

Written by
Agora Resource, Inc.
Lexington, MA

©1984, 1985 AT&T

©1983, 1984 By Microsofte
All Rights Reserved
Printed in USA

NOTICE

The information in this document is subject to change without
notice. AT&T assumes no responsibility for any errors that may
appear in this document.

Introduction

INTRODUCTION

GWBASIC is the most extensive
implementation of BASIC available for
personal computers. It meets the requirements
of the ANSI standard for BASIC, and
supports many features rarely found in other
BASICs. It provides sophisticated string
handling, structured programming features,
and improved graphics.

GWBASIC gives you ease of use plus features
that make your personal computer perform at
its best.

UNIX is a trademark of AT&T Bell Laboratories.
MS™.DOS is a trademark of Microsoft Corporation.
Microsoft® is a registered trademark of Microsoft Corporation.

1-2

Introduction

RESERVED WORDS

GWBASIC comprises a set of statements, N
commands, function names, and operator

names which are treated as reserved words,

and which cannot be used as variable names.

The total list of GWBASIC reserved words is

as follows:

ABS EQV LSET
AND ERASE MERGE
ASC ERDEV MID$
ATN ERDEV$ MKDIR
AUTO ERL MKD$
BEEP ERR MKI$
BLOAD ERROR MKS$
BSAVE EXP MOD
CALL FIELD NAME
CALLS FILES NEW
CHAIN FN NEXT
CHDIR FIX NOT
CHRS$ FOR OCT$
CINT FRE OFF
CIRCLE GET ON / \
CLEAR GOSUB OPEN
CLOSE GOTO OPTION
CLS HEX$ OR
COLOR IF ouT
COM IMP PAINT
COMMON INKEY$ PEEK
CONT INP PLAY
COS INPUT PMAP
CSNG INPUT# POINT
CSRLIN INPUTS POKE
CVvD INSTR POS

CVI INT PRESET
CVS IOCTL PRINT
DATA IOCTLS$ PRINT#
DATES KEY PSET
DEF KILL PUT
DEFDBL LEFT$ RANDOMIZE
DEFINT LEN READ
DEFSNG LET REM
DEFSTR LINE RENUM
DELETE LIST RESET -
DIM LLIST RESTORE / \
DRAW LOAD RESUME
EDIT LOC RETURN
ELSE LOCATE RIGHTS$
END LOF RMDIR
ENVIRON LOG " RND
ENVIRONS LPOS RSET

EOF LPRINT

Getting Started

Backspace

The backspace key < moves the cursor one
position to the left, erasing the last character
you have typed.

To move the cursor to the left without erasing
any characters, you should use the Cursor Left
Key located on the numeric keypad.

Control Characters

You can generate control characters by
holding down the CTRL or ALT key while
pressing another key. GWBASIC recognizes a
number of control characters.

2-7

Getting Started

CTRL-ALT-DEL
Performs a System Reset by holding down the CTRL and
ALT keys, and then pressing DEL.

CTRL-PRTSC

All text sent to the screen is also sent to the system printer.
A second CTRL-PRTSC will stop printing. If you press
PRTSC while holding down SHIFT, MS-DOS will make a
single printed copy of the entire display screen.

CTRL-L

Outputs a formfeed character. It has the same function as
the CLS statement, (i.e., it clears the screen or the current
graphics viewport, if a viewport has been defined).

CTRL-Z
Sets an end of file condition (see the “OPEN COM State-
ment” in the Reference section).

2-9

Getting Started

Other control characters are described in the
subsection entitled ‘‘Special Screen Editor
Keys’’ later in this chapter.

Direct Entry of GWBASIC Keywords

You can type a GWBASIC Keyword by
holding down the ALT key while pressing one
of the alphabetic keys (A - Z). Keywords
associated with each letter are listed below.

- AUTO

- BSAVE

- COLOR

- DELETE
- ELSE

- FOR

- GOTO

- HEX$

- INPUT

L ks

- KEY

- LOCATE
- MERGE
*** ynused keys

ZoRe-IOEEOOW >

*

N - NEXT
O - OPEN
P - PRINT
Q o ¥kkk

R - RUN

S - SCREEN
T - THEN
U - USING
V - VAL
W- WIDTH
X - XOR

Y - kkkok

Z o ek

~

Getting Started

NUMERIC KEYPAD

A group of 15 keys at the right-hand side of
the keyboard. It is arranged much like a
standard calculator’s keypad and is called
“numeric keypad.” It includes not only the
numbers 0 through 9, the decimal point, the
plus (+) and minus (—) keys, but also cursor
movement keys, PGUP, PGDN, HOME,
NUM LOCK, SCROLL LOCK, BREAK,
END, INS, DEL, etc.

Note that some keys like SCROLL LOCK,
PGUP, and PGDN are not used by GWBASIC,
but they may be assigned meanings

within a program.

Number Lock State

You can press the NUM LOCK key to shift
the numeric keypad into upper-case. This
mode provides the numbers 0 through 9 and
the decimal point. (Holding down one of the
two SHIFT keys produces the corresponding
lower-case keys in this mode.) To return to
lower-case, press NUM LOCK once again.

2-11

Getting Started

THE GWBASIC
SCREEN EDITOR

All text entered while GWBASIC is at
command level is processed by the GWBASIC
Editor. This is a ‘“‘screen line editor’’ which
allows you to change a line anywhere on the
screen (only one line at a time). Changes are
only registered when you press CR on that
line.

SPECIAL SCREEN EDITOR KEYS

The GWBASIC Editor recognizes 9 numeric
Keypad Keys, the Backspace Key, and the
CTRL Key to move the cursor, insert or delete
characters.

The Keys and their functions are listed below.

HOME
Positions the cursor in the top left-hand corner of the screen.

CTRL-HOME
Clears the screen and moves the cursor to the “Home”
position.

1
Moves the cursor up one line.

{
Moves the cursor down one line.

-
Moves the cursor one position left. If the cursor is moved
beyond the left edge of the screen, it appears at the right
side of the screen on the preceding line.

—

Moves the cursor one position right. If the cursor is moved
beyond the right edge of the screen, it appears at the left
side of the screen on the following line.

2-12

Getting Started

CTRL -~
Moves the cursor to the beginning of the following word,
(i.e., to the next character to the right of the cursor in the
set) [A..Z] or {a..z] or [0..9].
For example, in the following line:

30 IF L<=0 THEN 20

The cursor is under the letter L. If you press CTRL -,
the cursor will move to the beginning of the next word,
which is 0:

30 IF L<=0 THEN 20

If you press CTRL — again, the cursor will move to the
next word, which is THEN:

30 IF L<=0 THEN 20

CTRL <
Moves the cursor to beginning of the preceding word, (i.e., to
the first character to the left of the cursor which is preceded
by a blank or a special character).
For example:

30 IF L<=0 THEN 20

The cursor is under the letter T. If you press CTRL — the
cursor will move to 0. Pressing CTRL — again, it will move
to L.

END
Moves the cursor from its current position to the end of the
logical line. Subsequent characters are appended to the line.

CTRL END
Erases from the current cursor position to the end of the
logical line, (i.e., until the carriage return is found).

2-13

Getting Started

TAB
When out of Insert Mode, pressing TAB moves the cursor over
characters until the next tab stop is reached. Tab stops are set
at every 8 character positions; that is, at positions 1, 9, 17, etc.
For example, suppose we have the line:

20 INPUT “‘Length”; L

If you press the TAB key, the cursor will move to the 17th
position as shown:

20 INPUT “‘Length”; L

When in Insert Mode, pressing TAB causes blanks to be
inserted from the current cursor position to the next tab stop.
Line folding is observed as explained under INS.

For example, suppose we have the line:

20 INPUT “‘Length”; L

Blanks are inserted up to the 17th position by pressing the
INS key and then the TAB key.

20 INPUT Length”; L

DEL

Deletes the character at the current cursor position. All
characters which follow the deleted character shift one
position left. If a logical line extends beyond one physical
line, characters on subsequent lines shift left one position to
fill in the previous space, and the character in the first
column of each subsequent line moves up to the end of the
preceding line.

BACKSPACE
Causes the last character typed to be deleted, (i.e., on the
character to the left of the cursor). All characters to the right
of the deleted character shift left one position. Subsequent
characters and lines within the current logical line move up
as with the DEL key.

2-15

Getting Started

CTRL CR LINE FEED
Causes subsequent text to start automatically on the next
screen line.

ESC DELETE LINE

The entire logical line containing the cursor is cleared. The
line is not entered for processing. If it is a program line, it is
not erased from the program in memory.

CTRL BREAK

Returns to Command Level, without saving any modi-
fications that were made to the current line being edited.
Unlike ESC, it does not erase the line from the screen.

2-16

Getting Started

Character Deletion

If you accidentally type an extra character in
the line you are entering, then proceed as
follows:

You discover the error. .
For example, suppose you typed:

GOTTO__

instead of:

GOTO__

To erase the extra T, press Cursor Left, or other cursor
movement keys, to move the cursor to the appropriate
position:

GOTTO

Press DEL:

GOTO

Move the cursor using Cursor Right:

GOTO_

Continue typing

GOTO 1000__

Deleting Part of a Line

To erase a line from the current cursor
position, press CTRL END.

Deleting ‘an Entire Line
To cancel the line you are entering,.press ESC

anywhere in the line. It is not necessary to
press CR.

2-19

Getting Started

CALCULATOR EXAMPLES

PRINT 3
The constant 3 is displayed.

PRINT 2+3
The expression 2+3 is evaluated, and its value
(5) is displayed.

LET A=15.21

The constant 15.21 is assigned to the variable
A. You can use A in successive computations
to represent this value.

?A-1
The expression A-1 is evaluated, and its value
(14.21) is displayed.

Note: ? is equivalent to PRINT

B=2.3

The constant 2.3 is assigned to the variable B.
The keyword LET is optional; you may begin
with a variable name.

2-24

Getting Started

?A*B
The expression A*B is evaluated. Its value
(34.983) is displayed.

?A*B-40
The expression A*B-40 is evaluated, and its
value (-5.017002) is displayed.

Note: If a value is negative, the minus sign is
displayed; if a value is positive, no sign is
displayed.

2-25

Getting Started

ENTERING A PROGRAM

A GWBASIC program consists of a series of
statements. A statement is a complete
instruction in GWBASIC, telling your
computer to perform specific operations.

You can enter either one or several statements
per line. In the latter case, each statement
must be separated from the last by a colon (:).

Each line in a GWBASIC program begins
with a line number: an integer greater than or
equal to 0 and less than or equal to 65529.
The line ends when you press CR.

A GWBASIC line may contain a maximum of

255 characters including the carriage return. ‘
Any extra characters will be truncated when M
you enter CR.

When you are in GWBASIC, and the Ok
prompt is on the screen, you can enter a
program.

2-26

Getting Started

S Example
Enter:
NEW
This clears memory.

Then enter:

10 REM RECTANGLE1

20 INPUT ““Length*’;L

30 IF L<=0 THEN 20

40 INPUT “Width";W

50 IF W<=0 THEN 40

60 LET AREA=L*W

70 PRINT **Area='";AREA;**L="1;L;" W=""W
N 80 GOTO 20

90 END

2-27

Getting Started

It is conventional to use an interval of 10
between each line number. This allows you to
modify the program simply by inserting
statements between existing lines.

The above statements form a complete program
that solves a very simple problem. The

problem is to find the area of a rectangle by
entering the values of length and width via

the keyboard. It has been selected both for its
simplicity and to illustrate a variety of
GWBASIC features. Other more concise solu-
tions exist.

AUTOMATIC LINE NUMBERING

You can use the AUTO command (see the
Reference Section), to generate a line number
automatically each time you press CR by
pressing CTRL BREAK.

2-28

Getting Started

LISTING A PROGRAM

Once a program is in main memory it can be
displayed or listed. To list your program, enter
either the LIST command (the listing will
appear on the screen) or, if a printer is con-
nected, the LLIST command (the listing will be
printed out).

The LIST and LLIST commands edit your
program by converting to upper case letters
any keywords, variable names, and function
names and to PRINT any question mark (?)
used instead of PRINT. Statements are
ordered in ascending line number sequence,
even though you may have entered them in a
different order.

To list our sample program on the screen
enter:

LIST
The screen display:

10 REM RECTANGLE1
20 INPUT ““Length’’;L
30 IF L<=0 THEN 20
40 INPUT “Width’’;W
50 IF W<=0 THEN 40
60 LET AREA=L*W

70 PRINT ““Area=";AREA;* L="1iL;% W=";W

80 GOTO 20
90 END
Ok

Note that at the end of a listing your system
enters command level and displays the Ok
prompt; the program can now be edited as
required.

2-29

Getting Started

LOADING A PROGRAM

If the program you want to enter into the main
memory resides on a disk, you must issue a
LOAD command. LOAD deletes all variables
and program lines currently residing in
memory. Before entering a LOAD command
save the current program if you want to use it
again, unless you already have a copy.

To load a program file from a disk, you must
specify the drive before the file name, unless
the file resides on the default drive. For
example:

LOAD **B:ROOT1*

Loads the program if ROOT1 resides on the
diskette inserted in drive B.

If you specify the R option, all open data files
are kept open and the program is run after it is
LOADed. For example:

LOAD ¢*B:ROOT1*’,R

If you do not specify the R option, LOAD
closes any data files that may be open.

2-31

Getting Started

EXECUTING A PROGRAM

Once a program is in main memory, it can be
executed (or ‘“‘run’’, as this is frequently called).
To tell your system to execute a program, you
must enter a RUN command (or a LOAD with
the option R).

The RUN command runs the current program,
i.e., the program currently in memory, or loads
a program from a disk and runs it (if you enter
a file specifier after the keyword RUN). For
example:

RUN “B:RECTANGLE1”

Note that a file specifier is a string expression
or, in particular, a string constant. If it is a
string constant as in the example above, it
must be enclosed within quotation marks (”).

2-32

Getting Started

If you specify the R option all open data files
are kept open, thus you can re-use these files in
the new program without having to open them
again.

Before entering a RUN filename (or RUN
filename,R), save your current program (unless
you already have a copy).

GWBAGSIC statements are executed in line
number sequence, unless a control statement.
(GOTO, ON...GOTO, IF...GOTO...ELSE,
IF..THEN...ELSE, FOR/NEXT,
WHILE/WEND) or a subroutine call
statement (GOSUB, ON...GOSUB) dictates
otherwise.

2-33

Getting Started

Enter values for length and width in response
to the program’s prompts.

For example:

Length? 3.5

Width? 4.2

Area= 14.7 L= 3.5 W= 4.2
Length? -7.3

Length? 7.3

Width? 1.3Q

?Redo from start

Width? 1.32

Area= 9.636 L= 7.3 W= 1.32
Length? (Press CTRL and BREAK keys)
Break in 20

Ok

2-35

Getting Started

If you enter a negative value for W, statement
40 is executed again, as statement 50 returns
control to statement @ for W) the system
displays an error message:

?Redo from start

and you must re-enter the value. This program
continues to run until you press CTRL
BREAK to stop execution. Your system
displays a “Break in nnnnn’’ message and
returns to Command Level. To resume
execution enter:

CONT

2-36

Getting Started

You can modify the line, and then rerun the
program by entering RUN. You cannot
continue execution by entering CONT.

If you want to examine the contents of some
variables before making any modifications
you should press CTRL BREAK to return to
Command Level. After examining the
contents of the variables you can edit the line
and rerun the program.

For example:

10 A=2$6
RUN

?Syntax Error in 10
10 A=2%6

If an error (other than a Syntax error) is found
(automatic interrupt), the program is
interrupted, GWBASIC displays the error
message, enters Command Level and displays
OK.

You can either display program variables or
display program lines by an EDIT or LIST
command, and then modify them.

You cannot continue execution by entering a
CONT command, but you can rerun the
program by entering RUN.

2-38

~

Getting Started

For example, running a program which
contains:

100 FOR K=
will cause:

Missing operand in 100
OK

If an error occurs and the error trapping is
enabled (programmed interrupt), program
execution is transferred to the line specified by
the ON ERROR statement.

An error trapping routine should check for all
the particular errors that the user wishes to
recover from, and should specify the course of
action to be taken in each case.

This involves either correcting the error, and
resuming execution at a specified statement
or; returning to Command Level.

Example

10 ON ERROR GOTO 100
20 INPUT ““WHAT IS YOUR BET”’;B
30 IF B>5000 THEN ERROR 200

2-39

Variable Types

VARIABLES

Variables are names used to represent values
used in a GWBASIC program. The value of a
variable may be assigned explicitly by the
programmer, or it may be assigned as the
result of calculations in the program. Before a
variable is assigned a value, its value is
assumed to be zero.

VARIABLE NAMES AND
DECLARATION CHARACTERS

GWBASIC variable names may be any
length. Up to 40 characters are significant.
Variable names can contain letters, numbers,
and the decimal point. However, the first
character must be a letter. Special type
declaration characters are also allowed (see
below).

A variable name may not be a reserved word,
but embedded reserved words are allowed.
Reserved words include all GWBASIC
commands, statements, function names, and
operator names. If a variable begins with FN,
it is assumed to be a call to a user-defined
function. Variables may represent either a
numeric value or a string. String variable
names are written with a dollar sign ($) as the
last character. For example:

AS = ‘*SALES REPORT”"

The dollar sign is a variable type declaration
character; that is, it ““declares” that the
variable will represent a string.

8-7

Variable Types

ARRAY VARIABLES

An array is a group or table of values
referenced by the same variable name. Each
element in an array is referenced by an array
variable that is subscripted with an integer or
an integer expression. An array variable name
has as many subscripts as there are
dimensions in the array. For example V(10)
would reference a value in a one-dimension
array, T(1,4) would reference a value in a two-
dimension array, and so on. The maximum
number of dimensions for an array is 255. The
maximum number of elements per dimension
is 32,767. Both these values are also limited by
the memory size of your system.

Wherever a variable name can be entered in a
GWBASIC program line, an array element
can also be entered. From now on, when
speaking of a variable we shall mean either a
simple variable or an array element.

3-9

Variable Types

MEMORY REQUIREMENTS

The number of bytes required by strings,
variables and arrays is listed below.

Variable Type
Integer
Single Precision

Double Precision

Array Type
Integer

Single Precision

Double Precision

Strings

3 bytes overhead plus the present contents of the string.

Bytes
2
4
8

Bytes
2 per
element
4 per
element
8 per
element

3-10

Variable Types

ARITHMETIC OPERATORS

The arithmetic operators, in order of
precedence, are as follows:

Operator Operation Sample Expression
- Exponentiation XY

- Negation -X

* Multiplication X*Y

/ Division XY

\ Integer Division X\Y

MOD Modulus Arithmetic XMODY

+ Addition X+Y

- Subtraction X-Y

To change the order in which the operations
are performed, use parentheses. Operations
within parentheses are performed first. Within
the parentheses, the usual order of operations
is maintained.

3-15

Variable Types

Some sample algebraic expressions follow,
together with their GWBASIC counterparts.

Algebraic GWBASIC
Expression Expression
X+2Y X+2%Y
Y
X—-— X —-Y/Z
Z
XY
=z (X*Y)Z
X+Y
/A (X+Y)Z
Xy X "2) Y
x7? X (Y "2)
X(—Y) X*(—Y)

Note:

Two consecutive operators must be separated
by parentheses, as shown in the X*(—Y)
example.

3-16

Variable Types

OVERFLOW

If, during the evaluation of an expression,
division by zero is encountered, the “Division
by zero’’ error message is displayed, machine
infinity (the largest number that can be
represented in floating-point format) with the
sign of the numerator is supplied as the result
of the division, and execution continues. If the
evaluation of an exponentiation operator
results in zero being raised to a negative
power, the “Division by zero’” error message
again is displayed, positive machine infinity is
supplied as the result of the exponentiation,
and execution continues.

If overflow occurs, the “Overflow” error
message is displayed, machine infinity with
the algebraically correct sign is supplied as
the result, and execution continues.

3-18

Variable Types

RELATIONAL OPERATORS

Relational operators are used to compare two
values. The result of the comparison is either
“true” (—1) or ‘“false’” (0). This result may then
be used to make a decision regarding program
flow. (See “IF” statements, in the Reference

section).

The relational operators are:

Operator
<>or ><
<

>

]

<=or =<
>=or =>

Relation Tested
Equality

Inequality

Less than

Greater than

Less than or equal to
Greater than or equal to

Example
X=Y
X<>Y
X<Y
X>Y
X<=Y
X>=Y

3-19

Variable Types

(The equal sign is also used to assign a value
to a variable. See “LET"’ Statement in the
Reference Section.)

When arithmetic and relational operators are
combined in one expression, the arithmetic
operation is always performed first. For
example, the expression

X+Y < (T-1)/Z2

is true if the value of X plus Y is less than
the value of T-1 divided by Z.

More examples:

320 IF SIN(X) < 0 GOTO 1000
400 IFI MOD J <> O THEN K=K +1

3-20

Variable Types

LOGICAL OPERATORS

Logical operators perform tests on multiple
relations, bit manipulation, or Boolean
operations. The logical operator returns a
result which is either ‘“‘true’” (not zero) or
“false” (zero). In an expression, logical
operations are performed after arithmetic and
relational operations. The outcome of a logical
operation is determined as shown below.

The operators are listed in order of precedence.

X NOT X X Y XORY
1 0 1 1 0
0 1 1 0 1
0 1 1
0 0 0
X Y X AND Y X Y XEQVY
1 1 1 1 1 1
1 0 0 1 0 0
0 1 0 0 1 0
0 0 0 0 0 1
X Y XORY X Y XIMPY
1 1 1 1 1 1
1 0 1 1 0 0
0 1 1 0 1 1
0 0 0 0 0 1

3-21

Variable Types

Just as the relational operators can be used to
make decisions regarding program flow,
logical operators can connect two or more
relations and return a true or false value to be
used in a subsequent decision (see “IF”’
statements in the Reference Section.)

Example

IF D<200 AND F<4 THEN 80
IF 1>10 OR K<0 THEN 50
IF NOT P THEN 100

Logical operators work by converting their
operands to 16-bit, signed, two’s complement
integers in the range —32768 to 32767. (If the
operands are not in this range, an error
results.) If both operands are supplied as 0 or

—1, logical operators return 0 or —1. The given

operation is performed on these integers bit-
by-bit; i.e., each bit of the result is determined
by the corresponding bits in the two operands.

3-22

-

Variable Types

Thus, it is possible to use logical operators to
test bytes for a particular bit pattern. For
instance, the AND operator may be used to
“mask” all but one of the bits of a status byte
at a machine I/O port. The OR operator may
be used to “merge’’ two bytes to create a
particular binary value. The following
examples will help demonstrate how the
logical operators work.

Decimal Binary

63 AND 16=16 111111 AND 010000=010000
15 AND 14=14 001111 AND 001110=001110
-1 AND 8=8 1111111111111111 AND 001000=000100
4 OR 2=6 000100 AND 000010=000110
10 OR 10=10 001010 OR 001010=001010
-1 OR -2=-1 11111111111111110R 1111111111111110

= 1111111111111111

The bit complement of sixteen
zeros is sixteen ones, which is
the two’s complement represen-
tation of -1.

NOT X=-(X+1) The two’s complement of any
integer is the bit complement
plus one.

