apl>" <-APL2-------------------- sam310.txt ----------------------------> apl>)run cap2/sample/graph.inc apl>" <-APL2-------------------- graph.txt -----------------------------> apl>" Legend describing various global values: apl>" apl>" World coordinates(wc) are those of the real data. apl>" Graph coordinates(gc) are those of the graph. apl>" apl>" caption - Override to text for graph caption. If null, a caption apl>" will be generated. The graph function resets the global apl>" caption variable to null at the end of its processing. apl>" apl>" hk ------ Constant coefficient of input. If xr=1 (see below) then apl>" hk becomes the constant imaginary coefficient for all apl>" values of x on the graph. If xr=0, hk will be the constant apl>" real coefficient. apl>" apl>" htl ----- 0 = both, 1 = headers, 2 = trailers, 3 = neither. apl>" apl>" maxx ---- Maximum x axis value in world coordinates. apl>" apl>" maxy ---- Maximum y axis value in world coordinates. apl>" apl>" minx ---- Minimum x axis value in world coordinates. apl>" apl>" miny ---- Minimum y axis value in world coordinates. apl>" apl>" mgc ----- Vertical margin in graphic coordinates. apl>" apl>" n ------- Synonymous with hk (see above). The x values to which apl>" the function is applied to obtain y values are derived apl>" by first creating xwc as a vector of integers uniformly apl>" distributed between minx and maxx inclusive. Then, either apl>" 'x#(nX0j1)+xwc' or 'x#n+0j1Xxwc' is evaluated. apl>" apl>" nlb ----- 1 = Label the curve with the n value. apl>" apl>" points -- Number of points to generate. apl>" apl>" xgc ----- Array of x values for data points in graph coordinates. apl>" apl>" xiv ----- x axis marker interval in world coordinates. apl>" apl>" xlin ---- Width of graph in inches. apl>" apl>" xpg ----- Divide xwc by xpg to get xgc. apl>" apl>" xpi ----- Array of three values for minx, maxx, and xiv, used when apl>" invoking the graph function and the array of x values apl>" spans -pi to +pi. apl>" apl>" xr ------ 1=vary real x coefficient, 0=vary imaginary coefficient, apl>" holding the other coefficient to the constant hk (see above.). apl>" apl>" xt ------ Used in a variety of places to temporarily generate apl>" graphics coordinates. apl>" apl>" xwc ----- Array of x values in world coordinates. apl>" apl>" yadj ---- Adjustment down to print text below a line. apl>" apl>" yabm ---- Maximum absolute value (|y) to appear on graph. apl>" apl>" ygc ----- Array of y values for data points in graph coordinates. apl>" apl>" ylin ---- Height of graph in inches. apl>" apl>" ymgn ---- Margin in inches at top and bottom of y axis. apl>" apl>" ypg ----- Divide ywc by ypg to get ygc. apl>" apl>" yt ------ Used in a variety of places to temporarily generate apl>" graphics coordinates. apl>" apl>" ywc ----- Array of y values for data points in world coordinates. apl>" apl>" Set global values. --------------------------------------------> apl>" apl>caption#'' " Empty caption causes one to be generated. apl>i#11 " Circle function code to extract imag. coef. of complex number. apl>points#200 " Number of data points to generate on graph. apl>r#9 " Circle function code to extract real coef. of complex number. apl>xlin#4.5 " Width of graph in inches. apl>" minx = -3.14159.... apl>" | maxx = 3.14159.... apl>" | | xiv apl>" | | | apl>" V V V apl>xpi#(O-1),(O1),O.25 apl>ylin#6 " Height of graph in inches. apl>ymgn#.2 " Margin in inches at top and bottom of y axis. apl>" apl>" <-----------------------------------------------------------------> apl>" Generates the LaTeX \put statements for the data points to appear apl>" on the graph. apl>" apl>Lex 'dodata' 1 apl>Gdodata [1] xgc#(xwc_minx)%xpg " xgc=x graphic coordinates for data points. [2] ygc#mgc+(ywc_miny)%ypg " ygc=y graphic coordinates for data points. [3] $bylabXI0=nlb " Branch if the curve is not to be labelled. [4] '%Label the curve' [5] xt#1Y(u=S/u#|ywc)/xgc " x coord where maximum/mininum occurs [6] yt#(_yadjX0>vs/ywc)+(vs#xt=xgc)/ygc " y coord of maximum/minimum [7] " Note: Calculation for yt works only if all minima occur below [8] " y axis, and all maxima occur above. [9] pcon,(xt,',',[1.5]yt),`Z'){n\#',(Fhk),'}' [10] bylab:'%Draw the data points' [11] pcon,((xgc#-1U1Uxgc),',',[1.5](ygc#-1U1Uygc)),circon [12] G apl>" <-----------------------------------------------------------------> apl>" Generate xwc and ywc, the arrays of x/y coordinates for the data apl>" points to appear on the graph. apl>" apl>Lex 'genxy' 1 apl>Ggenxy [1] xwc#minx+(xlwc#maxx_minx)X(-1+Ipoints+1)%points [2] $varyrealXIxr [3] x#hk+0j1Xxwc " real part is constant, imaginary varies. [4] $calcy " Branch to compute values of y for data points. [5] varyreal:x#(hkX0j1)+xwc " Imaginary is constant, real varies. [6] calcy:ywc#eOCfun " Compute values of y for data points [7] ywcm#yabm>|ywc " Mask of keepers, magnitudes of y < yabm. [8] xwc#ywcm/xwc " Pick the keepers. [9] ywc#ywcm/ywc " Pick the keepers. [10] G apl>" apl>" <-----------------------------------------------------------------> apl>" Main graph routine. apl>" apl>Lex 'graph' 1 apl>Gfun graph a [1] "Graphs the imaginary or real coefficient of result of fun. [2] " fun = expression to