apl>" <-APL2-------------------- sam320.txt ----------------------------> apl>)run cap2/sample/graph.inc apl>" <-APL2-------------------- graph.txt -----------------------------> apl>" Legend describing various global values: apl>" apl>" World coordinates(wc) are those of the real data. apl>" Graph coordinates(gc) are those of the graph. apl>" apl>" caption - Override to text for graph caption. If null, a caption apl>" will be generated. The graph function resets the global apl>" caption variable to null at the end of its processing. apl>" apl>" hk ------ Constant coefficient of input. If xr=1 (see below) then apl>" hk becomes the constant imaginary coefficient for all apl>" values of x on the graph. If xr=0, hk will be the constant apl>" real coefficient. apl>" apl>" htl ----- 0 = both, 1 = headers, 2 = trailers, 3 = neither. apl>" apl>" maxx ---- Maximum x axis value in world coordinates. apl>" apl>" maxy ---- Maximum y axis value in world coordinates. apl>" apl>" minx ---- Minimum x axis value in world coordinates. apl>" apl>" miny ---- Minimum y axis value in world coordinates. apl>" apl>" mgc ----- Vertical margin in graphic coordinates. apl>" apl>" n ------- Synonymous with hk (see above). The x values to which apl>" the function is applied to obtain y values are derived apl>" by first creating xwc as a vector of integers uniformly apl>" distributed between minx and maxx inclusive. Then, either apl>" 'x#(nX0j1)+xwc' or 'x#n+0j1Xxwc' is evaluated. apl>" apl>" nlb ----- 1 = Label the curve with the n value. apl>" apl>" points -- Number of points to generate. apl>" apl>" xgc ----- Array of x values for data points in graph coordinates. apl>" apl>" xiv ----- x axis marker interval in world coordinates. apl>" apl>" xlin ---- Width of graph in inches. apl>" apl>" xpg ----- Divide xwc by xpg to get xgc. apl>" apl>" xpi ----- Array of three values for minx, maxx, and xiv, used when apl>" invoking the graph function and the array of x values apl>" spans -pi to +pi. apl>" apl>" xr ------ 1=vary real x coefficient, 0=vary imaginary coefficient, apl>" holding the other coefficient to the constant hk (see above.). apl>" apl>" xt ------ Used in a variety of places to temporarily generate apl>" graphics coordinates. apl>" apl>" xwc ----- Array of x values in world coordinates. apl>" apl>" yadj ---- Adjustment down to print text below a line. apl>" apl>" yabm ---- Maximum absolute value (|y) to appear on graph. apl>" apl>" ygc ----- Array of y values for data points in graph coordinates. apl>" apl>" ylin ---- Height of graph in inches. apl>" apl>" ymgn ---- Margin in inches at top and bottom of y axis. apl>" apl>" ypg ----- Divide ywc by ypg to get ygc. apl>" apl>" yt ------ Used in a variety of places to temporarily generate apl>" graphics coordinates. apl>" apl>" ywc ----- Array of y values for data points in world coordinates. apl>" apl>" Set global values. --------------------------------------------> apl>" apl>caption#'' " Empty caption causes one to be generated. apl>i#11 " Circle function code to extract imag. coef. of complex number. apl>points#200 " Number of data points to generate on graph. apl>r#9 " Circle function code to extract real coef. of complex number. apl>xlin#4.5 " Width of graph in inches. apl>" minx = -3.14159.... apl>" | maxx = 3.14159.... apl>" | | xiv apl>" | | | apl>" V V V apl>xpi#(O-1),(O1),O.25 apl>ylin#6 " Height of graph in inches. apl>ymgn#.2 " Margin in inches at top and bottom of y axis. apl>" apl>" <-----------------------------------------------------------------> apl>" Generates the LaTeX \put statements for the data points to appear apl>" on the graph. apl>" apl>Lex 'dodata' 1 apl>Gdodata [1] xgc#(xwc_minx)%xpg " xgc=x graphic coordinates for data points. [2] ygc#mgc+(ywc_miny)%ypg " ygc=y graphic coordinates for data points. [3] $bylabXI0=nlb " Branch if the curve is not to be labelled. [4] '%Label the curve' [5] xt#1Y(u=S/u#|ywc)/xgc " x coord where maximum/mininum occurs [6] yt#(_yadjX0>vs/ywc)+(vs#xt=xgc)/ygc " y coord of maximum/minimum [7] " Note: Calculation for yt works only if all minima occur below [8] " y axis, and all maxima occur above. [9] pcon,(xt,',',[1.5]yt),`Z'){n\#',(Fhk),'}' [10] bylab:'%Draw the data points' [11] pcon,((xgc#-1U1Uxgc),',',[1.5](ygc#-1U1Uygc)),circon [12] G apl>" <-----------------------------------------------------------------> apl>" Generate xwc and ywc, the arrays of x/y coordinates for the data apl>" points to appear on the graph. apl>" apl>Lex 'genxy' 1 apl>Ggenxy [1] xwc#minx+(xlwc#maxx_minx)X(-1+Ipoints+1)%points [2] $varyrealXIxr [3] x#hk+0j1Xxwc " real part is constant, imaginary varies. [4] $calcy " Branch to compute values of y for data points. [5] varyreal:x#(hkX0j1)+xwc " Imaginary is constant, real varies. [6] calcy:ywc#eOCfun " Compute values of y for data points [7] ywcm#yabm>|ywc " Mask of keepers, magnitudes of y < yabm. [8] xwc#ywcm/xwc " Pick the