" <-APL2-------------------- sam285.txt ----------------------------> Lfx 'z # sin x' 'z # 1 O x' Lfx 'z # cos x' 'z # 2 O x' Lfx 'z # tan x' 'z # 3 O x' Lfx 'z # sinh x' 'z # 5 O x' Lfx 'z # cosh x' 'z # 6 O x' Lfx 'z # tanh x' 'z # 7 O x' Lfx 'z # asin x' 'z # -1 O x' Lfx 'z # acos x' 'z # -2 O x' Lfx 'z # atan x' 'z # -3 O x' Lfx 'z # asinh x' 'z # -5 O x' Lfx 'z # acosh x' 'z # -6 O x' Lfx 'z # atanh x' 'z # -7 O x' Lct#1e-8 i#0j1 n#4 r # .5 3j4 s # .2 4j5 " <-all the following expressions produce only 1s-------------------> (sin r) = ((*iXr)_1%*iXr)%2Xi (cos r) = ((*iXr)+1%*iXr)%2 (tan r) = (sin r) % cos r (asin r) = _iX@(iXr)+(1_r*2)*.5 (acos r) = _iX@r+iX(1_r*2)*.5 (atan r) = (iX@(1_iXr)%1+iXr)%2 (sinh r) = ((*r)_1%*r)%2 (cosh r) = ((*r)+1%*r)%2 (tanh r) = (t_u)%t+u#1%t#*r (asinh r) = @r+(1+r*2)*.5 (acosh r) = @(r+-4Or) (acosh r) = @r+(-1+r*2)*.5 (atanh r) = (@(1+r)%(1_r))%2 (sin 2Xr) = 2 X (sin r) X (cos r) (cos 2Xr) = -1 + 2 X (cos r)*2 (cos 2Xr) = 1 _ 2 X (sin r)*2 (cos 2Xr) = ((cos r)*2) _ ((sin r)*2) (tan 2Xr) = (2 X tan r) % 1 _ (tan r)*2 (sin 3Xr) = (3 X sin r) _ 4 X (sin r)*3 (cos 3Xr) = (4 X (cos r)*3) _ 3 X cos r (sin nXr) = ((2Xsin rXn_1)X(cos r))_sin rXn_2 (cos nXr) = ((2Xcos rXn_1)X(cos r))_cos rXn_2 (sin r+s) = ((sin r)X(cos s))+(cos r)Xsin s (sin r_s) = ((sin r)X(cos s))_(cos r)Xsin s (cos r+s) = ((cos r)X(cos s))_(sin r)Xsin s (cos r_s) = ((cos r)X(cos s))+(sin r)Xsin s (tan r+s) = ((tan r)+tan s)%1_(tan r)Xtan s (tan r_s) = ((tan r)_tan s)%1+(tan r)Xtan s ((sin r)+sin s) = 2X(sin(r+s)%2)Xcos(r_s)%2 ((sin r)_sin s) = 2X(cos(r+s)%2)Xsin(r_s)%2 ((cos r)+cos s) = 2X(cos(r+s)%2)Xcos(r_s)%2 ((cos r)_cos s) =_2X(sin(r+s)%2)Xsin(r_s)%2 ((sin r)*2) = (1_cos 2Xr)%2 ((cos r)*2) = (1+cos 2Xr)%2 ((sin r)*3) = ((3Xsin r)_sin 3Xr)%4 ((cos r)*3) = ((3Xcos r)+cos 3Xr)%4 ((sin r)Xsin s) = ((cos r_s)%2)_(cos r+s)%2 ((cos r)Xcos s) = ((cos r_s)%2)+(cos r+s)%2 ((sin r)Xcos s) = ((sin r+s)%2)+(sin r_s)%2 (asinh r) = @r+(1+r*2)*.5 (acosh r) = @r+(-1+r*2)*.5 (atanh r) = (@(1+r)%1_r)%2 (sinh _r) = _sinh r (cosh _r) = cosh r (tanh _r) = _tanh r 1 = ((cosh r)*2)_(sinh r)*2 (sinh r+s) = ((sinh r)Xcosh s)+(cosh r)Xsinh s (sinh r_s) = ((sinh r)Xcosh s)_(cosh r)Xsinh s (cosh r+s) = ((cosh r)Xcosh s)+(sinh r)Xsinh s (cosh r_s) = ((cosh r)Xcosh s)_(sinh r)Xsinh s (tanh r+s) = ((tanh r)+tanh s)%1+(tanh r)Xtanh s (tanh r_s) = ((tanh r)_tanh s)%1_(tanh r)Xtanh s (sinh 2Xr) = 2X(sinh r)Xcosh r (cosh 2Xr) = ((cosh r)*2)+(sinh r)*2 (2X(sinh r%2)*2) = -1+cosh r (2X(cosh r%2)*2) = 1+cosh r (sin r) = _iXsinh iXr (cos r) = cosh iXr (tan r) = _iXtanh iXr (sin iXr) = iXsinh r (cos iXr) = cosh r (tan iXr) = iXtanh r (sinh iXr) = iXsin r (cosh iXr) = cos r (tanh iXr) = iXtan r (sinh r+iXs) = ((sinh r)Xcos s)+iX(cosh r)Xsin s (sinh r_iXs) = ((sinh r)Xcos s)_iX(cosh r)Xsin s (cosh r+iXs) = ((cosh r)Xcos s)+iX(sinh r)Xsin s (cosh r_iXs) = ((cosh r)Xcos s)_iX(sinh r)Xsin s (sinh r+2XiXO1) = sinh r (cosh r+2XiXO1) = cosh r (sinh r+iXO1) = _sinh r (cosh r+iXO1) = _cosh r (sinh r+.5XiXO1) = iXcosh r (cosh r+.5XiXO1) = iXsinh r (*r) = (cosh r)+sinh r (1%*r) = (cosh r)_sinh r (*iXr) = (cos r)+iXsin r (1%*iXr) = (cos r)_iXsin r r = (|r)X*iXacos (9Or)%|r r = (|r)X*iXasin (11Or)%|r (((cos r)+iXsin r)*n) = (cos nXr)+iXsin nXr 1 = ((cos t)+iXsin t#(O2)X-1+In)*n ((sinh r)+sinh s) = 2X(sinh.5Xr+s)Xcosh.5Xr_s ((sinh r)_sinh s) = 2X(cosh.5Xr+s)Xsinh.5Xr_s ((cosh r)+cosh s) = 2X(cosh.5Xr+s)Xcosh.5Xr_s ((cosh r)_cosh s) = 2X(sinh.5Xr+s)Xsinh.5Xr_s " <-----------------------------------------------------------------> )off