apl>" <-APL2-------------------- sam323.txt ----------------------------> apl>)run cap2/sample/graph.inc apl>" <-APL2-------------------- graph.txt -----------------------------> apl>" Legend describing various global values: apl>" apl>" World coordinates(wc) are those of the real data. apl>" Graph coordinates(gc) are those of the graph. apl>" apl>" caption - Override to text for graph caption. If null, a caption apl>" will be generated. The graph function resets the global apl>" caption variable to null at the end of its processing. apl>" apl>" hk ------ Constant coefficient of input. If xr=1 (see below) then apl>" hk becomes the constant imaginary coefficient for all apl>" values of x on the graph. If xr=0, hk will be the constant apl>" real coefficient. apl>" apl>" htl ----- 0 = both, 1 = headers, 2 = trailers, 3 = neither. apl>" apl>" maxx ---- Maximum x axis value in world coordinates. apl>" apl>" maxy ---- Maximum y axis value in world coordinates. apl>" apl>" minx ---- Minimum x axis value in world coordinates. apl>" apl>" miny ---- Minimum y axis value in world coordinates. apl>" apl>" mgc ----- Vertical margin in graphic coordinates. apl>" apl>" n ------- Synonymous with hk (see above). The x values to which apl>" the function is applied to obtain y values are derived apl>" by first creating xwc as a vector of integers uniformly apl>" distributed between minx and maxx inclusive. Then, either apl>" 'x#(nX0j1)+xwc' or 'x#n+0j1Xxwc' is evaluated. apl>" apl>" nlb ----- 1 = Label the curve with the n value. apl>" apl>" points -- Number of points to generate. apl>" apl>" xgc ----- Array of x values for data points in graph coordinates. apl>" apl>" xiv ----- x axis marker interval in world coordinates. apl>" apl>" xlin ---- Width of graph in inches. apl>" apl>" xpg ----- Divide xwc by xpg to get xgc. apl>" apl>" xpi ----- Array of three values for minx, maxx, and xiv, used when apl>" invoking the graph function and the array of x values apl>" spans -pi to +pi. apl>" apl>" xr ------ 1=vary real x coefficient, 0=vary imaginary coefficient, apl>" holding the other coefficient to the constant hk (see above.). apl>" apl>" xt ------ Used in a variety of places to temporarily generate apl>" graphics coordinates. apl>" apl>" xwc ----- Array of x values in world coordinates. apl>" apl>" yadj ---- Adjustment down to print text below a line. apl>" apl>" yabm ---- Maximum absolute value (|y) to appear on graph. apl>" apl>" ygc ----- Array of y values for data points in graph coordinates. apl>" apl>" ylin ---- Height of graph in inches. apl>" apl>" ymgn ---- Margin in inches at top and bottom of y axis. apl>" apl>" ypg ----- Divide ywc by ypg to get ygc. apl>" apl>" yt ------ Used in a variety of places to temporarily generate apl>" graphics coordinates. apl>" apl>" ywc ----- Array of y values for data points in world coordinates. apl>" apl>" Set global values. --------------------------------------------> apl>" apl>caption#'' " Empty caption causes one to be generated. apl>i#11 " Circle function code to extract imag. coef. of complex number. apl>points#200 " Number of data points to generate on graph. apl>r#9 " Circle function code to extract real coef. of complex number. apl>xlin#4.5 " Width of graph in inches. apl>" minx = -3.14159.... apl>" | maxx = 3.14159.... apl>" | | xiv apl>" | | | apl>" V V V apl>xpi#(O-1),(O1),O.25 apl>ylin#6 " Height of graph in inches. apl>ymgn#.2 " Margin in inches at top and bottom of y axis. apl>" apl>" <-----------------------------------------------------------------> apl>" Generates the LaTeX \put statements for the data points to appear apl>" on the graph. apl>" apl>Lex 'dodata' 1 apl>Gdodata [1] xgc#(xwc_minx)%xpg " xgc=x graphic coordinates for data points. [2] ygc#mgc+(ywc_miny)%ypg " ygc=y graphic coordinates for data points. [3] $bylabXI0=nlb " Branch if the curve is not to be labelled. [4] '%Label the curve' [5] xt#1Y(u=S/u#|ywc)/xgc " x coord where maximum/mininum occurs [6] yt#(_yadjX0>vs/ywc)+(vs#xt=xgc)/ygc " y coord of maximum/minimum [7] " Note: Calculation for yt works only if all minima occur below [8] " y axis, and all maxima occur above. [9] pcon,(xt,',',[1.5]yt),`Z'){n\#',(Fhk),'}' [10] bylab:'%Draw the data points' [11] pcon,((xgc#-1U1Uxgc),',',[1.5](ygc#-1U1Uygc)),circon [12] G apl>" <-----------------------------------------------------------------> apl>" Generate xwc and ywc, the arrays of x/y coordinates for the data apl>" points to appear on the graph. apl>" apl>Lex 'genxy' 1 apl>Ggenxy [1] xwc#minx+(xlwc#maxx_minx)X(-1+Ipoints+1)%points [2] $varyrealXIxr [3] x#hk+0j1Xxwc " real part is constant, imaginary varies. [4] $calcy " Branch to compute values of y for data points. [5] varyreal:x#(hkX0j1)+xwc " Imaginary is constant, real varies. [6] calcy:ywc#eOCfun " Compute values of y for data points [7] ywcm#yabm>|ywc " Mask of keepers, magnitudes of y < yabm. [8] xwc#ywcm/xwc " Pick the keepers. [9] ywc#ywcm/ywc " Pick the keepers. [10] G apl>" apl>" <-----------------------------------------------------------------> apl>" Main graph routine. apl>" apl>Lex 'graph' 1 apl>Gfun graph a [1] "Graphs the imaginary or real coefficient of result of fun. [2] " fun = expression to evaluate. [3] (htl nlb xr e yabm minx maxx xiv hk yiv yca)#a [4] genxy " Generate the data points. [5] $dataXIhtl>1 " Branch if htl greater than 1. [6] scale " Calculate global scaling values. [7] headers " Generate LaTeX figure headers. [8] data:dodata " Process and graph data points. [9] trailers " Generate Latex figure trailers, maybe. [10] G apl>" apl>" <-----------------------------------------------------------------> apl>" Generates the LaTeX statements to begin the graph. apl>" apl>Lex 'headers' 1 apl>Gheaders [1] '\begin{figure}[tbh]' [2] $gencapXI0=Rcaption " Branch if no caption override. [3] '\caption{',caption,'}' [4] $begin [5] gencap:$realcapXI(xr=1)&hk=0 " Branch if x data are not complex. [6] $ncaptionXInlb=0 " Branch if curves are not labelled with n value. [7] '\caption{Graph of y\#',(Fe),'O',fun,'+nX0j1}' [8] $begin [9] ncaption:$cplxcapXIxr " Branch if varying real coefficient. [10] '\caption{Graph of y\#',(Fe),'O',(-1Ufun),(Fhk),'+xX0j1}' [11] $begin [12] cplxcap:'\caption{Graph of y\#',(Fe),'O',fun,'+(n\#',(Fhk),')X0j1}' [13] $begin [14] realcap:'\caption{Graph of y\#',fun,'}' [15] begin:'\begin{center}' [16] '\setlength{\unitlength}{',(Flin),'in}' [17] '\begin{picture}(',(Fxlin%lin),',',(Fylin%lin),')' [18] '%Draw a frame around the picture' [19] ' \put(0,0){\line(1,0){',(Fxlgc),'}}% bottom' [20] ' \put(0,0){\line(0,1){',(Fylgc),'}}% left' [21] ' \put(0,',(Fylgc),'){\line(1,0){',(Fxlgc),'}}% top' [22] ' \put(',(Fxlgc),',0){\line(0,1){',(Fylgc),'}}% right' [23] '%Draw the x axis' [24] ' \put(0,',(Fxax),'){\line(1,0){',(Fxlgc),'}}%x axis' [25] xt#xoff%xpg [26] pcon,((xt,[1.5]','),xax),circon " Draw the x axis markers. [27] xt#xt_xpgX.1Xxmk<0 [28] yt#xax+((.05%lin)Xxax=mgc)_yadjXxax>mgc [29] $dopaxXIpix [30] '%Draw the x axis marker values' [31] pcon,xt,',',yt,econ,xmk,[1.5]scon [32] $doyax [33] dopax:'%Draw the x axis marker values in pi' [34] picon#(`Z'\frac{') ,`1 '\pi}{4}' '\pi}{2}' '3\pi}{4}' [35] picon#('-',`1`Rpicon),'0',picon [36] pcon,xt,',',yt,econ,picon,[1.5]scon [37] doyax:'%Draw the y axis' [38] $putymkXI(yax=0) [39] ' \put(',(Fyax),',0){\line(0,1){',(Fylgc),'}}%y axis' [40] putymk:'%Draw the y axis markers' [41] ymask#ymk^=0 [42] yt#ymask/mgc+(ymk_miny)%ypg [43] pcon,yax,',',yt,[1.5]circon [44] '%Draw the y axis marker values' [45] xt#yax+.05%lin [46] yt#yt_ypgX.1X(ymask/ymk)<0 [47] pcon,xt,',',yt,econ,(ymask/ymk),[1.5]scon [48] G apl>" apl>" <-----------------------------------------------------------------> apl>" Calculates a variety of values needed to produce the graph. apl>" apl>Lex 'scale' 1 apl>Gscale [1] $byyXIyca " Branch if ylwc, maxy, miny are