keepers. [9] ywc#ywcm/ywc " Pick the keepers. [10] G apl>" apl>" <-----------------------------------------------------------------> apl>" Main graph routine. apl>" apl>Lex 'graph' 1 apl>Gfun graph a [1] "Graphs the imaginary or real coefficient of result of fun. [2] " fun = expression to evaluate. [3] (htl nlb xr e yabm minx maxx xiv hk yiv yca)#a [4] genxy " Generate the data points. [5] $dataXIhtl>1 " Branch if htl greater than 1. [6] scale " Calculate global scaling values. [7] headers " Generate LaTeX figure headers. [8] data:dodata " Process and graph data points. [9] trailers " Generate Latex figure trailers, maybe. [10] G apl>" apl>" <-----------------------------------------------------------------> apl>" Generates the LaTeX statements to begin the graph. apl>" apl>Lex 'headers' 1 apl>Gheaders [1] '\begin{figure}[tbh]' [2] $gencapXI0=Rcaption " Branch if no caption override. [3] '\caption{',caption,'}' [4] $begin [5] gencap:$realcapXI(xr=1)&hk=0 " Branch if x data are not complex. [6] $ncaptionXInlb=0 " Branch if curves are not labelled with n value. [7] '\caption{Graph of y\#',(Fe),'O',fun,'+nX0j1}' [8] $begin [9] ncaption:$cplxcapXIxr " Branch if varying real coefficient. [10] '\caption{Graph of y\#',(Fe),'O',(-1Ufun),(Fhk),'+xX0j1}' [11] $begin [12] cplxcap:'\caption{Graph of y\#',(Fe),'O',fun,'+(n\#',(Fhk),')X0j1}' [13] $begin [14] realcap:'\caption{Graph of y\#',fun,'}' [15] begin:'\begin{center}' [16] '\setlength{\unitlength}{',(Flin),'in}' [17] '\begin{picture}(',(Fxlin%lin),',',(Fylin%lin),')' [18] '%Draw a frame around the picture' [19] ' \put(0,0){\line(1,0){',(Fxlgc),'}}% bottom' [20] ' \put(0,0){\line(0,1){',(Fylgc),'}}% left' [21] ' \put(0,',(Fylgc),'){\line(1,0){',(Fxlgc),'}}% top' [22] ' \put(',(Fxlgc),',0){\line(0,1){',(Fylgc),'}}% right' [23] '%Draw the x axis' [24] ' \put(0,',(Fxax),'){\line(1,0){',(Fxlgc),'}}%x axis' [25] xt#xoff%xpg [26] pcon,((xt,[1.5]','),xax),circon " Draw the x axis markers. [27] xt#xt_xpgX.1Xxmk<0 [28] yt#xax+((.05%lin)Xxax=mgc)_yadjXxax>mgc [29] $dopaxXIpix [30] '%Draw the x axis marker values' [31] pcon,xt,',',yt,econ,xmk,[1.5]scon [32] $doyax [33] dopax:'%Draw the x axis marker values in pi' [34] picon#(`Z'\frac{') ,`1 '\pi}{4}' '\pi}{2}' '3\pi}{4}' [35] picon#('-',`1`Rpicon),'0',picon [36] pcon,xt,',',yt,econ,picon,[1.5]scon [37] doyax:'%Draw the y axis' [38] $putymkXI(yax=0) [39] ' \put(',(Fyax),',0){\line(0,1){',(Fylgc),'}}%y axis' [40] putymk:'%Draw the y axis markers' [41] ymask#ymk^=0 [42] yt#ymask/mgc+(ymk_miny)%ypg [43] pcon,yax,',',yt,[1.5]circon [44] '%Draw the y axis marker values' [45] xt#yax+.05%lin [46] yt#yt_ypgX.1X(ymask/ymk)<0 [47] pcon,xt,',',yt,econ,(ymask/ymk),[1.5]scon [48] G apl>" apl>" <-----------------------------------------------------------------> apl>" Calculates a variety of values needed to produce the graph. apl>" apl>Lex 'scale' 1 apl>Gscale [1] $byyXIyca " Branch if ylwc, maxy, miny are precalculated. [2] ylwc#(maxy#S/ywc)_miny#D/ywc [3] byy:ylap#ylin_2Xymgn " ylap=height allowed for data points. [4] lin#(xlin%xlwc)Dylap%ylwc " unitlength in inches. [5] yadj#.14%lin " y graphic coordinate adjustment to print text below line. [6] mgc#ymgn%lin " Margin in graph coordinates. [7] xpg#xlwc%xlgc#xlin%lin " Divide xwc by xpg to get gc. [8] ypg#ylwc%(_2Xymgn%lin)+ylgc#ylin%lin " Divide ywc by ypg to get gc. [9] xax#(yz#(minyK0)&maxyZ0)Xmgc+(|miny)%ypg " xaxis in graph coordinates. [10] yax#(xz#(minx<0)&maxx>0)X(|minx)%xpg " yaxis in graph coordinates. [11] $piaxisXIpix#(minx=O-1)&maxx=O1 " branch if pi units on x axis. [12] xic#(yax=0)+Dxlwc%xiv [13] $doyiv [14] piaxis:xic#Dxlwc%xiv#O.25 [15] doyiv:$doyicXIyiv^=0 [16] yiv#10*D10@ylwc [17] doyic:yic#yic+0=2|yic#Dylwc%yiv [18] xoff#(I-1+xic)Xxiv " Offset from minx in world coord. of x markers. [19] yoff#(_yiv)+(Iyic)Xyiv " Offset from miny in world coord. of y markers. [20] $yoffplusXIminy>0 [21] ymk#yoff+miny+yiv||miny [22] $yoffdone [23] yoffplus:ymk#yoff+miny_yiv|miny " y for y axis markers in world coord. [24] yoffdone:xmk#minx+xoff " x for x axis markers in world coord. [25] circon#`Z'){\circle*{',(F.0205%lin),'}}' [26] scon#`Z'$}' [27] econ#`Z'){$' [28] pcon#`Z' \put(' [29] G apl>" apl>" <-----------------------------------------------------------------> apl>" Generates the LaTeX statements to finish the graph. apl>" apl>Lex 'trailers' 1 apl>Gtrailers [1] $epicXIhtl=0 " Branch if both headers and trailers. [2] $eojckXInlb " Branch if graph already labelled. [3] pcon,(1Yxgc+xpgX.1),',',(1Yygc),'){',fun,'}' " Label the graph. [4] eojck:$eojXI(htl=1)+htl=3 " br if headers only, or neither. [5] epic:'\end{picture}' [6] '\end{center}' [7] eoj:'%Finis.' [8] caption#'' " Reset global caption [9] G apl>" htl: 0=both, 1=headers, 2=trailers, 3=neither. apl>" | nlb 1 = Label the curve. apl>" | | xr = 1=vary real x coeff, 0=vary imaginary coeff. apl>" | | | e = i(11) or r(9) to select coefficient to