
Microsoft®
40 Macro Assembler

0

0

Reference Manual

for the MST,,,-DOS Operating System

Mirrosnft Cornoration

Information in this document is subject to change without notice and
does not represent a commitment on the part of Microsoft Corpora-
tion . The software described in this document is furnished under a
license agreement or nondisclosure agreement . The software may be
used or copied only in accordance with the terms of the agreement . It
is against the law to copy this software on magnetic tape, disk, or any
other medium for any purpose other than the purchaser's personal
use .

® Copyright Microsoft Corporation, 1984

Microsoft and the Microsoft logo are registered trademarks, and MS is
a trademark of Microsoft Corporation .

Document Number : 8451-300-00
0

0
Contents

Chapter 1

	

Introduction

1 .1

	

Overview 1-1
1 .2

	

What You Need 1-2
1 .3

	

Notational Conventions 1-3

Chapter 2 Elements of the Assembler

2 .1

	

Introduction 2-1
2 .2

	

Character Set 2-1
2 .3

	

Integers 2-1
2 .4

	

Real Numbers 2-2
2 .5

	

Encoded Real Number 2-3
2 .6

	

Packed Decimal Numbers 2-3
2 .7

	

Character and String Constants 2-4
•

	

2 .8 Names 2-5
2 .9

	

Reserved Names 2-5
2 .10

	

Statements 2-7
2 .11

	

Comments 2-7
2 .12

	

COMMENT Directive 2-8

Chapter 3

	

Program Structure

3 .1

	

Introduction 3-1
3 .2

	

Source Files 3-1
3 .3

	

Instruction Set Directives 3-3
3 .4

	

SEGMENT and ENDS Directives 3-4
3 .5

	

END Directive 3-8
3 .6

	

GROUP Directive 3-9
3 .7

	

ASSUME Directive 3-10
3 .8

	

ORG Directive 3-11
3 .9

	

EVEN Directive 3-12

0
3 .10 PROC and ENDP Directives 3-12

Chapter 4

	

Types and Declarations
4 .1

	

Introduction 4-1
4.2

	

Label Declarations 4-1
4 .3

	

Data Declarations 4-2

4.4
4 .5
4.6

Symbol Declarations 4-8
Type Declarations 4-11
Structure and Record Declarations 4-13

Chapter 5

	

Operands and Expressions

5 .1
5 .2
5 .3
5 .4
5 .5

Introduction 5-1
Operands 5-1
Expressions 5-10
Forward References 5-23

5-26Strong Typing for Memory Operands

Chapter 6

	

Global Declarations

6 .1
6 .2
6 .3
6 .4

Introduction 6-1
PUBLIC Directive 6-2
EXTRN Directive 6-3
Program Example 6-4

Chapter 7

	

Conditional Assembly

7 .1 Introduction 7-1 0
7 .2 IF and IFE Directives 7-2
7 .3 IF1 and IF2I)irectives 7-2
7 .4 IFDEF and IFNDEF Directives 7-3
7 .5 IFB

	

IFNB Directives 7-3and
7 .6 IFIDN and IFDIF Directives 7-4

Chapter 8

	

Macro Directives

8.1 Introduction 8-1
8 .2 MACRO and ENDM Directives 8-2
8 .3 Macro Calls 8-4
8 .4 LOCAL Directive 8-5
8 .5 PURGE Directive 8-6
8 .6 KEPT and ENDM Directives 8-7
8 .7 IRP and ENDM Directives 8-8
8 .8 IHPC and END -,M Directives 8-10
8 .9 EXITM Directive 8-11
8 .10 Substitute Op

	

8-12erator
8.11 Literal Text. Operator 8-13
8 .12 Literal Character Operator 8-14
8 .13 Expression Operator 8-14
8 .14 Macro Comment 8-15

Appendix A

	

Instruction Summary

Appendix B

	

Directive Summary

B .1 Introduction B-1

Chapter 9 File Control

9 .1 Introduction 9-1
9 .2 INCLUDE Directive 9-1
9 .3

.RADIX Directive 9-2
9 .4 cO1JTDirective 9-3
9 .5 NAME Directive 9-4
9 .6 TITT .E Directive 9-1
9 .7 SUBTITLE Directive 9-5
9 .8 PAGE Directive 0-5
9 .9 LIST and .NLIST Directives 9-6
9 .10 .SF('ONI) .LFCOND,

9 .11
and TFC(YND Directives 0-7
LALL, .XALL, and .SALL Directives 9-8

9 .12 CREF and .X('IZEF Directives 9-9

A.I
A .2

Introduction A-1
8086 lust:ructions A-2.

A.3 8087 Instruction .\Inenionics :1-7
A.4 186 Instruction Mnemonics A-0
A.5 286 Non-Protected

A.6
Instruction Mnemonics A-10
286 Protected Instruction Mnemonics A-10

A.7 287Instruction Mnemonics A-11

Appendix C

	

Segment Names
For Iligh-Level Languages

(" .1 Int rodnct ion

	

('-I
C .2 Text Segments C-2
C .3 Data Segments--Near C'-4
C .4 Data Segments - Far C-5
C .5 Bss Segments C'-6•
C .6 Constant Segments C-8

S

0

Chapter 1
•

	

Introduction

1 .1 Overview 1-1

1 .2 W h at You Need 1-2

1 .3 Notational Conventions

S

S

0

0

0

Introduction

1 .1 Overview

This manual describes the usage and input syntax of the Microsoft®
Macro Assembler, MASM . The assembler produces relocatable object
modules from 8086, 186, or 286 assembly language source files . The re-
locatable object modules can be linked, using the Microsoft Linker,
LINK, to create executable programs for the MS-DOS operating sys-
tem .

MASM is an assembler for the 8086/186/286 family of microproces-
sors . It can assemble the instructions of the 8086, 186, and 286 mi-
croprocessors, and the 8087 and 287 floating point coprocessors . It has
a powerful set of assembly language directives that give the program-
mer complete control of the segmented architecture of the 8086, 186,
and 286 microprocessors . MASM instruction syntax allows a wide
variety of operand data types, including integers, strings, packed de-
cimals, floating point numbers, structures, and records .

MASM is a macro assembler . It has a full set of macro directives that
let a programmer create and use macros in a source file . The directives
instruct MASM to repeat common blocks of statements, or replace
macro names with the block of statements they represent . MASM also
has conditional directives that let the programmer exclude portions of
a source file from assembly, or include additional program statements
by simply defining a symbol .

MASM carries out strict syntax checking of all instruction statements,
including strong typing for memory operands . Unlike other assem-
blers, MASM detects questionable operand usage that can lead to er-
rors or unwanted results .

MASM produces object modules that are compatible with object
modules created by high-level language compilers . Thus, you can
make complete programs by combining MASNI object, modules with
object modules created by the C compiler or other language compilers .

This manual does not teach assembly language programming, nor does
it give a detailed description of 8086, 186, and 286 instructions . For
information on these topics, you will need other references .

Microsoft Macro Assembler Reference Manual

1 .2 What You Need

This manual is intended to be used with the Microsoft Macro Assem-
bler User's Guide . The guide explains the steps required to create exe-
cutable programs from source files .

You also need to know the function and operation of the instructions
in the instruction sets of the 8086/186/286 family of microprocessors .
For an explanation of these instruction sets, you will need to turn to
one of the many books that define these instructions . For your con-
venience, a complete list of the instruction names and syntax for all
processors is given in Appendix A, "Instruction Summary ."

0

0

0

0

H

Introduction

1 .3 Notational Conventions
This manual uses the following notational conventions to define the
assembly language syntax :

Convention Meaning
Roman Indicates command or parameter

names that must be typed as
shown . In most cases, upper and
lowercase letters can he freely in-
termixed .

Italics Indicates a placeholder, that is, a
name that you must replace with
the value or filename required by
the program .

Ellipses . Indicates that you can
repeat the preceding item any
number of tinies .

Indicates that you can repeat the
preceding item any number of
times as long as you separate the
items with a comma .

Brackets . Indicate that the en-
closed item is optional . If you do
not use the optional item, the
program selects a default action .

Vertical bar . Indicates that only
one of the separated items can be
used . You must make a choice
between the items .

0

Chapter 2
Elements of the Assembler

0

2.1 Introduction 2-1

2 .2 Character Set 2-1

2 .3 Integers 2-1

2 .4 Real Numbers 2-2

2 .5 Encoded Real Number 2-3

2 .6 Packed Decimal Numbers 2-3

2 .7 Character and String Constants 2-4

2 .8 Names 2-5

2 .9 Reserved Names 2-5

2 .10 Statements 2-7

2 .11 Comments 2-7

2 .12 COMMENT Directive 2-8

0

0

0

e

Elements of the Assembler

2 .1 Introduction

All assembly language programs consist of one or more statements and
comments. A statement or comment is a combination of characters,
numbers, and names . Names and numbers are used to identify values
in instruction statements . Characters are used to form the names or
numbers, or to form character constants .

The following sections describe what characters can be used in a pro-
gram and how to form numbers, names, statements, and comments .

2 .2 Character Set
MASM recognizes the following character set :

ABCDEFGHIJKLM-1N0PQRSTUVWXYZ
abcdefghijkImnopgrstuvwxyz
0123456789
?@-$: .f1()<>{}
+-/*&%!'-I\= #' ;,

2 .3 Integers
Syntax

digits
digitsB
digitsQ
digitsO
digitsD
digitsH

An integer represents an integer number . It is a combination of
binary, octal, decimal, or hexadecimal digits and an optional radix .
The digits are a combination of one or more digits of the specified ra-
dix: B, Q, 0, D, or H . If no radix is given, MASM uses the current de-
fault radix (typically decimal) . The following table lists the digits
that can be used with each radix . (Radix can be either upper or lower-
case .)

Microsoft Macro Assembler Reference Manual

Hexadecimal numbers must always start with a decimal digit (0-9) .
The hexadecimal digits A through F can be given as either upper or
lower case .

The maximum number of digits in an integer depends on the instruc-
tion or directive in which the integer is used .

You can set the default radix by using the RADIX directive . See the
section, " .RADIX Directive,'' in Chapter 9 .

Examples

01011010B

	

132Q

	

5AH

	

90D

	

90
01111B

	

170

	

OFH

	

15D

	

15

2 .4 Real Numbers

Syntax

digits .digitsE I +1-] digits

A real number represents a number having an integer, a fraction,
and an exponent . The digits can be any combination of decimal di-
gits . Digits before the decimal point (.) represent the integer part,
and those after the point represent the fraction . The digits after the
exponent mark (E) represent the exponent . The exponent is option-
al . If an exponent is given, the plus (+) and minus (-) signs can be
used to indicate its sign .

Real numbers can be used only with the DD, DQ, and DT direc-
tives . The maximum number of digits in the number and the max-
imum range of exponent values depends on the directive .

0

0

0

Radix Type Digits
B Binary 01
Q
0

Octal 0123456

D Decimal 0123456781)
H I-lexadecimal 0123456789A13CDEF

e

0

Examples

25 .23 2 .523E1

	

2523 .0E-2

2 .5 Encoded Real Number

Syntax

digitsR

An encoded real number is an 8, 16, or 20-digit hexadecimal number
that represents a real number in encoded format . An encoded real
number has a sign field, a biased exponent, and a mantissa . These
values are encoded as bit fields within the number . The exact size
and meaning of each bit field depends on the number of bits in the
number . The digits must be hexadecimal digits . The number must
begin with a decimal digit (0-9) .

Encoded real numbers can be used only with the DD, DQ, and DT
directives . The maximum number of digits for the encoded numbers
used with DD, DQ, and DT must be 8, 16, and 20 digits, respec-
tively . (If a leading zero is supplied, the number must be 9, 17, or 21
digits .)

Example

3F800000

	

; 1 .0 for DD
3FF0000000000000

	

; 1 .0 for DQ

2 .6 Packed Decimal Numbers

Syntax

j+ 1-1 digits

A packed decimal number represents a decimal integer that is to be
stored in packed decimal format . Packed decimal storage has a
leading sign byte and 9 value bytes . Each value byte contains two
decimal digits . The high-order bit of the sign byte is 0 for positive
values, and 1 for negative values .

Elements of the Assembler

Microsoft Macro Assembler Reference Manual

Packed decimals have the same format as other decimal integers ex-
cept that they can take an optional plus (+) or minus (-) sign and
can be defined only with the DT directive. A packed decimal must
not have more than 18 digits .

Examples

1234567890

	

;encoded as 00000000001234567890
-1234567890

	

;encoded as 80000000001234567890

2 .7 Character and String Constants

Syntax

characters '
characters "

A character constant is a constant composed of a single ASCII char-
acter. A string constant is a constant composed of two or more
ASCII characters. The constant must be enclosed in matching single
quotation or double quotation marks .

Single quotation marks must be encoded twice when given in con-
stants that are enclosed by single quotation marks . Similarly, dou-
ble quotation marks must be encoded twice when given in constants
that are enclosed by double quotation marks .

Examples

'a'
'ab'
•

	

a'
•

	

This is a message ."
'Can '' t find the file .'
•

	

Specified '"value"' not found ."

0

0

0

2 .8 Names
•

	

Syntax

characters . . .

0

is

A name is a combination of letters, digits, and special characters
that can be used in instruction statements to labels, variables, and
symbols. Names have the following formatting rules :

1 .

	

A name must begin with a letter, an underscore (4, a ques-
tion mark (?), a dollar sign ($), or an at sign (@) .

2 . A name can have any combination of upper and lowercase
letters . All lowercase letters are converted to uppercase un-
less the -ML or -MX option is used .

3 . A name can have any number of characters, but only the
first 31 characters are used . All other characters are ig-
nored .

Examples

subrout3
Array
main

2 .9 Reserved Names

A reserved name is any name that has a special, predefined meaning
to the assembler . Reserved names include instruction and directive
mnemonics, register names, and predefined group and segment
names . These names can be used only as defined and must not be
redefined .

The following is a list of all reserved names except instruction
mnemonics . For a complete list of instruction mnemonics, see Ap-
pendix A, "Instruction Summary ."

Elements of the Assembler

C) c

Microsoft Macro Assembler Reference Manual

%OUT

	

DQ
.186

	

DS
.286c

	

DT
.286p

	

D W
.287

	

DWORD
.8086

	

DX
.8087

	

ELSE
END

AH

	

ENDIF
AL

	

ENDM
AND

	

ENDP
ASSUME ENDS
AX

	

EQ
BH

	

EQU
BL

	

ES
BP

	

EVEN
BX

	

EXITM
BYTE

	

EXTRN
CH

	

FAR
CL

	

GE
COMMENT GROUP
.CREF

	

GT
CS

	

HIGH
CX

	

IF
DB

	

IF1
DD

	

IF2
DH

	

IFB
DI

	

IFDEF
DL

	

IFDIF
IFE

IFIDN

	

QWORD
IFNB

	

RADIX
IFNDEF RECORD
INCLUDE REPT
IRP

	

SALL
IRPC

	

SEG
LABEL

	

SEGMENT
.LALL

	

SFCOND
LE

	

SHL
LENGTH SHORT
.LFCOND STIR
.LIST

	

SI
LOCAL

	

SIZE
LOW

	

SP
LT

	

SS
MACRO STRUC
MASK

	

SUBTTL
MOD

	

TBYTE
NAME

	

TFCOND
NE

	

THIS
NEAR

	

TITLE
NOT

	

TYPE
OFFSET TYPE
OR

	

WIDTH
ORG

	

WORD
PAGE

	

.XALL
PROC

	

.XCREF
PTR

	

XLIST
PUBLIC XOR
PURGE

All upper and lowercase combinations of these names are considered
to be the same name . For example, the names "Length" and
"LENGTH" are the same name for the LENGTH operator .

0

Is

0

0

0

Elements of the Assembler

2 .10 Statements

Syntax

[name] mnemonic] operands]

A statement is a combination of a name, an instruction or directive
mnemonic, and one or more operands . A statement represents an
action to be taken by the assembler, such as generating a machine
instruction or one or more bytes of data .

Statements have the following formatting rules :

1 .

	

A statement can begin in any column .

2 . A statement must not be more than 128 characters in length
and must not contain an embedded newline character . This
means continuing a statement on multiple lines is not al-
lowed .

3 .

	

A statement must be terminated by a newline character .
This includes the last statement in the source file .

Examples

count db

	

0
mov

	

ax, bx
assume cs : TEXT, ds :DGROUP
main proc

	

far

2.11 Comments

Syntax

;text

A comment is any combination of characters preceded by a semi-
colon (;) and terminated by a newline character . Comments let a
programmer describe the action of a program at the given point .
Comments are otherwise ignored by the assembler and have no ef-
fect on assembly .

Microsoft Macro Assembler Reference Manual

Comments can be placed anywhere in a program, including on the
same line as a statement . The comment must be placed after all
names, mnemonics, and operands have been given . A comment must
not be longer than one line, that is, it must not contain any embed-
ded newline characters . For very long comments, the COMMENT
directive can be used .

Examples

This comment is alone on a line .
mov

	

ax, bx ; This comment follows a statement
Comments can contain reserved words like PUBLIC .

2.12 COMMENT Directive

Syntax

COMMENT delim text delim

The COMMENT directive causes MASM to treat all text between
the given pair of delimiters (delim) as a comment . The delimiter
character must be the first non-blank character after the COM-
MENT keyword . The text is all remaining characters up to the next
occurrence of the delimiter . The text must not contain the delimiter .

The COMMENT directive is typically used for multiple line com-
ments . Although text can appear on the same line as the last delim-
iter, any text after the delimiter is ignored .

Example

comment *
This comment continues until the
next asterisk .

comment +
The assembler ignores the
following MOV statement
+ mov ax, 1

0Q

0

0

0

Chapter 3
Program Structure

3.1 Introduction 3-1

3.2 Source Files 3-1

3.3 Instruction Set Directives 3-3

3.4 SEGMENT and ENDS Directives 3-4

3.5

3.6

3.7

3.8 ORG Directive 3-11

3.9 EVEN Directive 3-12

3.10 PROC and ENDP Directives 3-12

END Directive 3-8

GROUP Directive 3-9

ASSUME Directive 3-10

S

0

0

3 .1 Introduction
The Program Structure directives let a programmer define the organi-
zation that a program's code and data will have when loaded into
memory .

There are the following Program Structure directives :

SEGMENT

	

Segment Definition
ENDS

	

Segment End
END

	

Source File End
GROUP

	

Segment Groups
ASSUME

	

Segment Registers
ORG

	

Segment Origin
EVEN

	

Segment Alignment
PROC

	

Procedure Definition
ENDP

	

Procedure End

The following sections describe these directives in detail . They also
describe the Instruction Set directives that define which instruction
set is to be used during assembly .

3 .2 Source Files

Every assembly language program consists of one or more source files .
A source file is simply a text file that contains statements that define
the program's data and instructions . MASM reads source files and as-
sembles the statements to create "object modules" that can be
prepared for execution by the system linker .

All source files have the same form -- zero or more program "seg-
ments" followed by an END statement . The END statement, re-
quired in every source file, signals the end of the source file . It also pro-
vides a way to define the program entry point or starting address (if
any). All other statements in a source file are optional .

The following example illustrates the source file format . It is a com-
plete assembly language program that uses MS-DOS system calls to
print the message "Hello .'' on the system display .

Program Structure

Microsoft Macro Assembler Reference Manual

The main features of this source file are :

1 .

