/**************************************************************************** * image.c * * This module implements the mapped textures including image map, bump map * and material map. * * from Persistence of Vision(tm) Ray Tracer * Copyright 1996 Persistence of Vision Team *--------------------------------------------------------------------------- * NOTICE: This source code file is provided so that users may experiment * with enhancements to POV-Ray and to port the software to platforms other * than those supported by the POV-Ray Team. There are strict rules under * which you are permitted to use this file. The rules are in the file * named POVLEGAL.DOC which should be distributed with this file. If * POVLEGAL.DOC is not available or for more info please contact the POV-Ray * Team Coordinator by leaving a message in CompuServe's Graphics Developer's * Forum. The latest version of POV-Ray may be found there as well. * * This program is based on the popular DKB raytracer version 2.12. * DKBTrace was originally written by David K. Buck. * DKBTrace Ver 2.0-2.12 were written by David K. Buck & Aaron A. Collins. * *****************************************************************************/ #include "frame.h" #include "vector.h" #include "povproto.h" #include "texture.h" #include "image.h" #include "matrices.h" #include "povray.h" /***************************************************************************** * Local preprocessor defines ******************************************************************************/ /***************************************************************************** * Local typedefs ******************************************************************************/ /***************************************************************************** * Local variables ******************************************************************************/ /***************************************************************************** * Static functions ******************************************************************************/ static int cylindrical_image_map PARAMS((VECTOR EPoint, IMAGE * Image, DBL *u, DBL *v)); static int torus_image_map PARAMS((VECTOR EPoint, IMAGE * Image, DBL *u, DBL *v)); static int spherical_image_map PARAMS((VECTOR EPoint, IMAGE * Image, DBL *u, DBL *v)); static int planar_image_map PARAMS((VECTOR EPoint, IMAGE * Image, DBL *u, DBL *v)); static void no_interpolation PARAMS((IMAGE * Image, DBL xcoor, DBL ycoor, COLOUR colour, int *index)); static DBL bilinear PARAMS((DBL *corners, DBL x, DBL y)); static DBL norm_dist PARAMS((DBL *corners, DBL x, DBL y)); static void Interp PARAMS((IMAGE * Image, DBL xcoor, DBL ycoor, COLOUR colour, int *index)); static void image_colour_at PARAMS((IMAGE * Image, DBL xcoor, DBL ycoor, COLOUR colour, int *index)); static int map PARAMS((VECTOR EPoint, TPATTERN * Turb, DBL *xcoor, DBL *ycoor)); /* * 2-D to 3-D Procedural Texture Mapping of a Bitmapped Image onto an Object: * * A. Simplistic (planar) method of image projection devised by DKB and AAC: * * 1. Transform texture in 3-D space if requested. 2. Determine local object 2-d * coords from 3-d coords by triple. 3. Return pixel color value at * that position on the 2-d plane of "Image". 