/* Parser.c (C) 1990, Mark C. Peterson, CompuServe [70441,3353] All rights reserved. Code may be used in any program provided the author is credited either during program execution or in the documentation. Source code may be distributed only in combination with public domain or shareware source code. Source code may be modified provided the copyright notice and this message is left unchanged and all modifications are clearly documented. I would appreciate a copy of any work which incorporates this code, however this is optional. Mark C. Peterson 405-C Queen St. Suite #181 Southington, CT 06489 (203) 276-9721 */ /* Chuck Ebbert (CompuServe [76306,1226] ) changed code marked 'CAE fp' */ /* for fast 387 floating-point math. See PARSERA.ASM and PARSERFP.C */ /* (13 Dec 1992.) */ /* */ /* Modified 12 July 1993 by CAE to fix crash when formula not found. */ #include #include #include #include #include /* TIW 04-22-91 */ #include #include "mpmath.h" #include "prototyp.h" extern int CvtStk(void); /* CAE fp */ extern int Transparent3D; /* MCP 5-30-91 */ #ifdef WATCH_MP double x1, y1, x2, y2; #endif MATH_TYPE MathType = D_MATH; /* moved _LCMPLX and union ARg to mpmath.h -6-20-90 TIW */ /* PB 910417 added MAX_OPS and MAX_ARGS defines */ #define MAX_ARGS 100 #define MAX_OPS 250 struct PEND_OP { void (far *f)(void); int p; }; /* CAE fp added MAX_STORES and LOADS */ #define MAX_STORES 125 /* at most only half the ops can be stores */ #define MAX_LOADS 200 /* and 80% can be loads */ /* PB 901103 made some of the following static for safety */ static struct PEND_OP far *o; static void parser_allocate(void); union Arg *Arg1, *Arg2; /* PB 910417 removed unused "a" array */ /* CAE fp made some of the following non-static for PARSERA.ASM */ /* Some of these variables should be renamed for safety */ union Arg s[20], far * far *Store, far * far *Load; /* static CAE fp */ int StoPtr, LodPtr, OpPtr; /* static CAE fp */ struct fls { /* function, load, store pointers CAE fp */ void (near *function)(void); union Arg near *operand; }; extern struct fls far *pfls; /* init in parserfp.c CAE fp */ void (far * far *f)(void) = (void(far * far *)(void))0; /* static CAE fp */ unsigned vsp, LastOp; /* CAE fp made non-static */ static unsigned n, ErrPtr, posp, NextOp, InitN; static int paren, SyntaxErr, ExpectingArg; struct ConstArg far *v = (struct ConstArg far *)0; /* was static CAE fp */ int InitLodPtr, InitStoPtr, InitOpPtr, LastInitOp; /* was static CAE fp */ static int Delta16; double fgLimit; /* TIW 05-04-91 */ static double fg; static int ShiftBack; /* TIW 06-18-90 */ static int SetRandom; /* MCP 11-21-91 */ static int Randomized; static unsigned long RandNum; extern int bitshift; extern int bitshiftless1; extern int symmetry; /* symmetry flag for calcmand() */ extern double param[]; extern int debugflag; /* BDT for debugging */ extern char boxx[8192]; /* PB 4-9-91, good place for the formula string */ extern int row, col, overflow, cpu, fpu; extern _CMPLX old, new; extern double far *dx0, far *dy0; extern long far *lx0, far *ly0; /* BDT moved these to FAR */ #ifndef TESTING_MATH extern double far *dx1, far *dy1; extern long far *lx1, far *ly1; #define dShiftx dx1[row] #define dShifty dy1[col] #define lShiftx lx1[row] #define lShifty ly1[col] #else #define dShiftx 0.0 #define dShifty 0.0 #define lShiftx 0L #define lShifty 0L #endif extern _LCMPLX lold, lnew; extern char FormName[]; extern VOIDFARPTR typespecific_workarea; #define LastSqr v[4].a static char far * far ErrStrings[] = { /* TIW 03-31-91 added far */ "Should be an Argument", "Should be an Operator", "')' needs a matching '('", "Need more ')'", "Undefined Operator", "Undefined Function", "More than one ','", "Table overflow" }; unsigned SkipWhiteSpace(char *Str) { unsigned n, Done; for(Done = n = 0; !Done; n++) { switch(Str[n]) { case ' ': case '\t': case '\n': case '\r': break; default: Done = 1; } } return(n - 1); } /* Random number code, MCP 11-21-91 */ unsigned long NewRandNum(void) { return(RandNum = ((RandNum << 15) + rand15()) ^ RandNum); } void lRandom(void) { v[7].a.l.x = NewRandNum() >> (32 - bitshift); v[7].a.l.y = NewRandNum() >> (32 - bitshift); } void dRandom(void) { long x, y; /* Use the same algorithm as for fixed math so that they will generate the same fractals when the srand() function is used. */ x = NewRandNum() >> (32 - bitshift); y = NewRandNum() >> (32 - bitshift); v[7].a.d.x = ((double)x / (1L << bitshift)); v[7].a.d.y = ((double)y / (1L << bitshift)); } #ifndef XFRACT void mRandom(void) { long x, y; /* Use the same algorithm as for fixed math so that they will generate the same fractals when the srand() function is used. */ x = NewRandNum() >> (32 - bitshift); y = NewRandNum() >> (32 - bitshift); v[7].a.m.x = *fg2MP(x, bitshift); v[7].a.m.y = *fg2MP(y, bitshift); } #endif void SetRandFnct(void) { unsigned Seed; if(!SetRandom) RandNum = Arg1->l.x ^ Arg1->l.y; Seed = (unsigned)RandNum ^ (unsigned)(RandNum >> 16); srand(Seed); SetRandom = 1; /* Clear out the seed */ NewRandNum(); NewRandNum(); NewRandNum(); } void RandomSeed(void) { time_t ltime; /* Use the current time to randomize the random number sequence. */ time(<ime); srand((unsigned int)ltime); NewRandNum(); NewRandNum(); NewRandNum(); Randomized = 1; } #ifndef XFRACT void lStkSRand(void) { SetRandFnct(); lRandom(); Arg1->l = v[7].a.l; } #endif #ifndef XFRACT void mStkSRand(void) { Arg1->l.x = Arg1->m.x.Mant ^ (long)Arg1->m.x.Exp; Arg1->l.y = Arg1->m.y.Mant ^ (long)Arg1->m.y.Exp; SetRandFnct(); mRandom(); Arg1->m = v[7].a.m; } #endif