	

The .8086 directive, enabling the 8086 instruction set for as-
sembly

2 .

	

The SEGMENT and ENDS statements, defining segments
named DATA, CODE, and STACK

3.

	

The variable STRING in the DATA segment, defining the
string to be displayed

4 .

	

The instruction label START in the CODE segment, mark-
ing the start of the program instructions

5 .

	

The DW statement in the STACK segment, defining the
uninitialized data space to be used for the program stack 0

.8086

DATA segment ; Program Data Segment
'$' 0STRING db

	

'Hello . •, 13, 10,
DATA

CODE

START :

ends

segment
assume cs :CODE, ds :DATA

Program Code Segment

Program Entry Point
mov

	

ax, seg DATA
mov

	

ds, ax
mov

	

dx, offset STRING
mov

	

ah, 9
int

	

21h
mov

	

ah, 4ch
1nt

	

21h
CODE

STACK

STACK

ends

Program Stack Segment

0
segment stack
assume ss :STACK
dw
ends

64 dup(?)

end START

0

0

Program Structure

6 . The ASSUME statements in the DATA, CODE, and STACK
segments, defining which segment registers will be associat-
ed with the labels, variables, and symbols defined within the
segments

7 .

	

The END statement, defining START as the program entry
point

3 .3 Instruction Set Directives

Syntax

.8086

.8087

.186

.286c

.286p

.287

The instruction set directives enable/disable the instruction sets for
the given microprocessors . When a directive is given, MASM will
recognize and assemble any subsequent instructions belonging to
that microprocessor . The instruction set directives, if used, should
be placed at the beginning of the program source file . This ensures
that all instructions in the file are assembled using the same set .

The .8086 directive enables assembly of instructions for the 8086 mi-
croprocessor. It also disables assembly of 186 and 286 instructions .
Similarly, the .8087 directive enables assembly of instructions for
the 8087 floating point coprocessor and disables assembly of 287 in-
structions . Since MASM assembles 8086 and 8087 instructions by
default, the .8086 and .8087 directives are not required if the source
files contain 8086 and 8087 instructions only .

The .186 directive enables assembly of instructions for the 186 mi-
croprocessor . This directive should be used for programs that will
be executed by an 186 microprocessor .

The .286c directive enables assembly of non-protected instructions
for the 286 microprocessor . (These are identical to the 186 instruc-
tions) . The .286p directive enables assembly of the protected in-
structions of the 286 . The .286c directive should be used with pro-
grams that will be executed by a 286 microprocessor but do not ac-

Microsoft Macro Assembler Reference Manual

cess the 286's protected instructions . The .286p directive can be
used with programs that will be executed by a 286 .

The .287 directive enables assembly of instructions for the 287 float-
ing point coprocessor. This directive should be used with programs
that have floating point instructions and will be executed by a 286
microprocessor .

Even though a source file may contain the .8087 or .287 directive,
MASM also requires the /r or /e option in the MASM command line
to define how to assemble floating point instructions . The /r option
directs the assembler to generate the actual instruction code for the
floating point instruction . The /e option directs it to generate a
software interrupt code to a floating point emulator routine .

3.4 SEGMENT and ENDS Directives
Syntax

name SEGMENT align combine 'class'
name ENDS

The SEGMENT and ENDS directives mark the beginning and end of
a program segment . A program segment is a collection of instruc-
tions and/or data whose addresses are all relative to the same seg-
ment register .

The name defines the name of the segment . This name can be
unique or be the same name given to other segments in the program .
Segments with identical names are treated as the same segment .

The optional align, combine, and class define program loading in-
structions that are to be used by the linker when forming the exe-
cutable program. These options are described later .

Segments can be nested . When MASM encounters a nested segment,
it temporarily suspends assembly of the enclosing segment, and be-
gins assembly of the nested segment . When the nested segment has
been assembled, MASM continues assembly of the enclosing seg-
ment . Overlapping segments are not permitted .

3-4

0

0

0

0

0

Example

SAMPLE_TEXT segment word public 'CODE'
main proc far

CONST segment word public 'CONST' ; nested segment
segi dw

	

ARRAY DATA
CONST ends

	

; end nesting

mov

	

es, segl
push

	

es
mov

	

ax, es :pointer
push ax
call _printf
add

	

sp, 4

rot
_main endp
SAMPLE TEXT ends

This example contains two segments : "SAMPLE TEXT" and
"CONST" . The "CONST" segment is nested within the
"SAMPLE TEXT" segment .

Note

Program Structure

Although a given segment name can be used more than once in a
source file, each segment definition using that name must have
either exactly the same attributes, or attributes that do not con-
flict .

Microsoft Macro Assembler Reference Manual

Program Loading Options

The optional align defines the alignment of the given segment . The
alignment defines the range of memory addresses from which a
starting address for the segment can be selected . It can be any one
of the following :

BYTE use any byte address
WORD use any word address (2 bytes/word)
PARA use paragraph addresses (16 bytes/paragraph)
PAGE use page addresses (1024 bytes/page)

If no align is given, PARA is used by default . The actual start ad-
dress is computed when the program is loaded, and the linker
guarantees that the address will be on the given boundary .

The optional combine defines how to combine segments having the
same name . It can be any one of the following :

PUBLIC

STACK

COMMON

Concatenates all segments having the same name
and forms a single, contiguous segment . All in-
struction and data addresses in the new segment
are relative to a single segment register, and all
offsets are adjusted to represent the distance
from the beginning of the new segment .

Concatenates all segments having the same name
and forms a single, contiguous segment . All ad-
dresses in the new segment are relative to the SS
segment register . The Stack Pointer (SP) regis-
ter is set to an address in the segment .

Creates overlapping segments by placing the
start of all segments having the same name at
the same address. The length of the resulting
area is the length of the longest segment . All ad-
dresses in the segments are relative to the same
base address .

0

0

0

0

0
Note

MEMORY

AT address

Program Structure

Places all segments having the same name in the
highest physical segment in memory . If more
than one MEMORY segment is given, the seg-
ments are overlapped as with COMMON seg-
ments .

Causes all label and variable addresses defined in
the segment to be relative to the given address .
The address can be any valid expression, but
must not contain a forward reference, that is, a
reference to a symbol defined later in the source
f ile . AT segments typically contain no code or
initialized data . Instead, they represent address
templates that can be placed over code or data
already in memory, such as code and data found
in ROM devices . The labels and variables in the
AT segments can then be used to access the fixed
instructions and data .

If no combine is given, the segment is not combined . Instead, it re-
ceives its own physical segment when loaded into memory .

The linker requires at least one stack segment in a program .

The optional class defines which segments are to be loaded in con-
tiguous memory . Segments having the same class name are loaded
into memory one after another . All segments of a given class are
loaded before segments of any other class . The class name must be
enclosed in single quotation marks .

Microsoft Macro Assembler Reference Manual

Example

This example illustrates the general form of a text segment for a
small module program. The segment name is "TEXT" . The seg-
ment alignment and combine type are "word" and "public," respec-
tively . The class is "CODE ."

3.5 END Directive

Syntax

END expression

The END directive marks the end of the module . The assembler ig-
nores any statements following this directive .

The optional expression defines the program entry point . The entry
point defines the address at which program execution is to start . If
the program has more than one module, only one of these modules
can define an entry point . The module with the entry point is called
the "main module." If no entry point is given, none is assumed .

Examples

end
end

	

main

_~LA

0

0

_TEXT
assume cs : TEXT
segment word public 'CODE' 0

TEXT ends

0

0

Program Structure

3 .6 GROUP Directive

Syntax

name GROUP seg-name,,,

The GROUP directive associates a group name with one or more seg-
ments, and causes all labels and variables defined in the given seg-
ments to have addresses that are relative to the beginning of the
group instead of to the beginning of the segments in which they are
defined . The seg-name must be the name of a segment defined using
the SEGMENT directive, or a SEG expression . The name must be
unique .

The GROUP directive does not affect the order in which segments of
a group are loaded . Loading order depends on each segment's class,
or on the order the object modules are given to the linker .

Segments in a group do not have to be contiguous . This means that
segments that do not belong to the group can be loaded between seg-
ments that do. The only restriction is that the distance (in bytes)
between the first byte in the first segment of the group and the last
byte in the last segment must not exceed 65,535 . If the segments of
a group are contiguous, the group can occupy up to 64 Kbytes of
memory .

Group names can be used with the ASSUME directive and as an
operand prefix with the segment override operator (:) .

Note

A group name must not be used in more than one GROUP direc-
tive in any source file . If several segments within the source file
belong to the same group, all segment names must be given in
the same GROUP directive .

q-0

Microsoft Macro Assembler Reference Manual

Example

DGROUF group _DATA, _BSS
assume ds :DGROUP

DATA segment word public 'DATA'

_DATA ends
_BSS

	

segment word public 'BSS'

BSS ends
end

3 .7 ASSUME Directive

Syntax

ASSUME seg-reg : seg-name ,,,
ASSUME NOTHING

The ASSUME directive selects the given segment register seg-reg to
be the default segment register for all labels and variables defined in
the segment or group given by seg-name . Subsequent references to
the label or variable will automatically assume the selected register
when the effective address is computed .

The ASSUME dire,tive can define up to 4 selections : one selection
for each of the four segment registers . The seg-reg can be any one of
the segment register names: CS, DS, ES, or SS . The seg-name must
be one of the following :

The name of a segment previously defined with the SEG-
MENT directive .

The name of a group previously defined with the GROUP
directive .

The keyword NOTHING .

0

0

0

Note

The segment override operator (:) can be used to override the
current segment register selected by the ASSUME directive .

Examples

assume cs :code
assume cs :cgroup,ds :dgroup,ss :nothing,es :nothing
assume nothing

•

	

3 .8 ORG Directive

Syntax

ORG expression

The ORG directive sets the location counter to expression . Subse-
quent instruction and data addresses begin at the new value .

The expression must resolve to an absolute number, i .e ., all symbols
used in the expression must be known on the first pass of the assem-
bler. The location counter symbol ($) can also be used .

Examples

org

	

120H
org

	

$+ 2

Program Structure

5
The keyword NOTHING cancels the current segment selection . The
directive "ASSUME NOTHING" cancels all register selections made

	

by a previous ASSUME statement .

Microsoft Macro Assembler Reference Manual

3 .9 EVEN Directive

Syntax

EVEN

The EVEN directive aligns the next data or instruction byte on a
word boundary . If the current value of the location counter is odd,
the directive increments the location counter to an even value and
generates one NOP instruction (90h) . If the location counter is al-
ready even, the directive is ignored .

The EVEN directive must not be used in byte-aligned segments .

Example

org
testl db

even
test2 dw

	

513

In this example, EVEN increments the location counter and gen-
erates a NOP instruction (90h) . This means the offset of "test2'' is
2, not 1 .

3 .10 PROC and ENDP Directives

Syntax

name PROC type
statements

name ENDP

The PROC and ENDP directives mark the beginning and end of a
procedure . A procedure is a block of instructions that form a pro-
gram subroutine . Every procedure has a name with which it can be
called .

The name must be a unique name, not previously defined in the pro-
gram . The optional type can be either NEAR or FAR . NEAR is as-
sumed if no type is given . The name has the same attributes as a la-
bel and can be used as an operand in a jump, call, or loop instruc-
tion .

0
1

0

0

Program Structure

Any number of statements can appear between the PROC and
ENDP statements . The procedure should contain at least one ret
statement to return control to the point of call . Nested procedures
are allowed .

Example

main proc

	

near
push

	

by
mov

	

bp, sp
push

	

si
push

	

di
mov

	

ax, offset string
push ax
call

	

_printf
add

	

sp, 2
pop

	

di
pop

	

si
mov

	

sp, by
pop

	

by
•

	

ret-
main endp

9 1 9

S

S

0

Chapter 4
Types and Declarations

0

4 .1 Introduction 4-1

4 .2 Label Declarations 4-1
4 .2 .1 Near Label Declarations 4-1
4.2 .2 Procedure Labels 4-2

4 .3 Data Declarations 4-2
4 .3 .1 DB Directive 4-3
4.3 .2 DW Directive 4-3
4.3 .3 DD Directive 4-4

4.3.4 DQ Directive 4-5
4 .3.5 DT Directive 4-6
4 .3.6 DUP Operator 4-7

4 .4 Symbol Declarations 4-8
4 .4 .1

	

= Directive 4-8
4 .4 .2 EQU Directive 4-9

4 .4 .3 LABEL Directive 4-10

4.5 Type Declarations 4-11
4 .5 .1 STRUC and ENDS Directives 4-11
4.5 .2 RECORD Directive 4-12

4 .6 Structure and Record Declarations 4-13
4 .6.1 Structure Declarations 4-14

4 .6 .2 Record Declarations 4-15

S

S

0

0

0

Types and Declarations

4 .1 Introduction
This chapter explains how to generate data for a program, how to de-
clare labels, variables, and other symbols that refer to instruction and
data locations, and how to define types that can be used to generate
data blocks that contain multiple fields, such as structures and
records .

4 .2 Label Declarations

Label declarations create ''labels ." A label is simply a name that
represents the address of a given instruction . Labels can be used in
JMP, CALL, and other execution control instructions to direct pro-
gram execution to the associated instruction .

4 .2 .1 Near Label Declarations

name :

A near label declaration creates an instruction label that has NEAR
type. The label can be used in subsequent instructions in the same seg-
ment to pass execution control to the corresponding instruction .

The name must be unique and not previously defined . Furthermore,
the segment containing the declaration must be associated with the
CS segment register (see the ASSUME directive) . The assembler sets
the name to the current value of the location counter .

A near label declaration can appear on a line by itself or on a line with
an instruction as long as it immediately precedes the instruction .

Examples

start :
loop :

	

inc

	

4 [bp]

Microsoft Macro Assembler Reference Manual

4.2.2 Procedure Labels

Syntax

name PROC [NEAR I FAR

The PROC directive creates a label name and sets its type to NEAR
or FAR . The label then represents the address of the following in-
struction and can be used in JMP, CALL, or LOOP instruction to
direct execution control to the given instruction .

When the PROC label definition is encountered, the assembler sets
the label's value to the value of the current location counter and sets
its type to NEAR or FAR. If the label has FAR type, the assembler
also sets its segment value to that of the enclosing segment .

NEAR labels can be used with JMP, CALL, and LOOP instruction
in the enclosing segment only . FAR labels can be used in any seg-
ment of the program .

4 .3 Data Declarations

The Data Declaration directives let a programmer generate data for
a program . The directives translate numbers, strings, and expres-
sions into individual bytes, words, or other units of data . The encod-
ed data is copied to the program object file .

There are the following data declaration directives :

DB

	

Data Byte
DW Data Word
DD

	

Data Doubleword
DQ

	

Data Quadword
DT

	

Data Ten-byte Word

The following sections describe these directives in detail .

0

0

0

0

Types and Declarations

4.3 .1 DB Directive

Syntax

(name DB initial-value

The DB directive allocates and initializes a byte (8 bits) of storage
for each given initial-value . The initial-value can be an integer, a
character string constant, a DUP operator, a constant expression, or
question mark (?) . The question mark (?) represents an undefined
initial value. If two or more initial values are given, they must be
separated by commas (,) .

The name is optional . If a name is given, the directive creates a
variable of type BYTE whose offset value is the current location
counter value .

A string constant can have any number of characters as long as it
fits on a single line . When the string is encoded, the characters are
stored in the order given, with the first character in the constant at
the lowest address and the last at the highest .

Examples

4.3 .2 DW Directive

Syntax

[name DW initial-value,,,

The DW directive allocates and initializes a word (2 bytes) of
storage for each given initial-value . An initial-value can be an in-
teger, a string constant, a DUP operator, a constant expression, an

integer db 16
string db 'ab'
message db "Enter your name : "
constantexp db 4 * 3
empty db ?
multiple db 1, 2, 3,
duplicate db 10 dup(?)
high byte db 255

Microsoft Macro Assembler Reference Manual

address expression, or a question mark (?) . The question mark (?)
represents an undefined initial value . If two or more expressions are
given, they must be separated by commas (,) .

The name is optional . If a name is given, the directive creates a
variable of type WORD whose offset value is the current location
counter value .

String constants must not exceed two characters in length . The last
(or only) character in the string is placed in the low-order byte, and
either zero or the first character is placed in the high-order byte .

Examples

4.3 .3 DD Directive

Syntax

[name] DD initial-value

The DD directive allocates and initializes a doubleword (4 bytes) of
storage for each given initial-value . An initial-value can be an in-
teger, a real number, a 1- or 2-character string constant, an encoded
real number, a DUP operation, a constant expression, an address ex-
pression, or a question mark (?) . The question mark (?) represents
an undefined initial value . If two or more expressions are given,
they must be separated by commas (,) .

The name is optional . If a name is given, the directive creates a
variable of type DWORD whose offset value is the current location
counter value .

0

integer dw 16728
character
string
constantexp

dw
dw
dw

'a'
'bc'
4 * 3

addressexp
empty

dw
dw

string
?

multiple dw 1, 2, 3, '$'
duplicate dw 10 dup(?) 065535high_word dw
arrayptr
arrayptr2

dw
dw

array
offset DGROUP :array

0

Types and Declarations

String constants must not exceed two characters in length . The last
(or only) character in the string is placed in the low-order byte, and
the first character (if there are two in the string) is placed in the
next byte . Zeroes are placed in all remaining bytes .

4 .3.4 DQ Directive

Syntax

[name] DQ initial-value

The DQ directive allocates and initializes a quadword (8 bytes) of
storage for each given initial-value . An initial-value can be an in-
teger, a real number, a 1- or 2-character string constant, an encoded
real number, a DUP operator, a constant expression, or a question
mark (?) . The question mark (?) represents an undefined initial
value. If two or more expressions are given, they must be separated
by commas (,) .

The name is optional . If a name is given, the directive creates a
variable of type QWORD whose offset value is the current location
counter value .

String constants must not exceed two characters in length . The last
(or only) character in the string is placed in the low-order byte, and
the first character (if there are two in the string) is placed in the
next byte . Zeroes are placed in all remaining bytes .

Examples

integer dd 16728
character dd a'
string dd 'bc'
real dd 1 .5
encodedreal dd 3f000000R
constantexp dd 4 * 3
addsegexp dd real
empty dd ?
multiple dd 1, 2, 3,
duplicate dd 10 dup(?)
high_dcuble dd 4294967295

Microsoft Macro Assembler Reference Manual

Examples

4 .3.5 DT Directive

Syntax

[name] DT initial-value

The DT directive allocates and initializes 10 bytes of storage for
each given initial-value . An initial-value can be an integer expres-
sion, a packed decimal, a 1- or 2-character string constant, an encod-
ed real number, a DU[operator, or a question mark (?) . The ques-
tion mark (?) represents an undefined initial value . If two or more
expressions are given, they must be separated by commas (,) .

The name is optional . If a name is given, the directive creates a
variable of type TBYTE whose offset value is the current location
counter value .

String constants must not exceed two characters in length . The last
(or only) character in the string is placed in the low-order byte, and
the first character (if there are two in the string) is placed in the
next byte . Zeroes are placed in all remaining bytes .

Note

The DT directive assumes that constants with decimal digits are
packed decimals, not integers .

