apl>" <-APL2-------------------- sam305.txt ----------------------------> apl>)run cap2/sample/graph.inc apl>" <-APL2-------------------- graph.txt -----------------------------> apl>" Legend describing various global values: apl>" apl>" World coordinates(wc) are those of the real data. apl>" Graph coordinates(gc) are those of the graph. apl>" apl>" caption - Override to text for graph caption. If null, a caption apl>" will be generated. The graph function resets the global apl>" caption variable to null at the end of its processing. apl>" apl>" hk ------ Constant coefficient of input. If xr=1 (see below) then apl>" hk becomes the constant imaginary coefficient for all apl>" values of x on the graph. If xr=0, hk will be the constant apl>" real coefficient. apl>" apl>" htl ----- 0 = both, 1 = headers, 2 = trailers, 3 = neither. apl>" apl>" maxx ---- Maximum x axis value in world coordinates. apl>" apl>" maxy ---- Maximum y axis value in world coordinates. apl>" apl>" minx ---- Minimum x axis value in world coordinates. apl>" apl>" miny ---- Minimum y axis value in world coordinates. apl>" apl>" mgc ----- Vertical margin in graphic coordinates. apl>" apl>" n ------- Synonymous with hk (see above). The x values to which apl>" the function is applied to obtain y values are derived apl>" by first creating xwc as a vector of integers uniformly apl>" distributed between minx and maxx inclusive. Then, either apl>" 'x#(nX0j1)+xwc' or 'x#n+0j1Xxwc' is evaluated. apl>" apl>" nlb ----- 1 = Label the curve with the n value. apl>" apl>" points -- Number of points to generate. apl>" apl>" xgc ----- Array of x values for data points in graph coordinates. apl>" apl>" xiv ----- x axis marker interval in world coordinates. apl>" apl>" xlin ---- Width of graph in inches. apl>" apl>" xpg ----- Divide xwc by xpg to get xgc. apl>" apl>" xpi ----- Array of three values for minx, maxx, and xiv, used when apl>" invoking the graph function and the array of x values apl>" spans -pi to +pi. apl>" apl>" xr ------ 1=vary real x coefficient, 0=vary imaginary coefficient, apl>" holding the other coefficient to the constant hk (see above.). apl>" apl>" xt ------ Used in a variety of places to temporarily generate apl>" graphics coordinates. apl>" apl>" xwc ----- Array of x values in world coordinates. apl>" apl>" yadj ---- Adjustment down to print text below a line. apl>" apl>" yabm ---- Maximum absolute value (|y) to appear on graph. apl>" apl>" ygc ----- Array of y values for data points in graph coordinates. apl>" apl>" ylin ---- Height of graph in inches. apl>" apl>" ymgn ---- Margin in inches at top and bottom of y axis. apl>" apl>" ypg ----- Divide ywc by ypg to get ygc. apl>" apl>" yt ------ Used in a variety of places to temporarily generate apl>" graphics coordinates. apl>" apl>" ywc ----- Array of y values for data points in world coordinates. apl>" apl>" Set global values. --------------------------------------------> apl>" apl>caption#'' " Empty caption causes one to be generated. apl>i#11 " Circle function code to extract imag. coef. of complex number. apl>points#200 " Number of data points to generate on graph. apl>r#9 " Circle function code to extract real coef. of complex number. apl>xlin#4.5 " Width of graph in inches. apl>" minx = -3.14159.... apl>" | maxx = 3.14159.... apl>" | | xiv apl>" | | | apl>" V V V apl>xpi#(O-1),(O1),O.25 apl>ylin#6 " Height of graph in inches. apl>ymgn#.2 " Margin in inches at top and bottom of y axis. apl>" apl>" <-----------------------------------------------------------------> apl>" Generates the LaTeX \put statements for the data points to appear apl>" on the graph. apl>" apl>Lex 'dodata' 1 apl>Gdodata [1] xgc#(xwc_minx)%xpg " xgc=x graphic coordinates for data points. [2] ygc#mgc+(ywc_miny)%ypg " ygc=y graphic coordinates for data points. [3] $bylabXI0=nlb " Branch if the curve is not to be labelled. [4] '%Label the curve' [5] xt#1Y(u=S/u#|ywc)/xgc " x coord where maximum/mininum occurs [6] yt#(_yadjX0>vs/ywc)+(vs#xt=xgc)/ygc " y coord of maximum/minimum [7] " Note: Calculation for yt works only if all minima occur below [8] " y axis, and all maxima occur above. [9] pcon,(xt,',',[1.5]yt),`Z'){n\#',(Fhk),'}' [10] bylab:'%Draw the data points' [11] pcon,((xgc#-1U1Uxgc),',',[1.5](ygc#-1U1Uygc)),circon [12] G apl>" <-----------------------------------------------------------------> apl>" Generate xwc and ywc, the arrays of x/y coordinates for the data apl>" points to appear on the graph. apl>" apl>Lex 'genxy' 1 apl>Ggenxy [1] xwc#minx+(xlwc#maxx_minx)X(-1+Ipoints+1)%points [2] $varyrealXIxr [3] x#hk+0j1Xxwc " real part is constant, imaginary varies. [4] $calcy " Branch to compute values of y for data points. [5] varyreal:x#(hkX0j1)+xwc " Imaginary is constant, real varies. [6] calcy:ywc#eOCfun " Compute values of y for data points [7] ywcm#yabm>|ywc " Mask of keepers, magnitudes of y < yabm. [8] xwc#ywcm/xwc " Pick the keepers. [9] ywc#ywcm/ywc " Pick the keepers. [10] G apl>" apl>" <-----------------------------------------------------------------> apl>" Main graph routine. apl>" apl>Lex 'graph' 1 apl>Gfun graph a [1] "Graphs the imaginary or real coefficient of result of fun. [2] " fun = expression to evaluate. [3] (htl nlb xr e yabm minx maxx xiv hk yiv yca)#a [4] genxy " Generate the data points. [5] $dataXIhtl>1 " Branch if htl greater than 1. [6] scale " Calculate global scaling values. [7] headers " Generate LaTeX figure headers. [8] data:dodata " Process and graph data points. [9] trailers " Generate Latex figure trailers, maybe. [10] G apl>" apl>" <-----------------------------------------------------------------> apl>" Generates