Unimodem V�

Version:	3.0

Filename:	unimodv.doc

Date:				� TIME \@ "MMMM d, yyyy" �
November

6
,

1995
�

		

�Table of Contents

� TOC \o "1-3" �1. Overview	� GOTOBUTTON _Toc339859817 � PAGEREF _Toc339859817 �
3
��

1.1. Overview of Voice Modems	� GOTOBUTTON _Toc339859818 � PAGEREF _Toc339859818 �
3
��

1.2. Unimodem Interface Overview	� GOTOBUTTON _Toc339859819 � PAGEREF _Toc339859819 �
3
��

2. New Unimodem Functionality	� GOTOBUTTON _Toc339859820 � PAGEREF _Toc339859820 �
5
��

3. New Unimodem External Interfaces	� GOTOBUTTON _Toc339859821 � PAGEREF _Toc339859821 �
6
��

3.1. Unimodem / Wave Interfaces	� GOTOBUTTON _Toc339859822 � PAGEREF _Toc339859822 �
6
��

3.2. Modem .INF File Additions	� GOTOBUTTON _Toc339859823 � PAGEREF _Toc339859823 �
6
��

4. New Unimodem TSP Functions	� GOTOBUTTON _Toc339859824 � PAGEREF _Toc339859824 �
7
��

4.1. Line Device	� GOTOBUTTON _Toc339859825 � PAGEREF _Toc339859825 �
7
��

4.1.1. Line Device Functions not Implemented	� GOTOBUTTON _Toc339859826 � PAGEREF _Toc339859826 �
7
��

4.1.2. Line Device Functions with Usual implementation	� GOTOBUTTON _Toc339859827 � PAGEREF _Toc339859827 �
8
��

4.1.3. Line Device Functions with Described Implementation	� GOTOBUTTON _Toc339859828 � PAGEREF _Toc339859828 �
8
��

4.2. Phone Device	� GOTOBUTTON _Toc339859829 � PAGEREF _Toc339859829 �
24
��

4.2.1. Phone Device Functions not Implemented	� GOTOBUTTON _Toc339859830 � PAGEREF _Toc339859830 �
25
��

4.2.2. Phone Device Functions with Usual implementation	� GOTOBUTTON _Toc339859831 � PAGEREF _Toc339859831 �
25
��

4.2.3. Phone Device Functions with Described Implementation	� GOTOBUTTON _Toc339859832 � PAGEREF _Toc339859832 �
25
��

4.3. Service Provider Functions	� GOTOBUTTON _Toc339859833 � PAGEREF _Toc339859833 �
31
��

5. Operator Agent	� GOTOBUTTON _Toc339859834 � PAGEREF _Toc339859834 �
31
��

5.1.1. Data, Fax Modems [+FCLASS = 0,1,(2)]	� GOTOBUTTON _Toc339859835 � PAGEREF _Toc339859835 �
31
��

5.1.2. Data, Fax, and Voice Modems [+FCLASS = 0,1,(2),8]	� GOTOBUTTON _Toc339859836 � PAGEREF _Toc339859836 �
32
��

5.1.3. Data, Fax, Voice, VoiceView Modems [+FCLASS = 0,1,(2),(8), 80]	� GOTOBUTTON _Toc339859837 � PAGEREF _Toc339859837 �
32
��

5.1.4. Simultaneous Voice Data (SVD) modems [+FCLASS = 0,(1),(2),8]	� GOTOBUTTON _Toc339859838 � PAGEREF _Toc339859838 �
32
��

5.2. Inbound Call Discrimination Solutions for Voice Modems	� GOTOBUTTON _Toc339859839 � PAGEREF _Toc339859839 �
32
��

5.2.1. Distinctive Ringing	� GOTOBUTTON _Toc339859840 � PAGEREF _Toc339859840 �
32
��

5.2.2. Operator Agent	� GOTOBUTTON _Toc339859841 � PAGEREF _Toc339859841 �
32
��

6. Functional Requirements for Wave Drivers	� GOTOBUTTON _Toc339859842 � PAGEREF _Toc339859842 �
38
��

6.1. Telephone Line Wave Devices	� GOTOBUTTON _Toc339859843 � PAGEREF _Toc339859843 �
38
��

7. Setup & Installation	� GOTOBUTTON _Toc339859844 � PAGEREF _Toc339859844 �
39
��

8. Configuration Dialogs for CLASS Features	� GOTOBUTTON _Toc339859845 � PAGEREF _Toc339859845 �
39
��

8.1. Distinctive Ringing	� GOTOBUTTON _Toc339859846 � PAGEREF _Toc339859846 �
39
��

8.1.1. User Interface for Distinctive Ringing with Cadences	� GOTOBUTTON _Toc339859847 � PAGEREF _Toc339859847 �
40
��

8.1.2. User Interface for Distinctive Ringing with Ring Quantities	� GOTOBUTTON _Toc339859848 � PAGEREF _Toc339859848 �
41
��

8.2. Call Forwarding Tab	� GOTOBUTTON _Toc339859849 � PAGEREF _Toc339859849 �
42
��

��

Overview

This document is the specification for changes to the Windows 95 comm drivers to support voice modems. Voice modem support will be achieved by:

extending Unimodem (Windows 95’s telephony service provider (TSP) for all fax/data modems)

providing a wave driver for serial modems that supports IMA ADPCM and Rockwell ADPCM formats

providing a wave wrapper for use with wave drivers for modems with a separate audio hardware interface

Overview of Voice Modems

Voice modems are modems capable of transmitting and receiving digitized voice data. The proposed industry standard command set for voice modems is the AT+V command set, which consists of Hayes AT (ATTENTION) prefixed commands, and +V (Voice) prefixed commands. AT+V is documented as an ANSI/TIA/EIA standard entitled “Facsimile Digital Interfaces--Voice Control Interim Standard for Asynchronous DCE”, also called IS-101. PN-3131, prepared by TIA Technical Subcommittee TR-29.2, is the proposed successor to IS-101. There is a wide range of voice modems with differing levels of compliance with the AT+V standard. In addition, there are other command sets, for example Rockwell’s AT#V (Hayes AT prefixed commands with Rockwell #V prefixed commands), which are widely used.

Unimodem Interface Overview

Unimodem consists of two executable modules: a Telephony Service Provider (TSP) and a VxD.

The TSP handles application requests, such as dialing and answering, which are passed down from TAPI, and passes result codes to TAPI that are sent up from the modem. The exact sequence of commands required by a particular modem to accomplish an application request and the result codes that the modem may send up are contained in an .INF file for that modem. The .INF file is provided by the modem manufacturer and is entered, upon installation of the device, into the registry—a Windows tree structured file that stores configuration data. The TSP then accesses the registry as needed to find out these commands, result codes, and other information such as the modem capabilities.

The VxD is called by the TSP to send command strings to the modem. It is called by the VCOMM VxD to change modem settings and send/receive data to/from the modem.

The following diagram illustrates how these pieces fit together:

� EMBED Visio.Drawing.3 ���

Many modems are external, attaching to standard serial COM ports or other types of communications adapters. Or, they may be internal but emulate standard serial UARTs (e.g. 8250, 16550, etc.). In order to support both of these types of modems, Unimodem calls back into VCOMM to talk through a serial port driver to the actual modem. This is illustrated by the following diagram:

�

New Unimodem Functionality

This section describes the key new features being added to Unimodem:

Distinctive Ringing (Multiple Addresses)

In addition to mapping different ring patterns to different addresses, Unimodem can also map different ring patterns to different types of calls (voice, data, fax). This allows Unimodem to offer new calls to those applications that have requested to receive calls of a specific type on a given address. In this way, fax, data, and voice call discrimination can be offered when users have purchased distinctive ringing services from the local phone company.

Caller ID

The TSP will call into the VxD to get Caller ID information when the VxD indicates rings to the TSP.

TSPI_lineGetID

This function returns the the wMid and wPid for the wave driver associated with the telephone line of the currently opened line in the lpDeviceID VARSTRING parameter. To use it, cast the value to a DWORD and pass as an argument to Multimedia functions such as waveOutOpen.

TSPI_lineMoniterDigits

If enabled, this service will handle custom messages from the VxD indicating that a DTMF tone has been detected. The TSP will then generate a LINE_MONITORTONE message to TAPI.DLL indicating the appropriate tone. The ability to detect DTMF tones on some modems is restricted by the state of the speakerphone on the system—the TSP will report the speakerphone state as best as possible to applications.

TSPI_lineGenerateDigits

This call uses a new PM-API to pass the digit to be generated to the VxD. The VxD will acknowledge the digit command by posting an asynchronous completion message. The TSP will send a string of digits one at a time due to limitations in sending DTMF strings on some modems.

Phone Device

A phone device has been defined to allow applications to monitor and control the hookswitch mode of the handset, speakerphone, and/or headset.

Operator Agent

The Operator Agent answers incoming calls of unknown media mode and routes them, based on DTMF input from the caller, to the appropriate application. This application is started from Accessories\Operator and is described in section � REF _Ref339258241 \n �
5
� of this document.

