/* Handle initialization things in C++. Copyright (C) 1987 Free Software Foundation, Inc. Contributed by Michael Tiemann (tiemann@mcc.com) This file is part of GNU CC. GNU CC is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 1, or (at your option) any later version. GNU CC is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with GNU CC; see the file COPYING. If not, write to the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ /* High-level class interface. */ #include "config.h" #include "tree.h" #include "cplus-tree.h" #include "flags.h" #include "assert.h" #define NULL 0 /* In C++, structures with well-defined constructors are initialized by those constructors, unasked. CURRENT_BASE_INIT_LIST holds a list of stmts for a BASE_INIT term in the grammar. This list has one element for each base class which must be initialized. The list elements are [basename, init], with type basetype. This allows the possibly anachronistic form (assuming d : a, b, c) "d (int a) : c(a+5), b (a-4), a (a+3)" where each successive term can be handed down the constructor line. Perhaps this was not intended. */ tree current_base_init_list, current_member_init_list; void init_init_processing (); void finish_base_init (); void expand_aggr_vbase_init (); void expand_member_init (); void expand_aggr_init (); tree build_virtual_init (); static void expand_aggr_init_1 (); static void expand_recursive_init_1 (); static void expand_recursive_init (); static tree expand_vec_init (); void expand_vec_delete (); tree build_vec_delete (); static void add_friend (), add_friends (); int is_aggr_typedef_or_else (); /* Cache _builtin_new and _builtin_delete exprs. */ static tree BIN, BIVN, BID, BIVD; static tree USR_NEW, USR_VNEW; static tree build_user_new (); #ifdef SOS tree get_linktable_name (), get_dtable_name (), get_sos_dtable (); static tree __sosFindCode, __sosLookup, __sosImport; static tree build_dynamic_new (); #endif static tree minus_one; /* Set up local variable for this file. MUST BE CALLED AFTER INIT_DECL_PROCESSING. */ void init_init_processing () { BIN = default_conversion (lookup_name (get_identifier ("__builtin_new"))); BIVN = default_conversion (lookup_name (get_identifier ("__builtin_vec_new"))); BID = default_conversion (lookup_name (get_identifier ("__builtin_delete"))); BIVD = default_conversion (lookup_name (get_identifier ("__builtin_vec_delete"))); USR_NEW = get_identifier ("__user_new"); USR_VNEW = get_identifier ("__user_vec_new"); minus_one = build_int_2 (-1, -1); #ifdef SOS if (flag_all_virtual == 2) { __sosFindCode = default_conversion (lookup_name (get_identifier ("sosFindCode"))); __sosLookup = default_conversion (lookup_name (get_identifier ("sosLookup"))); __sosImport = default_conversion (lookup_name (get_identifier ("sosImport"))); } #endif } /* When a stmt has been parsed, this function is called. Currently, this function only does something within a constructor's scope: if a stmt has just assigned to this, and we are in a derived class, we call `finish_base_init'. */ void finish_stmt () { extern struct nesting *cond_stack, *loop_stack, *case_stack; if (current_function_assigns_this || ! current_function_just_assigned_this) return; if (DECL_CONSTRUCTOR_P (current_function_decl)) { /* Constructors must wait until we are out of control zones before calling base constructors. */ if (cond_stack || loop_stack || case_stack) return; /* Ok to initialize virtual base classes now. */ if (TYPE_USES_VIRTUAL_BASECLASSES (current_class_type)) expand_aggr_vbase_init (current_class_type, C_C_D, current_class_decl); finish_base_init (1); } current_function_assigns_this = 1; } /* Perform whatever initialization have yet to be done on the base class of the class variable. These actions are in the global variable CURRENT_BASE_INIT_LIST. Such an action could be NULL_TREE, meaning that the user has explicitly called the base class constructor with no arguments. If there is a need for a call to a constructor, we must surround that call with a pushlevel/poplevel pair, since we are technically at the PARM level of scope. Argument ASSIGNS_THIS_P is nonzero if the current function assigns `this' explicitly. We cannot get this value by checking `current_function_assigns_this', since it is set up after this function is called. (although I don't know if its really necessary to wait until afterward to do that.) Note that finish_base_init does *not* initialize virtual base classes. That is done specially, elsewhere. */ void finish_base_init (assigns_this_p) int assigns_this_p; { tree member, decl, name; tree basetype; int i, n_baseclasses = CLASSTYPE_N_BASECLASSES (current_class_type); /* We only care about constructors. */ assigns_this_p &= DECL_CONSTRUCTOR_P (current_function_decl); for (; current_base_init_list; current_base_init_list = TREE_CHAIN (current_base_init_list)) { tree basename = TREE_PURPOSE (current_base_init_list); tree basetype; tree init = TREE_VALUE (current_base_init_list); if (basename == NULL_TREE) { /* Initializer for single base class. Must not use multiple inheritance or this is ambiguous. */ switch (n_baseclasses) { case 0: error ("type `%s' does not have a base class to initialize", IDENTIFIER_POINTER (current_class_name)); return; case 1: break; default: error ("unnamed initializer ambiguous for type `%s' which uses multiple inheritance", IDENTIFIER_POINTER (current_class_name)); return; } basetype = CLASSTYPE_BASECLASS (current_class_type, 1); } else if (is_aggr_typedef_or_else (basename)) { basetype = TREE_TYPE (TREE_TYPE (basename)); basetype = get_base_type (basetype, current_class_type, 0); if (basetype == NULL_TREE) { error ("type `%s' is not a base class for type `%s'", IDENTIFIER_POINTER (basename), IDENTIFIER_POINTER (current_class_name)); continue; } /* Now we know we have a baseclass. If it is not an immediate base class, complain. */ for (i = n_baseclasses; i > 0; i--) if (basetype == CLASSTYPE_BASECLASS (current_class_type, i)) break; if (i == 0) { error ("type `%s' is not an immediate base class of type `%s'", IDENTIFIER_POINTER (basename), IDENTIFIER_POINTER (current_class_name)); continue; } else if (CLASSTYPE_VIA_VIRTUAL (current_class_type, i)) { error ("cannot specify initialization for virtual base class `%s'", IDENTIFIER_POINTER (basename)); continue; } } else continue; /* Now we are ready to initialize BASETYPE with INIT. */ /* The base initialization list goes up to the first base class which can actually use it. */ if (CLASSTYPE_MARKED3 (basetype)) { error ("class `%s' initializer already specified", IDENTIFIER_POINTER (basename)); continue; } CLASSTYPE_MARKED3 (basetype) = 1; { char *msgp = (! TYPE_HAS_CONSTRUCTOR (basetype)) ? "cannot pass initialization up to class `%s'" : 0; while (! TYPE_HAS_CONSTRUCTOR (basetype) && CLASSTYPE_N_BASECLASSES (basetype) == 1) basetype = CLASSTYPE_BASECLASS (basetype, 1); if (basetype) { if (msgp) if (pedantic) { error_with_aggr_type (basetype, msgp); continue; } else if (! TYPE_HAS_CONSTRUCTOR (basetype)) { if (CLASSTYPE_N_BASECLASSES (basetype) == 0) error_with_aggr_type (basetype, msgp); else sorry ("passing initializations up multiple inheritance lattice"); continue; } } else { error ("no constructor found for initialization of `%s'", IDENTIFIER_POINTER (basename)); continue; } } member = convert_to_nonzero_pointer (TYPE_POINTER_TO (basetype), current_class_decl); expand_aggr_init_1 (current_class_type, 0, build_indirect_ref (member, 0), init, ! DECL_OFFSET (TYPE_NAME (basetype)), -1); } /* Now, perform default initialization of all base classes which have not yet been initialized, and unmark baseclasses which have been initialized. */ for (i = 1; i <= n_baseclasses; i++) { tree base = current_class_decl; basetype = CLASSTYPE_THIS_BASECLASS (current_class_type, i); if (! TREE_VIA_VIRTUAL (basetype) && ! CLASSTYPE_MARKED3 (basetype)) { if (TYPE_NEEDS_CONSTRUCTING (basetype) || CLASSTYPE_BASE_INIT_LIST (basetype)) { base = convert_to_nonzero_pointer (TYPE_POINTER_TO (basetype), current_class_decl); base = build_indirect_ref (base, 0); expand_aggr_init_1 (current_class_type, 0, base, NULL_TREE, ! DECL_OFFSET (TYPE_NAME (basetype)), -1); /* Now, if this base class did not come "straight-up", straighten it here. "Straighten" has quite a funny spelling, but we do not report that here. */ if (TYPE_VIRTUAL_P (basetype) && ! (TYPE_NEEDS_CONSTRUCTOR (basetype) || DECL_OFFSET (TYPE_NAME (basetype)) == 0)) { abort (); expand_expr_stmt (build_virtual_init (current_class_type, basetype, base)); } } } else CLASSTYPE_MARKED3 (basetype) = 0; } /* If this type has a constructor, then that constructor will clobber the virtual function table. Fix it here. */ if (TYPE_VIRTUAL_P (current_class_type)) expand_expr_stmt (build_virtual_init (current_class_type, current_class_type, current_class_decl)); #ifdef SOS else if (TYPE_DYNAMIC (current_class_type)) expand_expr_stmt (build_virtual_init (current_class_type, current_class_type, current_class_decl)); #endif /* Members we through expand_member_init. We initialize all the members needing initialization that did not get it so far. */ for (; current_member_init_list; current_member_init_list = TREE_CHAIN (current_member_init_list)) { tree name = TREE_PURPOSE (current_member_init_list); tree init = TREE_VALUE (current_member_init_list); #if 1 tree field = IDENTIFIER_CLASS_VALUE (name); #else tree field = identifier_class_value (name); #endif tree type = TREE_TYPE (field); if (TREE_STATIC (field)) { error_with_aggr_type (DECL_FIELD_CONTEXT (field), "field `%s::%s' is static; only point of initialization is its declaration", IDENTIFIER_POINTER (name)); continue; } decl = build_component_ref (C_C_D, name, 0, 1); if (TYPE_HAS_CONSTRUCTOR (field)) error ("multiple initializations given for member `%s'", IDENTIFIER_POINTER (DECL_NAME (field))); if (assigns_this_p && TREE_USED (field)) error ("field `%s' used before initialized (after assignment to `this')", IDENTIFIER_POINTER (DECL_NAME (field))); /* Mark this node as having been initialized. */ TYPE_HAS_CONSTRUCTOR (field) = 1; if (TYPE_NEEDS_CONSTRUCTING (type)) expand_aggr_init (decl, init, 0); else { if (init == NULL_TREE) { error ("types without constructors must have complete initializers"); init = error_mark_node; } else if (TREE_CHAIN (init)) { warning ("initializer