the LaTeX statements to begin the graph. apl>" apl>Lex 'headers' 1 apl>Gheaders [1] '\begin{figure}[tbh]' [2] $gencapXI0=Rcaption " Branch if no caption override. [3] '\caption{',caption,'}' [4] $begin [5] gencap:$realcapXI(xr=1)&hk=0 " Branch if x data are not complex. [6] $ncaptionXInlb=0 " Branch if curves are not labelled with n value. [7] '\caption{Graph of y\#',(Fe),'O',fun,'+nX0j1}' [8] $begin [9] ncaption:$cplxcapXIxr " Branch if varying real coefficient. [10] '\caption{Graph of y\#',(Fe),'O',(-1Ufun),(Fhk),'+xX0j1}' [11] $begin [12] cplxcap:'\caption{Graph of y\#',(Fe),'O',fun,'+(n\#',(Fhk),')X0j1}' [13] $begin [14] realcap:'\caption{Graph of y\#',fun,'}' [15] begin:'\begin{center}' [16] '\setlength{\unitlength}{',(Flin),'in}' [17] '\begin{picture}(',(Fxlin%lin),',',(Fylin%lin),')' [18] '%Draw a frame around the picture' [19] ' \put(0,0){\line(1,0){',(Fxlgc),'}}% bottom' [20] ' \put(0,0){\line(0,1){',(Fylgc),'}}% left' [21] ' \put(0,',(Fylgc),'){\line(1,0){',(Fxlgc),'}}% top' [22] ' \put(',(Fxlgc),',0){\line(0,1){',(Fylgc),'}}% right' [23] '%Draw the x axis' [24] ' \put(0,',(Fxax),'){\line(1,0){',(Fxlgc),'}}%x axis' [25] xt#xoff%xpg [26] pcon,((xt,[1.5]','),xax),circon " Draw the x axis markers. [27] xt#xt_xpgX.1Xxmk<0 [28] yt#xax+((.05%lin)Xxax=mgc)_yadjXxax>mgc [29] $dopaxXIpix [30] '%Draw the x axis marker values' [31] pcon,xt,',',yt,econ,xmk,[1.5]scon [32] $doyax [33] dopax:'%Draw the x axis marker values in pi' [34] picon#(`Z'\frac{') ,`1 '\pi}{4}' '\pi}{2}' '3\pi}{4}' [35] picon#('-',`1`Rpicon),'0',picon [36] pcon,xt,',',yt,econ,picon,[1.5]scon [37] doyax:'%Draw the y axis' [38] $putymkXI(yax=0) [39] ' \put(',(Fyax),',0){\line(0,1){',(Fylgc),'}}%y axis' [40] putymk:'%Draw the y axis markers' [41] ymask#ymk^=0 [42] yt#ymask/mgc+(ymk_miny)%ypg [43] pcon,yax,',',yt,[1.5]circon [44] '%Draw the y axis marker values' [45] xt#yax+.05%lin [46] yt#yt_ypgX.1X(ymask/ymk)<0 [47] pcon,xt,',',yt,econ,(ymask/ymk),[1.5]scon [48] G apl>" apl>" <-----------------------------------------------------------------> apl>" Calculates a variety of values needed to produce the graph. apl>" apl>Lex 'scale' 1 apl>Gscale [1] $byyXIyca " Branch if ylwc, maxy, miny are precalculated. [2] ylwc#(maxy#S/ywc)_miny#D/ywc [3] byy:ylap#ylin_2Xymgn " ylap=height allowed for data points. [4] lin#(xlin%xlwc)Dylap%ylwc " unitlength in inches. [5] yadj#.14%lin " y graphic coordinate adjustment to print text below line. [6] mgc#ymgn%lin " Margin in graph coordinates. [7] xpg#xlwc%xlgc#xlin%lin " Divide xwc by xpg to get gc. [8] ypg#ylwc%(_2Xymgn%lin)+ylgc#ylin%lin " Divide ywc by ypg to get gc. [9] xax#(yz#(minyK0)&maxyZ0)Xmgc+(|miny)%ypg " xaxis in graph coordinates. [10] yax#(xz#(minx<0)&maxx>0)X(|minx)%xpg " yaxis in graph coordinates. [11] $piaxisXIpix#(minx=O-1)&maxx=O1 " branch if pi units on x axis. [12] xic#(yax=0)+Dxlwc%xiv [13] $doyiv [14] piaxis:xic#Dxlwc%xiv#O.25 [15] doyiv:$doyicXIyiv^=0 [16] yiv#10*D10@ylwc [17] doyic:yic#yic+0=2|yic#Dylwc%yiv [18] xoff#(I-1+xic)Xxiv " Offset from minx in world coord. of x markers. [19] yoff#(_yiv)+(Iyic)Xyiv " Offset from miny in world coord. of y markers. [20] $yoffplusXIminy>0 [21] ymk#yoff+miny+yiv||miny [22] $yoffdone [23] yoffplus:ymk#yoff+miny_yiv|miny " y for y axis markers in world coord. [24] yoffdone:xmk#minx+xoff " x for x axis markers in world coord. [25] circon#`Z'){\circle*{',(F.0205%lin),'}}' [26] scon#`Z'$}' [27] econ#`Z'){$' [28] pcon#`Z' \put(' [29] G apl>" apl>" <-----------------------------------------------------------------> apl>" Generates the LaTeX statements to finish the graph. apl>" apl>Lex 'trailers' 1 apl>Gtrailers [1] $epicXIhtl=0 " Branch if both headers and trailers. [2] $eojckXInlb " Branch if graph already labelled. [3] pcon,(1Yxgc+xpgX.1),',',(1Yygc),'){',fun,'}' " Label the graph. [4] eojck:$eojXI(htl=1)+htl=3 " br if headers only, or neither. [5] epic:'\end{picture}' [6] '\end{center}' [7] eoj:'%Finis.' [8] caption#'' " Reset global caption [9] G apl>" htl: 0=both, 1=headers, 2=trailers, 3=neither. apl>" | nlb 1 = Label the curve. apl>" | | xr = 1=vary real x coeff, 0=vary imaginary coeff. apl>" | | | e = i(11) or r(9) to select coefficient to graph. apl>" | | | | yabm = maximum |y printed on graph. apl>" | | | | | minx = minimum value of x. apl>" | | | | | | maxx = maximum value of x. apl>" | | | | | | | xiv = x axis marker interval. apl>" | | | | | | | | hk = Constant coefficient of input. apl>" | | | | | | | | | yiv = y axis marker interval, or 0. apl>" | | | | | | | | | | yca = ylwc, maxy, miny are precalculated. apl>" | | | | | | | | | | | apl>" V V V V V V V V V V V apl> '*x' graph 0,0,1,i,1e6,-5,5,1,1,10,0 \begin{figure}[tbh] \caption{Graph of y\#11O*x+(n\#1)X0j1} \begin{center} \setlength{\unitlength}{ .04484316in} \begin{picture}(100.3498,133.7997) %Draw a frame around the picture \put(0,0){\line(1,0){100.3498}}% bottom \put(0,0){\line(0,1){133.7997}}% left \put(0,133.7997){\line(1,0){100.3498}}% top \put(100.3498,0){\line(0,1){133.7997}}% right %Draw the x axis \put(0,0){\line(1,0){100.3498}}%x axis \put( 10.03498 , 0 ){\circle*{ .45714889}} \put( 20.06995 , 0 ){\circle*{ .45714889}} \put( 30.10493 , 0 ){\circle*{ .45714889}} \put( 40.1399 , 0 ){\circle*{ .45714889}} \put( 50.17488 , 0 ){\circle*{ .45714889}} \put( 60.20985 , 0 ){\circle*{ .45714889}} \put( 70.24483 , 0 ){\circle*{ .45714889}} \put( 80.2798 , 0 ){\circle*{ .45714889}} \put( 90.31478 , 0 ){\circle*{ .45714889}} %Draw the x axis marker values \put( 10.02501 , 0 ){$ -4 $} \put( 20.05999 , 0 ){$ -3 $} \put( 30.09496 , 0 ){$ -2 $} \put( 40.12994 , 0 ){$ -1 $} \put( 