apl>" <-APL2-------------------- sam319.txt ----------------------------> apl>)run cap2/sample/graph.inc apl>" <-APL2-------------------- graph.txt -----------------------------> apl>" Legend describing various global values: apl>" apl>" World coordinates(wc) are those of the real data. apl>" Graph coordinates(gc) are those of the graph. apl>" apl>" caption - Override to text for graph caption. If null, a caption apl>" will be generated. The graph function resets the global apl>" caption variable to null at the end of its processing. apl>" apl>" hk ------ Constant coefficient of input. If xr=1 (see below) then apl>" hk becomes the constant imaginary coefficient for all apl>" values of x on the graph. If xr=0, hk will be the constant apl>" real coefficient. apl>" apl>" htl ----- 0 = both, 1 = headers, 2 = trailers, 3 = neither. apl>" apl>" maxx ---- Maximum x axis value in world coordinates. apl>" apl>" maxy ---- Maximum y axis value in world coordinates. apl>" apl>" minx ---- Minimum x axis value in world coordinates. apl>" apl>" miny ---- Minimum y axis value in world coordinates. apl>" apl>" mgc ----- Vertical margin in graphic coordinates. apl>" apl>" n ------- Synonymous with hk (see above). The x values to which apl>" the function is applied to obtain y values are derived apl>" by first creating xwc as a vector of integers uniformly apl>" distributed between minx and maxx inclusive. Then, either apl>" 'x#(nX0j1)+xwc' or 'x#n+0j1Xxwc' is evaluated. apl>" apl>" nlb ----- 1 = Label the curve with the n value. apl>" apl>" points -- Number of points to generate. apl>" apl>" xgc ----- Array of x values for data points in graph coordinates. apl>" apl>" xiv ----- x axis marker interval in world coordinates. apl>" apl>" xlin ---- Width of graph in inches. apl>" apl>" xpg ----- Divide xwc by xpg to get xgc. apl>" apl>" xpi ----- Array of three values for minx, maxx, and xiv, used when apl>" invoking the graph function and the array of x values apl>" spans -pi to +pi. apl>" apl>" xr ------ 1=vary real x coefficient, 0=vary imaginary coefficient, apl>" holding the other coefficient to the constant hk (see above.). apl>" apl>" xt ------ Used in a variety of places to temporarily generate apl>" graphics coordinates. apl>" apl>" xwc ----- Array of x values in world coordinates. apl>" apl>" yadj ---- Adjustment down to print text below a line. apl>" apl>" yabm ---- Maximum absolute value (|y) to appear on graph. apl>" apl>" ygc ----- Array of y values for data points in graph coordinates. apl>" apl>" ylin ---- Height of graph in inches. apl>" apl>" ymgn ---- Margin in inches at top and bottom of y axis. apl>" apl>" ypg ----- Divide ywc by ypg to get ygc. apl>" apl>" yt ------ Used in a variety of places to temporarily generate apl>" graphics coordinates. apl>" apl>" ywc ----- Array of y values for data points in world