list treated as compound expression"); init = build_compound_expr (init); } else init = TREE_VALUE (init); expand_expr_stmt (build_modify_expr (decl, INIT_EXPR, init)); } } for (member = TYPE_FIELDS (current_class_type); member; member = TREE_CHAIN (member)) { #if 0 /* We used to install members into the lexical scope of member functions as VAR_DECLs. They are now just FIELD_DECLs In any event, the IDENTIFIER_CLASS_VALUE of a member could be a TREE_LIST, listing all possible values that this member name could have within the multiple inheritance lattice of the class type of the current member function. In such an event, we would have to search for the VAR_DECL which corresponded to the FIELD_DECL of the current class. (It would in practice always be at one end of the list. */ tree field = IDENTIFIER_CLASS_VALUE (DECL_NAME (member)); #else /* All we care about is this unique member. It contains all the information we need to know, and that right early. */ tree field = member; #endif tree type = TREE_TYPE (member); tree init = TYPE_HAS_CONSTRUCTOR (field) ? error_mark_node : DECL_INITIAL (field); /* Unmark this field. */ TYPE_HAS_CONSTRUCTOR (field) = 0; /* Member had explicit initializer. */ if (init == error_mark_node) continue; if (TREE_CODE (member) == VAR_DECL || TREE_CODE (member) == CONST_DECL) continue; if (type == error_mark_node) continue; if (assigns_this_p && TREE_USED (field) && (TYPE_NEEDS_CONSTRUCTING (type) || init)) error ("field `%s' used before initialized (after assignment to `this')", IDENTIFIER_POINTER (DECL_NAME (field))); if (TYPE_NEEDS_CONSTRUCTING (type)) { if (init) init = build_tree_list (NULL_TREE, init); expand_aggr_init (build_component_ref (C_C_D, DECL_NAME (member), 0, 0), init, 0); } else { if (init) { decl = build_component_ref (C_C_D, DECL_NAME (member), 0, 0); expand_expr_stmt (build_modify_expr (decl, INIT_EXPR, init)); } else if (TREE_CODE (TREE_TYPE (member)) == REFERENCE_TYPE) warning ("uninitialized reference member `%s'", IDENTIFIER_POINTER (DECL_NAME (member))); } } } /* This code sets up the virtual function tables appropriate for the pointer DECL. It is a one-ply initialization. TYPE is the exact type that DECL is supposed to be. In muliple inheritance, this might mean "C's A" if C : A, B. */ tree build_virtual_init (for_type, type, decl) tree for_type, type; tree decl; { tree vtbl, vtbl_ptr; if (for_type != type) type = get_base_type (type, for_type, 0); #ifdef SOS if (TYPE_DYNAMIC (type)) vtbl = build (NOP_EXPR, ptr_type_node, lookup_name (get_identifier (AUTO_VTABLE_NAME))); else #endif { vtbl = CLASSTYPE_VTABLE (type); TREE_USED (vtbl) = 1; vtbl = build (ADDR_EXPR, TYPE_POINTER_TO (TREE_TYPE (vtbl)), vtbl); } decl = convert_to_nonzero_pointer (TYPE_POINTER_TO (type), decl); vtbl_ptr = build_vfield_ref (build_indirect_ref (decl, 0), type); return build_modify_expr (vtbl_ptr, NOP_EXPR, vtbl); } /* Initialize this object's virtual base class pointers. This is not done by expand_aggr_init, since it is only done at the top-level of the object being constructed. */ void expand_aggr_vbase_init (type, exp, addr) tree type; tree exp; tree addr; { if (TYPE_USES_VIRTUAL_BASECLASSES (type)) { tree result = init_vbase_pointers (type, addr); tree basetype, tmp; if (result) expand_expr_stmt (build_compound_expr (result)); for (tmp = result; tmp; tmp = TREE_CHAIN (tmp)) { basetype = TREE_TYPE (TREE_TYPE (TREE_VALUE (tmp))); if (TYPE_NEEDS_CONSTRUCTING (basetype) && CLASSTYPE_MARKED3 (basetype) == 0) { tree addr = TREE_OPERAND (TREE_VALUE (tmp), 0); tree ref = build_indirect_ref (addr, 0); CLASSTYPE_MARKED3 (basetype) = 1; expand_aggr_init_1 (type, exp, ref, NULL_TREE, 0, 1); } } for (tmp = result; tmp; tmp = TREE_CHAIN (tmp)) { basetype = TREE_TYPE (TREE_TYPE (TREE_VALUE (tmp))); CLASSTYPE_MARKED3 (basetype) = 0; } #ifdef sparc expand_asm_operands (build_string (30, "! end of vbase initialization"), 0, 0, 0, 0, 0, 0); #endif } } /* If NAME is a viable field name for the aggregate DECL, and PARMS is a viable parameter list, then expand an _EXPR which describes this initialization. Note that we do not need to chase through the class's base classes to look for NAME, because if it's in that list, it will be handled by the constructor for that base class. We do not yet have a fixed-point finder to instantiate types being fed to overloaded constructors. If there is a unique constructor, then argument types can be got from that one. If INIT is non-NULL, then it the initialization should be placed in `current_base_init_list', where it will be processed by `finish_base_init'. */ void expand_member_init (exp, name, init) tree exp, name, init; { extern tree ptr_type_node; /* should be in tree.h */ tree basetype = NULL_TREE, field; tree method_name, fntype, function; tree parm; tree rval, type; tree actual_name; if (exp == NULL_TREE) return; /* complain about this later */ type = TYPE_MAIN_VARIANT (TREE_TYPE (exp)); if (name == NULL_TREE && IS_AGGR_TYPE (type)) switch (CLASSTYPE_N_BASECLASSES (type)) { case 0: error ("base class initializer specified, but no base class to initialize"); return; case 1: basetype = CLASSTYPE_BASECLASS (type, 1); break; default: error ("initializer for unnamed base class ambiguous"); error_with_aggr_type (type, "(type `%s' uses multiple inheritance)"); return; } if (init) { /* The grammar should not allow fields which have names that are TYPENAMEs. Therefore, if the field has a non-NULL TREE_TYPE, we may assume that this is an attempt to initialize a base class member of the current type. Otherwise, it is an attempt to initialize a member field. */ if (init == void_type_node) init = NULL_TREE; if (name == NULL_TREE || TREE_TYPE (name)) { tree base_init; if (name == NULL_TREE) if (basetype) name = DECL_NAME (TYPE_NAME (basetype)); else { error ("no base class to initialize"); return; } else { basetype = TREE_TYPE (TREE_TYPE (name)); if (basetype != type && (basetype = get_base_type (basetype, type, 0)) == 0) { error ("type `%s' is not a base type for `%s'", IDENTIFIER_POINTER (name), TYPE_NAME_STRING (type)); return; } } if (purpose_member (name, current_base_init_list)) { error ("base class `%s' already initialized", IDENTIFIER_POINTER (name)); return; } base_init = build_tree_list (name, init); TREE_TYPE (base_init) = basetype; current_base_init_list = chainon (current_base_init_list, base_init); } else { tree member_init; field = lookup_field (type, name, 1); if (field == error_mark_node) return; if (field == NULL_TREE) { error_with_aggr_type (type, "class `%s' does not have any field named `%s'", IDENTIFIER_POINTER (name)); return; } if (purpose_member (name, current_member_init_list)) { error ("field `%s' already initialized", IDENTIFIER_POINTER (name)); return; } member_init = build_tree_list (name, init); TREE_TYPE (member_init) = TREE_TYPE (field); current_member_init_list = chainon (current_member_init_list, member_init); } return; } else if (name == NULL_TREE) { compiler_error ("expand_member_init: name == NULL_TREE"); return; } basetype = type; field = lookup_field (basetype, name, 0); if (field == error_mark_node) return; if (field) { /* now see if there is a constructor for this type which will take these args. */ if (TREE_TYPE (field) == error_mark_node) rval = error_mark_node; if (TYPE_HAS_CONSTRUCTOR (TREE_TYPE (field))) { tree parmtypes, fndecl; if (TREE_CODE (exp) == VAR_DECL || TREE_CODE (exp) == PARM_DECL) { /* just know that we've seen something for this node */ DECL_INITIAL (exp) = error_mark_node; TREE_USED (exp) = 1; } type = TYPE_MAIN_VARIANT (TREE_TYPE (field)); actual_name = DECL_NAME (TYPE_NAME (type)); parm = build_component_ref (exp, name, 0, 0); /* Now get to the constructor. */ field = CLASSTYPE_FN_FIELDS (type); /* Get past destructor, if any. */ if (TYPE_HAS_DESTRUCTOR (type)) field = TREE_CHAIN (field); /* If the field is unique, we can use the parameter types to guide possible type instantiation. */ if (TREE_CHAIN (field) == NULL_TREE) { fndecl = TREE_TYPE (field); parmtypes = TREE_CHAIN (TYPE_ARG_TYPES (TREE_TYPE (fndecl))); } else { parmtypes = NULL_TREE; fndecl = NULL_TREE; } init = actualparameterlist (parm, parmtypes, NULL_TREE, fndecl); if (init == NULL_TREE || TREE_TYPE (init) != error_mark_node) rval = build_method_call (NULL_TREE, actual_name, init, NULL_TREE, LOOKUP_NORMAL); else return; if (rval != error_mark_node) { /* Now, fill in the first parm with our guy */ TREE_VALUE (TREE_OPERAND (rval, 1)) = build_unary_op (ADDR_EXPR, parm, 0); TREE_TYPE (rval) = ptr_type_node; TREE_VOLATILE (rval) = 1; } } else if (TYPE_NEEDS_CONSTRUCTING (TREE_TYPE (field))) { parm = build_component_ref (exp, name, 0, 0); expand_aggr_init (parm, NULL_TREE, 0); rval = error_mark_node; } /* Now initialize the member. It does not have to be of aggregate type to receive initialization. */ if (rval != error_mark_node) expand_expr_stmt (rval); } else { error_with_aggr_type (basetype, "class `%s' does not have any field named `%s'", IDENTIFIER_POINTER (name)); } } /* This is like `expand_member_init', only it stores one aggregate value into another. INIT comes in two flavors: it is either a value which is to be stored in EXP, or it is a parameter list to go to a constructor, which will operate on EXP. If `init' is a CONSTRUCTOR, then we emit a warning message, explaining that such initializaitions are illegal. ALIAS_THIS is nonzero iff we are initializing something which is essentially an alias for C_C_D. In this case, the base constructor may move it on us, and we must keep track of such deviations. If INIT resolves to a CALL_EXPR which happens to return something of the type we are looking for, then we know that we can safely use that call to perform the initialization. The virtual function table pointer cannot be set up here, because we do not really know its type. Virtual baseclass pointers are also set up here. This never calls operator=(). */ void expand_aggr_init (exp, init, alias_this) tree exp, init; int alias_this; { tree type = TREE_TYPE (exp); tree init_type = NULL_TREE; tree rval; tree member; if (exp == error_mark_node || init == error_mark_node || type == error_mark_node) return; if (TREE_CODE (type) == ARRAY_TYPE) { if (TYPE_USES_VIRTUAL_BASECLASSES (TREE_TYPE (type))) { sorry ("arrays of objects with virtual baseclasses"); return; } } else