apl>" <-APL2-------------------- sam297.txt ----------------------------> apl>)run cap2/sample/graph.inc apl>" <-APL2-------------------- graph.txt -----------------------------> apl>" Legend describing various global values: apl>" apl>" World coordinates(wc) are those of the real data. apl>" Graph coordinates(gc) are those of the graph. apl>" apl>" caption - Override to text for graph caption. If null, a caption apl>" will be generated. The graph function resets the global apl>" caption variable to null at the end of its processing. apl>" apl>" hk ------ Constant coefficient of input. If xr=1 (see below) then apl>" hk becomes the constant imaginary coefficient for all apl>" values of x on the graph. If xr=0, hk will be the constant apl>" real coefficient. apl>" apl>" htl ----- 0 = both, 1 = headers, 2 = trailers, 3 = neither. apl>" apl>" maxx ---- Maximum x axis value in world coordinates. apl>" apl>" maxy ---- Maximum y axis value in world coordinates. apl>" apl>" minx ---- Minimum x axis value in world coordinates. apl>" apl>" miny ---- Minimum y axis value in world coordinates. apl>" apl>" mgc ----- Vertical margin in graphic coordinates. apl>" apl>" n ------- Synonymous with hk (see above). The x values to which apl>" the function is applied to obtain y values are derived apl>" by first creating xwc as a vector of integers uniformly apl>" distributed between minx and maxx inclusive. Then, either apl>" 'x#(nX0j1)+xwc' or 'x#n+0j1Xxwc' is evaluated. apl>" apl>" nlb ----- 1 = Label the curve with the n value. apl>" apl>" points -- Number of points to generate. apl>" apl>" xgc ----- Array of x values for data points in graph coordinates. apl>" apl>" xiv ----- x axis marker interval in world coordinates. apl>" apl>" xlin ---- Width of graph in inches. apl>" apl>" xpg ----- Divide xwc by xpg to get xgc. apl>" apl>" xpi ----- Array of three values for minx, maxx, and xiv, used when apl>" invoking the graph function and the array of x values apl>" spans -pi to +pi. apl>" apl>" xr ------ 1=vary real x coefficient, 0=vary imaginary coefficient, apl>" holding the other coefficient to the constant hk (see above.). apl>" apl>" xt ------ Used in a variety of places to temporarily generate apl>" graphics coordinates. apl>" apl>" xwc ----- Array of x values in world coordinates. apl>" apl>" yadj ---- Adjustment down to print text below a line. apl>" apl>" yabm ---- Maximum absolute value (|y) to appear on graph. apl>" apl>" ygc ----- Array of y values for data points in graph coordinates. apl>" apl>" ylin ---- Height of graph in inches. apl>" apl>" ymgn ---- Margin in inches at top and bottom of y axis. apl>" apl>" ypg ----- Divide ywc by ypg to get ygc. apl>" apl>" yt ------ Used in a variety of places to temporarily generate apl>" graphics coordinates. apl>" apl>" ywc ----- Array of y values for data points in world coordinates. apl>" apl>" Set global values. --------------------------------------------> apl>" apl>caption#'' " Empty caption causes one to be generated. apl>i#11 " Circle function code to extract imag. coef. of complex number. apl>points#200 " Number of data points to generate on graph. apl>r#9 " Circle function code to extract real coef. of complex number. apl>xlin#4.5 " Width of graph in inches. apl>" minx = -3.14159.... apl>" | maxx = 3.14159.... apl>" | | xiv apl>" | | | apl>" V V