apl>" <-APL2-------------------- sam315.txt ----------------------------> apl>)run cap2/sample/graph.inc apl>" <-APL2-------------------- graph.txt -----------------------------> apl>" Legend describing various global values: apl>" apl>" World coordinates(wc) are those of the real data. apl>" Graph coordinates(gc) are those of the graph. apl>" apl>" caption - Override to text for graph caption. If null, a caption apl>" will be generated. The graph function resets the global apl>" caption variable to null at the end of its processing. apl>" apl>" hk ------ Constant coefficient of input. If xr=1 (see below) then apl>" hk becomes the constant imaginary coefficient for all apl>" values of x on the graph. If xr=0, hk will be the constant apl>" real coefficient. apl>" apl>" htl ----- 0 = both, 1 = headers, 2 = trailers, 3 = neither. apl>" apl>" maxx ---- Maximum x axis value in world coordinates. apl>" apl>" maxy ---- Maximum y axis value in world coordinates. apl>" apl>" minx ---- Minimum x axis value in world coordinates. apl>" apl>" miny ---- Minimum y axis value in world coordinates. apl>" apl>" mgc ----- Vertical margin in graphic coordinates. apl>" apl>" n ------- Synonymous with hk (see above). The x values to which apl>" the function is applied to obtain y values are derived apl>" by first creating xwc as a vector of integers uniformly apl>" distributed between minx and maxx inclusive. Then, either apl>" 'x#(nX0j1)+xwc' or 'x#n+0j1Xxwc' is evaluated. apl>" apl>" nlb ----- 1 = Label the curve with the n value. apl>" apl>" points -- Number of points to generate. apl>" apl>" xgc ----- Array of x values for data points in graph coordinates. apl>" apl>" xiv ----- x axis marker interval in world coordinates. apl>" apl>" xlin ---- Width of graph in inches. apl>" apl>" xpg ----- Divide xwc by xpg to get xgc. apl>" apl>" xpi ----- Array of three values for minx, maxx, and xiv, used when apl>" invoking the graph function and the array of x values apl>" spans -pi to +pi. apl>" apl>" xr ------ 1=vary real x coefficient, 0=vary imaginary coefficient, apl>" holding the other coefficient to the constant hk (see above.). apl>" apl>" xt ------ Used in a variety of places to temporarily generate apl>" graphics coordinates. apl>" apl>" xwc ----- Array of x values in world coordinates. apl>" apl>" yadj ---- Adjustment down to print text below a line. apl>" apl>" yabm ---- Maximum absolute value (|y) to appear on graph. apl>" apl>" ygc ----- Array of y values for data points in graph coordinates. apl>" apl>" ylin ---- Height of graph in inches. apl>" apl>" ymgn ---- Margin in inches at top and bottom of y axis. apl>" apl>" ypg ----- Divide ywc by ypg to get ygc. apl>" apl>" yt ------ Used in a variety of places to temporarily generate apl>" graphics coordinates. apl>" apl>" ywc ----- Array of y values for data points in world coordinates. apl>" apl>" Set global values. --------------------------------------------> apl>" apl>caption#'' " Empty caption causes one to be generated. apl>i#11 " Circle function code to extract imag. coef. of complex number. apl>points#200 " Number of data points to generate on graph. apl>r#9 " Circle function code to extract real coef. of complex number. apl>xlin#4.5 " Width of graph in inches. apl>" minx = -3.14159.... apl>" | maxx = 3.14159.... apl>" | | xiv apl>" | | | apl>" V V V apl>xpi#(O-1),(O1),O.25 apl>ylin#6 " Height of graph in inches. apl>ymgn#.2 " Margin in inches at top and bottom of y axis. apl>" apl>" <-----------------------------------------------------------------> apl>" Generates the LaTeX \put statements for the data points to appear apl>" on the graph. apl>" apl>Lex 'dodata' 1 apl>Gdodata [1] xgc#(xwc_minx)%xpg " xgc=x graphic coordinates for data points. [2] ygc#mgc+(ywc_miny)%ypg " ygc=y graphic coordinates for data points. [3] $bylabXI0=nlb " Branch if the curve is not to be labelled. [4] '%Label the curve' [5] xt#1Y(u=S/u#|ywc)/xgc " x coord where maximum/mininum occurs [6] yt#(_yadjX0>vs/ywc)+(vs#xt=xgc)/ygc " y coord of maximum/minimum [7] " Note: Calculation for yt works only if all minima occur below [8] " y axis, and all maxima occur above. [9] pcon,(xt,',',[1.5]yt),`Z'){n\#',(Fhk),'}' [10] bylab:'%Draw the data points' [11] pcon,((xgc#-1U1Uxgc),',',[1.5](ygc#-1U1Uygc)),circon [12] G apl>" <-----------------------------------------------------------------> apl>" Generate xwc and ywc, the arrays of x/y coordinates for the data apl>" points to appear on the graph. apl>" apl>Lex 'genxy' 1 apl>Ggenxy [1] xwc#minx+(xlwc#maxx_minx)X(-1+Ipoints+1)%points [2] $varyrealXIxr [3] x#hk+0j1Xxwc " real part is constant, imaginary varies. [4] $calcy " Branch