void dStkSRand(void) { Arg1->l.x = (long)(Arg1->d.x * (1L << bitshift)); Arg1->l.y = (long)(Arg1->d.y * (1L << bitshift)); SetRandFnct(); dRandom(); Arg1->d = v[7].a.d; } void (*StkSRand)(void) = dStkSRand; void dStkAbs(void) { Arg1->d.x = fabs(Arg1->d.x); Arg1->d.y = fabs(Arg1->d.y); } #ifndef XFRACT void mStkAbs(void) { if(Arg1->m.x.Exp < 0) Arg1->m.x.Exp = -Arg1->m.x.Exp; if(Arg1->m.y.Exp < 0) Arg1->m.y.Exp = -Arg1->m.y.Exp; } void lStkAbs(void) { Arg1->l.x = labs(Arg1->l.x); Arg1->l.y = labs(Arg1->l.y); } #endif void (*StkAbs)(void) = dStkAbs; void dStkSqr(void) { LastSqr.d.x = Arg1->d.x * Arg1->d.x; LastSqr.d.y = Arg1->d.y * Arg1->d.y; Arg1->d.y = Arg1->d.x * Arg1->d.y * 2.0; Arg1->d.x = LastSqr.d.x - LastSqr.d.y; LastSqr.d.x += LastSqr.d.y; LastSqr.d.y = 0; } #ifndef XFRACT void mStkSqr(void) { LastSqr.m.x = *MPmul(Arg1->m.x, Arg1->m.x); LastSqr.m.y = *MPmul(Arg1->m.y, Arg1->m.y); Arg1->m.y = *MPmul(Arg1->m.x, Arg1->m.y); Arg1->m.y.Exp++; Arg1->m.x = *MPsub(LastSqr.m.x, LastSqr.m.y); LastSqr.m.x = *MPadd(LastSqr.m.x, LastSqr.m.y); LastSqr.m.y.Mant = (long)(LastSqr.m.y.Exp = 0); } void lStkSqr(void) { LastSqr.l.x = multiply(Arg1->l.x, Arg1->l.x, bitshift); LastSqr.l.y = multiply(Arg1->l.y, Arg1->l.y, bitshift); Arg1->l.y = multiply(Arg1->l.x, Arg1->l.y, bitshift) << 1; Arg1->l.x = LastSqr.l.x - LastSqr.l.y; LastSqr.l.x += LastSqr.l.y; LastSqr.l.y = 0L; } #endif void (*StkSqr)(void) = dStkSqr; void dStkAdd(void) { Arg2->d.x += Arg1->d.x; Arg2->d.y += Arg1->d.y; Arg1--; Arg2--; } #ifndef XFRACT void mStkAdd(void) { Arg2->m = MPCadd(Arg2->m, Arg1->m); Arg1--; Arg2--; } void lStkAdd(void) { Arg2->l.x += Arg1->l.x; Arg2->l.y += Arg1->l.y; Arg1--; Arg2--; } #endif void (*StkAdd)(void) = dStkAdd; void dStkSub(void) { Arg2->d.x -= Arg1->d.x; Arg2->d.y -= Arg1->d.y; Arg1--; Arg2--; } #ifndef XFRACT void mStkSub(void) { Arg2->m = MPCsub(Arg2->m, Arg1->m); Arg1--; Arg2--; } void lStkSub(void) { Arg2->l.x -= Arg1->l.x; Arg2->l.y -= Arg1->l.y; Arg1--; Arg2--; } #endif void (*StkSub)(void) = dStkSub; void dStkConj(void) { Arg1->d.y = -Arg1->d.y; } #ifndef XFRACT void mStkConj(void) { Arg1->m.y.Exp ^= 0x8000; } void lStkConj(void) { Arg1->l.y = -Arg1->l.y; } #endif void dStkZero(void) { Arg1->d.y = Arg1->d.x = 0.0; } #ifndef XFRACT void mStkZero(void) { Arg1->m.x.Mant = Arg1->m.x.Exp = 0; Arg1->m.y.Mant = Arg1->m.y.Exp = 0; } void lStkZero(void) { Arg1->l.y = Arg1->l.x = 0.0; } #endif void (*StkConj)(void) = dStkConj; void dStkReal(void) { Arg1->d.y = 0.0; } #ifndef XFRACT void mStkReal(void) { Arg1->m.y.Mant = (long)(Arg1->m.y.Exp = 0); } void lStkReal(void) { Arg1->l.y = 0l; } #endif void (*StkReal)(void) = dStkReal; void dStkImag(void) { Arg1->d.x = Arg1->d.y; Arg1->d.y = 0.0; } #ifndef XFRACT void mStkImag(void) { Arg1->m.x = Arg1->m.y; Arg1->m.y.Mant = (long)(Arg1->m.y.Exp = 0); } void lStkImag(void) { Arg1->l.x = Arg1->l.y; Arg1->l.y = 0l; } #endif void (*StkImag)(void) = dStkImag; void dStkNeg(void) { Arg1->d.x = -Arg1->d.x; Arg1->d.y = -Arg1->d.y; } #ifndef XFRACT void mStkNeg(void) { Arg1->m.x.Exp ^= 0x8000; Arg1->m.y.Exp ^= 0x8000; } void lStkNeg(void) { Arg1->l.x = -Arg1->l.x; Arg1->l.y = -Arg1->l.y; } #endif void (*StkNeg)(void) = dStkNeg; void dStkMul(void) { FPUcplxmul(&Arg2->d, &Arg1->d, &Arg2->d); Arg1--; Arg2--; } #ifndef XFRACT void mStkMul(void) { Arg2->m = MPCmul(Arg2->m, Arg1->m); Arg1--; Arg2--; } void lStkMul(void) { long x, y; x = multiply(Arg2->l.x, Arg1->l.x, bitshift) - multiply(Arg2->l.y, Arg1->l.y, bitshift); y = multiply(Arg2->l.y, Arg1->l.x, bitshift) + multiply(Arg2->l.x, Arg1->l.y, bitshift); Arg2->l.x = x; Arg2->l.y = y; Arg1--; Arg2--; } #endif void (*StkMul)(void) = dStkMul; void dStkDiv(void) { FPUcplxdiv(&Arg2->d, &Arg1->d, &Arg2->d); Arg1--; Arg2--; } #ifndef XFRACT void mStkDiv(void) { Arg2->m = MPCdiv(Arg2->m, Arg1->m); Arg1--; Arg2--; } void lStkDiv(void) { long x, y, mod, x2, y2; mod = multiply(Arg1->l.x, Arg1->l.x, bitshift) + multiply(Arg1->l.y, Arg1->l.y, bitshift); x = divide(Arg1->l.x, mod, bitshift); y = -divide(Arg1->l.y, mod, bitshift); /* pb 900617 changed next 4 lines to use x2,y2 instead of x,y */ x2 = multiply(Arg2->l.x, x, bitshift) - multiply(Arg2->l.y, y, bitshift); y2 = multiply(Arg2->l.y, x, bitshift) + multiply(Arg2->l.x, y, bitshift); Arg2->l.x = x2; Arg2->l.y = y2; Arg1--; Arg2--; } #endif void (*StkDiv)(void) = dStkDiv; void StkSto(void) { *Store[StoPtr++] = *Arg1; } void StkLod(void) { Arg1++; Arg2++; *Arg1 = *Load[LodPtr++]; } void dStkMod(void) { Arg1->d.x = (Arg1->d.x * Arg1->d.x) + (Arg1->d.y * Arg1->d.y); Arg1->d.y = 0.0; } #ifndef XFRACT void mStkMod(void) { Arg1->m.x = MPCmod(Arg1->m); Arg1->m.y.Mant = (long)(Arg1->m.y.Exp = 0); } void lStkMod(void) { Arg1->l.x = multiply(Arg2->l.x, Arg1->l.x, bitshift) + multiply(Arg2->l.y, Arg1->l.y, bitshift); if(Arg1->l.x < 0) overflow = 1; Arg1->l.y = 0L; } #endif void (*StkMod)(void) = dStkMod; void StkClr(void) { s[0] = *Arg1; Arg1 = &s[0]; Arg2 = Arg1; Arg2--; } /* MCP 4-9-91, Added Flip() */ void dStkFlip(void) { double t; t = Arg1->d.x; Arg1->d.x = Arg1->d.y; Arg1->d.y = t; } #ifndef XFRACT void mStkFlip(void) { struct MP t; t = Arg1->m.x; Arg1->m.x = Arg1->m.y; Arg1->m.y = t; } void lStkFlip(void) { long t; t = Arg1->l.x; Arg1->l.x = Arg1->l.y; Arg1->l.y = t; } #endif void (*StkFlip)(void) = dStkFlip; void dStkSin(void) { double sinx, cosx, sinhy, coshy; FPUsincos(&Arg1->d.x, &sinx, &cosx); FPUsinhcosh(&Arg1->d.y, &sinhy, &coshy); Arg1->d.x = sinx*coshy; Arg1->d.y = cosx*sinhy; } #ifndef XFRACT void mStkSin(void) { Arg1->d = MPC2cmplx(Arg1->m); dStkSin(); Arg1->m = cmplx2MPC(Arg1->d); } void lStkSin(void) { long x, y, sinx, cosx, sinhy, coshy; x = Arg1->l.x >> Delta16; y = Arg1->l.y >> Delta16; SinCos086(x, &sinx, &cosx); SinhCosh086(y, &sinhy, &coshy); Arg1->l.x = multiply(sinx, coshy, ShiftBack); /* TIW 06-18-90 */ Arg1->l.y = multiply(cosx, sinhy, ShiftBack); /* TIW 06-18-90 */ } #endif void (*StkSin)(void) = dStkSin; /* The following functions are supported by both the parser and for fn variable replacement. TIW 04-22-91 */ void dStkTan(void) { double sinx, cosx, sinhy, coshy, denom; Arg1->d.x *= 2; Arg1->d.y *= 2; FPUsincos(&Arg1->d.x, &sinx, &cosx); FPUsinhcosh(&Arg1->d.y, &sinhy, &coshy); denom = cosx + coshy; if(fabs(denom) <= DBL_MIN) return; Arg1->d.x = sinx/denom; Arg1->d.y = sinhy/denom; } #ifndef XFRACT void mStkTan(void) { Arg1->d = MPC2cmplx(Arg1->m); dStkTan(); Arg1->m = cmplx2MPC(Arg1->d); } void lStkTan(void) { long x, y, sinx, cosx, sinhy, coshy, denom; x = Arg1->l.x >> Delta16; x = x << 1; y = Arg1->l.y >> Delta16; y = y << 1; SinCos086(x, &sinx, &cosx); SinhCosh086(y, &sinhy, &coshy); denom = cosx + coshy; if(denom == 0) return; Arg1->l.x = divide(sinx,denom,bitshift); Arg1->l.y = divide(sinhy,denom,bitshift); } #endif void (*StkTan)(void) = dStkTan; void dStkTanh(void) { double siny, cosy, sinhx, coshx, denom; Arg1->d.x *= 2; Arg1->d.y *= 2; FPUsincos(&Arg1->d.y, &siny, &cosy); FPUsinhcosh(&Arg1->d.x, &sinhx, &coshx); denom = coshx + cosy; if(fabs(denom) <= DBL_MIN) return; Arg1->d.x = sinhx/denom; Arg1->d.y = siny/denom; } #ifndef XFRACT void mStkTanh(void) { Arg1->d = MPC2cmplx(Arg1->m); dStkTanh(); Arg1->m = cmplx2MPC(Arg1->d); } void lStkTanh(void) { long x, y, siny, cosy, sinhx, coshx, denom; x = Arg1->l.x >> Delta16; x = x << 1; y = Arg1->l.y >> Delta16; y = y << 1; SinCos086(y, &siny, &cosy); SinhCosh086(x, &sinhx, &coshx); denom = coshx + cosy; if(denom == 0) return; Arg1->l.x = divide(sinhx,denom,bitshift); Arg1->l.y = divide(siny,denom,bitshift); } #endif void (*StkTanh)(void) = dStkTanh; void dStkCoTan(void) { double sinx, cosx, sinhy, coshy, denom; Arg1->d.x *= 2; Arg1->d.y *= 2; FPUsincos(&Arg1->d.x, &sinx, &cosx); FPUsinhcosh(&Arg1->d.y, &sinhy, &coshy); denom = coshy - cosx; if(fabs(denom) <= DBL_MIN) return; Arg1->d.x = sinx/denom; Arg1->d.y = -sinhy/denom; } #ifndef XFRACT void mStkCoTan(void) { Arg1->d = MPC2cmplx(Arg1->m); dStkCoTan(); Arg1->m = cmplx2MPC(Arg1->d); } void lStkCoTan(void) { long x, y, sinx, cosx, sinhy, coshy, denom; x = Arg1->l.x >> Delta16; x = x << 1; y = Arg1->l.y >> Delta16; y = y << 1; SinCos086(x, &sinx, &cosx); SinhCosh086(y, &sinhy, &coshy); denom = coshy - cosx; if(denom == 0) return; Arg1->l.x = divide(sinx,denom,bitshift); Arg1->l.y = -divide(sinhy,denom,bitshift); } #endif void (*StkCoTan)(void) = dStkCoTan; void dStkCoTanh(void) { double siny, cosy, sinhx, coshx, denom; Arg1->d.x *= 2; Arg1->d.y *= 2; FPUsincos(&Arg1->d.y, &siny, &cosy); FPUsinhcosh(&Arg1->d.x, &sinhx, &coshx); denom = coshx - cosy; if(fabs(denom) <= DBL_MIN) return; Arg1->d.x = sinhx/denom; Arg1->d.y = -siny/denom; } #ifndef XFRACT void mStkCoTanh(void) { Arg1->d = MPC2cmplx(Arg1->m); dStkCoTanh(); Arg1->m = cmplx2MPC(Arg1->d); } void lStkCoTanh(void) { long x, y, siny, cosy, sinhx, coshx, denom; x = Arg1->l.x >> Delta16; x = x << 1; y = Arg1->l.y >> Delta16; y = y << 1; SinCos086(y, &siny, &cosy); SinhCosh086(x, &sinhx, &coshx); denom = coshx - cosy; if(denom == 0) return; Arg1->l.x = divide(sinhx,denom,bitshift); Arg1->l.y = -divide(siny,denom,bitshift); } #endif void (*StkCoTanh)(void) = dStkCoTanh; /* The following functions are not directly used by the parser - support for the parser was not provided because the existing parser language represents these quite easily. They are used for fn variable support in miscres.c but are placed here because they follow the pattern of the other parser functions. TIW 04-22-91 */ void dStkRecip(void) { double mod; mod =Arg1->d.x * Arg1->d.x + Arg1->d.y * Arg1->d.y; if(mod <= DBL_MIN) return; Arg1->d.x = Arg1->d.x/mod; Arg1->d.y = -Arg1->d.y/mod; } #ifndef XFRACT void mStkRecip(void) { struct MP mod; mod = *MPadd(*MPmul(Arg1->m.x, Arg1->m.x),*MPmul(Arg1->m.y, Arg1->m.y)); if(mod.Mant <= 0L) return; Arg1->m.x = *MPdiv(Arg1->m.x,mod); Arg1->m.y = *MPdiv(Arg1->m.y,mod); Arg1->m.y.Exp ^= 0x8000; } void lStkRecip(void) { long mod; mod = multiply(Arg1->l.x,Arg1->l.x,bitshift) + multiply(Arg1->l.y,Arg1->l.y,bitshift); if(mod<=0L) return; Arg1->l.x = divide(Arg1->l.x,mod,bitshift); Arg1->l.y = -divide(Arg1->l.y,mod,bitshift); } #endif void StkIdent(void) { /* do nothing - the function Z */ } /* End TIW 04-22-91 */ void dStkSinh(void) { double siny, cosy, sinhx, coshx; FPUsincos(&Arg1->d.y, &siny, &cosy); FPUsinhcosh(&Arg1->d.x, &sinhx, &coshx); Arg1->d.x = sinhx*cosy; Arg1->d.y = coshx*siny; } #ifndef XFRACT void mStkSinh(void) { Arg1->d = MPC2cmplx(Arg1->m); dStkSinh(); Arg1->m = cmplx2MPC(Arg1->d); } void lStkSinh(void) { long x, y, sinhx, coshx, siny, cosy; x = Arg1->l.x >> Delta16; y = Arg1->l.y >> Delta16; SinCos086(y, &siny, &cosy); SinhCosh086(x, &sinhx, &coshx); Arg1->l.x = multiply(cosy, sinhx, ShiftBack); /* TIW 06-18-90 */ Arg1->l.y = multiply(siny, coshx, ShiftBack); /* TIW 06-18-90 */ } #endif void (*StkSinh)(void) = dStkSinh; void dStkCos(void) { double sinx, cosx, sinhy, coshy; FPUsincos(&Arg1->d.x, &sinx, &cosx); FPUsinhcosh(&Arg1->d.y, &sinhy, &coshy); Arg1->d.x = cosx*coshy; Arg1->d.y = -sinx*sinhy; /* TIW 04-25-91 sign */ } #ifndef XFRACT void mStkCos(void) { Arg1->d = MPC2cmplx(Arg1->m); dStkCos(); Arg1->m = cmplx2MPC(Arg1->d); } void lStkCos(void) { long x, y, sinx, cosx, sinhy, coshy; x = Arg1->l.x >> Delta16; y = Arg1->l.y >> Delta16; SinCos086(x, &sinx, &cosx); SinhCosh086(y, &sinhy, &coshy); Arg1->l.x = multiply(cosx, coshy, ShiftBack); /* TIW 06-18-90 */ Arg1->l.y = -multiply(sinx, sinhy, ShiftBack); /* TIW 04-25-91 sign */ } #endif void (*StkCos)(void) = dStkCos; /* Bogus version of cos, to replicate bug which was in regular cos till v16: */ void dStkCosXX(void) { dStkCos(); Arg1->d.y = -Arg1->d.y; } #ifndef XFRACT void mStkCosXX(void) { Arg1->d = MPC2cmplx(Arg1->m); dStkCosXX(); Arg1->m = cmplx2MPC(Arg1->d); } void lStkCosXX(void) { lStkCos(); Arg1->l.y = -Arg1->l.y; } #endif void (*StkCosXX)(void) = dStkCosXX; void dStkCosh(void) { double siny, cosy, sinhx, coshx; FPUsincos(&Arg1->d.y, &siny, &cosy); FPUsinhcosh(&Arg1->d.x, &sinhx, &coshx); Arg1->d.x = coshx*cosy; Arg1->d.y = sinhx*siny; } #ifndef XFRACT void mStkCosh(void) { Arg1->d = MPC2cmplx(Arg1->m); dStkCosh(); Arg1->m = cmplx2MPC(Arg1->d); } void lStkCosh(void) { long x, y, sinhx, coshx, siny, cosy; x = Arg1->l.x >> Delta16; y = Arg1->l.y >> Delta16; SinCos086(y, &siny, &cosy); SinhCosh086(x, &sinhx, &coshx); Arg1->l.x = multiply(cosy, coshx, ShiftBack); /* TIW 06-18-90 */ Arg1->l.y = multiply(siny, sinhx, ShiftBack); /* TIW 06-18-90 */ } #endif void (*StkCosh)(void) = dStkCosh; void dStkLT(void) { Arg2->d.x = (double)(Arg2->d.x < Arg1->d.x); Arg2->d.y = 0.0; Arg1--; Arg2--; } #ifndef XFRACT void mStkLT(void) { Arg2->m.x = *fg2MP((long)(MPcmp(Arg2->m.x, Arg1->m.x) == -1), 0); Arg2->m.y.Mant = (long)(Arg2->m.y.Exp = 0); Arg1--; Arg2--; } void lStkLT(void) { Arg2->l.x = Arg2->l.x < Arg1->l.x; Arg2->l.y = 0l; Arg1--; Arg2--; } #endif void (*StkLT)(void) = dStkLT; void dStkGT(void) { Arg2->d.x = (double)(Arg2->d.x > Arg1->d.x); Arg2->d.y = 0.0; Arg1--; Arg2--; } #ifndef XFRACT void mStkGT(void) { Arg2->m.x = *fg2MP((long)(MPcmp(Arg2->m.x, Arg1->m.x) == 1), 0); Arg2->m.y.Mant = (long)(Arg2->m.y.Exp = 0); Arg1--; Arg2--; } void lStkGT(void) { Arg2->l.x = Arg2->l.x > Arg1->l.x; Arg2->l.y = 0l; Arg1--; Arg2--; } #endif void (*StkGT)(void) = dStkGT; void dStkLTE(void) { Arg2->d.x = (double)(Arg2->d.x <= Arg1->d.x); Arg2->d.y = 0.0; Arg1--; Arg2--; } #ifndef XFRACT void mStkLTE(void) { int comp; comp = MPcmp(Arg2->m.x, Arg1->m.x); Arg2->m.x = *fg2MP((long)(comp == -1 || comp == 0), 0); Arg2->m.y.Mant = (long)(Arg2->m.y.Exp = 0); Arg1--; Arg2--; } void lStkLTE(void) { Arg2->l.x = Arg2->l.x <= Arg1->l.x; Arg2->l.y = 0l; Arg1--; Arg2--; } #endif void (*StkLTE)(void) = dStkLTE; void dStkGTE(void) { Arg2->d.x = (double)(Arg2->d.x >= Arg1->d.x); Arg2->d.y = 0.0; Arg1--; Arg2--; } #ifndef XFRACT void mStkGTE(void) { int comp; comp = MPcmp(Arg2->m.x, Arg1->m.x); Arg2->m.x = *fg2MP((long)(comp == 1 || comp == 0), 0); Arg2->m.y.Mant = (long)(Arg2->m.y.Exp = 0); Arg1--; Arg2--; } void lStkGTE(void) { Arg2->l.x = Arg2->l.x >= Arg1->l.x; Arg2->l.y = 0l; Arg1--; Arg2--; } #endif void (*StkGTE)(void) = dStkGTE; void dStkEQ(void) { Arg2->d.x = (double)(Arg2->d.x == Arg1->d.x); Arg2->d.y = 0.0; Arg1--; Arg2--; } #ifndef XFRACT void mStkEQ(void) { int comp; comp = MPcmp(Arg2->m.x, Arg1->m.x); Arg2->m.x = *fg2MP((long)(comp == 0), 0); Arg2->m.y.Mant = (long)(Arg2->m.y.Exp = 0); Arg1--; Arg2--; } void lStkEQ(void) { Arg2->l.x = Arg2->l.x == Arg1->l.x; Arg2->l.y = 0l; Arg1--; Arg2--; } #endif void (*StkEQ)(void) = dStkEQ; void dStkNE(void) { Arg2->d.x = (double)(Arg2->d.x != Arg1->d.x); Arg2->d.y = 0.0; Arg1--; Arg2--; } #ifndef XFRACT void mStkNE(void) { int comp; comp = MPcmp(Arg2->m.x, Arg1->m.x); Arg2->m.x = *fg2MP((long)(comp != 0), 0); Arg2->m.y.Mant = (long)(Arg2->m.y.Exp = 0); Arg1--; Arg2--; } void lStkNE(void) { Arg2->l.x = Arg2->l.x != Arg1->l.x; Arg2->l.y = 0l; Arg1--; Arg2--; } #endif void (*StkNE)(void) = dStkNE; void dStkOR(void) { Arg2->d.x = (double)(Arg2->d.x || Arg1->d.x); Arg2->d.y = 0.0; Arg1--; Arg2--; } #ifndef XFRACT void mStkOR(void) { Arg2->m.x = *fg2MP((long)(Arg2->m.x.Mant || Arg1->m.x.Mant), 0); Arg2->m.y.Mant = (long)(Arg2->m.y.Exp = 0); Arg1--; Arg2--; } void lStkOR(void) { Arg2->l.x = Arg2->l.x || Arg1->l.x; Arg2->l.y = 0l; Arg1--; Arg2--; } #endif void (*StkOR)(void) = dStkOR; void dStkAND(void) { Arg2->d.x = (double)(Arg2->d.x && Arg1->d.x); Arg2->d.y = 0.0; Arg1--; Arg2--; } #ifndef XFRACT void mStkAND(void) { Arg2->m.x = *fg2MP((long)(Arg2->m.x.Mant && Arg1->m.x.Mant), 0); Arg2->m.y.Mant = (long)(Arg2->m.y.Exp = 0); Arg1--; Arg2--; } void lStkAND(void) { Arg2->l.x = Arg2->l.x && Arg1->l.x; Arg2->l.y = 0l; Arg1--; Arg2--; } #endif void (*StkAND)(void) = dStkAND; void dStkLog(void) { FPUcplxlog(&Arg1->d, &Arg1->d); } #ifndef XFRACT void mStkLog(void) { Arg1->d = MPC2cmplx(Arg1->m); dStkLog(); Arg1->m = cmplx2MPC(Arg1->d); } void lStkLog(void) { _CMPLX x; x.x = (double)Arg1->l.x / fg; x.y = (double)Arg1->l.y / fg; FPUcplxlog(&x, &x); if(fabs(x.x) < fgLimit && fabs(x.y) < fgLimit) { Arg1->l.x = (long)(x.x * fg); Arg1->l.y = (long)(x.y * fg); } else overflow = 1; } #endif void (*StkLog)(void) = dStkLog; void FPUcplxexp(_CMPLX *x, _CMPLX *z) { double e2x, siny, cosy; if(fpu == 387) FPUcplxexp387(x, z); else { e2x = exp(x->x); FPUsincos(&x->y, &siny, &cosy); z->x = e2x * cosy; z->y = e2x * siny; } } void dStkExp(void) { FPUcplxexp(&Arg1->d, &Arg1->d); } #ifndef XFRACT void mStkExp(void) { Arg1->d = MPC2cmplx(Arg1->m); FPUcplxexp(&Arg1->d, &Arg1->d); Arg1->m = cmplx2MPC(Arg1->d); } void lStkExp(void) { _CMPLX x; x.x = (double)Arg1->l.x / fg; x.y = (double)Arg1->l.y / fg; FPUcplxexp(&x, &x); if(fabs(x.x) < fgLimit && fabs(x.y) < fgLimit) { Arg1->l.x = (long)(x.x * fg); Arg1->l.y = (long)(x.y * fg); } else overflow = 1; } #endif void (*StkExp)(void) = dStkExp; void dStkPwr(void) { Arg2->d = ComplexPower(Arg2->d, Arg1->d); Arg1--; Arg2--; } #ifndef XFRACT void mStkPwr(void) { _CMPLX x, y; x = MPC2cmplx(Arg2->m); y = MPC2cmplx(Arg1->m); x = ComplexPower(x, y); Arg2->m = cmplx2MPC(x); Arg1--; Arg2--; } void lStkPwr(void) { _CMPLX x, y; x.x = (double)Arg2->l.x / fg; x.y = (double)Arg2->l.y / fg; y.x = (double)Arg1->l.x / fg; y.y = (double)Arg1->l.y / fg; x = ComplexPower(x, y); if(fabs(x.x) < fgLimit && fabs(x.y) < fgLimit) { Arg2->l.x = (long)(x.x * fg); Arg2->l.y = (long)(x.y * fg); } else overflow = 1; Arg1--; Arg2--; } #endif void (*StkPwr)(void) = dStkPwr; void EndInit(void) { LastInitOp = OpPtr; } struct ConstArg far *isconst(char *Str, int Len) { _CMPLX z; unsigned n, j; for(n = 0; n < vsp; n++) { if(v[n].len == Len) { if(!strnicmp(v[n].s, Str, Len)) { if(n == 7) /* The formula uses 'rand'. */ RandomSeed(); return(&v[n]); } } } v[vsp].s = Str; v[vsp].len = Len; v[vsp].a.d.x = v[vsp].a.d.y = 0.0; if(isdigit(Str[0]) || Str[0] == '.') { if(o[posp-1].f == StkNeg) { posp--; Str = Str - 1; InitN--; v[vsp].len++; } for(n = 1; isdigit(Str[n]) || Str[n] == '.'; n++); if(Str[n] == ',') { j = n + SkipWhiteSpace(&Str[n+1]) + 1; if(isdigit(Str[j]) || (Str[j] == '-' && isdigit(Str[j+1]))) { z.y = atof(&Str[j]); for(; isdigit(Str[j]) || Str[j] == '.' || Str[j] == '-'; j++); v[vsp].len = j; } else z.y = 0.0; } else z.y = 0.0; z.x = atof(Str); switch(MathType) { case D_MATH: v[vsp].a.d = z; break; #ifndef XFRACT case M_MATH: v[vsp].a.m = cmplx2MPC(z); break; case L_MATH: v[vsp].a.l.x = (long)(z.x * fg); v[vsp].a.l.y = (long)(z.y * fg); break; #endif } v[vsp].s = Str; } return(&v[vsp++]); } struct FNCT_LIST { char far *s; /* TIW 03-31-91 added far */ void (**ptr)(void); }; /* TIW 03-30-91 START */ extern BYTE trigndx[]; #if 0 extern void (*ltrig0)(void); extern void (*ltrig1)(void); extern void (*ltrig2)(void); extern void (*ltrig3)(void); extern void (*dtrig0)(void); extern void (*dtrig1)(void); extern void (*dtrig2)(void); extern void (*dtrig3)(void); extern void (*mtrig0)(void); extern void (*mtrig1)(void); extern void (*mtrig2)(void); extern void (*mtrig3)(void); #endif void (*StkTrig0)(void) = dStkSin; void (*StkTrig1)(void) = dStkSqr; void (*StkTrig2)(void) = dStkSinh; void (*StkTrig3)(void) = dStkCosh; char maxfn = 0; /* TIW 03-30-91 STOP */ struct FNCT_LIST far FnctList[] = { /* TIW 03-31-91 added far */ "sin", &StkSin, "sinh", &StkSinh, "cos", &StkCos, "cosh", &StkCosh, "sqr", &StkSqr, "log", &StkLog, "exp", &StkExp, "abs", &StkAbs, "conj", &StkConj, "real", &StkReal, "imag", &StkImag, "fn1", &StkTrig0, /* TIW 03-30-91 */ "fn2", &StkTrig1, /* TIW 03-30-91 */ "fn3", &StkTrig2, /* TIW 03-30-91 */ "fn4", &StkTrig3, /* TIW 03-30-91 */ "flip", &StkFlip, /* MCP 4-9-91 */ "tan", &StkTan, /* TIW 04-22-91 */ "tanh", &StkTanh, /* TIW 04-22-91 */ "cotan", &StkCoTan, /* TIW 04-24-91 */ "cotanh", &StkCoTanh,/* TIW 04-24-91 */ "cosxx", &StkCosXX, /* PB 04-28-91 */ "srand", &StkSRand, /* MCP 11-21-91 */ }; void NotAFnct(void) { } void FnctNotFound(void) { } /* determine if s names a function and if so which one */ /* TIW 04-22-91 */ whichfn(char *s, int len) { int out; if(len != 3) out = 0; else if(strnicmp(s,"fn",2)) out = 0; else out = atoi(s+2); if(out < 1 || out > 4) out = 0; return(out); } #ifndef XFRACT void (far *isfunct(char *Str, int Len))(void) #else void (*isfunct(Str, Len))() char *Str; int Len; #endif { unsigned n; int functnum; /* TIW 04-22-91 */ n = SkipWhiteSpace(&Str[Len]); if(Str[Len+n] == '(') { for(n = 0; n < sizeof(FnctList) / sizeof(struct FNCT_LIST); n++) { if(far_strlen(FnctList[n].s) == Len) { /* TIW 03-31-91 added far */ if(!far_strnicmp(FnctList[n].s, Str, Len)) { /* TIW 03-31-91 added far */ /* count function variables */ if((functnum = whichfn(Str, Len)) != 0) /* TIW 04-22-91 */ if(functnum > maxfn) /* TIW 04-22-91 */ maxfn = functnum; /* TIW 04-22-91 */ return(*FnctList[n].ptr); } } } return(FnctNotFound); } return(NotAFnct); } void RecSortPrec(void) { int ThisOp = NextOp++; while(o[ThisOp].p > o[NextOp].p && NextOp < posp) RecSortPrec(); f[OpPtr++] = o[ThisOp].f; } static char *Constants[] = { "pixel", /* v[0] */ "p1", /* v[1] */ "p2", /* v[2] */ "z", /* v[3] */ "LastSqr", /* v[4] */ "xy", /* v[5] */ "zt", /* v[6] */ "rand", /* v[7] */ }; struct SYMETRY { char *s; int n; } SymStr[] = { "NOSYM", 0, "XAXIS_NOPARM", -1, "XAXIS", 1, "YAXIS_NOPARM", -2, "YAXIS", 2, "XYAXIS_NOPARM",-3, "XYAXIS", 3, "ORIGIN_NOPARM",-4, "ORIGIN", 4, "PI_SYM_NOPARM",-5, "PI_SYM", 5, "NOPLOT", 99, "", 0 }; int ParseStr(char *Str) { struct ConstArg far *c; int ModFlag = 999, Len, Equals = 0, Mod[20], mdstk = 0; int NewStatement; struct ERROR { int n, s; } far *e; SetRandom = Randomized = 0; e = (struct ERROR far *)farmemalloc(sizeof(struct ERROR) * 100L); /* PB 910417 changed "o" to be a temporary alloc, during ParseStr only */ o = (struct PEND_OP far *)farmemalloc(sizeof(struct PEND_OP) * (long)MAX_OPS); if(!e || !o || !typespecific_workarea) { static char far msg[]={"Insufficient memory to run fractal type 'formula'"}; stopmsg(0,msg); return(1); } switch(MathType) { case D_MATH: StkAdd = dStkAdd; StkSub = dStkSub; StkNeg = dStkNeg; StkMul = dStkMul; StkSin = dStkSin; StkSinh = dStkSinh; StkLT = dStkLT; StkLTE = dStkLTE; StkMod = dStkMod; StkSqr = dStkSqr; StkCos = dStkCos; StkCosh = dStkCosh; StkLog = dStkLog; StkExp = dStkExp; StkPwr = dStkPwr; StkDiv = dStkDiv; StkAbs = dStkAbs; StkReal = dStkReal; StkImag = dStkImag; StkConj = dStkConj; StkTrig0 = dtrig0; /* TIW 03-30-91 */ StkTrig1 = dtrig1; /* TIW 03-30-91 */ StkTrig2 = dtrig2; /* TIW 03-30-91 */ StkTrig3 = dtrig3; /* TIW 03-30-91 */ StkFlip = dStkFlip; StkTan = dStkTan; /* TIW 04-22-91 */ StkTanh = dStkTanh; /* TIW 04-22-91 */ StkCoTan = dStkCoTan; /* TIW 04-24-91 */ StkCoTanh = dStkCoTanh; /* TIW 04-24-91 */ StkCosXX = dStkCosXX; /* PB 04-28-91 */ StkGT = dStkGT; /* MCP 11-3-91 */ StkGTE = dStkGTE; /* MCP 11-3-91 */ StkEQ = dStkEQ; /* MCP 11-3-91 */ StkNE = dStkNE; /* MCP 11-3-91 */ StkAND = dStkAND; /* MCP 11-3-91 */ StkOR = dStkOR ; /* MCP 11-3-91 */ StkSRand = dStkSRand; /* MCP 11-21-91 */ break; #ifndef XFRACT case M_MATH: StkAdd = mStkAdd; StkSub = mStkSub; StkNeg = mStkNeg; StkMul = mStkMul; StkSin = mStkSin; StkSinh = mStkSinh; StkLT = mStkLT; StkLTE = mStkLTE; StkMod = mStkMod; StkSqr = mStkSqr; StkCos = mStkCos; StkCosh = mStkCosh; StkLog = mStkLog; StkExp = mStkExp; StkPwr = mStkPwr; StkDiv = mStkDiv; StkAbs = mStkAbs; StkReal = mStkReal; StkImag = mStkImag; StkConj = mStkConj; StkTrig0 = mtrig0; /* TIW 03-30-91 */ StkTrig1 = mtrig1; /* TIW 03-30-91 */ StkTrig2 = mtrig2; /* TIW 03-30-91 */ StkTrig3 = mtrig3; /* TIW 03-30-91 */ StkFlip = mStkFlip; StkTan = mStkTan; /* TIW 04-22-91 */ StkTanh = mStkTanh;/* TIW 04-22-91 */ StkCoTan = mStkCoTan; /* TIW 04-24-91 */ StkCoTanh = mStkCoTanh;/* TIW 04-24-91 */ StkCosXX = mStkCosXX; /* PB 04-28-91 */ StkGT = mStkGT; /* MCP 11-3-91 */ StkGTE = mStkGTE; /* MCP 11-3-91 */ StkEQ = mStkEQ; /* MCP 11-3-91 */ StkNE = mStkNE; /* MCP 11-3-91 */ StkAND = mStkAND; /* MCP 11-3-91 */ StkOR = mStkOR ; /* MCP 11-3-91 */ StkSRand = mStkSRand; /* MCP 11-21-91 */ break; case L_MATH: Delta16 = bitshift - 16; ShiftBack = 32 - bitshift; /* TW 06-18-90 */ StkAdd = lStkAdd; StkSub = lStkSub; StkNeg = lStkNeg; StkMul = lStkMul; StkSin = lStkSin; StkSinh = lStkSinh; StkLT = lStkLT; StkLTE = lStkLTE; StkMod = lStkMod; StkSqr = lStkSqr; StkCos = lStkCos; StkCosh = lStkCosh; StkLog = lStkLog; StkExp = lStkExp; StkPwr = lStkPwr; StkDiv = lStkDiv; StkAbs = lStkAbs; StkReal = lStkReal; StkImag = lStkImag; StkConj = lStkConj; StkTrig0 = ltrig0; /* TIW 03-30-91 */ StkTrig1 = ltrig1; /* TIW 03-30-91 */ StkTrig2 = ltrig2; /* TIW 03-30-91 */ StkTrig3 = ltrig3; /* TIW 03-30-91 */ StkFlip = lStkFlip; StkTan = lStkTan; /* TIW 04-22-91 */ StkTanh = lStkTanh; /* TIW 04-22-91 */ StkCoTan = lStkCoTan; /* TIW 04-24-91 */ StkCoTanh = lStkCoTanh; /* TIW 04-24-91 */ StkCosXX = lStkCosXX; /* PB 04-28-91 */ StkGT = lStkGT; /* MCP 11-3-91 */ StkGTE = lStkGTE; /* MCP 11-3-91 */ StkEQ = lStkEQ; /* MCP 11-3-91 */ StkNE = lStkNE; /* MCP 11-3-91 */ StkAND = lStkAND; /* MCP 11-3-91 */ StkOR = lStkOR ; /* MCP 11-3-91 */ StkSRand = lStkSRand; /* MCP 11-21-91 */ break; #endif } maxfn = 0; /* TIW 03-30-91 */ for(vsp = 0; vsp < sizeof(Constants) / sizeof(char*); vsp++) { v[vsp].s = Constants[vsp]; v[vsp].len = strlen(Constants[vsp]); } v[6].a.d.x = v[6].a.d.y = 0.0; v[7].a = v[6].a; switch(MathType) { case D_MATH: v[1].a.d.x = param[0]; v[1].a.d.y = param[1]; v[2].a.d.x = param[2]; v[2].a.d.y = param[3]; break; #ifndef XFRACT case M_MATH: v[1].a.m.x = *d2MP(param[0]); v[1].a.m.y = *d2MP(param[1]); v[2].a.m.x = *d2MP(param[2]); v[2].a.m.y = *d2MP(param[3]); break; case L_MATH: v[1].a.l.x = (long)(param[0] * fg); v[1].a.l.y = (long)(param[1] * fg); v[2].a.l.x = (long)(param[2] * fg); v[2].a.l.y = (long)(param[3] * fg); break; #endif } LastInitOp = ErrPtr = paren = OpPtr = LodPtr = StoPtr = posp = 0; NewStatement = 1; SyntaxErr = -1; ExpectingArg = 1; for(n = 0; Str[n]; n++) { if(!Str[n]) break; InitN = n; switch(Str[n]) { case ' ': case '\t': case '\r': case '\n': break; case '(': paren++; if(!ExpectingArg) SyntaxErr = 1; break; case ')': if(paren) paren--; else SyntaxErr = 2; if(ExpectingArg) { e[ErrPtr].n = InitN; e[ErrPtr++].s = 0; } break; case '|': if(Str[n+1] == '|') { if(ExpectingArg) SyntaxErr = 0; ExpectingArg = 1; n++; o[posp].f = StkOR; o[posp++].p = 7 - (paren + Equals)*15; } else if(ModFlag == paren-1) { if(ExpectingArg) SyntaxErr = 0; paren--; ModFlag = Mod[--mdstk]; } else { if(!ExpectingArg) SyntaxErr = 1; Mod[mdstk++] = ModFlag; o[posp].f = StkMod; o[posp++].p = 2 - (paren + Equals)*15; ModFlag = paren++; } break; case ',': case ';': if(paren) { e[ErrPtr].n = InitN; e[ErrPtr++].s = 3; } if(!ExpectingArg) { NewStatement = 1; ExpectingArg = 1; o[posp].f = (void(far*)(void))0; o[posp++].p = 15; o[posp].f = StkClr; o[posp++].p = -30000; Equals = paren = 0; } else if(!NewStatement) SyntaxErr = 0; break; case ':': if(paren) { e[ErrPtr].n = InitN; e[ErrPtr++].s = 3; } if(ExpectingArg) SyntaxErr = 0; else ExpectingArg = 1; o[posp].f = (void(far*)(void))0; o[posp++].p = 15; o[posp].f = EndInit; o[posp++].p = -30000; Equals = paren = 0; LastInitOp = 10000; NewStatement = 1; break; case '+': if(ExpectingArg) SyntaxErr = 0; ExpectingArg = 1; o[posp].f = StkAdd; o[posp++].p = 4 - (paren + Equals)*15; break; case '-': if(ExpectingArg) { o[posp].f = StkNeg; o[posp++].p = 2 - (paren + Equals)*15; } else { o[posp].f = StkSub; o[posp++].p = 4 - (paren + Equals)*15; ExpectingArg = 1; } break; case '&': if(ExpectingArg) SyntaxErr = 0; ExpectingArg = 1; if(Str[n+1] == '&') { n++; o[posp].f = StkAND; o[posp++].p = 7 - (paren + Equals)*15; } else SyntaxErr = 4; break; case '!': if(Str[n+1] == '=') { if(ExpectingArg) SyntaxErr = 0; ExpectingArg = 1; n++; o[posp].f = StkNE; o[posp++].p = 6 - (paren + Equals)*15; } else SyntaxErr = 4; break; case '<': if(ExpectingArg) SyntaxErr = 0; ExpectingArg = 1; if(Str[n+1] == '=') { n++; o[posp].f = StkLTE; } else o[posp].f = StkLT; o[posp++].p = 6 - (paren + Equals)*15; break; case '>': if(ExpectingArg) SyntaxErr = 0; ExpectingArg = 1; if(Str[n+1] == '=') { n++; o[posp].f = StkGTE; } else o[posp].f = StkGT; o[posp++].p = 6 - (paren + Equals)*15; break; case '*': if(ExpectingArg) SyntaxErr = 0; ExpectingArg = 1; o[posp].f = StkMul; o[posp++].p = 3 - (paren + Equals)*15; break; case '/': if(ExpectingArg) SyntaxErr = 0; ExpectingArg = 1; o[posp].f = StkDiv; o[posp++].p = 3 - (paren + Equals)*15; break; case '^': if(ExpectingArg) SyntaxErr = 0; ExpectingArg = 1; o[posp].f = StkPwr; o[posp++].p = 2 - (paren + Equals)*15; break; case '=': if(ExpectingArg) SyntaxErr = 0; ExpectingArg = 1; if(Str[n+1] == '=') { n++; o[posp].f = StkEQ; o[posp++].p = 6 - (paren + Equals)*15; } else { o[posp-1].f = StkSto; o[posp-1].p = 5 - (paren + Equals)*15; Store[StoPtr++] = Load[--LodPtr]; Equals++; } break; default: if(isalnum(Str[n]) || Str[n] == '.') { while(isalnum(Str[n+1]) || Str[n+1] == '.') n++; if(!ExpectingArg) { SyntaxErr = 1; } NewStatement = ExpectingArg = 0; Len = (n+1)-InitN; o[posp].f = isfunct(&Str[InitN], Len); if(o[posp].f != NotAFnct) { if(o[posp].f == FnctNotFound) { e[ErrPtr].n = InitN; e[ErrPtr++].s = 5; } else o[posp++].p = 1 - (paren + Equals)*15; ExpectingArg = 1; } else { c = isconst(&Str[InitN], Len); Load[LodPtr++] = &(c->a); o[posp].f = StkLod; o[posp++].p = 1 - (paren + Equals)*15; n = InitN + c->len - 1; if(vsp >= MAX_ARGS-1) { /* PB 910417 safety test */ e[ErrPtr].n = InitN; e[ErrPtr++].s = 7; break; } } } else { if(ExpectingArg) SyntaxErr = 0; ExpectingArg = 1; e[ErrPtr].n = InitN; e[ErrPtr++].s = 4; } break; } if(SyntaxErr >= 0) { e[ErrPtr].n = InitN; e[ErrPtr++].s = SyntaxErr; SyntaxErr = -1; } if(posp >= MAX_OPS-1) { /* PB 901103 added safety test here */ e[ErrPtr].n = InitN; e[ErrPtr++].s = 7; break; } if(ErrPtr > 50) /* PB 910417 safety test */ break; } o[posp].f = (void(far*)(void))0; o[posp++].p = 16; if(paren > 0) { e[ErrPtr].n = n; e[ErrPtr++].s = 3; } if (ErrPtr) { int i, j, k, m; char msgbuf[700]; /* PB replaced printf loop by build msgbuf & stopmsg */ /* stopmsg defined to have max 9 lines, show at most first 3 errors */ msgbuf[0] = 0; for(n = 0; n < ErrPtr && n < 3; n++) { if (n) strcat(msgbuf,"\n"); #ifndef XFRACT sprintf(&msgbuf[strlen(msgbuf)], "Error(%d): %Fs\n ", e[n].s, /*TIW 03-31-91 added %Fs*/ ErrStrings[e[n].s]); #else sprintf(&msgbuf[strlen(msgbuf)], "Error(%d): %s\n ", e[n].s, ErrStrings[e[n].s]); #endif j = 24; if ((i = e[n].n - j) < 0) { j = e[n].n; i = 0; } else { strcat(msgbuf,"..."); j += 3; } k = strlen(msgbuf); m = i + 66; while (i < m && Str[i]) { if ((msgbuf[k] = Str[i]) == '\n' || msgbuf[k] == '\t') msgbuf[k] = ' '; ++i; ++k; } if (Str[i]) { msgbuf[k++] = '.'; msgbuf[k++] = '.'; msgbuf[k++] = '.'; } msgbuf[k++] = '\n'; while (--j >= -2) msgbuf[k++] = ' '; msgbuf[k++] = '^'; msgbuf[k] = 0; } stopmsg(8,msgbuf); } if(!ErrPtr) { NextOp = 0; LastOp = posp; while(NextOp < posp) { if(o[NextOp].f) RecSortPrec(); else { NextOp++; LastOp--; } } } else posp = 0; farmemfree(o); farmemfree(e); /* PB 910417 free all arrays if error */ if (ErrPtr) free_workarea(); return(ErrPtr); } int Formula(void) { if(FormName[0] == 0 || overflow) return(1); LodPtr = InitLodPtr; StoPtr = InitStoPtr; OpPtr = InitOpPtr; /* Set the random number, MCP 11-21-91 */ if(SetRandom || Randomized) { switch(MathType) { case D_MATH: dRandom(); break; #ifndef XFRACT case L_MATH: lRandom(); break; case M_MATH: mRandom(); #endif } } Arg1 = &s[0]; Arg2 = Arg1-1; while(OpPtr < LastOp) { f[OpPtr++](); #ifdef WATCH_MP x1 = *MP2d(Arg1->m.x); y1 = *MP2d(Arg1->m.y); x2 = *MP2d(Arg2->m.x); y2 = *MP2d(Arg2->m.y); #endif } switch(MathType) { case D_MATH: old = new = v[3].a.d; return(Arg1->d.x == 0.0); #ifndef XFRACT case M_MATH: old = new = MPC2cmplx(v[3].a.m); return(Arg1->m.x.Exp == 0 && Arg1->m.x.Mant == 0); case L_MATH: lold = lnew = v[3].a.l; if(overflow) return(1); return(Arg1->l.x == 0L); #endif } return(1); } int form_per_pixel(void) { if (FormName[0] == 0) return(1); overflow = LodPtr = StoPtr = OpPtr = 0; Arg1 = &s[0]; Arg2 = Arg1; Arg2--; if(Transparent3D) { TranspPerPixel(MathType, &v[5].a, &v[6].a); v[0].a = v[5].a; } else { switch(MathType) { case D_MATH: v[5].a.d.x = (v[0].a.d.x = dx0[col]+dShiftx); v[5].a.d.x = (v[0].a.d.y = dy0[row]+dShifty); break; #ifndef XFRACT case M_MATH: v[5].a.m.x = (v[0].a.m.x = *d2MP(dx0[col]+dShiftx)); v[5].a.m.x = (v[0].a.m.y = *d2MP(dy0[row]+dShifty)); break; case L_MATH: v[5].a.l.x = (v[0].a.l.x = lx0[col]+lShiftx); v[5].a.l.x = (v[0].a.l.y = ly0[row]+lShifty); break; #endif } } if(LastInitOp) LastInitOp = LastOp; while(OpPtr < LastInitOp) f[OpPtr++](); InitLodPtr = LodPtr; InitStoPtr = StoPtr; InitOpPtr = OpPtr; if(overflow) return(0); else return(1); } char *FormStr; extern char FormFileName[]; /* BDT file to find the formulas in */ extern char FormName[]; /* BDT Name of the Formula (if not null) */ char *FindFormula(char *Str) { char *FormulaStr = (char *)0; char StrBuff[201]; /* PB, to match a safety fix in parser */ /* MCP, changed to an automatic variable */ char fullfilename[100]; /* BDT Full file name */ unsigned Done; int c; FILE *File; findpath(FormFileName, fullfilename); /* BDT get full path name */ symmetry = 0; if((File = fopen(fullfilename, "rt")) != NULL) { /* BDT use variable files */ while(StrBuff[0]=0,/* TIW 04-22-91 */ fscanf(File, "%200[^ \n\t({]", StrBuff) != EOF) { if(!stricmp(StrBuff, Str) || !Str[0]) { while((c = getc(File)) != EOF) { if(c == '(') { StrBuff[0]=0; /* TIW 04-22-91 */ fscanf(File, "%200[^)]", StrBuff); for(n = 0; SymStr[n].s[0]; n++) { if(!stricmp(SymStr[n].s, StrBuff)) { symmetry = SymStr[n].n; break; } } if(!SymStr[n].s[0]) { sprintf(fullfilename,"Undefined symmetry:\n %.76s", StrBuff); stopmsg(0,fullfilename); /* PB printf -> stopmsg */ FormulaStr = (char *)0; /* PB 910511 */ Exit: fclose(File); return(FormulaStr); } } else if(c == '{') break; } /* MCP 4-9-91, Strip the comments inside the formula. Might as well allow unlimited formula lengths while we're at it. */ FormulaStr = boxx; n = Done = 0; while(!Done) { switch(c = getc(File)) { static char far msg[]={"Unexpected EOF: missing a '}'"}; case EOF: UnexpectedEOF: stopmsg(0, msg); FormulaStr = (char *)0; goto Exit; case '}': FormulaStr[n++] = 0; Done = 1; break; case ';': while((c = getc(File)) != '\n') { if(c == EOF) goto UnexpectedEOF; } FormulaStr[n++] = ','; break; case ' ': /* Also strip out the white spaces */ case '\t': break; case '\n': FormulaStr[n++] = ','; break; default: FormulaStr[n++] = c; } if (n >= 8192) { /* PB 4-9-91, added safety test */ static char far msg[]={"Definition too large, missing a '}'?"}; stopmsg(0, msg); FormulaStr = (char *)0; goto Exit; } } goto Exit; } StrBuff[0]=0; /* TIW 04-22-91 */ fscanf(File, "%200[ \n\t({]", StrBuff); if(StrBuff[strcspn(StrBuff, "({")]) { skipcomments: fscanf(File, "%200[^}]", StrBuff); if (getc(File)!= '}') goto skipcomments; } } sprintf(fullfilename, "Formula \"%s\" not found", Str); stopmsg(0,fullfilename); /* PB printf -> stopmsg */ FormulaStr = (char *)0; /* PB 910511 */ goto Exit; } sprintf(fullfilename, "Unable to open %s", FormFileName); stopmsg(0,fullfilename); /* PB printf -> stopmsg */ return((char *)0); /* PB 910511 */ } int BadFormula() { /* moved from Parsera.Asm by CAE 12 July 1993 */ /* this is called when a formula is bad, instead of calling */ /* the normal functions which will produce undefined results */ return 1; } int RunForm(char *Name) { /* returns 1 if an error occurred */ /* CAE changed fn 12 July 1993 to fix problem when formula not found */ /* first set the pointers so they point to a fn which always returns 1 */ curfractalspecific->per_pixel = BadFormula; curfractalspecific->orbitcalc = BadFormula; if (FormName[0] == 0 ){ return 1; /* and don't reset the pointers */ } parser_allocate(); /* ParseStr() will test if this alloc worked */ if((FormStr = FindFormula(Name)) != NULL ){ /* formula was found */ if (ParseStr(FormStr)){ /* parse failed, don't change fn pointers */ return 1; } else { /* parse succeeded so set the pointers back to good functions */ curfractalspecific->per_pixel = form_per_pixel; curfractalspecific->orbitcalc = Formula; return 0; } } else { /* formula not found, leave pointers set to BadFormula */ return 1; /* PB, msg moved to FindFormula */ } } int fpFormulaSetup(void) { #ifndef XFRACT int RunFormRes; /* CAE fp */ if (fpu > 0) { MathType = D_MATH; /* CAE changed below for fp */ RunFormRes = !RunForm(FormName); /* RunForm() returns 1 for failure */ if (RunFormRes && fpu >=387 && debugflag != 90 ) return CvtStk(); /* run fast assembler code in parsera.asm */ return RunFormRes; } else { MathType = M_MATH; return !RunForm(FormName); } #else MathType = D_MATH; return(!RunForm(FormName)); #endif } int intFormulaSetup(void) { #ifdef XFRACT printf("intFormulaSetup called!!!\n"); exit(-1); #endif MathType = L_MATH; fg = (double)(1L << bitshift); fgLimit = (double)0x7fffffffL / fg; ShiftBack = 32 - bitshift; return(!RunForm(FormName)); } /* TIW added 06-20-90 so functions can be called from fractals.c */ void init_misc() { static struct ConstArg far vv[5]; static union Arg argfirst,argsecond; if(!v) /* PB 901103 added this test to avoid clobbering the real thing */ v = vv; /* this is needed by lStkSqr and dStkSqr */ Arg1 = &argfirst; Arg2 = &argsecond; /* needed by all the ?Stk* functions */ fg = (double)(1L << bitshift); fgLimit = (double)0x7fffffffL / fg; ShiftBack = 32 - bitshift; Delta16 = bitshift - 16; bitshiftless1 = bitshift-1; } /* PB 910417 here to end changed. Allocate sub-arrays from one main farmemalloc, using global variable typespecific_workarea; calcfrac.c releases this area when calculation ends or is terminated. Moved the "f" array to be allocated as part of this. */ static void parser_allocate(void) { /* CAE fp changed below for v18 */ /* Note that XFRACT will waste about 6k here for pfls */ /* Somewhat more memory is now allocated than in v17 here */ /* however Store and Load were reduced in size to help make up for it */ unsigned int f_size,Store_size,Load_size,v_size, p_size; free_workarea(); f_size = sizeof(void(far * far *)(void)) * MAX_OPS; Store_size = sizeof(union Arg far *) * MAX_STORES; Load_size = sizeof(union Arg far *) * MAX_LOADS; v_size = sizeof(struct ConstArg) * MAX_ARGS; p_size = sizeof(struct fls far *) * MAX_OPS; typespecific_workarea = farmemalloc((long)(f_size+Load_size+Store_size+v_size+p_size)); f = (void(far * far *)(void))typespecific_workarea; Store = (union Arg far * far *)(f + MAX_OPS); Load = (union Arg far * far *)(Store + MAX_STORES); v = (struct ConstArg far *)(Load + MAX_LOADS); pfls = (struct fls far *)(v + MAX_ARGS); } void free_workarea() { if(typespecific_workarea) { farmemfree(typespecific_workarea); typespecific_workarea = NULL; } Store = (union Arg far * far *)0; Load = (union Arg far * far *)0; v = (struct ConstArg far *)0; f = (void(far * far *)(void))0; /* CAE fp */ pfls = (struct fls far * )0; /* CAE fp */ }