0

0

integer dq 16728
character dq a' 0
string
real

dq
dq

'bc'
1 .5

encodedreal dq 3f00000000000000R
constantexp dq 4 * 3
empty dq ?
multiple dq 1, 2, 3, '$'
duplicate
high_ quad

dq
dq

10 dup(?)
18446744073709551615

0

4.3 .8 DUP Operator

Syntax

count DUP(initial-value,,,)

Types and Declarations

The Dt'P operator is a special operator that can be used with the
Data Declaration and other directives to specify multiple oc-
currences of one or more initial values . The count defines the
number of times to repeat the initial-value . An initial value can be
any expression that evalutes to an integer value, a character con-
stant, or another DUP operator. If more than one initial value is
given, the values must be separated by commas () . DUP operators
can be nested up to 17 levels .

Examples

DB

	

100

	

DUP (1)

This example generates 100 bytes with value 1 .

DW

	

20

	

DUP(1,2,3,4)

This example generates 80 words of data . The first four words have
the values 1, 2, 3, and 4, respectively . This pattern is duplicated for
the remaining words .

Examples

0 packeddecimaldt 1234567890
integer dt 16728D
character
string
real

dt
dt
dt

'a'
'bc'
1 .5

encodedreal dt 3f00000000000000000OR
empty
multiple

dt
dt

v

1 2 3

	

$.
duplicate
high_tbyte

dt
dt

10 dup(?)
1208925819614629174706175D

Microsoft Macro Assembler Reference Manual

DB

	

5

	

DUP(5 DUP(5 DUP (1)))

This example generates 125 bytes of data, each byte having the
value 1 .

DD

	

14

	

DUP (?)

This example generates 14 doublewords of uninitialized data .

4 .4 Symbol Declarations

The Symbol Declaration directives let a programmer create and use
symbols. A symbol is a descriptive name that represents a number,
text, an instruction, or an address . Symbols make programs easier to
read and maintain by letting descriptive names represent values . A
symbol can be used anywhere its corresponding value is allowed .

There are the following Symbol Declaration directives :

Assign Absolutes
EQU

	

Equate Absolutes, Aliases, or Text Symbols
LABEL

	

Instruction or Data Labels

The following sections describe the directives in detail .

4 .4 .1 = Directive

Syntax

name = expression

The = directive creates an absolute symbol by assigning the numer-
ic value of expression to name . An absolute symbol is simply a name
that represents a 16-bit value. No storage is allocated for the
number . Instead, the assembler replaces each subsequent occurrence
of the name with the value of the given expression .

The expression can be an integer, a 1- or 2-character string constant,
a constant expression, or an address expression . Its value must not
exceed 65,535. The name must be either a unique name, or a name
that was previously defined using the = directive .

0

40

0

4 .4.2 EQU Directive

Syntax

name EQU expression

Types and Declarations

The EQU directive creates absolute symbols, aliases, or text symbols
by assigning the expression to the given name. An absolute symbol
is a name that represents a 16-bit value, an alias is a name that
represents another symbol, and a text symbol is a name that
represents a character string or other combination of characters .
The assembler replaces each subsequent occurrence of the name with
either the text or the value of the expression, depending on the type
of expression given .

The name must be a unique name, not previously defined . The ex-
pression can be an integer, a string constant, a real number, an en-
coded real number, an instruction mnemonic, a constant expression,
or an address expression . Expressions that evaluate to integer
values in the range 0 to 65,535 create absolute symbols and cause
the assembler to replace the name with a value . All other expres-
sions cause the assembler to replace the name with text .

The EQU directive is sometimes used to create simple macros . Note
that the assembler replaces a name with text before attempting to
assemble the statement containing the name .

Symbols defined using EQU directive cannot be redefined .

Absolute symbols can be redefined at any time .

0
Examples

integer 16728
string
constantexp

'ab'
3 * 4

addressexp string

Microsoft Macro Assembler Reference Manual

Examples

4 .4.3 LABEL Directive

Syntax

name LABEL type

The LABEL directive creates a new variable or label by assigning
the current location counter value and the given type to name .

The name must be unique and not previously defined . The type can
be any one of the following :

BYTE
WORD
DWORD
QWORD
TBYTE
NEAR
FAR

The type can also be the name of a valid structure type .

Examples

subroutine

	

label far
barray

	

label byte

integer equ 16728 ; replaced with value
real equ 3 .14159 ; replaced with text 0
constantexp equ 3 * 4 ; replaced with value
memoryop
mnemonic
addressexp
string

equ
equ
equ
equ

[bpl
mov
real
'Type Enter'

;replaced with text
; replaced with text
replaced with text
replaced with text

0

0

Types and Declarations

4 .5 Type Declarations
The Type Declaration directives let a programmer define data types
that can be used to create program variables that consist of multiple
elements or fields . The directives associate one or more named fields
with a given type name. The type name can then be used in a data
declaration to create a variable of the given type .

There are the following Type Declaration directives

STRUC and ENDS

	

Structure Types
RECORD

	

Record Types

The following sections describe the directives in detail .

4.5 .1 STRUC and ENDS Directives

Syntax

name STRUC
field-definitions

name ENDS

The STRUC and ENDS directives mark the beginning and end of a
type definition for a structure. Structure type definitions define the
name of a structure type and the number, type, and default value of
the fields contained in the type . Once defined, structure types may
be used to declare structure variables .

The name defines the new name of the structure type . It must be
unique . The field-definitions define the structure's fields . Any
number of field definitions can be given . The definitions must have
the form

The optional name defines the field name, the DB, DW, DD, DQ,
and DT directives define the size of each field, and default-value de-

[name] DB default-value,,,
[name] DW default-value,,,
[name] DD default-value,,,
[name] DQ default-value,,,
[name] DT default-value,,,

Microsoft Macro Assembler Reference Manual

fines the value to be given to the field if no initial value is given
when the structure variable is declared . The name must be unique,
and once defined, represents the offset from the beginning of the
structure to the corresponding field . The default-value can define a
number, character or string constant, or symbol . It may also con-
tain the DUP operator to define multiple values for the field . If the
default-value is a string constant, the field has the same number of
bytes as characters in the string . If multiple default values are
given, they must be separated by commas .

A structure type definition can contain field definitions and com-
ments only . It must not contain any other statements . This means
structures cannot be nested .

Example

In this example, the fields are ''count", "value", and ''name'' . The
"count" field is a single byte value initialized to 10 ; "value" is an
array of 10 uninitialized word values ; and "name" is a character ar-
ray of 5 bytes initialized to ''font3." The field names ''count,"
"value," and "name" have the offset values 0, 1, and 21, respective-
ly .

4 .5 .2 RECORD Directive

Syntax

recordname RECORD fieldname:width(=expl ,,,

The RECORD directive defines a record type for an 8- or 16-bit
record that contains one or more fields . The recordname is the name
of the record type to be used when creating the record, fieldname is
the name of a field in the record, width is the number of bits in the
field, and exp is the initial (or default) value for the field . Any
number of field: width= ezp combinations can be given with the
record as long as each is separated from the preceding with a comma
(,) . The sum of the widths for all fields must not exceed 16 .

0

is

table strut
count db 10

table

value
name
ends

dw
db

10 DUP(?)
'font3'

0

Types and Declarations

The width must be a constant in the range 1 to 16 . If the total width
of all declared fields is larger than 8 bits, then the assembler uses 2
bytes . Otherwise, only 1 byte is used .

If =exp is given, it defines the initial value for the field . If the field
is at least 7 bits wide, you can use an ASCII character for exp . The
exp must not contain a forward reference to any symbol .

In all cases, the first field you declare goes into the most significant
bits of the record . Successively declared fields are placed in the
succeeding bits to the right . If the fields you declare do not total ex-
actly 8 bits or exactly 16 bits, the entire record is shifted right so
that the last bit of the last field is the lowest bit of the record .
Unused bits will be in the high end of the record .

Examples

encode RECORD

	

h1gh :4, mid :3, low :3

This example creates a record type "encode'' having three fields :
''high," "mid," and "low ." The record occupies 16 bits of memory .
The "high" field is in bits 6 to 9, ''mid" in bits 3 to 5, and "low'' in
bits 0 to 2 . The remaining high-order bits are unused .

Item

	

RECORD char :7='Q', weight :4=2

This example creates a record type "item" having two fields : "char"
and "weight ." These values are initialized to the letter Q and the
number 2, respectively .

4.6 Structure and Record Declarations

Structure and record declarations let a programmer generate a block
of data bytes that have many elements or fields . A structure or
record declaration consists of a previously-defined structure or
record type name and a set of initial values .

The following sections describe these declarations in detail .

Microsoft Macro Assembler Reference Manual

4.6 .1 Structure Declarations

Syntax

[name[struename < [initial-value] .,, >

A structure variable is a variable that has one or more fields of dif-
ferent sizes . The name is the name of the variable, struename is the
name of a structure type that has been created using the STRUC
directive, and initial-value is one or more values defining the initial
value of the structure . One initial-value can be given for each field
in the structure .

The name is optional . If not given, MASM allocates space for the
structure, but does not create a name that you can use to access the
structure .

The initial-value can be an integer, string constant, or expression
that evaluates to a value having the same type as the corresponding
field . The angle brackets (< >) are required even if no initial value
is given . If more than one initial value is given, the values must be
separated with commas . If the DUP operator is used, only the values
within the parentheses need to be enclosed in angle brackets . You
do not have to initialize all fields in a structure . If an initial value is
left blank, MASM automatically uses the default initial value of the
field . This is defined by the structure type . If there is no default
value, the field is uninitialized .

Note

You cannot initialize any structure field that has multiple
values if this field was given a default initial value when the
structure was defined .

Examples

structi

	

table

	

<>

This example creates a structure variable named "structi" whose
type is given by the structure type "table .'' The initial values of the
fields in the structure are set to the default values for the structure
type, if any .

0

0

0

0

struct2

	

table <0,,>

T his example creates a structure variable named "struct2 ." Its type
is also "table.'' The initial value for the first field is set to zero . The
default values defined by the structure type are used for the remain-
ing two fields .

struct3

	

table 10 DUP(<0,, >)

This example creates a variable "struct3" containing 10 structures
of the type "table ." The first field in each structure is set to the ini-
tial value zero . All remaining fields receive the default values .

4 .8.2 Record Declarations

Syntax

[name] recordname < [initial-value,,, >

A record variable is an 8- or 16-bit value whose bits are divided into
one or more fields . The name is the name of the variable, record-
name is the name of a record type that has been created using the
RECORD directive, and initial-value is one or more values defining
the initial value of the record . One initial-value can be given for
each field in the record .

The name is optional . If not given, MASM allocates space for the
record, but does not create a variable that you can use to access the
record .

The initial-value can be an integer, string constant, or any expres-
sion that evaluates to a value that is no larger than can be
represented in the specified field width . Angle brackets (< >) are
required even if no initial value is given . If more than one initial
value is given, the values must be separated with commas . If the
DUP operator is used, only the values within the parentheses need
to be enclosed in angle brackets . You do not have to initialize all
fields in a record . If an initial value is left blank, MASM automati-
cally uses the default initial value of the field . This is defined by the
record type . If there is no default value, the field is uninitialized .

Types and Declarations

Microsoft Macro Assembler Reference Manual

Examples

reel

	

encode <>

This example creates a record variable named "red" whose type is
given by the record type "encode." The initial values of the fields in
the record are set to the default values for the record type, if any .

table item

	

10 DUP(<'A',2>)

This example creates a variable ''table'' containing 10 records of the
record type "item ." The fields in these records are all set to the ini-
tial values A and 2 .

passkey

	

encode <,,7>

This example creates a record variable named "passkey ." Its type is
"encode .'' The initial values for the first two fields are the default
values defined by the record type . The initial value for the third
field is 7 .

0

0

Chapter 5
Operands and Expressions

0

5 .3.10 HIGH and LOW Operators 5-17
5 .3.11 SEC Operator 5-17
5 .3 .12 OFFSET Operator 5-18
5 .3 .13 TYPE Operator 5-18
5 .3 .14 TYPE Operator 5-19
5 .3 .15 LENGTH Operator 5-20

5 .1

5 .2

Introduction 5-1

Operands 5-1

5.3

5 .2 .1
5 .2 .2
5 .2 .3
5 .2 .4
5 .2 .5
5 .2 .6
5 .2 .7
5 .2 .8
5 .2 .9

Constant Operands 5-2
Direct Memory Operands 5-2
Relocatable Operands 5-3
Location Counter 5-3
Register Operands 5-4
Based Operands 5-5
Indexed Operands 5-6
Based Indexed Operands 5-7
Structure Operands 5-8

5 .2 .10 Record Operands 5-9
5 .2 .11 Record Field Operands 5-9

Expressions 5-10
5 .3.1 Arithmetic Operators 5-10
5 .3.2 SHR and SILL Operators 5-11
5 .3.3 Relational Operators 5-12
5 .3.4 Bitwise Operators 5-13
5 .3.5 Index Operator 5-13
5 .3.6 PTR Operator 5-14
5 .3.7 Segment Override Operator 5-15
5 .3.8 SHORT Operator 5-16
5 .3.9 THIS Operator 5-16

5 .3 .16 SIZE Operator 5-20
5 .3 .17 WIDTH Operator 5-21
5 .3 .18 MASK Operator 5-22
5 .3 .19 Expression Evaluation and

Precedence 5-22

5 .4 Forward References 5-23

5 .5 Strong Typing for Memory Operands 5-26

0

0

0

0

0

Operands and Expressions

5 .1 Introduction
This chapter describes the syntax and meaning of operands and ex-
pressions used in assembly language statements and directives .
Operands represent values, registers, or memory locations to be acted
on by instructions or directives . Expressions are combinations of
operands and arithmetic, logical, bitwise, and attribute operators . An
expression evaluates to a value or memory location to be acted on by
an instruction or directive .

5 .2 Operands
An operand is a constant, label, variable, or other symbol that is used
in an instruction or directive to represent a value, register, or memory
location to be acted on .

There are the following operand types :

Constant
Direct Memory
Relocatable
Location Counter
Register
Based
Indexed
Based Indexed
Structure
Record
Record Field

Microsoft Macro Assembler Reference Manual

5 .2 .1 Constant Operands

Syntax

number I string I expression

An constant operand is a number, string constant, symbol, or expres-
sion that evaluates to a fixed value . Constant operands, unlike other
operands, represent values to be acted on rather than memory ad-
dresses .

Examples

mov

	

ax, 9
mov

	

al, 'c'
mov

	

bx, 65535/3
mov

	

cx, count

5 .2 .2 Direct Memory Operands

Syntax

segment : offset

A direct memory operand is a pair of segment and offset values that
represent the absolute memory address of one or more bytes of
memory . The segment can be a segment register name (CS, DS, SS,
or ES), a segment name, or a group name . The offset must be an in-
teger, absolute symbol, or expression that evaluates to a value
within the range 0 to 65,535 .

Examples

mov

	

dx, ss :0031H
mov

	

bx, DATA :O
mov

	

cx, DGROUP :block

0

is

0

5 .2 .3 Relocatable Operands

•

	

Syntax

symbol

imp target

Operands and Expressions

A relocatable operand is any symbol that represents the memory ad-
dress (segment and offset) of an instruction or data to be acted on .
Relocatable operands, unlike direct memory operands, are relative
to the start of the segment or group in which the symbol is defined
and have no explicit value until the program has been linked .

Examples

call

	

main
mov

	

bx, local
mov

	

bx, offset DGROUP :table

5.2 .4 Location Counter

The location counter is a special operand that, during assembly,
represents the current location within the current segment . The lo-
cation counter has the same attributes as a near label . It represents
an instruction address that is relative to the current segment . Its
offset is equal to the number of bytes that have been generated for
that segment to that point. After each statement in the segment
has been assembled, the assembler increments the offset by the
number of bytes generated .

Example

target equ

	

$
mov

	

ax, 1

Microsoft Macro Assembler Reference Manual

5.2 .5 Register Operands

Syntax

reg-name

A register operand is the name of a CPU register . Register operands
direct instructions to carry out actions on the contents of the given
registers. The reg-name can be any one of the following :

ax

	

ah

	

al

	

bx

	

bh

	

bl
ex

	

ch

	

cl

	

dx

	

dh

	

dl
cs

	

ds

	

ss

	

es

	

sp

	

by
di

	

si

Any combination of upper and lower case letters is allowed .

The ax, bx, cx, and dx registers are 16-bit general purpose regis-
ters. They can be used for any data or numeric manipulation . The
ah, bh, ch, dh registers represent the high 8-bits of the correspond-
ing general purpose registers . Similarly, al, bl, cl, and dl represent
the low-order 8-bits of the general purpose registers .

The cs, ds, ss, and es registers are the segment registers. They con-
tain the current segment address of the code, data, stack, and extra
segments, respectively . All instruction and data addresses are rela-
tive to the segment address in one of these registers .

The sp register is the 16-bit stack pointer register . The stack
pointer contains the current top of stack address . This address is
relative to the segment address in the ss register and is automatical-
ly modified by instructions that access the stack .

The bx, bp, di, and si registers are 16-bit base and index registers .
These are general purpose registers that are typically used for
pointers to program data .

The 16-bit flag register contains nine 1-bit flags whose positions and
meaning are defined in the following table :

5-4

0

0

Meaning
carry flag
parity flag
auxiliary flag
trap flag
zero flag
sign flag
interrupt-enable flag
direction flag
overflow flag

Operands and Expressions

Although no name exists for the 16-bit flag register, the contents of
the register can be accessed using the LAHF, SAHF, PUSHF, and
POPF instructions .

5 .2 .8 Based Operands

Syntax

disp(by j
dispf bx

A based operand represents a memory address relative to one of the
base registers : by or bx . The disp can be any immediate or direct
memory operand . It must evaluate to an absolute number or
memory address . If no disp is given, zero is assumed .

The effective address of a based operand is the sum of the disp value
and the contents of the given register . If by is used, the operand's
address is relative to the segment pointed to by the ss register . If
bx is used, the address is relative to the segment pointed to by the
ds register .

Based operands have a variety of alternate forms . The following il-
lustrate a few of these forms :

displ lbpl
by + disp]
bp1 . disp
by +disp

In each case, the effective address is the sum of disp and the con-
tents of the given register .

Flag Bit
00 2
4
5
6
7
9
10
11

Microsoft Macro Assembler Reference Manual

Examples

mov

	

ax, [by]
mov

	

ax, [bx]
mov

	

ax, 12 [bx]
mov

	

ax, fred[by]

5 .2 .7 Indexed Operands

Syntax

disp[si]
disp(di]

An indexed operand represents a memory address that is relative to
one of the index registers : si or di . The disp can be any immediate
or direct memory operand . It must evaluate to an absolute number
or memory address . If no disp is given, zero is assumed .

The effective address of an indexed operand is the sum of the disp
value and the contents of the given register . The address is always
relative to the segment pointed to by the ds register .

Indexed operands have a variety of alternate forms . The following
illustrate a few of these forms :

disp]]di]
di + disp]
d i .disp
di +disp

In each case, the effective address is the sum of disp and the con-
tents of the given register .

Examples

mov

	

ax, [s1]
mov

	

ax, [dl]
mov

	

ax, 12[dl]
mov

	

ax, fred [si]

0

0

0

0
5.2 .8 Based Indexed Operands

Syntax

disp
disp
disp
disp

by
by
bx
bx

si]
di]
si]
di]

Operands and Expressions

A based indexed operand represents a memory address that is rela-
tive to a combination of base and index registers . The disp can be
any immediate or direct memory operand . It must evaluate to an
absolute number or memory address . If no dip is given, zero is as-
sumed .