V apl>xpi#(O-1),(O1),O.25 apl>ylin#6 " Height of graph in inches. apl>ymgn#.2 " Margin in inches at top and bottom of y axis. apl>" apl>" <-----------------------------------------------------------------> apl>" Generates the LaTeX \put statements for the data points to appear apl>" on the graph. apl>" apl>Lex 'dodata' 1 apl>Gdodata [1] xgc#(xwc_minx)%xpg " xgc=x graphic coordinates for data points. [2] ygc#mgc+(ywc_miny)%ypg " ygc=y graphic coordinates for data points. [3] $bylabXI0=nlb " Branch if the curve is not to be labelled. [4] '%Label the curve' [5] xt#1Y(u=S/u#|ywc)/xgc " x coord where maximum/mininum occurs [6] yt#(_yadjX0>vs/ywc)+(vs#xt=xgc)/ygc " y coord of maximum/minimum [7] " Note: Calculation for yt works only if all minima occur below [8] " y axis, and all maxima occur above. [9] pcon,(xt,',',[1.5]yt),`Z'){n\#',(Fhk),'}' [10] bylab:'%Draw the data points' [11] pcon,((xgc#-1U1Uxgc),',',[1.5](ygc#-1U1Uygc)),circon [12] G apl>" <-----------------------------------------------------------------> apl>" Generate xwc and ywc, the arrays of x/y coordinates for the data apl>" points to appear on the graph. apl>" apl>Lex 'genxy' 1 apl>Ggenxy [1] xwc#minx+(xlwc#maxx_minx)X(-1+Ipoints+1)%points [2] $varyrealXIxr [3] x#hk+0j1Xxwc " real part is constant, imaginary varies. [4] $calcy " Branch to compute values of y for data points. [5] varyreal:x#(hkX0j1)+xwc " Imaginary is constant, real varies. [6] calcy:ywc#eOCfun " Compute values of y for data points [7] ywcm#yabm>|ywc " Mask of keepers, magnitudes of y < yabm. [8] xwc#ywcm/xwc " Pick the keepers. [9] ywc#ywcm/ywc " Pick the keepers. [10] G apl>" apl>" <-----------------------------------------------------------------> apl>" Main graph routine. apl>" apl>Lex 'graph' 1 apl>Gfun graph a [1] "Graphs the imaginary or real coefficient of result of fun. [2] " fun = expression to evaluate. [3] (htl nlb xr e yabm minx maxx xiv hk yiv yca)#a [4] genxy " Generate the data points. [5] $dataXIhtl>1 " Branch if htl greater than 1. [6] scale " Calculate global scaling values. [7] headers " Generate LaTeX figure headers. [8] data:dodata " Process and graph data points. [9] trailers " Generate Latex figure trailers, maybe. [10] G apl>" apl>" <-----------------------------------------------------------------> apl>" Generates the LaTeX statements to begin the graph. apl>" apl>Lex 'headers' 1 apl>Gheaders [1] '\begin{figure}[tbh]' [2] $gencapXI0=Rcaption " Branch if no caption override. [3] '\caption{',caption,'}' [4] $begin [5] gencap:$realcapXI(xr=1)&hk=0 " Branch if x data are not complex. [6] $ncaptionXInlb=0 " Branch if curves are not labelled with n value. [7] '\caption{Graph of y\#',(Fe),'O',fun,'+nX0j1}' [8] $begin [9] ncaption:$cplxcapXIxr " Branch if varying real coefficient. [10] '\caption{Graph of y\#',(Fe),'O',(-1Ufun),(Fhk),'+xX0j1}' [11] $begin [12] cplxcap:'\caption{Graph of y\#',(Fe),'O',fun,'+(n\#',(Fhk),')X0j1}' [13] $begin [14] realcap:'\caption{Graph of y\#',fun,'}' [15] begin:'\begin{center}' [16] '\setlength{\unitlength}{',(Flin),'in}' [17] '\begin{picture}(',(Fxlin%lin),',',(Fylin%lin),')' [18] '%Draw a frame around the picture' [19] ' \put(0,0){\line(1,0){',(Fxlgc),'}}% bottom' [20] ' \put(0,0){\line(0,1){',(Fylgc),'}}% left' [21] ' \put(0,',(Fylgc),'){\line(1,0){',(Fxlgc),'}}% top' [22] ' \put(',(Fxlgc),',0){\line(0,1){',(Fylgc),'}}% right' [23] '%Draw