50.17488 , 0 ){$ 0 $} \put( 60.20985 , 0 ){$ 1 $} \put( 70.24483 , 0 ){$ 2 $} \put( 80.2798 , 0 ){$ 3 $} \put( 90.31478 , 0 ){$ 4 $} %Draw the y axis \put(50.17488,0){\line(0,1){133.7997}}%y axis %Draw the y axis markers \put( 50.17488 , 14.45432 ){\circle*{ .45714889}} \put( 50.17488 , 24.45432 ){\circle*{ .45714889}} \put( 50.17488 , 34.45432 ){\circle*{ .45714889}} \put( 50.17488 , 44.45432 ){\circle*{ .45714889}} \put( 50.17488 , 54.45432 ){\circle*{ .45714889}} \put( 50.17488 , 64.45432 ){\circle*{ .45714889}} \put( 50.17488 , 74.45432 ){\circle*{ .45714889}} \put( 50.17488 , 84.45432 ){\circle*{ .45714889}} \put( 50.17488 , 94.45432 ){\circle*{ .45714889}} \put( 50.17488 , 104.4543 ){\circle*{ .45714889}} \put( 50.17488 , 114.4543 ){\circle*{ .45714889}} \put( 50.17488 , 124.4543 ){\circle*{ .45714889}} %Draw the y axis marker values \put( 51.28988 , 14.45432 ){$ 10 $} \put( 51.28988 , 24.45432 ){$ 20 $} \put( 51.28988 , 34.45432 ){$ 30 $} \put( 51.28988 , 44.45432 ){$ 40 $} \put( 51.28988 , 54.45432 ){$ 50 $} \put( 51.28988 , 64.45432 ){$ 60 $} \put( 51.28988 , 74.45432 ){$ 70 $} \put( 51.28988 , 84.45432 ){$ 80 $} \put( 51.28988 , 94.45432 ){$ 90 $} \put( 51.28988 , 104.4543 ){$ 100 $} \put( 51.28988 , 114.4543 ){$ 110 $} \put( 51.28988 , 124.4543 ){$ 120 $} %Draw the data points \put( .501749 , 4.460280 ){\circle*{ .45714889}} \put( 1.003498 , 4.460585 ){\circle*{ .45714889}} \put( 1.505246 , 4.460907 ){\circle*{ .45714889}} \put( 2.006995 , 4.461244 ){\circle*{ .45714889}} \put( 2.508744 , 4.461600 ){\circle*{ .45714889}} \put( 3.010493 , 4.461973 ){\circle*{ .45714889}} \put( 3.512241 , 4.462365 ){\circle*{ .45714889}} \put( 4.01399 , 4.462778 ){\circle*{ .45714889}} \put( 4.515739 , 4.463211 ){\circle*{ .45714889}} \put( 5.017488 , 4.463667 ){\circle*{ .45714889}} \put( 5.519237 , 4.464147 ){\circle*{ .45714889}} \put( 6.020985 , 4.46465 ){\circle*{ .45714889}} \put( 6.522734 , 4.46518 ){\circle*{ .45714889}} \put( 7.024483 , 4.465737 ){\circle*{ .45714889}} \put( 7.526232 , 4.466322 ){\circle*{ .45714889}} \put( 8.02798 , 4.466938 ){\circle*{ .45714889}} \put( 8.529729 , 4.467585 ){\circle*{ .45714889}} \put( 9.031478 , 4.468265 ){\circle*{ .45714889}} \put( 9.53323 , 4.468980 ){\circle*{ .45714889}} \put( 10.03498 , 4.469731 ){\circle*{ .45714889}} \put( 10.53672 , 4.470522 ){\circle*{ .45714889}} \put( 11.03847 , 4.471352 ){\circle*{ .45714889}} \put( 11.54022 , 4.472226 ){\circle*{ .45714889}} \put( 12.04197 , 4.473144 ){\circle*{ .45714889}} \put( 12.54372 , 4.474109 ){\circle*{ .45714889}} \put( 13.04547 , 4.475124 ){\circle*{ .45714889}} \put( 13.54722 , 4.47619 ){\circle*{ .45714889}} \put( 14.04897 , 4.477312 ){\circle*{ .45714889}} \put( 14.55071 , 4.47849 ){\circle*{ .45714889}} \put( 15.05246 , 4.479730 ){\circle*{ .45714889}} \put( 