" <-APL2-------------------- sam325.txt ----------------------------> 1 O (O 1) % 2 3 4 " " <- disclose (`X), page 94 ----------------------------------------> L#rrr#2 3R(I4)'abcd' '****'(5 6 7 8)'efgh' 'HHHH' Rrrr `=rrr L#zzz#`Xrrr `=zzz Rzzz RRzzz (Rrrr),YS/(R`1(,rrr),`ZYrrr)~`ZI0 (RRrrr)+YS/R`1R`1(,rrr),`ZYrrr L#yyy#`X[(RRrrr)+IRRYrrr]rrr `=yyy yyy`=zzz " " <- disclose (`X), with axis, page 96 -----------------------------> L#h#'abcd' (1 2 3 4) 'wxyz' L#z#`X[1]h Rz `=z L#w#`X[2]h Rw `=w Lfx 'z#xxx demo rrr;zzz' 'zzz#`X[xxx]rrr' 'z#+/((Rzzz)[,xxx])=YS/(R`1(,rrr),`ZYrrr)~`ZI0' 1 demo h 2 demo h Lfx 'z#zzz demo rrr' 'z#(RRzzz)=(RRrrr)+S/ER`1R`1(,rrr),`ZYrrr' z demo h w demo h " " <- drop (U) with axis, page 105 ----------------------------------> L#v#3 5R'striperodeplant' q#1 2 &/,(qUv)=L#qU[IRRv]v " " <- each (`1) showing how implemented with empty argument ---------> a#3 0 2R0 b#1 2 3 R`1,`1a b ,`X0=R`1,`1a b L#c#aR`1b L#s#,`X(,`X0=R`1,`1a b)/R`1a b Rs `=s L#d#sR`Z(Ya)RYb c`=d " <- Exponential revisited. ----------------------------------------> * -2 -1 0 1 2 " grade up/down revisited------------------------------------------- L#b#5 3 R 4 16 37 2 9 26 5 11 63 3 18 45 5 11 54 Wb " s/b 3 5 1 4 2 b[Wb;] C'b[Wb',((-1+RRb)R';'),']' c#4 23 54 28 2 11 51 26 c#c,4 29 17 43 3 19 32 41 c#3 2 4Rc,4 23 54 28 1 25 31 16 c Wc c[Wc;;] C'c[Wc',((-1+RRc)R';'),']' " logarithm revisited----------------------------------------------- left#1+I5 right#5+I5 (left@right) `= (@right)%@left " magnitude revisited----------------------------------------------- (|right) = (+/(9 11 O right#4j3)*2)*.5 " Ravel with axis revisited--------------------------------------- Lfx 'z#x demo r' 'z#((R,[x]r)Rr)`=,[x]r' .1 demo a#2 3R'tensix' 1.1 demo a 2.1 demo a 1.1 demo b#10 15 20 2 3 demo c#3 2 4RI24 1 2 demo c a#'ant' 'boar' 'cat' 'dog' 'elk' 'fox' 'gnu' b#'hen' 'ibex' 'jird' 'kite' 'lamb' 'mice' c#'nene' 'ox' 'pig' 'quail' 'rat' 'seal' L#d#4 2 3Ra,b,c,'titi' 'viper' 'wolf' 'yak' 'zebra' 1 2 demo d (I0) demo h#2 3RI6 (I0) demo k#'prune' 'pear' 'fig' " Reduce revisited------------------------------------------------ (X/r[i;]) `= (X/r#2 3RI6)[i#2] (+/r[i;j;]) `= (+/r#2 3 4RI24)[i#2;j#1 2] (+/r) `= `X+/`1`Z[RRr]r#2 3 4 5RI120 " Examples for aplderiv.tex -------------------------------------- (2 3RI6) +.X 3 2RI6 +/ `1 'e' = `1 text # 'Still' 'round' 'the' 'corner' 'there' 'may' 'wait' +/ `1 'e' = text +/ `1 'e' = (' ' ^= text) `Z text#'Still round the corner there may wait' )off