New Unimodem External Interfaces

Unimodem / Wave Interfaces

Following is a description of the two basic types of modems and how the multimedia wave driver for each works with Unimodem:

For a serial port modem where wave I/O data is sent through the PC’s communications port, Microsoft provides a serial wave driver that calls a 16 bit DLL to synchronizes the wave driver with Unimodem. The serial wave driver supports IMA ADPCM and Rockwell ADPCM formats.

For modems with a separate audio hardware interface, a wave wrapper performs all synchronization between the modem and audio. MMSystem calls the wrapper, and the wrapper in turn calls Unimodem to send any needed AT commands to the modem. After the AT commands are completed, the wave driver wrapper calls back into MMSystem, and MMSystem then calls the modem wave device. The modem wave device interfaces only to the audio hardware interface. For existing modem wave drivers, any direct access to the COMM port must be removed (let the wave wrapper send any AT commands to the modem). The following diagram illustrates how these pieces fit together:

� EMBED Word.Picture.6 ���

Modem .INF File Additions

Unimodem V models a modem as an executor of logical functions (for example, “answer a voice call”). The exact sequence of commands required by the modem to accomplish a particular logical function is contained in an .INF file for that modem. The INF file also contains other information such as modem capabilities, and result codes that the modem may send up to Unimodem. The .INF file is provided by the modem manufacturer and is entered, upon installation of the device, into the registry—a Windows tree structured file that stores configuration data in the form of a hierarchical tree of “Keys” and “Values”. All .INF information is stored under the key:

HKEY_LOCAL_MACHINE\ System\ CurrentControlSet\ Services\ Class\ Modem\000x

where “x” is a number indicating a particular modem (the first modem installed is 0000, the second is 0001, and so on).

Refer to the Windows MDK for specific information on how to create an .INF file to support voice modems.

New Unimodem TSP Functions

Line Device

The following sections describe the support in the TSP for the line device:

The first section lists functions that are not implemented in the Unimodem TSP.

The second sections lists functions that will be implemented in the usual way (no noteworthy aspects to this implementation).

The third section lists functions that will be implemented but require some description of the proposed implementation.

Distinctive ringing is handled by a registry table mapping ringing cadence dwAddressID with an associated address phone number.

Line Device Functions not Implemented

Following is the list of functions for line devices that are not supported. These functions will return LINEERR_OPERATIONUNAVAIL:

TSPI_lineAddToConference

TSPI_lineBlindTransfer

TSPI_lineCompleteCall

TSPI_lineCompleteTransfer

TSPI_lineDevSpecific

TSPI_lineDevSpecificFeature

TSPI_lineDropOnClose

TSPI_lineDropNoOwner

TSPI_lineGatherDigits

TSPI_lineGenerateTone

TSPI_lineHold

TSPI_lineMonitorTones

TSPI_lineNegotiateExtVersion

TSPI_linePark

TSPI_linePickup

TSPI_linePrepareAddToConference

TSPI_lineRedirect

TSPI_lineReleaseUserUserInfo

TSPI_lineRemoveFromConference

TSPI_lineSecureCall

TSPI_lineSendUserUserInfo

TSPI_lineSetCurrentLocation

TSPI_lineSetMediaControl

TSPI_lineSetTerminal

TSPI_lineSetupConference

TSPI_lineSetupTransfer

TSPI_lineSwapHold

TSPI_lineUncompleteCall

TSPI_lineUnhold

TSPI_lineUnpark

Line Device Functions with Usual implementation

Following is the list of functions for line devices that are implemented in the usual way (no noteworthy aspects to this implementation):

TSPI_lineAccept

TSPI_lineClose

TSPI_lineCloseCall

TSPI_lineConfigDialog

TSPI_lineConfigDialogEdit

TSPI_lineGetCallAddressID

TSPI_lineGetDevConfig

TSPI_lineGetExtensionID

TSPI_lineGetIcon

TSPI_lineNegotiateTSPIVersion

TSPI_lineOpen

TSPI_lineSelectExtVersion

TSPI_lineSetAppSpecific

TSPI_lineSetCallParams

TSPI_lineSetDevConfig

TSPI_lineSetMediaMode

Line Device Functions with Described Implementation

Following is the list of functions for line devices that will be implemented but require some description of the proposed implementation.

TSPI_lineAnswer

When TSPI_lineAnswer is called, LineVoiceAnswer is performed.

TSPI_lineConditionalMediaDetection

TSPI_lineConditionalMediaDetection(

HDRVLINE												hdLine,

DWORD														dwMediaModes,

LPLINECALLPARAMS const	lpCallParams

);

dwMediaModes supported are:

LINEMEDIAMODE_AUTOMATEDVOICE

LINEMEDIAMODE_INTERACTIVEVOICE

LINEMEDIAMODE_DATAMODEM

LINEMEDIAMODE_G3FAX

TSPI_lineDial

TSPI_lineDial(

DRV_REQUESTID	dwRequestID,

HDRVCALL					hdCall,

LPCSTR							lpszDestAddress,

DWORD							dwCountryCode

);

LineVoiceDialStart, LineVoiceDialNumber and LineVoiceDialComplete are performed as requested by the lpszDestAddress.

TSPI_lineDrop

When TSPI_lineDrop is called, LineVoiceHangup is performed. LineEnable(Disable)DistinctiveRinging and LineEnable(Disable)CallerID are performed.

TSPI_lineForward

TSPI_lineForward(

DRV_REQUESTID					dwRequestID,

HDRVLINE										hdLine,

DWORD												bAllAddresses,

DWORD 											dwAddressID,

LPLINEFORWARDLIST	lpForwardList,

DWORD 											dwNumRingsNoAnswer,

HTAPICALL									htConsultCall,

LPHDRVCALL							lphdConsultCall,

LPLIENCALLPARAMS		lpCallParams

);

This function forwards calls to a specific address on a specific line, and cancels forwarding currently in effect. Some Call Forwarding services require that either the forwarding destination answer the phone, or that the destination be called twice within a certain period of time. Unimodem/V will only support Call Forwarding that requires:

activate: an activation code followed by the address to forward to

deactivate: a deactivation code only.

The type of Call Forwarding that is activated as described in the following steps will not be supported:

call the number to forward to

if someone at that number answers then

 call forwarding is in effect

else

 call a second time, and now it is in effect

end if

When calls are forwarded, some Call Forwarding services provide audible indication that forwarding is in effect before presenting the dialtone. In order to handle the variable amounts of time before dialtone is presented, the TSP will prefix the deactivation code with “W”, a dialable number indicating that dialing should only proceed after a dialtone has been detected.

In the case of a busy signal when trying to activate, the function should fail with an appropriate error and the user tries again later.

The function should always unforward prior to carrying out new forwarding instructions. This is because the service provider may not always know the forwarding state of the address (for example, it may have been forwarded or unforwarded manually from a handset).

The “do not disturb” feature is not supported.

BAllAddresses should always be TRUE (forwarding a single specified line on an address is not supported—all originating lines on the address are forwarded). This means dwAddressID is ignored. If it is not TRUE, LINEERR_INVALPARAM is returned.

Following is the description for the LINEFORWARD data structure:

DWORD	dwTotalSize;

DWORD	dwNumEntries;

0 or 1

LINEFORWARD ForwardList;

DWORD	dwForwardMode;

LINEFORWARDMODE_UNCOND

DWORD	dwCallerAddressSize;

0

DWORD	dwCallerAddressOffset;

0

DWORD	dwDestCountryCode

0

DWORD	dwDestAddressSize;

TAPI supplied

DWORD	dwDestAddressOffset;

TAPI supplied

If dwForwardMode is != LINEFORWARDMODE_UNCOND, LINEERR_INVALPARAM is returned.

TSPI_lineGenerateDigits

TSPI_lineGenerateDigits(

HDRVCALL	hdCall,

DWORD				dwEndToEndID,

DWORD				dwDigitMode,

LPCSTR				lpszDigits,

DWORD				dwDuration

);

Only LINEDIGITMODE_DTMF is supported for dwDigitMode. dwDuration is not supported on a per call basis. LineGenerateDTMF is used to dial each digit in turn. LineGenerateFlashhook is used to handle ‘!’.