to compute values of y for data points. [5] varyreal:x#(hkX0j1)+xwc " Imaginary is constant, real varies. [6] calcy:ywc#eOCfun " Compute values of y for data points [7] ywcm#yabm>|ywc " Mask of keepers, magnitudes of y < yabm. [8] xwc#ywcm/xwc " Pick the keepers. [9] ywc#ywcm/ywc " Pick the keepers. [10] G apl>" apl>" <-----------------------------------------------------------------> apl>" Main graph routine. apl>" apl>Lex 'graph' 1 apl>Gfun graph a [1] "Graphs the imaginary or real coefficient of result of fun. [2] " fun = expression to evaluate. [3] (htl nlb xr e yabm minx maxx xiv hk yiv yca)#a [4] genxy " Generate the data points. [5] $dataXIhtl>1 " Branch if htl greater than 1. [6] scale " Calculate global scaling values. [7] headers " Generate LaTeX figure headers. [8] data:dodata " Process and graph data points. [9] trailers " Generate Latex figure trailers, maybe. [10] G apl>" apl>" <-----------------------------------------------------------------> apl>" Generates the LaTeX statements to begin the graph. apl>" apl>Lex 'headers' 1 apl>Gheaders [1] '\begin{figure}[tbh]' [2] $gencapXI0=Rcaption " Branch if no caption override. [3] '\caption{',caption,'}' [4] $begin [5] gencap:$realcapXI(xr=1)&hk=0 " Branch if x data are not complex. [6] $ncaptionXInlb=0 " Branch if curves are not labelled with n value. [7] '\caption{Graph of y\#',(Fe),'O',fun,'+nX0j1}' [8] $begin [9] ncaption:$cplxcapXIxr " Branch if varying real coefficient. [10] '\caption{Graph of y\#',(Fe),'O',(-1Ufun),(Fhk),'+xX0j1}' [11] $begin [12] cplxcap:'\caption{Graph of y\#',(Fe),'O',fun,'+(n\#',(Fhk),')X0j1}' [13] $begin [14] realcap:'\caption{Graph of y\#',fun,'}' [15] begin:'\begin{center}' [16] '\setlength{\unitlength}{',(Flin),'in}' [17] '\begin{picture}(',(Fxlin%lin),',',(Fylin%lin),')' [18] '%Draw a frame around the picture' [19] ' \put(0,0){\line(1,0){',(Fxlgc),'}}% bottom' [20] ' \put(0,0){\line(0,1){',(Fylgc),'}}% left' [21] ' \put(0,',(Fylgc),'){\line(1,0){',(Fxlgc),'}}% top' [22] ' \put(',(Fxlgc),',0){\line(0,1){',(Fylgc),'}}% right' [23] '%Draw the x axis' [24] ' \put(0,',(Fxax),'){\line(1,0){',(Fxlgc),'}}%x axis' [25] xt#xoff%xpg [26] pcon,((xt,[1.5]','),xax),circon " Draw the x axis markers. [27] xt#xt_xpgX.1Xxmk<0 [28] yt#xax+((.05%lin)Xxax=mgc)_yadjXxax>mgc [29] $dopaxXIpix [30] '%Draw the x axis marker values' [31] pcon,xt,',',yt,econ,xmk,[1.5]scon [32] $doyax [33] dopax:'%Draw the x axis marker values in pi' [34] picon#(`Z'\frac{') ,`1 '\pi}{4}' '\pi}{2}' '3\pi}{4}' [35] picon#('-',`1`Rpicon),'0',picon [36] pcon,xt,',',yt,econ,picon,[1.5]scon [37] doyax:'%Draw the y axis' [38] $putymkXI(yax=0) [39] ' \put(',(Fyax),',0){\line(0,1){',(Fylgc),'}}%y axis' [40] putymk:'%Draw the y axis markers' [41] ymask#ymk^=0 [42] yt#ymask/mgc+(ymk_miny)%ypg [43] pcon,yax,',',yt,[1.5]circon [44] '%Draw the y axis marker values' [45] xt#yax+.05%lin [46] yt#yt_ypgX.1X(ymask/ymk)<0 [47] pcon,xt,',',yt,econ,(ymask/ymk),[1.5]scon [48] G apl>" apl>" <-----------------------------------------------------------------> apl>" Calculates a variety of values needed to produce the graph. apl>" apl>Lex 'scale' 1 apl>Gscale [1] $byyXIyca " Branch if ylwc, maxy, miny are precalculated. [2] ylwc#(maxy#S/ywc)_miny#D/ywc [3] byy:ylap#ylin_2Xymgn " ylap=height allowed for data points. [4] lin#(xlin%xlwc)Dylap%ylwc " unitlength in inches. [5] yadj#.14%lin " y graphic coordinate adjustment to print text below line. [6] mgc#ymgn%lin " Margin in graph coordinates. [7] xpg#xlwc%xlgc#xlin%lin " Divide xwc by xpg to get gc. [8] ypg#ylwc%(_2Xymgn%lin)+ylgc#ylin%lin " Divide ywc by ypg to get gc. [9] xax#(yz#(minyK0)&maxyZ0)Xmgc+(|miny)%ypg " xaxis in graph coordinates. [10] yax#(xz#(minx<0)&maxx>0)X(|minx)%xpg " yaxis in graph coordinates. [11] $piaxisXIpix#(minx=O-1)&maxx=O1 " branch if pi units on x axis. [12] xic#(yax=0)+Dxlwc%xiv [13] $doyiv [14] piaxis:xic#Dxlwc%xiv#O.25 [15] doyiv:$doyicXIyiv^=0 [16] yiv#10*D10@ylwc [17] doyic:yic#yic+0=2|yic#Dylwc%yiv [18] xoff#(I-1+xic)Xxiv " Offset from minx in world coord. of x markers. [19] yoff#(_yiv)+(Iyic)Xyiv " Offset from miny in world coord. of y markers. [20] $yoffplusXIminy>0 [21] ymk#yoff+miny+yiv||miny [22] $yoffdone [23] yoffplus:ymk#yoff+miny_yiv|miny " y for y axis markers in world coord. [24] yoffdone:xmk#minx+xoff " x for x axis markers in world coord. [25] circon#`Z'){\circle*{',(F.0205%lin),'}}' [26] scon#`Z'$}' [27] econ#`Z'){$' [28] pcon#`Z' \put(' [29] G apl>" apl>" <-----------------------------------------------------------------> apl>" Generates the LaTeX statements to finish the graph. apl>" apl>Lex 'trailers' 1 apl>Gtrailers [1] $epicXIhtl=0 " Branch if both headers and