Compute tangent

460

BASIC KEYWORDS

ABS
Compute Absolute Value

ABS returns the absolute value of the argument, i.e., the magnitude of the

number without respect to its sign. ABS(x)=x for x greater than or equal to
zero, and ABS(x)=—x for x less than zero.

The result is always the same precision as the argument.

Examples

o W
¥ "

7o

The absolute value of Y is assigned to X.

IF ARS(X) < 1E~& THEN PRINT "TOO SMALL®

TOO SMALL is printed only if the absolute value of X is less than the indicated
number.

Sample Program
1O INPUT " WHAT?
Vi@ OIFE TEMP < @

"BELOW ZERO!

IF TEMP = @

PRINT TEMF

RATL
TTHA

(DEGR
M)

Fivs TEMP

S0 MITE COLDY Y BEND
EALMY 'Y END

461

MODEL Il BASIC
]

Get ASCII Code

ASC returns the ASCII code of the first character of the string. The value is

returned as a decimal number.

Examples

BRTMT AC .

Prints the ASCII code of the last character of T§.

Sample Programming

Refer to the ASCII code table in the Appendix. Note that the ASCII code for a

lower-case letter is equal to that letter’s upper case code plus 32. So ASC can

be used to convert lower case to upper case, simply by subtracting 32 from

ASC(x). For instance:

st THEN

ASC can be used to make sure that a program is receiving the proper input.

Suppose you’ve written a program that requires the user to input hexadecimal

digits 0-9, A-F. To make sure that only those characters are input, and

exclude all other characters, you can insert the following routine.
1a@ INPUT"ENTER A& HEXADECIMAL VALUE (@-9ya~F)" iN%
110 A=ASCNS) "get ABCIT code
120 IF AX47 AND A58 OR AXé&4 AND A<71 THEN PRINTUOK.": GOTO 100
133G PRINTY"VALUE NOT OK.®: GOTO 100

462

BASIC KEYWORDS

ATN
Compute Arctangent

ATN returns the angle whose tangent is number. The angle will be in radiaﬁs;
to convert to degrees, multiply ATN(X) by 57.29578.

The result is always single-precision.

Examples

Assigns the value of the arctangent of Y/3 to X.
PRINT ATM(1.Q00Z23) % 57,2

Prints the indicated value.

il

Assigns the indicated value to R.

Sample Program
I ‘ZZ' } } I ; ;

463

MODEL Il BASIC

Convert to Double-Precision
Returns a double-precision representation of the argument. The value
returned will contain 17 digits, but only as many digits as are contained in the
argument will be significant.
CDBL may be useful when you want to force an operation to be done in
double-precision, even though the operands are single precision or even
integers. For example, CDBL (1%)/1% will return a fraction with 17 digits of
precision.
Examples
Y# = CDRLON % 33 4+ M
/\;
The operations on the right are forced double-precision.
Sampl
cpE
Prints the elements of the harmonic series 1, 1/2, 1/3,... 1/25 in double-
precision.
Y

464

BASIC KEYWORDS

CINT
Convert to Integer Representation

CINT returns the largest integer not greater than the argument. For example,
CINT(1.5) returns 1; CINT(—1.5) returns —2. The result is a two-byte integer.

Examples

CRELT BT T R 4B
PRINT CINTOLS E

Prints the indicated value.
o= CINTOX#Y + CINT{Y$#)

The addition will involve only integer arithmetic, which is much faster than
double-precision.

Sample Program
240 INPUT "ENTER A POSITIVE DECIMAL NUMBER
(LIKE DDDD.DDDI)"3 N
FHP OPRINT "INTEGER PORTION IS"3 CINMT{N)

465

MODEL II BASIC

Compute Cosine
COS returns the cosine of the angle number. The angle must be given in
radians. When number is in degrees, use COS (number * .01745329).
The result is always single-precision.
Examples
Y¥om DR R
Assigns the value of COS(X) to Y.
Y = COB(X * ,@B1745329)
If X is an angle in degrees, the above line will give its cosine. N
FRIMNT COS0%. 8y - DOECES w40
Prints the arithmetic (not trigonometric) difference of the two cosines.
G o= 61 % ((COSA)Y) ~ 18)
Computes and stores the result in G2.
Sample Program

466

BASIC KEYWORDS

CSNG -
Convert to Single-Precision

CSNG returns a single-precision representation of the argument. When the
argument is a double-precision value, it is returned as seven significant digits.
When the number is Printed, only six digits will be output, with **4/5”
rounding in the least significant digit. For instance,

CSNG(.6666666666666667) Prints as .666667; CSNG(.3333333333333333)
Prints as .333333. ‘

Examples
s CEMG TR

Assigns the value CSNG (TM#) to FC.

e e ey
RSO I S A

Prints a single-precision value.

Performs the indicated computation and stores it in R.

Sample Program
RO OPIH = 3, 1415976535897
Y0 RE = 18, DOREBETYS
0@ PRINT CENG(PI# % B#)

This program prints a single-precision value after the double-precision
multiplication.

467

- MODEL Il BASIC

EXP
Compute Natural Exponential

Returns the natural exponential of number, that is, enumber This is the
inverse of the LOG function; therefore, X = EXP(LOG(X)). The result is always
single-precision.

Assigns the value of EXP(A) to H.

PRINT EXF (-3
Prints the value .135335.

Eow (6L 4 GE - BT % BEXPOLENS 2 (61 4 G320

Performs the required calculation and stores it in E.

Sample Program
310 INPUT "NUMBER"3 N
3Z@ PRINT "E RAISED TO THE N POWER IS" EXP(N)

468

BASIC KEYWORDS

FIX
Return Truncated Value

FIX returns a truncated representation of the argument. All digits to the right of the
decimal point are simply chopped off, so the resultant value is a whole number. For
negative, non-whole number X, FIX(X) = INT(X) + 1. For all other X, FIX(X) =
INT(X).

The result has the same precision as the argument (except for the fractional
portion).

Examples

The truncated number is putin Y.
PRINT FI¥{%, 50

Prints the value 2.
PRTANT FTE {00

Prints the value -2.

Sample Program
3@ INPUT "NUMBER" 5 A#
340 Y# = ARS(A% ~ FIX(AH))
350 PRINT "FRACTIONAL PORTION IS* Y#

This program splits any number into its integer and fractional parts. Try
inputting double-precision values.

469

MODEL Il BASIC

INSTR
Search for Specified String

This function lets you search through a string to see if it contains another
string. If it does, INSTR returns the starting position of the substring in the
target string; otherwise, zero is returned. Note that the entire substring must
be contained in the search string, or zero is returned. Also, note that INSTR
only finds the first occurrence of a substring starting at the position you

specify.

Examples
In these examples, A$ = “LINCOLN":

TRETHI A% " TN

returns a value of 2.

returns a zero.

Thits

returns a zero. For a slightly different use of INSTR, look at
IMEGTR (3. "13 PEAR PLEYS

which returns 5.

470

BASIC KEYWORDS
L

Sample Program

The program below uses INSTR to search through the addresses contained in
the program’s DATA lines. It counts the number of addresses with a specified
county zip code (761--) and returns that number. The zip code is preceded by
an asterisk to distinguish it from the other numeric data found in the address.

368 RESTORE

378 COUNTER = @

380 ON ERROF GOTO 410
350 READ ADDRESSS

400 IF INSTROADDRESE®, "%761%) <= @ THEN COUNTER =

ELSE 3908

483 QOTO 396

41@ PRINT "NUMBER OF TARRANT COUNTYs TX ADDRESHES
END

420 DATA "593@ GORHAM DRIVE: BURLESOM, TX *761487

COUNTER +

COUNTERS

430 DATA "71 FIRSTFIELD ROADs GAITHERSBURGs MD =Z@760"
44@ DATA "1000 TWO TAONDY CENTER: FORT WORTHs TX #7&1027

430 DATA "164633 SOUTH CENTRAL EXPRESSWAYs RICHARDGSONs

TX s75080"

471

MODEL Il BASIC
I S

INT
Convert to Integer Value

INT returns the largest whole number that is not greater than the argument.
The result has the same precision as the argument except for the fractional
portion. The argument is not limited to the range —32768 to 32767.

Examples

fom INT YD

Gets the integer value of X and stores itin A.
PRINT INT(Z.5)

Prints the value 2.
PRINT TMT (5,5

Prints —3.

Sample Program
4460 INPUT X#
470 IF X# < @ THEN GOTO 46
480 A = INTO(XH % 100 + .5) /100
4590 PRINT A

If you type in a positive number with a fraction like 25.733720, this program
will round it off to two decimal places and print it.

472

BASIC KEYWORDS
e

LEN
Get Length of String

LEN returns the number of characters in the specified string.
Examples

¥ o= LEN(SENTEMCES$)
Gets the length of SENTENCE$ and stores it in X.

FRINT LEMO CAMERT

Prints the value 17.

Sample Program
5RO A% = 0
510 Bg = "TOM®
520 PRINT A% B$y BS + B%
530 PRINT LEN(A$)s LEN(B$), LEN(B$ + BE$)

When this short program is run, the following will be printed on the Display:

TOM TOMTOM
4] 3 &

s co——"s
T

|

473

MODEL Il BASIC

LOG
Compute Natural Logarithm

LOG returns the natural logarithm of the argument. This is the inverse of the
EXP function, so X = LOG(EXP(X)). To find the logarithm of a number to
another base B, use the formula LOG B(X) = LOG E(X)/LOG E(B). For example,
LOG(32767)/LOG(2) returns the logarithm to base 2 of 32767.

The result is always single-precision.

Examples
By owm L)

Computes the value of LOG(A) and stores it in B.
FRINT LOS0%, 1ain59)

Prints the value 1.14473.

L o= 1@ % LOG(PRZ/P1)
Performs the indicated calculation and assigns it to Z.

Sample Program

This program demonstrates the use of LOG. It utilizes a formula taken from
space communications research.

4@ INPUT "DISTANCE SIGNAL MUST TRAVEL (MILES)": D
A3@ INPUT "GIGNAL FREQUENCY {(GIGAMERTZ) s F
6@ L o= 9658 + (2@ % LOGIF)I) + (20 # LOG(D))

37@ PRINT "SIGNAL STRENGTH LOSS IN FREE SPACE IS" L *DECIRELG, "

474

™

RND
Generate Pseudorandom Number

RND produces a pseudorandom number using the current “seed” number.
The seed is generated internally and is not accessible to the user. RND may be
used to produce random numbers between 0 and 1, or random integers
greater than 0, depending on the argument.

RND (0) returns a single-precision value between 0 and 1. RND(X), where X is
an integer between 1 and 32767, returns an integer between 1 and X. For
example, RND(55) returns a pseudorandom integer between 1 and 55.
RND(55.5) returns a number in the same range, because RND uses the integer
value of the argument.

Examples

f1lor?2.

Returns a random integer between 1 and Z and assigns it to A.