coordinates. apl>" apl>" Set global values. --------------------------------------------> apl>" apl>caption#'' " Empty caption causes one to be generated. apl>i#11 " Circle function code to extract imag. coef. of complex number. apl>points#200 " Number of data points to generate on graph. apl>r#9 " Circle function code to extract real coef. of complex number. apl>xlin#4.5 " Width of graph in inches. apl>" minx = -3.14159.... apl>" | maxx = 3.14159.... apl>" | | xiv apl>" | | | apl>" V V V apl>xpi#(O-1),(O1),O.25 apl>ylin#6 " Height of graph in inches. apl>ymgn#.2 " Margin in inches at top and bottom of y axis. apl>" apl>" <-----------------------------------------------------------------> apl>" Generates the LaTeX \put statements for the data points to appear apl>" on the graph. apl>" apl>Lex 'dodata' 1 apl>Gdodata [1] xgc#(xwc_minx)%xpg " xgc=x graphic coordinates for data points. [2] ygc#mgc+(ywc_miny)%ypg " ygc=y graphic coordinates for data points. [3] $bylabXI0=nlb " Branch if the curve is not to be labelled. [4] '%Label the curve' [5] xt#1Y(u=S/u#|ywc)/xgc " x coord where maximum/mininum occurs [6] yt#(_yadjX0>vs/ywc)+(vs#xt=xgc)/ygc " y coord of maximum/minimum [7] " Note: Calculation for yt works only if all minima occur below [8] " y axis, and all maxima occur above. [9] pcon,(xt,',',[1.5]yt),`Z'){n\#',(Fhk),'}' [10] bylab:'%Draw the data points' [11] pcon,((xgc#-1U1Uxgc),',',[1.5](ygc#-1U1Uygc)),circon [12] G apl>" <-----------------------------------------------------------------> apl>" Generate xwc and ywc, the arrays of x/y coordinates for the data apl>" points to appear on the graph. apl>" apl>Lex 'genxy' 1 apl>Ggenxy [1] xwc#minx+(xlwc#maxx_minx)X(-1+Ipoints+1)%points [2] $varyrealXIxr [3] x#hk+0j1Xxwc " real part is constant, imaginary varies. [4] $calcy " Branch to compute values of y for data points. [5] varyreal:x#(hkX0j1)+xwc " Imaginary is constant, real varies. [6] calcy:ywc#eOCfun " Compute values of y for data points [7] ywcm#yabm>|ywc " Mask of keepers, magnitudes of y < yabm. [8] xwc#ywcm/xwc " Pick the keepers. [9] ywc#ywcm/ywc " Pick the keepers. [10] G apl>" apl>" <-----------------------------------------------------------------> apl>" Main graph routine. apl>" apl>Lex 'graph' 1 apl>Gfun graph a [1] "Graphs the imaginary or real coefficient of result of fun. [2] " fun = expression to evaluate. [3] (htl nlb xr e yabm minx maxx xiv hk yiv yca)#a [4] genxy " Generate the data points. [5] $dataXIhtl>1 " Branch if htl greater than 1. [6] scale " Calculate global scaling values. [7] headers " Generate LaTeX figure headers. [8] data:dodata " Process and graph data points. [9] trailers " Generate Latex figure trailers, maybe. [10] G apl>" apl>" <-----------------------------------------------------------------> apl>" Generates the LaTeX statements to begin the graph. apl>" apl>Lex 