/* Copyright (C) 1988 Free Software Foundation written by Doug Lea (dl@rocky.oswego.edu) This file is part of the GNU C++ Library. This library is free software; you can redistribute it and/or modify it under the terms of the GNU Library General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This library is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Library General Public License for more details. You should have received a copy of the GNU Library General Public License along with this library; if not, write to the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */ #ifdef __GNUG__ #pragma implementation #endif #include #include #include #include #include void Rational::error(const char* msg) const { (*lib_error_handler)("Rational", msg); } static const Integer _Int_One(1); void Rational::normalize() { int s = sign(den); if (s == 0) error("Zero denominator."); else if (s < 0) { den.negate(); num.negate(); } Integer g = gcd(num, den); if (ucompare(g, _Int_One) != 0) { num /= g; den /= g; } } void add(const Rational& x, const Rational& y, Rational& r) { if (&r != &x && &r != &y) { mul(x.num, y.den, r.num); mul(x.den, y.num, r.den); add(r.num, r.den, r.num); mul(x.den, y.den, r.den); } else { Integer tmp; mul(x.den, y.num, tmp); mul(x.num, y.den, r.num); add(r.num, tmp, r.num); mul(x.den, y.den, r.den); } r.normalize(); } void sub(const Rational& x, const Rational& y, Rational& r) { if (&r != &x && &r != &y) { mul(x.num, y.den, r.num); mul(x.den, y.num, r.den); sub(r.num, r.den, r.num); mul(x.den, y.den, r.den); } else { Integer tmp; mul(x.den, y.num, tmp); mul(x.num, y.den, r.num); sub(r.num, tmp, r.num); mul(x.den, y.den, r.den); } r.normalize(); } void mul(const Rational& x, const Rational& y, Rational& r) { mul(x.num, y.num, r.num); mul(x.den, y.den, r.den); r.normalize(); } void div(const Rational& x, const Rational& y, Rational& r) { if (&r != &x && &r != &y) { mul(x.num, y.den, r.num); mul(x.den, y.num, r.den); } else { Integer tmp; mul(x.num, y.den, tmp); mul(y.num, x.den, r.den); r.num = tmp; } r.normalize(); } void Rational::invert() { Integer tmp = num; num = den; den = tmp; int s = sign(den); if (s == 0) error("Zero denominator."); else if (s < 0) { den.negate(); num.negate(); } } int compare(const Rational& x, const Rational& y) { int xsgn = sign(x.num); int ysgn = sign(y.num); int d = xsgn - ysgn; if (d == 0 && xsgn != 0) d = compare(x.num * y.den, x.den * y.num); return d; } Rational::Rational(double x) { num = 0; den = 1; if (x != 0.0) { int neg = x < 0; if (neg) x = -x; const long shift = 15; // a safe shift per step const double width = 32768.0; // = 2^shift const int maxiter = 20; // ought not be necessary, but just in case, // max 300 bits of precision int expt; double mantissa = frexp(x, &expt); long exponent = expt; double intpart; int k = 0; while (mantissa != 0.0 && k++ < maxiter) { mantissa *= width; mantissa = modf(mantissa, &intpart); num <<= shift; num += (long)intpart; exponent -= shift; } if (exponent > 0) num <<= exponent; else if (exponent < 0) den <<= -exponent; if (neg) num.negate(); } normalize(); } Integer trunc(const Rational& x) { return x.num / x.den ; } Rational pow(const Rational& x, const Integer& y) { long yy = long(y); return pow(x, yy); } #if defined(__GNUG__) && !defined(NO_NRV) Rational operator - (const Rational& x) return r(x) { r.negate(); } Rational abs(const Rational& x) return r(x) { if (sign(r.num) < 0) r.negate(); } Rational sqr(const Rational& x) return r { mul(x.num, x.num, r.num); mul(x.den, x.den, r.den); r.normalize(); } Integer floor(const Rational& x) return q { Integer r; divide(x.num, x.den, q, r); if (sign(x.num) < 0 && sign(r) != 0) q--; } Integer ceil(const Rational& x) return q { Integer r; divide(x.num, x.den, q, r); if (sign(x.num) >= 0 && sign(r) != 0) q++; } Integer round(const Rational& x) return q { Integer r; divide(x.num, x.den, q, r); r <<= 1; if (ucompare(r, x.den) >= 0) { if (sign(x.num) >= 0) q++; else q--; } } // power: no need to normalize since num & den already relatively prime Rational pow(const Rational& x, long y) return r { if (y >= 0) { pow(x.num, y, r.num); pow(x.den, y, r.den); } else { y = -y; pow(x.num, y, r.den); pow(x.den, y, r.num); if (sign(r.den) < 0) { r.num.negate(); r.den.negate(); } } } #else Rational operator - (const Rational& x) { Rational r(x); r.negate(); return r; } Rational abs(const Rational& x) { Rational r(x); if (sign(r.num) < 0) r.negate(); return r; } Rational sqr(const Rational& x) { Rational r; mul(x.num, x.num, r.num); mul(x.den, x.den, r.den); r.normalize(); return r; } Integer floor(const Rational& x) { Integer q; Integer r; divide(x.num, x.den, q, r); if (sign(x.num) < 0 && sign(r) != 0) q--; return q; } Integer ceil(const Rational& x) { Integer q; Integer r; divide(x.num, x.den, q, r); if (sign(x.num) >= 0 && sign(r) != 0) q++; return q; } Integer round(const Rational& x) { Integer q; Integer r; divide(x.num, x.den, q, r); r <<= 1; if (ucompare(r, x.den) >= 0) { if (sign(x.num) >= 0) q++; else q--; } return q; } Rational pow(const Rational& x, long y) { Rational r; if (y >= 0) { pow(x.num, y, r.num); pow(x.den, y, r.den); } else { y = -y; pow(x.num, y, r.den); pow(x.den, y, r.num); if (sign(r.den) < 0) { r.num.negate(); r.den.negate(); } } return r; } #endif ostream& operator << (ostream& s, const Rational& y) { if (y.denominator() == 1) s << y.numerator(); else { s << y.numerator(); s << "/"; s << y.denominator(); } return s; } istream& operator >> (istream& s, Rational& y) { #ifdef _OLD_STREAMS if (!s.good()) { return s; } #else if (!s.ipfx(0)) { s.set(ios::failbit); // Redundant if using GNU iostreams. return s; } #endif Integer n = 0; Integer d = 1; if (s >> n) { char ch = 0; s.get(ch); if (ch == '/') { s >> d; } else { s.putback(ch); } } y = Rational(n, d); return s; } int Rational::OK() const { int v = num.OK() && den.OK(); // have valid num and denom v &= sign(den) > 0; // denominator positive; v &= ucompare(gcd(num, den), _Int_One) == 0; // relatively prime if (!v) error("invariant failure"); return v; }