3. Map colour value in Image * [0..255] to a more normal colour range [0..1]. * * B. Specialized shape projection variations by Alexander Enzmann: * * 1. Cylindrical mapping 2. Spherical mapping 3. Torus mapping */ /***************************************************************************** * * FUNCTION * * image_map * * INPUT * * EPoint -- 3-D point at which function is evaluated * Pigment -- Pattern containing various parameters * * OUTPUT * * Colour -- color at EPoint * * RETURNS * * int - TRUE, if current point on the image map * FALSE, if current point is not on the image map * * AUTHOR * * POV-Ray Team * * DESCRIPTION : Determines color of a 3-D point from a 2-D bitmap * * CHANGES * ******************************************************************************/ int image_map(EPoint, Pigment, colour) VECTOR EPoint; PIGMENT *Pigment; COLOUR colour; { int reg_number; DBL xcoor = 0.0, ycoor = 0.0; /* If outside map coverage area, return clear */ if (map(EPoint, ((TPATTERN *) Pigment), &xcoor, &ycoor)) { Make_ColourA(colour, 1.0, 1.0, 1.0, 0.0, 1.0); return(FALSE); } else { image_colour_at(Pigment->Vals.Image, xcoor, ycoor, colour, ®_number); } return(TRUE); } /***************************************************************************** * * FUNCTION * * INPUT * * OUTPUT * * RETURNS * * AUTHOR * * DESCRIPTION * * Very different stuff than the other routines here. This routine takes an * intersection point and a texture and returns a new texture based on the * index/color of that point in an image/materials map. CdW 7/91 * * CHANGES * ******************************************************************************/ TEXTURE *material_map(EPoint, Texture) VECTOR EPoint; TEXTURE *Texture; { int reg_number = 0; int Material_Number; int numtex; DBL xcoor = 0.0, ycoor = 0.0; COLOUR colour; TEXTURE *Temp_Tex; /* * Now we have transformed x, y, z we use image mapping routine to determine * texture index. */ if (map(EPoint, ((TPATTERN *) Texture), &xcoor, &ycoor)) { Material_Number = 0; } else { Make_ColourA(colour, 0.0, 0.0, 0.0, 0.0, 0.0); image_colour_at(Texture->Vals.Image, xcoor, ycoor, colour, ®_number); if (Texture->Vals.Image->Colour_Map == NULL) { Material_Number = (int)(colour[RED] * 255.0); } else { Material_Number = reg_number; } } if (Material_Number > Texture->Num_Of_Mats) { Material_Number %= Texture->Num_Of_Mats; } for (numtex = 0, Temp_Tex = Texture->Materials; (Temp_Tex->Next_Material != NULL) && (numtex < Material_Number); Temp_Tex = Temp_Tex->Next_Material, numtex++) { /* do nothing */ } return (Temp_Tex); } /***************************************************************************** * * FUNCTION * * INPUT * * OUTPUT * * RETURNS * * AUTHOR * * DESCRIPTION * * CHANGES * ******************************************************************************/ void bump_map(EPoint, Tnormal, normal) VECTOR EPoint; TNORMAL *Tnormal; VECTOR normal; { DBL xcoor = 0.0, ycoor = 0.0; int index, index2, index3; COLOUR colour1, colour2, colour3; VECTOR p1, p2, p3; VECTOR bump_normal; VECTOR xprime, yprime, zprime, Temp; DBL Length; DBL Amount = Tnormal->Amount; IMAGE *Image = Tnormal->Vals.Image; Make_ColourA(colour1, 0.0, 0.0, 0.0, 0.0, 0.0); Make_ColourA(colour2, 0.0, 0.0, 0.0, 0.0, 0.0); Make_ColourA(colour3, 0.0, 0.0, 0.0, 0.0, 0.0); /* going to have to change this */ /* need to know if bump point is off of image for all 3 points */ if (map(EPoint, (TPATTERN *) Tnormal, &xcoor, &ycoor)) { return; } else { image_colour_at(Image, xcoor, ycoor, colour1, &index); } xcoor--; ycoor++; if (xcoor < 0.0) { xcoor += (DBL)Image->iwidth; } else { if (xcoor >= Image->iwidth) { xcoor -= (DBL)Image->iwidth; } } if (ycoor < 0.0) { ycoor += (DBL)Image->iheight; } else { if (ycoor >= (DBL)Image->iheight) { ycoor -= (DBL)Image->iheight; } } image_colour_at(Image, xcoor, ycoor, colour2, &index2); xcoor += 2.0; if (xcoor < 0.0) { xcoor += (DBL)Image->iwidth; } else { if (xcoor >= Image->iwidth) { xcoor -= (DBL)Image->iwidth; } } image_colour_at(Image, xcoor, ycoor, colour3, &index3); if (Image->Colour_Map == NULL || Image->Use_Colour_Flag) { p1[X] = 0; p1[Y] = Amount * (0.229 * colour1[RED] + 0.587 * colour1[GREEN] + 0.114 * colour1[BLUE]); p1[Z] = 0; p2[X] = 0; p2[Y] = Amount * (0.229 * colour2[RED] + 0.587 * colour2[GREEN] + 0.114 * colour2[BLUE]); p2[Z] = 1; p3[X] = 1; p3[Y] = Amount * (0.229 * colour3[RED] + 0.587 * colour3[GREEN] + 0.114 * colour3[BLUE]); p3[Z] = 1; } else { p1[X] = 0; p1[Y] = Amount * index; p1[Z] = 0; p2[X] = 0; p2[Y] = Amount * index2; p2[Z] = 1; p3[X] = 1; p3[Y] = Amount * index3; p3[Z] = 1; } /* we have points 1,2,3 for a triangle now we need the surface normal for it */ VSub(xprime, p1, p2); VSub(yprime, p3, p2); VCross(bump_normal, yprime, xprime); VNormalize(bump_normal, bump_normal); Assign_Vector(yprime, normal); Make_Vector(Temp, 0.0, 1.0, 0.0); VCross(xprime, yprime, Temp); VLength(Length, xprime); if (Length < EPSILON) { if (fabs(normal[Y] - 1.0) < Small_Tolerance) { Make_Vector(yprime, 0.0, 1.0, 0.0); Make_Vector(xprime, 1.0, 0.0, 0.0); Length = 1.0; } else { Make_Vector(yprime, 0.0, -1.0, 0.0); Make_Vector(xprime, 1.0, 0.0, 0.0); Length = 1.0; } } VScaleEq(xprime, 1.0 / Length); VCross(zprime, xprime, yprime); VNormalizeEq(zprime); VScaleEq(xprime, bump_normal[X]); VScaleEq(yprime, bump_normal[Y]); VScaleEq(zprime, bump_normal[Z]); VAdd(Temp, xprime, yprime); VAdd(normal, Temp, zprime); } /***************************************************************************** * * FUNCTION * * INPUT * * OUTPUT * * RETURNS * * AUTHOR * * DESCRIPTION * * CHANGES * ******************************************************************************/ static void image_colour_at(Image, xcoor, ycoor, colour, index) IMAGE *Image; DBL xcoor, ycoor; COLOUR colour; int *index; { switch (Image->Interpolation_Type) { case NO_INTERPOLATION: no_interpolation(Image, xcoor, ycoor, colour, index); break; default: Interp(Image, xcoor, ycoor, colour, index); break; } } /***************************************************************************** * * FUNCTION * * INPUT * * OUTPUT * * RETURNS * * AUTHOR * * DESCRIPTION * * Map a point (x, y, z) on a cylinder of radius 1, height 1, that has its axis * of symmetry along the y-axis to the square [0,1]x[0,1]. * * CHANGES * ******************************************************************************/ static int cylindrical_image_map(EPoint, Image, u, v) VECTOR EPoint; IMAGE *Image; DBL *u, *v; { DBL len, theta; DBL x = EPoint[X]; DBL y = EPoint[Y]; DBL z = EPoint[Z]; if ((Image->Once_Flag) && ((y < 0.0) || (y > 1.0))) { return 0; } *v = fmod(y * Image->height, Image->height); /* Make sure this vector is on the unit sphere. */ len = sqrt(x * x + y * y + z * z); if (len == 0.0) { return 0; } else { x /= len; z /= len; } /* Determine its angle from the point (1, 0, 0) in the x-z plane. */ len = sqrt(x * x + z * z); if (len == 0.0) { return 0; } else { if (z == 0.0) { if (x > 0) { theta = 0.0; } else { theta = M_PI; } } else { theta = acos(x / len); if (z < 0.0) { theta = TWO_M_PI - theta; } } theta /= TWO_M_PI; /* This will be from 0 to 1 */ } *u = (theta * Image->width); return 1; } /***************************************************************************** * * FUNCTION * * INPUT * * OUTPUT * * RETURNS * * AUTHOR * * DESCRIPTION * * Map a point (x, y, z) on a torus to a 2-d image. * * CHANGES * ******************************************************************************/ static int torus_image_map(EPoint, Image, u, v) VECTOR EPoint; IMAGE *Image; DBL *u, *v; { DBL len, phi, theta; DBL r0; DBL x = EPoint[X]; DBL y = EPoint[Y]; DBL z = EPoint[Z]; r0 = Image->Gradient[X]; /* Determine its angle from the x-axis. */ len = sqrt(x * x + z * z); if (len == 0.0) { return 0; } else { if (z == 0.0) { if (x > 0) { theta = 0.0; } else { theta = M_PI; } } else { theta = acos(x / len); if (z < 0.0) { theta = TWO_M_PI - theta; } } } theta = 0.0 - theta; /* Now rotate about the y-axis to get the point (x, y, z) into the x-y plane. */ x = len - r0; len = sqrt(x * x + y * y); phi = acos(-x / len); if (y > 0.0) { phi = TWO_M_PI - phi; } /* Determine the parametric coordinates. */ theta /= TWO_M_PI; phi /= TWO_M_PI; *u = (-theta * Image->width); *v = (phi * Image->height); return 1; } /***************************************************************************** * * FUNCTION * * INPUT * * OUTPUT * * RETURNS * * AUTHOR * * DESCRIPTION * * Map a point (x, y, z) on a sphere of radius 1 to a 2-d image. (Or is it the * other way around?) * * CHANGES * ******************************************************************************/ static int spherical_image_map(EPoint, Image, u, v) VECTOR EPoint; IMAGE *Image; DBL *u, *v; { DBL len, phi, theta; DBL x = EPoint[X]; DBL y = EPoint[Y]; DBL z = EPoint[Z]; /* Make sure this vector is on the unit sphere. */ len = sqrt(x * x + y * y + z * z); if (len == 0.0) { return 0; } else { x /= len; y /= len; z /= len; } /* Determine its angle from the x-z plane. */ phi = 0.5 + asin(y) / M_PI; /* This will be from 0 to 1 */ /* Determine its angle from the point (1, 0, 0) in the x-z plane. */ len = sqrt(x * x + z * z); if (len == 0.0) { /* This point is at one of the poles. Any value of xcoord will be ok... */ theta = 0; } else { if (z == 0.0) { if (x > 0) { theta = 0.0; } else { theta = M_PI; } } else { theta = acos(x / len); if (z < 0.0) { theta = TWO_M_PI - theta; } } theta /= TWO_M_PI; /* This will be from 0 to 1 */ } *u = (theta * Image->width); *v = (phi * Image->height); return 1; } /* * 2-D to 3-D Procedural Texture Mapping of a Bitmapped Image onto an Object: * * Simplistic planar method of object image projection devised by DKB and AAC. * * 1. Transform texture in 3-D space if requested. 2. Determine local object 2-d * coords from 3-d coords by triple. 3. Return pixel color value at * that position on the 2-d plane of "Image". 3. Map colour value in Image * [0..255] to a more normal colour range [0..1]. */ /***************************************************************************** * * FUNCTION * * INPUT * * OUTPUT * * RETURNS * * AUTHOR * * DESCRIPTION * * Return 0 if there is no color at this point (i.e. invisible), return 1 if a * good mapping is found. * * CHANGES * ******************************************************************************/ static int planar_image_map(EPoint, Image, u, v) VECTOR EPoint; IMAGE *Image; DBL *u, *v; { DBL x = EPoint[X]; DBL y = EPoint[Y]; DBL z = EPoint[Z]; if (Image->Gradient[X] != 0.0) { if ((Image->Once_Flag) && ((x < 0.0) || (x > 1.0))) { return 0; } if (Image->Gradient[X] > 0) { *u = fmod(x * Image->width, Image->width); } else { *v = fmod(x * Image->height, Image->height); } } if (Image->Gradient[Y] != 0.0) { if ((Image->Once_Flag) && ((y < 0.0) || (y > 1.0))) { return 