evaluate. [3] (htl nlb xr e yabm minx maxx xiv hk yiv yca)#a [4] genxy " Generate the data points. [5] $dataXIhtl>1 " Branch if htl greater than 1. [6] scale " Calculate global scaling values. [7] headers " Generate LaTeX figure headers. [8] data:dodata " Process and graph data points. [9] trailers " Generate Latex figure trailers, maybe. [10] G apl>" apl>" <-----------------------------------------------------------------> apl>" Generates the LaTeX statements to begin the graph. apl>" apl>Lex 'headers' 1 apl>Gheaders [1] '\begin{figure}[tbh]' [2] $gencapXI0=Rcaption " Branch if no caption override. [3] '\caption{',caption,'}' [4] $begin [5] gencap:$realcapXI(xr=1)&hk=0 " Branch if x data are not complex. [6] $ncaptionXInlb=0 " Branch if curves are not labelled with n value. [7] '\caption{Graph of y\#',(Fe),'O',fun,'+nX0j1}' [8] $begin [9] ncaption:$cplxcapXIxr " Branch if varying real coefficient. [10] '\caption{Graph of y\#',(Fe),'O',(-1Ufun),(Fhk),'+xX0j1}' [11] $begin [12] cplxcap:'\caption{Graph of y\#',(Fe),'O',fun,'+(n\#',(Fhk),')X0j1}' [13] $begin [14] realcap:'\caption{Graph of y\#',fun,'}' [15] begin:'\begin{center}' [16] '\setlength{\unitlength}{',(Flin),'in}' [17] '\begin{picture}(',(Fxlin%lin),',',(Fylin%lin),')' [18] '%Draw a frame around the picture' [19] ' \put(0,0){\line(1,0){',(Fxlgc),'}}% bottom' [20] ' \put(0,0){\line(0,1){',(Fylgc),'}}% left' [21] ' \put(0,',(Fylgc),'){\line(1,0){',(Fxlgc),'}}% top' [22] ' \put(',(Fxlgc),',0){\line(0,1){',(Fylgc),'}}% right' [23] '%Draw the x axis' [24] ' \put(0,',(Fxax),'){\line(1,0){',(Fxlgc),'}}%x axis' [25] xt#xoff%xpg [26] pcon,((xt,[1.5]','),xax),circon " Draw the x axis markers. [27] xt#xt_xpgX.1Xxmk<0 [28] yt#xax+((.05%lin)Xxax=mgc)_yadjXxax>mgc [29] $dopaxXIpix [30] '%Draw the x axis marker values' [31] pcon,xt,',',yt,econ,xmk,[1.5]scon [32] $doyax [33] dopax:'%Draw the x axis marker values in pi' [34] picon#(`Z'\frac{') ,`1 '\pi}{4}' '\pi}{2}' '3\pi}{4}' [35] picon#('-',`1`Rpicon),'0',picon [36] pcon,xt,',',yt,econ,picon,[1.5]scon [37] doyax:'%Draw the y axis' [38] $putymkXI(yax=0) [39] ' \put(',(Fyax),',0){\line(0,1){',(Fylgc),'}}%y axis' [40] putymk:'%Draw the y axis markers' [41] ymask#ymk^=0 [42] yt#ymask/mgc+(ymk_miny)%ypg [43] pcon,yax,',',yt,[1.5]circon [44] '%Draw the y axis marker values' [45] xt#yax+.05%lin [46] yt#yt_ypgX.1X(ymask/ymk)<0 [47] pcon,xt,',',yt,econ,(ymask/ymk),[1.5]scon [48] G apl>" apl>" <-----------------------------------------------------------------> apl>" Calculates a variety of values needed to produce the graph. apl>" apl>Lex 'scale' 1 apl>Gscale [1] $byyXIyca " Branch if ylwc, maxy, miny are precalculated. [2] ylwc#(maxy#S/ywc)_miny#D/ywc [3] byy:ylap#ylin_2Xymgn " ylap=height allowed for data points. [4] lin#(xlin%xlwc)Dylap%ylwc " unitlength in inches. [5] yadj#.14%lin " y graphic coordinate adjustment to print text below line. [6] mgc#ymgn%lin " Margin in graph coordinates. [7] xpg#xlwc%xlgc#xlin%lin " Divide xwc by xpg to get gc. [8] ypg#ylwc%(_2Xymgn%lin)+ylgc#ylin%lin " Divide ywc by ypg to get gc. [9] xax#(yz#(minyK0)&maxyZ0)Xmgc+(|miny)%ypg " xaxis in graph coordinates. [10] yax#(xz#(minx<0)&maxx>0)X(|minx)%xpg " yaxis in graph coordinates. [11] $piaxisXIpix#(minx=O-1)&maxx=O1 " branch if pi units on x axis. [12] xic#(yax=0)+Dxlwc%xiv [13] $doyiv [14] piaxis:xic#Dxlwc%xiv#O.25 [15] doyiv:$doyicXIyiv^=0 [16] yiv#10*D10@ylwc [17] doyic:yic#yic+0=2|yic#Dylwc%yiv [18] xoff#(I-1+xic)Xxiv " Offset from minx in world coord. of x markers. [19] yoff#(_yiv)+(Iyic)Xyiv " Offset from miny in world coord. of y markers. [20] $yoffplusXIminy>0 [21] ymk#yoff+miny+yiv||miny [22] $yoffdone [23] yoffplus:ymk#yoff+miny_yiv|miny " y for y axis markers in world coord. [24] yoffdone:xmk#minx+xoff " x for x axis markers in world coord. [25] circon#`Z'){\circle*{',(F.0205%lin),'}}' [26] scon#`Z'$}' [27] econ#`Z'){$' [28] pcon#`Z' \put(' [29] G apl>" apl>" <-----------------------------------------------------------------> apl>" Generates the LaTeX statements to finish the graph. apl>" apl>Lex 'trailers' 1 apl>Gtrailers [1] $epicXIhtl=0 " Branch if both headers and trailers. [2] $eojckXInlb " Branch if graph already labelled. [3] pcon,(1Yxgc+xpgX.1),',',(1Yygc),'){',fun,'}' " Label the graph. [4] eojck:$eojXI(htl=1)+htl=3 " br if headers only, or neither. [5] epic:'\end{picture}' [6] '\end{center}' [7] eoj:'%Finis.' [8] caption#'' " Reset global caption [9] G apl>" htl: 0=both, 1=headers, 2=trailers, 3=neither. apl>" | nlb 1 = Label the curve. apl>" | | xr = 1=vary real x coeff, 0=vary imaginary coeff. apl>" | | | e = i(11) or r(9) to select coefficient to graph. apl>" | | | | yabm = maximum |y printed on graph. apl>" | | | | | minx = minimum value of x. apl>" | | | | | | maxx = maximum value of x. apl>" | | | | | | | xiv = x axis marker interval. apl>" | | | | | | | | hk = Constant coefficient of input. apl>" | | | | | | | | | yiv = y axis marker interval, or 0. apl>" | | | | | | | | | | yca = ylwc, maxy, miny are precalculated. apl>" | | | | | | | | | | | apl>" V V V V V V V V V V V apl> '5Ox' graph 1,1,1,r,1e6,xpi ,0.5 , 0 ,0 " sinhdatx.tex \begin{figure}[tbh] \caption{Graph of y\#9O5Ox+nX0j1} \begin{center} \setlength{\unitlength}{ .2762711in} \begin{picture}(16.28835,21.71780) %Draw a frame around the picture \put(0,0){\line(1,0){16.28835}}% bottom \put(0,0){\line(0,1){21.71780}}% left \put(0,21.71780){\line(1,0){16.28835}}% top \put(16.28835,0){\line(0,1){21.71780}}% right %Draw the x axis \put(0,10.85890){\line(1,0){16.28835}}%x axis \put( 2.036044 , 10.85890 ){\circle*{ .07420248}} \put( 4.072087 , 10.85890 ){\circle*{ .07420248}} \put( 6.10813 , 10.85890 ){\circle*{ .07420248}} \put( 8.144174 , 10.85890 ){\circle*{ .07420248}} \put( 10.18022 , 10.85890 ){\circle*{ .07420248}} \put( 12.21626 , 10.85890 ){\circle*{ .07420248}} \put( 14.2523 , 10.85890 ){\circle*{ .07420248}} %Draw the x axis marker values in pi \put( 1.997469 , 10.35215 ){$ -\frac{3\pi}{4} $} \put( 4.033512 , 10.35215 ){$ -\frac{\pi}{2} $} \put( 6.069556 , 10.35215 ){$ -\frac{\pi}{4} $} \put( 8.144174 , 10.35215 ){$ 0 $} \put( 10.18022 , 10.35215 ){$ \frac{\pi}{4} $} \put( 12.21626 , 10.35215 ){$ \frac{\pi}{2} $} \put( 14.2523 , 10.35215 ){$ \frac{3\pi}{4} $} %Draw the y axis \put(8.144174,0){\line(0,1){21.71780}}%y axis %Draw the y axis markers \put( 8.144174 , .858899 ){\circle*{ .07420248}} \put( 8.144174 , 20.85890 ){\circle*{ .07420248}} %Draw the y axis marker values \put( 8.325156 , .758899 ){$ -10 $} \put( 8.325156 , 20.85890 ){$ 10 $} %Label the curve \put( 0 , .21717798 ){n\# .5} %Draw the data points \put( .08144174 , 1.038568 ){\circle*{ .07420248}} \put( .16288348 , 1.343517 ){\circle*{ .07420248}} \put( .24432522 , 1.639073 ){\circle*{ .07420248}} \put( .32576697 , 1.925530 ){\circle*{ .07420248}} \put( .4072087 , 2.203168 ){\circle*{ .07420248}} \put( .48865045 , 2.472263 ){\circle*{ .07420248}} \put( .570092 , 2.73308 ){\circle*{ .07420248}} \put( .651534 , 2.985877 ){\circle*{ .07420248}} \put( .732976 , 3.230902 ){\circle*{ .07420248}} \put( .814417 , 3.468399 ){\circle*{ .07420248}} \put( .895859 , 3.6986 ){\circle*{ .07420248}} \put( .9773 , 3.921735 ){\circle*{ .07420248}} \put( 1.058743 , 4.138022 ){\circle*{ .07420248}} \put( 1.140184 , 4.347675 ){\circle*{ .07420248}} \put( 1.221626 , 4.550901 ){\circle*{ .07420248}} \put( 1.303068 , 4.747901 ){\circle*{ .07420248}} \put( 1.384510 , 4.938869 ){\circle*{ .07420248}} \put( 1.465951 , 5.123994 ){\circle*{ .07420248}} \put( 1.547393 , 5.303458 ){\circle*{ .07420248}} \put( 1.628835 , 5.477439 ){\circle*{ .07420248}} \put( 1.710277 , 5.646108 ){\circle*{ .07420248}} \put( 1.791718 , 5.809632 ){\circle*{ .07420248}} \put( 1.87316 , 5.968172 ){\circle*{ .07420248}} \put( 1.954602 , 6.121885 ){\circle*{ .07420248}} \put( 2.036044 , 6.270922 ){\circle*{ .07420248}} \put( 2.117485 , 6.41543 ){\circle*{ .07420248}} \put( 2.198927 , 6.555553 ){\circle*{ .07420248}} \put( 2.280369 , 6.691428 ){\circle*{ .07420248}} \put( 2.36181 , 6.823190 ){\circle*{ .07420248}} \put( 2.443252 , 6.950968 ){\circle*{ .07420248}} \put( 2.524694 , 7.074889 ){\circle*{ .07420248}} \put( 2.606136 , 7.195075 ){\circle*{ .07420248}} \put( 2.687577 , 7.311644 ){\circle*{ .07420248}} \put( 2.769019 , 7.424712 ){\circle*{ .07420248}} \put( 2.850461 , 7.534391 ){\circle*{ .07420248}} \put( 2.931903 , 7.640788 ){\circle*{ .07420248}} \put( 3.013344 , 7.744009 ){\circle*{ .07420248}} \put( 3.094786 , 7.844155 ){\circle*{ .07420248}} \put( 3.176228 , 7.941326 ){\circle*{ .07420248}} \put( 3.257670 , 8.035617 ){\circle*{ .07420248}} \put( 3.339111 , 8.12712 ){\circle*{ .07420248}} \put( 3.420553 , 8.215928 ){\circle*{ .07420248}} \put( 3.501995 , 8.302127 ){\circle*{ .07420248}} \put( 3.583437 , 8.385803 ){\circle*{ .07420248}} \put( 3.664878 , 8.467037 ){\circle*{ .07420248}} \put( 3.74632 , 8.54591 ){\circle*{ .07420248}} \put( 3.827762 , 8.6225 ){\circle*{ .07420248}} \put( 3.909204 , 8.696884 ){\circle*{ .07420248}} \put( 3.990645 , 8.769133 ){\circle*{ .07420248}} \put( 4.072087 , 8.839319 ){\circle*{ .07420248}} \put( 4.153529 , 8.907512 ){\circle*{ .07420248}} \put( 4.23497 , 8.973779 ){\circle*{ .07420248}} \put( 4.316412 , 9.038185 ){\circle*{ .07420248}} \put( 4.397854 , 9.100794 ){\circle*{ .07420248}} \put( 4.479296 , 9.161668 ){\circle*{ .07420248}} \put( 4.560738 , 9.220866 ){\circle*{ .07420248}} \put( 4.642179 , 9.278448 ){\circle*{ .07420248}} \put( 4.723621 , 9.334469 ){\circle*{ .07420248}} \put( 4.805063 , 9.388986 ){\circle*{ .07420248}} \put( 4.886504 , 9.442052 ){\circle*{ .07420248}} \put( 4.967946 , 9.49372 ){\circle*{ .07420248}} \put( 5.049388 , 9.54404 ){\circle*{ .07420248}} \put( 5.130830 , 9.59306 ){\circle*{ .07420248}} \put( 5.212271 , 9.64084 ){\circle*{ .07420248}} \put( 5.293713 , 9.6874 ){\circle*{ .07420248}} \put( 5.375155 , 9.73282 ){\circle*{ .07420248}} \put( 5.456597 , 9.77712 ){\circle*{ .07420248}} \put( 5.538038 , 9.82036 ){\circle*{ .07420248}} \put( 5.61948 , 9.86257 ){\circle*{ .07420248}} \put( 5.700922 , 9.90379 ){\circle*{ .07420248}} \put( 5.782364 , 9.94408 ){\circle*{ .07420248}} \put( 5.863805 , 9.98346 ){\circle*{ .07420248}} \put( 5.945247 , 10.02198 ){\circle*{ .07420248}} \put( 6.026689 , 10.05967 ){\circle*{ .07420248}} \put( 6.10813 , 10.09657 ){\circle*{ .07420248}} \put( 6.189572 , 10.13272 ){\circle*{ .07420248}} \put( 6.271014 , 10.16815 ){\circle*{ .07420248}} \put( 6.352456 , 10.2029 ){\circle*{ .07420248}} \put( 6.433898 , 10.237 ){\circle*{ .07420248}} \put( 6.515339 , 10.27049 ){\circle*{ .07420248}} \put( 6.596781 , 10.3034 ){\circle*{ .07420248}} \put( 6.678223 , 10.33576 ){\circle*{ .07420248}} \put( 6.759665 , 10.3676 ){\circle*{ .07420248}} \put( 6.841106 , 10.39897 ){\circle*{ .07420248}} \put( 6.922548 , 10.42987 ){\circle*{ .07420248}} \put( 7.003990 , 10.46035 ){\circle*{ .07420248}} \put( 7.085432 , 10.49044 ){\circle*{ .07420248}} \put( 7.166873 , 10.52017 ){\circle*{ .07420248}} \put( 7.248315 , 10.54956 ){\circle*{ .07420248}} \put( 7.329757 , 10.57864 ){\circle*{ .07420248}} \put( 7.411198 , 10.60745 ){\circle*{ .07420248}} \put( 7.49264 , 10.636 ){\circle*{ .07420248}} \put( 7.574082 , 10.66435 ){\circle*{ .07420248}} \put( 7.655524 , 10.69250 ){\circle*{ .07420248}} \put( 7.736965 , 10.72048 ){\circle*{ .07420248}} \put( 7.818407 , 10.74833 ){\circle*{ .07420248}} \put( 7.899849 , 10.77607 ){\circle*{ .07420248}} \put( 7.98129 , 10.80372 ){\circle*{ .07420248}} \put( 8.062732 , 10.83132 ){\circle*{ .07420248}} \put( 8.144174 , 10.85890 ){\circle*{ .07420248}} \put( 8.225616 , 10.88647 ){\circle*{ .07420248}} \put( 8.307058 , 10.91408 ){\circle*{ .07420248}} \put( 8.388499 , 10.94173 ){\circle*{ .07420248}} \put( 8.469941 , 10.96947 ){\circle*{ .07420248}} \put( 8.551383 , 10.99732 ){\circle*{ .07420248}} \put( 8.632825 , 11.0253 ){\circle*{ .07420248}} \put( 8.714266 , 11.05345 ){\circle*{ .07420248}} \put( 8.795708 , 11.08179 ){\circle*{ .07420248}} \put( 8.877150 , 11.11035 ){\circle*{ .07420248}} \put( 8.958592 , 11.13916 ){\circle*{ .07420248}} \put( 9.040033 , 11.16824 ){\circle*{ .07420248}} \put( 9.121475 , 11.19763 ){\circle*{ .07420248}} \put( 9.202917 , 11.22736 ){\circle*{ .07420248}} \put( 9.284359 , 11.25745 ){\circle*{ .07420248}} \put( 9.3658 , 11.28793 ){\circle*{ .07420248}} \put( 9.447242 , 11.31883 ){\circle*{ .07420248}} \put( 9.52868 , 11.35019 ){\circle*{ .07420248}} \put( 9.61013 , 11.38203 ){\circle*{ .07420248}} \put( 9.69157 , 11.41440 ){\circle*{ .07420248}} \put( 9.773 , 11.4473 ){\circle*{ .07420248}} \put( 9.85445 , 11.48079 ){\circle*{ .07420248}} \put( 9.93589 , 11.51490 ){\circle*{ .07420248}} \put( 10.01733 , 11.54965 ){\circle*{ .07420248}} \put( 10.09878 , 11.58508 ){\circle*{ .07420248}} \put( 10.18022 , 11.62123 ){\circle*{ .07420248}} \put( 10.26166 , 11.65813 ){\circle*{ .07420248}} \put( 10.3431 , 11.69582 ){\circle*{ .07420248}} \put( 10.42454 , 11.73434 ){\circle*{ .07420248}} \put( 10.50598 , 11.77372 ){\circle*{ .07420248}} \put( 10.58743 , 11.814 ){\circle*{ .07420248}} \put( 10.66887 , 11.85523 ){\circle*{ .07420248}} \put( 10.75031 , 11.89744 ){\circle*{ .07420248}} \put( 10.83175 , 11.94067 ){\circle*{ .07420248}} \put( 10.91319 , 11.98498 ){\circle*{ .07420248}} \put( 10.99464 , 12.03039 ){\circle*{ .07420248}} \put( 11.07608 , 12.07696 ){\circle*{ .07420248}} \put( 11.15752 , 12.12474 ){\circle*{ .07420248}} \put( 11.23896 , 12.17376 ){\circle*{ .07420248}} \put( 11.3204 , 12.22408 ){\circle*{ .07420248}} \put( 11.40184 , 12.27575 ){\circle*{ .07420248}} \put( 11.48329 , 12.32881 ){\circle*{ .07420248}} \put( 11.56473 , 12.38333 ){\circle*{ .07420248}} \put( 11.64617 , 12.43935 ){\circle*{ .07420248}} \put( 11.72761 , 12.49693 ){\circle*{ .07420248}} \put( 11.80905 , 12.55613 ){\circle*{ .07420248}} \put( 11.89049 , 12.617 ){\circle*{ .07420248}} \put( 11.97194 , 12.67961 ){\circle*{ .07420248}} \put( 12.05338 , 12.74402 ){\circle*{ .07420248}} \put( 12.13482 , 12.81029 ){\circle*{ .07420248}} \put( 12.21626 , 12.87848 ){\circle*{ .07420248}} \put( 12.2977 , 12.94866 ){\circle*{ .07420248}} \put( 12.37914 , 13.02091 ){\circle*{ .07420248}} \put( 12.46059 , 13.09530 ){\circle*{ .07420248}} \put( 12.54203 , 13.17189 ){\circle*{ .07420248}} \put( 12.62347 , 13.25076 ){\circle*{ .07420248}} \put( 12.70491 , 13.33200 ){\circle*{ .07420248}} \put( 12.78635 , 13.41567 ){\circle*{ .07420248}} \put( 12.86780 , 13.50187 ){\circle*{ .07420248}} \put( 12.94924 , 13.59068 ){\circle*{ .07420248}} \put( 13.03068 , 13.68218 ){\circle*{ .07420248}} \put( 13.11212 , 13.77647 ){\circle*{ .07420248}} \put( 13.19356 , 13.87364 ){\circle*{ .07420248}} \put( 13.275 , 13.97379 ){\circle*{ .07420248}} \put( 13.35645 , 14.07701 ){\circle*{ .07420248}} \put( 13.43789 , 14.1834 ){\circle*{ .07420248}} \put( 13.51933 , 14.29309 ){\circle*{ .07420248}} \put( 13.60077 , 14.40615 ){\circle*{ .07420248}} \put( 13.68221 , 14.52272 ){\circle*{ .07420248}} \put( 13.76365 , 14.6429 ){\circle*{ .07420248}} \put( 13.84510 , 14.76683 ){\circle*{ .07420248}} \put( 13.92654 , 14.8946 ){\circle*{ .07420248}} \put( 14.00798 , 15.02637 ){\circle*{ .07420248}} \put( 14.08942 , 15.16224 ){\circle*{ .07420248}} \put( 14.17086 , 15.30237 ){\circle*{ .07420248}} \put( 14.2523 , 15.44688 ){\circle*{ .07420248}} \put( 14.33375 , 15.59591 ){\circle*{ .07420248}} \put( 14.41519 , 15.74963 ){\circle*{ .07420248}} \put( 14.49663 , 15.90817 ){\circle*{ .07420248}} \put( 14.57807 , 16.07169 ){\circle*{ .07420248}} \put( 14.65951 , 16.24036 ){\circle*{ .07420248}} \put( 14.74096 , 16.41434 ){\circle*{ .07420248}} \put( 14.82240 , 16.5938 ){\circle*{ .07420248}} \put( 14.90384 , 16.77893 ){\circle*{ .07420248}} \put( 14.98528 , 16.96990 ){\circle*{ .07420248}} \put( 15.06672 , 17.16690 ){\circle*{ .07420248}} \put( 15.14816 , 17.37012 ){\circle*{ .07420248}} \put( 15.2296 , 17.57978 ){\circle*{ .07420248}} \put( 15.31105 , 17.79606 ){\circle*{ .07420248}} \put( 15.39249 , 18.01920 ){\circle*{ .07420248}} \put( 15.47393 , 18.24940 ){\circle*{ .07420248}} \put( 15.55537 , 18.48690 ){\circle*{ .07420248}} \put( 15.63681 , 18.73192 ){\circle*{ .07420248}} \put( 15.71826 , 18.98472 ){\circle*{ .07420248}} \put( 15.79970 , 19.24553 ){\circle*{ .07420248}} \put( 15.88114 , 19.51463 ){\circle*{ .07420248}} \put( 15.96258 , 19.79227 ){\circle*{ .07420248}} \put( 16.04402 , 20.07872 ){\circle*{ .07420248}} \put( 16.12546 , 20.37428 ){\circle*{ .07420248}} \put( 16.2069 , 20.67923 ){\circle*{ .07420248}} %Finis. apl> '5Ox' graph 3,1,1,r,1e6,xpi ,1 , 0 ,0 " sinhdatx.tex %Label the curve \put( 0 , 4.112340 ){n\#1} %Draw the data points \put( .08144174 , 4.812804 ){\circle*{ .07420248}} \put( .16288348 , 5.000552 ){\circle*{ .07420248}} \put( .24432522 , 5.182518 ){\circle*{ .07420248}} \put( .32576697 , 5.35888 ){\circle*{ .07420248}} \put( .4072087 , 5.529815 ){\circle*{ .07420248}} \put( .48865045 , 5.695489 ){\circle*{ .07420248}} \put( .570092 , 5.856066 ){\circle*{ .07420248}} \put( .651534 , 6.011706 ){\circle*{ .07420248}} \put( .732976 , 6.162561 ){\circle*{ .07420248}} \put( .814417 , 6.308781 ){\circle*{ .07420248}} \put( .895859 , 6.450509 ){\circle*{ .07420248}} \put( .9773 , 6.587887 ){\circle*{ .07420248}} \put( 1.058743 , 6.721048 ){\circle*{ .07420248}} \put( 1.140184 , 6.850126 ){\circle*{ .07420248}} \put( 1.221626 , 6.975246 ){\circle*{ .07420248}} \put( 1.303068 , 7.096533 ){\circle*{ .07420248}} \put( 1.384510 , 7.214107 ){\circle*{ .07420248}} \put( 1.465951 , 7.328083 ){\circle*{ .07420248}} \put( 1.547393 , 7.438574 ){\circle*{ .07420248}} \put( 1.628835 , 7.545689 ){\circle*{ .07420248}} \put( 1.710277 , 7.649534 ){\circle*{ .07420248}} \put( 1.791718 , 7.75021 ){\circle*{ .07420248}} \put( 1.87316 , 7.847819 ){\circle*{ .07420248}} \put( 1.954602 , 7.942456 ){\circle*{ .07420248}} \put( 2.036044 , 8.034214 ){\circle*{ .07420248}} \put( 2.117485 , 8.123183 ){\circle*{ .07420248}} \put( 2.198927 , 8.209453 ){\circle*{ .07420248}} \put( 2.280369 , 8.293107 ){\circle*{ .07420248}} \put( 2.36181 , 8.374229 ){\circle*{ .07420248}} \put( 2.443252 , 8.452898 ){\circle*{ .07420248}} \put( 2.524694 , 8.529193 ){\circle*{ .07420248}} \put( 2.606136 , 8.603188 ){\circle*{ .07420248}} \put( 2.687577 , 8.674956 ){\circle*{ .07420248}} \put( 2.769019 , 8.744569 ){\circle*{ .07420248}} \put( 2.850461 , 8.812095 ){\circle*{ .07420248}} \put( 2.931903 , 8.8776 ){\circle*{ .07420248}} \put( 3.013344 , 8.94115 ){\circle*{ .07420248}} \put( 3.094786 , 9.002808 ){\circle*{ .07420248}} \put( 3.176228 , 9.062633 ){\circle*{ .07420248}} \put( 3.257670 , 9.120685 ){\circle*{ .07420248}} \put( 3.339111 , 9.177022 ){\circle*{ .07420248}} \put( 3.420553 , 9.231698 ){\circle*{ .07420248}} \put( 3.501995 , 9.284768 ){\circle*{ .07420248}} \put( 3.583437 , 9.336285 ){\circle*{ .07420248}} \put( 3.664878 , 9.386298 ){\circle*{ .07420248}} \put( 3.74632 , 9.434858 ){\circle*{ .07420248}} \put( 3.827762 , 9.482013 ){\circle*{ .07420248}} \put( 3.909204 , 9.5278 ){\circle*{ .07420248}} \put( 3.990645 , 9.57229 ){\circle*{ .07420248}} \put( 4.072087 , 9.6155 ){\circle*{ .07420248}} \put( 4.153529 , 9.65749 ){\circle*{ .07420248}} \put( 4.23497 , 9.69828 ){\circle*{ .07420248}} \put( 4.316412 , 9.73794 ){\circle*{ .07420248}} \put( 4.397854 , 9.77648 ){\circle*{ .07420248}} \put( 4.479296 , 9.81396 ){\circle*{ .07420248}} \put( 4.560738 , 9.85041 ){\circle*{ .07420248}} \put( 4.642179 , 9.88586 ){\circle*{ .07420248}} \put( 4.723621 , 9.92035 ){\circle*{ .07420248}} \put( 4.805063 , 9.95392 ){\circle*{ .07420248}} \put( 4.886504 , 9.98659 ){\circle*{ .07420248}} \put( 4.967946 , 10.01840 ){\circle*{ .07420248}} \put( 5.049388 , 10.04938 ){\circle*{ .07420248}} \put( 5.130830 , 10.07956 ){\circle*{ .07420248}} \put( 5.212271 , 10.10897 ){\circle*{ .07420248}} \put( 5.293713 , 10.13764 ){\circle*{ .07420248}} \put( 5.375155 , 10.1656 ){\circle*{ .07420248}} \put( 5.456597 , 10.19288 ){\circle*{ .07420248}} \put( 5.538038 , 10.2195 ){\circle*{ .07420248}} \put( 5.61948 , 10.24549 ){\circle*{ .07420248}} \put( 5.700922 , 10.27087 ){\circle*{ .07420248}} \put( 5.782364 , 10.29567 ){\circle*{ .07420248}} \put( 5.863805 , 10.31992 ){\circle*{ .07420248}} \put( 5.945247 , 10.34363 ){\circle*{ .07420248}} \put( 6.026689 , 10.36683 ){\circle*{ .07420248}} \put( 6.10813 , 10.38955 ){\circle*{ .07420248}} \put( 6.189572 , 10.41181 ){\circle*{ .07420248}} \put( 6.271014 , 10.43362 ){\circle*{ .07420248}} \put( 6.352456 , 10.45502 ){\circle*{ .07420248}} \put( 6.433898 , 10.47602 ){\circle*{ .07420248}} \put( 6.515339 , 10.49663 ){\circle*{ .07420248}} \put( 6.596781 , 10.51690 ){\circle*{ .07420248}} \put( 6.678223 , 10.53682 ){\circle*{ .07420248}} \put( 6.759665 , 10.55642 ){\circle*{ .07420248}} \put( 6.841106 , 10.57573 ){\circle*{ .07420248}} \put( 6.922548 , 10.59476 ){\circle*{ .07420248}} \put( 7.003990 , 10.61353 ){\circle*{ .07420248}} \put( 7.085432 , 