The effective address of a based indexed operand is the sum of the
disp value and the contents of the given registers . If the by register
is used, the address is relative to the segment pointed to by the as
register . Otherwise, the address is relative to the segment pointed
to by the ds register .

Based indexed operands have a variety of alternate forms . The fol-
lowing illustrate a few of these forms :

disp][bp][di]
by+di+di .•zp]
by+di] . disp
di]+disp+[bp]

In each case, the effective address is the sum of disp and the con-
tents of the given registers .

Examples

mov

	

ax, [by I [si]
mov

	

ax, [bx + di]
mov

	

ax, 12[by + di]
mov

	

ax, fred[bx] [si]

5-7

Microsoft Macro Assembler Reference Manual

5 .2.9 Structure Operands

Syntax

variable. field

A structure operand rrlpresents the memory address of one member
of a structure . The variable must be the name of a structure or must
be a memory operand that resolves to the address of a structure, and
field must be the name of a field within that structure .

The effective address of a structure operand is the sum of the offsets
of variable and field . The address is relative to the segment or group
in which the variable is defined .

In the following examples, "current-late" is assumed to be the
structure defined by the following :

date

	

struc
month dw ?
day

	

dw ?
year

	

dw ?
date

	

ends
current-date date <'ja','01','84'>

Example

mov

	

ax, current _date .day
mov

	

current_date .year, '85'

Structure operands are often used to access values on the stack .
One method is to copy the current stack address into the by regis-
ter, then use "(by] .member" to access elements on the stack . This
method makes all values on the stack available in any desired for-
mat .

5-8

0

0

0

0

0

Operands and Expressions

5.2 .10 Record Operands

Syntax

recordname < [value],,, >

A record operand refers to the value of a record type . The operands
can be in expressions . The recordname must be the name of a record
type defined in the source file. The optional value is the value of a
field in the record . If more than one value is given, the values must
be separated by commas . The enclosing angle brackets are required,
even if no value is given . If no value for a field is given, the default
value for that field is used .

Examples

mov

	

ax, encode <1,3,2>
mov

	

cx, key <,7>

5.2 .11 Record Field Operands

Syntax

record-fieldname

The record field operand represents the location of a field in its
corresponding record . The operand evaluates to the bit position of
the low-order bit in the field and can be used as a constant operand .

The record-fieldname must be the name of a previously defined
record field . In the following examples, assume that the record
"reel" is defined as :

rtype RECORD floldl :3,fleld2 :6,fleld3 :7
reel

	

rtype < >

Example

mov

	

ax, fieldl

This example copies 13, the shift count for field I, to ax .

Microsoft Macro Assembler Reference Manual

mov

	

dx,recl
mov

	

cl,fleld2
shr

	

dx,el

This example copies 7, the shift count for field2, to cl, then uses the
address of ''reel,'' copied to dx, in a shift operation . This operation
adjusts reel so that field2 is now at the lowest bit .

5 .3 Expressions

An expression is a combination of operands and operators that
evaluates to a single value . Operands in expressions can be any of
the operands described in this chapter . The result of an expression
can be a value or a memory location, depending on the types of
operands and operators used .

MASM provides a variety of operators . Arithmetic, shift, relational,
and bitwise operators manipulate and compare the values of
operands . Attribute operators manipulate the attributes of
operands, such as their type, address, and size .

The following sections describe the operators in detail . The attri-
bute operators are described individually .

5 .3 .1 Arithmetic Operators

Syntax

expl * exp2
expl / exp2
expl MOD exp2
expl + exp2
expl

	

exp2
+ exp
- exp

Arithmetic operators provide the common mathematical operations .
The operators have the following meanings :

0

0

0

0

Operator Meaning
*

	

Multiplication .
Integer division .

MOD

	

Remainder after division (modulus) .
+

	

Addition .
Subtraction .

+

	

Positive (unary) .
Negative (unary) .

Operands and Expressions

For all arithmetic operators except + and -, the expressions expl
and exp2 must be integer numbers . The + operator can be used to
add an integer number to a relocatable memory operand . The -
operator can be used to subtract an integer number from a relocat-
able memory operand . The - operator can also be used to subtract
one relocatable operand from another, but only if the operands refer
to locations within the same segment . The result is an absolute
value .

Examples

alpha + 5

	

; add 5 to alpha's offset
alpha - 5

	

; subtract 5 from alpha's offset
alpha - beta

	

; subtract beta's offset from alpha's

5 .3.2 SHR and SHL Operators

Syntax

expression SHR count
expression Sill, count

The SIIR and Sill, operators shift the given expression right or left
by count number of bits . Bits shifted off the end of the expression
are lost . If count is greater than or equal to 16, the result is 0 .

14 * 4 ; equals 560 14 / 4 ; equals 3
14 MOD 4 ; equals 2
14 + 4 ; equals 18
14 - 4 ; equals 10
14 - +4 : equals 10
14 - -4 ; equals 18

Microsoft Macro Assembler Reference Manual

Examples

01110111B SHL 3

	

equals 10111000B
01110111B SHR 3

	

equals 0000111013

5.3 .3 Relational Operators

Syntax

expl EQ exp2
expl NE exp2
expl LT exp2
expl LE exp2
expl GT exp2
expl GE exp2

The relational operators compare the expressions expl and exp2 and
return true (OFFFFH) if the given condition is satisfied, or false
(0000H) if it is not . The expressions must resolve to absolute values .
The operators have the following meanings :

Operator Condition is satisfied when :
EQ

	

Operands are equal .
NE

	

Operands are not equal .
LT

	

Left operand is less than right .
LE

	

Left operand is less than or equal to right .
GT

	

Left operand is greater than right .
GE	Left operand is greater than or equal to right .

Relational operators are typically used with conditional directives
and conditional instructions to direct program control .

Examples

0

1 EQ 0 ; false
1 NE 0 ; true
1 LT 0 ; false
1 LE 0 ; false
1 GT 0 ; true
1 GE 0 ; true

0

0

5 .3 .4 Bitwise Operators

Syntax

NOT erp
expl AND exp2
expl OR exp2
expl XOR exp2

The logical operators perform bitwise operations on the given ex-
pressions . In a bitwise operation, the operation is performed on each
bit in an expression rather than on the expression as a whole . The
expressions must resolve to absolute values .

The operators have the following meanings :

Examples

Operator Meaning
NOT

	

Inverse .
AND

	

Boolean AND .
OR

	

Boolean OR .
XOR

	

Boolean exclusive OR .

Operands and Expressions

NOT 11110000B ;equals00001111B
01010101B AND 11110000B equals 0101000013
01010101B OR 11110000B equals 11110101B
01010101B

	

XOR

	

11110000B

	

equals 1010010113

5 .3.5 Index Operator

Syntax

expression) [expression2]

The index operator, 11, adds the value of expression) to expression2 .
This operator is identical to the + operator, except that erpressionl
is optional .

If expression) is given, the expression must, appear to the left of the
operator . It can be any integer value, absolute symbol, or relocat-
able operand . If no erpressionl is given, the integer value, 0, is as-

Microsoft Macro Assembler Reference Manual

sum .-d . If expression) is a relocatable operand, expression2 must be
an integer value or absolute symbol . Otherwise, expression2 can be
any integer value, absolute symbol, or relocatable operand .

The index operator is typically used to index elements of an array,
such as individual characters in a character string .

Examples

mov

	

al, string[3]
mov

	

ax, array[4]
1110V

	

string[LAST], al
mov

	

cx, DGROUP :[1]

Note that the last example is identical to the statement "mov ex,
DGROUP :1 .''

5 .3.6 PTR Operator

Syntax

type PTR expression

The PTR operator forces the variable or label given by the expres-
sion to be treated as a variable or label having the type given by
type . The type must be one of the following names or values :

BYTE

	

1
WORD

	

2
DWORD

	

4
QWORD

	

8
TBYTE

	

10
NEAR

	

OFFFFh
FAR

	

OFFFEh

The expression can he any operand . The BYTE, WORD, and
DWORD types can be used with memory operands only . The NEAR
and FAR types can be used with labels only .

The PTR operator is typically used with forward references to expli-
citly define what size or distance a reference has . If not used,
MASM assumes a default size or distance for the reference . The PTR
operator is also used to give instructions access to variables in ways

0

0

0

0

that would otherwise generate errors, for example, accessing the

5.3 .7 Segment Override Operator

Syntax

segment-register : expression
segment-name : expression
group-name : expression

Operands and Expressions

The segment override operator () forces the address of a given vari-
able or label to be computed using the beginning of the given
segment-register, segment-name, or group-name . If a segment-name
or group-name is given, the name must have been assigned to a seg-
ment register with a previous ASSUME directive and defined using a
SEGMENT or GROUP directive . The expression can be an absolute
symbol or relocatable operand . The segment-register must be one of
CS, DS, SS, or ES .

By default, the effective address of a memory operand is computed
relative to the DS, SS, or ES register, depending on the instruction
and operand type. Similarly, all labels are assumed to be NEAR .
These default types can be overridden using the segment override
operator .

Examples

mov

	

ax, es :[bx][si]
mov

	

TEXT :far label, ax
mov

	

ax, DGROUP :variable
mov

	

al, cs :0001H

5- 1 5

high-order byte of a WORD size variable .

0 Examples

call
mov

far
byte

ptr
ptr

subrout3
[array] , 1

add al, byte ptr [full word]

Microsoft Macro Assembler Reference Manual

5 .3 .8 SHORT Operator

Syntax

SHORT label

The SHORT operator sets the type of the given label to SHORT .
Short labels can be used in ''jump'' instructions whenever the dis-
tance from the label to the instruction is not more than 127 bytes .
Instructions using short labels are one byte smaller than identical
instructions using near labels .

Example

imp short repeat

5.3 .9 THIS Operator

Syntax

THIS type

The THIS operator creates an operand whose offset and segment
value are equal to the current location counter value and whose type
is given by type . The type can be any one of the following :

NEAR

	

FAR
BYTE

	

WORD
DWORD

	

QWORD
TBYTE

The THIS operator is typically used with the EQU or = directive to
create labels and variables . This is similar to using the LABEL
directive to create labels and variables .

Examples

tag

	

equ

	

this byte

This example is equivalent to the statement "TAG LABEL
BYTE" .

5- 16

0

check =

	

this near

•

	

This example is equivalent to the statement "CHECK LABEL
NEAR" .

5.3 .10 HIGH and LOW Operators

Syntax

11M'11 expression
LOW expression

The HIGH and LOW operators return the high and low 8 bits of the
given expression . The IIIGII operator returns the high 8 bits of the
expression ; the LOW operator returns the low-order 8 bits . The ex-
pression can be any value .

Operands and Expressions

Examples

mov0

	

mov

5 .3.11 SEG Operator

Syntax

SEG expression

The SEG operator returns the segment value of the given expression .
The expression can be any label, variable, segment name, group
name, or other symbol .

Example

mov

	

ax, seg variable name
mov

	

ax, seg label name

ah, high word value
al, low OFFFFH

Microsoft Macro Assembler Reference Manual

5 .3.12 OFFSET Operator

Syntax

OFFSET expression

The OFFSET operator returns the offset of the given expression.
The expression can be any label, variable, segment name, or other
symbol. The returned value is the number of bytes between the
item and the beginning of the segment in which it is defined . For a
segment name, the return value is the offset from the start of the
segment to the most recent byte generated for that segment .

The segment override operator (:) can be used to force OFFSET to
return the number of bytes between the item in the expression and
the beginning of a named segment or group . This is the method
used to generate valid offsets for items in a group . See the second
example below .

Examples

mov

	

bx, offset subrout3
mov

	

bx, offset DGROUP :array

The returned value is always a relative value that is subject to
change by the linker when the program is actually linked .

5 .3.13 TYPE Operator

Syntax

TYPE expression

The TYPE operator returns a number representing the type of the
given expression . If the expression is a variable, the operator returns
the size of the operand in bytes . If the expression is a label, the
operator returns OFFFFH if the label is NEAR, and OFFFEH if the
label is FAR . Note that the return value can be used to specify the
type for a PTR operator . See the second example below .

0

0

0

0

Examples

•

	

mov ax, type array

imp

	

(type get_loc) ptr destiny

5 .3.14 TYPE Operator

Syntax

.TYPE expression

The TYPE operator returns a byte that defines the mode and scope
of the given expression . If the expression is not valid, TYPE returns
zero .

The variable's attributes are returned in bits 0, 1, 5, and 7 as fol-
lows :

Operands and Expressions

Bit Position If Bit= 0

	

If Bit= 1
0

	

Absolute

	

Program related
1

	

Not Data related Data related
5

	

Not defined

	

Defined
7

	

Local scope

	

External scope

If both the scope bit and defined bit are zero, the expression is not
valid .

The TYPE operator is typically used with conditional directives,
where an argument may need to be tested to make a decision regard-
ing program flow .

Example

x

	

db

	

12
z

	

equ

	

.type x

This example sets z to 34 .

Microsoft Macro Assembler Reference Manual

5 .3.15 LENGTH Operator

Syntax

LENGTH variable

The LENGTH operator returns the number of BYTE, WORD,
DWORD, QWORD, or TBYTE elements in the given variable . The
size of each element depends on the variable's defined type .

Only variables that have been defined using the DUP operator re-
turn values greater than one . The return value is always the
number that precedes the first DUP operator .

In the following examples, assume the definitions :

array

	

dw

	

100

	

dup(1)
table

	

dw

	

100

	

dup(1,10 dup(?))

Examples

mov

	

cx, length array

In this example, LENGTH returns 100 .

mov

	

cx, length table

In this example, LENGTH returns 100 . The return value does not
depend on any nested DUP operators .

5.3.18 SIZE Operator

Syntax

SIZE variable

The SIZE operator returns the total number of bytes allocated for
the given variable . The return value is equal to the return value of
LENGTH times the return value of TYPE .

5-20

is

0

0

9

0

Operands and Expressions

In the following example, assume the definition :

array dv

	

100

	

dup(1)

Example

mov

	

bx, size array

In this example, SIZE returns 200 .

5 .3.17 WIDTH Operator

Syntax

WIDTH record-fieldname I record

The WIDTH operator returns the width (in bits) of the given record
field or record . The record-fieldname must be the name of a record
defined in a field . The record must be the name of a record .

In the following examples, assume that the record "reel" is defined
as :

rtype
reel

RECORD fleldl :3,fleld2 :6,fleld3 :7
rtype <>

Example

WIDTH fleldl ;equals 3
WIDTH fleld2 ;equals 6
WIDTH fleld3 ;equals 7
WIDTH rtype ;equals 16

Microsoft Macro Assembler Reference Manual

5 .3.18 MASK Operator

Syntax

MASK record-fieldname I record

The MASK operator returns a bit mask for the bit positions in a
record occupied by the given record field . A bit in the mask con-
tains a 1 if that bit corresponds to a record bit . All other bits con-
tain 0. The record-fieldname must be the name of a record field .

In the following examples, assume that the record "reel" is defined
as :

rtype RECORD fleldl :3,fleld2 :6,field3 :7
reel

	

rtype

	

<>

Example

MASK fleldl ;equals E000H
MASK fleld2 ;equals 1F80H
MASK fleld3 ;equals 003FH
MASK rtype

	

; equals OFFFFH

5 .3.19 Expression Evaluation and Precedence

Expressions are evaluated according to the rules of operator pre-
cedence and order . Operations of highest precedence are performed
first . Operations of equal precedence are performed from left to
right. This default order of evaluation can be overridden using en-
closing parentheses . Operations in parentheses are always per-
formed before any adjacent operations . The following table lists the
precedence of all operators . Operators on the same line have equal
precedence .

0

0

0
Examples

8 / 4 * 2
8 / (4 * 2)
8 + 4 * 2

(8 + 4) * 2
8 EQ 4 AND 2 LT 3
8 EQ 4 OR 2 LT 3

5 .4 Forward References

Although MASM permits forward references to labels, variable
names, segment names, and other symbols, such references can lead
to assembly errors if not used properly . A forward reference is any
use of a name before it has been formally declared . For example, in
the JMP instruction below, the label "target" is a forward reference .

Operators

LENGTH, SIZE, WIDTH, MASK

PTR, OFFSET, SEG, TYPE, THIS
HIGH, LOW

MOD, SHL, SHR
+,-
EQ, NE, LT, LE, GT, GE
NOT
AND
OR, XOR
SHORT, .TYPE

Lowest

r

Imp target
may

	

ax, 0
target :

Whenever MASM encounters an undefined name in pass 1, it as-
sumes that the name is a forward reference . If only a name is given,
MASM makes assumptions about that name's type and segment re-

Operands and Expressions

equals 4
equals 1
equals 16
equals 24
equals 000011 (false)
equals OFFFFH (true)

Precedence

0 Highest
1
2
3
4
5
6
7
8
9
10
11
12
13

Microsoft Macro Assembler Reference Manual

gister, and uses these assumptions to generate code or data for the
statement . For example, in the JMP instruction above, MASM as-
sumes that "target" is an instruction label having NEAR type . It
generates three bytes of instruction code for the instruction .

MASM bases its assumptions on the statement containing the for-
ward reference . Errors can occur when these assumptions are in-
correct . For example, if "target" were really a FAR label and not a
NEAR label, the assumption made by MASM in pass 1 would cause a
phase error . In other words, MASM would generate five bytes of in-
struction code for the JMP instruction in pass 2 but only three in
pass 1 .

To avoid errors with forward references, the segment override (),
PTR, and SHORT operators should be used to override the assump-
tions made by MASM whenever necessary . The following guidelines
list when these operators should be used .

If a forward reference Is a variable that is relative to the ES,
SS, or CS register, then use the segment override operator (:) to
specify the variable's segment register, segment, or group .

Examples

mov

	

ax, ss :stacktop
inc

	

data :tlme[1]
add

	

ax, dgroup :_I

If the segment override operator is not used, MASM assumes that
the variable is DS relative .

If a forward reference is an instruction label in a JMP in-
struction, then use the SHORT operator if the instruction is less
than 128 bytes from the point of reference .

Example

jmp

	

short target

If SHORT is not used, MASM assumes that the instruction is
greater than 128 bytes away . This does not cause an error, but it
does cause MASM to generate an extra NOP instruction that is not
needed .

r nA

0

0

0

0

0

Operands and Expressions

If a forward reference Is an Instruction label In a CALL or
JMP instruction, then use the PTR operator to specify the label's
type .

Examples

call

	

far ptr print
imp

	

near ptr exit

MASM assumes that the label has NEAR type, so PTR need not be
used for NEAR labels . If the label has FAR type, however, and PTR
is not used, a phase error will result .

If the forward reference is a segment name with a segment
override operator, use the GROUP statement to associate the seg-
ment name with a group name, then use the ASSUME statement to
associate the group name with a segment register .

Example

dgroup segment stack
assume ss : dgroup

code segment

mov

	

ax, stack :stacktop

If you do not associate a group with the segment name, MASM may
ignore the segment override and use the default segment register for
the variable . This usually results in a phase error in pass 2 .