3-23

Variable Types

FUNCTIONAL OPERATORS

When a function is used in an expression, it
calls a predetermined operation that is to be
performed on an operand. GWBASIC has
“intrinsic”’ functions that reside in the system,
such as SQR (square root) or SIN (sine). All
GWBASIC intrinsic functions are described in
the Reference Section.

GWBASIC also allows ‘‘user-defined”’
functions that are written by the programmer.
(See “DEF FN” Statement in the Reference
Section.)

STRING OPERATORS
Strings may be concatenated by using +.

Example

10 AS=*‘FILE” : BS =““NAME”’
20 PRINT AS +BS

30 PRINT ““NEW * + AS + BS
RUN

FILENAME

NEW FILENAME

Ok

3-24

Variable Types

Strings may be compared using the same
relational operators that are used with
numbers:

= <> <> <==< >==>

String comparisons are made by taking one
character at a time from each string and
comparing the ASCII codes. If all the ASCII
codes are the same, the strings are equal. If
the ASCII codes differ, the lower code number
precedes the higher. If during string
comparison the end of one string is reached,
the shorter string is said to be smaller.
Leading and trailing blanks are significant.

Example

“AA,!< “AB!!

“FILENAME?”’ = “*FILENAME”’

“x&” >Glx#l!

“cL’! >ESCL’!

‘lkg!’ >“KGI!

“SMYTH”’ < “SMYTHE"

B$<9/12/78” where BS =8/12/78"

Thus, string comparisons can be used to test
string values or to alphabetize strings. All
string constants used in comparison
expressions must be enclosed in quotation
marks.

Note that lower case letters have higher ASCII
codes than upper case letters.

3-25

Disk File Handling

File specification for communications devices is
slightly different. The filename is replaced with
a list of options specifying such things as line
speed. Refer to OPEN COM statement in the
Reference section for details.

Remember that if you use a string constant for
the filename, you must enclose it in quotation
marks. The only exception to this rule is the
MS-DOS GWBASIC command, where a filename
is a string constant not included in quotation
marks.

For example in GWBASIC, you would type:
RUN *‘B:ARSENAL.RED"’
but from MS-DOS you use:

A>gwbasic b:arsenal.red

4-7

Disk File Handling

There is no restriction on the depth of a tree
(the length of the longest path from root to leaf)
except in the number of allocation units
available. The root directory will have a fixed
maximum number of entries, 64 or 112 files for
a diskette. The maximum number of files in a
hard disk root directory depends on the size of
the MS-DOS partition on the disk.

Other sub-directories can also be accessed via
the root directory, and these in turn can branch
off to further files and sub-directories. The only
limit is the amount of available space on the
disk.

Old (pre 2.0) disks will appear to MS-DOS 2.0 as
having only a root directory with files in it and N
no sub-directories whatever.

4-14

Disk File Handling

All characters that are valid for a filename are
also valid for a directory name.

Examples (supposing JOHN is the current
directory):

B:\SALES\MARY\REPORT
B:..\MARY\REPORT

The GWBASIC command and some GWBASIC
commands allow you to specify a file by either a
“filename’’ or a ‘“pathname” LOAD, MERGE,
NAME, OPEN, RUN and SAVE.

Some GWBASIC commands allow you to use
only the latter form of a “pathname.” They are:
MKDIR, RMDIR, and CHDIR.

The FILES command allows you to use both
forms to display either all files residing on a
directory or a single file, or a group of files by
using wild cards (* and/or ?).

4-16

Disk File Handling

A “‘pathname” may not contain more than 63
characters. Pathnames longer than 63 characters
will give a ‘“‘Bad Filename” error.

Specifying a ‘“‘pathname’ where only a ‘“‘file-
name”’ is legal, or placing a “device” other than ~
at the beginning of the “pathname’ will result

in a “Bad Filename” error.

If you use a string constant for the ‘‘path-
name,” you must enclose it in quotation marks.
Only the GWBASIC command specifies path-
names as literal strings not included in
quotation marks.

4-17

Disk File Handling

COMMANDS FOR
PROGRAM FILES

The following list reviews the commands and
statements used in program file manipulation.

With GWBASIC the asterisk (*) and question
mark (?) can be used as wild cards with the
FILES and KILL commands.

SAVE filename [,{A|P}]
or
SAVE pathname [,{A|P}]

Writes to disk the program that currently
resides in memory. Option A writes the program
as a series of ASCII characters (otherwise,
GWBASIC or uses a compressed binary format);
option P writes the program in a protected
form. (See Protected Files in this chapter.)

LOAD filename [,R]
or
LOAD pathname [,R]

Loads the program from disk into memory.
Option R runs the program immediately. LOAD
always deletes the current contents of memory
and closes all files before loading. If R is
included, however, open data files are kept open.
Thus, programs may be chained or loaded in
sections and access the same data files. LOAD
filename, R and RUN filename, R are
equivalent.

4-18

Disk File Handling

RUN filename [,R]

or
RUN pathname [,R]

MERGE filename
or
MERGE pathname

KILL filename
or
KILL pathname

Loads the program from disk into memory and runs it.
RUN deletes the current contents of memory and closes
all files before loading the program. If the R option is
included, however, all open data files are kept open. RUN
filename,R and LOAD filename,R are equivalent.

Loads the program from disk into memory but does not
delete the current contents of memory. The program line
numbers on disk merge with the line numbers in memory.
If two lines have the same number, only the line from the
disk program is saved. After a MERGE command, the
merged program resides in memory, and GWBASIC
returns to command level.

Deletes the file from the disk. The filename may be a
program file, or a sequential or random access data file.

NAME {filename} AS filename
or
NAME {pathname} AS {filename}

Changes the name of a disk file. NAME may be used with
any disk file.

4-19

Disk File Handling

PROTECTED FILES

If you want to save a program in an encoded
binary format, use the Protect option with the
SAVE command. For example:

SAVE ““MYPROG”,P

Because a program saved in this manner cannot
be listed or edited, you may want to save an
unprotected copy of the program for these
purposes.

4-20

Disk File Handling

~

The LOC function, when used with a sequential
file, returns the number of sectors that have
been written to or read from the file since it was
opened. For example,

100 IF LOC(1)>50 THEN STOP

would end program execution if more than 50
sectors had been written to, or read from, file #1
since it was opened.

Program 1 is a short program that creates a
sequential file, named “DATA,” from informa-
tion you input at the keyboard.

10 OPEN **0*,#1,"“DATA”

20 INPUT “NAME*’;NS I
25 |F NS = “DONE* THEN END

30 INPUT “DEPARTMENT®*;DS

40 INPUT “DATE HIRED";HS

50 PRINT#1,NS;*,”;D$;*,";HS

60 PRINT:GOTO 20

RUN

NAME? MICKEY MOUSE
DEPARTMENT? AUDIO/VISUAL AIDS
DATE HIRED? 01/12/72

4-24

Disk File Handling

NAME? SHERLOCK HOLMES
DEPARTMENT?
DATE HIRED? 12/03/65

NAME? EBENEEZER SCROOGE
DEPARTMENT?
DATE HIRED? 04/27/78

NAME? SUPER MAN
DEPARTMENT?
DATE HIRED? 08/16/78

NAME? DONE
Ok

4-25

Disk File Handling

ACCESSING A SEQUENTIAL FILE

Program 2 accesses the file “DATA"” that was
created in Program 1 and displays the name of
everyone hired in 1978.

10 OPEN *1”’,#1,*"DATAY’

20 INPUT#1,NS$,DS,HS

30 IF RIGHTS(HS,2)=78" THEN PRINT NS
40 GOTO 20

RUN

EBENEEZER SCROOGE

SUPER MAN

Input past end in 20

Ok

The program reads, sequentially, every item in
the file. When all the data has been read, line 20
causes an ‘“‘Input past end’” error. This error can
be avoided, however, by inserting an additional
line (line 15 shown below) which uses the EOF
function to test for end-of-file.

15 IF EOF(1) THEN END

Then change line 40 to GOTO 15.

4-26

Disk File Handling

ADDING DATA TO A SEQUENTIAL FILE

As soon as a sequential file is opened on disk in
“0” mode, its current contents are destroyed.
In order to add more data to the file it is neces-
sary to use the OPEN statement with the
APPEND mode, as described in the Reference
section of this manual.

4-27

Disk File Handling

LSET NS =XS
LSET AS = MKSS(AMT)
PS=TELS

Write the data from the buffer to the disk using
the PUT statement.

PUT #1,CODE %

The LOC function, with random access files,
returns the “current record number.” The cur-
rent record number is one, plus the last record
number that was used in a GET or PUT
statement. For example, the statement

IF LOC[1)>50 THEN END

ends program execution if the current record
number in file#1 is higher than 50.

The following example writes information that is
input at the terminal to a random access file.

10 OPEN **R*’,#1,"*FILE",32

20 FIELD #1,20 AS NS, 4 AS AS, 8 AS PS
30 INPUT *‘2-DIGIT CODE*’;CODE %
40 INPUT “NAME*’ ;XS

50 INPUT ‘“AMOUNT’’;AMT

60 INPUT “‘PHONE’*;TELS:PRINT
70 LSET NS =XS$

80 LSET AS = MKSS(AMT)

90 LSET PS=TELS

100 PUT #1,CODE%

110 GOTO 30

4-30

Disk File Handling

Each time the PUT statement is executed, a
record is written to the file. The two-digit code
that is input in line 30 becomes the record
number.

Note: Do not use a FIELDed string variable in
an INPUT or LET statement. This causes the
pointer for that variable to point into string
space instead of into the random access file
buffer.

4-31

Disk File Handling

PRINT NS
PRINT CVS(AS)

The following program accesses the “FILE”
that was created in the previous example. When
the two-digit code is entered at the terminal, the
information associated with that code is read
from the file and displayed.

10 OPEN *‘R",#1,“FILE*’,32

20 FIELD #1, 20 AS NS, 4 AS AS, 8 AS PS
30 INPUT “*2-DIGIT CODE*’;CODE %

40 GET #1, CODE %

50 PRINT NS

60 PRINT USING ‘‘SS###.##;CVS(AS)

70 PRINT PS:PRINT

80 GOTO 30

4-33

Disk File Handling

The following example is an inventory program
that illustrates random file access. In this
program, the record number is used as the part
number, and it is assumed the inventory will
contain no more than 100 different part
numbers. Lines 900 through 960 initialize the
data file by writing CHR$(255) as the first
character of each record. This is used later (line
270 and line 500) to determine whether an entry
already exists for that part number.

Lines 140 through 210 display the different

inventory functions that the program performs.
When you type in the desired function number,
line 230 branches to the appropriate subroutine.

120 OPEN‘‘R”,#1,“INVEN.DAT*,39
130 FIELD#1,1 AS FS,30 AS DS,2 AS GS,2 AS R$,4 AS PS
140 PRINT:PRINT ““FUNCTIONS:’*:PRINT
150 PRINT 1,“INITIALIZE FILE”
160 PRINT 2,“CREATE A NEW ENTRY"’
170 PRINT 3,“DISPLAY INVENTORY FOR ONE PART”!
180 PRINT 4,“ADD TO STOCK*’
190 PRINT 5,“SUBTRACT FROM STOCK**
200 PRINT 6, ‘DISPLAY ALL ITEMS BELOW REORDER LEVEL”
210 PRINT:PRINT:INPUT*“FUNCTION’*;FUNCTION
220 IF (FUNCTION > 1]JOR(FUNCTION >6) THEN PRINT *BAD
FUNCTION NUMBER*':GOTO 140
230 ON FUNCTION GOSUB 900,250,390,480,560,680
240 GOTO 140
250 REM BUILD NEW ENTRY
260 GOSUB 840
270 IF ASC(FS)< >255 THEN
INPUT““OVERWRITE**;AS:
IF AS *Y** THEN RETURN

4-34

Disk File Handling

630 Q% =Q%-5%

640 IF Q% = <CVI[RS) THEN PRINT “QUANTITY NOW’';Q%;
 REORDER LEVEL*’;CVI[RS)

650 LSET QS = MKIS(Q%)

660 PUT #1,PART%

670 RETURN

680 REM DISPLAY ITEMS BELOW REORDER LEVEL

680 FOR 1=1 TO 100

710 GET #1,1

715 IF ASC (F$)=255 THEN 730

720 IF CVI[@S)<CVI(RS) THEN PRINT DS; “GQUANTITY";
CVI(GS) TAB(50) ““REORDER LEVEL’*;CVI[RS)

730 NEXT |

740 RETURN

840 INPUT “PART NUMBER";PART %

850 IF(PART %<1]OR[PART%>100) THEN PRINT “BAD
PART NUMBER*: GOTO 840 ELSE
GET #1,PART%:RETURN

890 END

900 REM INITIALIZE FILE

910 INPUT “ARE YOU SURE*;BS:IF BS “Y* THEN RETURN

920 LSET FS = CHRS(255)

930 FOR 1=1 TO 100

940 PUT #1,1

950 NEXT |

960 RETURN

4-36

Graphics

The SCREEN statement must precede any 1/0
statements to the screen, as it selects the
‘““screen attributes’ to be used by subsequent
statements. The system assumes SCREEN
0,0,0,0 by default if no screen attributes are
specified. This selects 80 columns Text Mode,
B/W, and only one display page.

You can also use more than one SCREEN
statement to define different screen attributes
for different sections of your program.

5-3

Graphics

~

In Text Mode you can use 16 different colors (if
color hardware is installed):

0 Black 8 Gray

1 Blue 9 Light Blue

2 Green 10 Light Green

3 Cyan 11 Light Cyan

4 Red 12 Light Red

5 Magenta 13 Light Magenta

6 Brown 14 Yellow

7 White 15 High-intensity White

In a monochrome system only two colors are
available (black and white), but you can under-
line characters, make characters blink, or dis-
play high-intensity characters.

5-6

Graphics

MEDIUM RESOLUTION MODE

In this mode, there are 320 pixels on the
horizontal axis and 200 pixels on the vertical
axis. These are numbered from left to right and
from top to bottom; thus the upper left corner
pixel is (0,0) and the lower right corner pixel is
(319, 199).

You can display four colors at a time if a color
monitor is used, otherwise the four colors will
appear as shades of grey.

Drawing Pictures

When you draw pictures on the screen using the
graphics statements (PSET, PRESET, LINE,
CIRCLE, PAINT or DRAW), you can specify a
color number of 0, 1, 2, or 3. This selects the
color from the currént ‘‘palette’” as defined by
the COLOR statement.

If you do not specify a color number, the
default is the graphics foreground specified by
the COLOR statement, or 3 (if no graphics
foreground is given).

5-9

Graphics

The COLOR (Medium-Resolution) statement
allows you to specify both the color for color
number 0, and the “palette” for the three
remaining color numbers (1, 2, and 3).

Palette Color 1 Color 2 Color 3

0 Green Red Yellow
1 Cyan Magenta White

If color is disabled the use of memory is
identical: the modes differ only in that the two
bits of a pixel are interpreted differently by the
hardware: medium resolution B/W displays 4
shades of grey.

Displaying Characters

When you display characters in Medium
Resolution Mode, the size of the characters is
the same as in Text Mode when you specify a
40-column width. The character foreground color
is set by the ‘“tforeground’” parameter in the
COLOR statement (that defaults to color
number 3). The character background is set by
the “background” parameter in the COLOR
statement (that defaults to color number 0, i.e.,
Black).

If color is disabled the character foreground will
be 1 (White) and the character background 0
(Black).

5-10

Graphics

HIGH RESOLUTION MODE

In this mode, there are 640 pixels on the
horizontal axis and 200 pixels on the vertical
axis. These are numbered from left to right and
top to bottom; thus the upper left corner pixel
is (0,0) and the lower right corner pixel is

(639, 199).

There are only two colors: black (color number
0) and white (color number 1).

Drawing Pictures

When you draw pictures using the graphics
statements, you can still specify a color number
0,1, 2, or 3.

A color of 0 indicates black and a color of 1
white. A color of 2 is treated as 0, and 3 is
treated as 1.

5-11

Graphics

If you do not specify a color number, the
default is the graphics foreground specified by
the COLOR statement, or 1 (if no graphics
foreground is given).

The COLOR statement allows you to specify the
graphics foreground color.

Displaying Characters

The size of the characters is the same as in
80-column Text Mode.

The character foreground color is 1 {white) and
the background color is 0 (black).

5-12

Graphics

SUPER RESOLUTION MODE

In this mode, there are 640 pixels on the
horizontal axis and 400 pixels on the vertical
axis. These are numbered from left to right and
top to bottom; thus the upper left corner pixel
is (0,0) and the lower right corner pixel is

(639, 399).

There are only two colors: black (color number
0) and white (color number 1).

Drawing Pictures

When you draw pictures using the graphics
statements, you can still specify a color number
of 0, 1, 2, or 3.

A color number of 0 indicates black and a color
number of 1 indicates white. A color number of
2 is treated as 0, and a color number of 3 is
treated as 1.

If you do not specify a color number, the
default is the graphics foreground specified by
the COLOR statement, or 1 (if no graphics
foreground is given).

5-13

Graphics

The COLOR (Super Resolution) statement
allows you to specify the graphics foreground
color. The COLOR statement also allows you to
specify ‘inverse video’, when you display
characters.

Displaying Characters

The size of the characters is the same as in
80-column Text Mode.

The character foreground color is 1 (white) and
the character background 0 (black), unless you
specify ‘inverse video’ by the COLOR
statement.

5-14

Graphics

VIEW STATEMENT

The VIEW statement allows the definition of
subsets of the viewing surface. These are called
“viewports.”” Onto these the contents of a
window are mapped. Initially RUN or VIEW,
with no arguments, define the whole screen as a
viewport. Refer to the Reference section for a
full description of VIEW.,

5-16

Graphics

DISPLAYING POINTS

The most elementary graphic function is that of
illuminating the position of a single point (or
‘pixel’) in a specified color. This is achieved
using the PSET and PRESET statements. The
POINT function allows you to know the color
number of a specified pixel. Refer to a full
description of these in the Reference section.

5-18

Graphics

DRAWING AND COLORING LINES,
RECTANGLES, OBJECTS, CIRCLES,
ARCS, ELLIPSES

The LINE statement permits the drawing of
lines or rectangles. The DRAW statement,
governed by ‘“movement commands” such as
up, down, left, and right, lets you draw any
object. Circles, arcs and ellipses can be drawn
using the CIRCLE statement, and the PAINT
statement allows any object to be filled with
color(s).

Refer to statements: LINE, CIRCLE, GET,
PUT (graphics), PAINT, and DRAW in the
Reference section for a complete description.

5-19

Graphics

LINE CLIPPING

The graphics statements CIRCLE, LINE,
PAINT, POINT, PSET, PRESET, and
WINDOW use “line clipping.” This simply
means that lines which cross the screen or view-
port are ‘“clipped”’ at the boundaries of the view-
ing area. Only the points plotted within the
screen or viewport are visible.

5-20

Asynchronous Communications

THE INPUT$ FUNCTION FOR COM FILES

The INPUTS$ function is preferable to the
INPUT# and LINE INPUT# statements when
reading COM files, since all ASCII characters
may be significant in communications. INPUT#
is least desirable because input stops when a
comma (,) or CR is received and LINE INPUT#
terminates when a CR is received.

INPUTS allows all characters read to be
assigned to a string. INPUT$ (n,f) will return n
characters from the #f file. The following state-
ments are therefore the most efficient for

reading a COM file:

10 WHILE NOT EOF(1)
20 AS =INPUTS(LOC(1),#1)
30 ...
40 . .. Process data returned in AS

The above statements return the characters in
the buffer into A$ and process them, provided
there are characters in the buffer. If there are
more than 255 characters, only 255 will be
returned at a time to prevent String Overflow.
If this is the case, EOF(1) is false and input
continues until the input buffer is empty. The
sequence of events is therefore simple, concise,
and fast.

6-6

Asynchronous Communications

AN EXERCISE IN COMMUNICATION I/0

The following program enables your Personal
Computer to be used as a conventional terminal.
Besides Full Duplex communication with a host,
the TTY program allows data to be downloaded
to a file. Conversely, a file may be uploaded
(transmitted) to another machine.

In addition to demonstrating the elements of
Asynchronous Communication, this program
should be useful in transferring GWBASIC

programs and data to and from your system.

6-7

Asynchronous Communications

10 SCREEN 0,0:WIDTH 80

15 KEY OFF:CLS:CLOSE

20 DEFINT A-Z

25 LOCATE 25,1

30 PRINT STRINGS(60,* *)

40 FALSE=0:TRUE NOT FALSE

50 MENU =5 ‘Value of MENU key (ctrl-E)

60 XOFFS = CHRS[19):XONS = CHRS(17)

100 LOCATE 25,1:PRINT ‘*Async TTY Program®’;

110 LOCATE 1,1:LINE INPUT ‘‘Speed? *';SPEEDS

120 COMFILS =*‘COM1:’’ + SPEEDS + **,E, 7"’

130 OPEN COMFILS AS #1

140 OPEN *'SCRN:" FOR OUTPUT AS #3

200 PAUSE =FALSE

210 AS=INKEYS: IF AS=*" ** THEN 230

220 IF ASC[AS)=MENU THEN 300 ELSE PRINT #1,AS;

230 IF EOF(1) THEN 210

240 IF LOC{1)>128 THEN PAUSE =TRUE: PRINT #1,XOFFS;

250 AS =INPUTS(LOC(1),#1)

253 LINEFEED=0

255 LINEFEED =INSTR (LINEFEED + 1, AS,CHRS(10))

257 IF LINEFEED =0 THEN MIDS{AS, LINEFEED,1) = CHR$(0):GOTO 255

260 PRINT #3,AS;:IF LOC[1)>0 THEN 240

270 IF PAUSE THEN PAUSE = FALSE:PRINT #1,X0ONS; m

280 GOTO 210 f

300 LOCATE 1,1:PRINT STRINGS(30,* *'):LOCATE 1,1

310 LINE INPUTFILE? ’;DSKFILS

400 LOCATE 1,1:PRINT STRINGS(30,** *’):LOCATE 1,1

410 LINE INPUT*(TJRANSMIT OR (RJECEIVE? *;TXRXS

420 IF TXRXS =T’ THEN OPEN DSKFILS FOR INPUT AS #2:G0TO
1000

430 OPEN DSKFILS FOR OUTPUT AS #2

440 PRINT #1,CHRS(13);

500 IF EGF(1) THEN GOSUB 600

510 IF LOC{1)>>128 THEN PAUSE =TRUE: PRINT #1,XOFFS;

520 AS =INPUTS({LOC([1),#1)

530 PRINT #2,AS;:IF LOC(1)>0 THEN 5§10

540 IF PAUSE THEN PAUSE =FALSE:PRINT #1,X0FFS;

550 GOTO 500

600 FOR |1=1 TO 5000

610 IF NOT EOF(1) THEN 1=9999

620 NEXT |

630 IF 1=9999 THEN RETURN

640 CLOSE #2:CLS:LOCATE 25,10:PRINT “* Download complete **’;

650 RETURN 200

1000 WHILE NOT EOF[2)

1010 AS=INPUTS[1,#2)

1020 PRINT #1,AS;

1030 WEND ~
1040 PRINT #1,CHRS(26];°CTRL-Z to make close file. \
1050 CLOSE #2:CLS:LOCATE 25,10:PRINT *** * pload complete * *';

1060 GOTO 200

9999 CLOSE:KEY ON

6-8

Asynchronous Communications

500

510

520-530

540-550

600-650

When no more characters are being received
(LOC(x) returns 0), then performs a time-out
routine (explained later).