SREINT O END OB

¥
-
H

Prints a decimal fraction between 0 and 1.

Sample Program

This prints 100 pseudorandom numbers between 1 and 10.

475

— MODEL il BASIC
o ——————— s

SGN
Get Sign

This is the “*sign” function. It returns — 1 if its argument is a negative number,
01if its argument is zero, and 1 if its argument is a positive number.

Examples
Y= BENMIA # B

The function determines what the sign of the expression A = B is, and passes
the appropriate number (—1,0, 1) to Y.

FHIMNT SOROR?

Prints the appropriate number on the Display.

Sample Program
&1@ INPUT "ENTER A NUMBER": X
62 ON BENIX) + 2 GOTO 630 &40 650
630 PRINT "NEGATIVE": END
4@ PRINT "ZERO": END
&5@ PRINT "POSITIVE": END

476

BASIC KEYWORDS

SIN
Compute Sine

SIN returns the sine of the argument, which must be in radians. To obtain the
sine of X when X is in degrees, use SIN(X * .01745329).

The result is always single-precision.

Examples
o BTN

Assigns the value of SIN (MX) to W.

PRINT SIN(7.94)
Prints the value .994385.

CHINMIDY /)

Performs the indicated calculation and stores it in E.

Sample Program
&0 INPUT "ANGLE

HFH PRINT "SIMNE

477

MODEL Il BASIC

SQR
Compute Square Root

SQR returns the square root of its argument. The result is always single-

precision.

Examples

Yo B Ao

Performs the required calculation and stores itin Y.

FRIMT EeR]

Prints the value 12.478.

Sample Program
D THELT h

y [
j1 i

This program computes the total impedance for series circuits.

478

TN

BASIC KEYWORDS

TAN
Compute Tangent

TAN returns the tangent of the argument. The argument must be in radians.
To obtain the tangent of X when X is in degrees, use TAN (X* .01745329).
The result is always single-precision.

Assigns the value of TAN(M) to L.
FRINT TapMo7, 947
Prints the value —9.39702.
Lo TaNILE - Lboyy /i
Performs the indicated calculation and stores the result in Z.

Sample Program
TEEOINPUT U A

AP GLLE

479

-MODEL 1l BASIC

VAL
Evaluate String

VAL is the inverse of the STR$ function; it returns the number represented by
the characters in a string argument. This number may be integer, single
precision, or double precision depending on the range of values and the rules
used for typing all constants.

For example, if A$ = “12” and B$ = “34”” then VAL(A$ + *.” + B$) returns
the value 12.34 and VAL(A$ + “E’” + B$) returns the value 12E34, that is, 12
+ 10A34.

VAL terminates its evaluation on the first character which has no meaing in a
numeric term — e.g., Z, ?, etc. The current value at termination is used.

If the string is non-numeric or null, VAL returns a zero.

Examples
FRINT Val (" 100 DOLLARE")
prints 100.

Ar Ol opoivE WL EONE § I B
FRINT el 071

prints 1.234E+08.

£
i

JHTEM g Mg B BT

,,,,,

The value 3 is assigned to B.

Sample Program

75@ REM WHAT SIDE OF THE STREET?

ThHid REM NORTH I8 FVEN3: S0UTH 15 0DD

e LINE INPUT "ENTER THE ADDRESS (NUMBER AND STREET) "3 ADE
FRE OO o= INT(VALLADS) /2y o &

Tom IF C = VAL (ADE) THEN PRINT "NORTH SIDE": GOTO 778

BEE PRINT "S0UTH SGIDE": GOTO 77d

480

BASIC KEYWORDS

String Functions

All of these functions return a string value. You can use them anywhere a
string expression is called for. Notice that several numeric number-related
functions (HEX$, OCTS$, STR$) are included.

Keyword Purpose

:’R|GH-’[—$"' =

Get the time

481

MODEL Il BASIC

CHRS$
Get Character for ASCII or Control Code

he range [0,2:

CHRS is the inverse of the ASC function. It returns a one-character string; this

character has the ASCI1, control, or graphics code number specified by the
argument of the function.

Examples:

Lo H

The function CHR$ converts the number T into its ASCII character equivalent
and puts the character into P$.

FRINT ORE A

Prints a # on the Display.

Puts the Display into its black-on-white mode (use CHRS$ (25) to return to
normal).

The character whose ASCII code is I is added to the end of AS.

Sample Programs

Using CHRS, you can assign quotation marks to strings, even though they are
ordinarily used as string-delimiters. Since the ASCII code for quotations is 34,
A% = CHR$(34) assigns the value * to AS$.

When this is run, the following line will be printed on the Display:

RECEATD. "HELLO, T

482

BASIC KEYWORDS
1

The following program will let you investigate the effect of printing each of
the 256 (0-255) codes on the display. Codes of special interest:

Turns off cursor

character/line mode and clears
screen

1@ CLs

11@ INPUTHTYPE IN THE CODE (@-Z255)3"35C

120 PRINT CHR®(C)S " JUST PRINTED CODE"C
138 GOTO 116

For a complete list and discussion of output to the Video Display, see Chapter
1 and the Character Code table in the Appendix.

483

MODEL Il BASIC

DATES$
Get Today’s Date

This function lets you display today’s date and use it in a program.

The operator sets the date initially when TRSDOS is started up. When you
request the date, BASIC will display it in this fashion:

SHATAT

which means Saturday, April 28, 1979, 118th day of the year, 4th month of the
year, 5th day of the week (Monday is the Oth day of the week).

Example

PRINT DATES

e
which returns

484

BASIC KEYWORDS

ERRSS$
Get System Error Number and Message

This function returns the number and description of the TRSDOS error that caused
the latest BASIC disk-related error. It returns a string containing the ASCll-coded
error number followed by the TRSDOS error text. If no TRSDOS error has occurred,
ERRS$ returns a null string.

Example

PRINT “THELATESTTRSDOSERRORIS '’; ERRS$

485

HEX$
Compute Hexadecimal Value

HEX$ returns a string which represents the hexadecimal value of the
argument. The value returned is like any other string — it cannot be used in
a number expression. That is, you cannot add hex strings. You can

concatenate them, though.

Examples:

FRINT HE O ME XS

prints the following strings:
LE A Ty

Sample Program

2@ INPUT "DECIMAL VALUE"™: DEC
3@ PRINT "HEXADECIMAL VALUE 185 " HEX$(DED)

486

BASIC KEYWORDS

LEFTS$
Get}Lvef‘t Portion of String

LEFTS returns the first number characters of string. If number is equal to or
greater than LEN (string), the entire string is returned.

Examples:

FRINT L

Prints the left six characters of BATTLESHIPS, namely, BATTLE.

PRINT LI

Since BIG FIERCE DOG is less than 20 characters long, the whole phrase is
printed.

B

Puts the first 12 characters of M$ into PHRASES.

HoAd WIm VRl RLENY
ARG e =

PHINT LEF TS

Prints ALPHABET.

When this is run, the following will be printed:

TIM—THAT’S SHORT FOR TIMOTHY.

487

~MODEL Il BASIC

MID$
Get Substring

tring begins in string ST
- substring (this parameteris

MIDS returns a substring of string. The substring begins at position in string
and is length characters long .,

Examples

If A$ = “WEATHERFORD” then
FRINT MIDE{ass 3¢ 23

prints AT.

Fg = MIDE(A%s 3)
puts ATHERFORD into F$.

Sample Program
FO@ OINPUT "AREA CODE AND NUMBER (NMN-MMN-NNMRD Y3 PHS
B0 OEXS = MIDS(PHS. 5y)
SEROPRINT "NUMBER I8 IN THE " EX$ * EXCHANGE.

The first three digits of a local phone number are sometimes called the
exchange of the number. This program looks at a complete phone number

(area code, exchange, last four digits) and picks out the exchange of that
number.

488

/’\

BASIC KEYWORDS
s e

OCTS$
Compute Octal Value

OCT$ returns a string which represents the octal value of the argument. The
value returned is like any other string — it cannot be used in a numeric
expression.

Examples:

FRINMT 00

07 g

YS$ is a string representation of the integer quotient X/84 to base 8.
Sample Program

EA@ INPUT "DECIMAL VALUE"S DEC
84 PRINT "0CTAL VALUE IS5 " OCT${(DEC)

MODEL Il BASIC

/"’s\‘

Get Right Portion of String
ber) s)
ression, string not equal to null string
xpression L
RIGHTS returns the last number characters of string. If LEN (string) is less than
or equal to number, the entire string is returned.
Examples:
PRINT RIGHTS O WATERMELON" + %)
Prints the five right characters of WATERMELON, namely, MELON.
PRINT ! Sy 2
Puts the last five characters of ADDRESS$ into ZIPS.
FRINT FIGHT
Prints a single ““!”.
Sample Program
ROFE GOTO BE8
aret GOTO
MEANYs SEATTLE: WA"
RV CE . WOKLY M NY "

TG HAMMOND s TH

This program prints the name of the state in which each company is located.
TN

490

P/

BASIC KEYWORDS

SPACES$
Return String of Spaces

SPACES$ returns a string of spaces. The number of spaces is determined by the

argument.

Examples:

PRINT

SlIENMTETY Y

Prints DESCRIPTION followed by four spaces followed by TYPE followed by
nine spaces followed by QUANTITY.

Puts a string of N spaces into SP$.

Sample Program

491

MODEL Il BASIC

AT

STRS

Convert to String Representation

STR$ converts its argument to a string. For example, if X = 58.5, then STR$

(X) equals the string “B58.5. Notice that a leading blank is inserted before

58.5 to allow for the sign of X. While arithmetic operations may be performed

on X, only string function and operations may be performed on the string,

“h58.57.

TN

Converts the number A = 18 into a string and stores it in T$.

Sample Program
Y@ PRINT "THIS PROGRAM DEMONSTRATES HOW TO PREVENT AN ERROR®
95 PRINT "FROM ENTERING INTO & SINGLE ~TO-DOURLE PRECISION CONVERSION®
7 PRINT
100 a=1.6
110 Bé#=A
120 CH=VAL{STRSE(A)
13@ PRINT®REGULAR CONVERSION"TAR (40 "SPECIAL CONVERSTIONM®
140 PRINT B# TAR(4@) C#

492

BASIC KEYWORDS =

STRINGS
Return String of Characters

STRINGS returns a string of characters. How many characters are returned
depends on STRING$'s first argument; what characters they are depends on its
second argument. For example, STRING$(30,65) returns a string of 30 “A”’s.
STRING$(30,20) returns a string of 30 blanks, since 20 is the code for a blank
character.

STRINGS is useful for creating graphs, tables, and so on.
Examples:

o= WTHINGS

Puts a string of 25 “X”’s into B$.

PRINT &

101is AscII code for a line feed, so the line above will print 50 blank lines on the
Display.