trailers. [2] $eojckXInlb " Branch if graph already labelled. [3] pcon,(1Yxgc+xpgX.1),',',(1Yygc),'){',fun,'}' " Label the graph. [4] eojck:$eojXI(htl=1)+htl=3 " br if headers only, or neither. [5] epic:'\end{picture}' [6] '\end{center}' [7] eoj:'%Finis.' [8] caption#'' " Reset global caption [9] G apl>" htl: 0=both, 1=headers, 2=trailers, 3=neither. apl>" | nlb 1 = Label the curve. apl>" | | xr = 1=vary real x coeff, 0=vary imaginary coeff. apl>" | | | e = i(11) or r(9) to select coefficient to graph. apl>" | | | | yabm = maximum |y printed on graph. apl>" | | | | | minx = minimum value of x. apl>" | | | | | | maxx = maximum value of x. apl>" | | | | | | | xiv = x axis marker interval. apl>" | | | | | | | | hk = Constant coefficient of input. apl>" | | | | | | | | | yiv = y axis marker interval, or 0. apl>" | | | | | | | | | | yca = ylwc, maxy, miny are precalculated. apl>" | | | | | | | | | | | apl>" V V V V V V V V V V V apl>ylwc#(maxy#8)_miny#-8 apl> '6Ox' graph 1,1,1,r,8 ,-4,4,1 ,0.5 , 1 ,1 " coshdatx.tex \begin{figure}[tbh] \caption{Graph of y\#9O6Ox+nX0j1} \begin{center} \setlength{\unitlength}{ .35in} \begin{picture}(12.85714,17.14286) %Draw a frame around the picture \put(0,0){\line(1,0){12.85714}}% bottom \put(0,0){\line(0,1){17.14286}}% left \put(0,17.14286){\line(1,0){12.85714}}% top \put(12.85714,0){\line(0,1){17.14286}}% right %Draw the x axis \put(0,8.571429){\line(1,0){12.85714}}%x axis \put( 1.607143 , 8.571429 ){\circle*{ .05857143}} \put( 3.214286 , 8.571429 ){\circle*{ .05857143}} \put( 4.821429 , 8.571429 ){\circle*{ .05857143}} \put( 6.428571 , 8.571429 ){\circle*{ .05857143}} \put( 8.035714 , 8.571429 ){\circle*{ .05857143}} \put( 9.64286 , 8.571429 ){\circle*{ .05857143}} \put( 11.25 , 8.571429 ){\circle*{ .05857143}} %Draw the x axis marker values \put( 1.54492 , 8.171429 ){$ -3 $} \put( 3.152063 , 8.171429 ){$ -2 $} \put( 4.759206 , 8.171429 ){$ -1 $} \put( 6.428571 , 8.171429 ){$ 0 $} \put( 8.035714 , 8.171429 ){$ 1 $} \put( 9.64286 , 8.171429 ){$ 2 $} \put( 11.25 , 8.171429 ){$ 3 $} %Draw the y axis \put(6.428571,0){\line(0,1){17.14286}}%y axis %Draw the y axis markers \put( 6.428571 , .571429 ){\circle*{ .05857143}} \put( 6.428571 , 1.571429 ){\circle*{ .05857143}} \put( 6.428571 , 2.571429 ){\circle*{ .05857143}} \put( 6.428571 , 3.571429 ){\circle*{ .05857143}} \put( 6.428571 , 4.571429 ){\circle*{ .05857143}} \put( 6.428571 , 5.571429 ){\circle*{ .05857143}} \put( 6.428571 , 6.571429 ){\circle*{ .05857143}} \put( 6.428571 , 7.571429 ){\circle*{ .05857143}} \put( 6.428571 , 9.57143 ){\circle*{ .05857143}} \put( 6.428571 , 10.57143 ){\circle*{ .05857143}} \put( 6.428571 , 11.57143 ){\circle*{ .05857143}} \put( 6.428571 , 12.57143 ){\circle*{ .05857143}} \put( 6.428571 , 13.57143 ){\circle*{ .05857143}} \put( 6.428571 , 14.57143 ){\circle*{ .05857143}} \put( 6.428571 , 15.57143 ){\circle*{ .05857143}} \put( 6.428571 , 16.57143 ){\circle*{ .05857143}} %Draw the y axis marker values \put( 6.571429 , .47142857 ){$ -8 $} \put( 6.571429 , 1.471429 ){$ -7 $} \put( 6.571429 , 2.471429 ){$ -6 $} \put( 6.571429 , 3.471429 ){$ -5 $} \put( 6.571429 , 4.471429 ){$ -4 $} \put( 6.571429 , 5.471429 ){$ -3 $} \put( 6.571429 , 6.471429 ){$ -2 $} \put( 6.571429 , 7.471429 ){$ -1 $} \put( 6.571429 , 9.57143 ){$ 1 $} \put( 6.571429 , 10.57143 ){$ 2 $} \put( 6.571429 , 11.57143 ){$ 3 $} \put( 6.571429 , 12.57143 ){$ 4 $} \put( 6.571429 , 13.57143 ){$ 5 $} \put( 6.571429 , 14.57143 ){$ 6 $} \put( 6.571429 , 15.57143 ){$ 7 $} \put( 6.571429 , 16.57143 ){$ 8 $} %Label the curve \put( 1.8 , 16.4128 ){n\# .5} %Draw the data points \put( 1.864286 , 16.10731 ){\circle*{ .05857143}} \put( 1.928571 , 15.81388 ){\circle*{ .05857143}} \put( 1.992857 , 15.53203 ){\circle*{ .05857143}} \put( 2.057143 , 15.26133 ){\circle*{ .05857143}} \put( 2.121429 , 15.00133 ){\circle*{ .05857143}} \put( 2.185714 , 14.75161 ){\circle*{ .05857143}} \put( 2.25 , 14.51179 ){\circle*{ .05857143}} \put( 2.314286 , 14.28147 ){\circle*{ .05857143}} \put( 2.378571 , 14.06029 ){\circle*{ .05857143}} \put( 2.442857 , 13.84790 ){\circle*{ .05857143}} \put( 2.507143 , 13.64394 ){\circle*{ .05857143}} \put( 2.571429 , 13.4481 ){\circle*{ .05857143}} \put( 2.635714 , 13.26008 ){\circle*{ .05857143}} \put( 2.7 , 13.07955 ){\circle*{ .05857143}} \put( 2.764286 , 12.90623 ){\circle*{ .05857143}} \put( 2.828571 , 12.73985 ){\circle*{ .05857143}} \put( 2.892857 , 12.58015 ){\circle*{ .05857143}} \put( 2.957143 , 12.42685 ){\circle*{ .05857143}} \put( 3.021429 , 12.27973 ){\circle*{ .05857143}} \put( 3.085714 , 12.13854 ){\circle*{ .05857143}} \put( 3.15 , 12.00306 ){\circle*{ .05857143}} \put( 3.214286 , 11.87307 ){\circle*{ .05857143}} \put( 3.278571 , 11.74836 ){\circle*{ .05857143}} \put( 3.342857 , 11.62874 ){\circle*{ .05857143}} \put( 3.407143 , 11.514 ){\circle*{ .05857143}} \put( 3.471429 , 11.40398 ){\circle*{ .05857143}} \put( 3.535714 , 11.29849 ){\circle*{ .05857143}} \put( 3.6 , 11.19737 ){\circle*{ .05857143}} \put( 3.664286 , 11.10044 ){\circle*{ .05857143}} \put( 3.728571 , 11.00757 ){\circle*{ .05857143}} \put( 3.792857 , 10.91859 ){\circle*{ .05857143}} \put( 3.857143 , 10.83337 ){\circle*{ .05857143}} \put( 3.921429 , 10.75176 ){\circle*{ .05857143}} \put( 3.985714 , 10.67365 ){\circle*{ .05857143}} \put( 4.05 , 10.5989 ){\circle*{ .05857143}} \put( 4.114286 , 10.52739 ){\circle*{ .05857143}} \put( 4.178571 , 10.45902 ){\circle*{ .05857143}} \put( 4.242857 , 10.39366 ){\circle*{ .05857143}} \put( 4.307143 , 10.33123 ){\circle*{ .05857143}} \put( 4.371429 , 10.2716 ){\circle*{ .05857143}} \put( 4.435714 , 10.2147 ){\circle*{ .05857143}} \put( 4.5 , 10.16043 ){\circle*{ .05857143}} \put( 4.564286 , 10.10870 ){\circle*{ .05857143}} \put( 4.628571 , 10.05943 ){\circle*{ .05857143}} \put( 4.692857 , 10.01254 ){\circle*{ .05857143}} \put( 4.757143 , 9.96796 ){\circle*{ .05857143}} \put( 4.821429 , 9.92561 ){\circle*{ .05857143}} \put( 4.885714 , 9.88543 ){\circle*{ .05857143}} \put( 4.95 , 9.84735 ){\circle*{ .05857143}} \put( 5.014286 , 9.81131 ){\circle*{ .05857143}} \put( 5.078571 , 9.77726 ){\circle*{ .05857143}} \put( 5.142857 , 9.74514 ){\circle*{ .05857143}} \put( 5.207143 , 9.71489 ){\circle*{ .05857143}} \put( 5.271429 , 9.68648 ){\circle*{ .05857143}} \put( 5.335714 , 9.65985 ){\circle*{ .05857143}} \put( 5.4 , 9.63496 ){\circle*{ .05857143}} \put( 5.464286 , 9.61177 ){\circle*{ .05857143}} \put( 5.528571 , 9.59025 ){\circle*{ .05857143}} \put( 5.592857 , 9.57036 ){\circle*{ .05857143}} \put( 5.657143 , 9.55206 ){\circle*{ .05857143}} \put( 5.721429 , 9.53534 ){\circle*{ .05857143}} \put( 5.785714 , 9.52016 ){\circle*{ .05857143}} \put( 5.85 , 9.50650 ){\circle*{ .05857143}} \put( 5.914286 , 9.494328 ){\circle*{ .05857143}} \put( 5.978571 , 9.483638 ){\circle*{ .05857143}} \put( 6.042857 , 9.474407 ){\circle*{ .05857143}} \put( 6.107143 , 9.466621 ){\circle*{ .05857143}} \put( 6.171429 , 9.460268 ){\circle*{ .05857143}} \put( 6.235714 , 9.455337 ){\circle*{ .05857143}} \put( 6.3 , 9.45182 ){\circle*{ .05857143}} \put( 6.364286 , 9.449713 ){\circle*{ .05857143}} \put( 6.428571 , 9.449011 ){\circle*{ .05857143}} \put( 6.492857 , 9.449713 ){\circle*{ .05857143}} \put( 6.557143 , 9.45182 ){\circle*{ .05857143}} \put( 6.621429 , 9.455337 ){\circle*{ .05857143}} \put( 6.685714 , 9.460268 ){\circle*{ .05857143}} \put( 6.75 , 9.466621 ){\circle*{ .05857143}} \put( 6.814286 , 9.474407 ){\circle*{ .05857143}} \put( 6.878571 , 9.483638 ){\circle*{ .05857143}} \put( 6.942857 , 9.494328 ){\circle*{ .05857143}} \put( 7.007143 , 9.50650 ){\circle*{ .05857143}} \put( 7.071429 , 9.52016 ){\circle*{ .05857143}} \put( 7.135714 , 9.53534 ){\circle*{ .05857143}} \put( 7.2 , 9.55206 ){\circle*{ .05857143}} \put( 7.264286 , 9.57036 ){\circle*{ .05857143}} \put( 7.328571 , 9.59025 ){\circle*{ .05857143}} \put( 7.392857 , 9.61177 ){\circle*{ .05857143}} \put( 7.457143 , 9.63496 ){\circle*{ .05857143}} \put( 7.521429 , 9.65985 ){\circle*{ .05857143}} \put( 7.585714 , 9.68648 ){\circle*{ .05857143}} \put( 7.65 , 9.71489 ){\circle*{ .05857143}} \put( 7.714286 , 9.74514 ){\circle*{ .05857143}} \put( 7.778571 , 9.77726 ){\circle*{ .05857143}} \put( 7.842857 , 9.81131 ){\circle*{ .05857143}} \put( 7.907143 , 9.84735 ){\circle*{ .05857143}} \put( 7.971429 , 9.88543 ){\circle*{ .05857143}} \put( 8.035714 , 9.92561 ){\circle*{ .05857143}} \put( 8.1 , 9.96796 ){\circle*{ .05857143}} \put( 8.164286 , 10.01254 ){\circle*{ .05857143}} \put( 8.228571 , 10.05943 ){\circle*{ .05857143}} \put( 8.292857 , 10.10870 ){\circle*{ .05857143}} \put( 8.357143 , 10.16043 ){\circle*{ .05857143}} \put( 8.421429 , 10.2147 ){\circle*{ .05857143}} \put( 8.485714 , 10.2716 ){\circle*{ .05857143}} \put( 8.55 , 10.33123 ){\circle*{ .05857143}} \put( 8.614286 , 10.39366 ){\circle*{ .05857143}} \put( 8.678571 , 10.45902 ){\circle*{ .05857143}} \put( 8.742857 , 10.52739 ){\circle*{ .05857143}} \put( 8.807143 , 10.5989 ){\circle*{ .05857143}} \put( 8.871429 , 10.67365 ){\circle*{ .05857143}} \put( 8.935714 , 10.75176 ){\circle*{ .05857143}} \put( 9 , 10.83337 ){\circle*{ .05857143}} \put( 9.064286 , 10.91859 ){\circle*{ .05857143}} \put( 9.128571 , 11.00757 ){\circle*{ .05857143}} \put( 9.192857 , 11.10044 ){\circle*{ .05857143}} \put( 9.257143 , 11.19737 ){\circle*{ .05857143}} \put( 9.321429 , 11.29849 ){\circle*{ .05857143}} \put( 