15.55421 , 4.481032 ){\circle*{ .45714889}} \put( 16.05596 , 4.482402 ){\circle*{ .45714889}} \put( 16.55771 , 4.483842 ){\circle*{ .45714889}} \put( 17.05946 , 4.485356 ){\circle*{ .45714889}} \put( 17.5612 , 4.486947 ){\circle*{ .45714889}} \put( 18.06296 , 4.488620 ){\circle*{ .45714889}} \put( 18.5647 , 4.490378 ){\circle*{ .45714889}} \put( 19.06645 , 4.492227 ){\circle*{ .45714889}} \put( 19.5682 , 4.49417 ){\circle*{ .45714889}} \put( 20.06995 , 4.496214 ){\circle*{ .45714889}} \put( 20.5717 , 4.498362 ){\circle*{ .45714889}} \put( 21.07345 , 4.500620 ){\circle*{ .45714889}} \put( 21.57520 , 4.502994 ){\circle*{ .45714889}} \put( 22.07695 , 4.505489 ){\circle*{ .45714889}} \put( 22.57870 , 4.508113 ){\circle*{ .45714889}} \put( 23.08044 , 4.51087 ){\circle*{ .45714889}} \put( 23.58219 , 4.51377 ){\circle*{ .45714889}} \put( 24.08394 , 4.516818 ){\circle*{ .45714889}} \put( 24.58569 , 4.520023 ){\circle*{ .45714889}} \put( 25.08744 , 4.523392 ){\circle*{ .45714889}} \put( 25.58919 , 4.526933 ){\circle*{ .45714889}} \put( 26.09094 , 4.530656 ){\circle*{ .45714889}} \put( 26.59269 , 4.534570 ){\circle*{ .45714889}} \put( 27.09443 , 4.538684 ){\circle*{ .45714889}} \put( 27.59618 , 4.543010 ){\circle*{ .45714889}} \put( 28.09793 , 4.547557 ){\circle*{ .45714889}} \put( 28.59968 , 4.552337 ){\circle*{ .45714889}} \put( 29.10143 , 4.557363 ){\circle*{ .45714889}} \put( 29.60318 , 4.562646 ){\circle*{ .45714889}} \put( 30.10493 , 4.5682 ){\circle*{ .45714889}} \put( 30.60668 , 4.574039 ){\circle*{ .45714889}} \put( 31.10842 , 4.580177 ){\circle*{ .45714889}} \put( 31.61017 , 4.58663 ){\circle*{ .45714889}} \put( 32.11192 , 4.593414 ){\circle*{ .45714889}} \put( 32.61367 , 4.600545 ){\circle*{ .45714889}} \put( 33.11542 , 4.608042 ){\circle*{ .45714889}} \put( 33.61717 , 4.615924 ){\circle*{ .45714889}} \put( 34.11892 , 4.624209 ){\circle*{ .45714889}} \put( 34.62067 , 4.63292 ){\circle*{ .45714889}} \put( 35.12241 , 4.642077 ){\circle*{ .45714889}} \put( 35.62416 , 4.651703 ){\circle*{ .45714889}} \put( 36.12591 , 4.661824 ){\circle*{ .45714889}} \put( 36.62766 , 4.672463 ){\circle*{ .45714889}} \put( 37.12941 , 4.683647 ){\circle*{ .45714889}} \put( 37.63116 , 4.695405 ){\circle*{ .45714889}} \put( 38.1329 , 4.707766 ){\circle*{ .45714889}} \put( 38.63466 , 4.72076 ){\circle*{ .45714889}} \put( 39.1364 , 4.73442 ){\circle*{ .45714889}} \put( 39.63815 , 4.748782 ){\circle*{ .45714889}} \put( 40.1399 , 4.763879 ){\circle*{ .45714889}} \put( 40.64165 , 4.77975 ){\circle*{ .45714889}} \put( 41.1434 , 4.796436 ){\circle*{ .45714889}} \put( 41.64515 , 4.813977 ){\circle*{ .45714889}} \put( 42.14690 , 4.832417 ){\circle*{ .45714889}} \put( 42.64865 , 4.851802 ){\circle*{ .45714889}} \put( 43.15040 , 4.872182 ){\circle*{ .45714889}} \put( 43.65214 , 4.893606 ){\circle*{ .45714889}} \put( 44.15389 , 4.916128 ){\circle*{ .45714889}} \put( 44.65564 , 4.939806 ){\circle*{ .45714889}} \put( 45.15739 , 4.964697 ){\circle*{ .45714889}} \put( 45.65914 , 4.990865 ){\circle*{ .45714889}} \put( 46.16089 , 5.018374 ){\circle*{ .45714889}} \put( 46.66264 , 5.047294 ){\circle*{ .45714889}} \put( 47.16439 , 5.077696 ){\circle*{ .45714889}} \put( 47.66613 , 5.109658 ){\circle*{ .45714889}} \put( 48.16788 , 5.143258 ){\circle*{ .45714889}} \put( 48.66963 , 5.17858 ){\circle*{ .45714889}} \put( 49.17138 , 5.215714 ){\circle*{ .45714889}} \put( 49.67313 , 5.254751 ){\circle*{ .45714889}} \put( 50.17488 , 5.29579 ){\circle*{ .45714889}} \put( 50.67663 , 5.338934 ){\circle*{ .45714889}} \put( 51.17838 , 5.384289 ){\circle*{ .45714889}} \put( 51.68012 , 5.431969 ){\circle*{ .45714889}} \put( 52.18187 , 5.482094 ){\circle*{ .45714889}} \put( 52.68362 , 5.534790 ){\circle*{ .45714889}} \put( 53.18537 , 5.590186 ){\circle*{ .45714889}} \put( 53.68712 , 5.648424 ){\circle*{ .45714889}} \put( 54.18887 , 5.709647 ){\circle*{ .45714889}} \put( 54.69062 , 5.774009 ){\circle*{ .45714889}} \put( 55.19237 , 5.84167 ){\circle*{ .45714889}} \put( 55.69412 , 5.912802 ){\circle*{ .45714889}} \put( 56.19586 , 5.987580 ){\circle*{ .45714889}} \put( 56.69761 , 6.066191 ){\circle*{ .45714889}} \put( 57.19936 , 6.148834 ){\circle*{ .45714889}} \put( 57.70111 , 6.235713 ){\circle*{ .45714889}} \put( 58.20286 , 6.327048 ){\circle*{ .45714889}} \put( 58.7046 , 6.423064 ){\circle*{ .45714889}} \put( 59.20636 , 6.524004 ){\circle*{ .45714889}} \put( 59.7081 , 6.630119 ){\circle*{ .45714889}} \put( 60.20985 , 6.741675 ){\circle*{ .45714889}} \put( 60.7116 , 6.85895 ){\circle*{ .45714889}} \put( 61.21335 , 6.982238 ){\circle*{ .45714889}} \put( 61.7151 , 7.111847 ){\circle*{ .45714889}} \put( 62.21685 , 7.248101 ){\circle*{ .45714889}} \put( 62.71860 , 7.391342 ){\circle*{ .45714889}} \put( 63.22035 , 7.541926 ){\circle*{ .45714889}} \put( 63.72210 , 7.700231 ){\circle*{ .45714889}} \put( 64.22384 , 7.866653 ){\circle*{ .45714889}} \put( 64.72559 , 8.041607 ){\circle*{ .45714889}} \put( 65.22734 , 8.22553 ){\circle*{ .45714889}} \put( 65.72909 , 8.418885 ){\circle*{ .45714889}} \put( 66.23084 , 8.622152 ){\circle*{ .45714889}} \put( 66.73259 , 8.835842 ){\circle*{ .45714889}} \put( 67.23434 , 9.060487 ){\circle*{ .45714889}} \put( 67.73609 , 9.29665 ){\circle*{ .45714889}} \put( 68.23783 , 9.54492 ){\circle*{ .45714889}} \put( 68.73958 , 9.80592 ){\circle*{ .45714889}} \put( 69.24133 , 10.0803 ){\circle*{ .45714889}} \put( 69.74308 , 10.36876 ){\circle*{ .45714889}} \put( 70.24483 , 10.67200 ){\circle*{ .45714889}} \put( 70.74658 , 10.99078 ){\circle*{ .45714889}} \put( 71.24833 , 11.32591 ){\circle*{ .45714889}} \put( 71.75008 , 11.67823 ){\circle*{ .45714889}} \put( 72.25182 , 