Sample Program

10348 CLEAR 326

1@3@ INPUT "TYPE IN THREE MUMBERS BETWEEN 33 AND 159 (Nls N2
s M35 Mis NEs N3

1060 CLS: FOR I = 1 TO 4: PRINT STRING®(2@s N1): NEXT I

1878 FOR J = 1 TO 2@ PRINT STRINMGH (40 NZYs NEXT J

1@8@ PRINT STRINGS (88 N3

493

MODEL Il BASIC

TIMES
Get the Time

This function lets you use the time in a program.

The operator sets the time initially when TRSDOS is started up. When you
request the time, TIME$ will supply it using this format:

T4 a7, 18

which means 14 hours, 47 minutes, and 18 seconds (24-hour clock) or 2:47:18
PM
To change the time, use the TRSDOS command, TIME. For example,

STIME 13,380

When this line is reached in your program, the current time is stored in A$.

Sample Program

1140 IF LEFT$(TIMESs %) = "1@.15%" THEN PRINT "Time iz 18315
HaMo——time to eick ur the mail.": END

1156 GOT0 114@

494

BASIC KEYWORDS

Input/Output Functions

These functions perform input/output to the keyboard, video display, line
printer, and disk files. They are grouped accordingly in this section.

Functions with a $ suffix (like INKEYS$) return string values; others return
numeric values.

Note: Before attempting any input/output to BASIC data files, you should
read Chapter 4, File Access Techniques, and try out the sample programs
given there.

Keyword Purpose

INKEY$ - | Getkeyboard character if available
INPUT$ Get a string of characters from keyboard
POS - | Getcursorcolumn position on video display
ROW ' Get cursor row position on video display
SPC . | Outputspacestovideodisplay
CVvD Restore data from disk file to double-precision
~ (direct access) ,
CVI_ | Restore datafrom diskfile to integer (direct
CVs ~ Restore data from disk file to single-precision
(direct access)
EOF heck forend offile .
INPUTS$ Input a string of characters from disk file (sequential
access)

495

MODEL Il BASIC

INKEY$
Get Keyboard Character if Available

Returns a one-character string from the keyboard without the necessity of
having to press EXfd . If no key is pressed, a null string (length zero) is

returned. Characters typed to INKEYS$ are not echoed to the Display.

INKEYS is invariably put inside some sort of loop. Otherwise program
execution would pass through the line containing INKEY$ before a key could
be pressed.

Example
A% = TNHEYS

When put into a loop, the above program fragment will get a key from the
keyboard and store it in A$. If the line above is used by itself, when control
reaches it and no key is being pressed, a null string (““ ") will be stored in AS$.

Sample Program

When you run this program, the screen will remain blank (except for the
cursor) until you strike a key. The last key that you strike will remain on the
Display until you press another one. Whenever you fail to hit a key while this
program is executing, a null string, i.e., nothing, is printed at 540.

496

BASIC KEYWORDS

INPUT$
Input a Character String

INPUTS (length) L | .
length is a numeric expression in the range [1 ,255].

This function allows a program to input a specified number of keyboard
characters. As soon as the last required character is typed, execution
continues. (You don’t have to press ENiiEil to signify end-of-line.) The
characters you type will not be displayed on the screen.

Any character you type will be accepted (except LIS).

Examples

A string of 5 characters must be input before BASIC will proceed to the next
line of the program.

Sample Program

This program shows how you might use INPUTS to have an operator input a
password to access a protected file. By using INPUTS, the operator can type in
the password without anyone see it on the Video Display. (To see the full file
specification, run the program, then type PRINT F$.)

110 LINE INPUT ®TYPE IN THE FILENAME/EXT"3: F%

120 PRINT "TYPE IN THE PASSWORD - MUST TYPE 8 CHARACTERS:
130 P$ = INPUTS(E)
140 Fg = Fé + "." + P4

497

3

k)

MODEL Il BASIC

POS
Get Cursor Column Position

POS returns a number from 0 to 79 indicating the current cursor column-
position on the Display.

Examples

PRINT TaB(40:

The PRINT TAB statement moves the cursor to position 40. Since the cursor is
at 40, POS(0) returns the value 40, and 40 is printed on the Display. (However,
since a blank is inserted before the “4” to accommodate the sign, the “4” is
actually at position 41.) The “0” in POS(0) is the dummy argument.

Sample Program

TMKEY %
" THEN
%) "‘}* L’_"l ;

I
IF FOS
FRINT
LERINT ¢

HOTO Lol

This program lets you use your printer as a typewriter (except that mistakes
can’t be corrected). Your computer keyboard is the typewriter keyboard. The

program will keep watch at the end of a line so that no word is divided beween
two lines.

498

Ag o CHRS A2 THEN A%

BASIC KEYWORDS
=== ===

ROW
Get Row Position of Cursor

The ROW function finds the row on which the cursor is currently located and
returns that row-number. The 24 rows are numbered 0-23.

Examples
Xom ROW(Y)

The row-number of the cursor’s position at the time this line is encountered is
assigned to X.

FRINT ROWOED
The row-number is printed on the Display.

Sample Program

When a key is typed, the program below will print it, find its Display
row-number and column-number, print this information, find its ASCII code,
and print this information too.

1a@ Cli

T1E K= =@

Tl PRINTOCO2] 32 "ROWY « * COLUMNY
1TA@ Xg=INPUTE L)

G PRINT adcHy Qe X$s

CamPOS (@) R=ROWIA)

FRINT a | Ja Ry O3
FPRINT o | Faey e BTHINGS (2
FRINT a{z2Zs323."ABCTT CODE
PRINTO(H«)"

188 6OTO 136

Wa 3203
T8 "HEX$(ASC(X$))3

499

MODEL Il BASIC

SPC
Print Line of Blanks

SPC prints a line of blanks. The number of blanks is determined by the
argument of SPC. SPC does not use string space.

The left parenthesis must immediately follow SPC (no blanks in between).

SPC can be used with PRINT, LPRINT, or PRINT# statements.

Examples

500

BASIC KEYWORDS

CVD, CVI, CVS
Restore String Data to Numeric

These functions let you restore data to numeric form after it is read from disk.
Typically the data has been read by a GET statement, and is stored in a direct
access file buffer. CvD, CVI, and CVS are the inverses of MKD$, MKI$, and
MKSS$, respectively.

Examples

Suppose the name GROSSPAYS references an eight-byte field in a direct access
file buffer, and after GETting a record, GROSSPAYS$ contains an MKD$
representation of the number 13123.38. Then the statement

T

assigns the numeric value 13123.38 to the double-precision variable A#.

Sample program
1420 OPEN "D"s 1s "TEST/DAT"
1430 FIELD 1. 2 A5 I1%y 4 A5 126, 8 AB 13%
1440 GET 1
145@ PRINT CVI(I1%)s CVS(IZ$)s CVD(IZ%)
1460 CLOSE

This program opens a file named TEST/DAT which is assumed to have been
previously created. (For the program which creates the file, see the section on
MKDS$, MKI$, and MKS$.) CVI, CVS, and CVD are used to convert string data
back to numeric form.

501

MODEL Il BASIC

EOF
End-of-file detector

This function checks to see whether all characters up to the end-of-file marker
have been accessed, so you can avoid Input Past End errors during sequential
input.

Assuming buffer-number specifies an open file-buffer, then EOF (buffer-
number) returns 0 (false) when the EOF record has not yet beenread, and — 1
(true) when it has been read.

Examples
TF EOF(F]

This line determines whether the end-of-file has been reached. If it has, the
specified buffer (FILE) is closed.

Sample program

The following sequence of lines reads numeric data from DATA/TXT into the
array A(). When the last data character in the file is read, the EOF test in line
30 “passes”, so the program branches out of the disk access loop, preventing
an Input Past End error from occurring. Also note that the variable I contains
the number of elements input into array A().

Mol U

502

BASIC KEYWORDS

INPUTS$
Input Specified Number of Bytes from Disk

This function is analogous to keyboard INPUTS except that it inputs data from
disk rather than the keyboard.

You can use disk INPUTS to get a certain specified number of bytes (sequential
access only). INPUTS, in contrast to INPUT#, allows you to get any number of
data bytes (up to 255) from disk.

Example

Ag o= INPUT$(1Zs 2
Inputs 12 bytes from disk into A$. File-buffer 2 is used.
Sample Program
SO0 OPEM "I"s 1s "TEST/DAT®

L@ T = INPUTE(T7Gs 1)
22l CLOSE

If a file TEST/DAT has been created previously, this program will open it,
retrieve 70 bytes from it, store the data in T$, and close the file.

503

"MODEL Il BASIC

LOC
Get Current Record Number

n specifying the buffer for a cu

LOC is used to determine the current record number, i.e., the number of the
last record processed since the file was opened. It returns the record number
that will be used if a GET or PUT is executed with the record number omitted.

LOC is also valid for sequential files, and gives the number of 1-byte records
processed since the OPEN statement was executed.

Example

R R R
FREINT L

Sample Program

il

This is a portion of a program. Elsewhere the file has been opened and
fielded. N$ is a field variable. If N$ matches A$ the record number in which it
was found is printed.

504

BASIC KEYWORDS

LOF
Get End-of-File Record Number

LOF.(number) '
number specifies a direct access buffer,
number = 1.2,...,15

This function tells you the number of the last, i.e., highest-numbered, record
in a file. It is useful for both sequential and direct access.

Examples
¥om LOF (%
Puts the record number into variable Y.

Sample Programs

During direct access to a pre-existing file, you often need a way to know when
you’ve read the last valid record. LOF provides a way.

If you attempt to GET record numbers beyond the end-of-file, BASIC gives
you an End of File error.

When you want to add to the end of a file, LOF tells you where to start adding;:

505

" MODEL |l BASIC

MKD$, MKI$, MKS$
Convert Numeric to String

M Kt$(number)
MKS$(number) :
: number isa numenc express:on

These three functions are the inverses of CvD, CVI, and CVS. They change a
number to a string. Actually, the byte values which make up the number are
not changed only one byte, the internal data-type specifier, is changed, so
that numeric data can be placed in a string variable.

MKDS$ returns an eight-byte string; MKI$ returns a two-byte string; and MKS$
returns a four-byte string.

Examples
LEET &Y

Sample Program
1358 OPEN "D"s 1s "TEST/DAT"
1360 FIELD 1s 2 AB I1%, 4 AS I2%, 8 AR I3%
1370 LSET 118 = MKI$(3000)
1380 LSET 126 = MKS$(3000.1)
1390 LSET I3% = MKD$(3000.00001)
14@@ PUT 1
1410 CLOSE

For a program the retrieves the data from TEST/DAT , see CVD/CVI/CVS.

506

o 7

BASIC KEYWORDS -

Special Functions

With the special functions you can perform memory-related tasks like finding
or changing the amount of total memory or string space, and discovering the
absolute memory address of the value of a variable.

For example:
5% = FRE(A%)

will find the number of bytes of string storage space left, and put this value in

S$.

Other special functions, such as VARPTR and USRn, let you interface your
BASIC program with machine-language programs.