	TSPI_lineGetAddressCaps

TSPI_lineGetAddressCaps(

DWORD 										dwDeviceID,

DWORD											dwAddressID,

DWORD											dwTSPIVersion,

DWORD											dwExtVersion,

LPLINEADDRESSCAPS	lpAddressCaps

);

Following is the typedef for LINEADDRESSCAPS. Interspersed in the typedef are, where appropriate, descriptions of the possible values which the various parameters can take on.

typedef struct lineaddresscaps_tag {

DWORD	dwTotalSize;

DWORD	dwNeededSize;

DWORD	dwUsedSize;

DWORD		dwLineDeviceID;

DWORD	dwAddressSize;

return address from registry

DWORD	dwAddressOffset;

return address from registry

DWORD	dwDevSpecificSize;

0

DWORD	dwDevSpecificOffset;

0

DWORD	dwAddressSharing;

LINEADDRESSSHARING_PRIVATE

DWORD	dwAddressStates;

0

DWORD	dwCallInfoStates;

LINECALLINFOSTATE_OTHER

LINECALLINFOSTATE_MEDIAMODE

LINECALLINFOSTATE_NUMOWNERINCR

LINECALLINFOSTATE_NUMOWNERDECR

LINECALLINFOSTATE_NUMMONITORS

LINECALLINFOSTATE_CALLERID

LINECALLINFOSTATE_MONITORMODES

DWORD	dwCallerIDFlags;

LINECALLPARTYID_NAME

LINECALLPARTYID_ADDRESS

LINECALLPARTYID_UNKNOWN

DWORD	dwCalledIDFlags;

0

DWORD	dwConnectedIDFlags;

0

DWORD	dwRedirectionIDFlags;

0

DWORD	dwRedirectingIDFlags;

0

DWORD	dwCallStates;

LINECALLSTATE_IDLE

LINECALLSTATE_OFFERING

LINECALLSTATE_ACCEPTED

LINECALLSTATE_DIALTONE (address 0 only)

LINECALLSTATE_DIALING (address 0 only)

LINECALLSTATE_RINGBACK (address 0 only)

LINECALLSTATE_BUSY (address 0 only)

LINECALLSTATE_CONNECTED

LINECALLSTATE_PROCEEDING (address 0 only)

LINECALLSTATE_DISCONNECTED

LINECALLSTATE_UNKNOWN

DWORD	dwDialToneModes;

LINEDIALTONEMODE_UNAVAIL

DWORD	dwBusyModes;

LINEBUSYMODE_UNAVAIL

DWORD	dwSpecialInfo;

LINESPECIALINFO_UNAVAIL

DWORD	dwDisconnectModes;

LINEDISCONENCTMODE_NORMAL

LINEDISCONENCTMODE_UNAVAIL

LINEDISCONENCTMODE_BUSY

LINEDISCONENCTMODE_NOANSWER

DWORD	dwMaxNumActiveCalls;

1

DWORD	dwMaxNumOnHoldCalls;

01

DWORD	dwMaxNumOnHoldPendingCalls;

01

DWORD	dwMaxNumConference;

03

DWORD	dwMaxNumTransConf;

03

DWORD	dwAddrCapFlags;

LINEADDRCAPFLAGS_DIALED (only if address 0)

LINEADDRCAPFLAGS_BLOCKIDOVERRIDE *

LINEADDRCAPFLAGS_ORIGOFFHOOK

LINEADDRCAPFLAGS_PARTIALDIAL

* conditional on user entering code to block Caller ID in the TSP configuration dialog.

DWORD	dwCallFeatures;

LINECALLFEATURE_ACCEPT

LINECALLFEATURE_ANSWER

LINECALLFEATURE_DIAL (address 0 only)

LINECALLFEATURE_DROP

LINECALLFEATURE_GENERATEDIGITS

LINECALLFEATURE_MONITORDIGITS

LINECALLFEATURE_MONITORMEDIA

LINECALLFEATURE_SETCALLPARAMS

DWORD	dwRemoveFromConfCaps;

LINEREMOVEFROMCONF_NONE

DWORD	dwRemoveFromConfState;

0

DWORD	dwTransferModes;

0

DWORD	dwParkModes;

0

DWORD	dwForwardModes;

LINEFORWARDMODE_UNCOND

DWORD	dwMaxForwardEntries;

1

DWORD	dwMaxSpecificEntries;

0

DWORD	dwMinFwdNumRings;

0

DWORD	dwMaxFwdNumRings;

0

DWORD	dwMaxCallCompletions;

0

DWORD	dwCallCompletionConds;

0

DWORD	dwCallCompletionModes;

0

DWORD	dwNumCompletionMessages;

0

DWORD	dwCompletionMsgTextEntrySize;

0

DWORD	dwCompletionMsgTextSize;

0

DWORD	dwCompletionMsgTextOffset;

0

DWORD	dwAddressFeatures;

LINEADDRFEATURE_MAKECALL (for address 0 only)

LINEADDRFEATURE_FORWARD

} LINEADDRESSCAPS

	TSPI_lineGetAddressID

TSPI_lineGetAddressID(

HDRVLINE	hdLine,

LPDWORD	lpdwAddressID,

DWORD			dwAddressMode,

LPCSTR			lpsAddress,

DWORD			dwSize

);

Returns the AddressID given the telephone number.

	TSPI_lineGetAddressStatus

TSPI_lineGetAddressStatus(

HDRVLINE											hdLine,

DWORD													dwAddressID,

LPLINEADDRESSSTATUS	lpAddressStatus

);

Following is the typedef for LINEADDRESSSTATUS. Interspersed in the typedef are, where appropriate, descriptions of the possible values which the various parameters can take on.

typedef struct lineaddressstatus_tag{

DWORD	dwTotalSize;

DWORD	dwNeededSize;

DWORD	dwUsedSize;

DWORD	dwNumInUse;

DWORD	dwNumActiveCalls;

DWORD	dwNumOnHoldCalls;

0

DWORD	dwNumOnHoldPendCalls;

0

DWORD	dwAddressFeatures;

LINEADDRFEATURE_FORWARD

DWORD	dwNumRingsNoAnswer;

TAPI supplied

DWORD	dwForwardNumEntries;

1

DWORD	dwForwardSize;

DWORD	dwForwardOffset;

typedef struct lineforward_tag {

DWORD	dwForwardMode;

LINEFORWARDMODE_UNCOND

DWORD	dwCallerAddressSize;

DWORD	dwCallerAddressOffset;

0

DWORD	dwDestCountryCode;

0

DWORD	dwDestAddressSize;

DWORD	dwDestAddressOffset;

address to which the line is forwarded

} INEFORWARD;

DWORD	dwTerminalModesSize;

DWORD	dwTerminalModesOffset;

0

DWORD	dwDevSpecificSize;

DWORD	dwDevSpecificOffset;

0

} LINEADDRESSSTATUS;

LINEADDRFEATURE_FORWARD will only be reported for dwAddressFeatures if it has been configured through the UI registry settings (so it will be dynamically in sync with the modem control panel UI).

The address to which a line was last forwarded will be written to the registry so that it will be available the next time the line is opened.

A LINE_ADDRESSSTATE message with dwParam2 equal to LINEADDRESSSTATE_FORWARD is sent when an attempt to forward calls was successful. This message is sent by TAPI.DLL, which invokes TSPI_lineGetAddressStatus to determine the current status of the address.

	TSPI_lineGetCallInfo

TSPI_lineGetCallInfo(

HDRVCALL						hdCall,

LPLINECALLINFO		lpCallInfo

);

Following is the typedef for LINECALLINFO. Interspersed in the typedef are, where appropriate, descriptions of the possible values which the various parameters can take on.

typedef struct linecallinfo_tag{

DWORD	dwTotalSize;

DWORD	dwNeededSize;

DWORD	dwUsedSize;

HLINE		hLine;

DWORD	dwLineDeviceID;

DWORD	dwAddressID;

DWORD	dwBearerMode;

LINEBEARERMODE_VOICE

LINEBEARERMODE_PASSTHROUGH

DWORD	dwRate;

0

DWORD	dwMediaMode;

LINEMEDIAMODE_AUTOMATEDVOICE

LINEMEDIAMODE_INTERACTIVEVOICE

LINEMEDIAMODE_DATAMODEM

LINEMEDIAMODE_G3FAX

DWORD	dwAppSpecific;

whatever was set last with TSPI_lineSetAppSpecific (initially 0 on a new call)0

DWORD	dwCallID;

0Service provider could return caller ID MESG= field here if required.

DWORD	dwRelatedCallID;

0

DWORD	dwCallStates;

LINECALLSTATE_IDLE

LINECALLSTATE_OFFERING

LINECALLSTATE_ACCEPTED

LINECALLSTATE_DIALTONE

LINECALLSTATE_DIALING

LINECALLSTATE_RINGBACK

LINECALLSTATE_BUSY

LINECALLSTATE_CONNECTED

LINECALLSTATE_PROCEEDING

LINECALLSTATE_DISCONNECTED

LINECALLSTATE_ONHOLD

LINECALLSTATE_CONFERENCED

LINECALLSTATE_ONHOLDPENDCONF

LINECALLSTATE_ ONHOLDPENDTRANSF

LINECALLSTATE_UNKNOWN

DWORD	dwMonitorDigitModes;

LINEDIGITMODE_DTMF

DWORD	dwMonitorMediaModes;

TAPI supplied

LINEDIALPARAMS	DialParams;

Set to dialing parameters currently in effect on the call (unless set by TSPI_lineMakeCall or TSPI_lineSetCallParams, the defaults used in LINEDEVCAPS)

typedef struct linedialparams_tag{

DWORD	dwDialPause;

0

DWORD	dwDialSpeed;

0

DWORD	dwDigitDuration;

0

DWORD	dwWaitForDialtone;

0

}

DWORD	dwOrigin;

LINECALLORIGIN_OUTBOUND

LINECALLORIGIN_INBOUNDUNKNOWN

DWORD	dwReason;

LINECALLREASON_UNAVAILDIRECT

DWORD	dwCompletionID;

0

DWORD	dwNumOwners;

TAPI supplied.

DWORD	dwNumMonitors;

TAPI supplied.