precalculated. [2] ylwc#(maxy#S/ywc)_miny#D/ywc [3] byy:ylap#ylin_2Xymgn " ylap=height allowed for data points. [4] lin#(xlin%xlwc)Dylap%ylwc " unitlength in inches. [5] yadj#.14%lin " y graphic coordinate adjustment to print text below line. [6] mgc#ymgn%lin " Margin in graph coordinates. [7] xpg#xlwc%xlgc#xlin%lin " Divide xwc by xpg to get gc. [8] ypg#ylwc%(_2Xymgn%lin)+ylgc#ylin%lin " Divide ywc by ypg to get gc. [9] xax#(yz#(minyK0)&maxyZ0)Xmgc+(|miny)%ypg " xaxis in graph coordinates. [10] yax#(xz#(minx<0)&maxx>0)X(|minx)%xpg " yaxis in graph coordinates. [11] $piaxisXIpix#(minx=O-1)&maxx=O1 " branch if pi units on x axis. [12] xic#(yax=0)+Dxlwc%xiv [13] $doyiv [14] piaxis:xic#Dxlwc%xiv#O.25 [15] doyiv:$doyicXIyiv^=0 [16] yiv#10*D10@ylwc [17] doyic:yic#yic+0=2|yic#Dylwc%yiv [18] xoff#(I-1+xic)Xxiv " Offset from minx in world coord. of x markers. [19] yoff#(_yiv)+(Iyic)Xyiv " Offset from miny in world coord. of y markers. [20] $yoffplusXIminy>0 [21] ymk#yoff+miny+yiv||miny [22] $yoffdone [23] yoffplus:ymk#yoff+miny_yiv|miny " y for y axis markers in world coord. [24] yoffdone:xmk#minx+xoff " x for x axis markers in world coord. [25] circon#`Z'){\circle*{',(F.0205%lin),'}}' [26] scon#`Z'$}' [27] econ#`Z'){$' [28] pcon#`Z' \put(' [29] G apl>" apl>" <-----------------------------------------------------------------> apl>" Generates the LaTeX statements to finish the graph. apl>" apl>Lex 'trailers' 1 apl>Gtrailers [1] $epicXIhtl=0 " Branch if both headers and trailers. [2] $eojckXInlb " Branch if graph already labelled. [3] pcon,(1Yxgc+xpgX.1),',',(1Yygc),'){',fun,'}' " Label the graph. [4] eojck:$eojXI(htl=1)+htl=3 " br if headers only, or neither. [5] epic:'\end{picture}' [6] '\end{center}' [7] eoj:'%Finis.' [8] caption#'' " Reset global caption [9] G apl>" htl: 0=both, 1=headers, 2=trailers, 3=neither. apl>" | nlb 1 = Label the curve. apl>" | | xr = 1=vary real x coeff, 0=vary imaginary coeff. apl>" | | | e = i(11) or r(9) to select coefficient to graph. apl>" | | | | yabm = maximum |y printed on graph. apl>" | | | | | minx = minimum value of x. apl>" | | | | | | maxx = maximum value of x. apl>" | | | | | | | xiv = x axis marker interval. apl>" | | | | | | | | hk = Constant coefficient of input. apl>" | | | | | | | | | yiv = y axis marker interval, or 0. apl>" | | | | | | | | | | yca = ylwc, maxy, miny are precalculated. apl>" | | | | | | | | | | | apl>" V V V V V V V V V V V apl>points#400 apl> '7Ox' graph 0,0,0,i,1e6,xpi ,1 , 0 ,0 " tanhdatw.tex \begin{figure}[tbh] \caption{Graph of y\#11O7O1+xX0j1} \begin{center} \setlength{\unitlength}{ .716197in} \begin{picture}(6.283185,8.37758) %Draw a frame around the picture \put(0,0){\line(1,0){6.283185}}% bottom \put(0,0){\line(0,1){8.37758}}% left \put(0,8.37758){\line(1,0){6.283185}}% top \put(6.283185,0){\line(0,1){8.37758}}% right %Draw the x axis \put(0,4.18879){\line(1,0){6.283185}}%x axis \put( .785398 , 4.18879 ){\circle*{ .0286234}} \put( 1.570796 , 4.18879 ){\circle*{ .0286234}} \put( 2.356194 , 4.18879 ){\circle*{ .0286234}} \put( 3.141593 , 4.18879 ){\circle*{ .0286234}} \put( 3.92699 , 4.18879 ){\circle*{ .0286234}} \put( 4.712389 , 4.18879 ){\circle*{ .0286234}} \put( 5.497787 , 4.18879 ){\circle*{ .0286234}} %Draw the x axis marker values in pi \put( .685398 , 3.993313 ){$ -\frac{3\pi}{4} $} \put( 1.470796 , 3.993313 ){$ -\frac{\pi}{2} $} \put( 2.256194 , 3.993313 ){$ -\frac{\pi}{4} $} \put( 3.141593 , 3.993313 ){$ 0 $} \put( 3.92699 , 3.993313 ){$ \frac{\pi}{4} $} \put( 4.712389 , 3.993313 ){$ \frac{\pi}{2} $} \put( 5.497787 , 3.993313 ){$ \frac{3\pi}{4} $} %Draw the y axis \put(3.141593,0){\line(0,1){8.37758}}%y axis %Draw the y axis markers \put( 3.141593 , 1.352633 ){\circle*{ .0286234}} \put( 3.141593 , 2.770712 ){\circle*{ .0286234}} \put( 3.141593 , 5.606869 ){\circle*{ .0286234}} \put( 3.141593 , 7.024947 ){\circle*{ .0286234}} %Draw the y axis marker values \put( 3.211406 , 1.345581 ){$ -0.2 $} \put( 3.211406 , 2.763660 ){$ -0.1 $} \put( 3.211406 , 5.606869 ){$ .1 $} \put( 3.211406 , 7.024947 ){$ .2 $} %Draw the data points \put( .01570796 , 4.282334 ){\circle*{ .0286234}} \put( .03141593 , 4.375844 ){\circle*{ .0286234}} \put( .04712389 , 4.469286 ){\circle*{ .0286234}} \put( .06283185 , 4.562624 ){\circle*{ .0286234}} \put( .07853982 , 4.655826 ){\circle*{ .0286234}} \put( .09424778 , 4.748854 ){\circle*{ .0286234}} \put( .10995574 , 4.841675 ){\circle*{ .0286234}} \put( .1256637 , 4.934253 ){\circle*{ .0286234}} \put( .14137167 , 5.02655 ){\circle*{ .0286234}} \put( .15707963 , 5.118531 ){\circle*{ .0286234}} \put( .17278760 , 5.210158 ){\circle*{ .0286234}} \put( .18849556 , 5.301392 ){\circle*{ .0286234}} \put( .20420352 , 5.392194 ){\circle*{ .0286234}} \put( .21991149 , 5.482524 ){\circle*{ .0286234}} \put( .23561945 , 5.572341 ){\circle*{ .0286234}} \put( .25132741 , 5.661603 ){\circle*{ .0286234}} \put( .26703538 , 5.750266 ){\circle*{ .0286234}} \put( .28274334 , 5.838287 ){\circle*{ .0286234}} \put( .2984513 , 5.925618 ){\circle*{ .0286234}} \put( .31415927 , 6.012214 ){\circle*{ .0286234}} \put( .32986723 , 6.098024 ){\circle*{ .0286234}} \put( .34557519 , 6.183 ){\circle*{ .0286234}} \put( .36128316 , 6.267089 ){\circle*{ .0286234}} \put( .37699112 , 6.350238 ){\circle*{ .0286234}} \put( .39269908 , 6.43239 ){\circle*{ .0286234}} \put( .40840704 , 6.513491 ){\circle*{ .0286234}} \put( .424115 , 6.59348 ){\circle*{ .0286234}} \put( .43982297 , 6.672297 ){\circle*{ .0286234}} \put( .45553093 , 6.749877 ){\circle*{ .0286234}} \put( .47123890 , 6.826157 ){\circle*{ .0286234}} \put( .48694686 , 6.901069 ){\circle*{ .0286234}} \put( .502655 , 6.974544 ){\circle*{ .0286234}} \put( .518363 , 7.046510 ){\circle*{ .0286234}} \put( .53407 , 7.116892 ){\circle*{ .0286234}} \put( .549779 , 7.185615 ){\circle*{ .0286234}} \put( .565487 , 7.2526 ){\circle*{ .0286234}} \put( .581195 , 7.317765 ){\circle*{ .0286234}} \put( .596903 , 7.381027 ){\circle*{ .0286234}} \put( .61261 , 7.4423 ){\circle*{ .0286234}} \put( .628319 , 7.501496 ){\circle*{ .0286234}} \put( .644026 , 7.558523 ){\circle*{ .0286234}} \put( .659734 , 7.613288 ){\circle*{ .0286234}} \put( .675442 , 7.665697 ){\circle*{ .0286234}} \put( .69115 , 7.71565 ){\circle*{ .0286234}} \put( .706858 , 7.763049 ){\circle*{ .0286234}} \put( .722566 , 7.80779 ){\circle*{ .0286234}} \put( .738274 , 7.84977 ){\circle*{ .0286234}} \put( .753982 , 7.888883 ){\circle*{ .0286234}} \put( .76969 , 7.92502 ){\circle*{ .0286234}} \put( .785398 , 7.958075 ){\circle*{ .0286234}} \put( .801106 , 7.987934 ){\circle*{ .0286234}} \put( .816814 , 8.014487 ){\circle*{ .0286234}} \put( .832522 , 8.037622 ){\circle*{ .0286234}} \put( .84823 , 8.057225 ){\circle*{ .0286234}} \put( .863938 , 8.073184 ){\circle*{ .0286234}} \put( .879646 , 8.085386 ){\circle*{ .0286234}} \put( .895354 , 8.093717 ){\circle*{ .0286234}} \put( .911062 , 8.098068 ){\circle*{ .0286234}} \put( .926770 , 8.098328 ){\circle*{ .0286234}} \put( .942478 , 8.094388 ){\circle*{ .0286234}} \put( .958186 , 8.086145 ){\circle*{ .0286234}} \put( .973894 , 8.073494 ){\circle*{ .0286234}} \put( .989602 , 8.056338 ){\circle*{ .0286234}} \put( 1.005310 , 8.03458 ){\circle*{ .0286234}} \put( 1.021018 , 8.008134 ){\circle*{ .0286234}} \put( 1.036726 , 7.976913 ){\circle*{ .0286234}} \put( 1.052434 , 7.94084 ){\circle*{ .0286234}} \put( 1.068142 , 7.899846 ){\circle*{ .0286234}} \put( 1.083849 , 7.853865 ){\circle*{ .0286234}} \put( 1.099557 , 7.802846 ){\circle*{ .0286234}} \put( 1.115265 , 7.746743 ){\circle*{ .0286234}} \put( 1.130973 , 7.68552 ){\circle*{ .0286234}} \put( 1.146681 , 7.619156 ){\circle*{ .0286234}} \put( 1.162389 , 7.547636 ){\circle*{ .0286234}} \put( 1.178097 , 7.470963 ){\circle*{ .0286234}} \put( 1.193805 , 7.389149 ){\circle*{ .0286234}} \put( 1.209513 , 7.302223 ){\circle*{ .0286234}} \put( 1.225221 , 7.210225 ){\circle*{ .0286234}} \put( 1.240929 , 7.113213 ){\circle*{ .0286234}} \put( 1.256637 , 7.011260 ){\circle*{ .0286234}} \put( 1.272345 , 6.904453 ){\circle*{ .0286234}} \put( 1.288053 , 6.792899 ){\circle*{ .0286234}} \put( 1.303761 , 6.676718 ){\circle*{ .0286234}} \put( 1.319469 , 6.556049 ){\circle*{ .0286234}} \put( 1.335177 , 6.431047 ){\circle*{ .0286234}} \put( 1.350885 , 6.301883 ){\circle*{ .0286234}} \put( 1.366593 , 6.168747 ){\circle*{ .0286234}} \put( 1.3823 , 6.031842 ){\circle*{ .0286234}} \put( 1.398009 , 5.891390 ){\circle*{ .0286234}} \put( 1.413717 , 5.747626 ){\circle*{ .0286234}} \put( 1.429425 , 5.6008 ){\circle*{ .0286234}} \put( 1.445133 , 5.451176 ){\circle*{ .0286234}} \put( 1.46084 , 5.299032 ){\circle*{ .0286234}} \put( 1.476549 , 5.144654 ){\circle*{ .0286234}} \put( 1.492257 , 4.988342 ){\circle*{ .0286234}} \put( 1.507964 , 4.830405 ){\circle*{ .0286234}} \put( 1.523672 , 4.671156 ){\circle*{ .0286234}} \put( 1.53938 , 4.510919 ){\circle*{ .0286234}} \put( 1.555088 , 4.35002 ){\circle*{ .0286234}} \put( 1.570796 , 4.18879 ){\circle*{ .0286234}} \put( 1.586504 , 4.027560 ){\circle*{ .0286234}} \put( 1.602212 , 3.866661 ){\circle*{ .0286234}} \put( 1.61792 , 3.706424 ){\circle*{ .0286234}} \put( 1.633628 , 3.547176 ){\circle*{ .0286234}} \put( 1.649336 , 3.389238 ){\circle*{ .0286234}} \put( 1.665044 , 3.232926 ){\circle*{ .0286234}} \put( 1.680752 , 3.078549 ){\circle*{ .0286234}} \put( 1.69646 , 2.926404 ){\circle*{ .0286234}} \put( 1.712168 , 2.77678 ){\circle*{ .0286234}} \put( 1.727876 , 2.629955 ){\circle*{ .0286234}} \put( 1.743584 , 2.48619 ){\circle*{ .0286234}} \put( 1.759292 , 2.345738 ){\circle*{ .0286234}} \put( 1.775000 , 2.208834 ){\circle*{ .0286234}} \put( 1.790708 , 2.075697 ){\circle*{ .0286234}} \put( 1.806416 , 1.946534 ){\circle*{ .0286234}} \put( 1.822124 , 1.821532 ){\circle*{ .0286234}} \put( 1.837832 , 1.700862 ){\circle*{ .0286234}} \put( 1.853540 , 1.584681 ){\circle*{ .0286234}} \put( 1.869248 , 1.473127 ){\circle*{ .0286234}} \put( 1.884956 , 1.36632 ){\circle*{ .0286234}} \put( 1.900664 , 1.264367 ){\circle*{ .0286234}} \put( 1.916372 , 1.167356 ){\circle*{ .0286234}} \put( 1.932079 , 1.075358 ){\circle*{ .0286234}} \put( 1.947787 , .988431 ){\circle*{ .0286234}} \put( 1.963495 , .906617 ){\circle*{ .0286234}} \put( 1.979203 , .829944 ){\circle*{ .0286234}} \put( 1.994911 , .758425 ){\circle*{ .0286234}} \put( 2.010619 , .69206 ){\circle*{ .0286234}} \put( 2.026327 , .630838 ){\circle*{ .0286234}} \put( 2.042035 , .574734 ){\circle*{ .0286234}} \put( 2.057743 , .523715 ){\circle*{ .0286234}} \put( 2.073451 , .47773489 ){\circle*{ .0286234}} \put( 2.089159 , .43673996 ){\circle*{ .0286234}} \put( 2.104867 , .40066737 ){\circle*{ .0286234}} \put( 2.120575 , .36944651 ){\circle*{ .0286234}} \put( 2.136283 , .34299968 ){\circle*{ .0286234}} \put( 2.151991 , .32124285 ){\circle*{ .0286234}} \put( 2.167699 , .30408637 ){\circle*{ .0286234}} \put( 2.183407 , .29143568 ){\circle*{ .0286234}} \put( 2.199115 , .28319194 ){\circle*{ .0286234}} \put( 2.214823 , .27925268 ){\circle*{ .0286234}} \put( 2.23053 , .27951239 ){\circle*{ .0286234}} \put( 2.246239 , .28386308 ){\circle*{ .0286234}} \put( 2.261947 , .29219486 ){\circle*{ .0286234}} \put( 2.277655 , .30439635 ){\circle*{ .0286234}} \put( 2.293363 , .3203552 ){\circle*{ .0286234}} \put( 2.30907 , .33995852 ){\circle*{ .0286234}} \put( 2.324779 , .36309322 ){\circle*{ .0286234}} \put( 2.340487 , .38964641 ){\circle*{ .0286234}} \put( 2.356194 , .41950574 ){\circle*{ .0286234}} \put( 2.371902 , .45255963 ){\circle*{ .0286234}} \put( 2.38761 , .48869759 ){\circle*{ .0286234}} \put( 2.403318 , .52781 ){\circle*{ .0286234}} \put( 2.419026 , .56979 ){\circle*{ .0286234}} \put( 2.434734 , .614532 ){\circle*{ .0286234}} \put( 2.450442 , .66193 ){\circle*{ .0286234}} \put( 2.46615 , .711884 ){\circle*{ .0286234}} \put( 2.481858 , .764292 ){\circle*{ .0286234}} \put( 