Again, if more than 128 characters are waiting,
this line signals a pause, and in the meantime
sends XOFF to the host.

Reads all characters in the COM buffer (LLOC(x))
and writes them to disk (PRINT #2..).

If a pause was issued, restart host by sending
XON and clear the pause flag. Continue process
until no characters are received for a
pre-determined time.

This is the time-out subroutine. The FOR loop
count was determined by experimentation. In
short, if no character is received from the host
for 17-20 seconds, then transmission is assumed
complete. If any character is received during
this time (line 610) then set I well above FOR
loop range to exit loop and then return to caller.
If host transmission is complete, close the disk
file.

6-12

Introduction

DIM

DRAW

EDIT

END

ENVIRON

ENVIRONS$

EOF

ERASE

ERDEV

ERDEV$

ERL

ERR

Specifies the array name, the number of dimen-
sions, and the subscript upper bound for each
dimension. May specify one or more arrays.

Draws an object as specified by the contents of a
string expression. (Graphics Mode.)

Lets you change a program line.

Terminates program execution, closes all open
data files, and returns to the command level.

Allows a modification of parameters in
GWBASIC’s Environment String Table.

Retrieves the specified Environment String from
GWBASIC’s Environment String Table.

Indicates that the end of file has been reached.

Releases space and variable names previously
reserved for arrays.

An integer function that contains the error code
returned by the last device to declare an error.

A string function that contains the name of the
device driver that generated the error.

Returns the number of the line that contains the
error.

Returns an error code.

7-5

Introduction

HEXS$

Returns a string that represents the hexadecimal
value of the decimal argument.

IF...GOTO...ELSE
IF..THEN...ELSE

INKEY$

INP

INPUT

INPUT#

INPUTS$

INSTR

INT

IOCTL

IOCTL$

KEY

Makes a decision regarding program flow based
on the result of a specified condition.

Returns either a one- or two-character string read
from the keyboard.

Returns the byte read from a port.

Allows input from the keyboard during program
execution.

Reads data items from a sequential disk file and
assigns them to program variables.

Returns a string of characters read from the
standard input device, the keyboard, or from a
file.

Searches for the first occurrence of a given
substring in a string, and returns the position at
which the match is found.

Returns the largest integer that is less than or
equal to the argument.

Sends a “Control Data’” string to a character
device driver once the device has been OPENed.

Returns a “Control Data’ string from a
character device driver that is OPEN.

Defines and/or displays the function key
assignment text.

77

Introduction

KEY(n)

KILL

LCOPY

LEFT$

LEN

LET

LINE

LINE INPUT

LINE INPUT#

LIST

LLIST
LOAD

LOC

Enables, disables, or terminates interrupts caused
by a specific key.

Deletes a disk file.

Dumps the screen text to the printer.

Returns a substring extracting the leftmost
number of characters from a specified string as

specified by the ‘“length” parameter.

Returns the number of characters in a given
string.

Assigns a value to a variable.

Draws either a line, a rectangle, or a filled
rectangle. (Graphics Mode.)

Inputs an entire line (up to 254 characters) to a
string variable, without delimiters.

Reads an entire line (up to 254 characters)
without delimiters, from a sequential disk data
file to a string variable.

Lists the current program to the screen or to a
specified file or device.

Lists the current program on the printer.
Loads a program into memory from a file.

Returns the current position of the file.

7-8

Introduction

POS

PRESET

PRINT

PRINT
USING

PRINT#
PRINT#
USING
PSET
PUT

(COM files)
PUT\(Files)

PUT(Graphics)

RANDOMIZE

READ

REM

RENUM

RESET

Returns the current horizontal (column) position
of the cursor.

Draws a point at the specified position on the
screen. (Graphics Mode.)

Outputs data on the screen.

Outputs data to the screen using a specified
format.

Writes data sequentially to a disk file.

Writes data sequentially to a disk file using a
specified format.

Illuminates a pixel at a specified position on the
screen. (Graphics Mode.)

Writes a specified number of bytes to a
communications file.

Writes a record from a random buffer to a
random file.

Transfers the graphics image stored in an array
to the screen.

Reseeds the random number generator.

Reads values from one or more data statements
and assigns them to variables.

Allows explanatory remarks to be inserted in a
program.

Changes the line numbers of the current
program.

Closes all open data files on all drives.

7-12

Introduction

RESTORE

RESUME

RIGHT$

RMDIR

RND

RSET

RUN

SAVE
SCREEN

SGN

SIN
SOUND
SPACE$

Permits DATA statements to be re-read either
from the beginning of the internal data or from a
specified file.

Continues program execution after an error trap-
ping routine has been performed.

Returns a substring from a specified string,
extracting the rightmost characters as specified
by the ‘“length’ parameter.

Removes an existing directory.

Returns a random number between 0 and 1.
Stores a string value in a random buffer field
right justified, or right justifies a string value in

a string variable.

Runs the current program or loads a program
from disk and runs it.

Saves the current program on disk.

The SCREEN function returns the ASCII code
(0-255) or the color number for the character at
the specified row and column. The SCREEN
statement sets the screen attributes that will be
used by subsequent statements.

Returns 1 if the argument is positive, 0 if the
argument is zero, and —1 if the argument is
negative.

Calculates the sine of the argument.
Produces a sound on the speaker.

Returns a string of a specified number of spaces.

7-13

Introduction

SPC Skips “n” spaces in a PRINT, LPRINT, or
PRINT# statement.

SQR Returns the square root of a positive expression.

STICK Returns the x and y coordinates of two joysticks.

STOP Terminates program execution and returns.

STRIG Returns the status of the joystick buttons
(triggers).

STRIG(n) Enables and disables trapping of the joystick
buttons.

STRS$ Returns the string representation of the value of

a specified numeric expression.

STRINGS$ Returns a string of specified length whose
characters all have the same ASCII code or equal
the first character of a given string.

SWAP Exchanges the values of two variables.

SYSTEM Closes all open data files and returns to MS-DOS.

TAB Tabs the cursor or the printhead to a specified
position in PRINT, LPRINT or PRINT#
statements.

TAN Returns the tangent of the argument.

TIMES$ The TIMES$ statement sets the current time. The

TIMES$ function retrieves the current time.

TIMER Returns a single precision number indicating the
seconds that have elapsed since midnight or
system reset.

7-14

Introduction

TIMER ON/
OFF/STOP

TROFF

TRON

USR

VAL

VARPTR

VARPTRS$

VIEW

VIEW PRINT
WAIT
WHILE...
WEND
WIDTH

WINDOW

WRITE

WRITE#

Enables, disables, or suspends event trapping.
(Trace Off) Stops the line number listing initiated
by TRON.

(Trace On) Causes the line number of each state-
ment executed to be listed.

Calls a machine language subroutine.

Converts the string expression of a number to its
numeric value.

Returns the memory address of a variable or file
control block.

Returns the starting address of the file control
block for a specified file.

Defines subsets of the screen called ‘‘viewports.”
Sets the boundary of the text window.

Suspends program execution while monitoring
the status of a machine input port.

Loops through a series of statements as long as a
given condition remains true.

Sets the line width in characters.

Permits the redefinition of the screen coordinates.
(Graphics Mode.)

Writes data to the screen.

Writes data to a sequential file.

7-15

BLOAD
Command

N Example

Example

If “offset” is specified, a DEF SEG statement
should be executed before the BLOAD. When
“offset’” is given, GWBASIC assumes you
want to BLOAD at an address other than the
one saved. The last known DEF SEG address
will be used. If no DEF SEG statement has
been given, the GWBASIC data segment is
used as the default (because it is the default for
DEF SEG).

Warning

BLOAD does not perform an address range
check. It is possible to load a file anywhere in
memory. Be careful not to load over
GWBASIC or the operating system.

10 ‘Load a machine language program
20 finto memory at 60:FO00

30 ‘Restore Segment to GWBASIC’s DS.
40 DEF SEG

50 ‘Load PROG1 into the DS.

60 BLOAD **B:PROG1”’,&HF000

10 ‘Load the screen buffer

20 "Point segment at screen buffer
30 DEF SEG =&HB800

40 ‘Load FILE1 into screen bhuffer
50 BLOAD *‘FILE1*’,0

Note the DEF SEG statement in 30 and the
offset of 0 in 50: this guarantees that the
correct address is used.

7-23

BSAVE
Command

Example

Example

The BLOAD and BSAVE statements also
allow you to load and save any portion of
memory. For instance, you can save and
display screen images (specifying the screen
buffer as the current segment by a DEF SEG
statement).

A DEF SEG statement should be executed
before the BSAVE. The last known DEF SEG
address is always used for the save.

10 ‘Save PROG1
20 DEF SEG = &H6000
30 BSAVE “‘PROG1’’,&HF000,256

This example saves 256 bytes starting at
6000:F000 in the file “PROG1.”

10 fSave the screen buffer

20 ‘Point segment at screen buffer
30 DEF SEG=&HB800

40 ‘Save screen buffer in FILE1

50 BSAVE ‘*A:FILE1*,0,16384

The DEF SEG statement must be used to set
up the segment address to the screen buffer.
The offset of 0 and the length 16384 specify
that the entire 16K screen buffer is to be saved.

Note: The above example will not work to save
screens created with the “SCREEN 100 mode.
For “SCREEN 100"’ screens, save 32K (32767)

bytes.

7-25

CHAIN
Statement

Remarks

If the Merge option is used, a MERGE
operation is performed with the current
program and the CHAINed program. The
CHAINed program must be an ASCII file. If
any lines in the disk file have the same line
numbers as lines in the program in memory,
the lines from the file on disk will replace the
corresponding lines in memory. (MERGEing
may be thought of as “inserting’’ the program
lines on disk into the program in memory).
The MERGE option leaves the files open,
preserves the current OPTION BASE setting,
and preserves variable types and user-defined
functions, for use by the CHAINed program.

User-defined functions should be placed before
any CHAIN MERGE statements in the
program. Otherwise, the user-defined
functions will be undefined after the merge is
complete.

If the MERGE option is omitted, the
CHAINing program is lost (except common
variables) before loading the CHAINed
program. CHAIN does not preserve variable
types or user functions. Thus, any DEFtype or
DEF FN statements containing shared
variables must be repeated in the CHAINed
program.

If the ALL option is used, every variable in the
current program is passed to the CHAINed
program.

7-30

CIRCLE
Statement

Drawing Circles and Ellipses

The CIRCLE statement draws circles if you do
not specify the “aspect” parameter, and
ellipses if you specify a value of “aspect”
different from the default value (5/6 in

medium and super resolution, and 5/12 in

high resolution).

The ‘“‘aspect’” may be thought of as a fraction,
with a separate numerator and denominator.
The numerator tells GWBASIC how many
rows the CIRCLE statement should consider
equivalent to the number of columns specified
by the denominator.

If “aspect” is less than one, then ‘“‘radius’ is
measured in pixels in the horizontal direction,
i.e., it is the x-radius. In this case GWBASIC
draws ellipses with the same width, and varies
the height.

If “aspect” is greater than one, the y-radius is
given, and GWBASIC draws ellipses with the
same height and varies the width.

For example:

100 CIRCLE (100,150),50,,,,5/18

will draw a horizontal ellipse with an x-radius
of 50 pixels.

7-38

CIRCLE
Statement

Drawing Rays

The CIRCLE statement can draw a ray from
the center of the arc to either arc endpoint. A
negative endpoint generates a ray to that
endpoint. The endpoint, -0, is not treated as a
negative endpoint. To circumvent this
limitation, use a small negative number (e.g.,
-0.001 instead of -0). When both endpoints
are negative, both rays are drawn. The minus
sign does not affect the arc itself, i.e., the
angles will be treated as if they were positive.
Note that this is different from adding 2*PI
(where PI is 3.141593). The start angle may be
greater or less than the end angle. For
example:

100 CIRCLE (100,150),50,1,
-0.001, -3.141593/2

will draw a quarter of a circle delimited by two
rays.

Last Point Referenced

The last point referenced after a circle {(or
ellipse) has been drawn is the center of the
circle (or ellipse).

Clipping

Points that are off the screen or the graphics

viewport are not drawn by the CIRCLE
statement.

7-40

CIRCLE
Statement

Example

STEP Option

Coordinates can be shown as absolutes or the
STEP option can be used to reference a point
relative to the most recent point used.

For example, if the most recent point
referenced was 100,50, then:

either

CIRCLE (200,200),50

or

CIRCLE STEP (100,150),50

will draw a circle at 200,200 with radius 50.
The first example uses absolute notation; the
second uses relative notation.

The following example draws three
intersecting circles and colors the area of
intersection.

5 SCREEN 1

10 COLOR 0,3

20 CLS

30 CIRCLE (100,120),90
40 CIRCLE (150,130),120
50 CIRCLE (250,120),100
60 PAINT (180,120)

7-41

CLS

Statement

Example

CLS 2 clears the text window to the text
background color, without resetting the
function key display.

CLS not only erases all or part of the screen,
but also returns the cursor to the upper
lefthand corner of the screen (in Text Mode).

If you are in Graphics Mode, CLS makes the
“last referenced point”’ the center of the screen.

The screen can also be cleared by pressing
CTRL HOME or by modifying the screen
mode using the SCREEN statement, or the
width using the WIDTH statement.

10 CLS ¢ Clears the screen [or
20 ¢ the current viewport)
60 CLs 0 ¢ Clears whole screen
90 CLS 1 ¢ Clears the graphics
100 f viewport

110 CLs 2 f Clears the text window

7-46

COLOR

Statement

Text Mode
Possible If the COLOR statement ends in a comma (,),
Errors a “Missing operand” error is returned, but the

color will change. For example:

COLOR 2,

is invalid.

If you enter a value outside the range 0 to 255

an “Illegal function call” error is returned.
Previous values are retained.

7-50

COMMON
Statement

Example

Common variables must always be initialized
within the CHAINing program. Common
arrays must be explicitly described by DIM
statements in the CHAINing program (but not
in the CHAINed program, otherwise a
“Duplicate definition” error occurs). The DIM
statements must be written before the
associated COMMON statements.

10 REM PG1
20 COMMON A1,B1,C1,D1S

80 CHAIN *“A:pPG2*’
90 END

10 REM PG2
20 PRINT A1,B1,C1,018
120 END

The above example shows that the CHAINed
program need not specify, through the use of
COMMON statements, the common variables
specified by the CHAINing program.

In our example the values of the variables Al,
B1, C1, and D18 in the program PG1 are
passed to the CHAINed program PG2, which
displays them.

7-57

COMMON
Statement

Example

The DIM statement must be written before the
associated COMMON statement.

10 REM PG1
20 DEFDBL C1
30 COMMON A1,B1,C1,D1S

90 CHAIN **A:PG2**
100 END

10 REM PG2
20 DEFDBL C1

130 END

Each type definition statement (DEFINT,
DEFSNG, DEFDBL, DEFSTR) referring to
common variables, must precede the
associated COMMON statement and must be
repeated in the CHAINed program. (Note the
statements DEFDBL, both with PG1 and
PG2.)

7-58

~

CONT
Command

Example

10 INPUT A,B
20 TEMP= A+B
30 STOP
40 FINAL = TEMP +300: PRINT FINAL
RUN
?232,24
Break in 30
Ok
PRINT TEMP
76.8
Ok
CONT
376.8
Ok

7-62

DATA
Statement

Example

The data-type of an entry in the data sequence
must correspond to the type of the variable to
which it is to be assigned; i.e., numeric
variables require numeric constants as data
(conversion from one numeric type to another
is allowed; for example, you may have a single
precision floating point constant associated
with an integer variable) and string variables
require quoted or unquoted strings as data.

DATA statements may be re-read from the
beginning by use of the RESTORE statement.

Ok

10 PRINT *CITY?*, ““STATE”, “ZIP*’
20 READ CS,SS,Z2

30 DATA **BIRMINGHAM,"’

35 DATA ‘“ALABAMA,12345"*

40 PRINT CS$,S8,Z

RUN

CITY STATE ZiPp
BIRMINGHAM, ALABAMA 12345
Ok

7-68

DEF FN
Statement

Example

The variables in the argument list represent, on
a one-to-one basis, the argument variables or
values that are to be given in the function call.

User-defined functions may be numeric or
string. The type of the function is specified by
“name.” The type of the expression must match
the type of the function, otherwise a ‘“Type
Mismatch” occurs. If the function is numeric
the

value of the expression is forced to that type
before the function value is returned.

If a DEF FN statement has not been executed
before the function it defines is called, an
“Undefined user function’ error occurs.

400 R=1:5=2
410 DEF FNAB(X,Y)=X"3/Y"2
420 T=FNAB(R,S)

Line 410 defines the function FNAB. The
function T will contain the value (R " 3)
divided by (S " 2) or .25.

7-72

N

DEF SEG
Statement

If you enter a value outside the range, then an
“Illegal function call” error results. Previous
value will be retained.

If you do not separate DEF and SEG by at
least one blank, GWBASIC would interpret the
statement:

DEFSEG =150

to assign the value 150 to the variable
DEFSEG

10 DEF SEG = &HB80O ‘Set segment to
15 ‘Screen buffer

20 DEF SEG ‘Restore segment to

25 ‘GWBASIC’s DS

Note that in statement 10 the screen buffer is
at absolute address B8000 hex, as the last
hexadecimal digit is dropped on the DEF SEG
statement.

7-74

)

DIM
Statement

Example

Example

10 DIM A(20)
20 FOR 1=0 TO 20
30 READ A[l)

40 NEXT |

LIST

101=1

20 GOTO 40

30 DIM A(50)

40 A(10)=3

50 A(11)=45

Ok

RUN

Subscript out of range in 50
Ok

The system displays:
Subscript out of range in 50
when statement 50 is executed, as statement

30 is jumped over and an upper bound of 10 is
assumed by default.

7-81

DRAW
Statement

Mx,y

An

TAn

Move absolute or relative. If ‘x’ is preceded by a plus (+) or
minus (—), ‘x’ and ‘y’ are added to the current graphics
position, and connected with the current position by a line
(move relative). Otherwise, a line is drawn to point ‘x,y’ from
the current position (move absolute).

Move without plotting any points. B may precede any of the
above mentioned movement commands.

Move but return to original position when finished. N may
precede any of the above mentioned movement commands.

Further GML Commands

Set angle ‘n’. ‘n’ may range from 0 to 3, where 0 is 0 degrees,
1is 90, 2 is 180, and 3 is 270. Figures rotated 90 or 270 degrees
are scaled so that they will appear the same size as with 0 or
180 degrees on a monitor screen with the standard aspect
ratio of 4/3.

Rotate angle ‘n’. ‘n’ is equivalent to degrees in the range -360
to 360. If ‘n’ is positive, rotation is counter-clockwise, if ‘n’ is
negative, rotation is clockwise. If ‘n’ is outside the specified
range, an “Illegal function call” error occurs.

Set color ‘n’ (from 0 to 3 in medium resolution, and 0 to 1 in
high or super resolution).

7-84

DRAW
Statement

Sn

Xstringexp

Pnm

Remarks

Examples

Set scale factor. ‘n’ may range from 1 to 255. The scale factor
multiplied by the distances given with U,D,L,R,E,F,G,H or

relative M commands gives the actual distance traveled.

Execute substring. This powerful command allows you to

execute a second substring from a string.

‘n’ is the color chosen to paint the interior of the closed figure
and ‘m’ is the border color. You must specify both param-
eters or an error will occur. Both parameters can range
from 0 to 3 in medium resolution and from 0 to 1 in high or

super resolution mode.

In all GML commands, “n,” “x,” and “y”’
arguments can be constants like “327” or

“=npumvar;.” The semicolon is necessary if you

enter a variable this way or if you use the X

command; gtherwise you can omit the
semicolon between commands. Spaces are
ignored in ‘‘stringexp.” For example:

M+ =A;,-=B;
To draw a box:

10 SCREEN 1
20 A=40
30 DRAW ““U=A; R=A; D=A; L=A;"

10 US =U30;'* : D$ =‘D30;"’

15 L$ ='L40;"’ : RS =“‘R40;"’

20 BOX$S=US +RS + DS +LS$

30 DRAW *XBOXS;*’

40 REM DRAW ‘*XUS;XRS$;XD$;XLS;"’
50 *would have drawn the same box

7-85

ERR and ERL
Functions

If you enter a negative value for L or W, the
error handling routine is activated and the
system displays:

Lor W<0

Execution is resumed at statement 30 (see
RESUME statement below). Note the use of
ERR and ERL functions in the error handling
routine.

7-98

ERROR
Statement

If the value of the numeric expressions is
greater than any error codes used by
GWBASIC, then the ERROR statement will
generate a user-defined error. This user-
defined error code may then be handled in the
error trapping routine (see the ON ERROR
statement in this chapter).

Note: To define your own error, use a value
that is greater than any used by GWBASIC
error codes. (It is preferable to use the highest
available values, so compatibility may be
maintained if more error codes are added to
GWBASIC.)

If an error statement specifies a code for
which no error message has been defined,
then GWBASIC responds with the message:
Unprintable error.

7-100

~

FIELD
Statement

Example 1

Do not use a FIELDed variable name in an
input statement or to the left of the equal sign
in an assignment statement. Once a variable
name is FIELDed, it points to the correct place
in the random file buffer. If a subsequent
INPUT or LET statement with that variable
name on the left side of the equal sign is
executed, the variable no longer refers to the
random file buffer, but to the variables stored
in string space.

If previously defined in a FIELD statement, a
variable name may be inserted to the right of
the equal sign in an assignment statement.

10 FIELD 1,20 AS N$,10 AS ID$,40 AS ADDS

Allocates the first 20 positions (bytes) in the
random file buffer to the string variable N$,
the next 10 positions to ID$, and the next 40
positions to ADD$. FIELD does NOT place
any data in the random file buffer. (See also
“GET” and “LSET/RSET” in this chapter.)

7-103

FIELD
Statement

Example 2

Example 3

10 OPEN ‘‘R’,#1,“A:PHONELST’*,35

15 FIELD #1,2 AS RECNBRS,33 AS DUMMYS
20 FIELD #1,25 AS NAMES,10 AS PHONENBRS
25 GET #1

30 TOTAL =CVI(RECNBR]S

35 FOR |1=2 TO TOTAL

40 GET #1, |

45 PRINT NAMES, PHONENBRS

50 NEXT |

Illustrates a record with multiply defined
fields. In statement 15, the 35 byte field is
defined for the first record to keep track of the
number of records in the file. In the next loop
of statements (35-50), statement 20 defines the
field for individual names and phone

numbers.