DWORD	dwCountryCode;

0

DWORD	dwTrunk;

0

DWORD	dwCallerIDFlags;

LINECALLPARTYID_BLOCKED

LINECALLPARTYID_OUTOFAREA

LINECALLPARTYID_NAME

LINECALLPARTYID_ADDRESS

LINECALLPARTYID_UNKNOWN *

LINECALLPARTYID_UNAVAIL *

* If the modem does not support Caller ID, only LINECALLPARTYID_UNKNOWN will be reported. If the modem does support Caller ID but the Caller ID information has not been made available yet, it will report LINECALLPARTYID_UNAVAIL.

DWORD	dwCallerIDSize;

DWORD	dwCallerIDOffset;

As available.

DWORD	dwCallerIDNameSize;

DWORD	dwCallerIDNameOffset;

As available.

DWORD	dwCalledIDFlags;

LINECALLPARTYID_UNAVAIL

DWORD	dwCalledIDSize;

0

DWORD	dwCalledIDOffset;

0

DWORD	dwCalledIDNameSize;

0

DWORD	dwCalledIDNameOffset;

0

DWORD	dwConnectedIDFlags;

LINECALLPARTYID_UNAVAIL

DWORD	dwConnectedIDSize;

0

DWORD	dwConnectedIDOffset;

0

DWORD	dwConnectedIDNameSize;

0

DWORD	dwConnectedIDNameOffset;

0

DWORD	dwRedirectionIDFlags;

LINECALLPARTYID_UNAVAIL

DWORD	dwRedirectionIDSize;

0

DWORD	dwRedirectionIDOffset;

0

DWORD	dwRedirectionIDNameSize;

0

DWORD	dwRedirectionIDNameOffset;

0

DWORD	dwRedirectingIDFlags;

LINECALLPARTYID_UNAVAIL

DWORD	dwRedirectingIDSize;

0

DWORD	dwRedirectingIDOffset;

0

DWORD	dwRedirectingIDNameSize;

0

DWORD	dwRedirectingIDNameOffset;

0

DWORD	dwAppNameSize;

TAPI supplied

DWORD	dwAppNameOffset;

TAPI supplied

DWORD	dwDisplayableAddressSize;

TAPI supplied

0

DWORD	dwDisplayableAddressOffset;

TAPI supplied

0

DWORD	dwCalledPartySize;

TAPI supplied

DWORD	dwCalledPartyOffset;

TAPI suppled

DWORD	dwCommentSize;

TAPI supplied

DWORD	dwCommentOffset;

TAPI supplied

DWORD	dwDisplaySize;

0

DWORD	dwDisplayOffset;

0

DWORD	dwUserUserInfoSize;

0

DWORD	dwUserUserInfoOffset;

0

DWORD	dwHighLevelCompSize;

0

DWORD	dwHighLevelCompOffset;

0

DWORD	dwLowLevelCompSize;

0

DWORD	dwLowLevelCompOffset;

0

DWORD	dwChargingInfoSize;

0

DWORD	dwChargingInfoOffset;

0

DWORD	dwTerminalModesSize;

DWORD	dwTerminalModesOffset;

0

DWORD	dwDevSpecificSize;

0

DWORD	dwDevSpecificOffset;

} LINECALLINFO

	TSPI_lineGetCallStatus

TSPI_lineGetCallStatus(

HDRVCALL							hdCall,

LPLINECALLSTATUS	lpCallStatus

);

typedef struct linecallstatus_tag{

DWORD	dwTotalSize;

DWORD	dwNeededSize;

DWORD	dwUsedSize;

DWORD	dwCallState;

LINECALLSTATE_IDLE

LINECALLSTATE_OFFERING

LINECALLSTATE_ACCEPTED

LINECALLSTATE_DIALTONE

LINECALLSTATE_DIALING

LINECALLSTATE_RINGBACK

LINECALLSTATE_BUSY

LINECALLSTATE_CONNECTED

LINECALLSTATE_PROCEEDING

LINECALLSTATE_DISCONNECTED

LINECALLSTATE_ONHOLD

LINECALLSTATE_CONFERENCED

LINECALLSTATE_ONHOLDPENDCONF

LINECALLSTATE_ ONHOLDPENDTRANSF

LINECALLSTATE_UNKNOWN

DWORD	dwCallStateMode;

No special dialtone, busy modes.

DWORD	dwCallPrivilege;

TAPI suppled

DWORD	dwCallFeatures; /*based upon actual call state*/

LINECALLFEATURE_ACCEPT

LINECALLFEATURE_ANSWER

LINECALLFEATURE_COMPLETECALL

LINECALLFEATURE_DIAL (address 0 only)

LINECALLFEATURE_DROP

LINECALLFEATURE_GENERATEDIGITS

LINECALLFEATURE_MONITORDIGITS

LINECALLFEATURE_MONITORMEDIA

LINECALLFEATURE_SETUPCONF

LINECALLFEATURE_SETUPTRANSF

LINECALLFEATURE_SETCALLPARAMS

DWORD	dwDevSpecificSize;

0

DWORD	dwDevSpecificOffset;

0

} LINECALLSTATUS

	TSPI_lineGetDevCaps(

TSPI_lineGetDevCaps(

DWORD								dwDeviceID,

DWORD								dwTSPIVersion,

DWORD								dwExtVersion,

LPLINEDEVCAPS	lpLineDevCaps

);

typedef struct linedevcaps_tag {

DWORD	dwTotalSize;

DWORD	dwNeededSize;

DWORD	dwUsedSize;

DWORD	dwProviderInfoSize;

0

DWORD	dwProviderInfoOffset;

Whatever Unimodem currently provides (e.g., Unimodem TAPI sevice provider)

0

DWORD	dwSwitchInfoSize;

0

DWORD	dwSwitchInfoOffset;

0

DWORD	dwPermanentLineID;

As provided by TSPI_providerInit

DWORD	dwLineNameSize;

DWORD	dwLineNameOffset;

Registry supplied

DWORD	dwStringFormat;

STRING_FORMAT_ASCII

DWORD	dwAddressModes;

LINEADDRESS_ADDRESSID

DWORD	dwNumAddresses;

as specified in registry

DWORD	dwBearerModes;

LINEBEARERMODE_VOICE

LINEBEARERMODE_PASSTHROUGH

DWORD	dwMaxRate;

Registry supplied

DWORD	dwMediaModes;

 LINEMEDIAMODE_UNKNOWN

LINEMEDIAMODE_AUTOMATEDVOICE

LINEMEDIAMODE_INTERACTIVEVOICE

LINEMEDIAMODE_DATAMODEM

LINEMEDIAMODE_G3FAX

DWORD	dwGenerateToneModes;

0

DWORD	dwGenerateToneMaxNumFreq;

0

DWORD	dwGenerateDigitModes;

LINEDIGITMODE_DTMF

DWORD	dwMonitorToneMaxNumFreq;

1

DWORD	dwMonitorToneMaxNumEntries;

1

DWORD	dwMonitorDigitModes;

LINEDIGITMODE_DTMF

LINEDIGITMODE_DTMFEND

DWORD	dwGatherDigitsMinTimeout;

0

DWORD	dwGatherDigitsMaxTimeout;

0

DWORD	dwMedCtlDigitMaxListSize;

0

DWORD	dwMedCtlMediaMaxListSize;

0

DWORD	dwMedCtlToneMaxListSize;

0

DWORD	dwMedCtlCallStateMaxListSize;

0

DWORD	dwDevCapFlags;

LINEDEVCAPFLAGS_DIALBILLING

LINEDEVCAPFLAGS_DIALQUIET

LINEDEVCAPFLAGS_DIALDIALTONE

0

DWORD	dwMaxNumActiveCalls;

1

DWORD	dwAnswerMode;

LINEANSWERMODE_NONE

DWORD	dwRingModes;

1 or 0

DWORD	dwLineStates;

LINEDEVSTATE_RINGING

LINEDEVSTATE_CONNECTED

LINEDEVSTATE_DISCONNECTED

LINEDEVSTATE_INSERVICE

LINEDEVSTATE_OUTOFSERVICE

LINDEVSTATE_OPEN

LINDEVSTATE_CLOSE

LINEDEVSTATE_REINIT

LINEDEVSTATE_TRANSLATECHANGE

LINEDEVSTATE_REMOVED

DWORD	dwUUIAcceptSize;

0

DWORD	dwUUIAnswerSize;

0

DWORD	dwUUIMakeCallSize;

0

DWORD	dwUUIDropSize;

0

DWORD	dwUUISendUserUserInfoSize;

0

DWORD	dwUUICallInfoSize;

0

LINEDIALPARAMS	MinDialParams;

Minimum values for the dial parameters in milliseconds that can be set for calls on this line

typedef struct linedialparams_tag{

DWORD	dwDialPause;

	0

DWORD	dwDialSpeed;

	0

DWORD	dwDigitDuration;

	0

DWORD	dwWaitForDialtone;

	0

}

LINEDIALPARAMS MaxDialParams;

Maximum values for the dial parameters in milliseconds that can be set for calls on this line

typedef struct linedialparams_tag{

DWORD	dwDialPause;

	0

DWORD	dwDialSpeed;

	0

DWORD	dwDigitDuration;

	0

DWORD	dwWaitForDialtone;

	0

}

LINEDIALPARAMS DefaultDialParams;

Default values for the dial parameters in milliseconds to be used for calls on this line

typedef struct linedialparams_tag{

DWORD	dwDialPause;

	0

DWORD	dwDialSpeed;

	0

DWORD	dwDigitDuration;

	0

DWORD	dwWaitForDialtone;

	0

}

DWORD	dwNumTerminals;

0

DWORD	dwTerminalCapsSize;

0

DWORD	dwTerminalCapsOffset;

0

DWORD	dwTerminalTextEntrySize;

0

DWORD	dwTerminalTextSize;

0

DWORD	dwTerminalTextOffset;

0

DWORD	dwDevSpecificSize;

0

DWORD	dwDevSpecificOffset;

0

DWORD	dwLineFeatures;

LINEFEATURE_FORWARD

LINEFEATURE_MAKECALL

} LINEDEVCAPS

A LINE_ADDRESSSTATE message with dwParam2 equal to LINEADDRESSSTATE_CAPSCHANGE is sent when configuration changes made by the user (for example, forwarding no longer in modem control panel UI) result in changes to one or more of the fields in the LINEADDRESSCAPS structure for the address. The application should should use TSPI_lineGetAddressCaps to read the updated structure.