10.63205 ){\circle*{ .07420248}} \put( 7.166873 , 10.65035 ){\circle*{ .07420248}} \put( 7.248315 , 10.66845 ){\circle*{ .07420248}} \put( 7.329757 , 10.68635 ){\circle*{ .07420248}} \put( 7.411198 , 10.70409 ){\circle*{ .07420248}} \put( 7.49264 , 10.72167 ){\circle*{ .07420248}} \put( 7.574082 , 10.73912 ){\circle*{ .07420248}} \put( 7.655524 , 10.75645 ){\circle*{ .07420248}} \put( 7.736965 , 10.77368 ){\circle*{ .07420248}} \put( 7.818407 , 10.79082 ){\circle*{ .07420248}} \put( 7.899849 , 10.8079 ){\circle*{ .07420248}} \put( 7.98129 , 10.82493 ){\circle*{ .07420248}} \put( 8.062732 , 10.84192 ){\circle*{ .07420248}} \put( 8.144174 , 10.85890 ){\circle*{ .07420248}} \put( 8.225616 , 10.87588 ){\circle*{ .07420248}} \put( 8.307058 , 10.89287 ){\circle*{ .07420248}} \put( 8.388499 , 10.90990 ){\circle*{ .07420248}} \put( 8.469941 , 10.92697 ){\circle*{ .07420248}} \put( 8.551383 , 10.94412 ){\circle*{ .07420248}} \put( 8.632825 , 10.96135 ){\circle*{ .07420248}} \put( 8.714266 , 10.97868 ){\circle*{ .07420248}} \put( 8.795708 , 10.99613 ){\circle*{ .07420248}} \put( 8.877150 , 11.01371 ){\circle*{ .07420248}} \put( 8.958592 , 11.03145 ){\circle*{ .07420248}} \put( 9.040033 , 11.04935 ){\circle*{ .07420248}} \put( 9.121475 , 11.06745 ){\circle*{ .07420248}} \put( 9.202917 , 11.08575 ){\circle*{ .07420248}} \put( 9.284359 , 11.10427 ){\circle*{ .07420248}} \put( 9.3658 , 11.12304 ){\circle*{ .07420248}} \put( 9.447242 , 11.14207 ){\circle*{ .07420248}} \put( 9.52868 , 11.16137 ){\circle*{ .07420248}} \put( 9.61013 , 11.18098 ){\circle*{ .07420248}} \put( 9.69157 , 11.2009 ){\circle*{ .07420248}} \put( 9.773 , 11.22116 ){\circle*{ .07420248}} \put( 9.85445 , 11.24178 ){\circle*{ .07420248}} \put( 9.93589 , 11.26278 ){\circle*{ .07420248}} \put( 10.01733 , 11.28417 ){\circle*{ .07420248}} \put( 10.09878 , 11.30599 ){\circle*{ .07420248}} \put( 10.18022 , 11.32824 ){\circle*{ .07420248}} \put( 10.26166 , 11.35096 ){\circle*{ .07420248}} \put( 10.3431 , 11.37417 ){\circle*{ .07420248}} \put( 10.42454 , 11.39788 ){\circle*{ .07420248}} \put( 10.50598 , 11.42213 ){\circle*{ .07420248}} \put( 10.58743 , 11.44693 ){\circle*{ .07420248}} \put( 10.66887 , 11.47231 ){\circle*{ .07420248}} \put( 10.75031 , 11.49830 ){\circle*{ .07420248}} \put( 10.83175 , 11.52492 ){\circle*{ .07420248}} \put( 10.91319 , 11.55219 ){\circle*{ .07420248}} \put( 10.99464 , 11.58015 ){\circle*{ .07420248}} \put( 11.07608 , 11.60883 ){\circle*{ .07420248}} \put( 11.15752 , 11.63824 ){\circle*{ .07420248}} \put( 11.23896 , 11.66842 ){\circle*{ .07420248}} \put( 11.3204 , 11.6994 ){\circle*{ .07420248}} \put( 11.40184 , 11.73121 ){\circle*{ .07420248}} \put( 11.48329 , 11.76388 ){\circle*{ .07420248}} \put( 11.56473 , 11.79745 ){\circle*{ .07420248}} \put( 11.64617 , 11.83194 ){\circle*{ .07420248}} \put( 11.72761 , 11.86739 ){\circle*{ .07420248}} \put( 11.80905 , 11.90384 ){\circle*{ .07420248}} \put( 11.89049 , 11.94131 ){\circle*{ .07420248}} \put( 11.97194 , 11.97986 ){\circle*{ .07420248}} \put( 12.05338 , 12.01951 ){\circle*{ .07420248}} \put( 12.13482 , 12.06031 ){\circle*{ .07420248}} \put( 12.21626 , 12.10230 ){\circle*{ .07420248}} \put( 12.2977 , 12.1455 ){\circle*{ .07420248}} \put( 12.37914 , 12.18999 ){\circle*{ .07420248}} \put( 12.46059 , 12.23578 ){\circle*{ .07420248}} \put( 12.54203 , 12.28294 ){\circle*{ .07420248}} \put( 12.62347 , 12.3315 ){\circle*{ .07420248}} \put( 12.70491 , 12.38151 ){\circle*{ .07420248}} \put( 12.78635 , 12.43303 ){\circle*{ .07420248}} \put( 12.86780 , 12.4861 ){\circle*{ .07420248}} \put( 12.94924 , 12.54078 ){\circle*{ .07420248}} \put( 13.03068 , 12.59711 ){\circle*{ .07420248}} \put( 13.11212 , 12.65516 ){\circle*{ .07420248}} \put( 13.19356 , 12.71499 ){\circle*{ .07420248}} \put( 13.275 , 12.77665 ){\circle*{ .07420248}} \put( 13.35645 , 12.84020 ){\circle*{ .07420248}} \put( 13.43789 , 12.9057 ){\circle*{ .07420248}} \put( 13.51933 , 12.97323 ){\circle*{ .07420248}} \put( 13.60077 , 13.04284 ){\circle*{ .07420248}} \put( 13.68221 , 13.11461 ){\circle*{ .07420248}} \put( 13.76365 , 13.1886 ){\circle*{ .07420248}} \put( 13.84510 , 13.2649 ){\circle*{ .07420248}} \put( 13.92654 , 13.34357 ){\circle*{ .07420248}} \put( 14.00798 , 13.42469 ){\circle*{ .07420248}} \put( 14.08942 , 13.50834 ){\circle*{ .07420248}} \put( 14.17086 , 13.59461 ){\circle*{ .07420248}} \put( 14.2523 , 13.68358 ){\circle*{ .07420248}} \put( 14.33375 , 13.77534 ){\circle*{ .07420248}} \put( 14.41519 , 13.86998 ){\circle*{ .07420248}} \put( 14.49663 , 13.96759 ){\circle*{ .07420248}} \put( 14.57807 , 14.06826 ){\circle*{ .07420248}} \put( 14.65951 , 14.1721 ){\circle*{ .07420248}} \put( 14.74096 , 14.27922 ){\circle*{ .07420248}} \put( 14.82240 , 14.38971 ){\circle*{ .07420248}} \put( 14.90384 , 14.50369 ){\circle*{ .07420248}} \put( 14.98528 , 14.62126 ){\circle*{ .07420248}} \put( 15.06672 , 14.74255 ){\circle*{ .07420248}} \put( 15.14816 , 14.86767 ){\circle*{ .07420248}} \put( 15.2296 , 14.99675 ){\circle*{ .07420248}} \put( 15.31105 , 15.12991 ){\circle*{ .07420248}} \put( 15.39249 , 15.26729 ){\circle*{ .07420248}} \put( 15.47393 , 15.40902 ){\circle*{ .07420248}} \put( 15.55537 , 15.55524 ){\circle*{ .07420248}} \put( 15.63681 , 15.70609 ){\circle*{ .07420248}} \put( 15.71826 , 15.86173 ){\circle*{ .07420248}} \put( 15.79970 , 16.0223 ){\circle*{ .07420248}} \put( 15.88114 , 16.18798 ){\circle*{ .07420248}} \put( 15.96258 , 16.35892 ){\circle*{ .07420248}} \put( 16.04402 , 16.53528 ){\circle*{ .07420248}} \put( 16.12546 , 16.71725 ){\circle*{ .07420248}} \put( 16.2069 , 16.90499 ){\circle*{ .07420248}} %Finis. apl> '5Ox' graph 2,1,1,r,1e6,xpi ,2 , 0 ,0 " sinhdatx.tex %Label the curve \put( 0 , 15.66487 ){n\#2} %Draw the data points \put( .08144174 , 15.51567 ){\circle*{ .07420248}} \put( .16288348 , 15.37106 ){\circle*{ .07420248}} \put( .24432522 , 15.23091 ){\circle*{ .07420248}} \put( .32576697 , 15.09507 ){\circle*{ .07420248}} \put( .4072087 , 14.96342 ){\circle*{ .07420248}} \put( .48865045 , 14.83581 ){\circle*{ .07420248}} \put( .570092 , 14.71214 ){\circle*{ .07420248}} \put( .651534 , 14.59226 ){\circle*{ .07420248}} \put( .732976 , 14.47607 ){\circle*{ .07420248}} \put( .814417 , 14.36345 ){\circle*{ .07420248}} \put( .895859 , 14.25429 ){\circle*{ .07420248}} \put( .9773 , 14.14848 ){\circle*{ .07420248}} \put( 1.058743 , 14.04592 ){\circle*{ .07420248}} \put( 1.140184 , 13.9465 ){\circle*{ .07420248}} \put( 1.221626 , 13.85013 ){\circle*{ .07420248}} \put( 1.303068 , 13.75671 ){\circle*{ .07420248}} \put( 1.384510 , 13.66616 ){\circle*{ .07420248}} \put( 1.465951 , 13.57837 ){\circle*{ .07420248}} \put( 1.547393 , 13.49327 ){\circle*{ .07420248}} \put( 1.628835 , 13.41077 ){\circle*{ .07420248}} \put( 1.710277 , 13.33079 ){\circle*{ .07420248}} \put( 1.791718 , 13.25324 ){\circle*{ .07420248}} \put( 1.87316 , 13.17807 ){\circle*{ .07420248}} \put( 1.954602 , 13.10518 ){\circle*{ .07420248}} \put( 2.036044 , 13.0345 ){\circle*{ .07420248}} \put( 2.117485 , 12.96598 ){\circle*{ .07420248}} \put( 2.198927 , 12.89953 ){\circle*{ .07420248}} \put( 2.280369 , 12.8351 ){\circle*{ .07420248}} \put( 2.36181 , 12.77262 ){\circle*{ .07420248}} \put( 2.443252 , 12.71203 ){\circle*{ .07420248}} \put( 2.524694 , 12.65326 ){\circle*{ .07420248}} \put( 2.606136 , 12.59627 ){\circle*{ .07420248}} \put( 2.687577 , 12.54100 ){\circle*{ .07420248}} \put( 2.769019 , 12.48738 ){\circle*{ .07420248}} \put( 2.850461 , 12.43537 ){\circle*{ .07420248}} \put( 2.931903 , 12.38492 ){\circle*{ .07420248}} \put( 3.013344 , 12.33597 ){\circle*{ .07420248}} \put( 3.094786 , 12.28848 ){\circle*{ .07420248}} \put( 3.176228 , 12.2424 ){\circle*{ .07420248}} \put( 3.257670 , 12.19769 ){\circle*{ .07420248}} \put( 3.339111 , 12.1543 ){\circle*{ .07420248}} \put( 3.420553 , 12.11219 ){\circle*{ .07420248}} \put( 3.501995 , 12.07131 ){\circle*{ .07420248}} \put( 3.583437 , 12.03163 ){\circle*{ .07420248}} \put( 3.664878 , 11.99311 ){\circle*{ .07420248}} \put( 3.74632 , 11.95571 ){\circle*{ .07420248}} \put( 3.827762 , 11.91939 ){\circle*{ .07420248}} \put( 3.909204 , 11.88412 ){\circle*{ .07420248}} \put( 3.990645 , 11.84986 ){\circle*{ .07420248}} \put( 4.072087 , 11.81658 ){\circle*{ .07420248}} \put( 4.153529 , 11.78424 ){\circle*{ .07420248}} \put( 4.23497 , 11.75282 ){\circle*{ .07420248}} \put( 4.316412 , 11.72228 ){\circle*{ .07420248}} \put( 4.397854 , 11.69259 ){\circle*{ .07420248}} \put( 4.479296 , 11.66372 ){\circle*{ .07420248}} \put( 4.560738 , 11.63565 ){\circle*{ .07420248}} \put( 4.642179 , 11.60834 ){\circle*{ .07420248}} \put( 4.723621 , 11.58178 ){\circle*{ .07420248}} \put( 4.805063 , 11.55593 ){\circle*{ .07420248}} \put( 4.886504 , 11.53076 ){\circle*{ .07420248}} \put( 4.967946 , 11.50626 ){\circle*{ .07420248}} \put( 5.049388 , 11.4824 ){\circle*{ .07420248}} \put( 5.130830 , 11.45915 ){\circle*{ .07420248}} \put( 5.212271 , 11.4365 ){\circle*{ .07420248}} \put( 5.293713 , 11.41442 ){\circle*{ .07420248}} \put( 5.375155 , 11.39288 ){\circle*{ .07420248}} \put( 5.456597 , 11.37187 ){\circle*{ .07420248}} \put( 5.538038 , 11.35137 ){\circle*{ .07420248}} \put( 5.61948 , 11.33136 ){\circle*{ .07420248}} \put( 5.700922 , 11.3118 ){\circle*{ .07420248}} \put( 5.782364 , 11.2927 ){\circle*{ .07420248}} \put( 5.863805 , 11.27403 ){\circle*{ .07420248}} \put( 5.945247 , 11.25577 ){\circle*{ .07420248}} \put( 6.026689 , 11.23789 ){\circle*{ .07420248}} \put( 6.10813 , 11.22039 ){\circle*{ .07420248}} \put( 6.189572 , 11.20325 ){\circle*{ .07420248}} \put( 6.271014 , 11.18645 ){\circle*{ .07420248}} \put( 6.352456 , 11.16997 ){\circle*{ .07420248}} \put( 6.433898 , 11.1538 ){\circle*{ .07420248}} \put( 6.515339 , 11.13792 ){\circle*{ .07420248}} \put( 6.596781 , 11.12231 ){\circle*{ .07420248}} \put( 6.678223 , 11.10697 ){\circle*{ .07420248}} \put( 6.759665 , 11.09187 ){\circle*{ .07420248}} \put( 6.841106 , 11.07700 ){\circle*{ .07420248}} \put( 6.922548 , 11.06234 ){\circle*{ .07420248}} \put( 7.003990 , 11.04789 ){\circle*{ .07420248}} \put( 7.085432 , 11.03362 ){\circle*{ .07420248}} \put( 7.166873 , 11.01953 ){\circle*{ .07420248}} \put( 7.248315 , 11.00559 ){\circle*{ .07420248}} \put( 7.329757 , 10.99180 ){\circle*{ .07420248}} \put( 7.411198 , 10.97814 ){\circle*{ .07420248}} \put( 7.49264 , 10.96459 ){\circle*{ .07420248}} \put( 7.574082 , 10.95115 ){\circle*{ .07420248}} \put( 7.655524 , 10.9378 ){\circle*{ .07420248}} \put( 7.736965 , 10.92454 ){\circle*{ .07420248}} \put( 7.818407 , 10.91133 ){\circle*{ .07420248}} \put( 7.899849 , 10.89818 ){\circle*{ .07420248}} \put( 7.98129 , 10.88506 ){\circle*{ .07420248}} \put( 8.062732 , 10.87197 ){\circle*{ .07420248}} \put( 8.144174 , 10.85890 ){\circle*{ .07420248}} \put( 8.225616 , 10.84582 ){\circle*{ .07420248}} \put( 8.307058 , 10.83273 ){\circle*{ .07420248}} \put( 8.388499 , 10.81962 ){\circle*{ .07420248}} \put( 8.469941 , 10.80647 ){\circle*{ .07420248}} \put( 8.551383 , 10.79326 ){\circle*{ .07420248}} \put( 8.632825 , 10.77999 ){\circle*{ .07420248}} \put( 8.714266 , 10.76664 ){\circle*{ .07420248}} \put( 8.795708 , 10.7532 ){\circle*{ .07420248}} \put( 8.877150 , 10.73966 ){\circle*{ .07420248}} \put( 8.958592 , 10.726 ){\circle*{ .07420248}} \put( 9.040033 , 10.71221 ){\circle*{ .07420248}} \put( 9.121475 , 10.69827 ){\circle*{ .07420248}} \put( 9.202917 , 10.68418 ){\circle*{ .07420248}} \put( 9.284359 , 10.66991 ){\circle*{ .07420248}} \put( 9.3658 , 10.65546 ){\circle*{ .07420248}} \put( 9.447242 , 10.6408 ){\circle*{ .07420248}} \put( 9.52868 , 10.62593 ){\circle*{ .07420248}} \put( 9.61013 , 10.61083 ){\circle*{ .07420248}} \put( 9.69157 , 10.59548 ){\circle*{ .07420248}} \put( 9.773 , 10.57988 ){\circle*{ .07420248}} \put( 9.85445 , 10.56400 ){\circle*{ .07420248}} \put( 9.93589 , 10.54783 ){\circle*{ .07420248}} \put( 10.01733 , 10.53135 ){\circle*{ .07420248}} \put( 10.09878 , 10.51455 ){\circle*{ .07420248}} \put( 10.18022 , 10.4974 ){\circle*{ .07420248}} \put( 10.26166 , 10.4799 ){\circle*{ .07420248}} \put( 10.3431 , 10.46203 ){\circle*{ .07420248}} \put( 10.42454 , 10.44377 ){\circle*{ .07420248}} \put( 10.50598 , 10.42509 ){\circle*{ .07420248}} \put( 10.58743 , 10.40599 ){\circle*{ .07420248}} \put( 10.66887 , 10.38644 ){\circle*{ .07420248}} \put( 10.75031 , 10.36643 ){\circle*{ .07420248}} \put( 10.83175 , 10.34592 ){\circle*{ .07420248}} \put( 10.91319 , 10.32492 ){\circle*{ .07420248}} \put( 10.99464 , 10.30338 ){\circle*{ .07420248}} \put( 11.07608 , 10.28130 ){\circle*{ .07420248}} \put( 11.15752 , 10.25864 ){\circle*{ .07420248}} \put( 11.23896 , 10.23540 ){\circle*{ .07420248}} \put( 11.3204 , 10.21154 ){\circle*{ .07420248}} \put( 11.40184 , 10.18703 ){\circle*{ .07420248}} \put( 11.48329 , 10.16187 ){\circle*{ .07420248}} \put( 11.56473 , 10.13602 ){\circle*{ .07420248}} \put( 11.64617 , 10.10945 ){\circle*{ .07420248}} \put( 11.72761 , 10.08215 ){\circle*{ .07420248}} \put( 11.80905 , 10.05408 ){\circle*{ .07420248}} \put( 11.89049 , 10.02521 ){\circle*{ .07420248}} \put( 11.97194 , 9.99552 ){\circle*{ .07420248}} \put( 12.05338 , 9.96498 ){\circle*{ .07420248}} \put( 12.13482 , 9.93356 ){\circle*{ .07420248}} \put( 12.21626 , 9.90122 ){\circle*{ .07420248}} \put( 12.2977 , 9.86794 ){\circle*{ .07420248}} \put( 12.37914 , 9.83368 ){\circle*{ .07420248}} \put( 12.46059 , 9.7984 ){\circle*{ .07420248}} \put( 12.54203 , 9.76209 ){\circle*{ .07420248}} \put( 12.62347 , 9.72469 ){\circle*{ .07420248}} \put( 12.70491 , 9.68616 ){\circle*{ .07420248}} \put( 12.78635 , 9.64649 ){\circle*{ .07420248}} \put( 12.86780 , 9.60561 ){\circle*{ .07420248}} \put( 12.94924 , 9.56350 ){\circle*{ .07420248}} \put( 13.03068 , 9.5201 ){\circle*{ .07420248}} \put( 13.11212 , 9.475395 ){\circle*{ .07420248}} \put( 13.19356 , 9.429317 ){\circle*{ .07420248}} \put( 13.275 , 9.381828 ){\circle*{ .07420248}} \put( 13.35645 , 9.332881 ){\circle*{ .07420248}} \put( 13.43789 , 9.282428 ){\circle*{ .07420248}} \put( 13.51933 , 9.230419 ){\circle*{ .07420248}} \put( 13.60077 , 9.176802 ){\circle*{ .07420248}} \put( 13.68221 , 9.121525 ){\circle*{ .07420248}} \put( 13.76365 , 9.064533 ){\circle*{ .07420248}} \put( 13.84510 , 9.00577 ){\circle*{ .07420248}} \put( 13.92654 , 8.945179 ){\circle*{ .07420248}} \put( 14.00798 , 8.882698 ){\circle*{ .07420248}} \put( 14.08942 , 8.818266 ){\circle*{ .07420248}} \put( 14.17086 , 8.75182 ){\circle*{ .07420248}} \put( 14.2523 , 8.683295 ){\circle*{ .07420248}} \put( 14.33375 , 8.612622 ){\circle*{ .07420248}} \put( 14.41519 , 8.539732 ){\circle*{ .07420248}} \put( 14.49663 , 8.464553 ){\circle*{ .07420248}} \put( 14.57807 , 8.38701 ){\circle*{ .07420248}} \put( 14.65951 , 8.307028 ){\circle*{ .07420248}} \put( 14.74096 , 8.224527 ){\circle*{ .07420248}} \put( 14.82240 , 8.139425 ){\circle*{ .07420248}} \put( 14.90384 , 8.051640 ){\circle*{ .07420248}} \put( 14.98528 , 7.961083 ){\circle*{ .07420248}} \put( 15.06672 , 7.867666 ){\circle*{ .07420248}} \put( 15.14816 , 7.771297 ){\circle*{ .07420248}} \put( 15.2296 , 7.67188 ){\circle*{ .07420248}} \put( 15.31105 , 7.569318 ){\circle*{ .07420248}} \put( 15.39249 , 7.463508 ){\circle*{ .07420248}} \put( 15.47393 , 7.354347 ){\circle*{ .07420248}} \put( 15.55537 , 7.241727 ){\circle*{ .07420248}} \put( 15.63681 , 7.125537 ){\circle*{ .07420248}} \put( 15.71826 , 7.005662 ){\circle*{ .07420248}} \put( 15.79970 , 6.881983 ){\circle*{ .07420248}} \put( 15.88114 , 6.754379 ){\circle*{ .07420248}} \put( 15.96258 , 6.622724 ){\circle*{ .07420248}} \put( 16.04402 , 6.486887 ){\circle*{ .07420248}} \put( 16.12546 , 6.346735 ){\circle*{ .07420248}} \put( 16.2069 , 6.202130 ){\circle*{ .07420248}} \end{picture} \end{center} %Finis. apl>)off