if (TYPE_USES_VIRTUAL_BASECLASSES (type)) expand_aggr_vbase_init (type, exp, build_unary_op (ADDR_EXPR, exp, 0)); if (TREE_CODE (exp) == VAR_DECL || TREE_CODE (exp) == PARM_DECL) { /* just know that we've seen something for this node */ TREE_USED (exp) = 1; } expand_aggr_init_1 (type, exp, exp, init, alias_this, 1); } /* This function is responsible for initializing EXP with INIT (if any). FOR_TYPE is the type for who we are performing the initialization. For example, if W is a virtual base class of A and B, and C : A, B if we are initializing B, then W must contain B's W vtable, whereas were we initializing C, W must contain C's W vtable. TRUE_EXP is nonzero if it is the true expression being initialized. In this case, it may be EXP, or may just contain EXP. The reason we need this is because if EXP is a base element of TRUE_EXP, we don't necessarily know by looking at EXP where it virtual baseclass fields should really be pointing. But we do know from TRUE_EXP. In constructors, we don't know anything about the value being initialized. ALIAS_THIS serves the same purpose it serves for expand_aggr_init. */ static void expand_aggr_init_1 (for_type, true_exp, exp, init, alias_this, protect) tree for_type; tree true_exp, exp; tree init; int alias_this; int protect; { tree type = TREE_TYPE (exp); tree init_type = NULL_TREE; tree rval; tree member; if (exp == error_mark_node || init == error_mark_node || type == error_mark_node) abort (); /* Use a function returning the desired type to initialize EXP for us. If the function is a constructor, and its first argument is NULL_TREE, know that it was meant for us--just slide exp on in and expand the constructor. Constructors now come as NEW_EXPRS. */ if (init) { tree init_list = init; if (TREE_CODE (init) == TREE_LIST) { if (TREE_CHAIN (init) == NULL_TREE) { init_list = init; init = TREE_VALUE (init); } } else init_list = NULL_TREE; init_type = TREE_TYPE (init); if (TREE_CODE (init) != TREE_LIST) { if (TREE_CODE (init_type) == ERROR_MARK) return; #if 0 /* These lines are found troublesome 5/11/89. */ if (TREE_CODE (init_type) == REFERENCE_TYPE) init_type = TREE_TYPE (init_type); #endif /* This happens when we use C++'s functional cast notation to act as the initializer for something not of that same type. In that case, we need to create the initializer separately from the object being initialized. */ if (TREE_CODE (init) == NEW_EXPR && init_type != type) { init = build (CALL_EXPR, init_type, TREE_OPERAND (init, 0), TREE_OPERAND (init, 1), 0); if (init_list) TREE_VALUE (init_list) = init; } if (init_type == type && TREE_CODE (init) == CALL_EXPR #if 0 /* It is legal to directly initialize from a CALL_EXPR without going through X(X&), apparently. */ && ! TYPE_GETS_INIT_REF (type) #endif ) { /* A CALL_EXPR is a legitmate form of initialization, so we should not print this warning message. */ if (TREE_CODE (TREE_TYPE (init)) == REFERENCE_TYPE) init = convert_from_reference (init); #if 0 if (TREE_GETS_ASSIGNMENT (type)) warning ("bitwise copy: `%s' has a member with operator=()", TYPE_NAME_STRING (type)); #endif expand_assignment (exp, init, 0, 0); if (exp == DECL_RESULT (current_function_decl)) { if (DECL_INITIAL (exp) && DECL_INITIAL (exp) != error_mark_node) fatal ("return value from function receives multiple initializations"); DECL_INITIAL (exp) = init; } return; } else if (init_type == type && TREE_CODE (init) == COND_EXPR) { /* Push value to be initialized into the cond, where possible. Avoid spurious warning messages when initializing the result of this function. */ TREE_OPERAND (init, 1) = build_modify_expr (exp, INIT_EXPR, TREE_OPERAND (init, 1)); if (exp == DECL_RESULT (current_function_decl)) DECL_INITIAL (exp) = NULL_TREE; TREE_OPERAND (init, 2) = build_modify_expr (exp, INIT_EXPR, TREE_OPERAND (init, 2)); if (exp == DECL_RESULT (current_function_decl)) DECL_INITIAL (exp) = init; expand_expr (init, 0, VOIDmode, 0); return; } } /* We did not know what we were initializing before. Now we do. */ if (TREE_CODE (init) == NEW_EXPR) { tree tmp = TREE_OPERAND (init, 1); assert (tmp != NULL_TREE); if (TREE_CODE (TREE_VALUE (tmp)) == NOP_EXPR && (TREE_OPERAND (TREE_VALUE (tmp), 0) == integer_zero_node)) { /* In order for this to work for RESULT_DECLs, if their type has a constructor, then they must be BLKmode so that they will be meaningfully addressable. */ tree arg = build_unary_op (ADDR_EXPR, exp, 0); init = build (CALL_EXPR, build_pointer_type (TREE_TYPE (init)), TREE_OPERAND (init, 0), TREE_OPERAND (init, 1), 0); TREE_VOLATILE (init) = 1; TREE_VALUE (TREE_OPERAND (init, 1)) = arg; if (alias_this) { expand_assignment (current_function_decl, init, 0, 0); return; } if (exp == DECL_RESULT (current_function_decl)) { if (DECL_INITIAL (DECL_RESULT (current_function_decl))) fatal ("return value from function receives multiple initializations"); DECL_INITIAL (exp) = init; } expand_expr_stmt (init); return; } } /* Handle this case: when calling a constructor: xyzzy foo(bar); which really means: xyzzy foo = bar; Ugh! We can also be called with an initializer for an object which has virtual functions, but no constructors. In that case, we perform the assignment first, then initialize the virtual function table pointer fields. */ if (! TYPE_NEEDS_CONSTRUCTING (type)) { if (init_list && TREE_CHAIN (init_list)) { warning ("initializer list being treated as compound expression"); init = build_compound_expr (init_list); } expand_assignment (exp, init, 0, 0); if (TYPE_VIRTUAL_P (type)) expand_recursive_init (for_type, true_exp, exp, init, CLASSTYPE_BASE_INIT_LIST (type), alias_this); return; } } if (TYPE_HAS_CONSTRUCTOR (type)) { /* It fails because there may not be a constructor which takes its own type as the first (or only parameter), but which does take other types via a conversion. So, if the thing initializing the expression is a unit element of type X, first try X(X&), followed by initialization by X. If neither of these work out, then look hard. */ tree parms = (init == NULL_TREE || TREE_CODE (init) == TREE_LIST) ? init : build_tree_list (NULL_TREE, init); int flags; if (parms) init = TREE_VALUE (parms); if (parms && TREE_CHAIN (parms) == NULL_TREE && init_type == type && ! TYPE_GETS_INIT_REF (type)) { rval = build_modify_expr (exp, INIT_EXPR, init); expand_expr_stmt (rval); return; } if (protect > 0) flags = LOOKUP_NORMAL|LOOKUP_SPECULATIVELY; else flags = 0; rval = build_method_call (exp, DECL_NAME (TYPE_NAME (type)), parms, CLASSTYPE_AS_LIST (for_type), flags); /* Private, protected, or otherwise unavailable. */ if (rval == error_mark_node) { error_with_aggr_type (for_type, "in base initialization for class `%s'"); } /* A valid initialization using constructor. */ else if (rval != NULL_TREE) { /* p. 222: if the base class assigns to `this', then that value is used in the derived class. */ if (alias_this) { TREE_TYPE (rval) = TREE_TYPE (current_class_decl); expand_assignment (current_class_decl, rval, 0, 0); return; } expand_expr_stmt (rval); } else if (parms && TREE_CHAIN (parms) == NULL_TREE) { /* If we are initializing one aggregate value from another, and though there are constructors, and none accept the initializer, just do a bitwise copy. @@ This should reject initializer which a constructor @@ rejected on visibility gounds, but there is @@ no way right now to recognize that case with @@ just `error_mark_node'. */ tree itype; init = TREE_VALUE (parms); itype = TREE_TYPE (init); if (TREE_CODE (itype) == REFERENCE_TYPE) { init = convert_from_reference (init); itype = TREE_TYPE (init); } itype = TYPE_MAIN_VARIANT (itype); if (comptypes (TYPE_MAIN_VARIANT (type), itype, 0)) { warning ("bitwise copy in initialization of type `%s'", TYPE_NAME_STRING (type)); rval = build (INIT_EXPR, type, exp, init); expand_expr_stmt (rval); } } else { if (init == NULL_TREE) assert (parms == NULL_TREE); /* This will make an error message for us. */ build_method_call (exp, DECL_NAME (TYPE_NAME (type)), parms, CLASSTYPE_AS_LIST (for_type), LOOKUP_NORMAL); } return; } else if (TREE_CODE (type) == ARRAY_TYPE) { if (TYPE_NEEDS_CONSTRUCTING (TREE_TYPE (type))) expand_vec_init (exp, exp, array_type_nelts (type), init); else if (TYPE_VIRTUAL_P (TREE_TYPE (type))) sorry ("arrays of objects with virtual functions but no constructors"); } else expand_recursive_init (for_type, true_exp, exp, init, CLASSTYPE_BASE_INIT_LIST (type), alias_this); } /* A pointer which holds the initializer. First call to expand_aggr_init gets this value pointed to, and sets it to init_null. */ static tree *init_ptr, init_null; /* Subroutine of expand_recursive_init: ADDR is the address of the expression being initialized. INIT_LIST is the cons-list of initializations to be performed. ALIAS_THIS is its same, lovable self. */ static void expand_recursive_init_1 (for_type, true_exp, addr, init_list, alias_this) tree for_type, true_exp, addr; tree init_list; int alias_this; { while (init_list) { if (TREE_PURPOSE (init_list)) { if (TREE_CODE (TREE_PURPOSE (init_list)) == FIELD_DECL) { tree member = TREE_PURPOSE (init_list); tree subexp = build_indirect_ref (convert_to_nonzero_pointer (TYPE_POINTER_TO (TREE_VALUE (init_list)), addr), 0); tree member_base = build (COMPONENT_REF, TREE_TYPE (member), subexp, member); if (IS_AGGR_TYPE (TREE_TYPE (member))) expand_aggr_init (member_base, DECL_INITIAL (member), 0); else if (TREE_CODE (TREE_TYPE (member)) == ARRAY_TYPE && IS_AGGR_TYPE (TREE_TYPE (TREE_TYPE (member)))) { member_base = save_expr (default_conversion (member_base)); expand_vec_init (member, member_base, array_type_nelts (TREE_TYPE (member)), DECL_INITIAL (member)); } else expand_expr_stmt (build_modify_expr (member_base, INIT_EXPR, DECL_INITIAL (member))); } else if (TREE_CODE (TREE_PURPOSE (init_list)) == TREE_LIST) { expand_recursive_init_1 (for_type, true_exp, addr, TREE_PURPOSE (init_list), alias_this); expand_recursive_init_1 (for_type, true_exp, addr, TREE_VALUE (init_list), alias_this); } else if (TREE_CODE (TREE_PURPOSE (init_list)) == ERROR_MARK) { tree vtype; if (TREE_VALUE (init_list) == CLASSTYPE_MAIN_VARIANT (for_type)) vtype = for_type; else vtype = get_base_type (TREE_VALUE (init_list), for_type, 0); expand_expr_stmt (build_virtual_init (for_type, vtype, addr)); if (TYPE_USES_VIRTUAL_BASECLASSES (for_type)) expand_expr_stmt (build_vbase_vtables_init (for_type, vtype, true_exp, addr)); } else abort (); } else if (TREE_VALUE (init_list) && TREE_CODE (TREE_VALUE (init_list)) == RECORD_TYPE) { tree subexp = build_indirect_ref (convert_to_nonzero_pointer (TYPE_POINTER_TO (TREE_VALUE (init_list)), addr), 0); expand_aggr_init_1 (for_type, true_exp, subexp, *init_ptr, alias_this && ! DECL_OFFSET (TYPE_NAME (TREE_VALUE (init_list))), -1); /* INIT_PTR is used up. */ init_ptr = &init_null; } else abort (); init_list = TREE_CHAIN (init_list); } } /* Initialize EXP with INIT. Type EXP does not have a constructor, but it has a baseclass with a constructor or a virtual function table which needs initializing. INIT_LIST is a cons-list describing what parts of EXP actually need to be initialized. INIT is given to the *unique*, first constructor within INIT_LIST. If there are multiple first constructors, such as with multiple inheritance, INIT must be zero or an ambiguity error is reported. ALIAS_THIS is passed from `expand_aggr_init'. See comments there. */ static void expand_recursive_init (for_type, true_exp, exp, init, init_list, alias_this) tree true_exp, exp, init; tree init_list; int alias_this; { init_ptr = &init; expand_recursive_init_1 (for_type, true_exp, build_unary_op (ADDR_EXPR, exp, 0), init_list, alias_this); if (*init_ptr) { tree type = TREE_TYPE (exp); if (TREE_CODE (type) == REFERENCE_TYPE) type = TREE_TYPE (type); if (IS_AGGR_TYPE (type)) error_with_aggr_type (type, "unexpected argument to constructor `%s'"); else error ("unexpected argument to constructor"); } } /* Report an error if NAME is not the name of a user-defined, aggregate type. */ int is_aggr_typedef_or_else (name) tree name; { tree type = TREE_TYPE (name); if (type == NULL_TREE || TREE_CODE (type) != TYPE_DECL) { error ("`%s' fails to be an aggregate typedef", IDENTIFIER_POINTER (name)); return 0; } type = TREE_TYPE (type); if (! IS_AGGR_TYPE (type)) { fatal ("type `%s' is of non-aggregate type", IDENTIFIER_POINTER (name)); return 0; } return 1; } /* This code could just as well go in `class.c', but is placed here for modularity. */ /* For an expression of the form CNAME :: NAME (PARMLIST), build the appropriate function call. */ tree build_member_call (cname, name, parmlist, dtor) tree cname, name, parmlist; int dtor; { tree type, t; tree method_name = name; if (TREE_CODE (cname) == SCOPE_REF) { sorry ("multiple scope qualifications in build_member_call"); return error_mark_node; } if (! is_aggr_typedef_or_else (cname)) return error_mark_node; /* An operator we did not like. */ if (name == NULL_TREE) return error_mark_node; if (dtor) { if (! TYPE_HAS_DESTRUCTOR (TREE_TYPE (TREE_TYPE (cname)))) error ("type `%s' does not have a destructor", IDENTIFIER_POINTER (cname)); else error ("destructor specification error"); return error_mark_node; } if (TREE_CODE (name) == OP_IDENTIFIER) method_name = build_operator_fnname (name, parmlist, 1); type = TREE_TYPE (TREE_TYPE (cname)); t = lookup_fnfields (CLASSTYPE_AS_LIST (type), method_name, 0); if (t) { /* No object? Then just fake one up, and let build_method_call figure out what to do. */ int dont_use_this = 0; tree basetype_path, decl; /* Determine whether to use `this' as the base object. */ if (current_class_type == 0 || get_base_distance (type, current_class_type, 0, &basetype_path) == -1) dont_use_this = 1; if (dont_use_this) { basetype_path = NULL_TREE; decl = build (NOP_EXPR, TYPE_POINTER_TO (TREE_TYPE (TREE_TYPE (cname))), error_mark_node); } else if (current_class_decl == 0) decl = build (NOP_EXPR, TYPE_POINTER_TO (TREE_TYPE (TREE_TYPE (cname))), error_mark_node); else decl = current_class_decl; return build_method_call (decl, method_name, parmlist, basetype_path, LOOKUP_NORMAL|LOOKUP_NONVIRTUAL); } else { char *err_name; if (TREE_CODE (name) == OP_IDENTIFIER) { char *op_name = operator_name_string (method_name); err_name = (char *)alloca (13 + strlen (op_name)); sprintf (err_name, "operator %s", op_name); } else if (TREE_CODE (name) == IDENTIFIER_NODE) err_name = IDENTIFIER_POINTER (name); else abort (); error ("no method `%s::%s'", IDENTIFIER_POINTER (cname), err_name); return error_mark_node; } } /* Build a reference to a member of an aggregate. This is not a C++ `&', but really something which can have its address taken, and then act as a pointer to member, for example CNAME :: FIELD can have its address taken by saying & CNAME :: FIELD. @@ Prints out lousy diagnostics for operator @@ fields. @@ This function should be rewritten and placed in cplus-search.c. */ tree build_member_ref (cname, name, dtor) tree cname, name; int dtor; { tree decl, type, fnfields, fields, t = error_mark_node; tree basetype, basetypes = NULL_TREE; int dont_use_this = 0; if (TREE_CODE (cname) == SCOPE_REF) { sorry ("multiple scope qualifications in build_member_ref"); return error_mark_node; } if (! is_aggr_typedef_or_else (cname)) return error_mark_node; type = TREE_TYPE (TREE_TYPE (cname)); /* Unresolved multi-arity operator. */ if (TREE_CODE (name) == OP_IDENTIFIER) { t = copy_node (name); TREE_TYPE (t) = unknown_type_node; return t; } if (TREE_CODE (name) == TYPE_EXPR) { /* Pass a TYPE_DECL to build_component_type_expr. */ return build_component_type_expr (TREE_TYPE (cname), name, NULL_TREE, 1); } fnfields = lookup_fnfields (CLASSTYPE_AS_LIST (type), name, 0); fields = lookup_field (type, name, 0); if (fields == error_mark_node) return error_mark_node; if (fnfields) { basetypes = TREE_PURPOSE (fnfields); /* Go from the TREE_BASELINK to the member function info. */ t = TREE_VALUE (fnfields); if (fields) { if (DECL_FIELD_CONTEXT (fields) == DECL_FIELD_CONTEXT (TREE_VALUE (t))) { error ("ambiguous member reference: member `%s' defined as both field and function", IDENTIFIER_POINTER (name)); return error_mark_node; } if (get_base_type (DECL_FIELD_CONTEXT (fields), DECL_FIELD_CONTEXT (TREE_VALUE (t)), 0)) ; else if (get_base_type (DECL_FIELD_CONTEXT (TREE_VALUE (t)), DECL_FIELD_CONTEXT (fields), 0)) t = fields; else { error ("ambiguous member reference: member `%s' derives from distinct classes in multiple inheritance lattice"); return error_mark_node; } } if (t == TREE_VALUE (fnfields)) { /* This does not handle visibility checking yet. */ if (TREE_CHAIN (TREE_VALUE (t)) == NULL_TREE || dtor) { enum visibility_type visibility; /* unique functions are handled easily. */ t = TREE_VALUE (t); unique: visibility = compute_visibility (basetypes, t); if (visibility == visibility_protected) { error_with_decl (t, "member function `%s' is protected"); error ("in this context"); return error_mark_node; } if (visibility == visibility_private) { error_with_decl (t, "member function `%s' is private"); error ("in this context"); return error_mark_node; } return build (MEMBER_REF, TREE_TYPE (t), NULL_TREE, t); } /* overloaded functions may need more work. */ if (cname == name) { if (TYPE_HAS_DESTRUCTOR (type) && TREE_CHAIN (TREE_CHAIN (TREE_VALUE (t))) == NULL_TREE) { t = TREE_CHAIN (TREE_VALUE (t)); goto unique; } } t = copy_node (fnfields); TREE_CHAIN (t) = TREE_CHAIN (fnfields); TREE_TYPE (t) = build_member_type (type, unknown_type_node); return t; } } /* Now that we know we are looking for a field, see if we have access to that field. Lookup_field will give us the error message. */ if (current_class_type == 0 || get_base_distance (type, current_class_type, 0, &basetypes) == -1) dont_use_this = 1; if (dont_use_this) { basetypes = CLASSTYPE_AS_LIST (type); decl = build (NOP_EXPR, TREE_TYPE (TREE_TYPE (cname)), error_mark_node); } else if (current_class_decl == 0) decl = build (NOP_EXPR, TREE_TYPE (TREE_TYPE (cname)), error_mark_node); else decl = C_C_D; t = lookup_field (basetypes, name, 1); if (t == error_mark_node) return error_mark_node; if (t == NULL_TREE) { if (OPERATOR_TYPENAME_P (name)) error ("type conversion operator not a member of type `%s'", IDENTIFIER_POINTER (cname)); else error ("field `%s' is not a member of type `%s'", IDENTIFIER_POINTER (name), IDENTIFIER_POINTER (cname)); return error_mark_node; } /* static class members and class-specific enum values can be returned without further ado. */ if (TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == CONST_DECL) { TREE_USED (t) = 1; return t; } /* static class functions too. */ if (TREE_CODE (t) == FUNCTION_DECL && TREE_CODE (TREE_TYPE (t)) == FUNCTION_TYPE) abort (); /* In member functions, the form `cname::name' is no longer equivalent to `this->cname::name'. */ return build (MEMBER_REF, build_member_type (type, TREE_TYPE (t)), decl, t); } /* Given an object EXP and a member function reference MEMBER, return the address of the actual member function. */ tree get_member_function (exp, member) tree exp, member; { tree ctype = TREE_TYPE (exp); tree function = build_unary_op (ADDR_EXPR, member, 0); tree exp_addr = build_unary_op (ADDR_EXPR, exp, 0); if (TYPE_VIRTUAL_P (ctype) || (flag_all_virtual == 1 && (TYPE_OVERLOADS_METHOD_CALL_EXPR (ctype) || TYPE_NEEDS_WRAPPER (ctype)))) { tree e0, e1, e3; e0 = build (NOP_EXPR, integer_type_node, function); #ifdef VTABLE_USES_MASK /* If we are willing to limit the number of virtual functions a class may have to some *small* number, then if, for a function address, we are passed some small number, we know that it is a virtual function index, and work from there. */ e1 = build (BIT_AND_EXPR, integer_type_node, e0, vtbl_mask); #else /* There is a hack here that takes advantage of twos complement arithmetic, and the fact that there are more than one UNITS to the WORD. If the high bit is set for the `function', then we pretend it is a virtual function, and the array indexing will knock this bit out the top, leaving a valid index. */ #if UNITS_PER_WORD <= 1 virtual_functions_lose !; #endif e1 = build (GT_EXPR, integer_type_node, e0, integer_zero_node); #endif e3 = build_vfn_ref (&exp_addr, exp, e0); assert (e3 != error_mark_node); /* Change this pointer type from `void *' to the type it is really supposed to be. */ TREE_TYPE (e3) = TREE_TYPE (function); function = build_conditional_expr (e1, function, e3); } return build_indirect_ref (function, 0); } /* If a MEMBER_REF made it through to here, then it did not have its address taken. */ tree resolve_member_ref (exp) tree exp; { tree base = TREE_OPERAND (exp, 0); tree member = TREE_OPERAND (exp, 1); tree basetype, addr; if (TREE_CODE (member) == VAR_DECL || TREE_CODE (member) == FUNCTION_DECL) { /* These were static members. */ if (mark_addressable (member) == 0) return error_mark_node; return member; } if (base == NULL_TREE) { abort (); if (current_class_type) error_not_derived_type (DECL_FIELD_CONTEXT (member), current_class_type); else error_with_aggr_type (DECL_FIELD_CONTEXT (member), "member `%s::%s' is not static", IDENTIFIER_POINTER (DECL_NAME (member))); return error_mark_node; } /* The first case is really just a reference to a member of `this'. */ if (TREE_CODE (member) == FIELD_DECL && (base == C_C_D || (TREE_CODE (base) == NOP_EXPR && TREE_OPERAND (base, 0) == error_mark_node))) { tree basetype_path; enum visibility_type visibility; basetype = DECL_CONTEXT (member); addr = convert_to_nonzero_pointer (TYPE_POINTER_TO (basetype), current_class_decl); get_base_distance (basetype, current_class_type, 0, &basetype_path); visibility = compute_visibility (basetype_path, member); if (visibility == visibility_public) return build (COMPONENT_REF, TREE_TYPE (member), build_indirect_ref (addr, 0), member); if (visibility == visibility_protected) { error_with_decl ("member `%s' is protected"); error ("in this context"); return error_mark_node; } if (visibility == visibility_private) { error_with_decl ("member `%s' is private"); error ("in this context"); return error_mark_node; } abort (); } /* If this is a reference to a member function, then return the address of the member function (which may involve going through the object's vtable), otherwise, return an expression for the derefernced pointer-to-member construct. */ addr = build_unary_op (ADDR_EXPR, base, 0); if (TREE_CODE (TREE_TYPE (member)) == METHOD_TYPE) { basetype = TYPE_METHOD_BASETYPE (TREE_TYPE (member)); addr = convert_to_nonzero_pointer (TYPE_POINTER_TO (basetype), addr); return get_member_function (build_indirect_ref (addr, 0), member); } else if (TREE_CODE (TREE_TYPE (member)) == OFFSET_TYPE) { basetype = TYPE_OFFSET_BASETYPE (TREE_TYPE (member)); addr = convert_to_nonzero_pointer (TYPE_POINTER_TO (basetype), addr); member = convert (ptr_type_node, build_unary_op (ADDR_EXPR, member, 0)); return build (INDIRECT_REF, TREE_TYPE (exp), build (PLUS_EXPR, ptr_type_node, convert (ptr_type_node, addr), member)); } else abort (); } /* Return either DECL or its known constant value (if it has one). */ tree decl_constant_value (decl) tree decl; { #if 0 if (! TREE_PUBLIC (decl) /* Don't change a variable array bound or initial value to a constant in a place where a variable is invalid. */ && current_function_decl != 0 && ! pedantic && ! TREE_THIS_VOLATILE (decl) && DECL_INITIAL (decl) != 0 && TREE_CODE (DECL_INITIAL (decl)) != CONSTRUCTOR && TREE_CODE (DECL_INITIAL (decl)) != ERROR_MARK && DECL_MODE (decl) != BLKmode) return DECL_INITIAL (decl); #else if (TREE_CODE (decl) != VAR_DECL || TREE_READONLY (decl) == 0) abort (); if (DECL_INITIAL (decl)) return DECL_INITIAL (decl); #endif TREE_USED (decl) = 1; return decl; } /* Return list element whose TREE_VALUE is ELEM. Return 0 if ELEM is not in LIST. */ tree value_member (elem, list) tree elem, list; { while (list) { if (elem == TREE_VALUE (list)) return list; list = TREE_CHAIN (list); } return NULL_TREE; } /* Return list element whose TREE_PURPOSE is ELEM. Return 0 if ELEM is not in LIST. */ tree purpose_member (elem, list) tree elem, list; { while (list) { if (elem == TREE_PURPOSE (list)) return list; list = TREE_CHAIN (list); } return NULL_TREE; } /* Friend handling routines. */ /* Friend data structures: Friend lists come from TYPE_DECL nodes. Since all aggregate types are automatically typedef'd, these node are guaranteed to exist. The TREE_PURPOSE of a friend list is the name of the friend, and its TREE_VALUE is another list. The TREE_PURPOSE of that list is a type, which allows all functions of a given type to be friends. The TREE_VALUE of that list is an individual function which is a friend. Non-member friends will match only by their DECL. Their member type is NULL_TREE, while the type of the inner list will either be of aggregate type or error_mark_node. */ /* Tell if this function specified by FUNCTION_DECL can be a friend of type TYPE. Return nonzero if friend, zero otherwise. DECL can be zero if we are calling a constructor or accessing a member in global scope. */ int is_friend (type, decl) tree type, decl; { tree typedecl = TYPE_NAME (type); tree ctype = NULL_TREE; tree list; tree name; if (decl == NULL_TREE) return 0; if (TREE_CODE (TREE_TYPE (decl)) == METHOD_TYPE) { ctype = TYPE_METHOD_BASETYPE (TREE_TYPE (decl)); list = DECL_FRIEND_CLASSES (typedecl); while (list) { if (ctype == TREE_VALUE (list)) return 1; list = TREE_CHAIN (list); } } list = DECL_FRIENDLIST (typedecl); name = DECL_ORIGINAL_NAME (decl); while (list) { if (name == TREE_PURPOSE (list)) { tree friends = TREE_VALUE (list); name = DECL_NAME (decl); while (friends) { if (ctype == TREE_PURPOSE (friends)) return 1; if (name == DECL_NAME (TREE_VALUE (friends))) return 1; friends = TREE_CHAIN (friends); } return 0; } list = TREE_CHAIN (list); } return 0; } /* Add a new friend to the friends of the aggregate type TYPE. DECL is the FUNCTION_DECL of the friend being added. */ static void add_friend (type, decl) tree type, decl; { tree typedecl = TYPE_NAME (type); tree list = DECL_FRIENDLIST (typedecl); tree name = DECL_ORIGINAL_NAME (decl); tree ctype = TREE_CODE (TREE_TYPE (decl)) == METHOD_TYPE ? TYPE_METHOD_BASETYPE (TREE_TYPE (decl)) : NULL_TREE; while (list) { if (name == TREE_PURPOSE (list)) { tree friends = TREE_VALUE (list); while (friends) { if (decl == TREE_VALUE (friends)) { warning_with_decl (decl, "`%s' is already a friend of class `%s'", IDENTIFIER_POINTER (DECL_NAME (typedecl))); return; } friends = TREE_CHAIN (friends); } TREE_VALUE (list) = tree_cons (ctype, decl, TREE_VALUE (list)); return; } list = TREE_CHAIN (list); } DECL_FRIENDLIST (typedecl) = tree_cons (DECL_ORIGINAL_NAME (decl), build_tree_list (error_mark_node, decl), DECL_FRIENDLIST (typedecl)); if (! strncmp (IDENTIFIER_POINTER (DECL_NAME (decl)), "op$modify_expr", 11)) { tree parmtypes = TYPE_ARG_TYPES (TREE_TYPE (decl)); TREE_HAS_ASSIGNMENT (TREE_TYPE (typedecl)) = 1; TREE_GETS_ASSIGNMENT (TREE_TYPE (typedecl)) = 1; if (parmtypes && TREE_CHAIN (parmtypes)) { tree parmtype = TREE_VALUE (TREE_CHAIN (parmtypes)); if (TREE_CODE (parmtype) == REFERENCE_TYPE && TREE_TYPE (parmtypes) == TREE_TYPE (typedecl)) { TYPE_HAS_ASSIGN_REF (TREE_TYPE (typedecl)) = 1; TYPE_GETS_ASSIGN_REF (TREE_TYPE (typedecl)) = 1; } } } } /* Declare that every member function NAME in FRIEND_TYPE (which may be NULL_TREE) is a friend of type TYPE. */ static void add_friends (type, name, friend_type) tree type, name, friend_type; { tree typedecl = TYPE_NAME (type); tree list = DECL_FRIENDLIST (typedecl); while (list) { if (name == TREE_PURPOSE (list)) { tree friends = TREE_VALUE (list); while (friends && TREE_PURPOSE (friends) != friend_type) friends = TREE_CHAIN (friends); if (friends) if (friend_type) warning ("method `%s::%s' is already a friend of class", TYPE_NAME_STRING (friend_type), IDENTIFIER_POINTER (name)); else warning ("function `%s' is already a friend of class `%s'", IDENTIFIER_POINTER (name), IDENTIFIER_POINTER (DECL_NAME (typedecl))); else TREE_VALUE (list) = tree_cons (friend_type, NULL_TREE, TREE_VALUE (list)); return; } list = TREE_CHAIN (list); } DECL_FRIENDLIST (typedecl) = tree_cons (name, build_tree_list (friend_type, NULL_TREE), DECL_FRIENDLIST (typedecl)); if (! strncmp (name, "op$modify_expr", 11)) { TREE_HAS_ASSIGNMENT (TREE_TYPE (typedecl)) = 1; TREE_GETS_ASSIGNMENT (TREE_TYPE (typedecl)) = 1; sorry ("declaring \"friend operator =\" will not find \"operator = (X&)\" if it exists"); } } /* Set up a cross reference so that type TYPE will make member function CTYPE::DECL a friend when CTYPE is finally defined. */ void xref_friend (type, decl, ctype) tree type, decl, ctype; { tree typedecl = TYPE_NAME (type); tree friend_decl = TYPE_NAME (ctype); tree t = tree_cons (NULL_TREE, ctype, DECL_UNDEFINED_FRIENDS (typedecl)); DECL_UNDEFINED_FRIENDS (typedecl) = t; SET_DECL_WAITING_FRIENDS (friend_decl, tree_cons (type, t, DECL_WAITING_FRIENDS (friend_decl))); TREE_TYPE (DECL_WAITING_FRIENDS (friend_decl)) = decl; } /* Set up a cross reference so that functions with name NAME and type CTYPE know that they are friends of TYPE. */ void xref_friends (type, name, ctype) tree type, name, ctype; { tree typedecl = TYPE_NAME (type); tree friend_decl = TYPE_NAME (ctype); tree t = tree_cons (NULL_TREE, ctype, DECL_UNDEFINED_FRIENDS (typedecl)); DECL_UNDEFINED_FRIENDS (typedecl) = t; SET_DECL_WAITING_FRIENDS (friend_decl, tree_cons (type, t, DECL_WAITING_FRIENDS (friend_decl))); TREE_TYPE (DECL_WAITING_FRIENDS (friend_decl)) = name; } /* Make FRIEND_TYPE a friend class to TYPE. If FRIEND_TYPE has already been defined, we make all of its member functions friends of TYPE. If not, we make it a pending friend, which can later be added when its definition is seen. If a type is defined, then its TYPE_DECL's DECL_UNDEFINED_FRIENDS contains a (possibly empty) list of friend classes that are not defined. If a type has not yet been defined, then the DECL_WAITING_FRIENDS contains a list of types waiting to make it their friend. Note that these two can both be in use at the same time! */ void make_friend_class (type, friend_type) tree type, friend_type; { tree typedecl = TYPE_NAME (type); tree classes; if (type == error_mark_node || friend_type == error_mark_node) return; if (type == friend_type) { warning ("class `%s' is implicitly friends with itself", TYPE_NAME_STRING (type)); return; } classes = DECL_FRIEND_CLASSES (typedecl); while (classes && TREE_VALUE (classes) != friend_type) classes = TREE_CHAIN (classes); if (classes) warning ("class `%s' is already friends with class `%s'", TYPE_NAME_STRING (type), TYPE_NAME_STRING (type)); else { DECL_FRIEND_CLASSES (typedecl) = tree_cons (NULL_TREE, friend_type, DECL_FRIEND_CLASSES (typedecl)); } } /* Main friend processor. This is large, and for modularity purposes, has been removed from grokdeclarator. It returns `void_type_node' to indicate that something happened, though a FIELD_DECL is not returned. CNAME is the name of the class