the x axis' [24] ' \put(0,',(Fxax),'){\line(1,0){',(Fxlgc),'}}%x axis' [25] xt#xoff%xpg [26] pcon,((xt,[1.5]','),xax),circon " Draw the x axis markers. [27] xt#xt_xpgX.1Xxmk<0 [28] yt#xax+((.05%lin)Xxax=mgc)_yadjXxax>mgc [29] $dopaxXIpix [30] '%Draw the x axis marker values' [31] pcon,xt,',',yt,econ,xmk,[1.5]scon [32] $doyax [33] dopax:'%Draw the x axis marker values in pi' [34] picon#(`Z'\frac{') ,`1 '\pi}{4}' '\pi}{2}' '3\pi}{4}' [35] picon#('-',`1`Rpicon),'0',picon [36] pcon,xt,',',yt,econ,picon,[1.5]scon [37] doyax:'%Draw the y axis' [38] $putymkXI(yax=0) [39] ' \put(',(Fyax),',0){\line(0,1){',(Fylgc),'}}%y axis' [40] putymk:'%Draw the y axis markers' [41] ymask#ymk^=0 [42] yt#ymask/mgc+(ymk_miny)%ypg [43] pcon,yax,',',yt,[1.5]circon [44] '%Draw the y axis marker values' [45] xt#yax+.05%lin [46] yt#yt_ypgX.1X(ymask/ymk)<0 [47] pcon,xt,',',yt,econ,(ymask/ymk),[1.5]scon [48] G apl>" apl>" <-----------------------------------------------------------------> apl>" Calculates a variety of values needed to produce the graph. apl>" apl>Lex 'scale' 1 apl>Gscale [1] $byyXIyca " Branch if ylwc, maxy, miny are precalculated. [2] ylwc#(maxy#S/ywc)_miny#D/ywc [3] byy:ylap#ylin_2Xymgn " ylap=height allowed for data points. [4] lin#(xlin%xlwc)Dylap%ylwc " unitlength in inches. [5] yadj#.14%lin " y graphic coordinate adjustment to print text below line. [6] mgc#ymgn%lin " Margin in graph coordinates. [7] xpg#xlwc%xlgc#xlin%lin " Divide xwc by xpg to get gc. [8] ypg#ylwc%(_2Xymgn%lin)+ylgc#ylin%lin " Divide ywc by ypg to get gc. [9] xax#(yz#(minyK0)&maxyZ0)Xmgc+(|miny)%ypg " xaxis in graph coordinates. [10] yax#(xz#(minx<0)&maxx>0)X(|minx)%xpg " yaxis in graph coordinates. [11] $piaxisXIpix#(minx=O-1)&maxx=O1 " branch if pi units on x axis. [12] xic#(yax=0)+Dxlwc%xiv [13] $doyiv [14] piaxis:xic#Dxlwc%xiv#O.25 [15] doyiv:$doyicXIyiv^=0 [16] yiv#10*D10@ylwc [17] doyic:yic#yic+0=2|yic#Dylwc%yiv [18] xoff#(I-1+xic)Xxiv " Offset from minx in world coord. of x markers. [19] yoff#(_yiv)+(Iyic)Xyiv " Offset from miny in world coord. of y markers. [20] $yoffplusXIminy>0 [21] ymk#yoff+miny+yiv||miny [22] $yoffdone [23] yoffplus:ymk#yoff+miny_yiv|miny " y for y axis markers in world coord. [24] yoffdone:xmk#minx+xoff " x for x axis markers in world coord. [25] circon#`Z'){\circle*{',(F.0205%lin),'}}' [26] scon#`Z'$}' [27] econ#`Z'){$' [28] pcon#`Z' \put(' [29] G apl>" apl>" <-----------------------------------------------------------------> apl>" Generates the LaTeX statements to finish the graph. apl>" apl>Lex 'trailers' 1 apl>Gtrailers [1] $epicXIhtl=0 " Branch if both headers and trailers. [2] $eojckXInlb " Branch if graph already labelled. [3] pcon,(1Yxgc+xpgX.1),',',(1Yygc),'){',fun,'}' " Label the graph. [4] eojck:$eojXI(htl=1)+htl=3 " br if headers only, or neither. [5] epic:'\end{picture}' [6] '\end{center}' [7] eoj:'%Finis.' [8] caption#'' " Reset global caption [9] G apl>" htl: 0=both, 1=headers, 2=trailers, 3=neither. apl>" | nlb 1 = Label the curve. apl>" | | xr = 1=vary real x coeff, 0=vary imaginary coeff. apl>" | | | e = i(11) or r(9) to select coefficient to graph. apl>" | | | | yabm = maximum |y printed on graph. apl>" | | | | | minx = minimum value of x. apl>" | | | | | | maxx = maximum value of x. apl>" | | | | | | | xiv = x axis marker interval. apl>" | | | | | | | | hk = Constant coefficient of input. apl>" | | | | | | | | | yiv = y axis marker interval, or 0. apl>" | | | | | | | | | | yca = ylwc, maxy, miny are precalculated. apl>" | | | | | | | | | | | apl>" V V V V V V V V V V V apl> caption#'Graphs of 5Ox and 6Ox' apl> '5Ox' graph 1,0,1,r,5 ,xpi ,0 , 1 ,0 " sinhdata.tex \begin{figure}[tbh] \caption{Graphs of 5Ox and 6Ox} \begin{center} \setlength{\unitlength}{ .571005in} \begin{picture}(7.880844,10.50779) %Draw a frame around the picture \put(0,0){\line(1,0){7.880844}}% bottom \put(0,0){\line(0,1){10.50779}}% left \put(0,10.50779){\line(1,0){7.880844}}% top \put(7.880844,0){\line(0,1){10.50779}}% right %Draw the x axis \put(0,5.253896){\line(1,0){7.880844}}%x axis \put( .985106 , 5.253896 ){\circle*{ .03590162}} \put( 1.970211 , 5.253896 ){\circle*{ .03590162}} \put( 2.955317 , 5.253896 ){\circle*{ .03590162}} \put( 3.940422 , 5.253896 ){\circle*{ .03590162}} \put( 4.925528 , 5.253896 ){\circle*{ .03590162}} \put( 5.910633 , 5.253896 ){\circle*{ .03590162}} \put( 6.895739 , 5.253896 ){\circle*{ .03590162}} %Draw the x axis marker values in pi \put( .905378 , 5.008714 ){$ -\frac{3\pi}{4} $} \put( 1.890484 , 5.008714 ){$ -\frac{\pi}{2} $} \put( 2.875589 , 5.008714 ){$ -\frac{\pi}{4} $} \put( 3.940422 , 5.008714 ){$ 0 $} \put( 4.925528 , 5.008714 ){$ \frac{\pi}{4} $} \put( 5.910633 , 5.008714 ){$ \frac{\pi}{2} $} \put( 6.895739 , 5.008714 ){$ \frac{3\pi}{4} $} %Draw the y axis \put(3.940422,0){\line(0,1){10.50779}}%y axis %Draw the y axis markers \put( 3.940422 , 1.253896 ){\circle*{ .03590162}} \put( 3.940422 , 2.253896 ){\circle*{ .03590162}} \put( 3.940422 , 3.253896 ){\circle*{ .03590162}} \put( 3.940422 , 4.253896 ){\circle*{ .03590162}} \put( 3.940422 , 6.253896 ){\circle*{ .03590162}} \put( 3.940422 , 7.253896 ){\circle*{ .03590162}} \put( 3.940422 , 8.253896 ){\circle*{ .03590162}} \put( 3.940422 , 9.253896 ){\circle*{ .03590162}} %Draw the y axis marker values \put( 4.027987 , 1.153896 ){$ -4 $} \put( 4.027987 , 2.153896 ){$ -3 $} \put( 4.027987 , 3.153896 ){$ -2 $} \put( 4.027987 , 4.153896 ){$ -1 $} \put( 4.027987 , 6.253896 ){$ 1 $} \put( 4.027987 , 7.253896 ){$ 2 $} \put( 4.027987 , 8.253896 ){$ 3 $} \put( 4.027987 , 9.253896 ){$ 4 $} %Draw the data points \put( 1.103318 , .505089 ){\circle*{ .03590162}} \put( 1.142722 , .65523 ){\circle*{ .03590162}} \put( 1.182127 , .800833 ){\circle*{ .03590162}} \put( 1.22153 , .942040 ){\circle*{ .03590162}} \put( 1.260935 , 1.07899 ){\circle*{ .03590162}} \put( 1.300339 , 1.211821 ){\circle*{ .03590162}} \put( 1.339744 , 1.340662 ){\circle*{ .03590162}} \put( 1.379148 , 1.465640 ){\circle*{ .03590162}} \put( 1.418552 , 1.586879 ){\circle*{ .03590162}} \put( 1.457956 , 1.704498 ){\circle*{ .03590162}} \put( 1.49736 , 1.818614 ){\circle*{ .03590162}} \put( 1.536765 , 1.929339 ){\circle*{ .03590162}} \put( 1.576169 , 2.036783 ){\circle*{ .03590162}} \put( 1.615573 , 2.141051 ){\circle*{ .03590162}} \put( 1.654977 , 2.242247 ){\circle*{ .03590162}} \put( 1.694382 , 2.34047 ){\circle*{ .03590162}} \put( 1.733786 , 2.435818 ){\circle*{ .03590162}} \put( 1.77319 , 2.528384 ){\circle*{ .03590162}} \put( 1.812594 , 2.618260 ){\circle*{ .03590162}} \put( 1.851998 , 2.705534 ){\circle*{ .03590162}} \put( 1.891403 , 2.790293 ){\circle*{ .03590162}} \put( 1.930807 , 2.87262 ){\circle*{ .03590162}} \put( 1.970211 , 