12.0486 ){\circle*{ .45714889}} \put( 72.75357 , 12.43797 ){\circle*{ .45714889}} \put( 73.25532 , 12.8473 ){\circle*{ .45714889}} \put( 73.75707 , 13.27762 ){\circle*{ .45714889}} \put( 74.25882 , 13.73 ){\circle*{ .45714889}} \put( 74.76057 , 14.20558 ){\circle*{ .45714889}} \put( 75.26232 , 14.70553 ){\circle*{ .45714889}} \put( 75.76407 , 15.23113 ){\circle*{ .45714889}} \put( 76.26582 , 15.78366 ){\circle*{ .45714889}} \put( 76.76756 , 16.36453 ){\circle*{ .45714889}} \put( 77.26931 , 16.97518 ){\circle*{ .45714889}} \put( 77.77106 , 17.61714 ){\circle*{ .45714889}} \put( 78.27281 , 18.29201 ){\circle*{ .45714889}} \put( 78.77456 , 19.00149 ){\circle*{ .45714889}} \put( 79.2763 , 19.74734 ){\circle*{ .45714889}} \put( 79.77806 , 20.53143 ){\circle*{ .45714889}} \put( 80.2798 , 21.35572 ){\circle*{ .45714889}} \put( 80.78155 , 22.22227 ){\circle*{ .45714889}} \put( 81.2833 , 23.13325 ){\circle*{ .45714889}} \put( 81.78505 , 24.09094 ){\circle*{ .45714889}} \put( 82.2868 , 25.09773 ){\circle*{ .45714889}} \put( 82.78855 , 26.15614 ){\circle*{ .45714889}} \put( 83.29030 , 27.26882 ){\circle*{ .45714889}} \put( 83.79205 , 28.43854 ){\circle*{ .45714889}} \put( 84.29380 , 29.66824 ){\circle*{ .45714889}} \put( 84.79554 , 30.96099 ){\circle*{ .45714889}} \put( 85.29729 , 32.32001 ){\circle*{ .45714889}} \put( 85.79904 , 33.74872 ){\circle*{ .45714889}} \put( 86.30079 , 35.25067 ){\circle*{ .45714889}} \put( 86.80254 , 36.82963 ){\circle*{ .45714889}} \put( 87.30429 , 38.48955 ){\circle*{ .45714889}} \put( 87.80604 , 40.23458 ){\circle*{ .45714889}} \put( 88.30779 , 42.06907 ){\circle*{ .45714889}} \put( 88.80953 , 43.99762 ){\circle*{ .45714889}} \put( 89.31128 , 46.02505 ){\circle*{ .45714889}} \put( 89.81303 , 48.15642 ){\circle*{ .45714889}} \put( 90.31478 , 50.39708 ){\circle*{ .45714889}} \put( 90.81653 , 52.75261 ){\circle*{ .45714889}} \put( 91.31828 , 55.22892 ){\circle*{ .45714889}} \put( 91.82003 , 57.83219 ){\circle*{ .45714889}} \put( 92.32178 , 60.56893 ){\circle*{ .45714889}} \put( 92.82353 , 63.44599 ){\circle*{ .45714889}} \put( 93.32527 , 66.47056 ){\circle*{ .45714889}} \put( 93.82702 , 69.65020 ){\circle*{ .45714889}} \put( 94.32877 , 72.99286 ){\circle*{ .45714889}} \put( 94.83052 , 76.5069 ){\circle*{ .45714889}} \put( 95.33227 , 80.20112 ){\circle*{ .45714889}} \put( 95.83402 , 84.08475 ){\circle*{ .45714889}} \put( 96.33577 , 88.16748 ){\circle*{ .45714889}} \put( 96.83752 , 92.45955 ){\circle*{ .45714889}} \put( 97.33926 , 96.97167 ){\circle*{ .45714889}} \put( 97.84101 , 101.7151 ){\circle*{ .45714889}} \put( 98.34276 , 106.7018 ){\circle*{ .45714889}} \put( 98.84451 , 111.9442 ){\circle*{ .45714889}} \put( 99.34626 , 117.4553 ){\circle*{ .45714889}} \put( 99.848 , 123.2490 ){\circle*{ .45714889}} \end{picture} \end{center} %Finis. apl>)off