10 FOR LOOP%=0TO 7
20 FIELD #1,[LOOP%* 16) AS OFFSETS,16 AS AS{LOOP%)
30 NEXT LOOP%

Shows the construction of a FIELD statement
using an array of elements of equal size. The
result is equivalent to the single declaration:

FIELD #1,16 AS AS(0),16 AS AS(1),..., 16 AS AS(6),16 AS AS(7)

7-104

~

FIELD
Statement

Example 4

Example 5

170

DIM SIZE%([4%): REM ARRAY OF FIELD SIZES

FOR LOOP% =0 TO 4%:READ SIZE% (LOOP%): NEXT LOOP%
DATA 9,10,12,21,41

DIM AS(4%): REM ARRAY OF FIELDED VARIABLES

OFFSET% =0

FOR LOOP% =0 TO 4%

FIELD #1,0FFSET%AS OFFSETS,SIZE%(LOOP%)AS AS(LOOP%)
OFFSET% = OFFSET% + SIZE%(LOOP%)

NEXT LOOP%

Creates a field in the same manner as Exam-
ple 3. However, the element size varies with
each element. The equivalent declaration is:

FIELD #1,SIZE%(0) AS AS(0),SIZE%(1) ASAS(1),_
SIZE%({a%) AS AS(4%)

10 FIELD#1,225 AS TSTS

Make sure to observe the maximum length
restriction for various variables. For example,
in the FIELD statement above the maximum
length of TSTS$ is 255.

7-1056

FILES
Command

Examples

FILES
Show all files on the current directory

FILES ***.BAS*’
Shows all files with an extension of .BAS

FILES *A:*.**»
Shows all files on drive A

FILES **A:»’
Equivalent to the preceding example

FILES ‘*GEO?.BAS*’

Shows all files on the current directory of the
MS-DOS default drive that have a filename of
4 characters beginning with GEO and an
extension of .BAS

Sub-directories are denoted by <DIR >
following the directory name.

FILES ‘*SALES*’
Lists the files in the subdirectory SALES.

FILES ‘‘SALES*.BAS”’

Lists the files in the subdirectory SALES that
have the extension .BAS.

7-107

FOR..NEXT
Statements

Remarks

The program lines following the FOR
statement are executed until the NEXT
statement is encountered. Then the counter
(numvar) is incremented by the amount
specified by STEP (Z). A check is performed to
see if the value of the counter is now greater
than the final value (Y). If it is not greater,
GWBASIC branches back to the statement
after the FOR statement and the process is
repeated. If it is greater, execution continues
with the statement following the NEXT
statement. This is a FOR. . . NEXT loop.

If STEP is not specified, the increment is
assumed to be one. If STEP is negative, the
final value of the counter is set to be less than
the initial value. The counter is decreased
each time through the loop. The loop is
executed until the counter is less than the
final value.

The counter must be an integer or single
precision numeric constant. If a double
precision numeric constant is used, a ‘“Type
mismatch” error results.

The body of the loop is skipped if the initial
value of the loop times the sign of the STEP
exceeds the final value times the sign of the
STEP.

7-110

FOR..NEXT
Statements

Nested Loops

FOR...NEXT loops may be nested. A nested
loop may be placed within the context of
another FOR. . .NEXT loop. When loops are
nested, each loop must have a unique variable
name as its counter. The NEXT statement for
the inside loop must appear before that for the
outside loop. If nested loops have the same
end point, a single NEXT statement may be
used for all of them. A statement of this form:

NEXT V1, V2, V3

performs the same action as this sequence of
statements:

NEXT V1
NEXT v2
NEXT V3

The variable(s) in the NEXT statement may
be omitted, in which case the NEXT statement
matches the most recent FOR statement.

If a NEXT statement is encountered before its
corresponding FOR statement, a “NEXT
without FOR”’ error message is issued and
execution is terminated.

7-111

FOR..NEXT
Statements

Example 1

Example 2

Example 3

10 K=10

20 FORI=1TO K STEP 2
30 PRINT [;

40 K=K +10

50 PRINT K

60 NEXT

RUN

1 20
3 30
5 40
7 50
9 60
k

10 J=0

20 FORI=1TOJ
30 PRINTI

40 NEXTI

In this example, the loop does not execute
because the initial value of the loop exceeds
the final value.

10 1=5

20 FORI=1TO 1+5

30 PRINT I;

40 NEXT

RUN
12345678910

Ok

In this example, the loop executes ten times.
The final value for the loop variable is always
set before the initial value is set.

7-112

GET (Files)
Statement

Example

10 OPEN ¢‘r’,1,*A:RAND',48
20 FIELD# 1,20 AS R15,20 AS R2S,8 AS R3S
30 FORL=1TO2

40 GET# 1,L

50 PRINT R15,R25,CVD(R3S)
60 NEXT

70 CLOSE# 1

80 END

Ok

RUN

Super man USA 11234621
robin hood England 23462101
Ok

This program retrieves information stored in
the specified file. The data read into the buffer
may be accessed by the program. This is done
here by the PRINT statement at line 50. These
data items were written to the file by the PUT-
File statement.

7-116

GET (Graphics)
Statement

Array Dimensions
The storage format in the array is as follows:

2 bytes giving x dimension in BITS
2 bytes giving y dimension in BITS

The data for each row of pixels is left justified
on byte boundaries. If the screen image is not
an even multiple of 8 bits, zero padding occurs
to the byte boundary. The required array size in
bytes is:

4 + INT((x*bitsperpixel + 7)/8)*y

“bitsperpixel” is 2 for medium resolution, and 1
for high and super resolution.

The bytes per element of an array are:
2 for integer

4 for single precision
8 for double precision

7-118

GET (Graphics)
Statement

Example

If you want to GET a 10 by 12 image into an
integer array, the number of bytes required is
4+INT((10*2+7)/8)*12 or 40 bytes. You need an
integer array with at least 20 elements.

It is possible to examine the “x’’ and “y”
dimensions and even the data itself if an
integer array is used. The “x’’ dimension is in
element 0 of the array, and the “y”’ dimension
is found in element 1. Integers are stored low
byte first, then high byte, but the data is
transferred high byte first (leftmost) and then
low byte.

7-119

GOSUB..RETURN
Statements

Remarks

A subroutine may be called any number of
times in a program. A subroutine may also be
called from within another subroutine. Such
nesting of subroutines is limited only by
available memory.

The RETURN statement(s) in a subroutine
causes GWBASIC to branch back to the
statement following the most recent GOSUB
or ON...GOSUB statement executed. A
subroutine may contain more than one
RETURN statement, if logic dictates a return
at different points in the subroutine.

The “linenum?2” option may be included in the
RETURN statement to return to a specific line
number from the subroutine. Use this type of
return with care, however, because any other
GOSUBs, WHILESs, or FORs that were active
at the time of the GOSUB will remain active,
and errors such as “FOR without NEXT” may
result.

Subroutines may appear anywhere in the
program, but it is recommended that the
subroutine be readily distinguishable from the
main program. To prevent inadvertent entry
into the subroutine, precede it with a STOP,
END, or GOTO statement that directs
program control around the subroutine.

If either “linenuml” or ‘“linenum2” does not
exist in the program, an ‘‘Undefined line
number’’ error is returned.

7-121

GOSUB..RETURN

Statements

Example

10 GOSUB 40

20 PRINT “BACK FROM SUBROUTINE®*
30 END

40 PRINT “*SUBROUTINE’’;
S0 PRINT *f IN*?;

60 PRINT ** PROGRESS"’
70 RETURN

RUN

SUBROUTINE IN PROGRESS
BACK FROM SUBROUTINE
Ok

7-122

~

GWBASIC
Command

stdout

IF:

is a literal string (not included in quotation marks) for the
standard output file specification. GWBASIC is redirected
to the file specified by ‘stdout.” When present, this syntax
must appear before any switches. (See ‘‘Re-direction of
Standard Output’’ below.)

this switch sets the maximum number of files that may be
open simultaneously during the execution of a GWBASIC
program. It is ignored unless the /I switch is specified on the
command line. Refer to the /I switch below.

If this switch and the /I switch are present, then the
maximum number of files is set to ‘files’. Each file requires
62 bytes for the File Control Block (FCB) plus 128 bytes for
the data buffer. The data buffer size may be altered via the
/S: option switch. If the /F option is omitted, the number of
files is set to 3.

The number of open files that MS-DOS supports depends
upon the value of the FILES = parameter in the CON-
FIG.SYS file. It is recommended that FILES = 10 for
GWBASIC. Remember that the first 3 are taken by ‘stdin’,
‘stdout’, ‘stderr’, ‘stdaux’, and ‘stdprn’. One additional file han-
dler is needed by GWBASIC for LOAD, SAVE, CHAIN, NAME
and MERGE. This leaves 6 for GWBASIC File I/O, thus /F:6
is the maximum supported by MS-DOS when FILES=10 appears
in the CONFIG.SYS file. Attempting to OPEN a file after all
the file handlers have been exhausted will result in a *“Too many
files” error.

7-125

GWBASIC
Command

this switch sets the maximum record length allowed
with random files. It is ignored unless the /I switch is
specified on the command line (refer to the /I switch below).
If this switch and the /I switch are present, then the
maximum record length is set to ‘lrecl’. The record length
option (‘recordlength’) on the OPEN statement cannot
exceed this value. If the /S: option is omitted, the record
length defaults to 128 bytes. The maximum value permitted
for ‘lrecl’ is 32767 bytes.

buffersize if present, controls RS232 Communications. If
RS232 cards are present, /C:0 disables RS232 support. Any
subsequent I/O attempts will result in a ‘‘Device
unavailable’” error. Specifying /C:n allocates ‘n’ bytes for
the receive buffer for each RS232 card present. If the /C:
option is omitted, GWBASIC allocates 256 bytes for the
receive buffer of each card present. GWBASIC ignores the
/C: switch when RS232 cards are not present.

7-126

GWBASIC
Command

/M:[highest memory] [,maxblock size]

when present, ‘highest memory’ sets the maximum number of
bytes that will be used as GWBASIC workspace. GWBASIC will
attempt to allocate 64K of memory for the data and stack seg-
ment. If machine language subroutines are to be used with
GWBASIC programs use the /M: switch to set the highest
memory location that GWBASIC can use. When omitted pr 0.
GW BASOC attempts to allocate all it can up to a maximum
of 65536 bytes.

If order to load programs above the GWBASIC workspace
you must use the optional parameter ‘max blocksize’ to reserve
areas for the workspace and your programs. ‘Maxblocksize’ must
be in Paragraphs (byte multiples of 16). When omitted, &H1000
(4096) is assumed. This allocates 65536 bytes (65536=4096 x 16)
for GWBASIC’s Data and Stack segment. If you require 65536
bytes for GWBASIC and 512 bytes for machine language subrou-
tines, then use /M:,&H1010 (4096 paragraphs for GWBASIC +
16 paragraphs for your routines). /M:,2048 says: ‘“Allocate and
N use 32768 bytes maximum for data and stack”. /M:32000,2048
allocates 32768 bytes maximum but GWBASIC will only use the
lower 32000. This leaves 768 bytes available for program space.

7-127

GWBASIC
Command

Examples

A>GWBASIC PAYROLL
Uses 64k of memory and 3 files, loads and
executes PAYROLL.BAS.

A>GWBASIC INVENT/F:6
Uses 64k of memory and 6 files, loads and
executes INVENT.BAS.

A >GWBASIC /C:0/M:32768
Disables RS232 support and uses only the first
32k of memory.

A >GWBASIC /F:4/S:512
Uses 4 files and allows a maximum record
length of 512 bytes.

A>GWBASIC TTY/C:512

Uses 64k of memory and 3 files, allocates 512
bytes to RS232 receive buffers, load and
execute TTY.BAS.

7-129

IF... GOTO ... ELSE
IF ... THEN ..ELSE
Statements

Note: When using IF to test equality for a value
that is the result of a floating-point computa-
tion, remember that the internal representation
of the value may not be exact. Therefore, the
test should be against the range over which the
accuracy of the value may vary. For example, to
test a computed variable A against the value
1.0, use:

IF ABS (A-1.0)<1.0E-6 THEN ...

This test returns true if the value of A is 1.0
with a relative error of less than 1.0E-6.

7-135

IF ... GOTO ... ELSE
IF ... THEN ... ELSE
Statements

Example 1 200 IF | THEN GET#1,l

This statement GETs record number I if I is
not zero.

Example 2 100 IF(1<20)*(1>10) THEN DB=1979-1:GOTO 300
110 PRINT ‘‘OUT OF RANGE"

In this example, a test determines if I is
greater than 10 and less than 20. If I is in this
range, DB is calculated and execution
branches to line 300. If I is not in this range,
execution continues with line 110.

Example 3 210 IF IOFLAG THEN PRINT AS ELSE LPRINT AS

This statement causes printed output to go
either to the terminal or the line printer,
depending on the value of the variable
IOFLAG. If IOFLAG is zero, output goes to
the line printer; otherwise, output goes to the
screen.

7-136

N

INPUTS$
Function

Example 1

Example 2

Example 3

‘LIST THE CONTENTS OF A SEQUENTIAL FILE IN HEXADECIMAL
10 OPEN*1"",1,“DATA"

20 IF EOF{1) THEN 50

30 PRINT HEXS{ASC{INPUTS(1,#1)));

40 GOTO 20

50 PRINT

60 END

100 PRINT ““TYPE P TO PROCEED OR S TO STOP"
110 XS=INPUTS(1)

120 IF X$="p** THEN 500

130 IF X$="°S' THEN 700 ELSE 100

10 WHILE NOT EOF(1)
20 AS=INPUTS(LOC[1),#1)

30 ...

40 ... Process data returned in AS _
50 ...

60 WEND

The above sequence of statements reads:

‘.. While there is something in the output
queue, return the number of characters in the
queue and store them in A$. If there are more
than 255 characters, only 255 will be returned
at a time to prevent ‘‘String Overflow”. Input
continues until the input queue is empty.
(EQOF(1) = true.)”

7-145

INSTR
Function

N
Special Values
start >LEN(string) the returned value is 0
start <1 or an error is returned
start >255 (Illegal function call)
‘string’ is null the returned value is 0
‘substring’ the returned value is 0
cannot be found
‘substring’ is the returned value is ‘start’
null and start
is specified
o ‘substring’ is the returned value is 1
null and start
is omitted
Example 10 X$ =““ABCDEB"’
20 Y$ =*B"
30 PRINT INSTR(XS,YS);INSTR(4,XS,YS)
RUN
26
Ok
Note: The position at which the match is found
is always evaluated from the beginning of the
original string, even if start is specified.
lann

7-147

IOCTL
Statement

If you have installed a driver to replace LPT1
and that driver is able to set page length (the
number of lines to print on a page before
issuing a form feed), then an IOCTL command
to set or change the page length is:

PLn
“n” is the new page length.

Also see the IOCTL$ Function.

7-150

IOCTLS

Function
Example 10 OPEN ‘*\DEV\F0O*’ AS #1
20 I0OCTL #1,“RAW?" ‘Tell device that data
is “*RAW*’

30 IF IOCTLS(1) = “*0*’ THEN CLOSE 1

If Character Driver FOO gives a false return
from the Raw data mode IOCTL request, close
the files and stop processing.

Possible “Bad file number”’ - IOCTL to a driver that is
Errors not OPEN.

“Illegal function call” - device does not support
I0CTL.

7-153

/~

KEY
Statement
(Function Keys)

Examples

50 KEY ON
Displays the Soft Keys on the bottom line.

60 KEY OFF
Erases Soft Key display.

70 KEY 1, MENU +CHRS(13)

Assigns the string “MENU” CR to Soft Key 1.
Such assignments might be used for rapid

data entry.

80 KEY 2,
Disables Soft Key 2 as a soft key.

The following routine initializes the first 5
Soft Keys:

1 KEY OFF *Turn off key display during
init.

10 DATA KEY1,KEY2,KEY3,KEY4,KEY5
20 FOR 1=1 TO 5:READ SOFTKEYSS(I)
30 KEY I,SOFTKEYSS(I)

40 NEXT |

50 KEY ON ‘now display new softkeys.

7-157

~

KEY
Statement
(Control Keys)

Remarks

Examples

Trapped keys are processed in the following
order:

CTRL PRT SC. CTRL PRT SC produces a
printed copy of the screen whether or not you
trap for it.

It is not necessary to define F1 to F10 and the
cursor direction keys as trap keys; they are
predefined as trap keys.

The user defined keys are examined (15-20).

Any key that is trapped is not passed to
GWBASIC, i.e., it does not go into the
keyboard buffer. This applies to any key,
including CTRL BREAK or CTRL ALT DEL.
By trapping for a key, you can prevent
GWBASIC users from accidentally interrupting
a program or rebooting the system.

See the ON KEY(n) GOSUB statement.

7-159

KEY(n)
Statement

Example 10 KEY 4, SCREEN 0,0,0 ‘assign softkey 4
20 KEY (4) ON ‘enables KEY trapping

100 ON KEY (4) GOSUB 1000

Key 4 pressed

1000 REM KEY (4) Trap Routine

7-161

LINE
Statement

The B parameter facilitates the drawing of
rectangles, which would otherwise require the
following lengthy programming format:

LINE (x1,y1){x2,y1) LINE (x1,y1){x1,y2)
LINE (x2,y1}{x2,y2) LINE (x1,y2)-{x2,y2)

BF fills the interior of the rectangle with the
selected color.

Out-of-range coordinates are not visible on the
screen. This is called “line clipping”’.

If the relative form is used for the second
coordinate, it is relative to the first coordinate.
For example:

LINE(50,50) -STEP(15,-13)
draws a line from (50,50) to (65,37).

LINE supports the additional argument
“style.” Style is a 16-bit integer mask used
when putting pixels on the screen. This is
called ‘‘Line-Styling”’.

7-169

LINE INPUT
Statement

Remarks

Example

All input from the end of ‘“prompt” to the CR
is assigned to ‘‘stringvar”. Trailing blanks are
ignored. If a linefeed/carriage return is
encountered, both characters are echoed, but
the carriage return is ignored, the linefeed is
put into “stringvar’, and data input continues.

If LINE INPUT is immediately followed by a
semicolon, then the CR typed by the user to
end the input line does not echo a CR LF
sequence on the screen.

You may use all the GWBASIC screen editor
features in responding to INPUT and LINE
INPUT statements.

See LINE INPUT# statement.

7-172

LINE INPUT#
Statement

Example

10 OPEN *0*’,1,*‘LIST"

20 LINE INPUT “*CUSTOMER *’;CS
30 PRINT #1, CS$

40 CLOSE 1

50 OPEN *‘1"’,1,*“LIST”

60 LINE INPUT #1, CS

70 PRINT CS

80 CLOSE 1

RUN

CUSTOMER? 1. JONES 234,4
Il. JONES 234,4

Ok

7-174

LOCATE (Graphics)
Statement

start

stop

line

is the cursor starting scanline. It must be an integer
expression in the range 0 to 15, or 32 to 47. If ‘start’ is in the
range 0 to 15 the overwrite cursor shape is programmed and
a value of rate between 1 to 10 affects the overwrite cursor. If
‘start’ is in the range 32 to 47, the user cursor shape is
programmed, and a non zero value of ‘rate’ affects the user
cursor, not the overwrite cursor. If ‘start’ is in the range 32 to
47, it is taken to be module 15.

is the cursor stop scanline. It must be a numeric expression
in the range 0 to 15.

if the value of ‘line’ is between 50 and 50+M, byte number
‘line - 50’ of the cursor bitmap for the overwrite cursor is set
to ‘map’. If the value is between 100 and 100+M, then byte
number ‘line - 100’ of the cursor bitmap for the user cursor is
set to ‘map’. The value of M is 15 for medium-resolution
mode, 7 for high-resolution mode, and 15 for super-resolution
mode.

7-181

LOCATE (Graphics)
Statement

map if ‘line’ and ‘map’ are specified, this value replaces the
bitmap for scanline ‘line’ of the cursor specified by ‘rate’.
The cursor bitmap is a byte array which is XOR’d with the
screen to display the cursor. For medium-resolution mode,
each scanline of the cursor is represented by 2 bytes; the
low-order byte of each scanline is the left one on the screen.
For other modes, there is one byte per scanline. The size of
the array is the number of scanlines per row of text times the
number of bytes per cursor scanline: this is 8 for high-
resolution mode, and 16 for the other modes. Cursor bitmaps
are kept separately for screen modes 1, 2, and 3. The cursor
state for each mode is restored if another screen mode is
selected, and the original mode is reselected. Likewise,
separate bitmaps are kept for the insert, overwrite, and user
cursors.

Remarks GWBASIC includes a blinking cursor for
graphics mode. The maximum height of this
cursor is 8 in modes 1 and 2, and 16 in mode 3.
Cursor scanlines are numbered starting with 0 7/
for the top scanline. ‘

The graphics mode as well as in text mode
support three different cursors (see the
LOCATE text Statement).

7-182

LOCATE (Graphics)
Statement

The insert-mode cursor will always be a
rapidly blinking small triangle at the lower
left of the character cell. The overwrite-mode
cursor is initially an underline which blinks
somewhat more slowly. The user cursor is
initially disabled, but its shape array is loaded
with OFFH bytes, so that it can easily be
made to be any underline or block shape. The
shape of the user and overwrite cursors are
programmable.

LOCATE,,0 disables both the user and the
overwrite cursors. Execution of any graphics
statement disables the user cursor (so that the
cursor is removed from screen memory while
the graphics statement is executed). In this
case, the user cursor must be explicitly turned
on to be used later on.

7-183

LOCATE (Graphics)

Statement

Examples

10 LOCATE 5,1,4,2

Moves to line 5, column 1, turns the overwrite
cursor on with a blinkrate 4/18.75 seconds, and
sets the height of the cursor to 2. (All scanlines
of the cursor are initialized to &HFE, so 2
scanlines will appear unless the user has
changed the bitmap.)

100 LOCATE ,,,1, &H82
110 LOCATE ,,,2

120 FOR W=1 TO 2000
130 NEXT

Sets the bitmap of the second scanline of the
user cursor to binary 10000010, sets its height
to 2, and displays the user cursor for a couple
of seconds. It will appear as a U-shaped
underline like the initial overwrite cursor.

7-184

LOCATE (Text)
Statement

Remarks

In GWBASIC, there are three cursors: the
insert-mode cursor, which appears when
insert-mode is in effect, the overwrite cursor,
which appears when overwrite mode is in
effect (during command entry and input with
the INPUT statement), and the user cursor,
which appears during program execution
when an INPUT statement is NOT being
executed. The overwrite cursor is the one
which appears most of the time.

The overwrite cursor is initialized to an
underline. The insert-mode cursor is a half-
height block. The user cursor is initially
disabled and undefined. The insert-mode
cursor has a fixed size; the sizes of the
overwrite and user cursors may be changed.

Following a LOCATE statement, I/0
statements to the screen begin placing
characters at the specified location. The user
cursor is normally off during program

execution, but can be turned back on using
LOCATE,,L.

Note that “start’” and ‘“stop’ parameters
enable you to define the size of the cursor by
indicating the starting and ending scanlines.
The scanlines are numbered from 0 at the top
of the character position. The bottom scanline
is 7 if a color monitor has been installed and

if a BW monitor is used. If you specify ‘“‘start”
and omit ‘‘stop’’, this assumes the value of
“start”. If “‘start’’ is greater than ‘‘stop’’, a
two-part cursor will be returned.