	TSPI_lineGetLineDevStatus

TSPI_lineGetLineDevStatus(

HDRVLINE							hdLine,

LPLINEDEVSTATUS	lpLineDevStatus

);

typedef struct linedevstatus_tag {

DWORD	dwTotalSize;

DWORD	dwNeededSize;

DWORD	dwUsedSize;

DWORD	dwNumOpens;

TAPI supplied.

DWORD	dwOpenMediaModes;

TAPI supplied.

DWORD	dwNumActiveCalls;

Set to 1 if you have an active call

TAPI supplied.

DWORD	dwNumOnHoldCalls;

0 or 1

DWORD	dwNumOnHoldPendCalls;

0 or 1

DWORD	dwLineFeatures;

LINEFEATURE_MAKECALL (address 0 only)

LINEFEATURE_FORWARD

DWORD	dwNumCallCompletions;

0

DWORD	dwRingMode;

0

DWORD	dwSignalLevel;

0xffff

DWORD	dwBatteryLevel;

0xffff

DWORD	dwRoamMode;

LINEROAMMODE_UNAVAIL

DWORD	dwDevStatusFlags;

LINEDEVSTATUS_INSERVICE

LINEDEVSTATUS_CONNECTED

DWORD	dwTerminalModesSize;

0

DWORD	dwTerminalModesOffset;

0

DWORD	dwDevSpecificSize;

0

DWORD	dwDevSpecificOffset;

0

} LINEDEVSTATUS

	TSPI_lineGetID

TSPI_lineGetID(

HDRVLINE				hdLine,

DWORD						dwAddressID,

HDRVCALL			hdCall,

DWORD						dwSelect,

LPVARSTRING	lpDeviceID,

LPCSTR						lpszDeviceClass

);

The following table shows the values filled for lpDeviceID for TSPI_lineGetID:

DEVICE CLASS�TSPI_lineGetID��WAVE/IN�MM ID��WAVE/OUT�MM ID��TAPI/LINE�Its own ID��TAPI /PHONE�Phone associated with Line��COMM�Name of Modem��COMM/DATAMODEM�DWORD handle followed by name of modem��

	TSPI_lineGetNumAddressIDs

TSPI_lineGetNumAddressIDs(

HDRVLINE		hdLine,

LPDWORD		lpdwNumAddressIDs

);

Returns the number specified in the registry.

		TSPI_lineGetStatusMessages

TSPI_lineGetStatusMessages(

HLINE					hLine,

LPDWORD		lpdwLineStates,

LPDWORD		lpdwAddressStates

);

lpdwAddressStates supported are:

LINEADDRESSSTATE_OTHER

LINEADDRESSSTATE_DEVSPECIFIC

LINEADDRESSSTATE_INUSEZERO

LINEADDRESSSTATE_INUSEONE

LINEADDRESSSTATE_INUSEMANY

LINEADDRESSSTATE_NUMCALLS

LINEADDRESSSTATE_FORWARD

LINEADDRESSSTATE_CAPSCHANGE

TSPI_lineMakeCall

When TSPI_lineMakeCall is called, LineVoiceDialStart, LineVoiceDialNumber, and LineVoiceDialComplete are performed.

	TSPI_lineMonitorDigits

TSPI_lineMonitorDigits(

HDRVCALL	hdCall,

DWORD				dwDigitModes

);

dwDigitModes supported are:

LINEDIGITMODE_DTMF

LINEDIGITMODE_DTMFEND

	TSPI_lineMonitorMedia

TSPI_lineMonitorMedia(

HDRVCALL	hdCall,

DWORD				dwMediaModes

);

dwMediaModes supported are:

LINEMEDIAMODE_AUTOMATEDVOICE

LINEMEDIAMODE_INTERACTIVEVOICE

LINEMEDIAMODE_DATAMODEM

LINEMEDIAMODE_G3FAX

	TSPI_lineSetDefaultMediaDetection

TSPI_lineSetDefaultMediaDetection(

HDRVLINE	hdLine,

DWORD			dwMediaModes

);

dwMediaModes supported are:

LINEMEDIAMODE_AUTOMATEDVOICE

LINEMEDIAMODE_INTERACTIVEVOICE

LINEMEDIAMODE_DATAMODEM

LINEMEDIAMODE_G3FAX

	TSPI_lineSetStatusMessages

TSPI_lineSetStatusMessages always returns success. TAPI does the message filtering.

Phone Device

A phone device has been defined to allow applications to monitor and control the hookswitch mode of the handset, speakerphone, and/or headset.

On some modems, the phone and line devices are related (for example, when the handset is taken off hook, the speaker phone is automatically disabled). The overall strategy is to monitor the handset and line where possible. If the handset is lifted when the speaker is active, LineSetSpeakerOff is used to enable monitoring of the line. If the handset is subsequently replaced without re-enabling the speaker, LineVoiceMonitor is used to disconnect the call.

The following sections describe the support in the TSP for the phone device:

The first section lists functions that are not implemented in the Unimodem TSP.

The second sections lists functions that will be implemented in the usual way (no noteworthy aspects to this implementation).

The third section lists functions that will be implemented but require some description of the proposed implementation.

Phone Device Functions not Implemented

Following is the list of functions for phone devices that are are not supported. These functions will return PHONEERR_OPERATIONUNAVAIL:

TSPI_phoneConfigDialog

TSPI_phoneDevSpecific

TSPI_phoneGetButtonInfo

TSPI_phoneGetData

TSPI_phoneGetDisplay

TSPI_phoneGetExtensionID

TSPI_phoneGetLamp

TSPI_phoneGetRing

TSPI_phoneNegotiateExtVersion

TSPI_phoneSetButtonInfo

TSPI_phoneSetData

TSPI_phoneSetDisplay

TSPI_phoneSetLamp

TSPI_phoneSetRing

Phone Device Functions with Usual implementation

Following is the list of functions for phone devices that are implemented in the usual way (no noteworthy aspects to this implementation):

TSPI_phoneClose

TSPI_phoneGetIcon

TSPI_phoneNegotiateTSPIVersion

TSPI_phoneSelectExtVersion

Phone Device Functions with Described Implementation

Following is the list of functions for phone devices that will be implemented but require some description of the proposed implementation.

	TSPI_phoneGetDevCaps

TSPI_phoneGetDevCaps(

DWORD						dwDeviceID,

DWORD						dwTSPIVersion,

DWORD						dwExtVersion,

LPPHONECAPS	lpPhoneCaps

);

Following is the typedef for PHONECAPS. Interspersed in the typedef are, where appropriate, descriptions of the possible values which the various parameters can take on.

typedef struct phonecaps_tag{

DWORD	dwTotalSize;

DWORD	dwNeededSize;

DWORD	dwUsedSize;

DWORD	dwProviderInfoSize;

DWORD	dwProviderInfoOffset;

The service provider could add a canned Microsoft string here.

DWORD	dwPhoneInfoSize;

DWORD	dwPhoneInfoOffset;

The service provider could add another registry entry (say \LineDeviceIdentification) to capture a string describing the voice modem. It would be returned here.

DWORD	dwPermanentPhoneID;

Comes from TSPI_providerInit.