2.497566 , .819058 ){\circle*{ .0286234}} \put( 2.513274 , .876085 ){\circle*{ .0286234}} \put( 2.528982 , .93528 ){\circle*{ .0286234}} \put( 2.54469 , .996553 ){\circle*{ .0286234}} \put( 2.560398 , 1.059815 ){\circle*{ .0286234}} \put( 2.576106 , 1.12498 ){\circle*{ .0286234}} \put( 2.591814 , 1.191965 ){\circle*{ .0286234}} \put( 2.607522 , 1.260688 ){\circle*{ .0286234}} \put( 2.623230 , 1.33107 ){\circle*{ .0286234}} \put( 2.638938 , 1.403036 ){\circle*{ .0286234}} \put( 2.654646 , 1.476511 ){\circle*{ .0286234}} \put( 2.670354 , 1.551423 ){\circle*{ .0286234}} \put( 2.686062 , 1.627703 ){\circle*{ .0286234}} \put( 2.701770 , 1.705284 ){\circle*{ .0286234}} \put( 2.717478 , 1.7841 ){\circle*{ .0286234}} \put( 2.733186 , 1.864089 ){\circle*{ .0286234}} \put( 2.748894 , 1.945190 ){\circle*{ .0286234}} \put( 2.764602 , 2.027343 ){\circle*{ .0286234}} \put( 2.780309 , 2.110491 ){\circle*{ .0286234}} \put( 2.796017 , 2.19458 ){\circle*{ .0286234}} \put( 2.811725 , 2.279556 ){\circle*{ .0286234}} \put( 2.827433 , 2.365367 ){\circle*{ .0286234}} \put( 2.843141 , 2.451962 ){\circle*{ .0286234}} \put( 2.858849 , 2.539294 ){\circle*{ .0286234}} \put( 2.874557 , 2.627314 ){\circle*{ .0286234}} \put( 2.890265 , 2.715977 ){\circle*{ .0286234}} \put( 2.905973 , 2.805239 ){\circle*{ .0286234}} \put( 2.921681 , 2.895056 ){\circle*{ .0286234}} \put( 2.937389 , 2.985387 ){\circle*{ .0286234}} \put( 2.953097 , 3.076189 ){\circle*{ .0286234}} \put( 2.968805 , 3.167423 ){\circle*{ .0286234}} \put( 2.984513 , 3.259049 ){\circle*{ .0286234}} \put( 3.000221 , 3.35103 ){\circle*{ .0286234}} \put( 3.015929 , 3.443328 ){\circle*{ .0286234}} \put( 3.031637 , 3.535905 ){\circle*{ .0286234}} \put( 3.047345 , 3.628726 ){\circle*{ .0286234}} \put( 3.063053 , 3.721755 ){\circle*{ .0286234}} \put( 3.07876 , 3.814956 ){\circle*{ .0286234}} \put( 3.094469 , 3.908295 ){\circle*{ .0286234}} \put( 3.110177 , 4.001736 ){\circle*{ .0286234}} \put( 3.125885 , 4.095246 ){\circle*{ .0286234}} \put( 3.141593 , 4.18879 ){\circle*{ .0286234}} \put( 3.1573 , 4.282334 ){\circle*{ .0286234}} \put( 3.173009 , 4.375844 ){\circle*{ .0286234}} \put( 3.188717 , 4.469286 ){\circle*{ .0286234}} \put( 3.204425 , 4.562624 ){\circle*{ .0286234}} \put( 3.220132 , 4.655826 ){\circle*{ .0286234}} \put( 3.23584 , 4.748854 ){\circle*{ .0286234}} \put( 3.251548 , 4.841675 ){\circle*{ .0286234}} \put( 3.267256 , 4.934253 ){\circle*{ .0286234}} \put( 3.282964 , 5.02655 ){\circle*{ .0286234}} \put( 3.298672 , 5.118531 ){\circle*{ .0286234}} \put( 3.31438 , 5.210158 ){\circle*{ .0286234}} \put( 3.330088 , 5.301392 ){\circle*{ .0286234}} \put( 3.345796 , 5.392194 ){\circle*{ .0286234}} \put( 3.361504 , 5.482524 ){\circle*{ .0286234}} \put( 3.377212 , 5.572341 ){\circle*{ .0286234}} \put( 3.39292 , 5.661603 ){\circle*{ .0286234}} \put( 3.408628 , 5.750266 ){\circle*{ .0286234}} \put( 3.424336 , 5.838287 ){\circle*{ .0286234}} \put( 3.440044 , 5.925618 ){\circle*{ .0286234}} \put( 3.455752 , 6.012214 ){\circle*{ .0286234}} \put( 3.471460 , 6.098024 ){\circle*{ .0286234}} \put( 3.487168 , 6.183 ){\circle*{ .0286234}} \put( 3.502876 , 6.267089 ){\circle*{ .0286234}} \put( 3.518584 , 6.350238 ){\circle*{ .0286234}} \put( 3.534292 , 6.43239 ){\circle*{ .0286234}} \put( 3.550000 , 6.513491 ){\circle*{ .0286234}} \put( 3.565708 , 6.59348 ){\circle*{ .0286234}} \put( 3.581416 , 6.672297 ){\circle*{ .0286234}} \put( 3.597124 , 6.749877 ){\circle*{ .0286234}} \put( 3.612832 , 6.826157 ){\circle*{ .0286234}} \put( 3.628540 , 6.901069 ){\circle*{ .0286234}} \put( 3.644247 , 6.974544 ){\circle*{ .0286234}} \put( 3.659955 , 7.046510 ){\circle*{ .0286234}} \put( 3.675663 , 7.116892 ){\circle*{ .0286234}} \put( 3.691371 , 7.185615 ){\circle*{ .0286234}} \put( 3.707079 , 7.2526 ){\circle*{ .0286234}} \put( 3.722787 , 7.317765 ){\circle*{ .0286234}} \put( 3.738495 , 7.381027 ){\circle*{ .0286234}} \put( 3.754203 , 7.4423 ){\circle*{ .0286234}} \put( 3.769911 , 7.501496 ){\circle*{ .0286234}} \put( 3.785619 , 7.558523 ){\circle*{ .0286234}} \put( 3.801327 , 7.613288 ){\circle*{ .0286234}} \put( 3.817035 , 7.665697 ){\circle*{ .0286234}} \put( 3.832743 , 7.71565 ){\circle*{ .0286234}} \put( 3.848451 , 7.763049 ){\circle*{ .0286234}} \put( 3.864159 , 7.80779 ){\circle*{ .0286234}} \put( 3.879867 , 7.84977 ){\circle*{ .0286234}} \put( 3.895575 , 7.888883 ){\circle*{ .0286234}} \put( 3.911283 , 7.92502 ){\circle*{ .0286234}} \put( 3.92699 , 7.958075 ){\circle*{ .0286234}} \put( 3.942699 , 7.987934 ){\circle*{ .0286234}} \put( 3.958407 , 8.014487 ){\circle*{ .0286234}} \put( 3.974115 , 8.037622 ){\circle*{ .0286234}} \put( 3.989823 , 8.057225 ){\circle*{ .0286234}} \put( 4.00553 , 8.073184 ){\circle*{ .0286234}} \put( 4.021239 , 8.085386 ){\circle*{ .0286234}} \put( 4.036947 , 8.093717 ){\circle*{ .0286234}} \put( 4.052655 , 8.098068 ){\circle*{ .0286234}} \put( 4.068362 , 8.098328 ){\circle*{ .0286234}} \put( 4.08407 , 8.094388 ){\circle*{ .0286234}} \put( 4.099778 , 8.086145 ){\circle*{ .0286234}} \put( 4.115486 , 8.073494 ){\circle*{ .0286234}} \put( 4.131194 , 8.056338 ){\circle*{ .0286234}} \put( 4.146902 , 8.03458 ){\circle*{ .0286234}} \put( 4.16261 , 8.008134 ){\circle*{ .0286234}} \put( 4.178318 , 7.976913 ){\circle*{ .0286234}} \put( 4.194026 , 7.94084 ){\circle*{ .0286234}} \put( 4.209734 , 7.899846 ){\circle*{ .0286234}} \put( 4.225442 , 7.853865 ){\circle*{ .0286234}} \put( 4.24115 , 7.802846 ){\circle*{ .0286234}} \put( 4.256858 , 7.746743 ){\circle*{ .0286234}} \put( 4.272566 , 7.68552 ){\circle*{ .0286234}} \put( 4.288274 , 7.619156 ){\circle*{ .0286234}} \put( 4.303982 , 7.547636 ){\circle*{ .0286234}} \put( 4.319690 , 7.470963 ){\circle*{ .0286234}} \put( 4.335398 , 7.389149 ){\circle*{ .0286234}} \put( 4.351106 , 7.302223 ){\circle*{ .0286234}} \put( 4.366814 , 7.210225 ){\circle*{ .0286234}} \put( 4.382522 , 7.113213 ){\circle*{ .0286234}} \put( 4.398230 , 7.011260 ){\circle*{ .0286234}} \put( 4.413938 , 6.904453 ){\circle*{ .0286234}} \put( 4.429646 , 6.792899 ){\circle*{ .0286234}} \put( 4.445354 , 6.676718 ){\circle*{ .0286234}} \put( 4.461062 , 6.556049 ){\circle*{ .0286234}} \put( 4.476770 , 6.431047 ){\circle*{ .0286234}} \put( 4.492477 , 6.301883 ){\circle*{ .0286234}} \put( 4.508185 , 6.168747 ){\circle*{ .0286234}} \put( 4.523893 , 6.031842 ){\circle*{ .0286234}} \put( 4.539601 , 5.891390 ){\circle*{ .0286234}} \put( 4.555309 , 5.747626 ){\circle*{ .0286234}} \put( 4.571017 , 5.6008 ){\circle*{ .0286234}} \put( 4.586725 , 5.451176 ){\circle*{ .0286234}} \put( 4.602433 , 5.299032 ){\circle*{ .0286234}} \put( 4.618141 , 5.144654 ){\circle*{ .0286234}} \put( 4.633849 , 4.988342 ){\circle*{ .0286234}} \put( 4.649557 , 4.830405 ){\circle*{ .0286234}} \put( 4.665265 , 4.671156 ){\circle*{ .0286234}} \put( 4.680973 , 4.510919 ){\circle*{ .0286234}} \put( 4.696681 , 4.35002 ){\circle*{ .0286234}} \put( 4.712389 , 4.18879 ){\circle*{ .0286234}} \put( 4.728097 , 4.027560 ){\circle*{ .0286234}} \put( 4.743805 , 3.866661 ){\circle*{ .0286234}} \put( 4.759513 , 3.706424 ){\circle*{ .0286234}} \put( 4.77522 , 3.547176 ){\circle*{ .0286234}} \put( 4.790929 , 3.389238 ){\circle*{ .0286234}} \put( 4.806637 , 3.232926 ){\circle*{ .0286234}} \put( 4.822345 , 3.078549 ){\circle*{ .0286234}} \put( 4.838053 , 2.926404 ){\circle*{ .0286234}} \put( 4.85376 , 2.77678 ){\circle*{ .0286234}} \put( 4.869469 , 2.629955 ){\circle*{ .0286234}} \put( 4.885177 , 2.48619 ){\circle*{ .0286234}} \put( 4.900885 , 2.345738 ){\circle*{ .0286234}} \put( 4.916593 , 2.208834 ){\circle*{ .0286234}} \put( 4.9323 , 2.075697 ){\circle*{ .0286234}} \put( 4.948008 , 1.946534 ){\circle*{ .0286234}} \put( 4.963716 , 1.821532 ){\circle*{ .0286234}} \put( 4.979424 , 1.700862 ){\circle*{ .0286234}} \put( 4.995132 , 1.584681 ){\circle*{ .0286234}} \put( 5.01084 , 1.473127 ){\circle*{ .0286234}} \put( 5.026548 , 