7-186

LOCATE (Text)
Statement

Examples

100 LOCATE 1,1
Moves the cursor to the home position in the
upper left-hand corner.

200 LOCATE ,,1
Makes the user cursor visible. Its position
remains unchanged.

300 LOCATE ,,0

Turns both the user and overwrite cursors off.
This is useful during a program which
displays text or graphics and only uses
INPUT to input keyboard data (INPUT uses
the screen editor).

400 LOCATE 6,1,1,0,7

Moves the overwrite cursor to line 6, column 1.
Makes the cursor visible, covering the entire
character cell, starting at scanline 0 and
ending on scanline 7 (in one of the color
modes).

LOCATE ,,1,13

Makes the overwrite cursor visible. Its position
remains unchanged. The cursor’s shape will be
a thin horizontal line at the bottom of the
character cell (in monochrome).

LOCATE ,,1,45

Makes the user cursor visible. Its position
remains unchanged. The cursor’s shape will be
a thin horizontal line at the bottom of the
character cell (in monochrome).

7-188

LSET and RSET
Statements

Examples

150 LSET AS=MKSS(AMT)
160 LSET DS=MKIS{COUNT%)

LSET or RSET may also be used with a
nonfielded string variable to left-justify or
right-justify a string in a given field. For
example, the program lines:

110 AS = SPACES(20)
120 RSET AS=NS

right-justify the string N$ in a 20-character
field. This is useful when formatting printed

output. m

7-194

~

MIDS$
Function and Statement

Example

Ok
10 AS = “HELLO”’

20 BS = “*JOSEPH JOHNNY JIMMY*
30 PRINT AS;MIDS(BS,8,6)

RUN

HELLO JOHNNY

Ok

7-197

MIDS$

Function and Statement

Syntax

string

start

length

substring

Remarks

As a statement, MIDS$ replaces a section of a
string with another string.

MID$(string,start[,length]) =substring

is a string expression whose value is the string from which a
section is to be replaced

is an integer expression from 1 to 255, whose value specifies
the character position where the replacement is to begin;
‘start’ must be <=LEN (string)

is an integer expression from 0 to 255. It represents the
length of the section to be replaced with substring.

is a string expression which replaces the characters in
‘string’, beginning from ‘start’ position

The characters in ‘“string”, beginning from
“start” position, are replaced by the characters
in “substring”. The optional ‘‘length” refers to
the number of characters from ‘‘substring”
that will be used in the replacement. If
“length’ is omitted, all of the characters of
“substring” are used.

The replacement of characters never goes
beyond the original length of ‘“‘string.”

7-198

MIDS$
Function and Statement

Example

Ok

10 AS = “AVIGNON, FRANCE”
20 MIDS(AS,10) = *‘ROUBAIX*
30 PRINT AS

RUN

AVIGNON, ROUBAIX

Ok

Note that the original string length was not
changed.

7-199

MKDIR
Command

The resulting structure will be:

ROIOT

MARKETING PERSONNEL

FRED EMIL ANDY

WILMA

7-201

NAME
Command

Example

Ok

NAME “‘B:GRAPH.BAS” AS
‘“GRAPH1.BAS”

Ok

In this example, the file that was formerly
named GRAPH.BAS on the diskette in drive
B: will now be named GRAPH1.BAS.

7-204

ON COM(@m) GOSUB

Statement

Remarks

Example

To avoid recursive traps a COM(n) STOP is
automatically executed when the trap occurs.

A RETURN from the trap routine
automatically performs a COM(n) ON (unless
a COM(n) OFF was performed within the trap
routine). The RETURN line form may also be
used. Use this form with care because any
other active GOSUB, WHILESs, or FORs
remain active and errors (such as “FOR
without NEXT"’) may result.

Typically, the COM trap routine reads an
entire message from the COM port before
returning. Do not use the COM trap for single
character messages since, at high baud rates,
the overhead of trapping and reading for each
individual character may cause the COM
interrupt buffer to overflow.

This example sets up a trap routine for the
second communications channel at line 1000.

When a communications event is trapped,
program flow branches to the subroutine
defined by the ON COM(n) GOSUB statement.

100 ON COM(2) GOSUB 1000
110 COM(2) ON

: : 1000 REM COM activity

: 1050 RETURN 200

7-208

ON ERROR GOTO

Statement

Example

It is recommended that the error trapping
routine execute an ON ERROR GOTO 0 if an
error is found for which there is no recovery
action. (In this case the standard error
message will be displayed and execution will
stop.) The RESUME statement resumes
execution after the error handling routine has
been entered (see the RESUME statement in
this chapter). If a GWBASIC error (or a user-
defined error) is found, during the execution of
an error trapping routine the associated error
message is displayed and execution terminates.

Note: Error trapping does not occur within the
error trapping routine.

10 ON ERROR GOTO 1000
20 INPUTR
30 IF R=0 THEN ERROR 300

100 IF ERR=300 THEN PRINT ‘‘RADIUS
NEGATIVE OR ZERO”’

110 IF ERL=30 THEN RESUME 20

120 ON ERROR GOTO O

7-210

ON KEY(n) GOSUB
Statement

Remarks

Example

If KEY(n) trapping is enabled and key n was
pressed ON KEY(n) GOSUB is executed and
the corresponding routine activated.

To avoid recursive traps a KEY(n) STOP is
automatically executed, when the trap occurs.
A RETURN from the trap routine
automatically performs a KEY(n) ON (unless
a KEY(n) OFF was performed within the trap
routine).

The RETURN line form may also be used. Use
this form with care, because any other active
GOSUBs, WHILESs, or FORs remain active,
and errors may result.

You cannot use the INPUT or INKEY$
statements to find out which key caused the
trap. If you wish to assign different functions
to particular keys, you must set up a different
subroutine for each key, rather than assigning
the various functions within a single
subroutine.

10 KEY 4,*SCREEN 0,0” *assigns softkey 4
20 KEY([4]) ON ‘enables event trapping
70 ON KEY(4) GOSUB 200

key 4 pressed

200 ‘Subroutine for screen
250 RETURN

In the above, the programmer has overridden
the normal function associated with function
key 4, and replaced it with “SCREEN 0,0”,
which will be displayed whenever that key is
pressed.

7-213

ON KEY(n) GOSUB

Statement
Example 100 KEY 15, CHRS(&HO04) + CHRS(83)
105 REM ** Key 15 now is CTRL DEL **
110 KEY(15) ON
1000 PRINT *‘If you want to stop processing
for a break”’
1010 PRINT ‘‘press the CTRL key and the
DEL key at the”’
1020 PRINT ‘‘same time.”
1030 ON KEY(15) GOSUB 3000.

Operator presses CTRL DEL

3000
3010
3020
3030
3035
3040
3050
3060

REM ** Suspend processing loop.
CLOSE #1

RESET

CLS

PRINT *“*Enter CONT to continue.”
STOP

OPEN **A?’, #1, *“ACCOUNTS.DAT”
RETURN

In the above, the programmer has enabled the
CTRL DEL key to enter a subroutine which
closes the files and stops program execution
until the operator is ready to continue.

7-214

ON STRIG(n)
Statement

Example

This is an example of a trapping routine for
the button on the first joystick.

100 ON STRIG(0) GOSUB 2000
110 STRIG[O) ON

2000 REM subroutine for 1st button

2100 RETURN

7-218

ON TIMER (n) GOSUB

Statement

Example

The RETURN “linenum’’ form of the
RETURN statement may be used to return to
a specific line number from the trapping
subroutine. Use this type of return with care,
however, because any other GOSUBs,
WHILESs, or FORs that were active at the time
of the trap remain active and errors such as
“FOR without NEXT"’ may result.

To display the time of day on line 1 every
minute:

10 ON TIMER (60) GOSUB 1000
20 TIMER ON

1000 OLDROW = CSRLIN ‘save current
row

1010 OLDCOL = POS(0) ‘save current
column

1020 LOCATE 1,1 : PRINT TIMES

1030 LOCATE OLDROW, OLDCOL ‘restore
row and column

1040 RETURN

7-220

OPEN
Statement

filenum

record length

mode2

is an integer expression returning a number in the range 1
through 15. The number is used to associate an I/O buffer
with a disk file or device. This association exists until a
CLOSE or CLOSE ‘filenum’ statement is executed. The file
is referred by this number in any 1/O statement.

is an integer expression from 2 to 32767. This value sets the
record length to be used for random files (see the FIELD
statement). If omitted, the ‘record length’ defaults to 128
byte records. The specified ‘record length’ may not be
greater than the value specified by the ‘/S:’ switch on the
GWBASIC command. GWBASIC will ignore this option if it
is used to OPEN a sequential file.

is a string expression whose first character is one of the
following:

0 Specifies sequential output mode
1 Specifies sequential input mode
R Specifies random input/output mode

7-222

OPEN
Statement

Examples Using the following tree structure:

ROO'{
SALES ACCOUNTING

7N/ N\

JOHN MARY STEVE SUE

/ | I N\

REPORT REPORT other REPORT
files

other REPORT
files

If MARY is your current directory, then:

OPEN **REPORT"’...

OPEN *\SALES\MARY\REPORT"’...
OPEN *..\MARY\REPORT"...
OPEN *¢‘..\..\MARY\REPORT"...

all refer to the same file.

7-227

OPEN COM
Statement

CSin]

DS|n]

CDin]

controls clear-to-send (CTS). [n] specifies the number of milli-
seconds before the host times out. [n] may range from 0 to 65535.
The default is 1000. If you do not specify [n] or [n] =0, the line
status is not checked.

Subsequent communications statements will fail if you do not
include CS[n].

controls data-set-ready (DSR). [n] specifies the number of milli-
seconds before the host times out. [n] may range from 0 to 65535.
The default is 1000. If you do not specify [n], the line status is
not checked.

Subsequent communications statements will fail if you do not
include DS[n].

controls carrier-detect (CD). [n] specifies the number of milli-
seconds before the host times out. [n] may range from 0 to 65535.
The default is 1000. If you do not specify [n], the line status will
not be checked.

CD is also referred to as the ‘“‘received line signal detect”” message.

7-230

OPEN COM
Statement

BIN

ASC

LF

filenum

M
[~ Remarks
~

opens the device in binary mode. BIN is selected by default,
unless ASC is specified. See ‘“Remarks” for further discus-
sion of BIN.

opens the file in ASCII mode. See ‘“Remarks” for further
discussion of ASC.

specifies that a linefeed is to be sent after a carriage return
(see “Remarks”’).

is an integer expression returning a valid file number which
is associated with the file while it is OPEN.

is the maximum number of bytes that can be read from or writ-
ten to the communications buffer with GET or PUT. The default
is 128.

The OPEN COM statement must be executed
before a device can be used for RS232
communications.

A COM device may be OPENed to only one
file number at a time.

Any syntax errors in the OPEN COM
statement will result in a “Bad File name”
error. An indication as to which parameter is
in error is not given.

A “‘Device Timeout’’ error occurs if Data Set
Ready (DSR) is not detected.

The “speed”, ‘“‘parity’’, ‘‘data”, and ‘‘stop”’
options must be listed in the order shown in
the above syntax. The remaining options may
be listed in any order, but you must list them
after the ‘“speed’, ‘“parity”’, ‘“data’, and ‘‘stop”’
options.

7-231

OPEN COM
Statement

Example

LF allows communication files to be printed
on a serial line printer. When LF is specified, a
linefeed character (0AH) is automatically sent
after each carriage return character (0DH).
This includes the carriage return sent as a
result of the width setting. INPUT# and
LINE INPUT#, when used to read from a
COM file that was opened with the LF option,
stop when they see a carriage return. The
linefeed is always ignored.

The LF option is superseded by the BIN
option.

In the BIN mode, tabs are not expanded to
spaces, a carriage return is not forced at the
end-of-line, and CTRL Z is not treated as end-
of-file. When the channel is closed, CTRL Z is
sent over the RS232 line. The BIN option
supersedes the LF option.

In ASC mode, tabs are expanded, carriage
returns are forced at the end-of-line, CTRL Z
is treated as end-of-file, and XON/XOFF
protocol (if supported) is enabled. When the
channel is closed, CTRL Z will be sent over the
RS232 line.

10 OPEN ‘*COM1:9600,N,8,1,BIN** AS #2

will open communications channel 1 at a speed
of 9600 baud with no parity bit, 8 data bits, and
stop bit. Input/Output will be in the binary
mode. Other lines in the program may now
access channel 1 as file number 2.

7-232

PAINT
Statement

For example, in medium resolution you can fill
in a circle of color 1 with color 2. Visually, this
could mean a red ball with a green border (if
palette 0 were selected).

Since there are only two colors in high-
resolution and super-resolution mode, this
means ‘“‘whiting out” an area until white is
encountered, or ‘“‘blacking out”’ an area until
black is encountered.

PAINT must start on a non-border point;
otherwise PAINT will have no effect.

If the specified point already has the color
“border”’, the PAINT will have no effect.

PAINT can fill any figure, but PAINTing
‘“uneven’’ edges on very complex figures may
result in an “Out of Memory’’ error. If this
happens, you must use the CLEAR statement

to increase the amount of stack space
available.

Tiling

A figure may be “tiled”’ using the paint
parameter as a string expression of the form:

CHRS(&Hnn) + CHRS(&nn) + CHRS(&Hnn)...

where the two hexadecimal numbers (&Hnn)
correspond to 8 bits. The tile mask is always 8
bits wide and the string expression may be
from 1 to 64 bytes long.

7-236

PAINT
Statement

The structure of the string expression appears
as follows:

x increases
bit of tile byte

xy 876543821

0,0 |x|x|x|x|x|x|x|x Tile byte 0
0,1 |x|x|x|x|x|x|x|x Tile byte 1
0,2

|x|x|x|x|x|x[x|x Tile byte 2

0,63 |x|x|x|x|x|;:|x|x Tile byte 63 (maximum allowed)

The tile pattern is replicated uniformly over
the entire screen.

Each byte in the tile string masks 8 bits along
the x axis when plotting points. Each byte of
the tile string is rotated as required to align
the y axis such that:

tile__byte__mask =y MOD tile__length

Since there is only one bit per pixel in high-
and super-resolution modes (SCREEN 2 and

3), a point is plotted at every position in the bit
mask which has a value of 1.

7-237

PAINT

Statement
In high- and super-resolution mode, the screen
can be painted with ‘x’s by the following
statement:

Syntax PAINT (320,100),CHRS(SH81) +

CHRS(&H42) + CHRS(&H24) + CHRS(SH18) +
CHRS({SH18) + CHRS(&H24) + CHRS[EH42) +
CHRS(SH81)

This pattern appears on the screen as:

X increases — >

0,0 [1]0[0[0[0[0J0]1| CHR$ (&HS81) Tile byte 0
0,1 |0]1[0[0]0[0]1j0] CHRS (&H42) Tile byte 1
0,2 |0[o|1]0[0[1]0j0] CHRS$ (&H24) Tile byte 2
0,3 [0[oo[1]1[0[0j0] CHR$ (&H18) Tile byte 3
0,4 [0]0j0]1]1[0[0j0] CHR$ (&H18) Tile byte 4
0,5 [0/0|1/0[0[1]00] CHR$ (&H24) Tile byte 5
0,6 [0]1[0[0[0[0]1]0] CHRS$ (&H42) Tile byte 6
0,7 [1]o[o[o[o[0j0]1] CHRS$ (&H81) Tile byte 7

Since there are 2 bits per pixel in medium-
resolution mode (SCREEN 1), each byte of the
tile pattern only describes 4 pixels. In this
case, every 2 bits of the tile byte describes 1 of
the 4 possible colors associated with each of
the 4 pixels to be put down.

If “background” color is omitted, the default
value is CHR$(0). When supplied,
“background’’ specifies the “background tile”
pattern or color byte to skip when checking for
border termination.

7-238

PAINT

Statement

Example 10 SCREEN 1
20 COLOR 0,0,1,0
30 CLS

40 CIRCLE (256,128),130,2
50 PAINT (256,128),1,2
60 LINE (251,123)-STEP{10,10),0,BF

Statement 10 selects Medium Resolution Mode.
Statement 20 selects black for color number 0,
palette O (green, red, yellow), green as graphics
foreground, black as graphics background.
Statement 30 clears the screen with the
background color (in this case black).
Statement 40 draws a red circumference with a
radius of 130 whose center is (256,128).
Statement 50 paints the circle green.
Statement 60 draws a black filled-in box in the
middle of the circle.

7-240

PLAY
Statement

Tn

MF

MB

MN

ML

MS

X variable

Sets the “tempo’’, or number of quarter notes, in one minute.
The n parameter ranges from 32 to 255, with a default value
of 120.

Sets Music Foreground. Music (PLAY statement) and
SOUND are to run in Foreground. Each successive note does
not start until the preceding note has finished. Music
foreground is the default setting.

Sets Music Background. Music (PLAY statement) and
SOUND are to run in Background. The GWBASIC program
continues as music plays in the ‘‘background.” Up to 32
notes (or rests) can be played in the background at a time.

Sets ‘“music normal”’, so that each note will play 7/8 of the
time determined by length (L).

Sets ‘“‘music legato”, so that each note will play the full
period set by length (L).

Sets ‘“‘music staccato’’, so that each note will play 3/4 of the
time set by length (L).

Executes the specified variable string.

7-244

~

PLAY
Statement

Remarks

Example

The ‘“n” parameter may be constant or
variable, where a variable is written as:
“+variable;.”” The semicolon is necessary when
a variable is used in this way, or when the X
command is used, but it is not allowed after
MF, MB, MN, ML, or MS. In all other cases, a
semicolon is optional between commands.

When the X command is used, VARPTRS$
(variable), may be substituted for ‘“‘variable;”’ as
in the example below.

100 PLAY 02 L4 C P1 C P2 C P4’
200 PLAY ‘*XBS;XCS$;XDS;’
300 PLAY ‘*XMS;’

or
300 PLAY “X*' + VARPTRS(MS)

7-245

PMAP
Function

X= PMAP(80,0)

returns the screen x coordinate of the window
x coordinate 80: 0

Y= PMAP(200,1)

returns the screen y coordinate of the window
y coordinate 200: 199

X= PMAP(619,2)

returns the “world” x coordinate that
corresponds to the screen or viewport x
coordinate 619: 199

The PMAP function in the statement:
Y = PMAP(100,3)

returns the “world” y coordinate that

corresponds to the screen or viewport y
coordinate 100: 140

7-249

POINT
Function

Examples

v2+POINT (n)

returns the specified coordinate of the current
point into the single (or double) precision
variable v2.

10 SCREEN 0,0
20 FORK=0TO 3
30 PSET (10,10),K
40 IF POINT(10,10)< >K
THEN PRINT “Broken Basic!’
50 NEXT

10 SCREEN 2
20 IF POINT(L,1)< >0

THEN PRESET (l,I) ELSE PSET (l,1)
30 ‘Invert current state of point{l,l)
40 PSET (I,1),1-POINT(L,1)
50 ‘Another way to invert a point, if the
55 ’system is B/W

10 SCREEN 1
20 LETC=3
30 PSET (10,10),C
40 IF POINT(10,10)=C
THEN PRINT “‘This point is color ‘%;C

7-251

PRINT
Statement

5 REM WITH SEMICOLON AT 20

10 INPUT X

20 PRINT X *"SQUARED IS’ X" 2 “*AND’’;
30 PRINT X “CUBED IS X" 3

40 PRINT ‘BLANK LINE

RUN

?2 9

9 SQGUARED IS 81 AND 9 CUBED IS 729

Ok

5 REM NUMBERS WITH SEMICOLONS
10 FOR X=1TO05
20J=J+5
30 K=K+10
40 ?J;K;
50 NEXT X
RUN
5 10 10 20 15 30 20 40 25 50
Ok

7-257

PRINT USING
Statement

N\

Specifies a number of characters to be printed.
If two backslashes are typed with no spaces,
two characters will be printed; with one space,
three characters will be printed, and so on. If
the string is longer than the field, the extra
characters are ignored.

If the field is longer than the string, the string
will be left-justified in the field and padded
with spaces on the right. For example:

10 AS =*"LOOK*':BS = **OUT*’

30 PRINT USING **!’;AS;BS

40 PRINT USING *\ \'’;AS;BS

50 PRINT USING *\ \;AS;BS; <11
RUN

LO

LOOKOUT

LOOK OuUT!!

Specifies a variable length string field. When
the field is specified with “&’, the string is
output without modification. For example:

10 AS =*'LOOK’:BS = “‘OUT**
20 PRINT USING *¢!'’;AS;
30 PRINT USING “&';BS
RUN

LOUT

7-259

PRINT USING
Statement

When PRINT USING is used to print
numbers, the formatting special characters
may be used to format the numeric field:

Represents each digit position. Digit positions
are always filled. If the number to be printed
has fewer digits than positions specified, the
number will be right-justified (preceded by
spaces) in the field.

A decimal point can be inserted at any
position in the field. If the format string
specifies that a digit is to precede the decimal
point, the digit will always be printed (as 0, if
necessary). Numbers are rounded as
necessary. For example:

PRINT USING ““##.##;.78

0.78

PRINT USING ““###.##7;987.654

987.65

PRINT USING *“##.## ;10.2,5.3,66.789,.234
10.20 5.30 66.79 0.23

In the last example, three spaces were inserted
at the end of the format string to separate the
printed values on the line.

A plus sign at the beginning or end of the
format string will cause the sign of the
number (plus or minus) to be printed before or
after the number.

7-260

~

PRINT USING
Statement

*#$

ARAA

The **$ at the beginning of a format string

combines the effects of the above two symbols.

Leading spaces will be asterisk-filled and a
dollar sign will be printed before the number.
**$ specifies three more digit positions, one of
which is the dollar sign. For example:

PRINT USING “** *S$##.##;2.34
**+52.34

A comma that is to the left of the decimal
point in a formatting string causes a comma
to be printed to the left of every third digit to
the left of the decimal point. A comma that is
at the end of the format string is printed as
part of the string. A comma specifies the digit
position for itself. The comma has no effect if
used with the exponential (**"") format. For
example:

PRINT USING ‘“####,.##;1234.5
1,234.50
PRINT USING “‘####.##,"';1234.5
1234.50,

Four carets (or up-arrows) may be placed after
the digit position characters to specify
exponential format. The four carets allow
space for E+xx or D+xx to be printed. Any
decimal point position may be specified. The
significant digits are left-justified, and the
exponent is adjusted. Unless a leading+or
trailing + or - is specified, one digit position
will be used to the left of the decimal point to
print a space or a minus sign. For example:

7-262

PRINT USING
Statement

%

PRINT USING ‘“##.## """ 12;234.56
2.35E +02

PRINT USING ““.#### """ - 1;888888
.8889E + 06

PRINT USING ¢ +.## """ ;123
+.12E+03

An underscore in the format string causes the
next character to be output as a literal
character. For example:

PRINT USING *__! ##.## _ 1"';12.34
112.34!

The literal character itself may be an
underscore by placing “__" in the format
string.

If the number to be printed is larger than the
specified numeric field, a percent sign is
printed in front of the number. If rounding
causes the number to exceed the field, a
percent sign will be printed in front of the
rounded number. For example:

PRINT USING *##.##7;111.22
%111.22

PRINT USING *“.##';.999
%1.00

If the number of digits specified exceeds 24, an
“Illegal function call” error will result.