'headers' 1 apl>Gheaders [1] '\begin{figure}[tbh]' [2] $gencapXI0=Rcaption " Branch if no caption override. [3] '\caption{',caption,'}' [4] $begin [5] gencap:$realcapXI(xr=1)&hk=0 " Branch if x data are not complex. [6] $ncaptionXInlb=0 " Branch if curves are not labelled with n value. [7] '\caption{Graph of y\#',(Fe),'O',fun,'+nX0j1}' [8] $begin [9] ncaption:$cplxcapXIxr " Branch if varying real coefficient. [10] '\caption{Graph of y\#',(Fe),'O',(-1Ufun),(Fhk),'+xX0j1}' [11] $begin [12] cplxcap:'\caption{Graph of y\#',(Fe),'O',fun,'+(n\#',(Fhk),')X0j1}' [13] $begin [14] realcap:'\caption{Graph of y\#',fun,'}' [15] begin:'\begin{center}' [16] '\setlength{\unitlength}{',(Flin),'in}' [17] '\begin{picture}(',(Fxlin%lin),',',(Fylin%lin),')' [18] '%Draw a frame around the picture' [19] ' \put(0,0){\line(1,0){',(Fxlgc),'}}% bottom' [20] ' \put(0,0){\line(0,1){',(Fylgc),'}}% left' [21] ' \put(0,',(Fylgc),'){\line(1,0){',(Fxlgc),'}}% top' [22] ' \put(',(Fxlgc),',0){\line(0,1){',(Fylgc),'}}% right' [23] '%Draw the x axis' [24] ' \put(0,',(Fxax),'){\line(1,0){',(Fxlgc),'}}%x axis' [25] xt#xoff%xpg [26] pcon,((xt,[1.5]','),xax),circon " Draw the x axis markers. [27] xt#xt_xpgX.1Xxmk<0 [28] yt#xax+((.05%lin)Xxax=mgc)_yadjXxax>mgc [29] $dopaxXIpix [30] '%Draw the x axis marker values' [31] pcon,xt,',',yt,econ,xmk,[1.5]scon [32] $doyax [33] dopax:'%Draw the x axis marker values in pi' [34] picon#(`Z'\frac{') ,`1 '\pi}{4}' '\pi}{2}' '3\pi}{4}' [35] picon#('-',`1`Rpicon),'0',picon [36] pcon,xt,',',yt,econ,picon,[1.5]scon [37] doyax:'%Draw the y axis' [38] $putymkXI(yax=0) [39] ' \put(',(Fyax),',0){\line(0,1){',(Fylgc),'}}%y axis' [40] putymk:'%Draw the y axis markers' [41] ymask#ymk^=0 [42] yt#ymask/mgc+(ymk_miny)%ypg [43] pcon,yax,',',yt,[1.5]circon [44] '%Draw the y axis marker values' [45] xt#yax+.05%lin [46] yt#yt_ypgX.1X(ymask/ymk)<0 [47] pcon,xt,',',yt,econ,(ymask/ymk),[1.5]scon [48] G apl>" apl>" <-----------------------------------------------------------------> apl>" Calculates a variety of values needed to produce the graph. apl>" apl>Lex 'scale' 1 apl>Gscale [1] $byyXIyca " Branch if ylwc, maxy, miny are precalculated. [2] ylwc#(maxy#S/ywc)_miny#D/ywc [3] byy:ylap#ylin_2Xymgn " ylap=height allowed for data points. [4] lin#(xlin%xlwc)Dylap%ylwc " unitlength in inches. [5] yadj#.14%lin " y graphic coordinate adjustment to print text below line. [6] mgc#ymgn%lin " Margin in graph coordinates. [7] xpg#xlwc%xlgc#xlin%lin " Divide xwc by xpg to get gc. [8] ypg#ylwc%(_2Xymgn%lin)+ylgc#ylin%lin " Divide ywc by ypg to get gc. [9] xax#(yz#(minyK0)&maxyZ0)Xmgc+(|miny)%ypg " xaxis in graph coordinates. [10] yax#(xz#(minx<0)&maxx>0)X(|minx)%xpg " yaxis in graph coordinates. [11] $piaxisXIpix#(minx=O-1)&maxx=O1 " branch if pi units on x axis. [12] xic#(yax=0)+Dxlwc%xiv [13] $doyiv [14] piaxis:xic#Dxlwc%xiv#O.25 [15] doyiv:$doyicXIyiv^=0 [16] yiv#10*D10@ylwc [17] doyic:yic#yic+0=2|yic#Dylwc%yiv [18] xoff#(I-1+xic)Xxiv " Offset from minx in world coord. of x markers. [19] yoff#(_yiv)+(Iyic)Xyiv " Offset from miny in world coord. of y markers. [20] $yoffplusXIminy>0 [21] ymk#yoff+miny+yiv||miny [22] $yoffdone [23] yoffplus:ymk#yoff+miny_yiv|miny " y for y axis markers in world coord. [24] yoffdone:xmk#minx+xoff " x for x axis markers in world coord. [25] circon#`Z'){\circle*{',(F.0205%lin),'}}' [26] scon#`Z'$}' [27] econ#`Z'){$' [28] pcon#`Z' \put(' [29] G apl>" apl>" <-----------------------------------------------------------------> apl>" Generates the LaTeX statements to finish the graph. apl>" apl>Lex 'trailers' 1 apl>Gtrailers [1] $epicXIhtl=0 " Branch if both headers and trailers. [2] $eojckXInlb " Branch if graph already labelled. [3] pcon,(1Yxgc+xpgX.1),',',(1Yygc),'){',fun,'}' " Label the graph. [4] eojck:$eojXI(htl=1)+htl=3 " br if headers only, or neither. [5] epic:'\end{picture}' [6] '\end{center}' [7] eoj:'%Finis.' [8] caption#'' " Reset global caption [9] G apl>" htl: 0=both, 1=headers, 2=trailers, 3=neither. apl>" | nlb 1 = Label the curve. apl>" | | xr = 1=vary real x coeff, 0=vary imaginary coeff. apl>" | | | e = i(11) or r(9) to select coefficient to graph. apl>" | | | | yabm = maximum |y printed on graph. apl>" | | | | | minx = minimum value of x. apl>" | | | | | | maxx = maximum value of x. apl>" | | | | | | | xiv = x axis marker interval. apl>" | | | | | | | | hk = Constant coefficient of input. apl>" | | | | | | | | | yiv = y axis marker interval, or 0. apl>" | | | | | | | | | | yca = ylwc, maxy, miny are precalculated. apl>" | | | | | | | | | | | apl>" V V V V V V V V V V V apl> '7Ox' graph 0,0,1,r,1 ,xpi ,0 , 0.1,0 " tanhdata.tex \begin{figure}[tbh] \caption{Graph of y\#7Ox} \begin{center} \setlength{\unitlength}{ .716197in} \begin{picture}(6.283185,8.37758) %Draw a frame around the picture \put(0,0){\line(1,0){6.283185}}% bottom \put(0,0){\line(0,1){8.37758}}% left \put(0,8.37758){\line(1,0){6.283185}}% top \put(6.283185,0){\line(0,1){8.37758}}% right %Draw the x axis \put(0,4.18879){\line(1,0){6.283185}}%x axis \put( .785398 , 4.18879 ){\circle*{ .0286234}} \put( 1.570796 , 4.18879 ){\circle*{ .0286234}} \put( 2.356194 , 4.18879 ){\circle*{ .0286234}} \put( 3.141593 , 4.18879 ){\circle*{ .0286234}} \put( 3.92699 , 4.18879 ){\circle*{ .0286234}} \put( 4.712389 , 4.18879 ){\circle*{ .0286234}} \put( 5.497787 , 4.18879 ){\circle*{ .0286234}} %Draw the x axis marker values in pi \put( .685398 , 3.993313 ){$ -\frac{3\pi}{4} $} \put( 1.470796 , 3.993313 ){$ -\frac{\pi}{2} $} \put( 2.256194 , 3.993313 ){$ -\frac{\pi}{4} $} \put( 3.141593 , 3.993313 ){$ 0 $} \put( 3.92699 , 3.993313 ){$ \frac{\pi}{4} $} \put( 4.712389 , 3.993313 ){$ \frac{\pi}{2} $} \put( 5.497787 , 3.993313 ){$ \frac{3\pi}{4} $} %Draw the y axis \put(3.141593,0){\line(0,1){8.37758}}%y axis %Draw the y axis markers \put( 3.141593 , .65704 ){\circle*{ .0286234}} \put( 3.141593 , 1.049457 ){\circle*{ .0286234}} \put( 3.141593 , 1.441874 ){\circle*{ .0286234}} \put( 3.141593 , 1.83429 ){\circle*{ .0286234}} \put( 3.141593 , 2.226707 ){\circle*{ .0286234}} \put( 3.141593 , 2.619124 ){\circle*{ .0286234}} \put( 3.141593 , 3.01154 ){\circle*{ .0286234}} \put( 3.141593 , 3.403957 ){\circle*{ .0286234}} \put( 3.141593 , 3.796374 ){\circle*{ .0286234}} \put( 3.141593 , 4.581207 ){\circle*{ .0286234}} \put( 3.141593 , 4.973624 ){\circle*{ .0286234}} \put( 3.141593 , 5.36604 ){\circle*{ .0286234}} \put( 3.141593 , 5.758457 ){\circle*{ .0286234}} \put( 3.141593 , 6.150873 ){\circle*{ .0286234}} \put( 3.141593 , 6.54329 ){\circle*{ .0286234}} \put( 3.141593 , 6.935707 ){\circle*{ .0286234}} \put( 3.141593 , 7.328123 ){\circle*{ .0286234}} \put( 3.141593 , 7.72054 ){\circle*{ .0286234}} %Draw the y axis marker values \put( 3.211406 , .631557 ){$ -0.9 $} \put( 3.211406 , 1.023974 ){$ -0.8 $} \put( 3.211406 , 1.41639 ){$ -0.7 $} \put( 3.211406 , 1.808807 ){$ -0.6 $} \put( 3.211406 , 2.201224 ){$ -0.5 $} \put( 3.211406 , 2.59364 ){$ -0.4 $} \put( 3.211406 , 2.986057 ){$ -0.3 $} \put( 3.211406 , 3.378474 ){$ -0.2 $} \put( 3.211406 , 3.77089 ){$ -0.1 $} \put( 3.211406 , 4.581207 ){$ .1 $} \put( 3.211406 , 4.973624 ){$ .2 $} \put( 3.211406 , 5.36604 ){$ .3 $} \put( 3.211406 , 5.758457 ){$ .4 $} \put( 3.211406 , 6.150873 ){$ .5 $} \put( 3.211406 , 6.54329 ){$ .6 $} \put( 3.211406 , 6.935707 ){$ .7 $} \put( 3.211406 , 7.328123 ){$ .8 $} \put( 3.211406 , 7.72054 ){$ .9 $} %Draw the data points \put( .03141593 , .28019946 ){\circle*{ .0286234}} \put( .06283185 , .28120737 ){\circle*{ .0286234}} \put( .09424778 , .28228037 ){\circle*{ .0286234}} \put( .1256637 , .28342262 ){\circle*{ .0286234}} \put( .15707963 , .28463859 ){\circle*{ .0286234}} \put( .18849556 , .28593298 ){\circle*{ .0286234}} \put( .21991149 , .28731085 ){\circle*{ .0286234}} \put( .25132741 , .28877753 ){\circle*{ .0286234}} \put( .28274334 , .29033872 ){\circle*{ .0286234}} \put( .31415927 , .29200047 ){\circle*{ .0286234}} \put( .34557519 , .2937692 ){\circle*{ .0286234}} \put( .37699112 , .29565175 ){\circle*{ .0286234}} \put( .40840704 , .29765538 ){\circle*{ .0286234}} \put( .43982297 , .29978782 ){\circle*{ .0286234}} \put( .47123890 , .30205726 ){\circle*{ .0286234}} \put( .502655 , .30447242 ){\circle*{ .0286234}} \put( .53407 , .30704255 ){\circle*{ .0286234}} \put( .565487 , .30977749 ){\circle*{ .0286234}} \put( .596903 , .31268768 ){\circle*{ .0286234}} \put( .628319 , .31578421 ){\circle*{ .0286234}} \put( .659734 , .31907884 ){\circle*{ .0286234}} \put( .69115 , .32258405 ){\circle*{ .0286234}} \put( .722566 , .32631311 ){\circle*{ .0286234}} \put( .753982 , .33028007 ){\circle*{ .0286234}} \put( .785398 , .33449983 ){\circle*{ .0286234}} \put( .816814 , .3389882 ){\circle*{ .0286234}} \put( .84823 , .34376195 ){\circle*{ .0286234}} \put( .879646 , .34883883 ){\circle*{ .0286234}} \put( .911062 , .35423763 ){\circle*{ .0286234}} \put( .942478 , .35997829 ){\circle*{ .0286234}} \put( .973894 , .36608189 ){\circle*{ .0286234}} \put( 1.005310 , .37257074 ){\circle*{ .0286234}} \put( 1.036726 , .37946843 ){\circle*{ .0286234}} \put( 1.068142 , .38679992 ){\circle*{ .0286234}} \put( 1.099557 , .39459157 ){\circle*{ .0286234}} \put( 1.130973 , .40287124 ){\circle*{ .0286234}} \put( 1.162389 , .41166832 ){\circle*{ .0286234}} \put( 1.193805 , .42101383 ){\circle*{ .0286234}} \put( 1.225221 , .43094047 ){\circle*{ .0286234}} \put( 1.256637 , .44148270 ){\circle*{ .0286234}} \put( 1.288053 , .4526768 ){\circle*{ .0286234}} \put( 1.319469 , .46456097 ){\circle*{ .0286234}} \put( 1.350885 , .47717532 ){\circle*{ .0286234}} \put( 1.3823 , .49056202 ){\circle*{ .0286234}} \put( 1.413717 , .504765 ){\circle*{ .0286234}} \put( 1.445133 , .519832 ){\circle*{ .0286234}} \put( 1.476549 , .535809 ){\circle*{ .0286234}} \put( 1.507964 , .552750 ){\circle*{ .0286234}} \put( 1.53938 , .570705 ){\circle*{ .0286234}} \put( 1.570796 , .589732 ){\circle*{ .0286234}} \put( 1.602212 , .609887 ){\circle*{ .0286234}} \put( 1.633628 , .63123 ){\circle*{ .0286234}} \put( 1.665044 , .653825 ){\circle*{ .0286234}} \put( 1.69646 , .677736 ){\circle*{ .0286234}} \put( 1.727876 , .703028 ){\circle*{ .0286234}} \put( 1.759292 , .729773 ){\circle*{ .0286234}} \put( 1.790708 , .75804 ){\circle*{ .0286234}} \put( 1.822124 , .787904 ){\circle*{ .0286234}} \put( 1.853540 , .819439 ){\circle*{ .0286234}} \put( 1.884956 , .852722 ){\circle*{ .0286234}} \put( 1.916372 , .88783 ){\circle*{ .0286234}} \put( 1.947787 , .924844 ){\circle*{ .0286234}} \put( 1.979203 , .963843 ){\circle*{ .0286234}} \put( 2.010619 , 1.004909 ){\circle*{ .0286234}} \put( 2.042035 , 1.048123 ){\circle*{ .0286234}} \put( 2.073451 , 1.093565 ){\circle*{ .0286234}} \put( 2.104867 , 1.141315 ){\circle*{ .0286234}} \put( 2.136283 , 1.191453 ){\circle*{ .0286234}} \put( 2.167699 , 1.244055 ){\circle*{ .0286234}} \put( 2.199115 , 1.299196 ){\circle*{ .0286234}} \put( 2.23053 , 1.356949 ){\circle*{ .0286234}} \put( 2.261947 , 1.417379 ){\circle*{ .0286234}} \put( 2.293363 , 1.480552 ){\circle*{ .0286234}} \put( 2.324779 , 1.546523 ){\circle*{ .0286234}} \put( 2.356194 , 1.615345 ){\circle*{ .0286234}} \put( 2.38761 , 1.68706 ){\circle*{ .0286234}} \put( 2.419026 , 1.761707 ){\circle*{ .0286234}} \put( 2.450442 , 1.839311 ){\circle*{ .0286234}} \put( 2.481858 , 1.919889 ){\circle*{ .0286234}} \put( 2.513274 , 2.003448 ){\circle*{ .0286234}} \put( 2.54469 , 2.089982 ){\circle*{ .0286234}} \put( 2.576106 , 2.179472 ){\circle*{ .0286234}} \put( 2.607522 , 2.271887 ){\circle*{ .0286234}} \put( 2.638938 , 2.367182 ){\circle*{ .0286234}} \put( 2.670354 , 2.465297 ){\circle*{ .0286234}} \put( 2.701770 , 2.566156 ){\circle*{ .0286234}} \put( 2.733186 , 2.669670 ){\circle*{ .0286234}} \put( 2.764602 , 2.77573 ){\circle*{ .0286234}} \put( 2.796017 , 2.884218 ){\circle*{ .0286234}} \put( 2.827433 , 2.994995 ){\circle*{ .0286234}} \put( 2.858849 , 3.107909 ){\circle*{ .0286234}} \put( 2.890265 , 3.222794 ){\circle*{ .0286234}} \put( 2.921681 , 3.339468 ){\circle*{ .0286234}} \put( 2.953097 , 3.45774 ){\circle*{ .0286234}} \put( 2.984513 , 3.577404 ){\circle*{ .0286234}} \put( 3.015929 , 3.698244 ){\circle*{ .0286234}} \put( 3.047345 , 3.820037 ){\circle*{ .0286234}} \put( 3.07876 , 3.942552 ){\circle*{ .0286234}} \put( 3.110177 , 4.065549 ){\circle*{ .0286234}} \put( 3.141593 , 4.18879 ){\circle*{ .0286234}} \put( 3.173009 , 4.312031 ){\circle*{ .0286234}} \put( 3.204425 , 4.435029 ){\circle*{ .0286234}} \put( 3.23584 , 4.557543 ){\circle*{ .0286234}} \put( 3.267256 , 4.679336 ){\circle*{ .0286234}} \put( 3.298672 , 4.800177 ){\circle*{ .0286234}} \put( 3.330088 , 4.91984 ){\circle*{ .0286234}} \put( 3.361504 , 5.038112 ){\circle*{ .0286234}} \put( 3.39292 , 5.154787 ){\circle*{ .0286234}} \put( 3.424336 , 5.269671 ){\circle*{ .0286234}} \put( 3.455752 , 5.382585 ){\circle*{ .0286234}} \put( 3.487168 , 5.493362 ){\circle*{ .0286234}} \put( 3.518584 , 5.601850 ){\circle*{ .0286234}} \put( 3.550000 , 5.70791 ){\circle*{ .0286234}} \put( 3.581416 , 5.811424 ){\circle*{ .0286234}} \put( 3.612832 , 5.912283 ){\circle*{ .0286234}} \put( 3.644247 , 6.010398 ){\circle*{ .0286234}} \put( 3.675663 , 6.105693 ){\circle*{ .0286234}} \put( 3.707079 , 6.198109 ){\circle*{ .0286234}} \put( 3.738495 , 6.287599 ){\circle*{ .0286234}} \put( 3.769911 , 6.374132 ){\circle*{ .0286234}} \put( 3.801327 , 6.457691 ){\circle*{ .0286234}} \put( 3.832743 , 6.538269 ){\circle*{ .0286234}} \put( 3.864159 , 6.615873 ){\circle*{ .0286234}} \put( 3.895575 , 6.690520 ){\circle*{ .0286234}} \put( 3.92699 , 6.762236 ){\circle*{ .0286234}} \put( 3.958407 , 6.831058 ){\circle*{ .0286234}} \put( 3.989823 , 6.897029 ){\circle*{ .0286234}} \put( 4.021239 , 6.960201 ){\circle*{ .0286234}} \put( 4.052655 , 7.020632 ){\circle*{ .0286234}} \put( 4.08407 , 7.078384 ){\circle*{ .0286234}} \put( 4.115486 , 7.133525 ){\circle*{ .0286234}} \put( 4.146902 , 7.186128 ){\circle*{ .0286234}} \put( 4.178318 , 7.236265 ){\circle*{ .0286234}} \put( 4.209734 , 7.284016 ){\circle*{ .0286234}} \put( 4.24115 , 7.329458 ){\circle*{ .0286234}} \put( 4.272566 , 7.372671 ){\circle*{ .0286234}} \put( 4.303982 , 7.413737 ){\circle*{ .0286234}} \put( 4.335398 , 7.452736 ){\circle*{ .0286234}} \put( 4.366814 , 7.48975 ){\circle*{ .0286234}} \put( 4.398230 , 7.524859 ){\circle*{ .0286234}} \put( 4.429646 , 7.558141 ){\circle*{ .0286234}} \put( 4.461062 , 7.589676 ){\circle*{ .0286234}} \put( 4.492477 , 7.619540 ){\circle*{ .0286234}} \put( 4.523893 , 7.647807 ){\circle*{ .0286234}} \put( 4.555309 , 7.674552 ){\circle*{ .0286234}} \put( 4.586725 , 7.699845 ){\circle*{ .0286234}} \put( 4.618141 , 7.723755 ){\circle*{ .0286234}} \put( 4.649557 , 7.74635 ){\circle*{ .0286234}} \put( 4.680973 , 7.767694 ){\circle*{ .0286234}} \put( 4.712389 , 7.787849 ){\circle*{ .0286234}} \put( 4.743805 , 7.806875 ){\circle*{ .0286234}} \put( 4.77522 , 7.82483 ){\circle*{ .0286234}} \put( 4.806637 , 7.841771 ){\circle*{ .0286234}} \put( 4.838053 , 7.857749 ){\circle*{ .0286234}} \put( 4.869469 , 7.872815 ){\circle*{ .0286234}} \put( 4.900885 , 7.887018 ){\circle*{ .0286234}} \put( 4.9323 , 7.900405 ){\circle*{ .0286234}} \put( 4.963716 , 7.913019 ){\circle*{ .0286234}} \put( 4.995132 , 7.924904 ){\circle*{ .0286234}} \put( 5.026548 , 7.936098 ){\circle*{ .0286234}} \put( 5.057964 , 7.94664 ){\circle*{ .0286234}} \put( 5.08938 , 7.956567 ){\circle*{ .0286234}} \put( 5.120796 , 7.965912 ){\circle*{ .0286234}} \put( 5.152212 , 7.974709 ){\circle*{ .0286234}} \put( 5.183628 , 7.982989 ){\circle*{ .0286234}} \put( 5.215044 , 7.99078 ){\circle*{ .0286234}} \put( 5.246460 , 7.998112 ){\circle*{ .0286234}} \put( 5.277876 , 8.005010 ){\circle*{ .0286234}} \put( 5.309292 , 8.011499 ){\circle*{ .0286234}} \put( 5.340708 , 8.017602 ){\circle*{ .0286234}} \put( 5.372123 , 8.023343 ){\circle*{ .0286234}} \put( 5.403539 , 8.028742 ){\circle*{ .0286234}} \put( 5.434955 , 8.033818 ){\circle*{ .0286234}} \put( 5.466371 , 8.038592 ){\circle*{ .0286234}} \put( 5.497787 , 8.04308 ){\circle*{ .0286234}} \put( 5.529203 , 8.0473 ){\circle*{ .0286234}} \put( 5.560619 , 8.051267 ){\circle*{ .0286234}} \put( 5.592035 , 8.054996 ){\circle*{ .0286234}} \put( 5.62345 , 8.058502 ){\circle*{ .0286234}} \put( 5.654867 , 8.061796 ){\circle*{ .0286234}} \put( 5.686283 , 8.064893 ){\circle*{ .0286234}} \put( 5.717699 , 8.067803 ){\circle*{ .0286234}} \put( 5.749115 , 8.070538 ){\circle*{ .0286234}} \put( 5.78053 , 8.073108 ){\circle*{ .0286234}} \put( 5.811946 , 8.075523 ){\circle*{ .0286234}} \put( 5.843362 , 8.077793 ){\circle*{ .0286234}} \put( 5.874778 , 8.079925 ){\circle*{ .0286234}} \put( 5.906194 , 8.081929 ){\circle*{ .0286234}} \put( 5.93761 , 8.083811 ){\circle*{ .0286234}} \put( 5.969026 , 8.08558 ){\circle*{ .0286234}} \put( 6.000442 , 8.087242 ){\circle*{ .0286234}} \put( 6.031858 , 8.088803 ){\circle*{ .0286234}} \put( 6.063274 , 8.090270 ){\circle*{ .0286234}} \put( 6.094690 , 8.091647 ){\circle*{ .0286234}} \put( 6.126106 , 8.092942 ){\circle*{ .0286234}} \put( 6.157522 , 8.094158 ){\circle*{ .0286234}} \put( 6.188938 , 8.0953 ){\circle*{ .0286234}} \put( 6.220353 , 8.096373 ){\circle*{ .0286234}} \put( 6.251769 , 8.097381 ){\circle*{ .0286234}} \end{picture} \end{center} %Finis. apl>)off