graph. apl>" | | | | yabm = maximum |y printed on graph. apl>" | | | | | minx = minimum value of x. apl>" | | | | | | maxx = maximum value of x. apl>" | | | | | | | xiv = x axis marker interval. apl>" | | | | | | | | hk = Constant coefficient of input. apl>" | | | | | | | | | yiv = y axis marker interval, or 0. apl>" | | | | | | | | | | yca = ylwc, maxy, miny are precalculated. apl>" | | | | | | | | | | | apl>" V V V V V V V V V V V apl>ylwc#(maxy#1.5)_miny#-1.5 apl> '7Ox' graph 1,1,1,r,1.5,-4,4,1,0.5,.5 ,1 " tanhdatx.tex \begin{figure}[tbh] \caption{Graph of y\#9O7Ox+nX0j1} \begin{center} \setlength{\unitlength}{ .5625in} \begin{picture}(8,10.66667) %Draw a frame around the picture \put(0,0){\line(1,0){8}}% bottom \put(0,0){\line(0,1){10.66667}}% left \put(0,10.66667){\line(1,0){8}}% top \put(8,0){\line(0,1){10.66667}}% right %Draw the x axis \put(0,5.333333){\line(1,0){8}}%x axis \put( 1 , 5.333333 ){\circle*{ .03644444}} \put( 2 , 5.333333 ){\circle*{ .03644444}} \put( 3 , 5.333333 ){\circle*{ .03644444}} \put( 4 , 5.333333 ){\circle*{ .03644444}} \put( 5 , 5.333333 ){\circle*{ .03644444}} \put( 6 , 5.333333 ){\circle*{ .03644444}} \put( 7 , 5.333333 ){\circle*{ .03644444}} %Draw the x axis marker values \put( .9 , 5.084444 ){$ -3 $} \put( 1.9 , 5.084444 ){$ -2 $} \put( 2.9 , 5.084444 ){$ -1 $} \put( 4 , 5.084444 ){$ 0 $} \put( 5 , 5.084444 ){$ 1 $} \put( 6 , 5.084444 ){$ 2 $} \put( 7 , 5.084444 ){$ 3 $} %Draw the y axis \put(4,0){\line(0,1){10.66667}}%y axis %Draw the y axis markers \put( 4 , .35555556 ){\circle*{ .03644444}} \put( 4 , 2.014815 ){\circle*{ .03644444}} \put( 4 , 3.674074 ){\circle*{ .03644444}} \put( 4 , 6.992593 ){\circle*{ .03644444}} \put( 4 , 8.651852 ){\circle*{ .03644444}} \put( 4 , 10.31111 ){\circle*{ .03644444}} %Draw the y axis marker values \put( 4.088889 , .32542163 ){$ -1.5 $} \put( 4.088889 , 1.98468 ){$ -1 $} \put( 4.088889 , 3.64394 ){$ -0.5 $} \put( 4.088889 , 6.992593 ){$ .5 $} \put( 4.088889 , 8.651852 ){$ 1 $} \put( 4.088889 , 10.31111 ){$ 1.5 $} %Label the curve \put( 0 , 1.767129 ){n\# .5} %Draw the data points \put( .04 , 2.016118 ){\circle*{ .03644444}} \put( .08 , 2.016227 ){\circle*{ .03644444}} \put( .12 , 2.016345 ){\circle*{ .03644444}} \put( .16 , 2.016472 ){\circle*{ .03644444}} \put( .2 , 2.01661 ){\circle*{ .03644444}} \put( .24 , 2.016760 ){\circle*{ .03644444}} \put( .28 , 2.016922 ){\circle*{ .03644444}} \put( .32 , 2.017097 ){\circle*{ .03644444}} \put( .36 , 2.017288 ){\circle*{ .03644444}} \put( .4 , 2.017494 ){\circle*{ .03644444}} \put( .44 , 2.017717 ){\circle*{ .03644444}} \put( .48 , 2.017959 ){\circle*{ .03644444}} \put( .52 , 2.01822 ){\circle*{ .03644444}} \put( .56 , 2.018505 ){\circle*{ .03644444}} \put( .6 , 2.018812 ){\circle*{ .03644444}} \put( .64 , 2.019145 ){\circle*{ .03644444}} \put( .68 , 2.019507 ){\circle*{ .03644444}} \put( .72 , 2.019898 ){\circle*{ .03644444}} \put( .76 , 2.020322 ){\circle*{ .03644444}} \put( .8 , 2.02078 ){\circle*{ .03644444}} \put( .84 , 2.021278 ){\circle*{ .03644444}} \put( .88 , 2.021817 ){\circle*{ .03644444}} \put( .92 , 2.022402 ){\circle*{ .03644444}} \put( .96 , 2.023035 ){\circle*{ .03644444}} \put( 1 , 2.02372 ){\circle*{ .03644444}} \put( 1.04 , 2.024464 ){\circle*{ .03644444}} \put( 1.08 , 2.025269 ){\circle*{ .03644444}} \put( 1.12 , 2.026142 ){\circle*{ .03644444}} \put( 1.16 , 2.027088 ){\circle*{ .03644444}} \put( 1.2 , 2.028113 ){\circle*{ .03644444}} \put( 1.24 , 2.029224 ){\circle*{ .03644444}} \put( 1.28 , 2.030428 ){\circle*{ .03644444}} \put( 1.32 , 2.031733 ){\circle*{ .03644444}} \put( 1.36 , 2.033147 ){\circle*{ .03644444}} \put( 1.4 , 2.03468 ){\circle*{ .03644444}} \put( 1.44 , 2.036342 ){\circle*{ .03644444}} \put( 1.48 , 2.038144 ){\circle*{ .03644444}} \put( 1.52 , 2.040097 ){\circle*{ .03644444}} \put( 1.56 , 2.042214 ){\circle*{ .03644444}} \put( 1.6 , 2.04451 ){\circle*{ .03644444}} \put( 1.64 , 2.047000 ){\circle*{ .03644444}} \put( 1.68 , 2.049699 ){\circle*{ .03644444}} \put( 1.72 , 2.052627 ){\circle*{ .03644444}} \put( 1.76 , 2.055802 ){\circle*{ .03644444}} \put( 1.8 , 2.059246 ){\circle*{ .03644444}} \put( 1.84 , 2.062982 ){\circle*{ .03644444}} \put( 1.88 , 2.067034 ){\circle*{ .03644444}} \put( 1.92 , 2.071432 ){\circle*{ .03644444}} \put( 1.96 , 2.076203 ){\circle*{ .03644444}} \put( 2 , 2.081381 ){\circle*{ .03644444}} \put( 2.04 , 2.087002 ){\circle*{ .03644444}} \put( 2.08 , 2.093103 ){\circle*{ .03644444}} \put( 2.12 , 2.099726 ){\circle*{ .03644444}} \put( 2.16 , 2.106918 ){\circle*{ .03644444}} \put( 2.2 , 2.114728 ){\circle*{ .03644444}} \put( 2.24 , 2.123211 ){\circle*{ .03644444}} \put( 2.28 , 2.132427 ){\circle*{ .03644444}} \put( 2.32 , 2.142439 ){\circle*{ .03644444}} \put( 2.36 , 2.153319 ){\circle*{ .03644444}} \put( 2.4 , 2.165145 ){\circle*{ .03644444}} \put( 2.44 , 2.177999 ){\circle*{ .03644444}} \put( 2.48 , 2.191975 ){\circle*{ .03644444}} \put( 2.52 , 2.207172 ){\circle*{ .03644444}} \put( 2.56 , 2.223699 ){\circle*{ .03644444}} \put( 2.6 , 2.241677 ){\circle*{ .03644444}} \put( 2.64 , 2.261233 ){\circle*{ .03644444}} \put( 2.68 , 2.282509 ){\circle*{ .03644444}} \put( 2.72 , 2.305659 ){\circle*{ .03644444}} \put( 2.76 , 2.330848 ){\circle*{ .03644444}} \put( 2.8 , 2.358257 ){\circle*{ .03644444}} \put( 2.84 , 2.388079 ){\circle*{ .03644444}} \put( 2.88 , 2.420525 ){\circle*{ .03644444}} \put( 2.92 , 2.455820 ){\circle*{ .03644444}} \put( 2.96 , 2.494204 ){\circle*{ .03644444}} \put( 3 , 2.535934 ){\circle*{ .03644444}} \put( 3.04 , 2.581284 ){\circle*{ .03644444}} \put( 3.08 , 2.63054 ){\circle*{ .03644444}} \put( 3.12 , 2.684003 ){\circle*{ .03644444}} \put( 3.16 , 2.741984 ){\circle*{ .03644444}} \put( 3.2 , 2.804804 ){\circle*{ .03644444}} \put( 3.24 , 2.872785 ){\circle*{ .03644444}} \put( 3.28 , 2.94625 ){\circle*{ .03644444}} \put( 3.32 , 3.025518 ){\circle*{ .03644444}} \put( 3.36 , 3.110888 ){\circle*{ .03644444}} \put( 3.4 , 3.202638 ){\circle*{ .03644444}} \put( 3.44 , 3.301012 ){\circle*{ .03644444}} \put( 3.48 , 3.406209 ){\circle*{ .03644444}} \put( 3.52 , 3.51837 ){\circle*{ .03644444}} \put( 3.56 , 3.637567 ){\circle*{ .03644444}} \put( 3.6 , 3.763787 ){\circle*{ .03644444}} \put( 3.64 , 3.896923 ){\circle*{ .03644444}} \put( 3.68 , 4.036762 ){\circle*{ .03644444}} \put( 3.72 , 4.182977 ){\circle*{ .03644444}} \put( 3.76 , 4.335123 ){\circle*{ .03644444}} \put( 3.8 , 4.492634 ){\circle*{ .03644444}} \put( 3.84 , 4.654827 ){\circle*{ .03644444}} \put( 3.88 , 4.820912 ){\circle*{ .03644444}} \put( 3.92 , 4.990006 ){\circle*{ .03644444}} \put( 3.96 , 5.16115 ){\circle*{ .03644444}} \put( 4 , 5.333333 ){\circle*{ .03644444}} \put( 4.04 , 5.505516 ){\circle*{ .03644444}} \put( 4.08 , 5.67666 ){\circle*{ .03644444}} \put( 4.12 , 5.845755 ){\circle*{ .03644444}} \put( 4.16 , 6.01184 ){\circle*{ .03644444}} \put( 4.2 , 6.174033 ){\circle*{ .03644444}} \put( 4.24 , 6.331544 ){\circle*{ .03644444}} \put( 4.28 , 6.483690 ){\circle*{ .03644444}} \put( 4.32 , 6.629905 ){\circle*{ .03644444}} \put( 4.36 , 6.769744 ){\circle*{ .03644444}} \put( 4.4 , 6.90288 ){\circle*{ .03644444}} \put( 4.44 , 7.029100 ){\circle*{ .03644444}} \put( 4.48 , 7.148296 ){\circle*{ .03644444}} \put( 4.52 , 7.260458 ){\circle*{ .03644444}} \put( 4.56 , 7.365655 ){\circle*{ .03644444}} \put( 4.6 , 7.464029 ){\circle*{ .03644444}} \put( 4.64 , 7.555779 ){\circle*{ .03644444}} \put( 4.68 , 7.641149 ){\circle*{ .03644444}} \put( 4.72 , 7.720416 ){\circle*{ .03644444}} \put( 4.76 , 7.793882 ){\circle*{ .03644444}} \put( 4.8 , 7.861863 ){\circle*{ .03644444}} \put( 4.84 , 7.924682 ){\circle*{ .03644444}} \put( 4.88 , 7.982663 ){\circle*{ .03644444}} \put( 4.92 , 8.036126 ){\circle*{ .03644444}} \put( 4.96 , 8.085382 ){\circle*{ .03644444}} \put( 5 , 8.130732 ){\circle*{ .03644444}} \put( 5.04 , 8.172463 ){\circle*{ .03644444}} \put( 5.08 , 8.210847 ){\circle*{ .03644444}} \put( 5.12 , 8.246142 ){\circle*{ .03644444}} \put( 5.16 , 8.278587 ){\circle*{ .03644444}} \put( 5.2 , 8.308410 ){\circle*{ .03644444}} \put( 5.24 , 8.335818 ){\circle*{ .03644444}} \put( 5.28 , 8.361007 ){\circle*{ .03644444}} \put( 5.32 , 8.384157 ){\circle*{ .03644444}} \put( 5.36 , 8.405434 ){\circle*{ .03644444}} \put( 5.4 , 8.42499 ){\circle*{ .03644444}} \put( 5.44 , 8.442967 ){\circle*{ .03644444}} \put( 5.48 , 8.459495 ){\circle*{ .03644444}} \put( 5.52 , 8.474692 ){\circle*{ .03644444}} \put( 5.56 , 8.488667 ){\circle*{ .03644444}} \put( 5.6 , 8.501522 ){\circle*{ .03644444}} \put( 5.64 , 8.513347 ){\circle*{ .03644444}} \put( 5.68 , 8.524228 ){\circle*{ .03644444}} \put( 5.72 , 8.53424 ){\circle*{ .03644444}} \put( 5.76 , 8.543455 ){\circle*{ .03644444}} \put( 5.8 , 8.551938 ){\circle*{ .03644444}} \put( 5.84 , 8.559749 ){\circle*{ .03644444}} \put( 5.88 , 8.56694 ){\circle*{ .03644444}} \put( 5.92 , 8.573564 ){\circle*{ .03644444}} \put( 5.96 , 8.579665 ){\circle*{ .03644444}} \put( 6 , 8.585285 ){\circle*{ .03644444}} \put( 6.04 , 8.590463 ){\circle*{ .03644444}} \put( 6.08 , 8.595235 ){\circle*{ .03644444}} \put( 6.12 , 8.599632 ){\circle*{ .03644444}} \put( 6.16 , 8.603685 ){\circle*{ .03644444}} \put( 6.2 , 8.607421 ){\circle*{ .03644444}} \put( 6.24 , 8.610865 ){\circle*{ .03644444}} \put( 6.28 , 8.61404 ){\circle*{ .03644444}} \put( 6.32 , 8.616968 ){\circle*{ .03644444}} \put( 6.36 , 8.619667 ){\circle*{ .03644444}} \put( 6.4 , 8.622157 ){\circle*{ .03644444}} \put( 6.44 , 8.624452 ){\circle*{ .03644444}} \put( 6.48 , 8.626570 ){\circle*{ .03644444}} \put( 6.52 , 8.628523 ){\circle*{ .03644444}} \put( 6.56 , 8.630325 ){\circle*{ .03644444}} \put( 6.6 , 8.631986 ){\circle*{ .03644444}} \put( 6.64 , 8.633520 ){\circle*{ .03644444}} \put( 6.68 , 8.634934 ){\circle*{ .03644444}} \put( 6.72 , 8.636239 ){\circle*{ .03644444}} \put( 6.76 , 8.637443 ){\circle*{ .03644444}} \put( 6.8 , 8.638554 ){\circle*{ .03644444}} \put( 6.84 , 8.639579 ){\circle*{ .03644444}} \put( 6.88 , 8.640525 ){\circle*{ .03644444}} \put( 6.92 , 8.641398 ){\circle*{ .03644444}} \put( 6.96 , 8.642203 ){\circle*{ .03644444}} \put( 7 , 8.642946 ){\circle*{ .03644444}} \put( 7.04 , 8.643632 ){\circle*{ .03644444}} \put( 7.08 , 8.644265 ){\circle*{ .03644444}} \put( 7.12 , 8.644849 ){\circle*{ .03644444}} \put( 7.16 , 8.645388 ){\circle*{ .03644444}} \put( 7.2 , 8.645886 ){\circle*{ .03644444}} \put( 7.24 , 8.646345 ){\circle*{ .03644444}} \put( 7.28 , 8.646769 ){\circle*{ .03644444}} \put( 7.32 , 8.64716 ){\circle*{ .03644444}} \put( 7.36 , 8.647521 ){\circle*{ .03644444}} \put( 7.4 , 8.647854 ){\circle*{ .03644444}} \put( 7.44 , 8.648162 ){\circle*{ .03644444}} \put( 7.48 , 8.648446 ){\circle*{ .03644444}} \put( 7.52 , 8.648708 ){\circle*{ .03644444}} \put( 7.56 , 8.648950 ){\circle*{ .03644444}} \put( 7.6 , 8.649173 ){\circle*{ .03644444}} \put( 7.64 , 8.649379 ){\circle*{ .03644444}} \put( 7.68 , 8.649569 ){\circle*{ .03644444}} \put( 7.72 , 8.649745 ){\circle*{ .03644444}} \put( 7.76 , 8.649907 ){\circle*{ .03644444}} \put( 7.8 , 8.650057 ){\circle*{ .03644444}} \put( 7.84 , 8.650195 ){\circle*{ .03644444}} \put( 7.88 , 8.650322 ){\circle*{ .03644444}} \put( 7.92 , 8.650440 ){\circle*{ .03644444}} \put( 7.96 , 8.650548 ){\circle*{ .03644444}} %Finis. apl> '7Ox' graph 3,1,1,r,1.5,-4,4,1,2 ,.5 ,1 " tanhdatx.tex %Label the curve \put( 3.52 , .700922 ){n\#2} %Draw the data points \put( .04 , 2.013238 ){\circle*{ .03644444}} \put( .08 , 2.013107 ){\circle*{ .03644444}} \put( .12 , 2.012965 ){\circle*{ .03644444}} \put( .16 , 2.01281 ){\circle*{ .03644444}} \put( .2 , 2.012644 ){\circle*{ .03644444}} \put( .24 , 2.012463 ){\circle*{ .03644444}} \put( .28 , 2.012267 ){\circle*{ .03644444}} \put( .32 , 2.012055 ){\circle*{ .03644444}} \put( .36 , 2.011825 ){\circle*{ .03644444}} \put( .4 , 2.011576 ){\circle*{ .03644444}} \put( .44 , 2.011307 ){\circle*{ .03644444}} \put( .48 , 2.011015 ){\circle*{ .03644444}} \put( .52 , 2.010698 ){\circle*{ .03644444}} \put( .56 , 2.010355 ){\circle*{ .03644444}} \put( .6 , 2.009984 ){\circle*{ .03644444}} \put( .64 , 2.009582 ){\circle*{ .03644444}} \put( .68 , 2.009146 ){\circle*{ .03644444}} \put( .72 , 2.008674 ){\circle*{ .03644444}} \put( .76 , 2.008163 ){\circle*{ .03644444}} \put( .8 , 2.007609 ){\circle*{ .03644444}} \put( .84 , 2.007009 ){\circle*{ .03644444}} \put( .88 , 2.006360 ){\circle*{ .03644444}} \put( .92 , 2.005656 ){\circle*{ .03644444}} \put( .96 , 2.004893 ){\circle*{ .03644444}} \put( 1 , 2.004067 ){\circle*{ .03644444}} \put( 1.04 , 2.003173 ){\circle*{ .03644444}} \put( 1.08 , 2.002204 ){\circle*{ .03644444}} \put( 1.12 , 2.001154 ){\circle*{ .03644444}} \put( 1.16 , 2.000017 ){\circle*{ .03644444}} \put( 1.2 , 1.998786 ){\circle*{ .03644444}} \put( 1.24 , 1.997452 ){\circle*{ .03644444}} \put( 1.28 , 1.996008 ){\circle*{ .03644444}} \put( 1.32 , 1.994443 ){\circle*{ .03644444}} \put( 1.36 , 1.992748 ){\circle*{ .03644444}} \put( 1.4 , 1.990913 ){\circle*{ .03644444}} \put( 1.44 , 1.988925 ){\circle*{ .03644444}} \put( 1.48 , 1.986772 ){\circle*{ .03644444}} \put( 1.52 , 1.98444 ){\circle*{ .03644444}} \put( 1.56 , 1.981915 ){\circle*{ .03644444}} \put( 1.6 , 1.97918 ){\circle*{ .03644444}} \put( 1.64 , 1.976219 ){\circle*{ .03644444}} \put( 1.68 , 1.973012 ){\circle*{ .03644444}} \put( 1.72 , 1.96954 ){\circle*{ .03644444}} \put( 1.76 , 1.965780 ){\circle*{ .03644444}} \put( 1.8 , 1.961709 ){\circle*{ .03644444}} \put( 1.84 , 1.9573 ){\circle*{ .03644444}} \put( 1.88 , 1.952528 ){\circle*{ .03644444}} \put( 1.92 , 1.947362 ){\circle*{ .03644444}} \put( 1.96 , 1.941770 ){\circle*{ .03644444}} \put( 2 , 1.935716 ){\circle*{ .03644444}} \put( 2.04 , 1.929164 ){\circle*{ .03644444}} \put( 2.08 , 1.922073 ){\circle*{ .03644444}} \put( 2.12 , 1.9144 ){\circle*{ .03644444}} \put( 2.16 , 1.906098 ){\circle*{ .03644444}} \put( 2.2 , 1.897116 ){\circle*{ .03644444}} \put( 2.24 , 1.887401 ){\circle*{ .03644444}} \put( 2.28 , 1.876894 ){\circle*{ .03644444}} \put( 2.32 , 1.865534 ){\circle*{ .03644444}} \put( 2.36 , 1.853252 ){\circle*{ .03644444}} \put( 2.4 , 1.839980 ){\circle*{ .03644444}} \put( 2.44 , 1.825639 ){\circle*{ .03644444}} \put( 2.48 , 1.810151 ){\circle*{ .03644444}} \put( 2.52 , 1.79343 ){\circle*{ .03644444}} \put( 2.56 , 1.775386 ){\circle*{ .03644444}} \put( 2.6 , 1.755925 ){\circle*{ .03644444}} \put( 2.64 , 1.734948 ){\circle*{ .03644444}} \put( 2.68 , 1.712354 ){\circle*{ .03644444}} \put( 2.72 , 1.688039 ){\circle*{ .03644444}} \put( 2.76 , 1.661899 ){\circle*{ .03644444}} \put( 2.8 , 1.633831 ){\circle*{ .03644444}} \put( 2.84 , 1.603735 ){\circle*{ .03644444}} \put( 2.88 , 1.57152 ){\circle*{ .03644444}} \put( 2.92 , 1.537110 ){\circle*{ .03644444}} \put( 2.96 , 1.500445 ){\circle*{ .03644444}} \put( 3 , 1.461497 ){\circle*{ .03644444}} \put( 3.04 , 1.420282 ){\circle*{ .03644444}} \put( 3.08 , 1.37687 ){\circle*{ .03644444}} \put( 3.12 , 