7-263

PRINT# and PRINT# USING
Statements

Example

Example

String expressions must be separated by
semicolons in the list. To format the string
expressions correctly on the disk, use explicit
delimiters in the list of expressions.

Let A$=“CAMERA” and B$=93604-1".
The statement:

100 PRINT#1,AS;BS

writes CAMERA93604-1 to the disk. Because
there are no delimiters, this could not be input
as two separate strings. Insert explicit
delimiters into the PRINT# statement as
follows:

200 PRINT#1,AS;",”’;BS
The image written to disk is
CAMERA,93604-1

If the strings themselves contain commas,
semicolons, significant leading blanks,
carriage returns, or line feeds, write them to
disk surrounded by explicit quotation marks,
CHR$(34).

100 AS = ““CAMERA, AUTOMATIC"
200 BS = f‘93604-1*"

300 PRINT#1,AS;BS

Writes the following image to disk:

CAMERA, AUTOMATIC 93604-1

7-265

PRINT# and PRINT# USING

Statements

The statement
400 INPUT#1,AS%,BS

Inputs “CAMERA” to A$ and “AUTOMATIC
93604-1” to B$. To separate these strings
properly on the disk, write double quotation
marks to the disk image using CHR$(34). The
statement:

500 PRINT#1,CHRS(34);AS;CHRS(34);
CHRS(34);BS;CHRS(34)

writes:

“CAMERA, AUTOMATIC’*** 93604-1°*
And the statement:

600 INPUT#1,AS,BS

Inputs “CAMERA, AUTOMATIC” to A$ and
“ 93604-1” to BS.

The PRINT# statement may also be used with
the USING option to control the format of the
disk file:

700 PRINT#1,USING**S$S###.##,*;J;K;L

See Chapter 4 (Disk File Handling) and
“WRITE#’ in this chapter.

7-266

PUT (Files)
Statement

Example

10 OPEN *‘R*,1,“A:RAND",48
20 FIELD 1,20 AS R1S$,20 AS R2S,8 AS R3S
30 FORL=1TO02

40 INPUT ‘‘name’;NS$S
50 INPUT “address’’;M$
60 INPUT ‘‘phone’;P#
70 LSET R1$=NS

80 LSET R25=M$S

90 LSET R3S = MKSS(P#)
100 PUT #1,L

110 NEXTL

120 CLOSE #1

130 END

RUN

name? Super man
address? usa

phone? 11234621

name? robin hood
address? England

phone? 23462101

Ok

Statement 10 opens the random file RAND,
with a record length of 48 on the diskette drive
in A. The file number is 1. Statement 20
divides the buffer into fields.

Statement 100 writes a record to file RAND,
with the record number being set by the
control variable of the FOR/NEXT loop.

7-270

PUT (Graphics)
Statement

The Action Verb Parameter

The “actionverb’ specifies the interaction
between the stored image and the one already
on the screen.

PSET transfers the data point by point onto
the screen. Each point has the exact color
taken from the screen with a GET.

PRESET is the same as PSET except that a
negative image is produced.

AND transfers the data over an existing

image on the screen. The resulting image is

the product of the logical AND expression.

Points that had the same color in both the 7~
existing image and the PUT image will

remain the same color, in original, but should be

points that do not have the same color in both

images will be changed.

OR superimposes the image onto an existing
image.

XOR causes the points on the screen to be
INVERTED where a point exists in the array
image. This behavior is exactly like that of the
cursor. When an image is PUT against a
complex background TWICE, the background
is restored unchanged. This allows you to
move an object around the screen without
erasing the background.

7-272

PUT (Graphics)
Statement

Possible
Errors

Movement done this way will leave the
background unchanged. Minimize the time
between steps 4 and 1, and make sure that
there is enough time delay between 1 and 3 to
eliminate flickering images. If more than one
object is being animated, every object should
be processed at once, one step at a time.

PSET can perform faster animations, but will
not preserve the background. This method
must use an image large or larger than the
maximum distance the object will move. Thus,
when an object is moved, this border will
effectively erase any points left by the
previous PUT. This may be faster than the
method using XOR described above, since only
one PUT is required to move an object
(although you must PUT a larger image).

An “Illegal function call” error occurs if
the image is too large to fit on the screen.

7-274

RANDOMIZE
Statement

Example

10 RANDOMIZE

20FORI=1TO 3

30 PRINT RND;

40 NEXT |

Ok

RUN

Random Number Seed(-32768t032767])?3
.2226007 .3343962 .7341223

Ok

RUN

Random Number Seed (-32768 to 32767)?4
.9468615 .5775203 .6716166

Ok

RUN

Random Number Seed(-32768 to 32767)?3
.2226007 .3343962 .7341223

7-276

~

REM
Statement

Example

120 REM Calculate Average Velocity
130 FOR 1=1TO 20

140 SUM=SUM + V(i)

150 NEXT |

160 AV =SUM/20

or

120 FOR 1=1 TO 20 ‘Calculate

125 ‘Average Velocity
130 SUM =SUM + V(I)
140 NEXT |

150 AV =SUM/20

or

120 ‘Calculate Average Velocity
130 FOR 1=1TO 20

140 SUM =SUM + V(I)

150 NEXT |

160 AV =SUmM/20

7-280

RENUM
Command

Examples

RENUM

Renumbers the entire program. The first new
line number will be 10. Lines will be numbered
in increments of 10.

RENUM 300,,50

Renumbers the entire program. The first new
line number will be 300. Lines will be
numbered in increments of 50.

RENUM 1000,900,20

Renumbers the lines from 900 up, so they start
with line number 1000 and are numbered in
increments of 20.

7-282

RUN
Command

Remarks

If “linenum” is specified, execution begins on 2
that line. Otherwise, execution begins at the
lowest line number. GWBASIC always
returns to command level after a RUN
command. The name used when the file was
SAVEd is the name specified by “filename” or
“pathname’. (MS-DOS will append a default
.BAS filename extension if one was not
supplied in the SAVE command.) RUN
{filename} closes all open files and deletes the
current contents of memory before loading the
designated program. However, with the “R”
option, all data files remain open.

RUN “B:NEWFILE”’,R RUN AS
RUN 150 7~

RUN *‘C:\R001\R0O02*’

7-292

SCREEN

Function

Remarks In graphics mode the SCREEN function
returns zero if the specified location contains
graphics information.

Examples 100 X=SCREEN (10,10)

If the character at 10,10 is A, then x will
contain 65.

110 X=SCREEN (1,1,1)
Returns the color number of the character in
the upper left hand corner of the screen.

7-296

SCREEN
Statement

Mode and Burst Parameters

In the following table the first two columns
are the “‘mode” and ‘“‘burst’” parameters of a
SCREEN statement.

Mode Burst
0 0
0 1
1 0
1 1
2 b4
100 X

Resolution

80 c. x25r. - BBW

Text Mode

80 ¢. x 25 r. - Color

Text Mode

320 hor.pixels x 200 vert.
pixels-

Color Medium Resolution
Graphics

(40 c. x 25 1.)

320 hor.pixels x 200 vert.
pixels-

B/W Medium Resolution
Graphics

(40 c. x 25 1.)

640 hor.pixels x 200 vert.
pixels-

B/W High Resolution
Graphics

(80 c. x 25 r.)

640 hor.pixels x 400 vert.
pixels-

B/W Super Resolution
Graphics

(80 c. x25r.)

7-298

SCREEN
Statement

Default Values

If you do not enter a SCREEN statement, the
system assumes the following default values:

mode = 0 (Text Mode)
burst = 0 (B/W)

apage = 0 (active page 0)
vpage = 0 (virtual page 0)

It would be the same as if you entered:
SCREEN 0,0,0,0
Apage and Vpage Parameters

If Text Mode is selected, you can specify two
more parameters ‘‘apage’” and ‘‘vpage” to
select the active and visual page. There are
eight display pages (numbered 0 to 7) in 40-
column Text Mode, and four display pages
(numbered 0 to 3) in 80-column Text Mode.
Only one display page is available in any of
the three graphics modes.

7-299

SCREEN
Statement

Screen Width

At initialization the width is 80 columns, thus
you should use the WIDTH statement if you
want to select a 40-column screen. If you select
the medium resolution mode by the SCREEN
statement, this also causes the number of
columns to be 40 (without using the WIDTH
statement).

While in Text Mode, the WIDTH statement
may be used to select between the 40-column
mode and the 80-column mode. Likewise, the
WIDTH statement may be used to select
between modes 1 and 2 (medium or high-
resolution mode). See the WIDTH statement in
this chapter.

If all parameters are valid the new screen
mode is stored, the screen is erased, the
foreground and the background colors are set
to their default values. The SCREEN
statement must precede any I/O statement to
the screen, but you can use more than one
SCREEN statement to define different screen
attributes for different sections of your
program.

If all parameters are identical to the preceding
ones nothing is changed or erased.

If you omit a parameter, it keeps the old value
(except that the visual page defaults to the
active page.)

7-300

SOUND
Statement

Notes and Frequencies

The following table correlates notes with their
frequencies for two octaves.

Note Frequency Note Frequency
C 130.810 C* 523.250
D 146.830 D 587.330
E 164.810 E 659.260
F 174.610 F 698.460
G 196.000 G 783.990
A 220.000 A 880.000
B 246.940 B 97.7170
C 261.630 C 1046.500
D 293.660 D 1174.700
E 329.630 E 1318.500
F 349.230 F 1396.900
G 392.000 G 1568.000
A 440.000 A 1760.000
B 493.880 B 1975.500
*middle C

Doubling a frequency approximates a note one
octave higher. Halving it approximates a note
one octave lower.

7-306

SOUND
Statement

Tempos and Beats/Minute

This table shows typical tempos in terms of

clock ticks.

Tempo

very slow

slow
medium

fast

very fast

Larghissimo
Largo
Larghetto
Grave
Lento
Adagio
Adagietto
Andante
Andantino
Moderato
Allegretto
Allegro
Vivace
Veloce
Presto
Prestissimo

Beats/
Minute

40-60
60-66
66-76
76-108
108-120

120-168

168-208

Ticks/
Beat

28.13-18.75
18.75-17.05
17.05-14.8
14.8-10.42
10.42-9.38

9.38-6.7

6.7-5.41

7-306

STRS$
Function

Example

Example

5 REM ARITHMETIC FOR KIDS
10 INPUT “TYPE A NUMBER"’;N
20 ON LEN(STRS(N]) GOSUB
30,100,200,300,400,500

The entered number N is converted to a string
by the STR$ function. The program then
branches according to the number of digits in
the number entered.

10A!=1.3
20 A#=VAL(STRS(A!])
30 PRINT A#
RUN
1.3
Ok

The conversion in line 20 causes the value in
A! to be stored accurately in the double-
precision variable A#.

7-316

USR

Function
Example 100 DEF SEG = &H8000
110 DEF USRO=0
120 X=5
130 Y =USRO(X)
140 PRINT Y

Calls a machine language subroutine at
8000H. It passes 5 as an argument and returns
a value in Y.

7-328

VARPTR
Function

Syntax 1

Returns the address of the first byte of data
identified with ‘‘variable”.

A value must be assigned to ‘“variable” prior
to execution of VARPTR. Otherwise an
“Illegal function call”’ error results. Any type
of variable may be used (numeric, string).

VARPTR is usually used to obtain the address
of a variable or array so that it may be passed
to a machine language subroutine. A function
call of the form VARPTR(A(0)) is usually
specified when passing an array, so that the
lowest-addressed element of the array is
returned.

All simple variables should be assigned before
calling VARPTR for an array, because the
addresses of the arrays change whenever a
new simple variable is assigned.

7-331

VARPTR

Function
Syntax 2 Returns the starting address of the file control
block for the specified file.
Example 10 X=USR{VARPTR(Y])
110 OPEN **A:FILEA.DAT” AS #2
120 GET #2 ‘get address of FCB
130 FCBADR = VARPTR([#2)

7-332

VARPTRS$
Function

Because array addresses change whenever a
new simple variable is assigned, always assign
all simple variables before calling VARPTR$
for an array element.

The returned value is the same as:
CHR$(type)+MKI$(VARPTR(variable))

You can use VARPTRS$ to indicate a variable
name in the command string for DRAW. For
example:

DRAW 0=1;"

or

DRAW 0=+ VARPTRS(I)

7-334

VIEW
Statement

Remarks

Initially, RUN or VIEW with no arguments
define the entire screen as the viewport.

For the form:

VIEW (x1,y1) - (x2,y2)

all points plotted are relative to the viewport.
That is, “x1”’ and “‘y1” are added to the x
and y coordinates before putting down the
point on the screen.

If:

VIEW (10,10) - (200,100)

were executed, then the point set down by the

statement PSET(0,0),3 would actually be at
the physical screen location 10,10.

7-336

VIEW
Statement

For the form:
VIEW SCREEN (x1,y1)-(x2,y2)

all coordinates are absolute and may be inside
or outside of the screen limits, but only those
within the VIEW limits will be plotted.

If:
VIEW SCREEN (10,10)-(200,100)

were executed, then the point set down by the
statement PSET(0,0),3 would actually not
appear because 0,0 is outside of the viewport.
PSET(10,10),3 is within the viewport, and
places the point in the upper-left hand corner
of the viewport.

VIEW with no arguments defines the entire
viewing surface as the viewport. This is
equivalent to VIEW (0,0)-(319,199) in medium
resolution, VIEW (0,0)-(639,199) in high
resolution, and VIEW (0,0)-(639,399) in super
resolution.

Multiple viewports can be defined, but only
one viewport (called the “‘current viewport’)
may be active at any one time. Each time a
VIEW statement is executed a viewport is
defined and this is the current viewport. Thus,
to change the current viewport, you have to
execute another VIEW statement.

7-337

VIEW
Statement

A number of VIEW statements may be
executed. If the newly described viewport is not
wholly within the previous viewport, the screen
can be re-initialized with the VIEW statement
with n arguments. Then the new viewport may
be stated. If the new viewport is entirely within
the previous one, as the first of the following
examples, the intermediate VIEW statement is
not necessary.

RUN and SCREEN will disable the viewports.

VIEW and WINDOW statements allow you to

do scaling by changing the size of your view-

port. A large viewport will make your objects

large and a small viewport will make your ~
objects small. (Refer to “WINDOW Statement” ‘
in this chapter.)

7-338

VIEW
Statement

Example 1

This example opens three viewports, each
smaller than the previous one. In each case, a
line that is defined to go beyond the borders is
programmed, but appears only within the
viewport border.

320
330
360
380
400
420
440
460
480
500
520

CLS

VIEW: REM ** Make the viewport the entire
screen.

VIEW (10,10) - (300,180),,1

LINE (0,0) - (310,190),1

LOCATE 1,11: PRINT “‘A big viewport?’*
VIEW SCREEN (50,50}({250,150),,1
CLS:REM* * Note, CLS clears only viewport
LINE (300,0){0,199),1

LOCATE 9,9: PRINT ‘A medium viewport®’
VIEW SCREEN (80,80)-(200,125),,1
CLS

CIRCLE (150,100),20,1

LOCATE 11,9: PRINT ‘A small viewport’’

This example demonstrates scaling with
VIEW and WINDOW.

7-339

VIEW
Statement

Example 2

Example 3

920
100

KEY OFF:CLS:SCREEN 1,0:COLOR 0, O
WINDOW SCREEN(0,0)-(320,200)
GOSUB 70:FOR K=1 TO 1000:NEXT :CLS
VIEW (1,1}{160,90),,2:GOSUB 70

‘Make it small

GOTO 100

‘Create the picture

CIRCLE {160,100),60,1,,,1

RETURN

END

The following example defines two viewports:

10
20
30
40
50
60
70
80
500
510
520
1000
1010
1020

SCREEN 1:VIEW:CLS:KEY OFF
VIEW (1,1){151,91),,1

VIEW [165,1}{315,91),,2
LOCATE 2,4:PRINT “*Viewport 1’
LOCATE 2,25:PRINT *“Viewport 2°
VIEW (1,1}{151,91):GOSUB 500
VIEW (165,1)-(315,91):GOSUB 1000
END

‘Draw a circle in first viewport
CIRCLE (65,50),30,2

RETURN

‘Draw a line in second viewport
LINE (45,50)-{90-75),1,8

RETURN

7-340

WIDTH
Statement

The following summarizes all possible cases.

0 40 select a 40-column screen
(text)
80 select an 80-column screen
80 place the system in high-
resolution (mode 2)
1 40 create a test window of width
(medium-res) 40
80 forces the screen into high
resolution
2 40 create a text window of width
(high-res) 40
80 create a text window of width
80
100 40 create a text window of width
(super-res) 40
80 create a text window of width

80

7-347

WIDTH
Statement

If “size” is 255, the line width is “‘infinite’’;
that is, GWBASIC never inserts a carriage
return. However, the position of the cursor or
the print head, as given by the POS or LPOS
function, returns to zero after position 255.
WIDTH 255 is the default for communications
files.

Changing the width for a communications file
does not alter the receive buffer, it just tells
GWBASIC to send a carriage return after
every ‘‘size’”’ character.

Possible Errors
If “size” is outside the above specified ranges,

an ‘““Illegal function call”’ error is returned. The
previous value is retained.

7-349

WINDOW

Statement

WINDOW defines the “window”’
transformation from x1,y1 (upper left x,y
coordinates) to x2,y2 (lower right x,y
coordinates). The x and y coordinates may be
any single precision floating point number
and define the ‘“World Coordinate Space’’ that
graphics will map into the physical coordinate
space, as defined by the VIEW statement.

Initially, RUN, or WINDOW with no
arguments, disables “Window”
transformation.

WINDOW inverts the “y’’ coordinate on the
subsequent graphics statement. This allows
the screen to be viewed in true cartesian
coordinates. The WINDOW SCREEN variant
does not invert the ‘“y”’ coordinate.

7-352

WRITE#

Statement
~
Example 10 AS=°‘"CAMERA” : B$='93604-1°
20 WRITE#1,AS,BS$
Statement 20 writes the following image to
disk:
f**CAMERA’,*’93604-1"*
A subsequent INPUT# statement, such as
30 INPUT#1,AS,BS
would input “CAMERA” to A$ and ‘“93604-1”
to B$.
N
~

7-361

D
{

)

DEB Capabilities

INTRODUCTION

The Display Enhancement Board option (DEB)
adds improved color and graphics functionality to
your AT&T PC 6300. When you use the DEB with
the PC 6300 color monitor, you can display graph-
ics in up to 16 colors simultaneously or display
text-on-graphics or graphics-on-graphics overlays.
When you use the DEB with the PC 6300 mono-
chrome monitor, you have the same capabilities as
you do with the color monitor, except that colors
are displayed as “shades of green.”

The DEB is compatible with existing software,
so that all the programs you have already can be
used now as if the DEB were not installed. Of
course, these programs do not have access to any
of the new capabilities.

The purpose of this supplement to the GWBASIC
Programmer’s Guide is to give you the information
you need to take complete advantage of the DEB’s
capabilities. It assumes that you are familiar with
video programming in GWBASIC. If you are not,
read the chapter on Graphics, and the portions of
the Command Reference that discuss graphics
statements, in the GWBASIC Programmer’s
Guide.

Before you begin writing programs for the DEB,
follow the procedures in the DEB Installation
Manual for installing the DEB hardware and
device driver software.

1-1

DEB Capabilities

The DEB is an optional hardware component for
the AT&T PC 6300 that works in conjunction with
the PC 6300’s built-in Video Display Controller
(VDC) to provide improved color and graphics
functionality.

The built-in VDC contains circuitry and memory
that supports either 4 color medium resolution
(320 x 200 pixels) graphics, 1 color high resolu-
tion (640 x 200 pixels) graphics, or 1 color super
resolution (640 x 400 pixels) graphics.

The DEB contains additional circuitry and mem-
ory that can be combined with the capabilities of
the built-in VDC to produce up to 16 colors in
either high or super resolution. You can also pro-
gram the VDC and DEB separately, treating them
as two separate images which are combined on one
screen to produce text-on-graphics or graphics-on-
graphics overlays. These overlay modes let you use
up to 8 colors.

1-2

DEB Capabilities

16-COLOR GRAPHICS

This feature lets you display 16 colors in either
high resolution (640 x 200) or super resolution
(640 x 400). Not only can you use the standard
16 colors, you can also combine colors to form new
colors and cause pixels to blink from one color

to another.

DEB Capabilities

LOOK-UP TABLE
(LUT)

The LUT resides in RAM on the DEB board.

The LUT contains 256 values that determine the
colors, blinking, and dithering that appear on the
screen. Whether you need to learn about the use
and layout of the LUT depends on the application
you are writing.

If you use the standard palettes, you need not be
concerned with the LUT. GWBASIC automatically
programs the LUT to correspond to the way you set
up the palettes.

If you program a custom LUT, you greatly increase
the color combinations and blinking effects avail-
able to you.

1-5

DEB Capabilities

You can use either of two text-on-graphics modes.
In one, you can program the DEB to display high
resolution graphics in up to 8 colors; in the other,
you can program the DEB to display super resolu-
tion graphics in up to 8 colors. In both, the VDC
displays 25 lines of 80 characters each.

You can select either of two graphics-on-graphics
modes. One mode uses the VDC to display high
resolution graphics in one color while the DEB dis-
plays high resolution graphics in up to 8 colors.
The other mode uses the VDC for super high reso-
lution graphics in one color and the DEB for super
high resolution graphics in 8 colors.

The overlay modes offer 5 palettes. Each of the
first 4 palettes has 8 positions. These four palettes
have default colors that you can change to suit
your needs. You can choose 8 color combinations
from any of the 16 standard colors, or blink
between 2 of the standard colors. The dithering
combinations of the 16-color graphics modes are
not available. You can also use the fifth palette to
custom program the LUT.

1-7

DEB Statements

SCREEN
STATEMENT

SCREEN The SCREEN statement establishes the mode for
the display and lets you select the active display
page. SCREEN also selects and initializes Palette
0 as the active palette when you enter a new mode.

Syntax SCREEN
[modell,dummyl][,apagell,dummy2]
mode is an integer expression which evaluates to one of
the following:
101 16-color graphics with a resolution of

102

103

104

105

106

640 x 200.

16-color graphics with a resolution of
640 x 400.

an overlay mode. The DEB image is 8-
color graphics with 640 x 200 resolu-
tion. The VDC image is 80 character
by 25 line text.

an overlay mode. The DEB image is 8-
color graphics with 640 x 400 resolu-
tion. The VDC image is 80 character
by 25 line text.

an overlay mode. The DEB image is

8- color graphics with 640 x 200 res-
olution. The VDC image is 1-color
graphics with 640 x 200 resolution.
an overlay mode. The DEB image is
8-color graphics with 640 x 400 res-
olution. The VDC image is 1-color
graphics with 640 x 400 resolution.

dummyl is ignored, but is allowed for compatibility with
non-DEB syntax.

3-2

DEB Statements

apage

dummy?2

Examples

selects the active page, i.e., the page to be written
to by output statements to the screen. Apage is an
integer expression that results in a value of 0 or
128. Page 0 is the VDC page and page 128 is the
DEB page.

In the two 16-color graphics modes (101 and 102),
the active page is always zero.

is ignored, but is allowed for compatibility.

SCREEN 105,128 ’Selects a graphics-on-graph-
ics overlay mode, with all sub-
sequent output sent to the
DEB page.