0; } if (Image->Gradient[Y] > 0) { *u = fmod(y * Image->width, Image->width); } else { *v = fmod(y * Image->height, Image->height); } } if (Image->Gradient[Z] != 0.0) { if ((Image->Once_Flag) && ((z < 0.0) || (z > 1.0))) { return 0; } if (Image->Gradient[Z] > 0) { *u = fmod(z * Image->width, Image->width); } else { *v = fmod(z * Image->height, Image->height); } } return 1; } /***************************************************************************** * * FUNCTION * * map * * INPUT * * EPoint -- 3-D point at which function is evaluated * TPattern -- Pattern containing various parameters * * OUTPUT * * xcoor, ycoor -- 2-D result * * RETURNS * * Map returns 1 if point off of map 0 if on map * * AUTHOR * * POV-Ray Team * * DESCRIPTION : Maps a 3-D point to a 2-D point depending upon map type * * CHANGES * ******************************************************************************/ static int map(EPoint, TPattern, xcoor, ycoor) VECTOR EPoint; TPATTERN *TPattern; DBL *xcoor, *ycoor; { IMAGE *Image = TPattern->Vals.Image; /* Now determine which mapper to use. */ switch (Image->Map_Type) { case PLANAR_MAP: if (!planar_image_map(EPoint, Image, xcoor, ycoor)) { return (1); } break; case SPHERICAL_MAP: if (!spherical_image_map(EPoint, Image, xcoor, ycoor)) { return (1); } break; case CYLINDRICAL_MAP: if (!cylindrical_image_map(EPoint, Image, xcoor, ycoor)) { return (1); } break; case TORUS_MAP: if (!torus_image_map(EPoint, Image, xcoor, ycoor)) { return (1); } break; default: if (!planar_image_map(EPoint, Image, xcoor, ycoor)) { return (1); } break; } /* Now make sure the point is on the image */ *ycoor += Small_Tolerance; *xcoor += Small_Tolerance; /* Compensate for y coordinates on the images being upsidedown */ *ycoor = (DBL)Image->iheight - *ycoor; if (*xcoor < 0.0) { *xcoor += (DBL)Image->iwidth; } else { if (*xcoor >= (DBL)Image->iwidth) { *xcoor -= (DBL)Image->iwidth; } } if (*ycoor < 0.0) { *ycoor += (DBL)Image->iheight; } else { if (*ycoor >= (DBL)Image->iheight) { *ycoor -= (DBL)Image->iheight; } } if ((*xcoor >= (DBL)Image->iwidth) || (*ycoor >= (DBL)Image->iheight) || (*xcoor < 0.0) || (*ycoor < 0.0)) { Error("Picture index out of range."); } return (0); } /***************************************************************************** * * FUNCTION * * INPUT * * OUTPUT * * RETURNS * * AUTHOR * * DESCRIPTION * * CHANGES * ******************************************************************************/ static void no_interpolation(Image, xcoor, ycoor, colour, index) IMAGE *Image; DBL xcoor, ycoor; COLOUR colour; int *index; { IMAGE_LINE *line; int iycoor, ixcoor; IMAGE_COLOUR *map_colour; if (xcoor < 0.0) { xcoor += (DBL)Image->iwidth; } else { if (xcoor >= (DBL)Image->iwidth) { xcoor -= (DBL)Image->iwidth; } } if (ycoor < 0.0) { ycoor += (DBL)Image->iheight; } else { if (ycoor >= (DBL)Image->iheight) { ycoor -= (DBL)Image->iheight; } } iycoor = (int)ycoor; ixcoor = (int)xcoor; if (Image->Colour_Map == NULL) { line = &Image->data.rgb_lines[iycoor]; colour[RED] += (DBL)line->red[ixcoor] / 255.0; colour[GREEN] += (DBL)line->green[ixcoor] / 255.0; colour[BLUE] += (DBL)line->blue[ixcoor] / 255.0; if (line->transm != NULL) { colour[TRANSM] += (DBL)line->transm[ixcoor] / 255.0; } *index = -1; } else { *index = Image->data.map_lines[iycoor][ixcoor]; map_colour = &Image->Colour_Map[*index]; colour[RED] += (DBL)map_colour->Red / 255.0; colour[GREEN] += (DBL)map_colour->Green / 255.0; colour[BLUE] += (DBL)map_colour->Blue / 