1.36632 ){\circle*{ .0286234}} \put( 5.042256 , 1.264367 ){\circle*{ .0286234}} \put( 5.057964 , 1.167356 ){\circle*{ .0286234}} \put( 5.073672 , 1.075358 ){\circle*{ .0286234}} \put( 5.08938 , .988431 ){\circle*{ .0286234}} \put( 5.105088 , .906617 ){\circle*{ .0286234}} \put( 5.120796 , .829944 ){\circle*{ .0286234}} \put( 5.136504 , .758425 ){\circle*{ .0286234}} \put( 5.152212 , .69206 ){\circle*{ .0286234}} \put( 5.16792 , .630838 ){\circle*{ .0286234}} \put( 5.183628 , .574734 ){\circle*{ .0286234}} \put( 5.199336 , .523715 ){\circle*{ .0286234}} \put( 5.215044 , .47773489 ){\circle*{ .0286234}} \put( 5.230752 , .43673996 ){\circle*{ .0286234}} \put( 5.246460 , .40066737 ){\circle*{ .0286234}} \put( 5.262168 , .36944651 ){\circle*{ .0286234}} \put( 5.277876 , .34299968 ){\circle*{ .0286234}} \put( 5.293584 , .32124285 ){\circle*{ .0286234}} \put( 5.309292 , .30408637 ){\circle*{ .0286234}} \put( 5.325000 , .29143568 ){\circle*{ .0286234}} \put( 5.340708 , .28319194 ){\circle*{ .0286234}} \put( 5.356415 , .27925268 ){\circle*{ .0286234}} \put( 5.372123 , .27951239 ){\circle*{ .0286234}} \put( 5.387831 , .28386308 ){\circle*{ .0286234}} \put( 5.403539 , .29219486 ){\circle*{ .0286234}} \put( 5.419247 , .30439635 ){\circle*{ .0286234}} \put( 5.434955 , .3203552 ){\circle*{ .0286234}} \put( 5.450663 , .33995852 ){\circle*{ .0286234}} \put( 5.466371 , .36309322 ){\circle*{ .0286234}} \put( 5.482079 , .38964641 ){\circle*{ .0286234}} \put( 5.497787 , .41950574 ){\circle*{ .0286234}} \put( 5.513495 , .45255963 ){\circle*{ .0286234}} \put( 5.529203 , .48869759 ){\circle*{ .0286234}} \put( 5.544911 , .52781 ){\circle*{ .0286234}} \put( 5.560619 , .56979 ){\circle*{ .0286234}} \put( 5.576327 , .614532 ){\circle*{ .0286234}} \put( 5.592035 , .66193 ){\circle*{ .0286234}} \put( 5.607743 , .711884 ){\circle*{ .0286234}} \put( 5.62345 , .764292 ){\circle*{ .0286234}} \put( 5.639159 , .819058 ){\circle*{ .0286234}} \put( 5.654867 , .876085 ){\circle*{ .0286234}} \put( 5.670575 , .93528 ){\circle*{ .0286234}} \put( 5.686283 , .996553 ){\circle*{ .0286234}} \put( 5.70199 , 1.059815 ){\circle*{ .0286234}} \put( 5.717699 , 1.12498 ){\circle*{ .0286234}} \put( 5.733407 , 1.191965 ){\circle*{ .0286234}} \put( 5.749115 , 1.260688 ){\circle*{ .0286234}} \put( 5.764823 , 1.33107 ){\circle*{ .0286234}} \put( 5.78053 , 1.403036 ){\circle*{ .0286234}} \put( 5.796238 , 1.476511 ){\circle*{ .0286234}} \put( 5.811946 , 1.551423 ){\circle*{ .0286234}} \put( 5.827654 , 1.627703 ){\circle*{ .0286234}} \put( 5.843362 , 1.705284 ){\circle*{ .0286234}} \put( 5.85907 , 1.7841 ){\circle*{ .0286234}} \put( 5.874778 , 1.864089 ){\circle*{ .0286234}} \put( 5.890486 , 1.945190 ){\circle*{ .0286234}} \put( 5.906194 , 2.027343 ){\circle*{ .0286234}} \put( 5.921902 , 2.110491 ){\circle*{ .0286234}} \put( 5.93761 , 2.19458 ){\circle*{ .0286234}} \put( 5.953318 , 2.279556 ){\circle*{ .0286234}} \put( 5.969026 , 2.365367 ){\circle*{ .0286234}} \put( 5.984734 , 2.451962 ){\circle*{ .0286234}} \put( 6.000442 , 2.539294 ){\circle*{ .0286234}} \put( 6.01615 , 2.627314 ){\circle*{ .0286234}} \put( 6.031858 , 2.715977 ){\circle*{ .0286234}} \put( 6.047566 , 2.805239 ){\circle*{ .0286234}} \put( 6.063274 , 2.895056 ){\circle*{ .0286234}} \put( 6.078982 , 2.985387 ){\circle*{ .0286234}} \put( 6.094690 , 3.076189 ){\circle*{ .0286234}} \put( 6.110398 , 3.167423 ){\circle*{ .0286234}} \put( 6.126106 , 3.259049 ){\circle*{ .0286234}} \put( 6.141814 , 3.35103 ){\circle*{ .0286234}} \put( 6.157522 , 3.443328 ){\circle*{ .0286234}} \put( 6.173230 , 3.535905 ){\circle*{ .0286234}} \put( 6.188938 , 3.628726 ){\circle*{ .0286234}} \put( 6.204645 , 3.721755 ){\circle*{ .0286234}} \put( 6.220353 , 3.814956 ){\circle*{ .0286234}} \put( 6.236061 , 3.908295 ){\circle*{ .0286234}} \put( 6.251769 , 4.001736 ){\circle*{ .0286234}} \put( 6.267477 , 4.095246 ){\circle*{ .0286234}} \end{picture} \end{center} %Finis. apl>)off