/* MPMath_c.c (C) 1989, Mark C. Peterson, CompuServe [70441,3353] All rights reserved. Code may be used in any program provided the author is credited either during program execution or in the documentation. Source code may be distributed only in combination with public domain or shareware source code. Source code may be modified provided the copyright notice and this message is left unchanged and all modifications are clearly documented. I would appreciate a copy of any work which incorporates this code, however this is optional. Mark C. Peterson 405-C Queen St. Suite #181 Southington, CT 06489 (203) 276-9721 */ /* see Fractint.c for a description of the "include" hierarchy */ #include "port.h" #include "prototyp.h" #ifndef XFRACT #if (_MSC_VER >= 700) #pragma code_seg ("mpmath1_text") /* place following in an overlay */ #endif struct MP *MPsub(struct MP x, struct MP y) { y.Exp ^= 0x8000; return(MPadd(x, y)); } /* added by TW */ struct MP *MPsub086(struct MP x, struct MP y) { y.Exp ^= 0x8000; return(MPadd086(x, y)); } /* added by TW */ struct MP *MPsub386(struct MP x, struct MP y) { y.Exp ^= 0x8000; return(MPadd386(x, y)); } struct MP *MPabs(struct MP x) { Ans = x; Ans.Exp &= 0x7fff; return(&Ans); } struct MPC MPCsqr(struct MPC x) { struct MPC z; z.x = *pMPsub(*pMPmul(x.x, x.x), *pMPmul(x.y, x.y)); z.y = *pMPmul(x.x, x.y); z.y.Exp++; return(z); } struct MP MPCmod(struct MPC x) { return(*pMPadd(*pMPmul(x.x, x.x), *pMPmul(x.y, x.y))); } struct MPC MPCmul(struct MPC x, struct MPC y) { struct MPC z; z.x = *pMPsub(*pMPmul(x.x, y.x), *pMPmul(x.y, y.y)); z.y = *pMPadd(*pMPmul(x.x, y.y), *pMPmul(x.y, y.x)); return(z); } struct MPC MPCdiv(struct MPC x, struct MPC y) { struct MP mod; mod = MPCmod(y); y.y.Exp ^= 0x8000; y.x = *pMPdiv(y.x, mod); y.y = *pMPdiv(y.y, mod); return(MPCmul(x, y)); } struct MPC MPCadd(struct MPC x, struct MPC y) { struct MPC z; z.x = *pMPadd(x.x, y.x); z.y = *pMPadd(x.y, y.y); return(z); } struct MPC MPCsub(struct MPC x, struct MPC y) { struct MPC z; z.x = *pMPsub(x.x, y.x); z.y = *pMPsub(x.y, y.y); return(z); } struct MPC MPCone = { {0x3fff, 0x80000000l}, {0, 0l} }; struct MPC MPCpow(struct MPC x, int exp) { struct MPC z; struct MPC zz; if(exp & 1) z = x; else z = MPCone; exp >>= 1; while(exp) { zz.x = *pMPsub(*pMPmul(x.x, x.x), *pMPmul(x.y, x.y)); zz.y = *pMPmul(x.x, x.y); zz.y.Exp++; x = zz; if(exp & 1) { zz.x = *pMPsub(*pMPmul(z.x, x.x), *pMPmul(z.y, x.y)); zz.y = *pMPadd(*pMPmul(z.x, x.y), *pMPmul(z.y, x.x)); z = zz; } exp >>= 1; } return(z); } int MPCcmp(struct MPC x, struct MPC y) { struct MPC z; if(pMPcmp(x.x, y.x) || pMPcmp(x.y, y.y)) { z.x = MPCmod(x); z.y = MPCmod(y); return(pMPcmp(z.x, z.y)); } else return(0); } _CMPLX MPC2cmplx(struct MPC x) { _CMPLX z; z.x = *pMP2d(x.x); z.y = *pMP2d(x.y); return(z); } struct MPC cmplx2MPC(_CMPLX z) { struct MPC x; x.x = *pd2MP(z.x); x.y = *pd2MP(z.y); return(x); } /* function pointer versions added by Tim Wegner 12/07/89 */ /* int (*ppMPcmp)() = MPcmp086; */ int (*pMPcmp)(struct MP x, struct MP y) = MPcmp086; struct MP *(*pMPmul)(struct MP x, struct MP y)= MPmul086; struct MP *(*pMPdiv)(struct MP x, struct MP y)= MPdiv086; struct MP *(*pMPadd)(struct MP x, struct MP y)= MPadd086; struct MP *(*pMPsub)(struct MP x, struct MP y)= MPsub086; struct MP *(*pd2MP)(double x) = d2MP086 ; double *(*pMP2d)(struct MP m) = MP2d086 ; /* struct MP *(*pfg2MP)(long x, int fg) = fg2MP086; */ void setMPfunctions(void) { if(cpu == 386) { pMPmul = MPmul386; pMPdiv = MPdiv386; pMPadd = MPadd386; pMPsub = MPsub386; pMPcmp = MPcmp386; pd2MP = d2MP386 ; pMP2d = MP2d386 ; /* pfg2MP = fg2MP386; */ } else { pMPmul = MPmul086; pMPdiv = MPdiv086; pMPadd = MPadd086; pMPsub = MPsub086; pMPcmp = MPcmp086; pd2MP = d2MP086 ; pMP2d = MP2d086 ; /* pfg2MP = fg2MP086; */ } } #if (_MSC_VER >= 700) #pragma code_seg () /* back to normal segment */ #endif #endif /* XFRACT */ #ifndef sqr #define sqr(x) ((x)*(x)) #endif _CMPLX ComplexPower(_CMPLX xx, _CMPLX yy) { _CMPLX z, cLog, t; double e2x, siny, cosy; /* fixes power bug - if any complaints, backwards compatibility hook goes here TIW 3/95 */ if(debugflag != 94) if(xx.x == 0 && xx.y == 0) { z.x = z.y = 0.0; return(z); } FPUcplxlog(&xx, &cLog); FPUcplxmul(&cLog, &yy, &t); if(fpu == 387) FPUcplxexp387(&t, &z); else { if(t.x < -690) e2x = 0; else e2x = exp(t.x); FPUsincos(&t.y, &siny, &cosy); z.x = e2x * cosy; z.y = e2x * siny; } return(z); } /* The following Complex function routines added by Tim Wegner November 1994. */ #define Sqrtz(z,rz) (*(rz) = ComplexSqrtFloat((z).x, (z).y)) /* rz=Arcsin(z)=-i*Log{i*z+sqrt(1-z*z)} */ void Arcsinz(_CMPLX z,_CMPLX *rz) { _CMPLX tempz1,tempz2; FPUcplxmul( &z, &z, &tempz1); tempz1.x = 1 - tempz1.x; tempz1.y = -tempz1.y; /* tempz1 = 1 - tempz1 */ Sqrtz( tempz1, &tempz1); tempz2.x = -z.y; tempz2.y = z.x; /* tempz2 = i*z */ tempz1.x += tempz2.x; tempz1.y += tempz2.y; /* tempz1 += tempz2 */ FPUcplxlog( &tempz1, &tempz1); rz->x = tempz1.y; rz->y = -tempz1.x; /* rz = (-i)*tempz1 */ } /* end. Arcsinz */ /* rz=Arccos(z)=-i*Log{z+sqrt(z*z-1)} */ void Arccosz(_CMPLX z,_CMPLX *rz) { _CMPLX temp; FPUcplxmul( &z, &z, &temp); temp.x -= 1; /* temp = temp - 1 */ Sqrtz( temp, &temp); temp.x += z.x; temp.y += z.y; /* temp = z + temp */ FPUcplxlog( &temp, &temp); rz->x = temp.y; rz->y = -temp.x; /* rz = (-i)*tempz1 */ } /* end. Arccosz */ void Arcsinhz(_CMPLX z,_CMPLX *rz) { _CMPLX temp; FPUcplxmul( &z, &z, &temp); temp.x += 1; /* temp = temp + 1 */ Sqrtz( temp, &temp); temp.x += z.x; temp.y += z.y; /* temp = z + temp */ FPUcplxlog( &temp, rz); } /* end. Arcsinhz */ /* rz=Arccosh(z)=Log(z+sqrt(z*z-1)} */ void Arccoshz(_CMPLX z,_CMPLX *rz) { _CMPLX tempz; FPUcplxmul( &z, &z, &tempz); tempz.x -= 1; /* tempz = tempz - 1 */ Sqrtz( tempz, &tempz); tempz.x = z.x + tempz.x; tempz.y = z.y + tempz.y; /* tempz = z + tempz */ FPUcplxlog( &tempz, rz); } /* end. Arccoshz */ /* rz=Arctanh(z)=1/2*Log{(1+z)/(1-z)} */ void Arctanhz(_CMPLX z,_CMPLX *rz) { _CMPLX temp0,temp1,temp2; if( z.x == 0.0){ rz->x = 0; rz->y = atan( z.y); return; } else{ if( fabs(z.x) == 1.0 && z.y == 0.0){ return; } else