2.952597 ){\circle*{ .03590162}} \put( 2.009615 , 3.030303 ){\circle*{ .03590162}} \put( 2.049020 , 3.105813 ){\circle*{ .03590162}} \put( 2.088424 , 3.179204 ){\circle*{ .03590162}} \put( 2.127828 , 3.250546 ){\circle*{ .03590162}} \put( 2.167232 , 3.319911 ){\circle*{ .03590162}} \put( 2.206636 , 3.387368 ){\circle*{ .03590162}} \put( 2.24604 , 3.452982 ){\circle*{ .03590162}} \put( 2.285445 , 3.516818 ){\circle*{ .03590162}} \put( 2.324849 , 3.578940 ){\circle*{ .03590162}} \put( 2.364253 , 3.639408 ){\circle*{ .03590162}} \put( 2.403658 , 3.698283 ){\circle*{ .03590162}} \put( 2.443062 , 3.755623 ){\circle*{ .03590162}} \put( 2.482466 , 3.811483 ){\circle*{ .03590162}} \put( 2.52187 , 3.86592 ){\circle*{ .03590162}} \put( 2.561274 , 3.918987 ){\circle*{ .03590162}} \put( 2.600679 , 3.970736 ){\circle*{ .03590162}} \put( 2.640083 , 4.021219 ){\circle*{ .03590162}} \put( 2.679487 , 4.070485 ){\circle*{ .03590162}} \put( 2.718891 , 4.118583 ){\circle*{ .03590162}} \put( 2.758296 , 4.16556 ){\circle*{ .03590162}} \put( 2.797700 , 4.211464 ){\circle*{ .03590162}} \put( 2.837104 , 4.256338 ){\circle*{ .03590162}} \put( 2.876508 , 4.300228 ){\circle*{ .03590162}} \put( 2.915912 , 4.343176 ){\circle*{ .03590162}} \put( 2.955317 , 4.385225 ){\circle*{ .03590162}} \put( 2.99472 , 4.426417 ){\circle*{ .03590162}} \put( 3.034125 , 4.466792 ){\circle*{ .03590162}} \put( 3.073529 , 4.50639 ){\circle*{ .03590162}} \put( 3.112933 , 4.545251 ){\circle*{ .03590162}} \put( 3.152338 , 4.583412 ){\circle*{ .03590162}} \put( 3.191742 , 4.620911 ){\circle*{ .03590162}} \put( 3.231146 , 4.657786 ){\circle*{ .03590162}} \put( 3.27055 , 4.694072 ){\circle*{ .03590162}} \put( 3.309955 , 4.729805 ){\circle*{ .03590162}} \put( 3.349359 , 4.765022 ){\circle*{ .03590162}} \put( 3.388763 , 4.799755 ){\circle*{ .03590162}} \put( 3.428167 , 4.83404 ){\circle*{ .03590162}} \put( 3.467571 , 4.867912 ){\circle*{ .03590162}} \put( 3.506976 , 4.901402 ){\circle*{ .03590162}} \put( 3.54638 , 4.934544 ){\circle*{ .03590162}} \put( 3.585784 , 4.96737 ){\circle*{ .03590162}} \put( 3.625188 , 4.999915 ){\circle*{ .03590162}} \put( 3.664593 , 5.032208 ){\circle*{ .03590162}} \put( 3.703997 , 5.064282 ){\circle*{ .03590162}} \put( 3.743401 , 5.096170 ){\circle*{ .03590162}} \put( 3.782805 , 5.127901 ){\circle*{ .03590162}} \put( 3.822209 , 5.159509 ){\circle*{ .03590162}} \put( 3.861614 , 5.191023 ){\circle*{ .03590162}} \put( 3.901018 , 5.222475 ){\circle*{ .03590162}} \put( 3.940422 , 5.253896 ){\circle*{ .03590162}} \put( 3.979826 , 5.285317 ){\circle*{ .03590162}} \put( 4.01923 , 5.316769 ){\circle*{ .03590162}} \put( 4.058635 , 5.348284 ){\circle*{ .03590162}} \put( 4.098039 , 5.37989 ){\circle*{ .03590162}} \put( 4.137443 , 5.411623 ){\circle*{ .03590162}} \put( 4.176847 , 5.44351 ){\circle*{ .03590162}} \put( 4.216252 , 5.475584 ){\circle*{ .03590162}} \put( 4.255656 , 5.507878 ){\circle*{ .03590162}} \put( 4.29506 , 5.540422 ){\circle*{ .03590162}} \put( 4.334464 , 5.573249 ){\circle*{ .03590162}} \put( 4.373869 , 5.60639 ){\circle*{ .03590162}} \put( 4.413273 , 5.63988 ){\circle*{ .03590162}} \put( 4.452677 , 5.673752 ){\circle*{ .03590162}} \put( 4.492081 , 5.708037 ){\circle*{ .03590162}} \put( 4.531485 , 5.74277 ){\circle*{ .03590162}} \put( 4.570890 , 5.777987 ){\circle*{ .03590162}} \put( 4.610294 , 5.81372 ){\circle*{ .03590162}} \put( 4.649698 , 5.850007 ){\circle*{ .03590162}} \put( 4.689102 , 5.886881 ){\circle*{ .03590162}} \put( 4.728507 , 5.92438 ){\circle*{ .03590162}} \put( 4.76791 , 5.962541 ){\circle*{ .03590162}} \put( 4.807315 , 6.001402 ){\circle*{ .03590162}} \put( 4.846719 , 6.041 ){\circle*{ .03590162}} \put( 4.886123 , 6.081375 ){\circle*{ .03590162}} \put( 4.925528 , 6.122567 ){\circle*{ .03590162}} \put( 4.964932 , 6.164617 ){\circle*{ .03590162}} \put( 5.004336 , 6.207565 ){\circle*{ .03590162}} \put( 5.04374 , 6.251454 ){\circle*{ .03590162}} \put( 5.083145 , 6.296329 ){\circle*{ .03590162}} \put( 5.122549 , 6.342232 ){\circle*{ .03590162}} \put( 5.161953 , 6.389209 ){\circle*{ .03590162}} \put( 5.201357 , 6.437307 ){\circle*{ .03590162}} \put( 5.240761 , 6.486573 ){\circle*{ .03590162}} \put( 5.280166 , 6.537056 ){\circle*{ .03590162}} \put( 5.319570 , 6.588805 ){\circle*{ .03590162}} \put( 5.358974 , 6.641872 ){\circle*{ .03590162}} \put( 5.398378 , 6.696309 ){\circle*{ .03590162}} \put( 5.437783 , 6.752170 ){\circle*{ .03590162}} \put( 5.477187 , 6.809509 ){\circle*{ .03590162}} \put( 5.516591 , 6.868384 ){\circle*{ .03590162}} \put( 5.555995 , 6.928853 ){\circle*{ .03590162}} \put( 5.595399 , 6.990975 ){\circle*{ .03590162}} \put( 5.634804 , 7.05481 ){\circle*{ .03590162}} \put( 5.674208 , 7.120425 ){\circle*{ .03590162}} \put( 5.713612 , 7.187881 ){\circle*{ .03590162}} \put( 5.753016 , 7.257246 ){\circle*{ .03590162}} \put( 5.79242 , 7.328589 ){\circle*{ .03590162}} \put( 5.831825 , 7.401979 ){\circle*{ .03590162}} \put( 5.871229 , 7.477490 ){\circle*{ .03590162}} \put( 5.910633 , 7.555195 ){\circle*{ .03590162}} \put( 5.950037 , 7.635172 ){\circle*{ .03590162}} \put( 5.989442 , 7.717499 ){\circle*{ .03590162}} \put( 6.028846 , 7.802258 ){\circle*{ .03590162}} \put( 6.06825 , 7.889533 ){\circle*{ .03590162}} \put( 6.107654 , 7.979408 ){\circle*{ .03590162}} \put( 6.147059 , 8.071974 ){\circle*{ .03590162}} \put( 6.186463 , 8.167322 ){\circle*{ .03590162}} \put( 6.225867 , 8.265545 ){\circle*{ .03590162}} \put( 6.265271 , 8.366741 ){\circle*{ .03590162}} \put( 6.304675 , 8.471009 ){\circle*{ .03590162}} \put( 6.344080 , 8.578453 ){\circle*{ .03590162}} \put( 6.383484 , 8.689178 ){\circle*{ .03590162}} \put( 6.422888 , 8.803294 ){\circle*{ .03590162}} \put( 6.462292 , 8.920914 ){\circle*{ .03590162}} \put( 6.501697 , 9.042153 ){\circle*{ .03590162}} \put( 6.5411 , 9.16713 ){\circle*{ .03590162}} \put( 6.580505 , 9.295971 ){\circle*{ .03590162}} \put( 6.619909 , 9.428802 ){\circle*{ .03590162}} \put( 6.659313 , 9.56575 ){\circle*{ .03590162}} \put( 6.698718 , 9.70696 ){\circle*{ .03590162}} \put( 6.738122 , 9.85256 ){\circle*{ .03590162}} \put( 6.777526 , 10.0027 ){\circle*{ .03590162}} \put( 1.183046 , .505089 ){5Ox} %Finis. apl> '6Ox' graph 2,0,1,r,5 ,xpi ,0 , 0.1,0 " coshdata.tex %Draw the data points \put( 1.142722 , 9.96003 ){\circle*{ .03590162}} \put( 1.182127 , 9.81786 ){\circle*{ .03590162}} \put( 1.22153 , 9.68019 ){\circle*{ .03590162}} \put( 1.260935 , 9.54689 ){\circle*{ .03590162}} \put( 1.300339 , 9.417833 ){\circle*{ .03590162}} \put( 1.339744 , 9.292882 ){\circle*{ .03590162}} \put( 1.379148 , 9.171917 ){\circle*{ .03590162}} \put( 1.418552 , 9.054819 ){\circle*{ .03590162}} \put( 1.457956 , 8.941474 ){\circle*{ .03590162}} \put( 1.49736 , 8.831768 ){\circle*{ .03590162}} \put( 1.536765 , 8.725593 ){\circle*{ .03590162}} \put( 1.576169 , 8.622845 ){\circle*{ .03590162}} \put( 1.615573 , 8.523423 ){\circle*{ .03590162}} \put( 1.654977 , 8.427227 ){\circle*{ .03590162}} \put( 1.694382 , 8.334164 ){\circle*{ .03590162}} \put( 1.733786 , 8.244141 ){\circle*{ .03590162}} \put( 1.77319 , 8.157070 ){\circle*{ .03590162}} \put( 1.812594 , 8.072864 ){\circle*{ .03590162}} \put( 1.851998 , 7.99144 ){\circle*{ .03590162}} \put( 1.891403 , 7.912719 ){\circle*{ .03590162}} \put( 1.930807 , 7.836622 ){\circle*{ .03590162}} \put( 1.970211 , 7.763075 ){\circle*{ .03590162}} \put( 2.009615 , 7.692004 ){\circle*{ .03590162}} \put( 2.049020 , 7.623339 ){\circle*{ .03590162}} \put( 2.088424 , 7.557013 ){\circle*{ .03590162}} \put( 2.127828 , 7.492961 ){\circle*{ .03590162}} \put( 2.167232 , 7.431119 ){\circle*{ .03590162}} \put( 2.206636 , 7.371425 ){\circle*{ .03590162}} \put( 2.24604 , 7.313822 ){\circle*{ .03590162}} \put( 2.285445 , 7.258252 ){\circle*{ .03590162}} \put( 2.324849 , 7.20466 ){\circle*{ .03590162}} \put( 2.364253 , 7.152994 ){\circle*{ .03590162}} \put( 2.403658 , 7.103202 ){\circle*{ .03590162}} \put( 2.443062 , 7.055236 ){\circle*{ .03590162}} \put( 2.482466 , 7.009047 ){\circle*{ .03590162}} \put( 2.52187 , 6.964591 ){\circle*{ .03590162}} \put( 2.561274 , 6.921824 ){\circle*{ .03590162}} \put( 2.600679 , 6.880703 ){\circle*{ .03590162}} \put( 2.640083 , 6.841187 ){\circle*{ .03590162}} \put( 2.679487 , 6.803239 ){\circle*{ .03590162}} \put( 2.718891 , 6.766819 ){\circle*{ .03590162}} \put( 2.758296 , 6.731893 ){\circle*{ .03590162}} \put( 2.797700 , 6.698426 ){\circle*{ .03590162}} \put( 2.837104 , 6.666384 ){\circle*{ .03590162}} \put( 2.876508 , 6.635737 ){\circle*{ .03590162}} \put( 2.915912 , 6.606454 ){\circle*{ .03590162}} \put( 2.955317 , 6.578505 ){\circle*{ .03590162}} \put( 2.99472 , 6.551864 ){\circle*{ .03590162}} \put( 3.034125 , 6.526505 ){\circle*{ .03590162}} \put( 3.073529 , 6.502401 ){\circle*{ .03590162}} \put( 3.112933 , 6.479530 ){\circle*{ .03590162}} \put( 3.152338 , 6.457868 ){\circle*{ .03590162}} \put( 3.191742 , 6.437395 ){\circle*{ .03590162}} \put( 3.231146 , 6.41809 ){\circle*{ .03590162}} \put( 3.27055 , 6.399934 ){\circle*{ .03590162}} \put( 3.309955 , 6.382910 ){\circle*{ .03590162}} \put( 3.349359 , 6.366999 ){\circle*{ .03590162}} \put( 3.388763 , 6.352188 ){\circle*{ .03590162}} \put( 3.428167 , 6.33846 ){\circle*{ .03590162}} \put( 3.467571 , 6.325803 ){\circle*{ .03590162}} \put( 3.506976 , 6.314204 ){\circle*{ .03590162}} \put( 3.54638 , 6.303651 ){\circle*{ .03590162}} \put( 3.585784 , 6.294135 ){\circle*{ .03590162}} \put( 3.625188 , 6.285646 ){\circle*{ .03590162}} \put( 3.664593 , 6.278174 ){\circle*{ .03590162}} \put( 3.703997 , 6.271714 ){\circle*{ .03590162}} \put( 3.743401 , 6.266259 ){\circle*{ .03590162}} \put( 3.782805 , 6.261802 ){\circle*{ .03590162}} \put( 3.822209 , 6.25834 ){\circle*{ .03590162}} \put( 3.861614 , 6.25587 ){\circle*{ .03590162}} \put( 3.901018 , 6.254390 ){\circle*{ .03590162}} \put( 3.940422 , 6.253896 ){\circle*{ .03590162}} \put( 3.979826 , 6.254390 ){\circle*{ .03590162}} \put( 4.01923 , 6.25587 ){\circle*{ .03590162}} \put( 4.058635 , 6.25834 ){\circle*{ .03590162}} \put( 4.098039 , 6.261802 ){\circle*{ .03590162}} \put( 4.137443 , 6.266259 ){\circle*{ .03590162}} \put( 