Keyword Purpose

FRE =~ | Getamountoffree memory or string space :
MEM Get amount of free memory '

USRn- | Callmachine-language subroutine -

VARPTR Get absolute memory address

507

MODEL Il BASIC

FRE

rgument, or a string dummy

FRE returns two different values depending on its argument. If the argument
is a number or numeric variable, FRE will return the total amount of memory
available. If the argument is a string or string variable, FRE will return the
total amount of string storage space that is available.

Examples

PRIMT F

Prints the amount of memory left.

Prints the amount of string space left.

Sample Program

1@ PRINTY CURRENT FREE STRING SPACE IS"FRE(AS)
2@ LINE INMPUT"TYPE 3 Y iME

ap PRINTYAFTER STORING MESSAGEs FREE BTRING SPACE

508

Ia

FRE (A%$)

BASIC KEYWORDS

MEM
Get Amount of Memory

MEM performs the same function as FRE when FRE is followed by a numeric
dummy argument. MEM returns the number of unused and unprotected bytes
in memory. This function may be used in the immediate mode to see how
much space a resident program occupies, or it may be used inside a program
to avert out of memory errors by allocating less string space and dimensioning
smaller array sizes. MEM requires no argument.

Example
FRIMT FEM

Enter this command (in the immediate mode; no line number is needed). The
number returned indicates the amount of leftover memory, i.e., memory not
being used to store programs, variables, strings, the stack, or not reserved for
object files.

Sample Program

1 ARG RAM HERE

If fewer than 80 bytes of memory are left, control switches to another part of
the program. Otherwise, an array of 15 elements is created.

509

MODEL Il BASIC

S

USRn
Call User’s External Subroutine

USRn (argument) S
" 1 specifies one of ten available USR calls, n = 0,1 2,9
If n is omitted, zero is assumed. R R

argument is a numeric or string expression.

These functions (Uswu through USR9) let you call as many as 10 machine-
language subroutines and then continue execution of your BASIC program.
These subroutines must have been previously defined with DEFUSRn
statements.

“Machine language” is the low-level language used internally by your
Computer. It consists of Z-80 microprocessor instructions. Machine-
language subroutines are useful for special applications (things you can’t doin
BASIC) and for doing things very fast (like white-out the Display).

Writing such routines requires familiarity with assembly-language program-
ming and with the Z-80 instruction set. For more information on this
subject, see the Radio Shack book, TRS-80 Assembly-Language Program-
ming, by William Barden, Jr.

When a USR call is encountered in a statement, control goes to the address
defined in the DEFUSR# statement. This address specifies the entry point to
your machine-language routine.

Examples

S

LY
...... LR

When this statement is executed, BASIC calls the machine-language routine
USRS, previously defined in aDEFUSRS = address statement.

Passing arguments from BASIC to the subroutine:
Upon entry toa USRn subroutine, the following register contents are set up
(for notation, see page 86 of the TRSDOS Reference Manual).

A = Type of argument in USRn reference
A = 8 if argument is double-precision.
A = 4 if argument is single-precision.
A = 2 if argument is integer.
A = 3 if argument is string.

HL — When the argument is a number, this register points to the
argument storage area (ASA) described later.
510

BASIC KEYWORDS

DE = When the argument is a string, this register points to a string
descriptor, as follows:
The first byte gives the length of the string. The next two bytes give
the address where the string is stored: least significant byte
(LSB) followed by most significant byte (MSB).

Description of Argument Storage Area (ASA)—for numeric values only.

For double-precision numbers:

ASA Exponent in 128-excess form. E.g., a value of 200 indicates a 0
exponent; a value of 128 indicates a —62 exponent. A value of 0
always indicates the number is zero.

ASA-1 Highest 7 bits of the mantissa with hidden (implied) leading one.
Bit 7 is the sign of the number (0 positive, 1 negative). E.g., a
value of X’84’ indicates the number is negative and the MSB of
the mantissa is X’84’. A value of X’04’ indicates the number is
positive and the MSB of the mantissa is X84’

ASA-2

through

ASA-6 Successive 8-bit blocks of the mantissa.

ASA-7 Lowest 8 bits of the mantissa.

For single-precision numbers:

ASA through ASA-3 same as for double-precision numbers.

For integer numbers:

ASA LSB of the number.
ASA+1 MSB of the number. Together, the two bytes represent the
number in signed, two’s complement form.

511

" MODEL Il BASIC

1 S

To convert the argument to integer type:

Your routine can call BASIC’s FRCINT routine to put the argument into HL
in

16-bit, signed two’s complement form. The address of FRCINT is stored in
[x72803’, X*2804'].

For example, you can put the following code at the beginning of your
subroutine:

SR ARGUMENT
M ML

FRCOINT Eall SEMASH

LD ML s CTHU

FLIGH HL. v RETURN
NT

LD ML (FRCINT Y INTEGER

JF (ML) ST ROUT THE

Returning values from the subroutine to BASIC

When the USR# argument is a variable, you can modify its value by changing
the ASAor string contents, as pointed to by HL or DE. For example, the
statement:

el ERL (AR
transfers control to the USR1 subroutine, with HL pointing to the two-byte
ASA for integer variable A% . Suppose you modify the contents of this
storage area. When you do a RET instruction to return to BASIC, A% will

have a new value, and X will be assigned this new value.

In general, USRn(argument) will return the same type of value as argument.
However, you can use BASIC’'s MAKINT routine to return an integer value.
The address of the MAKINT routine is stored at [X2805°,X"2806].

For example, you might include the following code at the end of your

program to return a value to BASIC.

MarInT el SEEREH
102 ML e VAL

TEOTHE ValuiE To
FETURMETD .

HL. VALUE TN BTACK
PiL.s (HIAKINT : ORE VAL TRTO ML
[E {8y e HL sAND O PUT MARINT

s INTO BTACK

512

BASIC KEYWORDS

VARPTR
Gets Absolute Memory Address

VARPTR (variable name or file number)

VARPTR returns an absolute memory address which will help you locate a
value in memory. When used with a variable name, it locates the contents of
that variable. When used with a file number, it returns the address of the file’s
data buffer. If the variable you specify has not been assigned a name, or the
file has not been opened, an Illegal Function Call will occur.

VARPTR is used primarily to pass a value to a machine language subroutine via
USRn. Since VARPTR returns an address which indicates where the value of a
variable is stored, this address can be passed to a machine language
subroutine as the argument of USR; the subroutine can then extract the
contents of the variable with the help of the address that was supplied to it.

If VARPTR (integer variable) returns address K:
Address K contains the least significant byte (LSB) of 2-byte integer.
Address K+1 contains the most significant byte (MSB) of integer.

If VARPTR (single precision variable) returns address K:

(K)= = LSB of value

(K+1) = Next mostsig. byte (Next MSB)

(K+2) = MsB with hidden (implied) leading one. Most significant bit is the
sign of the number

(K+3) = exponent of value excess 128 (128 is added to the exponent).

If VARPTR (double precision variable) returns K:

(K) = LSB of value

(K+1) = NextMsB

(K+...) = NextMSB

(K+6) = MSB with hidden (implied) leading one. Most significant bit is
the sign of the number.

(K+7) = exponent of value excess 128 (128 is added to the exponent).

For single and double precision values, the number is stored in normalized
exponential form, so that a decimal is assumed before the MSB. 128 is added to
the exponent. Furthermore, the high bit of MSB is used as a sign bit. Itisset to
0 if the number is positive or to 1 if the number is negative. See examples
below.

» (K) signifies “contents of address K”’
S T ST A SRS
513

If VARPTR(string variable) returns K:

(K) = length of string
(K+1) = LSB of string value starting address
(K+2) = MSB of string value starting address

The address will probably be in high RAM where string storage space has been
set aside. But, if your string variable is a constant (a string literal), then it will
point to the area of memory where the program line with the constant is
stored, in the program buffer area. Thus, program statements like
A$=*HELLO” do not use string storage space.

For all of the above variables, addresses (K-1) and (K-2) will store the TRS-80
Character Code for the variable name. Address (K-3) will contain a descriptor
code that tells the Computer what the variable type is. Integer is 02; single
precision is 04; double precision is 08; and string is 03.

VARPTR (array variable) will return the address for the first byte of that
element in the array. The element will consist of 2 bytes if it is an integer.
array; 3bytesifitisastringarray; 4 bytes if it is a single precision array; and 8
bytes if it is a double precision array.

The first element in the array is preceded by:

1. A sequence of two bytes per dimension, each two-byte pair indicating the
“depth’ of each respective dimension.

A single byte indicating the total number of dimensions in the array.

A two-byte pair indicating the total number of elements in the array.

A two-byte pair containing the ASCII-coded array name.

A one-byte type-descriptor (02 = Integer, 03 = String,

04 = Single-Precision, 08 = Double-Precision).

ZEECES

Item 1 immediately precedes the first element, [tem 2 precedes Item 1, and so
on.

The elements of the array are stored sequentially with the first dimension-
subscripts varying “fastest”, then the second, etc.

514

BASIC KEYWORDS

Examples

Al = 2 will be stored as follows:

2 = 10 Binary, normalized as .1E2 = .1 x 102

So exponent of A is 128+2 = 130 (called excess 128)

MSB of A is 10000000; however, the high bit is changed to zero since the value
is positive (called hidden or implied leading one).

So Alisstored as

Exponent (K+3) MSB (K+2) NextMSB (K+1) LSB (K)
130 0 0 0
Al=—.5 will be stored as
Exponent (K+3) msB (K+2) NextMSB (K+1) LsB (K)
128 128 0 0
A!=7 will be stored as
Exponent (K+3) MSB (K+2) NextMSB (K+1) LSB (K)
131 96 0 0
Al=-7:
Exponent (K+3) MSB (K+2) NextMSB (K+1) LsB (K)
131 224 0 0

Zero is simply stored as a zero-exponent. The other bytes are insignificant.

§ b
IR

If X is an integer value, VARPTR(X) finds the address of the least signiﬁcz.mt
byte of X. This address is passed to the subroutine, which in turn passes its
resultto Y.

515

Chapter 4

File Access Techniques

This chapter briefly shows how to “put together” Model Il BASIC's many
disk-related statements and functions. For syntax and other details on any
particular statement or function, see Chapter 3.

MODEL Ii BASIC |
e -

Methods of Access

Model I BASIC provides two means of file access: v
® Sequential—inwhich youstart reading or writing data at the beginning of a
file; subsequent reads or writes are done at following positions in the file.
¢ Direct—in which you start reading or writing at any record you specify.
(Direct access is also called random access, but ““direct” is more descriptive.)

Sequential access is stream-oriented; that is, the number of characters read or
written can vary, and is usually determined by delimiters in the data. Direct
access is record-oriented; that is, data is always read or written in fixed-length
blocks called records.

