/* Copyright (C) 1988 Free Software Foundation written by Doug Lea (dl@rocky.oswego.edu) This file is part of GNU CC. GNU CC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY. No author or distributor accepts responsibility to anyone for the consequences of using it or for whether it serves any particular purpose or works at all, unless he says so in writing. Refer to the GNU CC General Public License for full details. Everyone is granted permission to copy, modify and redistribute GNU CC, but only under the conditions described in the GNU CC General Public License. A copy of this license is supposed to have been given to you along with GNU CC so you can know your rights and responsibilities. It should be in a file named COPYING. Among other things, the copyright notice and this notice must be preserved on all copies. */ #ifdef __GNUG__ #pragma implementation "Rational.h" #endif #include #include #include #include volatile void Rational::error(const char* msg) const { (*lib_error_handler)("Rational", msg); } static const Integer _Int_One(1); void Rational::normalize() { int s = sign(den); if (s == 0) error("Zero denominator."); else if (s < 0) { den.negate(); num.negate(); } Integer g = gcd(num, den); if (ucompare(g, _Int_One) != 0) { num /= g; den /= g; } } void add(const Rational& x, const Rational& y, Rational& r) { if (&r != &x && &r != &y) { mul(x.num, y.den, r.num); mul(x.den, y.num, r.den); add(r.num, r.den, r.num); mul(x.den, y.den, r.den); } else { Integer tmp; mul(x.den, y.num, tmp); mul(x.num, y.den, r.num); add(r.num, tmp, r.num); mul(x.den, y.den, r.den); } r.normalize(); } void sub(const Rational& x, const Rational& y, Rational& r) { if (&r != &x && &r != &y) { mul(x.num, y.den, r.num); mul(x.den, y.num, r.den); sub(r.num, r.den, r.num); mul(x.den, y.den, r.den); } else { Integer tmp; mul(x.den, y.num, tmp); mul(x.num, y.den, r.num); sub(r.num, tmp, r.num); mul(x.den, y.den, r.den); } r.normalize(); } void mul(const Rational& x, const Rational& y, Rational& r) { mul(x.num, y.num, r.num); mul(x.den, y.den, r.den); r.normalize(); } void div(const Rational& x, const Rational& y, Rational& r) { if (&r != &x && &r != &y) { mul(x.num, y.den, r.num); mul(x.den, y.num, r.den); } else { Integer tmp; mul(x.num, y.den, tmp); mul(y.num, x.den, r.den); r.num = tmp; } r.normalize(); } void Rational::invert() { Integer tmp = num; num = den; den = tmp; int s = sign(den); if (s == 0) error("Zero denominator."); else if (s < 0) { den.negate(); num.negate(); } } int compare(const Rational& x, const Rational& y) { int xsgn = sign(x.num); int ysgn = sign(y.num); int d = xsgn - ysgn; if (d == 0 && xsgn != 0) d = compare(x.num * y.den, x.den * y.num); return d; } Rational::Rational(double x) { num = 0; den = 1; if (x != 0.0) { int neg = x < 0; if (neg) x = -x; const long shift = 15; // a safe shift per step const double width = 32768.0; // = 2^shift const int maxiter = 20; // ought not be necessary, but just in case, // max 300 bits of precision int expt; double mantissa = frexp(x, &expt); long exponent = expt; double intpart; int k = 0; while (mantissa != 0.0 && k++ < maxiter) { mantissa *= width; mantissa = modf(mantissa, &intpart); num <<= shift; num += (long)intpart; exponent -= shift; } if (exponent > 0) num <<= exponent; else if (exponent < 0) den <<= -exponent; if (neg) num.negate(); } normalize(); } Integer trunc(const Rational& x) { return x.num / x.den ; } Rational pow(const Rational& x, const Integer& y) { long yy = long(y); return pow(x, yy); } #if defined(__GNUG__) && !defined(NO_NRV) Rational operator - (const Rational& x) return r(x) { r.negate(); } Rational abs(const Rational& x) return r(x) { if (sign(r.num) < 0) r.negate(); } Rational sqr(const Rational& x) return r { mul(x.num, x.num, r.num); mul(x.den, x.den, r.den); r.normalize(); } Integer floor(const Rational& x) return q { Integer r; divide(x.num, x.den, q, r); if (sign(x.num) < 0 && sign(r) != 0) q--; } Integer ceil(const Rational& x) return q { Integer r; divide(x.num, x.den, q, r); if (sign(x.num) >= 0 && sign(r) != 0) q++; } Integer round(const Rational& x) return q { Integer r; divide(x.num, x.den, q, r); r <<= 1; if (ucompare(r, x.den) >= 0) { if (sign(x.num) >= 0) q++; else q--; } } // power: no need to normalize since num & den already relatively prime Rational pow(const Rational& x, long y) return r { if (y >= 0) { pow(x.num, y, r.num); pow(x.den, y, r.den); } else { y = -y; pow(x.num, y, r.den); pow(x.den, y, r.num); if (sign(r.den) < 0) { r.num.negate(); r.den.negate(); } } } #else Rational operator - (const Rational& x) { Rational r(x); r.negate(); return r; } Rational abs(const Rational& x) { Rational r(x); if (sign(r.num) < 0) r.negate(); return r; } Rational sqr(const Rational& x) { Rational r; mul(x.num, x.num, r.num); mul(x.den, x.den, r.den); r.normalize(); return r; } Integer floor(const Rational& x) { Integer q; Integer r; divide(x.num, x.den, q, r); if (sign(x.num) < 0 && sign(r) != 0) q--; return q; } Integer ceil(const Rational& x) { Integer q; Integer r; divide(x.num, x.den, q, r); if (sign(x.num) >= 0 && sign(r) != 0) q++; return q; } Integer round(const Rational& x) { Integer q; Integer r; divide(x.num, x.den, q, r); r <<= 1; if (ucompare(r, x.den) >= 0) { if (sign(x.num) >= 0) q++; else q--; } return q; } Rational pow(const Rational& x, long y) { Rational r; if (y >= 0) { pow(x.num, y, r.num); pow(x.den, y, r.den); } else { y = -y; pow(x.num, y, r.den); pow(x.den, y, r.num); if (sign(r.den) < 0) { r.num.negate(); r.den.negate(); } } return r; } #endif ostream& operator << (ostream& s, const Rational& y) { if (y.den == 1) s << Itoa(y.num); else { s << Itoa(y.num); s << "/"; s << Itoa(y.den); } return s; } istream& operator >> (istream& s, Rational& y) { s >> y.num; if (s) { char ch = 0; s.get(ch); if (ch == '/') { s >> y.den; y.normalize(); } else { s.unget(ch); y.den = 1; } } return s; } int Rational::OK() const { int v = num.OK() && den.OK(); // have valid num and denom v &= sign(den) > 0; // denominator positive; v &= ucompare(gcd(num, den), _Int_One) == 0; // relatively prime if (!v) error("invariant failure"); return v; }