1.331416 ){\circle*{ .03644444}} \put( 3.16 , 1.284179 ){\circle*{ .03644444}} \put( 3.2 , 1.235568 ){\circle*{ .03644444}} \put( 3.24 , 1.186184 ){\circle*{ .03644444}} \put( 3.28 , 1.13689 ){\circle*{ .03644444}} \put( 3.32 , 1.088887 ){\circle*{ .03644444}} \put( 3.36 , 1.043824 ){\circle*{ .03644444}} \put( 3.4 , 1.003926 ){\circle*{ .03644444}} \put( 3.44 , .972163 ){\circle*{ .03644444}} \put( 3.48 , .952438 ){\circle*{ .03644444}} \put( 3.52 , .949811 ){\circle*{ .03644444}} \put( 3.56 , .970734 ){\circle*{ .03644444}} \put( 3.6 , 1.023252 ){\circle*{ .03644444}} \put( 3.64 , 1.117120 ){\circle*{ .03644444}} \put( 3.68 , 1.26371 ){\circle*{ .03644444}} \put( 3.72 , 1.475564 ){\circle*{ .03644444}} \put( 3.76 , 1.765380 ){\circle*{ .03644444}} \put( 3.8 , 2.144289 ){\circle*{ .03644444}} \put( 3.84 , 2.619372 ){\circle*{ .03644444}} \put( 3.88 , 3.190719 ){\circle*{ .03644444}} \put( 3.92 , 3.848769 ){\circle*{ .03644444}} \put( 3.96 , 4.573046 ){\circle*{ .03644444}} \put( 4 , 5.333333 ){\circle*{ .03644444}} \put( 4.04 , 6.093621 ){\circle*{ .03644444}} \put( 4.08 , 6.817898 ){\circle*{ .03644444}} \put( 4.12 , 7.475948 ){\circle*{ .03644444}} \put( 4.16 , 8.047295 ){\circle*{ .03644444}} \put( 4.2 , 8.522378 ){\circle*{ .03644444}} \put( 4.24 , 8.901287 ){\circle*{ .03644444}} \put( 4.28 , 9.191103 ){\circle*{ .03644444}} \put( 4.32 , 9.402956 ){\circle*{ .03644444}} \put( 4.36 , 9.54955 ){\circle*{ .03644444}} \put( 4.4 , 9.64341 ){\circle*{ .03644444}} \put( 4.44 , 9.69593 ){\circle*{ .03644444}} \put( 4.48 , 9.71686 ){\circle*{ .03644444}} \put( 4.52 , 9.71423 ){\circle*{ .03644444}} \put( 4.56 , 9.6945 ){\circle*{ .03644444}} \put( 4.6 , 9.66274 ){\circle*{ .03644444}} \put( 4.64 , 9.62284 ){\circle*{ .03644444}} \put( 4.68 , 9.57778 ){\circle*{ .03644444}} \put( 4.72 , 9.52978 ){\circle*{ .03644444}} \put( 4.76 , 9.480482 ){\circle*{ .03644444}} \put( 4.8 , 9.431099 ){\circle*{ .03644444}} \put( 4.84 , 9.382487 ){\circle*{ .03644444}} \put( 4.88 , 9.33525 ){\circle*{ .03644444}} \put( 4.92 , 9.289796 ){\circle*{ .03644444}} \put( 4.96 , 9.246385 ){\circle*{ .03644444}} \put( 5 , 9.205169 ){\circle*{ .03644444}} \put( 5.04 , 9.166222 ){\circle*{ .03644444}} \put( 5.08 , 9.129557 ){\circle*{ .03644444}} \put( 5.12 , 9.095146 ){\circle*{ .03644444}} \put( 5.16 , 9.062931 ){\circle*{ .03644444}} \put( 5.2 , 9.032836 ){\circle*{ .03644444}} \put( 5.24 , 9.004767 ){\circle*{ .03644444}} \put( 5.28 , 8.978628 ){\circle*{ .03644444}} \put( 5.32 , 8.954313 ){\circle*{ .03644444}} \put( 5.36 , 8.931719 ){\circle*{ .03644444}} \put( 5.4 , 8.910742 ){\circle*{ .03644444}} \put( 5.44 , 8.89128 ){\circle*{ .03644444}} \put( 5.48 , 8.873236 ){\circle*{ .03644444}} \put( 5.52 , 8.856515 ){\circle*{ .03644444}} \put( 5.56 , 8.841027 ){\circle*{ .03644444}} \put( 5.6 , 8.826687 ){\circle*{ .03644444}} \put( 5.64 , 8.813414 ){\circle*{ .03644444}} \put( 5.68 , 8.801133 ){\circle*{ .03644444}} \put( 5.72 , 8.789772 ){\circle*{ .03644444}} \put( 5.76 , 8.779266 ){\circle*{ .03644444}} \put( 5.8 , 8.76955 ){\circle*{ .03644444}} \put( 5.84 , 8.760569 ){\circle*{ .03644444}} \put( 5.88 , 8.752267 ){\circle*{ .03644444}} \put( 5.92 , 8.744594 ){\circle*{ .03644444}} \put( 5.96 , 8.737503 ){\circle*{ .03644444}} \put( 6 , 8.73095 ){\circle*{ .03644444}} \put( 6.04 , 8.724897 ){\circle*{ .03644444}} \put( 6.08 , 8.719305 ){\circle*{ .03644444}} \put( 6.12 , 8.714138 ){\circle*{ .03644444}} \put( 6.16 , 8.709366 ){\circle*{ .03644444}} \put( 6.2 , 8.704958 ){\circle*{ .03644444}} \put( 6.24 , 8.700887 ){\circle*{ .03644444}} \put( 6.28 , 8.697127 ){\circle*{ .03644444}} \put( 6.32 , 8.693654 ){\circle*{ .03644444}} \put( 6.36 , 8.690447 ){\circle*{ .03644444}} \put( 6.4 , 8.687486 ){\circle*{ .03644444}} \put( 6.44 , 8.684751 ){\circle*{ .03644444}} \put( 6.48 , 8.682226 ){\circle*{ .03644444}} \put( 6.52 , 8.679895 ){\circle*{ .03644444}} \put( 6.56 , 8.677742 ){\circle*{ .03644444}} \put( 6.6 , 8.675754 ){\circle*{ .03644444}} \put( 6.64 , 8.673918 ){\circle*{ .03644444}} \put( 6.68 , 8.672224 ){\circle*{ .03644444}} \put( 6.72 , 8.670659 ){\circle*{ .03644444}} \put( 6.76 , 8.669214 ){\circle*{ .03644444}} \put( 6.8 , 8.66788 ){\circle*{ .03644444}} \put( 6.84 , 8.666649 ){\circle*{ .03644444}} \put( 6.88 , 8.665512 ){\circle*{ .03644444}} \put( 6.92 , 8.664463 ){\circle*{ .03644444}} \put( 6.96 , 8.663494 ){\circle*{ .03644444}} \put( 7 , 8.662599 ){\circle*{ .03644444}} \put( 7.04 , 8.661773 ){\circle*{ .03644444}} \put( 7.08 , 8.661011 ){\circle*{ .03644444}} \put( 7.12 , 8.660307 ){\circle*{ .03644444}} \put( 7.16 , 8.659657 ){\circle*{ .03644444}} \put( 7.2 , 8.659057 ){\circle*{ .03644444}} \put( 7.24 , 8.658504 ){\circle*{ .03644444}} \put( 7.28 , 8.657992 ){\circle*{ .03644444}} \put( 7.32 , 8.65752 ){\circle*{ .03644444}} \put( 7.36 , 8.657085 ){\circle*{ .03644444}} \put( 7.4 , 8.656682 ){\circle*{ .03644444}} \put( 7.44 , 8.656311 ){\circle*{ .03644444}} \put( 7.48 , 8.655968 ){\circle*{ .03644444}} \put( 7.52 , 8.655652 ){\circle*{ .03644444}} \put( 7.56 , 8.655360 ){\circle*{ .03644444}} \put( 7.6 , 8.65509 ){\circle*{ .03644444}} \put( 7.64 , 8.654841 ){\circle*{ .03644444}} \put( 7.68 , 8.654611 ){\circle*{ .03644444}} \put( 7.72 , 8.654399 ){\circle*{ .03644444}} \put( 7.76 , 8.654203 ){\circle*{ .03644444}} \put( 7.8 , 8.654023 ){\circle*{ .03644444}} \put( 7.84 , 8.653856 ){\circle*{ .03644444}} \put( 7.88 , 8.653702 ){\circle*{ .03644444}} \put( 7.92 , 8.653560 ){\circle*{ .03644444}} \put( 7.96 , 8.653428 ){\circle*{ .03644444}} %Finis. apl> '7Ox' graph 2,1,1,r,1.5,-4,4,1,4 ,.5 ,1 " tanhdatx.tex %Label the curve \put( 2.68 , 1.730253 ){n\#4} %Draw the data points \put( .04 , 2.014465 ){\circle*{ .03644444}} \put( .08 , 2.014436 ){\circle*{ .03644444}} \put( .12 , 2.014404 ){\circle*{ .03644444}} \put( .16 , 2.01437 ){\circle*{ .03644444}} \put( .2 , 2.014333 ){\circle*{ .03644444}} \put( .24 , 2.014293 ){\circle*{ .03644444}} \put( .28 , 2.014250 ){\circle*{ .03644444}} \put( .32 , 2.014203 ){\circle*{ .03644444}} \put( .36 , 2.014152 ){\circle*{ .03644444}} \put( .4 , 2.014097 ){\circle*{ .03644444}} \put( .44 , 2.014038 ){\circle*{ .03644444}} \put( .48 , 2.013974 ){\circle*{ .03644444}} \put( .52 , 2.013904 ){\circle*{ .03644444}} \put( .56 , 2.013829 ){\circle*{ .03644444}} \put( .6 , 2.013747 ){\circle*{ .03644444}} \put( .64 , 2.013659 ){\circle*{ .03644444}} \put( .68 , 2.013563 ){\circle*{ .03644444}} \put( .72 , 2.01346 ){\circle*{ .03644444}} \put( .76 , 2.013349 ){\circle*{ .03644444}} \put( .8 , 2.013228 ){\circle*{ .03644444}} \put( .84 , 2.013097 ){\circle*{ .03644444}} \put( .88 , 2.012956 ){\circle*{ .03644444}} \put( .92 , 2.012803 ){\circle*{ .03644444}} \put( .96 , 2.012638 ){\circle*{ .03644444}} \put( 1 , 2.01246 ){\circle*{ .03644444}} \put( 1.04 , 2.012268 ){\circle*{ .03644444}} \put( 1.08 , 2.012060 ){\circle*{ .03644444}} \put( 1.12 , 2.011835 ){\circle*{ .03644444}} \put( 1.16 , 2.011593 ){\circle*{ .03644444}} \put( 1.2 , 2.01133 ){\circle*{ .03644444}} \put( 1.24 , 2.011049 ){\circle*{ .03644444}} \put( 1.28 , 2.010744 ){\circle*{ .03644444}} \put( 1.32 , 2.010416 ){\circle*{ .03644444}} \put( 1.36 , 2.010062 ){\circle*{ .03644444}} \put( 1.4 , 2.009681 ){\circle*{ .03644444}} \put( 1.44 , 2.009271 ){\circle*{ .03644444}} \put( 1.48 , 2.00883 ){\circle*{ .03644444}} \put( 1.52 , 2.008356 ){\circle*{ .03644444}} \put( 1.56 , 2.007847 ){\circle*{ .03644444}} \put( 1.6 , 2.007299 ){\circle*{ .03644444}} \put( 1.64 , 2.006713 ){\circle*{ .03644444}} \put( 1.68 , 2.006084 ){\circle*{ .03644444}} \put( 1.72 , 2.00541 ){\circle*{ .03644444}} \put( 1.76 , 2.00469 ){\circle*{ .03644444}} \put( 1.8 , 2.003922 ){\circle*{ .03644444}} \put( 1.84 , 2.003102 ){\circle*{ .03644444}} \put( 1.88 , 2.002229 ){\circle*{ .03644444}} \put( 1.92 , 2.001301 ){\circle*{ .03644444}} \put( 1.96 , 2.000318 ){\circle*{ .03644444}} \put( 2 , 1.999276 ){\circle*{ .03644444}} \put( 2.04 , 1.998178 ){\circle*{ .03644444}} \put( 2.08 , 1.997022 ){\circle*{ .03644444}} \put( 2.12 , 1.995810 ){\circle*{ .03644444}} \put( 2.16 , 1.994544 ){\circle*{ .03644444}} \put( 2.2 , 1.993228 ){\circle*{ .03644444}} \put( 2.24 , 1.991868 ){\circle*{ .03644444}} \put( 2.28 , 1.990472 ){\circle*{ .03644444}} \put( 2.32 , 1.989050 ){\circle*{ .03644444}} \put( 2.36 , 1.987616 ){\circle*{ .03644444}} \put( 2.4 , 1.986187 ){\circle*{ .03644444}} \put( 2.44 , 1.984787 ){\circle*{ .03644444}} \put( 2.48 , 1.983443 ){\circle*{ .03644444}} \put( 2.52 , 1.982191 ){\circle*{ .03644444}} \put( 2.56 , 1.981075 ){\circle*{ .03644444}} \put( 2.6 , 1.980149 ){\circle*{ .03644444}} \put( 2.64 , 1.979478 ){\circle*{ .03644444}} \put( 2.68 , 1.979142 ){\circle*{ .03644444}} \put( 2.72 , 1.979238 ){\circle*{ .03644444}} \put( 2.76 , 1.979884 ){\circle*{ .03644444}} \put( 2.8 , 1.98122 ){\circle*{ .03644444}} \put( 2.84 , 1.983417 ){\circle*{ .03644444}} \put( 2.88 , 1.986676 ){\circle*{ .03644444}} \put( 2.92 , 1.99124 ){\circle*{ .03644444}} \put( 2.96 , 1.997398 ){\circle*{ .03644444}} \put( 3 , 2.005488 ){\circle*{ .03644444}} \put( 3.04 , 2.015915 ){\circle*{ .03644444}} \put( 3.08 , 2.029153 ){\circle*{ .03644444}} \put( 3.12 , 2.045759 ){\circle*{ .03644444}} \put( 3.16 , 2.06638 ){\circle*{ .03644444}} \put( 3.2 , 2.09177 ){\circle*{ .03644444}} \put( 3.24 , 2.122796 ){\circle*{ .03644444}} \put( 3.28 , 2.16045 ){\circle*{ .03644444}} \put( 3.32 , 2.205857 ){\circle*{ .03644444}} \put( 3.36 , 2.260276 ){\circle*{ .03644444}} \put( 3.4 , 2.3251 ){\circle*{ .03644444}} \put( 3.44 , 2.401844 ){\circle*{ .03644444}} \put( 3.48 , 2.492118 ){\circle*{ .03644444}} \put( 3.52 , 2.59759 ){\circle*{ .03644444}} \put( 3.56 , 2.719929 ){\circle*{ .03644444}} \put( 3.6 , 2.860718 ){\circle*{ .03644444}} \put( 3.64 , 3.021356 ){\circle*{ .03644444}} \put( 3.68 , 3.202925 ){\circle*{ .03644444}} \put( 