SCREEN ,,0 Do not change modes,
but send subsequent
output to the VDC page.

DEB Statements

COLOR STATEMENT

COLOR

Syntax 1
(Modes 101,102)

Syntax 2
(Modes 103,104)
Syntax 3
(Modes 105,106)

DEBfg
(foreground)

The COLOR statement sets the background and
foreground colors and selects the active palette.
The syntax for the COLOR statement varies
according to the mode you select with the
SCREEN statement.

COLOR [DEBfgI[,DEBbg]l[,palette]

COLOR [DEBfgI[,DEBbgI[,VDCfg]
[,VDC bgl[,palette]

COLOR [DEBfgl[,DEBbg]l[,VDCfgl[,palette]

is an integer expression in the range 1-7 for over-
lay modes and 1-15 for 16-color graphics modes.
DEBfg identifies the position in the active palette
which controls the color combination or effect of
subsequent output to the screen. The color combi-
nation or effect in the DEBfg position will be used
for writing text to the screen, and also for the out-
put of graphics statements unless some other posi-
tion is specified in the graphics statement itself.

When you enter a DEB mode, DEBfg is set to a
default of 7. If you do not enter a value for DEBfg,
it does not change from the value set by the last
COLOR statement.

3-4

DEB Statements

DEBbg is an integer expression in the range 0-255 which

(background) defines the color combination or effect to be used
for palette position 0. This is the background, or
color displayed when the value of the DEB image
for a particular pixel is 0. (See tables of combina-
tions in next section on PALETTE statement.)
When you enter a DEB mode, DEBbg defaults
to 0 (black).

VDCfg is an integer expression in the range of 0-15 for
graphics and 0-31 for text that specifies the color
for the VDC foreground. When you enter an over-
lay mode, VDCfg defaults to 7 (white).

VDCbg is an integer expression in the range 0-15 that
specifies the VDC background when displaying
characters in text mode. VDCbg defaults to 0
(black) when you enter an overlay mode.

palette is an integer expression that sets the active pal-
ette. Valid ranges are 0-3 for the standard palettes
and 4 for the LUT palette. If you omit palette from
the COLOR statement, the active palette does not
change.

Remarks The values you specify in DEB COLOR statements
fall into three categories:

e a color selection for the VDC from the same ranges
as you use in the standard text mode. These selec-
tions produce the same effect on the screen as they
do in the standard (non-DEB) text mode.

3-5

DEB Statements

PALETTE AND

PALETTE USING STATEMENTS

PALETTE

Syntax 1
Syntax 2
Syntax 3

Remarks

position

value

Use this statement to set values in palettes and
reset palettes to their default values.

PALETTE
PALETTE [position][,value]
PALETTE USING array (array index)

The PALETTE and PALETTE USING statements
work on the active graphics page and on the active
palette.

Syntax 1 sets the active palette to its default val-
ues. (See the following tables.)

Syntax 2 lets you change the values in the active
palette, one palette position at a time.

is an integer expression which identifies the posi-
tion to be changed. If the active palette is 0-3, then
the valid range for position is 0-15 for 16-color
graphics modes and 0-7 for overlay modes. For Pal-
ette 4, the valid range for position is 0-255.

is an integer expression which identifies the color
combination or effect to be programmed into the
selected position in the active palette. For Palettes
0-3, valid values range from 0-255. For Palette 4,
valid values range from 0-15 and values greater
than 15 are treated modulo 16.

Syntax 3 lets you set all the values in the active
palette with one statement.

3-7

DEB Statements

array

array
index

is an integer array of at least 256 elements.

is an integer expression which defines the element
within the specified array at which palette pro-
gramming begins. At least 256 elements must
follow this element.

Standard Palettes (0-3)

The first 8 or 16 elements of the array are loaded
into the active palette. The entire active palette is
reprogrammed based on the values in the array.
The array values range from —1 to 255. Values
greater than 255 are treated modulo 256. A value
of —1 specifies that the value in the corresponding
palette position not be changed. The values from

0 to 255 come from the tables at the end of the
chapter.

NOTE: Dimension the array to have 256 elements
even though only 8 or 16 are used for the
standard palettes.

The LUT Palette (Palette 4)

All 256 elements are used to program the LUT
directly. Valid values are in the range —1 to 15.
Values greater than 15 are treated modulo 16. A
value of — 1 specifies that the value in the corre-
sponding position in the LUT not be changed, and
values 0-15 represent the standard 16 colors.

3-8

DEB Statements

DEFAULT
PALETTES

The defaults for each of the four palettes are:

Palette Number 0
Position Color
0 0=Dblack
1 2=green
2 4=red
3 6 =brown
4 1=Dblue
5 3=cyan
6 5=magenta
7 7 = white
8 8=gray
9 9=1light blue
10 10=light green
11 11=1ight cyan
12 12=light red
13 13 =light magenta
14 14 =yellow
15 15 =high-intensity white

3-10

DEB Statements

Palette Number 1

Position Color
0 0=Dblack
1 3=cyan
2 5=magenta
3 7=white
4 1=Dblue
5 2=green
6 4=red
7 6 =brown
8 8 =gray
9 9 =light blue
10 10=light green
11 11=1light cyan
12 12=light red
13 13 =light magenta
14 14 =yellow
15 15 =high-intensity white

DEB Statements

Palettes 2 and 3 are the same, and they contain the
standard colors in numerical order.

Palette Number 2 and Palette Number 3

Position

OOk WNKHFO

Color

0=Dblack

1=Dblue

2=green

3=cyan

4=red

5=magenta

6 =brown

7 =white

8 =gray

9=Ilight blue
10=1ight green
11=light cyan
12=light red
13 =light magenta
14 =yellow
15 =high-intensity white

3-12

-

DEB Statements

The following example draws 3 interlocking circles
in 16-color graphics mode and fills each separate
section with various colors.

10
15
20
25
30
35
40
50
60
70
75
80
85
90
95
100
105
110
115
120
125
130
135
140
145
150
155
157
160
170
180
185
180
200

SCREEN 102

REM

CLS:KEY OFF

REM

COLOR,1

REM
CIRCLE(320,200),700,15
CIRCLE(270,150),700,15
CIRCLE (370,150),100,15
PAINT (320,200),13,15
REM

PAINT (269,150),12,15
REM

PAINT (371,150),11,15
REM

PAINT (320,250),10,15

'set 16 color graphics
mode

‘clear screen and turn
functions keys off

'use palette 1

‘draw circle 1
'draw circle 2
’draw circle 3
*fill with palette
position 13
*fill with palette
position 12
*fill with palette
position 11
*fill with palette

REM position 10
PAINT (320,100),9,15 fill with palette
REM position 9

PAINT (220,150),8,15 'fill with palette
REM position 8

PAINT (420,150),715 *fill with palette
REM position 7

FORI =7TO13 ’loop thru the used
REM palette positions
PALETTE 1,135+ RND*120 ‘’use arandom

REM dithered color for
REM palette position
FORA=1TO 100:NEXT A ‘wait awhile

NEXTI

IF LEN(INKEYS) = 0 THEN GOTO 140

REM 'check for keypress
SCREEN 0,0,0 'return to normal
END

DEB Statements

The following program uses a tiling pattern to fill

in a circle.
30 SCREEN 102 ‘set 16 color graphics
40 CLS ‘clear screen
50 KEY OFF 'turn function keys off

60 CIRCLE(320,200), 100,1 ‘draw acircle

70 REM do the tiling to fill the circle

80 PAINT(320,200), CHRS(&HCC) + CHRS
(&H3C) + CHRS(&HC) + CHRS(&H3),1

90 IF(LEN (INKEYS) =0

THEN 90 ‘check for keypress
100 SCREENO0,0,0 ‘return to normal
110 END

This program draws a small circle and cycles
through all the available color combinations for

the standard palette.
30 SCREEN 101 '16 color 640 x 200
35 REM graphics
40 CLS ‘clear screen
50 CIRCLE (320,100),900,1 ’draw a circle
60 PAINT (320,700),11 ’fill the circle with
65 REM palette position 1
70 FORJ=0TO255 ‘'use all color
75 REM combinations
80 PALETTE1,J ‘change the palette
85 REM position color

80 FORA=1TO S00:NEXT A’wait a bit
100 IF(LEN (INKEYS)<>0

THEN 120 ‘check for
105 REM keypress
110 NEXTJ
120 SCREENO0,0,0 ‘return to normal
130 END

3-18

DEB Statements

This program shows 3 ways in which a box can be
drawn with palette position 2 and filled with pal-

ette position 14.
40 SCREEN 102 ’16 color graphics
50 CLS:KEY OFF ‘clear screen
60 DRAW “c2r50u50150
d50br2bu2p14,2” ‘draw a box
70 REM and fill it in
75 REM
80 LINE (270,100)-
(320,150),2,B 'draw a box
80 LINE (271,701)-
(321,151),14,BF fillitin
100 REM
110 LINE (220,150)-
(270,200),2,B ‘draw a box
120 PAINT (221,151),14,2 fillit in

130
140
150

IF LEN(INKEYS) = 0 THEN 130
SCREEN0,0,0
END

3-19

DEB Statements

N
The following example draws a wheel with the
number of spokes you specify, using random colors.
Then it uses the PALETTE statement to cycle
through the standard colors.
10 SCREEN 102:CLS:
KEY OFF 'set 16 color
15 REM graphics
20 INPUT “Number of spokes on wheel - ’;N
30 ANGLE = 360/N ‘calculate # of angles
40 RADIANS = ANGLE /57.29578
50 CLS ‘clear screen
60 FORX=1TON *do the real work
70 FORY=XTON
80 SX = SIN(X * RADIANS) * 195 + 320
90 SY = SIN(Y * RADIANS) * 195 + 320
100 CX = COS(X * RADIANS) * 150 + 200
110 CY = COS(Y * RADIANS) * 150 + 200
120 LINE (SY,CY)- (SX,CX),
INT(RND*(15) + 1) ‘draw line with Vs
125 REM random color
130 NEXTYX
140 FORI = 1TO 1000
150 FORJ=1TO 15
160 FORK=1TO 15
170 PALETTEK,J 'change palette
180 IF (LENUNKEYS)) <>0
THEN 220 ‘check for
185 REM keypress
180 NEXTK
200 NEXTJ
210 NEXTI ,
220 SCREEN0,0,0 ‘return to normal
230 END
™

3-20

DEB Statements

This program demonstrates overlay mode by draw-
ing a box on the DEB screen and a circle on the
VDC screen. It then cycles through the blinking
color combinations on the DEB and the standard

colors on the VDC.
30 SCREEN 106 '8 color graphics on
35 REM graphics overlay
40 CLS:KEY OFF ‘clear screen
50 CIRCLE (320,200),100,1 ‘draw acircle
55 REM on the VDC screen
60 PAINT (320,200),
CHRS(1) + CHRS(11 *fill the circle with
65 REM palette position 1
70 LOCATE 23,2;
75 PRINT ‘““The circle is on the VDC screen’’;
80 SCREEN,128 'set the active page
85 REM to the DEB screen
90 LOCATE 24,2;
95 PRINT “The box is on the DEB screen’’;
100 LINE (250,50)-
(390,350), 5, BF 'draws a box on
105 REM the DEB screen
110 FORJ=0TO 135 'use all color
115 REM combinations
120 SCREEN ,,O:PALETTE
0,J-1 MOD 15 'change the palette
125 REM position color on VDC
130 SCREEN ,128:PALETTE
5,J ‘change the palette
135 REM position color on DEB
140 FOR A=1TO 500:NEXT A 'wait a hit
150 IF (LEN(INKEYS) <>0
THEN 170 ‘check for
155 REM keypress
160 NEXTJ
170 SCREEN 0,0,0 ‘return to normal
180 END

3-21

DEB Statements

The following program takes two color numbers
as input and finds their position in the dither and
blinking tables and makes colored boxes in each

of the color effects.
40 SCREEN 101 ’'16 Color 640 x 200
45 REM graphics mode
50 CLS:KEY OFF ‘clear screen
60 REM Input the two colors and do range checking

70
80
20
100
110

120
125
130
140

150
155
160
170
180
190
200
210
220
230
240
245
250
260
270
280
290
295

LOCATE 2,2:INPUT “‘Enter Color 1 (0-15) " ,C1

IF C1>150RC1 <0THEN GOTO 70

LOCATE 3,2:INPUT “Enter Color 2 (0-15) " ,C2

IF C2>150R C2 < 0 THEN GOTO 90

IF C1=C2 THEN INPUT “Colors must be different
hit <CR> ",A$:CLS:GOTO 70

REM Set one color to high and one to low to

REM determine the pasition in the respective

REM tables

IF C1 < C2THEN LOW = C1T:HIGH = Cc2

ELSE LOW = C2:HIGH = C1

REM Blinking is the sum of 16-1 as | ranges

REM from O to the lower of the two colors

REM then adding the higher of the two colors

ROWMIN=0

FORI=0TOLOW

ROWMIN =ROWMIN + (16-1)

NEXTI

BLINKCOL =ROWMIN + (HIGH-LOW-1)

LOCATE 221

PRINT “Blinking Number is "’;BLINKCOL;

REM Dithering is 136 plus the sumof |l + 1

REM as | ranges from 1 to the higher of the

REM two colors plus the lower color.

ROWMIN=0

FORI =1TO HIGH

ROWMIN =ROWMIN + (1-1)

NEXTI

REM example continued on next page

3-22

DEB Statements

300
310
320
330
335
340
345
350
360
370
375
380
380
400

DITHERCOL = ROWMIN + 136 + LOW
LOCATE 22,42

PRINT “Dithered Color Number is ’;DITHERCOL
REM Set palette position 1 equal to the
REM result of the blinking color

REM and palette position 2 equal to the
REM result of the dithering color
PALETTE 1,BLINKCOL

PALETTE 2,DITHERCOL

REM draw a box with the blinking and
REM dithered color effects.

LINE (100,50)-(210,150),1,BF

LINE (420,50)-(530,150),2,BF

GOTO 70

3-23

DEB Statements

The following program shows a box containing a
circle and how the GET statement and the PUT
statement work with the DEB. The GET array
takes four times as much storage as it does in non-

DEB graphics.
40 DIM PIC%(3000) 'GET array
50 KEY OFF ‘turn off function keys
60 SCREEN 102 'set 16 color graphics
70 FORX=1TO 15
80 CLS ‘clear screen
90 CIRCLE (100,100),50,1 ‘draw circle
100 LINE (49,50)-(151,150), 15-X,B
105 REM draw a box around the circle
110 PAINT (100,100),X,1 *fill the circle
120 ‘GET (49,50)-(151,150),
PICY% 'get the graphics
125 REM image
130 FORJ = 1TO 200 STEP 50
140 FORI =0TO 50 STEP 10
150 PUT (RND#*537 + 1,RND*297 + 1), PIC%,PSET
155 REM 'put it randomly on the
157 REM screen
160 IF LEN(INKEYS) ()0
THEN 210 'see if key
165 REM pressed
170 NEXTI
180 NEXTJ
190 NEXT X
200 GOTO 70
210 SCREEN0,0,0 ‘return to normal
220 END

3-24

DEB Statements

The following program shows the use of a variety
of DEB features. It includes a setup procedure to
help you adjust your monitor for best viewing of

DEB effects.

1100 REM Display Enhancement Board

1200 REM Monitor Setup Program

1300 REM

1400 SCREEN0,0,0

1500 KEY OFF:CLS

1600 REM

1700 REM The following is a way to easily center

1800 REM the title text

1800 AS$="“AT&T PC-6300"

1910 LOCATE 1,(80-LEN(AS))/2;

1920 PRINTAS 'Center text

2000 AS=“DISPLAY ENHANCEMENT BOARD"”

2010 LOCATE 2,(80-LEN(AS))/2:PRINT AS

2100 AS$=‘“MONITOR SETUP PROGRAM”

2110 LOCATE 3,(80-LEN(AS))/2:PRINT AS

2200 LOCATE 10,1:INPUT “Enter Monitor type

(‘MONO’ or ‘COLOR")’;MS

2300 IFLEFTS(MS1)="M" OR LEFTS(MS,1)=“m"
THEN GOTO 2900

2400 IF LEFTS(MS,1)="“C” OR LEFT$S(M$,1)="c”
THEN GOTO 5000

2500 PRINT

2510 PRINT CHRS$(7);“Can not use “‘;M$;’"’ as a monitor
tvpe“

2600 FORA=1TO 3000:NEXTA

2700 GOTO 2200

2800 REM

2900 REM Monochrome Monitor Setup

3000 REM

3100 DIM PAL(16)

3200 SCREEN 102:CLS

3300 FORA=0TO 15

3310 READ PAL(A):PALETTE A,PAL(A)

3-25

DEB Statements

3320
3400
3500
3510
3600
3610
3700
3800
3810
3900
3910
4000
4010
4100
4110
4200
4210
4300
4310
4400
4500
4600
4700
4800
4900
5000
5100
5200
5300
5400
5410
5500
5600
5610
$700
5800
5900
5910
6000
6100

NEXTA ‘setup gray levels
FORA=0TO 15

LINE (A*40,40)-(40 + A*40,140), A,BF

REM ‘draw shaded areas
LINE (A*40,240)- (40 + A*40,340), 15-A,BF

REM draw inverted shaded areas

NEXTA

COLOR 15 ‘use high intensity white
REM for text

LOCATE 1,20;

PRINT “Adjust to get a complete shade scale”

LOCATE 11,26;

PRINT “Dark <---e--seeseeeeeeeas > Light”
LOCATE 14,25;
PRINT “Light <---eceeceezee- --=-> Dark”

LOCATE 25,30;

PRINT “(Hit any key to exit)”’;

AS =INKEYS:IF LEN(AS) =0 THEN 4300

REM 'wait for any key to be pressed

SCREEN O

REM

REM The data below is the palette for

REM shades of green

DATA 0,81,9,4,12,5,13, 2,10,3,11,6,14,715
END

REM

REM Color Monitor Setup

REM

SCREEN 102:CLS

COLOR,,2 'select standard color
REM palette
FORA=0TO 7?7

LINE (A*40,0)-(40 + A*40,199), A,BF

REM draw colored filled boxes

LINE (A*40,202)-(40 + A*40,400), A + 8,BF
NEXTA

COLOR 15 'use high intensity white
REM for text

LOCATE 6,45: PRINT “Low intensity Colors”
LOCATE 20,45: PRINT “High Intensity Colors”

3-26

DEB Statements

6200
6210
6300
6400
6500
6600
6610
6700
6800

LOCATE 12,45;

PRINT “Adjust Contrast and Brightness”
LOCATE 13,45: PRINT “Controls to display 16"
LOCATE 14,45: PRINT “different colors”
LOCATE 25,50: PRINT “(Hit any key to exit)"’;
AS=INKEYS:IF LEN(AS)=0 THEN 6600

REM wait for a key to be pressed

SCREEN O ‘reset the screen mode
END

3-27

DEB Statements

The following program shows a text screen scroll-
ing on top of a graphics screen.

20
22
25
30
40
50
60
70
80
20
100
110
120
125
130
140
150
155
157
159
160
161
163
165
167
170

180
190
200
210
215
220
230
240
250

SCREEN 104 ‘set text on graphics
REM mode

CLS: KEY OFF

N=15:ANGLE = 360/N ’calculate # of angles
RADIANS = ANGLE /57.29578

CLS ‘clear screen
FORX=1TON *do the real work
FORY =XTON

SX = SINIX * RADIANS) = 195 + 320
SY = SIN(Y * RADIANS) * 195 + 320
CX = COS(X * RADIANS) * 150 + 200
CY = COS{Y * RADIANS) * 150 + 200
LINE (SY,CY}-(SX,CX), INT(RND*(7) +1)

REM draw line with random color

NEXT Y, X

FORI = 1TO 1000

X=RND*14+1

Y=RND*50+1
COLOR,,(RND*30),(RND*15)

GOSUB 270 'print text on VDC
X=RND*17 +1

Y=RND*50+1

COLOR,,0,(RND*31+1)

GOSUB 270 ’print text on VDC
COLOR,,,0 ‘change palette
LOCATE 24,1

FORK=1TO?7

PALETTE K,RND*135 + 1 'change palette
PRINT 'scroll text
IF(LEN(INKEYS)) <> 0 THEN 240

REM check for keypress
NEXT K

NEXTI

SCREEN 0,0,0 ‘return to normal
END

3-28

DEB Statements

260
270
280
290
300
305

310
315

320
325

330
340
350
360

REM sub to display a box of text

LOCATE X,Y : PRINT CHRS$(201);

FORI = 1TO 29:PRINT CHRS$(205); :NEXT |

PRINT CHR$(187);

LOCATE X +1,Y;

PRINT CHR$(186) + “This box is on the VDC
screen’” + CHRS$(186);

LOCATE X +2,Y;

PRINT CHRS(186]) + ‘This is more text”
+ CHRS$(186);

LOCATE X +3,Y;

PRINT CHRS(186) + “This is the last line of text”
+ CHRS$(186};

LOCATE X +4,Y: PRINT CHRS$(200);

FORI = 1TO 29: PRINT CHRS(205);:NEXT |

PRINT CHR$(188);

RETURN

3-29

~

Programming the LUT

16-COLOR GRAPHICS
LUT PROGRAMMING

LUT

15

In these modes the LUT can be viewed as a two-
dimensional array (16 X 16). Each location con-
tains one of the standard 16 colors.

Palette Position

0 . . . 15

The locations in the LUT are numbered consecu-
tively from left to right and top to bottom. Thus,
location 17 corresponds to Row 1, palette position
1. This correspondence is used with both the PAL-
ETTE and PALETTE USING statements. To set
location 17 to color 1 (blue) you would either use:

PALETTE 17,1
or
INTARRAY (17)=1
PALETTE USING INTARRAY (0)

4-2

Programming the LUT

In this example, the graphics statements specify
palette position 7 and the LUT is set up as shown.
Pixels are displayed as a solid red color. In the first
Y4 second, the DEB displays the color in the first
quarter of the LUT, which in this case isred. In
the second, third, and fourth ¥4 seconds, the DEB
displays the color in the second, third, and fourth
quarters of the LUT, respectively. In this example,
the DEB keeps finding the color value for red, so
what you see on the screen is a solid (non-blink-
ing) red color.

Palette Position
LUT
Row 0 7 15
0
t0 . red
3
4
tl : red
7
8
t2 : red
11
12
t3 : red
15
Non-Blinking Color

44

Programming the LUT

t0

t1

t2

t3

In this example, any item displayed on the screen
with palette position 7 blinks between red and
blue. For the first two ¥4 seconds, the DEB picks
up the color value for red from the first and second
quarters of the LUT. For the second two ¥4 seconds,
the DEB obtains the color value of blue from the
LUT. The net effect is a slow blink between red
and blue.

Palette Position

LUT
Row O 7 15

0

: red

3

4

: red

7

8

) blue

11

12

: blue

15

Slow Blink

4-5

Programming the LUT

For dithering colors, the DEB uses a scheme simi-
lar to the blinking scheme. Dithering is accom-
plished by manipulating groups of 4 adjacent
pixels. The screen is divided into blocks of 4 pixels.