if( fabs( z.x) < 1.0 && z.y == 0.0){ rz->x = log((1+z.x)/(1-z.x))/2; rz->y = 0; return; } else{ temp0.x = 1 + z.x; temp0.y = z.y; /* temp0 = 1 + z */ temp1.x = 1 - z.x; temp1.y = -z.y; /* temp1 = 1 - z */ FPUcplxdiv( &temp0, &temp1, &temp2); FPUcplxlog( &temp2, &temp2); rz->x = .5*temp2.x; rz->y = .5*temp2.y; /* rz = .5*temp2 */ return; } } } /* end. Arctanhz */ /* rz=Arctan(z)=i/2*Log{(1-i*z)/(1+i*z)} */ void Arctanz(_CMPLX z,_CMPLX *rz) { _CMPLX temp0,temp1,temp2,temp3; if( z.x == 0.0 && z.y == 0.0) rz->x = rz->y = 0; else if( z.x != 0.0 && z.y == 0.0){ rz->x = atan( z.x); rz->y = 0; } else if( z.x == 0.0 && z.y != 0.0){ temp0.x = z.y; temp0.y = 0.0; Arctanhz( temp0, &temp0); rz->x = -temp0.y; rz->y = temp0.x; /* i*temp0 */ } else if( z.x != 0.0 && z.y != 0.0){ temp0.x = -z.y; temp0.y = z.x; /* i*z */ temp1.x = 1 - temp0.x; temp1.y = -temp0.y; /* temp1 = 1 - temp0 */ temp2.x = 1 + temp0.x; temp2.y = temp0.y; /* temp2 = 1 + temp0 */ FPUcplxdiv( &temp1, &temp2, &temp3); FPUcplxlog( &temp3, &temp3); rz->x = -temp3.y*.5; rz->y = .5*temp3.x; /* .5*i*temp0 */ } } /* end. Arctanz */ #define SinCosFudge 0x10000L #ifdef LONGSQRT long lsqrt(long f) { int N; unsigned long y0, z; static long a=0, b=0, c=0; /* constant factors */ if (f == 0) return f; if (f < 0) return 0; if (a==0) /* one-time compute consts */ { a = (long)(fudge * .41731); b = (long)(fudge * .59016); c = (long)(fudge * .7071067811); } N = 0; while (f & 0xff000000L) /* shift arg f into the */ { /* range: 0.5 <= f < 1 */ N++; f /= 2; } while (!(f & 0xff800000L)) { N--; f *= 2; } y0 = a + multiply(b, f, bitshift); /* Newton's approximation */ z = y0 + divide (f, y0, bitshift); y0 = (z>>2) + divide(f, z, bitshift); if (N % 2) { N++; y0 = multiply(c,y0, bitshift); } N /= 2; if (N >= 0) return y0 << N; /* correct for shift above */ else return y0 >> -N; } #endif LCMPLX ComplexSqrtLong(long x, long y) { double mag, theta; long maglong, thetalong; LCMPLX result; #ifndef LONGSQRT mag = sqrt(sqrt(((double) multiply(x,x,bitshift))/fudge + ((double) multiply(y,y,bitshift))/ fudge)); maglong = (long)(mag * fudge); #else maglong = lsqrt(lsqrt(multiply(x,x,bitshift)+multiply(y,y,bitshift))); #endif theta = atan2((double) y/fudge, (double) x/fudge)/2; thetalong = (long)(theta * SinCosFudge); SinCos086(thetalong, &result.y, &result.x); result.x = multiply(result.x << (bitshift - 16), maglong, bitshift); result.y = multiply(result.y << (bitshift - 16), maglong, bitshift); return result; } _CMPLX ComplexSqrtFloat(double x, double y) { double mag; double theta; _CMPLX result; if(x == 0.0 && y == 0.0) result.x = result.y = 0.0; else { mag = sqrt(sqrt(x*x + y*y)); theta = atan2(y, x) / 2; FPUsincos(&theta, &result.y, &result.x); result.x *= mag; result.y *= mag; } return result; } /***** FRACTINT specific routines and variables *****/ #ifndef TESTING_MATH BYTE far *LogTable = (BYTE far *)0; long MaxLTSize; int Log_Calc = 0; static double mlf; static unsigned long lf; /* int LogFlag; LogFlag == 1 -- standard log palettes LogFlag == -1 -- 'old' log palettes