Note: When you start BASIC from TRSDOS, you select the maximum number

of files you will want to have Open simultaneously. For example, the TRSDOS
command line:

EOREADY
R =y
starts BASIC with a maximum of three concurrent data files, i.e., data files
Open simultaneously.

To do any input/output to a disk file, you must first Open the file. When you
Open the file, you specify what kind of access you want:

® “O” for sequential output

® “I” for sequential input

¢ “D” for direct input/output (“R” can also be used)

You also assign a file buffer for BASIC to use durin g file accesses. This number
can be from 1 to 15, but must not exceed the number of concurrent files you
requested when you started BASIC from TRSDOS, For example, if you started
BASIC with 3 files, you can use buffer numbers 1, 2, and 3. Once you assign a
buffer number to a file, you cannot assign that number to another file until
you Close the first file.

Examples:

OPEN "0y 1y CTESTY
Creates a sequential output file named TEST on the first available drive; if
TEST already exists, its previous contents are lost. Buffer 1 will be used for this

file.
OPFEM "I%y Ze "TESTH
Opens TEST for sequential input, using buffer 2.
OPERN "D 1. YTEST®
Opens TEST for direct access, using buffer 1, If TEST does not exist, it will be

created on the first available drive. Since record length is not specified,
256-byte records will be used.

OFEN "Dy 1y "TESTY Y 40
Same as preceding example, but 40-byte records will be used.

0

518

TN

FILE ACCESS TECHNIQUES -

Sequential Access

This is the simplest way to store data in and retrieve it from a file. it is ideal
for storing free-form data without wasting space between data items. You
read the items back in the same order in which they were written.

There are several important points to keep in mind.

1. You must start writing at the beginning of the file. If the data you are
seeking is somewhere inside, you have to read your way up to it.

2. Each time you Open a file for sequential output, the file’s previous
contents are lost.

3. To update (change) a sequential file, read in the file and write out the
updated data to a new output file.

4. Data written sequentially usually includes delimiters (markers) to signify
where each data item begins and ends. To read a file sequentialy, you must
know ahead of time the format of the data. For example: Does the file
consist of lines of text terminated with carriage returns? Does it consist of
numbers separated by blank spaces? Does it consist of alternating text and
numeric information?

5. Sequential files are always written as ASCII-coded text, one byte for each
character of data. For example, the number:

p1.2345p
requires 8 bytes of disk storage, including the leading and trailing blanks that
are supplied. The text string:

Johnson, ¥ Robert
requires 15 bytes of disk storage.

6. Sequential files are always written with a record length of one. This
matters if you want to Close the file and re-Open it for Direct access; in such a
case, you must specify a record length of 1.

519

MODEL Il BASIC

Vo
Sequential Output: An Example
Suppose we want to store a table of English-to-metric conversion constants:
English unit Metric equivalent
54001 centimeters
1.60935 kilometers
6 sq. meters
0.01638716 liter
3.785 liters
0.9463 liter
- 0.45359 kilogram
First we decide what the data image is going to be. Let’s say we want it to look
like this:
english unit—>metric unit, factor X’ 0D’ —
For example, the stored data would start out:
IN->CM,$2.540018 X°0D’
The following program will create such a data file.
Note: X’0D’ represents a carriage return.
PO L TMETRICSTETY
EAD UNITS. FACTR
NT H1s UMITS: o0y FACTR
404 e, §ié
. 4o s g
TN

520

FILE ACCESS TECHNIQUES

Line 10 creates a disk file named METRIC/TXT, and assigns buffer 1 for
sequential output to that file. The extension /TXT is used because sequential
output always stores the data as ASCII-coded text.

Note: If METRIC/TXT already exists, line 10 will cause all its data to be lost.
Here’s why: Whenever a file is opened for sequential output, the end-of-file
(EOF) is set to the beginning of the file. In effect, TRSDOS “forgets” that
anything has ever been written beyond this point.

Line 40 prints the current contents of UNIT$ and FACTR to the file. Since the
string items do not contain delimiters, it is not necessary to print explicit
quotes around them. The explicit comma is sufficient.

Line 60 closes the file. The EOF is at the end of the last data item, i.e.,0.45359,
so that later, during input, BASIC will know when it has read all the data.

521

" MODEL Il BASIC

Sequential Input: An Example

The following program reads the data from METRIC/TXT into two “parallel”
arrays, then asks you to enter a conversion problem.

DL ESR
DIM TR0 Tallows for up to 10
QPEM" I« Ly "METRIC/TY

I”:’- P
L Sn

; FoREOFOLY THEN 7@
A TNPUTHIL Y UNITS TN Y s FACTROTIY
Al s LEv]

Converszion factorz have z
TaE O FRIMNT TABRS)Y " wes Epnglish bto Mebric Coanversi
TI8 FOR ITEMY=0B TO I 1

FRIMT TARCD) s USTMNG™ (#4 \ R TTEMY
MEXT
PRIMNT & (198 "Which conversion (@-&)%:
TRPUT CHOTOEY
INPUTEnter Enalizh =suantiby" sy
FRIMT"The Metbtric e=muivalent i3 VEFACTROOHO)
THPUTY Prg CENTERY to continue® sl
FRINT & (19«80« CHRES 34 k
GOTO 148

Line 20 opens the file for sequential input. Input begins at the beginning of
the file.

Line 30 checks to see that the end-of-file record hasn’t been reached. If it has,
control branches from the disk input loop to the part of the program that uses
the newly acquired data.

Line 40 reads a value into the string array UNIT$(), and a number into the
single-precision array FACTR(). Note that this INPUT list parallels the PRINT#
list that created the data file (see the section “*Sequential Output: An
Example”). This parallelism is not required, however. We could just as
successfully have used:

A4 TNPUTHL s UNITEOIY) INPUTHISFATTROTE)

522

RN S

data Pairs

foapon ol

UNMTITSHOTTEMY

| FILE ACCESS TECHNIQUES
S

How to update a file

Suppose you want to add more entires into the English-Metric conversion
file. You can’t simply re-Open the file for sequential output and PRINT# the
extra data — that would immediately set the EOF to the beginning of the file,
effectively destroying the file’s previous contents. Do this instead:

1) Open the file for sequential input

2) Open another new data file for sequential output

3) Input a block of data and update the data as necessary

4) Output the data to the new file

5) Repeat steps 3 and 4 until all data has been read, updated, and output to
the new file; then go to step 6

6) Close both files

523

MODEL Il BASIC

Sequential Line Input: An Example

Using the line-oriented input, you can write programs that edit other BASIC
program files: renumber them, change LPRINTSs to PRINTS, etc. —as long as
these “target” programs are stored in ASCII format.

The following program counts the number of lines in any ASCII—format
BASIC disk file with the extension ,TXT.

THE NAME OF THE FROGRAM" Y PR
FATET b= THEM 118 " resuire

THERN 23
LINE ITMPUTHLY TEMPS

T 1TW "LINES LOoNG.®

TMCLUDE THE EXTE]

ST T ATRTY

For BASIC programs stored in ASCII, each program line ends with a carriage
return character not preceded by a line feed. So the LINE INPUT in line 70
automatically reads one entire line at a time, into the variable TEMPS.
Variable 1% actually does the counting.

To try out the program, first save any BASIC program using the A (Ascl)
option (See SAVE). Use the extension / TXT.

524

[N

FILE ACCESS TECHNIQUES -

Direct Access Techniques

Direct access offers several advantages over sequential access:

¢ Instead of having to start reading at the beginning of a file, you can read any
record you specify.

@ To update a file, you don’t have to read in the entire file, update the data,
and write it out again. You can rewrite or add to any record you choose,
without having to go through any of the other records.

® Direct access is more efficient—data takes up less space and is read and
written faster.

® Opening a file for direct access allows you to write and read from the file via
the same buffer.

e Direct access provides many powerful statements and functions to
structure your data. Once you have set up the structure, direct input/
output becomes quite simple.

The last advantage listed above is also the “hard part” of direct access. It
takes a little extra thought.

For the purposes of direct access, you can think of a disk file as a set of
boxes—like a wall of post-office boxes. Just like the post office receptacles,
the file boxes are numbered. We call these boxes ““records.”

Each record may contain between 1 and 256 bytes. The length of the records
1s set when you create a file, in the OPEN statement.

You can place data in any record, or read the contents of any record, with
statements like:

FUT 1+% write buffer-1 contents to record 5
alT 143 read the contents of record 5 into buffer-1

In the following illustration, we assume a record length of 256.

525

MODEL Il BASIC

e]

256 256 256 256 256
BYTES | BYTES | BYTES | BYTES | BYTES

#6 | #7 | #8 | #9 | #10

BYTEs | BYTES | BYTEs | BUTES “PUT1,5” % Bﬁgs
#1 | #2 | #3 | #4 “GET 1,57 1| #2
RECORDS IN DISK FILE I/0 BUFFERS IN RAM

The buffer is a waiting area for the data. Before writing data to a file, you
must place it in the buffer assigned to the file. After reading data from a file,
you must retrieve it from the buffer.

As you can see from the sample PUT and GET statements above, data is passed
to and from the disk in records. The size of each record is determined by an
Open statement.

Storing Data in a Buffer

You must place the entire record into the buffer before putting its contents
into the disk file.

This is accomplished by 1) dividing the buffer up into fields and naming them,
then 2) placing the string or numeric data into the fields.

For example, suppose we want to store a glossary on disk. Each record will
consist of a word followed by its definition. We start with:
1B OPEN"DY . 1 "GLOEEARY 3
LI FIFELD 1. 14 A5 WDE. 240 abh MEAMNINGS

Line 100 opens a file named GLOSSARY/BAS (creates it if it doesn’t already
exist); and gives buffer 1 direct access to the file.

Line 110 defines two fields onto buffer 1:
WD$ consists of the first 16 bytes of the buffer;
MEANINGS consists of the last 240 bytes.

WwD$ and MEANINGS$ are now field-names.

526

LI

FILE ACCESS TECHNIQUES

What makes field names different? Most string variables point to an area in
memory called the string space. This is where the value of the string is stored.

Field names, on the other hand, point to the buffer area assigned in the FIELD
statement. So, for example, the statement:

LED PRINT WDE: vy MEANINGS
displays the contents of the two buffer fields defined above.

These values are meaningless unless we first place data in the buffer. LSET,
RSET and GET can all be used to accomplish this function. We’ll start with
LSET and RSET, which are used in preparation for disk output.

Our first entry is the word “left-justify” followed by its definition.

3

o
A M

i ida b

. oX Fieldy blanks
the rights

too Tongs: the

Line 120 left-justifies the value in quotes into the first field in buffer 1. Line

130 does the same thing to its quoted string.

Note: RSET would place filler-blanks to the left of the item. Truncation
would still be on the right.

Now that the data is in the buffer, we can write it to disk with a simple PUT
statement:

This writes the first record into the file GLOSSARY/BAS.