this friend belongs to. DECLARATOR is the name of the friend. DECL is the FUNCTION_DECL that the friend is. In case we are parsing a friend which is part of an inline definition, we will need to store PARM_DECL chain that comes with it into the DECL_ARGUMENTS slot of the FUNCTION_DECL. FLAGS is just used for `grokclassfn'. */ tree do_friend (cname, declarator, decl, parmdecls, flags) tree cname, declarator, decl, parmdecls; enum overload_flags flags; { if (cname) { tree ctype = TREE_TYPE (TREE_TYPE (cname)); /* A method friend. */ if (TREE_CODE (decl) == FUNCTION_DECL) { /* This will set up DECL_ARGUMENTS for us. */ grokclassfn (cname, decl, flags, TYPE_SIZE (ctype) != 0); if (TREE_TYPE (decl) != error_mark_node) { if (TYPE_SIZE (ctype)) { /* We don't call pushdecl here yet, or ever on this actual FUNCTION_DECL. We must preserve its TREE_CHAIN until the end. */ make_decl_rtl (decl, NULL_TREE, 1); add_friend (current_class_type, decl); } else xref_friend (current_class_type, decl, ctype); DECL_FRIEND_P (decl) = 1; } } else { /* Possibly a bunch of method friends. */ /* Get the class they belong to. */ tree ctype = TREE_TYPE (TREE_TYPE (cname)); /* This class is defined, use its methods now. */ if (TYPE_SIZE (ctype)) { tree fields = lookup_fnfields (CLASSTYPE_AS_LIST (ctype), declarator, 0); if (fields) add_friends (current_class_type, declarator, ctype); else error ("method `%s' is not a member of class `%s'", IDENTIFIER_POINTER (declarator), IDENTIFIER_POINTER (cname)); } else xref_friends (current_class_type, declarator, ctype); decl = void_type_node; } } else if (TREE_CODE (decl) == FUNCTION_DECL && IDENTIFIER_LENGTH (declarator) == 4 && IDENTIFIER_POINTER (declarator)[0] == 'm' && ! strcmp (IDENTIFIER_POINTER (declarator), "main")) { /* raw "main" never gets overloaded, but it can become a friend. */ add_friend (current_class_type, decl); DECL_FRIEND_P (decl) = 1; } /* A global friend. @@ or possibly a friend from a base class ?!? */ else if (TREE_CODE (decl) == FUNCTION_DECL) { tree glob = IDENTIFIER_GLOBAL_VALUE (declarator); /* Friends must all go through the overload machinery, even though they may not technically be overloaded. Note that because classes all wind up being top-level in their scope, their friend wind up in top-level scope as well. */ DECL_NAME (decl) = build_decl_overload (IDENTIFIER_POINTER (declarator), TYPE_ARG_TYPES (TREE_TYPE (decl))); DECL_ARGUMENTS (decl) = parmdecls; /* We can call pushdecl here, because the TREE_CHAIN of this FUNCTION_DECL is not needed for other purposes. */ decl = pushdecl (decl); make_decl_rtl (decl, NULL_TREE, 1); add_friend (current_class_type, decl); if (! TREE_OVERLOADED (declarator) && IDENTIFIER_GLOBAL_VALUE (declarator) && TREE_CODE (IDENTIFIER_GLOBAL_VALUE (declarator)) == FUNCTION_DECL) { error ("friend `%s' implicitly overloaded", IDENTIFIER_POINTER (declarator)); error_with_decl (IDENTIFIER_GLOBAL_VALUE (declarator), "after declaration of non-overloaded `%s'"); } DECL_FRIEND_P (decl) = 1; TREE_OVERLOADED (decl) = 1; TREE_OVERLOADED (declarator) = 1; push_overloaded_decl (decl); } else { /* @@ Should be able to ingest later definitions of this function before use. */ tree decl = IDENTIFIER_GLOBAL_VALUE (declarator); if (decl == NULL_TREE) { warning ("implicitly declaring `%s' as struct", IDENTIFIER_POINTER (declarator)); decl = xref_tag (record_type_node, declarator, NULL_TREE); decl = TYPE_NAME (decl); } /* Allow abbreviated declarations of overloaded functions, but not if those functions are really class names. */ if (TREE_CODE (decl) == TREE_LIST && TREE_TYPE (TREE_PURPOSE (decl))) { warning ("`friend %s' archaic, use `friend class %s' instead", IDENTIFIER_POINTER (declarator), IDENTIFIER_POINTER (declarator)); decl = TREE_TYPE (TREE_PURPOSE (decl)); } if (TREE_CODE (decl) == TREE_LIST) add_friends (current_class_type, TREE_PURPOSE (decl), NULL_TREE); else make_friend_class (current_class_type, TREE_TYPE (decl)); decl = void_type_node; } return decl; } /* TYPE has now been defined. It may, however, have a number of things waiting make make it their friend. We resolve these references here. */ void embrace_waiting_friends (type) tree type; { tree waiters = DECL_WAITING_FRIENDS (TYPE_NAME (type)); while (waiters) { tree waiter = TREE_PURPOSE (waiters); tree waiter_prev = TREE_VALUE (waiters); tree decl = TREE_TYPE (waiters); tree name = decl ? (TREE_CODE (decl) == IDENTIFIER_NODE ? decl : DECL_ORIGINAL_NAME (decl)) : NULL_TREE; if (name) { /* @@ There may be work to be done since we have not verified @@ consistency between original and friend declarations @@ of the functions waiting to become friends. */ tree field = lookup_fnfields (CLASSTYPE_AS_LIST (type), name, 0); if (field) if (decl == name) add_friends (waiter, name, type); else add_friend (waiter, decl); else yylineerror (DECL_SOURCE_LINE (TYPE_NAME (waiter)), "no method `%s' defined in class `%s'", IDENTIFIER_POINTER (TREE_TYPE (waiters)), TYPE_NAME_STRING (type)); } else { make_friend_class (type, waiter); } if (TREE_CHAIN (waiter_prev)) { TREE_CHAIN (waiter_prev) = TREE_CHAIN (TREE_CHAIN (waiter_prev)); } else { DECL_UNDEFINED_FRIENDS (TYPE_NAME (waiter)) = NULL_TREE; } waiters = TREE_CHAIN (waiters); } } /* Add method METHOD to class TYPE. This is used when a method has been defined which did not initially appear in the class definition, and helps cut down on spurious error messages. FIELDS is the field list of the class type where the method should be added. If NULL, then there is no such list, and we create one. */ void add_method (type, fields, method) tree type, fields, method; { /* We must make a copy of METHOD here, since we must be sure that we have exclusive title to this method's TREE_CHAIN. */ int temp = allocation_temporary_p (); tree decl; if (temp) end_temporary_allocation (); { decl = copy_node (method); if (DECL_RTL (decl) == 0) make_function_rtl (decl); } if (fields) { /* Take care not to hide destructor. */ TREE_CHAIN (decl) = TREE_CHAIN (TREE_VALUE (fields)); TREE_CHAIN (TREE_VALUE (fields)) = decl; } else { if (TYPE_HAS_CONSTRUCTOR (type) | TYPE_HAS_DESTRUCTOR (type)) { TREE_CHAIN (CLASSTYPE_FN_FIELDS (type)) = tree_cons (DECL_ORIGINAL_NAME (decl), decl, TREE_CHAIN (CLASSTYPE_FN_FIELDS (type))); } else { CLASSTYPE_FN_FIELDS (type) = tree_cons (DECL_ORIGINAL_NAME (decl), decl, CLASSTYPE_FN_FIELDS (type)); } } DECL_CONTEXT (decl) = type; DECL_VCONTEXT (decl) = type; if (temp) resume_temporary_allocation (); } /* Generate a C++ "new" expression. DECL is either a TREE_LIST (which needs to go through some sort of groktypename) or it is the name of the class we are newing. INIT is an initialization value. It is either an EXPRLIST, an EXPR_NO_COMMAS, or something in braces. If INIT is void_type_node, it means do *not* call a constructor for this instance. For types with constructors, the data returned is initialized by the approriate constructor. Whether the type has a constructor or not, if it has a pointer to a virtual function table, then that pointer is set up here. Unless I am mistaken, a call to new () will return initialized data regardless of whether the constructor itself is private or not. Parameter USER_PARMS, if non-null, is passed as a second parameter to a function called "__user_new". This function should behave in a similar fashion to "__builtin_new", except that it may allocate storage in a more user-defined way. */ tree build_x_new (decl, init) tree decl, init; { if (TREE_GETS_NEW (current_class_type)) return build_opfncall (NEW_EXPR, TREE_TYPE (current_class_decl), size_in_bytes (current_class_type)); return build_new (NULL_TREE, decl, void_type_node); } tree build_new (user_parms, decl, init) tree user_parms; tree decl, init; { extern tree require_complete_type (); /* typecheck.c */ extern tree ptr_ftype_int; tree type, size, rval, build_int_2 (); tree init1 = NULL_TREE, nelts; int has_call = 0, has_array = 0, arr_size = 1; int bytes; if (decl == error_mark_node) return error_mark_node; if (TREE_CODE (decl) == TREE_LIST) { tree typespecs = TREE_PURPOSE (decl); tree absdcl = TREE_VALUE (decl); tree last_absdcl = NULL_TREE; nelts = integer_one_node; if (absdcl && TREE_CODE (absdcl) == CALL_EXPR) { /* probably meant to be a call */ has_call = 1; init1 = TREE_OPERAND (absdcl, 1); absdcl = TREE_OPERAND (absdcl, 0); TREE_VALUE (decl) = absdcl; } while (absdcl && TREE_CODE (absdcl) == INDIRECT_REF) { last_absdcl = absdcl; absdcl = TREE_OPERAND (absdcl, 0); } while (absdcl && TREE_CODE (absdcl) == ARRAY_REF) { /* probably meant to be a vec new */ tree this_nelts; has_array = 1; this_nelts = save_expr (TREE_OPERAND (absdcl, 1)); absdcl = TREE_OPERAND (absdcl, 0); if (this_nelts == NULL_TREE) { error ("new of array type fails to specify size"); } else if (this_nelts == integer_zero_node) { warning ("zero size array reserves no space"); nelts = integer_zero_node; } else { nelts = build_binary_op (MULT_EXPR, nelts, this_nelts); } } if (last_absdcl) TREE_OPERAND (last_absdcl, 0) = absdcl; else TREE_VALUE (decl) = absdcl; type = groktypename (decl); if (! type || type == error_mark_node) return error_mark_node; type = TYPE_MAIN_VARIANT (type); } else if (TREE_CODE (decl) == IDENTIFIER_NODE) { if (TREE_TYPE (decl)) { /* An aggregate type. */ decl = TREE_TYPE (decl); type = TREE_TYPE (decl); } else { /* A builtin type. */ decl = lookup_name (decl); assert (TREE_CODE (decl) == TYPE_DECL); type = TREE_TYPE (decl); } } else if (TREE_CODE (decl) == TYPE_DECL) type = TREE_TYPE (decl); else { type = decl; decl = TYPE_NAME (type); } if (TYPE_SIZE (type) == 0) { incomplete_type_error (0, type); return error_mark_node; } if (IS_AGGR_TYPE (type) && CLASSTYPE_UNINHERITED_VIRTUALS (type) != NULL_TREE) { uninheritable_virtuals_error (NULL_TREE, type); return error_mark_node; } size = size_in_bytes (type); if (has_array) size = fold (build_binary_op (MULT_EXPR, size, nelts)); if (has_call) init = init1; #ifdef SOS if (user_parms == void_type_node) { /* Simple "new dynamic" construct. */ if (! IS_AGGR_TYPE (type)) { error ("dynamic new can only allocate objects of aggregate type"); return error_mark_node; } else if (! is_aggr_typedef_or_else (DECL_NAME (TYPE_NAME (type)))) return error_mark_node; else return build_dynamic_new (type, size, NULL_TREE, init); } else if (user_parms && TREE_CODE (user_parms) == STRING_CST) { /* A "new dynamic" construct with filename argument. */ if (! IS_AGGR_TYPE (type)) { error ("dynamic new can only allocate objects of aggregate type"); return error_mark_node; } else if (! is_aggr_typedef_or_else (DECL_NAME (TYPE_NAME (type)))) return error_mark_node; else return build_dynamic_new (type, size, user_parms, init); } #endif if (user_parms) { rval = build_user_new (type, size, user_parms); if (rval == error_mark_node) return error_mark_node; } else rval = NULL_TREE; if (has_array == 0 && TYPE_HAS_CONSTRUCTOR (type) && init != void_type_node) { if (init == NULL_TREE || TREE_CODE (init) == TREE_LIST) return build_method_call (rval, DECL_NAME (TYPE_NAME (type)), init, NULL_TREE, LOOKUP_NORMAL); error ("constructors take parameter lists"); return error_mark_node; } if (user_parms) { rval = build_user_new (type, size, user_parms); if (rval == error_mark_node) return error_mark_node; } else { if (has_array == 0 && IS_AGGR_TYPE (type) && TREE_GETS_NEW (type)) rval = build_opfncall (NEW_EXPR, TYPE_POINTER_TO (type), size); else { rval = build (CALL_EXPR, build_pointer_type (type), BIN, build_tree_list (NULL_TREE, size), 0); TREE_VOLATILE (rval) = 1; } } /* Don't call any constructors. */ if (init == void_type_node) return rval; if (IS_AGGR_TYPE (type) && (TYPE_USES_VIRTUAL_BASECLASSES (type) || TYPE_NEEDS_CONSTRUCTING (type))) rval = save_expr (rval); if (TYPE_NEEDS_CONSTRUCTING (type)) { if (has_array) rval = expand_vec_init (decl, rval, build_binary_op (MINUS_EXPR, nelts, integer_one_node), init); else { expand_aggr_init (build_indirect_ref (rval, "member initialization"), init, 0); } } else if (has_call) { error ("no constructor for this type"); rval = error_mark_node; } return rval; } static tree build_user_new (type, size, user_parms) tree type; tree size; tree user_parms; { tree user_new = lookup_name (USR_NEW); tree rval; if (user_new == NULL_TREE) { error ("no declaration of \"__user_new\""); return error_mark_node; } rval = build_x_function_call (user_new, tree_cons (NULL_TREE, size, user_parms), current_class_decl); if (rval == error_mark_node) return error_mark_node; TREE_TYPE (rval) = build_pointer_type (type); return rval; } #ifdef SOS /* Build a "new dynamic" call for type TYPE. The size of the object we are newing is SIZE. If "new dynamic" was given with an argument, that argument is in NAME. PARMS contains the parameters to the constructor. The first parameter must be an `ImportRequest *'. This is slightly hairy, because we must find the correct constructor by hand. */ static tree build_dynamic_new (type, size, name, parms) tree type, size; tree name, parms; { tree import_parms, inner_parms; tree import_ptr = integer_zero_node; /* This variable is supposed to be the address of a "struct ref" object, but how and where should it be defined? */ tree lookup_tmp = integer_zero_node; tree import_tmp = build_unary_op (ADDR_EXPR, get_temp_name (ptr_type_node), 0); if (name) { inner_parms = tree_cons (NULL_TREE, name, build_tree_list (NULL_TREE, integer_zero_node)); inner_parms = tree_cons (NULL_TREE, lookup_tmp, inner_parms); inner_parms = build_function_call (__sosLookup, inner_parms); } else inner_parms = integer_zero_node; import_parms = build_tree_list (NULL_TREE, inner_parms); if (CLASSTYPE_DYNAMIC_FILENAME (type)) { inner_parms = tree_cons (NULL_TREE, CLASSTYPE_DYNAMIC_FILENAME (type), build_tree_list (NULL_TREE, integer_zero_node)); inner_parms = tree_cons (NULL_TREE, lookup_tmp, inner_parms); inner_parms = build_function_call (__sosLookup, inner_parms); } else inner_parms = integer_zero_node; import_parms = tree_cons (NULL_TREE, inner_parms, import_parms); import_parms = tree_cons (NULL_TREE, CLASSTYPE_TYPENAME_AS_STRING (type), import_parms); /* This is one parameter which could be (but should not be) evaluated twice. */ TREE_VALUE (parms) = save_expr (TREE_VALUE (parms)); import_parms = tree_cons (NULL_TREE, TREE_VALUE (parms), import_parms); /* SOS?? Pass the address of a temporary which can hold the pointer to dynamic class table, but how and where is it defined? */ import_parms = tree_cons (NULL_TREE, import_tmp, import_parms); import_ptr = build_function_call (__sosImport, import_parms); /* SOS?? Now, generate call to ctor, but using `import_ptr' as the function table. Return the result of the call to the ctor. */ import_ptr = build (NOP_EXPR, TYPE_POINTER_TO (type), import_ptr); return build_method_call (import_ptr, DECL_NAME (TYPE_NAME (type)), tree_cons (NULL_TREE, import_tmp, parms), NULL_TREE, LOOKUP_DYNAMIC); } /* Return the name of the link table (as an IDENTIFIER_NODE) for the given TYPE. */ tree get_linktable_name (type) tree type; { char *buf = (char *)alloca (4 + TYPE_NAME_LENGTH (type) + 1); tree name; if (! TYPE_DYNAMIC (type)) abort (); sprintf (buf, "ZN_%s_", TYPE_NAME_STRING (type)); return get_identifier (buf); } /* For a given type TYPE, grovel for a function table which can be used to support dynamic linking. */ tree get_sos_dtable (type, parms) tree type, parms; { tree classname = CLASSTYPE_TYPENAME_AS_STRING (type); tree filename = CLASSTYPE_DYNAMIC_FILENAME (type); tree dyn_vtbl; /* This variable is supposed to be the address of a "struct ref" object, but how and where should it be defined? */ tree lookup_tmp = integer_zero_node; if (! TYPE_DYNAMIC (type)) abort (); if (filename) { tree inner_parms = tree_cons (NULL_TREE, filename, build_tree_list (NULL_TREE, integer_zero_node)); inner_parms = tree_cons (NULL_TREE, lookup_tmp, inner_parms); parms = build_tree_list (NULL_TREE, build_function_call (__sosLookup, inner_parms)); } else parms = build_tree_list (NULL_TREE, integer_zero_node); parms = tree_cons (NULL_TREE, classname, parms); dyn_vtbl = build_function_call (__sosFindCode, parms); TREE_TYPE (dyn_vtbl) = build_pointer_type (ptr_type_node); return dyn_vtbl; } #endif /* `expand_vec_init' performs initialization of a vector of aggregate types. DECL is passed only for error reporting, and provides line number and source file name information. BASE is the space where the vector will be. NELTS is the number of elements in the vector. INIT is the (possibly NULL) initializer. */ static tree expand_vec_init (decl, base, maxindex, init) tree decl, base, maxindex, init; { tree rval; tree iterator; tree type = TREE_TYPE (TREE_TYPE (base)); maxindex = convert (integer_type_node, maxindex); if (maxindex == error_mark_node) return error_mark_node; iterator = get_temp_regvar (integer_type_node, maxindex); /* Set to zero in case size is <= 0. Optimizer will delete this if it is not needed. */ rval = get_temp_regvar (TYPE_POINTER_TO (type), null_pointer_node); expand_start_cond (build (GE_EXPR, integer_type_node, iterator, integer_zero_node), 0); base = default_conversion (base); expand_assignment (rval, base, 0, 0); base = get_temp_regvar (TYPE_POINTER_TO (type), base); expand_start_loop_continue_elsewhere (1); expand_aggr_init (build (INDIRECT_REF, type, base), init, 0); expand_assignment (base, build (PLUS_EXPR, TYPE_POINTER_TO (type), base, size_in_bytes (type)), 0, 0); expand_loop_continue_here (); expand_exit_loop_if_false (build (NE_EXPR, integer_type_node, build (PREDECREMENT_EXPR, integer_type_node, iterator, integer_one_node), minus_one)); if (obey_regdecls) use_variable (DECL_RTL (base)); expand_end_loop (); expand_end_cond (); if (obey_regdecls) use_variable (DECL_RTL (iterator)); return rval; } void expand_delete (type, addr, auto_delete, protect) tree type, addr; tree auto_delete; int protect; { extern struct rtx_def *const0_rtx; tree rval; if (TREE_CODE (addr) == DELETE_EXPR) { tree decl = TREE_OPERAND (addr, 0); if (TREE_USED (decl) == 0) { warning ("aggregate `%s' initialized, but never used", IDENTIFIER_POINTER (DECL_NAME (decl))); /* Muzzle further error messages in case this type does not rank a destructor. */ TREE_USED (decl) = 1; } } if (TREE_CODE (type) == ARRAY_TYPE) { tree elt_type = TREE_TYPE (type); expand_vec_delete (addr, array_type_nelts (type), cplus_sizeof (type), NULL_TREE, auto_delete, integer_zero_node, 1); } else { rval = build_delete (type, addr, auto_delete, protect); if (rval != error_mark_node) expand_expr_stmt (rval); else /* Have to emit something, since it might be a cleanup. */ emit_note (0, -1); } } /* Generate a call to a destructor. TYPE is the type to cast ADDR to. ADDR is an expression which yields the store to be destroyed. AUTO_DELETE is nonzero if a call to DELETE should be made or not. */ tree build_delete (type, addr, auto_delete, protect) tree type, addr; tree auto_delete; int protect; { tree function, fntype; tree name, parms; tree member; tree expr, exprstmt = NULL_TREE; tree ref; int ptr; if (type == error_mark_node || addr == error_mark_node) return error_mark_node; type = TYPE_MAIN_VARIANT (type); if (TREE_CODE (type) == POINTER_TYPE) { type = TREE_TYPE (type); if (TYPE_SIZE (type) == 0) { incomplete_type_error (0, type); return error_mark_node; } if (! IS_AGGR_TYPE (type)) { if (auto_delete == integer_zero_node) compiler_error ("non-aggregate type to build delete with auto_delete == 0"); expr = build (CALL_EXPR, void_type_node, BID, build_tree_list (NULL_TREE, addr), 0); TREE_VOLATILE (expr) = 1; return expr; } ref = build_indirect_ref (addr, 0); ptr = 1; } else if (TREE_CODE (type) == ARRAY_TYPE) { return build_vec_delete (addr, array_type_nelts (type), cplus_sizeof (TREE_TYPE (type)), NULL_TREE, auto_delete, integer_zero_node); } else { ref = addr; if (ref == C_C_D) addr = current_class_decl; else addr = build (ADDR_EXPR, build_pointer_type (type), addr); ptr = 0; } if (! IS_AGGR_TYPE (type)) { compiler_error ("non-aggregate type to build_delete"); return error_mark_node; } parms = build_tree_list (NULL_TREE, addr); if (! TYPE_NEEDS_DESTRUCTOR (type)) if (auto_delete == integer_zero_node) return build (NOP_EXPR, void_type_node, integer_zero_node); else if (TREE_GETS_DELETE (type)) return build_opfncall (DELETE_EXPR, current_class_decl, addr); else { expr = build (CALL_EXPR, void_type_node, BID, parms, 0); TREE_VOLATILE (expr) = 1; return expr; } /* Below, we will reverse the order in which these calls are made. If we have a destructor, then that destructor will take care of the base classes; otherwise, we must do that here. */ if (TYPE_HAS_DESTRUCTOR (type)) { tree fields = CLASSTYPE_FN_FIELDS (type); tree field = TREE_VALUE (fields); tree basetypes = CLASSTYPE_AS_LIST (type); if (protect > 0) { enum visibility_type visibility = compute_visibility (basetypes, field); if (visibility == visibility_private) { error_with_aggr_type (type, "destructor for type `%s' is private in this scope"); return error_mark_node; } else if (visibility == visibility_protected) { error_with_aggr_type (type, "destructor for type `%s' is protected in this scope"); return error_mark_node; } } /* Once we are in a destructor, do not try going through the virtual function table to find the next destructor. */ if (DECL_VIRTUAL_P (field) && (! DESTRUCTOR_NAME_P (DECL_NAME (current_function_decl)) || TREE_CODE (auto_delete) != PARM_DECL) && auto_delete != integer_zero_node && (ptr == 1 || ! resolves_to_fixed_type_p (ref))) { function = build_vfn_ref (&TREE_VALUE (parms), ref, DECL_VINDEX (field)); if (function == error_mark_node) return error_mark_node; TREE_TYPE (function) = build_pointer_type (TREE_TYPE (field)); TREE_CHAIN (parms) = build_tree_list (NULL_TREE, auto_delete); expr = build_function_call (function, parms); if (ptr) { /* Handle the case where a virtual destructor is being called on an item that is 0. @@ Does this really need to be done? */ tree ifexp = build_binary_op (NE_EXPR, addr, integer_zero_node); expr = build (COND_EXPR, void_type_node, ifexp, expr, build (NOP_EXPR, void_type_node, integer_zero_node)); } } else { function = field; assert (DECL_INITIAL (function) != void_type_node); if (DECL_INITIAL (function) == void_type_node) if (auto_delete == integer_zero_node) expr = build (NOP_EXPR, void_type_node, integer_zero_node); else if (TREE_GETS_DELETE (type)) expr = build_opfncall (DELETE_EXPR, current_class_decl, addr); else { expr = build (CALL_EXPR, void_type_node, BID, parms, 0); TREE_VOLATILE (expr) = 1; } else { TREE_CHAIN (parms) = build_tree_list (NULL_TREE, auto_delete); expr = build_function_call (function, parms); } } return expr; } else { int i, n_baseclasses = CLASSTYPE_N_BASECLASSES (type); tree basetype = n_baseclasses > 0 ? CLASSTYPE_BASECLASS (type, 1) : NULL_TREE; tree exprstmt = NULL_TREE; tree parent_auto_delete = auto_delete; tree cond; /* If this type does not have a destructor, but does have operator delete, call the parent parent destructor (if any), but let this node do the deleting. Otherwise, it is ok to let the parent destructor do the deleting. */ if (TREE_GETS_DELETE (type)) { parent_auto_delete = integer_zero_node; if (auto_delete == integer_zero_node) cond = NULL_TREE; else { expr = build_opfncall (DELETE_EXPR, addr, addr); if (expr == error_mark_node) return error_mark_node; if (auto_delete != integer_one_node) cond = build (COND_EXPR, void_type_node, build (NE_EXPR, integer_type_node, auto_delete, integer_zero_node), expr, build (NOP_EXPR, void_type_node, integer_zero_node)); else cond = expr; } } else if (basetype == NULL_TREE || ! TYPE_NEEDS_DESTRUCTOR (basetype)) { cond = build (COND_EXPR, void_type_node, build (NE_EXPR, integer_type_node, auto_delete, integer_zero_node), build_function_call (BID, build_tree_list (NULL_TREE, addr)), build (NOP_EXPR, void_type_node, integer_zero_node)); } else cond = NULL_TREE; if (cond) exprstmt = build_tree_list (NULL_TREE, cond); if (basetype && TYPE_NEEDS_DESTRUCTOR (basetype)) { expr = build_delete (basetype, ref, parent_auto_delete, protect); if (expr == error_mark_node) return error_mark_node; exprstmt = tree_cons (NULL_TREE, expr, exprstmt); } for (i = 2; i <= n_baseclasses; i++) { basetype = CLASSTYPE_BASECLASS (type, i); if (! TYPE_NEEDS_DESTRUCTOR (basetype)) continue; expr = build_delete (TYPE_POINTER_TO (basetype), convert_to_nonzero_pointer (TYPE_POINTER_TO (basetype), addr), integer_zero_node, protect); if (expr == error_mark_node) return error_mark_node; exprstmt = tree_cons (NULL_TREE, expr, exprstmt); } for (member = TYPE_FIELDS (type); member; member = TREE_CHAIN (member)) { if (TREE_CODE (member) == VAR_DECL || TREE_CODE (member) == CONST_DECL) continue; if (TYPE_NEEDS_DESTRUCTOR (TREE_TYPE (member))) { expr = build_delete (TREE_TYPE (member), build_component_ref (ref, DECL_NAME (member), 0, 0), integer_zero_node, 1); if (expr == error_mark_node) return error_mark_node; exprstmt = tree_cons (NULL_TREE, expr, exprstmt); } } if (exprstmt) return build_compound_expr (exprstmt); else { compiler_error ("build delete does nothing"); return error_mark_node; } } } /* Expand a C++ vector delete expression. MAXINDEX is the number of elements to be deleted. ELT_SIZE is the nominal size of each element in the vector. BASE is the expression that should yield the store to be deleted. DTOR_DUMMY is a placeholder for a destructor. The library function __builtin_vec_delete has a pointer to function in this position. This function expands (or synthesizes) these calls itself. AUTO_DELETE_VEC says whether the container (vector) should be deallocated. AUTO_DELETE say whether each item in the container should be deallocated. */ void expand_vec_delete (base, maxindex, elt_size, dtor_dummy, auto_delete_vec, auto_delete) tree base, maxindex, elt_size; tree dtor_dummy; tree auto_delete_vec, auto_delete; { tree ptype = TREE_TYPE (base); tree type; tree rval; tree iterator, tbase; tree size_exp; if (TREE_CODE (ptype) == POINTER_TYPE) { if (maxindex == 0) { error ("must specify size for non array type"); return; } maxindex = convert (integer_type_node, maxindex); if (maxindex == error_mark_node) return; } else if (TREE_CODE (ptype) == ARRAY_TYPE) { tree amaxindex = array_type_nelts (ptype); maxindex = fold (convert (integer_type_node, maxindex)); if (maxindex == error_mark_node || integer_zerop (maxindex)) return; if (amaxindex != 0 && (TREE_CODE (maxindex) == INTEGER_CST || TREE_CODE (amaxindex) == INTEGER_CST) && ! tree_int_cst_equal (maxindex, amaxindex)) warning ("argument to vector delete disagrees with declared type of array"); base = default_conversion (base); ptype = TREE_TYPE (base); } else { error ("type to vector delete is neither pointer or array type"); return; } type = TREE_TYPE (ptype); if (! IS_AGGR_TYPE (type) || ! TYPE_NEEDS_DESTRUCTOR (type)) { if (auto_delete != integer_zero_node) expand_expr_stmt (build (CALL_EXPR, void_type_node, BID, build_tree_list (NULL_TREE, base), 0)); return; } iterator = get_temp_regvar (integer_type_node, maxindex); size_exp = size_in_bytes (type); expand_start_cond (build (GE_EXPR, integer_type_node, iterator, integer_zero_node), 0); tbase = get_temp_regvar (ptype, build (PLUS_EXPR, ptype, base, build (MULT_EXPR, integer_type_node, size_exp, build (PLUS_EXPR, integer_type_node, maxindex, integer_one_node)))); expand_start_loop_continue_elsewhere (1); expand_assignment (tbase, build (MINUS_EXPR, ptype, tbase, size_exp), 0, 0); assert (dtor_dummy == NULL_TREE); expand_delete (ptype, tbase, auto_delete); expand_loop_continue_here (); expand_exit_loop_if_false (build (NE_EXPR, integer_type_node, build (PREDECREMENT_EXPR, integer_type_node, iterator, integer_one_node), minus_one)); expand_end_loop (); if (obey_regdecls) use_variable (DECL_RTL (tbase)); expand_end_cond (); if (auto_delete != integer_zero_node) expand_expr_stmt (build (CALL_EXPR, void_type_node, BID, build_tree_list (NULL_TREE, base), 0)); if (obey_regdecls) use_variable (DECL_RTL (iterator)); } /* Build a C++ vector delete expression. NELTS is the number of elements to be deleted. BASE is the expression that should yield the store to be deleted. This generates a call to the function BIVD, which passes the destructor across the vector. This is needed only when expanding such an action is unacceptable. */ tree build_vec_delete (base, maxindex, elt_size, dtor_dummy, auto_delete_vec, auto_delete) tree base, maxindex, elt_size; tree dtor_dummy; tree auto_delete_vec, auto_delete; { tree ptype = TREE_TYPE (base); tree type; tree rval; maxindex = fold (convert (integer_type_node, maxindex)); if (maxindex == error_mark_node) return error_mark_node; if (TREE_CODE (ptype) == POINTER_TYPE) { if (maxindex == 0) { error ("must specify size for non array type"); return error_mark_node; } } else if (TREE_CODE (ptype) == ARRAY_TYPE) { tree amaxindex = array_type_nelts (ptype); if ((TREE_CODE (maxindex) == INTEGER_CST || (amaxindex && TREE_CODE (amaxindex) == INTEGER_CST)) && ! tree_int_cst_equal (maxindex, amaxindex)) warning ("argument to vector delete disagrees with declared type of array"); base = default_conversion (base); ptype = TREE_TYPE (base); } else { error ("type to vector delete is neither pointer or array type"); return error_mark_node; } type = TREE_TYPE (ptype); if (TYPE_NEEDS_DESTRUCTOR (type)) { tree parms; if (integer_zerop (maxindex)) return build (NOP_EXPR, void_type_node, integer_zero_node); parms = tree_cons (NULL_TREE, base, tree_cons (NULL_TREE, maxindex, tree_cons (NULL_TREE, cplus_sizeof (type), tree_cons (NULL_TREE, dtor_dummy, tree_cons (NULL_TREE, auto_delete_vec, build_tree_list (NULL_TREE, auto_delete)))))); rval = build (CALL_EXPR, void_type_node, BIVD, parms, 0); TREE_VOLATILE (rval) = 1; return rval; } if (auto_delete_vec != integer_zero_node) { build (CALL_EXPR, void_type_node, BID, build_tree_list (NULL_TREE, base)); TREE_VOLATILE (rval) = 1; } return build (NOP_EXPR, void_type_node, integer_zero_node); } /* Expand a C++ expression at the statement level. This is needed to ferret out nodes which have UNKNOWN_TYPE. The C++ type checker should get all of these out when expressions are combined with other, type-providing, expressions, leaving only orphan expressions, such as: &class::bar; / / takes its address, but do nothing with it. */ void expand_cplus_expr_stmt (exp) tree exp; { if (TREE_TYPE (exp) == unknown_type_node) { if (TREE_CODE (exp) == ADDR_EXPR) { if (TREE_CODE (TREE_OPERAND (exp, 0)) == OP_IDENTIFIER) error ("unresolved reference to user-defined operator"); else error ("address of overloaded function with no contextual type information"); } else if (TREE_CODE (exp) == TREE_LIST) error ("address of overloaded function with no contextual type information"); else if (TREE_CODE (exp) == OP_IDENTIFIER) error ("unresolved reference to user-defined operator"); else if (TREE_CODE (exp) == COMPONENT_REF) warning ("useless reference to a member function name, did you forget the ()?"); } else expand_expr_stmt (exp); }