Microsoft Macro Assembler Reference Manual

5 .5 Strong Typing for Memory Operands
MASM carries out strict syntax checks for all instruction state-
ments, including strong typing for operands that refer to memory
locations . This means that any relocatable operand used in an in-
struction that operates on an implied data type must either have
that type, or have an explicit type override (PTR operator) .

For example, in the following program segment, the variable
"string'' is incorrectly used in an move instruction .

string db

	

"A message ."

mov

	

ax, string[l]

This statement will create an ''Operand types must match" error
since ''string'has BYTE type and the instruction expects a variable
having WORD type .

To avoid this error, the PTR operator must be used to override the
variable's type. The statement

mov

	

ax, WORD PTR string[1]

will assemble correctly and execute as expected .

0

0

0

Chapter 6
Global Declarations

0

6.1 Introduction 6-1

6 .2 PUBLIC Directive 6-2

6 .3 EXTRN Directive 6-3

6 .4 Program Example 6-4

S

0

0

0

6 .1 Introduction
The Global Declaration directives let a programmer define labels,
variables, and absolute symbols that can he accessed globally, that is,
from all modules in a program . Global declarations transform "local"
symbols (labels, variables, and other symbols that can be used only in
the source files in which they are defined) into "global" symbols that
are available to all other modules .

There are the following Global Declaration directives :

PUBLIC
EXTRN

The PUBLIC directive is used in public declarations . A public declara-
tion transforms a locally defined symbol into a global symbol, making
it available to other modules . The EXTRN directive is used in exter-
nal declarations . An external declaration makes a global symbol's
name and type known in a source file, letting the global symbol be used
in that file . Every global symbol must have a public declaration in ex-
actly one source file of the program . A global symbol can have external
declarations in any number of other source files . The following sec-
tions describe the Global Declaration directives in detail .

Global Declarations

6- 1

Microsoft Macro Assembler Reference Manual

6 .2 PUBLIC Directive

Syntax

PUBLIC name,,,

The PUBLIC directive makes the variable, label, or absolute symbol
given by name available to all other modules in the program . The
name must be the name of a variable, label, or absolute symbol defined
within the current source file . Absolute symbols, if given, can only
represent I- or 2-byte integer or string values .

MASM converts all lowercase letters in name to uppercase before
copying the name to the object file . The /ML and /MX options can be
used in the MASM command line to direct MASM to preserve lower-
case letters when copying to the object file . See Chapter 2 in the Micro-
soft Alacro Assembler User's Guide for more information .

Example

6-2

0

true
test

public true, test, start
=

	

OFFFFH 0db 1
start label far

• Syntax

6.3 EXTRN Directive

EXTRN name:type,,,

The EXTRN directive defines an external variable, label, or symbol
named name and whose type is type . An external item is any vari-
able, label, or symbol that has been publicly declared in another
module of the program .

The name must be the name of a variable, label, or symbol defined
in another module of the program and listed in a PUBLIC directive
of the corresponding source file . The type must match the type given
to the item in its actual definition . It can be any one of the follow-
ing :

BYTE

	

WORD
DWORD

	

QWORD
TBYTE
NEAR

	

FAR
ABS

The ABS type is reserved for symbols that represent absolute
numbers .

Although the actual address is not determined until link time, the
assembler may assume a default segment for the external item based
on where the EXTRN directive is placed in the module . If the direc-
tive is placed inside a segment, the external item is assumed to be
relative to that segment . In this case, the item's public declaration
(in some other module) must be in a segment having the same name
and attributes . If the directive is outside all segments, no assump-
tion is made about what segment the item is relative to, and the
item's public declaration can be in any segment in any module . In
either case, the segment override operator (:) can be used to override
an external variable's or label's default segment .

Example

extrn tagn :near
extrn varl :word, var2 :dword

Global Declarations

Microsoft Macro Assembler Reference Manual

6 .4 Program Example

The following source files illustrate a program that uses public and
external declarations to access instruction labels . The program con-
sists of two modules, named "startmod" and "printmod ." The
"startmod" module is the program's main module . Execution starts
at the instruction labeled "start" in "startmod," and passes to the
instruction labeled ''print" in "printmod" where a DOS system call
is used to print the message "Hello" at the system console . Execu-
tion then returns to the instruction labeled "exit'' in "startmod ."

Startmod Module :

NAME startmod
public start, exit
extrn main :near

stack segment

	

word public 'STACK'
dw

	

64 dup(?)
stack ends

data segment word public 'DATA'
data ends

code

	

segment byte public 'CODE'
assume cs :code, ds :data

start :
mov

	

ax, seg DATA

mov

	

ds, ax
jmp

	

print
exit :

mov

	

ah, 4ch
int

	

21h
code ends

end

	

start

6-4

0

0

0

0
Printmod M, dale :

NAME printmod
public print
extrn exit :near

data segment

	

word public 'DATA'
string db

	

"Hello .', 13, 10, "$"
data ends

code

	

segment byte public 'CODE'
assume cs :code, ds :data

print :
mov

	

dx, offset string
mov

	

ah, 9
int

	

21h
jmp

	

exit
code

	

ends

end

In this example, "startmod" publicly declares two symbols, "start"
and "exit," making the symbols available to the other source file in
the program . Both of these symbols are locally defined as instruc-
tion labels later in the source file, and therefore can be used as in-
struction labels in the other source file . The ''startmod" file also
contains an external declaration of the symbol "print ." This de-
claration defines "print" to be a near label and is assumed to have
been publicly declared in the other source file . The label is used in a
JMP instruction given later in the file .

The "printmod" file contains a public declaration of the symbol
''print'' and an external declaration of the symbol ''exit ." In this
case, "print'' is locally defined as a near label and matches the
external declaration given to it in "startmod ." The symbol "exit" is
declared to be a near label, matching its definition in "startmod ."

Before this program can be executed, these source files must be as-
sembled individually, then linked together using the system linker .

Global Declarations

S

S

0

Chapter 7
Conditional Assembly

0

7 .1 Introduction 7-1

7 .2 IF and IFE Directives 7-2

7 .3 IF1 and IF2 Directives 7-2

7 .4 IFDEF and IFNDEF Directives 7-3

7 .5 IFB and IFNB Directives 7-3

7 .6 IFIDN and IFDIF Directives 7-4

S

S

0

0

0

Conditional Assembly

7 .1 Introduction
The Conditional Assembly directives provide conditional assembly of
blocks of statements within a source file . There are the following con-
ditional directives :

IF
IFE
IF1
IF2
IFDEF
IFNDEF
IFB
IF NB
IFIDN
IFDIF
ELSE
ENDIF

The IF directives and the ENDIF and ELSE directives can be used to
enclose the statements to be considered for conditional assembly . The
conditional block takes the form :

IF
statements

ELSE
statements

ENDIF

where the statementscan be any valid statements, including other con-
ditional blocks . The ELSE directive is optional .

MASM assembles the statements in the conditional block only if the
condition that satisfies the corresponding IF directive is met . If the
conditional block contains an ELSE directive, however, MASM will as-
semble only the statements up to the ELSE directive . The statements
following the ELSE directive are assembled only if the IF condition is
not met . An ENDIF directive must mark the end of the conditional
block . No more than one ELSE for each IF directive is allowed .

Microsoft Macro Assembler Reference Manual

IF directives can be nested up to 255 levels . To avoid ambiguity, a
nested ELSE directive always belongs to the nearest, preceding IF
directive .

7 .2 IF and IFE Directives
Syntax

IF expression
IFE expression

The IF and IFE directives test the value of an expression . The IF direc-
tive grants assembly if expression is non-zero (true). The IFE directive
grants assembly if expression is 0 (false) . The expression must resolve
to an absolute value and must not contain forward references .

Example

if DEBUG
extrn dump :far
extrn trace :far
extrn breakpoint :far

end if

7 .3 IF1 and IF2 Directives

Syntax

IF1
IF2

The IF1 and IF2 directives test the current assembly pass . The IF1
directive grants assembly on pass 1 only . IF2 grants assembly on
pass 2 . The directives take no arguments .

0

0

0

0

0

0

%out Pass 1 Starting

7 .4 IFDEF and IFNDEF Directives

Syntax

IFDEF name
IFNDEF name

The IFDEF and IFNDEF directives test whether or not the given
name has been defined . The IFDEF directive grants . assembly if
name is a label, variable, or symbol . The IFNDEF directive grants
assembly if name has not yet been defined .

The name can be any valid name . Note that if name is a forward
reference, it is considered undefined on pass 1, but defined on pass 2 .
This is a frequent cause of phase errors .

Example

lfndef BUFFER
BUFFER db

	

10 dup(?)
endif

7 .5 IFB and IFNB Directives
Syntax

IFB < arg>
IFNB < arg>

The IFB and IFNB directives test the given arg . The IFB directive
grants assembly if arg is blank . The IFNB directive grants assembly
if arg is not blank . The arg can be any name, number, or expression .
The angle brackets (< >) are required .

Conditional Assembly

Microsoft Macro Assembler Reference Manual

The IFB and IFNB directives are intended to be used in macro defin-
itions . They can be used to control conditional assembly of state-
ments in the macro based on the parameters passed in the macro
call . In such cases, arg should be one of the dummy parameters list-
ed by the MACRO directive .

Examples

IFB <X>

This example tests the argument "<X> ." If this is in a macro de-
finition and no parameter was passed for X, the directive would
grant assembly .

IFNB < EXIT>

This example tests the argument "<&EXIT> ." This is assumed to
be in a macro definition . If no parameter is passed for EXIT, the
directive does not grant assembly .

7 .6 IFIDN and IFDIF Directives

Syntax

IFIDN < argl >, < arg2>
IFDIF < argl >, < arg2>

The IFIDN and IFDIF directives test argl and arg2. The IFIDN
directive grants assembly if the arguments are identical . The IFDIF
directive grants assembly if the arguments are different . The argu-
ments can be any names, numbers, or expressions . To be identical,
each character in argl must match the corresponding character in
arg2 . The angle brackets (< >) are required .

The IFIDN and IFDIF directives are intended to be used in macro
definitions . They can be used to control conditional assembly of
statements in the macro based on the parameters passed in the mac-
ro call . In such cases, the arguments should be dummy parameters
listed by the MACRO directive .

0

0

0

0
Examples

IFIDN <X>, <Y>

This example tests the arguments "<X>" and "<Y> ." If this is
in a macro definition and the parameters passed for X and Y are
identical, the directive grants assembly .

IFDIF < EXIT>, <CASE>

This example tests the arguments "<&-EXIT>" and "<CASE> ."
This is assumed to be in a macro definition . If the parameters
passed for EXIT and CASE are identical, the directive does not
grant assembly .

Conditional Assembly

0

0

0

Chapter 8
Macro Directives

0

8 .1 Introduction 8-1

8 .2 MACRO and ENDM Directives 8-2

8 .3 Macro Calls 8-4

8 .4 LOCAL Directive 8-5

8 .5 PURGE Directive 8-6

8 .6 REPT and ENDM Directives 8-7

8 .7 IRP and ENDM Directives 8-8

8 .8 III PC and ENDM Directives 8-10

8 .9 EXITM Directive 8-11

8 .10 Substitute Operator 8-12

8 .11 Literal Text Operator 8-13

8 .12 Literal Character Operator 8-1-1

8 .13 Expression Operator 8-14

8.14 Macro Comment 8-15

S

S

0

0

0

Macro Directives

8 .1 Introduction
This chapter explains how to create and use macros in your source
files . There are the following macro directives :

MACRO
LOCAL
PURGE
REPT
IRP
IRPC
EXITM
ENDM

The MACRO directive lets you write a named block of source state-
ments, then use that name in your source file to represent the state-
ments . MASM automatically replaces each occurrence of a macro
name with the statements given in the macro definition . This means
you can place a block of statements any where in your source file any
number of times by simply defining it once, then giving the name
where you need it . The LOCAL directive lets you define unique labels
for a macro, and the PURGE directive lets you control the macros you
define .

The REPT, IRP, and IRPC directives also let you create contiguous
blocks of repeated statements . You control the number of times the
statements are repeated . You can repeat them a given number of
times, once for each parameter in a list, or once for each character in a
string .

The macro directives use a special set of macro operators :

&

	

Ampersand
; ;

	

Double semicolon
!

	

Exclamation mark
Percent sign

When used in a macro definition, these operators carry out special
control operations, such as text substitution .

Microsoft Macro Assembler Reference Manual

8 .2 MACRO and ENDM Directives
Syntax

name MACRO dummy-parameter,,,
statements
ENDM

The MACRO and ENDM directives create a macro having the given
name and containing the given statements .

The name must be a valid name and must be unique . It is used in the
source file to invoke the macro . The dummy-parameteris a name that
acts as a placeholder for values to be passed to the macro when it is
called . Any number of dummy parameters can be given, but they must
all fit on one line . If you give more than one, you must separate them
with commas (,) . The statements are any valid MASM statements, in-
cluding other MACRO directives . Any number of statements can be
used . The dummy parameter can be used any number of times in these
statements .

A macro is "called" anytime the macro's name appears in a source file
(macros names in comments are ignored) . MASM copies the state-
ments in the macro definition to the point of call, replacing any dum-
my parameters in these statements with values passed in the call .
Dummy parameters are replaced according to their order in the defini-
tion . Thus, the dummy parameter occupying the fourth parameter
position in the macro definition is replaced by the fourth actual
parameter in the macro call .

Macro definitions can be nested . This means a macro can be defined
within another macro . MASM does not process nested definitions un-
til the outer macro has been called, therefore, nested macros cannot be
called until the outer macro has be called at least once . Macro defini-
tions can be nested to any depth . Nesting is limited only by the
amount of memory available when the source file is assembled .

Macro definitions can contain calls to other macros . These nested mac-
ro calls are expanded like any other macro call, but only when the
outer macro is called . A macro definition cannot contain a call to it-
self .

0

0

Macro Directives

Notes

Remember that MASNI replaces all occurrences of a dummy-
parameter's name, even if you do not intend it to . For example, if
you use a register name such as AX or Bli for a dummy, MASM re-
places all occurrences of that register name when it expands the
macro. If the macro definition contains statements that use the
register, not the dummy, the macro will be incorrectly expanded .

MASN1 assembles the statements in the macro only if the macro is
called, and only at the point they are inserted into the source file .
This means all addresses in the assembled code are relative to the
macro call, not the macro definition . The macro definition itself is
never assembled .

You must be careful when using the word MACRO after the TI-
TLE, StUBTTL, and NAME directives . Since the MACRO direc-
tive overrides these directives, placing the word immediately after
these directives causes MASN1 to begin to create macros named
TITLE, St'BTTL, and NAME . To avoid this problem, you should
alter the word MACRO in some way when using it in a title or
name . For example, add a hyphen to the word, "- MACRO ."

Examples

add

	

MACRO xx,yy,zz
mov

	

ax, xx
add

	

ax, yy
mov

	

zz, ax
ENDM

This example defines a macro named ''add'', that contains three
statements and uses three dummy parameters . The dummy parame-
ters are "xx,'' "yy," and "zz ." These parameters will be replaced
with actual values when the macro is called .

Microsoft Macro Assembler Reference Manual

8 .3 Macro Calls

Syntax

name I actual-parameter,,, I

A macro call directs MASM to copy the statements of the macro
name to the point of call and to replace any dummy parameters in
these statements with the corresponding actual-parameters . The
name must be the name of a macro defined earlier in the source file .
The actual-parameter can be any name, number, or other value . Any
number of actual parameters can be given, but they must all fit on
one line . Multiple parameters must be separated with commas,
spaces, or tabs .

MASM replaces the first dummy parameter with the first actual
parameter, the second with the second, and so on . If a macro call
has more actual parameters than dummy parameters, the extra ac-
tual parameters are ignored . If a call has fewer actual parameters,
any remaining dummy parameters are replaced with nothing . This
means MASM removes the dummy parameter name for the macro
statements, but does nothing else .

If you wish to pass a list of values as a single actual parameter, you
must place angle brackets (< >) around the list . The items in the
list must be separated by commas .

Examples

ALLOCBLOCK 1,2,3,4,5

This example passes five numeric parameters to the macro ALLOC-
BLOCK .

ALLOCBLOCK <1,2,3,4,5>

This example passes one parameter to ALLOCBLOCK. This param-
eter is a list of five numbers .

add

	

1, inc, linecount
This example passes three parameters to the macro ''add ." The first
parameter is a number, but the second and third are symbols .
MASM replaces the corresponding dummy parameters with exactly
what is typed here .

0

0

0

0

Note

The directive can be used only in a macro definition, and it must
precede all other statements in the definition .

Macro Directives

8 .4 LOCAL Directive

Syntax

LOCAL dummy-name,,,

The LOCAL directive creates unique names for use in macros . The
dummy-name is a name for a placeholder that is to be replaced by
the unique name when the macro is expanded . At least one dummy-
name is required . If you give more than one, you must separate the
names with commas . A dummy name can be used in any statement
within the macro .

MASM creates a new name for a dummy each time the macro is ex-
panded . The name has the form

??zzxx

where xxxx is a hexadecimal number in the range 0000 to FFFF .

The LOCAL directive is typically used to create unique labels for
macros . Normally, if a macro containing a label is used more than
once, MASM will display a multiply-defined label error message
since the same label will appear in both expansions . To avoid this
problem, all labels can be local dummy names . MASM guarantees
that these names will be replaced with unique names whenever the
macro is expanded, no matter how often the macro is expanded .

Q r

Microsoft Macro Assembler Reference Manual

Example

In this example, the LOCAL directive defines a dummy name "A"
that is replaced with a unique name each time the macro is expand-
ed . "A'' is used in two places in the macro : as a statement label, and
as the target of a JNZ instruction .

8 .5 PURGE Directive

Syntax

PURGE macro-name ,,,

The PURGE directive deletes the current definition of the macro
macro-name from memory . Any subsequent call to that macro
causes MASM to generate an error .

The PURGE directive is intended to clear memory space no longer
needed by a macro. If the macro-name is an instruction or directive
mnemonic, the directive restores its previous meaning .

The PURGE directive is often used with a "macro library" to let
you choose those macros from the library you really need in your
source file. A macro library is simply a file containing macro defini-
tions . You add this library to your source file using the INCLUDE
directive, then remove unwanted definitions using the PURGE
directive .

It is not necessary to PURGE a macro before redefining it . Any
redefinition of a macro automatically purges the previous definition .
Also, any macro can purge itself .

0

loop MACRO count, y
0LOCAL A

A :
mov
mov

ax,
ex,

y
count

inc
jnz
ENDM

ax
A

0
Examples

PURGE add

This example deletes the macro named ''add'' from the assembler's
memory .

PURGE maci, mac2, mac9

This example deletes the macros named "maci," "mac2," and
` mac9

8 .6 REPT and ENDM Directives

Syntax

REPT expression
statements

ENDM

• The REPT and ENDM directives define a block of statements that
are to be repeated expression number of times . The expression must
evaluate to a 16-bit unsigned number . It must not contain external
or undefined symbols. The statements can be any valid statements .

Example

X

	

=

	

0
REPT

	

10
X

	

=

	

X+1
DB

	

X
ENDM

This example repeats the = and DB directives 10 times . The result-
ing statements create 10 bytes of data whose values range from 1 to
10 .

