apl>" <-APL2-------------------- sam322.txt ----------------------------> apl>)run cap2/sample/graph.inc apl>" <-APL2-------------------- graph.txt -----------------------------> apl>" Legend describing various global values: apl>" apl>" World coordinates(wc) are those of the real data. apl>" Graph coordinates(gc) are those of the graph. apl>" apl>" caption - Override to text for graph caption. If null, a caption apl>" will be generated. The graph function resets the global apl>" caption variable to null at the end of its processing. apl>" apl>" hk ------ Constant coefficient of input. If xr=1 (see below) then apl>" hk becomes the constant imaginary coefficient for all apl>" values of x on the graph. If xr=0, hk will be the constant apl>" real coefficient. apl>" apl>" htl ----- 0 = both, 1 = headers, 2 = trailers, 3 = neither. apl>" apl>" maxx ---- Maximum x axis value in world coordinates. apl>" apl>" maxy ---- Maximum y axis value in world coordinates. apl>" apl>" minx ---- Minimum x axis value in world coordinates. apl>" apl>" miny ---- Minimum y axis value in world coordinates. apl>" apl>" mgc ----- Vertical margin in graphic coordinates. apl>" apl>" n ------- Synonymous with hk (see above). The x values to which apl>" the function is applied to obtain y values are derived apl>" by first creating xwc as a vector of integers uniformly apl>" distributed between minx and maxx inclusive. Then, either apl>" 'x#(nX0j1)+xwc' or 'x#n+0j1Xxwc' is evaluated. apl>" apl>" nlb ----- 1 = Label the curve with the n value. apl>" apl>" points -- Number of points to generate. apl>" apl>" xgc ----- Array of x values for data points in graph coordinates. apl>" apl>" xiv ----- x axis marker interval in world coordinates. apl>" apl>" xlin ---- Width of graph in inches. apl>" apl>" xpg ----- Divide xwc by xpg to get xgc. apl>" apl>" xpi ----- Array of three values for minx, maxx, and xiv, used when apl>" invoking the graph function and the array of x values apl>" spans -pi to +pi. apl>" apl>" xr ------ 1=vary real x coefficient, 0=vary imaginary coefficient, apl>" holding the other coefficient to the constant hk (see above.). apl>" apl>" xt ------ Used in a variety of places to temporarily generate apl>" graphics coordinates. apl>" apl>" xwc ----- Array of x values in world coordinates. apl>" apl>" yadj ---- Adjustment down to print text below a line. apl>" apl>" yabm ---- Maximum absolute value (|y) to appear on graph. apl>" apl>" ygc ----- Array of y values for data points in graph coordinates. apl>" apl>" ylin ---- Height of graph in inches. apl>" apl>" ymgn ---- Margin in inches at top and bottom of y axis. apl>" apl>" ypg ----- Divide ywc by ypg to get ygc. apl>" apl>" yt ------ Used in a variety of places to temporarily generate apl>" graphics coordinates. apl>" apl>" ywc ----- Array of y values for data points in world coordinates. apl>" apl>" Set global values. --------------------------------------------> apl>" apl>caption#'' " Empty caption causes one to be generated. apl>i#11 " Circle function code to extract imag. coef. of complex number. apl>points#200 " Number of data points to generate on graph. apl>r#9 " Circle function code to extract real coef. of complex number. apl>xlin#4.5 " Width of graph in inches. apl>" minx = -3.14159.... apl>" | maxx = 3.14159.... apl>" | | xiv apl>" | | | apl>" V V V apl>xpi#(O-1),(O1),O.25 apl>ylin#6 " Height of graph in inches. apl>ymgn#.2 " Margin in inches at top and bottom of y axis. apl>" apl>" <-----------------------------------------------------------------> apl>" Generates the LaTeX \put statements for the data points to appear apl>" on the graph. apl>" apl>Lex 'dodata' 1 apl>Gdodata [1] xgc#(xwc_minx)%xpg " xgc=x graphic coordinates for data points. [2] ygc#mgc+(ywc_miny)%ypg " ygc=y graphic coordinates for data points. [3] $bylabXI0=nlb " Branch if the curve is not to be labelled. [4] '%Label the curve' [5] xt#1Y(u=S/u#|ywc)/xgc " x coord where maximum/mininum occurs [6] yt#(_yadjX0>vs/ywc)+(vs#xt=xgc)/ygc " y coord of maximum/minimum [7] " Note: Calculation for yt works only if all minima occur below [8] " y axis, and all maxima occur above. [9] pcon,(xt,',',[1.5]yt),`Z'){n\#',(Fhk),'}' [10] bylab:'%Draw the data points' [11] pcon,((xgc#-1U1Uxgc),',',[1.5](ygc#-1U1Uygc)),circon [12] G apl>" <-----------------------------------------------------------------> apl>" Generate xwc and ywc, the arrays of x/y coordinates for the data apl>" points to appear on the graph. apl>" apl>Lex 'genxy' 1 apl>Ggenxy [1] xwc#minx+(xlwc#maxx_minx)X(-1+Ipoints+1)%points [2] $varyrealXIxr [3] x#hk+0j1Xxwc " real part is constant, imaginary varies. [4] $calcy " Branch to compute values of y for data points. [5] varyreal:x#(hkX0j1)+xwc " Imaginary is constant, real varies. [6] calcy:ywc#eOCfun " Compute values of y for data points [7] ywcm#yabm>|ywc " Mask of keepers, magnitudes of y < yabm. [8] xwc#ywcm/xwc " Pick the keepers. [9] ywc#ywcm/ywc " Pick the keepers. [10] G apl>" apl>" <-----------------------------------------------------------------> apl>" Main graph routine. apl>" apl>Lex 'graph' 1 apl>Gfun graph a [1] "Graphs the imaginary or real coefficient of result of fun. [2] " fun = expression to evaluate. [3] (htl nlb xr e yabm minx maxx xiv hk yiv yca)#a [4] genxy " Generate the data points. [5] $dataXIhtl>1 " Branch if htl greater than 1. [6] scale " Calculate global scaling values. [7] headers " Generate LaTeX figure headers. [8] data:dodata " Process and graph data points. [9] trailers " Generate Latex figure trailers, maybe. [10] G apl>" apl>" <-----------------------------------------------------------------> apl>" Generates the LaTeX statements to begin the graph. apl>" apl>Lex 'headers' 1 apl>Gheaders [1] '\begin{figure}[tbh]' [2] $gencapXI0=Rcaption " Branch if no caption override. [3] '\caption{',caption,'}' [4] $begin [5] gencap:$realcapXI(xr=1)&hk=0 " Branch if x data are not complex. [6] $ncaptionXInlb=0 " Branch if curves are not labelled with n value. [7] '\caption{Graph of y\#',(Fe),'O',fun,'+nX0j1}' [8] $begin [9] ncaption:$cplxcapXIxr " Branch if varying real coefficient. [10] '\caption{Graph of y\#',(Fe),'O',(-1Ufun),(Fhk),'+xX0j1}' [11] $begin [12] cplxcap:'\caption{Graph of y\#',(Fe),'O',fun,'+(n\#',(Fhk),')X0j1}' [13] $begin [14] realcap:'\caption{Graph of y\#',fun,'}' [15] begin:'\begin{center}' [16] '\setlength{\unitlength}{',(Flin),'in}' [17] '\begin{picture}(',(Fxlin%lin),',',(Fylin%lin),')' [18] '%Draw a frame around the picture' [19] ' \put(0,0){\line(1,0){',(Fxlgc),'}}% bottom' [20] ' \put(0,0){\line(0,1){',(Fylgc),'}}% left' [21] ' \put(0,',(Fylgc),'){\line(1,0){',(Fxlgc),'}}% top' [22] ' \put(',(Fxlgc),',0){\line(0,1){',(Fylgc),'}}% right' [23] '%Draw the x axis' [24] ' \put(0,',(Fxax),'){\line(1,0){',(Fxlgc),'}}%x axis' [25] xt#xoff%xpg [26] pcon,((xt,[1.5]','),xax),circon " Draw the x axis markers. [27] xt#xt_xpgX.1Xxmk<0 [28] yt#xax+((.05%lin)Xxax=mgc)_yadjXxax>mgc [29] $dopaxXIpix [30] '%Draw the x axis marker values' [31] pcon,xt,',',yt,econ,xmk,[1.5]scon [32] $doyax [33] dopax:'%Draw the x axis marker values in pi' [34] picon#(`Z'\frac{') ,`1 '\pi}{4}' '\pi}{2}' '3\pi}{4}' [35] picon#('-',`1`Rpicon),'0',picon [36] pcon,xt,',',yt,econ,picon,[1.5]scon [37] doyax:'%Draw the y axis' [38] $putymkXI(yax=0) [39] ' \put(',(Fyax),',0){\line(0,1){',(Fylgc),'}}%y axis' [40] putymk:'%Draw the y axis markers' [41] ymask#ymk^=0 [42] yt#ymask/mgc+(ymk_miny)%ypg [43] pcon,yax,',',yt,[1.5]circon [44] '%Draw the y axis marker values' [45] xt#yax+.05%lin [46] yt#yt_ypgX.1X(ymask/ymk)<0 [47] pcon,xt,',',yt,econ,(ymask/ymk),[1.5]scon [48] G apl>" apl>" <-----------------------------------------------------------------> apl>" Calculates a variety of values needed to produce the graph. apl>" apl>Lex 'scale' 1 apl>Gscale [1] $byyXIyca " Branch if ylwc, maxy, miny are precalculated. [2] ylwc#(maxy#S/ywc)_miny#D/ywc [3] byy:ylap#ylin_2Xymgn " ylap=height allowed for data points. [4] lin#(xlin%xlwc)Dylap%ylwc " unitlength in inches. [5] yadj#.14%lin " y graphic coordinate adjustment to print text below line. [6] mgc#ymgn%lin " Margin