DWORD	dwPhoneNameSize;

0

DWORD	dwPhoneNameOffset;

0

DWORD	dwStringFormat;

STRINGFORMAT_ASCII

DWORD	dwPhoneStates;

PHONESTATE_OTHER

PHONESTATE_OWNER

PHONESTATE_MONITORS

PHONESTATE_HANDSETHOOKSWITCH

PHONESTATE_SPEAKERHOOKSWITCH

PHONESTATE_SPEAKERVOLUME

PHONESTATE_REINIT

DWORD	dwHookSwitchDevs;

PHONEHOOKSWITCHDEV_HANDSET

PHONEHOOKSWITCHDEV_SPEAKER

DWORD	dwHandsetHookSwitchModes;

PHONEHOOKSWITCHMODE_ONHOOK

PHONEHOOKSWITCHMODE_MICSPEAKER

PHONEHOOKSWITCHMODE_UNKNOWN

DWORD	dwSpeakerHookSwitchModes;

PHONEHOOKSWITCHMODE_ONHOOK

PHONEHOOKSWITCHMODE_SPEAKER

PHONEHOOKSWITCHMODE_MICSPEAKER

DWORD	dwHeadsetHookSwitchModes;

0

DWORD	dwVolumeFlags;

PHONEHOOKSWITCHDEV_SPEAKER

DWORD	dwGainFlags;

PHONEHOOKSWITCHDEV_SPEAKER

DWORD	dwDisplayNumRows;

0

DWORD	dwDisplayNumColumns;

0

DWORD	dwNumRingModes;

0

DWORD	dwNumButtonLamps;

0

DWORD	dwButtonModesSize;

0

DWORD	dwButtonModesOffset;

0

DWORD	dwButtonFunctionsSize;

0

DWORD	dwButtonFunctionsOffset;

0

DWORD	dwLampModesSize;

0

DWORD	dwLampModesOffset;

0

DWORD	dwNumSetData;

0

DWORD	dwSetDataSize;

0

DWORD	dwSetDataOffset;

0

DWORD	dwNumGetData;

0

DWORD	dwGetDataSize;

0

DWORD	dwGetDataOffset;

0

DWORD	dwDevSpecificSize;

?

DWORD	dwDevSpecificOffset;

?

} PHONECAPS

	TSPI_phoneGetGain

TSPI_phoneGetGain(

HDRVPHONE	hdPhone,

DWORD					dwHookSwitchDev,

LPDWORD			lpdwGain

);

TSPI_phoneGetGain returns the value last set with TSPI_phoneSetGain, regardless of whether there is a current active call.

Valid values for the dwHookSwitchDev parameter:

PHONEHOOKSWITCHDEV_SPEAKER

	TSPI_phoneGetHookSwitch

TSPI_phoneGetHookSwitch(

HDRVPHONE	hdPhone,

LPDWORD			lpdwHookSwitchDevs

);�

PHONEHOOKSWITCHDEV_HANDSET—the state of the handset will be tracked using the local handset events to the extent possible and reported as:

PHONEHOOKSWITCHMODE_ONHOOK

PHONEHOOKSWITCHMODE_MICSPEAKER

PHONEHOOKSWITCHDEV_SPEAKER—the state of the speaker will be tracked based upon software operations since some modems do not report valid state information (i.e., the handset automatically disables the speakerphone which means the state of the speaker is not always valid).

PHONEHOOKSWITCHMODE_ONHOOK

PHONEHOOKSWITCHMODE_SPEAKER

PHONEHOOKSWITCHMODE_MICSPEAKER

	TSPI_phoneGetID

TSPI_phoneGetID(

HDRVPHONE		hdPhone,

LPVARSTRING	lpDeviceID,

LPCSTR						lpszDeviceClass

);

The following table shows the values filled in for lpDeviceID for TSPI_phoneGetID:

DEVICE CLASS�TSPI_phoneGetID��WAVE/IN�MM ID��WAVE/OUT�MM ID��TAPI/LINE�Line ID Associated with Phone��TAPI /PHONE�Its own ID��	TSPI_phoneGetStatus

TSPI_phoneGetStatus(

HDRVPHONE				hdPhone,

LPPHONESTATUS	lpPhoneStatus

);

Following is the typedef for PHONESTATUS. Interspersed in the typedef are, where appropriate, descriptions of the possible values which the various parameters can take on.

typedef struct phonestatus_tag{

DWORD	dwTotalSize;

DWORD	dwNeededSize;

DWORD	dwUsedSize;

DWORD	dwStatusFlags;

PHONESTATUSFLAGS_CONNECTED

DWORD	dwNumOwners;

TAPI supplied

DWORD	dwNumMonitors;

TAPI supplied

DWORD	dwRingMode;

0

DWORD	dwRingVolume;

0

DWORD	dwHandsetHookSwitchMode;

May not be completely reliable.

PHONEHOOKSWITCHMODE_ONHOOK

PHONEHOOKSWITCHMODE_MICSPEAKER

DWORD	dwHandsetVolume;

0

DWORD	dwHandsetGain;

0

DWORD	dwSpeakerHookSwitchMode;

May not be completely reliable.

PHONEHOOKSWITCHMODE_ONHOOK

PHONEHOOKSWITCHMODE_SPEAKER

PHONEHOOKSWITCHMODE_MICSPEAKER

DWORD	dwSpeakerVolume;

Per the last phoneSetVolume(PHONEHOOKSWITCHDEV_SPEAKER)

DWORD	dwSpeakerGain;

Per the last phoneSetGain(PHONEHOOKSWITCHDEV_SPEAKER)

DWORD	dwHeadsetHookSwitchMode;

0

DWORD	dwHeadsetVolume;

0	

DWORD	dwHeadsetGain;

0

DWORD	dwDisplaySize;

0

DWORD	dwDisplayOffset;

0

DWORD	dwLampModesSize;

0

DWORD	dwLampModesOffset;

0

DWORD	dwOwnerNameSize;

DWORD	dwOwnerNameOffset;

TAPI supplied?

DWORD	dwDevSpecificSize;

0

DWORD	dwDevSpecificOffset;

0

} PHONESTATUS

		TSPI_phoneGetVolume

TSPI_phoneGetVolume(

HDRVPHONE	hdPhone,

DWORD					dwHookSwitchDev,

LPDWORD			lpdwVolume

);

PHONEHOOKSWITCHDEV_HANDSET—return PHONEERR_OPERATIONUNAVAIL.

PHONEHOOKSWITCHDEV_SPEAKER—the previous volume is returned.

	TSPI_phoneOpen

TSPI_phoneOpen can not be called, nor any of the phone device functions used, until a line is open. This differs from TAPI, which says you should be able to open your phone device at any time, regardless of the state of any line device. If an application tries to open the phone before the line, PHONEERR_OPERATIONFAILED is returned. If the line is closed before the phone, this will nullify the phone device, and all subsequent calls to phone functions will return PHONEERR_OPERATION FAILED.

		

TSPI_phoneSetGain

TSPI_phoneSetGain(

DRV_REQUESTED	dwRequestID,

HDRVPHONE				hdPhone,

DWORD								dwHookSwitchDev,

DWORD								dwGain

);

TSPI_phoneSetGain sets the gain of the microphone of the specified phone’s hookswitch device when there is an active call. If there is not an active call when this function is called, the gain will be set when a call becomes active.

Valid values for the dwHookSwitchDev parameter:

PHONEHOOKSWITCHDEV_SPEAKER

TSPI_phoneSetHookSwitch

TSPI_phoneSetHookSwitch(

DRV_REQUESTID	dwRequestID,

HDRVPHONE				hdPhone,

DWORD								dwHookSwitchDevs,

DWORD								dwHookSwitchMode

);

TSPI_phoneSetHookSwitch turns the speakerphone speaker and mic on and off. It will only do this when there is an active call.

This function does not set the telephone line on and off-hook—this can not be done.

PHONEHOOKSWITCHDEV_SPEAKER

PHONEHOOKSWITCHMODE_ONHOOK

LineSetSpeakerOff

PHONEHOOKSWITCHMODE_SPEAKER

SpeakerMuteOn

PHONEHOOKSWITCHMODE_MICSPEAKER

LineSetSpeakerOn

Note: The TSP must maintain sufficient status information such that the state of the speaker can always be restored and the volume re-established.

	TSPI_phoneSetStatusMessages

TSPI_phoneSetStatusMessages always returns success. TAPI does the message filtering.

	TSPI_phoneSetVolume

TSPI_phoneSetVolume(

DRV_REQUESTID	dwRequestID,

HDRVPHONE				hdPhone,

DWORD								dwHookSwitchDev,

DWORD								dwVolume

);

PHONEHOOKSWITCHDEV_HANDSET

Return PHONEERR_OPERATIONUNAVAIL.

PHONEHOOKSWITCHDEV_SPEAKER

The desired volume / Divider + Offset is stored for the next speaker activation and LineSetVolume is used to load the new volume.

Service Provider Functions

The following Service Provider functions will be implemented in the usual way (no noteworthy aspects to this implementation).

TSPI_providerConfig

TSPI_providerInit

TSPI_providerInstall

TSPI_providerRemove

TSPI_providerShutdown

TSPI_providerEnumDevices (usual implementation for a single line, single phone TSP).

TSPI_providerCreateLineDevice

TSPI_providerCreatePhoneDevice

Operator Agent

Windows 95 does not have a call discrimination process for inbound data, fax, and voice calls. Currently, a single application takes all incoming calls of unknown type and drops calls it is not interested in.

Sections � REF _Ref320605582 \n �
5.1.1
� through � REF _Ref320605610 \n �
5.1.4
� describe current behavior of Windows 95 specifically for four different kinds of modems.

Section � REF _Ref339869077 \n �
5.2
� describes two solutions to the inbound call discrimination problem for voice modems:

Distinctive Ringing

the Operator Agent, a new Unimodem V component. The Operator Agent addresses the problem by answering incoming calls of unknown media mode and routing them, based on DTMF input from the caller or on a pre-selected priority list, to the appropriate application.

Data, Fax Modems [+FCLASS = 0,1,(2)]

For data/fax modems (no voice), the adaptive answer capability of data/fax modems, where the receiving modem sends a data modem signal out (answerback tone— 2100 Hz) and waits to see if a data modem on the other end responds, is used in Windows 95 to hand off calls from Remote Network Access to At Work Fax. This provides no benefit for modems that include voice capability.