To read and print the first record in GLOSSARY/BAS, use the following
sequence:

160 OFEN
171
1
1

S LI
L le da
T 1«1

PMT WS PRINT MEANINGS

CLOSEE

Lines 160 and 170 are required only because we closed the file in line 150. If

we hadn’t closed it, we could go directly to line 180.

a wvalue in & Field from
g odad
characters

Function,®

SR SaE:]
the right arse i9norec . T iz oa lefrelduysbify

Teft to righty

527

MODEL Il BASIC

Direct Access: A General Procedure
The above example shows the necessary sequences to read and write using
direct access. But it does not demonstrate the primary advantages of this form
of access—in particular, it doesn’t show how to update existing files by going
directly to the desired record.
The program below, GLOSSACC/BAS, develops the glossary example to show
some of the techniques of direct access for file maintenance. But before
looking at the program, study this general procedure for creating and
maintaining files via direct access.
See GLOSSACC/BAS,
Step Line Number
1. Open the file 110
2. Field the buffer 120
3. Get the record to be updated 140
4. Display current contents of the record (use CVD, 145-170
CViI, CVS before displaying numeric data) ~
5. LSET and RSET new values into the fields (use 210-230
MKDS$, MKI$, MKS$ with numeric data before
setting it into the buffer)
6. PUT the updated record 240
7. To update another record, continue at step 3. 250-260
Otherwise, go to step 8.
8. Close thefile 270

ARY /DAT

1 AE MEANINGS
WHAT RECC YOU WANT TO ACC
R IF RE 41 THEN PRINT® INVALID REC
(1) THEN 1000

InT"
T

GOTO 173G

1s HA

14 S WDED 17 THEM PRINT P"ENTRY DORSINGT ELIST YET": GOTO 1846
145 V] Tt iw the mest alehabelbical sentey

15
1 &I
178 PRINT
TR Ws o= "y PRINT

MEAMINGS
TRY 15 RECORD #"NX%
PTYPE ONERW WORD AND PR

CENTERY Y

“
528

IMPUT "OR JUST PRESS <ENTER: TO LEAVE UNCHANGED" @ W$
Dd=""a PRINT: PRINT NEW DEF*N &ND PRI
o LINE INPUT "OR JUST v ENTER: TO LEAVE UNCHANGED?
TOFRINT: PRINT " OHANGE R
INPUT "OR JUsT PR”
IF WE="" THEN L
IF DY THEN LSET HLANLNQ&HD%
LBET MA$=pMRTSNXY)

FUT 1+ RY
H””H?V i
Cl.bs PRINT "
F F\].hll TY F’E RECORD MNUMBE
FRINT"OR TYFE @ <ENTER:
SELOINPUT RY

S60IF @IRY, THEN 148

a5 default for pest record

CCENTER: FOR ANY OTHER ENTRY":
TO it

A END

1@ PRINT "RECORD NUMBER EXCEEDS END OF FILE. EXTEND FILE?

1E1@ Re = INPUTH{(1)Y: PRINT
1@z@ IF R = "N® THEN 136
Ta3@ IF R$ <x "Y' THEM PRINT "EXTEND FILE? TYPE v OR N":
Va4l LBET WDE = "1 LSET MEANINGE = """ NYX¥ = @

TRLB PUT 1 RHY: GOTO 150

Notice we’ve added a field, NX$, to the record (line 120). NX$ will contain the
number of the record which comes next in alphabetical sequence. This
enables us to proceed alphabetically through the glossary, provided we know
which record contains the entry which should come first.

For example, suppose the glossary contains:

pointer to next
record# | word (WDS$) defn, alpha. entry (NX$)

BN =

HEXADECIMAL

When we read record 2 (BYTE), it tells us that record 4 (HEXADECIMAL) is
next, which then tells us record 1 (LEFT-JUSTIFY) is next, etc. The last entry,
record 3 (RIGHT-JUSTIFY), points us to zero, which we take to mean “The
End”.

Sinced NX$ will contain an integer, we have to first convert that number to a
two-byte string representation, using MKI$ (line 230 above).

3 CENTER:Y

T NEXT ALFHA ENTRY AND PREGS
TO LEAVE UNCHANGED" 3 MNXY

i D%

T READ THE MEXT alPH& ENTRY"

GOTO

529

CEMTER:

(YNNI

1816

it

GLOSBSOUT/BAS %ww

CLEA&R 306
MU e e GLOSEARY /S
Dol 14 A5 WDE.
THEHICH RECORD
e NXY
LT FRINT WDh4é
Hi H!mHHluw

DA&T
1AL MEANINGSEs 3 A% NX®
FIRST ALPHABETICALLY": NXY

........

Tet Uorecard number
3O AENTERD TO CONTIMUE® 1%
i}@ THEM |

Overlapping Fields

Suppose you want to access a field in two ways—in total and in part. Then you
can assign two field names to the same area of the buffer.

For example, if the first two digits of a six-digit stock-number specify a
category, you might use the following field structure:

FIELD 1,6 AS STOCKS,
FIELD 1,2 AS CTGS,

Now STOCKS$ will reference the entire stock-number field, while CTG$ will
reference only the first two digits of the number.

530

Chapter 5

Using the Line Editor

MODEL Il BASIC

Using the Line Editor

The Line Editor is a powerful set of subcommands which simplifies
programming. When you are inputting long application programs, the Editor
is a fast and efficient way to debug the program and get it running. There are
two ways to activate the Editor:

If you type in a long program line or input to a program, and realize you have
made a mistake, you can activate the Editor by hitting the [@ key before you

press [Ei{F:1 . This will activate the Editor and all of its subcommands listed
below.

EDIT line number

This command starts the Editor when you want to edit program lines which
have already been entered. You must specify which line you wish to edit, in
one of two ways:

EDIT line-number [E% 14

Lets you edit the specified line.
If line number is not in use, an FC error
or occurs

EDIT Lets you edit the current program line —
) last line entered or altered or in which an
error has occurred.

For example, type inand [the following line:
100 FORI=1TO10STEP 5: PRINT I, IA 2,1 A3 :NEXT

This line will be used in exercising all the Edit subcommands described below.

532

“

AN

USING THE LINE EDITOR

Now type EDIT 100 and press [E{E{F:l . The Computer will display:
100=

This starts the Editor. You may begin editing line 100.

Note: EDITing a program line automatically clears all variable values and
eliminates pending FOR/NEXT and GOSUB operations. If BASIC encounters a
syntax error during program execution, it will automatically put you in the
EDIT mode. Before EDITing the line you may want to examine current
variable values. In this case, you must type Q as your first EDIT command.
This will return you to the command mode, where you may examine variable

values. Any other EDIT command (typing E, pressing , etc.) will
clear out all variables.

ENTER key

Hitting [EfEil while in the Edit Mode causes the Computer to record all
the changes you’ve made (if any) in the current line, and returns you to the
Command Mode.

nSpace-bar

In the Edit Mode, hitting the Space-Bar moves the cursor over one space to
the right and displays any character stored in the preceding position. For
example, using line 100 entered above, put the Computer in the Edit Mode so
the Display shows:

100 =

Now hit the Space-Bar. The cursor will move over one space, and the first
character of the program line will be displayed. If this character was a blank,
then a blank will be displayed. Hit the Space-Bar until you reach the first
non-blank character:

100 F &

is displayed. To move over more than one space at a time, hit the desired
number of spaces first, and then hit the Space-Bar. For example, type 5 and
hit Space-Bar, and the display will show something like this (may vary
depending on how many blanks you inserted in the line):

100FORI=m

Now type 8 and hit the Space-Bar. The cursor will move over 8 spaces to the
right, and 8 more characters will be displayed.

100FORI=1TO10®

533

MODEL Il BASIC

ESC

Hitting the key effects an escape from any of the Insert subcommands
listed below: X, I and H. After escaping from an Insert subcommand, you’ll
still be in the Edit Mode, and the cursor will remain in its current position.
(Hitting EN{EI is another way to exit these Insert subcommands).

L (List Line)

When the Computer is in the Edit Mode, and is not currently executing one of
the subcommands below, hitting L causes the remainder of the program line
to be displayed. The cursor drops down to the next line of the Display,
reprints the current line number, and moves to the first position of the line.
For example, when the Display shows

100 &
hit L (without hitting [E{3 key) and line 100 will be displayed:

100 FORI=1TO 10 STEP .5: PRINT I, | A2, | A3 : NEXT
100 &

This lets you look at the line in its current form while you’re doing the editing.

X (Extend Line)

Causes the rest of the current line to be displayed, moves cursor to end of line,
and puts Computer in the Insert subcommand mode so you can add material
to the end of the line. For example, using line 100, when the Display shows

100 =

hit X (without hitting [ET{ZZ) and the entire line will be displayed; notice
that the cursor now follows the last character on the line:

100 FOR I1=1TO 10 STEP .5: PRINT I, |A2, A3 :NEXT @

We can now add another

ement to the line, or delete material from the
line by using the [4 key. For example, type :PRINT“DONE” at
the end of the line. Now hit [EXi{Z: . If you now type LIST 100, the Display

should show something like this:
100 FOR I=1 TO 10 STEP .5: PRINT I, | A 2, A3 :NEXT : PRINT*DONE" &

Note: If you want to continue editing the line, press [EJ#to get out of the
“X” command mode.

534

——

USING THE LINE EDITOR

I (Insert)

Allows you to insert material beginning at the current cursor position on the
line. (Hitting EIYSRIZYEH will actually delete material from the line in this
mode.) For example, typeand [Efifi} theEDIT 100 command, then use the
Space Bar to move over to the decimal point in line 100. The Display will
show:

100 FORI=1TO 10 STEP . &

Suppose you want to change the increment from .5 to .25. Hit the Tkey (don’t
hit [E7E:)and the Computer will now let you insert material at the

current position. Now hit 2 so the Display shows:

100FORI=1TO 10 STEP .2 &

You’ve made the necessary change, so press [E58 to escape from the Insert
Subcommand. Now press the L key to display the remainder of the line and
move the cursor back to the beginning of the line:

100 FOR I=1TO 10 STEP .25 : PRINT I, 1 A2, | A3 : NEXT : PRINT “DONE”
1008

You can also exit the Insert subcommand and save all changes by pressing
i . This will return you to Command mode.

A (Cancel and Restart)

Moves the cursor back to the beginning of the program line and cancels
editing changes already made. For example, if you have added, deleted, or
changed something in a line, and you wish to go back to the beginning of the
line and cancel the changes already made: first press[Z54 (to escape from any
subcommand you may be executing); then hit A. (The cursor will drop down
to the next line, display the line number and move to the first program
character.

E (Save Changes and Exit)

Causes Computer to end editing and save all changes made. You must be in
Edit Mode, not executing any subcommand, when you press E to end editing.

535

MODEL Il BASIC

Q (Cancel and Exit)

Tells Computer to end editing and cancel all changes made in the current
editing session. If you’ve decided not the change the line, type Q to cancel
changes and leave Edit Mode.

If a syntax errors is detected during program execution, BASIC will start the
Editor. To examine variable values, youmust press Q before typing any other
command.