in graph coordinates. [7] xpg#xlwc%xlgc#xlin%lin " Divide xwc by xpg to get gc. [8] ypg#ylwc%(_2Xymgn%lin)+ylgc#ylin%lin " Divide ywc by ypg to get gc. [9] xax#(yz#(minyK0)&maxyZ0)Xmgc+(|miny)%ypg " xaxis in graph coordinates. [10] yax#(xz#(minx<0)&maxx>0)X(|minx)%xpg " yaxis in graph coordinates. [11] $piaxisXIpix#(minx=O-1)&maxx=O1 " branch if pi units on x axis. [12] xic#(yax=0)+Dxlwc%xiv [13] $doyiv [14] piaxis:xic#Dxlwc%xiv#O.25 [15] doyiv:$doyicXIyiv^=0 [16] yiv#10*D10@ylwc [17] doyic:yic#yic+0=2|yic#Dylwc%yiv [18] xoff#(I-1+xic)Xxiv " Offset from minx in world coord. of x markers. [19] yoff#(_yiv)+(Iyic)Xyiv " Offset from miny in world coord. of y markers. [20] $yoffplusXIminy>0 [21] ymk#yoff+miny+yiv||miny [22] $yoffdone [23] yoffplus:ymk#yoff+miny_yiv|miny " y for y axis markers in world coord. [24] yoffdone:xmk#minx+xoff " x for x axis markers in world coord. [25] circon#`Z'){\circle*{',(F.0205%lin),'}}' [26] scon#`Z'$}' [27] econ#`Z'){$' [28] pcon#`Z' \put(' [29] G apl>" apl>" <-----------------------------------------------------------------> apl>" Generates the LaTeX statements to finish the graph. apl>" apl>Lex 'trailers' 1 apl>Gtrailers [1] $epicXIhtl=0 " Branch if both headers and trailers. [2] $eojckXInlb " Branch if graph already labelled. [3] pcon,(1Yxgc+xpgX.1),',',(1Yygc),'){',fun,'}' " Label the graph. [4] eojck:$eojXI(htl=1)+htl=3 " br if headers only, or neither. [5] epic:'\end{picture}' [6] '\end{center}' [7] eoj:'%Finis.' [8] caption#'' " Reset global caption [9] G apl>" htl: 0=both, 1=headers, 2=trailers, 3=neither. apl>" | nlb 1 = Label the curve. apl>" | | xr = 1=vary real x coeff, 0=vary imaginary coeff. apl>" | | | e = i(11) or r(9) to select coefficient to graph. apl>" | | | | yabm = maximum |y printed on graph. apl>" | | | | | minx = minimum value of x. apl>" | | | | | | maxx = maximum value of x. apl>" | | | | | | | xiv = x axis marker interval. apl>" | | | | | | | | hk = Constant coefficient of input. apl>" | | | | | | | | | yiv = y axis marker interval, or 0. apl>" | | | | | | | | | | yca = ylwc, maxy, miny are precalculated. apl>" | | | | | | | | | | | apl>" V V V V V V V V V V V apl>points#400 apl> '7Ox' graph 0,0,0,r,1e6,xpi ,0.5,.1,0 " tanhdatz.tex \begin{figure}[tbh] \caption{Graph of y\#9O7O .5+xX0j1} \begin{center} \setlength{\unitlength}{ .716197in} \begin{picture}(6.283185,8.37758) %Draw a frame around the picture \put(0,0){\line(1,0){6.283185}}% bottom \put(0,0){\line(0,1){8.37758}}% left \put(0,8.37758){\line(1,0){6.283185}}% top \put(6.283185,0){\line(0,1){8.37758}}% right %Draw the x axis \put(0,0){\line(1,0){6.283185}}%x axis \put( .785398 , 0 ){\circle*{ .0286234}} \put( 1.570796 , 0 ){\circle*{ .0286234}} \put( 2.356194 , 0 ){\circle*{ .0286234}} \put( 3.141593 , 0 ){\circle*{ .0286234}} \put( 3.92699 , 0 ){\circle*{ .0286234}} \put( 4.712389 , 0 ){\circle*{ .0286234}} \put( 5.497787 , 0 ){\circle*{ .0286234}} %Draw the x axis marker values in pi \put( .685398 , 0 ){$ -\frac{3\pi}{4} $} \put( 1.470796 , 0 ){$ -\frac{\pi}{2} $} \put( 2.256194 , 0 ){$ -\frac{\pi}{4} $} \put( 3.141593 , 0 ){$ 0 $} \put( 3.92699 , 0 ){$ \frac{\pi}{4} $} \put( 4.712389 , 0 ){$ \frac{\pi}{2} $} \put( 5.497787 , 0 ){$ \frac{3\pi}{4} $} %Draw the y axis \put(3.141593,0){\line(0,1){8.37758}}%y axis %Draw the y axis markers \put( 3.141593 , -0.00614417 ){\circle*{ .0286234}} \put( 3.141593 , .45330514 ){\circle*{ .0286234}} \put( 3.141593 , .912754 ){\circle*{ .0286234}} \put( 3.141593 , 1.372204 ){\circle*{ .0286234}} \put( 3.141593 , 1.831653 ){\circle*{ .0286234}} \put( 3.141593 , 2.291102 ){\circle*{ .0286234}} \put( 3.141593 , 2.750552 ){\circle*{ .0286234}} \put( 3.141593 , 3.210001 ){\circle*{ .0286234}} \put( 3.141593 , 3.66945 ){\circle*{ .0286234}} \put( 3.141593 , 4.128900 ){\circle*{ .0286234}} \put( 3.141593 , 4.588349 ){\circle*{ .0286234}} \put( 3.141593 , 5.047798 ){\circle*{ .0286234}} \put( 3.141593 , 5.507248 ){\circle*{ .0286234}} \put( 3.141593 , 5.966697 ){\circle*{ .0286234}} \put( 3.141593 , 6.426146 ){\circle*{ .0286234}} \put( 3.141593 , 6.885596 ){\circle*{ .0286234}} \put( 3.141593 , 7.345045 ){\circle*{ .0286234}} %Draw the y axis marker values \put( 3.211406 , -0.00614417 ){$ .4 $} \put( 3.211406 , .45330514 ){$ .5 $} \put( 3.211406 , .912754 ){$ .6 $} \put( 3.211406 , 1.372204 ){$ .7 $} \put( 3.211406 , 1.831653 ){$ .8 $} \put( 3.211406 , 2.291102 ){$ .9 $} \put( 3.211406 , 2.750552 ){$ 1 $} \put( 3.211406 , 3.210001 ){$ 1.1 $} \put( 3.211406 , 3.66945 ){$ 1.2 $} \put( 3.211406 , 4.128900 ){$ 1.3 $} \put( 3.211406 , 4.588349 ){$ 1.4 $} \put( 3.211406 , 5.047798 ){$ 1.5 $} \put( 3.211406 , 5.507248 ){$ 1.6 $} \put( 3.211406 , 5.966697 ){$ 1.7 $} \put( 3.211406 , 6.426146 ){$ 1.8 $} \put( 3.211406 , 6.885596 ){$ 1.9 $} \put( 3.211406 , 7.345045 ){$ 2 $} %Draw the data points \put( .01570796 , .27966473 ){\circle*{ .0286234}} \put( .03141593 , .28090143 ){\circle*{ .0286234}} \put( .04712389 , .28296443 ){\circle*{ .0286234}} \put( .06283185 , .28585652 ){\circle*{ .0286234}} \put( .07853982 , .28958157 ){\circle*{ .0286234}} \put( .09424778 , .29414461 ){\circle*{ .0286234}} \put( .10995574 , .29955178 ){\circle*{ .0286234}} \put( .1256637 , .30581039 ){\circle*{ .0286234}} \put( .14137167 , .31292891 ){\circle*{ .0286234}} \put( .15707963 , .32091700 ){\circle*{ .0286234}} \put( .17278760 , .32978551 ){\circle*{ .0286234}} \put( .18849556 , .33954656 ){\circle*{ .0286234}} \put( .20420352 , .3502135 ){\circle*{ .0286234}} \put( .21991149 , .36180099 ){\circle*{ .0286234}} \put( .23561945 , .37432500 ){\circle*{ .0286234}} \put( .25132741 , .38780286 ){\circle*{ .0286234}} \put( .26703538 , .40225331 ){\circle*{ .0286234}} \put( .28274334 , .41769653 ){\circle*{ .0286234}} \put( .2984513 , .43415417 ){\circle*{ .0286234}} \put( .31415927 , .45164943 ){\circle*{ .0286234}} \put( .32986723 , .47020709 ){\circle*{ .0286234}} \put( .34557519 , .48985357 ){\circle*{ .0286234}} \put( .36128316 , .510617 ){\circle*{ .0286234}} \put( .37699112 , .532527 ){\circle*{ .0286234}} \put( .39269908 , .555616 ){\circle*{ .0286234}} \put( .40840704 , .579917 ){\circle*{ .0286234}} \put( .424115 , .605465 ){\circle*{ .0286234}} \put( .43982297 , .632299 ){\circle*{ .0286234}} \put( .45553093 , .660458 ){\circle*{ .0286234}} \put( .47123890 , .689983 ){\circle*{ .0286234}} \put( .48694686 , .72092 ){\circle*{ .0286234}} \put( .502655 , .753314 ){\circle*{ .0286234}} \put( .518363 , .787215 ){\circle*{ .0286234}} \put( .53407 , .822674 ){\circle*{ .0286234}} \put( .549779 , .859745 ){\circle*{ .0286234}} \put( .565487 , .898485 ){\circle*{ .0286234}} \put( .581195 , .938954 ){\circle*{ .0286234}} \put( .596903 , .981215 ){\circle*{ .0286234}} \put( .61261 , 1.025333 ){\circle*{ .0286234}} \put( .628319 , 1.071377 ){\circle*{ .0286234}} \put( .644026 , 1.119418 ){\circle*{ .0286234}} \put( .659734 , 1.169533 ){\circle*{ .0286234}} \put( .675442 , 1.221798 ){\circle*{ .0286234}} \put( .69115 , 1.276297 ){\circle*{ .0286234}} \put( .706858 , 1.333114 ){\circle*{ .0286234}} \put( .722566 , 1.392338 ){\circle*{ .0286234}} \put( .738274 , 1.454061 ){\circle*{ .0286234}} \put( .753982 , 1.518379 ){\circle*{ .0286234}} \put( .76969 , 1.58539 ){\circle*{ .0286234}} \put( .785398 , 1.655198 ){\circle*{ .0286234}} \put( .801106 , 1.727906 ){\circle*{ .0286234}} \put( .816814 , 1.803623 ){\circle*{ .0286234}} \put( .832522 , 1.882461 ){\circle*{ .0286234}} \put( .84823 , 1.964532 ){\circle*{ .0286234}} \put( .863938 , 2.049953 ){\circle*{ .0286234}} \put( .879646 , 2.138840 ){\circle*{ .0286234}} \put( .895354 , 2.23131 ){\circle*{ .0286234}} \put( .911062 , 2.327484 ){\circle*{ .0286234}} \put( .926770 , 2.427476 ){\circle*{ .0286234}} \put( .942478 , 2.531403 ){\circle*{ .0286234}} \put( .958186 , 2.639379 ){\circle*{ .0286234}} \put( .973894 , 2.75151 ){\circle*{ .0286234}} \put( .989602 , 2.8679 ){\circle*{ .0286234}} \put( 1.005310 , 2.988644 ){\circle*{ .0286234}} \put( 1.021018 , 3.113824 ){\circle*{ .0286234}} \put( 1.036726 , 3.243514 ){\circle*{ .0286234}} \put( 1.052434 , 3.377769 ){\circle*{ .0286234}} \put( 1.068142 , 3.516628 ){\circle*{ .0286234}} \put( 1.083849 , 3.660104 ){\circle*{ .0286234}} \put( 1.099557 , 3.808189 ){\circle*{ .0286234}} \put( 1.115265 , 3.960839 ){\circle*{ .0286234}} \put( 1.130973 , 4.11798 ){\circle*{ .0286234}} \put( 1.146681 , 4.279494 ){\circle*{ .0286234}} \put( 1.162389 , 4.445218 ){\circle*{ .0286234}} \put( 1.178097 , 4.614937 ){\circle*{ .0286234}} \put( 1.193805 , 4.788382 ){\circle*{ .0286234}} \put( 1.209513 , 4.965215 ){\circle*{ .0286234}} \put( 1.225221 , 5.145033 ){\circle*{ .0286234}} \put( 1.240929 , 5.327356 ){\circle*{ .0286234}} \put( 1.256637 , 5.511625 ){\circle*{ .0286234}} \put( 1.272345 , 5.697195 ){\circle*{ .0286234}} \put( 1.288053 , 5.883333 ){\circle*{ .0286234}} \put( 1.303761 , 6.069217 ){\circle*{ .0286234}} \put( 1.319469 , 6.253936 ){\circle*{ .0286234}} \put( 1.335177 , 6.436488 ){\circle*{ .0286234}} \put( 1.350885 , 6.61579 ){\circle*{ .0286234}} \put( 1.366593 , 6.79068 ){\circle*{ .0286234}} \put( 1.3823 , 6.959935 ){\circle*{ .0286234}} \put( 1.398009 , 7.122274 ){\circle*{ .0286234}} \put( 1.413717 , 7.276386 ){\circle*{ .0286234}} \put( 1.429425 , 7.420943 ){\circle*{ .0286234}} \put( 1.445133 , 7.554627 ){\circle*{ .0286234}} \put( 1.46084 , 7.676153 ){\circle*{ .0286234}} \put( 1.476549 , 7.784300 ){\circle*{ .0286234}} \put( 1.492257 , 7.877932 ){\circle*{ .0286234}} \put( 1.507964 , 7.956036 ){\circle*{ .0286234}} \put( 1.523672 , 8.017738 ){\circle*{ .0286234}} \put( 1.53938 , 8.062333 ){\circle*{ .0286234}} \put( 1.555088 , 8.089302 ){\circle*{ .0286234}} \put( 1.570796 , 8.098328 ){\circle*{ .0286234}} \put( 1.586504 , 8.089302 ){\circle*{ .0286234}} \put( 1.602212 , 8.062333 ){\circle*{ .0286234}} \put( 1.61792 , 8.017738 ){\circle*{ .0286234}} \put( 1.633628 , 7.956036 ){\circle*{ .0286234}} \put( 1.649336 , 7.877932 ){\circle*{ .0286234}} \put( 1.665044 , 7.784300 ){\circle*{ .0286234}} \put( 1.680752 , 7.676153 ){\circle*{ .0286234}} \put( 1.69646 , 7.554627 ){\circle*{ .0286234}} \put( 1.712168 , 7.420943 ){\circle*{ .0286234}} \put( 1.727876 , 7.276386 ){\circle*{ .0286234}} \put( 1.743584 , 7.122274 ){\circle*{ .0286234}} \put( 1.759292 , 6.959935 ){\circle*{ .0286234}} \put( 1.775000 , 6.79068 ){\circle*{ .0286234}} \put( 1.790708 , 6.61579 ){\circle*{ .0286234}} \put( 1.806416 , 6.436488 ){\circle*{ .0286234}} \put( 1.822124 , 6.253936 ){\circle*{ .0286234}} \put( 1.837832 , 6.069217 ){\circle*{ .0286234}} \put( 1.853540 , 5.883333 ){\circle*{ .0286234}} \put( 1.869248 , 5.697195 ){\circle*{ .0286234}} \put( 1.884956 , 5.511625 ){\circle*{ .0286234}} \put( 1.900664 , 5.327356 ){\circle*{ .0286234}} \put( 1.916372 , 5.145033 ){\circle*{ .0286234}} \put( 1.932079 , 4.965215 ){\circle*{ .0286234}} \put( 1.947787 , 4.788382 ){\circle*{ .0286234}} \put( 1.963495 , 4.614937 ){\circle*{ .0286234}} \put( 1.979203 , 4.445218 ){\circle*{ .0286234}} \put( 1.994911 , 4.279494 ){\circle*{ .0286234}} \put( 2.010619 , 4.11798 ){\circle*{ .0286234}} \put( 2.026327 , 3.960839 ){\circle*{ .0286234}} \put( 2.042035 , 3.808189 ){\circle*{ .0286234}} \put( 2.057743 , 3.660104 ){\circle*{ .0286234}} \put( 2.073451 , 3.516628 ){\circle*{ .0286234}} \put( 2.089159 , 3.377769 ){\circle*{ .0286234}} \put( 2.104867 , 3.243514 ){\circle*{ .0286234}} \put( 2.120575 , 3.113824 ){\circle*{ .0286234}} \put( 2.136283 , 2.988644 ){\circle*{ .0286234}} \put( 2.151991 , 2.8679 ){\circle*{ .0286234}} \put( 2.167699 , 2.75151 ){\circle*{ .0286234}} \put( 2.183407 , 2.639379 ){\circle*{ .0286234}} \put( 2.199115 , 2.531403 ){\circle*{ .0286234}} \put( 2.214823 , 2.427476 ){\circle*{ .0286234}} \put( 2.23053 , 2.327484 ){\circle*{ .0286234}} \put( 2.246239 , 2.23131 ){\circle*{ .0286234}} \put( 2.261947 , 2.138840 ){\circle*{ .0286234}} \put( 2.277655 , 2.049953 ){\circle*{ .0286234}} \put( 2.293363 , 1.964532 ){\circle*{ .0286234}} \put( 2.30907 , 1.882461 ){\circle*{ .0286234}} \put( 2.324779 , 1.803623 ){\circle*{ .0286234}} \put( 2.340487 , 1.727906 ){\circle*{ .0286234}} \put( 2.356194 , 1.655198 ){\circle*{ .0286234}} \put( 2.371902 , 1.58539 ){\circle*{ .0286234}} \put( 2.38761 , 1.518379 ){\circle*{ .0286234}} \put( 2.403318 , 1.454061 ){\circle*{ .0286234}} \put( 2.419026 , 1.392338 ){\circle*{ .0286234}} \put( 2.434734 , 1.333114 ){\circle*{ .0286234}} \put( 2.450442 , 1.276297 ){\circle*{ .0286234}} \put( 2.46615 , 1.221798 ){\circle*{ .0286234}} \put( 2.481858 , 1.169533 ){\circle*{ .0286234}} \put( 2.497566 , 1.119418 ){\circle*{ .0286234}} \put( 2.513274 , 1.071377 ){\circle*{ .0286234}} \put( 2.528982 , 1.025333 ){\circle*{ .0286234}} \put( 2.54469 , .981215 ){\circle*{ .0286234}} \put( 2.560398 , .938954 ){\circle*{ .0286234}} \put( 2.576106 , .898485 ){\circle*{ .0286234}} \put( 2.591814 , .859745 ){\circle*{ .0286234}} \put( 2.607522 , .822674 ){\circle*{ .0286234}} \put( 2.623230 , .787215 ){\circle*{ .0286234}} \put( 2.638938 , .753314 ){\circle*{ .0286234}} \put( 2.654646 , .72092 ){\circle*{ .0286234}} \put( 2.670354 , .689983 ){\circle*{ .0286234}} \put( 2.686062 , .660458 ){\circle*{ .0286234}} \put( 2.701770 , .632299 ){\circle*{ .0286234}} \put( 2.717478 , .605465 ){\circle*{ .0286234}} \put( 2.733186 , .579917 ){\circle*{ .0286234}} \put( 2.748894 , .555616 ){\circle*{ .0286234}} \put( 2.764602 , .532527 ){\circle*{ .0286234}} \put( 2.780309 , .510617 ){\circle*{ .0286234}} \put( 2.796017 , .48985357 ){\circle*{ .0286234}} \put( 2.811725 , .47020709 ){\circle*{ .0286234}} \put( 2.827433 , .45164943 ){\circle*{ .0286234}} \put( 2.843141 , .43415417 ){\circle*{ .0286234}} \put( 2.858849 , .41769653 ){\circle*{ .0286234}} \put( 2.874557 , .40225331 ){\circle*{ .0286234}} \put( 2.890265 , .38780286 ){\circle*{ .0286234}} \put( 2.905973 , .37432500 ){\circle*{ .0286234}} \put( 2.921681 , .36180099 ){\circle*{ .0286234}} \put( 2.937389 , .3502135 ){\circle*{ .0286234}} \put( 2.953097 , .33954656 ){\circle*{ .0286234}} \put( 2.968805 , .32978551 ){\circle*{ .0286234}} \put( 2.984513 , .32091700 ){\circle*{ .0286234}} \put( 3.000221 , .31292891 ){\circle*{ .0286234}} \put( 3.015929 , .30581039 ){\circle*{ .0286234}} \put( 3.031637 , .29955178 ){\circle*{ .0286234}} \put( 3.047345 , .29414461 ){\circle*{ .0286234}} \put( 3.063053 , .28958157 ){\circle*{ .0286234}} \put( 3.07876 , .28585652 ){\circle*{ .0286234}} \put( 3.094469 , .28296443 ){\circle*{ .0286234}} \put( 3.110177 , .28090143 ){\circle*{ .0286234}} \put( 3.125885 , .27966473 ){\circle*{ .0286234}} \put( 3.141593 , .27925268 ){\circle*{ .0286234}} \put( 3.1573 , .27966473 ){\circle*{ .0286234}} \put( 3.173009 , .28090143 ){\circle*{ .0286234}} \put( 3.188717 , .28296443 ){\circle*{ .0286234}} \put( 3.204425 , .28585652 ){\circle*{ .0286234}} \put( 3.220132 , .28958157 ){\circle*{ .0286234}} \put( 3.23584 , .29414461 ){\circle*{ .0286234}} \put( 3.251548 , .29955178 ){\circle*{ .0286234}} \put( 3.267256 , .30581039 ){\circle*{ .0286234}} \put( 3.282964 , .31292891 ){\circle*{ .0286234}} \put( 3.298672 , .32091700 ){\circle*{ .0286234}} \put( 3.31438 , .32978551 ){\circle*{ .0286234}} \put( 3.330088 , .33954656 ){\circle*{ .0286234}} \put( 3.345796 , .3502135 ){\circle*{ .0286234}} \put( 3.361504 , .36180099 ){\circle*{ .0286234}} \put( 3.377212 , .37432500 ){\circle*{ .0286234}} \put( 3.39292 , .38780286 ){\circle*{ .0286234}} \put( 3.408628 , .40225331 ){\circle*{ .0286234}} \put( 3.424336 , .41769653 ){\circle*{ .0286234}} \put( 3.440044 , .43415417 ){\circle*{ .0286234}} \put( 3.455752 , .45164943 ){\circle*{ .0286234}} \put( 3.471460 , .47020709 ){\circle*{ .0286234}} \put( 3.487168 , .48985357 ){\circle*{ .0286234}} \put( 3.502876 , .510617 ){\circle*{ .0286234}} \put( 3.518584 , .532527 ){\circle*{ .0286234}} \put( 3.534292 , .555616 ){\circle*{ .0286234}} \put( 3.550000 , .579917 ){\circle*{ .0286234}} \put( 3.565708 , .605465 ){\circle*{ .0286234}} \put( 3.581416 , .632299 ){\circle*{ .0286234}} \put( 3.597124 , .660458 ){\circle*{ .0286234}} \put( 3.612832 , .689983 ){\circle*{ .0286234}} \put( 3.628540 , .72092 ){\circle*{ .0286234}} \put( 3.644247 , .753314 ){\circle*{ .0286234}} \put( 3.659955 , .787215 ){\circle*{ .0286234}} \put( 3.675663 , .822674 ){\circle*{ .0286234}} \put( 3.691371 , .859745 ){\circle*{ .0286234}} \put( 3.707079 , .898485 ){\circle*{ .0286234}} \put( 3.722787 , .938954 ){\circle*{ .0286234}} \put( 3.738495 , .981215 ){\circle*{ .0286234}} \put( 3.754203 , 1.025333 ){\circle*{ .0286234}} \put( 3.769911 , 1.071377 ){\circle*{ .0286234}} \put( 3.785619 , 1.119418 ){\circle*{ .0286234}} \put( 3.801327 , 1.169533 ){\circle*{ .0286234}} \put( 3.817035 , 1.221798 ){\circle*{ .0286234}} \put( 3.832743 , 1.276297 ){\circle*{ .0286234}} \put( 3.848451 , 1.333114 ){\circle*{ .0286234}} \put( 3.864159 , 1.392338 ){\circle*{ .0286234}} \put( 3.879867 , 1.454061 ){\circle*{ .0286234}} \put( 3.895575 , 1.518379 ){\circle*{ .0286234}} \put( 3.911283 , 1.58539 ){\circle*{ .0286234}} \put( 3.92699 , 1.655198 ){\circle*{ .0286234}} \put( 3.942699 , 1.727906 ){\circle*{ .0286234}} \put( 3.958407 , 1.803623 ){\circle*{ .0286234}} \put( 3.974115 , 1.882461 ){\circle*{ .0286234}} \put( 3.989823 , 1.964532 ){\circle*{ .0286234}} \put( 4.00553 , 2.049953 ){\circle*{ .0286234}} \put( 4.021239 , 2.138840 ){\circle*{ .0286234}} \put( 4.036947 , 2.23131 ){\circle*{ .0286234}} \put( 4.052655 , 2.327484 ){\circle*{ .0286234}} \put( 4.068362 , 2.427476 ){\circle*{ .0286234}} \put( 4.08407 , 2.531403 ){\circle*{ .0286234}} \put( 4.099778 , 2.639379 ){\circle*{ .0286234}} \put( 4.115486 , 2.75151 ){\circle*{ .0286234}} \put( 4.131194 , 2.8679 ){\circle*{ .0286234}} \put( 4.146902 , 2.988644 ){\circle*{ .0286234}} \put( 4.16261 , 3.113824 ){\circle*{ .0286234}} \put( 4.178318 , 3.243514 ){\circle*{ .0286234}} \put( 4.194026 , 3.377769 ){\circle*{ .0286234}} \put( 4.209734 , 3.516628 ){\circle*{ .0286234}} \put( 4.225442 , 3.660104 ){\circle*{ .0286234}} \put( 4.24115 , 3.808189 ){\circle*{ .0286234}} \put( 4.256858 , 3.960839 ){\circle*{ .0286234}} \put( 4.272566 , 4.11798 ){\circle*{ .0286234}} \put( 4.288274 , 4.279494 ){\circle*{ .0286234}} \put( 4.303982 , 4.445218 ){\circle*{ .0286234}} \put( 4.319690 , 4.614937 ){\circle*{ .0286234}} \put( 4.335398 , 4.788382 ){\circle*{ .0286234}} \put( 4.351106 , 4.965215 ){\circle*{ .0286234}} \put( 4.366814 , 5.145033 ){\circle*{ .0286234}} \put( 4.382522 , 5.327356 ){\circle*{ .0286234}} \put( 4.398230 , 5.511625 ){\circle*{ .0286234}} \put( 4.413938 , 5.697195 ){\circle*{ .0286234}} \put( 4.429646 , 5.883333 ){\circle*{ .0286234}} \put( 4.445354 , 6.069217 ){\circle*{ .0286234}} \put( 4.461062 , 6.253936 ){\circle*{ .0286234}} \put( 4.476770 , 6.436488 ){\circle*{ .0286234}} \put( 4.492477 , 6.61579 ){\circle*{ .0286234}} \put( 4.508185 , 6.79068 ){\circle*{ .0286234}} \put( 4.523893 , 6.959935 ){\circle*{ .0286234}} \put( 4.539601 , 7.122274 ){\circle*{ .0286234}} \put( 4.555309 , 7.276386 ){\circle*{ .0286234}} \put( 4.571017 , 7.420943 ){\circle*{ .0286234}} \put( 4.586725 , 7.554627 ){\circle*{ .0286234}} \put( 4.602433 , 7.676153 ){\circle*{ .0286234}} \put( 4.618141 , 7.784300 ){\circle*{ .0286234}} \put( 4.633849 , 7.877932 ){\circle*{ .0286234}} \put( 4.649557 , 7.956036 ){\circle*{ .0286234}} \put( 4.665265 , 8.017738 ){\circle*{ .0286234}} \put( 4.680973 , 8.062333 ){\circle*{ .0286234}} \put( 4.696681 , 8.089302 ){\circle*{ .0286234}} \put( 4.712389 , 8.098328 ){\circle*{ .0286234}} \put( 4.728097 , 8.089302 ){\circle*{ .0286234}} \put( 4.743805 , 8.062333 ){\circle*{ .0286234}} \put( 4.759513 , 8.017738 ){\circle*{ .0286234}} \put( 4.77522 , 7.956036 ){\circle*{ .0286234}} \put( 4.790929 , 7.877932 ){\circle*{ .0286234}} \put( 4.806637 , 7.784300 ){\circle*{ .0286234}} \put( 4.822345 , 7.676153 ){\circle*{ .0286234}} \put( 4.838053 , 7.554627 ){\circle*{ .0286234}} \put( 4.85376 , 7.420943 ){\circle*{ .0286234}} \put( 4.869469 , 7.276386 ){\circle*{ .0286234}} \put( 4.885177 , 7.122274 ){\circle*{ .0286234}} \put( 4.900885 , 6.959935 ){\circle*{ .0286234}} \put( 4.916593 , 6.79068 ){\circle*{ .0286234}} \put( 4.9323 , 6.61579 ){\circle*{ .0286234}} \put( 4.948008 , 6.436488 ){\circle*{ .0286234}} \put( 4.963716 , 6.253936 ){\circle*{ .0286234}} \put( 4.979424 , 6.069217 ){\circle*{ .0286234}} \put( 4.995132 , 5.883333 ){\circle*{ .0286234}} \put( 5.01084 , 5.697195 ){\circle*{ .0286234}} \put( 5.026548 , 5.511625 ){\circle*{ .0286234}} \put( 5.042256 , 5.327356 ){\circle*{ .0286234}} \put( 5.057964 , 5.145033 ){\circle*{ .0286234}} \put( 5.073672 , 4.965215 ){\circle*{ .0286234}} \put( 5.08938 , 4.788382 ){\circle*{ .0286234}} \put( 5.105088 , 4.614937 ){\circle*{ .0286234}} \put( 5.120796 , 4.445218 ){\circle*{ .0286234}} \put( 5.136504 , 4.279494 ){\circle*{ .0286234}} \put( 5.152212 , 4.11798 ){\circle*{ .0286234}} \put( 5.16792 , 3.960839 ){\circle*{ .0286234}} \put( 5.183628 , 3.808189 ){\circle*{ .0286234}} \put( 5.199336 , 3.660104 ){\circle*{ .0286234}} \put( 5.215044 , 3.516628 ){\circle*{ .0286234}} \put( 5.230752 , 3.377769 ){\circle*{ .0286234}} \put( 5.246460 , 3.243514 ){\circle*{ .0286234}} \put( 5.262168 , 3.113824 ){\circle*{ .0286234}} \put( 5.277876 , 2.988644 ){\circle*{ .0286234}} \put( 5.293584 , 2.8679 ){\circle*{ .0286234}} \put( 5.309292 , 2.75151 ){\circle*{ .0286234}} \put( 5.325000 , 2.639379 ){\circle*{ .0286234}} \put( 5.340708 , 2.531403 ){\circle*{ .0286234}} \put( 5.356415 , 2.427476 ){\circle*{ .0286234}} \put( 5.372123 , 2.327484 ){\circle*{ .0286234}} \put( 5.387831 , 2.23131 ){\circle*{ .0286234}} \put( 5.403539 , 2.138840 ){\circle*{ .0286234}} \put( 5.419247 , 2.049953 ){\circle*{ .0286234}} \put( 5.434955 , 1.964532 ){\circle*{ .0286234}} \put( 5.450663 , 1.882461 ){\circle*{ .0286234}} \put( 5.466371 , 1.803623 ){\circle*{ .0286234}} \put( 5.482079 , 1.727906 ){\circle*{ .0286234}} \put( 5.497787 , 1.655198 ){\circle*{ .0286234}} \put( 5.513495 , 1.58539 ){\circle*{ .0286234}} \put( 5.529203 , 1.518379 ){\circle*{ .0286234}} \put( 5.544911 , 1.454061 ){\circle*{ .0286234}} \put( 5.560619 , 1.392338 ){\circle*{ .0286234}} \put( 5.576327 , 1.333114 ){\circle*{ .0286234}} \put( 5.592035 , 1.276297 ){\circle*{ .0286234}} \put( 5.607743 , 1.221798 ){\circle*{ .0286234}} \put( 5.62345 , 1.169533 ){\circle*{ .0286234}} \put( 5.639159 , 1.119418 ){\circle*{ .0286234}} \put( 5.654867 , 1.071377 ){\circle*{ .0286234}} \put( 5.670575 , 1.025333 ){\circle*{ .0286234}} \put( 5.686283 , .981215 ){\circle*{ .0286234}} \put( 5.70199 , .938954 ){\circle*{ .0286234}} \put( 5.717699 , .898485 ){\circle*{ .0286234}} \put( 5.733407 , .859745 ){\circle*{ .0286234}} \put( 5.749115 , .822674 ){\circle*{ .0286234}} \put( 5.764823 , .787215 ){\circle*{ .0286234}} \put( 5.78053 , .753314 ){\circle*{ .0286234}} \put( 5.796238 , .72092 ){\circle*{ .0286234}} \put( 5.811946 , .689983 ){\circle*{ .0286234}} \put( 5.827654 , .660458 ){\circle*{ .0286234}} \put( 5.843362 , .632299 ){\circle*{ .0286234}} \put( 5.85907 , .605465 ){\circle*{ .0286234}} \put( 5.874778 , .579917 ){\circle*{ .0286234}} \put( 5.890486 , .555616 ){\circle*{ .0286234}} \put( 5.906194 , .532527 ){\circle*{ .0286234}} \put( 5.921902 , .510617 ){\circle*{ .0286234}} \put( 5.93761 , .48985357 ){\circle*{ .0286234}} \put( 5.953318 , .47020709 ){\circle*{ .0286234}} \put( 5.969026 , .45164943 ){\circle*{ .0286234}} \put( 5.984734 , .43415417 ){\circle*{ .0286234}} \put( 6.000442 , .41769653 ){\circle*{ .0286234}} \put( 6.01615 , .40225331 ){\circle*{ .0286234}} \put( 6.031858 , .38780286 ){\circle*{ .0286234}} \put( 6.047566 , .37432500 ){\circle*{ .0286234}} \put( 6.063274 , .36180099 ){\circle*{ .0286234}} \put( 6.078982 , .3502135 ){\circle*{ .0286234}} \put( 6.094690 , .33954656 ){\circle*{ .0286234}} \put( 6.110398 , .32978551 ){\circle*{ .0286234}} \put( 6.126106 , .32091700 ){\circle*{ .0286234}} \put( 6.141814 , .31292891 ){\circle*{ .0286234}} \put( 6.157522 , .30581039 ){\circle*{ .0286234}} \put( 6.173230 , .29955178 ){\circle*{ .0286234}} \put( 6.188938 , .29414461 ){\circle*{ .0286234}} \put( 6.204645 , .28958157 ){\circle*{ .0286234}} \put( 6.220353 , .28585652 ){\circle*{ .0286234}} \put( 6.236061 , .28296443 ){\circle*{ .0286234}} \put( 6.251769 , .28090143 ){\circle*{ .0286234}} \put( 6.267477 , .27966473 ){\circle*{ .0286234}} \end{picture} \end{center} %Finis. apl>)off