4.176847 , 6.271714 ){\circle*{ .03590162}} \put( 4.216252 , 6.278174 ){\circle*{ .03590162}} \put( 4.255656 , 6.285646 ){\circle*{ .03590162}} \put( 4.29506 , 6.294135 ){\circle*{ .03590162}} \put( 4.334464 , 6.303651 ){\circle*{ .03590162}} \put( 4.373869 , 6.314204 ){\circle*{ .03590162}} \put( 4.413273 , 6.325803 ){\circle*{ .03590162}} \put( 4.452677 , 6.33846 ){\circle*{ .03590162}} \put( 4.492081 , 6.352188 ){\circle*{ .03590162}} \put( 4.531485 , 6.366999 ){\circle*{ .03590162}} \put( 4.570890 , 6.382910 ){\circle*{ .03590162}} \put( 4.610294 , 6.399934 ){\circle*{ .03590162}} \put( 4.649698 , 6.41809 ){\circle*{ .03590162}} \put( 4.689102 , 6.437395 ){\circle*{ .03590162}} \put( 4.728507 , 6.457868 ){\circle*{ .03590162}} \put( 4.76791 , 6.479530 ){\circle*{ .03590162}} \put( 4.807315 , 6.502401 ){\circle*{ .03590162}} \put( 4.846719 , 6.526505 ){\circle*{ .03590162}} \put( 4.886123 , 6.551864 ){\circle*{ .03590162}} \put( 4.925528 , 6.578505 ){\circle*{ .03590162}} \put( 4.964932 , 6.606454 ){\circle*{ .03590162}} \put( 5.004336 , 6.635737 ){\circle*{ .03590162}} \put( 5.04374 , 6.666384 ){\circle*{ .03590162}} \put( 5.083145 , 6.698426 ){\circle*{ .03590162}} \put( 5.122549 , 6.731893 ){\circle*{ .03590162}} \put( 5.161953 , 6.766819 ){\circle*{ .03590162}} \put( 5.201357 , 6.803239 ){\circle*{ .03590162}} \put( 5.240761 , 6.841187 ){\circle*{ .03590162}} \put( 5.280166 , 6.880703 ){\circle*{ .03590162}} \put( 5.319570 , 6.921824 ){\circle*{ .03590162}} \put( 5.358974 , 6.964591 ){\circle*{ .03590162}} \put( 5.398378 , 7.009047 ){\circle*{ .03590162}} \put( 5.437783 , 7.055236 ){\circle*{ .03590162}} \put( 5.477187 , 7.103202 ){\circle*{ .03590162}} \put( 5.516591 , 7.152994 ){\circle*{ .03590162}} \put( 5.555995 , 7.20466 ){\circle*{ .03590162}} \put( 5.595399 , 7.258252 ){\circle*{ .03590162}} \put( 5.634804 , 7.313822 ){\circle*{ .03590162}} \put( 5.674208 , 7.371425 ){\circle*{ .03590162}} \put( 5.713612 , 7.431119 ){\circle*{ .03590162}} \put( 5.753016 , 7.492961 ){\circle*{ .03590162}} \put( 5.79242 , 7.557013 ){\circle*{ .03590162}} \put( 5.831825 , 7.623339 ){\circle*{ .03590162}} \put( 5.871229 , 7.692004 ){\circle*{ .03590162}} \put( 5.910633 , 7.763075 ){\circle*{ .03590162}} \put( 5.950037 , 7.836622 ){\circle*{ .03590162}} \put( 5.989442 , 7.912719 ){\circle*{ .03590162}} \put( 6.028846 , 7.99144 ){\circle*{ .03590162}} \put( 6.06825 , 8.072864 ){\circle*{ .03590162}} \put( 6.107654 , 8.157070 ){\circle*{ .03590162}} \put( 6.147059 , 8.244141 ){\circle*{ .03590162}} \put( 6.186463 , 8.334164 ){\circle*{ .03590162}} \put( 6.225867 , 8.427227 ){\circle*{ .03590162}} \put( 6.265271 , 8.523423 ){\circle*{ .03590162}} \put( 6.304675 , 8.622845 ){\circle*{ .03590162}} \put( 6.344080 , 8.725593 ){\circle*{ .03590162}} \put( 6.383484 , 8.831768 ){\circle*{ .03590162}} \put( 6.422888 , 8.941474 ){\circle*{ .03590162}} \put( 6.462292 , 9.054819 ){\circle*{ .03590162}} \put( 6.501697 , 9.171917 ){\circle*{ .03590162}} \put( 6.5411 , 9.292882 ){\circle*{ .03590162}} \put( 6.580505 , 9.417833 ){\circle*{ .03590162}} \put( 6.619909 , 9.54689 ){\circle*{ .03590162}} \put( 6.659313 , 9.68019 ){\circle*{ .03590162}} \put( 6.698718 , 9.81786 ){\circle*{ .03590162}} \put( 6.738122 , 9.96003 ){\circle*{ .03590162}} \put( 1.222450 , 9.96003 ){6Ox} \end{picture} \end{center} %Finis. apl>)off