3.72 , 3.406056 ){\circle*{ .03644444}} \put( 3.76 , 3.630776 ){\circle*{ .03644444}} \put( 3.8 , 3.876376 ){\circle*{ .03644444}} \put( 3.84 , 4.141305 ){\circle*{ .03644444}} \put( 3.88 , 4.423126 ){\circle*{ .03644444}} \put( 3.92 , 4.718535 ){\circle*{ .03644444}} \put( 3.96 , 5.023476 ){\circle*{ .03644444}} \put( 4 , 5.333333 ){\circle*{ .03644444}} \put( 4.04 , 5.64319 ){\circle*{ .03644444}} \put( 4.08 , 5.948132 ){\circle*{ .03644444}} \put( 4.12 , 6.24354 ){\circle*{ .03644444}} \put( 4.16 , 6.525362 ){\circle*{ .03644444}} \put( 4.2 , 6.790291 ){\circle*{ .03644444}} \put( 4.24 , 7.03589 ){\circle*{ .03644444}} \put( 4.28 , 7.26061 ){\circle*{ .03644444}} \put( 4.32 , 7.463741 ){\circle*{ .03644444}} \put( 4.36 , 7.645311 ){\circle*{ .03644444}} \put( 4.4 , 7.805948 ){\circle*{ .03644444}} \put( 4.44 , 7.946738 ){\circle*{ .03644444}} \put( 4.48 , 8.069077 ){\circle*{ .03644444}} \put( 4.52 , 8.174549 ){\circle*{ .03644444}} \put( 4.56 , 8.264823 ){\circle*{ .03644444}} \put( 4.6 , 8.341566 ){\circle*{ .03644444}} \put( 4.64 , 8.40639 ){\circle*{ .03644444}} \put( 4.68 , 8.460809 ){\circle*{ .03644444}} \put( 4.72 , 8.506216 ){\circle*{ .03644444}} \put( 4.76 , 8.54387 ){\circle*{ .03644444}} \put( 4.8 , 8.574896 ){\circle*{ .03644444}} \put( 4.84 , 8.600286 ){\circle*{ .03644444}} \put( 4.88 , 8.620908 ){\circle*{ .03644444}} \put( 4.92 , 8.637513 ){\circle*{ .03644444}} \put( 4.96 , 8.650751 ){\circle*{ .03644444}} \put( 5 , 8.661179 ){\circle*{ .03644444}} \put( 5.04 , 8.669269 ){\circle*{ .03644444}} \put( 5.08 , 8.675426 ){\circle*{ .03644444}} \put( 5.12 , 8.67999 ){\circle*{ .03644444}} \put( 5.16 , 8.683250 ){\circle*{ .03644444}} \put( 5.2 , 8.685446 ){\circle*{ .03644444}} \put( 5.24 , 8.686783 ){\circle*{ .03644444}} \put( 5.28 , 8.687429 ){\circle*{ .03644444}} \put( 5.32 , 8.687525 ){\circle*{ .03644444}} \put( 5.36 , 8.687189 ){\circle*{ .03644444}} \put( 5.4 , 8.686518 ){\circle*{ .03644444}} \put( 5.44 , 8.685591 ){\circle*{ .03644444}} \put( 5.48 , 8.684475 ){\circle*{ .03644444}} \put( 5.52 , 8.683224 ){\circle*{ .03644444}} \put( 5.56 , 8.68188 ){\circle*{ .03644444}} \put( 5.6 , 8.680480 ){\circle*{ .03644444}} \put( 5.64 , 8.679051 ){\circle*{ .03644444}} \put( 5.68 , 8.677617 ){\circle*{ .03644444}} \put( 5.72 , 8.676195 ){\circle*{ .03644444}} \put( 5.76 , 8.674798 ){\circle*{ .03644444}} \put( 5.8 , 8.673438 ){\circle*{ .03644444}} \put( 5.84 , 8.672123 ){\circle*{ .03644444}} \put( 5.88 , 8.670857 ){\circle*{ .03644444}} \put( 5.92 , 8.669645 ){\circle*{ .03644444}} \put( 5.96 , 8.668489 ){\circle*{ .03644444}} \put( 6 , 8.66739 ){\circle*{ .03644444}} \put( 6.04 , 8.666349 ){\circle*{ .03644444}} \put( 6.08 , 8.665365 ){\circle*{ .03644444}} \put( 6.12 , 8.664438 ){\circle*{ .03644444}} \put( 6.16 , 8.663565 ){\circle*{ .03644444}} \put( 6.2 , 8.662745 ){\circle*{ .03644444}} \put( 6.24 , 8.661976 ){\circle*{ .03644444}} \put( 6.28 , 8.661256 ){\circle*{ .03644444}} \put( 6.32 , 8.660583 ){\circle*{ .03644444}} \put( 6.36 , 8.659954 ){\circle*{ .03644444}} \put( 6.4 , 8.659367 ){\circle*{ .03644444}} \put( 6.44 , 8.65882 ){\circle*{ .03644444}} \put( 6.48 , 8.65831 ){\circle*{ .03644444}} \put( 6.52 , 8.657836 ){\circle*{ .03644444}} \put( 6.56 , 8.657395 ){\circle*{ .03644444}} \put( 6.6 , 8.656985 ){\circle*{ .03644444}} \put( 6.64 , 8.656604 ){\circle*{ .03644444}} \put( 6.68 , 8.65625 ){\circle*{ .03644444}} \put( 6.72 , 8.655923 ){\circle*{ .03644444}} \put( 6.76 , 8.655618 ){\circle*{ .03644444}} \put( 6.8 , 8.655336 ){\circle*{ .03644444}} \put( 6.84 , 8.655074 ){\circle*{ .03644444}} \put( 6.88 , 8.654832 ){\circle*{ .03644444}} \put( 6.92 , 8.654607 ){\circle*{ .03644444}} \put( 6.96 , 8.654399 ){\circle*{ .03644444}} \put( 7 , 8.654206 ){\circle*{ .03644444}} \put( 7.04 , 8.654028 ){\circle*{ .03644444}} \put( 7.08 , 8.653863 ){\circle*{ .03644444}} \put( 7.12 , 8.65371 ){\circle*{ .03644444}} \put( 7.16 , 8.653569 ){\circle*{ .03644444}} \put( 7.2 , 8.653439 ){\circle*{ .03644444}} \put( 7.24 , 8.653318 ){\circle*{ .03644444}} \put( 7.28 , 8.653206 ){\circle*{ .03644444}} \put( 7.32 , 8.653103 ){\circle*{ .03644444}} \put( 7.36 , 8.653008 ){\circle*{ .03644444}} \put( 7.4 , 8.652920 ){\circle*{ .03644444}} \put( 7.44 , 8.652838 ){\circle*{ .03644444}} \put( 7.48 , 8.652763 ){\circle*{ .03644444}} \put( 7.52 , 8.652693 ){\circle*{ .03644444}} \put( 7.56 , 8.652629 ){\circle*{ .03644444}} \put( 7.6 , 8.652569 ){\circle*{ .03644444}} \put( 7.64 , 8.652514 ){\circle*{ .03644444}} \put( 7.68 , 8.652464 ){\circle*{ .03644444}} \put( 7.72 , 8.652417 ){\circle*{ .03644444}} \put( 7.76 , 8.652374 ){\circle*{ .03644444}} \put( 7.8 , 8.652334 ){\circle*{ .03644444}} \put( 7.84 , 8.652297 ){\circle*{ .03644444}} \put( 7.88 , 8.652263 ){\circle*{ .03644444}} \put( 7.92 , 8.652231 ){\circle*{ .03644444}} \put( 7.96 , 8.652202 ){\circle*{ .03644444}} \end{picture} \end{center} %Finis. apl>)off