/* some hyper complex functions */ /* see Fractint.c for a description of the "include" hierarchy */ #include "port.h" #include "prototyp.h" void HComplexMult(_HCMPLX *arg1, _HCMPLX *arg2, _HCMPLX *out) { /* it is possible to reoganize this code and reduce the multiplies from 16 to 10, but on my 486 it is SLOWER !!! so I left it like this - Tim Wegner */ out->x = arg1->x * arg2->x - arg1->y * arg2->y - arg1->z * arg2->z + arg1->t * arg2->t; out->y = arg1->y * arg2->x + arg1->x * arg2->y - arg1->t * arg2->z - arg1->z * arg2->t; out->z = arg1->z * arg2->x - arg1->t * arg2->y + arg1->x * arg2->z - arg1->y * arg2->t; out->t = arg1->t * arg2->x + arg1->z * arg2->y + arg1->y * arg2->z + arg1->x * arg2->t; } void HComplexSqr(_HCMPLX *arg, _HCMPLX *out) { out->x = arg->x * arg->x - arg->y * arg->y - arg->z * arg->z + arg->t * arg->t; out->y = 2 * arg->x * arg->y - 2 * arg->z * arg->t; out->z = 2 * arg->z * arg->x - 2 * arg->t * arg->y; out->t = 2 * arg->t * arg->x + 2 * arg->z * arg->y; } int HComplexInv(_HCMPLX *arg, _HCMPLX *out) { double det, mod, xt_minus_yz; det = (sqr(arg->x - arg->t) + sqr(arg->y + arg->z))* (sqr(arg->x + arg->t) + sqr(arg->y - arg->z)); if(det == 0.0) return(-1); mod = sqr(arg->x) + sqr(arg->y) + sqr(arg->z) + sqr(arg->t); xt_minus_yz = arg->x * arg->t - arg->y * arg->z; out->x = ( arg->x * mod - 2 * arg->t * xt_minus_yz)/det; out->y = (-arg->y * mod - 2 * arg->z * xt_minus_yz)/det; out->z = (-arg->z * mod - 2 * arg->y * xt_minus_yz)/det; out->t = ( arg->t * mod - 2 * arg->x * xt_minus_yz)/det; return(0); } void HComplexAdd(_HCMPLX *arg1, _HCMPLX *arg2, _HCMPLX *out) { out->x = arg1->x + arg2->x; out->y = arg1->y + arg2->y; out->z = arg1->z + arg2->z; out->t = arg1->t + arg2->t; } void HComplexSub(_HCMPLX *arg1, _HCMPLX *arg2, _HCMPLX *out) { out->x = arg1->x - arg2->x; out->y = arg1->y - arg2->y; out->z = arg1->z - arg2->z; out->t = arg1->t - arg2->t; } void HComplexMinus(_HCMPLX *arg1, _HCMPLX *out) { out->x = -arg1->x; out->y = -arg1->y; out->z = -arg1->z; out->t = -arg1->t; } /* extends the unary function f to *h1 */ void HComplexTrig0(_HCMPLX *h, _HCMPLX *out) { /* This is the whole beauty of Hypercomplex numbers - *ANY* unary complex valued function of a complex variable can easily be generalized to hypercomplex numbers */ _CMPLX a,b, resulta,resultb; /* convert to duplex form */ a.x = h->x - h->t; a.y = h->y + h->z; b.x = h->x + h->t; b.y = h->y - h->z; /* apply function to each part */ CMPLXtrig0(a,resulta); CMPLXtrig0(b,resultb); /* convert back */ out->x = (resulta.x + resultb.x)/2; out->y = (resulta.y + resultb.y)/2; out->z = (resulta.y - resultb.y)/2; out->t = (resultb.x - resulta.x)/2; }