4-7

Programming the LUT

Time
Block
Row

t(0)

t(1)

t(2)

t(3)

The pixels in the pixel blocks are so close together
that our eyes cannot perceive them as separate. If
each of the pixels in a pixel block is a different
color, our eyes perceive the pixel block as one color
— a combination of the color of the individual pix-
els. If the adjacent pixels are the same color, our
eyes see just that one color.

red | red
red | red

Palette Position

0 7 15

red
red
red
red

W —-=O

red
red
red
red

W=D

red
red
red
red

wN—=O

red
red
red
red

w N —Oo

“Solid” Dither showing correspondence between pixel
positions in a pixel block and time state rows

Programming the LUT

Remember the table of “pre-assigned” dithered
colors in Chapter 3. To combine colors, you check
the table for the color number for a particular
dither effect. For example, you would choose this
number to produce a dither between red and blue.

RED 143

BLUE

4-10

Programming the LUT

t(0)

t(1)

t(2)

t(3)

If you want to program the LUT to dither red and
blue together, the LUT would look like this:

Time
Block
Row

wWh—O WK —=O W —=0O

W -0

blue

red

blue | red

blue

red

blue | red

0

Palette Position

7 15

blue
red
blue
red

blue
red
blue
red

blue
red
blue
red

blue
red
blue
red

2-Color Dither

Programming the LUT

t(0)

t(1)

t(2)

t(3)

Time
Block
Row

whh—=O WK — O wWN—-O

[P N]

You can set up the LUT to dither two, three, or four
colors together.

red

blue

red |blue

grn

brn

grn| brn

0

Palette Position

red

blue
green
brown

red

blue
green
brown

red

blue
green
brown

red

blue
green
brown

4-Color Dither

4-12

Programming the LUT

~
The following examples show the actual LUT val-
ues for each of the previous cases of blinking and
dithering.
Palette Position
LUT
Row 0O 7 15
0 4 (red)
1 4
t(0) 2 4
3 4
amn 4 4
5 4
(1) 6 4
7 4
8 4
9 4
t(2) 10 4
11 4
12 4
13 4
t(3) 14 4
15 4
7~

Palette Position 7 programmed for Non-Blinking Red

4-13

Programming the LUT

Palette Position
LUT
Row O 7 15
0 4 (red)
1 4
t(0) 2 4
3 4
4 4
5 4
t(1) 6 4
7 4
8 1 (blue)
9 1
t(2) 10 1
11 1
12 1
13 1
t(3) 14 1
15 1

Palette Position 7 programmed to blink slowly between red
and blue.

4-14

Programming the LUT

£(0)

(1)

t(2)

t(3)

Palette Position
LUT
Row O 7 15
0 4 (red)
1 4
2 4
3 4
4 1 (blue)
5 1
6 1
7 1
8 2 (green)
9 2
10 2
11 2
12 6 (brown)
13 6
14 6
15 6
4-Color Fast Blink

4-15

Programming the LUT

Palette Position
LUT

Row 0 7

0 4 (red)
1 4
t(0) 2 4
3 4
4 4
5 4
t(1) 6 4
7 4
8 4
9 4
t(2) 10 4
11 4
12 4
13 4
t(3) 14 4
15 4

Solid Red Dither

4-16

Programming the LUT

Palette Position

LUT
Row 0 7 15
0 1 (blue)
1 4 (red)
t(0) 2 1 (blue)
3 4 (red)
4 1
5 4
t(1) 6 1
7 4
8 1
9 4
t(2) 10 1
11 4
12 1
13 4
t(3) 14 1
15 4

2-Color Dither: Red and Blue

4-17

Programming the LUT

The following is an example that combines blink-

ing and dithering:
Palette Position
LuUT
Row O 7 15
0 1 (blue)
1 4 (red)
t(0) 2 1
3 4
4 1
5 4
t(1) 6 1
7 4
8 2 (green)
9 6 (brown)
t(2) 10 2
11 6
12 2
13 6
t3) 14 2
15 6

4-19

Palette Position
0123456789 1011 1213 14 15

The following table of values can be used to pro-
gram the LUT for normal 16-color graphics.

LUT

Row

Programming the LUT

1010 10 15 T Yo Yol
o = - o v -l i
< S <
= - o o =
e o k)
== = = -
NN NN
Lo B B B | vy oy]
— = R S N
— = o oy] -
Sooco oo o
v oy] - R R B B |
oSS o oo ooy
o0 00 of O o0 00 O B
[S [S S
Y- © QS Q&
16516 16518 TRt Y o)
o o <+
oS e ed ed s s
NN N
R S — = -
ocooo SooS
o - N m <10 © b~
~ ~
Q -
) =
-~ -~

1,12,13, 14, 15,
1,12,13, 14, 15,
1,12,13, 14, 15,
1,12,13, 14, 15,
,12,13, 14, 15,
,12,13, 14, 15,
,12,13, 14, 15,
,12,13, 14, 15,

1
1
1
1

Non-Blinking Standard Colors

4-20

Programming the LUT

LUT
Row

o o O

15

16

31

In the overlay modes, as in the 16-color graphics
mode, the LUT is divided into time states that
control blinking effects. However, in the overlay
modes, the LUT is only divided into two time
states. Half of the LUT determines what is being
displayed at any time. The top half'is used for the
first Y2 of each second and the bottom half is used
for the second V2 of each second.

Using the overlay modes, you create blinking by
making the values in the top half of the table dif-
ferent from the corresponding values in the bottom
half of the table.

DEB Palette Position
0 . . . 7
t(0)
t(1)

4-24

Programming the LUT

o~
©
o
] 10
=
& <
Ay
Q
H..u [an]
[}
i o
Ay
B i
=
(m) o
w
088
822
VCV

)))))
,,,,,
7777

’’’’’’’’’ [==2R e~ Ban T 8 (o]
o

,,,,,,
,,,,,,,,,, O - AMm YO
— - =

,,,,,,

,,,,,,

))))))

t(1)

4-27

Programming the LUT

In this example, the standard Palette 2 is modified
so that position 2 is a blinking between blue (color
1) and red (color 4).

DEB Palette Position
VDC
Color
Values 0 1 2 3 4 5 6 7
0 |0, 1,1, 3, 4, 5, 6, 7,
1 1,1, 1,1, 1,1, 1, 1,
2 |2, 2 2 2 2 2 2 2
3 13, 38, 3, 3, 3, 3, 3, 3,
t(0) 4 |4, 4, 4, 4, 4, 4, 4, 4,
5 |5, 5, 5, 5, 5,5, 5, 5,
6 |6, 6, 6, 6, 6, 6, 6, 6,
7 |7, 7, 7,7, 7, 7, 1, 1,
8 |8, 8, 8, 8, 8, 8, 8, 8,
9 19,9 9 9 9, 9,9, 9,
10 |10,10,10,10,10,10,10,10,
11 11,11,11,11,11,11,11,11,
12 12,12,12,12,12,12,12,12,
13 13,13,13,13,13,13, 13,13,
14 |14,14,14,14,14, 14,14, 14,
15 15,15, 15, 15, 15, 15, 15, 15,

4-28

Programming the LUT

DEB Palette Position

’’’’’’’’’

””””””

’’’’’’’’

))))))))

’’’’’’’’

L R I R T .

”””””””

77777777

’’’’’

77777

’’’’’’

””””

?????

))))))

”””

””””

Values 0 1 2 3 4 5 6 7

VDC

Color

t(1)

4-29

you specify DEB palette position 0 in a graphics

output. The VDC’s output is only displayed when
statement.

In this example, values in the LUT cause the
DEB’s output to take precedence over the VDC’s

DEB Palette Positions
01234567

)))))))))))))
777777777777777
’’’’’’’’’’’’’’
”””””””””””””
””””””””””””
””””””””””””
””””””””””””
”””””””””””

CriNMNIFUOTXVNO =AM
LI I R R

VDC
Color
Values

Programming the LUT

Cri NN IO~V NRO = ANM PO
o e e

t(o)

4-30

Advanced Features

Example

100 DEF SEG = SH8000
110 FOO = SH7FA
120 CALL FOO (A,BS,C)

Line 100 sets the segment to 8000 Hex. The
value of variable FOO is added into the

address as the low word after the DEF SEG
value is left shifted 4 bits, i.e., multiplied by 16.
(This is a function of the microprocessor, not

of GWBASIC.) Here, FOO is set to &H7FA, so
that the call to FOO will execute the
subroutine at location 8000:7FA Hex (absolute
address 8007FA Hex).

Advanced Features

The following sequence in 8086 assembly
language demonstrates access to the
arguments passed. The returned result is
stored in the variable C.

PUSH BP ;Set up pointer
Mov BP,SP

ADD BP,(4+2*3)

Mov BX,[BP-2] ;Get address of BS
MoV CL,[BX] ;Get length of BS
MoV DX,1[BX] ;Get addr of BS text

MOV SI,[BP] ;Get address of ‘A’
Mov DI[BP-4] ;Get pointer to ‘C’
MOVS WORD ;Store variable ‘A’
POP BP sRestore pointer.
RET 6 ;Restore stack

Advanced Features

Note: The called program must know the varia-
ble type for the numeric arguments passed. In
the previous example, the instruction:

MOVS WORD

will copy only two bytes. This is fine if
variables A and C are integer. You would have
to copy four bytes if the variables were single
precision format and copy 8 bytes if they were
double precision.

CALLS STATEMENT

The CALLS statement should be used to
access subroutines that were written using
MS-FORTRAN calling conventions. CALLS
works just like CALL, except that with CALLS
the arguments are passed as segmented
addresses, rather than as unsegmented
addresses.

Advanced Features

Syntax

argument

Because MS-FORTRAN routines need to know
the segment value for each argument passed,
the segment is pushed and then the offset is
also pushed. For each argument, four bytes are
pushed rather than 2, as in the CALL
statement. Therefore, if your assembler routine
uses the CALLS statement, n in the RET
statement is two times the number of
arguments +2.

USR FUNCTION

Although using the CALL statement is the
recommended way of calling assembly
language routines, the USR function is also
available for this purpose. This ensures
compatibility with older programs that
contain USR functions.

The format of the USR function is:

USR [n] (argument)

is a digit from 0 to 9. It specifies which user routine is being

called. If n is omitted, USRO is assumed.

is any numeric or string expression.

B-16

Advanced Features

If the argument is a number, the BX register
points to the Floating-Point Accumulator
(FAC) where the argument is stored.

If the argument is an integer:

FAC-2 contains the upper 8 bits of the
argument.
FAC-3 contains the lower 8 bits of the
argument.

If the argument is a single precision floating-
point number:

FAC-2 contains the middle 8 bits of mantissa.
FAC-3 contains the lowest 8 bits of mantissa.

~

Advanced Features

If the argument is a double precision floating-
point number:

FAC-7 through FAC-4 contain four more bytes
of mantissa (FAC-7 contains the lowest 8 bits).

If the argument is a string, the DX register
points to 3 bytes which, as a unit, are called
the string descriptor. Byte 0 of the string
descriptor contains the length of the string (0
to 255 characters). Bytes 1 and 2, respectively,
are the lower and upper 8 bits of the string
starting address in the GWBASIC data
segment. If the argument is a string literal in
the program, the string descriptor will point to
program text. Be careful not to alter or destroy
the program this way.

Usually, the value returned by a USR function
is the same type (integer, string, single
precision, or double precision) as the argument
that was passed to it.

Advanced Features

GWBASIC has extended the USR function
interface to allow calls to MAKINT and
FRCINT. This allows access to these routines
without giving their absolute addresses. The
address ES:BP is used as an indirect far

pointer to the routines FRCINT and MAKINT.

To call FRCINT from a USR routine use
CALL DWORD ES:[BP]
To call MAKINT from a USR routine use

CALL DWORD ES:[BP+4]

B-20

Advanced Features

Remarks

COM (n)

KEY (n)

where n is the number (1 through 4) of the
communications channel.

Typically, the COM trap routine will read an
entire message from the COM port before
returning. We do not recommend using the
COM trap for single character messages
because at high baud rates the overhead of
trapping and reading for each character may
allow the interrupt buffer for COM to overflow.

where n is a trappable key number. Trappable
keys are numbered 1 through 20.

Note that KEY(n) ON is not the same
statement as KEY ON. KEY(n) ON sets an
event trap for the specified key. KEY ON
displays the values of all the function keys on
the twenty-fifth line of the screen.

When GWBASIC is in direct mode function
keys maintain their standard meanings.

When a key is trapped, that occurrence of the
key is destroyed. Therefore, you cannot
subsequently use the INPUT or INKEY$
statements to find out which key caused the
trap. So if you wish to assign different
functions to particular keys, you must set up a
different subroutine for each key, rather than
assigning the various functions within a

single subroutine.

B-24

Advanced Features

TIMER The ON TIMER(n) GOSUB statement (where
n is a numeric expression representing a
number of seconds since the previous
midnight) can be used to perform background
tasks at defined intervals.

PLAY The ON PLAY(n) GOSUB statement (where n
is a number of notes left in the music buffer) is
used to retrieve more notes from the
background music queue, to permit continuous
background music during program execution.

B-25

Advanced Features

THE ON GOSUB STATEMENT

The ON GOSUB statement sets up a line
number for the specified event trap. The
format is:

ON {COM(@m) | KEY(n) | TIMER(n) |
PLAY(@®)} GOSUB linenum

B-26

Advanced Features

A linenum of zero disables trapping for that
event.

When an event is ON and if a non-zero line
number has been specified in the ON GOSUB
statement, every time GWBASIC starts a new
statement it will check to see if the specified
event has occurred (e.g., a COM character has
come in). When an event is OFF, no trapping
takes place, and the event is not remembered
even if it takes place.

When an event is STOPped, no trapping takes
place, but the occurrence of that event is
remembered so that an immediate trap will
take place when the associated event ON
statement is executed.

When a trap is made for a particular event, the
trap automatically causes a STOP on that
event, so recursive traps can never occur. A
return from the trap routine automatically
executes an ON statement unless an explicit
OFF has been performed inside the trap
routine.

Note that once an error trap takes place, all
trapping is automatically disabled. In
addition, event trapping will never occur when
GWBASIC is not executing a program.

B-27

Advanced Features

10 ON KEY(10) GOSUB 1000
20FORI = 1TO 10

30 PRINT |

40 NEXT |

50 REM NEXT PROGRAM LINE

200 REM PROGRAM RESUMES HERE
1000 ‘FIRST LINE OF SUBROUTINE
1050 RETURN 200

If the Function Key F10 is pressed while the
FOR/NEXT loop is executing, the subroutine
will be performed, but program control will
return to line 200 instead of completing the
FOR/NEXT loop. The original GOSUB entry
will be cancelled by the RETURN statement,
and any other GOSUB, WHILE, or FOR that
was active at the time of the trap will remain
active. The current FOR context will also
remain active, and a FOR without NEXT error
may result.

B-29

Converting Programs

SUBSTRINGS

In GWBASIC the following functions are used
to take substrings of strings:

LEFTS
MIDS
RIGHTS

Other forms, such as:

AS(I) (to access the Ith character in A$) or
AS(l,J) (to take a substring of A$ from
position I to J) should be changed as follows:

Other BASICs GWBASIC

X$=AS(l)
XS=AS(l,J)

X$=MIDS(AS,1,1)
X$=MIDS(AS,1,J-1+1)

If the substring reference is on the left side of
an assignment and X$ is used to replace
characters in A$, then the conversion should
be carried out as follows:

Other BASICs GWBASIC

AS(I)=XS
AS(1,J)=XS

MIDS(AS,l,1)=X$
MIDS(AS,1,J-1+1)=X$

C4

Error Messages

NUMBER MESSAGE
53 File not found
54 Bad file mode
55 File already open
57 Device 1/O error
58 File already exists
61 Disk full
62 Input past end
63 Bad record number
64 Bad filename
66 Direct statement in file
67 Too many files
68 Device unavailable
69 Communication buffer overflow
70 Disk write protected
71 Disk not ready
72 Disk media error
74 Rename across disks
75 Path/file access error
76 Path not found

D-3

Glossary

clipping

command

level

comment

concatenation

constant

coordinates

The graphics statements use line clipping, i.e.,
lines that cross the screen or viewport are
“clipped” at or cut off at the edges of the
viewing area.

The GWBASIC is at command level when Ok
appears on the screen, i.e., when it is waiting
for the user to enter an immediate or program
line.

A statement used to document a program. In
GWBASIC, a comment may be entered by
REM or a single quote (‘) followed by the
comment string. The single quote (‘) also
allows the insertion of comments at the end of
a GWBASIC line.

The operation that joins two strings together.

A fixed value or data item. A constant may be
string or a numeric constant. In the latter case
it may be an integer, a single-precision or a
double-precision number.

Numbers which identify a location on the
screen. They may be text coordinates to
identify a character or the cursor (expressed in
terms of rows and columns) or graphics
coordinates to identify a pixel (expressed as x
and y Cartesian coordinates).

Glossary

current
directory

current
line

current
point

current
program

current
viewport

cursor

debug

The directory you are working on. You may
change the current directory by the CHDIR
command. Just after formatting a disk the
ROOT directory is the current directory.

The line you are working on, or the line you
have just entered, or the line where an error
has occurred.

See “‘last-referenced point.”

The program currently in memory.

The viewport you are working on. To change
viewport you must use a VIEW statement.

A movable marker that is used to indicate a
position on the screen. There are three types of
cursor (see the LOCATE statement in the
Reference section). The shape and blinkrate of
the overwrite and user cursors are
programmable. The user cursor is not visible at
initialization.

To locate and correct mistakes in a program.

Glossary

default

delimeter

destination

direct

access

direct line

direct mode

directory

disk

diskette

Pertaining to a value or option that is assumed
when none is given.

A character that limits a string of characters
and therefore cannot be part of the string.

The variable to the left of the equal sign in an
assignment statement.

The ability to read or write information at any
access location within a storage device.

See “immediate line.”

See “immediate mode.”

The directory contains the names of files on the
disk, along with information that tells MS-DOS
where to find the file.

Is a generic term to specify either a hard-disk
or a diskette.

A 5Y-inch mini floppy disk.

Glossary

expression

field

file

fixed-
length
filename

file
specification

floppy

foreground
color

An algorithm returning a single numeric value
(numeric, relational or logical expressions) or

a string operation returning a string value
(string expression).

In a record, a specific area used for a
particular type of data.

A collection of records. The records of a file
may be accessed by GWBASIC sequentially
(one after the other) or randomly (by record
number).

Enumerable elements in a file each of which has
the same length. For example, random files have
fixed-length records.

Name assigned to a file.

Unique file identifier. A file specification can
include a drive specifier (A:,B:,C:, etc.).

A diskette.

The color of the character itself (character
foreground color), or the color used to draw
pictures when no color parameter is specified in
a graphics statement (graphics foreground
color).

Glossary

full duplex

function

function key

graphics
viewport

GWBASIC

half duplex

hard disk

A communication system permitting
simultaneous operation in both directions.

An algorithm returning a single value. A
function can be a user or an intrinsic function.
It can be called forth simply by stating its
name, followed (in parentheses) by one or more
“arguments”’ representing the values that the
function parameters are to assume.

A key to which the user can assign a special
meaning. Typing the key you may generate any
character string. Some function keys may
already be assigned by the system at
initialization.

See ‘“‘viewport.”

In this manual refers only to Microsoft
GWBASIC Version 2.02 as implemented on the
AT&T Personal Computer.

A communication system permitting operation
in either direction, but not simultaneously.

A rigid disk. In this manual, referring to a
5Y4-inch Winchester-type disk.

10

Glossary

immediate
line

immediate
mode

indirect
line

indirect
mode

interrupt

intrinsic

function

keyword

last-
referenced
point

A GWBASIC line which begins with a letter. It
is executed as soon as you press CR.

This mode is used to immediately enter and
execute a GWBASIC line.

See ‘‘program line.”

See ‘“‘program mode.”

The suspension of a process, such as the
execution of a program, caused by an event
external to that process, and performed in such
a way that the process can be resumed.

A function that the user may call without
defining it since it is an integral part of
GWBASIC (e.g., SIN(x)).

One of the predefined words of GWBASIC. It
is a reserved word.

In graphics, the last-referenced point may be
used for relative coordinates (see the STEP
option in the LINE statement).

11

Glossary

line

line clipping

line folding

loop

machine
infinity

mantissa

matrix

MS-DOS

A GWBASIC line may begin with a line
number (if it is a program line) or with a letter
(if it is an immediate line). The line may
contain one or more GWBASIC statements or
commands (separated by colons) and may be
up to 255 characters long.

See ‘““clipping.”

The continuation of a logical line on a
subsequent physical line, so that the line can
be modified by insertion or deletion without

losing any other characters on that line.

The repeated execution of a series of statements
for a fixed number of times.

The largest number that can be represented in
internal format.

The numeral that is not the exponent in floating
point notation.

See “‘array.”

Microsoft-Disk Operating System.

12

Glossary

string
expression

string
variable

subroutine

subscript

text
window

trap

An expression that returns a string value.

A simple variable or array element whose
value is a string.

Section of a GWBASIC program which is

called by a GOSUB or ON...GOSUB

statement. At the end of the execution of a
subroutine, control is returned to the first
statement following the most recent GOSUB (or
ON...GOSUB) that has been executed.

A positive integer number that identifies the
position of an element in an array.

A rectangular portion of the screen where text
is output. It may be defined by a VIEW PRINT
or a WIDTH statement.

A special form of a conditional breakpoint

that is activated by an event to be intercepted.
It also refers to the action to be taken after the
interception.

17

Index

OPEN Statement
Opening

ommunications Files

OPTION BASE
Statement

OUT Statement

Overflow

P

PAINT Statement
PEEK Function
PEEKSs and POKEs
PLAY Statement
PLAY(n) Function
PLAY {on|off|stop}
PMAP Function
POINT Function
POKE Statement
POS Function
PRESET Statement
PRINT Statement
PRINT USING
Statement
PRINT# and PRINT#
USING Statements
Protected Files
PSET Statement
PUT (COM files)
Statement
PUT (Files) Statement
PUT (Graphics)
Statement

R

Random Access Files

RANDOMIZE
Statement

READ Statement

7-221
6-2

7-233
7-234

- 3-18

7-235
7-241

C9
7-242
7-246
7-247
7-248
7-250
7-252
7-253
7-254
7-2565

7-258
7-264

4-20
7-267

7-268
7-269

7-271

4-28

7-215
7-277

Rectangles, Objects,
Circles
Relational Operators
REM Statement
RENUM Command
Reserved Words
RESET Command
RESTORE Statement
RESUME Statement
RETURN Statement

5-19
3-19
7-279
7-281
1-10
7-283
7-284
7-285
7-120

See GOSUB...RETURN

RIGHT$ Function
RMDIR Command
RND Function
RUN Command
Running A Sample
Program

S

SAVE Command
Saving A Program
Scan Codes
Screen Coordinates
SCREEN Function
SCREEN Statement
Selecting the Screen
Attributes
Sequential Files
SGN Function
SIN Function
Single Precision
SOUND Statement
SPACES$ Function
SPC Function
Special Screen Editor
Keys
SQR Function

7-286
7-287
7-289
7-291

2-34

7-293
2-30
A-8
5-15
7-295
7-297

5-2
4-2
7-302

7-30
3-b
7-304
7-307
7-308

2-12
7-309