9.385714 , 11.40398 ){\circle*{ .05857143}} \put( 9.45 , 11.514 ){\circle*{ .05857143}} \put( 9.51429 , 11.62874 ){\circle*{ .05857143}} \put( 9.57857 , 11.74836 ){\circle*{ .05857143}} \put( 9.64286 , 11.87307 ){\circle*{ .05857143}} \put( 9.70714 , 12.00306 ){\circle*{ .05857143}} \put( 9.77143 , 12.13854 ){\circle*{ .05857143}} \put( 9.83571 , 12.27973 ){\circle*{ .05857143}} \put( 9.9 , 12.42685 ){\circle*{ .05857143}} \put( 9.96429 , 12.58015 ){\circle*{ .05857143}} \put( 10.02857 , 12.73985 ){\circle*{ .05857143}} \put( 10.09286 , 12.90623 ){\circle*{ .05857143}} \put( 10.15714 , 13.07955 ){\circle*{ .05857143}} \put( 10.22143 , 13.26008 ){\circle*{ .05857143}} \put( 10.28571 , 13.4481 ){\circle*{ .05857143}} \put( 10.35 , 13.64394 ){\circle*{ .05857143}} \put( 10.41429 , 13.84790 ){\circle*{ .05857143}} \put( 10.47857 , 14.06029 ){\circle*{ .05857143}} \put( 10.54286 , 14.28147 ){\circle*{ .05857143}} \put( 10.60714 , 14.51179 ){\circle*{ .05857143}} \put( 10.67143 , 14.75161 ){\circle*{ .05857143}} \put( 10.73571 , 15.00133 ){\circle*{ .05857143}} \put( 10.8 , 15.26133 ){\circle*{ .05857143}} \put( 10.86429 , 15.53203 ){\circle*{ .05857143}} \put( 10.92857 , 15.81388 ){\circle*{ .05857143}} \put( 10.99286 , 16.10731 ){\circle*{ .05857143}} %Finis. apl> '6Ox' graph 3,1,1,r,8 ,-4,4,1 ,1 , 1 ,1 " coshdatx.tex %Label the curve \put( 1.028571 , 16.35825 ){n\#1} %Draw the data points \put( 1.092857 , 16.05367 ){\circle*{ .05857143}} \put( 1.157143 , 15.76107 ){\circle*{ .05857143}} \put( 1.221429 , 15.47997 ){\circle*{ .05857143}} \put( 1.285714 , 15.20993 ){\circle*{ .05857143}} \put( 1.35 , 14.95051 ){\circle*{ .05857143}} \put( 1.414286 , 14.7013 ){\circle*{ .05857143}} \put( 1.478571 , 14.4619 ){\circle*{ .05857143}} \put( 1.542857 , 14.23193 ){\circle*{ .05857143}} \put( 1.607143 , 14.01101 ){\circle*{ .05857143}} \put( 1.671429 , 13.79880 ){\circle*{ .05857143}} \put( 1.735714 , 13.59495 ){\circle*{ .05857143}} \put( 1.8 , 13.39914 ){\circle*{ .05857143}} \put( 1.864286 , 13.21106 ){\circle*{ .05857143}} \put( 1.928571 , 13.03040 ){\circle*{ .05857143}} \put( 1.992857 , 12.85687 ){\circle*{ .05857143}} \put( 2.057143 , 12.6902 ){\circle*{ .05857143}} \put( 2.121429 , 12.53013 ){\circle*{ .05857143}} \put( 2.185714 , 12.37639 ){\circle*{ .05857143}} \put( 2.25 , 12.22874 ){\circle*{ .05857143}} \put( 2.314286 , 12.08694 ){\circle*{ .05857143}} \put( 2.378571 , 11.95076 ){\circle*{ .05857143}} \put( 2.442857 , 11.82000 ){\circle*{ .05857143}} \put( 2.507143 , 11.69443 ){\circle*{ .05857143}} \put( 2.571429 , 11.57386 ){\circle*{ .05857143}} \put( 2.635714 , 11.45809 ){\circle*{ .05857143}} \put( 2.7 , 11.34695 ){\circle*{ .05857143}} \put( 2.764286 , 11.24024 ){\circle*{ .05857143}} \put( 2.828571 , 11.1378 ){\circle*{ .05857143}} \put( 2.892857 , 11.03948 ){\circle*{ .05857143}} \put( 2.957143 , 10.9451 ){\circle*{ .05857143}} \put( 3.021429 , 10.85452 ){\circle*{ .05857143}} \put( 3.085714 , 10.76760 ){\circle*{ .05857143}} \put( 3.15 , 10.68418 ){\circle*{ .05857143}} \put( 3.214286 , 10.60415 ){\circle*{ .05857143}} \put( 3.278571 , 10.52737 ){\circle*{ .05857143}} \put( 3.342857 , 10.45372 ){\circle*{ .05857143}} \put( 3.407143 , 10.38309 ){\circle*{ .05857143}} \put( 3.471429 , 10.31535 ){\circle*{ .05857143}} \put( 3.535714 , 10.2504 ){\circle*{ .05857143}} \put( 3.6 , 10.18814 ){\circle*{ .05857143}} \put( 3.664286 , 10.12847 ){\circle*{ .05857143}} \put( 3.728571 , 10.07129 ){\circle*{ .05857143}} \put( 3.792857 , 10.0165 ){\circle*{ .05857143}} \put( 3.857143 , 9.96404 ){\circle*{ .05857143}} \put( 3.921429 , 9.91380 ){\circle*{ .05857143}} \put( 3.985714 , 9.8657 ){\circle*{ .05857143}} \put( 4.05 , 9.81968 ){\circle*{ .05857143}} \put( 4.114286 , 9.77566 ){\circle*{ .05857143}} \put( 4.178571 , 9.73356 ){\circle*{ .05857143}} \put( 4.242857 , 9.69333 ){\circle*{ .05857143}} \put( 4.307143 , 9.65489 ){\circle*{ .05857143}} \put( 4.371429 , 9.61818 ){\circle*{ .05857143}} \put( 4.435714 , 9.58314 ){\circle*{ .05857143}} \put( 4.5 , 9.54973 ){\circle*{ .05857143}} \put( 4.564286 , 9.51788 ){\circle*{ .05857143}} \put( 4.628571 , 9.487547 ){\circle*{ .05857143}} \put( 4.692857 , 9.458679 ){\circle*{ .05857143}} \put( 4.757143 , 9.431231 ){\circle*{ .05857143}} \put( 4.821429 , 9.405159 ){\circle*{ .05857143}} \put( 4.885714 , 9.38042 ){\circle*{ .05857143}} \put( 4.95 , 9.356977 ){\circle*{ .05857143}} \put( 5.014286 , 9.33479 ){\circle*{ .05857143}} \put( 5.078571 , 9.313825 ){\circle*{ .05857143}} \put( 5.142857 , 9.294048 ){\circle*{ .05857143}} \put( 5.207143 , 9.275427 ){\circle*{ .05857143}} \put( 5.271429 , 9.257933 ){\circle*{ .05857143}} \put( 5.335714 , 9.241537 ){\circle*{ .05857143}} \put( 5.4 , 9.226214 ){\circle*{ .05857143}} \put( 5.464286 , 9.211938 ){\circle*{ .05857143}} \put( 5.528571 , 9.198688 ){\circle*{ .05857143}} \put( 5.592857 , 9.18644 ){\circle*{ .05857143}} \put( 5.657143 , 9.175178 ){\circle*{ .05857143}} \put( 5.721429 , 9.164881 ){\circle*{ .05857143}} \put( 5.785714 , 9.155534 ){\circle*{ .05857143}} \put( 5.85 , 9.147122 ){\circle*{ .05857143}} \put( 5.914286 , 9.139631 ){\circle*{ .05857143}} \put( 5.978571 , 9.133049 ){\circle*{ .05857143}} \put( 6.042857 , 9.127366 ){\circle*{ .05857143}} \put( 6.107143 , 9.122573 ){\circle*{ .05857143}} \put( 6.171429 , 9.118662 ){\circle*{ .05857143}} \put( 6.235714 , 9.115626 ){\circle*{ .05857143}} \put( 6.3 , 9.11346 ){\circle*{ .05857143}} \put( 6.364286 , 9.112163 ){\circle*{ .05857143}} \put( 6.428571 , 9.11173 ){\circle*{ .05857143}} \put( 6.492857 , 9.112163 ){\circle*{ .05857143}} \put( 6.557143 , 9.11346 ){\circle*{ .05857143}} \put( 6.621429 , 9.115626 ){\circle*{ .05857143}} \put( 6.685714 , 9.118662 ){\circle*{ .05857143}} \put( 6.75 , 9.122573 ){\circle*{ .05857143}} \put( 6.814286 , 9.127366 ){\circle*{ .05857143}} \put( 6.878571 , 9.133049 ){\circle*{ .05857143}} \put( 6.942857 , 9.139631 ){\circle*{ .05857143}} \put( 7.007143 , 9.147122 ){\circle*{ .05857143}} \put( 7.071429 , 9.155534 ){\circle*{ .05857143}} \put( 7.135714 , 9.164881 ){\circle*{ .05857143}} \put( 7.2 , 9.175178 ){\circle*{ .05857143}} \put( 7.264286 , 9.18644 ){\circle*{ .05857143}} \put( 7.328571 , 9.198688 ){\circle*{ .05857143}} \put( 7.392857 , 9.211938 ){\circle*{ .05857143}} \put( 7.457143 , 9.226214 ){\circle*{ .05857143}} \put( 7.521429 , 9.241537 ){\circle*{ .05857143}} \put( 7.585714 , 9.257933 ){\circle*{ .05857143}} \put( 7.65 , 9.275427 ){\circle*{ .05857143}} \put( 7.714286 , 9.294048 ){\circle*{ .05857143}} \put( 7.778571 , 9.313825 ){\circle*{ .05857143}} \put( 7.842857 , 9.33479 ){\circle*{ .05857143}} \put( 7.907143 , 9.356977 ){\circle*{ .05857143}} \put( 7.971429 , 9.38042 ){\circle*{ .05857143}} \put( 8.035714 , 9.405159 ){\circle*{ .05857143}} \put( 8.1 , 9.431231 ){\circle*{ .05857143}} \put( 8.164286 , 9.458679 ){\circle*{ .05857143}} \put( 8.228571 , 9.487547 ){\circle*{ .05857143}} \put( 8.292857 , 9.51788 ){\circle*{ .05857143}} \put( 8.357143 , 9.54973 ){\circle*{ .05857143}} \put( 8.421429 , 9.58314 ){\circle*{ .05857143}} \put( 8.485714 , 9.61818 ){\circle*{ .05857143}} \put( 8.55 , 9.65489 ){\circle*{ .05857143}} \put( 8.614286 , 9.69333 ){\circle*{ .05857143}} \put( 8.678571 , 9.73356 ){\circle*{ .05857143}} \put( 8.742857 , 9.77566 ){\circle*{ .05857143}} \put( 8.807143 , 9.81968 ){\circle*{ .05857143}} \put( 8.871429 , 9.8657 ){\circle*{ .05857143}} \put( 8.935714 , 9.91380 ){\circle*{ .05857143}} \put( 9 , 9.96404 ){\circle*{ .05857143}} \put( 9.064286 , 10.0165 ){\circle*{ .05857143}} \put( 9.128571 , 10.07129 ){\circle*{ .05857143}} \put( 9.192857 , 10.12847 ){\circle*{ .05857143}} \put( 9.257143 , 10.18814 ){\circle*{ .05857143}} \put( 9.321429 , 10.2504 ){\circle*{ .05857143}} \put( 9.385714 , 10.31535 ){\circle*{ .05857143}} \put( 9.45 , 10.38309 ){\circle*{ .05857143}} \put( 9.51429 , 10.45372 ){\circle*{ .05857143}} \put( 9.57857 , 10.52737 ){\circle*{ .05857143}} \put( 9.64286 , 10.60415 ){\circle*{ .05857143}} \put( 9.70714 , 10.68418 ){\circle*{ .05857143}} \put( 9.77143 , 10.76760 ){\circle*{ .05857143}} \put( 9.83571 , 10.85452 ){\circle*{ .05857143}} \put( 9.9 , 10.9451 ){\circle*{ .05857143}} \put( 9.96429 , 11.03948 ){\circle*{ .05857143}} \put( 10.02857 , 11.1378 ){\circle*{ .05857143}} \put( 10.09286 , 11.24024 ){\circle*{ .05857143}} \put( 10.15714 , 11.34695 ){\circle*{ .05857143}} \put( 10.22143 , 11.45809 ){\circle*{ .05857143}} \put( 10.28571 , 11.57386 ){\circle*{ .05857143}} \put( 10.35 , 11.69443 ){\circle*{ .05857143}} \put( 10.41429 , 11.82000 ){\circle*{ .05857143}} \put( 10.47857 , 11.95076 ){\circle*{ .05857143}} \put( 10.54286 , 12.08694 ){\circle*{ .05857143}} \put( 10.60714 , 12.22874 ){\circle*{ .05857143}} \put( 10.67143 , 12.37639 ){\circle*{ .05857143}} \put( 10.73571 , 12.53013 ){\circle*{ .05857143}} \put( 10.8 , 12.6902 ){\circle*{ .05857143}} \put( 10.86429 , 12.85687 ){\circle*{ .05857143}} \put( 10.92857 , 13.03040 ){\circle*{ .05857143}} \put( 10.99286 , 13.21106 ){\circle*{ .05857143}} \put( 11.05714 , 13.39914 ){\circle*{ .05857143}} \put( 11.12143 , 13.59495 ){\circle*{ .05857143}} \put( 11.18571 , 13.79880 ){\circle*{ .05857143}} \put( 11.25 , 14.01101 ){\circle*{ .05857143}} \put( 11.31429 , 14.23193 ){\circle*{ .05857143}} \put( 11.37857 , 14.4619 ){\circle*{ .05857143}} \put( 11.44286 , 14.7013 ){\circle*{ .05857143}} \put( 11.50714 , 14.95051 ){\circle*{ .05857143}} \put( 11.57143 , 15.20993 ){\circle*{ .05857143}} \put( 11.63571 , 15.47997 ){\circle*{ .05857143}} \put( 11.7 , 15.76107 ){\circle*{ .05857143}} \put( 11.76429 , 16.05367 ){\circle*{ .05857143}} %Finis. apl> '6Ox' graph 2,1,1,r,8 ,-4,4,1 ,2 , 1 ,1 " coshdatx.tex %Label the curve \put( .578571 , .24006748 ){n\#2} %Draw the data points \put( .642857 , .950623 ){\circle*{ .05857143}} \put( .707143 , 1.248985 ){\circle*{ .05857143}} \put( .771429 , 1.535628 ){\circle*{ .05857143}} \put( .835714 , 1.811013 ){\circle*{ .05857143}} \put( .9 , 2.075580 ){\circle*{ .05857143}} \put( .964286 , 2.329752 ){\circle*{ .05857143}} \put( 1.028571 , 2.573936 ){\circle*{ .05857143}} \put( 1.092857 , 2.808522 ){\circle*{ .05857143}} \put( 1.157143 , 3.033887 ){\circle*{ .05857143}} \put( 1.221429 , 3.25039 ){\circle*{ .05857143}} \put( 1.285714 , 3.458380 ){\circle*{ .05857143}} \put( 1.35 , 3.658186 ){\circle*{ .05857143}} \put( 1.414286 , 3.850131 ){\circle*{ .05857143}} \put( 1.478571 , 4.03452 ){\circle*{ .05857143}} \put( 1.542857 , 4.21165 ){\circle*{ .05857143}} \put( 1.607143 , 4.381803 ){\circle*{ .05857143}} \put( 1.671429 , 4.545251 ){\circle*{ .05857143}} \put( 1.735714 , 4.702257 ){\circle*{ .05857143}} \put( 1.8 , 4.853072 ){\circle*{ .05857143}} \put( 1.864286 , 4.997936 ){\circle*{ .05857143}} \put( 1.928571 , 5.137082 ){\circle*{ .05857143}} \put( 1.992857 , 5.270732 ){\circle*{ .05857143}} \put( 2.057143 , 5.3991 ){\circle*{ .05857143}} \put( 2.121429 , 5.522392 ){\circle*{ .05857143}} \put( 2.185714 , 5.640805 ){\circle*{ .05857143}} \put( 2.25 , 5.754528 ){\circle*{ .05857143}} \put( 2.314286 , 5.863744 ){\circle*{ .05857143}} \put( 2.378571 , 5.968626 ){\circle*{ .05857143}} \put( 2.442857 , 6.069344 ){\circle*{ .05857143}} \put( 2.507143 , 6.166058 ){\circle*{ .05857143}} \put( 2.571429 , 6.258923 ){\circle*{ .05857143}} \put( 2.635714 , 6.348087 ){\circle*{ .05857143}} \put( 2.7 , 6.433693 ){\circle*{ .05857143}} \put( 2.764286 , 6.515879 ){\circle*{ .05857143}} \put( 2.828571 , 6.594775 ){\circle*{ .05857143}} \put( 2.892857 , 6.670508 ){\circle*{ .05857143}} \put( 2.957143 , 6.743199 ){\circle*{ .05857143}} \put( 3.021429 , 6.812965 ){\circle*{ .05857143}} \put( 3.085714 , 6.879917 ){\circle*{ .05857143}} \put( 3.15 , 6.944162 ){\circle*{ .05857143}} \put( 3.214286 , 7.005803 ){\circle*{ .05857143}} \put( 3.278571 , 7.064938 ){\circle*{ .05857143}} \put( 3.342857 , 7.121663 ){\circle*{ .05857143}} \put( 3.407143 , 7.176068 ){\circle*{ .05857143}} \put( 3.471429 , 7.22824 ){\circle*{ .05857143}} \put( 3.535714 , 7.278263 ){\circle*{ .05857143}} \put( 3.6 , 7.326217 ){\circle*{ .05857143}} \put( 3.664286 , 7.372178 ){\circle*{ .05857143}} \put( 3.728571 , 7.416220 ){\circle*{ .05857143}} \put( 3.792857 , 7.458413 ){\circle*{ .05857143}} \put( 3.857143 , 7.498825 ){\circle*{ .05857143}} \put( 3.921429 , 7.53752 ){\circle*{ .05857143}} \put( 3.985714 , 7.574562 ){\circle*{ .05857143}} \put( 4.05 , 7.610008 ){\circle*{ .05857143}} \put( 4.114286 , 7.643916 ){\circle*{ .05857143}} \put( 4.178571 , 7.676339 ){\circle*{ .05857143}} \put( 4.242857 , 7.70733 ){\circle*{ .05857143}} \put( 4.307143 , 7.736938 ){\circle*{ .05857143}} \put( 4.371429 , 7.765211 ){\circle*{ .05857143}} \put( 4.435714 , 7.792194 ){\circle*{ .05857143}} \put( 4.5 , 7.81793 ){\circle*{ .05857143}} \put( 4.564286 , 7.84246 ){\circle*{ .05857143}} \put( 4.628571 , 7.865824 ){\circle*{ .05857143}} \put( 4.692857 , 7.888058 ){\circle*{ .05857143}} \put( 4.757143 , 7.909199 ){\circle*{ .05857143}} \put( 4.821429 , 7.92928 ){\circle*{ .05857143}} \put( 4.885714 , 7.948334 ){\circle*{ .05857143}} \put( 4.95 , 7.96639 ){\circle*{ .05857143}} \put( 5.014286 , 7.983479 ){\circle*{ .05857143}} \put( 5.078571 , 7.999627 ){\circle*{ .05857143}} \put( 5.142857 , 8.014859 ){\circle*{ .05857143}} \put( 5.207143 , 8.029201 ){\circle*{ .05857143}} \put( 5.271429 , 8.042675 ){\circle*{ .05857143}} \put( 5.335714 , 8.055304 ){\circle*{ .05857143}} \put( 5.4 , 8.067106 ){\circle*{ .05857143}} \put( 5.464286 , 8.078101 ){\circle*{ .05857143}} \put( 5.528571 , 8.088307 ){\circle*{ .05857143}} \put( 5.592857 , 8.097739 ){\circle*{ .05857143}} \put( 5.657143 , 8.106414 ){\circle*{ .05857143}} \put( 5.721429 , 8.114345 ){\circle*{ .05857143}} \put( 5.785714 , 8.121544 ){\circle*{ .05857143}} \put( 5.85 , 8.128023 ){\circle*{ .05857143}} \put( 5.914286 , 8.133793 ){\circle*{ .05857143}} \put( 5.978571 , 8.138862 ){\circle*{ .05857143}} \put( 6.042857 , 8.143239 ){\circle*{ .05857143}} \put( 6.107143 , 8.146931 ){\circle*{ .05857143}} \put( 6.171429 , 8.149944 ){\circle*{ .05857143}} \put( 6.235714 , 8.152282 ){\circle*{ .05857143}} \put( 6.3 , 8.153949 ){\circle*{ .05857143}} \put( 6.364286 , 8.154949 ){\circle*{ .05857143}} \put( 6.428571 , 8.155282 ){\circle*{ .05857143}} \put( 6.492857 , 8.154949 ){\circle*{ .05857143}} \put( 6.557143 , 8.153949 ){\circle*{ .05857143}} \put( 6.621429 , 8.152282 ){\circle*{ .05857143}} \put( 6.685714 , 8.149944 ){\circle*{ .05857143}} \put( 6.75 , 8.146931 ){\circle*{ .05857143}} \put( 6.814286 , 8.143239 ){\circle*{ .05857143}} \put( 6.878571 , 8.138862 ){\circle*{ .05857143}} \put( 6.942857 , 8.133793 ){\circle*{ .05857143}} \put( 7.007143 , 8.128023 ){\circle*{ .05857143}} \put( 7.071429 , 8.121544 ){\circle*{ .05857143}} \put( 7.135714 , 8.114345 ){\circle*{ .05857143}} \put( 7.2 , 8.106414 ){\circle*{ .05857143}} \put( 7.264286 , 8.097739 ){\circle*{ .05857143}} \put( 7.328571 , 8.088307 ){\circle*{ .05857143}} \put( 7.392857 , 8.078101 ){\circle*{ .05857143}} \put( 7.457143 , 8.067106 ){\circle*{ .05857143}} \put( 7.521429 , 8.055304 ){\circle*{ .05857143}} \put( 7.585714 , 8.042675 ){\circle*{ .05857143}} \put( 7.65 , 8.029201 ){\circle*{ .05857143}} \put( 7.714286 , 8.014859 ){\circle*{ .05857143}} \put( 7.778571 , 7.999627 ){\circle*{ .05857143}} \put( 7.842857 , 7.983479 ){\circle*{ .05857143}} \put( 7.907143 , 7.96639 ){\circle*{ .05857143}} \put( 7.971429 , 7.948334 ){\circle*{ .05857143}} \put( 8.035714 , 7.92928 ){\circle*{ .05857143}} \put( 8.1 , 7.909199 ){\circle*{ .05857143}} \put( 8.164286 , 7.888058 ){\circle*{ .05857143}} \put( 8.228571 , 7.865824 ){\circle*{ .05857143}} \put( 8.292857 , 7.84246 ){\circle*{ .05857143}} \put( 8.357143 , 7.81793 ){\circle*{ .05857143}} \put( 8.421429 , 7.792194 ){\circle*{ .05857143}} \put( 8.485714 , 7.765211 ){\circle*{ .05857143}} \put( 8.55 , 7.736938 ){\circle*{ .05857143}} \put( 8.614286 , 7.70733 ){\circle*{ .05857143}} \put( 8.678571 , 7.676339 ){\circle*{ .05857143}} \put( 8.742857 , 7.643916 ){\circle*{ .05857143}} \put( 8.807143 , 7.610008 ){\circle*{ .05857143}} \put( 8.871429 , 7.574562 ){\circle*{ .05857143}} \put( 8.935714 , 7.53752 ){\circle*{ .05857143}} \put( 9 , 7.498825 ){\circle*{ .05857143}} \put( 9.064286 , 7.458413 ){\circle*{ .05857143}} \put( 9.128571 , 7.416220 ){\circle*{ .05857143}} \put( 9.192857 , 7.372178 ){\circle*{ .05857143}} \put( 9.257143 , 7.326217 ){\circle*{ .05857143}} \put( 9.321429 , 7.278263 ){\circle*{ .05857143}} \put( 9.385714 , 7.22824 ){\circle*{ .05857143}} \put( 9.45 , 7.176068 ){\circle*{ .05857143}} \put( 9.51429 , 7.121663 ){\circle*{ .05857143}} \put( 9.57857 , 7.064938 ){\circle*{ .05857143}} \put( 9.64286 , 7.005803 ){\circle*{ .05857143}} \put( 9.70714 , 6.944162 ){\circle*{ .05857143}} \put( 9.77143 , 6.879917 ){\circle*{ .05857143}} \put( 9.83571 , 6.812965 ){\circle*{ .05857143}} \put( 9.9 , 6.743199 ){\circle*{ .05857143}} \put( 9.96429 , 6.670508 ){\circle*{ .05857143}} \put( 10.02857 , 6.594775 ){\circle*{ .05857143}} \put( 10.09286 , 6.515879 ){\circle*{ .05857143}} \put( 10.15714 , 6.433693 ){\circle*{ .05857143}} \put( 10.22143 , 6.348087 ){\circle*{ .05857143}} \put( 10.28571 , 6.258923 ){\circle*{ .05857143}} \put( 10.35 , 6.166058 ){\circle*{ .05857143}} \put( 10.41429 , 6.069344 ){\circle*{ .05857143}} \put( 10.47857 , 5.968626 ){\circle*{ .05857143}} \put( 10.54286 , 5.863744 ){\circle*{ .05857143}} \put( 10.60714 , 5.754528 ){\circle*{ .05857143}} \put( 10.67143 , 5.640805 ){\circle*{ .05857143}} \put( 10.73571 , 5.522392 ){\circle*{ .05857143}} \put( 10.8 , 5.3991 ){\circle*{ .05857143}} \put( 10.86429 , 5.270732 ){\circle*{ .05857143}} \put( 10.92857 , 5.137082 ){\circle*{ .05857143}} \put( 10.99286 , 4.997936 ){\circle*{ .05857143}} \put( 11.05714 , 4.853072 ){\circle*{ .05857143}} \put( 11.12143 , 4.702257 ){\circle*{ .05857143}} \put( 11.18571 , 4.545251 ){\circle*{ .05857143}} \put( 11.25 , 4.381803 ){\circle*{ .05857143}} \put( 11.31429 , 4.21165 ){\circle*{ .05857143}} \put( 11.37857 , 4.03452 ){\circle*{ .05857143}} \put( 11.44286 , 3.850131 ){\circle*{ .05857143}} \put( 11.50714 , 3.658186 ){\circle*{ .05857143}} \put( 11.57143 , 3.458380 ){\circle*{ .05857143}} \put( 11.63571 , 3.25039 ){\circle*{ .05857143}} \put( 11.7 , 3.033887 ){\circle*{ .05857143}} \put( 11.76429 , 2.808522 ){\circle*{ .05857143}} \put( 11.82857 , 2.573936 ){\circle*{ .05857143}} \put( 11.89286 , 2.329752 ){\circle*{ .05857143}} \put( 11.95714 , 2.075580 ){\circle*{ .05857143}} \put( 12.02143 , 1.811013 ){\circle*{ .05857143}} \put( 12.08571 , 1.535628 ){\circle*{ .05857143}} \put( 12.15 , 1.248985 ){\circle*{ .05857143}} \put( 12.21429 , .950623 ){\circle*{ .05857143}} \end{picture} \end{center} %Finis. apl>)off