Macro Directives

Microsoft Macro Assembler Reference Manual

8 .7 IRP and ENDM Directives
Syntax

IRP dummy, < parameter . . . >
statements

ENDM

The IRP and ENDM directives define a block of statements that are
to be repeated once for each parameter in the list enclosed by angle
brackets (< >) . The dummy is a name for a placeholder to be re-
placed by the current parameter . The parameter can be any legal
symbol, string, numeric, or character constant . Any number of
parameters can be given. If you give more than one, you must
separate them with commas . The statements can be any valid as-
sembler statements . The dummy can be used any number of times
in these statements .

When MASM encounters an IRP directive, it makes one copy of the
statements for each parameter in the enclosed list . While copying
the statements, it replaces all occurrences of dummy in these state-
ments with the current parameter . If a null parameter (<>) is
found in the list, the dummy is replaced with a null value . If the
parameter list is empty, the IRP directive is ignored and no state-
ments are copied .

Example

This example repeats the DB directive 10 times, once for each
number in the list. The resulting statements create 10 bytes of data
having the values 1 through 10 .

0

0

0

IRP X,<1,2,3,4,5,6,7,8,9,10>
DB
ENDM

X

0

0

Notes

If an empty parameter is found in the list, MMASM repeats the
statements once, replacing the dummy with no value . If the en-
tire list is empty, MMASMM skips the repeat block .

Macro Directives

If an IRP directive is used inside a macro definition and the
parameter list of the IRP directive is also a dummy parameter of
the macro, you must enclose that dummy parameter within an-
gle brackets . For example, in the following macro definition, the
dummy parameter "X" is used as the parameter list for the IRP
directive :

If this macro is called with

allot <1,2,3,4,5,6,7,8,9,10>

the macro expansion becomes

That is, the macro removes the brackets from the actual param-
eter before replacing the dummy . This means you must provide
the angle brackets for the parameter list yourself .

alloc MACRO

ENDM

X
IRP
DB
ENDM

Y,<X>
Y

IRP Y,<1,2,3,4,5,6,7,8,9,10>
DB
ENDM

Y

Microsoft Macro Assembler Reference Manual

8 .8 IRPC and ENDM Directives

Syntax

IRPC dummy, string
statements

ENDM

The IRPC and ENDM directives define a block of statements that
are repeated once for each character in the string . The dummy is a
name for a placeholder to be replaced by the current character in the
string . The string can be any combination of letters, digits, and oth-
er characters. The string should be enclosed with angle brackets (<
> if it contains spaces, commas, or other separating characters .
The statements can be any valid assembler statements . The dummy
can be used any number of times in these statements .

When MASM encounters an IRPC directive, it makes one copy of
the statements for each character in the string . While copying the
statements, it replaces all occurrences of dummy in these state-
ments with the current character .

Example

IRPC

	

X,0123456789
DB

	

X+1
ENDM

This example repeats the DB directive 10 times, once for each char-
acter in the string "0123156789 ." The resulting statements create 10
bytes of data having the values 1 through 10 .

9

0

0

0

8 .9 EXITM Directive

Syntax

EXITNI

The EXITh1 directive directs NIASM to terminate macro or repeat
block expansion and continue assembly with the next statement
after the macro call or repeat block . The directive is typically used
with IF directives to allow conditional expansion of the last state-
ments in a macro or repeat block .

When an EXITM is encountered, MASM exits the macro or repeat
block immediately . Any remaining statements are not processed . If
EXITM is encountered in a macro or repeat block nested in another,
MASM returns to expanding the outer level block .

Example

alloc MACRO times
x =

	

0
REPT times
IFE

	

x-OFFH
EXITM

ELSE
DB

	

x
END IF
x =

	

x+1
ENDM

ENDM

This example defines a macro that creates no more than 255 bytes of
data. The macro contains an IFE directive that checks the expres-
sion "x-OFFh" . When this expression is 0 (x equal to 255), the EX-
ITM directive is processed and expansion of the macro stops .

Macro Directives

Microsoft Macro Assembler Reference Manual

8 .10 Substitute Operator

Syntax

&dummy-parameter
or
dummy-parameter&

The substitute operator (&) forces MASM to replace the given
dummy-parameter with its corresponding actual parameter value .
The operator is used anywhere a dummy parameter immediately
precedes or follows other characters, or anytime the parameter ap-
pears in a quoted string .

Example

errgen

	

MACRO

	

Y, X
error&X

		

db

	

'Error .tY - &X'
ENDM

In this example, MASM replaces &X with the value of the actual
parameter passed to the macro "errgen ." If the macro is called with
the statement

errgen 1, wait

the macro is expanded to

errorwait

	

db

	

'Error 1 - wait'

Note

For complex, nested macros, you can use extra ampersands to
delay the actual replacement of a dummy parameter . In general,
you need to supply as many ampersands as there are levels of
nesting .

For example, in the following macro definition, the substitute
operator is used twice with Z to make sure its replacement oc-
curs while the IRP directive is being processed .

0

0

0

0

alloc MACRO X
IRP

	

Z,<1,2,3>
X&&Z DB

	

Z
ENDM

ENDM

In this example, the dummy parameter "X" is replaced immedi-
ately when the macro is called . The dummy parameter "Z,"
however, is not replaced until the IRP directive is processed .
This means the parameter is replaced once for each number in
the IRP parameter list . If the macro is called with

alloc VAR

the expanded macro will be

VAR1 DB 1
VAR2 DB 2
VAR3 DB

	

3

8 .11 Literal Text Operator
Syntax

< text>

The literal text operator directs MASM to treat text as a single
literal . The operator is most often used with macro calls and the
IRP directive to ensure that values in a parameter list are treated as
a single parameter .

The literal text operator can also be used to force MASM to treat
special characters such as ; or & literally . For example, the semi-
colon inside angle brackets < ;> becomes a semicolon, not a com-
ment indicator .

MASM removes one set of angle brackets each time the parameter is
used in a macro . When using nested macros, you will need to supply
as many sets of angle brackets as there are levels of nesting .

Macro Directives

Microsoft Macro Assembler Reference Manual

8 .12 Literal Character Operator
Syntax

!character

The literal character operator forces MASM to treat character as a
literal . For example, you can force MASM to treat special charac-
ters such as ; or & literally . Therefore, ! ; is equivalent to < ;> .

8 .13 Expression Operator
Syntax

text

The expression operator (%) causes MASM to treat text as an ex-
pression . MASM computes the expression's value, using numbers of
the current radix, and replaces text with this new value . The text
must represent a valid assembler expression .

The expression operator is typically used in macro calls where the
programmer needs to pass the result of an expression to the macro
instead of the actual expression .

Example

In this example, the macro call

printe <syml + sym2 = >,%(syml + sym2)

passes the text literal ''syml + sym2 =" to the dummy parameter
"msg.'' It passes the value 300 (the result of the expression "syml +
sym2") to the dummy "n ."

0

printe MACRO
%OUT
ENDM

msg,n
* msg,n

syml EQU 100

sym2 EQU
printe

200
<syml + sym2 _ >,%(symi + sym2)

0

0

8 .14 Macro Comment

Syntax

; ;text

The macro comment is any text in a macro definition that does not
need to be copied in the macro expansion . All text following the dou-
ble semicolon (; ;) is ignored by the assembler and will appear only in
the macro definition when the source listing is created .

Regular comments, unlike macro comments, can be copied to each
macro expansion by specifying the XALL directive in the source file .

Macro Directives

S

0

Chapter 9
File Control

9 .10 .SFC'OND, .LFCOND,
and TFCOND Directives 9-7

9 .11 .1-ALL, .XALL, and SALE Directives 0-8

9 .12 .CHEF and .XCREF Directives 9-9

9 .1 Introduction 0-1

9 .2 INCLUDE Directive 0-1

9 .3 .RADIX Directive 9-2

9 .4 'oOUT Directive 9-3

9 .5 NAME Directive 9- 1

9 .6 TITLE Directive 9-4

9 .7 SUBTITLE Directive 9-5

9 .8 PAGE Directive 9-5

9 .9 LIST and .XLIST Directives 9-(i

S

0

0

0

File Control

9 .1 Introduction
This chapter describes File Control directives . These directives pro-
vide control of the source, object, and listing files read and created by
MASNI during an assembly .

There are the following File Control directives :

INCLUDE

	

Include a Source File
.RADIX

	

Alter Default Input Radix
¶ OUT

	

Display Message on Console
NAME

	

Copy Name to Object File
TITLE

	

Set Program Listing Title
St 1BTTL

	

Set Program Listing Subtitle
PAGE

	

Set Program Listing Page Size
LIST

	

List Statements in Program Listing
.XLIST

	

Suppress Listing Statements
.LFCOND

	

List False Conditional in Program Listing
.SFCOND

	

Suppress False Conditional Listing
.TFCOND

	

Toggle False Conditional Listing
.LALL

	

List Macro Expansions in Program Listing
.SALL

	

Suppress Listing Macro Expansion
.XALL

	

Exclude Comments from Macro Listing
.CREF

	

List Symbols in Cross Reference File
.XCREF

	

Suppress Symbol Listing

The following sections describe the directives in detail .

9 .2 INCLUDE Directive
Syntax

INCLUDE filename

The INCLUDE directive inserts source code from the source file given
by filename into the current source file during assembly . The filename
must name an existing file . A pathname must be given if the file is not
in the current working directory . If the named file is not found,
MASM displays an error message and stops .

0 1

Microsoft Macro Assembler Reference Manual

When NIASM encounters an INCLUDE directive, it opens the named
file and begins to assemble its source statements immediately . When
all statements have been read, MASM resumes with the next state-
ment following the directive .

Nested INCLUDE directives are allowed . This means a file named by
an INCLUDE directive can contain its own INCIA'DI ; directives .

When a program listing is created, MASMI marks included statements
with the letter C .

Examples

include entry
include include\record
include \usr\include\as\stdio

9 .3 RADIX Directive

Syntax

.RADIX expression

The RADIX directive sets the default input radix for numbers in
the source file . The expression defines whether the numbers are
binary, octal, decimal, hexadecimal, or numbers of some other base .
It must be within the range 2 to 16. The following lists some com-
mon values :

2

	

- binary
8

	

- octal
10

	

- decimal
16

	

- hexadecimal

The expression is always considered a decimal number regardless of
the current default radix .

Examples

radix 16
radix 2

0

0

0

0

0

Notes

The RADIX directive does not affect the DD, DQ, or DT direc-
tives . Numbers entered in the expression of these directives are
always evaluated as decimal unless a numeric suffix is appended
to the value .

9 .4 %OUT Directive
Syntax

% OUT text

The %OUT directive directs MASM to display the text at the user's
terminal. The directive is useful for displaying messages during
specific points of a long assembly .

The ¶OUT directive generates output for both assembly passes .
The IF1 and IF2 directives can be used to control when the directive
is processed .

%OUT First Pass -- Okay

File Control

The RADIX directive does not affect the optional radix specif-
iers, B and D, used with integers numbers . When B or D ap-
pears at the end of any integer, it is always considered to be a
radix specifier even if the current input radix is 16 . This means
that numbers such as ''Oabcd'' and "234b'' are illegal even when
the input radix is set to 16 . ("a," "b," and ''c'' are not legal di-
gits for a decimal number ; similarly, "2," ''3,'' and "4" are not
legal for a binary number .)

Microsoft Macro Assembler Reference Manual

9 .5 NAME Directive
Syntax

NAME module-name

The NAME directive sets the name of the current module to
module-name. A module name is used by the linker when displaying
error messages .

The module-name can be any combination of letters and digits .
Although the name can be any length, only the first six characters
are used . The name must be unique and not be a reserved word .

Example

name main

If the NAME directive is not used, MASM creates a default module
name using the first six characters of a TITLE directive . If no TI-
TLE directive is found, the default name ''A" is used .

9 .6 TITLE Directive
Syntax

TITLE text

The TITLE directive defines the program listing title . It directs
MASM to copy text to the first line of each new page in the program
listing . The text can be any combination of characters up to 60 char-
acters in length .

No more than one TITLE directive per module is allowed .

Example

title PROG1 -- 1st Program

Note that the first six non-blank characters of the title will be used
as the module name if the module does not contain a NAME direc-
tive .

0

9

• Syntax

0

9 .7 SUBTITLE Directive

SUBTTL text

The SUBTTL directive defines the listing subtitle . It directs MASM
to copy text to the line immediately after the title on each new page
in the program listing . The text can be any combination of charac-
ters . Only the first 60 characters are used . If no characters are
given, the subtitle line is left blank .

Any number of SUBTTL directives can be given in a program . Each
new directive replaces the current subtitle with the new text .

Examples

subttl

	

SPECIAL I/0 ROUTINE

This example creates the subtitle "SPECIAL I/O ROUTINE ."

subttl

This example creates a blank subtitle .

9 .8 PAGE Directive

Syntax

PAGE length, width
PAGE +
PAGE

The PAGE directive sets the line length and character width of the
program listing, increments section page numbering, or generates a
page break in the listing .

If a length and width are given, PAGE sets the maximum number of
lines per page to length, and the maximum number of characters per
line to width . The length must be in the range 10 to 255 . The de-
fault is 50 . The width must be in the range 60 to 132 . The default is
80 . A width can be given without a length as long as the comma (,)
precedes the width .

File Control

Microsoft Macro Assembler Reference Manual

If a plus sign (+) is given, PAGE increments the section number and
resets the page number to 1 . Program listing page numbers have the
form :

section-minor

By default, page numbers start at 1-1 .

If no argument is given, PAGE starts a new output page in the pro-
gram listing . It copies a form feed character to the file and gen-
erates a title and subtitle line .

Examples

PAGE

This example creates a page break .

PAGE 58,60

This example sets the maximum page length to 58 lines, and the
maximum width to 60 characters .

PAGE ,132

This example sets the maximum width to 132 characters . The
current page length remains unchanged .

PAGE +

This example increments the current section number and sets the
page number to 1 .

9 .9 LIST and .XLIST Directives

Syntax

.LIST

.XLIST

The LIST and .XLIST directives control which source program lines
are copied to the program listing . The .XLIST directive suppresses
copying of subsequent source lines to the program listing . The LIST

0

0

0

0

0

File Control

directive restores copying . The directives are typically used in pairs
to prevent a section of a given source file from being copied to the
program listing .

The .XLIST directive overrides all other listing directives .

Example

.XLIST
;listing suspended here

.LIST
;listing resumes here

9 .10 SFCOND LFCOND,
and .TFCdND Directives

Syntax

.SFCOND

.LFCOND

.TFCOND

The SFC'OND and .LFCOND directives determine whether or not
conditional blocks should be listed . The SFC'OND directive
suppresses the listing of any subsequent conditional blocks whose IF
condition is false . The LFC'OND directive restores the listing of
these blocks . The directives can be used like .LIST and .XLIST to
suppress listing of the conditional blocks in sections of a program .

The TFCONI) directive sets the default mode for listing of condi-
tional blocks . This directive works in conjunction with the -X op-
tion of the assembler . If -X is not given in the NASNI command
line, TFC'OND causes false conditional blocks to be listed by de-
fault . If -X is given, .TFCOND causes false conditional blocks to be
suppressed .

0 7

Microsoft Macro Assembler Reference Manual

Examples

9 .11 LALL, .XALL, and .SALL Directives
Syntax

.LALL

.XALL

.SALL

The LALL, XALL, and SALL directives control the listing of the
statements in macros that have been expanded in the source file .
MASM always lists the full macro definition, but lists macro expan-
sions only if the appropriate directive is set .

The .LALL directive causes MASM to list all the source statements
in a macro, including comments preceded by a single semicolon (;)
but not those preceded by a double semicolon (; ;) . The XALL direc-
tive lists only those source statements that generate code or data, so
comments are ignored .

The SALL directive suppresses listing of all macro expansions .
That is, MASM copies the macro call to the source listing, but does
not copy the source lines that the call generates .

.XALL is in effect when MASM first begins execution .

0

0

.SFCOND
IF 0 0
ENDIF
.LFCOND
IF 0

END IF

;This block will not be listed .

;This block will be listed .

0

9 .12 CREF and .XCREF Directives

Syntax

.CREF

.XCREF name,,,

The CREF and XCREF directives control the generation of cross
references for the macro assembler's cross-reference file . The
.XCREF directive suppresses the generation of label, variable, and
symbol cross references . The CREF function restores this genera-
tion .

If a name is given with XCREF, only that label, variable, or symbol
will be suppressed . All other names will be cross referenced . The
named label, variable, or symbol will also be omitted from the sym-
bol table of the program listing . If two or more names are be given,
they must be separated with commas .

Example

.XCREF one, two, three

File Control

;No macros listed here .

;Macros listed in full .

;Macros listed by generated code or data only .

0

Appendix A
Instruction Summary

0

A .1 Introduction A-1

A .2 8086 Instructions A-2

A .3 8087 Instruction Mnemonics A-7

A .4 186 Instruct ion Mnemonics A-t)

A .5 286 Non-Prot ect ed
Instruction Mnemonics A-10

A .6 286 Protected Instruction Mnemonics A-10

A .7 287 Instruct Ion Mnemonics A-I1

S

0

0

Instruction Summary

A.1 Introduction
MASM is an assembler for the 8086/186/286 family of microproces-
sors, capable of assembling instructions for the 8086, 186, and 286 mi-
croprocessors and the 8087 and 287 floating point coprocessors .
MASM will assemble any program written for an 8086, 186, or 286 mi-
croprocessor environment as long as the program uses the instruction
syntax described in this chapter .

By default, MASM recognizes 8086 and 8087 instructions only . If a
source program contains 186, 286, or 287 instructions, one or more In-
struction Set directives must be used in the source file to enable assem-
bly of the instructions . The following sections list the syntax of all in-
structions recognized by MASM and the Instruction Set directives .

Abbreviations used in the syntax descriptions are :

Symbol Meaning
accum

	

accumulator : AX or AL
reg

	

byte or word register
byte : AL, AH, BL, BH, CL, CH, DL, DH
word : AX, BX, CX, DX, SI, DI, BP, SP

segreg

	

segment register : CS, DS, SS, ES
r/m

	

general operand : register, memory address, indexed
operand, based operand, or based indexed operand

immed

	

8- or 16-bit immediate value : constant or symbol
mem

	

memory operand : label, variable, or symbol
label	instruction label

Microsoft Macro Assembler Reference Manual

A.2 8086 Instructions

The following is a complete list of the 8086 instructions . MASM as-
sembles all 8086 instructions by default .