Data, Fax, and Voice Modems [+FCLASS = 0,1,(2),8]

In typical analog telephony environments, without using distinctive ringing or caller ID, an inbound call’s “media mode” (data, fax, voice, voiceview) is unknown until after the call has been answered and the media stream filtered to make a determination. This is because inbound data and voice calls (and some fax calls) do not present tones that allow Unimodem to determine the type of call and offer it to the intended destination application. Tones can not be sent out by the receiving modem, as this would be objectionable to a human on the other end should it be a voice call.

Data, Fax, Voice, VoiceView Modems [+FCLASS = 0,1,(2),(8), 80]

The usage model for VoiceView is that calls start out as interactive voice, then briefly switch to VoiceView mode (+FCLASS = 80) during the course of the call. Because the Operator Agent will never answer the call in +FCLASS=80 (only in +FCLASS=8), the same issues apply as for data/fax/voice modems above in Section � REF _Ref320605697 \n �
5.1.2
�.

Simultaneous Voice Data (SVD) modems [+FCLASS = 0,(1),(2),8]

SVD calls start out as either voice or data calls, so the same issues apply as for data/fax/voice modems above in Section � REF _Ref320605697 \n �
5.1.2
�.

Inbound Call Discrimination Solutions for Voice Modems

This section describes two solutions to the inbound call discrimination problem for voice modems:

Distinctive Ringing

the Operator Agent, a new Unimodem V component.

Distinctive Ringing

With Distinctive Ringing, the user can map a unique ring pattern to a specific type of call (for example, a long ring is always voice, a long-long ring pattern is always data, a long-short-long ring pattern is always fax). Unimodem V will then use the Distinctive Ring information from the modem to determine media mode. This way, the media mode is known and set before the call is answered, and the intended destination app can answer it. This solution is not sufficient, since most users will not have Distinctive Ringing.

Operator Agent

For users without Distinctive Ringing, described above, the Operator Agent will answer inbound calls of unknown media mode and route them to the appropriate application. The following sections describe:

The basic functionality for the Operator Agent—Section � REF _Ref320605725 \n �
5.2.2.1
�

Other requirements of the Operator Agent—Section � REF _Ref331915973 \n �
5.2.2.2
�

Limitations—� REF _Ref320605747 \n �
5.2.2.3
�

Operator Agent User Interface—Section � REF _Ref320605755 \n �
5.2.2.4
�

Requirements for data, fax, and voice apps to work with the Operator Agent—Section � REF _Ref320605767 \n �
0
�

	Operator Agent Functionality

The basic functionality for the Operator Agent is as follows:

If more than one kind of media mode (data, fax, or voice) is being monitored by applications answer all calls of lineMediaMode=Unknown.

Pause 1 second to call lineMonitorMedia and attempt to detect incoming fax or data tones. If fax or data tones are detected, hand off to the monitoring fax or data application.

Play a greeting that tells the caller to enter a DTMF tone to indicate whether they are attempting to make a voice, fax, or data call.

If at any time during the greeting, up until a DTMF is pressed, Unimodem detects and reports fax or V.34 data tones, the Operator will stop playing the greeting and lineHandoff the call to the fax or data app. If the appropriate app is not running, drop the call.

If no fax or V.34 data tones are detected then the call is either a data call from a non-V.34 modem, a voice call, or a manual fax call (user dials with handset, waits until other end answers, then presses “send”).

DTMF input from the caller is handled as follows:

if at any time valid DTMF input is detected

stop the greeting if it is not already finished, and lineHandoff the call to the appropriate app

if invalid DTMF detected at any time (during or after the greeting)

ignore it and follow same steps as for no DTMF described below.

if no DTMF detected

wait 5 seconds after completion of the greeting, then lineHandoff the call according to the media mode priority order chosen by the user in the Operator Agent setup wizard. The default order is:

data

voice

fax

If an appropriate app is not running, that media mode is skipped and the first one for which an app is running is chosen.

Other Requirements

The user must be able to select a priority sequence for media mode handoffs. This priority sequence is used in two situations:

when the Operator Agent greeting is turned off but the Operator Agent is still handing off calls (see 2. below)

when no valid DTMF is detected after the Operator Agent greeting plays (see 3. below)

The user must be able to disable the Operator Agent greeting and handoff calls according to the user’s prioritized list of media modes. An example of how this might be useful: if the user expects only data calls from a V.34 modem, fax calls with fax tones, and voice calls, and doesn’t want to force voice callers through two greetings (the Operator’s and the TAM’s). Disabling the greeting still keeps the Operator in the loop to route (based on tones) data or fax calls if they should arrive. In is case, the user would set “Voice” as the highest priority media to receive incoming unknown calls, and disable the Operator Agent greeting. The Operator Agent would then simply hand off the call to the TAM, but would not play it’s outgoing message. There will be a 2 second pause before the handoff to the TAM occurs, during which time V.34 data or fax tones will cause a handoff to the appropriate app.

If the target of the handoff is not running, the Operator Agent plays an “I’m sorry” message (either pre-recorded or user-recorded). This requirement only applies if the caller explicitly selected a destination. If the target of the handoff was defaulted to because there was no DTMF input from the caller, then the Operator Agent just tries the next service, in priority order, until one succeeds.

The outgoing greeting should not be played if only one kind of app is running (data, fax, or voice). In this case, the unknown call is passed through, unanswered, to whatever app is running.

Once the setup wizard has been run, the Operator Agent will be launched by the TSP automatically when the Unimodem TSP is first initialized via the TSPI_ProviderInit() function call and will always run henceforth unless explicitly turned off by the user through the tray. Once turned off, the Operator can be restarted through Start/Programs/Accessories/Operator.

	Limitations

Following are limitations of the Operator agent:

For voice calls where another (data or fax) app is also running and the Operator Agent greeting has not been disabled, the caller has to go through 2 greetings to get to the answering machine. This is a usability issue for voice apps.

There is no multiple line support in the Operator Agent. It monitors only the first line it finds that supports LINEMEDIAMODE_AUTOMATEDVOICE. Unimodem will only report LINEMEDIAMODE_AUTOMATEDVOICE for those voice modems that it supports. Hence, if one line has a data/fax only modem and another has a voice modem, the data/fax only modem is ignored. If more than one line has a voice modem, only the first line found is monitored.

The solution will not always work for calls from pulse phones (for example, if a caller wants to leave voice mail but data or fax is the #1 priority media mode to receive handoffs when no DTMF is entered)

	User Interface

The User Interface for the Operator Agent consists of the following

A Wizard to guide initial setup of the Operator Agent

A tray notification icon to indicate the Operator Agent’s status

A dialog indicating the status of the Operator

A properties sheet that allows changes to the Operator Agent configuration to be made

Each of these UI components is described below.

Wizard

A wizard will set up the Operator Agent before it can be used. The wizard can be accessed in one of two ways:

By launching “Operator” in Programs|Accessories. This runs the wizard if it has not already been run, and launches the Operator Agent for the first time.

MS Phone will have a help topic that indicates that an Operator Agent is available to answer incoming calls, and asks if the user would like to set it up. If so, the wizard is automatically run and the Operator Agent launched for the first time.

Subsequent changes to the Operator Agent configuration will be made in the “Microsoft Operator Agent Properties” sheet (described below).

Following are the wizard’s functions:

Setting number of rings before the Operator Agent answers (valid range should be 1 - 20). Each time a new call is offered, the Operator first checks the number of rings via lineGetNumRings. If the return value is -1 (not set by another application), then the number of rings entered in the Operator Agent’s UI is used. If lineGetNumRings returns a valid number, then the Operator Agent will use that number.

Recording of outgoing Greeting (pre-recorded or user-recorded).

Recording of failed call message, telling caller that destination app selected with DTMF is not running (pre-recorded or user-recorded).

Selection of call routing priority sequence for media mode handoffs in the case of calls with no DTMF input or when the Operator Agent’s outgoing greeting has been disabled.

Tray Notification Icon

The Operator Agent tray notification icon appears as a telephone if the Operator Agent is enabled; or a telephone with a red circle and “x” it if it is disabled:

Enabled:		� EMBED Package ���

Disabled:	� EMBED Package ���

Right clicking on the icon brings up the following menu that allows the user to either go to the Operator Agent status dialog that is also reached by left double clicking on the icon (Open…), suspend the Operator (change it’s status to “Idle, not monitoring line”), or exit the Operator.

� EMBED Word.Picture.6 ���

Status Dialog

The Operator Agent status dialog is reached either by selecting “Open…” in the menu reached by right clicking on the tray notification icon, or by left double clicking on the tray notification icon. The Operator Agent dialog, shown below, will indicate one of the current statuses:

Idle, not monitoring line (either suspended or only one kind of data/fax/voice app running)

Monitoring line, waiting for call (more than one kind of data/fax/voice app running and operator not suspended)

Handoff successful to FAX (call has been handed off to fax app, this status remains for the duration of the fax call)

Handoff successful to Data application (call has been handed off to data app, this status remains for the duration of the data call)

Handoff successful to Answering Machine (call has been handed off to voice app, this status remains for the duration of the voice call)

Call answered (operator has answered the call, and is in the process of playing it’s greeting and performing call discrimination)

Incoming call, line ringing (an incoming call is ringing and has not yet been answered by the Operator)

Call active (there is an active call on the line that the Operator did not hand off)

The Operator Agent dialog also allows the Operator to be enabled/disabled, and the outgoing greeting to be turned on or off.