255.0; colour[FILTER] += (DBL)map_colour->Filter / 255.0; colour[TRANSM] += (DBL)map_colour->Transmit / 255.0; } } /***************************************************************************** * * FUNCTION * * INPUT * * OUTPUT * * RETURNS * * AUTHOR * * DESCRIPTION * * CHANGES * ******************************************************************************/ /* Interpolate color and filter values when mapping */ static void Interp(Image, xcoor, ycoor, colour, index) IMAGE *Image; DBL xcoor, ycoor; COLOUR colour; int *index; { int iycoor, ixcoor, i; int Corners_Index[4]; DBL Index_Crn[4]; COLOUR Corner_Colour[4]; DBL Red_Crn[4]; DBL Green_Crn[4]; DBL Blue_Crn[4]; DBL Filter_Crn[4]; DBL Transm_Crn[4]; DBL val1, val2, val3, val4, val5; val1 = val2 = val3 = val4 = val5 = 0.0; iycoor = (int)ycoor; ixcoor = (int)xcoor; for (i = 0; i < 4; i++) { Make_ColourA(Corner_Colour[i], 0.0, 0.0, 0.0, 0.0, 0.0); } /* OK, now that you have the corners, what are you going to do with them? */ if (Image->Interpolation_Type == BILINEAR) { no_interpolation(Image, (DBL)ixcoor + 1, (DBL)iycoor, Corner_Colour[0], &Corners_Index[0]); no_interpolation(Image, (DBL)ixcoor, (DBL)iycoor, Corner_Colour[1], &Corners_Index[1]); no_interpolation(Image, (DBL)ixcoor + 1, (DBL)iycoor - 1, Corner_Colour[2], &Corners_Index[2]); no_interpolation(Image, (DBL)ixcoor, (DBL)iycoor - 1, Corner_Colour[3], &Corners_Index[3]); for (i = 0; i < 4; i++) { Red_Crn[i] = Corner_Colour[i][RED]; Green_Crn[i] = Corner_Colour[i][GREEN]; Blue_Crn[i] = Corner_Colour[i][BLUE]; Filter_Crn[i] = Corner_Colour[i][FILTER]; Transm_Crn[i] = Corner_Colour[i][TRANSM]; /* * Debug_Info("Crn %d = %lf %lf * %lf\n",i,Red_Crn[i],Blue_Crn[i],Green_Crn[i]); */ } val1 = bilinear(Red_Crn, xcoor, ycoor); val2 = bilinear(Green_Crn, xcoor, ycoor); val3 = bilinear(Blue_Crn, xcoor, ycoor); val4 = bilinear(Filter_Crn, xcoor, ycoor); val5 = bilinear(Transm_Crn, xcoor, ycoor); } if (Image->Interpolation_Type == NORMALIZED_DIST) { no_interpolation(Image, (DBL)ixcoor, (DBL)iycoor - 1, Corner_Colour[0], &Corners_Index[0]); no_interpolation(Image, (DBL)ixcoor + 1, (DBL)iycoor - 1, Corner_Colour[1], &Corners_Index[1]); no_interpolation(Image, (DBL)ixcoor, (DBL)iycoor, Corner_Colour[2], &Corners_Index[2]); no_interpolation(Image, (DBL)ixcoor + 1, (DBL)iycoor, Corner_Colour[3], &Corners_Index[3]); for (i = 0; i < 4; i++) { Red_Crn[i] = Corner_Colour[i][RED]; Green_Crn[i] = Corner_Colour[i][GREEN]; Blue_Crn[i] = Corner_Colour[i][BLUE]; Filter_Crn[i] = Corner_Colour[i][FILTER]; Transm_Crn[i] = Corner_Colour[i][TRANSM]; /* * Debug_Info("Crn %d = %lf %lf * %lf\n",i,Red_Crn[i],Blue_Crn[i],Green_Crn[i]); */ } val1 = norm_dist(Red_Crn, xcoor, ycoor); val2 = norm_dist(Green_Crn, xcoor, ycoor); val3 = norm_dist(Blue_Crn, xcoor, ycoor); val4 = norm_dist(Filter_Crn, xcoor, ycoor); val5 = norm_dist(Transm_Crn, xcoor, ycoor); } colour[RED] += val1; colour[GREEN] += val2; colour[BLUE] += val3; colour[FILTER] += val4; colour[TRANSM] += val5; /* Debug_Info("Final = %lf %lf %lf\n",val1,val2,val3); */ /* use bilinear for index try average later */ for (i = 0; i < 4; i++) { Index_Crn[i] = (DBL)Corners_Index[i]; } if (Image->Interpolation_Type == BILINEAR) { *index = (int)(bilinear(Index_Crn, xcoor, ycoor) + 0.5); } if (Image->Interpolation_Type == NORMALIZED_DIST) { *index = (int)(norm_dist(Index_Crn, xcoor, ycoor) + 0.5); } } /***************************************************************************** * * FUNCTION * * INPUT * * OUTPUT * * RETURNS * * AUTHOR * * DESCRIPTION * * CHANGES * ******************************************************************************/ /* These interpolation techniques are taken from an article by */ /* Girish T. Hagan in the C Programmer's Journal V 9 No. 8 */ /* They were adapted for POV-Ray by CdW */ static DBL bilinear(corners, x, y) DBL *corners, x, y; { DBL p, q; DBL val; p = x - (int)x; q = y - (int)y; if ((p == 0.0) && (q == 0.0)) { return (*corners); /* upper left */ } val = (p * q * *corners) + (q * (1 - p) * *(corners + 1)) + (p * (1 - q) * *(corners + 2)) + ((1 - p) * (1 - q) * *(corners + 3)); return (val); } /***************************************************************************** * * FUNCTION * * INPUT * * OUTPUT * * RETURNS * * AUTHOR * * DESCRIPTION * * CHANGES * ******************************************************************************/ #define MAX_PTS 4 #define PYTHAGOREAN_SQ(a,b) ( (a)*(a) + (b)*(b) ) static DBL norm_dist(corners, x, y) DBL *corners, x, y; { register int i; DBL p, q; DBL wts[MAX_PTS]; DBL sum_inv_wts = 0.0; DBL sum_I = 0.0; p = x - (int)x; q = y - (int)y; if ((p == 0.0) && (q == 0.0)) { return (*corners); /* upper left */ } wts[0] = PYTHAGOREAN_SQ(p, q); wts[1] = PYTHAGOREAN_SQ(1 - p, q); wts[2] = PYTHAGOREAN_SQ(p, 1 - q); wts[3] = PYTHAGOREAN_SQ(1 - p, 1 - q); for (i = 0; i < MAX_PTS; i++) { sum_inv_wts += 1 / wts[i]; sum_I += *(corners + i) / wts[i]; } return (sum_I / sum_inv_wts); } /***************************************************************************** * * FUNCTION * * Create_Image * * INPUT * * OUTPUT * * RETURNS * * AUTHOR * * POV-Ray Team * * DESCRIPTION * * - * * CHANGES * * - * ******************************************************************************/ IMAGE *Create_Image() { IMAGE *Image; Image = (IMAGE *) POV_MALLOC(sizeof(IMAGE), "image file"); Image->References = 1; Image->File_Type = NO_FILE; Image->Map_Type = PLANAR_MAP; Image->Interpolation_Type = NO_INTERPOLATION; Image->Once_Flag = FALSE; Image->Use_Colour_Flag = FALSE; Make_Vector(Image->Gradient, 1.0, -1.0, 0.0); return (Image); } /***************************************************************************** * * FUNCTION * * Copy_Image * * INPUT * * OUTPUT * * RETURNS * * AUTHOR * * POV-Ray Team * * DESCRIPTION * * - * * CHANGES * * - * ******************************************************************************/ IMAGE *Copy_Image(Old) IMAGE *Old; { if (Old != NULL) { Old->References++; } return (Old); } /***************************************************************************** * * FUNCTION * * Destroy_Image * * INPUT * * OUTPUT * * RETURNS * * AUTHOR * * POV-Ray Team * * DESCRIPTION * * - * * CHANGES * * - * ******************************************************************************/ void Destroy_Image(Image) IMAGE *Image; { int i; if ((Image == NULL) || (--(Image->References) > 0)) { return; } if (Image->Colour_Map != NULL) { POV_FREE(Image->Colour_Map); Image->Colour_Map = NULL; if (Image->data.map_lines != NULL) { for (i = 0; i < Image->iheight; i++) { POV_FREE(Image->data.map_lines[i]); } POV_FREE(Image->data.map_lines); Image->data.map_lines = NULL; } } else { if (Image->data.rgb_lines != NULL) { for (i = 0; i < Image->iheight; i++) { POV_FREE(Image->data.rgb_lines[i].red); POV_FREE(Image->data.rgb_lines[i].green); POV_FREE(Image->data.rgb_lines[i].blue); if (Image->data.rgb_lines[i].transm != NULL) { POV_FREE(Image->data.rgb_lines[i].transm); } } POV_FREE(Image->data.rgb_lines); Image->data.rgb_lines = NULL; } } POV_FREE(Image); }