Syntax
AAA
AAD
AAM
AAS
ADC accum, immed
ADC r/m, immed
ADC r/m, reg
ADC reg, r/m
ADD accum, immed
ADD r/m, immed
ADD r/m, reg
ADD reg, r/m
AND accum, immed
AND r/m, immed
AND r/m, reg
AND reg, r/m
CALL label
CALL r/m
CBW
CLC
CLD
CLI
CMC
CMP accum, immed
CMP r/m, immed
CMP r/m, reg
CMP reg, r/m
CMPS src, dent
CMPSB
CMPSW
CWD
DAA
DAS
DEC r/m
DEC reg
D IV r/m
ESC immed, r/m
HLT

Action
ASCII adjust for addition
ASCII adjust for division
ASCII adjust for multiplication
ASCII adjust for subtraction
Add immediate with carry to accumulator
Add immediate with carry to operand
Add register with carry to operand
Add operand with carry to register
Add immediate to accumulator
Add immediate to operand
Add register to operand
Add operand to register
Bitwise And immediate with accumulator
Bitwise And immediate with operand
Bitwise And register with operand
Bitwise And operand with register
Call instruction at label
Call instruction indirect
Convert byte to word
Clear carry flag
Clear direction flag
Clear interrupt flag
Complement carry flag
Compare immediate with accumulator
Compare immediate with operand
Compare register with operand
Compare operand with register
Compare strings
Compare strings byte for byte
Compare strings word for word
Convert word to double word
Decimal adjust for addition
Decimal adjust for subtraction
Decrement operand
Decrement 16-bit register
Divide accumulator by operand
Escape with 6-bit immediate and operand
Halt

0

0

0

0

IDLY r/m
IMUL r/m
IN accum, immed
IN accum,DX
INC r/m
INC reg
INT 3
INT immed
INTO
IRET
JA label
JAE label
JB label
JBE label
JC label
JCXZ label
JE label
JG label
JGE label
JL label
JLE label
JMP label
JMP r/m
JNA label
JNAE label
JNB label
JNBE label
JNC label
JNE label
JNG label
JNGE label
JNL label
JNLE label
JNO label
JNP label
JNS label
JNZ label
JO label
JP label
JPE label
JPO label
JS lahrl
JZ lahrl
LAHF

Instruction Summary

Integer divide accumulator by operand
Integer multiply accumulator by operand
Input from port (8-bit immediate)
Input from port given by DX
Increment operand
Increment 16-bit register
Software interrupt 3 (encoded as one byte)
Software Interrupt 0 through 255
Interrupt on overflow
Return from interrupt
Jump on above
Jump on above or equal
Jump on below
Jump on below or equal
Jump on carry
Jump on CA zero
Jump on equal
Jump on greater
Jump on greater or equal
Jump on less than
Jump on less than or equal
Jump to instruction at label
Jump to instruction indirect
Jump on not above
Jump on not above or equal
Jump on not below
Jump on not below or equal
Jump on no carry
Jump on not equal
Jump on not greater
Jump on not greater or equal
Jump on not less than
Jump on not less than or equal
Jump on not overflow
Jump on not parity
Jump on not sign
Jump on not zero
Jump on overflow
Jump on parity
Jump on parity even
Jump on parity odd
Jump on sign
Jump on zero
Load AH with flags

Microsoft Macro Assembler Reference Manual

LDS r/m
LEA r/m
LES r/m
LOCK
LODS src
LODSB
LODSW
LOOP label
LOOPE label
LOOPNE label
LOOPNZ label
LOOPZ label
MOV accurn, mem
MOV mem, accum
MOV r/m, immed
MOV r/m, reg
MOV r/m, segreg
MOV reg, immed
MOV reg, r/m
MOV segreg, r/rn
MOVS dent, src
MOVSB
MOVSW
MUL r/m
NEG r/m
NOP
NOT r/m
OR accurn, imined
OR r/m, immed
OR r/m, reg
OR reg, r/rn
OUT DX, accum
OUT immed, accum
POP r/m
POP rep
POP segreg
POPF
PUSH r/m
PUSH rep
PUSH segreg
PUSHF
RCL r/m, 1
RCL r/m, CL
RCR r/m,1

A 4

Load operand into DS
Load effective address of operand
Load operand into ES
Lock bus
Load string
Load byte from string into AL
Load word from string into AX
Loop
Loop while equal
Loop while not equal
Loop while not zero
Loop while zero
Move memory to accumulator
Move accumulator to memory
Move immediate to operand
Move register to operand
Move segment register to operand
Move immediate to register
Move operand to register
Move operand to segment register
Move string
Move string byte by byte
Move string word by word
Multiply accumulator by operand
Negate operand
No operation
Invert operand bits
Bitwise Or immediate with accumulator
Bitwise Or immediate with operand
Bitwise Or register with operand
Bitwise Or operand with register
Output to port given by DX
Output to port (8-bit immediate)
Pop 16-bit operand
Pop 16-bit register from stack
Pop segment register
Pop flags
Push 16-bit operand
Push 16-bit register onto stack
Push segment register
Push flags
Rotate left through carry by I bit
Rotate left through carry by CL
Rotate right through carry by 1 bit

0

9

0

0

0

RCR r/m, CL
REPE
REP NE
REPNZ
REPZ
RET [roamed]
ROL r/m, 1
ROL r/m, CL
ROR r/m, 1
ROR r/m, CL
SAHF
SAL r/m, 1
SAL r/n, CL
SAR r/m, 1
SAR r/m, CL
SBB accum, immed
SBB r/m, immed
SBB r/m, reg
SBB reg, r/m
SCAS deet
SCASB
SCASW
SHL r/m, 1
SHL r/m, CL
S HR r/m, 1
S HR r/in, CL
STC
STD
STI
STOS de ,, t
STOSB
STOSW
SUB accum, immrd
SUB r/m, immed
SUB r/m, reg
SUB reg, r/m
TEST aceum, immed
TEST r/m, immed
TEST r/m, reg
TEST reg, r/m
WAIT
XCHG accum, reg
XCHG r/m, reg
XCHG reg, accum

Instruction Summary

Rotate right through carry by CL
Repeat if equal
Repeat if not equal
Repeat if not zero
Repeat if zero
Return after popping bytes from stack
Rotate left by 1 bit
Rotate left by CL
Rotate right by 1 hit
Rotate right by CL
Store All into flags
Shift arithmetic left by 1 bit
Shift arithemetic left by CL
Shift arithmetic right by I bit
Shift arithmetic right by CL
Subtract immediate and carry flag
Subtract immediate and carry flag
Subtract register and carry flag
Subtract operand and carry flag
Scan string
Scan string for byte in AL
Scan string for word in AX
Shift left by 1 bit
Shift left by CL
Shift right by 1 bit
Shift right by CL
Set carry flag
Set direction flag
Set interrupt flag
Store string
Store byte in AL at st ring
Store word in AX at string
Subtract imeediate from accumulator
Subtract immediate from operand
Subtract register from operand
Subtract operand from register
Compare immediate bits with accumulator
Compare immediate bits with operand
Compare register bits with operand
Compare operand bits with register
Wait
Exchange accumulator with register
Exchange operand with register
Exchange register with accumulator

Microsoft Macro Assembler Reference Manual

The String instructions (CMPS, LODS, MOVS, SCAS, and STOS) use
the DS, SI, ES, and DI registers to compute operand locations . Source
operands are assumed to be at DS :[SI] ; destination operands at
ES :[DI] . The operand type (BYTE or WORD) is defined by the in-
struction mnemonic . For example, CMPSB specifies BYTE operands
and CMPSW specifies WORD operands . For the CMPS, LODS,
MOVS, SCAS, and STOS instructions, the src and dest operands are
dummy operands that define the operand type only . The offsets asso-
ciated with these operands are not used . The src operand can also be
used to specify a segment override . The ES register for the destination
operand cannot be overridden .

Examples

The REP, REPE, REPNE, REPNZ, or REPZ instructions provide a
way to repeatedly execute a String instruction for a given count or
while a given condition is true. If a Repeat instruction immediately
precedes a String instruction (both instructions must be on the same
line), the instructions are repeated until the specified repeat condi-
tion is false, or the CA register is equal to zero . The Repeat instruc-
tion decrements CX by one for each execution .

Example

mov

	

cx, 10
rep

	

scasb

In this example, SCASB is repeated ten times .

0

Imps
lods

word
byte

ptr
ptr

string,
string

word ptr es :0 0
mov byte ptr es :O, byte ptr string

XCHG reg, r/m
XLAT mcm
XOR accum, immed
XOR r/m, immed

Exchange register with operand
Translate
Bitwise Xor immediate with accumulator
Bitwise Xor immediate with operand 0

XOR r/m, reg
XOR reg, r/m

Bitwise Xor register with operand
Bitwise Xor operand with register

0

0

Syntax
F2XM1
FABS
FADD
FADD fn rm
FADD ST, ST(t)
FADD ST(), ST
FADDP ST i), ST
FBLD in r»t
FBSTP ntem
FCHS
FCLEX
FCOM
FCOM ST
FCOM ST(,)
FCOMP
FCOMP ST
FCOMP ST()
FCOMPP
FDECSTP
FDISI
FDIV
FDIV nu in
FDIV ST, ST(i)
FDIV ST(i), ST
FDIVP ST(i), ST
FDIVR
FDIVR nrr m

FDIVR ST, ST(i)
FDIVR ST(i), ST
FDIVRP ST(i), ST
FENI
FFREE
FFREEST
FFREE ST()
FIADD m c tit

FICOM inrm
FICOMP mem
FIDIV mem

Instruction Summary

A.3 8087 Instruction Mnemonics
The following is a list of the 8087 instructions . MASH assembles all
8087 instructions by default .

Action
Calculate 2x-1
Take absolute value of top of stack
Add real
Add real from memory
Add real from stack
Add real to stack
Add real and pop stack
Load 10-byte packed decimal on stack
Store 10-byte packed decimal and pop
Change sign on the top stack element
Clear exceptions after WAIT
Compare real
Compare real with top of stack
Compare real with stack
Compare real and pop stack
Compare real with top of stack and pop
Compare real with stack and pop stack
Compare real and pop stack twice
Decrement stack pointer
Disable interrupts after AWAIT
Divide real
Divide real from memory
Divide real from stack
Divide real in stack
Divide real and pop stack
Reversed real divide
Reverse real divide from memory
Reverse real divide from stack
Reverse real divide in stack
Reversed real divide and pop stack twice
Enable interrupts after AWAIT
Free stack element
Free top of stack element
Free ith stack element
Add 2 or 4-byte integer
2 or 4-byte integer compare
2 or 4-byte integer compare and pop stack
2 or 4-byte integer divide

Microsoft Macro Assembler Reference Manual

FIDIVR mem
FILD lnem
FIMUL mem
FINCSTP
FINIT
FIST mem
FISTP mem
FISUB inem
FISUBR mem
FLD mem
FLD1
FLDCW mem
FLDENV mem
FLDL2E
FLDL2T
FLDLG2
FLDLN2
FLDPI
FLDZ
FMUL
MUL morn
FMUL ST, ST(i)
FMUL ST(), ST
FMULP ST(i), ST
FNCLEX
FNDISI
FNENI
FNINIT
FNOP
FNSAVE mem
FNSTCW mem
FNSTENV mem
FNSTSW mem
FPATAN
FPREM
FPTAN
FRNDINT
FRSTOR mem
FSAVE mini
FSCALE
FSQRT
FST
FST ST
FST ST(i)

Reversed 2 or 4-byte integer divide
Load 2, 4, or 8-byte integer on stack
2 or 4-byte integer multiply
Increment stack pointer
Initialize processor after WAIT
Store 2 or 4-byte integer
Store 2, 4, or 8-byte integer and pop stack
2 or 4-byte integer subtract
Reversed 2 or 4-byte integer subtract
Load 4, 8, or 10-byte real on stack
Load +1.0 onto top of stack
Load control word
Load 8087 environment (14-bytes)
Load loge onto top of stack
Load log,10 onto top of stack
Load logl 2 onto top of stack
Load loge4 onto top of stack
Load pi onto top of stack
Load +0 .0 onto top of stack
Multiply real
Multiply real from memory
Multiply real from stack
Multiply real to stack
Multiply real and pop stack
Clear exceptions with no WAIT
Disable interrupts with no WAIT
Enable interrupts with no WAIT
Initialize processor, with no WAIT
No operation
Save 8087 state (94 bytes) with no WAIT
Store control word with no WAIT
Store 8087 environment with no WAIT
Store 8087 status word with no WAIT
Partial arctangent function
Partial remainder
Partial tangent function
Round to integer
Restore 8087 state (94 bytes)
Save 8087 state (91 bytes) after WAIT
Scale
Square root
Store real
Store real from top of stack
Store real from stack

is

0

0

0

0

FSTCW mum
FSTENV mem
FSTP mem
FSTSW mem
FSUB
FSUB mem
FSUB ST, ST(,)
FSUB ST(i), ST
FSUBP ST(i), ST
FSUBR
FSUBR mum
FSUBR ST, ST(i)
FSUBR ST(,), ST
FSUBRP ST(i), ST
FTST
FWAIT
FXAM
FXCH
FFREE ST
FFREE ST(i)
FXTRACT
FYL2X
FYL2PI

A.4 186 Instruction Mnemonics

The 186 instruction set consists of all 8086 instructions plus the fol-
lowing instructions . The .186 directive can be used to enable these
instructions for assembly .

Syntax
BOUND reg, mem
ENTER immedl6, immedS
INS mum, DX
INSB mum, DX
INSW in(tit, DX
LEAVE
OUTS DX, m e m
OUTSB DX, mun
OUTSW DX, mrm
PUSHA
POPA

Instruction Summary

Store control word with WAIT
Store 8087 environment after WAIT
Store 4, 8, or 10-byte real and pop stack
Store 8087 status word after WAIT
Subtract real
Subtract real from memory
Subtract real from stack
Subtract real to stack
Subtract real and pop stack
Reversed real subtract
Reversed real subtract from memory
Reversed real subtract from stack
Reversed real subtract in stack
Reversed real subtract and pop stack
Test top of stack
Wait for last 8087 operation to complete
Examine top of stack element
Exchange contents of stack elements
Exchange top of stack element
Exchange top of stack and ith element
Extract exponent and significand
Calculate Y log,,x
Calculate Y log,`(x+1)

Action
Detect value out of range
Enter procedure
Input string from port DX
Input byte string from port DX
Input word string from port I)X
Leave procedure
Output byte/word/string to port DX
Output byte string to port DX
Output word string to port DX
Push all registers
Pop all registers

n 0

Microsoft Macro Assembler Reference Manual

A.5 286 Non-Protected Instruction Mnemonics
The 286 non-protected instruction set consists of all 8086 instruc-
tions plus the following instructions . The .286c directive can be
used to enable these instructions for assembly .

0
Syntax

	

Action
BOUND reg, mem

	

Detect value out of range
ENTER immedl6, immedS Enter procedure
INS mint, DX

	

Input string from port DX
INSB mcin, DX

	

Input byte string from port DX
INSW m(m, DX

	

Input word string from port DX
LEAVE

	

Leave procedure
OUTS DX, mrm

	

Output byte/word/string to port DX
OUTSB DX, mem

	

Output byte string to port DX
OUTSW DX, mem

	

Output word string to port DX
PUSHA

	

Push all registers
POPA

	

Pop all registers

A.6 286 Protected Instruction Mnemonics
The 286 protected instruction set consists of all 8086 and 286 non-
protected instructions plus the following instructions . The .286p
directive can be used to enable these instructions for assembly .

0
Syntax Action
ARPL mem, reg
CLTS
LAR reg, mem
LGDT mem
LIDT mem
LLDT nit m
LMSW mem
LSL reg, mem
LTR mem
SGDT mem
SIDT mcm
SLDT mem
SMSW mem
STR hum
VERR mem

Adjust requested privilege level
Clear task switched flag
Load access rights
Load global descriptor table (8 bytes)
Load interrupt descriptor table
Load local descriptor table
Load machine status word
Load segment limit
Load task register
Store global descriptor table (8 bytes)
Store interrupt descriptor table (8 bytes)
Store local descriptor table
Store machine status word
Store task register
Verify read access 0

VERW mem Verify write access

0

0

A.7 287 Instruction Mnemonics
The 287 instruction set consists of all 8087 instructions plus the fol-
lowing additional instructions . The .287 directive can be used to en-
able these instructions for assembly .

Syntax	Action
FSETPM

	

Set Protected Mode
FSTSW AX

	

Store Status Word in AX (wait)
FNSTSW AX

	

Store Status Word in AX (no-wait)

Instruction Summary

0

0

0

Appendix B
Directive Summary

0

B.1 Introduction B-1

S

S

0

0

B.1 Introduction
Directives give the assembler directions and information about input
and output, memory organization, conditional assembly, listing and
cross-reference control, and definitions . There are the following direc-
tives :

.186

.286c

.286p

.287

.8086

.8087

ASSUME
COMMENT
.CREF
DB
DD
DQ
DT
DW

Any combination of upper and lowercase letters can be used when giv-
ing directive names in a source file .

The following is a complete list of directive syntax and function .

.186

.288c

•

	

286p

•

	

287

.8088

ELSE
END
ENDIF
ENDP
ENDS
EQU
EVEN
EXTRN
GROUP
IF
IF1
IF2
IFB
IFDEF

Directive Summary

IFDIF

	

PROC
IFE

	

PUBLIC
IFIDN

	

RADIX
IFNB

	

RECORD
IFNDEF

	

SALL
INCLUDE SEGMENT
LABEL

	

SFCOND
.LALL

	

STRUC
.LFCOND SUBTTL
.LIST

	

TFCOND
NAME

	

TITLE
ORG

	

XALL
OUT

	

XCREF
PAGE

	

XLIST

Enables assembly of 186 instructions .

Enables assembly of 286 unprotected instruc-
tions .

Enables assembly of 286 protected instruc-
tions .

Enables assembly of 287 instructions .

Enables assembly of 8086 instructions while
disabling assembly of 186 and 286 instruc-
tions .

Microsoft Macro Assembler Reference Manual

.8087

	

Enables assembly of 8087 instructions while
disabling assembly of 287 instructions . 0name = expression
Assigns the numeric value of expression to
name .

ASSUME seg-reg : seg-name,,,
Selects the given segment register seg-reg to
be the default segment register for all symbols
in the named segment or group . If seg-name is
NOTHING, no register is selected .

COMMENT delim text delim
Treats all text between the given pair of delim-
iters delim as a comment .

.CREF

	

Restores listing of symbols in the cross-
reference listing file .

(name] DB initial-value,,, 0Allocates and initializes a byte (8 bits) of
storage for each initial- value .

[name] DW initial-value,,,
Allocates and initializes a word (2 bytes) of
storage for each given initial-value.

[name] DD initial-value,,,
Allocates and initializes a doubleword (4
bytes) of storage for each given initial-value .

[name] DQ

[name] DT

ELSE

initial-value,,,
Allocates and initializes a quadword (8 bytes)
of storage for each given initial-value .

initial-value,,,
Allocates and initializes 10 bytes of storage
for each given initial-value .

Marks the beginning of an alternate block 0
within a conditional block .

0

0

s

Directive Summary

END (expression]
Marks the end of the module and optionally
sets the program entry point to expression .

ENDIF

	

Terminates aeon ditional block .

name EQU expression
Assigns the expressionto thegiven name .

name ENDP Marks the end of a procedure definition .

name ENDS Marks the end of a segment or structure type
definition .

EVEN If necessary, increments the location counter
to an even value and generates one NOP in-
struction (90h)

EXTRN name : type,,,
Defines an external variable, label, or symbol
named name and whose type is type .

name GROUP seg-name,,,
Associates a group name name with one or
more segments .

IF expression Grants assembly if the expression is
(true) .

non-zero

IF 1 Grants assembly on pass 1 only .

IF2 Grants assembly on pass 2 only .

IFB < arg > Grants assembly if the arg is blank .

IFDEF name Grants assembly if name is a previously de-
fined label, variable, or symbol .

IFDIF < argl >, < arg2 >
Grants assembly if the arguments are dif-
ferent .

IFE expression Grants assembly if the expression is 0 (false) .

n

Microsoft Macro Assembler Reference Manual

IF1DN < ' Ygl >, < arg2 >
Grants assembly if the arguments are identi-
cal .

IFNB < arg > Grants assembly if the argis not blank .