H (Hack and Insert)

Tells Computer to delete remainder of line and lets you insert material at the
current cursor position. Hitting will actually delete a
character from the line in this mode. For example, using line 100 listed above,
enter the Edit Mode and space over to the last statement, PRINT*DONE”,
Suppose you wish to delete this statement and insert an END statement.
Display will show:

100 FOR I=1 TO 10 STEP .25: PRINT I, |A2, | A3 : NEXT : &

Now type H and then type END. Press . List the line:
100 FOR I1=1TO 10 STEP .25 : PRINT I, 1A2, | A3 : NEXT : END
should be displayed.

Note: To continue editing the line, type the [33e] key to get you out of the
“H” subcommand.

nD (Delete)

Tells Computer to delete the specified number 7 characters to the right of the
cursor. The deleted characters will enclosed in backslashes to show you which
characters were affected. For example, using line 100, space over to the PRINT
command statement:

100FORI=1TO10STEP .25 :m

Now type 19D. This tells the Computer to delete 19 characters to the right of
the cursor. The display should show something like this:

100 FOR I=1TO 10 STEP .25:\PRINT I, | A2, | A3 : \®

When you list the complete line, you’ll see that the PRINT statement has been
deleted.

536

e

i

USING THE LINE EDITOR

nC (Change)

Tells the Computer to let you change the specified number of characters
beginning at the current cursor position. If you type C without a preceding
number, the Computer assumes you want to change one character. When you
have entered n number of characters, the Computer returns you to the Edit
Mode (so you’re not in the nC Subcommand). For example, using line 100,
suppose you want to change the final value of the FOR-NEXT loop, from “10”
to “15”. In the Edit Mode, space over to just before the “0” in “10”.

100 FORI=1TO 1 @

Now type C. Computer will assume you want to change just one character.
Type 5, then hit L. When you list the line, you’ll see that the change has been
made.

100 FOR1=1TO 15 STEP .25 :NEXT :END &

would be the current line if you've followed the editing sequence in this
chapter.

nSc (Search)

Tells the Computer to search for the nth occurrence of the character c, and
move the cursor to that position. If you don’t specify a value for n, the
Computer will search for the first occurrence of the specified character. If
character ¢ is not found, cursor goes to the end of the line. Note: The
Computer only searches through characters to the right of the cursor.

For example, using the current form of line 100, type EDIT 100 £ and
then hit 2S:. This tells the Computer to search for the second occurence of the
colon character. Display should show:

100 FOR I=1TO 15 STEP .25 : NEXT &

You may now execute one of the subcommands beginning at the current
cursor position. For example, suppose you want to add the counter variable
after the NEXT statement. Type I to enter the Insert subcommand, then type
the variable name, I. That’s all you want to insert, so hit IE98 to escape from
the Insert subcommand. The next time you list the line, it should appear as:

100 FOR I=1TO 15 STEP .25 : NEXT I: END

537

MODEL Il BASIC

nKc (Search and “Kill”’)

Tells the Computer to delete all characters up to the nth occurrence of
character ¢, and move the cursor to that position. For example, using the
current version of line 100, suppose we want to delete the entire line up to the
END statements. Type EDIT 100 ({5), and then type 2K: This tells the
Computer to delete all characters up to the 2nd occurrence of the colon.

100\FOR I=1TO 15 STEP .25 : NEXT | \&&

The second colon still needs to be deleted, so type D. The Display will now
show:

100\FOR I=1TO 15STEP .25 :NEXT I\ \ : \ &

Now hit and type LIST 100
Line 100 should look something like this:
100 END

il BACKSPACE

Moves the cursor to the left by n spaces. If no number n is given, the cursor
moves back one space. When the cursor backspaces, all characters in its
path are erased from the display, but they are not deleted from the
program. Use the SPACEBAR to advance the cursor forward and re-
display the erased characters.

Note: In any of the insert modes (1, H, and X),
characters from the program line.

does delete

538

i N

Appendix

A/Error Messages

B/Character Codes

C/Reserved Words

D/Internal Codes for BASIC Keywords
E/Glossary

F/Video Display Worksheet

MODEL Il BASIC

A/Error Messages

13

M

Abbre-
Code |viation Explanation
g1 NF : :N,Exfwithout FOR. NEXT is used without a matching FOR Staté%f !
‘ ‘ _ment. This error may also occur if NEXT variables are reversed in
“anested loop.
2 SN Syntax. This is usually the result of incorrect punctuation, an
illegal character or a misspelled command.
3 RG RETURN without GOSUB. A RETURN statement was encountered
, before a matching Gosus was executed.
4 OD Out of data. A READ statement was executed with insufficient

ov

uL

DD

| Outof memory. All available memory has been used or reserved. |

data available. The DATA statement may have been left out or all
data may have been read.

lion call. An attempt was made to execy
illegal parameter. Examples: squar
rgument, negative array dimension, negative ot
LOG arguments. b
Overflow. The magnitude of the number derived or input is too
large for the data storage type assignedtoit. The integerrange is
[—32768,32767]; other numbers can be in the range [—1x10+3s,
—1XxX10-38] or [+1x10-38, +1x 10+%8]. Note: There is no under-
flow error; numbers smaller than +/—-1.701411E-38 (single-
precision) or +/—1.701411834544556E—38 (double-precision)
are rounded to 0.

| This may occur with large array dimensions and nested branches:
such as GOSUB and FOR/NEXT loops. o

Undefined line. An attempt was made to reference a non-

existent line.

Bad subscript. An attempt was made to assign an array eleme

with a subscript beyond the dimensioned range.

Double-dimensioned array. An attempt was made to Dimen-
sion an array which had previously been created with DIM or by
default statements. ERASE must be used first.

lllegal direct. An attempt was made to use a program-onty
statement like INPUT in an immediate (non-program) line.

- Type mismatch. An attempt was made to assign a number to
| string variable or a string to a numeric variable. L

540

Gt

APPENDIX

B/Character Codes

Note: Codes 32-127 represent the ordinary alphanumeric characters. Codes
160-239 represent the graphics-mode alphanumerics, which are used in
special applications. For further information, see Chapter 1, ““Video Display
Output.”

Code Character
Dec. Hex. Keyboard Video Display
01 01 Turns on blinking cursor <
S 02 02 - Turns off cursor S Cal
03 03
04 04
05 05
06 06
07 07
08 08 |
09 09 Advances cursor to next
8- character boundary
10 0A Linefeed - «
11 0B Cursor to prewous line
13 0D Carriage return
14 OE Dual routing on
15 OF Dual routing off
16 10 - G
17 11
18 12
19 13 o
20 14 Homes cursor to upper left.
21 15
22 16 e
23 17 Erases to end of I|ne
24 18 Erases to end of screen
25 19 Sets white-on-black
mode ,
26 1A T Sets black-on-white =~
, mode ' ‘
27 1B Clears screen, homes
cursor

EEIFYE is always intercepted. It will never return a code 3 to the user
program

543

MODEL Il BASIC

Code

Character

Dec. Hex.

Keyboard

Video Display

28 1C
29 1D
30 1E

31 9F

32 20
33 21

35 23
36 24
37 25
38 . 26
39 27
40 28
41 29
42 2A
43 2B
44 2C
45 2D
46 2E
47 2F
48 30
49 31

51 33
52 . 34
53 35

55 37

59 3B

61 3D
62 3E
63 3F
64 40
65 41
66 42
67 43
68 44
69 45

71 47

50 32 |

57 39

60 3¢ |

70 0 46)

,

Moves cursorback

Moves cursor forward
Sets 80-character mode
and clears Display

Sets 40-character mode
and clears Display

CONDUHAEWUN S~

OmmUOUJ)@oy Il A e s

544

APPENDIX
C = =

Code Character

Dec. Hex. Keyboard Video Display

oZgr X
",(D POTOZZ X o _“E’;f"

545

“MODEL Il BASIC

I

Character

Keyboard Video Display

=1

T |

- f B

TN

APPENDIX i

L] |

Code

Character

Dec. Hex.

Keyboard

_+:(»VA vwo\om*

CONOA RN =S~

TOZEMXCTIOTMMOUOTB@E S~ [~

Video Display

|

547

MODEL Il BASIC

Code

Character

Dec. Hex

214 Ds

218 DA

548

Keyboard

Video Display

033X TT@T0QA0TR > = NKXSE<CAV D

o

C/Reserved Words

APPENDIX

A reserved word with a dollar-sign (““$”’) after it may be used as a numeric
variable name if the dollar-sign is dropped. For instance, CHR and CHR #
are valid variable names. However, DEF statements may not be used to

assign values to this type of variable.

ABS
AND
ASC
ATN
AUTO
CDBL
CHR$
CINT
CLEAR
CLOCK
CLOSE
CLS
CONT
COS
CSNG
CvD
Cvi
CVS
DATA
DATES$
DEF
DEFDBL
DEFFN
DEFINT
DEFSNG
DEFSTR
DEFUSR
DELETE
DIM
EDIT
ELSE
END
EOF
EQV

ERASE
ERL
ERR
ERROR
EXP
FIELD
FILES
FIX
FN
FOR
FORMAT
FRE
FREE
GET
GOSUB
GOTO
HEX$
IF

IMP
INKEY$
INPUT
INPUTS
INSTR
INT
KILL
LEFTS$
LEN
LET
LINE
LINEINPUT
LIST
LLIST
LOAD
LOC

LOF
LOG
LPOS
LPRINT
LSET
MEM
MERGE
MID$
MKD$
MKIS$
MKS$
MOD
NAME
NEW
NEXT
NOT
OCT$
ON
OPEN
OR
POINT
POS
POSN
PRINT
PUT
RANDOM
READ
REM
RENAME
RENUM
RESTORE
RESUME
RETURN
RIGHT$

RND
ROW
RSET
RUN
SAVE
SGN
SIN
SPACES$
SPC
SQR
STEP
STOP
STR$
STRING$
SWAP
SYSTEM
TAB
TAN
THEN
TIMES$
TO
TROFF
TRON
USING
USR
VAL
VARPTR
VERIFY
XOR

549

“MODEL Il BASIC

Internal Codes for sasic Keywords

To save space, BASIC keywords are stored in memory and in compressed
(non-Ascir) disk files as one-byte codes. To determine the sequence for a
multi-word keyword sequence, simply string together the codes of the
individual keywords. For example, ON ERROR GOTO is stored as 159 157 138.