LogFlag > 1 -- compress counts < LogFlag into color #1 LogFlag < -1 -- use quadratic palettes based on square roots && compress */ void SetupLogTable(void) { float l, f, c, m; unsigned long prev, limit, sptop; unsigned n; if (save_release > 1920 || Log_Fly_Calc == 1) { /* set up on-the-fly variables */ if (LogFlag > 0) { /* new log function */ lf = (LogFlag > 1) ? LogFlag : 0; if (lf >= (unsigned long)MaxLTSize) lf = MaxLTSize - 1; mlf = (colors - (lf?2:1)) / log(MaxLTSize - lf); } else if (LogFlag == -1) { /* old log function */ mlf = (colors - 1) / log(MaxLTSize); } else if (LogFlag <= -2) { /* sqrt function */ if ((lf = 0 - LogFlag) >= (unsigned long)MaxLTSize) lf = MaxLTSize - 1; mlf = (colors - 2) / sqrt(MaxLTSize - lf); } } if (Log_Calc) return; /* LogTable not defined, bail out now */ if (save_release > 1920 && !Log_Calc) { Log_Calc = 1; /* turn it on */ for (prev = 0; prev <= (unsigned long)MaxLTSize; prev++) LogTable[prev] = (BYTE)logtablecalc((long)prev); Log_Calc = 0; /* turn it off, again */ return; } if (LogFlag > -2) { lf = (LogFlag > 1) ? LogFlag : 0; if (lf >= (unsigned long)MaxLTSize) lf = MaxLTSize - 1; Fg2Float((long)(MaxLTSize-lf), 0, m); fLog14(m, m); Fg2Float((long)(colors-(lf?2:1)), 0, c); fDiv(m, c, m); for (prev = 1; prev <= lf; prev++) LogTable[prev] = 1; for (n = (lf?2:1); n < (unsigned int)colors; n++) { Fg2Float((long)n, 0, f); fMul16(f, m, f); fExp14(f, l); limit = (unsigned long)Float2Fg(l, 0) + lf; if (limit > (unsigned long)MaxLTSize || n == (unsigned int)(colors-1)) limit = MaxLTSize; while (prev <= limit) LogTable[prev++] = (BYTE)n; } } else { if ((lf = 0 - LogFlag) >= (unsigned long)MaxLTSize) lf = MaxLTSize - 1; Fg2Float((long)(MaxLTSize-lf), 0, m); fSqrt14(m, m); Fg2Float((long)(colors-2), 0, c); fDiv(m, c, m); for (prev = 1; prev <= lf; prev++) LogTable[prev] = 1; for (n = 2; n < (unsigned int)colors; n++) { Fg2Float((long)n, 0, f); fMul16(f, m, f); fMul16(f, f, l); limit = (unsigned long)(Float2Fg(l, 0) + lf); if (limit > (unsigned long)MaxLTSize || n == (unsigned int)(colors-1)) limit = MaxLTSize; while (prev <= limit) LogTable[prev++] = (BYTE)n; } } LogTable[0] = 0; if (LogFlag != -1) for (sptop = 1; sptop < (unsigned long)MaxLTSize; sptop++) /* spread top to incl unused colors */ if (LogTable[sptop] > LogTable[sptop-1]) LogTable[sptop] = (BYTE)(LogTable[sptop-1]+1); } long logtablecalc(long citer) { long ret = 0; if (LogFlag == 0 && !rangeslen) /* Oops, how did we get here? */ return(citer); if (LogTable && !Log_Calc) return(LogTable[(long)min(coloriter, MaxLTSize)]); if (LogFlag > 0) { /* new log function */ if ((unsigned long)citer <= lf) ret = 1; else if((citer - lf) / log(citer - lf) <= mlf) ret = (long)(citer - lf + (lf?1:0)); else ret = (long)(mlf * log(citer - lf)) + 1; } else if (LogFlag == -1) { /* old log function */ if (citer == 0) ret = 1; else ret = (long)(mlf * log(citer)) + 1; } else if (LogFlag <= -2) { /* sqrt function */ if ((unsigned long)citer <= lf) ret = 1; else if((unsigned long)(citer - lf) <= (unsigned long)(mlf * mlf)) ret = (long)(citer - lf + 1); else ret = (long)(mlf * sqrt(citer - lf)) + 1; } return (ret); } long far ExpFloat14(long xx) { static float fLogTwo = (float)0.6931472; int f; long Ans; f = 23 - (int)RegFloat2Fg(RegDivFloat(xx, *(long*)&fLogTwo), 0); Ans = ExpFudged(RegFloat2Fg(xx, 16), f); return(RegFg2Float(Ans, (char)f)); } double TwoPi; _CMPLX temp, BaseLog; _CMPLX cdegree = { 3.0, 0.0 }, croot = { 1.0, 0.0 }; int ComplexNewtonSetup(void) { threshold = .001; periodicitycheck = 0; if(param[0] != 0.0 || param[1] != 0.0 || param[2] != 0.0 || param[3] != 0.0) { croot.x = param[2]; croot.y = param[3]; cdegree.x = param[0]; cdegree.y = param[1]; FPUcplxlog(&croot, &BaseLog); TwoPi = asin(1.0) * 4; } return(1); } int ComplexNewton(void) { _CMPLX cd1; /* new = ((cdegree-1) * old**cdegree) + croot ---------------------------------- cdegree * old**(cdegree-1) */ cd1.x = cdegree.x - 1.0; cd1.y = cdegree.y; temp = ComplexPower(old, cd1); FPUcplxmul(&temp, &old, &new); tmp.x = new.x - croot.x; tmp.y = new.y - croot.y; if((sqr(tmp.x) + sqr(tmp.y)) < threshold) return(1); FPUcplxmul(&new, &cd1, &tmp); tmp.x += croot.x; tmp.y += croot.y; FPUcplxmul(&temp, &cdegree, &cd1); FPUcplxdiv(&tmp, &cd1, &old); if(overflow) { return(1); } new = old; return(0); } int ComplexBasin(void) { _CMPLX cd1; double mod; /* new = ((cdegree-1) * old**cdegree) + croot ---------------------------------- cdegree * old**(cdegree-1) */ cd1.x = cdegree.x - 1.0; cd1.y = cdegree.y; temp = ComplexPower(old, cd1); FPUcplxmul(&temp, &old, &new); tmp.x = new.x - croot.x; tmp.y = new.y - croot.y; if((sqr(tmp.x) + sqr(tmp.y)) < threshold) { if(fabs(old.y) < .01) old.y = 0.0; FPUcplxlog(&old, &temp); FPUcplxmul(&temp, &cdegree, &tmp); mod = tmp.y/TwoPi; coloriter = (long)mod; if(fabs(mod - coloriter) > 0.5) { if(mod < 0.0) coloriter--; else coloriter++; } coloriter += 2; if(coloriter < 0) coloriter += 128; return(1); } FPUcplxmul(&new, &cd1, &tmp); tmp.x += croot.x; tmp.y += croot.y; FPUcplxmul(&temp, &cdegree, &cd1); FPUcplxdiv(&tmp, &cd1, &old); if(overflow) { return(1); } new = old; return(0); } /* * Generate a gaussian distributed number. * The right half of the distribution is folded onto the lower half. * That is, the curve slopes up to the peak and then drops to 0. * The larger slope is, the smaller the standard deviation. * The values vary from 0+offset to range+offset, with the peak * at range+offset. * To make this more complicated, you only have a * 1 in Distribution*(1-Probability/Range*con)+1 chance of getting a * Gaussian; otherwise you just get offset. */ int GausianNumber(int Probability, int Range) { int n, r; long Accum = 0, p; p = divide((long)Probability << 16, (long)Range << 16, 16); p = multiply(p, con, 16); p = multiply((long)Distribution << 16, p, 16); if(!(rand15() % (Distribution - (int)(p >> 16) + 1))) { for(n = 0; n < Slope; n++) Accum += rand15(); Accum /= Slope; r = (int)(multiply((long)Range << 15, Accum, 15) >> 14); r = r - Range; if(r < 0) r = -r; return(Range - r + Offset); } return(Offset); } #endif