IFNDEF name
Grants assembly if name has not yet been de-
fined .

INCLUDE filename
Inserts source code from the source file given
by filename into the current source file during
assembly .

name LABEL type
Creates a new variable or label by assigning
the current location counter value and the
given type to name .

.LALL

	

Lists all statements in a macro .

.LFCOND

	

Restores the listing of conditional blocks .

.LIST

	

Restores listing of statements in the program
listing .

NAME module-name
Sets the name of the current module to
module-name .

ORG expression
Sets the location counter to expression .

%OUT text

	

Displays text at the user's terminal .

name PROC type
Marks the beginning of a procedure defini-
tion .

PUBLIC name,,,
Makes the variable, label, or absolute symbol
given by name available to all other modules
in the program .

0

0

0

s

0

0

Directive Summary

.RADIK expression
Sets the input radix for numbers in the source
file to expression .

reeordnarne RECORD fieldname : width [= exP1999
Defines an record type for a 8- or 16-bit record
that contains one or more fields .

.SALL

	

Suppresses listing of all macro expansions .

name SEGMEN' align combine ' class'
Marks the beginning of a program segment
named name and having segment attributes
align, combine, and class .

.SFCOND

	

Suppresses listing of any subsequent condi-
tional blocks whose IF condition is false .

name STRUC Marks the beginning of a type definition for a
structure .

PAGE length, width
Sets the line length and character width of the
program listing .

PAGE + Increments section page numbering .

PAGE Generates a page break in the listing .

SUBTTL text Defines the listing subtitle .

.TFCOND

	

Sets the default mode for listing of conditional
blocks .

TITLE text

	

Defines the program listing title .

Microsoft Macro Assembler Reference Manual

.XALL

	

Lists only those macro statements that gen-
erate code or data .

.XCREF name,,,
Suppresses the listing of symbols in the cross-
reference listing file .

.XLIST

	

Suppresses listing of subsequent source lines
to the program listing .

0

9

0

Appendix C
Segment Names
For High-Level Languages

0

C .1 Introduction C-1

C.2 Text Segments C-2

C .3 Data Segments -Near C-4

C .4 Data Segments -Far C-5

C .5 Bss Segments C-6

C .6 Constant Segments C-8

S

0

0

0

Segment Names For High-Level Languages

C.1 Introduction
This appendix describes the naming conventions used to form assem-
bly language source files that are compatible with object modules pro-
duced by the Microsoft C, Pascal, and Fortran language compilers
(version 3 .0 or later) .

High-level language modules have the following four predefined seg-
ment types :

TEXT

	

for program code
DATA

	

for program data
BSS

	

for uninitialized space
CONST

	

for constant data

Any assembly language source file that is to be assembled and linked
to a high-level language module must use these segments as described
in the following sections .

high-level language modules also have three different memory models :

Small

	

for single code and data segments
Middle

	

for multiple code segment but a single data segment
Large

	

for multiple code and data segments

Assembly language source files to be assembled for a given memory
model must use the naming conventions given in the following sec-
tions .

Microsoft Macro Assembler Reference Manual

C.2 Text Segments
Syntax

nameTEXT SEGMENT BYTE PUBLIC 'CODE'
statements

nameTEXT ENDS

A text segment defines a module's program code . It contains state-
ments that define instructions and data within the segment . A text
segment must have the name nameTEXT, where name can be any
valid name . For middle and large module programs, the module's own
name is recommended . For small model programs, only "TEXT" is
allowed .

A segment can contain any combination of instructions and data
statements . These statements must appear in an order that creates a
valid program . All instructions and data addresses in a text segment
are relative to the CS segment register . Therefore, the statement

assumecs : nameTEXT

must appear at the beginning of the segment . This statement ensures
that each label and variable declared in the segment will be associated
with the C'S segment register (see the section, ''ASSUME Directive" in
Chapter 3) .

Text segments should have "BYTE" alignment and "PUBLIC" com-
bination type, and must have the class name 'CODE .'' These define
loading instructions that are passed to the linker . Although other seg-
ment attributes are available, they should not be used . For a complete
description of the attributes, see the section, ''SEGMENT and ENDS
Directives,'' in Chapter 3 .

Small Model Programs . Only one text segment is allowed . The seg-
mentt must not exceed 64 Kbytes . If the segment's complete definition
is distributed among several modules, the statement

IGROUP

	

group TEXT

should be used at the beginning of each module to ensure that the seg-
ment is placed in a single 64 Kbyte physical segment . All procedure
and statement labels should have the NEAR type .

0

0

0

0

0

Example

IGROUP group _TEXT
assume cs :IGROUP

_TEXT segment

	

byte public 'CODE'
main proc near

_main endp
TEXT ends

Middle and Large Model Programs . Multiple text segments are al-
lowed, however, no segment can be greater than 64 Kbytes . To dis-
tinguish one segment from another, each should have its own name .
Since most modules contain only one text segment, the module's
name is often used as part of the text segment's name . All pro-
cedure and statement labels should have the FAR type, unless they
will only be accessed from within the same segment

Example

SAMPLE-TEXT segment

	

byte public 'CODE'
assume cs :SAMPLE_TEXT

_main proc

	

far

Segment Names For High-Level Languages

main endp
SAMPLE TEXT ends

Microsoft Macro Assembler Reference Manual

C.3 Data Segments -Near

Syntax

-DATA SEGMENT WORD PUBLIC 'DATA'
statements

-DATA ENDS

A near data segment defines initialized data that is in the segment
pointed to by the DS segment register when the program starts exe-
cution . The segment is "near" because all data in the segment is ac-
cessible without giving an explicit segment value . All programs have
exactly one near data segment . Only large model programs can have
additional data segments .

A near data segment's name must be "-DATA ." The segment can
contain any combination of data statements defining variables to be
used by the program . The segment must not exceed 64 Kbytes of
data . All data addresses in the segment are relative to the prede-
fined group ''DGROUP" . Therefore, the statements

DGROUP

	

group J)ATA
assume ds : DGROUP

must appear at the beginning of the segment . These statements en-
sure that each variable declared in the data segment will be associat-
ed with the DS segment register and DGROUP (see the sections,
"ASSUME Directive'' and "GROUP Directive" in Chapter 3) .

Near data segments must be "WORD" aligned, must have "PUB-
LIC'' combination type, and must have the class name "DATA ."
These define loading instructions that are passed to the linker .
Although other segment attributes are available, they must not be
used . For a complete description of the attributes, see the section,
"SEGMENT and ENDS Directives,'' in Chapter 3 .

40

0

0

0

Example

DGROUP group _DATA
assume ds : DGROUP

Segment Names For High-Level Languages

DATA segment

	

word public DATA'
count dw

	

0
array dw

	

10 dup(1)
string db

	

"Type CANCEL then press RETURN", Oah, 0
DATA ends

C.4 Data Segments - Far
Syntax

name-DATA SEGMENT WORD PUBLIC 'FARJ)ATA'
statements

nameJ)ATA ENDS

A far data segment defines data or data space that can be accessed
only by specifying an explicit segment value . Only large model pro-
grams can have far data segments .

A far data segment's name must be namei)ATA, where name can be
any valid name. The name of the first variable declared in the seg-
ment is recommended . The segment can contain any combination of
data statements defining variables to be used by the program . The
segment must not exceed 64 Kbytes of data . All data addresses in
the segment are relative to the ES segment register . When accessing
a variable in a far data segment, the ES register must be set to the
appropriate segment value . Also, the segment override operator
must be used with the variable's name (see the section, ''Attribute
Operators" in Chapter 5) .

Far data segments must be "WORD" aligned, must have ''PUB-
LIC'combination type, and should have the class name
"FAR-DATA ." These define loading instructions that are passed to
the linker . Although other segment attributes are available, they
must not be used . For a complete description of the attributes, see
the section, "SEGMENT and ENDS Directives," in Chapter 3 .

Microsoft Macro Assembler Reference Manual

Example

C .5 Bss Segments
Syntax

.J3SS SEGNIENT WORD PUBLIC'BSS'
statements

J3SS ENDS

A bss segment defines uninitialized data space . A bss segment's
name must be " .J3SS ." The segment can contain any combination of
data statements defining variables to be used by the program . The
segment must not exceed 64 Kbytes . All data addresses in the seg-
ment are relative to the predefined group ''DGROUP'' . Therefore,
the statements

DGROUP

	

group J3SS
assume (is : DGROUP

must appear at the beginning of the segment . These statements en-
sure that each variable declared in the bss segment will be associat-
ed with the DS segment register and DGROUP (see the sections,
"ASSUME Directive" and "GROUP Directive" in Chapter 3) .

0

0

ARRAY DATA segment

	

word public 'FAR-DATA' 0array dw 0
dw 1
dw 2
dw 4

table dw 1600 dup(?)
ARRAY DATA ends

0

0

Note

Segment Names For High-Level Languages

The group name DGROUP must not be defined in more than one
GROUP directive in a source file . If a source file contains both a
DATA and BSS segment, the directive

DGROUP group J)ATA, _BSS

should be used .

A bss segment must be "WORD" aligned, must have "PUBLIC"
combination type, and must have the class name "BSS ." These de-
fine loading instructions that are passed to the linker . Although
other segment attributes are available, they must not be used . For a
complete description of the attributes, see the section, ''SEGMENT
and ENDS Directives,'' in Chapter 3 .

Example

DGROUP group _BSS
assume ds : DGROUP

_BSS segment word public 'BSS'
count dw ?
array dw 10 dup(?)
string db
_BSS ends

30 dup(?)

Microsoft Macro Assembler Reference Manual

C .6 Constant Segments
Syntax

Note

CONST SEGMENT WORD PUBLIC 'CONST'
statements

CONST ENDS

A constant segment defines constant data that will not change dur-
ing program execution . Constant segments are typically used in
large model programs to hold the segment values of far data seg-
ments .

The constant segment's name must be "CONST ." The segment can
contain any combination of data statements defining constants to be
used by the program . The segment must not exceed 64 Kbytes . All
data addresses in the segment are relative to the predefined group
"DGROUP'' . Therefore, the statements

DGROUP

	

group CONST
assume ds: DGROUP

must appear at the beginning of the segment . These statements en-
sure that each variable declared in the constant segment will be as-
sociated with the DS segment register and DGROUP (see the sec-
tions, "ASSUME Directive" and "GROUP Directive" in Chapter 3) .

The group name DGROUP must not be defined in more than one
GROUP directive in a source file . If a source file contains a
DATA, BSS, and CONST segment, the directive

DGROUP group -DATA, BSS, CONST

should be used .

is

0

0

0

s

Segment Names For High-Level Languages

A constant segment must be "WORD" aligned, must have "PUB-
LIC" combination type, and must have the class name "CONST ."
These define loading instructions that are passed to the linker .
Although other segment attributes are available, they must not be
used . For a complete description of the attributes, see the section,
"SEGMENT and ENDS Directives," in Chapter 3 .

Example

DGROUP group CONST
assume ds : DGROUP

CONST segment

	

word public 'CONST'
segi dw

	

ARRAY_DATA
seg2 dw

	

MESSAGE DATA
CONST ends

In this example, the constant segment receives the segment values of
two far data segments : ARRAY-DATA and MESSAGE-DATA .
These data segments must be defined elsewhere in the module .

0

0

0

0

s

Index
segment override

operator

	

5-15
= directive 4-8

ABS type 6-3
Absolute (AT) segments 3-7
Alignment
EVEN directive 3-12
ORG directive 3-11
segments 3-6

AND operator 5-13
Arithmetic operators 5-10
Assembly listing

false conditionals 9-7
macros 9-8
page breaks 9-5
page dimensions 9-5
subtitle 9-5
suppressing 9-6
symbols 9-9
title 9-4

ASSUME directive 3-10
AT segments 3-7

Based indexed operands 5-7
Based operands 5-5
Bitwise operators 5-13

Character Set 2-1
Class argument 3-7
Combine argument 3-6
COMMENT directive 2-8
Comments 2-7, 2-8
COMMON segments 3-6
Conditional assembly

directives 7-1
nesting 7-2
on assembly passes 7-2

Conditional assembly (continued)
on blank arguments 7-3
on defined symbols 7-3
on expressions 7-2
on identical arguments 7-4

Constant Operands 5-2
constants, default radix 9-2
.CREF directive 9-9
Cross-reference listing 9-9

Data
bytes 4-3
doublewords 4-4
quadwords 4-5
ten-byte words 4-6
words 4-3

DB directive 4-3
DD directive 4-4
Declarations

byte data 4-3
doubleword data 4-4
label 4-1
quadword data 4-5
record 4-15
structure 4-14
ten-byte words 4-6
word data 4-3

Default input radix 9-2
Default segment registers 3-10
Direct memory operands 5-2
Directives, summary B-1
DQ directive 4-5
DT directive 4-6
DW directive 4-3

END directive 3-8
ENDM directive 8-8,8-10
ENDP directive 3-12
ENDS directive 3-4, 4-11

Index

Entry point 3-8
EQ operator 5-12
EQU directive 4-9
EVEN directive 3-12
Expressions 5-10
external symbols 6-3
EXITM directive 8-11
Expression operator 8-14
EXTRN directive 6-3

Forward references 5-23

GE operator 5-12
global symbols 6-1
GROUP directive 3-9
Group

definition 3-9
size restriction 3-9

GT operator 5-12

HIGH operator 5-17

IF directive 7-2
IF1 directive 7-2
IF2 directive 7-2
IFB directive 7-3
IFDEF directive 7-3
IFDIF directive 7-4
IFE directive 7-2
IFIDN directive 7-4
IFNB directive 7-3
IFNDEF directive 7-3
INCLUDE directive 9-1
Index operator 5-13
Indexed operands 5-6
integers 2-1
IRP directive 8-8
IRPC directive 8-10

2

Label declarations 4-1
LABEL directive 4-10
Labels

near 4-1
procedure 3-12, 4-2

.LALL directive 9-8
LE operator 5-12
LENGTH operator 5-20
.LFCOND directive 9-7
.LIST directive 9-6
Literal character operator 8-14
Literal text operator 8-13
Loading options 3-6
LOCAL directive 8-5
Location counter 5-3
LOW operator 5-17
LT operator 5-12

MACRO directive 8-2
Macros

calls 8-4
comments 8-15
definitions 8-1, 8-2
local symbols 8-5
purging 8-6

MASK operator 5-22
MEMORY segments 3-7
Messages at user terminal 9-3
Module
end 3-8
main 3-8
name 9-4

NAME directive 9-4
Names

definition 2-5
group 3-9
module 9-4
segment classes 3-7
segments 3-4

NE operator 5-12
Nested conditionals 7-2

0

0

40

s

0

NOT operator 5-13

OFFSET operator 5-18
Operands

based 5-5
based indexed 5-7
direct memory 5-2
indexed 5-6
location counter 5-3
record field 5-9
record 5-9
register 5-4
relocatable 5-3
strong typing 5-26
structures 5-8

Operators
arithmetic 5-10
bitwise 5-13
DUP 4-7
HIGH 5-17
index 5-13
LENGTH 5-20
LOW 5-17
MASK 5-22
OFFSET 5-18
PTR 5-14
relational 5-12
SEG 5-17
segment override (:) 5-15
shift 5-11
SHL 5-11
SHORT 5-16
SHR 5-11
SIZE 5-20
THIS 5-16
TYPE 5-18
.TYPE 5-19
WIDTH 5-21
XOR 5-13

OR operator 5-13
ORG directive 3-11
%OUT directive 9-3

Index

Packed Decimal Numbers 2-3
PAGE directive 9-5
Precedence of operators 5-22
PROC directive 3-12
Procedures 3-12
Program

entry point 3-8
loading options 3-6
segments 3-4

PTR operator 5-14
PUBLIC directive 6-2
PUBLIC segments 3-6
public symbols 6-2
PURGE directive 8-6

.RADIX directive 9-2
Record declarations 4-15
RECORD directive 4-12
Record field operand 5-9
Record operands 5-9
Register operands 5-4
Relational operators 5-12
Relocatable operands 5-3
REPT directive 8-7

.SALL directive 9-8
SEG operator 5-17
SEGMENT directive 3-4
Segment override operator 5-15
Segments
alignment 3-6
AT 3-7
class argument 3-7
combine types 3-6
COMMON 3-6
definition 3-4
groups 3-9
loading options 3-6
MEMORY 3-7
nesting 3-4
origin 3-11
PUBLIC 3-6

3

4

0

Index

Segments (continued)
STACK 3-6

.SFCOND directive 9-7
Shift operators 5-11

Symbols (continued)
public 6-2
relocatable 5-3
variables 4-10 0

SHL operator 5-11
SHORT operator 5-16
SHR operator 5-11
SIZE operator 5-20
Source files

end 3-8
including 9-1

STACK segments 3-6
Statements 2-7
Strong Typing 5-26
STRUC directive 4-11
Structure

declarations 4-14
operands 5-8

Substitute operator 8-12
Subtitle for assembly listing

9-5

.TFCON'D directive 9-7
THIS operator 5-16
TITLE directive 9-4
Title for assembly listing 9-4
Type declarations 5-18
TYPE operator 5-18
.TYPE operator 5-19
Types
operand matching 5-26
record 4-12
structure 4-11

Variables
default segment register 3-10

SUBTTL Directive 9-5
Symbols

absolute 4-8, 4-9
aliases 4-9
default segment register

3-10

definitions 4-10

WIDTH operator 5-21

external 6-3
global 6-2, 6-3
labels 4-10

.XALL directive 9-8

.XCREF directive 9-9
MIST directive 9-6
XOR operator 5-13

	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24
	page 25
	page 26
	page 27
	page 28
	page 29
	page 30
	page 31
	page 32
	page 33
	page 34
	page 35
	page 36
	page 37
	page 38
	page 39
	page 40
	page 41
	page 42
	page 43
	page 44
	page 45
	page 46
	page 47
	page 48
	page 49
	page 50
	page 51
	page 52
	page 53
	page 54
	page 55
	page 56
	page 57
	page 58
	page 59
	page 60
	page 61
	page 62
	page 63
	page 64
	page 65
	page 66
	page 67
	page 68
	page 69
	page 70
	page 71
	page 72
	page 73
	page 74
	page 75
	page 76
	page 77
	page 78
	page 79
	page 80
	page 81
	page 82
	page 83
	page 84
	page 85
	page 86
	page 87
	page 88
	page 89
	page 90
	page 91
	page 92
	page 93
	page 94
	page 95
	page 96
	page 97
	page 98
	page 99
	page 100
	page 101
	page 102
	page 103
	page 104
	page 105
	page 106
	page 107
	page 108
	page 109
	page 110
	page 111
	page 112
	page 113
	page 114
	page 115
	page 116
	page 117
	page 118
	page 119
	page 120
	page 121
	page 122
	page 123
	page 124
	page 125
	page 126
	page 127
	page 128
	page 129
	page 130
	page 131
	page 132
	page 133
	page 134
	page 135
	page 136
	page 137
	page 138
	page 139
	page 140
	page 141
	page 142
	page 143
	page 144
	page 145
	page 146
	page 147
	page 148
	page 149
	page 150
	page 151
	page 152
	page 153
	page 154
	page 155
	page 156
	page 157
	page 158
	page 159
	page 160
	page 161
	page 162
	page 163
	page 164
	page 165
	page 166
	page 167
	page 168