|__Code Code
Keyword Dec Hex Keyword Dec Hex
ABS ; . 219 | DB FIELD S bot1et AT
AND 207 | CF FILES 70 46
ASC o 249 | F9 FiX 243 | F3
ATN 230 E6 FN 186 | BA
AUTO 180 | B4 FOR {129 | 81
CDBL 242 F2 FRE 220 | DC
CHRS$ o)l 250 FA GET s et AR
CINT 240 FO GOSuUB 142 | 8E
CLEAR - 181 | B5 GOTO | 138 | 8A
CLOCK 67 43 HEX$ 246 F6
CLOSE 164 | A4 IF , | 140 | 8C
CLS 130 82 IMP 211 D3
CONT 176 | BO INKEY$ o198 | Cc6 —~
COSs 227 | E3 INPUT 134 86
CSNG o241 | Fto INPUTS$* o} 134 | 86 |
CVD 233 E9 INSTR
cvi 231 E7 INT -
CVS 232 ES KILL
DATA 133 85 LEFT$
DATES$ 196 | C4 LEN
DEFDBL ‘ 154 9A LET
DEF 174 | AE LINE
DEFINT = | 152 | 98 LIST
DEFSNG 153 99 LLIST
DEFSTR | " 151 197 LOAD
DELETE 179 | B3 LOC
biM . | 135 | 87 LOF
EDIT 156 | 9C LOG
END. . 128 | 80 LPRINT
EOT 234 | EA LSET
ERASE 150 96 MERGE
ERR 192 | Co MKD$ 239 | EF
ERROR 1 157 1 9D MKI$ S 28 ‘
EXP 226 E2 MKS$ 238 | EE

*The dollar-sign § is stored as an ASCII character (36) following the code for
INPUT. g

e

550

P

R

”ANDOMJM

SWAP

SYSTEM

STRINGS

Code
Dec Hex

551

MODEL Il BASIC

%
E/Glossary

access The method in which information is read from or written to disk; see
direct access and sequential access.

address A location in memory, usually specified as a two-byte hexadecimal
number. The address range [0 to FFFF] is represented in decimal as [0to
32767] [—32768, .. ., —1].

alphabetic = Referring strictly to the letters A to Z.
alphanumeric Referring to the set of letters A to Z and the numerals 0-9.

argument The string or numeric quantity which is supplied to a function and
is then operated on to derive a result; this result is referred to as the value of
the function.

array An organized set of elements which can be referenced in total or
individually, using the array name and one or more subscripts. In BASIC, any
variable name can be used to name an array; and arrays can have one or more
dimensions. AR() signifies a one-dimensional array named AR; AR(,)
signifies a two-dimensional array named AR; etc.

ASCII American Standard Code for Information Interchange. This
method of coding is used to store textual data. Numeric data is typically
stored in a more compressed format.

ASCII format disk file Disk files in which each byte corresponds to one
character of the original data. For example, a BASIC program stored in ASCII
format “looks like” the program listing, with each character ASCII encoded.
Compare to compressed-format file.

backup diskette An exact copy of the original: a “safe copy”. You should
keep backups of your original TRSDOS diskette and all important data
diskettes.

BASIC Beginners’ All-purpose Symbolic Instruction Code.

binary Having two possible states, e.g., the binary digits 0 and 1. The binary
(base 2) numbering system uses sequences of zeroes and ones to represent
quantities. This is analagous to the Computer’s internal representation of

data, using electrical values for 0 and 1.

bit Binary digit; the smallest unit of memory in the Computer, capable of
representing the values 0 and 1.

L~ —

552

APPENDIX

break To interrupt execution of a program. In BASIC the statement STOP
causes a break in execution, as does pressing the [EEIFYE key.

buffer An areain RAM where data is accumulated for further processing.
For example, to pass data from BASIC to a disk file, and vice-versa, the data
must go through a file-buffer.

buffer field A portion of the buffer which you define as the storage area for
a buffer-field variable. Dividing a buffer into fields allows you to include
multiple values in one logical record.

byte The smallest addressable unit of memory in the Computer, consisting
of 8 consecutive bits, and capable of representing 256 different values, e.g.,
decimal values from 0 to 255.

compressed-format A method of storing information in less space than a
standard ASCII representation would require. An integer always requires two
bytes; a single-precision number, four; a double-precision number, 8 —
regardless of how many characters are required to represent the numbers as
text. String values are not stored in compressed format; each character
requires one byte.

BASIC programs in RAM and non-ASClII disk files are stored in compressed
format, with all BASIC keywords stored as special one-byte codes.

close Terminate access to a disk file. Before re-accessing the file, you must
re-open it.

data Information thatis passed to or output from a program. There are four
types of data:

e Integer numbers

® Single-precision numbers

¢ Double-precision numbers

e Character-string sequences (strings)

debug To find and remove logical or syntactic errors from a program.

decimal Capable of assuming one of ten states, e.g., the decimal digits
0,1,...,9. Decimal (base 10) numbering is the everyday system, using
sequences of decimal digits. Decimal numbers are stored in binary code in
Model 11 BASIC.

default An action or value which is supplied by a program when you do not
specify an action or value to be used.

553

MODEL Ii BASIC

delimiter A character which marks the beginning or end of a data item, and
is not a part of the data. For example, the double-quote symbol is a string
delimiter to BASIC.

destination The device or address which receives the data during a data
transfer operation. For example, during a BACKUP operation, the destination

disk is the one onto which the source disk is being copied.

device A physical part of the computer system used for data1/0, e.g.,
keyboard, display, line printer, disk drive.

directory A listing of the files which are contained on a disk.

direct access A means of processing any record in a file. Contrast with
sequential access.

diskette A magnetic recording medium for mass data storage.

drive specification An optional field in a TRSDOS file specification and in
some TRSDOS commands, consisting of a colon followed by one of the digits 0
through 3. The drive specification is used to specify which drive is to be used
for a disk read or write.

When the drive specification is omitted from a command involving a read
operation, TRSDOS will search through all the disks for the desired file,
starting with drive 0.

When the drive specification is omitted from a command involving a write
operation, TRSDOS will generally search through all non write protected
drives for the desired file.

drivenumber Aninteger value from 0 to 3, specifying one of the disk drives.

dummy variable A variable name which is used in an expression to meet
syntactic requirements, but whose value is insignificant.

edit To change existing information.

entry point The address of a machine-language program or routine where

execution is to begin. This is not necessarily the same as the starting address.

Entry point is also referred to as the transfer address.

field A user-defined subdivision of a direct access file-buffer, created and
named with the FIELD statement.

field name A string variable which has been assigned to a field in a direct
access file-buffer via the FIELD statement.

554

APPENDIX

file An organized collection of related data. Under TRSDOS, a file is the
largest block of information on a diskette which can be addressed with a single
command. BASIC programs and data are stored on disk in distinct files.

file extension An optional field in a file specification, consisting of a
diagonal slash ““/” followed by up to three alphanumeric characters; the
extension can be used to identify the file type, e.g., /BAS, /TXT, /MIM, for
BASIC, text, and memory image, respectively.

filename A required field in a file specification, consisting of one alphabetic
character followed by up to 7 alphanumeric characters. File names are
assigned when a file is created or renamed.

file specification A sequence of characters which specifies a particular disk
file under TRSDOS, consisting of a mandatory file name, followed by an
optional extension, password, drive specification and diskette name.

format To organize a new or magnetically erased diskette into tracks and
sectors, via the TRSDOS FORMAT utility.

granule The smallest unit of allocatable space on a disk, consisting of 5
sectors.

hexadecimal or hex Capable of existing in one of 16 possible states. For
example, the hexadecimal digitsare 0,1,2, .. .,.9,A,B,C,D,E F. Hexadecimal
(base-16) numbers are sequences of hexadecimal digits. Address and byte
values are frequently given in hexadecimal form. In Model I BASIC,
hexadecimal constants can be input by prefixing the constant with &H.

increment The value which is added to a counter each time one cycle of a
repetitive procedure is completed.

input To transfer data from outside the Computer (from a disk file,
keyboard, etc.) into RAM.

kilobyte or K 1024 bytes of memory. Thus a 64K System includes
64+1024=65536 bytes of memory.

logical expression An expression which is evaluated as either True (=—1)
or FALSE (=0).

logical record A block of data which can be processed as a unit. In a disk
file, the record length is set when the file is first Opened. Sequential access
files have a record length of 1; direct access files have a record length in the
range [1,256].

5565

MODEL Il BASIC

machine language The Z-80A instruction set, usually specified in
hexadecimal code. All higher-level languages must be translated into
machine-language, or interpreted by machine language, in order to be
executed by the Computer.

nullstring A string which has a length of zero. For example, the assignment
A$ — 190y
makes A$ a null string.

object code Machine language derived from “source code”, typically, from
assembly language.

octal Capable of existing in one of 8 states, for example, the octal digits are
0,1,...,7. Octal (base-8) numbers are sequences of octal digits. Address and
byte values are frequently given in octal form. Under model I BASIC, an octal
constant can be input by prefixing the octal number with the symbol &O.

open To prepare a file for access by assigning a sequential input, sequential
output or direct I/O buffer to it.

output To transfer data from inside the Computer’s memory to some
external area, e.g., a disk file or a line printer.

parameter Information supplied with a command to specify how the
command is to operate.

password An optional field in a filespec consisting of up to 8 alphanumeric
characters. Ifa file is created without a password, 8 blanks become the default
password. To access a file, you must specify the password in the filespec.

Using the TRSDOS ATTRIB command, you can assign both update and access
passwords; the access password will grant only a limited degree of access,
while the update password grants total access to the file. See file specification.

prompt A character or message provided by a program to indicate that it’s
ready to accept keyboard input.

protected file A disk file which has a non-blank password, and therefore
can only be accessed by reference to that password.

protection level The degree of access granted by using the access password:
kill, rename, write, read, or execute.

random access memory or RAM Semiconductor memory which can be
addressed directly and either read from or written to.

e

556

Pt

(APPENDIX -

routine A sequence of instructions to carry out a certain function; typically,
a routine called from multiple points in a program.

sector A physical record on the diskette, containing 256 bytes of data. The
unit of data transferred for the user is called a logical record, and can contain
from one to 256 bytes.

sequential access Reading from a disk file or writing to it “from start to
finish”, without being able to directly access a particular record in the file.

statement A complete instruction in BASIC.

string Any sequence of characters which must be examined verbatim for
meaning: in other words, the string does not correspond to a quantity. For
example, the number 1234 represents the same quantity as 1000+234, but the
string “1234” does not. (String addition is actually concatenation, or stringing-
together, so that: *“1234” equals “1” + “2” + “3” + “4”),

syntax The “grammatical” requirements for a command or statement.
Syntax generally refers to punctuation and ordering of elements within a
statement.

transfer address See entry point.

TRSDOS TRsS-80 Disk Operating System, pronounced “triss-doss”.
TRSDOS is supplied on disk and is then loaded into RAM.

utility A program or routine which serves a limited, specific purpose. There
are two extended TRSDOS utilities, FORMAT and BACKUP.

write-protect To physically protect a disk from being written to by leaving
the write-protect notch uncovered.

5567

lay Worksheet

isp

F/Video D

_mm-muumm-mmm-mmmmmmmmmmmmummnmm

Ha6GAGABARAGEAEEAAE

6SLL

e

o

L= l=1"]

[elfseel el el el e