�

When this dialog is started, the focus should be on the “Let Operator answer my calls” check box. OK should be the default pushbutton.

The Tab order is as follows:

Let Operator answer my calls

Play / Don't play group. The user should be able to use arrows to get from one to the other.

Properties…

OK

Cancel (Cancel becomes default push button)

Apply (Apply becomes default push button)

Back to beginning (OK becomes default push button).

The status edit box should not be a tab stop, since it is read only.

Properties Sheet

The “Operator” properties sheet, shown below, is reached by pressing the “Properties…” button in the Microsoft Operator Agent dialog box. It allows the user to change individual settings initially set in the Operator wizard.

�

Pressing any of the 3 buttons above will bring up the corresponding parts of the Operator wizard.

Operator Agent Setup and Registry Entries

Unimodem V setup will:

copy all Operator files and install Operator in Start|Accessories|Operator

write the Operator and OperatorError values into the registry

The wizard will add the OperatorPath and ErrorPath values the first time it runs (using the directory portions of the filenames).

If the registry entries have been corrupted or deleted, an error message will say to re-run setup.

All of the following are string values in the registry under HKEY_LOCAL_MACHINE/SOFTWARE/Microsoft/Microsoft Operator:

Operator—the full path of the default operator greeting. Setup sets it in the registry initially, and the wizard may subsequently change it.

OperatorError—the full path of the default error message. Setup sets it in the registry initially, and the wizard may subsequently change it.

OperatorPath—the directory containing canned operator greetings (<windows_dir>\media\operator). The Operator wizard sets this value. It is needed because Operator might point to a .wav file in another location, yet we still need to know where the canned greetings are.

ErrorPath—the directory containing the pre-recorded error messages (<windows dir>\media\operatorerror). The Operator wizard sets this value. It is needed because Operator might point to a .wav file in another location, yet we still need to know where the pre-recorded error messages are.

RunOperator—set to 0 if the Operator has been run before on the machine, 1 if it has not.

OperatorInfo—indicates choices made in the setup of the Operator, such as number of rings to answer on and the priority of media modes.

PreferredDevice—indicates the user’s current choice of modems in the “Connect using modem” field of Microsoft Operator Agent Properties that the Operator should monitor.

RunOperatorWizard—indicates whether the Operator wizard has already been run. This is needed because the wizard is only run one time (thereafter, changes to the Operator configuration are made in Microsoft Operator Agent Properties.

Requirements of other apps

This section summarizes aspects of the Operator Agent that data, fax, and voice applications need to be aware of.

Comm apps must be able to accept a handoff from the Operator.

Cooperating apps are an assumption (for example, another app will not take over a call inappropriately).

When a call that comes in and a voice application is monitoring, the voice application should put up its usual User Interface for an incoming call (answer, screen, send to AM). This obviates the need for the Operator Agent to have this kind of UI.

Comm apps must be able to determine if an incoming call is a normal call (modem still on hook) or a "hot" call (modem off hook), so they can use different initialization strings in each case (for example, if the call has not already been answered, the app may want to hang up the modem as part of its initialization process). The following table indicates how an app (fax) can make this determination:

�LINECALLSTATE_�LINEMEDIAMODE_��Operator Agent is not running because fax is only kind of comm app running.�OFFERING�UNKNOWN��Incoming call not answered by Operator Agent,

Distinctive Ringing�OFFERING�G3FAX��Fax is first priority media mode to accept a handoff if either the Operator Agent outgoing greerting is not played or no DTMF is detected.�CONNECTED�UNKNOWN��Incoming call answered by Operator Agent

Operator Agent has determined it is a fax�CONNECTED�G3FAX��

Functional Requirements for Wave Drivers

Telephone Line Wave Devices

This section describes requirements and recommendations of wave drivers connected to the telephone line. The following items are for both the wave-in and wave-out device.

Requirements:

Support 8kHz, mono, 16-bit PCM format wave data.

PC wave I/O (multimedia wave in and wave out) should be independent from wave I/O for the telephone line. If they are not independent, the wave driver must implement a scheme where the wave I/O from the telephone line preempts or is not blocked by the wave I/O from the PC wave devices.

Line-in must not be mixed with output to the telephone line.

Recommendations:

Support 11.025 kHz, 22.05 kHz, 44.1 kHz, mono, 8- and 16-bit PCM format wave data.

Support IMA-ADPCM format wave data.

Support low priority. This allows Voice-Aware applications to listen all the time without having to use push-to-talk. It allows scenarios like wave-out (system events, game audio) when listening for user commands.

This is for multimedia audio, not for a wave driver attached to the phone line. Low priority mode should not be in a serial port wave driver.

Setup & Installation

The following steps will install the Unimodem/V software. They accommodate both Plug and Play and non-Plug and Play modems. These steps assume that the modem hardware has already been installed per the manufacturer’s instructions.

Right click on the file “unimodv.inf, then select “install” from the menu.

Restart your computer.

In Control Panel, double-click System.

Click on the Device Manager tab.

Double click on the Modem icon.

In the list, click your modem, and then click Remove.

Click Refresh.

If the modem is Plug and Play, Windows 95 will automatically detect your modem at this point. If your modem is not automatically detected, follow these additional three steps.

In Control Panel, double-click Modems.

If the Install New Modem wizard does not automatically start, Click Add

Follow the instructions on your screen to detect your modem.

Configuration Dialogs for CLASS Features

This section describes the configuration dialogs that will be added as tabs to the Modems Control Panel (modem.cpl) for the support of Distinctive Ringing and Call Forwarding.

Distinctive Ringing

There are two kinds of modem support for Distinctive Ringing:

Ring quantities (1, 2, and 3 for single, double and triple rings). This doesn’t fully support Distinctive Ringing from some companies; for example, US West’s Distinctive Ringing includes a “long long” ring for the main number, and a “short short” ring for one of the Distinctive Rings (only one of which can be supported by this kind of distinctive ringing since they both map to a quantity of two rings).

Cadences—combinations of rings with long and short duration, and varying quantities. For example:

long

short short

long long

short long short

Based on a registry entry indicating the kind of Distinctive Ringing the modem supports, one of the two following tabs will be loaded.

User Interface for Distinctive Ringing with Cadences

�

Check Box

The check box allows the user to indicate whether Distinctive Ringing is available on their phone line. If it is checked, this enables all other controls.

Ring pattern

This is a series of combo boxes that allow the user to choose the ring pattern associated with each Distinctive Ringing address. The dropdown list contains the following choices. A dot represents a short ring; a dash represents a long ring:

None�.

-�. .�. -�- .�- -�. . -�. - .�- . .�- . -

Initially, the Primary address box will contain “.”, Address one will contain “-“, and Address 2 will contain “. .”. The rest of the combo boxes will contain None. The user is not allowed to pick the same pattern for more than one address.

Type of Call

This is a series of combo boxes that allow the user to indicate the type of call that will be received on each distinctive ringing address. The dropdown lists contain the following choices:

Unspecified (any type of call may be received)�Data�Fax�Voice

Initially, all of the combo boxes will contain Unspecified.

User Interface for Distinctive Ringing with Ring Quantities

�

Check Box

The check box allows the user to indicate whether Distinctive Ringing is available on their phone line. If it is checked, this enables all other controls.

Ring pattern

These indicate the three ring quantities available with this kind of Distinctive Ringing.

Type of Call

This is a series of combo boxes that allow the user to indicate the type of call that will be received on each distinctive ringing address. The dropdown lists contains the following choices:

Unspecified (any type of call may be received)�Data�Fax�Voice

Initially, all of the combo boxes will contain Unspecified.

Call Forwarding Tab

�

Check Box

The check box allows the user to indicate whether Call Forwarding is available on their phone line. If it is checked, this enables all other controls.

Activation Code

Edit box that allows the user to enter the code that activates call forwarding. This box allows a maximum of 7 characters to be entered.

Deactivation Code

Edit box that allows the user to enter the code that deactivates call forwarding. This box allows a maximum of 7 characters to be entered.

If the check box "This phone line has call forwarding" is checked, the “OK” button will be disabled until either both codes have been entered, the check box has been unchecked, or the user has pressed Cancel.

Valid characters for each of the two edit boxes are: #, *, 0, 1, 2, 3, 4, 5, 6, 7, 8, and 9, comma, and W. If the user enters an invalid character, a system beep should be played.

See section � REF _Ref339702252 \n �
4.1.3.5
� of this document for information on which type of Call Forwarding offerings from telephone companies are supported, and which are not.

� TITLE * MERGEFORMAT �
Voice Modem Functional Spec
�	Revision � SUBJECT * MERGEFORMAT
�	� PRINTDATE * MERGEFORMAT �
07/15/95

5:53

PM
�

�PAGE �

�styleref "heading 1"�
Configuration Dialogs for CLASS Features
�	Microsoft Confidential			 Page � PAGE �
42
�

