
lr) XENIX® System V

I) �c

Operating System

User's Guide

()

Jnfonnation in this document is subject to change without notice and does not represent a
commitment on the part of The Santa Cruz Operation, Inc. nor Microsoft Corporation.
The software described in this document is furnished under a license agreement or
nondisclosure agreement. The software may be used or copied only in accordance with
the terms of the agreement. It is against the law to copy this software on magnetic tape,
disk, or any other medium for any purpose other than the purchaser's personal use.

Portions © 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987 Microsoft Corporation.
All rights reserved.
Portions© 1983, 1984, 1985, 1986, 1987The Santa Cruz Operation, Inc.
All rights reserved.

ALL USE, DUPLICATION, OR DISCLOSURE WHATSOEVER BY THE
GOVERNMENT SHALL BE EXPRESSLY SUBJECT TO RESTRICTIONS AS SET

�- �� �F0RTH-IN SlJBDIVISIQN�(b){;J)(il)FQRRESTRICTIIDJUGH'l'SlN COMeUTER _
SOFTWARE AND SUBDIVISION (b) (Z)FORLJMITED RIGHTS IN TECHNICAL
DATA,BOTHAS SETFORTHINFAR52.227-7013.

Thisdocument wastypesetwith aniMAGEN® 8/300LaserPrinter.

Microsoft, MS-DOS, and XENIXare trademarks of Microsoft Corporation.

IMAGEN is a registered trademark ofiMAGEN Corporation.

0
SCODocumentNumber:XG-4-1-87-4.0

0

0

Acknowledgments

This manual builds on the writing of many others. In many cases, the con­
tent here is identical, in whole or in part, to papers and manuals written at
Bell Laboratories. In particular, Chapters 2 is adapted from papers written
by Brian Kernighan. Chapter 3 is adapted from a document written by
Kurt Shoens at the University of California at Berkeley. Chapter 4 is
adapted from documents written by G. A. Snyder, J. R. Mashey, andS. R.
Bourne. Chapter 6 is from a paper written by Robert Morris and Lorinda
Cherry. The work of those mentioned above, and countless others, is
gratefully acknowledged.

Contents

1 Introduction

1.1 Overview 1-1
1.2 AboutThisGuide 1-1
1.3 WhereToFindMoreinformation 1-1
1.4 Notational Conventions 1-3

2 vi: A Text Editor

2.1 Introduction 2-1
2.2 Demonstration 2-1

2.3 _]3jlitil!gTasks 2-17
2.4 Solving- Common PiObTems �2CC54--
2.5 Setting Up Your Environment 2-55
2.6 Summary of Commands 2-61

3 mail--------- - ---- - -

3.1 Introduction 3-1
3.2 Demonstration 3-2
3.3 Basic Concepts 3-4
3.4 Usingmail 3-9
3.5 Commands 3-14
3.6 Leaving ComposeModeTemporarily 3-23
3.7 Setting Up Your Environment: The .mailrc File 3-27
3.8 UsingAdvancedFeatures 3-31
3.9 Quick Reference 3-34

4 The Shell

4.1 Introduction 4-1
4.2 Basic Concepts 4-1
4.3 ShellVariables 4-10
4.4 The Shell State 4-16
4.5 A Command's Environment 4-17
4.6 Invoking the Shell 4-18
4.7 PassingArguments to Shell Procedures 4-19
4.8 Controlling theFlow ofControl 4-21
4.9 Special Shell Commands 4-33
4.10 Creation and Organization of Shell Procedures 4-36
4.11 MoreAboutExecutionFlags 4-38
4.12 Supporting Commands andFeatures 4-38
4.13 Effective and Efficient Shell Programming 4-45

- i -

4.14 Shell Procedure Examples 4-49
4.15 Shell Grammar 4-57

5 be: A Calculator

5.1 Introduction 5-1
5.2 Demonstration 5-1
5.3 Tasks 5-4
5.4 Language Reference 5-14

6 Building a Communication System

6.1 Introduction 6-1
6.2 WhatYouNeed 6-2
6.3 InstallingA DirectWire 6-2
6.4 Installing a Modem 6-4
6.5 Installing a uucp System 6-9
6.6 Maintainingthe System 6-29
6.7 Details of Operation 6-33

7 The C-Shell

7.1 Introduction 7-1
7.2 Invoking the C-shell 7-1
7.3 Using Shell Variables 7-2
7.4 Using the C-Shell History List 7-4
7.5 UsingAliases 7-7
7.6 Redirecting Input and Output 7-8
7. 7 Creating Background and Foreground Jobs 7-9
7.8 UsingBuilt-In Commands 7-10
7.9 CreatingCommand Scripts 7-12
7.10 Usingtbe argvVariable 7-12
7.11 SubstitutingShellVariables 7-13
7.12 UsingExpressions 7-15
7.13 Usingtbe C-Shell: A Sample Script 7-16
7.14 UsingOtberControlStruct ures 7-19
7.15 Supplying input to Commands 7-20
7.16 Catchinginterrupts 7-20
7.17 UsingOtherFeatures 7-21
7.18 Starting aLoop at aTerminal 7-21
7.19 UsingBraces witb Arg uments 7-22
7.20 Substituting Commands 7-23
7.21 Special Characters 7-23

8 Using The Visual Shell

8.1 What is the Visual Shell? 8-1
8.2 Getting Started with the Visual Shell 8-1

-ii-

�' i \ ' '

0

0

8.3
8.4

A

A.1
A.2
A.3
A.4
A.5
A.6
A.?
A.8
A.9

The Visual Shell Screen 8-2
Visual Shell Reference 8-6

ed

Introduction A-1
Demonstration A-1
Basic Concepts A-2
Tasks A-3
Context and Regular Expressions A-29
Speeding Up Editing A -44
Cutting and Pasting with the editor A-4S
Editing Scripts A-50
Summary of Commands A-51

-iii-

Chapterl

Introduction

1.1 Overview 1-1

1.2 About This Guide 1-1

1.3 WhereToFindMoreinformation 1-1

1.4 NotationalConventions 1-3

()

0

f\ ' ;

0

0

Introduction

1.1 Overview

This guide introduces several basic XENIX facilities, including mail, text
editors, and powerful operating environments called "shells."

1.2 About This Guide

This guide is organized as follows:

Chapter 1, "Introduction," gives an introduction and overview of the
XENIX system. It also gives a list of conventions used throughout this
guide.

Chapter2, "vi," explains how to use the screen editor, vi(C).

Chapter 3, "mail," describes theXENIX mail (C) facility and explains how
to send and receive mail.

Chapter 4, "The Shell," describes use of the shell, (sh (C)), command
interpreter and how to write procedures that can be executed by s h.

Chapter 5, "be: A Calculator.'' explains how to use bc(C) a sophisticated
calculator program.

Chapter 6, "Building a Communications System," explains how to set up a
system to permit communication between XENIX and/ or UNIX systems
using dial-up communication lines.

Chapter 7, ''The C-Shell," describes how to use csh(C). It covers the syn­
tax and function of C-shell, (csh (C)), commands and features, and how
to create shell procedures.

Chapter 8, ''UsingThe Visual Shell,'' describes the use and behavior of the
Visual Shell, (vsh (C)), which is a menu-driven XENIX shell. This
chapter assumes the reader is familiar with some general XENIX concepts,
but vsh can be used by first-time users.

Appendix A ''ed" explains howto use the editor, ed(C).

1.3 Where To Find More luformation

This guide does not attempt to give information about installing, manag­
ing, and maintaining the system, nor does it discuss document prepara­
tion, software development, or many of the specialized utilities available in
other XENIX system products.

1- 1

XENIX User's Guide

You can find more information on these subjects in the guides found in the
following binders:

"Run Time Environment"

The XENIX Installation Guide describes how to install and set up
the XENIX system on your computer.

Introduction to XENIX introduces the XENIX system by present­
ingkey concepts in a tutorial format.

The XENIX Operations Guide explains how to manage and main­
tain the system.

Hardware Dependent Reference serves as a comprehensive com­
mand reference, for Hardware Dependent (HW) commands.

"User's Reference"

The XENIX User's Reference serves as a comprehensive,
hardware independent, Operating System, command reference.
A concise but complete description of each command is avail­
able here. It includes manual pages for Commands(C},
Miscellaneous(M), and File Formats(F).

"Programmer's Reference"

The XENIX Programmer's Reference serves as a comprehensive
Development System command reference. It includes the
manual page reference sections for Programming
Commands(CP), System Calls(S), and DOS Routines(DOS).
This guide is part of the optional XENIX Development System.

"Programmer's Guide I"

1-2

The XENIX Programmer's Guide discusses how to use the pro­
gramming tools available in the XENIX programming environ­
ment. This guide is part of the optional XENIX Development
System.

"C Language Reference" describes the various elements of the C
programming language. It is intended as a reference for program­
mers already familiar with C or another language. This guide is
part of the optionalXENIX Development System.

()

0

Introduction

"Programmer's Guide II"

C User's Gu.ide discusses writing C language programs that inter­
face to the XENIX operating system. It provides reference to sys­
tem calls, subroutines, and file formats. This guide is part of the
optionalXENIX Development System.

CLibrary Guide provides information about the standard include
files, tells how to build user interfaces for C programs, provides a
full description of. error messages, and provides information on
cross development including a list of library routines common to
both XENIX and DOS. This guide is part of the optional XENIX
Development System.

Macro Assembler (MASM) User's Guide explains how to create
and debug assembly language programs using the Macro Assem­
bler, MASM, (masm (CP)). This guide is part "of the optional
XENIX Development System.

- -------­ ��--------�-----� --�- - - --------
Macro Assembler (MASM) Reference Manual describes the usage
and input syntax of the Macro Assembler, MASM, (masm
(CP)). Thisoguide is part of the optional XENIX Development
System.

"Text Processing Guide"

The XENIX Text Processing Guide explains how to use the text
processing and text formatting tools and includes the manual
pages for Te"i Commands(CT). It is a part of the optional
XENIX Te"i Processing System.

1.4 Notational Conventions

This guide uses a number of notational conventions to describe the syntax
ofXENIX commands:

Initial Capitals

boldface

Initial Capitals indicate the name of a command
or mode. When a command is introduced it is
followed by the keystroke that invokes it, (i.e.
the Insert (i) command).

Boldface indicates a command, option, flag, or
program name to be entered as shown.
Keystrokes are boldfaced when they indicate a
command to enter as shown, (i.e. enter the i
command and press RETURN).

Boldface indicates the name of a library routine.

1-3

XENIX User's Guide

italics

[l

" "

1-4

(To find more information on a given library
routine consult the "Alphabetized List" in your
XENlX Reference Manual for the manual page
that describes it.)

Italics indicate a filename. This pertains to
library include filenames (i.e. Stdio.h), as well
as, other filenames (i.e. letclttys).
Italics indicate a placeholder for a command
argument. When entering a command , a place­
holder must be replaced with an appropriate
filename, number, or option.

Italics indicate a specific identifier, sUpplied for
variables and functions, when mentioned in
text.

Italics indicate a reference to part of an exam­
ple.

Italics indicate emphasized words or phrases in
text.

Brackets indicate that the enclosed item is
optional. If you do not use the optional item,
the program selects a default action to carry out.

Brackets indicate the position of the cursor in
text examples.

Ellipses indicate that you can repeat the preced­
ingitem anynumberof times.

Vertical ellipses indicate that a portion of a pro­
gram example is omitted.

Quotation marks indicate the first use of a
technical term.

Quotation marks indicate a reference to a word
rather than a command.

Chapter2

vi: A Text Editor

2.1 Introduction 2-1

2.2 Demonstration 2-1
2.2.1 EnteringtheEditor 2-2
2.2.2 InsertingText 2-3
2.2.3 Repeating a Command 2-4
2.2.4 Undoing a Command 2-4
2.2.5 Moving the Cursor 2-5 - ------ -- -------2;2:6--Deletin]f

-2"(5--�---�- -- - -----

()

(' u

2.2.7 Searchingfor aPaltem 2-10
2.2.8 Searching and Replacing 2-11
2.2.9 Leavingvi 2-14
2.2.10 AddingTextFrom AnotherFile 2-14
2.2.11 Leaving vi Temporarily 2-15
2. 2.12 Changing Your Display 2-15
2.2.13 CancelinganEditingSession 2-16

2.3 EditingTasks 2-17
2.3.1 HowtoEnter theEditor 2-17
2.3.2 Moving the Cursor 2-18
2.3.3 Moving Around in a File: Scrolling 2-21
2.3.4 InsertingText Before the Cursor: i and I 2-22
2.3.5 AppendingAfter theCursor: a and A 2-22
2.3.6 CorrectingTyping Mistakes 2-23
2.3.7 OpeningaNewLine 2-23
2.3.8 Repeating the Last Insertion 2-23
2.3.9 Inserting Text From Other Files 2-23
2.3.10 Inserting Control Characters into Text 2-28
2.3.11 JoiningandBreakingLines 2-28
2.3.12 Deleting a Character: x and X 2-28
2.3.13 DeletingaWord:dw 2-29
2.3.14 DeletingaLine:D anddd 2-29
2.3.15 Deleting an Entire Insertion 2-30
2.3.16 Deleting and Replacing Text 2-30
2.3.17 MovingText 2-34
2.3.18 Searching: I and? 2-38
2.3.19 Searching and Replacing 2-40
2.3.20 Pattern Matching 2-43
2.3.21 UndoingaCommand:u 2-45
2.3.22 Repeating a Command: . 2-47

2.3.23 LeavingtheEditor 2-48
2.3.24 Editing a Series of Files 2-49
2.3.25 Editing aNew File Without Leaving the Editor 2-51
2.3.26 Leaving the Editor Temporarily: Shell Escapes 2-52
2.3.27 Performing a Series of Line-Oriented Commands: Q 2-53
2.3.28 Finding Out What File You're In 2-53
2.3.29 FindingOutWhatLine You'reOn 2-54

2.4 Solving Common Problems 2-54

2.5 Setting Up Your Environment 2-55
2.5.1 SettingtheTermina!Type 2-56
2.5.2 Setting Options: The set Command 2-56
2.5.3 DisplayingTabs and End-of-Line: list 2-57
2.5.4 Ignoring Case in Search Commands: ignorecase 2-58
2.5.5 DisplayingLineNumbers:number 2-58
2.5.6 PrintingtheNumber ofLines Changed: report 2-58
2.5. 7 Changing the Terminal Type:term 2-58
2.5.8 Shortening Error Messages: terse 2-59
2.5.9 TurningO!fWarnings:warn 2-59
2.5.10 Permitting Special Characters in Searches: nomagic 2-59
2.5.11 Limiting Searches: wrapscan 2-59
2.5.12 Tuming onMessages:mesg 2-60
2.5.13 Customizing Your Environment: The .exrc File 2-60

2.6 Summary of Commands 2-61

vi: A Text Editor

2.1 Introduction

Any ASCII text file, such as a program or document, maybe created and
modified using a text editor. There are two text editors available on the
XENIX system, ed and vi. ed is discussed in Appendix A of this manual.

vi (which stands for "visual") combines line-oriented and screen-oriented
features into a powerful set of text editing operations that will satisfy any
text editing need.

The first part of this chapter is a demonstration that gives you some hands­
on experience with vi. It introduces the basic concepts you must be familiar
with before you can really learn to use vi, and shows you how to perform
simple editing functions. The second part is a reference that shows you
how to perform specific editing tasks. The third part describes how to set
up your vi environment and how to set optional features. The fourth part is
a summary of commands.

- --- ------�Bec-ause-vi-is-suc-h-a-powerf-ul-edi-tor ,-i-t-h-as-m-any-more-,-Gommand-s-th-an-you--------­
can learn at one sitting. If you have not used a text editor before, the best
approach is to become thoroughly comfortable with the concepts and
operations presented in the demonstration section, then refer to the
second part for specific tasks you need to perform. All the steps needed to

0 perform a given task are explained in each section, so some information is
repeated several times. When you are familiar with the basic vi commands
you can easily learn how to use the more advanced features.

If you have used a text editor before, you may want to turn directly to the
task-oriented part of this chapter. Begin by learning the features you will
use most often. If you are an experienced user of vi you may prefer to use
vi(C) in the XENJXReference Manual instead of this chapter.

This chapter covers the basic text editing features of vi. For more advanced
topics, and features related to editing programs, refer to vi(C) in the
XENlXReference Manual.

2.2 Demonstration

The following demonstration gives you hands-on experience using vi, and
introduces some basic concepts that you must understand before you can
learn more advanced features. You will learn how to enter and exit the edi­
tor, insert and delete text, search for patterns and replace them, and how
to insert text from other files. This demonstration should take one hour.
Remember that the best way to learn vi is to actually use it, so don't be
afraid to experiment.

Before you start the demonstration, make sure that your terminal has been
properly set up. See section 2.5.1, "Setting the Terminal Type" , for more
information about setting up your terminal for use with vi.

2-1

XENIX User's Guide

2.2.1 Entering the Editor

To enter the editor and create a file named temp, enter:

vi temp

Your screen will look like this:

"temp" [New file]

Note that we show a twelve-line screen to save space. In reality, vi uses
whatever size screen you have.

You are initially editing a copy of the file. The file itself is not altered until
you save it. Saving a file is explained later in the demonstration. The top
line of your display is the only line in the file and is marked by the cursor,
shown above as an underline character. In this chapter, when the cursor is
on a character that character will be enclosed in square brackets ([]).

The line containing the cursor is called the current line.

The lines containing tildes are not part of the file: they indicate lines on the
screen only, not real lines in the file.

2-2

0

�··.
I) '-.... ./

vi: A Text Editor

2.2.2 Inserting Text

To begin, create some text in the file temp by using the Insert (i) command.
To do this, press:

Next, enter the following five lines to give yourself some text to experiment
with. Press RETURN at the end of each line. If you make a mistake, use the
BKSP key to erase the error and enter the word again.

Files contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

Press the ESCAPE key (abbreviated ESC) when you are finished.

Like most vi commands, the i command is not shown (or "echoed") on
your screen. The command itself switches you from Command mode to
Insert mode.

When you are in Insert mode every character you enter is displayed
on the screen. In Command mode the characters you enter are not
placed in the file as text; they are interpreted as commands to be
executed on the file. If you are not certain which mode you are in,
press ESC until you hear the bell. When you hear the bell you
are 'in Command mode.

Once in Insert mode, the characters you enter are inserted into the file;
they are not interpreted as vi commands. To exit Insert mode and reenter
Command mode you will always press ESC. This switching between modes
occurs often in vi, and it is important to get used to it now.

2-3

XENIX User's Guide

2.2.3 Repeating a Command

Next comes a command that you will use frequently in vi: the Repeat com­
mand. The Repeat command repeats the most recent Insert or Delete
command. Since we have just executed an Insert command, the Repeat
command repeats the insertion� duplicating the inserted text. The Rep�at
command is executed by entering a period (.) or "dot" . So, to add five
more lines of text, enter".". The Repeat command is repeated relative to
the location of the cursor and inserts text below the current line.
(Remember, the current line is always the line containing the cursor.)
After youenterdot (.), your screen will looklike this:

Files contain text.
Text contains lines.
Unes contain characters.
Characters form words.
Words form text.
Files contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

2.2.4 Undoing a Command

Another command which is very useful (and which you will need often in
the beginning) is the Undo (u) command. Press

u

and notice that the five lines you just finished inserting are deleted or
"undone".

2-4

0

0

Files contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

Now enter:

u

vi: A Text Editor

again, and the five lines are reinserted! This undo feature can be very use­
ful in recovering from inadvertent deletions or insertions.

2.2.5 Moving the Cursor

Now let's learn how to move ti1e cursor around on the screen. fu addition
to the arrow keys, the following letter keys also control the cursor:

h Left

Right

k Up

Down

The letter keys are chosen because of their relative positions on the key­
board. Remember that the cursor movement keys only work in Command
mode.

Try moving the cursor using these keys. (First make sure you are in Com­
mand mode by pressing the ESC key.) Then, enter the H command to place
the cursor in the upper left corner of the screen. Then enter the L com­
mand to move to the lowest line on the screen. (Note that case is significant
in our example: L moves to the lowest line on the screen; while I moves the
cursor forward one character.} Next, try moving the cursor to the last line
in the file with the goto command, G. If you enter 2G, the cursor moves to
the beginning of the second line in the file; if you have a 10,000 line file, and
enter 8888G, the cursor goes to the beginning of line 8888. (If you have a
600line file and enter 800G the cursor does not move.)

2-5

XENIX User's Guide

These cursor movement commands should allow you to move around well
enough for this demonstration. Other cursor movement comman!fs you
might wantto tryout are:

w Moves forward a word

b Backs up a word

0 Moves to the beginning of a line

$ Moves to the end of a line

You can move through many lines quickly with the scrolling commands:

Ctrl-u Scrolls up 112 screen

Ctr!-d SerbUs down 1/2 screen

Ctrl-f Scrolls forward one screenful

Ctrl-b Scrolls backward one screenful

2.2.6 IleletU1g

Now that we know how to insert and create text, and how to move around
within the file, we are ready to delete text. Many Delete commands can be
combined with cursor movement commands, as explained below. The
most common Delete commands are:

dd Deletes the cnrrent line (the line the cursor is on), regard­
less of the location of the cursor in the line.

dw Deletes the word above the cursor. lithe cursor is in the
middle of the word, deletes from the cursor to the end of
the word.

x Deletes the character above the cursor.

d$ Deletes from the cursor to the end of the line.

D Deletes from the cursor to the end of the line.

dO Deletes from the cursor to the start of the line.

2-6

Repeats the last change. (Use this only if your last com­
mand was a deletion.)

(\

vi: A Text Editor

To learn how all these commands work, we will delete various parts of the
demonstration file. To begin, press ESC to make sure you are in Command
mode, then move to the first line of the file by entering:

lG

At first, your file should look like this:

[F]iles contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.
Files contain text.
Text contains lines.
Lines contain characters.

- -------- -----------c-haracters-form-word-s.- ------ -- ---------- -- ------------ - - - - ­
Words form text.

0

0

To delete thefirstline, enter:

dd

Your file should now look like this:

[T]ext contains lines.
Lines contain characters.
Characters form words.
Words form text.
Files contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form teJ.."!.

Delete the word the cursor is sitting on by entering:

dw

2-7

XENIX User's Guide

After deleting, your file should look like this:

[c]ontains lines.
Lines contain characters.
Characters form words.
Words form text.
Files contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

You can quickly delete the character above the cursor by pressing:

X

This leaves:

[o]ntains lines.
Lines contain characters.
Characters form words.
Words form text.
Files contain text.

Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

Now enter a w command to move your cursor to the beginning of the word
lines on the first line. Then, to delete to the end of the line, enter:

d$

2-8

' 1---- ---------

0

Your file looks like this:

ontains_
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.
Files contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

vi: A Text Editor

To delete all the characters on the line before the cursor enter:

dO

This leaves a single space on the line:

Lines contain characters.
Files contain text.
Text contains lines.
Characters form words.
Words form text.
Lines contain characters.
Characters form words.
Words form text.

2-9

XENIX User's Guide

For review, let's restore the first two lines of the file.

Press ito enter Insert mode, then enter:

Files contain text.
Te:x"'t contains lines.

Press ESC to go back to Command mode.

2.2.7 SearchingforaPattem

You can search forward for a pattern of characters by entering a slash(/)
followed by the pattern you are searching for, terminated by a RETURN.
For example, make sure you are in Command mode (press ESC), then
press

H

to move the cursor to the top of the screen. Now, enter:

/char

Do not press RETURN yet. Your screen should look like this:

Files contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.
Files contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

/char_

Press RETURN. The cursor moves to the beginning of the word characters
on line three. To search for the next occurrence of the pattern char, press
n (as in "next"). This will take you to the beginning of the word characters
on the eighth line. If you keep pressing "n" vi searches past the end of the
file, wraps around to the beginning, and again finds the char on line three.

2-10

f\

vi: A Text Editor

Note that the slash character and the pattern that you are searching for
appear at the bottom of the screen. This bottom line is the vi status line.

The status line appears at the bottom of the screen.
It is used to display information, including patten1s you
are searching for, line- oriented commands (explained
later in this demonstration), and error messages.

For example, to get status information about the file, press Ctrl� g. Your
screen should look like this:

---- -- ------ rc-==========1 - - - -------- ---------- --

0

()

Files contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.
Files contain text.
Text contains lines.
Lines contain [c]haracters.
Characters form words.
Words form text.

"temp" [Modified]line 4 of 10 --4%--

The status line on the bottom tells you the name of the file you are editing,
whether it has been modified, the current line number, the number of lines
in the file, and your locatiOn in the file as a percentage of the number of
lines in the file. The status line disappears as you continue working.

2.2.8 Searching and Replacing

Let's say you want to change all occurrences of text hr the demonstration
file to documents. Rather than search for text', then delete it and insert
documents,. you can do it all in one command. The commands you have
learned so far have all been screen-oriented. Commands that can perform

2-11

XENIX User's Guide

more than one action (searching and replacing) are line-oriented com­
mands.

Screen-oriented commands are executed at the location of the
cursor. You do not need to tell the computer where to perform
the operation; it takes place relative to the cursor. Line-oriented
commands require you to specify an exact location (called an
"address") where the operation is to take place.
Screen-oriented commands are easy to enter, and provide
immediate feedback; the change is displayed on the screen.
Line-oriented commands are more complicated to enter, but
they can be executed independent of the cursor, and in more
than one place in a file at a time.

All line-oriented commands are preceded by a colon which acts as a
prompt on the status line. Line-oriented commands themselves are
entered on this line and terminated with a RETURN.

In this chapter, all instructions for line-oriented
commands will include the colon as part of the command.

To change text to documents, press ESC to make sure you are in Command
mode, then enter:

:1,$s/text/ documents/ g

This command means "From the first line (1) to the end of the file($), find
text and replace it with documents (s/text/documents/) everywhere it
occurs on each line (g)".

2-12

/\ ' I
\. '

0

0

Press RETURN. Your screen should look like this:

Files contain documents.
Text contains lines.
Lines contain characters.
Characters form words.
Words form documents.
Files contain documents.
Text contains lines.
Lines contain characters.
Characters form words. [WJords form documents.

vi: A Text Editor

-� Note· -that Text in�lines two- -and-eight�was-not changed·-.�-Case is significant--in----·
searches.

Just for practice, use the Undo command to change documents back to
text. Press:

u

Your screen now looks like this:

[F]iles contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.
Files contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

2-13

XENIX User's Guide

2.2.9 Leaving vi

All of the editing you have been doing has affected a copy of the file, and
not the file named temp that you specified when you invoked vi. To save the
changes you have made, exit the editor and return to the XENIX shell,
enter:

:x

Remember to press RETURN. The name of the file, and the number of
lines and characters it contains are displayed on the status line:

"temp" [New file]10 lines, 214 characters

Then the XENIX prompt appears.

2.2.10 AddingTextFromAnotherFile

In this section we will create a new file, and insert text into it from another
file. First, create a newfile namedpractice by entering:

vi practice

This file is empty. Let's copy the text from tempand put it in practice with
the line-oriented Read command. Press ESC to make sure you are in Com­
mand mode, then enter:

:r temp

Your file should look like this:

2-14

[F]iles contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.
Files contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

0

0

vi: A Text Editor

The text from temp has been copied and put in the current file practice.
There is an empty line at the top of the file. Move the cursor to the empty
line and delete it with the ddcommand.

2.2.11 LeavingviTemporarily

vi allows you to execute commands outside of the file you are editing, such
as date. To find out thedate and time, enter:

:!date

Press RETURN. This displays the date, then prompts you to press RETURN
to reenter Command mode. Go ahead and try it. Your screen should look
similar to this:

Files contain text.
Text contains lines.
Lines contain, characters.
Characters form words.
Words form text.
Files contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

:!date
Mon Jan 916:33:37 PST 1985
[Hit return to continue]_

2.2.12 Changing Your Display

Besides the set of editing commands described above, there are a number
of options that can be set either when you invoke vi, or later when editing.
These options allow you to control editing parameters such as line number
display, and whether or not case is significant in searches. In this section
we will learn how to turn on line numbering� and how to look at the current
option settings.

2-15

XENIX User's Guide

To tum on automatic line numbering, enter:

:set number

Press RETURN. Your screen is redrawn, and line numbers appear to the
left of the text. Your screen looks like this:

1 Files contain text.
2 Text contains lines.
3 Lines contain characters.
4 Characters form words.
5 Words form text.
6 Files contain text.
7 Text contains lines.
8 Lines contain characters.
9 Characters form words.

10 Words form text.

You can get a complete list of the available options by entering:

:set all

and pressing RETURN. Setting these options is described in section 2.5
"Setting Up Your Environment", but it is important that you be aware of
their existence. Depending on what you are working on, and your own
preferences, you will want to alter the default settings for many of these
options.

2.2.13 Canceling an Editiug Session

Finally, to exit vi without saving thefilepractice, enter:

:q!

and press RETURN. This cancels all the changes you have made to practice
and, since it is a new file, deletes it.. The prompt appears. If practice had
already existed before this editing session, the changes you made would be
disregarded, but the file would still exist.

2-16

0

0

vi: A Text Editor

This completes the demonstration. You have learned how to get in and out
of vi, insert and delete text, move the cursor around, make searches and
replacements, how to execute line-oriented commands, copy text from
other files, and cancel an editing session.

There are many more commands to learn, but the fundamentals of using vi
have been covered. The following sections will give you more detailed
information about these commands and about vi's other commands and
features.

2.3 Editing Tasks

The following sections explain how to perform common editing tasks. By
following the instr.uctions in each section you will be able to complete each
task described. Features that are needed in several tasks are described
each time they are used, so some information is repeated.

2.3.1 HowtoEntertheEditor

There are several ways to begin editing, depending on what you are plan­
ningto do. This section describes how to start, or "invoke" the editor with
one filename. To invoke vi on a series of :files, see section 2.3.24, "Editing a
Series of Files".

With a Filename

The most common way to enter vi is to enter the command vi and the name
of thefileyou wish to edit:

vi filename

If filename does not already exist, a new, empty file is created.

At a Particular Line

You can also enter the editor at a particular place in a file. For example, if
you wish to start editing a file at line 100, enter:

vi + 100 filename

The cursor is placed at line 100offilename.

2-17

- - - - ------ ---------- -----------------

XENIX User's Guide

Ata ParticularWord

If you wish to begin editing at the first occurrence of a particular word,
enter:

vi +!word filename

The cursor is placed at the first occurrence of word. For example, to begin
editing the file temp at the the first occurrence of contain, enter:

vi +/contain temp

2.3.2 Moving the Cursor

The cursor movement keys allow you to move the cursor around in a file.
Cursor movement can only be done in Command mode.

Moving the Cursor By Characters: h,j ,k,I,SPACE,BKSP

The SPACE bar and th_e I key move the cursor forward a specified number
of characters. The BKSP key and the h key move it backward a specified
number of characters. If no number is specified, the cursor moves one
character. For example, to move backward four characters, enter:

4h

You can also move the cursor to a designated character on the current line.
F moves the cursor back to the specified character, fmoves it forward. The
cursor rests on the specified character. For example, to move the cursor
backward to the nearestp on the current line, enter:

Fp

To move the cursor forward to the nearestp, enter:

fp

The T and t keys work the same way as f and F, but place the cursor
immediately before the specified character. For example, to move the cur­
sorbackto the space nextto the nearestpin the current line, enter:

Tp

2-18

f\
\.

0

0

vi: A Text Editor

If the p were in the word telephone, the cursor would sit on the h.

The cursor always remains on the same line when you use these com­
mands. If you specify a number greater than the number of characters on
the line, the cursor does not move beyond the beginning or end of that line.

Movingtbe CursorbyWords :w, W,b,B, e ,E

The w key moves the cursor forward t o the beginning o f the specified
number .. of words. Punctuation and nonalphabetic characters (such as
!@#$% &*()_+{}[r�'<>/) are considered words, so if a word is fol­
lowed by a comma the cursor will count the comma in the specified
number.

For example, your cursor rests on the first letter of this sentence:

No, Ididn't know he had returned.

If and you press:

6w

the cursor stops on the kin know.

W works the same way as w, but includes punctuation and non alphabetic
characters as part of theword. Using the above example, if you press

6W

the cursor stops on the r in returned; the comma and the apostrophe are
included in their adjacent words.

Thee and E keys move the cursor forward to the end of a specified number
of words. The cursor is placed on the last letter of the word. Thee com­
mand counts punctuation and nonalphabetic character.s as separate
words; E does not.

B and b move tlle cursor back to the beginning of a specified number of
words. The cursor is placed on the first letter of the word. The b command
counts punctuation and nonalphabetic characters as separate words; B
does not. Using the above example, if the cursor is on the r in returned,
enter:

4b

and the cursor moves to the tin didn't.

2-19

XENIX User's Guide

Enter:

4B

and the cursor moves to the first din didn't.
The w, W, b and B commands will move the cursor to the next line if that is
where the designated word is, unless the current line ends in a space.

Moving the Cursor by Lines

Forward:j, Ctrl-n, +,RETURN,LINEFEED, $

The RETURN, LINEFEED and + keys move the cursor forward a specified
number of lines, placing the cursor on the first character. For example, to
move the cursor forward six lines, enter:

6+

Thej and Ctrl· n keys move the cursor forward a specified number of lines.
The cursor remains in the same place on the line, unless there is no charac­
ter in that place, in which case it moves to the last character on the line. For
example, in the following two lines if the cursoris resting on thee in charac­
ters, pressingj moves it to the period at the end of the second line:

Lines contain characters.
Text contains lines.

The dollar sign($) moves the cursor to the end of a specified number of
lines. For example, to move the cursor to the last character of the line four
lines down from the current line, enter:

4$

Backward: k, Ctrl-p

Ctrl-p and kmove the cursor backward a specified number of lines, keep­
ing it on the same place on the line. For example, to move the cursor back­
ward fourlines from the current line, enter:

4k

2-20

c\

0

vi: A Text Editor

Moving the Cursor on the Screen: H, M, L

The H, MandL keys move the cursor to the beginning of the top, middle
and bottom lines of the screen, respectively.

2.3.3 Moving Around in a File: Scrolling

The following commands move the file so different parts can be displayed
on the screen. The cursor is placed ·on the first letter of the last line
scrolled. ·

Scrolling Up Partofthe Screen: Ctrl-u

Ctrl-u scrolls up one-half screen.

-- Scrolling.Up tltel!'ullS_c reen:_C_tr)·J> _ _ _

Ctrl-b scrolls up a full screen.

Scrolling Down Part of the Screen: CtrJ. d

Ctd-d scrolls down one-half screen.

Scrolling Down a Full Screen: Ctrl-f

Ctrl-fscrolls down a full screen.

Placing a Lineatthe Top of the Screen: z

To scroll the current line to the top of the screen, press:

z

then press RETuRN. To place a specific line at the top of the screen, pre­
cede thezwith the line number, as in

33z

Press RETURN, and line 33 scrolls to the top of the screen. For information
on how to display line numbers, see section 2.5.5, "Displaying Line
Numbers: number".

2-21

XENIX User's Guide

2.3.4 Inserting Text Before the Cursor: i and I

You can begin inserting text before the cursor anywhere on a line, or at the
beginning of a line. In order to insert text into a file, you must be in Insert
mode. To enter Insert mode press:

The "i" does not appear on the screen. Any text typed after the "i"
becomes part of the file you are editing. To leave Insert mode and reenter
Command mode, press ESC. For more explanation of modes in vi, see sec­
tion 2.2.2, "Inserting Text''.

Anywhere on a Line: i

To insert text befote the cursor, use the i command. Press the ikey to enter
Insert mode (the "i" does not appear on your screen), then begin entering
your text. To leave Insert mode and reenter Command mode, press ESC.

At the Beginning of the Line: I

Using an uppercase "I" to enter Insert mode also moves the cursor to the
beginning of the current line. It is used to start an insertion at the beginning
of the current line.

2.3.5 Appending After the Cursor: a and A

You can begin appending text after the cursor anywhere on a line, or at the
end of a line. Press ESC to leave Insert mode and reenter Command mode.

Anywhere on a Line: a

To append text after the cursor, use the a command. Press the a key to
enter Insert mode (the "a" does not appear on your screen), then begin
entering your text. Press ESC to leave Insert mode and reenter Command
mode.

Atthe end of a Line: A

Using an uppercase ''A" to enter Insert mode also moves the cursor to the
end of the current line. It is useful for appending text at the end of the
current line.

2-22

0

vi: A Text Editor

2.3.6 CorrectingTypingMista kes

If you make a mistake while you are typing, the simplest way to correct it is
with the BKSP key. Backspace across the line until you have backspaced
over the mistake, then retype the line. You can only do this, however, if the
cursor is on the same line as the error. See sections 2.3.12 through 2.3.15
for other ways to correct typing mistakes.

2.3.7 Opening a NewLine

To open a new line above the cursor, press 0. To open a new line below
the cursor, press o. Both commands place you in Insert mode, and you
may begin entering immediately. Press ESC to leave Insert mode and
reenter Command mode.

You may also use the RETURN key to open new lines above and below the
cursor. To open a line above the cursor, move the cursor to the beginning
of the-line, -�pr-ess1to _ente:rJnser-tmode, then�press.RETU:RN. (Eorinforma::_
tion on how to move the cursor, see section 2.3.2, "Moving the Cursor".)
To open a line below the cursor, move the cursor to the end of the current
line, press ito enter Insert mode, then press RETURN.

2.3.8 Repeating the Last Insertion

Ctrl- @ repeats the last insertion. Press ito enter Insert mode, then press
Ctrl- @.

Ctrl- @ only repeats insertions of 128 characters or less. If more than 128
characters were inserted, Ctrl- @ does nothing.

For other methods of repeating an insertion, see section 2.3.8, "Repeating
the Last Insertion", section 2.3.9, "Inserting Text From Other Files", and
section 2.3.22, "Repeating a Command".

2.3.9 Inserting Text From Other Files

To insert the contents of another file into the file you are currently editing,
use the Read (r) command. Move the cursor to the line immediately above
the place you want the new material to appear, then enter:

:r filename

where filename is the file containing the material to be inserted, and press
RETURN. The text of filename appears on the line below the cursor, and
the cursor moves to the first character of the new text. This text is a copy;
the original filename still exists.

2-23

XENIX User's Guide

Inserting selected lines from another file is more complicated. The
selected lines are copied from the original file into a temporary holding
place called a "buffer", then inserted into the new file.

1. To select the lines to be copied, save your original file with the Write
(:w) command , but do not exit vi.

2. Enter:

:e filename

wherefilenameisthefile that contains the text you want to copy, and
press RETURN.

3. Move the cursor to the first line you wish to select.

4. Enter:

mk

This "marks" the first line of text to be copied into the new file with
the letter "k".

5. Move the cursor to the last line of the selected text. Enter:

"ay'k

The lines from your first "mark" to the cursor are placed, or
"yanked" into buffer a. They will remain in buffer a until you
replace them with other lines, or until you exit the editor.

6. Enter:

:e#

to return to your previous file. (For more information about this
command, see section 2.3.25, "Editing a New File Without Leaving
the Editor".) Move the cursor to the line above the place you want
thenewtextto appear, then enter:

"ap

This "puts" a copy of the yanked lines into the file, and the cursor is
placed on the first letter of this new text. The buffer still contains the
original yanked lines.

You can have26buffersnamed a, b, c, up to and includingz. To name and
select different buffers, replace the a in the above examples with whatever
letter you wish.

2-24

(:

0

vi: A Text Editor

You may also delete text into a buffer, then insert it in another place. For
information on this type of deletion and insertion, see section 2.3.17,
"Moving Text".

Copying Lines From Elsewhere in the File

To copy lines fro in one place in a file to another place in the same file, use
the Copy (co) command.

co is a line-oriented command, and to use it you must know the line
numbers of the text to be copied and its destination. To find out the
number of the current line enter:

:nu

and press RETURN. The line number and the text of that line are displayed
on the status line. To find out the destination line number, move the cursor
-to�theJine above.where you.want.the copied text to,app_ear .and repe�J th�­
:nu command. You can also make line numbers appear throughout the file
with the linenumber option. For information on how to set this option, see
section 2.5.5, "Displaying Line Numbers: number". The following exam­
ple uses the number option to display line numbers in a file.

1 [F]iles contain text.
2 Text contains lines.
3 Lines contain characters.
4 Characters form words.
S Words form text.

Using the above example, to copy lines 3 and 4 and put them between lines
1 and 2, enter:

:3,4co 1

2-25

XENIX User's Guide

The result is:

1 Files contain text.
2 Lines contain characters.
3 [C]haractersform words.
4 Text contains lines.
5 Lines contain characters.
6Charactersform words.
?Words form text.

If you have text that is to be inserted several times in different places, you
can save it in a temporary storage area, called a "buffer", and insert it
whenever it is needed. For example, to repeat the first line of the following
text after the last line:

[F]iles contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

1. Move the cursor over the Fin Files. Enter the following line, which
will not be echoed on your screen:

2-26

"ayy

This "yanks" the first line into buffer a. Move the cursor over the W
in Words.

f \
\ .• :

0

()

vi: A Text Editor

2 . Enterthefollowingline:

"ap

This "puts" a copy of the yanked line into the file, and the cursor is
placed on the first letterofthis new text. The buffer still contains the
original yanked line.

Your screen looks like this:

Files contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text. fFJi!es contain text.

If you wish to "yank" several consecutive lines, indicate the number of
lines you wish to yank after the name of the buffer. For example, to place
three lines from the above text in buffer a, enter:

"a3yy

You can also use c'yank" to copy parts of a line. For example, to copy the
words Files contain, enter:

2yw

This yanks the next two words, including the word on which you place the
cursor. To yank the next ten characters, enter:

lOy!

l indicates cursor motion to the right. To yank to the end ofthe line you are
on, from where you are now, enter:

y$

2-27

XENIX User's Guide

2.3.10 Inserting Control Characters into Text

Many control characters have special meaning in vi, even when typed in
Insert mode. To remove their special significance, press Ctrl-vbefore typ­
ing the control character. Note that Ctrl-j, Ctrl-q,and Ctrl- s cannot be
inserted as text. Ctrl-j is a newline character. Ctrl- q and Ctrl-s are mean­
ingful to the operating system, and are trapped by it before they are inter­
preted by vi.

2.3.11 Joining and Breaking Lines

To join two lines ptess:

J

while the cursor is on the first of the two lines you wish to join.

To break one line into two lines, position the cursor on the space preceding
the first letter of what will be the second line, press:

r

then press RETURN.

2.3.12 Deleting a Character: xandX

The x and X commands delete a specified number of characters. The x
command deletes the character above the cursor; the X command deletes
the character immediately before the cursor. If no number is given, one
character is deleted. For example, to delete three characters following the
cursor (including the character above the cursor), enter:

3x

To delete three characters preceding the cursor, enter:

3X

2-28

0

0

vi: A Text Editor

2.3.13 Deleting a Word: dw

The dw command deletes a specified number of words. If no number is
given, one word is deleted. A word is interpreted as numbers and letters
separated by whitespace. When a word is deleted, the space after it is also
deleted. For example, to delete three words, enter:

3dw

2.3.14 Deleting a Line: D and dd

The D command deletes all text following the cursor on that line, including
the character the cursor is resting on. The dd command deletes a specified
number of lines and closes up the space. H no number is given, only the
current line is deleted. For example, to delete three lines, enter:

3dd

Another way to delete several lines is to use a line-oriented command. To
use this command it helps to know the line numbers of the text you wish to
delete. For information on how to display line numbers, see section 2.5.5,
"Displaying Line Numbers: number".

For example, to delete lines 200through 250, enter:

:200,250d

Press RETURN.

When the command finishes, the message:

SO Jines

appears on the vi status line, indicating how many lines were deleted.

It is possible to remove lines without displaying line numbers usin,g short­
hand "addresses". For example, to remove all lines from the current line
(the line the cursor rests on) to the end of the file, enter:

:.,$d

2-29

XENIX User's Guide

The dot (.) represents the current line, and the dollar sign stands for the
last line in the file. To delete the current line and 3 lines following it, enter:

:. , +3d

To delete the current line and 3 lines preceding it, enter:

: . ,-3d

For more information on using addresses in line-oriented commands, see
vi(C) in theXENIX Reference Manual.

2.3.15 Deleting an Entire Insertion

If you wish to delete all of the text you just entered, press Ctrl-u while you
are in Insert mode. The cursor returns to the beginning of the insertion.
The text of the original insertion is still displayed, and any text you enter
replaces it. When you press ESC, any text remaining from the original
insertion disappears.

2.3.16 DeletingandReplacingText

Several vi commands combine removing characters and entering Insert
mode. The following sections explain how to use these commands.

Overs triking: rand R

The r command replaces the character under the cursor with the next char­
acter entered. To replace the character under the cursor with a "b", for
example, enter:

rb

If a number is given before r, that number of characters is replaced with the
next character entered. For example, to replace the character above the
cursor, plus the next three characters, with the letter "b ", enter:

4rb

Note that you now have four "b"s in a row.

2-30

(\
\.

0

c

vi: A Text Editor

The R command replaces as many characters as you enter. To end the
replacement, press ESC. For example, to replace the second line in the fol­
lowingtextwith "Spelling is important.":

Files contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

' '

Move the cursor over the Tin Text. Press R, then enter:

Spelling is important.

Press ESC to end the replacement. If you make a mistake, use the BKSP
key to correct it. Your screen should now look like this:

Files contain text.
Spelling is important[.]
Lines contain characters.
Characters form words.
Words form text.

.

2-31

XENIX User's Guide

Substituting: s andS

The s command replaces a specified number of characters, beginning with
the character under the cursor, with text you enter. For example, to substi­
tute "xyz" for the cursor and two characters following it, enter:

3sxyz

The S command deletes a specified number of lines and replaces them with
text you enter. You may enter as many new lines of text as you wish; S
affects only how many lines are deleted. If no number is given, one line is
deleted. For example, to delete four lines, including the current line, enter:

4S

This differs from the R command. The S command deletes the entire
current line; theR command deletes text from the cursor onward.

Replacing a Word: cw

The cw command replaces a word with text you enter. For example, to
replace the word "bear" with the word "fox", move the cursor over the "b"
in "bear". Press:

cw

A dollar sign appears over the "r'' in bear, marking the end of the text that
is being replaced. Enter:

fox

and press ESC. The rest of "bear" disappears and only "fox" remains.

Replacing the Rest of a Line: C

The C command replaces text from the cursor to the end of the line. For
example, to replace the text ofthesentence:

Who's afraid of the big bad wolf?

2-32

0

0

vi: A Text Editor

from big to the end, move the cursor over the b in big and press:

c

A dollar .sign ($) replaces the question mark (?) at the end of the line. Enter
the following:

little lamb?

Press ESC. The remaining text from the original sentence disappears.

Replacing a Whole Line: cc

The cc command deletes a specified number of lines, regardless of the
location of the cursor, and replaces them with text you enter. If no number
is-given, --the curren-t line is deleted; -

Replacing a Particular Word on a Line

If a word occurs several times on one line, it is often convenient to use a
line-oriented command to replace it. For example, to replace the word
removing with "deleting" in the following sentence:

In vi, removing a line is as easy as removing a letter.

Make sure the cursor is at the beginning of that line, and enter:

:s/removing/deletinglg

Press RETURN. This line-oriented command means "Substitute (s) for the
word removing the word deleting! everywhere it occurs on the current line
(g)". If you don't include a gat the end, only the first occurrence of remov­
ing is changed.

For more information on using line-oriented commands to replace text,
see section 2.3.19, "Searching and Replacing."

2-33

XENIX User's Guide

2.3.17 Moving Text

To move a block of text from one place in a file to another, you can use the
line-oriented m command. You must know the line numbers of your file to
use this command. The number option displays line numbers. To set this
option, press ESC to make sure you are in Cornman� mode, then enter:

set number

Line numbers will appear to the left of your text. For more information on
setting the number option, see section 2.5.5, "Displaying Line Numbers:
number".

The following example uses the number option. For other ways to display
line numbers, see section 2.3.29, "Finding Out What Line You're On".

1 [F]iles contain text.
2 Text contains lines.
3 Lines contain characters.
4Characters form words.
SWords form text.

To insertlines 2 and 3 between lines 4 and S, enter:

:2, 3m4

2-34

0

0

Your screen should look like this:

1 Files contain text.
2 Characters form words.
3 Text contains lines.
4Lines contain characters. � [W]ords form text.

To place line 5 afterline 2, enter:

:5m2

After moving, your screen should look like this:

1 Files contain text.
2 Characters form words.
3 [W]ords form text.
4 Text contains lines.
5 Lines contain characters.

To makeline4thefirst linein the file, enter:

:4m0

vi: A Text Editor

2-35

XENIX User's Guide

Your screen should look like this:

1 [T]ext contains lines.
2 Files contain text.
3 Characters form words.
4 Words form text.
5 Lines contain characters.

You can also delete text into a temporary storage place, called a "buffer",
and insert it wherever you wish. When text is deleted it is placed in a
"delete buffer". There are nine "delete buffers".

The first buffer always contains the most recent deletion. In other words,
the first deletion in a given editing session goes into buffer 1. The second
deletion also goes into buffer 1, and pushes the contents of the old buffer 1
into buffer 2 . The third deletion goes into buffer 1, pushing the contents of
buffer 2 into buffer 3, and the contents of buffer 1 into buffer 2. When
buffer 9 has been used, the next deletion pushes the current text of buffer 9
off the stack and it disappears.

Text remains in the delete buffers until it is pushed off the stack, or until
you quit the editor, so it is possible to delete text from one file, change files
without leaving the editor, and place the deleted text in another file.

2-36

0

0

vi: A Text Editor

Delete buffers are particularly useful when you wish to remove text, store
it, and put it somewhere else. Using the following text as an example:

[F]iles contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

Delete the first line by entering:

dd

Delete the third line the same way. Now move the cursor to the last line in
the ex�mple and press:

"lp

The line from the second deletion appears:

Text contains lines.
Characters form words.
Words form text. r_L]ines contain characters.

2 - 37

XENIX User's Guide

Now enter:

''2p

The line from the first deletion appears:

Text contains lines.
Characters form words.
Words form text.
Lines contain characters. I{Jiles contain text.

Inserting text from a delete buffer does not remove the teAL frum lhe buffer.
Since the text remains in a buffer until it is either pushed off the stack or
until you quit the editor, you may use it as many times as you wish.

It is also possible to place teAi in named buffers. For information on how to
create named buffers, see section 2.3.9, "Inserting Text From Other
Files".

2.3.18 Searching: I and ?

You can search forward and backward for patterns in vi. To search for­
ward, press the slash (/) key. The slash appears on the status line. Enter the
characters you wish to search for. Press RETURN. If the specified pattern
exists, the cursor will move to the first character of the pattern.

For example, to search forward in the file for the word "account", enter:

/account

2-38

(!

vi: A Text Editor

Press RETURN. The cursor is placed on the first character of the pattern.
To place the cursor at the beginning of the line above ''account" ,for exam­
ple, enter:

/account/-

To place the cursor at the beginning of the line two lines above the line that
contains "account", enter:

/account/-2

To place the cursor two lines below "account", enter:

/account/+2

To-search-backward--through-a file1 -use? instead of/ to start the search. For­
example, to find all occurrences of "account" above the cursor, enter:

?account

To search for a pattern containing any of the special characters (. * \ [r $
and"), each special character must be preceded by a backslash. For exam­
ple, to find the pattern ''U.S.A.", enter:

/U\ .S\ .A\ .I

You can continue to search for a pattern by pressing:

n

after each search. The pattern is unaffected by intervening vi commands,
and you can use n to search for the pattern until you enter a new patten1 or
quit the editor.

vi searches for exactly what you enter. If the pattern you are searching for
contains an uppercase letter (for example, if it appears at the beginning of a
sentence), vi ignores it. To disregard case in a search command, you can
set the ignorecase option:

:set ignorecase

2-39

XENIX User's Guide

By default, searches "wrap around" the file. That is, if a search starts in the
middle of a file, when vi reaches the end of the file it will "wrap aiound" to
the beginning, and continue until it returns to where the search began.
Searches will be completed faster if you specify forward or backward
searches, depending on where you think the pattern is.

If you do not want searches to wrap around the file, you can change the
"wrapscan'' option setting. Enter:

:set nowrapscan

and press RETURN to prevent searches from wrapping. For more informa­
tion about setting options, see section 2.5, c'Setting Up Your Environ­
ment".

2.3.19 Searching and Replacing

The search and replace commands allow you to perform complex changes
to a file in a single command. Lean1ing how to use these commands is a
must for the serious user of vi.

The syntax of a search and replace command is:

gf pattern]/ s11Pattern2]1[options]

Brackets indicate optional parts of the command line. The g tells the com­
puter to execute the replacement on every line in the file. Otherwise the
replacement would occur only on the current line. The options are
explained in the following sections.

2-40

0

0

vi: A Text Editor

To explain these commands we will use the example file from the demons­
tration run:

[F]iles contain text.
Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

Replacing a Word

To replace the word "contain" with the word "are" throughout the file,
enter the following command:

:glcontain /s//are /g

This command says "On each line of the file (g), find contain and substi­
tute for that word (s//) the word are, everywhere it occurs on that line (the
second g)". Note that a space is included in the search pattem forcontain ;
without the space contains would also be replaced.

2-41

XENIX User's Guide

After the command executes your screen should look like this:

[F]iles are text.
Text contains lines.
Lines are characters.
Characters form words.
Words form text.

Printing all Replacements

To replace "contain" with Hare" throughout the file, and print every line
changed, use the p option:

:g/contain /s//are /gp

Press RETURN. After the command executes, each line in which "con­
tain" was replaced by "are" is printed on the lower part of the screen. To
remove these lines, redraw the screen by pressing Ctrl- 1.

Choosing a Replacement

S ometimes you may not want to replace every instance of a given pattern.
The c option displays every occurrence of pattern and waits for you to
confirm that you want to make the sub stitution. If you press y the substitu­
tion takes place; if you press RETURN the next instance of pattern is
displayed.

To run this comm and on the example file, enter:

:g/contain/s//are/gc

2-42

(: , _ J

0

0

vi: A Text Editor

Press RETURN. The first instance of "contain" appears on the status line:

Files containtext.

Press y , then RETURN. The next occurrence of contain appears.

2.3.20 Pattern Matching

Search commmands often require, in addition to the characters you want
to find, a context in which you want to find them. For example, you may
want to locate every occurrence of a word at the beginning of a line. vi pro­
vides several special characters that specify particular contexts.

Matching the Beginning of a Line

When a caret() is placed at the beginning of a pattern, only patterns found
at the beginning of a line are matched. For example, the following search
pattern only finds "text'' when it occurs as the first word on aline:

(text!

To search for a caret that appears as text you must precede it with a
backslash (\).

Ma telling the End of a Line

When a dollar sign ($) is placed at the end of a pattern, only patterns found
at the end of a line are matched. For example, the following search pattern
only finds "text" when it occurs as the last word on a line:

/text$/

To search for a dollar sign that appears as text you must precede it with a
backslash (\).

2-43

XENIX User's Guide

Matching Any Single Character

When used in a search pattern, the period (.) matches any single character
except the newline character. For example, to find all words that end with
"ed", use the following pattern:

/.ed I

Note the space between thed and theb ackslash.

To search for a periodin the text, youmustprecedeitwith a backslash (\).

Matching a Range 9fCharacters

A set of characters enclosed in square brackets matches any single charac­
terin the range designated. For example, the search pattern:

/[a-z]/

finds any lowercase letter. The search pattern:

/[aA]pple/

finds all occurrences of "apple" and " Apple".

To search for a bracket that appears as text, you must precede it with a
backslash (\).

Matching Exceptions

A caret () at the beginning of string matches every character except those
specified in string. For example the search pattern:

ra-z]

finds anything but a lowercase letter Or a newline.

Matching the Special Characters

To place a caret, hyphen or square bracket in a search pattern, precede it
with a back slash. To search for a caret, for example, enter:

2-44

0

vi: A 'l'extEditor

Ifyoq need to search formanypattems that contain special characters, you
can reset the magic option. To do this, enter:

:nomagic

This removes the special meaning from the characters . , \, $, [and]. You
can include them in search and replace commands without a preceding
backslash. Note that the special meaning cannot be removed from the spe­
cial characters star (*) and caret (); these must always be preceded by a
b ackslash in searches.

To restore magic, enter:

:set magic

For more information about setting options, see section 2.5, "Setting Up
__ _ Your _EnyirqnmenJ': . _ _

2.3.21 Undoing a Command: u

Any editing command can be reversed with the Undo (u) command. 'l'he
Undo command works on both screen-oriented and I.i.ne-oriented com­
mands. For example, if you have deleted a line and then decide you wish to
keep it, press u and the line will reappear.

Use the following line as an example:

fTJext contains lines.

2-45

XENIX User's Guide

Place the cursor over the "c" in "contains", then delete the word with the
dw command. Your screen should look like this:

Text [!Jines.

Press u to undo the dw command. contains reappears:

Text [c]ontains lines.

2-46

0

0

vi: A Text Editor

If you press u again, "contains" is deleted again:

!ext [!Jines.

-O �It is important to remember -that u only- undoes the -last command. For
example, if you make a global search and replace, then delete a few charac­
ters witll tlle x command, pressingu will uudo the deletions but notthe glo­
bal search and replace.

2.3.22 Repeating a Command: •

Any screen-oriented vi command can be repeated with the Repeat (.)
command. For example, if you have deleted two words by entering:

2dw

you may repeat this command as many times as you wish by pressing the
period key (.). Cursor movement does not affect the Repeat command, so
you may repeat a command as many times and in as many places in a file as
you wish�

The Repeat command only repeats the last vi command. Careful planning
can save time and effort. For example, if you want to replace a word that
occurs several times in a file (and for some reason you do not wish to use a
global command), use the cw command instead of deleting the word with
the dw command, then inserting new text with the i command. By using the
cw command you can repeat the replacement with the dot (.) command. If
you delete the word, then insert new text, dot only repeats the replace­
ment.

2-47

- - - - - - ------�-

XENIX User's Guide

2.3.23 Leaving the Editor

There are several ways to exit the editor and save any changes you may have
made to the file. One way is to enter:

:x

and press RETURN. This command replaces the old copy of the file with
the new one you have just edited� quits the editor� and returns you to the
XENIX shell. Similarly, if you enter:

zz

the same thiog happens, except the old copy file is written out only if you
have made any changes. Note that the ZZ command is not preceded by a
colon� and is not echoed on the screen.

To leave the editor without saving any changes you have made to the file,
enter:

:q!

The exclamation point tells vi to quit uncondition.ally. If you leave out the
exclamation point:

:q

vi will not let you quit. You will see the error message:

No write since last change (:quit! overrides)

This message tells you to use :qi if you really want to leave the editor
without saving your file.

Saving a File Without Leaving the Editor

There are many occasions when you must save a :file without leaving the
editor� such as when starting a new shell, or moving to another file. Before
you can perform these tasks you must first save the current .file with the
Write (:w) command:

:w

2-48

I
I
0

vi: A Text Editor

You do not need to enter the name of the file; vi remembers the name you
used when you invoked the editor. If you invoked vi without a filename,
youmayname the file by entering:

:w filename

where filename is the name of the new file.

2.3.24 Editing a Series ofFiles

Entering and leaving vi for each new file takes time, particularly on a
heavily used system, or when you are editing large files. If you have many
files to edit in one session, you can invoke vi with more than one filename,
and thus edit more than one file without leaving the editor, as in:

vi filel fiie2 file3 file4� fileS file6

But entering many filenames is tedious, and you may make a mistake. If
you mistype a filename, you must either backspace over to mistake and
reenter the line, or kill the whole line and reenter it. It is more convenient
to invoke vi using the special characters as abbreviations.

To invoke vi on the above files without typing each name, enter:

vi file*

This invokes vi on all files 1hat begin with the letters ''file". You can plan
your filenames to save time in later editing. For example, if you are writing a
document that cons.ists of many files, it would be wise to give each file the
same filename extension, such as '' .s". Then you can invoke vi on the
entire document:

vi *.s

You can also invoke vi on a selected range of files:

vi [3-S]*.s

or

vi [a-h]*

2-49

XENIX User's Guide

To invoke vi on all files that are five letters long, and have any extension:

vi ?????.*

For more information on using special characters, see Chapter 3 of the
Introduction toXENIXmanual, section 3.3.4, "Special Characters".

When you invoke vi with more than one filename, you will see the following
message when the first file is displayed on the screen:

x files to edit

After you have finished editing a file, save it with the Write (:w) command,
then go to the next file with the N ext (:n) command:

:n

The next file appears, ready to edit. It is not necessary to specify a
filename; the files are invoked in alphabetical (or numerical, if the
filenames begin with numbers) order.

Ifyouforgetwhatfilesyou are editing, enter:

:args

The list of files appears on the status line. The current file is enclosed in
square brackets.

To edit a file out of order, such asjile4 after file2, enter:

:e file4

instead of using the (:n) command. If you enter:

:n

after you finish editingjile4, you will go back tojile3.

If you wish to start again from the beginning of the list, enter:

:rew

2-50

vi: A Text Editor

To discard the changes you made and start again at the beginning, enter:

:rew!

2.3.25 Editing a New File WithoutLeaviog the Editor

You can start editing another file anywhere on the XENIX system without
leaving vi. This saves time when you wish to edit several files in one session
that are in different directories, or even in the same directory. For exam­
ple, if you have finished editing /usr!joe/memo and you wish to edit
/usrlmary/letter, first save the file memo with the Write (:w) command then
enter:

:e /usrlmary/letter

/usr/mary/letter appears on your screen just as though you had left vi.

Note

You must write outyourfilewith the Write (:w) command to save the
changes you have made. If you try to edit a second file without writing
out the first file, the message "No write since liist change (:e! over­
rides)" appears. If you use :e! all your changes to the :first file are dis­
carded.

If you want to switch back and forth between two files, vi remembers the
name of the last file edited. Using the above example, if you wish to go
back and edit the file /usr/joelmemo after you have finished with
!usr!mary/letter, enter:

:e#

The cursor is positioned in the same location it was when you first saved
!usrljoe/memo.

2-51

XENIX User's Guide

2.3.26 Leaving the Editor Temporarily: ShellEscapes

You can execute any XENIX command from within vi using the shell
Escape (!) command. For example, if you wish to find out the date and
time, enter:

:!date

The exclamation point sends the remainder of the line to the shell to be
executed, and the date and time appear on the vi status line. You can use
the I to perform anyXENIX command. To send mail to joe without leaving
the editor, enter:

:tmail joe

Type your message and send it. (For more information about the XENIX
mail system, see Chapter 3, "mail".) After you send it, the message

[Hit return to continue]

appears. Press RETURN to continue editing.

If you want to perform several XENIX commands before returning to the
editor, you can invoke anew shell:

:!sh

The XENIX prompt appears. You may execute as many commands as you
like. Press Ctrl· d to terminate the new shell and return to your file.

If you have not written out your file before a shell escape, you will see the
message:

[No write since last change]

It is a good idea to save your file with the Write (:w) command before exe­
cuting an escape, just in case something goes wrong. However, once you
become an experienced vi user, you may wish to turn off this message. To
turn off the "No write" message, reset the warn option, as follows:

:setnowarn

For more information about setting options in vi, see section 2.5, "Setting
Up Your Environment".

2-52

0

vi: A Text Editor

2.3.27 Perfonning a Series ofLine-Oriented Commands: Q

If you have several line-oriented commands to perform, you can place
yourselftemporarilyin Line-oriented mode by entering:

Q

while you are in Command mode. A colon prompt appears on the status
line.

Commands executed in this mode cannot be undone with the u command,
nor do they appear on the screen until you re-enter Normal vi mode. To
re-enter Normal vi mode, enter:

vi

2.�.28 Finding OutWhatFile You're In

If you forget what file you are editing, press Ctrl- g while you are in Com­
mand mode. A line similar to the following appears appears on the status
line:

"memo" [Modified] line 12 of 100--12%--

From left �o right, tl1e following information is displayed:

The name of the file

Whether ornot the file has been modified

The line number the cursor is on

How many lines there are in the file

Your location in the file (expressed as a percentage)

This command is also useful when you need to know the line number of the
current line for a line-oriented command.

The same information can be obtained by entering:

:file 0 or

:f

2-53

XENIX User's Guide

2.3.29 Finding OutWhatLine You're On

To find out what line ofthe fileyou are on, enter:

:nu

and press RETURN. This command displays the current line number and
the text of the line.

To display line numbers for the entire file, see section 2.5.5, "Displaying
Line Numbers: number''

2.4 Solving Common Problems

The following is a list of common problems that you may encounter when
using vi, along with the probable solution.

I don ?t know which mode I'm in.

Press ESC until the bell rings. When the bell rings you are in Com­
mandmode.

I can 'tgetoutof a subshell.

Press Ctrl-d to exit any sub shell. If you have created more than one
sub shell (not a good idea, usually), keep pressing Ctrl-d until you
see the message:

[Hit return to continue]

- I made an inadvertent deletion (or insertion).

2-54

Press u to undo the last Delete or Insert command.

There are e.--.:tra characters on my screen.

Press Ctrl- 1 to redraw the screen.

When I type, nothing happens.

vi has crashed and you are now in the shell with your terminal
characteristics set incorrectly. To reset the keyboard, slowly enter:

stty sane

then press Ctrl-j or LINEFEED. Pressing Ctrl·j instead of RETURN
is important here, since it is quite possible that the RETURN key will

CJ

vi: A Text Editor

not work as a newline character. To make sure that.other terminal
characteristics have not been altered, log off, turn your terminal off,
turn your terminal back on, and then log back in. This should
guarantee that your tenninal's characteristics are back to nonnal.
This proceduremayvarysomewhat depending on the terminal.

The system crashed while I was editing.

Normally, vi will inform you (by sending you mail) that your file has
been saved before a crash. The file can be recovered by entering:

vi -r filename

If vi was unable to save the file before the crash, it is irretrievably
lost.

I keep getting a colon on the status line when I press RETURN

You arein-line-oriented Command mode� Enter:

vi

to return to normal vi Command mode.

I get the error message "Unknown terminal type [Using open mode] "
when I invoke vi.

Your terminal type is not set correctly. To leave Open mode, press
ESC, then enter:

:wq

and press RETL'RN. Tum to section 2.5.i, ((Setting the Terminal
Type" for information on how to set your terminal type correctly.

2.5 Setting Up Your Environment

There are a number of options that can be set that affect your terminal
type, how files and error messages are displayed on your screen, and how
searches are performed. These options can be set with the set command
while you are editing, or they can be placed in the vi startup file, . exrc. (The
. exrc file is explained in section 2.5.13.) The following sections describe the
most commonly used options and how tO set them. There is a complete list
of options in vi(C) in the XENIX Reference Manual.

2-55

----- - - -- - - ---------- ----"-

XENIX User's Guide

2.5.1 SettingtheTerminalType

Before you can use vi, you must set the terminal type, if this has not already
been done for you, by defining the TERM variable in your .profile file. (The
.profile file is explained in theXENlX User's Guide.) The TERM variable is
a number that tells the operating system what type of terminal you are
using. To determine this number you must find out what type of terminal
you are using. Then look up this type in Terminals(M) in theXENIX Refer·
ence Manual. H you cannot find your terminal type or its number, consult
your System Administrator.

For these examples, we will suppose that you are using an HP2621 termi­
nal. For the HP 2621, the TERM variable is "2621". How you define this
variable depends on which shell you are using. You can usually determine
which shell you are using by examining the prompt character. The Bourne
shell prompts with a dollar sign ($); the C-shell prompts with a percent sign
(%).

Setting the TERM variable: The Visual Shell

If you are using the Visual Shell the terminal type has already been set, and
you do not need to change it.

Setting the TERM variablc:Thc Bourne Shell

To set your terminal type to 2621 place the following commands in the file
.profile:

TERM�2621
export TERM

Setting the TERM variable: The C Shell

To set your terminal type to 2621 for the C shell, place the following com­
mandin the file . login:

setenv TERM2621

2.5.2 Setting Options: The set Command

The set command is used to display option settings and to set options.

2-56

0

vi: A Text Editor

Listing the Available Options

To get a list of the options available to you andhowthey are set, enter:

:set all

Your display should look similar to this:

no auto indent
autoprint
noautowrite
no beautify
directory�/tmp
noerrorb ells
hardtabs�8
noignorecase
no lisp

� nolist
magic
non umber

open
p..ooptimize
paragraphs�JPLPPPQPPLlbp
no prompt
noreadonly
redraw
report�S
scroll=4
sections�NHSHH HU
shell�/bin/sh
shiftwidth�S
noshowmatch

noslowopen
tabstop�8
taglength={)
ttytype�h19
term�h19
no terse
warn
window�S
wrapscan
wrapmargin=O
nowriteany

This chapter disc�sses only the most commonly used options. For infor­
mation about the options not covered in this chapter, see vi(C) in the
XENIXReference Manual.

Setting an Option

To set an option, use the set command. For example, to set the ignorecase
option so that case is not ignored in searches, enter:

set noignorecase

2.5.3 Displaying Tabs and End-of-Line: Jist

The li$t option causes the "hidden" characters and end-of-line to be
displayed. The default setting is no list. To display these characters, enter:

:set list

Your screen is redrawn. The dollar sign ($) represents end-of-line and
Ctrl-i (I) represents the tab character.

2-57

XENIX User's Guide

2.5.4 Ignoring Case in Search Commands: ignorecase

By default, case is significant in search commands. To disregard case in
searches, enter:

:set ignorecase

To change this option, enter:

:set noignorecase

2.5.5 Displaying Line Numbers: number

It is often useful to know the line numbers of a file. To display these
numbers, enter:

:set number

This redraws your screen. Numbers appear to the left of the text. To
remove line numbers, enter:

:setnonumber

2.5.6 Printing the Number of Lines Changed: report

The report option tells you the number of lines modified by a line-oriented
command. For example,

:set report= 1

reports the number of lines modified, if more than one line is changed. The
default setting is:

report�S

which reports the number of lines changed when more than five lines are
modified.

2.5. 7 Changing the Terminal Type: term

If you are logged in on a terminal that is a different type than the one you
normally use, you can check the terminal type setting by entering:

:set term

2-58

c\

0

c�

vi: A Text Editor

Press RETURN. See section 2.5.1, ''Setting the Terminal Type'' for more
information about TERM variables.

2.5.8_ Shortening Error Messages: terse

After you become experienced with vi, you may want to shorten your error
messages. To change from thedefaultnoterse, enter:

:set terse

As an example of the effect of terse, when terse is set the message:

No write since last change, quit! overrides

becomes:

No write

2.5.9 Turning OlfWarnings: warn

After you become experienced with vi, you may want to turn off the error
message that appears if you have not written out your file before a Shell
Escape (:!) command. To turn these messages off, enter:

:setnowam

2.5.10 Permitting Special Characters in Searches: no magic

The no magic option allows the inclusion of the special characters (. \ $ [])
in search patt�rns without a preceding backslash. This option does not
affect caret () or star (*); they must be preceded by a backslash in
searches regardless of magic. To set nomagic, enter:

:set nomagic

2.5.11 Limiting Searches: wraps can

By default, searches in vi "wrap" around the file until they return to the
place they started. To save time you may want to disable this feature. Use
the following command:

:set nowrapscan

2-59

XENIX User's Guide

When this option is set, forward searches go only to the end of the file, and
backward searches stop at the beginning.

2.5.12 Tuming on Messages: mesg

If someone sends you a message with the write command while you are in vi
the text of the message will appear on your screen. To remove the message
from your display you must press Ctrl- I. When you invoke vi, write permis­
sion to your screen is automatically turned off, preventing write messages
from appearing. If you wish to receive write messages while in vi, reset this
option as follows:

:setmesg

2.5.13 Customizing Your Environment: The .exrcFile

Each time vi is invoked, it reads commands from the file named . exrc in
your home directory. This file sets your preferred options so that they do
not need to be set each time you invoke vi. A sample .exrc file follows:

set number
set ignorecase
setnowarn
setreport=l

Each time you invoke vi with the above options, your file is displayed with
line numbers, case is ignored in searches, warnings before shell escape
commands are turned off, and any command that modifies more than one
line will display a message indicating how many lines were changed.

2-60

()

0

vi: A Text Editor

2.6 SummaryofCommands

The following tables contain all the basic commands discussed in this
chapter.

Entering vi

Typing this: Does this :

vi file Starts at line 1

vi +n file Starts at line n

vi + file Starts last line

vi +/pattern file Starts at pattern

vi -r file Recovers file after a sys­
tem crash

2-61

" " " --- - - - - - �-- - ----����- --��- -------�--- - ���-�

XENIX User's Guide

Cursor Movement

Pressing this key:

h
I
SPACEBAR

w
b

k
i
RETURN

�
}
{

Orl-w

Orl-u

Orl-d

Orl-f

Qrl-b

2-62

Does this:

Moves 1 space left
Moves 1 space rigbt
Moves 1 space rigbt

Moves 1 word rigbt
Moves 1 word left

Moves 11ine up
Moves 1 line down
Moves 11ine down

Moves to end of sentence
Moves to beginning of sentence

Moves to beginning of paragraph
Moves to end of paragraph

Moves to first character of inser­
tion

Scrolls up 1/2 screen

Scrolls down 1/2 screen

Scrolls down one screen

Scrolls up one screen

c)

0

(!

.I

Inserting Text

Pressing Starts insertion:

I

a

A

0

0

r

R

Before the cursor

Before first character on the line

After the cursor

After last character on the line

On next line down

On the line above

On current character, replaces
one character only.

On current charactei-, replaces
until ESC

Delete Commands

Command Function

dw Deletes a word

dO Deletes to beginning of line

d$ Deletes to end of line

3dw Deletes 3 words

dd Deletes the current line

Sdd Deletes Slines

X Deletes a character

vi: A Text Editor

2-63

-- ------ ---- - ------ -

XENIX User's Guide

Change Conunands

Conunand Functlon

cw Changes 1 word

3cw Changes 3 words

cc Changes current line

Sec Changes S lines

Search Commands

Command Function Example

/and Finds the next and, stand, grand
occurrence of and

?and Finds the previous and, stand, grand
occurrence of and

(The

/[bB]ox/

n

2-64

Finds next line The, Then, There
that starts with
The

Finds the next
occurrence of box
or Box

Repeats the most
recent search, in
the same direction

0

vi: A Text Editor

Search and Replace Commands

Command Result Example

:s/pear/peach/g All pears become
peach on the
current line

: 1,$s/file/ directory Replaces file with
directory from line
1 to the end.

:g/one/s/ /1/g Replaces every
occurrence of one
with 1.

Pattern Matching: Special Characters

This character: Matches:

Beginning of a line

$ End of aline

Any single character

[] A range of characters

filename becomes
directory name

one becomes 1,
oneself becomes
lself, someone
becomes somel

2-65

XENIX User's Guide

Leaving vi

Command Result

:w Writes outthe file

:x Writes out the file, quits
vi

:q! Quits vi without saving
changes

:!command Executes command

:!sh Forks a new shell

! !command Executes command and
places output on current
line

:ejile Edits file (save current
file with :w first)

2-66

c)

vi: A Text Editor

Options

This option: Does this :

all

term

ignorecase

list

number

report

terse

warn

Lists all options

Sets terminal type

Ignores case in searches

Displays tab and end-of-line characters

Displays line numbers

Prints number of lines changed by a line-oriented command

Shortens error messages

Turns off "no write" warning before escape

nomagic Allows inclusion of special characters in search patterns
without a preceding backslash

nowrapscan Prevents searches from wrapping around the end or
beginning of a file.

mesg Permits display of messages sent to your terminal with
the write command

2-67

0

r- \
u

Replace this Page
with Tab Marked :

mail

0

0

Chapter 3

mail

3.1 Introduction 3-1

3.2 Demonstration 3-2
3.2�1 Composing and Sending a Message 3-2
3.2.2 Readingmail 3-3
3.2.3 Leavingmail 3-4

3.3 Basic Concepts 3-4
3.3.1 mailboxes 3-5
3.3.2 Messages 3-5
3.3.3 Modes 3-6
3.3.4 Message-Lists 3-7
3.3.5 Headers 3-8
3.3.6 Command Syntax 3-9

3.4 Usingmail 3-9
3.4.1 Entering and Exiting mail 3-9
3.4.2 Sendingmail 3-10
3.4.3 Readingmail 3-11
3.4.4 Disposing of mail 3-11
3.4.5 Composingmail 3-12
3.4.6 Forwardingmail 3-12
3.4.7 Replyingtomail 3-13
3.4.8 SpecifyingMessages 3-13
3.4.9 CreatingMailingLists 3-13
3.4.10 SendingNetwork mail 3-14
3.4.11 SettingOptions 3-14

3.5 Commands 3-14
3.5.1 Gettingl-Ielp: help and ? 3-15
3.5.2 Reading-mail:p, +, -, and restart 3-15
3.5.3 Finding Out the Number of the Current Message: � 3-16
3.5.4 Displaying the First Five Lines : t 3-16
3.5.5 Displayingl-Ieaders: h 3-17
3.5.6 DeletingMessages: d anddp 3-17
3.5.7 UndeletingMessages: u 3-18
3.5.8 Leavingmail : q and x 3-18
3.5.9 Saving Your mail: s 3-18
3.5.10 SavingYourmail:w 3-19
3.5.11 SavingYourmail: mb 3-19

3.5.12 SavingYour mail : ho 3-19
3.5.13 PrintingYourmail ontheLineprinter:l 3-19
3.5.14 Sending mail: m 3-20
3.5.15 Replying to mail: r and R 3-20
3.5.16 Forwardingmail : f andF 3-20
3.5.17 CreatingmailingLists: a 3-21
3.5.18 Setting and Unsetting Options: se and uns 3-21
3.5.19 Editing a Message: e andv 3-21
3.5.20 Executing Shell Commands: sh and ! 3-22
3.5.21 Finding Out the Number of Characters in a Message: si 3-22
3.5.22 Changing the Working Directory: eel 3-22
3.5.23 ReaclingCommanclsFrom a File:so 3-23

3.6 Leaving Compose MocleTemporarily 3-23
3.6.1 GettingHelp : -? 3-23
3.6.2 Printing the Message: -p 3-23
3.6.3 Editing the Message: -e ancl-v 3-23
3.6.4 EditingHeaders:-t, -c, -b, -s, -R ancn1 3-24
3.6.5 Adding a File to the Message: -r ancl -d 3-25
3.6.6 Enclosing Another Message: -m and -M 3-26
3.6.7 Saving the Message in a File: -w 3-26
3.6.8 Leaving mail Temporarily: -! and -1 3-26
3.6.9 Escaping to mail Command Mode:- : 3-27
3.6.10 Placing a Tilde at the Beginning of a Line: -- 3-27

3.7 Setting Up Your Environment: The .mailrc File 3-27
3.7.1 The Subject Prompt: asksubject 3-28
3.7.2 The CCPrompt: askcc 3-28
3.7.3 Printing theNext Message: autoprint 3-28
3. 7.4 Listing Messages in Chronological Order: chron and

mchron 3-29
3.7.5 Using the Period to Send a Message: dot 3-29
3.7.6 Sendingmail While in mail: execmail 3-29
3.7.7 IncluclingYourself in a Group: metoo 3-29
3.7.8 Saving Aborted Messages: save 3-29
3.7.9 Printing the Version Header: quiet 3-29
3. 7.10 Choosing an Editor: The EDITOR String 3-30
3.7.11 Choosing an Editor: The VISUAL String 3-30
3. 7.12 Choosing a Shell: The SHELL String 3-30
3.7 .13 Changing the Escape Character: The escape String 3-30
3. 7.14 Setth1g Page Size: The page String 3-30
3. 7.15 Saving Outgoing mail: The record String 3-31
3. 7.16 Keeping mail in the System mailbox: autombox 3-31
3.7.17 Changing the top Value: The top lines String 3-31
3.7.18 Sending mail Over Telephone Lines: ignore 3-31

3.8 Using Advanced Features 3-31
3.8.1 Command Line Options 3-31
3.8.2 Using mail as a Reminder Service 3-33

()

0

0

3.8.3 Handling Large Amounts of mail 3-33
3.8.4 Maintenance and Administration 3-34

3.9 Quick Reference 3-34
3.9.1 Command Summary 3-35
3.9.2 Compose Escape Summary 3-39
3.9.3 Option Summary 3-41

0

mail

3.1 Introduction

The XENIX mail system is a versatile communication facility that allows
XENIX users to compose, send, receive, forward, and reply to mail. Users
can also create distribution groups and send copies of messages to multiple
users. These functions are integrated into XENIX so that all users can
quickly and easily communicate with each other.

This chapter is organized to satisfy the needs of both the beginning and
advanced user. The first sections discuss basic COJ1Cepts, tasks, and com­
mands. Later sections discuss advanced topics and provide quick refer­
ence to the mail program's many functions. The major sections in this
chapter are:

Demonstration

Basic Concepts

Using mail

Commands

Shows new users how to get started.

Discusses the fundamental ideas and termi­
nology used in mail.

ShOws how to perform commOn mailing pro­
cedures such as composing, sending, for­
warding, and replying to mail.

Discusses each mail command.

Leaving Compose Mode Temporarily
Discusses and gives examples of each com­
mand available when composing a message.
These commands are called "compose
escapes."

Setting Up Your Environment

Using Advanced Features

Quick Reference

Discusses the user's mail startup file and
options that may be set to customize func­
tions.

Discusses advanced features such as using
mail as a reminder service and handling a
large volume of mail.

Summarizes all commands, compose
escapes, and options.

3-1

XENIX User's Guide

3.2 Demonstration

The mail command lets you perform two distinct functions: sending mail
and disposing of mail. In this demonstration, we will show you how to send
mail to yourself, read a message, delete it, and exit the mail program.

3.2.1 Composing and Sending a Message

To begin, enter:

mail self

where self is your user name. Ne:xi, enter the following lines. Press
RETURN at the end of each line.

This is a meSsage sent to myself.
I compose a message by entering lines of text.
Press Ctrl-d on a newline to end the message.

As you enter the message you can use "compose escapes" to perform spe­
cial functions. To get a list of the available compose escapes, enter:

on a new line. To specify a subject, use the -s escape. For example, enter:

-s S ample subject

To specify a list of people to receive carbon copies use the -c escape. For
example, enter:

-c abel

To view the message as it will appear when you send it, enter:

This will display the following:

3-2

Message contains:
To: self
Subject: Sample subject
Cc: abel

This is a message sent to myself.
I compose a message by entering lines of text.
Press Ctrl-d on a newline to end the message.

f\ \ / '---- -

0

mail

Finally, press Ctrl- d by itself on a line, to end the message and send it to
those that you have mentioned in the To: and the Cc: fields. You will exit
from the mail program and return to the XENIX shell. Once you have sent
mail, there is no way to undo the act, so be careful.

3.2.2 Reading mail

Within a short time, you should receive the message:

You have mail.

{You must press RETURN before this message will appear on your screen.)
This message informs you that the message you have just sent has arrived in
your systeni mailbox. To read this message and any others that may have
been sent to you, enter:

mail

mail then displays a sign -on message and a list of message headers that
look something like this:

Mail version 3.0August 30, 1985. Type ? for help.
l message:
! self Fri Aug31 12:26 7/188 "Sample subject"

When there is more than one message in your mailbox, the most recent
message is displayed at the top of the list. The message at the top of the list
has the highest number. The messages are numbered in ascending order
from least recent to most recent. The message header includes who sent
the message, when it was sent, the number of lines and characters, and the
subject of the message. The underscore prompt prompts you to enter a
mailcommand. Now enter:

?

to get help on all the available mail commands. Next, enter:

p

3 - 3

XENIX User's Guide

to see the message that you sent to yourself. mail displays the following:

>From self Fri A ug20 12:26:521985
To: self
Subject: Sample subject

This is a message sent to myself.
I compose a message by entering lines of text.
Press Ctrl-d on a newline to end the message.

Note that the message you sent to yourself now contains information about
the sender of the message-a line telling who sent the message and when it
was.sent. The next line tells who the message was sent to. A subject and
carbon copy (Cc:) field can be specified by the sender. If they are present,
they too are displayed when you read the message.

3.2.3 Leaving mail

If this message has no real use, you can delete it by entering:

d

To get out of mall, enter:

q

mail then displays the message

Omessagesheld in /usr/spoollmail/self

and returns you to the XENIX shell.

This ends the demonstration. For more detailed information, see the dis­
cussions in the following sections.

3.3 Basic Concepts

It is much easier to use mail if you understand the basic concepts that
underlie it. The concepts discussed in this section are:

- Mailboxes

- Messages

3-4

0

mail

- Modes

- Command syntax

3.3.1 mailboxes

It is useful to think of the mail system as modeled after a typical postal sys­
tem. What is normally called a post office is called the "system mailbox" in
this chapter. The system mailbox contains a file for each user in the direc­
tory /u.sr!spoollmail. Your own personal or uuser mailbox" is the file
named mbox in your home directory. mail sent to you is put in your System
mailbox; you may choose to save mail in your user mailbox after you have
read it. Note that the user mailbox differs from a real mailbox in several
respects:

1. You decide whether mail is to be placed in the user mailbox; it is not
automaticallyplaced there.

2. The user mailbox is not the place where maifis initially routed-that
place is the system mailbox in the directory /usr!spool/mail.

3. mail is not picked upft·omyourusermailbox.

3.3.2 Messages

In mail, the message is the basic unit of exchange between users. Messages
consist of two parts: a heading and a body. The heading contains the fol­
lowingfields:

To: This field is mandatory. It contains one or more valid user
names to which you may send mail.

Subject: This optional field cm1tains text describing the message.

Cc: The carbon copy field contains one or more valid names of
those who are to receive copies of a message. Message reci­
pients see these names in the received message. This field
can be empty.

Bee: The blind carbon copy field contains the one or 1110re valid
names of people who are to receive copies of a message.
Recipients do not see these names in the received messages.
This field can be empty.

3-5

XENIX User's Guide

Return-receipt-to:
The return receipt to: field contains the valid name or
names of those who are to receive an automatic ack­
nowledgement ofthe message. This field can be empty.

The body of a message is text exclusive of the headiug. The body can be
empty.

3.3.3 Modes

Often, the biggest hurdle to using mail is understanding what modes of
operation are available. This section discusses each mode.

When you invoke mail you are using the shell. If you want to mail a letter
without entering mail command mode, you can do so by entering:

mail john < letter

Here, the :file letter is sent to the user john.

Note

Be very careful when mailing a file with the input redirection symbol
(<). If you accidentallyenterthe outputredirection symbol (>), you
will overwrite thefile,-destroyingits contents.

You can enter a message from your shell by entering:

mail john

Next, enter the textofyourmessage as follows:

This is the text of the message.

Press RETURN to start a new line, then Ctrl-d to send the message.

Messages such as the one above are created in mail's compose mode.
When entering text in compose mode, there are several special keys associ­
ated with line editing functions: these are the same special characters that
are available to you when executingnormalXENIX commands. For exam­
ple, you can kill theline you are editiugbyenteringCtrl-u, normally the kill
character. To backspace, press the BACKSPACE Key or Ctrl-h.

>From compose mode, you can issue commands called compose escapes.
These are also called tilde escapes because the command letters are pre­
ceded by a tilde c-). When you execute these commands you are

3-6

0

0

mail

temporarily leaving or escaping from compose mode; hence the name.
Note that once you have pressed RETURN to end a line, you cannot
change that line from within compose mode. You must enter edit mode in
order to change that line.

The most common way ofusingmailis to just enter:

mail

This automatically places you in mail command mode. In this mode, you
are prompted by an underscore for commands that permit you tp manage
yourmail.

·

You can enter edit mode from either compose mode or command mode.
In edit mode, you edit the body of a message using the full capabilities of an
editor. To enter edit mode frol,ll command mode, use either the e or edit
command to enter ed, or the v or visual command to enter vi. (Vi may not
be available on your system.) To enter edit mode from compose mode, use
the compose escapes -e and -v; respectively.

3.3.4 Message-Lists

Many mail commands take a list of messages as an argument. A message­
list is a list of message numbers, ranges, and names, separated by spaces or
tabs. Message numbers may -be either decimal nllmbers, which directly
specify messages, or one of the special characters , . , or $, wlz.ich specify
the first, current, or last undeleted message, respectively. Here, relevant
means not deleted.

A range of messages is two message numbers separated by a dash. To
display the first four messages on the screen, enter:

p l-4

To display all the messages from the current message to the last message,
enter:

p .-$

A name is a user name. Messages can be displayed by specifying the name
of the sender. For example, to display each message sent to you by john,
enter:

pjohn

3-7

XENIX User's Guide

As a shorthand notation, you can specify star (*)to get all undeleted mes­
sages. For example, to display all messages except those that have been
deleted, enter:

p*

To delete all messages, enter:

d*

To restore all messages, enter:

u*

All three of these commands are described later in detail in Section 3.5,
"Commands."

3.3.5 Headers

When you enter mail, a list of message headers is displayed. A header is a
single line of text containing descriptive information about a message.
(Note that we use the word heading to describe the first part of a message,
and header to describe mail's one-line description of a message.) The
information includes:

The number of the message

- The sender

The date sent

The number of characters and lines

The subject (if the message contains a Subject: field)

Message headers are displayed in windows with the headers command. A
header window contains no more than 18 headers. If there are fewer than
18 messages in the mailbox, all are displayed in one header window. If
there are more than 18 messages, then the list is divided into an appropriate
number of windows. You can move forward one window at a time with the
command:

headers +

3-8

0

c

mail

and move backward one window at a time with the command:

headers -

commands.

3.3.6 Command Syntax

Each mail command has its own syntax. Some take no arguments, some
take only one, and other:) take several arguments. The more flexible com­
mands, such as print, accept combinations of message-lists and user
names. For these commands, mail first gathers all message numbers and
ranges, then finds all messages from any specified user names. The full
message-list is the intersection of these two sets of messages. Thus, the
message-list "4-15 miller" matches all messages between 4 and 15 that are
from miller.

Each mail command is entered on a line by itself,_ and any _arguments fol.,..
low the command word. The command need not be entered in its
entirety-the first command that matches the entered prefix is used. For
example, you can enter "p" instead of "print" for the print command and
1'h" instead of"headers" for the headers command.

After the command itself is entered, one or more spaces should be entered
to separate the command from its arguments. H a mail command does not
take arguments, any arguments you give are ignored and no error occurs.
For commands that take message-lists as arguments, if no message-list is
given, the last message printed is used. If it does not satisfy the require­
ments of the command, the search proceeds forward. H there are no mes­
sages ahead of the current message, the search proceeds backwards, and if
there are no valid messages at all, mail displays:

No applicable messages

3.4 Using mail

This section describes how to perform some basic tasks when using mail.
More detailed discussions of each of these commands are presented in
later sections.

3.4.1 Entering and Exiting mail

To begin a session with mail, enter:

mail

3-9

XENIX User's Guide

The headers for each received message are then displayed one screenful at
a time. To display the next screenful of headers (if any), enter:

h+

To end the mail session, use the quit (q) command. All messages remain
in the system mailbox unless they have been deleted with the delete (d)
command, saved with the save or write command, or held in your user
mailbox with the mbox command. Deleted messages are discarded. The
-f command line option causes mail to read in the contents of mbox.
Optionally, a filename may be given as an argument to -f, so that the
specified file is read instead. When you quit, mail writes all messages back
to this file.

If You send mail over a noisy phOne lihe, you will notice that many of the
bad characters turn out to be RUBOUT or DEL character. These charac­
ters cause mail to abort messages. To deal with this annoyance, you can
invoke mail with the -i option which causes these bad characters to be
ignored.

3.4.2 Sending mail

To send a message, invoke mail with the names of the people and groups
you want to receive the message. Next, enter your message. When you are
finished, press Ctrl-d at the beginning of a line. The message is automati­
caily sent to the specified people. While entering the text of your message,
you can escape to an editor or perform other useful functions with com­
pose escapes. Section 3.4.5, "Composing mail/' describes some features
of mail available to help you when composing messages.

If you have a file that contains a written message, you can send it to sam,
bob, and john by entering:

mail sam bob john < letter

where letter is the name of the file you are sending.

Note

Be very careful when mailing a file with the input redirection symbol
(<). If you accidentaily enter the outputredirection symbol(>}, you
will overwrite the file, destroying its contents.

If mail cannot be delivered to a specified address, you will either be
notified immediately, in which case a copy of the undeliverable message is

3 - 10

0

0

mail

appended to the file dead. letter, or you will be notified via return mail, in
which case a copy is included in the return mail message.

3.4.3 Reading mail

To read messages sent to you, enter:

mail

mail then checks your mail out of the system mailbox and prints out a one­
line header of each message, one screenful at a time. Enter '1h+" to view
the nexi screenful. The most recent message is initially the first message
(numbered highest, because messages are numbered chronologically) and
may be printed using the print command. You can move forward one mes­
sage by pressing RETURN or entering ''+". To move forward n messages
use "+n". You can move backwards one message with the "-" command
or move backwards n messages and print with "-n". You can also move to
any arbitrary message and p_rint it_by .ent�ring it� 11'\.1_11).b_er.

If new messages arrive while you are in mail, the following message
appears:

New mail has arrived--type (restart' to read.

Enter:

restart

and the headers of the new messages are displayed.

3.4.4 Disposing of mail

After examining a message you can delete it with the delete (d) command,
reply to it with the reply (r) command, forward it with the forward (f)
command, or skip to the next mes_s&g� by pressing RETURN. Deletion
causes the mail program to forget about the mes$age. This is not irreversi­
ble; the message can be undeleted with the undelete (u) command by
entering:

unumber

3-11

XENIX User's Guide

3.4.5 Composing mail

To compose mail, you must enter compose mode. Do this from XENIX
command level by entering:

mail john

where john is the name of a user to whom you want to send mail. >From
mail command mode, you can enter compose mode with the mail, reply,
or Reply commands. Once in compose mode, the text that you enter is
appended one line at a time to the body of the message you are sending.
Normal line editing functions are available when entering text, including
Ctrl-u to kill a line and Backspace to back up one character. Note that
when you enter two interrupts in a row (i.e., pressing INTERRUPT twice),
your composition is ab orted.

While you are composing a message, mail treats lines beginning with the
tilde character (-) in a special way. This character introduces commands
called compose escapes. For example, entering:

by itself on a line places a copy of the most recently printed message inside
the message you are composing. The copy is shifted right one tab stop.

Other escapes set up heading fields, add and delete recipients to themes­
sage, allow you to escape to an editor, let you revise the message body, or
run XENIX commands. To get a list of the available compose escapes
when in compose mode, enter:

See also Section 3.6, "Leaving Compose Mode Temporarily," later in this
chapter.

3.4.6 Forwarding mail

To forward a message, use the forward (f) command. For example, enter:

fjohn

to place a copy of the current message inside a new message. The copy is
shifted right one tab stop, and the new message is forwarded to John. John
will receive a message heading indicating that you have forwarded the mes­
sage. The Forward (F) command Works just like its lowercase counter­
part, except that the forwarded message is not shifted right one tab stop.

3 - 11

r
\ I

' .

0

mail

3.4. 7 Replying to mail

You can use the reply command to set up a response to a message,
automatically addressing a reply to the person who sent the original mes­
sage. You can enter text and send the message by pressing Ctrl-d on a line
by itself. The Reply command works just like its lowercase counterpart,
except that the message is sent to others named _in the original message's
To: and Cc:fields.

3.4.8 Specifying Messages

Commands such as print and delete can be given a message-list argument
to apply to several messages at once. Thus "delete 2 3" deletes messages 2
and 3, while "delete 1-5" deletes messages 1 through 5. A star (*)
addresses all messages, and a dollar sign ($) addresses the last (highest
numbered) message. The top (t) comffiand displays the first five lines of a
message; hence� you can enter:

top *

to display the first five lines of every message. Message-lists can contain
combinations of lists, ranges, and names. For example, the following com­
mand displays all messages from tom or bob and numbered 2, 4, 10, 11, or
12:

p tom bob 2 4 10-12

3.4.9 Creating Mailing Lists

You can create personal mailing lists so that, for example, you can send
mail to cohorts and have it go to a group of people. Such lists are defined by
placing an alias line like:

alias cohorts bill bob barry

in the file .maitre in your home directory. The current list of such aliases
can be displayed with the alias (a) mail command. Personal aliases are
expanded in mail sent to others so that they will be able to Reply to each
individual recipient. For example, the To: field in a message sent to
cohorts will read:

To: bill bob barry

and not:

To: cohorts

3 - 13

XENIX User's Guide

Normally, system-wide aliases are available to all users. These are
installed by whoever is in charge of your system. For more information,
see section 3.8, "Using Advanced Features, 'J later in this chapter.

3.4.10 SendingNetworkmail

mail can be sent between XENIX machines connected with Micnet by
specifying a machine name and the user name on that machine, separated
by a colon:

machine:user

If appropriate gateways are known to your system, you can send mail to
sites within the UUCPnetwork using the syntax:

machine!user

(Be sure to escape the exclamation point (!) by preceding it with a
backslash (\) when giving it on a csh command line.) mail may also inter­
pret other characters in the mail path when dealing with other networks.
In most cases, aliases should be set up so that specifying machine names is
unnecessary. For more information about sending network mail, see the
XENIX Operations Guide. For more information about UUCP, see the
XENIXReference Manual.

3.4.11 Setting Options

mail has several options that you can set from mail command mode or in
the file .mailrc in your home directory. For example, "set askcc" enables
the askcc switch and causes prompting for additions to the Cc: field when
you finish composing a message. These and other options are discussed in
Section 3.7 "Setting Up Your Environment: The .mailrc File."

3.5 Commands

This section describes each of the commands available to you in mail com­
mand mode. The examples in this section assume you have invoked mail
and that you have several messages you want to dispose of. Note that in
general, mail commands can be invoked with either the name of the com­
mand or a one- or two-character mnemonic abbreviation. In the text of
the command descriptions below, this mnemonic abbreviation is enclosed
in parentheses after the name of the command. All commands are printed
in boldface, except in the examples.

3 - 14

mail

3.5.1 Getting Help: help and?

The help (?) command displays a brief summary of all mail commands, so
if you ever get stuck when you are in mail command mode, enter:

?

or:

help

3.5.2 Readingmail:p, +, - , and restart

To look at a specific message, use the print (p) command. For example,
pretend you have a header-list that looks like this:

3john Wed Sep-21 09:21 26/782 "Notice"
2 sam Tue Sep 2022:55 6/83 "Meeting"
1 tom Mon Sep 19 01:23 6/84 "Invite"

Reading from the left, each header contains the message number, who
sent it, the day, date, and time it was sent, the number of lines and charac­
ters in the message, and its subject.

To examine the second message, enter:

p2

This might cause mail to respond with:

Message 2:
>From sam TueJune2022:55 1985
Subject: Meeting

Meeting everyone, please do notforgetl

To look at message 3, enter:

or to look at message 1, enter:

+

The commands + and - execute relative to the last message ·referred to,
which in our example was 2. For large numbers of messages, you can skip

3 - 15

XENIX User's Guide

forward and b ackward bythe number ofmessages specified as an argument
to + and -. For example, entering:

+3

skips forward three messages. If you enter:

p *

then all messages are displayed, since the star(*) matches all messages.

Pressing RETURN displays the next message in the header-list. You can
always go to a message and print it by giving its message number or one of
the special characters, caret CJ, dot (.), or dollar sign ($). In the example
where message 2 is the current message, to display the current message,
enter:

To displaymessage l, enter:

To displaymessage3, enter:

$

When new mail arrives while you are in mail, the message "New mail has
arrived-type 'restart' to read." If you wish to read the new messages, enter:

restart

The headers of the new messages appear.

3.5.3 Finding Out the Numberofthe CurrentMessage: =

The number (=) command displays the message number of the current
message. It takes no arguments.

3.5.4 Displaying the First Five Lines : t

The top (t) command takes a message-list and displays the first five lines
of each addressed message. For example:

top2-12

3 - 16

mail

displays the first five lines of each of the messages 2 through 12. Note that
the number of lines displayed by top can be set with the top lines option.

3.5.5 Displaying Headers: h

The headers (h) command displays headerwindows or lists of headers. A
header window contains no more than 18 headers. With no argument, the
headers command displays a header window in which the current message
header is displayed at the center of the window.

To examine the ne,.i set of 18 headers, enter:

h +

To examine the previous set, enter:

h -

Both plus and minus take an optional numeric argument that indicates the
number of header windows to move forward or backward before printing.
If a message-list is given, then the headers command displays the header
line for each message in the list, disregarding all windowing. For example:

hjoe

displays all the message headers from joe. The following are some charac­
teristics of the header-list:

Deleted messages do not appear in the listing.

Messages saved with the save command are flagged with a star (*).

Messages to be saved in your user mailbox are flagged with an ('M".

If the autombox option is set, messages held with the hold com­
mand are flagged with an ''I-I".

3.5.6 Deleting Messages: d and dp

Unless you indicate otherwise, each message you receive is automatically
saved in the system mailbox when you quit mail. Often, however, you do
not want to save messages you have received. To delete messages, use the
delete (d) command. For example:

delete 1

prevents mail from retaining message 1 in the system mailbox. Themes­
sage will disappear altogether, along with its number.

3 - 17

XENIX User's Guide

The dp command deletes the current message and displays the next mes­
sage. It is useful for quickly reading and disposing of mail. Using dp is the
same as using the d command with the auto print option set. See also the
undelete command, below.

3.5. 7 Undeleting Messages: u

The undelete (u) command causes a message that has been previously
deleted with d or dp to reappear as if it had never been deleted. For exam­
ple, to undelete message 3, enter:

u3

You cannot undelete messages from previous mail sessions; they are per­
manently deleted.

3.5.8 Leaving mail : q and x

When you have read all your messages, you can leave mail with the quit (q)
command. All messages are held in your system mailbox, except the fol­
lowing:

- Deleted messages, which are discarded irretrievably.

Messages marked with the mbox command, which are saved in
mbox in your home directory (that is, yourusermailbox).

Messages saved with the save and write commands are deleted from
the system mailbox. Forwarded messages are not deleted.

Note that if the autombox option is set, messages that you have read are
automatically saved in your user mailbox. If you wish to leave mail quickly
without altering either your system or user mailbox, you can use the exit (x
) command. This returns you to the shell without changing anything: no
messages are deleted or saved. Files that you invoke with the mail -f
switch are unaffected as well.

3.5.9 SavingYourmail: s

The save (s) command lets you save messages to files other than mbox. By
using save, you can organize your mail by.putting messages in appropriate
files. The save command writes out each message to the file given as the
last argument on the command line. For example, the following command
appends messages 1-5 to the file letters :

s l-S letters

3-18

r\
\ / '

i O

mail

The file letters is created if it does not already exist. Saved messages are not
automatically retained in the system mailbox when you quit, nor are they
selected by the print command described above, unless explicitly
requested. Each saved message is marked with a star (*).

Save writes out the entire message, including the To:, Subject:, and Cc:
fields. In comparison, the write command, discussed below, writes out
only the bodies of the specified messages.

3.5.10 SavingYourmail: w

The write (w) command writes out the body of each message to the file
given as the last argument on the command line. Each written message is
marked with a star (*). The syntax is similar to that of the save command.
For example,

w3-17john elliot book

Writes out .the bodies o{-an messages from john and elliot in the number
range 3-17. They are concatenated to the end of the file named book.

3.5.11 SavingYourmail:mb

The mbox (mb) command marks each message specified in a message­
list, so that all are saved in the user mailbox when a quit command �s exe­
cuted. Message headers are marked with an "M" to show that they are to
be saved in mbox.

3.5.12 SavingYourmail: bo

The hold (ho) command takes a message-list and marks each message so
that it is saved in your system mailbox instead of deleted or saved in mbox
when you quit. Saving of files in the system mailbox happens by default, so
use hold only when you have also set the autombo" option.

3.5.13 Printing Your mail on the Lineprinter: I

The lpr (I) command paginates and prints out messages to the lineprinter.
It takes a message-list as its argument, then paginates and prints out each
message. For example:

!doug

prints out each message from the user doug on the lineprinter.

3 - 19

XENIX User's Guide

3.5.14 Sendingmail: m

To send mail to a user, use the mail (m) command.-::-This sends mail in the
manner described for the reply command, except that you supply a list of
recipients either as an argument or by entering them in the To: field. All
compose escapes work in mail. Note that the mail command is in most
ways identical to entering mail users at the XENIX command level.

3.5.15 Replying to mail: randR

Often, you want to deal with a message by responding to its author right
away. The reply { r) command is useful for this purpose: it takes a
message-list and sends mail to the autho r of each message. The original
message's subject field is copied as the reply's subject. Each message is
created in compose mode; thus all compose escapes work in reply, and
messages are terminated by pressing Ctrl-d.

The Reply (R) command works just like its lowercase counterpart, except
that copies of the reply are also sent to everyone shown in the original
message's To: and Cc: fields.

3.5.16 Forwarding mail: fandF

To forward a copy of a message, use the forward (f) command. This
causes a copy of the current message to be sent to the specified users. The
message is marked as saved, and then deleted from the system mailbox
when you exit mail. For example, to forward the current message to some­
one whose login name is john, enter:

fjohn

John will receive the forwarded message, along with a heading showing
that you are the one who forwarded it. The forwarded message is indented
one tab stop inside the new message. An optional message number can
also be given. For example:

f 2joh nbill

forwards message 2 to john and bill.

The Forward (F) command is iden tical to the lowercase forward com­
mand, except that the forwarded message is not indented.

3-20

0

mail

3.5.17 Creatingmailing Lists : a

The alias (a) command Jinks a group of names with the single name given
by the first argument, thus creating a mailing list. For example, you could
enter:

alias beatles john paul george ringo

so that whenever you used the name beatles in a destination address (as in
"mail beatles"), it would be expanded so that you are really referring to the
four names aliased to beatles. With no arguments, alias displays all
currently-defined aliases. With one argument, it prints out the users
defined by the given alias.

You will probably want to define aliases in the startup file, .mailrc, so that
you do not have to redefine them each time you invoke mail. See section
6.7, "Setting Up Your Environment: The .mailrc File," for more informa­
tion.

3.5.18 Setting and Unsetting Options: s e and uns

mail switch and string options can be set with the mail commands set and
unset. A switch option is �ither on or off (set or unset). String options are
strings of characters that are assigned values with the syntax option=string.
Multiple options may be specified on a line. It is most useful to place set
and unset commands in the file .mailrc in your home directory, where they
become your own personal default options when you invoke mail. For
example, you might have a set command that looked like this:

set dotmetoo toplines�lO SHELL�/usrlbin/sh

The options dot and metoo are switch options; toplines and SHELL are
string options.

The command

set ?

displays a list of the available options. See the section "Setting Up Your
Environment," for descriptions of these options.

3.5.19 Editing a Message: e and v

Invoke the edit command to edit individual messages while using the text
editor. The edit command takes a message list and processes each message
in tum by writing it to a temporary file. The editor, ed, is then automatically
invoked so that you can edit the temporary file. When you finish editing the

3-21

XENIX User's Guide

message, write the message out, then quit the editor. mail reads themes­
sage back into the message buffer and removes the temporary file.

It is often useful to be able to invoke either a line or visual editor, depend­
ing on the type of terminal you are using. To invoke vi, you can use the
visual (v) command. The operation of the visual command is otherwise
identical to that of the edit command.

3.5.20 Executing Shell Commands: sh and !

To execute a shell command without leaving mail, precede the command
with an exclamation point. For example:

!date

displays the current datewithoutleavingmail. To enter anew shell, enter:

sh

To exit from this new shell and return to mail command mode, press Ctrl­
d.

3.5.21 Finding OuttheNumberofCharacters ina Message: si

The size (si) command displays the number of characters in each message
in a message-list. For example, the command: "si 1-4" might display:

4: 234
3: 1000
2: 23
1: 456

3.5.22 Changing the Working Directory: cd

The cd command changes the working directory to the name of the direc­
tory you give it as an argument. IE no argument is given, the directory is
changed to you.r home directory. This command works just like the nor­
mal XENIX cd command. (Note that exiting mail returns you to the direc­
tory from which you entered mail; thus the mail cd command works only
within mail.) You may want to place a cd command in your .mailrc file so
that you always begin executing mail from within the same directory.

3 - 22

0

mail

3.5.23 Reading Commands From a File: so

The source (so) command reads in mail commands from named file.
Normally, these commands are alias, set, and unset commands.

3.6 Leaving Compose Mode Temporarily

While composing a message to be sent to others, it is often useful to print a
message, invoke the text editor on a partial message, execute a shell com­
mand, or perform some other function. mail provides these capabilities
through compose escapes (sometimes called tilde escapes) which consist of
a tilde n at the beginning of a line, followed by a single character that
specifies the function to be performe(j. These escapes are available only
when you are composing a new message. They have no meaning when you
are in ma_il command mode. The available compose escapes are described
below.

3.6.1 Getting Help: -?

The help escape is the first compose escape you should know because it
tells you about all the others. For example, if you enter:

a brief summary of the availa.-ble compose escapes is displayed on your
screen. Note that-h prompts for heading fields and and does not give help.

3.6.2 Printing the Message: -P

To print the current teA-t of a message·you are composing, enter:

This prints a line of dashes and the heading and body of the message so far.

3.6.3 Editing the Message: -e and -v

If you are dissatisfied with a message as it stands, you can edit the message
by invoking the editor, �d, with the editor escape, -e. This causes themes­
sage to be copied into a temporary file so that you can edit it. Similarly, the
-v escape causes the message to be copied into a temporary file so that you

3-23

XENIX User's Guide

can edit it with the vi editor. After modifying the message to your satisfac­
tion� write it out and quit the editor. mail responds by entering:

(continue)

after which you may continue composing your message.

To add additional names to the list of message 1·ecipients, enter the e::;cape:

-t rtamel name2 . . .

You can name as many additional recipients as you wish. Note that users
originally on the recipient list will still receive the message: you cannot
remove anyone from the recipient list with -t. To remove a recipient, use
the -h command, which is discussed later in this section.

You can replace or add a subject:field by using the -s escape:

-s line- of- text

This replaces any previous subject with line- of- text. The subject, if given,
appears near the top of the message, prefixed with the heading Subject:.
You can see what the message looks like by using -p, which displays all
heading fields along with the body of the text.

You may occasionally prefer to list certain people as recipients of carbon
copies of a message rather than direct recipients. The escape:

-c namel name2 . . .

adds the named people to the Cc: list. The escape:

-cc namel name2 . . .

performs a n identical function. Similarly, the escape:

D namel name2 . . .

adds the named people t o the Bee: (Blind carbon copy) list. The people on
this list receive a copy of the message, but are not mentioned anywhere in
the message you send. Remember that you can always execute a -p escape
to see what the message looks like.

The escape:

3-24

0

mail

adds or changes the person or persons named in the return-receipt- to:
field.

The recipients of the message are given in the To: field; the subject is given
in the Subject: field, carbon copy recipients are given in the Cc: field and
the return receipt recipient in the Return-receipt-to: field. If you wish to
edit these in ways impossible with the -t, -s, -c, and -R escapes, you can
use:

where h stands for "heading.)' The escape -h displays To: followed by the
current list of recipients and leaves the cursor at the end of the line. If you
enter ordinary characters, they are appended to the end of the current list
of recipients. You can also use the normal XENIX command line editing
characters to edit these fields, so you can erase existing heading text by
backspacing over it.

When you press RETURN, mail �dvances to the Su/Jj�ct: field, where the
same rules apply. Another RETURN brings you to the Cc: field, another
brings you to the Bee: field, and yet another to the Return-receipt-to: field.
Each of these fields can be edited in the same way. Finally, another
RETURN leaves you appending text to the end of your message body. A s
always, you can use -p to print the current text of the heading fields along
with thebodyofthe message.

3.6.5 Adding a File to the Message: -rand -d

!t is often useful to be able to include the contents of some file in yourmes­
sage. The escape:

-r filename

is provided for this purpose, and causes the named file to be appended to
your current message. mail complains if the file does not exist o·r cannot b e
read, lfthe n�ad is successful, mail displays the number o f lines and charac­
ters appended to your message.

As a special case of-r, the escape:

reads in the file dead. letter in your home directory. This is often useful
because mail copies the text of your message buffer to dead. letter whenever
you abort the creation of a message. You can abort the message by entering
two consecutive interrupts or by entering a -q escape.

3 - 25

XENIX User's Guide

3.6.6 Enclosing Another Message: -m and -M

If you are sending mail from within mail's command mode, you can insert a
message, that was previously sent to you, into the message that you are
currently composing. For example, you might enter:

This reads message 4 into the message you are composing, shifted right one
tab stop. The escape:

performs the same function, but with no right shift. You can name any
nondeleted message or list Of :messages.

3.6. 7 Saving the Message in a File: -w

To savethe currenttext of a message body in a file, use:

-w filename

mail writes out the message body to the specified file, then displays the
number of lines and characters written to the file. The -w escape does not
write the message heading to the file.

3.6.8 Leaving mall Temporarily: -! and - 1
T o temporarily escape to the shell, use the escape:

-!command

This executes command and returns you to mail compose mode without
altering your message. If you wish to filter the body of your message
through a shell command, use:

This pipes your message through the command and uses the output as the
new text of your message. If the command produces no output, mail
assumes that something is wrong. It retains the old version of your mes­
sage, and displays:

(continue)

3-26

0

mail

3.6.9 Escaping to mail Command Mode: -:

To temporarily escape to mail command mode, use either of the escapes:

-:mail- command

-_]11ail-command·

You can then execute any mail command that you want. Note that this
escape will not work in most cases if you enter compose mode from the
XENIX shell. It depends on the command used (set and unset will work),
but most commands that involve message lists are not allowed. YoU: will
receive the message:

May not execute cmd while composing

3.6.10 Placing a Tilde at the Beginning of a Line: --

If you wish to send a message that contains a line beginning with a tilde, you
must enter it twice. For example, entering:

--This line begins with a tilde.

appends:

-This line begins with a tilde.

to your message. The escape character can be changed to a different char­
acter with the escape option. (For information on how to set options, see
section 6.7, "Settipg Up Your Environment: The .mailrc File.") If the
escape character is not a tilde, then this discussion applies to that character
and not the tilde.

3. 7 Setting Up Your Environment: The .mailrc File

Whenever mail is invoked, it first reads the file /usr/lib/mail/mailrc then
the file . mailrc in the user's home directory. System -wide aliases

3-27

XENIX User's Guide

are defined in /usrlliblmaillmailrc. Personal aliases and set options are
defined in . mailrc. The followingis a sample. mailrc file:

number sign introduces comments

personal aliases office and cohorts are defined below

alias office bill steve karen
alias cohorts john mary bob beth mike

set dot lets messages be terminated by period on new line

set askcc says to prompt for Cc: list after composing message

set dot askcc

cd changes directory to different current directory

cd

3. 7.1 The Subject Prompt: asksubject

The asksubject switch causes prompting for the subject of each message
before you enter compose mode. If you respond to the prompt with a
RETURN, then no subject field is sent.

3. 7.2 The CC Prompt: askcc

The askcc switch causes prompting for additional carbon copy recipients
when you finish composing a message. Responding with a RETURN sig­
nals your satisfaction with the current list. Pressing INTERRUPT displays:

interrupt
(continue)

so that you can return to editingyourmessage.

3. 7.3 Printing the N ext Message: autoprint

The auto print switch causes the delete command to behave like dp. After
deleting a message, the neAi message in the list is automatically printed.
Printing also occurs automatically after execution of an undelete com­
mand.

3-28

0

mail

3. 7.4 Listing Messages in Chronological Order: chronand mchron

The chron switch causes messages to be listed in chronological order. By
default, messages are listed with the most recent first. Set chron when you
want to read a series of messages in the order they were received.

The mchron switch, like chron, displays messages in _chronologicatarder,
but lists them in the opposite order, that is, highest-numbered, or most
recent, first. This is useful if you keep a large number of messages in your
mailbox and you wish to list the headers of the most recently received mail
first but read the messages themselves in chronological order.

3. 7.5 Using the Period to Send a Message: dot

The dot switch lets you use a period (.) as an end-of-transmission charac­
ter, as well as Ctrl-d . This option is available for those who are used to this
convention when editing with the editor, ed.

3. 7.6 Sending mail While in mail: execmail

It is often desirable to reply to a piece of mail, or send mail while reading
your mail file. This process is speeded up by the use of the execmail option.
It causes the underbar prompt to return before mail is finished being sent.
This frees the user to continue while mail performs mailing function s in the
background.

3. 7. 7 lncludingYourselfina Group: me too

Usually, when a group is expanded that contains the name of the sender,
the sender is removed from the expansion. Setting the metoo option
causes the sender to be included in the group.

3. 7.8 Saving Aborted Messages : save

The nos ave switch prevents aborted messages from being appended to the
file dead.letter in your home directory; messages are saved by default. You
can abort messages when you are in compose mode by entering two inter­
rupts or a-q compose escape.

3. 7.9 Printing the Version Header: quiet

The quiet switch suppresses the printing of "<n> messages:" before the
header-list, and suppresses printing of the version h

.
eaderwhen mail is first

invoked.

3 - 29

XENIX User's Guide

3. 7.10 Choosing an Editor: The EDITOR String

The EDITOR string contains the pathname of the text editor to use in the
edit command and �e escape. If not defined, then the default editor is used.
For example:

set EDITOR=/bin/ed

3. 7.11 Choosing an Editor: The VISUAL String

The VISUAL string contains the pathname of the te;..:t editor used in the
visual command and -v escape. For example:

set VISUAL�/bin/vi

By default, viisthe editorused.

3.7.12 Choosing a Shell: The SHELL String

The SHELL string contains the name of the shell to use in the ! command
and the �l escape. A default shell is used if this option is not defined. For
example:

set SHELL�/bin/sh

3. 7.13 Changing the Escape Character: The escape String

The escape string defines the character to use in place of the tilde (-) to
denote compose escapes. For example:

set escape=*

With this setting, the asterisk becomes the new compose escape character.

3. 7.14 Setting Page Size: The page String

The page string causes messages to be displayed in pages of size n lines.
You are prompted with a question mark between pages. Pressing RETURN
causes the ne11.."i page of the current message to be displayed. By default this
paging feature is turned off.

3-30

c

mail

3. 7.15 Saving Outgoing mail: The record String

The record string sets the pathname of the file used to record all outgoing
mail. If not defined, then outgoing mail is not copied and saved. For exam­
ple:

setrecord=/usr/john/recordfile

With this setting, all outgoing mail is automatically appended to the file
I usr! john/ record file.

3. 7.16 Keeping mail in the System mailbox: autombox

The autombox switch determines whether messages remain in the system
mailbox when you exit m�il. If you set autombox, the examined messages
are automatically placed in the mbox file in your home directory (your user
mailbox). They are remol'ed from the system mailbox when you quit.

3. 7.17 Changing the top Value: The top lines String

The toplines string sets the numb er of lines of a message to b e displayed
with the top command. By default, this value is five. For example:

set toplines-10

With this setting, ten lines of each message are displayed when the top
command is used.

3. 7.18 Sending mail OverTelephone Lines: ignore

The ignore switch causes interrupt signals from your terminal to be ignored
and echoed as at-signs (@). This switch is normally used only when com­
municating with mail over telephone lines.

3.8 Using Advanced Features

This section discusses advanced features of mail useful to those with some
existing familiarity with the XENIX mail system.

3.8.1 Command Line Options

One very useful command line option to mail is the -s "subject" switch.
You can specify a subject on the command line with this switch. For

3 - 31

XENIX User's Guide

example, you could send a file named letter with the subject line, "Impor­
tant Meeting at 12:00", byenteringthe following:

mail-s "Important Meeting at 12:00,. john bob mike <letter

To include other header fields in your message, you can use the following
options:

-b user Adds the blind carbon copy field to the message header.

-c user Adds the carbon copy field to the message header.

-r user Adds the return-receipt to: :field to the message header.

None of the above options may be specified more than once on a mail com­
mand line. If multiple arguments are required for an option, the entire
argument set must be enclosed in quotes, as in:

mail -r "meeting" -b singleuser -c "xyz" user user2

mail also allows you to edit files of messages by using the -f switch on the
command line. For example:

mail -f filename

causes mail to edit filename and the command:

mail-f

causes mail to read mbox in your home directory. All the mail commands
except hold are available to edit the messages. When you enter the quit
command, mail writes the updated file back.

If you send mail over a noisy phone line, you may notice that bad charac­
ters are transmitted. These are characters that abort messages: RUBOUT
and DEL. You can invoke mail with the -i switch to ignore these bad char­
acters.

When you enter the mail program (as opposed to sending a message from
command level), two command line options are available:

-R Makes the mail session read-only, preventing alteration of the
mail being read.

-u user Reads in user's mailinstead of your own.

3-32

0

mail

3.8.2 Using mail as a Reminder Service

Besides sending and receiving mail� you can use mail as a reminder service.
Several XENIX commands have this idea built in to them. For example,
the XENIX Jp command's -m switch causes mail to be sent to the user
after files have been printed on the lineprinter. XENIX automatically
examines the file named calen�ar _in each user's home directory and looks
for lines containing either today or tomorrow's date. These lines are sent
by mail as a reminder of important events.

If you program in the shell command language, you can use mail to signal
the completion of a job. For example, you might place the following two
lines in a shell procedure:

biglongjob
echo "biglongjob done" I mail self

You can_also create a a logflle that you want to mail to yourself._ Eor exam,..
ple, you might have a shell procedure that looks like this:

do something> logfile
mail self <logfile

For information about writing shell procedures, see Chapter 4 of this
manual, "The Shell."

3.8.3 Handling Large Amounts ofmail

Eventually, you will face the problem of dealing with an accumulation of
messages in your user mailbox. There are a number of strategies that yoU
can employ to solve this problem concerning space' in your mailbox file.
Keep in mind the dictum:

When in doubt, throw it out.

This means that you should only save important mail in your user mailbox.
If your mailbox file becomes large, you must periodically examine its con·­
tents to decide whether messages are still relevant. To save space, consider
summarizing very long messages.

The previously mentioned measures are not always helpful enough in
organizing the many messages that you are likely to receive. Another
effective approach is to save mail in files organized by sender, by topic, or
by a combination of the two. Create these files in a separate mail directory;
you can access these mailbox files with the mail -ffilename switch. How­
ever, be fo,rewan1ed-this approach to organizing mail quickly eats up disk
space.

3-33

XENIX User's Guide

3.8.4 Maintenance and Administration

The following is a list of the programs and files that make up the XENIX
mail system:

/usr/bin/mail

/usr/Iib/mail/mailrc

/usr/spoollmail/*

/usr/name! dead .letter

lusrlnamelmbox

/usr/ name/ .mdilrc

/usr/lib/maillmailhelp.cmd

/usrllib/mail/mailhelp.esc

/usr/lib/mail/mailhelp.set

I usrllib I mail/ aliases

/usr /lib /mail/ aliases.hash

/usr llib /mail/ f aliases

/usr /lib/mail/ rnaliases

/usr/lib/maillmaliases.hash

mail program

mail system initialization file

System mailbox files

File where undeliverable mail is
deposited

User mailbox

User mail initialization file

mail command help file

mail compose escape help file

mail option help file

System-wide aliases

System-wide alias database

Forwarding aliases

Machine aliases

Optional machine aliases database

A system-wide distribution list is kept in I usr/ lib/ mail /aliases. A system
administrator is usually in charge of this list. These aliases are kept in a
vastly different syntax from . maitre, and are expanded when mail is sent.
You will normally need special permission to change system-wide aliases.

3.9 Quick Reference

The following sections provide quick reference to the available com­
mands, compose escapes, and options.

3-34

0

0

mail

3.9.1 Command Summary

Given below are the name and syntax for each command, the abbreviated
form (in brackets), and a short description. Many commands have
optional arguments; most can be executed without any arguments at all. In
particular, commands that take a message.,... list argument will default to the
ClJ-rr.�nt_ me$sage if no message-list is given. In the following descriptions,
boldface denotes the name of a command, compose escape or option.
Italics are used for arguments to commands or compose escapes. The vert­
ical bar indicates selection and is used to separate the arguments from
which you may select. All other text should be read literally.

RETURN

+n

-n

$

=

?

!shell-cmd

Alias users

alias name users

cd directmy

delete mesg-list

Displays the next message.

[+] With no n argument, it displays the next
message. If given a numeric argument n, goes to
the nth message and displays it.

[�] -With no n argument, goes to the previous
message and displays it. Ii given a numeric argu­
ment n, goes to the nth previous message and
displays it.

Displays the first message.

Displays the last message.

Displays the message number of the current
message.

Displays the summary of mail commands in
I usr I lib/mail/ mailhelp. cmd.

Executes the shell command that follows. No
space is needed after the exclamation point.

Displays system-wide aliases for users. At least
one user must be specified.

[a] Aliases users to name. With no name argu­
ments, displays all currently defined aliases.
With one argument, displays the users aliased by
the given name argument.

[c] Changes the user's working directory to the
specified directory. If no directory is given, then
changes to the user's home directory.

[d] Deletes each message in the given message­
list.

3 - 35

XENIX User's Guide

dp mesg-list

echo path

edit mesg-list

exit[!]

me

Deletes the current message and displays the
next message.

Expands shell metacharacters.

[e] Takes the given message-list and points the
text editor at each message in tum. On return to
command mode, the ed.ited message is read
back in. See also the visual command.

[x] Immediately returns to the shell without
modifying the system mailbox, the user mail­
box, or a file specified with the -f switch.

[fi] Displays the name of the mailbox file.

fonvard mesg-num user-list
[f] Takes a user- list argument and forwards the
current message to each name. The message
sent" to each is indented and shows that the
sender has passed it on. The mesg-num argu­
ment is optional, and is used to forward the
numbered message instead of the default mes­
sage.

Forward mesg- num user- list
[F] Same as forward except that the message is
not indented.

headers +n 1-n imesg- list

help

hold mesg-list

3-36

[h] With no argument, lists the current range of
headers, which is an 18-message group. If a plus
(+) argument is given, then the next 18-message
group is displayed, and if a minus (-) argument
is given, the previous 18-message group is
displayed. Both plus and minus accept an
optional numeric argument indicating the
number of header-windows to move forward or
backward. If a message-list is given, then the
message-header for each message in the list is
displayed.

Same as ? above. Prints the summary of mail
commands in I usr/lib/ mail/mailhelp. em d.

[ho] Takes a message-list and marks each mes­
sage to be saved in the user's system mailbox
instead of in mbox.

0

list

lpr mesg-list

mail [user- list]

mbox mesg-list

mail

Prints list of mail commands.

[I] Prints each of the messages in the required
message-list on the lineprinter. Messages are
piped throughprbefore beingprinted.

[m]Takes llll optional user-list argument and
sends mail to each name after entering compose
mode.

[mb] Marks messages given in the message-list
argument to be saved in the user mailbox when a
quit is executed. Message headers contain an
initial letter "M" to show that they are to be
saved.

move mesg-list mesg-num

print mesg-list

quit

reply mesg-list

Reply mesg-list

restart

Places the messages specified in mesg-Iist after
the- message specified -in mesg.-num. If mesg­
num is 0, mesg- list moves to the top of the mail­
box.

[p J Takes a message-list and displays each mes­
sage on the user's terminal.

[q] Terminates the mail session, retaining all
nondeleted, llnsaved messages in. the system
mailbox. If the autombox option is set, then
examined mess.ages are saved in the user mail­
box, deleted messages are discarded, and all
messages marked with the hold command are
retained in the system mailbox.

If you are executing a quit while editing a mail­
box file with the -f fiag, the mailbox file is
rewritten and the user returns to the shell.

[r] Takes a message-list and sends mail to each
message author just like the mail command.

[R] Sends a reply to users named in the To: and
Cc: fields, as well as the original sender.

Reads in mail that arrives during the current
mail session.

save mesg-listfilename
[s] Takes an optional message-list and a
filename and appends each message in tum to

3 - 37

XENIX User's Guide

set

set option-list

shell

size mesg-list

source file

string stringmesg-list

top

undelete mesg-list

unset options

visual mesg-list

whois

3-38

the end of the file. The default message is the
current message.

[se] Displays a list of available options.

[se] With no argnments, displays all variable
values. Otherwise, sets option. Arguments are
of the form option=value1 if the option is a
string option or just option1 if the option is a
switch. Multiple options maybe seton one line.

[sh] Invokes an interactive version of the shell.

[si] Takes a message-list and displays the size in
characters of eaCh message.

[so] Reads and executes mail commands from
the named file.

Searches for string in mesg-list. H no mesg-list is
specified, ali undeleted messages are searched.
Ignores case in search.

[t]Takes a message-list and displays the top five
lines. The number oflines displayed is set by the
variable toplines.

[u] Takes a message-list and marks each one as
not being deleted. Each message in the list must
previously have been deleted.

[uns] Takes a list of option names and discards
their remembered values; this is the opposite of
set.

[v] Takes a message-list and invokes the vi edi­
tor on each one.

Looks up a list of target mail recipients and
prints the real names or descriptions of each
recipient. If the first character of the first argu­
ment is alphabetic, the arguments are looked up
without change. Otherwise, the arguments are
assumed to be a message list, in the format
specified in the mail User's Guide. For each
message in the list, the "From" person is
extracted from the header and added to list of
users to be searched.

0

()

mail

write mesg- list filename
[w] Writes the message bodies of messages given
by the message-list to the file given by filename.

3.9.2 Compose Escape Summary

Compose escapes are used when composing messages to perform special
fw1ctions. They are only recognized at the beginning of lines. The escape
character can be set with the escape stringoption.(Seesection 6. 7.14, ''The
escape String.") Abbreviations for each escape are in brackets.

Here is a summary of the compose escapes:

-!command

-!command

Inserts the string of text in the message prefaced by a
single tilde n.
Prii1ts outhe1p for compose escapes on terminal.

SameasCtrl-d on a newline.

Executes a shell command, then returns to compose
mode.

Pipes the message body through the command as a
filter. Replaces the message body with the output of
the filter. If the command gives no output or ter­
minates abnormally, retains the original message
body.

-...}11ail- command Executes a mail command, then returns to compose
mode.

-:mail-c;ommand Executes a mail command, then returns to compose
mode.

r-a 1 Displays a list of private aliases.

-alias aliasname [-a] Displays the names included in private
aliasname.

-alias aliasname users
[-a 1 Adds users to private aliasname list.

[-A 1 Performs aliasing by first examining private
aliases and then system-wide aliases using all three
global alias files. Only the final result is printed
(non-local mail recipients will have the complete
delivery path printed). The user list is taken from
header fields.

3-39

XENIX User's Guide

-Alias users

Dec name . . .

-cc name . . .

-editor

-headers

[-A] Performs aliasing by first examining private
aliases and then system -wide aliases using all three
global alias files. Only the final result is printed
(non-local mail recipients will have the complete
delivery path printed). At least one user must be
specified.

[-b] Adds the given names to the Bee: field.

[-c] Adds the given name to thecc: field.

[-d] Reads the file dead. letter from your home direc­
toryinto the message.

[-e] Invokes the line editor on the message being
sent. Exiting the editor returns the user to compose
mode.

[-h] Edits the message heading fields by printing
each one in turn and allowing the user to modify each
field.

-message mesg-list
[-m] Reads the named messages into the message
being sent, shifted right one tab. If no messages are
specified, reads the current message.

-Message mesg-list
[-M] Same as -message except with no right shift.

-print [-p] Prints the message buffer prefaced by the mes­
sage heading.

-Print [-p] Prints the real names or descriptions (in
parentheses) after each recipient.

-quit r q] Aborts the message being sent, copying themes­
sage to dead. letter in your home directory if the save
option is set.

-read filename [-r] Reads the named file in to the messdge.

-Return name [-R] Adds the given names to the Retttrn-receipt- to:
field.

-shell rsh] Invokes ashell.

-subject string [-s] Causes the named string to become the current
subject field.

3-40

c

L

mail

�to name . • . r-t J Adds the given names to the To: field.

Nvisual [-v] Invokes the vi editor to edit the message buffer.
Exiting the editor returns the user to compose mode.

·write filename ["w J Writes the message body to the named file.

3.9.3 Option Summary

Options are controlled with the set and unset commands. An option is
either a switch or a string. A switch is either on or off, while a string option
has a value that is a pathname, a number, or a single character. Options are
summarized below.

askcc Causes prompting for additional carbon copy recipients
at the end of each message. Pressing RETURN retains
the current list.

asksubject Causes prompting for the subject of each message you
send. The subject is a line of text terminated by a
RETURN.

autombox

autoprint

chron

dot

EDITOR=

Usually messages are retained in the system mailbox
when the user quits. However, if this option is set,
examined messages are automatically appended to the
user mailbox.

Causes the delete command to behave like dp. Thus,
after deleting (or undeleting) a message, the next one is
printed automatically.

Causes messages to be listed in chronological order.

Causes a single period on a newline to act as the EOT
character. The normal end-of-transmission character,
Ctrl-d, still works.

Pathname of the text editor to use in the edit command
and -e escape. If not defined, then a default editor is
used.

escape=char If defined, sets char as the character to use in place of
the tilde n to denote compose escapes.

ignore Causes interrupt signals from your terminal to b e
ignored and echoed as at-signs (@).

3-41

XENIX User's Guide

mchron

me too

nos ave

page=n

quiet

record=

SHELL=

toplines=

verilY

VISUAL=

3 - 42

Causes messages to be listed in numerical order (most
recently received first), but displayed in chronological
order.

Normally, before sending, the name of the sender is
removed from alias expansions. If me too is set, then the
name of the sender is not removed.

Prevents saving of the message buffer in the file
dead. letter in the home directory, after two consecutive
interrupts ora -q escape.

Specifies the number of lines (n) to b e printed in a
"page" of text when displaying messages.

Suppresses the printing of the version when mail is first
invoked.

Sets the pathname of the file used to record all outgoing
mail. IT not defined, then outgoing mail is not copied.

Pathnameofthe shell to use in the ! command and the - !
escape. A default shell is used if this option is not
defined.

Sets the number of lines of a message to be printed with
the top command. Default is five lines.

Causes each target mail recipient to be verified. This
option permits errors made while composing messages
to be corrected orignored.

Pathname of the teA-t editor to use in the visual com­
mand and -v escape. The default is for the vi editor.

c\

0

0

Replace this Page
with Tab Marked :

Shell

C'

0

u

Chapter 4

The Shell

4.1 Introduction 4-1

4.2 Basic Concepts 4-1
4.2.1 How ShellsAre Created 4-2
4.2.2 Commands 4-2
4.2.3 Howthe ShellFindsCommands 4-3
4.2.4 Generation of Argument Lists 4-3
4.2.5 QuotingMechanisms 4-4
4.2.6 Standard Input and Output 4-5
4.2. 7 Diagnostic and Other Outputs 4-6
4.2.8 Command Lines and Pipelines 4-7
4.2.9 Command Substitution 4-9

4.3 Shell Variables 4-10
4.3.1 PositionalParameters 4-10
4.3.2 User-Defined Variables 4-11
4.3. 3 Predefined Special Variables 4-14

4.4 The ShellState 4-16
4.4. 1 Changing Directories 4-16
4.4.2 The .profile File 4-16
4.4.3 Execution Flags 4-17

4.5 A Command's Environment 4-17

4.6 InvokingtheShell 4-18

4. 7 Passing Arguments to Shell Procedures 4-19

4.8 Contro!lingtheFlowofControl 4-21
4.8.1 UsingtheifStatement 4-23
4.8.2 Using the case Statement 4-24
4.8.3 Conditional Looping: while and until 4-25
4.8.4 LoopingOveraLis!: for 4-26
4.8.5 Loop Control: break and continue 4-27
4.8.6 End-of-File and exit 4-28
4.8.7 Command Grouping: Parentheses and Braces 4-28
4.8.8 Defining Functions 4-29
4.8.9 Input/Output Redirection and Control Commands 4-30
4.8.10 TransferBetweenFiles: TheDot (.) Command 4-30

4.8.11 Interrupt Handling: trap 4-31

4.9 Special Shell Commands 4-33

4.10 Creation and Organizat-ion of Shell Procedures 4-36

4.11 More About Execution Flags 4-38

4.12 Supporting Commandsand Features 4-38
4.12.1 Conditional Evaluation : test 4-38
4.12.2 EchoingArguments 4-40
4.12.3 Expression Evaluation: expr 4-41
4.12.4 Trueand False 4-41
4.12.5 In-Line input Documents 4-41
4.12.6 Input / Output Redirection Using File Descriptors 4-42
4.12. 7 Conditional Substitution 4-43
4.12.8 Invocation Flags 4-45

4.13 Effective and Efficient Shell Programming 4-45
4.13.1 Number of Processes Generated 4-46
4.13.2 NumberofDataBytesAccessed 4-47
4.13.3 Shortening Directory Searches 4-48
4.13.4 Directory-Search Order and the PATH Variable 4-48
4.13.5 Good Ways to Set Up Directories 4-49

4.14 Shell Procedure Examples 4-49

4.15 Shell Grammar 4-57

0

0

0

The Shell

4.1 Introduction

When users log into XENIX , they communicate with one of serveral inter­
preters. This chapter discusses the shell command interpreter, sh. This
interpreter is a XENIX program that supports a very powerful command
language. Each invocation of this interpreter is called a shell; and each
shell has one functio.n: to read and exec_ute com:rnands from its standard
input.

Because the shell gives the user a high -level language in which to communi­
cate with the operating system, XENIX can perform tasks unheard of in
less sophisticated operating systems. Commands that would normally
have to be written in a traditional programming language can be written
with just a few lines in a shell procedure. In other operating systems, com­
mands are executed in strict sequence. With XENIX and the shell, com­
mands can be:

• Combined to form new commands

• Passed positional parameters

• Addedorrenamed bytheuser

• Executed within loops or executed conditionally

• Created for local execution without fear of name conflict with other
user commands

• Executed in the background without interrupting a session at a ter­
minal

Furthermore, commands can "redirect" command input from one source
to another and redirect command output to a file, terminal, printer, or to
another command. This provides flexibility in tailoring a task for a particu­
larpurpose.

4.2 Basic Concepts

The shell itself (that is, the program that reads your commands when you
login or that is invoked with the sh command) is a program written in the C
language; it is not part of the operating system proper, but an ordinary user
program.

4- 1

XENIX User's Guide

4.2.1 HowShells Are Created

In XENIX , a process is an executing entity complete with instructions,
data, input, and output. All processes have lives of their own, and may
even start (or "fork") new processes. Thus, at any given moment several
processes may be executing, some of which are "children" of other
processes.

Users log into the operating system and are assigned a "shell" from which
they execute. This shell is a personal copy of the shell command interpreter
that is reading commands hom the keyboard: in this context, the shell is
simply another process.

In the XENIX multitasking environment, files may be created in one phase
and then sent off to be processed in the "background. "This allows the user
to continue working while programs are running.

4.2.2 Commands

The most common way of using the shell is by entering simple commands
at your keyboard. A simple command is any sequence of arguments
separated by spaces or tabs. The first argument (numbered zero) specifies
the name of the command to be executed. Any remaining arguments, with
a few exceptions, are passed as arguments to that command. For example,
the following command line might be entered to request printing of the files
allan, barry, and calvin:

lpr allan barry calvin

If the first argument of a command names a file that is executable (as indi­
cated by an appropriate set of permission bits associated with that file) and
is actually a compiled program, the shell, as parent, creates a child process
that immediately executes that program. H the file is marked as being exe­
cutable, but is not a compiled program, it is assumed to be a shell pro­
cedure, that is, a file of ordinary text containing shell command lines. In
this case, the shell spawns another instance of itself (asubshel[) to read the
file and execute the commands inside it.

From the user's viewpoint, compiled programs and shell procedures are
invoked in exactly the same way. The shell determines which implementa­
tion has b een used, rather than requiring the user to do so. This provides
uniformity of invocation.

4-2

The Shell

4.2.3 How the Shell Finds Con1mands

Thft shell normally searches for commands in three distinct locations in the
file system. The shell attempts to use the command name as given ; if this
fails, it prepends the string /bin to the name. If the latter is unsuccessful, it
prepends /usr/bin to the command name. The effect is to search, in order,
the current directory, _ th�n the _94'e_ctq.ry IMn, and finally, /usrlbin. For
example, the pr and man commands are actually the files lbinlpr and
/usrlbin/man, respectively. A more complex pathname may be given,
either to locate a file relative to the user's current directory, or to access a
command with an absolute pathname. If a given command name includes
a slash (/) (for example, /bin/sort dirlcmd}, the prepending is not per­
formed. Instead, a single attempt is made to execute the command as
named.

This mechanism gives the user a convenient way to execute public com­
mands and commands in or near the current directory, as well as the ability
to execute any accessible command, regardless of its location in the file
structure. Because the current directory is usually searched first, anyone
can possess a private version of a public command without affecting other
users. Similarly, the creation of a new pllblic command does not affect a
user who already has a private command with the same name. The particu­
lar sequence of directories searched may be changed by resetting the shell
PATH variable. (Shell variables are discussed later in this chapter.)

4.2.4 Generation of Argument Lists

The arguments to commands are very often filenames. Sometimes, these
filenames have similar, but not identical, names. To take advantage of this
similarity in names, the shell lets the user specify patterns that match the
filenames in a directory. If a pattern is matched by one or more filenames
in a directory, then those :filenames are automatically generated by the shell
as arguments to the command.

Most characters in such a pattern match themselves, but there are also
XENIX special characters that may be included in a pattern. These special
characters are: the star (*), which matches any string, including the null
string; the question mark (?), which matches any one character; and any
sequence of characters enclosed within brackets ([and]), which matches
any one of the enclosed characters. Inside brackets, a pair of characters
separated by a dash (-) matches any character within the range of that pair.

4-3

XENIX User's Guide

Thus [a-de] is equivalentto [abcde]. Examples of rnetacharacter usage:

*
temp
[a-f]*
*.c
/usr/bin/?

Matches all names in the current directory
Matches all names containing • •temp''
Matches all names beginning with «a" through "f'
Matches all names ending in ''.c''
Matches all single-character names in /usr!bin

This pattern-matching capability saves typing and, more importantly,
makes it possible to organize information in large collections of files that
are named in a structured fashion, using common characters or extension::.
to identify related files.

Pattern matching has some restrictions. If the first character of a filename
is a period (.), it can be matched only by an argument that literally begins
with a period. If a pattern does not match any filenames, then the pattern
itself is the result of the match.

Note that directory names should not contain any of the following charac­
ters:

* ? [1
If these characters are used, then infinite recursion may occur during pat­
tern matching attempts.

4.2.5 Quoting Mechanisms

Several characters, including <,>, *,? ,[and], have special meanings to
the shell. To remove the special meaning of these characters requires
some form of quoting. This is done by using single quotation marks () or
double quotation marks ('')to surround a string. A backslash (\) before a
single character provides this function. (Back quotation marks () are used
only for command substitution in the shell and do not hide the special
meanings of any characters.)

All characters within single quotation marks are taken literally. Thus:

echostuff-'echo $? $*; Is * I we'

results in the string:

echo $? $*;Is * I we

being assigned to the variable echostuff, but it does not result in any other
commands being executed.

4 - 4

0

c

The Shell

Within double quotation marks, the special meaning of certain characters
does persist, while all other characters are taken literally. The characters
that retain their special meaning are the dollar sign ($), the backslash (\),
the back quotation mark ('), and the double quotation mark (") itself.
Thus, within double quotation marks, variables are expanded and com­
mand substitution takes place (both topics are discussed in later sections).
However, any commands in a command -substitution- are--unaffected by
double quotation marks, so that characters such as star (*) retain their spe­
cial meaning.

To hide tbe special meaning of the dollar sign ($) and single and double
quotation marks within double quotation marks, precede these characters
with a backslash (\). Outside of double quotation marks, preceding a char­
acter with a backslash is equivalent to placing single quotation marks
around that character. A backslash (\) followed by a newline causes that
newline to be ignored. The backslash-newline pair is therefore useful in
allowing continuation of long command lines.

Some examples of quoting are displayed below:

In nut
, , '
..
" echo one "

" \" "
11'echo one '" "
"' "
one two
"one two"
"one two"
one * two"
"one * two"
'"echo one'

Shell · as:
The back a notation mark (')
The double auotation mark (")
the one word " '"echo one ' "
The double Quotation mark (")
the one word "one"
illeoal (exnects another ')
the two words "one" & "two"
the one word "one two"
the one word "one two"
the one word "one * two"
the one word "one * two"
the one word "one"

4.2.6 Standard Input and Output

In general, most commands do not know or care whether their input or
output is coming from or going to a terminal or a file. Thus, a command
can be used conveniently either at a terminal or in a pipeline. A few com­
mands vary their actions depending on the nature of their input or output,
either for efficiency, or to avoid useless actions (such as attempting ran­
dom access I/0 on a terminal or a pipe).

When a command begins execution, it usually expects that three files are
already open: a "standard input", a "standard output", and a "diagnostic

4-5

XENIX User's Guide

output" (also called "standard error''). A number called a file descriptor is
associated with each ofthese files. By convention, file descriptor 0 is asso­
ciated with the standard input, file descriptor 1 with the standard output,
and file descriptor 2 with the diagnostic output. A child process normally
inherits these files from its parent; all three files are initially connected to
the terminal (Oto the keyboard, 1 and 2 to the terminal screen). The shell
permits the files to be redirected elsewhere before control is passed to an
invoked command.

An argument to the shell of the form ''<file" or ">file" opens the specified
file as the standard input or output (in the case of output, destroying the
previous contents of file, if any}. An argument of the form ">>file"
directs the standard output to the end of file, thus providing a way to
append data to the file without destroying its existiog contents. In either of
the two output cases, the shell creates file if it does not already exist. Thus:

> output

alone on a line creates a zero-length file. The following appends to file log
the list of users who are currently logged on:

who >> log

Such redirection arguments are only subject to variable and command sub­
stitution; neither blank interpretation nor pattern matching of filenames
occurs after these substitutions. This means that:

echo �thisis a tesf > *.gal

produces a one-line file named *.gal. Similarly, an error message is pro­
duced by the following command, unless you have a file with the name "?":

cat < ?

Special characters are not expanded in redirection arguments because
redirection arguments are scanned by the shell before pattern recognition
and expansion takes place.

4.2. 7 Diagnostic and Other Outputs

Diagnostic output from XENIX commands is normally directed to the file
associated with file descriptor2. {There is often a need for an error output
file that is different from standard output so that error messages do not get

4-6

c\

0

The Shell

lost down pipelines.) You can redirect this error output to a file by immedi­
ately prepending the number of the file descriptor (2 in this case) to either
output redirection symbol (> or > >). The following line appends error
messages from the cc command to the file named ERRORS:

cc testfile.c 2> > ERRORS

Note that the file descriptor number must be prepended to the redirection
symbol without any intervening spaces or tabs; otherwise, the number will
be passed as an argument to the command.

This method may be generalized to allow redirection of output associated
with any of the first ten file descriptors (numbered 0-9). For instance, if
cmd puts output on file descriptor9, then the following line will direct that
output to the filesavedata:

cmd 9> savedata

-A command often generates standard output and error output, and might
even have some other output, perhaps a data file. In this case, one can
redirect independently all the different outputs. Suppose, for example,
that cmd directs its standard output to file descriptor 1, its error output to
file descriptor 2, and builds a data file on file descriptor 9. The following
would direct each of these three outputs to,a different file:

cmd >standard 2> error 9> data

4.2.8 Command Lines and Pipelines

A sequence of commands separated by the vertical bar (I) makes up a
pipeline. In a pipeline consisting of more than_ one command, each com­
mand is run as a separate process connected to its neighbors by pipes, that
is, the output of each command (except the last one) becomes the input of
the next command in line.

A filter is a command that reads its standard input, transforms it in some
way, then writes it as its standard output. A pipeline normally consists of a
series of filters. Although the processes in a pipeline are permitted to exe­
cute in parallel, each program needs to read the output of its predecessor.
Many commands operate on individual lines of text, reading a line, pro­
cessing it, writing it out, and looping back for more input. Some must read
large amounts of data before producing output; sort is an example of the
extreme case that requires all input to be read before any output is pro­
duced. The following is an example of a typical pipeline:

nroff -mm text I coi l lpr

4-7

XENIX User's Guide

nroff is a text formatter available in the XENIX Text Processing System
whose output may contain reverse line motions, col converts these
motions to a form that can be printed on a terminal lackingreverse-motion
capability, and lpr does the actual printing. The flag -mmindicates one of
the commonly used formatting options, and text is the name of the file to be
formatted.

The following examples illustrate the variety of effects that can be obtained
by combining a few commands in the ways described above. It may be
helpful to try these at a terminal:

• who
Prints the list oflogged-in users on the terminal screen.

• who >>log
Appends the list oflogged-in users to the end of file log.

• who J we -I
Prints the number of logged-in users. (The argument to we is pro­
nounced "minus ell".)

• who I pr
Prints a paginated listoflogged-in users.

• who J sort
Prints an alphabetized list oflogged-in users.

• who I grep bob
Prints the list of logged-in users whose login names contain the
stringbob.

• who I grep bob I sort I pr
Prints an alphabetized, paginated list oflogged-in users whose login
names contain the string bob.

• { date;who I wc -1 ; } >> log
Appends (to file log) the current date followed by the count of
logged-in users. Be sure to place a space after the left brace and a
semicolon before the right brace.

• who Jsed -e 'sf .*! ! ' J sort J uniq -d

4-8

Prints only the login names of all users who are logged in more than
once. Note the use of sed as a filter to remove characters trailing the
login name from each line. (The ".*�' in the sed command is pre­
ceded by a space.)

C'

C) /

The Shell

The who command does not by itself provide options to yield all these
results- they are obtained by combining who with other commands. Note
that who just serves as the data source in these examples. As an exercise,
replace "who I" with H<fetc/passwd" in the above examples to see how a
file can be used as a data source in the same way. Notice that redirection
arguments may appear anywhere on the command line, even at the start.
This means that:

< infile > outfile sort I pr

is the same as:

sort < infile I pr > outfile

4.2.9 Command Substitution

Any Command line can be placed within back quotation marks f . . . ') so
that the output of the command replaces the quoted command line itself.
This concept is known as command substitution. The �ommand or com­
mands enclosed between back quotation marks are first executed by the
shell and then their output replaces the whole expression, back quotation
marks and all. This feature is often used to assign to shell variables. (Shell
variables are described in the next section.)

For example:

today-'date'

assigns the string representing the current date to the variable "today"; for
example "Tue Nov 26 16:01:09 EST 1985". The following co=and saves
the number oflogged-in users in the shell variable users :

use�s= �who I we -r

Any command that writes to the standard output can be enclosed in back
quotation marks. Back quotation marks may be nested, but the inside sets
must be escaped with backslashes (\). For example:

logmsg-'ecbo Your login directory is \'pwd\"

will display the line "your login directory is name of login directory". Shell
variables can also be given values indirectly by using the read and line com­
mands. The read command takes a line from the standard input {usually
your terminal) and assigns consecutive words on that line to any variables
named.

4-9

XENIX User's Guide

For example:

read first init last

takes an input line of the form:

G. A. Snyder

and has the same effect as entering:

first�G. init�A . last�Snyder

The read command assigns any excess "words" to the last variable.

The line command reads a line of input from the standard input and then
echoes it to the standard output.

4.3 Shell Variables

The shell has several mechanisms for creating variables. A variable is a
name representing a string value. Certain variables are referred to as posi­
tional parameters ; these are the variables that are normally set only on the
command line. Other shell variables are simply names to which the user or
the shell itself may assign string values.

4.3.1 Positional Parameters

When a shell procedure is invoked, the shell implicitly creates positional
parameters. The name of the shell procedure itself in position zero on the
command line is assigned to the positional parameter $0. The first com­
mand argument is called $1, and so on. The shift command may b e used to
access arguments in positions numbered higher than nine. For example,
the following shell script might be used to cycle through command line
switches and then process all succeeding files:

4-10

while test -n "$1"

done

do case $1 in
-a) A �aoption ; shift
-b) B�boption ; shift ,
-c) c�coption ; shift ; ;

-*) echo ''bad option" ; exit 1 ,
*) process rest of files
esac

0

The Shell

One can explicitly force values into these positional parameters by using
the set command. For example:

set abc def ghi

assigns the string "abc" to the first positional parameter, $1, the string
"def" to $2, and the string ((ghi" to $3. Note that $0 may not be assigned a
value in this way- it always refers to the name of the shell procedure; orin
the login shell, to the name of the shell.

4.3.2 User· Defined Variables

The shell also recognizes alphanumeric variables to which string values
maybe assigned. A simple assignment has the syntax:

name=string

Thereafter, $name will yield the Value String. A name is a sequence of
letters, digits, and underscores that begins with a letter or an underscore.
No spaces surround the equal sign (=) in an assignment statement. Note
that positional parameters may not appear on the left side of an assignment
statement; they can only be set as described in the previous section.

More than one assignment may appear in an assignment statement, but
beware: the shell performs the assignments from right to left. Thus, the fol­
lowingcommand line results in the variable "A" acquiring the value "abc":

A-$B B-abe

The following are examples of simple assignments. Double quotation
mqrks around the right-hand side allow spaces, tabs, semicolons, and
newlines to be included in a string, while also allowing variable substitution
(also known as "parameter substitution") to occur. This means that refer­
ences to positional parameters and other variable names that are prefixed
by a dollar sign ($) are replaced by the corresponding values, if any. Single
quotation marks inhibit variable substitution:

MAIL-/usrlmail/gas
echovar-"echo $1 $2 $3 $4"
stars=*****
asterisks=�$stars�

In the above example, the variable echovar has as its value the string con­
sisting of the values of the first four positional parameters, separated by
spaces, plus the string ((echo". No quotation marks are needed around the
string of asterisks being assigned to stars because pattern matching (expan­
sion of star, the question mark, and brackets) does not apply in this con­
text. Note that the value of $asterisks is the literal string "$stars", not the
string H*****", because the single quotation marks inhibit substitution.

4-11

XENIX User's Guide

In assignments, spaces are not re-interpreted after variable substitution,
so that the following example results in $first and $second having the same
value:

first-'a string with embedded spaces
second-$first

In accessing the values of variables, you may enclose the variable name in
braces { . . . } to delimitthe variable name from any following string. In par­
ticular, if the character immediately following the name is a letter, digit, or
underscore, then the braces are required. For example, examine the fol­
lowinginput:

a="' This is a string"
echo "${a}ent test of variables."

Here, the echo command prints:

This is a stringent test of variables.

If no braces were used, the shell would substitute a null value for "$aent''
and print:

test of variables.

The following variables are maintained by the shell. Some of them are set
by the shell, and all of them can be reset by the user:

HOME

IFS

MAIL

4-12

Initialized by the login program to the name of the
user's login directory, that is, the directory that
becomes the current directory upon completion of a
login; cd without argmnents switches to the $HOME
directory. Using this variable helps keep full path­
names out of shell procedures. This is of great benefit
when pathnames are changed, either to balance disk
loads or to reflect administrative changes.

The variable that specifies which characters are inter­
nalfield separators. These are the characters the shell
uses during blank interpretation. (If you want to parse
some delimiter-separated data easily, you can set IF'S
to include that delimiter.) The shell initially sets IFS
to include the blank, tab, and newline characters.

The pathname of a file where your mail is deposited.
If MAIL is set, then the shell checks to see if anything
has been added to the file it names and announces the
arrival of new mail each time you return to command

(' :

MAJLCHECK

MAJLPATH

SHACCT

0
SHELL

PATH

The Shell

level (e.g., by leaving the editor). MAlL is not set
automatical1y; if desired, it should be set (and option­
ally "exported") in the user's .pwfile. (The export
command and .profile file are discussed later in this
chapter.) (The presence of mail in the standard mail
file is also announced at login, regardless of whether
MAlL is set.)

This parameter specifies how often (in seconds) the
shell will check for the arrival of mail in
the files specified by the MAILPATH or MAIL
parameters. The default value is 600 seconds (10
minutes). If set to 0, 1l1e shell will check before each
prompt.

A colon (:) separated list of file names. If this parame­
ter is set, the shell informs the user of the arrival of
mail in any of the specified files. Each file name can
be followed by % and a message that will be printed
when the modification time changes. The default
message is you have mail.

If this parameter is set to the name of a fiLe writable by
the user, the shell will write an accounting record in
the file for each shell procedure executed. Account­
ingroutines such as acctcom(C) and accton(C) can be
used to anaylze the data collected.

When the shell is invoked, it scans the environment
for this name. If it is found and there is an 'r' in the file
name part of its value, the shell becomes a restricted
shell.

The variable that specifies the search path used by the
shell in finding commands. Its value is an ordered list
of directory pathnames separated by colons. The
shell initializes PATH to the list :lbin:lusr/bin where a
null argument appears in front of the first colon. A
null anywhere in the path list represents the current
directory. On some systems, a search of the current
directory is not the default and the PATH variable is
initialized instead to /bin:!usr!bin. IT you wish to
search your current directory last, rather than first,
us�:

PATH�/bin:/usr/bin:

Below, the two colons together represent a colon fol­
lowed by a null, followed by a colon, thus naming the
current directory. You could possess a personal

4-13

XENIX User's Guide

CD PATH

PSl

PS2

directory of commands (say, $HOME/bin) and cause
it to be searched before the other three directories by
using:

PATH�$HOME/bin::/bin:/usr/bin

''PATH" is normally set in your .profile file.

This variable defines the search path for the directory
containing arg. Alternative directory names are
separated by a colon (:). The default path is <null>
(specifying the current directory). The current direc­
tory is specified by a null path name, which can appear
immediately after the equal sign or between the colon
delimiters anywhere else in the path list. If arg begins
with a I then the search path is not used. Otherwise,
each directory in the path is searched for arg.

The variable that specifies what string is to be used as
the primary prompt string. If the shell is interactive, it
prompts with the value of PSl when it expects input.
The default value of PSl is "$ " (a dollar sign ($) fol­
lowed by a blank).

The variable that specifies the secondary prompt
string. If the shell expects more input when it
encounters a newline in its input, it prompts with the
value of PS2. The default value for this variable is
"> " (a greater-than symbol followed by a space).

In general, you should be sure to export all of the above variables so that
their values are passed to all shells created from your login. Use export at
the end of your .profile file. An example of an export statement follows:

export HOME IFS MAIL PATH PSl PS2

4.3.3 Predefined Special Variables

Several variables have special meanings; the following are set only by the
shell:

$# Records the number of arguments passed to the shell, not
counting the name of the shell procedure itself. For
instance, $# yields the number of the highest set positional
parameter. Thus:

sh cmd a b c

4-14

c

The Shell

automatically sets $# to 3. One of its primary uses is in
checking for the presence of the required number of argu­
ments:

if test $# -It 2
then

echo �two or more-args-required"; exit
fi

$? Contains the exit status of the last command executed (also
referred to as "return code", "exit codel', or "value"). Its
value is a decimal string. Most XENIX commands return
zero to indicate successful completion. The shell itself
retun1s the current value of$? as its exit status.

$$ The process number of the current process. Because pro­
cess numbers are unique among all existing processes, this
string is often used to generate unique names for temporary
files. XENIX provides ·no mechanism for the automatic
creation and deletion of temporary files; a file exists until it is
explicitly removed. Temporary files are generally undesir­
able objects; the XENIX pipe mechanism is far superior for
many applications. However, the need for uniquely-named
temporary files does occasionally occur.

The following example illustrates the recommended practice
of creating temporary files; note that the directories lusr and
/usrltmp are cleared out if the system is rebooted.

use current process id
to form unique temp file
temp�/usr/tmp/$$
ls > $temp
commands here, some of which use $temp
rm -F $temp
clean up at end

$! The process number of the last process run in the back­
ground (using the ampersand (&)). This is a string contain­
ingfrom one to five digits.

$- A string consisting of names of execution flags currently
turned on in the shell. For example, $- might have the value
"xv" if you are tracing your output.

4-15

XENIX User's Guide

4.4 The ShellS tate

The state of a given instance of the shell includes the values of positional
parameters, user-defined variables, environment variables, modes of exe­
cution, and the current working directory.

The state of a shell may be altered in various ways. These include changing
the working directory with the cd command, setting several flags, and by
reading commands from the special file, .profile, in your login directory.

4.4.1 Changing Directories

The cd command changes the current directory to-the one specified as its
argument. This can and should be used to change to a convenient place in
the directory structure. Note that cdis often placed within parentheses to
cause a sub shell to change to a different directory and execute some com­
mands without affecting the original shell.

For example, the first sequence below copies the file /etc/passwd to
/usr/you/passwd ; the second example first changes directory to Jete and
then copies the file:

cp /etc/passwd /usr/you/passwd
(cd /etc; cp passwd /usr/you/passwd)

Note the use of parentheses. Both command lines have the same effect.

If the shell is reading its commands from a terminal, and the specified
directory does not exist (or some component cannot be searched), spelling
correction is applied to each component of directory, in a search for the
"correct" name. The shell then asks whether or not to try and change
directory to the corrected directory name; an answer of n means '(no", and
anything else is taken as "yes."

4.4.2 The .profile File

The :file named .profile is read each time you login to XENIX . It is normally
used to execute special one-time-only commands and to set and export
variables to all later shells. Only after commands are read and executed
from .profile, does the shell read commands from the standard input- usu­
ally the terminal.

4-16

0

The Shell

4.4.3 Execution Flags

The set command lets you alter the behavior of the shell by setting certain
shell flags. In particular, the -x and -vflags maybe usefu1 when invoking
the shell as a command from the terminal. The flags -x and -v may be set
by entering:

set -A'V

The same flags maybe turned off by entering:

set +xv

These two flags have the following meaning:

-v Input lines are printed as they are read by the shell. This flag
is particularly useful for isolating syntax errors. The com­
mands on each input line are executed after that input line is
printed.

-x Commands and their arguments are printed as they are exe­
cuted. (Shell control commands, such as for, while, etc., are
not printed, however.) Note that -x causes a trace of only
those commands that are actually executed, whereas -v
prints each line of input until a syntax error is detected.

The set command is also used to set these and other flags within shell pro­
cedures.

4.5 A Command's Environment

All variables and their associated values that are known to a command at
the beginning of its execution make up its environment. This environment
includes variables that the command inherits from its parent process and
variables specified as keyword parameters on the command line that
invokes the command.

The variables that a shell passes to its child processes are those that have
been named as arguments to the export command. The export command
places the named variables in the environments of both the shell and all.its
future child processes.

4 - 17

XENIX User's Guide

Keyword parameters are variable-value pairs that appear in the form of
assignments, normally before the procedure name on a command line.
Such variables are placed in the environment of the procedure being
invoked. Forexample:

keycommand
echo $a $b

This is a simple procedure that echoes the values of two variables. If it is
invoked as:

a-keyl b-key2 keycommand

then the resulting output is:

keyl key2

Keyword parameters are not counted as arguments to the procedure and
do not affect $#.

A procedure may access the value of any variable in its environment. How­
ever, if changes are made to the value of a variable, these changes are not
reflected in the environment; they are local to the procedure in question.
In order for these changes to be placed in the environment fuat the pro­
cedure passes to its child processes, the variable must be named as an argu­
ment to the export command within that procedure. To obtain a list of vari­
ables that have been made exportable from the current shell, enter:

export

You will also get a list of variables that have been made readonly. To get a
list of name-value pairs in the current environment, enter either:

printenv

or

env

4.6 Invoking the Shell

The shell is a command and may be invoked in the same way as any other
command:

sh proc [arg . . .]

4-18

A new instance of the shell is explicitly
invoked to read proc. Arguments, if any,
can be manipulated.

c\

sh -v proc [arg . . .]

proc [arg . . .]

The Shell

This is equivalent to putting "set -v" at the
beginning of proc. It can be used in the
same way for the -x, -e, -u, and -n
flags.

If proc is an executable file, and is not a
compiled executable program, the effect is
similar to that of:

shproc args

An advantage of this form is that variables
that have been exported in the shell will
still be eA1Jortedfromproc when this form
i� used (because the shell only forks to
read commands from proc). Thu_s any
changes made within proc to the values of
exported variables will be passed on to
subsequent commands invoked ftO:rh
proc.

4. 7 Passing Arguments to Shell Procedures

When a command line is scanned, any character sequence of the form $n is
replaced by the nth argument to the shell, counting the name of the shell
procedure itself as $0. This notation permits direct reference to the pro­
cedure name and to as many as nine positional parameters. Additional
arguments can be processed using the shift command or by using a for
loop.

The shift command shifts arguments to the left; i.e., the value of $1 is
thrown away, $2 replaces $1, $3 replaces $2, and so on. The highest­
numbered positional parameter becomes unset ($0 is never shifted). For
example, in the shell proCedure ripple below, echo writes its arguments to
the standard output.

ripple command
while test $# !� 0
do

done

echo $1 $2 $3 $4 $5 $6 $7 $8 $9
shift

4-19

XENIX User's Guide

Lines that begin with a number sign (#) are comments. The looping com­
mand, while, is discussed in '�Conditional Looping: while and until" in this
chapter. If the procedure were invoked with:

ripple a b c

it would print:

a b c
b e
c

The special shell variable "star'' ($*) causes substitution of all positional
parameters except $0. Thus, the echo line in the ripple example above
could be written more compactly as:

echo $*

These two echo commands are not equivalent: the first prints at most nine
positional parameters; the second prints all of the current positional
parameters. The shell star variable ($*) is more concise and less error­
prone. One obvious application is in passing an arbitrary number of argu­
ments to a command. For example:

we $*

Counts the words of each of the files named on the command line.

It is important to understand the sequence of actions used by the shell in
scanning command lines and substituting arguments. The shell first reads
input up to a newline or semicolon, and then parses that much of the input.
Variables are replaced by their values and then command substitution (via
b ack quotation marks) is attempted. I/0 redirection arguments are
detected, acted upon, and deleted from the command line. Next, the shell
scans the resulting command line for internal field separators, that is, for
any characters specified by IF'S to break the command line into distinct
arguments; explicit null arguments (specified by"" or"") are retained, while
implicit null arguments resulting from evaluation of variables that are null
or not set are removed. Then filename generation occurs with all meta­
characters being expanded. The resulting command line is then executed
by the shell.

Sometimes, command lines are built inside a shell procedure. In this case,
it is sometimes useful to have the shell rescan the command line after all the
initial substitutions and expansions have been performed. The special
command eva I is available for this purpose. eva I takes a command line as

4-20

c\

u

The Shell

its argument and simply rescans the line, performing any variable or com­
mand substitutions that are specified. Consider the following (simplified)
situation:

command=who
output�' I we -r

.
eva! $command . $output

This segment of code results in the execution of the command line:

who I we -1

Uses of eval can be nested so that a command line can be evaluated several
times.

4.8 Controllingthe FlowofControl

The shell provides several commands that implement a variety of control
structures useful in controlling the flow of control in shell procedures.
Before describing these structures, a few terms need to be defined.

A simple command is any single irreducible command specified by the
name of an executable file. I/0 redirection arguments can appear in a sim­
ple command line and are passed to the shell, not to the command.

A command is a simple command or any of the shell control commands
described below. A pipeline is a sequence of one or more commands
separated by vertical bars (J). In a pipeline, the standard output of each
command but the last is connected (by a pipe) to the standard input of the
next command. Each command in a pipeline is run separately; the shell
waits for the last command to finish. The exit status of a pipeline is the exit
status of last process in the pipeline.

A command list is a sequence of one or more pipelines separated by a semi­
colon (;), an ampersand (&), an "and-if" symbol (&&), or an "or-if" (I J)
symbol, and optionally terminated by a semicolon or an ampersand. A
semicolon causes sequential execution of the previous pipeline. This
means that the shell waits for the pipeline to finish before reading the next
pipeline. On the other hand. the ampersand (&) causes asynchronous
background execution of the preceding pipeline. Thus, both sequential
and background execution are allowed. A background pipeline continues
execution until it terminates voluntarily, or until its processes are kille,d.

4-21

XENIX User's Guide

Other uses of the ampersand include off-line printing, background compi­
lation, and generation of jobs to be sent to other computers. For example,
if you enter:

nohup cc prog.c&

You may continue working while the C compiler runs in the background.
A command line ending with an ampersand is immune to interrupts or
quits that you might generate by typing INTERRUPT or QUIT. However,
Ctrl-d will abort the command if you are operating over a dial-up line or
have stty hupcl. In this case, it is wise to make the command immune to
haug-ups (i.e., logouts) as well. The nohup commaud is used for this pur­
pose. In the above example without nohup, if you log out from a dial-up
line while cc is still executing, cc will be killed aud your output will disap­
pear.

The ampersand operator should be used with restraint, especially on
heavily-loaded systems. Other users will not consider you a good citizen if
you· start up a large number of background processes without a compelling
reason for doing so.

The and-if and or-if (&& aud I J) operators cause conditional execution of
pipelines. Both of these are of equal precedence when evaluating com­
mand lines (but both are lower than the ampersand (&) and the vertical bar
(J)). In the command line:

cmdl II cmd2

the first command, cmdl, is executed and its exit status examined. Only if
cmdl fails (i.e., has a nonzero exit status) is cmd2 execUted. Thus, this is a
more terse notation for:

if cmdl
test $? !- 0

then
cmd2

fi

The and-if operator (&&) yields a complementary test. For example, in
the following command line:

cmdl && cmd2

the second command is executed only if the first succeeds (and has a zero
exit status). In the sequence below, each command is executed in order
until one fails:

cmdl && cmd2 && cmd3 && . . . && cmdn

4-22

(' ..
\

C'

The Shell

A simple command in a pipeline may be replaced by a command list
enclosed in either parentheses or braces. The output of all the commands
so enclosed is combined into one stream that becomes the input to the next
command in the pipeline. The following line formats and prints two
separate documents:

{ nroff cmm textl; nroff �mm text2; } ! Ipr .

Note that a space is needed after the left brace and that a semicolon should
appear before the right brace.

4.8.1 Using the ifSt�tement

The shell provides structured conditional capability with the if command.
The simplest if command has the following form:

if command-list
then command-list
fi

The command list following the if is executed and if the last command in
the list has a zero exit status, then the command list that follows then is exe­
cuted. The word fi indicates the end of the if command.

'ro cause an alternative set of commands to be executed when there is a
nonzero exit status, an else clause can be given with the following struc­
ture:

If command-list
then command-list
else command-list
fi

Multiple tests can be achieved in an if command by using the elif clause,
although the case statement maybe better for large numbers of tests. For
example:

if test -f "$1"
is $1 a file?
then
elif

then
else
fi

pr $1
test -d "$1"

el�e, is $1 a directory?
(cd $1; pr *)
echo $1 is neither a file nor a directory

4-23

XENIX User's Guide

The above example is executed as follows: if the value of the first positional
parameter is a filename (�f), then print that :file; if not, then check to see if
it is the name of a directory (-d). If so, change to that directory (cd) and
print all the files there (pr *). Otherwise, echo the error message.

The if co=and may be nested (but be sure to end each one with a fi). The
new lines in the above examples ofifmay be replaced by semicolons.

The exit status of the if command is the exit status of the last command exe­
cuted in any then clause or else clause. If no such command was executed,
if returns a zero exit status.

Note that an alternate notation for the test command uses brackets to
enclose the expression being tested. For example, the previous example
niight have been written as follows:

if

then
elif

then
else
fi

[-f "$1" l
is $1 a file?

pr $1
[-d "$1"

else, is $1 a directory?
(cd $1; pr *)
echo $1 is neither a file nor a directory

Note that a space after the left bracket and one before the right bracket are
essential in this form ofthe syntax.

4.8.2 Using the case Statement

A multiple test conditional is provided by the case command. The basic
format of the case statement is:

case string in
pattern) command-list ,

pattern) command-list ,
esac

The shell tries to match string against each pattern in turn, using the same
pattern-matching conventions as in filename generation. If a match is
found, the command list following the matched pattern is executed; the
double semicolon (;;) serves as a break out of the case and is required after
each command list except the last. Note that only one pattern is ever
matched, and that matches are attempted in order, so that if a star (*) is the
first pattern in a case, no other patterns are looked at.

4-24

C'

The SheD

More than o.ne pattern may be associated with a given command list by
specifying alternate patterns separated by vertical bars (J).

case $i in
*.c) cc $i

"
*.h I *.sh)

: do nothing
"

*) echo "$i of unknown type "
"

esac

In the above example, no action is taken for the second set of patterns
because the null, colon (:) command is specified. The star (*) is used as a
default pattern, because it matches any word.

The exit status of case is the exit status of the last command executed in the
case command. If no commands are executed, then case has a zero exit
status.

4.8.3 Conditiona!Looping: while and until

A while command has the general form:

while command-list
do

command-list
done

The commands in the first commandw list are executed, and if the exit
status of the last command in that list is zero, then the commands in the
second command-list are executed. This sequence is repeated as long as
the exit status of the first command-list is zero. A loop can be executed as
long as the first command-list returns a nonzero exit status by replacing
while with until.

Any newline in the above example may be replaced by a semicolon. The
exit status of a while (or until) command is the exit status of the last com­
mand executed in the Second command-list. If no such command is exe­
cuted, while (or until) has a zero exit status.

4-25

XENIX User's Guide

4.8.4 Looping Over a List: for

Often, one wishes to perform some set of operations for each file in a set of
files, or execute some command once for each of several arguments. The
for command can be used to accomplish this. The for command has the
format:

for variable in word-list
do

command-list
done

Here word-list is a list of strings separated by blanks. The commands in the
command-list are executed once for each word in the word-list. Variable
takes on as its value each word from the word list, in turn. The word list is
fixed after it is evaluated the first time. For example, the following for loop
causes each of the C source files xec.c, cmd.c, and word.c in the current
directory to be compared with a file of the same name in the directory
!usr!src/cmd/sh:

for CFILE in xec cmd word
do diff $CFILE.c /usr/src/cmd/sh/$CFILE.c
done

Note that the first occurrence of CFILE immediately after the word for has
no preceding dollar sign, since the name of the variable is wanted and not
its value.

You can omit the "in word-list" part of a for command; this causes the
current set of positional parameters to be used in place of word -list. This is
useful when writing a command that performs the same set of commands
for each of an unknown nlimber of arguments.

As an example, create a file named echo2 that contains the following shell
script:

for word
do echo $word$word
done

Give echo2 execute status:

chmod +x echo2

Now type the following command:

echo2 ma pa bo fi yo no so ta

4-26

c�\
The output from this command is:

mama
papa
hobo
fifi
yo yo
no no
so so
tat a

4.8.5 Loop Control: breakandcontlnue

The Shell

The break command can be used to terminate execution of a while or a for
loop. The continue command immediately starts the execution of the next
iteration of the loop. These commands are effective only when they appear
between do and done.

The break command terminates execution ofthe smallest (i.e., innermost)
enclosing loop, causing execution to resume after the nearest following
unmatched done. Exitfrom n levels is obtained bybreakn.

The continue command causes execution to resume at the nearest enclos­
ing for, while·, or until statement, i.e., the one that begins the innermost
loop containing the continue. You can also specify an argument n to con­
tinue and execution will resume at the nth enclosing loop:

This procedure is interactive.
"Break" and "continue" commands are used
to allow the user to control data entry.
while true #loop forever
do echo "Please enter data"

read response
case "$response" in

done

"done') break
no more data

" ") # just a carriage return,
keep on going
continue
"

*) # process the data here
"

esac

4-27

XENIX User's Guide

4.8.6 End· of-File and exit

When the shell reaches the end-of-file in a shell procedure, it terminates
execution, returning to its parent the exit status of the last command exe­
cuted prior to the end -of-file. The top level shell is terminated by typing a
Ctrl-d (which logs the user out ofXENIX).

The exit command simulates an end-of-file, setting the exit status to the
value of its argument, if any. Thus, a procedure can be terminated nor­
mallybyplacing"exitO" at the end ofthe:file.

4.8. 7 Command Grouping: Parentheses and Braces

There are two methods for grouping commands in the shell: parentheses
and braces. Parentheses cause the shell to create a sub shell that reads the
enclosed commands. Both the right and left parentheses are recognized
wherever they appear in a command line-they can appear as literal
parentheses only when enclosed in quotation marks. For example, if you
enter:

garble(stuff)

the shell prints an error message. Quoted lines, such as:

garble"("stuff")"
"garble(stuff)"

are interpreted correctly. Other quoting mechanisms are discussed in
"Quoting Mechanisms" in this chapter.

This capability of creating a sub shell by grouping commands is useful when
performing operations without affecting the values of variables in the
current shell, or when temporarily changing the working directory and exe­
cuting commands in the new directory without having to return to the
current directory.

The current environment is passed to the subshell and variables that are
exported in the current shell are also exported in the sub shell. Thus:

CURRENTDIR='pwd'; cd /usr/docs/otherdir;
nohup nroff doc.n > doc.o"iif&; cd $CURRENTDIR

and

(cd /usr/docs/otherdir; nohup nroff doc.n > doc.out&)

accomplish the same result: /usr/docslotherdir/doc.n is processed bynroff
and the output is saved in /usr/docslotherdirldoc.out. (Note that nrolfis a
command available in the XENIX Text Processing System.) However, the

4-28

The Shell

second example automatically puts you back in your original working
directory. In the second example above, blanks or newlines surrounding
the parentheses are allowed but not necessary. When entering a command
line at your terminal, the shell will prompt with the value of the shell vari­
able PS2 if an end parenthesis is expected.

Braces ({ and }) may also be used to group commands together. Both the
left -�uid the right brace are recogniZed Oiily -if they appear as- the- fii-sf
(unquoted) word of a command. The opening brace may be followed by a
newline (in which case the shell prompts for more input). Unlike
parentheses, no sub shell is created for braces: the enclosed commands are
simply read by the shell. The braces are convenient when you wish to use
the (sequential) output of several commands as input to one command.

The exit status of a set of commands grouped by either parentheses or
braces is the exit status of the last enclosed executed command.

4.8.8 Defining Function�

The shell includes a function definition capability. Functions are like shell
scripts or procedures except that they reside in memory and so are exe­
cuted by the shell process, not by a separate process. The basic form is:

name () {list;}

list can include any of the commands previously discussed. Functions can
be defined in one section of a shell script to be called as many times as
needed, making them easier to write and maintain. Here is an example of a
function called ''getyn":

Prompt for yes or no answer - returns non-zero for no
getyn() {

}

while echo "0* (y/n)? c">&2
do read yn rest

case $yn in

done

[yYJ) return 0
[nNJ) return 1
*) echo "Please answer y or n" > &2
esac

. .
"

In this example, the function appends a "(y/n)?" to the output and accepts
"Y", "y", "n" or "N" as input, returning a 0 or 1. If the input is anything
else, the function prompts the user for the correct input. (Echo should
neverfail, so the while-loop is effectively infinite.)

4-29

XENIX User's Guide

Functions are used just like other commands; an invocation of getyn might
be:

getyn "Do you wish to continue" Jl exit

However, unlike other commands, the shell positional parameterS $1, $2,
. . . , are set to the arguments of the function. Since an exit in a function will
terminate the shell procedure, the return command should be used to
return a value back to the procedure.

4.8.9 Input/Output Redirection and Control Commands

The shell normally does not fork and create a new shell when it recognizes
the control commands (other thari parentheses) described 8.bove. How­
ever, each command in a pipeline is nin as a separate process in order to
direct input to or dutput from each command. Also, when redirection of
input or output is specified explicitly to a control command, a separate pro­
cess is spawned to execute that command. Thus, when if, while, until,
case, and for are used in a pipeline consisting of more than one command,
the shell forks and a sub shell runs the control command. This has two
implications:

1. Any changes made to variables within the control command are not
effective once that control command finishes _(this is similar to the
effect of using parentheses to group commands).

2. Control commands run slightly slower when redirected, because of
the additional overhead of creating a shell for the control com­
mand.

4.8.10 TransferBetweenFiles: The Dot (.) Command

A command line ofthefonn:

proc

causes the shell to read commands from proc without spawning a new pro­
cess. Changes made to variables in proc are in effect after the dot com­
mand finishes. This is a good way to gather a number of shell variable ini­
tializations into one file. A common use of this command is to reinitialize
tbe top level shell by reading the .profile file with:

.profile

4-30

('
��

The Shell

4.8.11 Interrupt Handling: trap

Shell procedures can use the trap command to disable a signal (cause it to
be ignored), or redefine its action. The formofthe trap command is:

trap arg signal-list

Here arg is a string to be interpreted as a command list and signal-list con­
sists of one or more signal numbers as described in signal (S) in the XENIX
Reference Manual. The most important of these signals follow:

Number Signal
0
1
2
3
9
11
15

Exit from the shell
HANG UP
INTERRUPT character (DELETE or RUB OUT)
QUIT (Ctrl-\)
KILL (cannot be caught or ignored)
Segmentation violation (cannot be caught or ignored)
Software termination si211al

The commands in arg are scanned at least once, when the shell first
encounters the trap command. Because of this, it is usually wise to use sin­
gle rather than double quotation marks to surround these commands. The
former inhibit immediate command and variable substitution. This
becomes important, for instance, when one wishes to remove temporary
files and the names of those files have not yet been determined when the
trap command is first read by the shell. The following procedure will print
the name of the current directory in the user information as to how much of
the job was done:

trap 'echo Directory was 'pwd' when interrupted' 2 3 15
for i in /bin /usrlbin /usr/gas/bin
do

cd $i
commands to be executed in directory $i here

done

Beware that the same procedure with double rather than single quotation
marks does something different. The following prints the name of the
directory from which the procedure was first executed:

trap "echo Directorywas 'pwd' wheninterrupted" 2 3 15

A signal ll can never be trapped, because the shell itself needs to catch it
to deal with memory allocation. Zero is interpreted by the trap command
as a signal generated by exiting from a shell. This occurs either with an exit
command, or by '1falling through" to the end of a procedure. If arg is not

4-31

XENIX User's Guide

specified, then the action taken upon receipt of any of the signals in the sig­
nal list is reset to the default system action. If arg is an explicit null string (�
or 1111). then the signals in the signal list are ignored by the shell.

The trap command is most frequently used to make sure that temporary
files are removed upon termination of a procedure. The preceding exam­
ple would be written more typically as follows:

temp-$HOME/temp/$$
trap 'rm -F $temp; exit' 0 1 2 3 15
Is > $temp

#commands that use $temp here

In this example, whenever signal 1 (hangnp), 2 (interrupt), 3 (quit), or
lS(terminate) is received by the shell procedure, or whenever the shell pro­
cedure is about to exit, the commands enclosed between the single quota­
tion marks are executed. The exit command must be included, or else the
shell continues reading commands where it left off when the signal was
received.

Sometimes the shell continues reading commands after executing trap
commands. The following procedure takes each directory in the current
directory, changes to that directory, prompts with its name, and executes
commands typed at the terminal until an end-of-file (Ctrl-D) or an inter­
rupt is received. An end-of-file causes the read command to return a
onzero exit status, and thus the while loop terminates and the next direc­
tory cycle is initiated. An interrupt is ignored while executing the requested
commands, but causes termination of the procedure when it is waiting for
input:

d-'pwd'
for i in *
do if test -d $d/$i

then cd $d/$i

fi
done

4-32

while echo "$i:"
trap exit 2
read x

do trap : 2

done

ignore interrupts
eva! $x

The Shell

Several traps may be in effect at the same time: if multiple signals are
received simultaneously1 they are serviced in numerically ascending order.
To determine which traps are currently set, enter:

trap

It is important to understand some things about the way in which the shell
implements the trap command. When a signal (other than 11) is received
by the shell, it is passed on to whatever child processes are currently exe­
cuting. When these (synchronous) processes terminate, normally or
abnormally, the shell polls any traps that happen to be set and executes the
appropriate trap commands. This process is straightforward, except in the
case of traps set at the command (outermost, or login)level. In this case, it
is possible that no child process is running, so before the shell polls the
traps, it waits for the termination of the first process spawned after the sig­
nal was received.

When a signal is redefined in a shell script, this does not redefine the signal
for programs invoked by that script; the signal is merely passed along. A
disabled signal is not passed.

For internal commands, the shell normally polls traps on completion of
the command. An exception to this rule is made for the read command,
for which traps are serviced immediately, so that read can be interrupted
while waiting for input.

4.9 Special Shell Commands

There are several special commands that are internal to the shell, some of
which have already been mentioned. The shell does not fork to execute
these commands, so no additional processes are spawned. These com­
mands should be used whenever possible, because they are, in general, fas­
ter and more efficient than otherXENIX commands.

Several of the special commands have already been described because they
affect the flow of control. They are dot (.), break, continue, exit, and
trap. The set command is also a special command. Descriptions of the
remaining special commands are given here:

The null command. This command does
nothing and can be used to insert comments
in shell procedures. Its exit status is zero
(true). Its utility as a commeilt character has
largely been supplanted by the number sign
(#) which can be used to insert comments to
the end-of-line. Beware: any arguments to
the null command are parsed fOr syntactic
correctness; when in doubt, quote such

4-33

XENIX User's Guide

cd arg

exec arg . . .

hash [-r] name

newgrp arg . . .

pwd

read var . . .

4-34

arguments. Parameter substitution takes
place, just as in other commands.

Make arg the current directory. If arg is not a
valid directory, or the useris not authorized to
access it, a nonzero exit status is returned.
Specifying cd with no arg is equivalent to
entering "cd$H01vffi" which takes you to
your home directory.

If arg is a command, then the shell executes
the command without forking and returning
to the current shell. This is effectively a
"goto'' and no new process is created. Input
and output redirection arguments are allowed
on the command line. I£ only input and out­
put redirection arguments appear, then the
input and output of the shell itself are
modified accordingly.

For each name, the location in the search
path of the command specified by name is
determined and remembered by the shell.
The -r option causes the shell to forget all
remembered locations. If no arguments are
given, information about remembered com­
mands is presented. Hits is the number of
times a command has been invoked by the
shell process. Cost is a measure of the work
required to locate a command in the search
path. There are certain situations which
require that the stored location of a command
be recalculated. Commands for which this
will be done are indicated by an asterisk (*)
adjacent to the hits information. Cost will be
incremented when the recalculation is done.

The newgrp command is executed, replacing
the shell. Newgrp in turn creates a new shell.
Beware: only environment variables will be
known in the shell created by the newgrp
command. Any variables that were exported
will no longer be marked as such.

Print the current working directory. See
pwd(C) for usage and description.

One line (up to a newline) is read from the
standard input and the first word is assigned
to the first variable, the second word to the

readonly var . . .

return n

times

type name

ulimit [-f] n

umask nnn

The Shell

second variable, and so on. All words left
over are assigned to the last variable. The exit
status of read is zero unless an end-of-file is
read.

The specified variables are made readonly so
that no .subsequent assignments may b e made
to them. If no arguments are given, a list of all
readonly and of all exported variables is
given.

Causes a function to exit with the return value
specified by n. If n is omitted, the return status
is that of the last command executed.

The accumulated user and system times for
processes run from the current sliell are
printed.

For each name, indicate how it would b e
interpreted if used as a command name.

This imposes a size limit of n blocks on files
written. The -f flag imposes a size limit of n
blocks on files written by child processes (files
of any size may b e read). With no argument,
the current limit is printed. If no option is
given and a number is specified, .f is
assumed. '

The user file creation mask is set to nnn. If
nnn is omitted, then the current value of the
mask is printed. This bit-mask is used to set
the default permissions when creating files.
For example, an octal umask of 137
corresponds to the following bit-mask and
permission settings for a newly created file:

user groun other
Octal 1 3 7
bit-mask 001 011 111

I nermissions rw - r- - - - -

See umask(C) in the XENIX Reference
Manual for information on the value of nnn.

4-35

XENIX User's Guide

unset name

wait n

For each name, remove the corresponding
variable or function. The variables PATH,
PSI, PS2, MAILCHECK and IFS cannot be
·unset.

The shell waits for all currently active child
processes to terminate. IT n is specified, the
shell waits for the specified process to ter­
minate. The exit status of wait is always zero if
n is not given; otherwise it is the exit status of
childn.

4.10 Creation and Organization ofShellProcedures

A shell procedure can be created in two simple steps. The first is building
an ordinary text file. The second is changing the mode of the file to make it
executable, thus permitting it to be invoked by:

proc args

rather than

sh proc args

The second step may be omitted for a procedure to be used once or twice
and then discarded, but is recommended for frequently-used ones. For
example, create a file named mailallwith the following contents:

LETTER�$1
shift
for i in $*
do mail $i < $LETTER
done

NeA-t enter:

chmod +x mailall

The new command might then be invoked from within the current direc­
tory by entering:

mailall letter joe bob

Here letter is the name of the file containing the message you want to send,
and joe and bob are people you want to send the message to. Note that

4-36

c) _ _/

The Shell

shell procedures must always be at least readable, so that the shell itself can,
read commands from the file.

If mailall were thus created in a directocywhose name appears in the user's
PATH variable, the user could change working directories and still invoke
themaila/l command.

Shell procedures are often used by users running the csh. However, if the
first character of the procedure is a # (comment character), the csh
assumes the procedure is a csh script, and invokes /bin/csh to execute it.
Always start sh procedures with some other character if csh users are to
run the procedure at anytime. This invokes the standard shell /binlsh.

Shell procedures may be created dynamically. A procedure may generate
a file of commands, invoke another instance of the shell to execute that
file, and then remove it. An alternate approach is that of using the dot
command (.) to make the current shell read commands from the new file,
allowing use of existing shell variables and avoiding the spawning of an
additional process for another shell.

Many users prefer writing shell procedures to writing programs in C or
other traditional languages. This is true for several reasons:

1.

2.

3.

4.

A shell procedure is easy to create and maintain because it is only a
file of ordinary text.

A shell procedure has no corresponding object program that must
be generated and maintained.

A shell procedure is easy to create quickly, use a few times, and then
remove.

Because shell procedures are usually short in length, written in a
high-level programming language, and kept only in their source­
language form, they are generally easy to find, understand, and
modify.

By convention, directories that contain only commands and shell pro­
cedures are named bin. This name is derived from the word "binary", and
is used because compiled and executable programs are often called
''binaries" to distinguish them from program source files. Most groups of
users sharing common interests have one or more bin directories set up to
hold common procedUres. Some users have their PATH variable list
several such directories; Although you can have a number of such direc­
tories, it is unwise to go overboard: it may become difficult to keep track of
your environment and efficiency may suffer.

4-37

XENIX User's Guide

4.11 More About Execution Flags

There are several execution flags available in the shell that can be useful in
shell procedures:

-e This flag causes the shell to exit immediately if any command
that it executes exits with a nonzero exit status. This flag is
useful for. shell procedures composed of sitnple command
lines; it is not intended for use in conjunction with other con­
ditional constructs.

-u This flag causes unset variables to be considered errors when
substituting variable values. This flag can be used to effect a
global check on variables, rathetthan using conditional sub­
stitution to check each variable.

-t This flag causes the shell to exit after reading and executing
the commands on the remainder of the current input line.
This flag is typically used by C programs which call the shell
to execute a single command.

-n This is a "don't execute" flag. On occasion, one may want to
check a procedure for syntax errors, but not execute the
Commands in the procedure. Using "set-nv" at the begin­
uing of a file will accomplish this.

-k This flag causes all arguments of the form variable=value to
b e treated as keyword parameters. When this flag is not set,
only such arguments that appear before the command name
are treated as keyword parameters.

4.12 Supporting Commands and Features

Shell procedures can make use of anyXENIXcommand. The commands
described in this section are either used especially frequently in shell pro­
cedures, or are explicitly designed for such use.

4.12.1 Conditiona!Evaluation: test

The test command evaluates the expression specified by its arguments and,
if the expression is true, test returns a zero exit status. Otherwise, a
nonzero (false) exit status is returned. test also returns a nonzero exit
status if it has no arguments. Often it is convenient to use the test com­
mand as the first command in the command list following an if or a while.
Shell variables used in test expressions should be enclos'ed in double quo­
tation marks if there is any chance of their being null or not set.

4-38

c

c\

The Shell

The square brackets maybe used as an alias to test, so that:

[expression]

has the same effect as:

test expres�ion

Note that the spaces before and after the expression in brackets are essen­
tial.

The following is a partial list of the options that can be used to construct a
conditional expression:

-r file

-w file

-x file

-s file

-d file

-f file

-z sl

-n sl

-t fildes

sl !-s2

sl

nl -eq n2

True if the named file exists and is readable by the
user.

True ifthenamedfile exists and is writable by the user.

True if the named file exists and is executable by the
user.

True if the named file exists and has a size greater than
zero.

True if the named file is a directory.

True if the named file is an ordinary file.

True if the length of strings] is zero.

True if the length of the stringsl is nonzero.

True if the open file whose file descriptor number is
fildes is associated with a terminal device. H fildes is
not specified , file descriptor 1 is used by default.

True if string$ sl and s2 are identical.

Trueif stringssJ ands2 are not identical.

True ifsJ isnotthen1,1ll string.

True if the integers nl and n2 are algebraically equal;
other algebraic comparisons are indicated by -ne
(not equal), -gt (greater than), -ge (greater than or
equal to), -It (less than), and -le (less than or equal
to).

4-39

XENIX User's Guide

These maybe combined with the following operators:

-a

-o

Unary negation operator.

Binary logical AND operator.

Binary logical OR operator; it has lower precedence
than the logical AND operator (-a).

(expr) Parentheses for grouping; they must be escaped to
remove their significance to the shell. In the absence
of parentheses, evaluation proceeds from left to right.

Note that all options, operators, filenames, etc. are separate arguments to
test.

4.12.2 Echoing Arguments

The echo command has the following syntax:

echo [options] [args]

echo copies its arguments to the standard output, each followed by a single
space, except for the last argument, which is normally followed by a new­
line. You can use it to prompt the user for input, to issue diagnostics in
shell procedures, or to_add a few lines to an output stream in the middle of
a pipeline. Another use is to verify the argument list generation process
before issuing a command that does something drastic.

Youcan replace thels command with

echo *

because the latter is faster and prints fewer lines of output.

The -n option to echo removes the newline from the end of the echoed
line. Thus, the following two commands prompt for input and then allow
entering on the same line as the prompt:

echo -n �enter name:�
read name

The echo command also recognizes several escape sequences described in
echo (C) in theXENlXReferenceManual.

4-40

0

The Shell

4.12.3 Expression Evaluation: expr

The expr command provides arithmetic and logical operations on integers
and some pattem-matchingfacilities on its arguments. It evaluates a single
expression and writes the result on the standard output; expr can be used
inside grave accents to set a variable. Some typical examples follow:

increment $A
A�'expr $a + 1'
put third through last characters of
$1 into substring
substring�'expr "$1" : ' . . \(. *\)
obtain length of $1
c='expr "$1" : �.* ' '

The most common uses of expr are in counting iterations of a loop and in
using its pattern-matchingcapabilityto pick apart strings.

4.12.4 True and False

The true and false commands perform the functions of exiting with zero
and nonzero exit status, respectively. The true and false commands are
often used to implement unconditional loops. For example, you might
enter:

while true
do echo forever
done

This will echo "forever'' on the screen until an INTERRUPT is entered.

4.12.5 In-Line Input Documents

Upon seeing a command line of the form:

command << eofstring

where eofstring is any arbitrary string, the shell will take the subsequent
lines as the standard in put of command until a line is read consisting only of
eofstring. (By appending a minus (-) to the input redirection symbol
(<<), leading spaces and tabs are deleted from each line of the input docu­
ment b�fore the she,ll passes the line to command.)

The shell creates a tebporary file containing the input document and per­
forms variable and command substitution on its contents before passh1g it
to the command. Patten1 matching on filenames is performed on the argu-

4-41

XENIX User's Guide

ments of command lines in command substitutions. In order to prohibit all
substitutions, you may quote any character of eofstring:

command < < \eofstring

The in-line input document feature is especially useful for small amounts
of input data, where it is more convenient to place the data in the shell pro­
cedure than to keep it in a separate file. For instance, you could enter:

cat < < - xx

XX

This message will be printed on the
terminal with leading tabs and spaces
removed.

This in-line input document feature is most useful in shell procedures.
Note that in -line input documents may not appear within grave accents.

4.12.6 Input I Output Redirection Using File Descriptors

We mentioned above that a command occasionally directs output to some
file associated with a file descriptor other than 1 or 2. In languages such as
C, one can associate output with any file descriptor by using the write (S)
system call (see the XENJXReference Manual). The shell provides its own
mechanism for creating an output file associated with a particular file
descriptor. By entering:

fdl >& fd2

where fdl and fd2 are valid file descriptors, one can direct output that
would normally be associated with file descriptor fdl to the file associated
withfd2. The default value for fdl and fd2 is 1. lf, at run time, no file is
associated withfd2, then the redirection is void. The most common use of
this mechanism is that of directing standard error output to the same file as
standard output. This is accomplished by entering:

command 2> &1

If you wanted to redirect both strindard output and standard error output
to the same file, you would enter:

command 1> file 2> &1

The order here is significant: first, file descriptor 1 is associated with file;
then file desCriptor 2 is associated with the same file as is currently associ­
ated with file descriptor 1. If the order of the redirections were reversed,
standard error output would go to the terminal, and standard output would

4-42

c

fi
"-._ ____ ../

The Shell

go to file, because at the time of the error output redirection, file descriptor
1 still would have been associated with the terminal.

This mechanism can also be generalized to the redirection of standard
input. Youcould enter:

fda -<& fdb

to cause both file descriptors fda and fdb to be associated with the same
input file. If fda orfdb is not specified, file descriptor 0 is assumed. Such
input redirection is useful for a command that us�s two or more input
sources.

4. 12. 7 Conditional Substilution

Normally, the shell replaces occurrences of $variable by the string value
assigned to variable, if any. However, there exists a special notation to
allow conditional substitution, dependent upon whether the variable is set
or not null. By definition, a variable is set if it has ever been assigned a
value. The value of a variable can be the null string, which may be assigned
to a variable in anyone ofthefollowingways:

A-
bed=""
efg-"
set �� "''

The first three examples assign null to each of the corresponding shell vari­
ables. The last example sets the first and second positional parameters to
null. The following conditional expressions depend upon whether a vari­
able is set and not null. Note that the meaning of braces in these expres­
sions differs from their meaning when used in grouping shell commands.
Parameter as used below refers to either a digit or a variable name.

${variable :-string}

${variable :-string}

If variable is set and is nonnull, then substi­
tute the value $variable in place of this
expression. Otherwise, replace the expres­
sion with string. Note that the value of vari­
able is not changed by the evaluation of this
expression.

If variable is set and is nonnull, then substi­
tute the value $variable in place of this
expression. Otherwise, set variable to
string, and then substitute the value $vari­
able in place of this expression. Positional
parameters may not be assigned values in
this fashion.

4-43

XENIX User's Guide

${variable :? string} If variable is set and is nonnull, then substi­
tute the value of variable for the expression.
Otherwise, print a message of the form

variable: string

and exit from the current shell. (If the shell
is the login shell, it is not exited.) If string is
omitted in this form, then the message

variable: parameter null or not set

is printed instead.

${variable :+string} If variable is set and is nonnull, then substi­
tute string for this expression. Otherwise,
substitute the null string. Note that the value
of variable is not altered by the evaluation of
this expression.

These expressions may also be used without the colon. In this variation,
the shell does not check whether the variable is null or not; it only checks
whether the variable has ever been set.

The two examples below illustrate the use of this facility:

1. This example performs an explicit assignment to the PATH vari­
able:

PATH�${PATH:-':/bin:/usr/bin/

This says, if PATH has ever been set and is nOt null, then it keeps its
current value; otherwise, set it to the string":lbin:/usr/bin".

2. This example automatically assigns the HOME variable a value:

4-44

cd ${HOME:�'/usr/gas}

If HOJ\.ffi is set, and is not null, then change directory to it. Other­
wise set HOJ\.ffi to the given value and change directory to it.

0

L'

The Shell

4.12.8 Invocation Flags

There are five flags that maybe specified on the command line when invok­
ingthe shell. These flags may not be turned on with the set command:

-i If this flag is specified, or if the shell's input and output are
both atta,checJ t_o __ �_ te_r:min_a,l, th�_s_h�ll is_in_t_e_ra_t:tiJ'e. _ ill _such _a
shell, INTERRUPT (signal 2) is caught and ignored, and
TERMINATE (signal 15) and QUIT (signal 3) are ignored.

-s If this flag is specified or if no input/ output redirection argu­
ments are given, the shell reads commands from standard
input. Shell output is written to file descriptor 2. All remain­
ing arguments specify the positional parameters.

-c When this ilag is turned on, the shell reads commands from
the first string following the flag. Remaining arguments are
ignored.

-t When this flag is on, a single command is read and executed,
then the shell exits. This flag is not useful interactively, but is
intended for use with C programs.

-r If this flag is present the shell is a restricted shell (see rsh
(C)).

4.13 Effective and Efficient Shell Programming

This section outlines strategies for writing efficient shell procedures •. ones
that do not waste resources in accomplishing their purposes. The primary
reason for choosing a shell procedure to perform a specific function is to
achieve a desired result at a minimum human cost. Emphasis should
always be placed on simplicity, clarity, and readability, but efficiency can
also be gained through awareness of a few design strategies. In many cases,
an effective redesign of an existing procedure improves its efficiency by
reducing its size, and often increases its comprehensibility. In any case,
you should not worry about optimizing shell procedures unless they are
intolerably slow or are known to consume an inordinate amount of a
system's resources.

The same kind of iteration cycle should be applied to shell procedures as to
other programs: write code, measure it, and optimize only the few impor­
tant parts. The user should become familiar with the time command,
which can be used to measure both entire procedures. and parts thereof. Its
use is strongly recommended; human intuition is notoriously unreliable
when used to estimate timings of programs, even when .the style of pro­
gramming,is a familiar one. Each timing test should be run several times,
because the results are easily disturbed by variations in system load.

4-45

XENIX User's Guide

4.13.1 NumberofProcesses Generated

When large numbers of short commands are executed, the actual execu­
tion time of the commands may well be dominated by the overhead of
creating processes. The procedures that incur significant amounts of such
overhead are those that perform much looping, and those that generate
command sequences to be interpreted by another shell.

If you are worried about efficiency, it is important to know which com­
mands are currently built into the shell, and which are not. Here is the
alphabetical list of those that are built in:

break case cd continue echo
eval exec exit export for
if read read only return set
shift teSt times trap urn ask
until wait while
{}

Parentheses, (), are built into the shell, but commands enclosed within
them are executed as a child process, i.e., the shell does a fork, but no
exec. Any command bot in the above list requires b oth fork and exec.

The user should always have at least a vague idea of the number of
processes generated by a shell procedure. In the bulk of observed pro­
cedures, the number of processes created (not necessarily simultaneously}
can be described by:

processes � (k * n) + c

where k and c are constants, and n m�ybe the number of procedure argu­
ments, the number of lines in some input file, the number of entries in
some directory, or some other obviOus quantity. Efficiency improvements
are most commonly gained byreducingthe value of k, sometimes to zero .

.Any procedure whose complexity measure includes n-2 terms or higher
powers of n is likely to be intolerablyexpensive.

4-46

c

C;

The Shell

As an example, here is an analysis of a procedure named split, whose te:x1: is
given below:

split
trap 'rm temp$$; trap 0; exit' 0 1 2 3 15
startl �0 start2�0
b�'[A-Za-z]'
cat > temp$$

read stdin into temp file
save original lengths of $1, $2

if test -s "$1"
then startl�'wc -1 < $1'
fi
if test -s "$211

then start2� 'we -1 < $2'
fi
grep "$b" temp$$ > > $1

lines with letters onto $1
grep -v "$b" temp$$ I grep '[0-9]' > > $2

lines without letters onto $2
total�" 'we -1 < temp$$' "
endl=" "we -1 < $1' "
end2=" .. we -1 < $2' "
lost�" 'expr $total - \($end1 - $start1 \) \
- \($end2 - $start2\)' "

echo "$total read, $lost thrown away"

For each iteration of the loop, there is one expr plus either an echo or
another expr. One additional echo is executed at the end. If n is the
numberoflines ofinput, thenumber ofprocesses is2*n + 1.

Some types of procedures should not be written using the shell. For exam­
ple, if one or more prOcesses are generated for each character in some file,
it is a good indication that the procedure should be rewritten in C. Shell
procedures should not be used to scan or build files a character at a time.

4.13.2 NumberofData Bytes Accessed

It is worthwhile to consider any action that reduces the number of bytes
read or written. This may be important for those procedures whose time is
spent passing data around among a few processes, rather than in creating
large numbers of short processes. Some filters shrink their output, others
usually increase it. It always pays to put the shrinkers first when the order is

4-47

XENIX User's Guide

irrelevant. For instance, the second of the following examples is likely to
be faster because the input to sort will be much smaller:

sort file I grep pattern
grep pattern file I sort

4.13.3 Shortening Directory Searches

Directory searching can consume a great deal of time, especially in those
applications that utilize deep directory structures and long pathnames.
Judicious use of cd, the change directory command, can help shorten long
pathnames and thus reduce the number of directory searches needed. As
an exercise, trythefollowingcommands:

ls -l /usr/bin/* >/dev/null
cd /usr/bin; ls -1 * >/dev/null

The second command will run faster because of the fewer directory
searches.

4.13.4 Directory-Search Order and the PATH Variable

The PATH variable is a convenient mechanism for allowing organization
and sharing of procedures. However, it must be used in a sensible fashion,
or the result maybe a great increase in system overhead.

The process of finding a command involves reading every directory
included in every pathname that precedes the needed pathname in the
current PATH variable. As an example, consider the effect of invoking
nroff (i.e., !usrlbinlnroff) when the value of PATH is ":/bin:/usr/bin".
The sequence of directories read is:

I
/bin
I
/usr
/usrlbin

This is a total of six directories. A long path list assigned to PATH can
increase this number significantly.

4-48

ci

The Shell ·

The vast majority of command executions are of commands found in /bin
and, to a somewhat lesser extent, in /usrlbin. Careless PATH setup may
lead to a great deal of unnecessary searching. The following four examples
are ordered from worst to best with respect to the efficiency of command
searches:

:/usr/john/bin:/usr/localbin:/bin:/usr/bin
:/bin:/usr/john/bin :/usrllocalbin:/usr/bin
:/bin:/usr/bin:/usr/john/bin:/usr/localbin
/bin::/usr/bin:/usr/john/bin:/usrllocalbin

The first one above should be avoided. The others are acceptable and the
choice among them is dictated by the rate of change in the set of commands
kept in /bin and Jusr!bin.

A procedure that is expensive because it invokes many short-lived com­
mands may often be speeded up by setting the PATH variable inside the
procedure so that the feWest pOssible directories are searched in an
optimum order.

4.13.5 Good Ways to SetUp Directories

It is wise to avoid directories that are larger than necessary. You should b e
aware o f several special sizes. A directory that contains entries for up to 30
files (plus the required . and ..) fits in a single disk block and can b e
searched very efficiently. One that has up t o 286 entries i s still a small direc­
tory; anything larger is usually a disaster when used as a working directory.
It is especially important to keep login directories small, preferably one
block at most. Note that, as a rule, directories never shrink. This is very
important to understand, because if your directory ever exceeds either the
30 or 286 thresholds, searches will be inefficient; furthermore, even if you
delete files so that the number of files is less than either threshold, the sys­
tem will still continue to treat the directory inefficiently.

4.14 Shell :Procedure Examples

The power of the XENIX shell cOmmand language is most readily Sf1en by
examining how many labor-saving XENIX utilities can be combined to
perform powerful and useful commands with very little programming
effort. This section gives examples of procedures that do just that. By
studying these examples, you will gain insight into the techniques and
shortcuts that can be used in programming shell procedures (also called
"scripts"). Note the use of the null command (:) to begin each shell pro­
cedure and the use ofthe numbersign (#) to introduce comments.

4-49

- XENIX User's Guide

It is intended that the following steps be carried out for each procedure:

1. Place the procedure in a :file with the indicated name.

2. Give the file execute :permission wlth the-chmod command.

3. Move the file to a directory in which commands are kept, such as
your own bin directory.

4. Make sure that the path of the bin directory is specified in the PATH
variable found in .profile.

5. Execute the named command.

BINUNIQ

Is /bin /usr/bin I sort I uniq -d

This procedure determines which files are in both /bin and /usr!bin. It is
done because files in /bin will "override" those in !usr/bin during most
searches and duplicates need to be weeded out. If the !usrlbin file is
obsolete, then space is being wasted; if the /bin file is outdated by a
corresponding entry in !usr/bin then the wrong version is being run and,
again, space is being wasted. This is also a good demonstration of "sort I
uniq'' to find matches and duplications.

COPYPAIRS

4-50

Usage: copypairs filel file2 . . .
Copies filel to file2, file3 to file4,
while test "$2" != " "
do

done

cp $1 $2
shift; shift

if test "$1" != " "
then echo "$0: odd number of arguments" >&2

fi

c)

L

The Shell

This procedure illustrates the use of a while loop to process a list of posi­
tional parameters that are somehow related to one another. Here a while
loop is much better than a for loop, because you can adjust the positional
parameters with the shift command to handle related arguments.

COPYTO

Usage: copyto dir file . . .
Copies argument files to "dir",
making sure that at least
two arguments exist, that "dir" is a directory,
and that each additional argument
is a readable file.
if test $# -lt 2

then echo "$0: usage: copyto directory file . . . "> &2
elif test ! -d $1

then echo "$0: $1 is not a directory";> &2
else dir�$1; shift

for eachfile
do cp $eachfile $dir
done

fi

This procedure uses an if command with several parts to screen out
improper usage. The for loop at the end of the procedure loops over all of
the arguments to copyto but the first; the original $1 is shifted off.

DISTINCT!

Usage: distinct!
Reads standard in put and reports list of
alphanumeric strings that differ only in case,
giving lowercase form of each.
tr -cs 'A-Za-z0-9' '\012' I sort-u I\
tr 'A-Z' 'a-z' I sort I uniq -d

This procedure is an example of the kind of process that is created b y the
left-to-right construction of a long pipeline. Note the use of the back slash
at the end of the first line as the line continuation character. It may not be
immediately obvious how this command works. You may wish to consult
tr (C), sort (C), and uniq (C) in the XENIX Reference Manual if you are
completely unfamiliar with these commands. The tr command translates

4-51

XENIX User's Guide

all characters except letters and digits into newline characters, and then
squeezes out repeated newline characters. This leaves each string (in this
case, any contiguous sequence of letters and digits) on a separate line. The
sort command sorts the lines and emits only one line from any sequence of
one or more repeated lines. The next tr converts everything to lowercase,
so that identifiers differing only in case become identical. The output is
sorted again to bring such duplicates together. The "uniq -d" prints
(once) only those lines that occur more than once, yielding the desired list.

The process of building such a pipeline relies on the fact that pipes and files
can usually be interchanged. The fi.n:;t line below is equivalent to the last
two lines, assuming that sufficient disk space is available:

cmdl I cmd2 I cmd3

cmdl > templ; < templ cmd2 > temp2; < temp2 cmd3
rm temp[123]

Starting with a file of test data on the standard input and working from left
to right, each command is executed taking its input from the previous file
and putting its output in the next file. The final output is then examined to
make sure that it contains the expected result. The goal is to create a series
of transformations that will convert the input to the desired output.

Although pipelines can give a concise notation for complex processes, you
should exercise some restraint, since such practice often yields
incomprehensible code.

DRAFT

Usage: draft file(s)
Print manual pages for Diablo printer.
for i in $*

do nroff -man $i I lpr
done

Users often write this kind of procedure for convenience in dealing with
commands that require the use of distinct flags that cannot be given default
values that are reasonable for all (or even most) users.

4-52

ED FIND

Usage: edfind filearg
Finds the last occurrence in 1'file" of a line

__ # whose_beginningmatches "arg'� then prints
3 lines (the one before, the line itself,
and the one after)
ed - $1 < < -EOF

EOF

'($2?
-,+p
q

The Shell

This illustrates the practice of using ed in -line input scripts into which the
shell can substitute the values of variables.

ED LAST

Usage: edlast file
Printsthelastlineoffile,
then deletes tbatline.
ed - $1 <<-\!

$p
$d
w
q

echo done

This procedure illustrates taking input from within the file itself up to tbe
exclamation point (!). Variable substitution is prohibited within the input
text because ofthe backslash.

4-53

XENIX User's Guide

FSPLIT

Usage: fsplit file1 file2
Reads standard input and divides it into 3 parts
by appending any line containing at least one letter
to file1, appending any line containing digits but
no letters to file2, and by throwing the rest away.
count�O gone�O
while read next
do

count='"expr $count
case "$next" in

+ r"

[A-Za-z])
echo "$next" >> $1 "

[0-9])
echo "$next" >> $2 "

*)
gone='"'expr $gone + 1'"

esac
done
echo "$count lines read, $gone thrown away"

Each iteration of the loop reads a line from the input and analyzes it. The
loop terminates only when read encounters an end-of-file. Note the use of
the exprcommand.

Do not use the shell to read a line at a time unless you must because it can
be an extremely slow process.

LISTFIEWS

grep $* I tr ":" ''\012"

This procedure lists lines containing any desired entry that is given to it as
an argument. It places any field that begins with a colon on a newline.
Thus, if given the following input:

joe newman: 13509 NE 78th St: Redmond, Wa 98062

4-54

c

The Shell

listfieldswill produce this:

joe newman
13509 NE 78th St
Redmond, Wa98062

Note the use of the trcommand to transpose colons to linefeeds.

MKFILES

Usage: mkfiles pref [quantity]
Makes "quantity" files, named prefl, pref2, . . .
Default is 5 as determined on following line.
quantity�${2-5}
i�l
while test "$i" -le "$quantity"
do

> 1i
i="'expr $i + T"

done

The mkfiles procedure uses output redirection to create zero-length files.
The expr command is used for counting iterations of the while loop.

NULL

Usage: null files
Create each of the named files as an empty file.
for eachfile
do

>$eachfile
done

This procedure uses the fact that output redirection creates the (empty)
output file if a file does not already exist.

4-55

XENIX User's Guide

PHONE

Usage: phone initials ...
Prints the phone numbers of the
people with the given initials.
echo � inits ext home�
grep "$1" << END

END

jfk 1234 999-2345
lb j 2234 583-2245
hst 3342 988-1010
jqa 4567 555-1234

This procedure is an example of using an in-line input script to maintain a
small database.

TEXTFILE

4-56

if test
then

fi

"$1" = "-s"

Return condition code
shift
if test -z ""$0 $*'" # check return. value
then

exit 1
else

exit 0
fi

if test $# -It 1
then echo "$0: Usage: $0 [-s] file . . . " 1>&2

exit 0
fi

file $* I fgrep " text" I sed "s/: . *II"

' /�
I I \ ; \._ __

() _/

The Shell

To determine which files in a directory contain only te>..iual information,
textfile filters argument lists to other commands. For example, the follow­
ing command line will print all the text files in the current directory:

pr 'textfile *' I lpr

This pro�;edure also_uses an -s _fi�g which silently tests whether any of the
files in the argument list is a text file.

WRITEMAIL

Usage: writemail message user
If user is logged in,
writes message to terminal;
otherwise, mails it to user.
echo "$1" I { write "$2" 1/ mail "$2" ;}

This procedure illustrates the use of command grouping. The message
specified by$1 is piped to both the write command and, if write fails, to the
mail command.

4.15 Shell Grammar

item: word
input-output
name = value

simple-command: item
simple-command item

command: simple- command
(command-list)
{ command-list }
for name do command-list done
for name in word do command-list done
while command-list do command-list done
until command- list do command-list done
case word in case-part esac
if command-list then command-list else-part fi

XENIX User's Guide

pipeline:

andor:

command
pipeline I command

pipeline
andor && pipeline
andor II pipeline

command-list: andor
command-list ;
command-list &
command-list ; andor
command-list & andor

input-output:> file

file:

case-part:

pattern:

else-part:

empty:

word:

name:

digit:

4-58

< file
<< word
>> file
digit > file
digit < file
digit > > file

word
& digit
& -

pattern) command-list ;;

word
pattern I word

elif command-list then command-list else-part
else command-list
empty

a sequence of nonblank characters

a sequence of letters� digits. or underscores
starting with a letter

0 1 2 3 4 5 6 7 8 9

C:

The Shell

Metacharacters and Reserved Words

1. Syntactic

I
&&
II

"
&
()
<
< <
>
> >

2. Patterns

*
?
[.. .]

3. Substitution

4. Quoting

\

" "

Pipe symbol
And-if symbol
Or-if symbol
Command separator
Case delimiter
Background commands
Command grouping
Input redirection
Input from a here document
Output creation
Output append
Comment to end of line

Match any character(s) including none
Match any single character
Match any of enclosed characters

Substitute shell variable
Substitute command output

Quote next character as literal with no special meaning
Quote enclosed characters excepting the back quota­
tionmarks (')
Quote enclosed characters excepting: $... \ "

4-59

XENIX User's Guide

5. Reserved words

if esac
then for
else while
elif until
fi do
case done
iu { }

4-60

Replace this Page
with Tab Marked:

be Calculator

C�)
_ _ _ _ /

Chapter S

be: A Calculator

5.1 Introduction 5-1

5.2 Demonstration 5-1

5.3 Tasks 5-4
5.3.1 Computingwithintegers 5-4
5.3.2 Specifying Input and Output Bases 5-5
5.3.3 ScalingQuantities 5-6
5.3.4 UsingFunctions 5-8
5.3.5 Using Subscripted Variables 5-9
5.3.6 Using Control Statements: if, while and for 5-10
5.3. 7 Using Other Language Features 5-12

5.4 Language Reference 5-14
5.4.1 Tokeus 5-14
5 .4. 2 Expressions 5-15
5.4.3 Function Calls 5-16
5.4.4 UnaryOperators 5-16
5.4.5 Multiplicative Operators 5-17
5.4.6 Additive Operators 5-17
5.4.7 Assignment Operators 5-18
5.4.8 Relational Operators 5-18
5.4.9 Storage Classes 5-19
5.4.10 Statements 5-19

()

c

be: A Calculator

5.1 Introduction

be is a program that can be used as an arbitrary precision arithmetic calcu­
lator. be's output is interpreted and executed by a collection of routines
which can input1 output, and do arithmetic on indefinitely large integers
and on scaled fixed-point numbers. Although you can write substantial
programs__ with be, it _is often :usecl .as an_ interactiv_e tool Jo:r p_erfor:ming
calculator-like computations. The language supports a complete set of
control structures and functions that can be defined and saved for later
execution. The syntax of be has i)een deliberately selected to agree with
the C language; those who are familiar with C will find few surprises. A
small collection of library functions is also available, including sin, cos,
arctan, log, exponential, and Bessel functions of integer order.

Common uses for be are:

Computation with large integers.

Computations accurate to many decimal places.

Conversions of numbers from one base to another base.

There is a scaling provision that permits the use of decimal point notation.
Provision is made for input and output in bases other than decimal.
Numbers can be converted from decimal to octal simply by setting the out­
put base equal to 8.

The actual limit on the number of digits that can be handled depends on
the amount of storage available on the machine, so manipulation of
numbers with many hundreds of digits is possible.

5.2 Demonstration

This demonstration is designed to show you:

How to get into and out of be.

- How to perform simple computations.

- How expressions are formed and evaluated.

How to assign values to registers.

A normal session with be begins by invoking the program with the com­
maud:

be

5 - l

XENIX User's Guide

To exit be enter:

quit

or press Ctrl-d. Once you have entered be, you can use itverymuchlike a
normal calculator. As with the XENIX shell, commands are read as
command-lines, so each line that you enter must be terminated by a
RETURN. Throughout this chapter, the RETURN is implied at the end of
each command line. Within be, normal processing of other keys, such as
BACKSPACE and INTERRUPT, also works.

For example, enter the simple integer 5:

5

Output is immediately echoed on the next line to the standard output,
which is normally the terminal screen:

5

Here 5 is a simple numeric expression. However, if you enter the expres­
sion:

5*5.25

(where the star (*) is the multiplication operator) a computation is exe­
cuted and the result printed on the ne>..1: line:

26.25

What has happened here is that the line 5* 5. 25 has been evaluated, i.e., the
expression has been reduced to its most elementary form, which is the
number 26.25. The process of evaluation normally involves some type of
computation such as multiplication, division, addition, or subtraction.
For example, all four of these operations are involved in the following
e>..-pression:

(10*5)+5Q-(50/2)

When this expression is evaluated, the sube.xpressions within parentheses
are evaluated first, just as they would be with simple algebra, so that an
intermediate step in the evaluation is "50+5D-25"which ultimately reduces
to the number "75".

The simple addition:

10.45+5.5555555

5-2

be: A Calculator

produces the output:

16.0055555

(
_ Note how precision is retained in the above result.

The two-part ID:1_1.ltiplication:

(8*9)*7

produces the answer:

504

The last part of this demonstration shows you how to store values in special
alphabetic registers. For example, enter: ·

a�100 ; b�S

What happens here is that the registers a and b are assigned the values 100
and 5, respectively. The semicolon is used here to place multiple be state­
ments on a single line, just as it is used in the XENIX shell. This command
line produces no output because assignment statements are not considered
e>. .. pressions. However, the registers .a and b can now be used in expres­
sions. Thus you can now enter:

a*b; a+b

to produce:

500
105

To exit be, remember to enter:

quit

or press Ctrl- d.

This ends the demonstration. Following sections describe use of be in
inore detail. The final section of this chapter is a be language reference.

5-3

XENIX User's Guide

5.3 Tasks

This section describes how to perform common be tasks. Mastery of these
tasks should turn you into a competen� be user.

5.3.1 Computing with Integers

The simplest kind of statement is an arithmetic expression on a line by
itself. Forinstance, if you enter:

142857 + 285714

and press RETURN, be responds immediatelywith the line:

428571

Other operators also can be used. The complete list includes:

+ - * I %

They indicate addition, subtraction, multiplication, division. modulo
(remaindering). and exponentiation, respectively. Division of integers
produces an integer result truncated toward zero. Division by zero pro­
duces an errorffiessage.

Any term in an expression can be prefixed with a minus sign to indicate that
it is to be negated (this is the "unary" minus sign). For example, the expres­
sion:

7+-3

is interpreted to mean that -3is to be added to 7.

More complex expressions with several operators and wi!h parentheses are
interpreted just as in FORTRAN, with exponentiation () performed first,
then multiplication (*), division (/), modulo (%), and finally, addition (+),
and subtraction (-). The contents of parentheses are evaluated before
expressions outside the parentheses. All of the above operations are per­
formed from left to right, except exponentiation, which is performed from
right to left.

Thus the following two expressions:

are equivalent, as are the two expressions:

a*b*c and (a*b)*c

5-4

c�

c)

be: A Calculator

be shares with FORTRAN and C the convention that a/b *c is equivalent to
(alb)*c.

Internal storage registers to hold numbers have -single lowercase letter
names. The value of an expression can be assigned to a register in the usual
way, thus the statement:

x=x+3

has the effect of increasing by 3 the value of the contents of the register
named "x". When, as in this case, the outermost operator is the assign­
ment operator (=), then the assignment is performed but the result is not
printed. There are 26 available named storage registers, one for each letter
ofthealphabet.

There is also a built-in square root function whose result is truncated to an
integer (see also Section 5.5.3.3, "Scaling"). For example, the lines:

x� sqrt(191)
X

produce the printed result:

13

5.3.2 Specifying Input and OutputBases

There are specialinten1al quantities in be, called ibas e and obase. ibase is
initially set to 10, and determines the base used for interpreting numbers
that are read by be. For example, the lines:

ibase �8
11

procluce the output line:

9

and you are all set up to do octal to decimal conversions. However, beware
of trying to change the input base back to decimal by entering:

ibase� 10

Because the number 10 is interpreted as octal, this statement has no effect.
For those who deal in hexadecimal notation, the uppercase characters
A-F are permitted in numbers (no matter what base is in effect) and are
interpreted as digits having values 10-15, respectively. These characters
must be uppercase and not lowercase.

5-5

XENIX User's Guide

The statement:

ibase= A

changes you back to decimal input base no matter what the current input
base is. Negative and large positive input bases are permitted; however no
mechanism has been provided for the input of arbitrary numbers in bases
less than 1 andgreaterthan 16.

obase is used as the base for output numbers. The value of obase is initially
setto a decimal10. The lines:

obase= 16
1000

produce the output line:

3E8

This is interpreted as a three-digit hexadecimal number. Very large output .
bases are permitted. For example, large numbers can be output in groups
of :five digits by settingobase to 100000. Even strange output bases, such as
negative bases, and 1 and 0, are handled correctly.

Very large numbers are split across lines with seventy characters per line.
A split line that continues on the next line ends with a backslash (\).
Decimal output conversion is fast, but output of very large numbers (i.e.,
more than 100 digits) with other bases is rather slow.

Remember that ibase and obase do not affect the course of internal com­
putation or the evaluation of expressions; t;b.eyonly affect input and output
conversion.

5.3.3 Scaling Quantities

A special internal quantity called scale is used to determine the scale of cal­
cuiated quantities. Numbers can have up to 99 decimal digits after the
decimal point. This fractional part is retained in further computations.
We refer to the number of digits after the decimal point of a number as its
"scale."

When two scaled numbers are combined by means of one of the arithmetic
operations, the result has a scale determined bythefollowingrules:

Addition, subtraction

5-6

The scale of the result is the larger of the scales of the
two operands. There is never any truncation of the
result.

0

c/,

Multiplication

be: A Calculator

The scale of the result is never less than the max­
imum of the two scales of the operands� never more
than the sum of the scales of the operands, and sub­
ject to those two restrictions, the scale of the result is
set equal to the contents of the internal quantity,
scale.

Division The scale of a quotient is the contents of the internal
quantity, scale.

Modulo The scale of a remainder is the sum of the scales of
the quotient and the divisor.

Exponentiation The result of an exponentiation is scaled as if the
implied multiplications were performed. An
exponent must be an integer.

Square Root The scale of a square root is set to the maximum of
the scale of the argument and the contents Of stale.

All of the internal operations are actually carried out in terms of integers,
with digits being discarded when necessary. In every case where digits are
discarded truncation is performed without rounding.

The contents of scale must be no greater than 99 and no less than 0. It is ini­
tially set to 0.

The internal quantities scale, ibase, and base can be used in expressions
just likeothervariables. Theline:

scale = scale + 1

increasesthevalue of scale by one, and the line:

scale

causes the currentvalue ofscale to be printed.

The value of scale retains its meaning as a number of decimal digits to be
retained in internal computation even when ibase orobase are not equal to
10. The inte1·nal computations (which are still conducted in decimal,
regardless of the bases) are performed to the specified number of decimal
digits, never hexadecimal or octal or any other kind of digits.

5-7

XENIX User's Guide

5.3.4 Using Functions

The name of a function is a single lowercase letter. Function names are
permitted to use the same letters as simple variable names. Twenty-six
different defined functions are permitted in addition to the twenty-Sixvari­
ablenames.

The line:

define a(x){

begins the definition of a function with one argument. This line must be
followed by one or more statements, which make up the body of the func­
tion, ending with a right brace (}). Return of control from a function
occurs when a return statement is executed or when the end of the function
is reached.

The return statement can take either of the two forms:

return
return(x)

In the first case, the returned value of the function is 0; in the second, it is
the value of the expression in parentheses.

Variables used in functions can be declared as automatic by a statement of
the form:

autox,y,z

There can be only one auto statement in a function and it must be the first
statement in the definition. These automatic variables are allocated space
and initialized to zero on entry to the function and thrown away on return.
The values of any variables with the same names outside the function are
not disturbed. Functions can be called recursively and the automatic vari­
ables at each call level are protected. The parameters named in a function
definition are treated in the same way as the automatic variables of that
function, with the single exception that they are given a value on entry to
the function. An example of a function definition follows:

define a(x,y){
auto z
z�x*y
return(z)

}

The value of this function, when _called, will be the product of its two argu­
ments.

5-8

be: A Calculator

A function is called by the appearance of its name, followed by a string of
arguments enclosed in parentheses and separated by commas. The result
is unpredictable if the wrongnumber of arguments is used.

If the function "a" is defined as shown above, then the line:

a(7,3.14)

would print the result:

21.98

Similarly, the line:

x- a(a(3,4),5)

would cause the value. of "x" to become 60.

Functions can require no arguments, but still perform some useful opera­
tion or return a useful result. Such functions are defined and called using
parentheses with nothing between them. For example:

b ()

calls the function named b.

5.3.5 Using Subscripted Variables

A single lowercase letter variable name followed by an expression in brack­
ets is called a subscripted variable and indicates an array element. The
variable name is the name of the array and the expression in b rackets is
called the subscript. Only one-dimensional arrays are permitted in be.
The names of arrays ary permitted to collide with the names of simple vari­
ables and function names. Any fractional part of a subscript is discarded
before use. Subscripts must be greater than or equal to zero and less than
or equal to 2047.

Subscripted variables can be freely used in expressions, in function calls
and in rctum statements.

An array name can be used as an argument to a function, as in:

f(a[])

S-9

XENIX User's Guide

Array names can also be declared as automatic in a function definition with
the use of empty brackets:

define f(a[])
auto a[]

When an array name is so used, the entire contents of the array are copied
for the use of the function, then thrown away on exit from the function.
Array names thatreferto whole arrays cannot be used in any other context.

5.3.6 UsingContro!Statements: if, while and for

The if, while, and for statements are used to alter the flow within programs
or to cause iteration. The range of each of these statements is a following
statement or compound statement consisting of a collection of statements
enclosed in braces. They are written as follows:

if (relation) statement
while (relation) statement
for (expressionl ; relation ; expression2)statement

A relation in one of the control statements is an expression of the form:

expressionl rei-op expression2

where the two expressions are related by one of the six relational operators:

< > <= >= == l=

Note that a double equal sign (==) stands for "equal to" and an
exclamation-equal sign (!=) stands for "not equal to". The meaning of the
remaining relational operators is their normal arithmetic and logical mean­
in g.

Beware of using a single equal sign (�) instead of the double equal sign (��)
in a relational. Both of these symbols. are legal, so you will not get a diagnos­
tic message. However, the operation will not perform the intended com­
parisOn.

The if statement causes execution of its range if and only if the relation is
true. Then control passes to then ext statement in the sequence.

The while statement causes repeated execution of its range as long as the
relation is true. The relation is tested before each execution of its range and
if the relation is false, control passes to· the next statement beyond the
range of the while statement.

5-10

be: A Calculator

The for statement begins by executing expressionl. Then the relation is
tested and, if true, the statements in the range of the for statement are exe­
cuted. Then e:rpression2 is executed. The relation is tested, and so on. The
typical use of the for statement is for a controlled iteration, as in the state­
ment:

which will print the integers from 1 to 10.

The following are some examples of the use of the control statements:

definef(n){
autoi, x
x�l

}

for(i=l; i<=n; i=i+ 1) x=x*i
return(x)

The line:

f(a)

prints "a" factorial if "a" is a positive integer.

The following is the definition of a function that computes values of the
binomial coefficient ("m" and "n" are assumed to be positive integers):

defineb(n,m){
auto x, j
x�l

}

for(j�l;j<�m;j�j+l) x�x*(n-j+l)/j
return(x)

5-11

XENIX User's Guide

The following function computes values of the exponential function by
summing the appropriate series without regard to possible truncation
errors:

scale � 20
define e(x){

}

auto a, b, c, d, n
a � 1
b � 1
c � 1
d � O
n � 1
while(1�-1) {

}

a = a*x
b - b*n
c - c + a/b
n = n + l
if(c--d) return(c)
d � c

5.3. 7 Using Other Language Features

Some language features that every user should know about are- listed
below.

5 - 12

Normally, statements are entered one to a line. It is also permissible
to enter several statements on a line if they are separated by semi­
colons.

If an assignment statement is placed in parentheses, it then has a
value and can be used anywhere that an expression can. For exam­
ple, the line:

(x-y+17)

not only makes the indicated assignment, but also prints the result­
ing value.

The following is an example of a use of the value of an assignment
statement even when it is not placed in parentheses:

This causes a value to be assigned to "x" and also increments "i"
before it is used as a subscript.

c

0

be: A Calculator

- The following constructions work in be in exactly the same manner
as they do in the C language:

Construction Eauivalent
x�v�z x5Fll
x -+v x - x+v x�-v x = x-v
x =* v x = x*v x-/v x-x/v
x-%v x - x%_y_ x-'v x-x'v
x++ (x�x+ll-1
x-- (x�x-ll+1
++x x-x+l
--x x - x-1

Even if you don't intend to use these constructions, if you enter one
inadvertently, something legal but unexpected may happen. Be
aware that in some of these constructions spaces are significant.
There is a real difference between "x=-y" and "x= -y". The first
replaces "x" by "x-y" and the second by "-y".

- The comment convention is identical to the C comment conven­
tion. Comments begin with ''/*" and end with "*/".

- There is a library of math functions that can be obtained by enter­
ing:

be-l

when you invoke be. This command loads .the library functions
sine, cosine, arctangent, natural logarithm, exponential, and Bessel
functions of integer order. These are named '<s", <cc", "a", "1",
"e'', and "j(n,x)''\ respectively. This library sets scale to 20 by
default.

- Ifyouenter:

b e file . . .

be will read and execute the named file or files before accepting
commands from the keyboard. In this way, you can load your own
progrp.ms and functio11 definitions.

5 - 13

XENIX User's Guide

5.4 Language Reference

This section is a comprehensive reference to the be language. It contains a
more concise description of the features mentioned in earlier sections.

5.4.1 Tokens

Tokens are keywords, identifiers, constants, operators, and separators.
Token separators can be blanks, tabs or comments. Newline characters or
semicolons separate statements.

Comments

Identifiers

Keywords

Constants

5 - 14

Comments are introduced by the characters "/*" and
are terminated by'(*/".

There are three kinds of identifiers: ordinary
identifiers, array identifiers and function identifiers.
All three types consist of single lowercase letters.
Array identifiers are followed by square brackets,
enclosing an optional e:x-pression describing a sub­
script. Arrays are singly dimensioned and can contain
up to 2048 elements. Indexing begins at 0 so an array
can be indexed from 0 to 2047. Subscripts are trun­
cated to integers. Function identifiers are followed by
parentheses, enclosing optional arguments. The
three types of identifiers do not conflict; a program
can have a variable named "x", an array named "x",
and a function named "x", all of which are separate
and distinct.

The following are reserved keywords:

ibase if
obase break
scale define
sqrt auto
length return
while quit
for

Constants are arbitrarily long numbers with an
optional decimal point. The hexadecimal digits A-F
are also recognized as digits with decimal values
10-15, respectively.

r . \ ! '-__/

be: A Calculator

5.4.2 Expressions

All e:>rpressions can be evaluated to a value. The value of an expression is
always printed unless the main opl Star is an assignment. The precedence
of expressions (i.e., the order in which they are evaluated) is as follows:

Function calls

Unary operators

Multiplicative operators

Additive operators

Assignment operators

Relational operators

There are several types of expressions:

Named expressions
Named expressions are places where values are stored. Simply
stated, named expressions are legal on the left side of an assign­
ment. The value of a named expression is the value stored in the
place named.

identifiers
Simple identifiers are named expressions. They have an
initial value of zero.

array� name [expression]
Array elements are named expressions. They have an
initial value of zero.

scale, ibase and abase

Constants

The internal registers scale, ibase, and abase are all
named expressions. Scale is the number of digits after
the decimal point to be retained in arithmetic operations
and has an initial value of zero. lbase and abase are the
input and output number radixes respectivvly. Both
ibase and abase have initial values of 10.

COnstants are primitive expressions that evaluate to themselves.

Parenthetic Expressions
An expression surrounded by parentheses is a primitive expres­
sion. The parentheses are used to alter normal operator pre­
cedence.

5-15

XENIX User's Guide

Function Calls
Function calls are expressions that return values. They are dis­
cussed in section 5.4.3.

5.4.3 Function Calls

A function call consists of a function name followed by parentheses con­
taining a comma-separated list of expressions, which are the function
arguments. The syntaxis as follows:

function-name ([expression [, expression . . .]])

A whole array passed as an argument is specified by the array name fol­
lowed by empty square brackets. All function arguments are passed by
value. As a result, changes made to the formal parameters have no effect
on the actual arguments. li the function terminates by executing a return
statement, the value of the function is the value of the expression in the
parentheses of the return statement, or 0 if no expression is provided or if
there is no return statement. Three built-in functions are listed below:

sqrt (expr) The result is the square root of the expression and is
truncated in the least significant decimal place. The
scale of the result is the scale of the expression or the
value of scale, whicheveris larger.

length (expr) The result is the total number of significant decimal
digits in the expression. The scale of the result is zero.

scale (expr) The result is the scale of the expression. The scale of
the result is zero.

5.4.4 Unary Operators

The unary operators bind right to left.

- eJ,.:pr The result is the negative of the expression.

+ + named_expr The named expression is incremented by one. The
result is the value of the named expression after incre­
menting.

- - named_expr The named expression is decremented by one. The
result is the value of the named expression after decre­
menting.

5 - 16

c

0

be: A Calculator

named_expr + + The named expression is incremented by o;ne. The
result is the value of the named expression before
incrementing.

named_e.'\:pr - - The named expression is decremented by one. The
result is the value of the named expression before
_decrementing.

5.4.5 Multiplicative Operators

The multiplicative operators (�', /, and %) bind from left to right.

e;.:pr*expr

exprleA]Jr

expr%expr

e:xpr expr

The result is the product of the two expressions. If
"a" and "b" are the scales of the two expressions,
then the scale of the result is:

min (a+b, max (scale, a, b))

The result is the quotient of the two expressions. The
scale of the result is the value of scale.

The modulo operator (%) produces the remainder of
the division of the two expressions. More precisely,
a%b is a-alb* b . The scale of the result is the sum of
the scale of the divisor and the value of scale.

The exponentiation Operator binds right to left. The
result is the first expression raised to the power of the
second expression. The second expression must be
an integer. If 1'a" is the scale of the left expression and
"b" is the absolute value of the right expression, then
the scale of the result is:

min (a*b, max (scale, a))

5.4.6 Additive Operators

The additive operators bind left to right.

expr+eJ.?Jr

e:rpr-e)..]Jr

The result is the sum .of the two expressions. The
scale of the result is the maximum of the scales of the
expressions.

The result is the difference of the two expressions.
The scale of the result is the maximum of the scales of
the expressions.

5 - 17

XENIX User's Guide

5.4:7 Assignment Operators

The assignment operators listed below assign values to the named expres­
sion on the left side.

named_expr=expr
This expression results in assigning the value of the expres­
sion on the righttothe named expression on the left.

named_expr=+expr
The result of this expression is equivalent to
named_e.Y:pr=namedJxpr+expr.

named_expr= -expr .
The result of this expression is equivalent to
named_expr=named_expr-expr.

named_expr=*expr
The result of this expression is equivalent to
namedJJ.pr=named_expr*expr.

named_expr=lexpr
The result of this expression
named_expr=named_expr/expr.

is equivalent to

named_expr= %expr
The result of this expression is equivalent to
named_expr=named_expr%expr.

named_expr=
...
expr

The result of this �xpression
named_expr=named_expr expr.

is equivalent to

5.4.8 Relational Operators

Unlike all other operators, the relational operators are only valid as the 1
object of an if or while statement, or inside a for statement.

These operators are listed below:

expr<expr

e>.pr>expr

eJ.pr<=expr

e�'pr> =eJtpr

5-18

()

be: A Calculator

expr= =expr

5.4.9 Storage Classes

There are only two storage classes in be: global and automatic (local). Only
identifiers that are to be local to a function need to be declared with the
auto command. The arguments to a function are local to the function. All
other identifiers are assumed to be global and available to all functions.

All identifiers, glob al and local, have initial values of zero. Identifiers
declared as auto are allocated on entry to the function and released on
returning from the function. They, therefore, do not retain values between
function calls. Note that auto arrays are specified by the array namer, fol­
lowed by empty square brackets.

Automatic variables in be do not work the same way as in C. On entry to a
function, the old values of the names that appear as parameters and as
automatic variables are pushed onto a stack. Until retun1 is made from the
function, reference to these names refers only to the new values.

5.4.10 Statements

Statements must be separated by a semicolon or a newline. Except where
altered by control statements, execution is sequential. There are four types
of statements: expression statements, compound statements, quoted
string statements, and built-in statements. Each kind of statement is dis­
cussed below:

Expression statements
When a statement is an expression, unless the main
operator is an assignment, the value of the expression
is printed, followed by a newline character.

Compound statements
Statements can be grouped together and used when
one statement is expected by surrounding them with
curly braces ({ and }).

Quoted string statements
For example:

"string"

prints the string inside the quotation marks.

5 - 19

XENIX User's Guide

Built-in statements

5-20

Built-in statements include auto, break, define, for,
if, quit, return, and while.

The syntax for each built-in statement is given below:

Auto statement

The auto statement causes the values of the identifiers
to b e pushed down. The identifiers can be ordinary
identifiers or array identifiers. Array identifiers are
specified by following the array name by empty square
brackets. The auto statement must be the first state­
ment in a function definition .. Syntax of the auto state­
ment is:

auto identifier [, identifier]

Break statement

The break statement causes termination of a for or
while statement. Syntax for the break statement is:

break

Define statement

The define statement defines a function; parameters
to the function can be ordinary identifiers or array
names. Array names must be followed by empty
square brackets. The syntax of the define statement
is:

define ([parameter [,parameter . . .]]){statements}

For statement

The for statement is the same as:

first-eApression
while (relation) {

statement
last-expression

}

All three expressions must be present. Syntax of the
for statement is:

for (expression; relation;expression)sta_tement

0

()

be: A Calculator

If statement

The statement is executed if the relation is true. The
syntaxis as follows:

if (relation) statement

Quit statement

The quit statement stops execution of a be program
and returns control to XENIX when it is first encoun­
tered. Because it is not treated as an executable state­
ment, it cannot be used in a function definition or in
an if, for, or while statement. Note that entering a
Ctrl� d at the keyboard is the same as entering "quit".
The syntax of the quit statement is as follows:

quit

Return statement

The return statement terminates a function, pops its
auto variables off the stack, and specifies the result of
the function. The result of the function is the result of
the expression in parentheses. The first form is
equivalent to "return(O)". The syntax of the return
statement is as follows:

return(expr)

While statement

The statement is executed while the relation is true.
The test occurs before each execution of the state­
ment. The syntax of the while statement is as follows:

while (relation) statement

5-21

c\

c

,---1 1
."-._./

Replace this Page
with Tab Marked :

uucp

I C'

c

Chapter 6

Building a

Communication System

6.1 futroduction 6-1
6.1.1 HowTo UseThis Guide 6-1

6.2 WhatYouNeed 6-2

6.3 Installing A Direct Wire 6-2
6.3.1 Choose a S eriai Line 6-3
6.3.2 Connect a Serial Wire 6-3

6.4 Installing a Modem 6-4
6.4.1 Choose a Seriai Line 6-5
6.4.2 Set the Dialing Configuration 6-5
6.4.3 Connect the Modem 6-6
6.4.4 Configuring a Hayes Smartmodem 2400 6-6
6.4.5 Variable Rate Modems 6-8
6.4.6 Testthe Modem 6-8

6.5 Installingauucp System 6-9
6.5.1 uuinstail 6-11
6.5.2 Choosing a uucpSiteName 6-13
6.5.3 CreatingaDial-In Site 6-14
6.5.4 Creating aDial-OutSite 6-22
6.5.5 Create a Transmission Schedule 6-26
6.5.6 Linkingmicnet Sites 6-28

6.6 Maintaining the System 6-28
6. 6.1 Displaying and Merging Log Files 6-29
6. 6. 2 Cleaning the uucp Spool Directory 6-29
6.6.3 ReclairningLogFiles after a Crash 6-30
6.6.4 Reclaiming Data Files after a Crash 6-30
6.6.5 Checking the Transmission Status 6-31
6.6.6 CheckingforL0cked Sites or Devices 6-32
6. 6. 7 Creating Maintenance Shell Files 6-32

6.7 Details of Operation 6-32
6.7.1 uucp Programs 6-33

6. 7.2 uucp Directories and Files 6-33
6.7.3 uucp- Site-to-SiteFileCopy 6-34
6.7.4 uux- Site To Site Execution 6-37
6.7.5 uucico - Copyln, CopyOut 6-39
6.7.6 uuxqt-uucp CommandExecution 6-43
6. 7. 7 Security 6-43

·

Building a Communication System

6.1 Introduction

This chapter explains how to build a communication system for your com­
puter using either a direct serial line or a normal telephone line and a
Hayes Smartmodem. A communication system provides a way to:

• Login to the computer from atemote terminal or computer.

• Use the cu(C) command to call and login to other computers.

• Use the uucp(C) command to copy files to and from remote com­
puters.

• Use the nux(C) command to execute remote commands, including
the maii(C) program (rmail) on a remote computer.

In particular, the communication system is a practical solution to the prob­
lem of two micnetnetworks (see theXENIXOperations Guide) that cannot
be connected because of distance or cost of cable.

All communication tasks are supported by a variety of files and directories,
h1 addition, the tasks invoked by the uucp and nux commands are actually
performed by a system of underlying programs, called the uucp system.
The files and underlying programs are described in full later in this chapter.

The following sections explain how to install a modem, and how to
configure the necessary files for your system. They also explain how to and
maintain auucp system, and describe the detailsofhowitworks.

6.1.1 HowTo Use This Guide

This guide describes how to build a uucp system and covers both hardware
installation, and software configuration. Topics are first presented in a
general form, then in greater detail.

Each control file is first described in general form. Then, you are shown
how to configure the file with theuuin�tall utility.

You do not need to use uuinstall to set up your communication system.
However, this utility helps you to be more accurate when you configure the
system.

Be sure to read the text carefully, since there are many similar commands
and actions.

6- 1

XENIX User's Guide

6.2 What You Need

To install a direct wire communication system on your computer, you need

• A ! least one RS-232 serial line (or serial port) on your computer to
use foruucp and cu.

• The uucp programs and files extracted from your XENIX System
distribution.

If you want to use your computer as a dial-in and/or dial-out site with a
modem� you also need:

• A modem. The default supported modem is a Hayes Smartmodem
1200, but you can modify the supplied dialing routines for other
modems.

• A standard telephone jack for access to the telephone system
(touch tone line required for the Hayes).

• An RS-232 cable to connectthe serial line to the modem.

Finally, since many of the tasks you must perform require special permis­
sions, you must log in to your computer's super-user account before per­
forming them. Check with your computer's system manager before
proceeding with this installation, or turn to the XENIX Operations Guide
for instructions on how to login as the super-user.

6.3 Installing A Direct Wire

This section describes how to install a direct wire between two computers.
To connect two computers with a direct wire, you need to:

• Choose a serial line on each machine.

• Connect a serial wire (RS-232) between the two machines, using the
chosen serial lines.

• Decide which machine is the dial-in site and which is the dial-out
site. The dial-out site callsup andlogsin to the dial-in site.

When you finish with these steps, you can proceed with next sections to
actually set up the sites.

6-2

I �
I , (_ /

Building a Communication System

6.3.1 Choose a Serial Line

On each machine, you must choose the RS-232 serial line you want to use.
If there are no lines available, you rnust install a new serial line or make one
availab le by removing any device connected to it. If you remove a terminal,
make sure no one is logged in.

Once you have chosen a serial lines, find the name of the device special file
associated with the line by looking in Appendix A of the XENIX Opera­
tions Guide. The filename should have the form

/dev/ttynn

where mz is the number of the corresponding line. For example, I dev!tty la
usually corresponds to serial line 0. You need the name of the actual line
for later steps.

The serial line you use for your communication system should be owned by
uucp. To make sure the line is owned by uuc:p enter this command:

chown uucp /dev/ttynn

wherenn is the number of the corresponding line.

6.3.2 Connect a Serial Wire

You connect two computers together using an RS-232 cable. The actual
pin configurations sometimes vary between machines.

Typically, the wire should connect pins 2, 3, and 7 (and/or 20) on one com­
puter to the same pins on the second computer. Sometimes the cable must
be nulled, which means that pin 2 on one machine is connected to pin 3 on
the other, and vice versa.

Since the connections can vary, you should check the hardware manuals
for each computer to determine the proper pin connections.

Testing A Connection

For this section, tty2a is used as the example serialline forboth machines.

To test the wire connection between two machines, follow these steps:

1. Disable the serial lines on each machine. On each computer, enter
the command:

disable /dev/tty2a

6 - 3

XENIX User's Guide

2. Attach one end of the serial wire to one of the machines. Attach the
other end to the standard data port of a terminal.

3. Enter this command at the computer:

Note

(stty 9600; date) < /dev/tty2a > /dev/tty2a

tty2a is our example serial line, and the date command provides
sample output.

You should see the output of the date command appear on the ter­
minal screen. Repeat this procedure on the other machine.

If this doesn'twork, check the following:

The wire is plugged in properly at each end.
- Thecontinuityofthewire.
- The terminal is configured correctly

(baud rate, parity, etc.).
- The serial line is disabled.
- You are usingthecorrectpinnumbers.

An unterminated serial line can cause serious system problems. Do
not leave serial lines dangling.

6.4 Installiug a Modem

With a modem, you can communicate with computers over standard
phone lines. These are the steps to install a modem:

• Choose a serial line.

e Set the dialing configuration.

• Connect the modem.

• Testthe connection.

The following sections explain each step in detail. Malee sure you inform
the telephone company of your intent to use a modem with your telephone
line.

6- 4

c,

Building a Communication System

You should be particularly careful, since certain telephone services (such
as ''call waiting") can disruptuucp conversations.

6.4.1 Choose a Serial Line

Choose.theRS-232_serial li�1e you want_to use with the system and connect
to the modem. If there are no lines available, you must install a new serial
line or make one available by removing any device connected to it. If you
remove a terminal, make sure no one is logged in.

Once you have chosen a serial line, find the name of the device special file
associated with the line by looking in Appendix A of the XENIX Opera­
tions Guide. The filename should have the form

/dev/ttynn

where nn is the number of the corresponding line. For example, /dev/tty lA
usually corresponds to serial line COMM 1. You need the name of the
actual line for later steps.

The serial line you use for your communication system should be owned by
uucp. To make sure the line is owned by uucp enter this command:

chown uucp /dev/ttynn

where nn is the number of the corresponding line.

6.4.2 Set the Dialing Configuration

In this communication system, your modem can be used to both send and
receive calls. You must set the appropriate switches on the modem. (If
you are setting up a Hayes Smartmodem 2400, see the neA-t section for
configuration instructions.) Follow these steps to configure a Hayes
Smartmodem 1200:

1. Remove the front cover of the modem and locate the 8-pin
configuration switch. (See the Hayes Reference Manual for instruc­
tions on how to remove the cover and locate the switch.)

2. Set the pins on the configuration switch to the following positions:

I �Own
•

3. Replacethe frontcover.

• •
•

• • • : I

6-5

XENIX User's Guide

If you have a different modem, consult your reference manual for the
proper switch settings to both send and receive calls.

6.4.3 Connect the Modem

Once your modem's dialing configuration is set, you are ready to connect
the modem to your computer. For proper modem operation, the RS-232
cable must provide the pin connections shown below.

Note that the computer's serial connector must have a DTE (Data
Terminal Equipment) configuration. The modem is assumed to have a
DCE (Data Communications Equipment) configuration.

Pin Connections

Computer Modem
(DTE) _(DCE)

1 1
2 2
3 3
6 6
7 7
8 8

20 20

These pin connections are explained in the Hayes Reference Manual.

Review the installation instructions given in the Hayes Reference Manual,
then follow these steps:

1. Connect the RS-232 serial cable to the serial line connector on the
modem, then to the serial line connector on your computer. Make
sure the cable is fully connected. (If you are using a Hayes 2400, a
2-3-7 pin cable is not sufficient. We suggest a ribbon cable to con­
nect all appropriate wires.)

2. Plug the telephone line cable into the telephone connector on the
modem, then into the telephone wall jack.

3. Plug in thepower cordofthemodem.

6.4.4 Configuring a Hayes Smartmodem 2400

Although most aspects of modem installation are similar, the Hayes 2400
Smartmodem requires on-line configuration if it is to be used as a dial-in
line. Note that the Hayes 2400will not answer the phone with a 2400 baud
carrier if it was not set up with 2400 baud commands.

6-6

0

c

Building a Communication System

Make sure that the /usr/lib/uucp/L- devices file contains an entry for the
line:

D IR ttynn 0 2400

You must then configure the modem by issuing set up commands via
cu(C). Enter:

cu -s2400 -1 ttynn dir

where nn is the "tty" number of the serial line. Press RETURN.

Next, enter the following commands to configure the modem. They will be
saved in the modem's non-volatile memory. If you do not want to save the
settings, dO not enter the last command (at&w). Commands are in the left
column and short descriptions of what they do are in the right column. Fol­
low each command with a RETURN:

at&f

att .

at!O

at&d2

at&cl

atsO�l

ats2�128

a teO

atql

at&w

Fetch factory configuration.

Tone dialing.

Low speaker volume.

Set dtr "2": go on hook when dtr-drops.

Set dcd "1": dcd tracks remote carrier.

Answer phone after 1 ring (AA light should
come on).

Disable modem escape sequence.

No echo (modem will no longer echo what is
sent to it).

Quiet mode (modem will not respond with
"OK" after this command or any that follow).

S aves settings in non-volatile memory.

Exit frOm en by entering a ''tilde" and a "period", followed by a RETURN:

6-7

XENIX User's Guide

Set up dia!HA24 as the default dialer program with the following com­
mands:

cd /usr/lib/uucp

In dia!HA24 dial

The modem is now configured and readyfortesting.

6.4.5 Variable Rate Modems

Some modems can determine the connection baud rate from the carrier
sentbyaremote system. These modems inform the local system of the con­
nection baud rate before issuing the carrier detect signal. The Hayes 2400
dialer supplied with uucp detects different connection baud rates and
informs uucp and en when it exits with a successful connection.

The speed fields in L- devices and L . .syscan specify a range of baud rates for
a connection. If a dialer supports baud rates from 300 to 2400 baud, enter
the baud rate range in the speed field ofL-devices as follows:

300-2400

If a dialer/modem does not allowvariablebaudrates, place a single baud in
the speed field. If a remote system supports several different speeds, place
the range ofbaudratesin the speed :field ofL.sys. Jftheremote system con­
nects at a single baud rate, place that number in L.sys. uucp passes the
intersection of the L.sys and L- devices baud rate ranges to the dialer when
connecting. If the dialer connects outside of the baud range, it returns a
bad baud rate error. Otherwise, it returns the baud rate of the connection.

6.4.6 Test the Modem

As the last step of the modem installation, you should test the modern to
make sure that it can send and receive calls. Once you have verified that
the modem is working, you can begin to use the communication system.

To test the modem, follow these steps:

1 . Start the computer and login as the super-user.

2. Disable the modem serial line by entering

disable /dev/ttynn

where nn is the "tty" number of the serial line.

6-8

c

c

Building a Communication System

3. Turn on power to the modem.

4. If you are using a Hayes 1200� make sure the volume switch on the
modem is at an appropriate level. You must be able to hear the
modem to carry out this test successfully. See the Hayes Reference
Manual for the location of this switch.

5. Invokethedial(C)program using a command line of the form:

/usr/lib/uucp/dial /dev/ttynn number speed

where /dev/ttynn is the filename of your serial line, and number is
your telephone number (the number of the telephone jack your
modem is connected to). dial will use ungetty(C) to disable the line
for the duration of the call. For example, if your serial line is
/dev!ttyl and thenumberis "5551234," enter:

/usr/Jib/uucp/dial /dev/tty1 5551234 1200

6. Listen carefully to the modem. You should hear each digit as the
number is dialed, then hear the busy signal when the telephone sys­
tem tries to make connection with your modem.

7. If the busy signal is present, wait a few moments and listen carefully
for the modem to hang up. The modem automatically discontinues
any callforwhich it cannot make a connection.

8. If the busy signal is not present, make sure you have connected the
modem to the telephone jack. Malee sure the jack is connected to
the phone system. Make sure you gave the correct number when
invoking dial.

9. If you did not hear the modem dial, make sure the volume switch is
up. Make sure the modem is connected to the correct serial line and
that the cable connection is tight. Make sure you gave the correct
filename when invoking dial. Make sure modem's power is on.

6.5 Installing a uucp System

When you install the uucp system, you configure a series of files which con­
tain information about, and control the actions of the uucp programs.
You can modify these files with a standard text editor, or you can use the
uuinstall utility.

To install a uucp system you:

• Set up the proper hardware (direct wire or modem).

6-9

XENIX User's Guide

• Choose a system name for your computer (systemid).

• Create either a dial-in or dial-out site, or a combination of both.

• Create a transmission schedule to ensure that communications
operate automatically.

Note that when you install the uucp system, or make any modifications,
you should be logged in as root. Virtually all of the uucp files are writable
only by the super-user, and many of them are also readable and executable
only by root. Make sure when you are done that all of the uucp files are
owned by uucp and not root. uucp will not_ work correctly if it cannot read
or write all of its files.

There are two ways to configure a uucp site:

• As a dial-irt site.

• As a dial-outsite.

As a dial-in site, other computers call up and log in to your system. They
can transfer files and execute certain commands.

As a dial-out site, your computer calls up other computers and logs in.
Your computer initiates file transfers to and from the remote machine, as
well as local and remote command execution.

Note

The terms dial-in, dial- out and call describe the communication
process for both direct wire and modem/telephone sites.

You can configure your system as both a dial-in and dial-out site, although
it cannot function as both at exactly the same time. This is because the
serial line is enabled at a dial-in site, and disabled at a dial-out site.
Options to configure a port as a dial-in/dial-out line are discussed at the
end of HCreating a Dial-out Site."

When you wish to use the port to dial out, the dial(M) command uses
ungetty(C) to disable the port while the call is taking place, and to enable it
again when the call is done. Because of this, you should not have to issue a
separate command to change the status of the port before making a call.

6-10

0

c

Building a Communication System

The following sections explain how to use the uuinstall utility to create files
for both kinds of sites. They also explain how to create a transmission
schedule usingcron and how to link togethermicnet sites.

6.5.1 uuinstall

uuinstallhelps you install information in various uucp control files. To use
the uuins tall utility, log in as root.

Then, enter:

uuinstall

The screen displays the main menu:

UUCPAdministration Utility

Choose one of the following options:

1 . Examine or update system identification.

2. Examine or update dial-in or dial-out devices.

3. Examine or update dialing code abbreviations.

4. Examine or update system connections.

5. Examine or update UUCPusers.

6. Terminatethisprogram.

Choose an option:

uuinstall returns to this display after performing tl1e action you request.
You also return to this main menu if you only press RETURN at a menu
option without entering any data.

6-11

XENIX User's Guide

Each menu option acts on a particular control file:

Menu
Option

1.

2.

3.

4.

5.

Control File

I etc/ systemid

/usrllib/uucp/L-devices

/usr/lib/uucp/L-dialcodes

/usr/lib/uucp/L.sys

/usr/lib/uucp/USERFILE

Function

Contains the uucp name
of your computer. Other
computers on the uucp
network know your com­
puter by this name.

Describes the devices on
your computer which are
connected to other com­
puters on the uucp net­
work.

Contains a list of abbrevi­
ations used in the dialing
codes for placing calls to
other computers.

Lists the systems on the
uucp network you can
call, or which call you. It
also specifies when you
can call, or are called,
which serial lines are used
and the baud rate used.

Defines which directories
a given site (or a given
user) may access using the
uucp and nux commands.

There is an additional file that you cannot change with theuuinstall utility:

/usr/lib/uucp/L.cmds Contains a list of all commands which the
uucp programs are allowed to execute.
This list overrides the default allowable
commands. The file can be changed with
any standard text editor.

When you have made all necessary changes to the uucp control files, enter
option '6' to exit from the program. The uuinstall utility then displays:

Do you want to update the UUCPcontrol files?

If you enter 'y', the control files are updated. Any other response causes
the uuinstall utility to exit without making any changes to the files. Each of

6-12

c

c/

Building a Communication System

the options in the main uuinstall menu are described in detail later in this
chapter.

You can also invoke the uuinstall program with a .. r command line option.
This allows you to read the current settings of the uuinstall menu options,
butwillnot allow you to make any changes when you exit the program.

You must be the super-user to run uuinstall. Refer to uuinstall(C) in the
XENIXReference for more information.

6.5.2 Choosing a uucp Site Name

In a uucp system, every computer belongs to a "site." A site is any com­
puter or anymicnetnetwork that can communicate with the uuc:P system.

To distinguish one site from another, every site must have a unique "site
name.'' A site name is any combination of letters and digits that begins with
a letter and is no more than seven characters long. The site name may then
be used in uucp and nux commands to direct transmissions to the
appropriate computer or micnet network.

The site name should suggest some characteristic of the site, such as its
location or affiliation. For example, a site in Chicago can be named "chi.:..
cago," or a site in the legal department can be named "legal." The site
name must be unique. That is, no other computer that calls your computer
oris called byyourcomputer can have the same site name.

Once you chose a site name, add it to the /etclsystemid file as described in
the next section.

Creating the systemid File

Each site must have a /etc!systemid file. The file defines the site name of
the given site and associates the site with a micnet network, if any. The file
has the form:

site name
[machinename]

sitename The name of the given site

machinename The micnet machine name for that computer. If the
system is not connected to a micnet network, the
machinename is optional.

6-13

XENIX User's Guide

For example, this entry defines a site named "chicago" whose micnet
machine name is "brewster":

chicago
brewster

To set up thesystemid file for your system, enter:

uuinstall

At the main menu, choose option '1.' The current site name and machine
name is displayed and you are prompted for any changes to either of these
names. If you want to make any changes, you are prompted to enter them.

Since uucp systems are often created after a micnet network has been esta­
blished, the systemid file usually already exists on a given site. In this case,
you must add the site name to the beginning of each systemid file on each
computer in themicnetnetwork.

Note that you may list more than one machine name if desired, but each
name must b e on a separate line. For a full description of the systemid file,
see systemid (M) in the XENIXReference Manual.

6.5.3 Creating a Dial-In Site

To create a dial-in site forlogins by remote terminals or computers, you:

• Choose a serial line.

• Disable the serial line.

• Edit the serial line entry in the letclttysfile.

Then you place information into several control files to allow logging in on
the serial line you have chosen:

• Usemkuser(C) to add a login entryfor uusite.

• Add user access information to the USERFILEfile.

• Set access permissions in the L.cmds file. Any permissions listed in
this file override the uucp default permissions.

• Use uuinstall to add uusite information to L.sys.

• Enablethe serial line.

6-14

0

Building a Communication System

Choose a Serial Line

Use a line with modem control for the dial-in line. Refer to "Choose a
Serial Line" for more information.

Disable theSerialLine

Disabling the serial line is the next step in creating a dial-in line. To disable
the serial line, follow these steps:

1. If you are using a modem, make sure it is installed and tested.

2. Make sure you are logged in as the super-user.

3. Disable the serial line by entering:

disable /dev/ttynn

where nn is the number of your serial line. If the line is already dis­
abled, the command displays an error message that you can safely
ignore.

Edit/etc/ttys

The file /etc/ttys contains a list of possible login terminals. Enter the com­
mand:

cat /etc/ttys

You see a series of entries for the different serial lines.

The form of an entry is:

xxttynn

Where:

XX Two digits. The first is either a one (1), which means the line is
enabled, or a zero (0), which means the line is disabled. The
second is a number or letter which defines the baud rate of the
line.

nn Thenumber ofthe tty.

6 - 15

XENIX User's Guide

An example entry for a serial line connected to a modem might be:

02tty2a

The first digit is a zero, which means the line is disabled, so that terminals
or computers cannot log in on that line. That digit changes to a one when
you use the enable command (then ext step).

The second digit, '2,' means that the getty running on that line cycles the
baud rates of that line between 1200, 2400, and 300baud.

For a direct line, the entry might be:

06tty2A

If you need to change an entry, do so with a standard text editor. For more
information on /etc/ttys, and the various control codes, see getty(M) in the
XENlXReference.

Create uucp Login Entries

A dial-in site must provide a login entry for the sites that call it. These
entries are placed in the !etc/passwd file.

A uucp login entry has the same form as an ordinary user login entry (see
Chapter 3 in the XENIX Operations Guide), but has a special login direc­
tory and login program instead of the normal user directory and shell.

To create a uucp login entry, use the mkuser(C) program and follow these
steps:

1. Choose a new login name and a user ID for the uucp login. The
name may be any combination of letters and digits that is no more
than eight characters long. The user ID must b e an integer number
in the range 200to 65535.

Make sure the name and ID are unique. A uucp login entry must not
have the same name oriD as any otherlogin entry.

2. Enter:

/etc/mkuser

Follow the program menus and prompts to add the user(s) you wish.

For a shell type, use "uucp Login."

3. mkuser prompts you to enter a password for the new user. This is
optionalforuucp logins.

6-16

c

(/

Building a Communication System

You can either create new login entries for each site that calls your site, or
use one entry for all sites.

Not�

A site that dials in to yourcomputermust knowif its login has a pass­
word. Each site also needs to know what its password is, otherwise it
cannot login to your system.

Set Up the USERFILE

The USERFILE file define� which directories a given site (or a given user)
may access using the uucp and uux commands. You should create one
USERFILE entry for each site or user with a login entry in the letclpasswd
file. Each entryhas theform

login,sitename[c] pathname .. .

login

sitename

c

pathname

The login name for a given site (optional).

The site name of a given site (optional).

The c option indicates a callback should occur.

One or more full pathnames of the directory(s) the
given site may access.

The following rules explain how access is granted for each entry.

1. A calling site is granted access to those directories defined in an
entrycontainingits site name.

2. A calling site whose name does not appear in an entry is granted
access to the directories defined for the first entry without a site
name.

3. A user is granted access to those directories defined in an entry con­
taininghis login name.

4. A user whose login name does not appear in an entry is granted
access to directories defined in the first entry without a login name.

6-17

XENIX User's Guide

You may have more than one entry with the same login name if you want.
However, you must make sure that at least one of these entries also has the
site name of any calling site which can login with that name, or that one of
these entries has no site name.

For example, consider the following en tries.

uuccg,chicago /usr /usr2/market
uucp, /usr/vendor
schmidt, /usr/vendor

/usr/spool/uucp/uucppublic

The site named "chicago" has access to files in the directories named
"/usr" and "/usr2/market". Other sites that login as user "uucp" will be
granted access to "/usr/vendor" only. Any local or remote user named
"schmidt" is granted access to the directory "/usr/vendor''. All other
users have access to ''/usr/spoolluucp/uucppublic" only.

You can enter this information by choosing option '5' of the uuins tall pro­
gram.

You are prompted as to whether you want to see the current entries in the
userfile. If you enter 'y,' you see a screen display similar to the following:

Login Sitename

0. uucg chicago
1. ANYLOGIN ANYSITE

Paths

The ANYLOGIN and ANYSITE entries are special entries displayed when­
ever a blank login name or site field are encountered in the userfile.

You are then asked whether you want to add or delete an entry in the file.
Entries are always deleted by specifying the entry number (#) shown in the
first column of the screen display. If you request that an entry be added,
you are prompted for the login name, site name and path names of the new
entry. If you press RETURN in response to this prompt, the display returns
to the main uuinstallmenu.

In response to the requests for a login name and site name, you may enter
the special name "A" (meaning "ANY") which corresponds to a blank
field in the userfile for the login or site names. The prompts for pathnames
continue until you enter a blank line.

6-18

0

Building a Communication System

Create the L.cmds File

You do not need to create the file L.cmds unless you have special security
considerations. The uucp login shell may execute only the following
default commands:

• lpr
• rmail
• who

• mail
• rnews

If you place a list of commands in the file L. cmds, that list supersedes the
default allowable commands. If the L.cmds file exists, but is empty, no
commands are allowed.

If you want your machine to immediately forward files from a remote
machine to other machines, the command /usr/lib/uucp/uucico must be
present in the L. cmds file. Otherwise, files will be forwarded the next time
your machine connects with the remote machine.

Create the L.sys File

The /usrllibluucp/L.sys file defines the names, telephone numbers, and
login i;nformation of all sites in the system. (Note that tabs should not be
used &s field separators.) The file contains one or more entries of the form

sitename time device speed phone login

With:

site name

time

device

speed

phone

login

Thename ofthe site to be called,

A combination of letters and digits that gives the
weekdays and times when the given site can be called,

The name of the device through whkh the given site is
to be called,

The line speed for the call,

The phOne number of the given site, and

Login information required to login to the given site.

6- 19

XENIX User's Guide

The time defines when the given site can make calls to other sites. It has the
form

days times

where days is a list of one or more days of the week, and times is a range of
times of day. The days of the week may be "Su", "Mo", "Tu", "We",
"Th", "Fr'', "Sa", "Wk.", ''Any", and "Never". "Wk" means "any week­
day," "Any" stands for "any time,' and "Never" indicates that the site is
never called (except by special request).

The time of day must be given as a four-digit number. The first pair of
digits gives the hour (in terms of a 24 hour clock), the second pair gives the
minutes. A range of times is a pair of times of the day separated by a
hyphen (-). For example, the entry

MoTuThOSG0-1230

allows the given site to be called any Monday, Tuesday, or Thursday from 8
in the morning to 12:30 in the afternoon.

The device must be the keyword "ACU" if you are using a modem. If you
are using a direct line to the other site, then you must give the filename of
the serial line (or otherdevice) youintend to use (for example, ttyla) .

speed is the baud rate that the remote system will connect at. A range of
baud rates may be used here if the remote system can connect at more than
one baud rate. A range is specified by a minimum and a maximum baud
rate separated by a dash. uucp passes the intersection of the L.sys speed
and L- devices speed fields to the dialer.

The phone must b e the telephone number of the given site. It must have the
correct number of digits (including area code if necessary) or be a combi­
nation of L-dialcodes abbreviations and digits. L-dialcode abbreviations
must go before any digits. Do not use hyphens. For example, "5551234" is
a valid local number and "2065551234" is a valid long distance number. If
the abbreviation "sc" is defined to be "555," then "sc" may be used in
place of "5551234."

With the Hayes modem, you may use a comma (,) in a number to cause a
delay when dialing. This is usefulifyou must dial for an outside line before
placing the call.

For example, the number "9,5551234" causes a delay immediately after the
"9" is dialed. After the delay, the rest of the number is dialed. If you are not
using a modem, then phone must be the filename of the device you intend
to use instead of a phone number.

6 - 20

Building a Communication System

The login must be a sequence of na:mes, numbers, and other information
that represents the steps required to log in to the given site. This sequence
has the form

expect send [expect send] . . .

where expect is the prompt o r message that you expect the -given site to
return to the calling site, and send is the name, number, or other informa­
tion that you want to send in response to the expected prompt or message.

For example, the following is the login sequence for a typicalXENIX site

ogin: uuccg ssword: market

Note that "ogin:" and "ssword:" are given instead of the complete
prompts "Login:" and "Password:". Only the last eight characters in each
expected prompt or message are examined, so you do not need to give the
preceding characters if you want to save space.

If you anticipate problems during the login sequence, you may include a
conditional response immediately after each expected pJ;"ompt or message.
This conditional response has the form

expect [-send-expect]] . . .

where expect is the prompt or message you expect the given site to return,
send is the name or number you want to send if the prompt or message
returned is not correct, and expectl is the prompt or message you expect
after sending the conditional response. For example, the following shows
how to invoke the "login" prompt if it is not immediately present.

--ogin-@-ogin-uuccg ssword: market

There are three special keywords that you may use in the login sequence.
The "@" keyword causes an end of transmission character to be sent, the
"BREAK" keyword causes a break character to be sent, and the PAUSEn
keyword causes uucico to wait for n seconds before continuing.

The completeL.sys entry is one line, as shown by the following example:

chicago Any ACU 1200 5551234 ogin: uucp ssword: market

Set up the L.sys file by choosing option '4' of the uuinstall command. You
are prompted as to whether you want to see the current entries in theL.sys
file.

6-21

XENIX User's Guide

If you enter 'y,' you see a screen display similar to the following:

Entry#:
System name:
Time to call:
Line:
Speed:
Phone#:
Login sequence:

0
chicago
Any
ACU
1200
5551234

ogin: uucp ssword: market

Press Enter to see next entry

A new entry is displayed each time you press the RETURN key. You are
then asked whether you want to add or delete an entry in the file. Entries
are always deleted by specifying the entry number (#) shown in the first
field for each displayed entry. If you request that an entry be added, you
are prompted for each field in tum. If you press RETURN in response to
this prompt, you return to the main uuinstallmenu.

The response to the prompt, concerning the line to use for the call, can be
either ' 'A , " for an ACU, or the device number of the tty to be used for the
connection.

Enable the Serial Line

The next step is to enable the serial line forlogins. For example, to enable
!devltty2A, enter:

enable tty2A

Your computer can now receive calls from remote terminals or computers
and prompt for a login name on /dev/tty2A.

f_IJ.S.4 Creatinga Dial-OutSite

To create a dial-out site, you choose a serial line and then place informa­
tion into several control files to allow use of the serial line you have chosen:

• Add user access information to the USERFILE file.

• Set access permissions in the L. cmds file. Any permissions listed in
this file override the uucp default permissions.

• Create, or modify, theL- devicesfile.

6-22

I
\

Building a Communication System

• Place information about logins on remote computers in the L.sys

Then, you install the dialing information your system uses to call and log in
to other computers:

• Set up the dial program.

• Place dialing abbreviations for remote computers in the L­
dialcodesfi!e.

• Create a transmission schedule in the form of a shell script to be
called periodically by the cron program.

With a dial-out line you can call and login to other computers by using the
en(C) command. The cu command uses the L-devices file to locate the
correct serial line and set the proper line speed when these values are not
explicitly given on the cu command line. en also automatically disables the
line for the duration of the call with ungetty(C) .

The following sections explain how to create some of the necessary files.
Editing /etc/ttys, file, creating the USERFILE, L.cmds, and L.sys files and
enabling and disabling the lines is discussed in the previous section "Creat­
ing a Dial-In Line."

Note

You can configure a single port to act as a dial-in/dial-out port, with
the port toggling from dial-in to dial-out automatically. (Refer to
"Dialing In and Out on the Same Line" at the end of this section.)

SetUp theL- devices File

The L-devices file defines the devices you intend to use to implement the
dial-out line. The file is also used by programs in the uucp system (as
described later). Use the uuinstall utility to set up this file.

Invoke uuinstall and select option (2' at the main menu. You are then
asked if you want to see the current devices.

Enter 'y' and you see a screen similar to this:

6-23

XENIX User's Guide

0.
1.

Type Line Call-Unit

ACU ttyla ttyla
DIR tty2a

Speed

1200
9600

The program prompts if you want to add or delete an entry in the tile.
Entries are always deleted by specifying the entry number (#) shown in the
first column on the screen display.

If you request that an entry be added, you are prompted for the type of
rmit, either an ACU or a direct line. Enter 'A' for an automatic calling unit
(modem) or 'D' for a direct line. You must use capital letters. If you press
RETURN in response to this prompt, you are returned to the main menu.

If you specify an ACU, you are prompted for the unit number of the calling
unit and the line. Respond withjustthenumberin each case, the uuinstall
program supplies the "tty" prefix. If you specify a direct line, you are
prompted for the iinenumber.

If the call-unit field of the L-devices file contains a complete pathname, it
will be used as the name of the dialer program. The device in the line field
will be used both as the line and the call unit. This feature allows the use of
different modems on different lines, each with a separate dial program.

Finally, you are prompted for the speed of the line. Your response is
checked and, if it is invalid, you are prompted for a valid response.

If the modem and dialer connected to this line support variable baud rates,
a range of b aud rates can be specified by placing the lowest rate and the
highest rate, separated by a dash, in the speed field.

uucp will compute the intersection of the speed fields in the L.sys and L­
devices files and pass the result to the dialer when connecting to a remote
system. If either L.sys or L-devices contain a single baud rate, that rate is
passed to the dialer which returns an erroriftheremote system did not con­
nect at that rate.

SetUp the Dial Program

Select (or create) the dial program you need for your modem. The default
dial program is for a Hayes Smartmodem 1200/1200B. Other dial pro­
grams (for Racal Vadic modems) are also supplied. If you need to use a
dial program other than the default dial, move lusrllibluucp/dial to
/usr!lib/uucpldial.hayes. You can then move the appropriate dial pro­
gram to /usr!lib/uucp/dial. The directory /usrllibluucp also includes
relinkable files necessary for producing dial programs for other kinds of
modems. Refer to Chapter 7, "Using Peripheral Devices," in the XENIX
Operations Guide and the manual pages dial(M) and dial(S) for more infor­
mation on creating dial programs.

6-24

0

Building a Communication System

Create the L� dialcodes File
The L-dialcodes file defines abbreviations for often used telephone
prefixes and area codes. You may use these abbreviations in the L.sys file
when forming the telephone numbers of remote sites.

The L-dialcodes file may contain one or more entries.of the form

abbreviation dial-sequence

where abbreviation is any combination of letters and digits that begins with
a letter, and dial-sequence is any combination of digits that represents a
telephone prefix, area code or any other part of a telephone number.

For example, the entry

ch 555

defines the abbreviation "ch" to be the telephone prefix "555 . "

Set up the L-dialcodes using option '3' of the uuinstall program. You are
prompted as to whether you want to see the current contents of the L­
dialcodes file.

If you enter "y, '� you see a screen display similar to the following:

0.
1.
2.

Abbreviation

Pas a
SntCrz
London

Code

1818
408
011441

You are then prompted to add or delete an entry in the file. Entries are
always deleted by specifying the entry number (#), shown in the first
column of the screen display. If you request that an entry be added, you are
prompted for the abbreviation and the dialing code for each entry. If you
press RETURN in response to this prompt, the display returns to the main
uuinstallmenu.

Note entry zero. In order for our example site to call area code 818
(Pasadena, CA), the area code must be prefixed with a one (1). Thus, the
dial code "Pasa" is equivalant to "1818."

6-25

XENIX User's Guide

In theL.sysfile, hereishowyou would use this example dial code:

plytch Any ACU 1200 Pasa793121l login uucp ssword: oaktree

The next section describes the :file in greater detail.

6.5.5 Create a Transmission Schedule

In the uucp system, the uucico program carries out all transmissions
between your site and other sites, sending and 1·eceiving file::; and com­
mands as long as there is work for it to do. On a dial-in site, uucico is
always started whenever a calling site logs in.

However, on a dial-out site, uucico is only started when explicitly invoked.
This means you must periodically start up the program on a dial-out site to
ensure that all transmissions requested by the uucp and nux programs are
completed.

You can do this in one of two ways:

e Invoke the program manually whenever you need it, or

• Create a shell script and let the cron program invoke uucico
automatically according to a schedule of transmissions.

The most convenient method is to let cron run uucico for you. To do this,
you must choose a schedule of times to invoke uucico then create a file
!usrlspoollcron/crontabsluucp for this schedule. This file has the form:

minutes hour day month day-of-week command-line

where minutes, hour, day, month, and day-of-week give the exact day of
the year and time of day to execute the given command-line. Each item,
except the command-line, must be an integer number within an acceptable
range, for example, Oto 59 for minutes.

A sequence of values for one item may be given by separating the values
with commas. Also, an asterisk (*) may be given to represent all accept­
able values. The command-line must be the name of the shell script you
have created to invoke uucico.

You can add an entry to the /usr/spool!cron!crontabs/uucp file by using a
XENIX text editor. For more information about the file, see cron (C) in the
XEN!XReferenceManual. For example, the entry:

15,45 * * * * /usrllib/uucp/transmit

invokes the shell script "transmit" every 30 minutes (at 15 minutes past the
hour and 45 minutes past the hour)to sites for which requests are pending.

6-26

(
� ·

Building a Communication System

The entry:

0 0 • * * /usrllib/uucp/transmit

invokes "transmit" every day at midnight, and the entry:

15 2,4,6 * * * /usr/Iib/uucp/transmit

invokes the script every day at '(2:15," ((4:15," ;md H6:15" in the morning.

A shell script is simply a text file that contains one or more XENIX com­
mands. For example, this shell script automaticalyinvokes uucico:

uucico -rl -ssitename

Use the - s option if you want to force a call to the given site even if no
requests for transmissions exist on the calling site. Note that the -S option
may be used in place of the -s option if you want to ignore the range of cal­
ling times given in the L.sys file. Use one uucico command for each site
you want to call. If you want to call only those sites for which requests
exist, give a single uucico command, but do not specify the -s or -S
option with the command.

Dialing In and Out on the S arne Line

It is possible to use a single port for dial-in and dial-out operations without
having to disable/enable it for each use. The dialers distributed with u.ucp
perform this function as appropriate when used to dial out to a remote site.
All that is necessary is a modification to the L.sys file that refers to the line
you already configured for your site.

Use the uuinstall command. Place the string ''Any" in the "time to call"
column for the dial-in/dial-out serial line, if it is not already there. The
line cannowbe used as a dial-in/dial-out port.

You can create a shell script byusing anyXENIX text editor. For conveni­
ence, the script should be placed in the /usrllibluucp directory and must be
given execute permissions for everyone. Note that you can also add uucp
maintenance programs to the script. See the section "Creating
Maintenance Shell Files" later in this chapter.

6-27

XENIX User's Guide

6.5.6 LinkingmicnetSites

To use a uucp system with yourmicnetnetwork, follow these steps:

1. Add the entry

uucp:

to the maliases file of the computer on which the uucp system is
installed.

2. For all othercomputersin your site, add the entry

uucp:machine- name:

to the maliases file. The machine-name must be the name of the
computer on which the uucp system is installed. This longer form of
entry may also be used on the computer on which the uucp system is
installed.

You can test the uucp system by mailing a short letter to yourself via
another site. For example, if you are on the site "chicago", and there is
anothermicnet site named "seattle" in the system, then the command

mail seattle!chicago!johnd

sends mail to the "seattle" site, then back to your "chicago" site, and
finally to the user "johnd" in your micnet network. Note that a uucp sys­
tem usually performs its communication tasks according to a fixed
schedule and may not return mail inunediately.

6.6 Maintaining the Sys tern

This section explains how to maintain the uucp system. In particular, it
explains how to display and merge the content of uucp log files, how to
remove old requests and files from the spool directories, and how to solve
some common problems.

You can automate some maintenance tasks by creating shell command
files and initiating these files with crontab entries. Other tasks require
manual modification. Some sample shell files are given toward the end of
this section.

6-28

Building a Communication System

6.6.1 Displaying and Merging Log Files

You can display a record of the transmissions requested and completed to
a given site or user by using the uulog(C) command. The user or sitename
must have been previously added to the network with the uusub � a com­
mand. Any users or sites not added to the network with this command will
not-be-located -by-uulog. The command displays the contents of the indivi­
dual log files created for a given site or user and merges these entries with
the system log file LOGFILE. The log files contain information about
queued requests. calls to remote sites, execution of uux commands, and
file copy results. The command has the form

uulog -ssitename -uuser

where -ssitename indicates the site whose log files are to b e displayed, and
-uz.tser specifies the user whose log files are to be displayed. If you do not
specify a sitename and user, log files for all sites and users are displayed.
The command places the newlogfiles at the beginning of the existing LOG­
FILE.

The log files are originally created in the !usr!spool/uucp directory as indi­
vidualfiles, but should be copied to theLOGFILE on a regular basis since
they are not copied automatically. For example, the command

uulog

merges alllogfiles and displays their contents. The command

uulog -schicago

merges onlylog:files created for the site "chicago."

Note that the system LOGFILE should be removed periodically since it is
copied each time new log files are put into the file.

6.6.2 Cleaning the uucp Spoo!Directory

You can remove unwanted uucp system files from the uucp spool directory
by using the unclean command. The command removes temporary data,
LOG, system status, and lock files from the spool directory if they are more
than a given number of hours old. The command has the form

unclean -ddir -m -nhours -ppre -XJZ

6 - 29

XENIX User's Guide

where -ddir names the directory to be scanned, -mcauses mail to be sent
to the owner of each file removed, -nhours gives the age in hours of files to
be removed, -ppre causes files with the given prefix to be examined and
removed, and -xn directs the command to give the nth level of debugging
output. Up to 10 file prefixes may be specified witb tbe -p option. If -m is
used, most mail is sent to the owner of the uucp programs since most files
put into the spool directory are owned by the owner of the uucp programs.
This is a result of the setnid bit being set on these programs. The default
number of hoursis72 (3 days).

The uuclean program should be run once a day. You can invoke it
automaticallybyusing a system daemon such as cron. The command

uuclean -pTM

removes all temporary data files that are at least three days old. The com�
mand

uuclean -pLCK -hl -m

removes all lock files that are at least an hour old and mails a list of each file
removed to the owner.

The unclean command may also be run as needed to remove unwanted
files after a system crash or an aborted uucp program.

6.6.3 Reclaiming Log Files after a Crash

You can reclaim individual log files after a system crash by changing their
access mode with the chmod(C) command, then using uulog command.
After a transmission failure or system crash, the individual log file for the
transmission may b e left with access mode 0222 making it impossible for
the uulog command to read the file. To reclaim the log file, you must use
chmod to change the access mode to 0666. You can then let uulog merge
tbem witb theLOGFILE.

6.6.4 Reclaiming Data Files artera Crash

You can check the status of files transmitted from a remote site and possi­
bly reclaim some or all of the data lost during an aborted transmission by
examining system data files. The data files contain the contents of files
copied from remote sites. These files are temporarily kept in the
/usrlspoolluucp directory and their names have the form

TM.pid.ddd

6-30

0

c/

Building a Communication System

where pid is a process-id and ddd is a sequential three-digit number start­
ing at zero for each invocation of uucico and incremented for each file
received.

The temporary data files are normally moved to the requested destination
immediately after the transmission has finished. However; if a transmis­
sion has failed-or-the system has cr-ashed,-the file remains-in the spool-direc­
tory. You can examine the contents of this file with the cat(C) command.
If desired, you can reclaim the file by moving it to a new location with the
mv(C) command. Leftover data files that cannot be redaimed should be
removed using the unclean command.

6.6.5 Checking the Transmission Status

You can check the status of transmissions between sites in the uucp system
by examining the system status files. System status files contain informa­
tion about login, dialup, or sequence check failure, as well as the talking
status when two machines are conversing.

The files are kept in the /usr!spoolluucp directory and their names have the
form

STST .sitename

where site name is the name of the remote site.

Normally, system status files are removed after each successful transmis­
sion, but when a failure occurs, the uucp system copies information about
the failure to the file and leaves it in the directory. This prevents the uucp
system from making further calls to the given site for about an hour, or for
sequence check failures, until the file is removed.

To examine the status, use the cat command to display the contents of the
file. If problems with transmissions are detected it may indicate a problem
with the modem or with the serial line connected to the modem.

If a system status file has been left due to a program_ or system crash, the file
may prevent all subsequent transmissions to the given site. In this case, the
file must be removed before attempting further calls.

When dialing out a status file will only be created when there is a problem at
the remote site. Local modem and line problems do not create status files.

6-31

XENIX User's Guide

6.6.6 CheckingforLockedSites or Devices

You can make sure the uucp system is not intentionally preventing
transmissions to a given site or through a given device by examining the sys­
tem lock files. The uucp system creates a lock file for each site being called
and for each device being used to call a site. Lock files prevent the uucp
system from attempting to duplicate conversations with a given site, or
from placing multiple calls on the same device.

The lock files are kept in the !usr!spool/uucp directory and their names
have the form

LCK..str

where str is either a site name or the name of the calling device.

Since lock files prevent all calls to a given site or through a given device, it is
wise to make sure no unnecessary lock files are left in the directory. If a
transmission has been aborted or the system has crashed, the lock files will
prevent subsequent transmissions for about 24 hours. ffyou want to place
a call before this time, you must remove the file using the unclean com­
man d.

6.6. 7 Creating Maintenance Shell Files

The uulog and unclean commands can be invoked automatically by plac­
ingthem in a shell file and creating a crontab file for the shell file. The sys­
tem daemon cron then invokes the commands at the given times and most
of the simple maintenance will be performed. For example, you can create
a shell file that removes TM, ST, LCKfiles daily, as well as the C. or D. files
for work which cannot be accomplished for reasons such as bad phone
number and login changes. In this case, the shell file should contain the
commands

/usr/lib/uucp/uuclean -pTM -pC. -pD.
/usr/lib/uucp/uuclean -pST -pLCK -n12

Note that the -n12 option causes the STand LCK files olderthau 12 hours
to be deleted. An appropriate crontab entry must be created in order to
invoke the shell file automatically.

6. 7 Details ofOperation

This section describes the details of uucp system program operation. It
explains the processes used to create system communication and defines
the files used to support the system.

6-32

c

Building a Communication System

6. 7.1 uucp Programs

The uucp system consists of four primary and four secondary programs.
The primary programs are

uucp This program creates work and gathers data files in the
spool directory for the transmission of files.

uux

uucico

uuxqt

This program creates work and execute files, and gathers
data files for the remote execution ofXENIX commands.

This program executes the work files for data transmission.

This program executes XENIX commands found in execu­
tionfiles.

The secondary programs are

uulog This program updates the log file with new entries and
reports on the status ofuucp requests.

unclean This program removes old files from the spool directory.

dial This program directs the modem to dial a remote site.

uusub This program monitors the uucp network.

6. 7.2 uucp Directories and Files

During execution of the uucp programs, the uucp system uses files from
the following three directories:

/usr/lib/uucp
This is the directory used for uucp and uusub system files
and all executable programs other than uucp and nux.

/usr/spool/uucp
This is the spool directory used during uucp execution
and for the uusub SYSLOGfile.

/usrlspool/uucpi.XQTDIR
This directory is used during execution of execute files.

Files are created in a spool directory for processing by the uucp daemons.
There are three types of files used for the execution of work:

Data files Contain data for transfer to remote sites

6-33

XENIX User's Guide

Work files

Execution files

Contain directions for file transfers b etween
sites

Contain directions for XENIX command execu­
tions which involve the resources of one or
more sites.

6. 7.3 uucp - Site- to-Site File Copy

The uucp program is the user's primary interface with the system. The
uucp program was designed to look like the cp command. The syntaxis

uucp [option] . . . source ... destination

where source and destination may contain the prefix sitename! which indi­
cates the site on which the file or files reside or where they will b e copied.

Note

uucp makes no distinction between binary and text files. However,
the set uid and set gid flags will not accompany the binary file and
must b e set by someone (or some command) once the binary has
arrived at its destination. In addition, the recipient should check the
file permissions and ownership for appropriateness.

The options interpreted byuucp are

-d Make directories when necessary for copying the file.

-c Do not copy source files to the spool directory, but use the
specified source when the actual transfer takes place.

-r Spool only, don'tinvokeuucico.

-m Send mail on completion of the work.

-n Notify a user at the remote site that files have arrived. This

6-34

option will also change the owner of the file to the notified
user.

Building a Communication System

The following options are used p1;marilyfor debugging:

-sdir Use directory dirforthe spool directory.

-xnu.m Use num as the level of debugging output.

The destination may be a directory name, in which c_ase the file_ name i s
taken from the last part of the source's name. The source name may con­
tain special shell characters such as ('?*[]". If a source argument has a
sitename! prefix for a remote site, the file name expansion will be done on
the remote site.

The command

uucp *.c chicago!/usr/dan

sets up the transfer of all files whose names end with .c to the /usr/dan
directory on the chicago machine.

The source and/or destination names may also con tall a -user prefix. This
translates to the login directory on th� specified site. For names with par­
tial pathnames, the current directory is prepended to the file name. File
names with '' . ./" are not permitted.

The command

uucp chicagordan/*.h -dan

sets up the transfer of files whose names end with .h in dan's login directory
to dan's local login directory.

For each source file, the program checks the source and destination
filenames and the site-part of each to classify the work into one of five
types:

1. Copy source to destination on local site.

2. Receive files from other sites.

3. Send files to remote sites.

4. Send files from remote sites to another remote site.

5. Receive files from remote sites when the source contains special
shell characters as mentioned above.

After the work has been set up in the spool directory, the uucico program
must be started to try to contact the other machine to execute the work.

6-35

XENIX User's Guide

Copying Files to a Local Destination

A cp command is used to do type 1 work. The -d and the -m options are
not honored in this case.

Receiving Files from Other Sites

For type 2 work a one line work file is created for each file requested, and is
put in the spool directory with the following fields, each separated by a
blank:

[1] R

[2] The full pathname of the source or a "user/pathnarne. The
-user part is expanded on the remote site.

[3] The full pathname of the destination file. If the ·user nota­
tion is used, it will be immediately expanded to be the login
directory for the user.

[4] The user's login name.

[5] A "-" followed by an option list. (Only the -m and -d
options appear in this list.)

Sending Files to Remote Sites

For type 3 work, a work file is created for each source file and the source
file is copied into a data file in the spool directory. (A -c option on the
uucp program prevents the data file from being made. In this case, the file
will be transmitted from the indicated source.) Pathnames are checked
using the USERFILE to verily access to the requested directory. The fields
of each entry are given below.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

6-36

s

The full pathname ofthe source file.

The full pathname of the destination or-user/filename.

The user's login name.

A "-"followed by an option list.

The name of the data file in the spool directory.

The file mode bits of the source file in octal print format
(e.g. 0666).

(--)

(
�/

Building a Communication System

Copying Files Between Sites

Fortype4and 5 work, uucp generates a uucp command line and sends it to
the remote machine; the remote uucico executes the command line.

6. 7.4 nux - Site To Site Execution

The nux command is used to set up the execution of a XENIX command
where the execution machine and/or some of the files are remote. The syn­
taxoftheuuxcommandis

uux [-] [option] . . . command-string

where command-string is made up of one or more arguments. All special
shell characters such as "<> r'' must be quoted eitherby quotingthe entire
command string, or by quoting the character as a separate argument.
Within the command string, the command and file names may contain a
sitename! prefix. All arguments which do not contain a "!" are not treated
as files. (They are not copied to the execution machine.)

A - (dash) is used to indicate that the standard input for the given com­
mand should be inherited from the standard input of the nux command.
The only option is essentially for debugging: -xnum directs the command
to use a number (1-9) num as the level of debugging output. The higher the
number, the more debugging information is provided.

The command

pr abc [uux - chicago!rmailjoe

will set up the output of "pr abc" as standard input to a mail command to
be executed on site usg.

uux generates an execute file which contains the names of the files required
for execution (including standard input), the user's login name, the desti­
nation of the standard output, and the command to be executed. This file
is either put in the spool directory for local execution or sent to the remote
site using a generated send command (type 3 above).

For required files which are not on the execution machine, uux will gen­
erate receive command files (type 2 above). These command-files are put
on the execution machine and executed by the uucico program. (This
works only if the local site has permission to put files in the remote spool
directory as controlled by the remote USERFILE.)

The execute file is processed by the uuxqt program on the execution
machine. It is made up of several lines, each of which contains an
identification character and one or more arguments. The order of the lines

6-37

XENIX User's Guide

in the file is not relevant and some of the lines may not be present. Each
line is described below.

User Line

U user site

where the user and site are the requestor's login name and site.

Required File Line

F filename real-name

where the filename is the generated name of a file for the execute machine
and real-name is the last part of the actual file name (contains no path
information). Zero or more of these lines may be present in the execute
file. The uuxqtprogram checks for the existence of all required files before
the command is executed.

Standard Input Line

!filename

The standard input is either specified by a "<" in the command-string or
inherited from the standard input of the nux command if the - option is
used. If a standard input is not specified, ldevlnull is used.

Standard Output Line

0 filename sitename

The standard output is specified by a ">" within the command-string. If a
standard output is not specified, ldev!null is used. (Note that the use of
" > > " is not implemented.)

Command Line

C command [arguments] . . .

The arguments are those specified in the command string. The standard
input and standard output does not appear on this line. All required files
are moved to the execution directory (a subdirectory of the spool direc­

. tory) and the XENIX command is executed using the shell. In addition, a
shell PATH statement is prepended to the command line as specified in the
uuxqtprogram.

After execution, the standard output is copied or set up to be sent to the
proper place.

6-38

0

Building a Communication System

nux is used by mail(C) when sending mail to a remote site. If you do not
want mail to call the remote site immediately, place the line "spoolonly" in
the file I etc/ default/mail.

6.7.5 uucico - Copy In, Copy Out

The uucico program performs the followingmajor functions:

Scan thespool directoryforwork.

Place a call to a remote site.

Negotiate a line protocol to be used.

Execute all requests from both sites.

Log work requests and work completions.

uucico may be started by a system daemon, by the user (this is usually for
testing), or by a remote site. (The uucico program should be specified as
the shell field in the /etc/passwd file for the uucp logins.)

When started with the -rl option, the program is considered to be in MAS­
TER mode. In this mode, a connection is made to a remote site. If 'Started
by a remote site, the program is considered to be in SLAVE mode.

The :MASTER mode operates in one of two ways. If no site name is
specified (the -s option not specified) the program scans the spool direc­
tory for sites to call. If a .site nameis specified, that site is called, and works
only be done for that site.

The uucico program must generally be started directly by the user or by
another program, such as a shell script invoked by cron. There are several
options used for execution:

-rl Start the program in MASTER mode. This is used when
uucico is started by a program or cron shell.

-ssitename Do work only for sitesitename. If -s is specified, a call to
the specified site is made even if there is no work for site
sitename in the spool directory, but call only when times
in the L.sys file permit it. This is useful for polling sites
which do not have the hardware to initiate a connection .

-Ssitename Do work only forsitesitenmne. If -S is specified, a call to
the specified site is made even if there is no work for the
site in the site in the spool directory. Unlike -s, this
option ignores the call times for the sitename·given in the
L.sysfile.

6-39

XENIX User's Guide

The following options are used primarily for debugging:

-ddir Use directory dirforthe spool directory.

-xnum Use num as the level of debugging output.

The next part of this section describes the major steps within the uucico
program.

Scanning For Work

The names of the work related files in the spool directory have the format

type . sitename grade number

where type may be "C" for copy command file, "D" for data file, "X" for
execute file, sitename is the remote site, grade is a character, and number is
a four-digit, padded sequence number.

The file

C.res4Sn0031

is a work file for a file transfer between the local machine and the "res45"
machine.

The scan for work is done by looking through the spool directory for work
files {files with prefix "C."). A list is made of all sites to be called. uucico
calls the site specified by the -s or -S option and process the correspond­
ingwork files.

Calling a Remote Site

The call is made using information from several files which reside in the
uucp program directory. At the start of the call process, a lock is set to for­
bid multiple conversations between the same two sites. The lock filename
has the form

LCK . . str

where stris the device name. The file is in the /usr/spoolluucp directory.

The site name is found in the L.sys file. The information contained for
each site is

[1] Site name

6-4D

Building a Communication System

[2] Times to call the site (days-of-week and times-of-day)

Device or device type to be used for caU

line speed

[3]

[4]

[5] phone number if field [3] is "ACU, " or the device name
(same as field [3]) if not

[6] Login information (multiple fields)

The time field is checked against the present time to see if the call should be
made.

The phone number may contain abbreviations (for example, mh, py, bos­
ton) which get translated into dial sequences usingtheL-dialcodes file.

The L-devices file is scanned using device type and line speed fields from
the L.sys file to find an available device for the call. The program trys all
devices which satisfy these fields until the call is made or until no more
devices can be tried. If a device is successfully opened, a lock file is created
so that another copy of uucico will not try to use it. If the call is complete,
the login information in the last field of L.sys is used to login.

The conversation between the two uucico programs begins with a
handshake started by the SLAVE site. The SLAVE sends a message to let
the MASTER know it is ready to receive the site identification and conver­
sation sequence number. The response from the MASTER is verified by
the SLAVE and if acceptable, protocol selection begins. The SLAVE can
also reply with a call-back required message, in which case the cunent
conversation is terminated.

Select Line Protocol

The remote site sends a message

Pproto-list

where proto-list is a string of characters, each representing a line protocol.

The calling program checks the protocol list for a letter corresponding to
an available line protocol and returns a use protocol message. The mes­
sage has the form

Ucode

where code is either a one character protocol letter or "N" which means
there is no common protocol.

6-41

XENIX User's Guide

Processing Work

The initial role of MASTER or SLA VB for the work processing is the mode
in which each program starts. (The MASTER has been specified by the
-rl option.) The MASTER program does a work search similar to the one
used in the section "Scanning For Work".

There are five messages used during the work processing, each specified by
the first character of the message. They are

s Send a file

R Receive a file

c Copy complete

X Execute a uucp command

H Hangnp

The MASTER sends "R," "S," or "Xn messages until all work from the
spool directory is complete, at which point an "H" message is sent. The
SLAVE replies with the first letter of the request and either the letter "Y"
or "N" for yes or no. For example, the message "SY" indicates that it is
okay to send a file. While in SLAVE mode, the standard error of uucico is
redirected to the file /usr/spoolluucp/AUDIT.

The send and receive replies are based on pe'rmission to access the
requested file/directory using the USERFILE and read/write permissions
of the file/ directory. After each file is copied in to the spool directory of the
receiving site, a copy-complete message is sent by the receiver of the file.
The message ''CY" will be sent if the file has successfully been moved from
the temporary spool file to the actual destination. Otherwise, a "CN" mes­
sage is sent. (In the case of "CN," the transferred file will be in the spool
directory with a name beginning with "TM.)" The requests and results are
logged on both sites.

The hangup response is determined by the SLAVE program by a work scan
of the spool directory. If work for the remote site exists in the SLAVE's
spool directory, an ('HN" message is sent and the programs switch roles. If
no work exists, an "HY" response is sent.

Terminating a Conversation

When an "HY" message is received by the MASTER it is echoed back to
the SLAVE and the protocols are turned off. Each program sends a final
"00" messa·ge to the other. The original SLAVE program cleans up and
terminates. The IV1ASTER proceeds to call other sites and process work as
long as possible or terminate if a -s option was specified.

6-42

c;

Building a Communication System

6. 7.6 uuxqt- uucp Command Execution

The uuxqt program is used to process execute files generated by nux. The
uuxqt program is started by the uucico program. The program scans the
spool directory for execute files (prefix X.). Each one is checked to see if
all the required files are available and if so, the command line or send line is
executed.

The execute file is described in "uux - Site to Site Execution".

The execution is accomplished by executing the shell command

sh -c

with the command line after appropriate standard input and standard out­
put have b een opened. If a standard output is specified, the program will
create a send command or copy the output file as appropriate.

6.7.7 Security

The uucp system, left unrestricted, allows any outside user to execute any
commands and copy in/out any file which is readable/writable by the uucp
login user. It is up to the individual sites to be aware of this and apply the
protections that they feel are necessary.

There are several security features available aside from the normal file
mode protections. These must be set up by the installer of the uucp system.

The login for uucp does not get a standard shell. Instead, the uucico pro­
gram is started, and receives a special, restricted shell. Therefore, the only
work that can be done is through uucico.

A path check is done on file names that are to be ·sent or received. The
USERFILE supplies the information for these checks. The USERFILE
can also be set up to require call-back for certain login-ids. See ''Uucp
Directories and Files."

A conversation sequence count can be set up so that the called system can
be more confident of the caller's identity.

The uuxqt program comes with a list of commands that it executes. The list
of allowable commands can be altered with theL. cmds file.

A PATH shell statement is prepended to the command line as specified in
the uuxqtprogram.

The L.sys file should be owned byuucp and have mode 0400 to protect the
phone numbers and login information for remote sites. (The uucp,

6-43

XENIX User's Guide

uucico, nux, and uuxqt programs should be also owned byuucp and have
the setuid bit set.)

When sending files via uucp the -n user option can be used to change the
owner and group of the file to user on the remote system. Default privileges
are read/write all if -n is not used.

6-44

c\
Replace this Page
with Tab Marked :

C- Shell

0

Chapter 7

The C- Shell

7.1 lntroduction 7-1

7.2 lnvokingthe C-shell 7-1

7.3 Using Shell Variables 7-2

7.4 Usingthe C-Shel!HistoryList 7-4

7.5 Using Aliases 7-7

7.6 Redirecting lnput and Output 7-8

7.7 CreatingBackground and ForegroundJobs 7-9

7.8 UsingBuilt-ln Commands 7-10

7.9 CreatingCommandScripts 7-12

7.10 Usingthe argvVariable 7-12

7.11 Substituting Shell Variables 7-13

7.12 UsingExpressions 7-15

7.13 Using the C-Shell: A Sample Script 7-16

7.14 UsingOtherControlStructures 7-19

7.15 Supplyinglnputto Commands 7-20

7.16 Catchinglnterrupts 7-20

7.17 UsingOtherFeatures 7-21

7.18 StartingaLoop at aTerminal 7-21

7.19 UsingBraceswith Arguments 7-22

7.20 SubstitutingCommands 7-23

7.21 Special Characters 7-23

The C-Shell

7.1 Introduction

The C-shell program, csh, is a command language interpreter for XENIX.
system users. The C-shell, like the standard XENIX shellsh, is an interface
between you and the XENIX commands and programs. It translates com­
mand lines entered at a terminal into corresponding system actions, gives
you access to information, such as your login name, home directory, and
mailbox, and lets you construct shell procedures for automating system
tasks.

This appendix explains how to use the C-shell. It also explains the syntax
and function of C-shell commands and features, and shows how to use
these features to create shell procedures. The C-shell is fully described in
csh (C) in theXENlXReferenceManual.

7.2 Invoking the C- shell

You can invoke the C-shell from another shell by using the csh command.
To invoke the C-shell, enter:

csh

at the standard shell's command line. You can also direct the system to
invoke the C-shell for you when you log in. If you have given the C-shell as
your login shell in your /etc!passwd file entry, the system automatically
starts the shell when you login.

After the system starts the C-shell, the shell searches your home directory
for the command files .cshrc and .login. If the shell finds the files, it exe­
cutes the commands contaioed in them, then displays the C-shell prompt.

The .cshrc file typically contains the commands you wish to execute each
time you start a C-shell, and the . login file contains the commands you
wish to execute afterlogging in to the system. For example, the following is
the contents of a typical .login file:

set ignoreeof
set mail�(/usr/spoollmail/bill)
set time�15
set history�lO
mail

This file contains several set commands. The set command is executed
directly by the C-shell; there is no corresponding XENIX program for this
command. Set sets the C-shell variable "ignoreeof" which shields the C­
shell from loggiog out if Ctrl-d is hit. Instead of Ctrl-d, the logout com­
mand is used to log out of the system. By setting the "mail" variable, the

7-1

XENIX User's Guide

C-shell is notified that it is to watch for incoming mail and notify you if new
mail arrives.

Next the C-shell variable "time" is set to 15 causing the C-shell to automat­
ically print out statistics lines for commands that execute for at least 15
seconds of CPU time. The variable '�histo:rf' is set to 10 indicating that the
C-shell will remember the last 10 commands typed in its history list,
(described later).

Finally, theXENIXmailprogramis invoked.

When the C-shell finishes processing the .login file, it begins reading com­
mands from the terminal, prompting for each with:

%

When you logout (by giving the logout command) the C-shell prints:

logout

and executes commands from the file . logout if it exists in your home direc­
tory. After that, the C-shell terminates and XENIX logs you off the sys­
tem.

7.3 Using Shell Variables

The C-shell maintains a set of variables. For example, in the above discus­
sion, the variables "history'' and "time" had the values 10 and 15. Each
C-shell variable has as its value an array of zero or more strings. C-shell
variables may be assigned values by the set command, which has several
forms, the most useful of which is:

set name = value

C-shell variables may be used to store values that are to be used later in
commands through a substitution mechanism. The C-shell variables most
commonly referenced are, however, those that the C-shell itself refers to.
By changing the values of these variables you can directly affect the
behavior ofthe C-shell.

One of the most important variables is "path". This variable contains a list
of directory names. When you enter a command name at your terminal,
the C-shell examines each named directory in turn, until it finds an execut­
able file whose name corresponds to the name you entered. The set com­
mand with no argrunents displays the values of all variables currently
defined in the C-shell.

7-2

r · · ..
v'

The following example shows typical default values:

argv ()
home /usr/bill
path (. /bin /usr/bin)
prompt %
shell /bin/csh
status 0

The C- Shell

This output indicates that the variable "path" begins with the current direc­
tory indicated by dot (.), then /bin, and /usr/bin. Your own local com­
mands may be in the current directory. Normal XENIX commands reside
in /bin and /usr/bin.

Sometimes a number of locally developed programs reside in the directory
!usr/local. If you want all C-shells that you invoke to have access to these
new programs, place the command:

set path�(. /bin /usr/bin /usr/Jocal)

in the .cshrc file in your home directory. Try doing this, then logging out
and back in. Enter:

set

to see that the value assigned to "path" has changed.

You should be aware that when you log in the C-shell examines each direc­
tory that you insert into your path and determines which commands are
contained there, except for the current directory which the C-shell treats
specially. This means that if commands are added to a directory in your
search path after you have started the C-shell, they will not necessarily be
found. If you wish to use a command which has been added after you have
Jogged in, you should give the command:

rehash

to the C-shell. Rehash causes the shell to recompute its internal table of
command locations, so that it will find the newly _added command. Since
the C-shell has to look in the current directory on each command anyway,
placing it at the end of the path specification usually works best and
reduces overhead.

Other useful built in variables are "home" which shows your home direc­
tory, and "ignoreeof" which can be set in your .login file to tell the C-shell
not to exit when it receives an end-of-file from a terminal. The variable
"ignoreeof'' is one of several variables whose value the C-shell does not
care about; the C-shell is only conce1ned with whether these variables are
set or unset.

7-3

XENIX User's Guide

Thus, to set "ignoreeof" you simply enter:

set ignoreeof

and to unset it enter:

unset ignoreeof

Some other useful built-in C-shell variables are "noclobber" and "mail".
The syntax:

>filename

which redirects the standard output of a command just as in the regular
shell, overwrites and destroys the previous contents of the named file. In
this way, you may accidentally overwrite a file which is valuable. If you
prefer that the C-shell not overwrite files in this way you can:

set noclobber

in your . login file. Then entering:

date > now

causes an error message if the file now already exists. You can enter:

date > ! now

if you really want to overwrite the contents of now. The ">!" is a special
syntax indicating that overwriting or "clobbering'' the file is ok. (The space
between the exclamation point (!) and the word "now" is critical here, as
" !now" would be an invocation of the history mechanism, described
below, and have a totally different effect.)

7.4 Using the C-Shell History List

The C-shell can maintain a history list into which it places the text of previ­
ous commands. It is possible to use a notation that reuses commands, or
words from commands, in forming new commands. This mechanism can
be used to repeat previous commands or to correct minor typing mistakes
in commands.

The following figure gives a sample session involving typical usage of the
history mechanism of the C-shell. Boldface indicates user input:

7-4

(' � ..

% cat bug.c
main()
{

printf("hello);
}
% cc !$
cc bug.c
bug.c(4) :error 1: newline in constant
% ed !$
ed hug.c
28
3sf);/"&/p

w
29
q
% !c

printf("hello") ;

cc bug.c
% a.out
hello% !e
ed bug.c
29
3s/lo/lo\\n/p

w
31
q

printf("hello \n");

% !c -o bug
cc bug.c -o bug
% size a.out bug
a.out: 5124 + 614 + 1254 � 6692 � Ox1b50
bug: 5124 + 616 + 1252 � 6692 � Ox1b50
% Is -1 !*
Is -1 a.out bug
-rwxr-xr-x 1 bill
-rwxr-xr-x 1 bill
% bug
hello
% pr bug.c I Ipt

7648 Dec 19 09:41 a.out
7650 Dec 19 09:42 bug

lpt: Command not found.
% "Iptlpr
pr bug.c l lpr
%

The C- Shell

In this example, we have a very simple C program that has a bug or two in
the file bug.c, which we cat out on our terminal. We then try to run the C
compiler on it, referring to the file again as "!$", meaning the last argument
to the previous command. Here the exclamation mark (l) is the history
mechanism invocation metacharacter, and the dollar sign ($) stands for

7-5

XENIX User's Guide

the last argument, by analogy to the dollar sign in the editor which stands
for the end-of-line.

The C-shell echoed the command, as it would have been typed without use
of the history mechanism, and then executed the command. The compila­
tion yielded error diagnostics, so we now edit the file we were trying to com­
pile, fix the bug, and run the C compiler again, this thne referring to this
command simply as e'!c", which repeats the last command that started with
the letter "c".

IT there were other commands beginning with the letter "c" executed
recently, we could have said "lee" or even "!cc:p" which prints the last
command starting with "cc" without executing it, so that you can check to
see whether you really want to execute a given command.

After this recompilation, we ran the resulting a.out file, and then noting
that there still was a bug, ran the editor again. After fixing the program we
ran the C compiler again, but tacked onto the command an extra "-o bug"
telling the compiler to place the resultant binary in the file bug rather than
a. out. In general, the history mechanisms may be used anywhere in the
formation of new commands, and other characters may be placed before
and after the substituted commands.

We then ran the size command to see how large the binary program images
we have created were, and then we ran an "Is -1" command with the same
argument list, denoting the argument list:

!*

Finally, we ran the program bug to see that its output is indeed correct.

To make a listing of the program, we ran the prcommand on the file bug. c.
In order to print the listing at a lineprinter we piped the output to Ipr, but
misspelled it as ''lpt''. To correct this we ... used a C-shell substitute, placing
the old text and new text between caret () characters. This is shnilarto the
substitute command in the editor. Finally, we repeated the same com­
mandwith:

! !

and sent its output to the lineprinter.

There are other mechanisms available for repeating commands. The his­
tory command prints out a numbered list of previous commands. You can
then refer to these commands by number. There is a way to refer to a previ­
ous command by searching for a string which appeared in it, and there are
other, less useful, ways to select arguments to include in a new command.
A complete description of all these mechanisms is given in .csh (C) the
XEN!XReference Manual.

7-6

0

The C-Shell

7_5 Using Aliases

The C-shell has an alias mechanism that can be used to make transforma­
tions on commands immediately after they are input. This mechanism can
be used to simplify the commands you enter, to supply default arguments
to commands, or to perform transformations on commands and their
arguments. -The alias facility is .similar-to a-macro facility. Some of the
features obtained by aliasing can be obtained also using C-sheii command
files, but these take place in another instance of the C-shell and cannot
directly affect the current C-shell's environment or involve commands
such as cd which must be done in the current C-shell.

For example, suppose there is a new version of the mail program on the sys­
tem called newmail that you wish to use instead of the standard mail pro­
gram mail. If you place the C-shell command

alias mail newmail

in your .cshrc file, the C-shell will transform an input line of the form:

mail bill

into a call on newmail. Suppose you wish the command ls to always show
sizes of files, that is, to always use the -s option. In this case, you can use
the alias command to do:

alias ls ls -s

or even:

alias dir ls -s

creating a new command named dir. If we then enter:

the C-shell translates this to:

ls -s /usr/bill

Note that the tilde (N) i:s a special C-shell symbol that represents the user's
home directory.

Thus the alias command can be used to provide short names for com­
mands, to provide default arguments, and to define new short commands
in terms of other commands. It is also possible to define aliases that con­
tain multiple commands or pipelines, showing where the arguments to the
original command are to be substituted using the facilities o(the history
mechanism.

7-7

XENIX User's Guide

Thus the definition:

alias cd "cd \!* ; Is ..

specifies an Is command after each cd command. We enclosed the entire
alias definition in single quotation marks (..) to prevent most substitutions
from occurring and to prevent the semicolon (;) from being recognized as a
metacharacter. The exclamation mark (!) is escaped with a backslash (\) to
prevent it from being interpreted when the alias command is entered. The
"\!*�' here substitutes the entire argument list to the prealiasing cd com­
mand; no error is given if there are no arguments. The semicolon separat­
ing commands is used here to indicate that one command is to be done and
then the next. Similarly the following example defines a command that
looks up its first argument in the password file.

alias whois 'grep \!' /etc/passwd'

The C-shell currently reads the . cshrc file each time it starts up. H you place
a large number of aliases there, C-shells will tend to start slowly. You
should try to limit the number of aliases you have to a reasonable number
(10 or 15 is reasonable). Too many aliases causes delays and makes the sys­
tem seem sluggish when you execute commands from within an editor or
otherprograms.

7.6 Redirectinglnputand Output

In addition to the standard output, commands also have a diagnostic out­
put that is normally directed to the terminal even when the standard output
is redirected to a file or a pipe. It is occasionally useful to direct the diag­
nostic output along with the standard output. For instance, if you want to
redirect the output of a long running command into a file and wish to have a
record of any error diagnostic it produces you can enter:

command > & file

The "> &" here tells the C-shell to route both the diagnostic output and
the standard output into file. Similarly you can give the command:

command J & lpr

to route both standard and diagnostic output through the pipe to the line­
printer. Theform:

command >&! file

is used when "no clobber" is set and file already exists.

7-8

: c

(I
___/

The C- Shell

Finally, use the form:

command > > file

to append output to the end of an existing file. If "noclob ber" is set, then
an error results if file does not exist, otherwise the C-shell creates file. The
form.:

command > > l file

lets you append to a file even if it does not exist and "noclobber" is set.

7.7 CreatlngBackgroundand ForegroundJobs

When one or more commands are entered together as a pipeline or as a
sequence of commands separated by semicolons, a single job is created by
the C-shell consisting of these commands together as a unit. Single com­
mands without pipes or semicolons create the simplest jobs. Usually,
every line entered to the C-shell creates a job. Each of the following lines
creates a job:

sort < data
ls -s I sort -n I head -5
mail harold

If the ampersand metacharacter (&) is entered at the end of the com­
mands, then the job is started as a b ackground job. This means that the C­
shell does not wait for the job to finish, but instead, immediately prompts
for another command. The job runs in the background at the same time
that normal jobs, called foreground jobs, continue to be read and executed
by the C-shell. Thus:

du > usage &

runs the du program, which reports on the disk usage of your- working
directory, puts the output into the file usage and returns immediately with a
prompt for the next command without waiting for du to finish. The du pro­
gram continues executing in the background until it finishes, even though
you can enter and execute more commands in the meaJ_l time. Background
jobs are unaffected by any sigoals from the keyboard such as the INTER­
RUPT or QUIT sigoals.

The kill command terminates a background job immediately. Normally,
this is done by specifying the process number of the job you want killed.
Process numbers can be found with the ps command.

7 - 9

XENIX User's Guide

7.8 UsingBuilt-InCommands

This section explains how to use some of the built-in C-shell commands.

The alias command described above is used to assign new aliases and to
display existing aliases. ll given no arguments, alias prints the list of
current aliases. It may also be given one argument, such as to show the
current alias for a given string of characters. For example:

alias ls

prints the current alias for the string"ls".

The history command displays the contents of the history list. The
numbers given with the history events can be used to reference previous
events that are difficult to reference contextually. There is also a C-shell
variable named "prompt". By placing an exclamation point (!) in its value
the C-shell will substitute the number of the current command in the his­
tory list. You can use this number to refer to a command in a history substi­
tution. For example, you could enter:

set prompt="\! % ...

Note that the exclamation mark (!) had to be escaped here even within
back quotes.

The logout command is used to terminate a login C-shell that has
"ignoreeof" set.

The rehash command causes the C-shell to recompute a table of com­
mand locations. This is necessary if you add a command to a directory in
the current C-shell's search path and want the C-shell to find it, since oth­
erwise the hashing algorithm may tell the C-shell that the command wasn't
in that directory when the hash table was computed.

The repeat command is used to repeat a command several times. Thus to
make 5 copies ofthe file one in the file jive you could enter:

repeat 5 cat one > > five

7-10

c

c

The C-Shell

The setenv command can be used to set variables in the environment.
Thus:

setenv TERM adm3a

sets the value of the environment variable ((TERM" to "adm3a". The pro­
gram-env exists-to-print out the environment. For example,-its output might­
look like this:

HOME�/usr/bill
SHELL�/bin/csh
PATH�:/usr/ucb:/bin:/usr/bin:/usr/local
TERM�adm3a
USER�bill

The source command is used to force the current C-shell to read com­
mands from a file. Thus:

source .cshrc

can be used after editing in a change to the .cshrc file that you wish to take
effect before the next time you login.

The time command is used to cause a command to be timed no matter how
much CPU time it takes. Thus:

time cp /etc/rc /usr/bill/rc

displays:

O.Ou 0.1s 0:01 8%

Similarly:

· time we /etc/rc /usr/bill/rc

displays:

52 178 1347 /etc/rc
52 178 1347 /usr/billlrc

104 356 2694 total
0.1u 0.1s 0:00 13%

This indicates that the cp command used a negligible amount of user time
(u) and about 1/10th of a second system time (s); the elapsed time was 1
second (0:01). The word count command we used 0.1 seconds of user time

7-11

XENIX User's Guide

and 0.1 seconds of system time in less than a second of elapsed time. The
percentage "13%" indicates that over the period when it was active the we
command used an average of 13 percent of the available CPU cycles of the
machine.

The unalias and unset commands are used to remove aliases and variable
definitions from the C-shell. The command unsetenv removes variables
from the environment.

7.9 CreatingCommandScrlpts

It is possible to place commands in files and to cause C-shells to be
invoked to read and execute commands from these files, which are called
C-shell scripts. This section describes the C-shell features that are useful
when creating C-shell scripts.

7.10 UsingtheargvVariable

A csh co=and script may be interpreted by saying:

csh script argument .. .

where script is the name of the file containing a group of C-shell commands
and argument is a sequence of command arguments. The C-shell places
these arguments in the variable "argv" and then begins to read commands
from script. These parameters are then available through the same
mechanisms that are used to reference any other C-shell variables.

If you make the file script executable by doing:

chmod 755 script

or:

chmod +x script

and then place a C-shell comment at the beginning of the C-shell script
(i.e., begin the file with a number sign (#)) then lbinlcsh will automatically
be invoked to execute script when you enter:

script

If the file does not begin with a number sign (#) then the standard shell
/bini sh will be used to execute it.

7-12

The C-Shell

7.11 Substituting Shell Variables

After each input line is broken into words and history substitutions are
done on it, the input line is parsed into distinct commands. Before each
command is executed a mechanism known as variable substitution is per­
formed on these words. Keyed by the dollar sign ($), this substitution
replaces the names of variables bythekvalues. Thus:

echo $argv

when placed in a command script would cause the current value of the vari­
able Hargv" to be echoed to the output of the C-shell script. It is an error
for ('argv" to be unset at this point.

A number of notations a,re provided for accessing components and attri­
butes of variables. The notation:

$?name

expands to 1 if name is set or to 0 if name is not set. It is the fundamental
mechanism used for checking whether particular variables have been
assigned values. All other forms of reference to undefined variables cause
errors.

The notation:

$#name

expands to the number of elements in the variable "name". To illustrate,
examine the following terminal session (input is in boldface):

% set argV=(a b c)
% echo $'?argv

1
% echo $#argv
3

% unset argv
% echo $?argv

0
% echo $argv

Undefined variable: argv.
%

7-13

XENIX User's Guide

It is also possible to access the components of a variable that has several
values. Thus:

$argv[l]

gives the first component of"argv" orin the example above "a". Similarly:

$argv[$#argv]

would give "c", and:

$argv[l-2]

would give:

a b

Other notations useful in C-shell scripts are:

$n

where n is an integer. This is shorthand for:

$argv[n]

the n'th parameter and:

$*

which is a shorthand for:

$argv

The form:

$$

7-14

(· .. �·

The C-Shell

expands to the process number of the current C-shell. Since this process
number is unique in the system, it is often used in the generation of unique
temporary filenames.

One minor difference between "$n11 and ''$argv[n]" should be noted here.
The form: "$argv[n]" will yield an error if n is not in the range 1-$#argv
while "$n" will never yield an out-of-range subscript error. This is for
compatibilitywith the way older shells handle parameters.

Another important point is that itis never an error to give a sub range of the
form: "n-"; if there are less than "n" cop-1ponents of the given variable
then no words are substituted. A range of the form: ''m-n" likewise
returns an empty vector without giving an error when "m" exceeds the
number of elements of the given variable, provided the subscript "n" is in
range.

7.12 Using Expressions

To construct useful C-shell scripts, the C-shell must be able to evaluate
expressions based on the values of variables. In fact, all the arithmetic
operations of the C language are available in the C-shell with the same pre­
cedence that they have in C. In particular, the operations "==" and "!="
compare strings anct the operators "&&" anct " 1 r· implement the logical
AND and OR operations. The special operators "=-" and "r" are similar
to "==" and "!=" except that the string on the right side can have pattern
matching characters (like *, ? or [and]). These operators test whether the
string on the left matches the pattern on the right.

The C-shell also allows file inquiries of the form:

-? filename

where question mark (?) is replaced by a number of single characters. For
example, the expression primitive:

-e filename

tells whether filename exists. Other primitives test for read, write and exe­
cute access to the file, whether it is a directory, or if it has nonzero length.

It is possible to test whether a command terminates normally, by using a
primitive of the form:

{ command }

which returns 1 if the command exits normally with exit status 0, or 0 if the
command terminates abnormally or with exit status nonzero. If more
detailed information about the execution status of a command is required,
it can be executed and the "status" variable examined in the next

7-15

XENIX User's Guide

command. Since "$status" is set by every command, its value is always
changing.

For the full list of expression components, see csh(C) in the XENIXRefer­
ence Manual.

7.13 Using the C-Shell: A Sample Script

A sample C-shell script follows that uses the expression mechanism of the
C-shell and some of its control structures:

Copyc copies those C programs in the specified list
to the directory ·/backup if they differ from the files
already in ·/backup

set noglob
foreach i ($argv)

end

if ($i !" • .c) continue # not a .c file so do nothing

if (! -r "fbackup/$i:t) then

endif

echo $i:t not in backup . . . not cp\'ed
continue

cmp -s $i "/backup/$i:t # to set $status

if ($status !� 0) then

endif

echo new backup of $i
cp $i "/backup/$i:t

This script uses the foreach command, which iteratively executes the
group of commands between the foreach and the matching end statements
for each valie value of the variable "i". If you want to look more closely at
what happends during execution of a foreach loop, you can use the debug
command break to stop execution at any point and the debug command
continue to resume execution. The value of the iteration variable (i in this
case)will stay at whatever it was when the last foreachloop was completed.

The "no glob" variable is set to prevent filename expansion of the members
of "argv". This is a good idea, in general, if the arguments to a C-shell
script are filenames which have already been expanded or if the arguments
may contain filename expansion metacharacters. It is also possible to
quote each use of a "$" variable expansion, but this is harder and less reli­
able.

7-16

0

The other control construct is a statement of the form:

if (expression) then
command

end if

The C-Shell

The placement of the keywords in this statement is not flexible due to the
current implementation of the C-shell. The following two formats are not
acceptable to the C-shell:

·

and:

if (expression) # Won't work!
then

command

endif

if (expression) then command endif # Won't work

The C-shell does have another form of the if statement:

if (expression) command

which can be written:

if (expression) \
command

Here we have escaped the newline for the sake of appearance. The com­
mand must not involve " J", "&" or ";" and must not be another control
command. The second form requires the final backslash (\) to immedi­
ately precede the end -of -line.

The more general if statements above also admit a sequence of else-if
pairs followed by a single else and an endif, for example:

if (expression) then
commands

else if (expression) then
commands

else
commands

endif

7-17

XENIX User's Guide

Another important mechanism used in C-shell scripts is the colon (:)
modifier. We can use the modifier :r here to extract the root of a filename
or :e to extract the extension. Thus if the variable "i" has the value
lmnt/foo. barthen

echo $i $i:r $i:e

produces:

/mnt/foo.bar /mnt/foo bar

This example shows how the :r modifier strips off the trailing ".bar" and
the :e modifier leaves only the "bar''. Othermodifiers take off the last com­
ponent of a pathname leaving the head :h or all but the last component of a
patbnarne leaving tbe tail :t. These modifiers are fully described in tbe
csh(C) entry in tbe XENIX Reference Manual. It is also possible to use tbe
command substitution mechanism to perform modifications on strings to
then reenter the C-shell environment. Since each usage of this mechanism
involves the creation of a new process, it is much more expensive to use
than the colon (:) modification mechanism. It is also important to note
!bat the current implementation of the C-shell limits the number of colon
modifiers on a "$" substitution to 1. Thus:

% echo $i $i:h:t

produces:

/alb/c /a/b:t

and does not do what you might expect.

Finally, we note !bat the number sign character (#) lexically introduces a
C-shell comment in C-shell scripts (but not from the terminal). All subse­
quent characters on the input line after a number sign are discarded by the
C-shell. This character can be quoted using "'" or "\" to place it in an
argnmentword.

7-18

('-... __ _

Tile C-Shell

7.14 Using Other Control Structures

The C-shell also has control structures while and switch similar to those of
C. These take the forms:

and:

while (expression)
commands

end

switch (word)

case strl:
commands
breaksw

case strn:
commands
breaksw

default:
commands
breaksw

endsw

For details see the manual section for csh(C). C programmers should note
that we use breaksw to exit from a switch while break exits a while or
foreach loop. A common mistake to make in C-shell scripts is to use
break rather than breaks win switches.

Finally, the C-shell allows a go to statement, with labels looking like they
do in C:

loop:
commands
goto loop

7-19

XENIX User's Guide

7.15 Supplying Inputto Commands

Commands run from C-shell scripts receive by default the standard input
of the C-shell which is running the script. It allows C-shell scripts to fnlly
participate in pipelines, but mandates extra notation for commands that
are to take inllne data.

Thus we need a metanotation for supplyinginline data to commands in C­
shell scripts. For example, consider this script which runs the editor to
delete leading blanks from the lines in each argument file:

deb lank -- remove leading blanks
foreach i ($argv)
ed - $i << ' EOF'
1,$s([]*//
w

\oF'
end

The notation:

<< 'EOF'

means that the standard input for the ed command is to come from the text
in the C-shell script file up to the next line consisting of exactly EO F. The
fact that the EOF is enclosed in single quotation marks ('), i.e., it is
quoted, causes the C-shell to not perform variable substitution on the
intervening lines. In general, if any part of the word following the "<<"
which the C-shell uses to terminate the text to be given to the command is
quoted then these substitutions will not be performed. In this case since
we used the form "1,$" in our editor script we needed to insure that this
dollar sign was not variable substituted. We could also have insured this by
precedingthedollarsiga ($)with abackslash (\), i.e.:

1, \$s((]*II

Quoting the EOF terminator is a more reliable way of achieving the same
thing.

7.16 Catching Interrupts

If our C-shell script creates temporary files, we may wish to catch interrup­
tions of the C-shell script so that we can clean up these files. We can then
do:

oninti label

7-20

The C-Shell

where label is a label in our program. If an interrupt is received the C-shell
will do a "goto label'' and we can remove the temporary files, then do an
exit command (which is built in to the C-shell) to exit from the C-shell
script. If we wish to exit with nonzero status we can write:

exit (1)

to exit with status 1.

7.17 Using Other Features

There are other features of the C-shell useful to writers of C-shell pro­
cedures. The verbose and echo options and the related -v and -x com­
mand line options can be used to help trace the actions of the C-shell. The
-n option causes the C-shell only to read commands and not to execute
them and may sometimes be of use.

One other thing to note is that the C-shell will not execute C-shell scripts
that do not begin with thenumbersign character (#), that is C.-shell scripts
that do not begin with a comment.

There is also another quotation mechanism using the double quotation
mark ("), which allows only some of the expansion mechanisms we have so
far discussed to occur on the quoted string and serves to make this string
into a single word as the single quote (') does.

7.18 Starting a Loop ata Terminal

It is occasionally useful to use the foreach control structure at the terminal
to aid in performing a number of similar commands. For instance, ifthere
were three shells in use on a particular system, lbin/sh, lbin!nsh, and
/bin/csh, you could count the number of persons using each shell by using
the following commands:

grep -c csh$ I etc/ passwd
grep -c nsh$ /etc/passwd
grep -c -v sh$ I etc/ passwd

Since these commands are very similar we can use foreach to simplify
them:

$ foreach i ('sh$"csh$" -v sh$')
? grep -c $i/etc/passwd
? end

Note here that the C-shell prompts for inp11t with "? " when reading the
body of the loop. This occurs only when the foreacb command is entered
interactively.

7-21

XENIX User's Guide

Also useful with loops are variables that contain lists of filenames or other
words. For example, examine the following terminal session:

% set a�('ls')
% echo$a
csh.n csh.rm/fR
% is
csh.n
csh.rm
% echo$#a
2

The set command here gave the variable "a" a list of all the filenames in the
current directory as value. We can then iterate over these nanies to per­
form any chosen function.

The output of a command within b ack quotation marks (�) is converted by
the C-shell to a list of words. You can also place the quoted string within
double quotation marks (') to take each (nonempty) line as a component
of the variable. This prevents the lines from being split into words at
blanks and tabs. A modifier :x exists which can be used later to expand
each component of the variable into another variable by splitting the origi­
nal variable into separate words at embedded blanks and tabs.

7.19 Using Braces with Arguments

Another form of filename expansion involves the characters, "{" and "}".
These characters specify that the contained strings, separated by commas
(,) are to be consecutively substituted into the containing characters and
the results expanded left to right. Thus:

A { strl,str2, . . . stm }B

expands to:

AstrlB Astr2B . . . AstrnB

This expansion occurs before the other filename expansions, and may be
applied recursively (i.e., nested). The results of each expanded string are
sorted separately, left to right order being preserved. The resulting
filenames are not required to exist if no other expansion mechanisms are
used. This means that this mechanism can be used to generate arguments
which are not filenames, but which have common parts.

A typical useof this would be:

mkdir -/{hdrs, retrofit,csh}

7 - 22

The C- Shell

to make subdirectories hdrs, retrofit and csh in your home directory. This
mechanism is most useful when the common prefix is longer than in this
example:

chown root /usr/demo/{filel,file2, . . . }

7.20 Substituting Commands

A command enclosed in accent symbols C) is replaced, just before
filenames are expanded, by the output from that command. Thus, it is pos­
sible to do:

set pwd�'pwd'

to save the current directory in the variable "pwd" or to do:

vi 'grep -1 TRACE *.c·

to run the editor vi supplying as arguments those files whose names end in
which have the string "TRACE" in them. Command expansion also
occurs in input redirected with "<<" and within quotation marks (").
Refer to csh(C) in the XENlXReference Manual for more information.

7.21 Special Characters

The following table lists the special characters of csh and the XENIX sys­
tem. A number of these characters also have special meaning in expres­
sions. See the csh manual section for a complete list.

Syntactic metacharacters

Separates commands to be executed sequentially

Separates commands in a pipeline

() Brackets expressions and variable values

& Follows commands to be executed without waiting for comple­
tion

Filename metacharacters

I Separates components of a file's pathname

Separates root parts of a filename from e>..-tensions

7-23

XENIX User's Guide

?

•

[l

Expansion character matching any single character

Expansion character matching any sequence of characters

Expansion sequence matching any single character from a set of
characters

Used at the beginning of afilename to indicate home directories

{ } Used to specify groups of arguments with common parts

Quotation metacharacters
\ Prevents meta-meaning of following single character

Prevents meta-meaning of a group of characters
" Like�, but allows variable and command expansion

Input/output metacharacters
< Indicates redirected input

> Indicates redirected output

Expansion/Substitution Metacharacters
$ Indicates variable substitution

Indicates history substitution

Precedes substitution modifiers

Used in special forms of history substitution

Indicates command substitution

Other Metacharacters
Begins scratch filenames; indicates C-shell comments

Prefixes option (flag) arguments to commands

7-24

c

0

c

Replace this Page
with Tab Marked :

Visual Shell

c

Chapter S

Using The Visual Shell

8.1 WhatistheVisua!Shell? 8-1

8.2 Getting Started with the Visual Shell 8-1
8.2.1 Entering the Visual Shell 8-2
8.2.2 GettingHelp 8-2
8.2.3 Leavingthe Visual Shell 8-2

8.3 The Visual Shell Screen 8-2
8.3.1 Status Line 8-2
8.3.2 Message Line 8-3
8.3.3 Main Menu 8-3
8.3.4 Co=and Option Menu 8-3
8.3.5 Program Output 8-4
8.3.6 View Window 8-4

8.4 Visual Shell Reference 8-6
8.4.1 Visua! ShellDefaultMenu 8-6
8.4.2 Options 8-8
8.4.3 Print 8-10
8.4.4 Quit 8-10
8.4.5 Run 8-10
8.4.6 View 8-10
8.4.7 Window 8-11
8.4.8 Pipes 8-11
8.4.9 Count 8-11
8.4.10 Get 8-11
8.4.11 Head 8-12
8.4.12 More 8-12
8.4.13 Run 8-12
8.4.14 Sort 8-12
8.4.15 Tail 8-13

C'

0

c

Using The Visual Shell

8.1 What is the Visual Shell?

The visual shell, vs h, is a menu -driven XENIX shell. This chapter
describes the use and behavior of the vsh. This chapter assumes that the
rea9.er is familiar with some general XENIX concepts, specifically the
structure of XENIX filesystems and the nature of a XENIX 'command'. No
familiarity with any other shell, however, is assumed. If you are a first-time
user of the visual shell, please completely read the narrative sections of this
chapter.

A 'shell' is a program which passes a command to an operating system, and
displays the result of running the command. The XENIX shells can also
create 'pipelines' for passing the output of one command to another com-
mand or 'redirect' the output into a file.

·

The other XENIX shells available are sh and csh. These shells are called
'command-line oriented' shells. This means that the user enters com­
mands one line at a time. The sb and csh shells are full computer languages
which require study and some programming knowledge to use effectively.
These command -line shells are powerful and efficient.

The vsh is a 'menu-oriented' shell. In a menu-oriented shell, the user is
given the available commands, or some of the available commands. The
user can run the command, by selecting from the menu.

The visual shell is a good shell for users who may not want to master a pro­
gramminglanguage right away just to useXENIX or a specfic XENIX appli­
cation. All visual shell users should additionally b ecome familiar with
some command -line shell usage.

Users familiar with command-line shells are in for a pleasant surprise if
they try the visual shell. Experienced users will appreciate the efficiency
and versatility of the visual shell. The distinction is very much akin to the
difference between a line-oriented text editor and a full-screen editor.

A menu shell can be used effectively with very little study. On the other
hand, a menu shell can also restrict the user from using the operating sys­
tem in creative, possibly more efficient ways. The Microsoft visual shell
strikes a balance in this regard. The visual shell is designed to do all of the
things that the command -line shells can do.

8.2 Getting Started with the Visual Shell

This section describes how to enter, obtain help about, and leave the visual
shell. This section also describes what you see on the screen while running
the visual shell and how the menus work.

8-1

XENIX User's Guide

Note the following convention for spe-cifying key&trokes. Ctrl refers to the
Ctrl key. Ctrl-C means pressing the Ctrl and 'c' keys at the same time.
ALT refers to the ALT shift key. ALT-H means pressingthe ALT and 'H'
keys at the same time. Note the irrelevance of case in enterip.gMenu Selec­
tion characters. For instance, press either 'Q' or 'q' to run the "Quit" com­
mand from the main menu.

8.2.1 Entering the Visual Shell

Login to XENIX . If you are not sure how to login, consult the Operations
Guide or have someone knowledgeable abouOffiNIX help you. When you
have a shell prompt (typically.'$' or '% '), the operating system is waiting for
a command. Enter the command:

vsh

and press RETURN.

8.2.2 Getting Help

H at anytime you are not sure what to do, either run the "Help" Menu
Selection or press AL T -H. Refer to the reference section of this chapter
for information about the Help command.

8.2.3 Leaving the Visual Shell

To exit the visual shell select the Quit command from the main menu. The
simplest way to do this is to simply press 'q' or 'Q'. In response to the
prompt "Type Yto confirm", enter 'y' or'Y'. If you don'twant to e.xit the
visual shell yet (perhaps you pressed 'q' by mistake), enter any other char­
acter but 'y' or 'Y'. If you have invoked the visual shell from another shell,
as described above, you will need to log out from XENIX by enteringCtrl-D
or 'logout' and pressing RETURN. If the visual shell is your default shell,
you will automatically be logged out.

8.3 The Visual Shell Screen

8.3.1 Status Line

The bottom line on the screen is called the 'status line'. The status line
displays the name of the current working directory, notifies you if you have
mail, and gives the date, time and the name of the operating system.

8-2

0

Using The Visual Shell

8.3.2 Message Line

The line above the 'status line' is called the 'message line'. The message
line displays special output froDl XENIX commands, such as error reports.

8.3.3 MainMenu

The next section of the screen above the message line is the 'main menu'.
The main menu displays a selection of useful XENIX commands.

The currently selected menu command is highlighted on the screen. To
select any command, press the SPACE BAR. The next highlighted com­
mand is selected. The BACKSPACE key will move to the previous com­
mand. Move through the menu until you have found the command you
want. To run the currently selected command, press RETURN.

You may also enter the first letter of a command to select that command. If
you enter the first letter of the command, you do not need to press
RETURN.

If you enter a letter which does not correspond to a menu selection, the
message:

Not a valid option

is displayed. Try another option.

8.3.4 Command Option Menu

When you have selected a command, the main menu is replaced with a
command option menu. The command option menu gives the options
available with the specific command. You must fill in the options with
appropriate responses.

If you wish to return to the main menu without running the command,
press Ctrl-C, (cancel). If you want to run the command with the selected
options press RETURN.

8-3

XENIX User's Guide

The following keystrokes allow editing of option responses.

Ctrl-I, Ctrl-A, or TAB
Ctr!-Y or DEL
Ctrl-L

Ctrl-K

Ctrl-P

Ctrl-0

8.3.5 Program Output

Move to next field in options menu.
Delete character under cursor.
Move cursor to character to right of
current position in current option
field.
Move cursor to character to left of
current position in current option
field.
Move cursor to word in current
field to right of the current word.
Move cursor to word in current
field to left of the cnrrentword.

While running a command, commands given and output (unless
redirected) are displayed above the menu and belowtheviewwindow. The
output scrolls up: moves from bottom to top. Lines scrolling off the top of
the output window disappear.

Visual shell command lines are listed with each argument preceded by the
number in the argument list enclosed in parentheses. The command is
named in the output window by the menu command. Hence, if you run the
commaod lbiu/ls with the argoment - R, the outputwiudowwill display the
command line as follows:

Run (1)/biu/ls (2) -R (3)

To chaoge the commaod line format to reflect the actual XENIX commaod
line generated by the visual shell, use the Options Output menu command.

8.3.6 ViewWiudow

A menu of currently accessible files and directories can be displayed at the
top of the screen in alphabetical order, left to right, top to bottom. Note
that this display is the same as that obtained usingtheviewcommand. This
will be referred to as the 'view window' in this chapter. If the directory list
is larger than the current window size, you may scroll through using the key
commands given below. To reset the window size, use the (Window' main
menu command.

The cnrrently selected item is highlighted in the view window. Use the
arrow keys and other key commands given at the end of this section to
move the highlight around the window.

8-4

0

Using The Visual Shell

If a directory is being listed, subdirectories are shown enclosed in square
brackets. To view a subdirectory, press '=' while the directory is
highlighted. To return to the previous directory after viewing a subdirec­
tory, press c_,_ The parent directory of the current directory is shown as
'[. �]'. The current directory is shown as ' [.]'. Executable files are preceded
by an asterisk. The last modification date of the currently selected item is
given at the right margin of the last line of the window. The name of the
item in view in the current window is given in the upper right-hand comer
of the window.

The view window may also display contents of files. Highlight a file, and
press 1='. Yon may scroll through the file using the key commands given
below. While viewing a file, the highlighted area cqvers one line.

If you press '=' while an executable file is highlighted, that file will be run.

If the visual shell requires a file or directory name, the currently selected
View Window item can be automatically entered in the relevent option
field by pressing any directional movement key following selection of the
command. This method saves keystrokes and reduces the ch�ce of mak­
ing a mistake while entering a command. On the other hand, if you wish to
enter a file or directory in an option field, enter in the name after sdecting
the command.

Use these keystrokes to select files from the view window:

Ctrl-Q
Ctrl-Z
Ctrl-R Ctrl-E
Ctrl-R Ctrl-S

WINDOW MOTION KEYS

Move to start (first item alphabetically) of view window.
Move to end (last item alphabetically) ofviewwindow.
Scroll view window up.
Scroll view window down.
View indicated item, either file or directory. If no view
window is present, the current working directory is
displayed.
Return window display to parent directory of currently
listed directory. If viewing a file, exit from viewing that
file. Lastviewwindowis returned to.

DIRECTIONAL MOVEMENT KEYS

ARROWUPor Ctrl-E
ARROWDOWN or Ctrl-X
ARROWLEFT or Ctrl-S
ARROWRIGHT or Ctrl-D

Move highlight up in view window.
Move highlight down in view window.
Move highlight left in view window.
Move highlight right in view window.

Movement beyond the left or right margin will proceed to the next item on
the previous or next line unless at the edge of the view window. Movement

8-5

XENIX User's Guide

beyond the top or bottom edge of the current window will scroll the view
window up or down if there are more items in that direction in the view win­
dow.

Note that there are two ways to move the highlight around. Either use the
keypad arrow keys or the cluster off our keys on the far left of the keyboard
'e', 'x!, 's', and 'd' shifted withCtrl.

While viewing a file, the directional movement keys for up and left move
the highlight up, and the keys for down and right move the highlighted line
down.

8.4 Visual Shell Reference

8.4.1 VisualShel!DefaultMenu

This section describes the default visual shell menu commands and
options. The menu options are displayed at the bottom of the screen
above the status line.

To invoke a command, move the highlight forward through the main menu
using the space bar or the tab key, or backwards using the backspace key.
Or simply press the firstletter of the command.

Most commands require entering options. Move the cursor to the field
using the SPACE BAR, TAB key or BACKSPACE key, and enter your
response. To edit the options, refer to the key commands listed above in
the section in this chapter labeled "Command Option Menu". To select
an item from a View Window listing for insertion in a field, refer to the sec­
tion in this chapter labelled "View Window''.

Note that some options have 'switches' with predefined (default) selec­
tions. The currently selected switch setting is highlighted. The default is
the parenthesized setting. For instance, in the switch:

Recursive: (yes)no

the default is recursive. To change a switch, select the field and press the
SPACEBARorBACKSPACE.

Copy

The Copy command can copy files and directories. To copy a file, select
"Filen from the options, to copy a directory, select "Directory". A sub­
menu then appears. Enter the file or directory you wish copied in the from:

8-6

c

Using The Visual Shell

field. Enter the file or directory you wish copied to the to: field. Note that if
the item in the to: field already exists, it is overwritten, so be careful.

The Copy Directory sub-menu has a switch "recursive'�. If this switch is
set to yes, all sub-directories and their contents below the specified direc­
tory will be copied.

Delete

The Delete command can remove files and directories. In the DELETE
name: field, enter the name of the file or directory you want to remove.
Note that once the file or directory is deleted, the contents are permanently
removed unless you have another copy, so be careful.

Edit

The Edit command invokes the full-screen editor vi. The current direc­
tory is displayed in the output window. Enter in the option field EDIT
filename: t

_
hename of the file you wish to edit using vi.

To learn vi, refer to "vi: a Screen Editor" in the XENIX User's Guide, and
the vi(C) manual page in the XENIX Reference Manl{al. A vi reference
card is also available.

Help

The Help command (also available by pressing ALT -H at any time), can
give online help regarding many aspects of visual shell use. The view win­
dow displays the help file. Use the menu to select the topic you need help
with. For instance, move the highlight to 'Keyboard' using the SPACE
BAR and press RETURN to view the help file starting at the 'Keyboard' sec­
tion. The (Next' and (Previous' fields in the menu will scroll through the the
help file, from the present location, one screen at a time. Your work will
remain undisturbed. To return from Help, press Ctrl-C or select the
(Resume' menu option.

Mail

The Mail command enters theXENIX mail system. There are two options:
"Send" and ('Read" For more information about mail, refer to the section
of the XENIX Users Guide titled "Mail", or refer to the mail(C) manna!
page.

8-7

XENIX User's Guide

Name

The Name command renames an existing file or directory. There are two
fields, From: and To:. Enter the name of the file or directory you want to
renameinFrom: and thenewnamein To:.

8.4.2 Options

The Options Main Menu Selection provides four sub-menus. These sub­
menus run commands which are used infrequently, or which have irrevo­
cable results.

Directory Option

The Directory command has two sub-menus, Make and Usage.

Make Directory Option:

This command creates a new directory named what you enter in the name:
field.

Usage Directory Option:

Counts the number of disk blocks in the directories specified in the name:
field. The format is the same as the XENIX command Is - s . Refer to the
manualpagels(C).

FileSys tern Option

FileSystem has five sub-menus: Create, FilesCheck, SpaceFree, Mount
and Unmount.

Create FileSystem Option:

Create FileSystem makes a XENIX :filesystem. The Create command per­
forms radical system maintenance and may have irrevocable effects. Care
is advised when using Create FileSystem.

The functionality is the same as mkfs(C) . Consult the mkfs (C) manual
page before running Create FileSystem. Create FileSystem prompts you
for device, block size, gap number and block number. Refer to Chapter 3,

8-8

l

Using The Visual Shell

"Using File Systems", in the XENIX Operations Guide, for i:D.formation on
creating file systems.

FilesCheckFileSystem Option:

FilesCheck checks the consistency of a XENIX filesystem and attempts
repair if damage is detected. The FilesCheck command performs radical
system maintenance and may have irrevocable effects. Care is advised
when usingFilesCheck.

The functionality is the same as fsck(C). Consult the fsck(C) manual page
before running FilesCheck. FilesCheck prompts you for the device to
check.

Output Option:

The Output Option command has one switch, commands like: VShell
XENIX ". The default is VShell. IF VShell is set, the vsh form of com­
mands given appear in the upward scrolling output window. IT XENIX is
specified, the XENIX command line which vsh generated is shown
instead.

Permissions Option

The Permissions Option command allows changing the access permissions
on files and directories. The functionality is the same as the chmod(C)
command. Consult the chmod manual page if you do not understand the
conceptofXENIX permissions.

Jn the name: field enter the name of the file or directory you wish to alter
the permissions on. You may only alter the permissions on files and direc­
tories you own. There are four switches, who:, read:, write:, and execute:.

The who: switch has four settings, All, Me, Group and Others. All is the
default. All refers to yourself, those with the same group id as yourself and
others. Me refers to yourself. Group refers to all others with your group id.
Others refers to those outside your group.

The read, write and execute switches have two settings, yes and no. The
default is yes for Me, and no for Group and Others. This grants the given
type of permission to those specified in the who: switch. No takes away the
given type of permission fro;m those specified in the who: switch.

8-9

XENIX User's Guide

8.4.3 Print

The Print command puts a file or files in the queue for your lineprinter. In
the filename: option field, enter the file or files you want to print.

8.4.4 Quit

The Quit command exits the visual shell. The only option is Enter Y to
confirm:. Enter 'Y' or 'y' if you really want to quit. Any other key cancels
the quit.

8.4.5 Run

The Rrm command executes a program or shell script. The name: option
takes the name of an executable file. In the parameters: option field enter
flags to pass to the executable file. The output: option can specify a file to
redirect output to, or another program to send the output to. Enter a verti­
cal bar ' r in the output field to use the pipe menu.

It is also possible to run an executable file by highlighting the name of the
file in the View Window and pressing'='.

8.4.6 View

The View command allows you to inspect without altering the contents of
files and directories. View is also available at any time for an item
highlighted in the View Window by pressing '='. See the section above
labelled 'View Window' for the details of using View.

To alter the height and characteristics of the View Window, use the 'Win­
dow' menu option. See the section below labelled "Window".

If you have invoked View from the menu, enter the name of the file or
directory you wish to view in the VIEW name: field, or select from a direc­
tocyviewwindow.

To retum from any View action to the previously displayed View Window,
press the minus key'-'.

If you View a non-executable binary file, non-ascii characters are
displayed as the character '@'.

8 - 10

c

Using The Visual Shell

8.4. 7 Window

The Window command alters the height and redraw characteristics of the
visual shell View Window.

The

WINDOWredraw: Yes (No)

switch tun1s redraw of the view window on or off after running a command.

The heightinlines: field changes the number of lines displayed in the view
window. The minimum window height is 1 line. The default window
height is S tines. The maximum window heigh tis 15 lines.

8.4.8 Pipes

XENIX allows output from one program to be passed to another program
or to be put in a .file. This is called 'piping1 or 'pipelining'. If the output is
placed in a file it is said to be 'redirected'. Piping is suppqrted in the visual
shell through the pipe menu.

The Pipe menu is invoked by entering a vertical bar ' t character in any
option field named output:. For instance, the Run main menu and the Pipe
menu itself have an output: field. The available Pipe menu commands are
Col.lnt, Get, Head, More, Run, Sort and Tail. Each Pipe menu sub­
command also has an output: field, which allows construction of pipelines
of arbitrary length.

8.4.9 Count

Count counts words, lines and characters in the input pipe. The default is
all of the above. There is a switch for each type of item to count. The
Count Pipe Menu option corresponds to the XENIX command we. Con­
suit the manual page wc(C) for an explanation.

8.4.10 Get

Get looks for patterns in the input pipe. The pattern maybe verbatim, or
you may specify a "regular expression" to look for. Regular expressions
may contain 'wildcard' characters which represent sets of strings. Consult
the manual page grep (C), for the available wildcard characters.

The first Get switch is Unmatched (Yes) No. If you specify Yes (the
default), all lines containing the given pattern will be output. If
Unmatched is set to off, all lines not containing the given pattern are out­
put.

8 - 11

XENIX User's Guide

The second Get switch is ignore case: which suppresses the case while
looking for the regular expression. The default is off.

The third Get switch is line numbers:, which reports the line in the input
stream which the regular expression was matched on. The default is on.

8.4.11 Head

Head prints a specified number of lines of the input stream starting from
the :first line. The lines: field maybe set to specify the numberoflines at the
head of the input stream to print. The default is Slines.

The Head Pipe Menu option corresponds to the XENIX command head.
Consult the manual page head(C) for an explanation.

8.4.12 More

More allows viewing an input stream one screen at a time. The More Pipe
Menu option invokes the XENIX command more. Consult the manual
page more(C) for an explanation.

8.4.13 Run

The Run Pipe Menu option allows the specification of any command not in
the Pipe menu. The functionality is the same as the visual shell Main Menu
Option "Run" ..

8.4.14 Sort

The XENIX sort utility can be invoked through the Sort Pipe menu option.
The input stream is sorted.

The first Sort switch is order: < > . Select '>', the default, to sort in
ascending order. Select '<' to sort in descending order.

The second Sort switch suppresses the case of characters in the sort. The
default is off.

The third Sort switch sorts the input stream assuming an initial numeric
field is in the input stream. If this switch is off, initial numbers are sorted in
ascii order, which means that a line beginning with '10' will be output
before the line beginning with '2'. The default is off.

The fourth Sort switch sorts the input stream in alphabetical order, rather
than ascii order.

8-12

(

Using The Visual Shell

The Sort Pipe Menu option corresponds to the XENIX command sort.
Consult the manual page sort(C) for an explanation.

� . 8.4.15 Tail

0

Tail prints a specified number of lines of the input stream up to the end of
the stream. The lines: field may be set to specify the number of lines to
print. The default is 151ines.

The Tail Pipe Menu option corresponds to the XENIX command tail.
Consultthe manual page tail(C) for an explanation.

8 - 13

c\

0

Replace this Page
with Tab Marked :

ed

Appendix A

ed

A.1 Introduction A-1

A.2 Demonstration A-1

A.3 Basic Concepts A-2
A.3.1 TheEditingBuffer A-2
A.3.2 Commands A-2
A.3.3 LineNumbers A-2

A.4 Tasks A-3
A.4.1 EnteringandExitingTheEditor A-3
A.4.2 Appending Text: a A-3
A.4.3 Writing Out a File:w A-5
A.4.4 Leaving The Editor: q A-5
A.4.5 Editing A New File: e A-6
A.4.6 Changing the File to Write Out to : f A-7
A.4.7 Readingin aFile : r A-7
A.4.8 Displaying Lines On The Screen: p A-8
A.4.9 Displaying The Current Line: dot (.) A-10
A.4.10 Deleting Lines: d A-13
A.4.11 Performing Text Substitutions: s A-14
A.4.12 Searching A-16
A.4.13 Changingand insertingText: c andi A-20
A.4.14 Moving Lines: m A-22
A.4.15 PerformingGlobal Commands: g andv A-23
A.4.16 Displaying Tabs and Control Characters: l A-26
A.4.17 UndoingCommands:u A-27
A.4.18 MarkingYourSpotin a File : k A-27
A.4.19 Transferring Lines: t A-28
A.4.20 Escaping to the Shell: ! A-28

A.5 Con text and Regular Expressions A -29
A.5.1 Period: (.) A-30
A.5.2 Backslash: \ A-32
A.5.3 Dollar Sign: $ A-34
A.5.4 Caret:' A-36
A.S.S Star: * A-36
A.5.6 Brackets: [and] A-39
A.5.7 Ampersand: & A-40
A.5.8 .SubstitutingNewLines A-41

A.5.9 JoiningLines A-42
A.5.10 Rearranginga Line:\(and\) A-43

A.6 SpeedingUp Editing A-44
A.6.1 Semicolon: ; A-46
A.6.2 Interruptingtheeditor A-48

A. 7 Cutting and Pasting with the editor A-48
A.7.1 InsertingOneFilelntoAnother A-48
A.7.2 WritingOutPartofaFile A-49

A.8 EditingScripts A-50

A.9 SummaryofCommands A-51

c\

0

G

ed

A.l Introduction

ed is a text editor used to create and modify text. The text is normally a
document, a program, or data for a program, thus ed is a truly general pur­
pose program. Note that the line editor ex, available with other XENIX
packages is very similar t() ed, and therefore this chapter can be used as an
introduction to ex as wellasto ed.

A.2 Demonstration

This section leads you through a simple session with ed, giving you a feel for
howitis used andhowitworks. To begin the demonstration, invoke ed by
entering:

ed

This invokes the editor and begins your editing session. ed has no prompt
unless -o string is used on the command line to specify one. A blank line
prompts you for commands to be entered. Initially, you are editing a tern­
poraryfile that you can later copy to aoy file that you name. This temporary
file is called the "editing buffer," because it acts as a buffer between the text
you enter and the file that you will eventually write out your changes to.
Typically, the first thiogyou will waot to do with an empty buffer is add text
to it. For example, after the prompt, enter:

a
this is line 1
this is line 2
tills is line 3
this is line 4
Ctrl-D

This ((appends" four lines of text to the buffer. To view these lines on your
screen, enter:

1,4p

where the "1,4" specifies a line number range and the p command "prints"
the specified lines on the screen.

Now enter:

2p

A - 1

XENIX User's Guide

toviewline numbertwo. Next enter:

p

This prints out the current line on the screen, which happens to be line
number two. By default, most ed commands operate on only the current
line.

A.3 Basic Concepts

This section illustrates some of the basic concepts that you need to under­
stand to effectively use ed.

A.3.1 TheEditing Buffer

Each time you invoke ed, an area in the memory of the computer is allo­
cated for you to perform all of your editing operations. This area is called
the "editing buffer." When you edit a file, the file is copied into this buffer
where you will work on the copy of the original file. Only when you write
out your file, do you affect the original copy ofthe file.

A.3.2 Commands

Commands are entered at your keyboard. Like normal XENIX com­
mands, entry of a command is ended by entering a NEWLINE. After you
enter NEWLINE the command is carried out. In the following examples,
we will presume that entry of each command is completed by entering a
NEWLINE, although this will not be shown in our examples. Most com­
mands are single characters that can be preceded by the specification of a
line number or a line number range. By default, most commands operate
on the "current line" described below in the section "Line Numbers."
Many commands take filename or string arguments that are used by the
command when it is executed.

A.3.3 Line Numbers

Any time you execute a command that changes the number of lines in the
editing buffer, ed immediatelyrenumbers thelines. A t all times, every line
in the editing buffer has a line number. Many editing commands will take
either single line numbers or line number ranges as prefixing arguments.
These argmnents normally specify the actual lines in the editing buffer that
are to be affected by the given command. By default, a special line number
called "dot" specifies the current line.

A -2

ed

A.4 Tasks

This section discusses the tasks you perform in everyday editing. Fre­
quently used and essential tasks are discussed near the beginning of this
section. Seldom used and special-purpose commands are discussed later.

A.4.1 Entering andExitingTheEditor

The simplest way to invoke edisto enter:

ed

The most common way, however, is to enter:

ed filename

where filename is the name of a new or existing file.

To exitthe editor, all you need to do is enter:

q

If you have not yet written out the changes you have made to your file, ed
warns you that you willlose these changes bydisplayingthe message:

?

If you still want to quit, enter another q. In most cases you will want to exit
by entering:

w
q

so that you first write out your changes and only then e,Ut the editor.

A.4.2 Appending Text: a

Suppose that you want to create some text starting from scratch. This sec­
tion shows you how to enter text in a file, just to get started. Later we'll talk
about how to change it.

When you first invoke ed, it is like working with a blank piece of paper­
there is no text or information present. Text must be supplied by the per­
son using ed, usually by entering the text, or by reading it in from a file. We
will start by entering some text, and discuss how to read files later. ·

In ed terminology, the textbeingworked on is said to be "kept in a buffer."
Think of the buffer as a workspace, or simply as a place whe:re the

A - 3

XENIX User's Guide

information that you are going to be editing is kept. In effect, the buffer is
the piece of paper on which you will write, make changes, and save (write
to the disk).

You tell ed what to do to your text by entering instructions called "com­
mands." Most commands consist of a single letter, each entered on a
separate line. ed prompts with an asterisk (*).
The prompt can be turned on and off with the prompt command, P.

The first command we will discuss is append (a), written as the letter "a"
on a line by itself. It means "append (or add) text lines to the buffer, as they
are entered.' Appending is like writing new material on a piece of paper.

To enter lines of text into the buffer, enter an "a" followed by a RETURN,
followed bythe lines of text you want, as shown below:

a
Now is the time
for all good men
to come to the aid of their party.

To stop appending, enter aline that contains only a period. The period (.)
tells ed that you have finished appending. (You can also use Ctrl-D, but we
will use the period throughout this discussion.) If ed seems to be ignoring
you, enter an extra line with just a period (. } on it. You may :fi:p.d you've
added some garbage lines to your text, which you will have to take out later.

After appending is completed, the buffer contains the following three
lines:

Now is the time
for all good men
to come to the aid of their party.

The a and . aren't there, because they are not text.

To add more text to what you already have, enter another a command, and
continue entering your text.

If you make an error in the commands you enter to ed, it will tell you by
displaying the message:

?
error message

A - 4

ed

A.4.3 Writing Out a File: w

You will probably want to save your text for later use. To write out the con­
tents of the buffer into a file, use the write (w) command, followed by the
name of the file that you want to write to. This copies the contents of the
buffer to the specified file, destroying any previous contents of the file. For
example, to save the text in a file named text,_ ent�r:

w text

Leave a space between w and the filename. ed responds by displaying the
number of characters it has written out. For instance, ed might respond
with

68

(Remember that blanks and the newline character at the end of each line
are included in the character count.) Writing out a file just makes a copy of
the text- the buffer's contents are not disturbed, so you can go on adding
text to it. If you invoked ed with the command "ed filename," then by
default, a w command by itself will write the buffer out to filename.

Note that ed at all times works on a copy of a file, not the file itself. No
change in the contents of a file takes place until you give a w command.
Writing out the text to a file from time to time as it is being created is a good
idea. If the system crashes, or you make a mistake (not saving the file on
disk), you will lose all of the text in the buffer, but any text that was written
out to a file is relatively safe.

A.4.4 Leaving The Editor: q

To terminate a session with ed, save the text you're working on by writing it
to a fileusingthewcommand, then enter:

q

The system responds with the XENIX prompt character. If you try to quit
without writing out the file ed will display:

?

At that point, write out the text if you want to save it; if not, entering
another "q" will get you out of the editor.

A - 5

XENIX User's Guide

Exercise

Entered and create some text by entering:

a
. . . text . . .

Write it out by entering:

w filename

Then leave ed by entering:

q

Next, use the cat command to displaythefile on your terminal screen to see
that everything has worked.

A.4.5 Editing A New File: e

A common way to get text into your editing buffer is to read it in from a file.
This is what you do to edit text that you have saved with thew command in a
previous session. The edit (e) command places the entire contents of a file
in the buffer. If you had saved thethree-Iines "Nowis thetime" etc., with a
w
command in an earlier session, the ed command:

e text

would place the entire contents of the file text into the buffer and respond
with

68

which is the number of characters in text. If anything is already in the
buffer, it is deleted first.

If you use the e command to read a file into the buffer, then you don'tneed
to use a filename after a w command. ed remembers the last filename used
in an e command, and w will write to this file. Thus, a good way to operate
is this:

A-6

ed
e file
[editing session J
w
q

c

r,
�)

ed

This way, you can enterwfrom time to time and be secure in the knowledge
that if you entered the filename right in the beginning, you are writing out to
the proper file each time.

A.4.6 Changing the File to Write Out to: f

You can find out the last file written to at any time using the file (f) com­
mand. Just enter f without a filename. You can also change the name of
the remembered filename with f. Thus, a useful sequence is:

ed precious
f junk

which gets a copy of the file named precious, then uses fto save the text in
the file junk. The original file will be preserved as precious.

A.4. 7 Reading in a File: r

Sometimes you want to read a file into the buffer without destroying what is
already there. This function is useful for comhiningfiles. This is done with
the read (r) command. The command:

r text

reads the file text into your editing buffer and adds it to the end of whatever
is already in the buffer.
For example, suppose you have performed a read after an edit:

e text
r text

The buffer now contains two copies of text (i.e., six lines):

Now is the time
for all good men
to come to the aid of their party.
Now is the time
for all good men
to come to the aid of their party.

Like the w ;md e commands, after the reading operation is complete r
prints the number of characters read in.

A - 7

XENIX User's Guide

Exercise

Experiment with the e command by reading and printing various files. You
may get the followingerrormessage:

?name
cannot open input file

where name is the name of a nonexistent file. This means that the file
doesn't exist, typically because you spelled the filename wrong, or perhaps
because you do not have permission to read from or write to that file. Try
alternately reading and appending, to see how they work. Verify that the
command:

ed file.text

is equivalent to

ed
e file.text

A.4.8 Displaying Lines On The Screen: p

Use the "print"(command to print the contents of the editing buffer (or
parts of it) on the terminal screen. Specify the lines where you want print­
ing to begin and where you want it to end, separated by a comma and fol­
lowed by the letter "p". Thus, to print the first two lines of the buffer
(that is, lines 1 through 2) enter:

1,2p

ed displays:

Now is the time
for all good men

Suppose you want to print all the lines in the buffer. You could use "1,3p"
as shown above if you knew there were exactly3 lines in the buffer. But you
will rarely know how many lines there are, so ed provides a shorthand sym­
bol for the line number of the last line in the buffer-the dollar sign ($). Use
it as shown below:

l,$p

A-8

c-

0

ed

This will print all the Jines in the buffer (from line 1 to the last line). If you
want to stop the printing before it is finished, press the INTERRUPT key.
ed then displays:

?
interrupt

and waits for the next command.

To printthelastline of the buffer, enter:

$p

You can print any single line by entering the line number, followed by a p.
Thus:

1p

produces the response:

Now is the time

which is the first line of the buffer.

In fact, edlets you abbreviate even further: you can print any single line by
entering just the line number; there's no need to enter the letter p. If you
enter:

$

ed prints the last line of the buffer.

You can also use $ in combinations like:

$-1,$p

which prints the last two lines of the buffer. This helps when you want to
see how far you are in your entering.

The next step is to use address arithmetic to combine the line numbers like
dot (.) and dollar sign ($) with plus (+) and minus (-). (Note that "dot" is
shorthand for the current line, and is discussed in a later section.) Thus:.

$-1

prints the next to last line of the current file (that is, one line before the line
$). For example, to recall howfaryou were in a previous editing session:

$-5,$p

A-9

XENIXUser's Guide

prints the last six lines. (Be sure you understand why it's six, not five.) If
there aren't six lines in the file, an error message is displayed.

The command:

.-3, .+3p

prints from three lines before the current line (line dot} to three lines after.
The plus (+) can be omitted. Thus:

.-3,.3p

is identical in meaning.

Another area in which you can save entering effort in specifying lines is to
use plus and minus as line numbers by themselves. For example:

by itself is a command to move back one line in the file. In fact, you can
string several minus signs together to move back that many lines. For
example:

moves back three lines, as does:

-3

Thus:

-3,+3p

is also identical to

?.-3p+3p

A.4.9 Displaying The Current Line: dot (.)

Suppose your editing buffer still contains the following six lines:

A - 10

Now is the time
for all good men
to come to the aid of their party.
Now is the time
for all good men
to come to the aid of their party.

If you enter:

1,3p

ed displays:

Now is the time
for all good men .
to come to the aid of their party.

Try entering:

p

This prints:

to come to the aid of their party.

ed

which is the third line of the buffer. In fact, it is the last (most recent) line
that you have done anything with. You can repeat this p command without
line numbers, and ed will continue to print line 3.

This happens because ed maintains a record of the last line that you did
anything to (in this case, line 3, which you just printed) so that it can be
used instead of an explicit line number. The line most recently acted on is
referred to with a period (.) and is called "dot." Dot is a line number in the
same way that dollar ($) is; it means "the current line" or loosely, ''the line
you most recently did something to." You can use it in several ways. One
way is to ente�:

.,$p

This prints all the lines from (and including) the current line clear to the
endofthebuffer. In our example, these arelines3through6.

,

Some commands change the value of dot, while others do not. The p com­
mand sets dot to the number of the last line printed. In the example above,
p sets dot to 6.

Dot is often used in combinations like this one:

.+1

Or equivalently:

.+lp

A - ll

XENIX User's Guide

This means, "print the n ext line" and is one way of stepping slowly through
the editing buffer. You can also enter:

.-1

This meanS, "print the line before the current line." This enables you to go
backwards through the file if you wish. Another useful command is shown
below:

.-3,.-lp

which prints the previous three lines.

Don't forget that all of these change the value of dot. You can find out what
dot is at anytime by entering:

ed responds by printing the value of dot. Essentially, p can be preceded by
zero, one, or two line numbers. H no line number is given, ed prints the
"current line" the line that dot refers to. If one line number is given (with
or without the letter p), ed prints that line (and dot is set there); and if two
line numbers are given, ed prints all the lines in that range (and sets dot to
the last line printed). If two line numbers are specified, the first cannot be
bigger than the second.

Pressing RETURN once causes printing of the next line. It is equivalent to:

.+lp

Try it. Next, try entering a minus sign (-)by itself; it is equivalent to enter­
ing:

.-lp

A - 12

()

(;

ed

Exercise

Create some text using the a command, and experiment with the p com­
mand. You will find, for example, that you can't print line 0, or a line
beyond the end of the buffer, and that attempting to print lines in reverse
order using "3, lp," does not work.

A.4.10 Deleting Lines: d

Suppose you want to remove three extra lines in the buffer. Use the delete
(d) command. Its action is similar to that of p, except that d deletes lines
instead of printing them. The lines to be deleted are specified for d exactly
astheyareforp. Thus, the command:

4,$d

deletes lines 4 through the end. There are now three lines left in our exam­
pie, and you can check by entering:

1,$p

Notice that $ now is line 3! Dot is set to the next line after the last line
deleted, unless the last line deleted is the last line in the buffer. In that case,
dotissetto $.

Exercise

Experiment with the a, e, r, w, p, and d commands until you are sure that
you know what they do, and until you understand how dot (.), dollar ($),
and line numbers are used.

Try using line numbers with a, r, and w, as well. You will find that a
appends lines after the line number that you specify (rather than after dot);
that r reads in a file after the line number you specify (not necessarily at the
end of the buffer); and that w writes out exactly the lines you specify, not
the whole buffer. These variations are sometimes useful. For instance�
you can insert a file at the beginning of a buffer by entering:

01· filename

and you can enter lines at the beginning of the buffer by entering:

Oa
[input text here]

A - 13

XENIX User's Guide

Notice that entering:

.w

is very different from entering:

w

since the former writes out only a single line and the latter writes out the
whole file.

A.4.11 PerfonningTextSnbstitutions: s

One of the most important ed commands is the substitute (s) command.
This is the command that is used to change individual words or letters
within a line or group of lines. It is the command used to correct spelling
mistakes and entering errors.

Suppose that, due to a typing error, line lis:

Nowisth time

The letter "e" has been left off of the word "the" You can use s to fix this
up as follows:

ls/th/the/

This substitutes for the characters "th" the characters "the" in line 1. To
verify that the substitution has worked, enter:

p

to get:

Now is the time

which is what you wanted. Notice that dot must be the line where the sub­
stitution took place, since the p command printed that line. Dot is always
setthiswaywith thes command.

The syntax for the substitute command follows:

[starting-line,ending- line] s/ pattern/ rep/acem£ntl cmds

Whatever string of characters is between the first pair of slashes is replaced
by whatever is between the second pair, in all the lines between starting­
line and ending-line. Only the first occurrence on each line is changed,

A - 14

(
�·

ed

however. Changing every occurrence is discussed later in this section. The
rules for line numbers are the same as those forp, except that dot is set to
the last line changed. (If no substitution takes place, dot is not changed.
This displays the error message:

?
search string not found

Thus, you can enter:

1,$s/ spelingl spelling/

and correctthefirst spellingmistakeon each line in the text.

If no line numbers are given, the s command assumes we mean ''make the
substitution on line dot" so it changes things only on the current line. This
leads to the following sequence:

s/somethinglsometbingelse/p

which makes a correction on the current line, then prints it to make sure
the correction worked out right. If it didn't, you can try again. (Notice that
the p is on the same line as the s command. With few exceptions, p can fol­
low any command; no othermulticommand lines are legal.)

It is also legal to enter:

s/stringl/

which means "change the first string of characters to nothing" or, in other
words, remove them. This is useful for deleting extra words in a line or
removing extra letters from words. For instance, if you had

Nowxxis the time

you could enter:

s/xxllp

to show:

Now is the time

Notice that two adjacent slashes mean "no characters" not a space. There
is a difference.

A - 15

XENIX User's Guide

Exercise

Experiment with the substitute command. See what happens if you substi­
tute a word on a line with several occurrences of that word.
For example, enter:

a
the other side of the coin

s/the/on the/p

1bis resultsin:

on the other side of the coin

A substitute command changes only the first occurrence of the first string.
You can change all occurrences by adding a g (for "global" to the s com­
mand, as shown below:

s/ .. . / . . . /g

Try using characters other than slashes to delimit the two sets of characters
in the s command. Anything should work except spaces or tabs.

A.4.12 Searching

Now that you have been shown the substitute command, you can move on
to another important concept: context searching.

Suppose you have the original three-line text in the buffer:

Now is the time
for all good men
to come to the aid of their party.

Suppose you want to find the line that contains the word "their" so that you
can change it to the word �'the" With only three lines in the buffer, it's
pretty easy to keep track of which line the word "their" is on. But if the
buffer contains several hundred lines, and you have been making changes,
deleting and rearranging lines, you would no longer really know what this
line number would be. Context searching is simply a method of specifying
the desired line, regardless of its number, by specifying a textual pattern
contained in the line.

The way to "search for a line that contains this particular string of charac-
ters" is to enter: '

/string of characters we want to find/

A - 16

i
l

ed

For example, the edcommand:

/their/

is a context search sufficient to find the desired line. It will locate the next
occurrence of the characters between the slashes (that is, "their"). Note
that-you do-not need to enter the final slash. The above search command is
the same as entering:

/their

The search command sets dot to the line on which the pattern is found and
prints it for verification:

to come to the aid of their party.

"Next occurrence'' means that ed starts looking for the string at line ''.+ 1, "­
searches to the end of the buffer, then continues at line 1 and searches to
line dot. (That is, the search ''wraps arow1d" from $ to 1.) It scans all the
lines in the buffer until it either finds the desired line, or gets back to dot. If
the given string of characters can't be found in any line, ed displays the
error message:

?
search stringnotfound

Otherwise, ed displays the line it found. You can also search backwards in
a file for search strings by using question marks instead of slashes. For
example:

?thing?

searches backw;rrds in the file for the word "thing" as does:

?thing

This is especially handy when you realize that the string you want is back­
wards from the current line.

The slash and question mark are the only characters you can use to delimit
a context search, though you can use any character in a substitute com­
mand. If you get unexpected results 1,1sing any of the characters:

· . $ [* \ &

read Section A .5, HContext and Regular Expressions."

A-17

XENIX User's Guide

You can do both the search for the desired line and a substitution at the
same time, as shown below:

/their/s/their/the/p

This displays:

to come to the aid of the party.

The above command contains three separate actions. The first is a context
search for the desired line, the second is the substitution, and the third is
the priuting of the line.

The expression "/their/" is a context search expression. In their simplest
form, all context search expressions are a string of characters surrounded
by slashes. Context searches are interchangeable with line numbers, so
they can be used by themselves to find and print a desired line, or as line
numbers for someothercommand, likes. They wereused both ways in the
previous examples.

Suppose the buffer contains the three familiar lines:

Now is the time
for all good tnen
to come to the aid of their party.

The edlinenumbers:

/Now/+1
/good/
/party/-1

are all context search expressions, and they all refer to the same line (line
2). To make a change in line 2, enter:

/Now/+ 1s/good/bad/

or

/good/s/good/bad/

or

/party/-1s/good/bad/

A - 18

c)

ed

The choice is dictated only by convenience. For instance, you could print
all three lines by entering:

/Now/,/party/p

or

/Now/,/Now/+2p

or any similar combination. The first combination is better if you don't
knowhow many lines are involved.

The basic rule is that a context search eJqJression is the same as a line
number, so it can be used whereveraline numherisneeded.

Suppose you search for:

/listing/

and when the line is printed, you discover that it isn't the c'listing" that you
wanted, so it is necessary to repeat the search. You don't have to reenter
the search, because the construction:

II

is a shorthand expression for ''the previous pattern that was searched for"
whatever it was. This can be repeated as many times as necessary. You can
also go backwards, since:

??

searches for the same pattern, but in the reverse direction.

You can also use / /, as the left side of a substitute command, to mean "the
most recent pattern." For example, examine:

/listing/

ed prints the line containing 11listing11•

s//good/p

This changes "listing" to "good." To go backwards and change "listing" to
"good" enter:

??s//good/

A - 19

XENIX User's Guide

Exercise

Experiment with context searching. Scan through a body of text with
several occurrences of the same string of characters using the same context
search.

Try using context searches as line numbers for the substitute, print, and
delete commands. (Context searches can also be used with the r, w, and a
commands.)

Try context searchingusing?text? instead of I text I. This scans lines in the
buffer in reverse order instead of normal order, which is sometimes useful
if you go too far while lookilig for a string of characters. It's an easy way to
back up in the file you're editing.

If you get unexpected results with any of the characters

" . $ [* \ &

read Section A.S, "Context and Regular Expressions."

A.4.13 Changing and lns erting Text: c and i

This section discusses the change (c) command, which is used to change
or replace one or more lines, and the insert (i) command, which is used
for inserting one or more lines.

The c command is used to replace a number of lines with different lines that
you type at the terminal. For example, to change lines ".+ 1" through ''$"
to something else, enter:

.+ l,$c
type the lines of text you want here . . .

The lines you enter between the c command and the dot (.) will replace the
originally addressed lines. This is useful in replacing a line or several lines
that have errors in them.

If only one line is specified in the c command, then only that line is
replaced. (You can enter as many replacement lines as you like.) Notice
the use of a period to end the input. This works just like the period in the
append command and must appear by itself on a new line. If no line
numberis given, the current line specified by dot is replaced. The value of
dot is set to the last line you typed in. Note that the terminating period and
the line referenced by dot are completely different: the first is used simply
to terminate a command, the second points at a specific line of text.

A -20

c \

()

ed

The i command is similar to the append command. For example:

/string/i
type the lines to be inserted here . . .

inserts -the given text before the next line that contains "string." The text
between i and the terminating period is inserted before the specified line. If
no line number is specified, dot is used. Dot is set to the last line inserted.

Exercise

The c command is like a combination of delete followed by insert. Experi­
ment to verify that:

start,end d
i
[text]

is ahnost the same as:

start, end c
[text]

These are not precisely the same, if the last line gets deleted.

Experiment with a and i to see that they are similar, but not the same.
Observe that:

line-number a
[text]

appends after the given line, while:

line-number i
[text]

A -21

XENIX User's Guide

inserts before it. If no line number is given, i inserts before line dot, while a
appends after line dot.

A.4.14 Moving Lines: m

The move (m) command lets you move a group of lines from one place to
another in the buffer. Suppose you want to put the first three lines of the
buffer at the end instead. You cauld do it by entering:

1,3wtemp
$rtemp
1,3d

where temp is the name of a temporary file. However, you can do it easily
with them command:

1,3m$

This will move lines 1 through 3 to the end of the file.

The general case is:

start- line,end-linemafter- this-line

There is a third line to be specified: the place where the moved text gets
put. Of course, the lines to be moved can be specified by context searches.
If you had:

First paragraph
end of first paragraph.
Second paragraph
end of second paragraph.

you could reverse the two paragraphs like this:

/Second/ ,lend of second/m/First/-1

Notice the -1. The moved text goes after the line mentioned. Dot gets set
to the last line moved. Yourfilewillnowlook like this:

A-22

Second paragraph
end of second paragraph
First paragraph
end of first paragraph

ed

As another example of a frequent operation, you can reverse the order of
two adjacent lines by moving the first line after the second line. Suppose
that you are positioned at the first line. Then:

m+

moves line dot to one line after the current line-dot. If you are positioned
on the second line:

m--

moves line dot to one line after the current line dot.

The m command is more efficient than writing, deleting and rereading.
The main difficulty with the m command is that if you use patients to
specify both the lines you are moving and the target, you have to take care
to specify them properly, or you may not move the lines you want. The
result of a bad m command can be a mess. Doing the job one step at a time
makes it easier for you to verify, at each step, that you accomplished what
you wanted. It is also a good idea to issue a w command before doing any­
thing complicated; then ifyoumakea mistake, it's easy to backup to where
you were.

For more information on moving text, see Section A.4.18, "Marking Your
Spot in a File:k" in this Appendix.

A.4.15 Performing Global Commands : g and v

The "global" commands g and v are used to execute one or more editing
commands on all lines that either contain g or do not contain v, a specified
pattern.

For example, the command:

g/XENIX/p

prints all lines that contain the word "XENIX." The pattern that goes
between the slashes can be anything that could be used in a line search orin
a substitute command; exactly the same rules and limitations apply.

For example:

prints aU the troffformatting commands in a file. " . . ". For an explanation
of the use of the caret () and the backslash (\), see Section A.S, "Context
and Regular E:x-pressions" in this Appendix.

A - 23

XENIX User's Guide

The v, command is identical to g, except that it operates on those lines that
do not contain an occurrence of the pattern. (Mnemonically, the "v" can
be thought of as partoftheword "in verse".

For example:

v(\./p

prints all the lines that do not begin with a period (i.e., the actual text lines}.

Any command can follow g or v. For example, the following command
deletes all lines that begin with " .. "

g(\./d

This command deletes all empty lines:

g
($/d

Probably the most useful command that can follow a global command is
the substitute command. For example, we could change the word "Xenix''
to "XENIX" everywhere, and verify that it really worked, with:

g/Xenix/ s/ /XENIX/ gp

Notice that we used I I in the substitute command, to mean "the previous
pattern" in this case, "Xenix." The p command executes on each line that
matches the pattern, not just on those in which a substitution took place.

The global command makes two passes over the file. On the first pass, all
lines that match the pattern are marked. On the second pass, each marked
line is examined in turn, dot is set to that line, and the cominand executed.
This means that it is possible for the command that follows a g or v com­
mand to use addresses, set dot, and so on, quite freely. For example:

g!
'\.P/+

A -24

C---- \

ed

prints the line that follows each " .P" command (the signal for a new para­
graph in some formatting packages). Remember that plus (+) means ''one
line past dot." And:

g/topic/fUI?p

searches for each line that contains the word �'-topic" scans backwards
until it finds a line that begins with a ".I-1" (a heading) and prints it, thus
showing the headings under which "topic" is mentioned. Finally:

g!"_EQ/+,/\,EN/-p

prints all the lines that lie between lines beginning with ".EQ" and ".EN"
formatting commands.

The g and v commands can also be preceded by line numbers, in which
case the lines searched are only those in the range specified.

It is possible to give more than one command under the control of a global
command. For example, suppose the task is to change ''x" to "y" and "a"
to "b" on all lines that contain "thing." Then:

g/thing/s/x/y/\
sf alb/

is sufficient. The backslash (\) signals the g command thatthe set of com­
mands continues on the next line; the g command terminates on the first
line that does not end with a backslash.

Note that you cannot use a substitute command to insert a newline within a
gcommand. Watch outforthis.

The command:

g/x/s//y/\
s/a/b/

does not work as you might expect. The remembered pattern is the last pat­
tern that was actually executed, so sometimes it will be "x" (as expected},
and sometimes it will be "a" (not expected}. You must spell it out, as
shown:

g/x/s/x/y/\
s/a/b/

A-25

XENIX User's Guide

It is also possible to execute a, c and i commands as part of a global com­
mand. As with other multiline constructions, add a backslash at the end of
each line except the last. Thus, to add an " .nf" and " .sp" command before
each " .EQ" line, enter:

g(\.EQ/i\
.nf\
.sp

There is no need for a final line containing a period (.) to terminate the i
command, unless there are further commands to be executed under the
global command.

A.4.16 Displaying Tabs and Control Characters: I

ed provides two commands for printing the contents of the text you are
editing. You should already be familiar with p, in combinations like:

1,$p

to print all the lines you are editing, or:

s/abc/def/p

to change "abc" to "def" on the current line. Less familiar is the "list" (1)
co=and which gives slightly more information than p. In particular, I
makes visible characters that are normally invisible, such as tabs and back­
spaces. If you list a line that contains some of these, I prints each tab as
">" and each backspace as ('<" This makes it much easier to correct the
sort of entering mistake that inserts extra spaces adjacent to tabs, or inserts
a backspace followed by a space.

The I command also "folds" long lines for printing. Any line that exceeds
72 characters is printed on multiple lines; each printed line except the last is
terminated by a backslash (\), so you can tell it was folded. This is useful
for printing; lines longer than the width of your terminal screen.

Occasionally, the 1 command will print a string of numbers preceded by a
backslash, such as \07 or \16. These combinations are used to make visible
characters that normally don't print, like form feed, vertical tab, or bell.
Each backslash-number combination represents a single ASCII character.
Note that numbers are octal and not decimal. When you see such charac-

. ters, be aware that they may have surprising meanings when printed on
some terminals. Often, their presence indicates an error in entering,
because they are rarely used.

A -26

(

c

ed

A.4.17 Undoing Commands: u

Occasionally, you will make a substitution in a line, only to realize too late
that it was a mistake. The undo (u) command, lets you "undo" the last
substitution. Thus the last line that was substituted can be restored to its
previous state by entering:

u

This command does notwork with the g and v commands.

A.4.18 MarkingYourSpotinaFile: k

The mark coffimand, k, provides a facility for marking a line with a particu­
lar name, so that you can later reference it by name, regardless of its actual
line number. This can be handyformovinglines andkeepingtrack of them
astheymove, Forexample:

kx

marks the current line with the name "x." If a linenumberprecedes the k,
that line is marked. (The mark name must be a single lowercase letter.)
Youcanreferto the marked line with the notation:

'x

Note the use of the single quotation mark (�) here. Marks are very useful
for moving things around. Find the first line of the block to be moved and
then mark it with:

ka

Then find thelast line aud mark it with:

kb

Go to the placewh6re the text is to be inserted and enter:

'a/bm.

A line can have only one mark name associated with it at any given time.

A -27

XENIX User's Guide

A.4.19 Transferring Lines: t

We mentioned earlier the idea of saving lines that are hard to type or used
often, to cut down on entering time. ed provides another command, called
t (for transfer) for making a copy of a group of one or more lines at any
point. This is often easier than writing and reading.

The t command is identical to the m command, except that instead of mov­
ing lines it simply duplicates them at the place you named. Thus:

1,1

duplicates the entire contents that you are editing.

A common use for t is to create a series of lines that differ only slightly. For
example, you can enter:

a
Now is the time for all good men to come to the aid of their party.

t. [make a copy]
s/men/women/ [change it a bit]
t. [makethird copy]
s/N ow is/yesterday was/ [change it a bit]

Your file will look like this:

Now is the time for all goodmen to come to the aid of their party.
Now is the time for all good women to come to the aid oftheirparty.
Yesterday was the time for all good women to come to the aidoftheirparty.

A.4.20 Escaping to the Shell: !

Sometimes it is convenient to temporarily escape from the editor to exe­
cute a XENIX command without leaving the editor. The shell escape (!)
command, provides a way to do this.

If you enter:

!command

your current editing state is suspended, and the XENIX command you
asked for is executed. When the command finishes, ed will signal you by
printing another exclamation (!). At that point, you can resume editing.

A - 28

-j
'

c

()

ed

A.S Context and Regular Expressions

You may have noticed that things don't work right when you use characters
such as the period (.), the asterisk (*), and the dollar sigo ($) in context
searches and with the substitute command. The reason is rather complex,
although the solution to the problem is simple. ed treats these characters
a� sp<?cial. For :in_!?t�nc_e_, in a context search_ or the _first string of the_substi­
tute command, the period (.) means ''anycharacter" not a period, so:

/x.y/

means a line with an "x" any character, and a "y"notjust aline with an "x"
a period, and a "y" A complete list of the special characters that can cause
prob I ems follows:

-
. $ (* \ /

The next few subsections discuss how to use these characters to describe
patterns of text in search and substitute commands. These patterns are
called "regular expressions" and occur in several other important XENIX
commands and utilities, including grep(C), sed(C) (See the XENIXRefer­
ence Manual).

Recall that a trailingg after a substitute command causes all occurrences to
bechanged. With:

s/this/that/

and

s/this/that/ g

The first command replaces the first ccthis" on the line with ((that." If there
is more than one "this" on the line, the second form with the trailing g
changes all of them.

A-29

XENIXUser's Guide

Either form of the s command can be followed by p or I to print or list the
contents of the line. For example, all of the following are legal and mean
slightly different things:

slthis/that/p
s/this/that/1
s/this/that/gp
s/this/that/gl

Make sure you know what the differences are.

Of course, any s comniatid can be preceded by one or two line numbers to
specify that the substitution is to take place on a group of lines. Thus:

1,$s/mispell/misspelll

changes the first occurrence of "mispell" to "misspell" in each line of the
file. But:

1,$s/mispelllmisspelllg

changes every occurrence in each line (and this is more likely to be what you
wanted).

If you add a p or I to the end of any of these substitute commands, only the
last line changed is printed, not all the lines. We will talk later about how to
print all the lines that were modified.

A.S.l Period: (.)

The first metacharacter that we will discuss is the period (.). On the left
side of a substitute command, or in a search, a period stands for any single
character. Thus the search:

/x.y/

A - 30

0

(
_/

ed

finds any line where "x" and "y" occur separated by a single character, as
in:

x+y
x-y
x y
xzy

and so on.

Since a period matches a single character, it gives you a way to deal with
funny characters printed by I. Suppose you have a line that appears as:

th\07is

when printed with the 1 command, and that you want to get rid of the \07,
which represents an ASCII bell character.

The most obvious solution is to enter:

s/\07//

but this will fail. Another solution is to retype the entire line. This is
guaranteed, and is actually quite reasonable if the line in question isn't too
big. But for a very long line, reentering is not the best solution. This is
where the metacharacter " . . �' comes in handy. Since \07 really represents a
single character, if we enter:

s/th.is/this/

the job is done. The period matches the mysterious character between the
"h" and the ''i"whatever it is.

Since the period matches any single character, the command:

s/.1,/

converts the first character on a line into a comma (,), which very often is
not what you intended. The special meaning of the period can be removed
by preceding it with a backslash.

As is true of many characters in ed, the period (.) has several meanings,
depending on its context. This line shows all three:

.s/.1.1

The first period is the line number of the line we are editing, which is called
"dot." The second period is a metacharacter that matches any single char­
acter on that line. The third period is the only one that really is an honest,
literal period. (Remember that a period is also used to terminate input

A-31

XENIX User's Guide

from the a and i commands.) On the right side of a substitution, the period
(.) is not special. If you apply this command to the line:

Now is the time.

the result is:

.ow is the time.

which is probably not what you intended. To change the period at the end
of the sentence to a comma, enter:

sf\.! ,I

The special meaning of the period can be removed by preceding it with a
b ackslash.

A.S.2 Backslash: \

Since a period means ''any character'' the question naturally arises: what
do you do when you really want a period? For example, how do you con­
verttheline:

Now is the time.

into

Now is the time?

The b ackslash (\), turns off any special meaning that the next character
might have; in particular, ' ' \"converts the ''." from a
"match anything"
into a literal period, so you can use it to replace the period in ''Now is the
time." like this:

s/\.1?1

The pair of characters ''\.'' is considered byed to be a single real period.

The back slash can also be used when searching for lines that contain a spe­
cial character. Suppose you are looking for a line that contains:

at the start ofa line. The search:

/.DE/

A - 32

isn't adequate, for it will find lines like:

JADE
FADE
MADE

because the"." matches the letter �'A" on each of the lines-in question.
But if you enter:

/\.DE/

only lines that contain " .DE" are found.

ed

The backslash can be used to turn off special meanings for characters other
than the period. For example, consider finding a line that contains a
backslash. The search:

1\1

will not work, because the backslash (\) isn't a literal backslash, but
instead means that the second slash (/) no longer delimits the search. By
preceding a backslash with another backslash, you can search for a literal
backslash:

/\V

You can search for a forward slash (/)with:

/\II

The backslash turns off the special meaning of the slash immediately fol­
lowing, so that it doesn't terminate the slash-slash construction prema­
turely.

A miscellaneous note about backslashes and special characters: you can
use any character to delimit the pieces of an s command; there is nothing
sacred about slashes. (But you must use slashes for context searching.) For
instance, in aline that contains several slashes already, such as:

//exec 1/sys.fort.go II etc .. .

you could use a colon as the delimiter. To delete all the slashes, enter:

s:/::g

The result is:

exec sys.fort.go etc . . .

A-33

XENIXUser's Guide

When you are adding text with a or i or c, the backslash has no special
meaning, and you should only put in one backslash for each one you want.

Exercise

Find two substitute commands, each of which converts the line:

\x\.\y

into the line:

\x\y

Here are several solutions; you should verify that each works:

s/\\\./1
s/x . ./x/
s/ . . y/y/

A.5.3 DollarSign: $

The dollar sign ''$" stands for "the end of the line." Suppose you have the
line:

Now is the

and you want to add the word "time" to the end. Use the dollar sign ($) as
shown below:

s/$/time/

to get:

Now is the time

A - 34

(
\"'

I
l c�

c

ed

A space is needed before "time" in the substitute command� or you will
get:

Now is thetime

You can replace the second COJJ1ID3: in the followi11-g line with a period
without altering the first.

Now is the time, for all good men,

The command needed is:

s/,$1./

to get:

Now is the time, for all good men.

The dollar sign ($), here, provides context to make specific which comma
we mean. Without it, the s command would operate on the first comma to
produce:

Now is the time. for all good men,

To convert:

Now is the time.

into:

Now is the time?

as we did earlier, we can use:

s/.$1?/

Like the period (.), the dollar sign ($) has multiple meanings depending on
context. In the following line:

sl1$1

the first "$" refers to the last line of the file, the second refers to the end of
that line, and the third is a literal dollar sign to be added to that line.

A -35

XENIXUser's Guide

A.5.4 Caret:

The caret (·) stands for the beginning of the line. For example, suppose
you are looking for a line that begins with "the." If you enter:

/the/

you will probably find several lines that contain "the" in the middle before
arriving at the one you want. But, by entering:

(the/

younarrowthe context, and thus arrive at the desired line more easily.

The other use of the caret {
'

) en abies you to insert something at the begin­
ningof aline. For example:

sO /

places a space at the beginning of the current line.

Metacharacters can be combined. To search for a line that contains only
the characters:

.P

you can use the command:

(\.P$1

A.S.S Star: *

Suppose you have aline that looks like this:

text x y text

where ''text" stands for lots of text, and there are an indeterminate number
of spaces between the "x" and the "y." Suppose the job is to replace all the
spaces between "x" and "y" with a single space. The line is too long to
retype, and there are too many spaces to count.

This is where the metacharacter "star" (*) comes in handy. A character
followed by a star stands for as many consecutive occurrences of that char­
acter as possible. To refer to all the spaces at once, enter:

six *y/xy/

A -36

(

ed

The " " means "as many spaces as possible." Thus "x *y" means an "x" as
many spaces as possible, then a "y"

The star can be used with any character, not just a space. If the original
example was:

text x--------ytext

then all minus signs (-) can be replaced by a single space with the com­
mand:

s/x-*y/xy/

Finally, suppose that the line was:

text x y text

If you enter:

s/x. *y/xy/

The result is unpredictable. If there are no other x's or y's on the line, the
substitution will work, but not necessarily. The period matches any single
character so the ". *" matches as many single characters as possible, and
unless you are careful, it can remove more of the line than you expected.
For example, ifthelineis:

x text x y text y

then entering:

s/x. *y/xy/

takes everything from the first "x" to the last "y" which, in this example, is
more than you wanted.

The solution is to turn off the special meaning of the period (.) with the
backslash (\):

s/x\. *y/xy/

Now the substitution works, for "\.*" means "as many periods as possi­
ble."

There are times when the pattern ".*" is exactly what you want. For exam­
ple, to change:

Now is the time for all good men

A-37

XENIXUser's Guide

into:

Now is the time.

use ". *" to remove everything after the 1'for."

s/ for. *I.!

There are a couple of additional pitfalls associated with the star (*). Most
notable is the fact that "as many as possible" means zero or more. The fact
that zero is a legitimate possibility, is sometimes rather surprising. For
example, if our line contained:

xy[]text[Jx[]Oy[]text

where the squares represent spaces, and we entered:

s/x[]*y/x(]y/

the first ''xy" matches this pattern, for it consists of an "x" zero spaces, and
a "y." The result is that the substitute acts on the first ''xy" and does not
touch the later one that actually contains some intervening spaces.

The way around this is to specify a pattern like:

/x[]D*y/

which says an "x" a space, then as many more spaces as possible, and then
a "y" (i.e., one or more spaces).

The other pitfall associated with the star (*) again relates to the fact that
zero is a legitimate number of occurrences of something followed by a star.
The command:

s/x*/y/g

when applied to the line:

abcdef

produces:

yaybycydyeyfy

A - 38

c

ed

which is almost certainly not what was intended. The reason for this is that
zero is a legitimate number of matches, and there are no x's at the begin­
ningoftheline (so that gets converted into a "y," nor between the "a" and
the "b" (so that gets converted into a "y," and so on. Ifyoudon'twantzero
matches, enter:

s/xx*/y/g

since ''xx*" is one or more x's.

A.5.6 Brackets : [and]

Suppose that you want to delete any numbers that appear at the beginning
of aU lines of a :file. You might try a series of commands like:

1,$s(1*//
1,$s(2*//
1,$s(3*//

and so on, but this is clearly going to take forever if the numbers are long.
Unless you want to repeat the commands over and over, until finally all the
numbers are gone, you must get all the digits on one pass. That is the pur­
pose of the brackets.

The construction:

[0123456789]

matches any single digit; the whole thing is called a ((character class." With
a character class, the job is easy. The pattern "[0123456789]*" matches
zero or more digits (an entire number), so:

1,$s([0123456789]* I I

deletes all digits from the beginning of all lines.

Any characters can appear within a character class, and there are only
three special characters (,], and-) inside the brackets; even the backslash
doesn't have a special meaning. To search for special characters, for
example, you can enter:

/[.\f[]/

It's a nuisance to have to spell out the digits, so you can abbreviate them as
[0-9]; similarly, [a-z] stands for the lowercase letters, and [A-Z] for
uppercase.

A-39

XENIX User's Guide

Within [-], the "[" is not special. To get a "]" (or a "-" into a character
class, make it the first character.

You can also specify a class that means "none of the following characters."
This isdonebybeginningthe class with a caret (). For example:

ro-9]
stands for "any character except a digit." Thus, you might find the first line
that doesn'tbegin with a tab or space with a search like:

tr(space)(tab)]/

Within a character class, the caret has a special meaning only if it occurs at
thebeginning. Verifythat:

finds aline that doesn'tbegin with a caret.

A.5. 7 Ampersand: &

To save entering, the ampersand (&) can be used in substitutions to signify
the string of text that was found on the left side of a substitute command.
Suppose you have the line:

Now is the time

and you want to make it:

Now is the best time

You can enter:

s/the/the best/

It's unnecessary to repeat the word "the." The ampersand (&) eliminates
this repetition. On the right side of a substitution, the ampersand means
"whatever was just matched" so you can enter:

s/the/ & best/

A-40

l

/
"-··

ed

and the ampersand will stand for "the." This isn't much of a saving if the
thing matched is just ''the" but if the match is very long, or if it is something
like".*" which matches a lot of text, you can save some tedious entering.
There is also much less chance of making an entering error in the replace�
ment text. For example, to put parentheses in a line, regardless of its
length, enter:

s/.*/(&)/

The ampersand can occur more than once on the right side. For example:

s/the/ & best and & worst/

makes:

Now is the best and the worst time

and:

s/.*/&? &!!1

converts the original line into:

Now is the time? Now is the time! !

To get a literal ampersand, use the back slash to turn off the special mean­
ing. Forexample:

sf ampersand/\&/

converts the word into the symbol. The ampersand is not special on the
left side of a substitute command, only on the right side.

A.S.S Substituting New Lines

ed provides a facility for splitting a single line into two or more shorter lines
by "substituting in a newline.)l For example, suppose a line has become
unmanageably long because of editing. If it looks like:

. . . . teA1 A'J text.

you can break it between the "x" and the "y" likethis:

s/xy/x\
y/

A-41

XENIX User's Guide

This is actually a single command, although it is entered on two lines.
Because the b ackslash (\) turns off special meanings, a backslash at the
end of a line makes the newline there no longer special.

You can, in fact, make a single line into several lines with this same
mechanism. As an example, consideritalicizingtheword "very''in a long
line by splitting "very" onto a separate line, and preceding it with the for­
matting command " .I." Assume the line in question looks like this:

text a verybigtext

The command:

s/ very 1\
.I\
very\
I

converts the line into four shorter lines, preceding the word "very" with
the line " .1" and eliminating the spaces around the "very" at the same time.

When a newline is substituted in a string, dot is left at the last line created.

A.5.9 JotuingLines

Lines may be joined together, with the j command. Assume that you are
given the lines:

Now is
the time

Suppose that do tis setto the first line. Then the command:

joins them together to produce:

Now is the time

No blanks are added, which is why a blank was shown at the beginning of
the second line.

A-42

c

(I '
___ i

ed

All by itself, aj command joins the lines signified by dot and doC+ -1, but
any contiguous set of lines can be joined. Just specify the starting and end­
inglinenumbers. Forexample:

1,$jp

joins all the li�1�s �n a -��-�i�!q o�e _?_ig lin_�_ an�pr!J?:t�}t. __

A.S.lO Rearranging a Line: \(and\)

Recall that "&" is shorthand for whatever was matched by the left side of
an s command. In much the same way, you can capture separate pieces of
what was matched. The only difference is that you have to specify on the
left side just what pieces you're interested in.

Suppose that you have a file of lines that consist of names in the form:

Smith, A . B.
Jones, C.

and so on, and you want the initials to precede the name, as in:

A . B. Smith
C. Jones

It is possible to do this with a series of editing commands, but it is tedious
and error-prone.

The alternative is to "tag'' the pieces of the pattern (in this case, the last
name, and the initials}, then rearrange the pieces. On the left side of a sub­
stitution, if part of the pattem is enclosed between \(and \), whatever
matched that part is remembered, and available for use on the right side.
On the right side, the symbol, "\1" refers to whatever matched the first
\(. . . \)pair; "\2"to the second\(.. . \), and so on.

The command:

1,$s(\([. *]\), *\(. *\)/\2 \1/

although hard to read, doe:-l the job. The first \(. . . \), matches the last
name, which is any string up to the comma; this is referred to on the right
side with "\1." The second \(. . . \}, is whatever follows the comma and any
spaces, and is referred to as "\2."

With any editing sequence this complicated, it is unwise to simply run it
and hOpe. The global commands, g and v, provide a way for you to print
exactly those lines which were affected by the substitute command, and
thus, verifythat itdid what you wanted in all cases.

A-43

XENIX User's Guide

A.6 Speeding Up Editing

One of the most effective ways to speed up your editing is knowing what
lines will be affected by a command. If you do not specify the lines it is to
act on, and on what line you will be positioned (i.e., the value of dot)when
a command finishes, your editing speed is slowed. If you can edit without
specifying unnecessary line numbers, you can save a lot of entering.

For example, if you issue a search command like:

/thing/

you are left pointing at the next line that contains "thing." Then no address
is required with commands like s , to make a substitution on that line, or p,
to print it, or l, to list it, or d, to delete it, Or a, to append text affer it, or C,
to change it, or i, to m·sert text before it.

What happens if there is no occurrence of "thing." Dot is unchanged. This
is also true if the cursor was on the only occurrence of "thing" when you
issued the command. The same rules hold for searches that use ? . . . ? ; the
only difference is the direction in which you search.

The delete command, d, leaves dot pointing at the line that followed the
last deleted line. When the line dollar ($) gets deleted, however, dot points
at the new line $.

The line-changing commands a, c, and i, by default, all affect the current
line. If you give no line number with them, a appends text after the current
line, c changes the current line, and i inserts text before the current line.

The a, c, and i commands behave identically in one respect; when you stop
appending, changing or inserting, dot points at the last line entered. This is
exactly what you want when entering and editing on the fly.
For example, you can enter:

A -44

a
text
botch (minor error)

s/botch/correct/ (fixbotched line)
a
more text

-1

c

(. �/

ed

without specifying any line number for the substitute command or for the
second append command. Or you can enter:

a
text
horrible botch {major error)

c (replace entire line)
fixed up line

Experiment to determine what happens if you add no lines with an a, c, or i
command.

The r command reads a file into the text being edited, at the end if you give
no address, or after the specified line if you do. In either case, dot points at
the last line read in. Remember that you can even enter:

Or

to read a file in at the beginning of the text. (You can also enter Oa or lito
start adding text at the beginning.)

The w command writes out the entire file. If you precede the command by
one line number, that line is written out. H you precede it by two line
numbers, that range of lines is written out. The w command does not
change dot: the current line remains the same, regardless of what lines are
written out. This is true even if you enter something like:

(\.ABI ,f\.AE/w abstract

which involves a context search.

(Since thew command is so easy to use, you should save what you are edit­
ing regularly, as you go along just in case the system crashes, orin case you
accidentally delete what you're editing.)

The general rule is simple: you are left sitting on the last line changed; if
there were no changes, then dot is unchanged. To illustrate, suppose that
there are three lines in the buffer, and the line given by dot is the middle
one:

xl
x2
x3

A-45

XENIXUser's Guide

Then the command:

-,+s/x/y/p

prints the third line, which is the last one changed. But if the three lines
had been:

xl

y2
y3

and the same command had been issued while dot pointed at the second
line, only the first line would be changed and printed, and that is where dot
would be set.

A.6.1 Semicolon: ;

Searches with / ... / and ? ... ? start at the current line and move forward or
backward, respectively, until they either find the pattern, or get back to the
current line. Sometimes, thisisnotwhatyou want. Suppose, for example,
that the buffer contains lines like this:

ab

be

Starting at line 1, you would expect the command:

/al,/b/p

to print all the lines from the "ab" to the "be" inclusive. This is not what
happens. Both searches (for "a" and for "b" start from the same point,
and thus, they both find the line that contains "ab." As a result, a single
line is printed. Worse, if there had been a line with a "b" in it before the
"ab" line, then the print command would be in error, since the second line
number would be less than the first, and it is illegal to try to print lines in
reverse order.

This is because the comma separator for line numbers doesn't set dot as
each address is processed; each search starts from the same place. In ed,
the semicolon (;) can be used just like the comma, with the single

A-46

(

ed

difference that use of a semicolon forces dot to be set at the time the semi­
colon is encountered, as the line numbers are being evaluated. In effect,
the semicolon "moves" dot. Thus, in our example above, the command:

/a/;/b/p

prints the range of lines from "ab" to "be" because after the ua" is-found,
dot is set to that line, and then "b" is searched for, starting beyond that
line.

This property is most useful in a very simple situation. Suppose you want
to find the second occurrence of "thing." You could enter:

/thing/
II

but this prints the first occurrence as well as the second, and is a nuisance
when you knowverywell that it is only the second one you're interested in.
The solution is to enter:

/thing/;//

This says "find the first occurrence of "thing'' set dot to that line, then find
the second occurrence and print only that".

Closely related is searching for the second to last occurrence of something,
as in:

?something?;??

Finally, bear in mind that if you want to find the first occurrence of some­
thing in a file, starting at an arbitrary place within the file, it is not sufficient
to enter:

1;/thing/

because, if"thing'' occurs on line 1, it will not befouhd. The command:

0;/thing/

will work because it starts the search at line 1. This is oneofthefewplaces
where 0 is a legal line number.

A-47

XENIX User's Guide

A.6.2 Interrupting the editor

As a final note on what dot gets set to, you should be aware that if you press
the INTERRUPT key while ed is executing a command, your file is
restored, as much as possible, to what it was before the command began.
Naturally, some changes are irrevocable; if you are reading in or writing out
a file, making substitutions, or deleting lines. These will be stopped in
some unpredictable state in the middle (which is why it usually is unwise to
stop them). Dotmayormaynotbe chauged.

lf you are using the print command, dot is not changed uutil the printing is
done. Thus, ifyoudecideto printuntilyousee an interestingline, and then
press INTERRUPT, to stop the command, dot will not be set to that line or
even near it. Dot is left where it was when the p command was started.

A. 7 Cutting and Pasting with the editor

This section describes how to manipulate pieces of :files, individual lines or
groups of lines.

A. 7.1 Inserting One File Into Another

Suppose you have a file called merrw, and you waul the file called table to
be inserted just after a reference to Table 1. That is, in memo, somewhere
is aline that reads:

Table 1 shows that ...

aud the data contained in table has to go there.

To put table into the correct place in the file edit memo, find "Table 1" aud
add the file tablerightthere:

ed memo
/Table t/
response from ed
.r table

The critical line is the last one. The r command reads a file; here you asked
for it to be read in right after line dot. Anrcommand, without any address,
adds lines at the end, so it is the same as "$r."

A -48

c

ed

A. 7.2 WritingOutPartofa File

The other side of the coin is writing out part of the document you're edit­
ing. For example, you may want to split the table from the previous exam­
ple into a separate file so it can be formatted and tested separately. Sup­
pose that in the file being edited we have:

.TS
[lots of stuff]
.TE

which is the way a table is set up for the tbl program. To isolate the table in
a separate file called table, first find the start of the table (the ".TS" line),
then writeouttheinterestingpart. For example, first enter:

t\.TS/

This prints out the found line:

.TS

Next enter:

.,t\.TE/wtable

and the job is done. Note that you can do it all at once with:

t\.TS/;/\.TE/wtable

The point is that the·w command can write out a group of lines, instead of
the whole file. In fact, you can write out a single line if you like; just give
one line number instead of two. If you have just entered a complicated line
and you know that it (or something like it) is going to be needed later, then
save it, do not retype it.
For example, in the editor, enter:

a
lots of stuff
horrible line

.w temp
a
more stuff

.r temp
a
more stuff

A-49

XENIX User's Guide

A. 8 Editing Scripts

If a fairly complicated set of editing operations is to be done on a whole set
of :files, the easiest thing to do is to make up a ''script" (i.e., a file that con­
tains the operations you want to perform, then apply this scriptto each file
in turn).

For example, suppose you want to change every "Xenix" to "XENIX" and
every "USA" to "America" in a large number of files. Enter the following
lines into the file script:

g/Xerlix/ si/XBNTXJ g
g/USA/s//Americalg
w
q

Now you can enter:

ed -filel <script
ed- file2 <script

This causes ed to take its commands from the prepared file script. Notice
that the whole job has to be planned in advance, and that by using the
XENIX shell command interpreter, you can cycle through a set of files
automatically. The dash (-} suppresses unwanted messages from ed.

When preparing editing scripts, you may need to place a period as the only
character on a line to indicate termination of input from an a or i com­
mand. This is difficult to do in ed, because the period you type will ter­
minate input rather than be inserted in the file. Using a backslash to escape
the period won't work either. One· solution is to create the script using a
character such as the at-sign (@), to indicate end of input. Then, later, use
the following command to replace the at-sign with a period:

s(@$1./

A-50

�-

('

l

ed

A.9 Summary of Commands

This following is a list of all ed commands. The general form of ed com­
mands is the command name, preceded by one or two optional line
numbers and, in the case of e, f, r, and w, followed by a :filename. Only one
command is allowed per line, but a p command may follow any other com­
mand_(except e, f,r, w, and q).

a Appends, i.e., adds lines to the buffer (at line dot, unless a
different line is specified). Appending continues until a period
is entered on a new line. The value of dot is set to the last line
appended.

c Changes the specified lines to the new text which follows. The
new lines are terminated by a period on a new line, as with a.
If no lines are specified, replace line dot. Dot is set to the last
line changed.

d Deletes the lines specified. If none are specified, deletes line
dot. Dot is set to the first undeleted line following the deleted
lines unless dollar ($) is deleted, in which case dot is set to dol­
lar.

e

f

g

i

I

m

p

q

Edits a new file. Any previous contents of the buffer are
thrown away, so issue a w command first.

Prints the remembered filename. If a name follows f, then the
remembered name is set to it.

The command gl string /commands executes commands on
those lines that contain string, which can be any context
search expression.

·

Inserts lines before specified line (or dot) until a single period
is typed on a new line. Dot is set to the last line inserted.

Lists lines, making visible non printing ASCII characters and
tabs. Otherwise similartop.

Moves lines specified to after the line named after m. Dot is
set to the last line moved.

Prints specified lines. If none are specified, print the line
specified by dot. A single line number is equivalent to a com­
mand. A single RETURN prints ". + 1" the next line;

Quits ed. Your work is not saved unless you first give a w com-
mand. Give it twice in a row to abort edit. '

A - 51

XENIX User's Guide

r Reads a file into buffer (at end unless specified elsewhere).

s

t

v

u

w

. -

Dot is set to the last line read.

The command ''s/ stringl I string2/" substitutes the pattern
matched by stringl with the string specified by string2 in the
specified lines. If no lines are specified, the substitution takes
place only on the line specified by dot. Dot is set to the last
line in which a substitution took place, which means that if no
substitution takes place, dot remains unchanged. The s com­
mand changes only the first occurrence of string I on a line; to
change multiple occurrences on a line, enter a g after the final
slash.

Transfers specified lines to the line named after t. Dot is set to
the last line moved.

The command vi string I commands executes commands on
those lines that do not contain string.

Undoes the last substitute command.

Writesouttheeditingbufferto a file. Dot remains unchanged.

Prints value of dot. (An equal sign by itself prints the value of
$.)

!command

I string I

? string ?

A - 52

The line !cmd-line causes cmd-line to be executed as a XENIX
command.

Context search. Searches for next line which contains this
string of characters and prints it. Dot is set to the line where
string was found. The search starts at . + 1, wraps around from
$to 1, and continues to dot, if necessary.

Context search in reverse direction. Starts search at .-1 ,
scans to 1, wraps around to $.

1
�

c

Index

CHARACTERS

. command
vi 2-4

{ } command �races __ co111m�d ({ })
: command Colon command (:) - ·
. command Dot command (.)
! command escape command (!)
I command vi
$# variable, argument recording 4-14
$? variable, command exit status 4-15
$- variable, execution flags 4-15
$$ variable, process number 4-15
0 command vi

A

a command
alias 3-13
appending ed
ed use ed
mail 3-13, 3-21, 3-35

-a operator 4-40
Addition be
Alias

command 3-13
C-shell use 7-7

Ampersand (&)
see also And-if operator (&&)
backgroun� process 4-22, 4-59
command hst 4-21
ed use ed
interrupt, quit immunity 4-22
jobs to other computers 4-22
metacharacter ed
off-line printing 4-22
use restraint 4-22

And-if operator (&&)
command list 4-21
description, use 4-22
designated 4-59

Append
ed procedure ed
output append symbol Output

Argument
filename 4-3
list creation 4-3
mail commands 3-9
number checking, $# variable 4-15
processing 4-19
redirection argument location 4-9
shell argument passing 4-19

Argument (continued)
substitution sequence 4-20
test command argument 4-40

Arithmetic
expr command effect 4-41

Arithmetic be
askcc option mail
asksubject option mail
Asterisk (*)

be
comment convention 5-13 5-14

.
multiplication operator s�bol S-2, 5_4

drrectory name, use avoidance 4-4
mail

character matching 3-8
message saved, header notation 3-17 3-1S

metacharacter 4-3, 4-59
'

pattern matching metacharacter
special shell variable 4-20

At sign (@), mail 3-31, 3-41
auto command, be 5-19
autombox option mail
autoprint option mail

B

b command vi
-b optidn

mail 3-32
Background job

C-shell use C-shell
Background process

$! variable 4-15
ampersand (&) operator 4-22 4-59
dial-up line

'

Ctrl-d effect 4-22
nohup command 4-22

INTERRUPT immunity 4-22
QUIT immunity 4-22
use restraint 4-22

Baekslash (I)
be

comment convention 5-13 5-14
line continuatiotr notation

'
s-6

C-shell use C-shell
ed ed
line continuation notation 4-51
metacharacter escape 4-4
quoting 4-59

BACKSPACE key
be 5-2
mail 3-12, 3-6

be
addition operator

evaluation order 5-15

l-1

Index

be (continued)
addition operator (continued)

left to right binding 5-4
scale 5-17, 5-6
symbol (+) 5-4

additive operator
see also Specific Operator
left to right binding 5-17

alphabetic register storage register
arctan function

availability 5-1
loading procedure 5-13

array
auto array 5-19
characteristics 5-14
identifier 5-14, 5-20
name 5-9
named expression 5-15
one-dimenslona1 5-9

assignment operator
designated, use 5-18
evaluation order 5-15
positioning effect 5-5
symbol H 5-5

assignment statement 5-12
asterisk ("')

comment convention 5-13, 5-14
multiplication operator symbol 5-2, 5-4

auto
command 5-19
keyword 5-14
statement

built-in statement 5-20
backslash (\)

comment convention 5-13, 5-14
line continuation notation 5-6

BACKSPACE key 5-2
bases 5-5
be command

file reading, execution 5-13
invocation 5-1

be -1 command 5-13
Bessel function

availability 5-1
loading procedure 5-13

braces ({})
compound statement enclosure 5-19
function body enclosure 5-8

brackets ([])
array identifier 5-14
auto array 5-19
subscripted variable 5-9

break, keyword 5-14
break statement

built-in statement 5-20
built-in statement 5-20
caret 0, exponentiation operator

symbol 5-4
command be command

I-2

be (continued)
comment convention 5-13, 5-14
compound statement 5-19
constant

composition 5-14
defined 5-15

construction
diagram 5-13
space significance 5-13

control statements 5-10
cos function

availability 5-1
loading procedure 5-13

define, keyword 5-14
define statement

built-in statement 5-20
description, use 5-20

demonstration run 5-1
description 5-1
division operator

left to right binding 5-17, 5-4
scale 5-17, 5-7
symbol (/)5-4

equal sign (=)
assignment operator symbol 5-5
relational operator 5-10, 5-19

equivalent constructions diagram 5-13
evaluation sequence 5-2
exclamation point (!)

relational operator 5-10, 5-19
exit 5-2, 5-3
exponential function

availability 5-1
loading procedure 5-13

exponentiation operator
right to left binding 5-17, .5-4
scale S-17, 5-7
symbol 0 5-4

expression
enclosure 5-15
evaluation order 5-15
named expression 5-15
statement 5-19

for, keyword 5-14
for statement

break statement effect 5-20
built-in statement 5-20
description, use 5-10
format 5-21
range execution 5-11
relational operator 5-18

function
argument absence 5-9
array 5-9
calling function call
definition procedure 5-8
form 5-8
identifier 5-14
name 5-8

0

c

be (continued)
fmtction (collfinued)

parameters 5-8
return statement return statement
tennination, return statement 5-21
variable automatic 5-8

function call
defined 5-16
description 5-16
evaluation order 5-15
procedure 5-9
syntax 5-16

global storage class 5-19
greater-than sign (>), relational

operator 5-10, 5-19
hexadecimal digit

ibase 5-5
abase 5-6
value 5-14

ibase
decimal input setting 5-6
defined 5-15
initial setting 5-5
keyword 5-14
named expression 5-15
setting 5-5
variable 5-7

identifier
array array
auto statement effect 5-20
description 5-14
global 5-19
local5-19
named expression 5-15
value 5-19

if, keyword 5-14
if statement

built-in statement 5-20
description, use 5-10
format 5-21
range execution 5-10
relational operator 5-18

INTERRUPf key 5-2
introduction 5-l
invocation 5-1
keywords designated 5-14
language features 5,..12
length

built-in function 5-16
keyword 5-14

less-than sign (<), relational operator 5-10,
5-19

line continuation notation 5-6
local storage class 5-19
log function

availability 5-1
loading procedure 5-13

math function library be -1 command
minus sign (-)

Index

be (continued)
minus sign (-) (continued)

subtraction operator symbol 5-4
unary operator symbol S-16, 5-4

modulo operator
left to right binding 5-17, 5-4
scale 5-17, 5-7
symbol (%) 5-4

multiplication operator
see also Specific_ Operator
evaluation order 5-15
left to right binding 5-17, 5-4
scale 5-17, 5-7
symbol (*) 5-2, 5-4

named expression 5-15
negative number, unary minus sign (-) 5-4
abase

conversion speed 5-6
defined 5-15
description 5-6
hexadecimal notation 5-6
initial setting 5-6
keyword 5-14
named expression 5-15
variable 5-7

operator
see also Specific Operator
designated, use 5-4

parentheses (())
expression enclosure 5-15
function identifier argument

enclosure 5-14
percentage sign (%), modulo operator

symbol 5-4
plus sign {+)

addition operator symbol 5-4
unary operator symbol 5-16

program flow alteration 5-10
quit command 5-2, 5-3
quit, keyword 5-14
quit statement

be exit 5-21
built-in statement 5-20

quoted string statement 5-19
register storage register
relational operator

designated 5-10, 5-18
evaluation order 5-15

RETURN key 5-2
return, keyword 5-14
return statement

built-in statement 5-20
description 5-21
fonn 5-8

scale
addition operator 5-17, 5-6
arctan function 5-13
Bessel function 5-13
built-in function 5-16

I-3

Index

be (continued)
scale (continued)

command 5-7
cos function 5-13
decimal digit value 5-7
defined 5-15
description 5-6
division operator 5-17, 5-7
exponential function 5-13
exponentiation operator 5-17, 5-7
initial setting 5-7
keyword 5-14
length function 5-16
length maximum 5-6
log function 5-13
modulo operator 5-17, 5-7
multiplication operator 5-17, 5-7
named expression 5-15
sin function 5-13
square root effect 5-16, 5-7
subtraction operator 5-17, 5-6
value printing procedure 5-7
variable 5-7

scale command 5-7
semicolon (;), statement

separation 5-19, 5-3
sin function

availability 5-1
loading procedure 5-13

slash (/). division operator symbol 5-4
space significance 5-13
square root

built-in function 5-16
keyword 5-14
result as integer 5-5
scale procedure 5-7
sqrt keyword 5-14

statement
see also Specific Statement
entry procedure 5-12
execution sequence 5-19
separation methods 5-19
types designated 5-19

storage
classes 5-19
register 5-5

subscript
array array
description 5-9
fractions discarded 5-9
truncation 5-14
value limits 5-9

subtraction operator
left to right binding 5-4
scale 5-17, 5-6
symbol (-) 5-4

syntax 5-l
token composition 5-14
truncation use, when 5-7

I-4

be (continued)
unary operator

designated 5-16
evaluation order 5-15
left to right binding 5-16
symbol (-) 5-4

value 5-14
variable

automatic 5-19, 5-8
name 5-8
subscripted subscript

while, keyword 5-14
while statement

break statement effect 5-20
built-in statement 5-20
description, use 5-10
execution 5-21
range execution 5-10
relational operator 5-18

be command
be invocation 5-1
file reading, execution 5-13

be -1 command, be 5-13
Dec escape mail
Bessel function be
/bin directory

command search 4-3
contents 4-37
name derivation 4-37
/usr/bin duplicate determination 4-50

Binary logical
and operator 4-40
or operator 4-40

BINUNIQ shell procedure 4-50
BKSP

vi cursor movement 2-18
Bourne shell

TERM variable 2-56
terminal type 2-56

Braces ({ })
be

compound statement enclosure 5-19
function body enclosure 5-8

commaod ({ }) 4-46
command grouping 4-28
pipeline, command list enclosure 4-23
variable

conditional substitution 4-43
enclosure 4-12

Braces command ({ }) 4-46
Brackets ([])

be
array identifier 5-14
auto array 5-19
subscripted variable 5-9

directory name, use avoidance 4-4
ed metacharacter ed
metacharacter 4-3, 4-59
pattern matching · metacharacter

0

Brackets ([]) (continued)
test command, use in lieu of 4-3�

break command
for command control 4-27
loop control 4-27
shell built-in command 4-46
special shell command 4-33
while command control 4-;l7

Buffer
g ed
g vi

Building a Communication System uucp

c

c command ed
C language

be
comment convention similarity 5-13
syntax agreement 5-l,

shell language 4-1
-c option

mail 3-32
-c option, shell invocation 4-45
Calculation be
Calculator functions be
Calendar reminder service 3-33
Caret 0

be, exponentiation operator symbol 5-4
ed use ed
mail, first message specification 3-16, 3-35,

3-7
case command

description, use 4-24
exit status 4-25
redirection 4-30
shell built-in command 4-46

Case delimiter symbol (;;) 4-59
Case-part 4-58
cat command

ed ed
-cc escape mail
cd command

directory change 4-16
mail 3-22, 3-35
parentheses use 4-16
time consumption minimization 4-48

CDPATH variable 4-14
Character class ed
chron option mail
Colon (:)

command Colon command (:)
mail

command escape 3-27
network mail 3-14

PATH variable qse 4-13
shell built-in command 4-46

Index

Colon (:) (continued)
variable conditional substitution 4-44
vi use vi

Colon command (:)
shell built-in command 4-46

Command
defined 4-21
delimiter ed
ed commands ed
enclosure _in p;u:�p_t_h�s�s (()),. effect.4-46
environment 4-17
execution 4-2

time 4-46
exit statu.�: Exit status
grammar 4-57
grouping

exit status 4-29
parentheses (()) use 4-59
procedure 4-28
WRITEMATI.. shell procedure 4-57

keyword parameter 4-17
line Command line
list Command list
mail commands summary 3-35
multiple commands entry 4-9
output substitution symbol 4-59
private command name 4-3
public command name 4-3
search

PATH variable 4-13
process 4-48

separation symbol (;) 4-59
shell, built-in commands designated 4-46
simple command

defined 4-2, 4-21
grammar 4-57

slash (/) beginning, effect 4-3
special shell commands

Shell
Specific Special Command

substitution
back quotation marks (') 4-4
double quotation marks (") 4-5
procedure 4-9
redirection argument 4-6

vi commands vi
Command line

execution 4-20
options

see also Specific Option
designated 4-45

pipeline, use in 4-23
rescan 4-20
scanning sequence 4-20
substitution 4-9

Command list
case command, execution 4-24
defined 4-21
for command, execution 4-26

I-5

Index

Command list (continued)
grammar 4-57

Communication mail
Compose escapes 3-1

see also mail
continue command

for command control 4-27
shell built-in command 4-46
special shell command 4-33
until command control 4-27
while command control 4-27

Control command
see also Specific Control Command
function 4-29
redirection 4-30

Copy command vi
COPYP AIRS shell procedure 4-50
COPYTO shell procedure 4-51
csh command

C-shell invocation 7-1
C-shell

I& symbol
redirection use 7-8

alias command
listing 7-10
multiple command use 7-7
number limitation 7-8
pipeline use 7-7
quoting 7-8
removal 7-12
use 7-10, 7-7

ampersand (&)
background job symbol 7-9
background job use 7-23
boolean AND operation implementation

(&&) 7-15
if statement, avoidance 7-17
redirection symbol 7-8

appending
noclobber variable effect 7-9
symbol (>>) 7-9

argument
expansion 7-22
group specification 7-23

argv variable
filename expansion prevention 7-16
script arguments contents 7-12

arithmetic operations 7-15
asterisk (*)

character matching 7-23
script notation 7-14

background job
procedure 7-9
symbol (&) 7-9
termination procedure 7-9

backslash (\)

1-6

if statement use 7-17
metacharacter cancellation 7-24
metacharacter escape 7-8

C-shell (continued)
backslash (\) (continued)

root parts separation from extension 7-23
boolean AND operation implementation 7-

15
boolean OR operation implementation 7-15
braces ({ })

argument expansion use 7-22
argument grouping 7-23

brackets ([])
character matching 7-23

break command
foreach statement exit 7-19
loop break 7-16
while statement exit 7-19

breaksw command
switch exit 7-19

c command
reuse 7-4

carat 0
history substitution use 7-24

character matching 7-23
colon (:)

script modifier 7-18
substitution modifier use 7-24

command
see also Specific command
continue

loop use 7-16
default argument supply 7-7
du 7-9
execution status 7-15
expansion 7-23
file script
foreach 7-21

exit 7-19
script use 7-16

history
see al.so history
use 7-10

history list 7-4
input supply 7-20
location determination 7-10
location recomputation 7-3
logout 7-1, 7-10
multiple commands commands, multiple
prbmpt symbol (%) 7-2
quoting 7-22
quoting, replacement 7-23
read only option 7-21
reading from file 7-11
rehash 7-3
repetition 7-10
repetition mechanisms 7-6
separation 7-23
separation symbol (;) 7-8
set 7-2

see also set
similarity, foreach command use 7-21

C-shell (continued)
command (continued)

simplification 7-7
source

command reading 7-11
substitution

string modification 7-18
symbol 7-24

termination testing 7-�5
timing 7-11
transformation 7-7
unalias

alias removal 7-12
unset

variable removal 7-12
unsetenv

variable removal form environment 7-12
command prompt symbol (%) 7-2
command substitution

string modification 7-18
commands, multiple

alias use 7-7
single job 7-9

comment
metacharacter 7-24
script use 7-12
symbol 7-18

continue command
loop use 7-16

.cshrc file (\ alias placement 7-7
\ 1 use 7-1
� diagnostic output

direction 7-8
redirection redirection

directory
examination 7-3
listing 7-2

disk usage 7-9
dollar sign ($)

last argument symbol 7-6
process number expansion 7-14
variable substitution symbol 7-13
variable substitution use 7-24

du command 7-9
:e modifier 7-18
echo option 7-21
else-if statement use 7-17
environment

printing 7-11
setting 7-11
variable removal 7-12

equal sign (=)
string comparison use (==), (=-) 7-15

1--- exclamation point (!)

L
history list substitution use 7-10

/ history mechanism invocation character
use 7-5

history substitution use 7-24

Index

C-shell (continued)
exclamation point (!) (continued)

string comparison use (!=), (!) 7-15
syntax use 7-4

execute primitive 7-15
existence primitive 7-15
expansion

control 7-21
metacharacters designated 7-24

expression
enclosure 7-23
evaluation 7-15
primitives 7-15

extension extraction 7-18
file

appending 7-9
command content script
enquiries 7-15

file overwriting
prevention 7-4
procedure 7-4

filename
expansion 7-22
expansion prevention 7-16
home directory indication 7-23
metacharacters designated 7-23
root extraction 7-18
scratch filename metacharacter 7-24

foreach command 7-21
exit 7-19
script use 7-16

goto label
script cleanup 7-21

go to statement 7-19
greater-than sign (>)

redirection symbol 7-8, 7-24
history

command 7-6
use 7-10

list 7-4
command substitution 7-10
contents display 7-10

mechanism
alias, use 7-7
invocation character 7-5
use 7-6

substitution symbol 7..,.24
variable 7-2

home variable 7-3
if statement use 7-17
ignoreeof variable 7-1, 7-3
input

execution procedure 7-13
metacharacters designated 7-24
variable substitution variable subs:titution

INTERRUPT key
background job, effect 7-9

invocation procedure 7-1
kill command

I-7

Index

C-shell (continued)
kill command (continued)

background job termination 7-9
less-than sign (<)

redirection symbol 7-24
script inline data supply (<<) 7-20

logging out
logout cOmmand use 7-1, 7-10
procedure 7-2
shield 7-1

.login file use 7-1
logout command

use 7-1, 7-10
.logout file use 7-2
loop

break 7-16
input prompt 7-21
variable use 7-22

mail
program invocation 7-2
variable 7-4

new mail notification 7-1
metacharacter

cancellation 7-24
expansion metacharacter 7-24
filename metacharacter 7-23
input metacharacter 7-24
output metacharacter 7-24
quotation metacharacter 7-24
substitution metacharacter 7-24
syntactic metacharacter 7-23

metasyntax
exclamation point {!) use 7-4

minus sign (-)
option prefix 7-24

modifiers 7-18
n key

script error absence 7-15
script notation 7-14

-n option 7-21
new program access 7-3
noclobber variable

appending procedure 7-9
redirection symbols 7-8, 7-4

noglob variable
filename expansion prevention 7-16

number sign {#)
C-shell comment symbol 7-12, 7-21
C-shell comment use 7-18, 7-24
scratch filename use 7-24

onintr label
script cleanup 7-21

option
metacharacter 7-24

output
diagnostic output diagnostic output
metacharacters designated 7-24
redirection redirection

parentheses (())

I-8

C-shell (continued)
parentheses (()) (continued)

expression enclosure 7-23
path variable 7-2
pathname

component separation 7-23
percentage sign (%)

command prompt symbol 7-2
pipe symbol ([)

boolean OR operation
implementation (II) 7-15

command separation 7-23
if statement, avoidance 7-17
redirection symbol 7-8

pipeline
alias, use 7-7

primitives expression primitives
printenv

environment pri.ntlilg 7-11
process number

expansion notation 7-14
listing 7-9

prompt variable 7-10
ps command

process number listing 7-9
question mark {?)

character matching 7-23
loop input prompt 7-21

QUIT signal
background job, effect 7-9

quotation marks
back (')

command quoting 7-22
command substitution use 7-24

double (") 7-21, 7-22, 7-24
siugle (')

alias quoting 7-8
metacharacters cancellation 7-24
quoted string, effect 7-21
script inline data quoting 7-20

quotation metacharacters designated 7-24
:r modifier 7-18
read primitive 7-15
redirection

diagnostic output 7-8
output 7-8
symbols designated 7-24

rehash command
command location recomputation 7-10,

7-3
repeat command

command repetition 7-10
root part

extension, separation 7-23
script

clean up 7-20
colon (:) modifier 7-18
command input 7-20
comment required 7-21

C-shell (continued)
script (continued)

description 7-12
example 7-16
execution 7-12
exit 7-21
inline data supply 7-20
interpretation 7-12
interruption catching 7-20
metanotation for inline data 7-20
modifiers 7-18
notations 7-14
range 7-15
variable substitution variable substitution

semicolon (;)
command separation 7-'23, 7-8
if statement, avoidance 7-17

set command
variable listing 7-2
variable value assignment 7-2

setenv command
environment setting 7-11

sla.h (/)
pathname component separation 7-23

source command
command reading 7-11

status variable 7-16
string

comparison 7-15
quoting 7-22

substitution metacharacters designated 7-24
switch statement

exit 7-19
form 7-19

syntactic metacharacters designated 7-23
TERM variable 2-56
terminal type setting 2-56
then statement use 7-17
tilde n

home directory indication 7-23
string comparision (=-), (n 7-15

time
command timing 7-11
variable 7-2

unalias command
alias removal 7-12

unset command
variable remova1 7-12

unsetenv command
variable removal from environment 7-12

unsetting procedure 7-4
-v command line option 7-21
variable

see also Specific Variable
component access

notations 7-13, 7-14
definition removal 7-12
environment variable setting 7-11
expansion 7-13, 7-22

Index

C-shell (co11finued)
variable (continued)

listing 7-2
loop use 7-22
removal from environment 7-12
setting procedure 7-3
substitution

see also variable substitution
substitution metacharacter 7-24
use 7-2-
value assignment 7-2

check 7-13
variable substitution

procedure 7-13
verbose option 7-21
while statement

exit 7-19
form 7-19

write primitive 7-15
-x command line option 7-21

.cshrc file
C-shell use 7-1

Ctrl-d
be exit 5-2, S-3
mail

message sending 3-10, 3-3
reply message termination 3-13, 3-20

shell exit 3-22, 4-28
vi, scro11 2-21

Ctrl-f
vi, scroll 2-21

Ctrl-g
vi, file status information 2-11

Ctrl-h, mail 3-6
Ctrl-u

mail, line killing 3-12, 3-6
vi, scroll 2-21

Current line
see vi

Cursor movement
vi see vi

Cutting and pasting procedure see ed

D

d command
ed use see ed

d$ command see vi
dO command see vi
dd command see vi
�dead escape see mail
Delete buffer see vi
Deletion

vi procedure see vi
Delimiter see ed
Diagnostic output see Output
dial

I-9

Index

dial (continued)
see also uucp
and uucp 6-34

Dial-up line see Background process
Digit grammar 4-58
Directory

C-shell
listing 7-2
use see C-shell

name, metacharacter avoidance 4-4
search

optimum order 4-48
PATH variable 4-48
sequence change 4-3
size effect 4-49
time consumption 4-48

size consideration 4-49
DISTINCT! shell procedure 4-51
Division see be
Dollar sign ($)

ed use see ed
mail, final message specification 3-16, 3-35,

3-7
positional parameter prefix 4-10, 4-11
PSl variable default value 4-14
variable prefix 4-11
vi see vi

Dot (.)
command see Dot command (.)
ed use see ed
mail, current message specification 3-16, 3-7
option see mail
vi use see vi

Dot command (.)
description, use 4-30
shell built-in command 4-46
shell procedure alternate 4-37
special shell command 4-33

dp command see mail
DRAFT shell procedure 4-52
dw command see vi

E

e command
ed use see ed
mail 3-36, 3-7
mailR 3-21

-e option, shell procedure 4-38
echo command

description, use 4-40
mail 3-36
-n option effect 4-40
shell built-in command 4-46
syntax 4-40

ed
a command

I-10

ed (continued)
a command (continued)

append A-3, A-51
backslash (\) characteristics A-34
dot(.) setting A-44, A-51
global combination A-26
input termination A -32, A -4

abortion, q command A-51
address arithmetic A -9
ampersand (&)

literal A-41
metacharacter A -40
substitution A-40

append see a command
asterisk ("'), metacharacter A-29, A-36
at sign (@), script A-50
backslash (\)

a command A-34
c command A-34
g command A-25
i command A-34
line folding A-26
literal A-33
metacharacter A-29, A-32
metacharacter escape A-32, A-33, A-41,

A-42
multiline construction A-26
number string A-26
v command A-25

backspace printing A-26
brackets ([])

character class A-39
metacharacter A-29, A-39

buffer
description A-3
writing to file see w command

c command
backslash (\) characteristics A-34
dot (.) setting A-20, A-44, A-51
global combination A-26
input termination A-20
line change A-20, A-51

caret 0
character class A-39
line beginning notation A-36
metacharacter A-29, A-36

cat command A -6
change command see c command
character

deletion at line beginning· A-39
character class A-39
command

see also Specific Command
combinations A-25
delimiter character A-33
description A-4
editing command see e command
form A-51
mrER.RUPT key effect A-48

0

C;

ed (continued)
command (continued)

listing A-51
multicommand line restrictions A-15
summacy A-51

context search see search
current line see dot (.)
cutting and pasting

move command see m command
procedures A-48

d command
deletion A-13, A-51
dot (.) setting A-44, A-51

deletion see d command
delimiter

character choice A-33
description A -1
dollar sign ($)

last line notation A-13, A-35, A-8
line end notation A-34, A-35
metacharacter A-29, A-34
multiple functions A-35

dot (.)
current line notation A-9
description A-11
determination A-44
search setting A-17, A-52
substitution setting A-14
symbol (.) A-11, A-31
value determination A-12, A-52

duplication see t command
e command A-51, A-6
edit see e command
entry A-3
equals sign (--)

dot value printing (.=) A-12, A-52
last line value printing A-52

escape command (!) A-28, A-52
exclamation point {!)

escape command A-28
exit &ee q command
f command A-51, A-7
file

insertion into another :file-A-48
writing out A-49

filename
change A-7
recovery A-7
remembered filename printing A-51, A-7

folding A-26
g command

a command combination A-26
backslash (\) use A-25
c command combination A-26
command combinations A-24, A-25
dot (.) setting A-24
i command combination A-26
line number specifications A-25
multiline construction A-26

Index

ed (continued)
g command (continued)

s command combination A-24, A-52
search, command execution A-23, A-51
substitution A-16, A-29
trailing g A-29

global command
see_ g command
see v command

greater-than sign (>)
tab notation A-26

grep command A-29
hyphen (-), character class A-39
i command

backs lash (\) characteristics A -34
dot (.) setting A-21, A-44, A-51
global combination A-26
input termination A -32
insertion A-20, A-51

in-line input scripts 4-53
input

termination A-20, A-32, A-4
insert command see i command
INTERRUPT key

command execution effect A-48
dot (.) setting A-48
print stopping A-9

introduction A-1
invocation A-3
j command, line joining A-42
k command, line marking A-27
I command

folding A-26
line listing A-26, A-51
nondisplay character printing A-26
number string A-26
s command combination A-30

less-than sign (<)
backspace notation A-26

lloe
beginning see line beginning
break see splitting
end see line end
folding A-26
joining ,A-42
marking A-27
moving see m command
number see line number
rearrangement A -43
splitting A-41
writing out A -49

line beginning
character deletion A-39
notation A-36

line end
notation A-34

line number
0 as line number A-47
combinations A-9

I-11

Index

ed (continued)
line number (continued)

summary A-51
list .see 1 command
m command

dot (.) setting A-23, A-51
line moving A-22, A-51
warning A -23

mail system .see mail
marking .see k command
metacharacter

ampersand (&) A-40
asterisk (*) A-29, A-36
backslash (I) A-29, A-32
brackets ([)) A-29, A-39
caret 0 A-29, A-36
character class A-39
combination A-.36
dollar sign ($) A-29, A-34
escape A-33, A-41
period (.) A-29, A-30
search A-39
slash (/) A-29
star (') A-29, A-36

minus sign (-), address arithmetic A-9
move

command .see m command
line marking A-27

multicommand line restrictions A -15
new line

substitution A-41
nondisplay character printing A-26
p command

dot (.) setting A-48
multicommand-line A-15
printing A-51, A-8
s command combination A-30

pattern search .see search
period (.)

a command input termination A-32, A-4
c command input termination A-20
character substitution A-30
dot symbol .see Dot (.)
i command input termination A-32
literal A -32
metacharacter A-29, A-30
s command, effect A-30
script problems A-50
search problems A-29
troff command prefix A-23

plus sign (+), address arithmetic A-9
print

command .see p command
line folding A-26
RETURN key effect A -12
stopping A-9

q command
abortion use A -51
quit session A-5, A-51

I-12

ed (continued)
q command (continued)

w command combination A-51
question mark (?)

exit warning A-3
search error message (?} A-17
search repetition (??} A-19

�
search, reverse direction (? ?) A-17, A-52
write warning A-5

quit see q command
quotation marks, single (')

line marking A-27
r command

dot (.) setting A-45, A-52
file insertion A-48
positioning without address A -48
read file A-52, A-7

reading see r command
regular expression

description A-29
metacharacter list A-29

RETURN key, printing A-51
s command

ampersand (&) A-40
character match A-30
description, use A-14, A-52
dot (.) setting A-15, A-44, A-52
g command combination A-16,

A-24, A-52
1 command combination A-30
line number A-30
new line A -41
p command combination A-30
search combination A -18
text removal A -15
trailing g A-29
undoing A-27
v command combination A-24

script A-50
search

dot (.) setting A-52
error message (?) A-17
forward search (/ I} A-16, A-52
global search see g command
global search see v command
metacharacter problems A-29
next occurrence description A -17
procedure A -16
repetition (/!}, (??) A-19
reverse direction (? ?} A-17
separator A-46
substitution combination A-18

sed command A-29
semicolon (;)

dot (.) setting A-47
search separator A-46

shell
escape see escape command (!)

slash (f)

c

ed (continued)
slash (/) (continued)

delimiter A-33
literal A-33
metacbaracter A-29
search forward (I I) A-16, A-52
search repetition (II) A-19

special character see metacharacter
spelling correction see s command
star {*), metacharacter A.,.29, A-36
substitution

command see s command
t command

dot (.) setting A-52
transfer line A-28, A-52

tab printing A-26
tbl command A -49
termination see q command
text

removal see s command
saving A-5

transfer see t command
troff command printing A-23
typing error correction see s command
u command

undo A-27, A-52
undo see u command
v command

a command combination A-26
backslash (\) use A-25
c command combination A-26
command combinations A-24, A-25, A-

26
dot (.) setting A-24
global search, substitute A-23, A-52
i command combination A-26
line number specifications A-25
s command combination A-24

w command
description, use A -5
dot (.) setting A-45, A-52
e command combination A -51
file write out A-49
frequent use advantages A-45
line write out A-49
write out A-49, A-5, A-52

write out
command see w command
warning A-S

EDFIND shell procedure 4-53
-editor escape see mail
Editor see ed
EDITOR string, mail 3-30, 3-41
ED LAST shell procedure 4-53
elif clause see if command
else clause see if command
Else-part grammar 4-58
Empty grammar 4-58
Equal sign (�)

Index

Equal sign (=) (continued)
be

assignment operator symbol 5-5
relational operator 5-10, 5-19

ed use see ed
mail, message number printing 3-16, 3-35
variable

conditional substitution 4-43
string value assignment 4-11

Error output redirection 4-42
ESCAPE key

vi see vi
Escape string, mail 3-30, 3-41
eval command

command line rescan 4-20
shell built-in command 4-46

ex, ed similarity A-1
Exclamation point {!)

be, relational operator 5-10, 5-19
C-shell use see C-shell
ed use see ed
mail

network mail 3-14
shell command execution 3-22, 3-26, 3-35

unary negation operator 4-40
vi see vi

exec command 4-34, 4-46
Exit code see $? variable
exit command

shell built-in command 4-46
shell exit 4-28
special shell command 4-33

Exit status
$? variable 4-15
case command 4-25
cd arg command 4-34
colon command (:) 4-33
command grouping 4-29
false command 4-41
if command 4-24
read command 4-35
true command 4-41
until command 4-25
wait command 4-36
while command 4-25

export command
shell built-in command 4-46
variable

example 4-14
listing 4-18
setting 4-17

expr command 4-41

I-13

Index

F

f command
ed use see ed
mai1 3-11, 3-12, 3-20, 3-36

F command, mai1 3-12, 3-20, 3-36
-f_ option, mail 3-10, 3-32
false command 4-41
fi command

if command end 4-23
mail 3-36

File
creation

MKFIT..ES shell procedure 4-55
with vi 2-2

descriptor see File descriptor
grammar 4-57
mail system files see mail
pattern search see ed
pattern search see grep command
pipe interchange 4-52
shell procedure creation 4-36
textual contents determination 4-57
variable file creation see Variable

File descriptor
description, use 4-6
redirection 4-42, 4-7

Filename
argument 4-3
ed see ed

Filter
description 4-7
order consideration 4-47

Flag see Option
for command

break ·command effect 4-27
continue command effect 4-27
description, use 4-26
redirection 4-30
shell built-in command 4-46

for loop, argument processing 4-19
fork command 4-46
FSPLIT shell procedure 4-54
Function

control command 4-29

G

G command
vi see vi

g command see ed
Global

ed use see ed
variable check 4-38

goto command
see G command 2-5

I-14

Greater-than sign (>)
be, relational operator 5-10, 5-'!9
PS2 variable default value 4-14
redirection symbol 4-59

grep command
ed see ed

H

h command
mail 3-17, 3-36, 3-9

H command
vi use see vi

H Hag, mail 3-17
hash command

description 4-34
special shell command 4-34

headers command see mail
neaders escape see mail
help

vsh 8-2
history command

C-shell use 7-6
ho command see mail
HO:rvffi variable

conditional substitution 4-44
description 4-12

I

i command see ed
-i option

mail 3-10, 3-31, 3-32, 3-41
shell invocation 4-45

if command
COPYTO shell procedure 4-51
description, use 4-23
exit status 4-24
:fi command required 4-24
multiple testing procedure 4-23
nesting 4-24
redirection 4-30
shell built-in command 4-46
test command 4-38

IPS variable 4-12
ignore option see mail
ignorecase option see vi 2-39
In-line input document see Input
Input

ed see ed
grammar 4-57
in-line input

document 4-41
ED FIND shell procedure 4-53

0

c

Input (continued)
standard inpllt file 4-5

Insert mode see vi
Insertion see ed
Internal field separator

shell scanning sequence 4-20
specificaiton by IFS variable 4-12

Interrupt
handling methods 4-31
key see _INTERRUP'J key

JNTERRUPI' key
background process immunity 4-22
be 5-2
ed use see ed
mail

askcc switch 3-28
message abortion 3-12, 3-29

Invocation flag see Option
Item grammar 4-57

J

j command
ed use see ed
vi use see vi

K

k command
ed use see ed
vi use see vi

-k option, shell procedure 4-38
Keyword parameter

description 4-17
-k option effect 4-38

kill command
C-shell use see C-shell

L

! command
ed use see ed
mail 3-19, 3-37

L command
vi use see vi

Less-than sign (<)
be, relational operator 5-10, 5-19
redirection symbol 4-59

Line
beginning see ed
writing out see �

line command

Index

line command (continued)
shell variable value assignment 4-9

linenumber option see vi
Line-oriented commands

see vi 2-12
list command

mail 3-37
list option see vi
LISTFIELDS shell procedure 4-54
Logging o�t

shell tenl1ination 4-28
Login directory

defined 4-12
.login file

C-shell use 7-1
logout command

C-shell use 7-1
.logout file

C-shell use 7-2
Looping

break command 4-27
continue command 4-27
control 4-27
expr command 4-41
false command 4-41
for command 4-26
iteration counting procedure 4-41
time consumption 4-46
true command 4-41
unconditional loop implementation 4-41
until command 4-25
while command 4-25
while loop 4-51

lp command
mail

-m option 3-33
Ipr command

mail
message printing 3-19, 3-37

Is command
echo * use in lieu of 4-40

M

m command
ed see ed
mai1 3-20, 3-37

M flag see mail
-m option, mail 3-33
magic option see vi
mail

- - see tilde quote escape C -)
? command see help command (?)
-: see command escape C:)
-? see help escape f?)
-! see shell escape r!)
a command see alias

I-15

Index

mail (continued)
accumulation 3-33
alias

a command 3-13, 3-21, 3-35
Alias, displays system-wide aliases 3-35
display 3-13
network mai1 3-14
personal 3-13, 3-28
R command 3-13
system-wide 3-28

askcc option 3-14, 3-28, 3-41
asksubject option 3-28, 3-41
asterisk (*)

character matching 3-8
message saved, header notation 3-17, 3-19

at sign (@), ignore switch echo 3-31, 3-41
autombox option

description, use 3-31, 3-41
effect 3-18
H flag 3-17
ho command 3-19

autoprint option 3-28, 3-41
D escape 3-24
-b option 3-32
BACKSPACE key 3-12, 3-6
Dec escape 3-40
Bee field see blind carbon copy field
blind carbon copy field

description 3-5
editing 3-24, 3-25
escape see Dec escape

box see mailbox
-c escape 3-24
-c option 3-32
carbon copy field

additions prompt 3-14
blind see blind carbon copy field
description 3-5
display 3-4
editing 3-25
escape see -c escape
escape see -cc escape
option see askcc option
R command effect 3-13

caret (), first message specification
3-16, 3-35, 3-7

-cc escape 3-40
cc field see carbon copy field
cd command 3-22, 3-35
chron option 3-29, 3-41
colon (:)

escape see command escape C:)
network mail 3-14

command

I-16

see also Specific Command
descriptions 3-14
escape r:) 3-27
escape see command escape r:)
invocation 3-14

mail (continued)
command (continued)

line options 3-31
mode see command mode
summary 3-35
syntax 3-9

command escape C:) 3-27, 3-39
command line options 3-31
command mode

description, use 3-7
help command 3-15
options setting 3-14

compose escape rD 3-39
compose escapes

see also Specific Escape
compose mode exit 3-6
edit mode entry 3-7
heading escapes 3-24
listing 3-12, 3-2
m command 3-20
reply 3-20
summary 3-39
symbol

C!J 3-39
tilde n component 3-12

compose mode
compose escapes see compose escapes
description, use 3-6
edit mode entry 3-7
entry from command mode 3-12
entry. from shell 3-12
tilde escapes see compose escapes

concepts 3-4
C-shell

new mail notification 7-1
Ctrl-d

message reply 3-13, 3-20
message sending 3-10

Ctrl-h, backspace 3-6
Ctrl-u, line killing 3-12, 3-6
d command 3-11, 3-17, 3-35, 3-4, 3-8
-d escape 3-25, 3-40
-dead escape 3-25, 3-40
dead.letter file

escape see -d escape
nosave switch effect 3-29
undelivered message receipt 3-11

deletion see message
distribution list creation 3-13
dollar sign ($)

final message specification 3-7, 3-16, 3-35
dot (.), current message specification 3-16,

3-7
dot option 3-29, 3-41
dp command 3-18, 3-36
e command 3-21, 3-36
-e escape 3-23, 3-40
echo command 3-36
editor escape

0

mail (continued)
editor escape (continued}

see -e escape
see -v escape

editor escape 3-23
EDITOR string 3-30, 3-41
entry 3-9
equal sign (�)

message number printing 3-16, 3-35
esc11pe string 3-;30, 3-4;L
exclamation point (!)

network rnail 3-14
shell command execution 3-22, 3-26, 3-35

execmail 3-29
exit

q command 3-10, 3-18, 3-37, 3-4
x command 3-18, 3-36

f command 3-11
F command 3-12, 3-20, 3-36
-f option 3-10, 3-32
fi command 3-36
file switch see -f option
files designated 3-34
forwarding

messages not deleted 3-18
procedure see f command

h command 3-17, 3-36, 3-9
n escape 3-25, 3-40
H ftag, message saving 3-17
header

characteristics 3-17
command see h command
compose escapes 3-24
composition 3-5
defined 3-8
display 3-10, 3-3, 3-8
listing 3-36
windows 3-17, 3-8

"'headers escape 3-25, 3-40
help

command (?) 3-15, 3-3
escape c-?) 3-23, 3-39

help escape c-?) 3-12
ho command

description 3-19
H fiag 3-17
message saving 3-36

hold command see ho command
-i option 3-10, 3-31, 3-32, 3-41
ignore switch see -i option
INTERRUPT key

message abortion 3-12, 3-29
recipient list 3-28

introduction 3-1
I command 3-19, 3-37
line killing 3-12, 3-6
list command 3-37
lp command

-m option 3-33

Index

mail (continued)
lpr command

message printing 3-19, 3-37
m command 3-20, 3-37
-'M escape 3-26
M flag, message saving 3-17
-m option 3-33
mail command

command mode entry 3-10, 3-7
compose mode _entry 3-12 _
help 3-3
message reading 3-11, 3-3
message sending 3-2, 3-37

mail esc:apes see -m escape
mailbox see mailbox
.mailrc file

alias contents 3-21
distribution list creation 3-13
example 3-28
options setting 3-14
set command 3-21
unset command 3-21

mb command 3-19, 3-37
mbox command see mb command
mchron option 3-42
message

abortion 3-10, 3-12, 3-29
advancement 3-11, 3-35
body 3-6
composition 3-5
deletion 3-11, 3-17, 3-18, 3-35, 3-4, 3-8
deletion undoing 3-18
description 3-5
editing 3-12, 3-21, 3-22, 3-32, 3-36
file inclusion 3-25
forwarding see forwarding
header see header
insertion into new m�sage 3-26
list see message-list
listing 3-3
number see message number
printing see printing
range description 3-7
reading 3-10, 3-11, 3-3
reading into file 3-10
reply see reply command
saving see saving
sending see sending
size 3-22, 3-38
specification 3-13
undeletion 3-11

-message escape 3-40
message number

command 3-16, 3-35
message printing 3-11
printing 3-16, 3-35
types 3-7

message-list
argument, multiple messages·3-13

I-17

Index

mail (continued)
message-list (continued)

composition 3-7
full message-list description 3-9

metacharacters 3-16, 3-7
metoo option 3-29, 3-42
minus sign (-), message advancement 3-35
network mail 3-14
noisy phone line 3-10
nosave option 3-29, 3-42
number command see message number
options

see also Specific Option
command line options 3-31
setting 3-14
summary 3-41
switch option setting 3-21

organization 3-33
p command

message printing 3-15, 3-3, 3-37, 3-8
syntax 3-9

-p escape 3-23
page option 3-30
period (.), dot use see dot(.)
phone line noise 3-10
plus sign (+), message advancement 3-35
-print escape 3-40
printing

command see lpr command
command see p command
escape see -p escape
lineprinter see lpr command
procedure 3-11, 3-8
top five lines see t command

programs designated 3-34
prompt 3-3
q command

exit 3-10, 3-18, 3-37, 3-4
message abortion 3-29

question mark (?)
command summary printing 3-35
compose escape help see help escape C?)
help command 3-15

quiet option 3-29, 3-42
-quit escape 3-40
R command

alias effect 3 -13
compose mode entry 3-12

r command
message reply 3-11

R command
message reply 3-13, 3-20

r command
message reply 3-37

-r escape 3-25, 3-40
-R option 3-32
read escape

see -d escape
see -r escape

1-18

mall (continued)
-read escape 3-25, 3-40
recipient list, name addition 3-24
record string 3-31, 3-42
reminder service 3-33
Reply command see R command
return receipt request field 3-6
s command

see also saving
Hag 3-17
message saving 3-18, 3-37
system mailbox, message deletion 3-18

-s escape 3-24, 3-40
-s option 3-31
saving

asterisk (*) notation 3-19
automatic 3-17
command see s command
flag 3-17
ho command 3-36
M flag 3-17
message display 3-4
s command 3-18, 3-37
system mailbox 3-10
w command 3-19, 3-39

se command see set command
sending

cancellation impossible 3-3
multiple recipients 3-10
network mail 3-14
procedure 3-10
to self 3-2

session abortion 3-11
set command

description, use 3-21, 3-38
option control 3-41

set options defined 3-28
sh command 3-22, 3-38
shell

commands 3-22
escapesCJ), Cl) 3-26

SHELL string 3-30, 3-42
si command 3-22, 3-38
so command 3-23, 3-38
source command see so command
special characters see metacharacters
startup file 3-27
string option

setting 3-21
summary 3-41

subject
field 3-4, 3-5
switch see asksubject option
switch see -s option

-subject escape 3-24, 3-40
switch see Option
system

composition 3-34
mailbox, message retention 3-10

mail (continued)
t command

message top printing 3-13, 3-16, 3-38
toplines option 3-17

-t escape 3-24, 3-41
tilde

quote escape r �) 3-27' 3-39
see also compose escapes

-to escape 3-24, 3-41
to field

mandatory 3-5
R command effect 3-13

top command see t command
top lines

option 3-42
string 3-31

u command 3-111 3-18, 3-38, 3-8
-u option 3-32
undeletion see u command
unset command

description, use 3-21, 3-38
option control 3-41

v command 3-22, 3-38, 3-7
-v escape 3-23, 3-41
vertical bar (I) escape see shell escape r I) -visual escape 3-23, 3-41
VISUAL string 3-30, 3-42
w command

message write out 3-19, 3-39
system mailbox, message deletion 3-18

-w escape 3-26, 3-41
-write escape 3-26, 3-41
write out see w .command
x command

exit 3-18, 3-36
session abortion 3-11

mail command see mail
MAll. variable 4-12
mailbox

cleaning out 3-33
command 3-19
reading in 3-10
system mailbox 3-5
user mailbox

filename 3-5
mess8.ge saving notation 3-17

MAILCHECK variable 4-13
MAILPATH variable 4-13
Marking see ed
mb command see mail
mbox command see mail
mbox file see mailbox
mchron option

mail 3-42
mesg option see vi
-Message escape see mail
Metacharacter

asterisk (*) 4-59
brackets ([]) 4-59

Index

Metacharacter (continued)
directory name use avoidance 4-4
escape 4-4
list designated 4-59
mail 3-16, 3-7
question mark (?) 4-59
redirection restriction 4-6

metoo option see mail
l'vfinus sign (-)

be
subtraction operator symbol 5-4
unary operator symbol 5-16, 5-4

mail, message advancement 3-35
rediJ-ection effect 4-41
subtraction operator symbol 5-4
variable conditional substitution 4-43

lviKFJLES shell procedure 4-55
Multiple way branch see case command
Multiplication see be

N

n command see vi
-n option

echo command 4-40
shell procedure 4-38

Name grammar 4-58
newgrp command

description 4-34
special shell command 4-34

Newline substitution see ed
next command see vi 2-50
nohup command 4-22
nosave option see mail
Notational conventions 1-3
nu command see vi 2-25
Null command see Colon command (:)
NULL shell procedure 4-55
Number sign (#), comment symbol 4-59

0

-o operator 4-40
Operator see be
Option

see also Specific Option
DRAFT shell procedure 4-52
invocation flags 4-45
mail options see mail
tracing, $- variable 4-15
vi options see vi

Or-if operator (II)
command list 4-21
description, use 4-22

l-19

Index

Or-if operator (II) (continued)
designated 4-59

Output
append symbol (>) 4-'59
append symbol (>>) 4-6
creation symbol (>) 4-59
diagnostic output file 4-6
error redirection 4-42
grammar 4-57
standard error file see diagnostic output file
standard output file 4-5

p

p command
ed use see ed
mail

message printing 3-15, 3-3, 3-37, 3-8
syntax 3-9

page option see mail
Parentheses (())

be
expression enclosure 5-15
function identifier argument enclosure 5-

14
command grouping 4-28, 4-46, 4-59
pipeline, command list enclosure 4-Z3
test command operator 4-40

PATH variable
conditional substitution 4-44
C-shell use see C-shell
description 4-13
directory search

effect 4-48
sequence change 4-3

Pattern
grammar 4-58
metacharacter 4-59

Pattern matching facility
case command 4-24
expr command argument effect 4-41
limitations 4-4
metacharacter see Metacharacter
redirection restriction 4-6
shell function 4-3
variable assignment, not applicable 4-11

Percentage sign (%), be modulo operator
symbol 5-4

Period (.)
ed use see ed
pattern matching facility restrictions 4-4
vi see vi

PHONE shell procedure 4-56
PID

$! variable 4-15
Pipe

compose escapes see mail

l-20

Pipe (continued)
file interchange 4-52
symbol (I) 4-59

Pipeline
command list 4-23
C-shell use see C-shell
defined 4-21
description 4-7
DISTINCT! shell procedure 4-51
filter 4-7
grammar 4-57
notation designated 4-7
procedure 4-7

Plus sign (+)
be

addition operator symbol 5-4
unary operator symbol 5-16

mail, message advancement 3-11, 3-35
variable conditional substitution 4-44

Positional parameter
description 4-10
direct access 4-19
null value assignment 4-43
number yield, $# variable 4-14
parameter substitution 4-11
positioning 4-11
prefix ($) 4-11
setting 4-11
variable assignment statement

positioning 4-11
-print escape see mail
Printing

command see p command
ed see ed
mail see mail

Process
defined 4-2
number see PID

.profile file
description, use 4-16
PATH variable setting 4-14
variable export 4-14

ps command
C-sheli use see C-shell

PSl variable 4-14
PS2 variable 4-14

Q

q command
ed exit see ed
mail

exit 3-10, 3-18, 3-37, 3-4
message abortion 3-29

q! see vi
Question mark (?)

directory name, use avoidance 4-4
ed use see ed

Question mark (?) (continued)
mail

command summary printing 3-35
compose escape listing 3-12, 3-2, 3-23
help command 3-15, 3-3

metacbaracter 4-3, 4-59
pattern matching see metacharacter
variable conditional substitution 4-44

quiet option see mail
quit command

see also q command
be exit 5-2, 5-3

-quit escape see mail
QUIT key, background process immunity 4-22
Quotation marks

back (')
command substitution 4-4, 4-9
quoting 4-59

double (") 4-11, 4-39, 4-4, 4-59
single (')

C-shell use see C-shell
metacharacter escape 4-4
trap command 4-31
variable substitution inhibition 4-11

Quoting
see also Quotation marks
backslash (\) use 4-59
metacharacter escape 4-4

R

r command
ed use see ed
mail use see mail

R command see mail
-r option

mail 3-32
read command

see also vi
see also ed
exit status 4-35
shell built-in command 4-46
special shell command 4-34

-read escape see mail
Read see r command
readonly command

description 4-35
shell built-in command 4-46
special shell command 4-35

Record string see mail
Redirection

argument location 4-9
case command 4-30
cd arg command 4-34
control command 4-30
diagnostic output 4-6
file descriptor 4-42

Index

Redirection (continued)
for command 4-30
if command 4-30
minus sign (-) effect 4-41
pattern matching, use restriction 4-6
simple command line, appearance 4-21
special character, use restriction 4-6
symbols

(<), (>) 4-59
until COffiJP�n� 4-30
while command 4-30

Regular expressions see ed
rehash command

C-shell use .�ee C-shell
Reminder seiVice

mail 3-33
Repeat command

see vi 2-47
reply command see mail
Report option see vi
Reserved word listing 4-60
Return code see $? variable
return command

shell built-in command 4-46
RETURN key

be 5-2

s

s command
ed use see ed
mail 3-17, 3-18, 3-37

-s option
mail, subject specification 3-31
shell invocation 4-45

scale command 5-7
Scale see be
Screen-oriented commands see vi
Scripts

see ed
see Shell

se command see set command
Searching

ed see ed
vi see vi

sed command see ed
Semicolon (;)

be, statement separation 5-19, 5-3
case command break 4-24
case delimiter symbol 4-59
command list 4-21
command separator symbol 4-59
C-shell use see C-shell
ed use see ed

Serial lines
modem connection 6-3, 6-5.

set all see vi

I-21

Index

set command
C-shell

variable value assignment 7-2
mail

description, use 3-21, 3-38
option control 3-41

name-value pair listing 4-18
positional parameters setting 4-11
shell built-in command 4-46
shell flag setting 4-17
special shell command 4-33

sh command
see also Shell
description 4-1
mail 3-22, 3-35, 3-38
shell invocation 4-18

SHACCT variable 4-13
Shell

argwnent passing 4-19
command

see also Specific Command
executing while in vi 2-15
search procedure 4-3

compose escapes see mail
conditional capability 4-23
creation

procedure 4-2
description 4-1
-e option 4-38
entry, mail mode source 3-22
escape

ed procedure see ed
mail procedure see mail

execution
flag see option
sequence 4-20
termination 4-28

exit
-e option 4-38
mail mode return 3-22
procedure 4-28
-t option 4-38

function 4-1
grammar 4-57
in-line input document handling 4-41
interactive 4-45
interruption procedure 4-31
invocation

option 4-45
procedure 4-18

-k option 4-38
mail

invocation 3-6
shell commands 3-22

-n option 4-38
option

see also Specific Option
designated, use 4-38
setting 4-17

1-22

Shell (continued)
pattern matching facility see Pattern

matching facility
positional parameter see Positional parameter
procedUre

see also Specific Shell Procedure
advantages over C programs 4-37
byte access reduction consideration 4-47
creation 4-36
description 4-2
directory 4-37
efficiency analysis 4-46
efficiency awareness 4-46
examples designated 4-49
filter order consideration 4-47
option see option
scripts designation 4-49
time command 4-45
writing strategies 4-45

redirection ability 4-6
scripts see procedure
special command

see also Specific Special Command
designated 4-33

special shell variable 4-20
state 4-16

SHELL
string 3-30, 3-42
variable 4-13

Shell
string see SHELL string
-t option 4-38
-u option 4-38
-v option 4-17
variable see Variable
-x: option 4-17

Shell command
executing while in vi 2-15

shift command
argument processing 4-19
shell built-in command 4-46

si command see mail
Simple command see Command
Slash (/)

be, division operator symbol 5-4
command prepending suppression 4-3
ed use see ed
search command see vi

so command see mail
Special character

see also Metacharacter
ed use see Ed
pattern matching facility 4-3

Standard
error file see Output
error output see Error output
input file see Inpu�
output file see Output

Star (*)

(..
____ .

0

Star ("') (continued)
see also Asterisk (*)
ed metacbaracter see ed

String
searching for see vi, searching

String option see mail
String variable 4-11
-subject escape see mail
Subshell, directory change 4-16
Substitution conwand see s_command
Subtraction see be
Switch see Option
System

mailbox see mailbox
System security with uucp see uucp

T

t command
ed use see ed
mail 3-13, 3-16, 3-17, 3-38

-t option, shell procedure 4-38
Table command see ed
Tabs

ed see ed
tbl command see ed
Temporary file

trap command, remova1 4-32
use recommendation 4-15

term option see vi
terse option see vi
test command

argument 4-40
brackets ([]) use in lieu of 4-39
description, use 4-38
operators 4-40
options 4-39
shell built-in command 4-46

Text editor
ed see ed
ex see ex:
vi see vi

TEXTFJLE shell procedure 4-56
then clause see if command
Tilde escape see mail
time command 4-45
-to escape see mail
Top command see r command
Toplines option see mail
Toplines string see mail
Transfer command see t command
trap command

description, use 4-31
implementation method 4-33
multiple traps 4-33
special shell command 4-33
temporary file removal 4-32

Index

troff see ed
true command 4-41
ttys file

and uucp 6-15
type 4-35

u

u command
ed use see ed
mail 3-18, 3-38, 3-8
see vi

-u option
mail 3-32

-u option
shell procedure 4-38

ulimit 4-35
umask command

description 4-35
shell built-in command 4-46
special shell command 4-35

Undo command
see ed
see vi

unset command see mail
until command

continue command effect 4-27
description, use 4-25
exit status 4-25
redirection 4-30
shell built-in command 4-46

User
mailbox see mailbox

/usr/bin directory
/bin duplicate determination 4-50
command search 4-'3

uucico
see also uucp
calling a remote site

handshake sequence 6-42
line protocol 6-42
terminating a conversation 6-43

calling a remote site 6-41
functions 6-40
MASTER mode 6-40
options 6-40
processing work 6-43
scanning for work 6-41
SLAVE mode 6-40
special shell 6-40
starting 6-40
terminating a conversation 6-43
work files 6-41

uucico 6-34
unclean 6-34

see also uucp
uucp

I-23

Index

uucp (continued)
C.* files 6-41
calling a remote site 6-41

handshake sequence 6-42
line protocol 6-42
terminating a conversation 6-43

command syntax 6-35
copying files

between sites 6-38
to a local destination 6-36

cron 6-11, 6-23
automatic cleaning 6-33

crontab
automatic cleaning 6-33. 6-27

D.* files 6-41
details of operation 6-33

directories and files 6-34
types of files 6-34
uucico 6-40

dial 6-34
dialing in

dial in site 6-14
enable command 6-22, 6-14

dialing in and out 6-28
dialing out 6-22

dial out site 6-22
L-devices

file 6-24
L-devices 6-23

directories and files 6-34
/etc/ttys 6-15
execute file 6-38
installing 6-9
introduction 6-1
LCK .. * files 6-33

description 6-41
L.cmds 6-12, 6-14, 6-19, 6-23, 6-44
L-devices 6-12, 6-23, 6-24
L-dialcodes 6-12, 6-23, 6-25

used in L.sys 6-25, 6-26
limiting permissible commands (with

L.cmds) 6-19
linking micnet sites 6-29
lock files 6-33

description 6-41
LOGFILE 6-30
login entries 6-16
L.sys 6-12, 6-19, 6-23
maintaining the system 6-29

cleaning the spool directory 6-30
creating maintenance shell files 6-33
locked devices 6-33
locked sites 6-33
log files 6-30
reclaiming data files 6-31
reclaiming log files 6-31
transmission status 6-32
uuclean 6-30

MASTER mode 6-40

l-24

uucp (continued)
modem 6-2

configuring a modem 6-6
connecting a modem 6-6
dialing configuration 6-5
dialing in 6-14
dialing out 6-22
installing 6-4
pin connections 6-2
serial lines 6-3, 6-5
testing 6-8
variable 6-8

options 6-35
processing work 6-43
programs 6-34
receiving files 6-37
sending files to remote sites 6-37
serial line

enabling 6-24
serial lines 6-3, 6-5

enabling 6-15
sitename

chao sing 6-13
SLAVE mode 6-40
special (meta) characters 6-36
standard input line (execute file) 6-39
standard .output line (execute file) 6-39
STST. * files 6-32
system security

L.cmds 6-44, 6-44
system.id 6-12
systemid file

creating 6-13
terminating a conversation 6-43
TM. * files 6-31
transmission schedule 6-26

cron 6-27
crontab 6-27
dialing in and out 6-28

types of work 6-26
copying files

between sites 6-38
to a local destination 6-36

receiving files 6-37
sending files to remote sites 6-37

USERFILE
setting up 6-17, 6-12, 6-14, 6-23, 6-37

using mail with uucp 6-29
/usr/lib/uucp 6-34
/usr/spooVuucp 6-34
uucico 6-26, 6-34, 6-36

calling a remote site 6-41
forcing a call at any time (-S) 6-27
forcing a call (-s) 6-27
from a shell script 6-27, 6-28
functions 6-40
options 6-40
scanning for work 6-41
special shell 6-40

uucp (continued)
uucico 6-26, 6-34, 6-36 (continued)

starting 6-40
work files 6-41

unclean 6-30, 6-34
automatic cleaning with cron 6-33
lock files 6-33

uuinstaU 6-11
L-devices 6-24
L.sys 6-21
systemid 6-14
usage 6-11
USERF1LE 6-18
with -:r oplion 6-13

uulog 6-30, 6-34
automatic running with cron 6-33

uux 6-1, 6-34, 6-38
comand syntax 6-38
LOGF1LE 6-30
options 6-38
PATH in uuxqt 6-39
standard

input ("-" option) 6-38
input line (execute file) 6-39
output 6-38
output line (execute file) 6-39

uuxqt
execute file
PATH 6-39, 6-34, 6-44

C. what you need 6-2
\ X.* files 6-41
�· uulog 6-34

see also uucp
uux 6-1, 6-34, 6-38

see also uucp
command syntax 6-38
options 6-38
standard

input ("-" option) 6-38
input line (execute file) 6-39
output 6-38, 6-39
output line (execute file) 6-39

uuxqt
execute file 6-38

uuxqt
see also uucp

v

v command
ed use .see ed

---- mail 3-22, 3-38, 3-7 (·V option, input line printing 4-17 ___ .- Value see $? variable
Variable

$# variable 4-14
$- variable 4-15

Index

Variable (continued)
assignment

line command 4-9
string value 4-11

be variable see be
command environment composition 4-17
conditional substitution 4-43
description 4-10
double quotatiqn marks (") 4-11
enclosure 4-12
execution sequence 4-11
expansion 4-5
export 4-14
expr command 4-41
file creation 4-30
global check 4-38
HOME see HOME variable
IFS see IFS variable
keyword parameter 4-17
listing procedure 4-18
MAIL see MAIL variable
MAILCHECK see MAJLCHECK variable
MAILPATH see MAILPA TH variable
name defined 4-11
null value assignment procedure 4-43
PATH see PATH variable
positional parameter see Positional parametet
prefix ($) 4-11
PS1 see PS1 variable
PS2 see PS2 variable
set variable defined 4-43
SHACCT see SHACCT variable
SHELL see SHELL variable
special variable 4-14
string value assignment 4-11
substitution

double quotation marks (4-11
notation 4-59
redirection argument 4-6
single quotation marks (") 4-11
space interpretation 4-12
-u option effect 4-38

test command 4-38
types designated 4-12

Vertical bar (I)
mail escape 3-26

vi

or-if operator symbol (!I) 4-21
pipeline notation 4-7

. command 2-4
I command searching 2-10
0 command

cursor movement 2-6
appending text

A 2-22
see also inserting text

args conunand 2-50
b command, cursor movement �-6
breaking lines 2-28

I-25

Index

vi (continued)
buffers

delete 2-36
naming 2-25
selecting 2-25

C command 2-32
C shell

prompt 2-56
canceling changes 2-48
caret (), pattern matching 2-43, 2-44
cc command 2-33
co (copy) command 2-25
colon (:)

line-oriented command, use 2-12
status line prompt 2-12

command
see also Specific Command
line-oriented 2-12
repeating, dot (.) use 2-6
screen-oriented see screen-oriented

commands 2-12
command mode

cursor movement 2-5
entering 2-3

control characters, inserting 2-28
copying lineS 2-25
correcting mistakes 2-23
crash, recovery 2-54
C-shell

TERM variable 2-56
terminal type setting 2-56

Ctrl-b
scrolling 2-6

Ctrl-d
scrolling 2-6
subshell exit 2-54

Ctrl-f
scrolling 2-6

Ctrl-g
file status information 2-11, 2..;53

Ctrl-j
inserting 2-28

Ctrl-1
screen redraw 2-54

Ctrl-q
inserting 2-28

Ctrl-s
inserting 2-28

Ctrl-u
deleting an insertion 2-30
scrolling 2-6

Ctrl-v
use 2-28

current line
deleting 2-29, 2-6
designated 2-2
line containing cursor 2-4
number, finding out 2-25

cursor movement

l-26

vi (continued)
cursor movement (continued)

$ key 2-20
see also scrolling
b 2-19
backward 2-20
BKSP 2-18
by character 2-18
by lines 2-20
by words 2-19
Ctrl-n 2-20
Ctrl-p 2-20
down 2-18, 2-5
e 2-19
F 2-18
fotward 2-20
h 2-18
H 2-21
j 2-18, 2-20
k 2-18, 2-20
keys 2-5
1 2-18
L 2-21
left 2-18, 2-19, 2-5
line beginning 2-6
line end 2-6
LINEFEED key 2-20
lower left screen 2-5
M 2-21
RETURN key 2-20
right 2-18, 2-19, 2-5
screen 2-21
scrolling see scrolling
SPACEBAR 2-18
t 2-18
to end of file 2-5
up 2-18, 2-5
upper left screen 2-5
W 2-19
word backward 2-6
word forward 2-6

cw command 2-32
d$ command 2-6
dO command 2-6
date, finding out 2-15
dd command 2-29, 2-6
delete buffer

use 2-36
deleting text

by character 2-28
by line 2-29
by word 2-29
D 2-29
dd command 2-29, 2-6
deleting an insertion 2-30
dw command 2-29
methods 2-6
repeating deletion 2-47
undoing 2-45

c

vi (continued)
deleting text (continued)

undoing deletion 2-5
x command 2-28

demonstration 2-1
description 2-1
dollar sign ($)

cursor movement 2-6
pattern matching 2-43
use in line address 2-30

dot (.) command 2-6
dot, use in line address 2-30
dw command 2-6
editing several files

changing the order 2-50
end -of -line

displaying 2-57
entering

at a specified line 2-17
at a specified word 2-18
procedure 2-2
with filename 2-17
with several filenames 2-49

error messages
shortening 2-59
turning off 2-52

ESCAPE, Insert mode exit 2-3, 2-54
exclamation point (!)

shell escape 2-15
exiting

:q! 2-16
saving changes 2-48
saving file 2-14
temporarily 2-15, 2-52
without saving changes 2-48
:x command 2-16, 2-48
ZZ command 2-48

.exrc file 2-60
file

creating 2-2
not saving, :q! 2-16
saving 2-16
status infonnation display 2-11
status information procedure 2-11

filename
finding out 2-53
planning 2-49

G command
cursor movement 2-5

go to command see G command
H command

cursor movement 2-5
i command

inserting text 2-3
ignorecase option 2-39, 2-57, 2-58
insert command 2-3
insert mode

entering 2-3
exiting 2-3

Index

vi (continued)
inserting text

see also appending text
control characters 2-28
from another file 2-14
from other files 2-14, 2-23, 2-24
i 2-22
insert mode 2-3
repeating insert 2-23, 2-47
undoing 2-45
undoing insert 2-5, 2-54

invoking see entering
j command

cursor movement 2-5
joining lines 2-28
k command

cursor movement 2-5
1 command

cursor movement 2-5
leaving see exiting
line addressing

dollar sign 2-30
dot (.) 2-30
procedure 2-29

line numbers, displaying
linenumber option 2-16, 2-58
:nu command 2-25
nu command 2-54

line-oriented commands
:args 2-50
colon (:) use 2-12
deleting text 2-29
:e 2-24
:e# 2-51
entering 2-12
:f 2-53
:file 2-53
mode 2-53
moving text 2-34
:n 2-50
nu 2-25, 2-54
:q 2-48
:r 2-23
:rew 2-50
:s 2-33
status line, display 2-11
:w 2-24
:wq 2-48

list option 2-57
.login file

terminal type setting use 2-56
magic option 2-45, 2-59
marking lines 2-24
mesg option 2-60
mistakes, correcting 2-23
mode

determining 2-54
see also command mode
see also insert mode

1-27

Index

vi (continued)
·mode (continued)

see also line-oriented coUliiland mode
moving text 2-34
n command 2-10, 2-39
new line, opening 2-23
next command 2-50
number option 2-58
opening a new line 2-23
options

displaying 2-57
ignorecase 2-39, 2-57
list 2-16, 2-57
magic 2-45, 2-59
mesg 2-60
number 2-25, 2-34, 2-58
report 2-58
setting 2-55, 2-57
term 2-'58
terse 2-59
warn 2-52, 2-59
wrapscan 2-40, 2-59

overstrike commands 2-30
pattern matching

see also searching
beginning of line 2-43
caret () 2-44
character range 2-44
end of line 2-43
exceptions 2-44
special characters 2-44
square brackets ([]) 2-44

period (.)
see also dot (.) command
pattern matching 2-44
Repeat command symbol 2-4

problem solving 2-54
.profile file

terminal type setting 2-56
putting 2-24
:q! 2-16
Q command, line-oriented Command mode

2-53
quitting see exiting
r command 2-14, 2-30
read command 2-14
redrawing the screen 2-54
Repeat command 2-47
repeating a command 2-4 7
replacing

a line 2-32, 2-33
a word 2-32, 2-33

report option 2-58
rew command 2-50
S command 2-32
saving a file 2-:49
screen, redrawing 2-54
screen-oriented commands 2-12
scrolling

1-28

vi (continued)
scrolling (continued)

backward 2-6
down 2-21, 2-6
fonvard 2-6
up 2-21, 2-6

searching
see also searching and replacing
see also slash (f)
backward 2-39
caret Q 2-44
caret () use 2-43, 2-43
case significance 2-39, 2-58
dollar sign ($) 2-43
fonvard 2-10, 2-38
next command 2-39
period (.) 2-44
procedure 2-10
repetition 2-10
special characters 2-39, 2-59
square brackets ([]) 2-44
status line, display 2-11
wrap 2-10, 2-40, 2-59

searching and replacing
a word 2-41
c option 2-42
choosing replacement 2-42
command syntax 2-40
p option 2-42
printing replacement 2-42

session, canceling 2-16
set all, option list 2-16
set command 2-16, 2-55, 2-57
setting options 2-16, 2-55, 2-57
shell

command, executing 2-15
escape 2-52

slash (/)
search command delimiter 2-10

special characters
matching 2-44
searching for 2-39, 2-59
vi filenames 2-49

status line
line-oriented command entty 2-12
location 2-11
prompt, colon (:) use 2-12

string
pattem matching 2-44
searching for see searching

sub shell
exiting 2-54

substitute commands 2-32
switching files 2-51
system crash

file recovery 2-55
tabs

displaying 2-57
TERM variable

(
\.

0

c/

vi (continued)
TERM variable (continued)

Bourne shell 2-56
Visual Shell 2-56

TERM variable 2-56
termcap 2-56
terminal type setting

Bourne shell 2-56
C-sbell 2-56
how 2-58
Visual Shell 2-56

terse option 2-59
time, finding out 2-15
u command 2-4, 2-45, 2-54
undo command see u command
w c9mmand, cursor movement 2-6
warn option 2-52, 2-59
warnings, turning off 2-59
word, deleting 2-6
wrapscan option 2-40, 2-59
write messages 2-60
writing out a file

:wq command 2-48, 2-49
:x command 2-16, 2""48
x command 2-6
yanking lines 2-24, 2-27
ZZ command 2-48

vi, mail
compose escape, -v 3-41
editing 3-22
entry from command mode 3-7
entry from compose mode 3-7
VISUAL string 3-42

visual command see mail
-visual escape see mail
Visual shell

see also vsh
description 8-1
TERM variable 2-56
terminal type 2-56

VISUAL string see mail
vsh

Alt-h
help key 8-2

cancel key 8-3
command option menu 8-3
command output

shell output 8-9
vshell output 8-9, 8-9

command pipi11g 8-11
copy file or directory option 8-6
count option 8-11
create file system 8-8
Ctrl-C

cancel key 8-3
cursor motion keys 8-3
delete file or directory option 8-7
description 8-1
edit a file 8-7

vsh (continued)
editing options keys 8-3
entering the shell 8-2
exit 8-10
file systems

check file system 8-9
get option 8-11
grep 8-11
head option 8-11, 8-12
help key 8-2
help menu 8-7
invoking commands 8-6
invoking the shell 8-2
keystrokes 8-2
leaving 8-10, 8-2
list files 8-10
mail option 8-7
main menu 8-3
menu selection 8-3
message line 8-3
more

option 8-12
move cursor 8-3
name option 8-8
options menu

file systems 8-8
list files 8-8
make directory 8-8, 8-8

pattern recognition 8-11
permissions option 8-9
pipe options 8-11
print

a file 8-10
option 8-10

quit
key 8-2

quit 8-10
rename file option 8-8
run

option 8-10
shell command 8-10

scroll through file 8-12
send file to printer 8-10
set file pennissions 8-9
shell command 8-10
sort option 8-11, 8-12
status line 8-2
tail option 8-11, 8-13
TERM variable 2-56
tenninal type 2-56
view file 8-10
view option 8-10
view window

motion keys 8-5
moving cursor 8-4, 8-4

window
adjustment 8-11
option 8-11

window motion

Index

I-29

Index

vsh (continued)
window motion (continued)

keys 8-5
word, line, character counts 8-11

w

w command
ed use see ed
mail

message saving 3-19
message write out 3-39
system mailbox, message deletion 3-18

vi use see vi
wait command

description 4-36
shell built-in command 4-46
special shell command 4-36

warn option see vi
while command

break command effect 4-27
continue command effect 4-27
description, use 4-25
exit status 4-25
loop 4-51
redirection 4-30
shell built-in command 4-46
test command 4-38

Word
grammar 4-58

wrapscan option see vi
-write escape see mail
Write out see w command
WRITEM.All., shell procedure 4-57

X

x command
mail

exit 3-18, 3-36
session abortion 3-11

vi use see vi
-X option, command printing 4-17
XENIX command

directory residence
C-shell 7-3

I-30

z

z command
vi scroll 2-21

Z:Z command see vi "

,�

(

(' ' �·

03-17-87

SC0-512-210-024

0

INTRO (F) INTRO (F)

Name

intra - Introduction to file formats.

Description

This section outlines the formats of various files. Usually, these
structures can be found in the directories /usr/include or
/usr/include/sys .

April 1, 1987 Page 1

(.
u

86REL (F) 86REL (F)

Name

86rel - Intel 8086 Relocatable Format for Object Modules.

Syntax

#luclude <sys/relsym86.h>

Description

Intel 8086 Relocatable Format, or 86rel, is the object module for­
mat generated by masm(CP), and the input format for the linker
ld(CP). The include file relsym86.h specifies appropriate defini­
tions to access 86rel format files from C. For the technical detru.ls
of the 86rel format, see Intel 8086 Object Module Format External
Product Specification.

An 86rel consists of one or more variable length records. Each
record has at least three fields: the record type, length, and check­
sum. The first byte always denotes the record type. There are
thirty-one different record types. Only eleven are used by ld (CP)
and masm(CP). The word after the first byte is the length of the
record in bytes, exclusive of the first three bytes. Following the
length word are typically one or more fields. Each record type has
a specific sequence of fields, some of which may be optional or of
varying length. The very last byte in each record is a checksum.
The checksum byte contains the sum modulo 256 of all other bytes
in the record. The sum modulo 256 of all bytes in a record, includ­
ing the checksum byte, should equal zero.

With few exceptions, 86rel strings are length prefixed and have no
trailing null. The first byte contains a number between 0 and 40,
which is the remaining length of the string in bytes. Although the
Intel specification limits the character set to upper case letters,
digits, and the characters "?", ''@", ((:", H.", and "_", masm(CP)
uses the complete ASCII character set.

The Intel Object Module Format (OMF) specification uses the term
''index" to mean a positive integer either in the range 0 to 127, or
128 to 32,768. This terminology is retained in this document and
elsewhere in the 86rel literature. An index has one or two bytes. If
the first byte has a leading 0 bit, the index is assumed to have only
one byte, and the remainder of the byte represents a positive
integer between 0 and 127. If the second byte has a leading 1 bit,
the index is assumed to take up two bytes, and the remainder of
the word represents a positive integer between 128 and 32,768.

April !, 1987 Page 1

86REL (F) 86REL (F)

Following is a list of record types and the hexadecimal value of
their first byte, as defined in relsym86.h.

#define MRHEADR
#define MREGINT
#define MREDATA
#define MRIDATA
#define MOVLDEF
#define MENDREC
#define MBLKDEF
#define MBLKEND
#define MDEBSYM
#define MTHEADR

#define MLHEADR
#define MPEDATA
#define MPIDATA

#define MCOMENT
#define MMODEND
#define MEXTDEF
#define MTYPDEF
#define MPUBDEF
#define MLOCSYM
#define MLINNUM
#define MLNAMES
#define MSEGDEF
#defme MGRPDEF
#define MFIXUPP
#define MNONEl
#define MLEDATA
#define MLIDATA

#define MLIDHED
#define MLIBNAM
#define MLIBLOC
#define MLIDDIC
#define M386END
#define MPUB386
#define MLOC386
#define MLIN386
#define MSEG386
#defme MF1X386
#define MLED386
#define MLID386

Ox6e /*rei module header/*
Ox70 /*register initialization*/
Ox72 /*explicit (enumerated) data image*/
0x74 /*repeated (iterated) data image*/ ',,
Ox76 /*overlay definition*/
Ox78 /*block or overlay end record*/
Ox7a /*block definition*/
Ox7c /*block end*/
Ox7e /*debug symbols*/
Ox80 /*module header,

usually first in a rel file I
Ox82 /*link module header*/
Ox84 /*absolute data image*/
Ox86 /*absolute repeated (iterated)

data image/
Ox88 /*comment record* I
Ox8a /*module end record* I
Ox8c /*external definition*/
Ox8e /*type definition *I
Ox90 /*public definition*/
Ox92 /*local symbols*/
Ox94 /*source line number*/
Ox96 /*name list record*/
Ox98 /*segment definition*/
Ox9a /*group definition*/
Ox9c /*fix up previous data image*/
Ox9e /*none*/
OxaO /*logical data image*/
Oxa2 /*logical repeated (iterated)

data image I
Oxa4 /*library header*/
Oxa6 /*library names record*/
Oxa8 /*library module locations*/
Oxaa /*library dictionary*/
Ox86 /*32 bit module end record*/
Ox91 /*32 bit public definition*/
Ox93 /*32 bit logical symbols*/
Ox95 /*32 bit source line number*/
Ox99 /*32 bit segment definition*/
Ox9d /*fix up previous 32 bit data image*/
Oxal /*32 bit logical data image*/
Oxa3 /*32 bit logical repeated (iterated) data image*/

In the following discussion, the salient features of each record type
are given. If the record is not used by either masm(CP) or ld(CP),
it is not listed.

April l, 1987 Page 2

86REL (F)

THEADR

(�\
COMENT

MODEND

EXI'DEF

0
TYPDEF

PUBDEF

LNAMES

April !, 1987

86REL (F)

The record type byte is Ox80. Tbe THEADR record
specifies the name of the source module at
assembly-time (see Notes). The sole field is the T­
MODULE NAME , which contains a length-prefixed
string derived from the base name of the source
module.

The record type byte is Ox88. The COMENT record
may contain a remark generated by the compiler sys­
tem. mams(CP) inserts the string "XENIX 8086
ASSEMBLER ."

The record type byte is Ox8a. Tbe MODEND record
terminates a module. It can specify whether the
current module is to be used as the entry point to the
linked executable. H the module is an entry point,
the MODEND record can then specify the address of
the entry point within the executable.

The record type byte is Ox8c. The EXI'DEF record
contains the names and types of symbols defined in
other modules by a PUBDEF record (see below).
This corresponds to the C storage class "eA1:ern."
The fields consist of one or more length-prefixed
strings, each with a following type index. The indices
reference a TYPDEF record seen earlier in the
module. masm(CP) generates only one EXI'DEF per
exterior symbol.

The record type byte is Ox8e. The TYPDEF record
gives a description of the type (size and storage attri­
butes) of an object or objects. This description can
then be referenced by EXTDEF , PUBDEF , and
other records.

The record type byte is 0>:90. The PUBDEF record
gives a list of one or more names that may be refer­
enced by other modules at link-time ("publics").
The list of names is preceded by a group and seg­
ment index, which reference the location of the start
of the list of publics within the current segment and
group. If the segment and group indices are zero, a
frame number is given to provide an absolute address
in the module. The list consists of one or more of
length -prefixed strings, each associated with a 16-bit
offset within the current segment and a type index
referring to a TYPDEF .

The record type byte is Ox96. The LNAMES record
gives a series of length-prefixed strings which are
associated with name indices within the current
module. Each name is indexed in sequence given

Page 3

86REL (F)

SEGDEF

GRPDEF

FIXUPP

LEDATA

See Also

86REL (F)

starting with 1. The names may then be referenced
within the current module by successive SEGDEF and
GRPDEF records to provide strings for segments,
classes, overlays or groups.

The record type byte is Ox98. The SEGDEF record
provides an index to reference a segment, and infor­
mation concerning segment addressing and attributes.
This index may b e used by other records to refer to
the segment. The first word in the record after the
length field gives information about the alignment,
and about combination attributes of the segment.
The next word is the segment length in bytes. Note
that this restrains segments to a maximum 645,536
bytes in length. Following this word is an index (see
above) for the segment. Lastly, the SEGDEF may
optionally contain class and/or overlay index fields.

The record type is Ox9a. The GRPDEF record pro­
vides a name to reference several segments. The
group name is implemented as an index (see above).

The record byte is Ox9c. The F1XUPP record
specifies one or more load-time address
modifications ("fixups"). Each fixup refers to a loca­
tion in a preceeding LEDATA (see below) record.
The fixup is specified by four data; a location, a
mode� a target and a frame. The frame and target
may b e specified explicitly or b y reference to an
already defined fixup.

The record type byte is OxaO. This record provides a
contiguous text or data image which the loader
ld (CP) uses to construct a portion of an 8086 run­
time executable. The image might require additional
processing (see F1XUPP) before being loaded into the
executable. The image is preceeded by two fields, a
segment index and an enumerated data offset. The
segment index (see INDEX) specifies a segment given
by a previously seen SEGDEF . The enumerated data
offset (a word) specifies the offset from the start of
this segment.

as(CP), ld(CP)

April l, 1987 Page 4

c\

0

86REL (F) 86REL (F)

Notes

If you attempt to load a number of modules assembled under the
same basename, the loader will try to put them all in one big seg­
ment. In 286 programs, segment size is limited to 64K. In a large
program the resulting segment size can easily exceed 64K. A large
model code executable results from the link of one or more
modules, composed of segments that aggregate into greater than
64K of te>.i.

Hence, be sure that the assembly-time name of the module has the
same bascname as the source. Tills can occur if the source module
is preprocessed not by cc(CP), but, for example, by hand or shell
script, prior to assembly. The following example is incorrect:

#incorrect
cc -E modulel.c I filter > x.c
cc x.c
mv x.o modulel.o
cc -E module2.c I filter > x.c
cc x.c
mv x.o module2.o
cc -E module3.c I filter > x.c
cc x.c
mv x.o module3.o
ld modulel.o module2.o module3.o

To avoid this, each of the modules should have a unique name
when assembled, as follows:

#correct
cc -E modulel.c I filter > x.c
cc -S x.c
mv x.s modulel.s
as modulel.s

ld modulel.o module2.o module3.o

April l, 1987 Page 5

(_

A. OUT (F) A. OUT (!';)

Name

a.out - Format of assembler and link editor output.

Description

A. out is the output file of the assembler masm and the link editor
ld. Both --programs will make a.out executable if there were no
errors in assembling or linking� and no unresolved eA"ternal refer­
ences.

The format of a. out, called the x.out or segmented x.out format, is
defined by the files /usrlinclnde/a.out.h and
/usr/include/sys/relsym.h. The a.out file has the following general
layout:

1. Header.

2. Extended header.

3. File segment table (for segmented formats).

4. Segments (Text, Data, Symbol, and Relocation).

In the segmented format, there may be several text and data seg­
ments, depending on the memory model of the program. Segments
within the file begin on boundaries which are multiplies of 512 bytes
as defined by the file's pagesize. -

Format

I*
* The main and extended header structures.
* For x.out segmented (XE_SEG):
* 1) fields marked with {s) must contain sums of xs_psize for
* non-memory images, or xs_vsize for memory images.
* 2) the contents of fields marked with (u) eire itndefined.
*I

struct xexec { I* x.out header */
unsigned short x_magic; /* magic number ""I
unsigned short x_ext; I* size of header extension *I
long x_text; I* size of text segment (s) *I
long x_data; I* size of initialized data (s) *I
long x_bss; /* size of uninitialized data {s) *I
long x_syms; I* size of symbol table {s) *I
long x_reloc; /* relocation table length (s) *I
long x_entry; I* entry point, machine dependent */

April 1, 1987 Page 1

A. OUT (F) A.OUT (F)

};

char x.._cpu; /* cpu type & byte/word order */
char x_relsym; /* relocation & symbol format (u) */
unsigned short x_renv; /* run-time environment */

struct xext {
long
long
long
long
long

I* x.out header extension */
xe_trsize; /* size of text relocation (s) *I
xe_drsize; I* size of data relocation (s) *I
xe_tbase; /* text relocation base (u) *I
xe_dbase; /* data relocation base (u) */
xe_stksize; /* stack size (if XE_FS set) *I
!* lhe following must be present if XE_SEG */

long xe_segpos; I* segment table position */
long xe_segsize; /* segment table size *I
long xe_mdtpos; I* machine dependent table position */
long xe_mdtsize; /* machine dependent table size */
char xe_mdttype; I* machine dependent table type */
char xe_pagesize; /* file pagesize, in multiples of 512 */
char xe_ostype; /* operating system type *I
char xe_osvers; /* operating system version */
unsigned short xe_eseg; /* entry segment, machine dependent */
unsigned short xe_sres; /* reserved */

};

struct xseg { /"*" x.out segment table entry * I
unsigned short xs_type; I* segment type *I
unsigned short xs_attr; /* segment attributes *I
unsigned short xs_seg; /* segment number *I
char xs_align; /* log base 2 of alignment */
char xs_cres; /* unused *I
long xs_filpos; /* file position */
long xs_psize; /* physical size (in file) */
long xs_vsize; /* virtual size (in core) *I
long xs_rbase; /* relocation base address/offset */
unsigned short xs_noff; /* segment name string table offset *I
unsigned short xs_sres; /* unused */
long xsJres; /* unused */

};

struct xiter {
long
long
long

};

April 1, 1987

xi_size;
xi_rep;
xi_offset;

/* x.out iteration record *I
I* source byte count */

I* replication count *I
!* destination offset in segment *I

Page 2

0

G

A. OUT (F) A. OUT (F)

struct xlist { /* xlist structure for xlist(3). */

};

unsigned short xl_type; /* symbol type */
unsigned short xl_seg; /* file segment table index */
long x1_value; /* symbol value */
char *xl_name; /* pointer to asciz name */

struct aexec {
unsigned short
unsigned short
unsigned short
un!'<igned short
unsigned short
unsigned short
unsigned short
unsigned short

I* a.out header */
xa_magic;
xa_teA1:;
xa_data;
xa_bss;
xa_syms;
xa_entry;
xa_unused;
xa_ftag;

I* magic number */
I* size of text segment */
I* size of initialized data *I
I* size of unitialized data */
/* size of symbol table */
/* entry point */
I* not used *I
I* relocation info stripped */

};

struct nlist { /* nlist structure for nlist(3). */

};

char n_name[8]; /* symbol name */
int n_type; /* type flag *I
unsigned n_value; I* ·value *I

struct bexec { I* b.out header *I

};

long xb_magic; I* magic number *I
long xb_teA1:; I* teA1 segment size *I
long xb_data; I* data segment size *I
long xb_bss; I* bss size *I
long xb_syms; I* symbol table size *I
long xb_trsize; I* text relccation table size *I
long xb_drsize; I* data relocation table size *I
long xb_entry; I* entry point *I

See Also

masm(CP), Id(CP), nm(CP}, strip(CP}, xlist(S).

April 1, 1987 Page 3

\

c\

C:

ACCT (F) ACCT (F)

Name

acct - Format of per-process accounting file.

Description

Files produced as a result of calling acct(S) have records in the
form defined by <sys/acct.ll> .

In ac..jlag, the AFORK flag is turned on by each fork (S) and
turned off by an exec(S). The ac_comm field is inherited from the
parent process and is reset by any exec . Each time the system
charges the process with a clock tick, it also adds the current pro­
cess size to ac_]11.em computed as follows:

(data size) + (text size) I (number of in-core processes using
te1.1:)

The value of ac_]nem/ ac.....stbne can b e viewed as an approximation
to the mean process size, as modified by text-sharing.

See Also

acct(C), acctcom(C), acct(S)

Notes

The ac_ftlem value for a short-lived command gives little informa­
tion about the actual size of the command, because ac_mem may
be incremented while a different command (e.g., the shell) is being
executed by the process.

April 1, 1987 Page 1

(

AR (F) AR (F)

Name

ar - Archive file format.

Description

The archive command ar is used to combine several files into one.
Archives are used mainly as libraries to be searched by the link edi­
tor ld(C).

A file produced by ar has a magic number at the start, followed by
the constituent files, each preceded by a file header. The magic
number is 0177545 octal (or Oxff65 hexadecimal). The header of
each file is declared in /usr/include/ar.h.

Each file begins on a word boundary; a null byte is inserted
between files if necessary. Nevertheless the size given reflects the
actual size of the file exclusive of padding.

Notice there is no provision for empty areas in an archive file.

See Also

ar(CP), ld(CP)

April 1, 1987 Page 1

c \

0

ARCHIVE (F) ARCHIVE (F)

Name

archive - Default backup device information.

Description

/etc/default/archive contains information on system default backup
devices for use by sysadmin(C). The device entries are in the fol­
lowing format:

name=value [name=value] . . .

value may contain white spaces if quoted, and newlines may be
escaped with a backslash.

The following names are defined for /etc/default/archive:

bdev

cdev

size

density

format

blocking

desc

See Also

sysadmin(C)

April 1, 1987

Name of the block interface device.

Name of the character interface device.

Size of the volume in either blocks or feet.

Volume density, such as 1600. If this value is miss­
ing or null, then size is in blocks; otherwise the size
is in feet.

Command used to format the archive device.

Blocking factor.

A description of the device, such as "Cartridge
Tape."

Page 1

C- ! j

c�

BACKUP (F) BACKUP (F)

Name

backup - Incremental dump tape format.

Description

The backup and restore commands are used to write and read
incremental dump magnetic -tapes.

The backup tape consists of a header record, some bit mask
records, a group of records describing file system directories, a
group of records describing file system files� and some records
describing a second bit mask.

The header record and the first record of each description have the
format described by the structure included by:

#include <dumprestor.h>

Fields in the dumprestor structure are described below.

NTREC is the number of 512 byte blocks in a physical tape record.
MLEN is the number of bits in a bit map word. MSIZ is the
number of bit map words.

The TS_ entries are used in the cJype field to indicate what sort of
header this is. The types and their meanings are as follows:

TS_TYPE Tape volume label.

TSJNODE A file or directory follows. The c..dinode field is a
copy of the disk inode and contains bits telling what
sort of file this is.

TS...BITS A bit mask follows. This bit mask has one bit for
each inode that was backed up.

TS...ADDR A subblock to a file (TSJNODE). See the descrip­
tion of c_count below.

TS..END End of tape record.

TS_CLRI

MAGIC

A bit mask follows. This bit mask contains one bit
for all inodes that were empty on the file system
when backed up.

All header blocks have this number in c...magic.

CHECKSUM Header blocks checksum to this value.

April 1, 1987 Page 1

BACKUP (F) BACKUP (F)

The fields of the header structure are as follows:

c_type The type of the header.

c_date The date the backup was taken.

c_ddate The date the file system was backed up.

c_volume The current volume number of the backup.

c_tapea The current block number of this record. This is
counting 512 byte blocks.

cJnumber The number of the inode being backed up if this is of
type TS__!NODE.

CJilagic This contains the value MAGIC above, truncated as
needed.

c_checksum This contains whatever value is needed to make the
block sum to CHECKSUM.

c_dinode

c_count

c__addr

This is a copy of the inode as it appears on the file
system.

The following count of characters describes the file.
A character is zero if the block associated with that
character was not present on the file system; other­
wise, the character is nonzero. If the block was not
present on the file system no block was backed up
and it is replaced as a hole in the file. ff there is not
sufficient space in this block to describe all of the
blocks in a file, TS_ADDR blocks will be scattered
through the file, each one picking up where the last
left off.

This is the array of characters that is used as
described above.

Each volume except the last ends with a tapemark (read as an end
of file). The last volume ends with a TS__END block and then the
tapemark.

The structure idates describes an entry of the file where backup his­
tory is kept.

See Also

backup(C), restore(C), filesystem(F)

April 1, 1987 Page 2

('

c

CHECKLIST (F) CHECKLIST (F)

Name

checklist - List of file systems processed by fsck.

Description

The /etc/checklist file contains a list of the file systems to be
checked when fsck(C) is invoked without arguments. The ljst con­
tains at most 15 special file names. Each special file name must be
on a separate line and must correspond to a file system.

See Also

fsck(C)

April 1, 1987 Page 1

c:

C ' /

CORE (F) CORE (F)

Name

core - Format of core image file.

Description

XENIX writes out a core image of a terminated process when any of
various errors occur. See signal(S) for the list of reasons; the most
common are memory violations, illegal instructions, bus errors, and
user-generated quit signals. The core image is called core and is
written in the process' working directory (provided it can be; nor­
mal access controls apply). A process with an effective user ID dif­
ferent from the real user ID will not produce a core image.

The first section of the core image is a copy of the system's per­
user data for the process, including the registers as they were at the
time of the fault. The size of this section depends on the parame­
ter usize, which is defined in /usr/include/sys/param.h. The
remainder represents the actual contents of the user's core area
when the core image Was Written. If the text segment is read-only
and shared, or separated from data space, it is not dumped.

The format of the information in the first section is described by
the user structure of the system, defined in
/usr/include/sys/user.h. The locations of registers, are outlined in
/usr/include/sys/reg.b.

See Also

adb(CP), setuid(S), signal(S)

April 1, 1987 Page 1

CPIO (F)

Name

cpio - Format of cpio archive.

Description

The header structure, when the c option is not used, is:

struct {
short

char
} Hdr;

h_magic,
h_dev,
h_jno,
h_mode,
h_uid,
h_gid,
hJ1link,
h_xdev,
luntime[2],
h_namesize,
h_lilesize[2];
h_name[h_uamesize rounded to word];

CPIO (F)

When the c option is used, the header information is described by
the statement below:

sscanf(Chdr,"%6o%6o%6o%6o%6o%6o%6o%6o% 111o%6o%6o% s",
&Hdr.h_magic,&Hdr.h_dev,&Hdr.hjno,&Hdr.h_mode,
&Hdr .h_uid,&Hdr .b_gid, &Hdr .h_nlink ,&Hdr .h_rdev,
&Longtime,&Hdr.h_namesize,&Longfile,Hdr.h_name);

Longtime and Longfile are equivalent to Hdr.h..Jntim.e and
Hdr.h_Jilesize, respectively. The contents of each file is recorded
in an element of the array of varying length structures, archive ,
together with other items describing the file. Every instance of
h_magic contains the constant 070707 (octal). The items h...dev
through h_yntime have meanings explained in stat(S). The length of
the null-terminated pathnarne h..Jwme, including the null .byte, is
given by hJ1.an1esize.

The last record of the archive always contains the name
TRAILER!!! . Special files, directories, and the trailer are recorded
with h_Jilesize equal to zero.

See Also

cpio(C), find(C), stat(S)

April l, 1987 Page 1

(

DIR (F) DIR (F)

Name

dir - Format of a directory.

Syntax

#include <sys/dir.h>

Description

A directory behaves exactly like an ordinary file, except that no
user may write into a directory. The fact that a file is a directory is
indicated by a bit in the flag word of its inode entry (see
filesystem(F)). The structure of a directory is given in the include
file /usr/include/sys/dir.h.

By convention, the first two entries in each directory are"dot" (.)
and "dotdot" (..). The first is an entry for the directory itself. The
second is for the parent directory. The meaning of dotdot is modi­
fied for the root directory of the master file system; there is no
parent, so dotdot has the same meaning as dot.

See Also

filesystem(F)

Aprll 1, 1987 Page 1

DUMP (F) DUMP (F)

Name

dump - Incremental dump tape format.

Description

The dump and restor commands are used to write and read incre­
mental dump magnetic tapes.

The dump tape consists of a header record, some bit mask records,
a group of records describing file system directories, a group of
records describing file system files, and some records describing a
second bit mask.

The header record and the first record of each description have the
format described by the structure included by:

#include <dumprestor.h>

Fields in the dumprestor structure are described below.

NTREC is the number of 512 byte blocks in a physical tape record.
MLEN is the number of bits in a bit map word. MSIZ is the
number of bit map words.

The TS_ entries are used in the c...Jype field to indicate what sort of
header this is. The types and their meanings are as follows:

TS_TYPE Tape volume label.

TSJNODE A file or directory follows. The c...dinode field is a
copy of the disk inode and contains bits telling what
sort of file this is.

TS...BITS A bit mask follows. This bit mask has a one-bit for
each inode that was dumped.

TS_ADDR A subblock to a file (TSJNODE). See the descrip­
tion of c_count below.

TS..END End of tape record.

TS_CLRI

MAGIC

A bit mask follows. This bit mask contains a one-bit
for all inodes that were empty on the file system
when dumped.

All header blocks have this number in CJTZagic .

CHECKSUM Header blocks checksum to this value.

April 1, 1987 Page 1

DUMP (F) DUMP (F)

The fields of the header structure are as follows:

c_type The type of the header.

c_date The date the dump was taken.

c_ddate The date the file system was dumped from.

c_volume The current volume number of the dump.

c_tapea The current block number of this record. This is
counting 512 byte blocks.

c...fuumber The number of the inode being dumped if this is of
type TSJNODE.

CJDagic This contains the value MAGIC above, truncated as
needed.

c_checksum This contains whatever value is needed to make the
block sum to CHECKSUM.

c_dinode

c_count

c...addr

This is a copy of the inode as it appears on the file
system.

This is the count of characters following that describe
the file. A character is zero if the block associated
with that character was not present on the file sys­
tem, otherwise the character is nonzero. If the block
was not present on the file system no block was
dumped and it is replaced as a hole in the file. If
there is not sufficient space in this block to describe
all of the blocks in a file, TS...ADDR blocks will be
scattered through the file, each one picking up where
the last left off.

This is the array of characters that is used as
described above.

Each volume except the last ends with a tapemark (read as an end
of file). The last volume ends with a TS...END block and then the
tapemark.

The structure idates describes an entry of the file where dump his­
tory is kept.

See Also

dump(C), restor(C), filesystem(F)

April !, 1987 Page 2

FILESYS (F) FILESYS (F)

Name

filesys - Default information for mounting filesystems.

(_ Description

Cl

/etcldefaultlfilesys contains information for mounting filesystems in
the following format:

name=value [name=value] . . .

value may contain white spaces if quoted, and newlines may be
escaped with a backslash.

mnt (see mount(C)) and sysadmin(C) use the information in the
/etc!defaultlfilesys when the system comes up multiuser. The fol­
lowing names are defined for /etcldefaultlfilesys:

bdev

cdev

size

mountdir

desc

mountflags

fsckflags

remount

See Also

Name of the block interface device.

Name of the character interface device.

Size in blocks.

Directory on which the filesystem is mounted.

A description of the filesystem. For example,
"User filesystem.''

Any flags passed to the mount(C) command.

Any flags passed to the fsck(C) command.

Whether or not to mount the filesystem when the
system goes multiuser. Can be "yes", uno" or
"prompf'. If set to "prompt", you ate prompted
when it is time to mount the filesystem.

mount(C), sysadmin(C)

April !, 1987 Page 1

c \

C:

FILESYSTEM (F)

Name

file system - Format of a system volume.

Syntax

#include <sys/fdsys.h>
#include <sys/types.h>
#include <sys/param.h>

Description

FILESYSTEM (F)

Every file system storage volume (for example, a hard disk) has a
common format for certain vital information. Every such volume is
divided into a certain number of 256 word (512 byte) blocks. Block
0 is unused and is available to contain a bootstrap program or other
information.

Block 1 is the super-block. The format of a super-block is
described in /usr/include/sys/filesys.h. In that include file, S.Jsize
is the address of the first data block after the i-list. The i-list starts
just after the super-block in block 2; thus the i-list is s...iske-2
blocks long. S_fsize is the first block not potentially available for
allocation to a file. These numbers are used by the system to check
for bad block numbers. If an "impossible" block number is allo­
cated from the free list or is freed, a diagnostic is written on the
console. Moreover, the free array is cleared so as to prevent
further allocation from a presumably corrupted free list.

The free list for each volume is maintained as follows. The s_free
array contains, in s__free[1], . . . , s_free[s...nfree-1], up to 49 numbers
of free blocks. S..free[O] is the block number of the head of a
chain of blocks constituting the free list. The first long in each
free-chain block is the number (up to 50) of free-block numbers
listed in the next 50 longs of this chain member. The first of these
50 blocks is the link to the next member of the chain. To allocate
a block: decrement s...nfree, and the new block is s_free [s...nfree]. If
the new block number is 0, there are no blocks left, so give an
error. H S_lifree becomes 0, read in the block named by the new
block number, replace s...nfree by its first word, and copy the block
numbers in the next 50 longs into the s_free array. To free a block,
check if s...nfree is 50; if so, copy s...nfree and the s__free array into
it, write it out, and set s...nfree to 0. In any event set s_free[s...nfree]
to the freed block's number and increment s..JI[ree.

S__tfree is the total free blocks available in the file system.

S_liinOde is the number of free i-numbers in the s_jnode array. To
allocate an inode: if S_liinode is greater than 0, decrement it and
return s_jnode[s...ninode]. If it was 0, read the i-list and place the

April 1, 1987 Page 1

FILESYSTEM (F) FILESYSTEM (F)

numbers of all free inodes (up to 100) into the s.Jnode array, then
try again. To free an inode, provided s_ninode is less than 100,
place its number into sJ.node [s_ninode] and increment s_ninode . If
SJtinode is already 100, do not bother to enter the freed inode into
any table. This list of inodes only speeds up the allocation process.
The information about whether the inode is really free is main-
tained in the inode itself. '

S.Jinode is the total free inodes available in the file system.

S_flock and s_j/ock are flags maintained in the core copy of the file
system while it is mounted and their values on disk are immaterial.
The value of s_fmod on disk is also immaterial, and is used as a
flag to indicate that the super-block has changed and should be
copied to the disk during the next periodic update of file system
information.

Syonly is a read-only flag to indicate write-protection.

S....time is the last time the super-block of the file system was
changed, and is a double precision r�presentation of the number of
seconds that have elapsed since 00:00 Jan. 1, 1970 (GMT). During
a reboot, the sJime of the super-block for the root file system is
used to set the system's idea of the time.

!-numbers begin at 1, and the storage for inodes begins in block 2.
Also, inodes are 64 bytes long, so 8 of them fit into a block.
Therefore, inode i is located in block (i+15)/8, and begins
64x((i+ 15) (mod 8)) bytes from its start. In ode 1 is reserved for
future use. Inode 2 is reserved for the root directory of the file sys­
tem, but no other i-number has a built-in meaning. Each inode
represents one file. For the format of an inode and its flags, see
iriode(F).

Files

/usr/include/sys/filsys.h

/usr/include/sys/stat.h

See Also

fsck(C), mkfs(C), inode(F)

April 1, 1987 Page 2

FSTAB (F) FSTAB (F)

Name

fstab - File system mount and check commands.

/ Description
"-·

[stab is an ASCII text file containing information that is passed to
the mount(C) and fsck(C) commands that are executed from
/ere/rc. A typical /ere/fstab file might look like this:

device
/dev/u
/dev/arcbive

directory
/u
/archive

optional flags
fsckflags=11-Y -D11
mountflags="-r" fsckflags="-f"

The first column lists the device to be mounted and the second
column gives the mount point (directory) for the device.

The third column lists any optional flags. Optional flags are:

fsckflags
mountflags
prompt

Flags that are passed to fsck.
Flags that are passed to mount.
If set to "y", prompts whether or not to
mount filesystem. Default is "n".

Comment lines start with a number sign (#).

See Also

fsck(C), mount(C)

April 1, 1987 Page 1

(

C' l /

c)

GETTYDEFS (F) GETTYDEFS (F)

Name

gettydefs - Speed and terminal settings used by getty.

Description

The /etc/gettydefs file contains information used by getty (M) to set
up the speed and terminal settings-for a -line. It supplies informa­
tion on what the login prompt should look like. It also supplies the
speed to try ne>..i: if the user indicates the current speed is not
correct by typing a BREAK character.

Each entry in /etc/gettydefs has the following format:

label# initial-flags # final-flags # login-prompt #ne>."t-label [#
login-program]

Each entry is followed by a blank line. The various fields can con­
tain quoted characters of the form \b, \n, \c, etc., as well as \nnn,
where nnn is the octal value of the desired character. The various
fields are:

label

initial-flags

final-flags

login-prompt

April l, 1987

Identifies the /etc/gettydefs entry to getty. This
could be a letter or number, The label corresponds
to the line mode field in /etc/ttys. Init passes the
line mode as an argument to getty .

Sets the initial ioctl (S) settings if a terminal type is
not specified to getty . The flags that getty under­
stands are the same as the ones listed in tty (M).
Normally only the speed flag is required in the
initial-flags. Getty automatica1ly sets the terminal to
raw input mode and takes care of most of the other
flags. The initial-flag settings remain in effect until
getty executes login (M).

Sets the same values as the initial-flags. These flags
are set just prior to getty executing login-program.
The speed flag is again required. The composite
flag SANE takes care of most of the other flags that
need to be set so that the processor and terminal
are communicating in a rational fashion. The other
two commonly specified final-flags are TAB3, so
that tabs are sent to the terminal as spaces, and
HUPCL, so that the line is hung up on the final
close.

Contains login prompt message that greets users.
Unlike the above fields where white space is ignored
(a space, tab, or new-line), it is included in the
login-prompt field. The '@' in the login-prompt

Page 1

GETTYDEFS (F)

next- label

GETTYDEFS (F)

field is expanded to the first line in /etc/systemid
(unless the '@' is preceded by a '\'). Several char­
acter sequences are recognized, including:
\n Linefeed
\r Carriage return
\v Vertical tab
\nnn (3 octal digits) Specify ASCII character
\t Tab
\f Form feed
\b Backspace

Identifies the next entry in gettydefs for getty to try if
the current one is not successful. Getty tries the
next label if a user presses the BREAK key while
attempting to log in to the system. Groups of
entries, for example, -for dial-up lines or for TTY
lines, should form a closed set so that getty cycles
back to the original entry if none of the entries is
successful. For instance, 2400 linked to 1200,
which in tum is linked to 300, which finally is linked
to 2400.

login-program The name of the program that actually logs the user
onto XENIX. The default program is /etc/login. If
preceded by the keyword AUTO, getty will not
prompt for a username, but instead uses its first
argument as the username and executes the login­
program immediately.

If getty is called without a second argument, then the first entry of
/etc/gettydefs is used, thus making the first entry of /etc/gettydefs
the default entry. The first entry is also used if getty can not find
the specified label. If /etc/gettydefs itself is missing, there is one
entry built into the command which will bring up a terminal at 300
baud.

After modifying /etc/gettydefs, ruo it through getty with the check
option to be sure there are no errors.

Files

/etc/gettydefs

See Also

ioctl(S), getty(M), login(M)

April !, 1987 Page 2

(
"-···

c

INITTAB (F) INITTAB (F)

Name

inittab - Alternative login terminals file.

Description

telinit(C) reads inittab and converts it into a ttys(M)-format file.
init(M) reads /etc/ttys to determine for which terminals logins are
allowed.

Each line in inittab has the form:

id:run-levels:action:letclgetty tty mode

id A one- to four-character name that uniquely identifies this
line. It is recommended that if tty is ttyxx that the id then be "xx".

run� levels
A list of digits ranging from 0 to 6. This list specifies which tel­
init states are concerned with this line. If the run-levels list is
empty, then it is assumed to be "0123456" (all states).

action
Whether or not logins are allowed on tty:

off
Logins are not allowed in any of the listed run-levels.

res pawn
Logins are allowed only in the listed run-levels.

ondemand
Identical to "res pawn".

tty The filename of a character device special file. Only the
filename is supplied; the path is assumed to be /dev.

mode
A single character supplied as an argument to the getty (M) pro­
gram. It defines the line characteristics (such as the baud rate)
for the terminal, and must match one of the names listed in
/etc/gettydefs.

Exactly one space must separate ttys from .. . : /etc/getty and from
mode. No other spaces or tabs are allowed.

April 1, 1987 Page 1

JNJTTAB (F) JNITTAB (F)

Files

/etc/inittab

See Also

disable(C), enable(C), init(M), getty(M), gettydefs(F), telinit(C),
ttys(M)

Notes

inittab is provided for users more familiar with the telinit approach
to terminal administration, as opposed to the standard XENIX
enable(C)Idisable(C) approach. It is intended that a full integra­
tion of these two approaches will be provided in a future version of
XENIX.

April 1, 1987 Page 2

(. - ' /

0

!NODE (F)

Name

inode - Format of an inode.

Syntax

#include <sys/types.h>
#include <sys-/ino.h>

Description

!NODE (F)

An inode for a plain file or directory in a file system has the struc­
ture defined by <sys/ino.h>. For the meaning of the defined
types off...t and time.J see types(F).

Files

/usrlinclude/ sys/ino.h

See Also

stat(S), filesystem(F), types(F)

April 1, 1987 Page 1

(
� ..

c �

MAPCHAN (F) MAPCHAN (F)

Name

mapchan - Format of tty device mapping files.

Description

mapchan configures the mapping of information input and output
of XENIX.

Each unique channel map requires 1024 bytes (a 1K buffer) for
mapping the input and output of characters. No maps are required
if no channels are mapped.

A method of sharing maps is implemented for channels that have
the same map in place. Each additional, unique map allocates an
additional buffer. The maximum number of map buffers available
on a system is configured in the kernel, and is adjustable via the
link kit (see config(C) and configure (C)). Buffers of maps no
longer in use are returned for use by other maps.

Example of a Map File

The internal character set used by XENIX is defined by the right
column of the input map, and the first column of the output map
in place on that line. By default, this is the 8-bit ASCII character
set which is also known as the dpANS X3.4.2 and ISO/TC97/SC2
or ISO 8859 Level I character sets. It supports the Latin alphabet
and can represent most European languages.

Any character value not given is assumed to be a straight mapping,
only the differences are shown in the mapfile . The left hand
columns must be unique. More than one occurence of any entry is
an error. Right hand column characters can appear more than
once. This is "many to one" mapping. Nulls can be produced with
dead or compose sequences or as part of an output string.

It is recommended that no mapping be enabled on the channel used
to create or modify the mapping files. This prevents any confusion
of the actual values being entered due to mapping. It is also recom­
mended that numeric rather than character representations be used
in most cases, as these are not likely to be subject to mapping. Use
comments to identify the characters represented. Refer to the
ascii(M) manual page and the hardware reference manual for the
device being mapped for the values to assign.

April 1, 1987 Page 1

MAPCHAN (F) MAPCHAN (F)

sharp/pound/cross-hatch is the comment character
however, a quoted # ('#'} is Ox23, not a comment

beep, input, output, dead and compose are special
keywords and should appear as shown.

beep

input
a b
c d

dead p
q r
s t

dead u
v w

sound the bell when errors occur

p followed by q yields r.
p followed by s yields t.

u followed by v yields IV.

compose x
y z A
B C D

x is the compose key (only one allowed).
x followed by y and z yields A.

output
e f
g h i j
k 1 m n o

x followed by B and C yields D.

e is mapped to f.
g is mapped to hij - one to many.
k is mapped to lmno.

All of the single letters above can be in one of these formats:
56 # decimal
045 # octal
Oxfa # hexadecimal
'b' # quoted char
'\076' # quoted octal
'\x4a' # quoted hex

All of the above formats are translated to single byte values.

Diagnostics

mapchan performs these error checks when processing the mapfile:

More than one compose key.
Characters mapped to more than one thing.
Syntax errors in the byte values.
Missing input or output keywords.
Dead or compose keys also occuring in the input section.
Extra information on a line.
Mapping a character to null.

April 1, 1987 Page 2

MAPCHAN (F) MAPCHAN (F)

Characters are displayed as the 7-bit value instead of the 8-bit
value. Use stty -a to verify that -istrip is set. Make sure input is
mapping to the 8859 character set, output is mapping from the 8859
to the device display character set. dead and compose sequences
are input mapping and should be going to 8859.

Files

/etc/defanlt/mapchan
/usr/lib/mapchan/map.stdrom
/usr/lib/mapchan/map. •

See Also

ascii(M), keyboard(HW),
mapkey(M), parallel(HW),
tty(M)

lp(C), lpadmin(C), mapchan(M),
screen(HW), serial(HW), setkey(M),

Notes

Some foreign keyboards and display devices do not contain charac­
ters commonly used by XENIX command shells and the C program­
ming language. Do not attempt to use such devices for system
administration tasks.

Not all terminals or prioters can display all the characters that can
be represented using this utility. Refer to the device's hardware
manual for information on the capabilities of the peripheral device.

WARNING: Use of mapping files that specify a different "inter­
nal" character set per-channel, or a set other than the 8-bit ASCll
set supplied by default can cause strange side effects. It is especially
hnportant to retain the 7-bit ASCII portion of the character set
(see ascii(M)). XENIX utilities and applications assume these
values. Media transported between machines with different internal
code set mappings may not be portable as no mapping is performed
on block devices, such as tape and floppy drives. mapchan can be
used to ('translate" from one internal character set to another.

Do not set ISTRIP (see stty(C)) on channels that have mapping
that includes eight bit characters.

April l, 1987 Page 3

('
"-·

c�

MASTER (F) MASTER (F)

Name

master - Master device information table.

Description

master contains device iofonnation used by config(C) to generate
the -configuration files. The file consists of 4 parts, each separated
by a lioe with a dollar sign ($) io column 1.

- Part 1 contains device information.
- Part 2 contains the line discipline table.
- Part 3 contains names of devices that have aliases.
- Part 4 contains tunable parameter information.

Any line with an asterisk (*) in column 1 is treated as a comment.

Part 1

This part contains definitions for the system devices. Each line has
14 fields with the fields delimited by tabs and/or blanks:

Field 1:
Field 2:
Field 3:

Device name (8 chars. maximum).
Number of interrupt vectors.
Device mask (octal). Each "on" bit indiCates that
the driver has the corresponding handler or struc-
ture:

000400 tty structure.
000200 Not used.
000100 Initialization handler.
000040 Clock time poll routioe.
000020 Open handler.
000010 Close handler.
000004 Read handler.
000002 Write handler.
000001 Ioctl handler.

The clock time poll routine, if present in the driver, is called
every clock tick io which the clock ioterrupted task-time pro­
cessing.
Field 4:

April 1, 1987

Device type iodicator (octal):
000200 Not used
000100 No qswtch on ioterrupt.
000040 Not used.
000020 Required device.
000010 Block device.
000004 Character device.
000002 Not used.
000001 Not used.

Page 1

MASTER (F)

Field 5:

Field 6:
Field 7:
Field 8:
Field 9:
Field 10:

Fields 11-14:

MASTER (F)

Handler prefix (4 chars. maximum). Usually same
as Field 1. The routines of dev.c should begin
dev . . . The tty structure of dev.c should be named
dev...tty.
Not used.
Major device number for block-type device.
Major device number for character-type device.
Maximum number of devices per controller.
The spl level (1 - 7) at which the device's inter­
rupt routine should be called.
Maximum of four interrupt vector addresses
(octal). Each address is followed by a unique
letter or a blank.

Devices that are not interrupt-driven have an interrupt vector size
of zero . Devices that generate interrupts but are not of the stan­
dard character or block device mold, should be specified with a
type (field 4) which has neither the block nor character bits set.

Part 2

This part contains definitions for the system line discipline. Each
line has 9 fields. Each field is a maximum of 8 characters delimited
by a blank if less than 8:

Field 1:
Field 2:
Field 3:
Field 4:
Field 5:
Field 6:
Field 7:
Field 8:
Field 9:

Part 3

Device associated with this line.
Open routine.
CloSe routine.
Read routine.
Write routine.
Ioctl routine.
Receiver interrupt routine.
Transmitter interrupt routine.
Modem control interrupt routine.

This part contains definitions for device aliases. Each line has 2
fields:

Field 1:
Field 2:

Alias name of device (8 chars. maximum).
Reference name of device as given in part 1 (8
chars. maximmn).

Aliases may be used in place of actual device names when creating
the config(C) description file.

April 1, 1987 Page 2

0

G

MASTER (F) MASTER (F)

Part 4

This part contains the names and default values for tunable parame­
ters. Each line has 2 or 3 fields:

Field 1:

Field 2:

Field 3:

Parameter name to be used in the conjig(C)
description file (20 chars. maximum).
Parameter name as it will appear in the resulting
c.c file (20 chars. maximum).
Default parameter value (20 chars. maximum).

If a parameter has no default value, an explicit specification for the
parameter must be given in the description file. See conjig(C) for a
list of the tunable parameters.

See Also

config(C), configure(C)

A pri1 1, 1987 Page 3

C' , _/

MNTTAB (F)

Name

mnttab - Format of mounted file system table.

Syntax

#include <stdio.h>
#include <mnttab.h>

Description

MNTTAB (F)

The /etc/mnttab file contains a table of devices mounted by the
mount(C) command.

Each table entry contains the pathname of the directory on which
the device is mounted, the name of the device special file, the
read/write permissions of the special file, and the date on which
the device was mounted.

The maximum number of entries in mnttab is based on the system
parameter NMOUNT located in /usr/sys/conf/space.c, which
defines the number of allowable mounted special files.

See Also

mount(C)

April !, 1987 Page 1

SCCSFJLE (F) SCCSFILE (F)

Name
sccsfile - Format of an SCCS file.

c� ,Des�:p:;:S file is an ASCII file. It consists of six logical parts: the
checksum, the delta table � (contains information about each delta),
user names (contains login names and/or numerical group IDs of
users who may add deltas), flags (contains definitions of internal
keywords), comments (contains arbitrary descriptive information
about the file), and the body (contains the actual text lines inter­
mixed with control lines). Each logical part of an SCCS file is
described in detail below.

(. u

Throughout an SCCS file there are lines which begin with the ASCII SOH (start of heading) character (octal 001). This character is
hereafter referred to as the control character and will be
represented graphically as @. Any line described below which is
not depicted as beginning with the control character is prevented
from beginning with the control character. Entries of the form
DDDDD represent a five digit string (a number between ()()()()() and
99999).
Checksum

The checksum is the first line of an SCCS file. The form of the
line is:

@hDDDDD

The value of the checksum is the sum of all characters, except
those of the first line. The @hR provides a magic number of
(octal) 064001.

Delta Table

The delta table consists of a variable-number of entries of the form:
@s DDDDD/DDDDD/DDDDD
@d <type> <SCCS ID> yr/mo/da hr:mi:se <pgmr> DDDDD DD
@i DDDDD o • o
@x DDDDD o o o
@g DDDDD o o o
@m <MR number>

@c <comments> ...

@e

April l, 1987 Page 1

SCCSFILE (F) SCCSFILE (F)

The first line (@s) contains the number of Jines
inserted/deleted/unchanged respectively. The second line (@d)
contains the type of the delta (currently, normal: D, and removed:
R), the sees ID of the delta, the date and time of creation of the
delta., the login name corresponding to the real user ID at the time
the delta was created, and the serial numbers of the delta and its
predecessor, respectively.

The @i, @x, and @g lines contain the serial numbers of deltas
included, excluded, and ignored, respectively. These lines are
optional.

The @m lines (optional) each contain one MR number associated
with the delta; the @c lines contain comments associated with the
delta.

The @e line ends the delta table entry.

User Names

The list of login names and/or numerical group IDs of users who
may add deltas to the flle, separated by new-lines. The lines con­
taining these login names and/or numerical group IDs are sur­
rounded by the bracketing lines @n and @U. An empty list allows
anyone to make a delta.

Flags

Keywords used internally (see admin(CP) for more information on
their use). Each flag line takes the form:

@f <flag> <optional text>

The following flags are defined:

@f t
@f v
@f i
@f b
@f m
@f f
@f c
@f d
@f n
@f i
@f I
@f q

<type of program>
<program name>

<module name>
<floor>
<ceiling>
<default-sid>

<lock-releases>
<user defined>

The t flag defines the replacement for the identification keyword.
The v flag controls prompting for I\.1R numbers in addition to

April 1, 1987 Page 2

c \

c

SCCSFILE (F) SCCSFILE (F)

comments; if the optional text is present it defines an MR. number
validity checking program. The i flag controls the warning/error
aspect of the "No id keywords" message. When the i flag is not
present, this message is only a warning; when the i flag is present,
this message will cause a "fatal" error (the file will not be gotten, or
the delta will not be made). When the b flag is present the -b
option may be used with the get command to cause a branch in the
delta tree. The m flag defines the first choice for the replacement
text of the sccsfile.F identification keyword. The f flag defines the
"floor" release; the release below which no deltas may be added.
The c flag defines the ('ceiling" release; the release above which no
deltas may be added. The d flag defines the default SID to be used
when none is specified on a get command. The n flag causes delta
to insert a "null" delta (a delta that applies no changes) in those
releases that are skipped when a delta is made in a new release
(e.g., when delta 5.1 is made after delta 2.7, releases 3 and 4 are
skipped). The absence of the n flag causes skipped releases to be
completely empty. The j flag causes get to allow concurrent edits
of the same base SID. The I flag defines a list of releases that are
locked against editing (get(CP) with the -e option). The q flag
defines the replacement for the identification keyword.

Comments

Arbitrary text surrounded by the bracketing lines @t and @T. The
comments section typically contains a description of the file's pur­
pose.

Body

The body consists of text lines and control lines. Text lines don't
begin with the control character, control lines do. There are three
kinds of control lines: insert, delete , and end, as follows:

@J DDDDD
@D DDDDD
@E DDDDD

The digit string (DDDDD) is the serial number corresponding to the
delta for the control line.

See Also

admin(CP), delta(CP), get(CP), prs(CP)

XENIXProgrammer's Guide

A pril l, 1987 Page 3

(_ '

STAT (F) STAT (F)

Name

stat - Data returned by stat system call.

Syntax

#include <sys/stat.h>

Description

The sys/stat.b include file contains the definition for the structure
returned by the stat and fstat functions. The structure is defined
as:

struct stat{
dev_t st_dev; I*

ino_t
ushort
short
ushort
ushort
dev_t

st_ino;
sh_mode;
st_nlink;
st_uid;
st_gid;
st_rdev;

I* inode number *I
/* file mode *I
I* # of links *I
I* owner uid */
I* owner gid *I
I*

I* file size in bytes *I
I* time of last access */

};

ofLt
time_t
time_!
time_t

st_size;
st_atime;
st_mtime;
st_ctime;

I* time of last data modification */
I* time of last file status 'change' */

Note that the st_atime , st_mtlme , and st_ctime values are measured
in seconds since 00:00:00 (GMT) on January 1, 1970.

The st_mode value is actually a combination of one or more of the
following file mode values:
S_lFMT 0170000 I* type of file *I
S_lFDIR 0040000 I* directory *I
S_lFCHR 0020000 I* character special *I
S_lFBLK 0060000 /* block special *I
S_IFREG 0100000 I* regular *I
S IFIFO 0010000 I* fifo *I
S_IFNAM 0050000 I* name special entry *I
S_INSEM 01 I* semaphore *I
S_INSHD 02 I* shared memory *I
S_ISUID 04000 I* set user id on execution *I
S_IGUID 02000 I* set group id on execution *I
S_ISVTX 01000 I* save swapped text even after use *I
S_IREAD 00400 /* read permission, owner */

April 1, 1987 Page 1

STAT (F)

SJWRITE 00200
S_IEXEC 00100

Files

/usr/include/sys/stat.h

See Also

stat(S)

April 1, 1987

STAT (F)

I* write permission, owner *I
I* execute/search permission, owner */

Page 2

(

c,

TAR (F) TAR (F)

Name

tar - archive format

Description

The command tar(C) dumps files to and extracts files from backup
-media or the hard disk.

Each file is archived in contiguous blocks, the first block being
occupied by a header, whose format is given below, and the subse­
quent blocks of the files occupying the following blocks. All
headers and file data start on 512 byte block boundaries and any
spare unused space is padded with garbage. The format of a header
block is as follows:

#define TBLOCK 512
#define NBLOCK 20
#define NAMSIZ 100
union hblock {

char dummy[TBLOCK];
struct header {

char name[NAMSIZ];
char mode[8];
char uid[8];
char gid[8];
char size[12];
char mtime[12];
char chksum[8];
char linkflag;
char linkname[NAMSIZ];
char extno[4];
char extotal[4];
char efsize[12];

} dbuf;
} dblock;

The name entry is the path name of the file when archived. If the
pathname starts with a zero word, the entry is empty. It is at most
100 bytes long and ends in a null byte. Mode, uid, gid, size, and
time modified are the same as described under i-nodes (refer to
filesystem(F)). The checksum entry has a value such that the sum
of the words of the directory entry is zero .

If the entry corresponds to a link, then linkname contains the path­
name of the file to which this entry is linked and linkflag gives a
count of the links. No data is put in the archive file.

See Also

filesystem(F), tar(C)

April 1, 1987 Page 1

(1

C) /

G

TERM (F) TERM (F)

Name

term - Terminal driving tables for nroff.

Description

nroD'(CT) uses driving tables to customize its output for various
types of output- devices, such as -printing terminals, special word­
processing printers (such as Diablo, Qume, or NEC Spinwriter
mechanisms), or special output filter programs. These driving
tables are written as C programs, compiled, and installed in
/usr/lib/term/tabname, where name is the name for that terminal
type as shown in term(CT).

The structure of the tables is as follows. Sizes are in 240ths of an
inch.

#define INCH 240

struct termtable tip ; { * lp is the name of the term, *\
int bset; * modify with new name, such as tnew *\
int breset;

} ;

April 1, 1987

int Hor;
int Vert;
int Newline;
int Char;
int Em;
int Halfline;
int Adj;
char *twinit;
char *twrest;
char *twnl;
char *hlr;
char *hlf;
char *flr;
char *bdon;
char *bdoff;
char *iton;
char *itoff;
char *ploton;
char *plotoff;
char *up;
char *down;
char *right;
char *left;
char *codetab[256-32];
char *zzz;

Page 1

TERM (F) TERM (F)

The meanings of the various fields are as follows:

bset bits to set in tennio.c_pflag see tcy(M) and tennio(M)).
after output.

breset bits to reset in termio.c_oftag before output.

Hor horizontal resolution in fractions of an inch.

Vert vertical resolution in fractions of an inch.

Newline space moved by a newline (linefeed) character in frac­
tions of an inch.

Char quantum of character sizes, in fractions of an inch.
(i.e., characters are multiples Of Char units wide. See
codetab below.)

Em size of an em in fractions of an inch.

Halfline space moved by a half-linefeed {or half-reverse­
linefeed) character in fractions of an inch.

Adj quantum of white space for margin adjustment in the
abscence of the - e option, in fractions of an inch. (i.e.,
white spaces are a multiple of Adj units wide)

Note: if this is less than the size of the space character
(in units of Char; see below for how the sizes of charac­
ters are defined), nroff will output fractional spaces
using plot mode. Also, if the - e switch to nroff is used,
Adj is set equal to Hor by nroff.

twinit set of characters used to initialize the terminal in a mode
snitable for nroff.

twrest set of characters used to restore the terminal to normal
mode.

twnl set of characters used to move down one line.

hlr set of characters used to move up one-half line.

hlf set of characters used to move down one-half line.

fir set of characters used to move up one line.

bdon set of characters used to turn on hardware boldface
mode, if any. Nroff assumes that boldface mode is reset
automatically by the twnl string, because many letter­
quality printers reset the boldface mode when they
receive a carriage return; the twnl string should include

April 1, 1987 Page 2

TERM (F)

bdoff

iton

it off

ploton

plotoff

up

down

right

left

TERM (F)

whatever characters are necessary to reset the boldface
mode.

set of characters used to tum off hardware boldface
mode, if any.

set of characters used to tum on hardware italics mode,
if any.

set of characters used to tum off hardware italics mode,
if any.

set of characters used to tum on hardware plot mode
(for Diablo-type mechaoisms), if any.

set of characters used to turn off hardware plot mode
(for Diablo-type mechaoisms), if any.

set of characters used to move up one resolution unit
(Vert) io plot mode, if any.

set of characters used to move down one resolution unit
(Vert) in plot mode, if aoy.

set of characters used to move right one resolution unit
(Hor) io plot mode, if aoy.

set of characters used to move left one resolution unit
(Hor) in plot mode, if aoy.

codetab Array of sequences to print individual characters. Order
is nroffs internal orderiog. See the file
/usr/lib/tenn/tabuser.< for the exact order.

zzz a zero terminator at the end.

The codetab sequences each begio with a flag byte. The top bit
indicates whether the sequence should be underlined in the .ul
font. The rest of the byte is the width of the sequence in units of
Char.

The remainder of each codetab sequence is a sequence of charac­
ters to be output. Characters with the top bit off are output as
given; characters with the top bit on indicate escape into plot
mode. When such an escape character is encountered, nroff shifts
into plot mode, emitting ploton, and skips to the next character if
the escape character was '\200'.

When io plot mode, characters with the top bit off are output as
given. A character with the top bit on indicates a motion. The
next bit indicates coordinate, with 1 being vertical and 0 being hor­
izontal. The next bit indicates direction, with 1 meaning up or left.

April l, 1987 Page 3

TERM (F) TERM (F)

The remaining five bits give the amount of the motion. An amount
of zero causes exit from plot mode.

When plot mode is exited, either at the end of the string or via the
amount-zero exit, plotoff is emitted followed by a blank.

All quantities which are in units of fractions of an inch should be
expressed as IN"CH*num/ denom, where num and denom are
respectively the numerator and denominator of the fraction; that is,
1/48 of an inch would be written as "INCH/48".

If any sequence of characters does not pertain to the output device,
that sequence should be given as a null string.

The XENIX Development System must be installed on the com­
puter to create a new driving table. The source code for a generic
output device is in the file /usrllib/term/tabuser.c Copy this file
and make the necessary modifications, including the name of the
termtable struct. Refer to the hardware manual for the codes
needed for the output device (terminal, printer, etc.). Name the
file according to the convention explained in term(CT). The
makefile, /usr/lib/term/makefile, should be updated to include the
source file to the new driving table. When the files are prepared,
enter the command :

make cp

(See make(CP)). The source to the new driving table is linked with
the object file mktenn.o, and the new driving table is created and
installed in the proper directory.

FILES

/usr/lib/term/tabname driving tables
/usr/lib/term./tabuser.c generic source for driving tables
/usr/lib/term/makefile makefile for creating driving tables
/usr/lib/term/mkterms.olinkable object file for creating driving tables

SEE ALSO

nroff(CT), term(CT).

April l, 1987 Page 4

/
I
"---- "

TERM (F) TERM (F)

Notes

The XENIX Development System must be installed on tbe com­
puter to create new driving tables.

Not all XENIX facilities support all of these options.

April 1, 1987 Page 5

c:

r-.

TERMINFO(F) TERMINFO(F)

Name

terminfo - Format of compiled terminfo file.

Description

Compiled tenninfo descriptions are placed under the directory
/usr/lib/terminfo. In order to avoid a linear search of a huge
XENIX system directory, a two-level scheme is used:
/usr/lib/tenninfo/c/name where name is the name of the terminal,
and c is the first character of name. Thus, act4 can be found in
the file /usr/lib/tenninfo/a/act4. Synonyms for the same terminal
are implemented by multiple links to the same compiled file.

The format has been chosen so that it will be the same on all
hardware. An 8- or more-bit byte is assumed, but no assumptions
about byte ordering or sign extension are made.

The compiled file is created with the tic(C) program, and read by
the routine setupterm in terminfo(S). The file is divided into six
parts: the header, terminal names, boolean flags, numbers, strings,
and string table.

The header section begins the file. This section contains six short
integers in the format described below. These integers are (1) the
magic number (octal 0432); (2) the size, in bytes, of the names sec­
tion; (3) the number of bytes in the boolean section; (4) the
number of short integers in the numbers section; (5) the number of
offsets (short integers) in the strings section; (6) the size, in bytes,
of the string table.

Short integers are stored in two 8-bit bytes. The first byte contains
the least significant 8 bits of the value, and the second byte con­
tains the most significant 8 bits. (Thus, the value represented is
256*second+first.) The value -1 is represented by 0377, 0377; other
negative values are illegal. The -1 generally means that a capability
is missing from this terminal. Note that this format corresponds to
the hardware of the VAX and PDP-11. Machines in which this does
not correspond to the hardware read the integers as two bytes and
compute the result.

The terminal names section comes next. It contains the first line of
the terminfo descri)?tion, listing the various names for the terminal,
separated by the (I' character. The section is terminated with an
ASCII NUL character.

The boolean flags have one byte for each flag. This byte is either 0
or 1, as the flag is present or absent. The capabilities are in the
same order as the file <tenn.h>.

Apri1 1, 1987 Page 1

TERMINFO(F) TERMINFO(F)

Between the boolean section and the number section, a null byte
will b e inserted, if necessary, to ensure that the number section
begins on an even byte. All short integers are aligned on a short­
word boundary.

The numbers section is similar to the flags section. Each capability
takes up two bytes, and is stored as a short integer. IT the value
represented is -1, the capability is taken to be missing.

The strings section is also similar. Each capability is stored as a
short integer, in the format above. A value of -1 means the capa­
bility is missing. Otherwise, the value is taken as an offset from the
beginning of the string table. Special characters in -x or \c nota­
tion are stored in their interpreted form, not the printing represen­
tation. Padding information $<nn> and parameter information %x
are stored intact in uninterpreted form.

The final section is the string table. It contains all the values of
string capabilities referenced in the string section. Each string is
null-terminated.

Note that it is possible for setupterm to expect a different set of
capabilities than are actually present in the file. Either the database
may have been updated since setupterm was recompiled (resulting in
extra unrecognized entries in the file) or the program may have
been recompiled more recently than the database was updated
(resulting in missing entries). The routine setupterm must be
prepared for both possibilities; this is why the numbers and sizes
are included. Also, new capabilities must always be added at the
end of the lists of boolean, number, and string capabilities.

Apri1 1, 1987 Page 2

0

TERMINFO(F) TERMINFO(F)

As an example, an octal dump of the description for the Microterm
ACT 4 is included:

microt ... erm Jact4ln:icr.otenp act ivJ. ...
cr= M, cudl= J, md= J, bel= G, am, cub l= H,
ed="_, el=�, clear="L, cuy="T%p1:/a c%p2%9_,
cols#80, lines#24, cufl� X, cuu1� Z, home�],

000 032 001 \0 025 \0 \b \0 212 \0 " \0 m i c r
020 o t e r m J a c t 4 J m i c r o
040 t e r m a c t i v \0 \0 001 \0 \0
B W W W W W W W W W W W W W W W W
100 \0 \0 p \0 377 377 030 \0 377 377 377 377 377 377 377 377
w m m m m w w a w m m m m � w a w
� � w m m m m � w � w a w m m m w
� m m m m � w m m � w m m m m m m
a m m m m m m m m m m m m m m m m
*
g m m m m w m m m m m m m m m m
540 377 377 377 377 377 377 007 \o \r \0 \f \0 036 \0 037 \0
560 024 % p 1 % c % p 2 % c \0 \n \0 035 \0
600 \b \0 030 \0 032 \0 \n \0

Some limitations: the total size of a compiled description cannot
exceed 4096 bytes; the name field cannot exceed 128 bytes.

Files

/usr/lib/terminfo/*/* compiled terminal capability data base

See Also
terminfo(M), terminfo(S), tic(C)

April 1, 1987 Page 3

(\

()

(
___ .. ·

TYPES (F) TYPES (F)

Name

types - Primitive system data types.

Syntax

#include <sys/types.h>

Description

The data types defined in the include file <sys/types.h> are used
in XENIX system code; some data of these types are accessible to
user code.

The form daddr _t is used for disk addresses except in an inode on
disk, see filesystem(F). Times are encoded in seconds since
00:00:00 GMT, January 1, 1970. The major and minor parts of a
device code specify kind and unit number of a device and are
installation-dependent. Offsets are measured in bytes from the
beginning of a file. The label...J variables are used to save the pro­
cessor state while another process is running.

See Also

filesystem(F)

April 1, 1987 Page 1

Replace this Page
with Tab Marked :

Permuted
Index

(;

Permuted Index
Commands, System Calls, Libracy Routines and File Formats

This permuted index is derived from the "Name" description lines found on each
reference manual page. Each index line shows the title of the entry to which the line
refers, followed by the reference manual section letter where the page is found.

To use the pennuted index search the middle column for a keyword or phrase. The right
band column contains the name and section letter of the manual page that documents the
key word or phrase. The left column contains additional useful information about the
command. Commands or routines are also listed in the context of the index line, followed
by a colon (:). This denotes the "beginning" of the sentence. Notice that in many cases,
the lines wrap, starting in the middle column and ending in the left column. A slash (/)
indicates that the description line is truncated.

13tol, ltol3: Converts between 3-byte integers and long/
accepts a number of 512-byte blocks. • • •

between long integer and base 64 AS CIT. a641, 164a: Converts
Object Modules. 86rel: Intel 8086 Relocatable Format for •

asx: XENIX 8086/186/286/386Assembler.
Format for Object Modules. 86rel: Intel8086 Relocatable •

long integer and base 64 AS CIT. a641, 164a: Converts between •
abort: Generates an lOT fault.

value. abs: Returns an integer absolute
abs:Returnsan integer absolutevalue . • • • • • •

and/ /fabs, ceil,fmod: Performs absolute value, floor, ceiling
integer. labs: Returns the absolute value of along

blocks. acceptsanumberof512-byte
files. settime: Changes the access and modification dates of

a file. touch: Updates access and modification times of
utirne: Sets file access and modification times. •

of a file. access: Determines accessibility
dosls, dosrm, dosrmdir: Access DOS files.

directory. chmod: Changes the access permissions of a file or
Synchronizes shared data access. sdgetv, sdwaitv: • •

a/ /nbwaitsem: Awaits and checks access to a resource governed by
sdenter, sdleave: Synchronizes access to a shared data segment,

sputl, sgetl: Accesses long integer data in a/
endutent, utmpname: Accessesutmp file entry.

access: Determines accessibility of a file.
csplit: Splits files according to context.

rmuser: Removes a user account from the system.
accton: Turns on accounting.

Enables or disables process accounting. acct: • • • •
acct: Format of per-process accounting file.

Searches for and prints process accounting files. acctcom:
imacct: Generate an IMAGEN accounting report.

process accounting. acct: Enables or disables
accounting file. acct: Format of per-process

13tol(S)
login(M)
a64I(S)
86<e!(F)
asx(CP)
86rel(F)
a64l(S)
abort(S)
abs(S)
abs(S)
ftoor(S)
!abs(DOS)
login(M)
settime(C)
touch(C)
utime(S)
access(S)
dos(C)
chmod(C)
sdgetv(S)
waitsem(S)
sdenter(S)
sputl(S)
getut(S)
access(S)
cspHt(C)
rmuser(C)
accton(C)
acct(S)
acct(F)
acctcom(C)
imacct(C)
acct(S)
acct(F)

I-1

Permuted Index

process accounting files. acctcom: Searches for and prints
accton: Turns on accounting.

sin, cos, tan, asin, acos, atan, atan2: Performs/ •
Prints current SCCS file editing activity. sact: • • • • • • •

debugger. adb: Invokes a general-purpose
Copies bytes from a specific address. movedata:

mkuser: Adds a login II> to the system.
nl: Adds line numbers to a file.

lineprinters. lpinit: Adds, reconfigures and maintains
swapadd: Adds swap area.

swapctl: Adds swap area. • • • • • •
putenv: Changes or adds value to environment.

sees files. admin: Creates and administers
admin: Creates and administers SCCS files. • • •

netutil: AdministerstheXENIXnetwork.
uuinstall: Administers UUCP control files.

pwadmin: Performs password aging administration.
sysadmsh: Menu driven system administration utility, •

uadmin: administrative control.
pwadmin: Performs password aging administration.

alann: Sets a process' alarm clock . • • • • •
clock. alann: Sets a process' alann

aliashash: Micnet alias hash table generator, .
table generator. ali ash ash: .Micnet alias hash
faliases: Micnet aliasing files. . • • • • • •

brkctl: Allocates data in afar segment.
malloc,free, realloc, calloc: Allocates main memory.

brk: Changesdatasegment space allocation. sbrk, • • • • • •
file. inittab: Alternative login terminals

terminals/ telinit, mkinittab: Alternative method of turning
Generates programs for lexical analysis. lex: • • • • • • • •

document. style: Analyzes characteristics of a .
link. editor output. a.out: Format of assembler and

ar: Archive file format.
libraries. ar: Maintains archives and • •

de: Invokes an arbitrary precision calculator,
cpio: Format of cpio archive. • • • • • • • •

the names of files on a backup archive. dumpdir: Prints
ar: Archivefileformat . •

tar: archive format.
ar: Maintains archives and libraries.

tar: Archives files. • • •
cpio: Copies file archives in and out. .
ranlib: Converts archives to random libraries.

swapadd: Adds swap area.
swapctl; Adds swap area, • • • • • • • • • •

varargs: variable argumentlist. • • • • • •
output of a varargs argument list. /Prints formatted

getopt: Gets option letter from argument vector. • • • • •
expr: Evaluates arguments as an expression.

echo: Echoes arguments. • • • . • • •
between long integer and base 64 ASCII. a641, 164a: Converts

ascii: Map of the ASCII character set.
tzset: Converts date and time to ASCTI. /gmtime, asctime,

character set. ascii: Map of the ASCII •

1-2

acctcom(C)
accton(C)
trig(S)
sact(CP)
adb(CP)
movedata(DOS)
mkuser(C) ',
nl(C)
lpinit(C)
swapadd(S)
swapctl(C)
putenv(S)
admin(CP)
admin(CP)
netutil(C)
uuinstall{C)
pwadmin(C)
sysadmsh(C)
uadmin(S)
pwadmin(C)
alarm(S)
alarm(S)
aliashash(M)
aliashash(M)
aliases(M)
brkctl(S)
malioc(S)
sbrk(S)
inittab(F)
telinit(C)
lex(CP)
style(CT)
a.out(F)
ar(F)
ar(CP)
de(C)
cpio(F)
dumpdir(C)
ar(F)
tar(F)
ar(CP)
tar(C)
cpio(C)
ranlib(CP)
swappadd(S)
swapctl(C)
varargs(S)
vprintf(S)
getopt(S)
expr(C)
echo(C)
a64l(S)
ascil(M)
ctime(S)
ascii(M)

(

c

atof, atoi, atol: Converts ASCII to numbers. • • • •
and/ ctime, localtime, gmtime, asctime, tzset: Converts date

Performs/ sin, cos, tan, asin, acos, atan, atan2:
commands. help: Asksforhelp about SCCS •

time of day, asktime: Prompts for the correct
output. a. out: Format of assembler and link editor

asx: XENIX 8086/186/286/386 Assembler. • • • . • • • •
masm: Invokes the XENIX assembler. • • • • • • • •

program. assert: Helpsverifyvalidityof
deassigns devices. assign, deassign: Assigns and

assign, deassign: Assigns and deassigns devices.
setbuf, setvbuf: AssiWtS buffering to a stream.

setkey: Assigns the function keys. • •
Assembler. asx: XENIX 8086/186/286/386
a later time. at, batch: Executes commands at

sin, cos, tan, asin, acos, atan, atan2: Performs/
sin, cos, tan, asin, acos, atan, atan2: Performs trigonometric/ •

to numbers. atof, atoi, atol: Converts ASCII
double-precision/ strtod, atof: Converts a string to a •

numbers. atof, atoi, atol: Converts ASCII to
integer. strtol, atol, atoi: Converts string to

integer. strtol, atol, atoi: Converts string to
atof, atoi, atol: Converts ASCllto numbers.

data segment. sdget, sdfree: Attaches and detaches a shared
the system. autoboot: Automatically boots •

autoboot: Automatically boots the system.
resource/ waitsem, nbwaitsem: Awaits and checks access to a

processes. wait: Awaits completion ofbackground
a pattern in a file. awk: Searches for and processes

wait: Awaits completion of background processes.
Prints the names of files on a backup archive. dumpdir:

Performsincrementalfilesystem backup. backup: • • • •
sddate: Prints and sets backup dates. • • • • •

/Default backup device information.
Performsincrementalfilesystem backup. dump: • • • • •

fonnat. backup: Tncrementaldumptape
file system backup. backup: Performs incremental

sysadmin: -Performs file system backups and restores files. • •
fixed disk for flaws and creates bad track table. badtrk: Scans

flaws and creates bad track/ badtrk: Scans fixed disk for
banner: Prints large letters.

between long integer and base64- AS CIT. /l64a: Converts
and sets the configuration data base. cmos: Displays
and sets the configuration data base. cmos: Displays

Terminal capability data base. termcap: • • •
terminal capability data base. terminfo:

names from pathnames. basename: Removes directory
later time. at, batch: Executes commands at a

be: Invokes a calculator. • • •
for diff. bdiff: Compares files too large

bdos: Invokes a DOS system call.
cb: BeautifiesCprograms.

jO,jl,jn, yO, yl, yn: Performs Bessel functions. bessel,
PerfonnsBesselfunctions. bessel, jO, jl,jn, yO, yl, yn:

bfs: Scans big files.

Pennuted Index

atof(S)
ctime(S)
trig(S)
help(CP)
asktime(C)
a.out(F)
asx(CP)
masm(CP)
assert(S)
assign(C)
assign(C)
setbuf(S)
setkey(C)
asx(CP)
at(C)
trig(S)
trig(S)
atof(S)
strtod(S)
atof(S)
strtol(S)
strtol(S)
atof(S)
sdget(S)
autoboot(M)
autoboot(M)
waitsem(S)
wait(C)
awk(C)
wait(C)
dumpdir(C)
backup(C)
sddate(C)
archive(F)
dump(C)
backup(F)
backup(C)
sysadmin(C)
badtrk(M)
badtrk(M)
banner(C)
a64l(S)
cmos(HW)
cmos(HW -86)
termcap(M)
terminfo(M)
basename(C)
at(C)
be(C)
bdiff(C)
bdos(DOS)
cb(CP)
bessel(S)
bessel(S)
bfs(C)

l-3

Pennutedlndex

fixhdr: Changes executable binary file headers. • • •
selected parts of executable binary files. hdr: Displays

fread, fwrite: Performs buffered binary input and output. •
bsearch: Performs a binary search. • • • • .

tfind, tdelete, twalk.:Manages binary search trees. tsearch,
Creates an instance of a binary semaphore. creatsem:

Removessymbolsandrelocation bits. strip: • • • • • • • •
shutdn: Flushes block VO and halts the CPU.

cmchk: Reports hard disk block size. • • • • •
df:Reportnumberoffreedisk blocks. • • • • • •

Calculates checksum and counts blocks in a file. sum:
acceptsanumberof512-byte blocks. • • • • • •

boot:XENIX bootprogram. • • •
boot: XENIX boot program.

autoboot: Automatically boots the system. • • • . •
allocation. sbrk, brk: Changes data segment space

segment. brkctl; Allocatesdatainafar
search. bsearch: Performs a binary

a character to the console buffer. ungetch: Returns
output. fread, fwrite: Perfonns buffered binary input and

1-4

stdio: Performs standard buffered input and output.
setbuf, setvbuf: Assigns buffering to a stream.

ftushall: Flushes all output buffers. • • • • •
mk.nod: Builds special files. •

inp: Returns a byte. • • • • • • •
outp: Writes a byte to an output port.

movedata: Copies bytes from a specific address.
swab: Swaps bytes. • • •

cc: Invokes the Ccompiler. • • • • • •
cftow: Generates Cfiowgraph. • • • • •

cpp: The C language preprocessor.
lint: Checks C languageusageand syntax.

cxref: Generates C program cross-reference.
cb: Beautifies C programs. • • • • • •

stack requirements for C programs. /Determines
xref: Cross-references C programs. • • • • • •

xstr: Extracts strings from C programs. • • • • • •
an error message file from C source. mkstr: Creates

distance. hypot, cabs:DetenninesEuclidean
cal: Prints a calendar. • • •

blocks in a file. sum: Calculates checksum and counts
be: Invokes a calculator.

Invokesan arbitraryprecision calculator. de: • • • • • •
cal:Printsa calendar. • • • • • • • •

service. calendar: Invokes a reminder
bdos: Invokes aDOS system call.

intdos: Invokes aDOS system call.
intdosx: Invokes aDOS system call.

Data returned by stat system call. stat:
exit: Terminates the calling process.

malloc, free, realloc, calloc: Allocates main memory.
cu: Calls another XENIX system.

lineprinter. lp, lpr, cancel: Send/cancel requests to
tenncap: Terminal capability data base.
terminfo: terminal capability data base.

fixhdr(C)
hdr(CP)
fread(S)
bsearch(S)
tsearch(S)
creatsem(S)
strip(CP)
shutdn(S)
cmchk(C)
df(C)
sum(C)
login(M)
boot(HW)
boot(HW)
autoboot(M)
sbrk(S)
brkctl(S)
bsearch(S)
ungetch(DOS)
fread(S)
stdio(S)
setbuf(S)
flushall(DOS)
mknod(C)
inp(DOS)
outp(DOS)
movedata(DOS)
swab(S)
cc(CP)
cflow(CP)
cpp(CP)
lint(CP)
cuef(CP)
cb(CP)
stackuse(CP)
xref(CP)
xstr(CP)
mkstr(CP)
hypot(S)
cal(C)
sum(C)
be(C)
de(C)
cal(C)
calendar(C)
bdo•(DOS)
intdos(DOS)
intdosx(DOS)
stat(F)
exit(DOS)
malloc(S)
cu(C)
lp(C)
termcap(M}
terminfo(M)

(

c/

descriptions into terminfo/ capinfo: convert termcap
files. cat: Concatenates and displays •

catimp: Convert C/ NT files to imPRESS format.
Generate troffwidth files and catab file. channap:

imPRESS format, catimp: Convert C/ A/T files to
cb: Beautifies C programs. • •
cc: Invokes the C compiler.
cd: Changes working directory.

commentary of an sees delta. cdc: Changes the delta
value, floor,/ floor, fabs, ceil, fmod: Performs absolute

/Performs absolute value, floor, ceiling and remainder functions.
cflow: Generates Cflowgraph.
cgets: Gets a string. • • •

delta:Makesa delta (change) to an SCCSfile.
clockrate: Changes clock rate. • • •

allocation. sbrk, brk: Changes data segment space
headers. fixhdr: Changes executable binary file

chgrp: Changesgroup iD.
passwd: Changes login password.
chmod: Changesmodeofafile.

environment. putenv: Changes or adds value to
chown: ChangesowneriD . • •

nice: Changes priority of a process.
command. chroot: Changesrootdirectoryfor • •

modification dates of/ settime: Changes the access and
of a file or directory. chmod: Changes the access permissioris

an SCCS delta. cdc: Changes the delta commentary of
file. newfonn: Changes the format of a text

file. chown: Changestheownerandgroupofa
chroot: Changes the root directory.
chsize: Changes the size of a file.
chdir: Changes the working directory.

cd: Changesworkingdirectory.
stream. ungetc: Pushes character back into input

eqnchar: Contains special character definitions for eqn.
is a tty: Checks for a character device. • • •

ioctl: Controls character devices.
fgetc, fgetchar: Gets a character from a stream.

getch: Gets a character. • • • • • •
getche: Gets and echoes a character. • • • • • •

getc, getchar, fgetc, getw: Gets character or word from a stream.
/putchar, fputc, putw: Puts a character orword on a stream.

ascii: Map oftheASCIT character set. • • • • • • •
fputc, fputchar: Write a character to a stream. . • • •

ungetch: Returns a character to the console buffer.
putch: Writes a character to the console.

Displays/changes hard disk characteristics. dparam:
style: Analyzes characteristics of a document.

tolower, toascii: Translates characters. conv, toupper,
toascii: Classifies or converts characters. /to lower, toupper,
strrev: Reverses the order of characters in a string.

charater, strset: Sets all characters in a string to one
Ito a: Converts long integers to characters. • • • • •

strlwr: Converts uppercase characters to lowercase.
strupr: Converts lowercase characters to uppercase.

Pennutedlndex

capinfo(C)
cat(C)
catimp(CT)
channap(CT)
catimp(CT)
cb(CP)
cc(CP)
cd(C)
cdc(CP)
fioor(S)
floor(S)
dJow(CP)
cgets(DOS)
de]ta(CP)
clockrate(HW)
sbrk(S)
fixhdr(C)
chgq>(C)
passwd(C)
chmod(S)
putenv(S)
chown(C)
nice(S)
chroot(C)
settime(C)
chmod(C)
cdc(CP)
newfonn(C)
chown(S)
chroot(S)
chsize(S)
chdir(S)
cd(C)
ungetc(S)
eqnchar(CT)
isatty(DOS)
ioctl(S)
fgetc(DOS)
getch(DOS)
getche(DOS)
getc(S)
putc(S)
ascii(M)
fputc(DOS)
ungetch(DOS)
putch(DOS)
dparam(C)
style(CT)
conv(S)
ctype(S)
strrev(DOS)
strset(DOS)
ltoa(DOS)
strlwr(DOS)
strupr(DOS)

I-5

Permuted Index

tr: Translates characters.
ultoa: Converts numbers to characters.

we: Counts lines, words and characters.
characters in a string to one charater. strset: Sets all

files and catab file. charmap: Generate troffwidth
directory. chdir: Changes the working

fstab: File system mount and check commands.
constant-width text for/ cw, checkcw, cwcheck: Prepares

mathematical text/ eqn, neqn, checkeq, eqncheck:Formats
processed by fsck. checklist: List of file systems

ofMM macros. checkmm, mmcheck: Checks usage
waitsem, nbwaitsem: Awaits and checks access to a resource/

fsck; Checks and repains file systems.
syntax. lint: Checks C language usage and •

isatty: Checks for a character device.
grpcheck: Checks group file.

diction: Checks language usage.
pwcheck: Checkspasswordfile . •

keystroke. kbhit: Checkstheconsolefora
to be read. rdchk: Checks to see ifthereis data

checkmm, mmcheck: ChecksusageofMMmacros.
file. sum: Calculates checksum and counts blocks in a

chgrp: ChangesgroupiD.
times: Gets process and child process times. • • • • •

terminate. wait: Waits for a child process to stop or
chmod: Changes mode of a file.

permissions of a file or/ chmod: Changes the access
chown: ChangesowneriD.

group of a file. chown: Changes the owner and
for command. chroot: Changes root directory

directory. chroot: Changes the root
file. chsize: Changes the size of a

tolower, toupper, toascii: Classifiesorconverts/ /isascii,
directory. unclean: Clean -up the uucp spool

clear: Clears a terminal screen.
stream status. ferror, feof, clearerr, fileno: Determines

clear: Clears a terminal screen.
clri: Clears inode. • • • • • •

a shell command interpreter with C-lik.e syntax. csh: Invokes
alarm: Sets a process' alarm clock.

systemreal-time (timeofday) clock. clock: The
clockrate: Changes clock rate . • • •

clock: Reports CPU time used.
systemreal-time(time ofday) clock. setclock: Setsthe

(time of day) clock. clock: The system real-time
clockrate: Changes clock rate.

operations. closedir: Performs directory
close: Closes a file descriptor.

fclose, fflush: Closes or flushes a stream. • •
shuts down the/ haltsys, reboot: Closes out the file systems and

1-6

fclose, fcloseall: Closes streams. • • • • • •
clri: Clears inode. • • • . •

size. cmchk: Reports hard disk block
configuration data base. cmos: Displays and sets the

cmp: Compares two files.

tr(C)
ultoa(DOS)
we(C)
strset(DOS)
charmap(CT)
chdir(S)
fstab(F)
cw(CT)
eqn(CT)
checklist(F)
checkmm(CT)
waitsem(S)
fsck(C)
lint(CP)
isatty(DOS)
grpcheck(C)
diction(CT)
pwcheck(C)
kbhit(DOS)
rdchk(S)
checkmm(CT)
sum(C)
chgrp(C)
times(S)
wait(S)
chmod(S)
chmod(C)
chown(C)
chown(S)
chroot(C)
chroot(S)
chsize(S)
ctype(S)
uuclean(C)
clear(C)
ferror(S)
clear(C)
clri(C)
csh(C)
a!arm(S)
clock(M)
clockrate(HW)
clock(S)
setclock(M)
clock(M)
clocki-ate(HW)
directory(S)
close(S)
fclose(S)
haltsys(C)
fclose(DOS)
clri(C)
cmchk(C)
cmos(HW)
cmp(C)

(
� ..

()

c

col: Filters reverse linefeeds.
screen: tty[Ol-n}, color, monochrome, ega,,

setcolor: Set screen color. • • • • • • . • • •
lc: Lists directory contents in columns. • • • • • • • •

comb: Combines SCCSdeltas.
comb: CombinesSCCS deltas . • • •

common to two sorted files. comm: Selects or rejects lines
nice: Runs a command at a different priority.

Changes rootdirectoiyfor ·command. chroot: • - .
segread: command description.

env: Sets environment for command execution.
quits. nohup: Runs a command immune to hangupsand

rsh: Invokes a restricted shell (command interpreter).
sh: Invokes the shell command interpreter,

sh V: Invokes the shell command interpreter.
syntax. csh: Invokes a shell command interpreter with C-like

uux: Executes command on remote XENIX.
getopt: Parses commandoptions.

system: Executes a shell command. • • • • • •
time: Times a command. • • • • • •

at, batch: Executes commands atalatertime.
cron: Executes commands at specified times.

micnet: The1.ficnet default commands file.
Filesystemmountand check commands. fstab:

help: Asks for help aboutSCCS commands.
intro: IntroducesXENIX commands.

XENIXDevelopmentSystem commands. intra: Introduces
Introduces text processing commands. intro: • . • • •
system. remote: Executes commands onaremoteXENIX

xargs: Constructs and executes commands. • • • • • • • •
cdc: Changes the delta commentary of an SCCS delta.

comm: Selects or rejects lines common to two sorted files.
/the status of inter-process communication facilities.

ftok: Standard interprocess communication package.
dircmp: Compares directories.

sdiff: Compares files side-by-side.
diff. bdiff: Comparesfilestoolargefor

diskcp, diskcmp: Copies or compares floppy disks.
diff3: Compares three files.
cmp: Compares two files. • •

diff: Compares two text files.
file. sccsdiff: Compares two versions of an SCCS

regexp: Regular expression compile and match routines.
terminfo: Format of compiled terminfo file.

cc: InvokestheC compiler.
tic: Terminfo compiler. • • • • • •

yacc: Invokes a compiler-compiler.
expressions. regex, regcmp: Compiles and executes regular

regcmp: Compilesregularexpressions.
erf, erfc: Errorfunctionand complcmentaryerrorfunction.

processes. wait: Awaits completionofbackground • .
pack, peat, unpack: Compresses and expands files.

cat: Concatenates and displays files.
conditions. test: Tests • • •

system. config: Configures a XENIX

Permuted Index

col(CT)
screen(HW)
setcolor(C)
!c(C)
comb(CP)
comb(CP)
comm(C)
nice(C)
chrocit(C)
segread(DOS)
env(C)
nohup(C)
rsh(C)
sh(C)
shV(C)
csh(C)
uux(C)
getopt(C)
system(S)
time(CP)
at(C)
cron(C)
micnet(M)
fstab(F)
help(CP)
Intro(C)
Intro(CP)
Intro(CT)
remote(C)
xargs(C)
cdc(CP)
comm(C)
ipcs(C)
stdipc(S)
dircmp(C)
sdiff(C)
bdiff(C)
diskcp(C)
diff3(C)
cmp(C)
dill(C)
sccsdiff(CP)
regexp(S)
tenninfo(F)
cc(CP)
tic(C)
yacc(CP)
regex(S)
regcmp(CP)
erl(S)
wait(C)
pack(C)
cat(C)
test(C)
config(C)

I-7

Permuted Index

cmos: Displays and sets the configuration data base. 0 0 0
/mapscm, mapstr, convkey: Configure monitor screen/ • •

mapchan: Configure tty device mapping.
config: Configures aXENIXsystem.

spooling system. Ipadmin: Configures the lineprinter •
anout-goingterminalline connection. dial: Establishes
Returns a character to the console buffer. ungetch:

cputs: Puts a string to the console. . • . • o •
console: System console device.

kbhit: Checks the console for a keystroke.
cscanf: Converts and formats console input.

messages: Description of system console messages.
putch: Writes a character to the console.

console: System console device,
cw, checkcw, cwcheck: Prepares constant-width text for troff.

mkfs: Constructs a file system. • •
commands. xargs: Constructs and executes • •

nroff/troff, tbl, and eqn constructs. deroff: Removes
definitions for eqn. eqnchar: Contains special character

lc: Lists directory contents in columns.
Is: Gives information about contents of directories.

1: Lists information about contents of directory. •
Splits files according to context. csplit: • • • •

UUCP control files. uuinstall: Administers
init, inir: Process control initialization.

msgctl: Provides message control operations. • • • •
uadmin: administrative control. • . • • • • • • •

uucp status inquiry and job control. uustat: • • • • •
ioctl: Controls character devices.
fcntl: Controls open files. • • . •

ienictl: Controls semaphore operations.
operations. sh.mctl: Controls shared memory

Translates characters. conv, toupper, to lower, toascii:
term: Conventionalnames. • • • •

fcvt, gcvt: Performs output conversions. ecvt, • • • • •
and human -readable/ deco, enco: Convert between imPRESS format

format. catimp: Convert C/ AfT files to imPRESS
format. dviimp: ConvertDVIfilestoimPRESS

into tenninfo/ capinfo: converttermcapdescriptions
double-precision/ strtod, atof: Converts a string to a

1-8

dd: Converts and copies a file. . •
input. cscanf: Convertsandformatsconsole

scanf, fscanf, sscanf: Converts and formats input.
libraries. ranlib: Converts archives to random •

atof, atoi, atol: Converts ASCI! to numbers. •
andlong/ l3tol, ltol3: Convertsbetween3-byteintegers

and base 64 ASCIT. a641, 164a: Converts between long integer
toupper, toascii: Classifies or converts characters. /tolower, •

/gmtime, asctime, tzset: Converts date and time to ASCII.
characters. ltoa: Converts long integers to

uppercase. strupr: Converts lowercase characters to
ultoa: Converts numbers to characters.

itoa: Converts numbers to integers.
standard FORTRAN. ratfor: ConvertsRationalFORTRANinto

strtol, atol, atoi: Converts string to integer. • • • •

cmos(HW)
mapkey(M)
mapchan(M)
config(C)
Ipadmin(C)
dia!(S)
ungetch(DOS)
cputs(DOS)
console(M)
kbhit(DOS)
cscanf(DOS)
messages(M)
putch(DOS)
console(M)
cw(CT)
mkfs(C)
xargs(C)
deroff(CT)
eqnchar(CT)
lc(C)
Is(C)
I(C)
csplit(C)
uuinstall(C)
init(M)
msgctl(S)
uadmin(S)
uustat(C)
ioctl(S)
fcntl(S)
semctl(S)
shmcti(S)
conv(S)
term(CT)
ecvt(S)
deco(CT)
catimp(CT)
dviimp(CT)
capinfo(C)
strtod(S)
dd(C)
cscanf(DOS)
scanf(S)
ranlib(CP)
atof(S)
13tol(S)
a64I(S)
ctype(S)
ctime(S)
ltoa(DOS)
strupr(DOS)
ultoa(DOS)
itoa(DOS)
ratfor(CP)
strtol(S)

c

c/

format. ipriut: Converts text files to DVI
units: Convertsunits . • • • • •

lowercase. strlwr: Converts uppercase characters to
screen/ map key, map scm, mapstr, convkey: Configure monitor

dd: Converts and copies a file. • • • • • • • •
address. movedata; Copies bytes from a specific

cpio: Copies file archives in and out.
systems. rep: Copies files acrossXENIX

cp: Copiesfiles . • • • • • - ; --.- -.
copy: Copies groups of files. • • • •

diskcp, diskcmp: Copies or compares floppy disks.
copy: Copies groups of files.

PublicXENIX-to-XENIXfile copy. uuto, uupick: • • • • •
core: Format of core image file.

core: Format of core image file. . • • •
ask time: Prompts for the correct time of day. • • •

explain: Corrects language usage.
atan2: Performs/ sin, cos, tan, asin, acos, atan,

functions. sinh, cosh, tanh: Performs hyperbolic
sum: Calculates checksum and counts blocks in a file. •

characters. we: Counts lines, words and
cp: Copies files.

cpio: Format of cpioarchive. • • • • •
and out. cpio: Copies file archives in

cpio: Format of cpio archive.
preprocessor. cpp: The C language

cprintf: Formats output.
FlushesblockJJOand halts the CPU. shutdn:

clock: Reports CPU time used.
console. cputs: Puts a string to the

rewrites an existing one. creat: Creates anew file or
file. tmpnam, tempnam: Createsanameforatemporary

mkdir: Creates a new directory. • •
an existing one. creat: Creates a new file or rewrites

fork: Creates anew process.
spawnl, spawnvp: Creates anew process.

ctags: Creates a tags file.
tee: Creates a tee in a pipe.

tmpfile: Creates a temporary file.
from C source. mkstr: Creates an error message file

profile. profit: Creates an execution time •
semaphore. creatsem: Creates an instance of a binary

pipe: Creates an interprocess pipe. •
files. admin: Creates and administers SCCS

/Scans fixed disk for flaws and creates bad track table.
umask: Sets and gets file creation mask. . • . • • • •

a binary semaphore. creatsem: Creates an instance of
listing. cref: Makes across-reference

specified times. cron: Executes commands at •
intra: Introduction to DOS cross development functions.
dosld: XENIX toMS-DOS cross linker. • • • . •
cxref: Generates C program cross-reference. • • • • • •

cref: Makes a cross-reference listing.
xref: Cross-references C programs.

console input. cscanf: Converts and formats

Permuted Index

iprint(C)
units(C)
strlwr(DOS)
mapkey(M)
dd(C)
movedata(DOS)
cpio(C)
rcp(C)
cp(C)
copy(C)
diskcp(C)
copy(C)
uuto(C)
core(F)
core(F)
asktime(C)
explain(CT)
trig(S)
sinh(S)
sum(C)
we(C)
cp(C)
cpio(F)
cpio(C)
cpio(F)
cpp(CP)
cprintf(DOS)
shutdn(S)
clock(S)
cputs(DOS)
creat(S)
tmpnam(S)
mkdir(DOS)
creat(S)
fork(S)
spawn(DOS)
ctags(CP)
tee(C)
tmpfiie(S)
mkstr(CP)
profii(S)
creatsem(S)
pipe(S)
admin(CP)
badtrk(M)
umask(S)
creatsem(S)
cref(CP)
cron(C)
intro(DOS)
dosld(CP)
cxref(CP)
cref(CP)
xref(CP)
cscanf(DOS)

I-9

Permuted Index

interpreterwith C-like syntax. csh: Invokes a shell command
to context. csplit: Splits:files according

ctags: Creates a tags file. • • •
for a terminal. ctermid: Generates a filename

asctime, tzset: Converts date/ ctime, localtime, gmtime, • •
islower, isdigit, isxdigit,/ ctype, isalpha, isupper,

cu: Calls another XENIX system.
pointer. tell: Gets the currentpositionofthefile

activity. sact: Prints current SCCS file editing
the slot in theutm.pfile ofthe current user. ttyslot: Fmds
getcwd: Getthepathnameof currentworkingdirectory.

uname: Prints the name of the current XENIX system. •
unamc: Gets name of current XENIX syslem. •

cursor functions. curses: Performs screen and
curses: Performs screen and cursorfunctions. • • • . •
spline: Interpolates smooth curve. • • • • • • • • •

the user. cuserld: Gets the login name of
each line of a file. cut: Cuts out selected fields of
line of a file. cut: Cuts out selected fields of each

constant-width textfortroff. cw, checkcw, cwcheck: Prepares
textfortroff. cw, checkcw, cwcheck: Prepares constant-width

cross-reference. cxref: Generates C program
daemon.mn: Micnetmailer daemon. • • • • • • • • • • •

daemon.mn:Micnetmailerdaemon.
sdwaitv: Synchronizes shared data access. sdgetv,

and sets the configuration data base. cmos: Displays
termcap: Tenninalcapability database. • • • • .
terminfo: tenninalcapability database. • • • • • • .

brkctl: Allocates datainafarsegment.
/sgetl: Accesses long integer data in a machine-independent.

plock: Lock process, text, or data in memory.
prof: Displays profile data. • • • • • • • • • •

execseg: makes a data region executable.
call. stat: Dataretumedbystatsystem

Synchronizes access to a shared data segment. sdenter, sdleave:
Attaches and detaches a shared data segment. sdget, sdfree: •

sbrk, brk: Changes datasegmentspaceallocation.
rdchk: Checks to seeifthereis data to be read. • • • • . •

types: Primitive system data types. • • • • • • • .
firstkey, nextkey: Performs database functions. /delete,

terminfo: terminal description database. • • • • . •
tput: Queries the terminfo database. • • • • • •

/gmtime, asctime, tzset: Converts date and time to ASCIT.
date: Prints and sets the date. • • • • • • • •

date: Prints and sets the date.
time, ftime: Gets time and date. • • • • • • • •

the access and modification dates of :files. /Changes
sddate: Prints and sets backup dates. • • • • • •

Promptsforthe correcttimeof day. asktime:

I-10

Thesystemreal-time (timeof day) clock. clock:
the system real-time (time of day) clock. setclock: Sets
firstkey, nextkey: Performs/ dbminit, fetch, store, delete,

precision calculator. de: Invokes an arbitrary • •
dd: Converts and copies a file.

devices. assign, deassign: Assigns and deassigns

csh(C)
csplit(C)
ctags(CP)
ctermid(S)
ctime(S)
ctype(S)
cu(C)
tell(DOS)
sact(CP)
ttyslot(S)
getcwd(S)
uname(C)
uname(S)
curses(S)
curses(S)
spline(CP)
cuserid(S)
cut(CT)
cut(CT)
cw(CT)
cw(CT)
cxref(CP)
daemon.mn(M)
daemon.mn(M)
sdgetv(S)
cmos(HW)
termcap(M)
terminfo(M)
brkctl(S)
sputl(S)
plock(S)
prof(CP)
execseg(S)
stat(F)
sdenter(S)
sdget(S)
sbrk(S)
rdchk(S)
types(F)
dbm(S)
tenninfo(S)
tput(C)
ctime(S)
date(C)
date(C)
time(S)
settime(C)
sddate(C)
asktime(C)
clock(M)
setclock(M)
dbm(S)
de(C)
dd(C)
assign(C)

/
_ . .

0

assign, deassign: Assigns and deassigns devices.
adb: Invokes a general-purpose debugger.

sdb: Invokes symbolic debugger.
imPRESS format and/ deco, enco: Convert between

micnet: The Micnet default commands file.
information directory. default: Default program

defopen, defread: Reads default entries . • • • •
directory. default: Default program information

Contillns speci<i.l character definitionS for eqn. eqnchar:
entries. defopen, defread: Reads default

defopen, defread: Reads default entries.
Perform!':/ dbminit, fetch, store, delete, firstkey, nextkey:

rmdir: Deletes a directory. . • •
pathname. dimame: Delivers directory part of

file. tail: Delivers the last part of a •
the delta commentary of an SCCS delta. cdc: Changes

delta: Makes a delta (change) to an SCeS file.
delta. cdc: Changes the delta commentary of an sees

nndel: Removes a delta from an sees file. • • •
an sees file. delta: Makes a delta (change) to

comb: Combines SCCS deltas. • • • • • • • • •
terminal. mesg: Permits or denies messages sent to a

tbl, and eqn constructs. deroff: Removes nroff/troff,
tenninfo: terminal description database. • • •

Machine: Description of host machine.
messages. messages: Description of system console

segread: command description. • • . • • • • •
descriptions into terminfo descriptions. I convert tenncap
capinfo: convert termcap descriptions into terminfo/

close: Closes a file descriptor. • • • • . • • •
dup2: Duplicates an open file descriptor. dup, • • • • • •

sdget, sdfree: Attaches and detaches a shared data segment.
file. access: Determinesaccessibilityofa

dtype: Determines disk type . • • • •
eof: Determines end -of -file. • • •

hypot, cabs: Determines Euclidean distance.
file: Detem1ines file type.

for C programs. stackuse: Detennines stack requirements
ferror, feof, clearerr, fileno: Determines stream status.

whodo: Determines who is doing what.
console: System console device. • • • • •

error: Kernel error output device. • • • . • • • •
/Default backup device information. • . •

master: Master device infonnation table.
lp, lpO, lpl, lp2: Line printer device interfaces. . .

isatty: Checks for a character device. • • • • • •
mapchan: Fonnat of tty device mapping files.
mapchan: Configure tty device mapping.

devnm: Identifies device name.
systty: System maintenance device.

deassign: Assigns and deassigns devices. assign,
ioctl: eontrolscharacter devices. • • .

devnm: Identifies device name.
blocks. df: Report number of free disk

dial: Dials a modem.

Permuted Index

assign(C)
adb(CP)
sdb(CP)
deco(CT)
micnet(M)
default(M)
defopen(S)
default(M)
eqn-char(CT)
defopen(S)
defopen(S)
dbm(S)
rmdir(DOS)
dimame(C)
tail(C)
cdc(CP)
delta(CP)
cdc(CP)
rmdel(CP)
delta(CP)
comb(CP)
mesg(C)
deroff(CT)
tenninfo(S)
machine(HW)
messages(M)
segread(DOS)
capinfo(C)
capinfo(C)
close(S)
dup(S)
sdget(S)
access(S)
dtype(C)
eof(DOS)
hypot(S)
file(C)
stackuse(CP)
ferror(S)
whodo(C)
console(M)
error(M)
archive(F)
master(F)
lp(HW)
isatty(DOS)
mapchan(F)
mapchan(M)
devnm(C)
systty(M)
assign(C)
ioct!(S)
devnm(C)
df(C)
dial(M)

1-11

Permuted Index

terminal line connection. dial: Establishes an out-going
dial: Dialsa modem. • • . • • •

diction: Checks language usage.
diff: Compares two text files.
diff3: Compares three files.

diffmk: Marks differences between files.
between files. diffmk: Marks differences

dir: Format of a directory.
dircmp: Compares directories.

dircmp: Compares directories.
information about contents of directories. Is: Gives

mv: Moves or renames files and directories.
nn, nndir: Removes files or directories.

rmdir: Removes directories.
cd: Changes working directory. •

chdir: Changes the working directory. •
access permissions of a file or directory. chmod: Changes the

chroot: Changes the root directory. • • • • • • • • •
lc: Lists directory contents in columns.

Default program information directory. default:
dir: Format of a directory. • • • • • •

unlink: Removes directory entry.
chroot: Changes root directory for command.

uucico: Scan the spool directoryforwork.
the pathname of current working directory. getcwd: Get

information about contents of directory. 1: Lists
mkdir: Makes a directory.

mkdir: Createsanew directory. • • o
mvdir:Movesa directory. • • •

pwd: Prints working directory name.
basename: Removes directory names from pathnames.

closedir: Perfonns directory operations.
ordinary file. mknod:Makesa directory, ora special or . •

dimame: Delivers directory part of pathname.
rename: renames a file or directory.

rmdir: Deletes a directory. • • • • • • • •
uuclean: Clean-upthe uucp spool directory. • • • • • • . •

of pathname. dirname: Delivers directory part
printers. disable: Tumsoffterminalsand

acct: Enables or disables process accounting.
type, modes, speed, and line discipline. /Sets terminal

cmchk: Reports hard disk block size. . •
df: Report number of free disk blocks.

dparam: Displays/ changes hard disk characteristics.
hd: Intemalhard diskdrive . • • • .

track! badtrk: Scans fixed disk for flaws and creates bad
fdisk: Maintain disk partitions. • • • . • •

dtype: Determines disk type. • • • • • • • •
du: Summarizes disk usage. • • • • . • •

floppy disks. diskcp, diskcmp: Copies or compares
compares floppy disks. diskcp, diskcmp: Copies or

Copiesorcomparesfioppy disks. diskcp, diskcmp: •
format: format floppy disks. . • • o o • • • •

umount: Dismounts a file structure.
vedit: Invokes a screen-oriented display editor. vi, view,

I-12

dial(S)
dial(M)
diction(CT)
diff(C)
diff3(C)
diffmk(CT)
diffmk(CT)
dir(F)
dircmp(C)
dircmp(C)
Is(C)
mv(C)
nn(C)
rmdir(C)
cd(C)
chdir(S)
chmod(C)
chroot(S)
lc(C)
default(M)
dir(F)
un!ink(S)
chroot(C)
uucico(C)
getcwd(S)
I(C)
mkdir(C)
mkdir(DOS)
mvdir(C)
pwd(C)
basename(C)
directory(S)
mknod(S)
dirname(C)
rename(DOS)
rmdir(DOS)
uuclean(C)
dirname(C)
disable(C)
acct(S)
getty(M)
cmchk(C)
df(C)
dparam(C)
hd(HW)
badtrk(M)
fdisk(C)
dtype(C)
du(C)
diskcp(C)
diskcp(C)
diskcp(C)
format(C)
umount(C)
vi(C)

configuration data base. cmos: Displays and sets the
cat: Concatenates and displays files.

fonnat. hd: Displays files in hexadecimal
od: Displays files in octal format.

prof: Displays profile data.
executable binary files. hdr: Displays selected parts of

characteristics. dparam: Displays/changes hard disk
_ mail: Sends, reads or disposes of mail, • . • • •

cabs:ne-tenninesEuclidean distance. hypOt, • . • • •
lcong48: Generates uniformly distributed. srand48, seed48,

divvv -b block_device -c c/
Analyzes characteristicsofa doc�ment. style:

mm macros. mm: Prints documents formatted with the
mmt: Typesets documents. • • • • . • . •

who do: Determines who is doing what. . • • • • . • .
intra: Introduction to DOS cross development functions.

dosexterr: Gets DOS error messages.
dosls, dosnn, dosnndir: Access DOS files . • • •

bdos: Invokes a DOS system call .
intdos: Invokes a DOS system call.

intdosx: Invokes a DOS system call.
messages. dosexterr: Gets DOS error

linker. dosld: XENIX to MS-DOS cross
DOS files. dosls, dosrm, dosrmdir: Access

files. dosls, dosrm, dosnndir: Access DOS
dosls, dosnn, dosrmdir: Access DOS files. •

/atof: Converts a string to a double-precision number. • •
disk characteristics. dparam: Displays/ changes hard

hd: Internal hard disk drive. • • • • • • • • • •
utility. sysadmsh: Menu driven system administration

sxt: Pseudo-device driver. • • • • . • • • •
term: Terminal driving tables for nroff.

dtype: Determines disk type.
du: Summarizes disk usage.

format. dump: Incremental dump tape
system backup. dump: Performs incremental file

backup: Incremental dump tape format.
dump: Incremental dump tape format. • • • • •

files on a backup archive. dumpdir: Prints the names of •
file descriptor. dup, dup2: Duplicates an open

descriptor. dup, dup2: Duplicates an open file •
descriptor. dup, dup2: Duplicates an open file

dviimp: Convert DVIfilestoimPRESSformat.
iprint: Converts text files to DVlformat. • • • . • • •

imPRESS format. dviimp: Convert DVI files to
echo: Echoes arguments.

getche: Gets and echoes a character. • • .
echo: Echoes arguments. • • •

output conversions. ecvt, fcvt, gcvt: Performs
ed: hiVokes the text editor.

program. end, etext, edata: Last locations in
sact: Prints current SCCS file editing activity.

ed: Invokes the text editor.
ex: Invokes a text editor.

ld: Invokes the link editor.

Permuted Index

cmos(HW)
cat(C)
hd(C)
od(C)
prof(CP)
hdr(CP)
dparam(C)
maii(C)
hypot(S)
drand48(S)
divvy(C)
style(CT)
mm(CT)
mmt(CT)
whodo(C)
intro(DOS)
dosexter(DOS)
dos(C)
bdos(DOS)
mtdos(DOS)
mtdosx(DOS)
dosexter(DOS)
dos!d(CP)
dos(C)
dos(C)
dos(C)
strtod(S)
dparam(C)
hd(HW)
sysadmsh(C)
sxt(M)
term(F)
dtype(C)
du(C)
dump(F)
dump(C)
backup(F)
dump(F)
dumpdir(C)
dup(S)
dup(S)
dup(S)
dviimp(CT)
iprint(C)
dviimp(CT)
echo(C)
getche(DOS)
echo(C)
ecvt(S)
ed(C)
end(S)
sact(CP)
ed(C)
ex(C)
ld(CP)

l-13

Permuted Index

ld: Invokes the link editor.
Format of assembler and link editor output. a.out:

the stream editor. sed: Invokes •
a screen-orienteddisplay editor. /view, vedit: Invokes

effective user, real group, and effective-group IDs. /real user,
/getgid, getegid: Gets real user, effective user, real group, and/

color, monochrome, ega,. /tty[Ol-n], • • • • .
for a pattern. grep, egrep, fgrep: Searches a file

input. soelim: Eliminates .so'sfromnroff •
line printers. enable: Turns on terminals and

accounting. acct: Enables or disables process
format and human-readable/ deco, enco: Convert between imPRESS

makekey: Generates an encryption key. . • • • . •
locations in program. end, etext, edata: Last

/getgrgid, getgmam, setgrent, endgrent: Get group file entry.
eo£: Determines end-of-file. • • • • • • • •

/getpwuid, getpwnam, setpwent, endpwent: Gets password file/
utmp file entry. endutent, utmpname: Accesses

defopen, defread: Reads default entries. . . • • • •
xlist, fxlist: Gets name list entries from files. • •

nlist: Gets entries fromnamelist.
wtmp: Formats ofutmp and wtmp entries. utmp,

endgrent: Get group file entry. /getgrnam, setgrent,
endpwent: Gets password file entry. /getpwnam, setpwent,

utrnpname: Accesses utmp file entry. endutent,
putpwent: Writes a password file entry. • • • • • • • • •

unlink: Removes directory entry . • • • • • • • • .
command execution. env: Sets environment for

environ:Theuserenvironment.
profile: Sets up an environment at login time.
environ: Theuser environment. . • • • •

execution. env: Sets environment for command
getenv: Gets value for environment name. •

putenv: Changes or adds value to environment. • . • • ,
TZ: Time zone environment variable . • •

eof: Determines end-of-file.
Removesnroff/troff, tbl, and eqnconstructs. deroff:

character definitions for eqn. eqnchar: Contains special
Formats mathematical text for/ eqn, neqn, checkeq, eqncheck:

character definitions foreqn. eqnchar: Contains special • •
text for/ eqn, neqn, checkeq, eqncheck:Formatsmathematical

complementary error function. erf, erfc: Error function and
complementaryerror/ erf, erfc: Errorfunctionand • • • •

perror, sys_errlist, sys_nerr, errno: Sends system error/ • • •
error function. erf, erfc: Error function and complementary

Error function and complementary error function. erf, erfc: •
device. error: Kernel error output

source. mkstr: Creates an error message file from C
dosexterr: Gets DOS error messages.

sys.JleiT, errno: Sends system error messages. /sys_errlist,
services, library routines and error numbers. /system

error: Kernel error output device. • • • .
matherr: Error-handlingfunction.

hashcheck: Finds spelling errors. /hashmake, spellin,
terminal line connection. dial: Establishes an out-going

1-14

ld(M)
a.out(F)
.ed(C)
vi(C)
getuid(S)
getuid(S)
screen(riW)
grep(C)
soelim(CT)
enable(C)
acct(S)
deco(CT)
makekey(M)
end(S)
getgrent(S)
eof(DOS)
getpwent(S)
getut(S)
defopen(S)
xlist(S)
nlist(S)
utmp(M)
getgrent(S)
getpwent(S)
getut(S)
putpwent(S)
unlink(S)
env(C)
environ(M)
pwfile(M)
environ(M)
env(C)
getenv(S)
putenv(S)
tz(M)
eof(DOS)
dewff(CT)
eqnchar(CT)
eqn(CT)
eqnchar(Cf)
eqn(Cf)
erf(S)
erf(S)
perror(S)
erf(S)
erf(S)
error(M)
mkstr(CP)
dosexter(DOS)
perror(S)
Intro(S)
error(M)
matherr(S)
spell(CT)
dial(S)

c

()

setmnt: Establishes /etc/mnttab table.
setmnt: Establishes /etc/mnttab table.

program. end, etext, cdata: Last locations in
hypot, cabs: Determines Euclidean distance. • • •

expression. expr: Evaluates argwnents as an •
ex: Invokes a text editor. . .

execlp, execvp: Executes a/ ex eel, execv, execle, execve,
Executes a file. excel, exccv, execle, execve, execlp, execvp:
excel, execv, execle, execve, execlp, execvp:-Executes a file.

executable. execseg: makes a data region .
flxhdr: Changes executable binary file headers.

bdr: Displays selected parts of executable binary files.
execseg: makes a data region executable. • • • • . • •

execle, execve, execlp, execvp: Executes a file. exec!, execv,
system: Executes a shell command.

int86: Executes an interrupt. • • .
int86x: Executes an interrupt. • • •

XENIX. nux: Executes command on remote
time. at, batch: Executes commands at a later

times. cron: Executes commands at specified
XENIX system. remote: Executes commands on a remote

xargs: Constructs and executes commands.
regex, regcmp: Compiles and executes regular expressions.

Sets environmentforcommand execution. env: • • , . .
nap: Suspends execution for a short interval.

sleep: Suspends execution for an interval.
sleep: Suspends execution for an interval.

monitor: Prepares execution profile.
profit: Creates an execution time profile.

execvp: Executes a file. excel, execv, execle, execve, execlp,
a file. execl, execv, execle, execve, execlp, execvp: Executes

execv, execle, execve, execlp, execvp: Executes a file. exec!,
link: Links a new filename to an existing file. . • • • . • .

a new file or rewrites an existing one. creat: Creates
process. exit, _exit: Terminates a • •

exit, _exit: Terminates a process.
process. exit: Terminates the calling

false: Returns with a nonzero exit value. • • • • • • •
true: Returns with a zero exit value, • • • • . • •

Performs exponential/ exp, log, pow, sqrt, loglO:
peat, unpack: Compresses and expands files. pack,

usage. explain: Corrects language
number into a mantissa and an exponent. /Splits floating-point

/l9g, pow, sqrt, loglO: Perfo�ns exponential, logarithm, power,/
expressiOn. expr: Evaluates arguments as an

routines. regexp: Regular expression compileandmatch
expr: Evaluates arguments as an expression. . • • • . • .

regcmp: Compiles regular expressions. • . • • • • •
Compiles and executes regular expressions. regex, regcmp:

programs. xstr: Extracts strings from C
absolute value, floor,/ floor, fabs, ceil, fmod: Performs •

of inter-process communication facilities. /Reports the status
factor: Factor a number. • • • • •

factor: Factor a number. • •
faliases: Micnet aliasing files.

Permutedh1dex

setmnt(C)
setmnt(C)
end(S)
hypot(S)
expr(C)
ex(C)
exec(S)
exec(S)
exec(S)
execseg(S)
fixhdr(C)
hdr(CP)
execseg(S)
exec(S)
system(S)
int86(DOS)
int86x(DOS)
uux(C)
at(C)
cron(C)
remote(C)
xargs(C)
regex(S)
env(C)
nap(S)
sleep(C)
sleep(S)
monitor(S)
profii(S)
exec(S)
ex:ec(S)
exec(S)
link(S)
creat(S)
exit(S)
exit(S)
exit(DOS)
false(C)
true(C)
exp(S)
pack(C)
exp1ain(CT)
frexp(S)
exp(S)
expr(C)
regexp(S)
expr(C)
regcmp(CP)
regex(S)
xstr(CP)
floor(S)
ipcs(C)
factor(C)
factor(C)
aliases(M)

I-15

Permuted Index

exit value. false: Returns with a nonzero
abort: Generates an lOT fault. • • . • • • • •

streams. fclose,fcloseall� Closes •
flushes a stream. !close, fflush: Closes or •

!close, fcloseall: Closes streams.
fcntl: Controls open files.

conversions. ecvt, fcvt, gcvt: Performs output
fdisk: Maintain disk partitions.

fopen, freopen, fdopen: Opens a stream.
Ito machine related miscellaneous features and files. • • •

Introduction to miscellaneous features and files. intra:
Determines stream/ terror, feof, clearerr, fileno:

Detennines stream status. ferror, feof, cleacerr, fileno:
nextkey: Performs/ dbminit, fetch, store, delete, firstkey,

stream. fclose, ffl.ush: Closes or flushes a
character from a stream. fgetc, fgetchar: Gets a • • .

word from a/ getc, getchar, fgetc, getw: Gets character or
a stream. fgetc, fgetchar: Gets a character from

stream. gets, fgets: Getsa stringfroma
pattern. grep, egrep, fgrep: Searches a file for a

Compares files too large for diff. bdi:ff: • • • • • • •
cut: Cuts out selected fields of each line of a file.

offile systemsprocessedby jsck. checklist: List • • .
ungetty: Suspends/restarts a getty process. • • • • •

times. utime: Sets file access and modification
Determines accessibility of a file. access: • • • • •

Fonnatofper-processaccounting file. acct: • • • • • •
epic: Copies file archives in and out.

for and processes a pattern in a file. awk: Searches • •
troffwidth files and catab file. channap: Generate

chmod: Changesmodeofa file . • • • •
Changes the owner and group of a file. chown: •

chsize: Changes thesize ofa file . • • • • •
uupick:PublicXENIX-to-XENIX: file copy. unto,

core: Format of core image file. • • . • •
umask.: Sets and gets file creation mask.
ctags: Creates a tags file. • • • • • • •

fields of each line of a file. cut: Cuts out selected
dd: Converts and copies a file. • • • • • •

a delta (change) to an SCCS file. delta: Makes
close: Closes a file descriptor. •

dup, dup2: Duplicates an open file descriptor. •

I-16

file: Determines file type.
sact: Prints current sees file editing activity.

setgrent, endgrent: Get group file entry. /getgrgid, getgrnam,
endpwent: Gets password file entry. /getpwnam, sctpwent,

utmpname:Accessesutmp file entry. endutent,
putpwent: Writes a password file entry. • • • • • • • •

execlp, execvp: Executes a file. I execv, execle, execve,
filelength: Gets the length of a file. • • • • • • • . • .
grep, egrep, fgrep: Searches a file for a pattern.

open: Opens fileforreadingorwriting.
writing. sopen: Opens a fileforsharedreadingand

ar: Archive filefonnat.
intra: Introduction to filefonnats. • • • • . •

false(C)
abort(S)
fclose(DOS)
fclose(S)
fclose(DOS)
fcntl(S)
ecvt(S)
fdisk(C)
fopen(S)
Intro(HW)
Intro(M)
ferror(S)
ferror(S)
dbm(S)
fclose(S)
fgetc(DOS)
getc(S)
fgetc(DOS)
gets(S)
grep(C)
bdiff(C)
cut(CT)
checklist(F)
ungetty(M)
utime(S)
access(S)
acct(F)
cpio(C)
awk(C)
charmap(CT)
chmod(S)
chown(S)
chsize{S)
uuto(C)
core(F)
umask(S)
ctags(CP)
cut(CT)
dd(C)
delta(CP)
close(S)
dup(S)
file(C)
sact(CP)
getgrent(S)
getpwent{S)
getut(S)
putpwent(S)
exec(S)
fileleng(DOS)
grep(C)
open(S)
sopen(DOS)
ar(F)
Intro(F)

c

mkstr: Creates an error message file from C source.
group: Fonnatofthegroup file . . • • . • • .

grpcheck: Checks group file . . • • • • • •
Changes executable binary file headers. fixhdr:
Alternative login terminals file. inittab:

split: Splits a file into pieces.
a new filename to an existing file. link: Links

In: Makes a link to a file. . . • •
mem, kmem:-Memoryimagc file. . • • • - .

TheMicnet defaultcommands file. micnet: •
or a special or ordinary file. mknod: Makes a directory,

Changes the format of a text file. new(orm:
nl: Addslinenumberstoa file . . • . • • • • •

null: The null file. . . • • • • • •
/Finds the slot in the utmp file ofthe current user.

the access permissions of a file or directory. /Changes
rename: renames a file or directory.

one. creat: Creates anew file orrev.'Tites an existing
passwd: The password file. . • . • • • • • •

/ftell, rewind: Repositions a file pointer in a stream.
lseek: Moves read/write file pointer.

Gets the current position of the file pointer. tell:
prs: Prints an SCCS file.

pwcheck: Checks password file. • • • • . •
read: Readsfroma file. , , • • . •

locking: Locks or unlocks a file region for reading or/
Removesa delta froman SCCS file. nndel:

Compares two versions of an SCCS file. sccsdiff:
sccsfile: Format of an SCCS file. . • •

Printsthe size ofan object file. size:
stat, fstat: Gets file status.

printable strings in an object file. strings: Finds the
mount: Mounts a file structure.

umount: Dismounts a file structure.
checksum and counts blocks in a file. sum: Calculates

backup: Performs incremental file system backup. •
dump: Performs incremental file system backup.

files. sysadmin: Performs file system backups and restores
volume. file system: Format of a system

mkfs: Constructs a file system. . • • • • • •
commands. fstab: Filesystemmountand check

mount: Mounts a file system.
quat: Summarizes file system ownership.

restore, restor: Invokes incremental file system restorer.
ustat: Gets file system statistics.

mnttab: Format of mounted file system table.
umount: Unmounts a file system.

TheMicnet system identification file. systemid:
haltsys, reboot: Closes out the file systems and shuts down the/

fsck: Checks and repairs file systems. • • . • •
Jsck. checklist: List of file systems processed by

Delivers the last part of a file. tail :
Fonnat of compiled tenninfo file. terminfo:

tmpfile: Creates a temporary file. . • • • •
Createsanameforatemporary file. tmpnam, tempnam:

Permuted Index

mkst,(CP)
gmup(M)
ll'Pcheck(C)
fixhd,(C)
inittab(F)
split(C)
link(S)
In(C)
mem(M)
micnet(M)
mknod(S)
newform(C)
nl(C)
nuii(M)
ttyslot(S)
chmod(C)
rename(DOS)
creat(S)
passwd(M)
fseek(S)
lseek(S)
teii(J:>OS)
P"(CP)
pwcheck(C)
'ead(S)
locking(S)
rmdel(CP)
sccsdiff(CP)
sccsfile(F)
size(CP)
stat(S)
strings(CP)
mount(C)
umount(C)
sum(C)
backup(C)
dump(C)
sysadmin(C)
filesystem(F)
mkfs(C)
fstab(F)
mount{S)
quot(C)
restore(C)
ustat(S)
mnttab(F)
umount(S)
systemid{M)
haltsys(C)
fsck(C)
checklist(F)
tail(C)
terminfo{F)
tmpfile(S)
tmpnam(S)

I-17

Permuted Index

tsort: Sorts a IDe topologically. • • • •
and modification times of a file. touch: Updates access

ftw: Walksa file tree.
ttys: Login terminals file. . • •

file: Determines file type.
Undoesapreviousgetofan SCCS file. unget:

Reportsrepeatedlinesina file. uniq:
val: Validates an SCCS file. • . •

write: Writes to a file. • • .
umask: Sets file-creation mode mask.

file. filelength: Gets the length of a
ctermid: Generates a filename fora terminal.

mktemp: Makes a unique filename. . • • • • • •
link: Links a new filename to an existing file.

status. ferrer, feof, clearerr, fileno: Determines stream
csplit: Splits files according to context.

and prints process accounting files. acctcom: Searches for
rep: Copies files across XENL"X systems.

Creates andadministers SCCS files. admin: • • •
faliases: Micnet aliasing files. . • . • • .

channap: Generate troffwidth filesandcatab file.
mv: Moves or renames files and directories.

bfs: Scans big files.
cat: Concatenates and displays files. • • . . • .

cmp: Compares two files. • • . . • .
lines common to two sorted files. comm: Selects or rejects

copy: Copiesgroupsof files.
cp: Copies files.

diff3: Compares three files.
diff: Compares two text files.

Marks differences between files. diffmk:
dosrrn, dosnndir: Access DOS files. dosls,

fcntl: Controls open files.
find: Finds files.

parts of executable binary files. hdr: Displays selected
hd: Displays files in hexadecimal format.
od: Displays files in octalfonnat. . • •

miscellaneous features and files. /to machine related
to miscellaneous features and files. intra: Introduction

semaphores and record locking on files. lockf: Provide
Fonnatofttydevicemapping files. mapcha.n:

mknod: Builds special files. . . • • • • • •
dumpdir: Prints the names of files on a backup archive.

imprint: Prints text files on an Il\.1AGEN printer.
imprint: printtext files on an IMAGEN printer.

pr: Prints files on the standard output.
queue. ipr, oldipr: Put files onto the IMAGEN printer

rm, rmdir: Removes files or directories.
unpack: Compresses and expands files. pack, peat, • • • .

paste: Merges lines of files. . • • • • • . • •
access and modification dates of files. settime: Changes the

sdiff: Compares files side-by-side.
sort: Sorts and merges files. • • • • • . • • •

file system backups and restores files. sysadmin: Performs
tar: Archives files. • . . • . • • . .

1-18

tsort(CP)
touch(C)
ftw(S)
ttys(M)
file(C)
unget(CP)
uniq(C)
val(CP)
write(S)
umask(C)
fileleng(DOS)
ctermid(S)
mktemp(S)
link(S)
ferror(S)
csplit(C)
acctcom(C)
rcp(C)
admin(CP)
aliases(M)
charmap(CT)
mv(C)
bfs(C)
cat(C)
cmp(C)
comm(C)
copy(C)
cp(C)
diff3(C)
diff(C)
diffmk(CT)
dos(C)
fcntl(S)
find(C)
hdr(CP)
hd(C)
od(C)
Intro(HW)
Intro(M)
lockf(S)
mapchan(F)
mknod(C)
dumpdir(C)
imprint(C)
imprint(CT)
pr(C)
ipr(C)
rm(C)
pack(C)
paste(CT)
settime(C)
sdiff(C)
sort(C)
sysadmin(C)
tar(C)

(
iprint: Converts text files to DVI format. • • •

catimp: Convert C/ A/T files to imPRESS format.
dviimp: Convert DVI files to imPRESS format.

for printing. lpr: Sends files to the lineprinter queue
bdiff: Compares files too large for diff.

top.next: TheMicnettopology files. top, • • • • • • • •
control files. uuinstall: Administers UUCP

what: Identifies files. • . . . •
Gets name list entrieS from files. xlist, fxlist:

/Defaultinformationformounting :filesystems.
col: Filters reverse linefecds.

documents fonna1ted with the mm macros. mm: Prints
fip.d: Finds files. • • • • •

hyphen: Finds hyphenated words.
finger: Finds information about users.

look: Finds lines in a sorted list.
logname: Finds login name of user.

object library. larder: Finds ordering relation for an
hashmake, spellin, hashcheck: Finds spelling errors. spell,

ttyname, isatty: Finds the name of a terminal.
an object file. strings: Finds the printable strings in

ofthecurrentuser. ttyslot: Finds the slot in the utmp file
users. finger: Finds information about

dbminit, fetch, store, delete, firstkey, nextkey: Performs/
/Prints formatted output of a varargs argument list. • • • •

bad track table. badtrk: Scans fiXed disk for flaws and creates
binary file headers. fixhdr: Changes executable

badtrk: Scans fixed disk for flaws and creates bad track/
frexp, ldexp, modf: Splits floating-pointnumberinto a/

/fmod: Performs absolute value, floor, ceiling and remainder/
Performs absolute value, floor,/ floor, fabs, ceil, fmod:

diskcmp: Copies or compares floppy disks. diskcp,
format:format floppydisks . • • • •

cflow: Generates C flow graph.
buffers. flushall: Flushes all output

fclose, fflush: Closes or flushes a stream.
flushall: Flushes all output buffers.

CPU. shutdn: Flushesblockl/Oandhaltsthe
floor,/ floor, fabs, ceil, fmod: Performs absolute value,

stream. fopen, freopen, fdopen: Opens a
fork: Creates a new process.

enco: Convert between imPRESS format and human-readable/ deco,
ar: Archive file format.

backup: Incremental dump tape format. • • . • • • • • . • . •
ConvertC/A/Tfilesto imPRESS format. catimp: • •

fonnatandhuman-readable format. /ConvertbetweenimPRESS
dump: Incremental dump tape format. • • • • •
ConvertDVIfilesto imPRESS format. dviimp: • • • • •

format: format floppy disks.
86rel: Jntel 8086 Relocatable Format for Object Modules.

format: format floppy disks.
Displays files in hexadecimal fonnat. hd:

Converts textfilestoDVI format. iprint: • • •
od: Displays files in octal format. • • • • • •

dir: Format of a directory.

Pennuted Index

iprint(C)
catimp(CT)
dviimp(Cf)
lpr(C)
bdiff(C)
top(M)
uuinstali(C)
what(C)
xlist(S)
filesys(F)
col(CT)
mm(CT)
find(C)
hyphen(CT)
finger(C)
look(CT)
logname(S)
lorder(CP)
speii(Cf)
ttyname(S)
strings(CP)
ttyslot(S)
finger(C)
dbm(S)
vprintf(S)
badtrk(M)
fixhdr(C)
badtrk(M)
frexp(S)
ftoor(S)
ftoor(S)
diskcp(C)
format(C)
cftow(CP)
ftushali(DOS)
fclose(S)
fiushall(DOS)
shutdn(S)
ftoor(S)
fopen(S)
fork(S)
deco(CT)
ar(F)
backup(F)
catimp(CT)
deco(CT)
dump(F)
dviimp(CT)
format(C)
86re!(F)
format(C)
hd(C)
iprint(C)
od(C)
dir(F)

I-19

Permuted Index

file system: Format o{ a system volume. filesystem(F)
newfonn: Changesthe formatofatextfile . • 4 newfonn(e)

inode: Formatofan inode. • • • • inode(F)
sccsfile: Format of an sees file. • • sccsfile(F)

editor output. a.out: Formatofassemblerandlink a.out(F)
file. terminfo: Format ofcompiledterminfo terminfo(F)

core: Formatofcoreimagefile. core(F)
cpio: Format of cpio archive. cpio(F)

table. mnttab: Format of mounted file system mnttab(F)
file. acct: Formatofper-processaccounting acct(F)

group: Fonnatofthegroup file. • • group{M)
files. mapchan: Formatofttydevicemapping mapchan(F)

tar: archive format. • • • • • • tar(F)
cscanf: Converts and formats console input. cscanf(DOS)

fscanf, sscanf: Converts and formats input. scanf, scanf(S)
intro: Introduction to file formats. • • • • • Intro(F)

eqn, neqn, checkeq, eqncheck: Formats mathematical text fori eqn(eT)
neqn: Formatsmathematics. neqn(CT)

entries. utmp, wtmp: Formatsofutmp and wtmp utmp(M)
cprintf: Formatsoutput. cprintf(DOS)

printf, fprintf, sprintf: Formats output. printf(S)
tro:ff. tbl: Formatstablesfornroffor tbl(CT)

vfprintf, vsprintf: Prints formatted output of a/ vprintf, vprintf(S)
macros. mm:Printsdocuments formattedwiththemm mm(CT)

nroff: A text formatter. • • • • • • • • • nroff(CT)
ratfor: Converts Rational FORTRAN into standard FORTRAN. ratfor(CP)

Rational FORTRAN into standard FORTRAN. ratfor: Converts ratfor(CP)
and segment. fp_o:ff, fp_seg: Return offset fp_seg(DOS)

output. printf, fprintf, sprintf:Formats • • 4 printf(S)
segment. fp_o:ff, fp_seg: Return offset and fp_seg(DOS)

charactertoastream. fputc, fputchar:Writea • • • fputc(DOS)
word on a/ putc, putchar, fputc, putw: Puts a character or putc(S)

stream. fputc, fputchar: Writeacharactertoa fputc(DOS)
stream. puts, fputs:Putsastringona puts(S)

binary input and output, fread, fwrite: Performs buffered fread(S)
main memory. malloc, free, realloc, calloc: Allocates malloc(S)

fopen, freopen, fdopen: Opens a stream. fopen(S)
floating-point number into a/ frexp, ldexp, modi: Splits • frexp(S)

formats input. scanf, fscanf, sscanf: Converts and scanf(S)
systems. fsck: Checks and repairs file fsck(C)

Repositions a file pointer in a/ fseek, ftell, rewind: • • • • fseek(S)
check commands. fstab: File system mount and fstab(F)

stat, fstat: Gets file status. stat(S)
:filepointerinal fseek, ftell,rewind:Repositionsa fseek(S)

time, ftime: Gets time and date. • time(S)
communication package. ftok; Standard interprocess stdipc(S)

ftw: Walk.safiletree. ftw(S)
function. erf, erfc: Error function and complementary error erf(S)

function and complementary error function. erf, erfc: Error erf(S)

1-20

gamma: Performsloggamma function. gamma(S)
setkey:Assignsthe functionkeys. setkey(C)

matherr: Error-handling function. matherr(S)
jn, yO, yl, yn: Performs Bessel functions. bessel, jO, jl, bessel(S)

Performs screen and cursor functions. curses: curses(S)
nextkey: Performs database functions. /delete, first key, dbm(S)

(

('.
L '

logarithm, power, square root functions. /exponential,
floor, ceiling and remainder functions. /absolute value,
to DOS cross development functions. intra: Introduction

cosh, tanh: Performs hyperbolic functions. sinh, • • • • •
tgoto, tputs: Performs terminal functions. /tgetflag, tgetstr,
atan2: Performs trigonometric functions. /asin, acos, atan,

input and output. fread, fwrite: Perlonns buffered binary
fro!ll.file�. xlist, f:xlist: O�ts n!!me list entries

gamma: Performs log gamma function. • • • • •
function. gamma: Performs log gamma

conversions. ecvt, fcvt, gcvt: Performs output • • •
adb: Invokes a general-purposedebugger.

report. imacct: Generate an IMAGEN accounting
catab file. charmap: Generate troffwidth files and

terminal. ctermid: Generates a filename for a •
ptx: Generates a permuted index.

random: Generates a random number.
rand, srand: Generates a randomnumber.

makekey: Generates an encryption key.
abort: Generates an IOT fault.
cflow: GeneratesCftowgraph. • •

cross-reference. cxref: Generates C program • • •
numbers. ncheck: Generatesnamesfrominode

analysis. lex: Generates programs for lexical
srand48, seed48, lcong48: Generates unifonnly distributed.

:Micnet alias hash table generator. aliashash:
character or word from aJ getc, getchar, fgetc, getw: Gets

getch: Gets a character.
characterorword from aJ getc, get char, fgetc, getw: Gets

character. getche: Gets and echoes a
current working directory. getcwd: Get the pathname of

getuid, geteuid, getgid, getegid: Gets real user,/ • •
environment name. getenv: Gets value for • • •

real user, effective/ getuid, geteuid, getgid, getegid: Gets
effective/ getuid, geteuid, getgid, getegid: Gets real user,

setgrent, endgrent: Get group/ getgrent, getgrgid, getgrnam,
endgrent: Get group/ getgrent, getgrgid, getgrnam, setgrent,

Get group/ getgrent, getgrgid, getgrnam, setgrent, endgrent:
getlogin: Gets login name. •

argument vector. getopt: Gets option letter from
getopt: Parses command options.
getpass: Reads a password.

process group, and/ getpid, getpgrp, getppid: Gets process, •
process, process group, and/ getpid, getpgrp, getppid: Gets
group, and/ getpid, getpgrp, getppid: Gets process, process •

useriD. getpw: Getspassword foragiven
setpwent, endpwent: Gets/ getpwent, getpwuid, getpwnam,
Gets/ getpwent, getpwuid, getpwnam, setpwent, endpwent:

endpwent: Gets/ getpwent, getpwuid, getpwnam, setpwent,
fgetc, fgetchar: Gets a character from a stream.

getch: Getsacharacter. • • • • • •
shmget: Getsashared memorysegment.

cgets: Gets a string. • • • • • • • •
gets, fgets: Getsastringfromastream.

input. gets: Gets a string from the standard

Permuted Index

exp(S)
ftoor(S)
intro(DOS)
sinh(S)
tenncap(S)
trig(S)
fread(S)
x!ist(S)
gamma(S)
gamma(S)
ecvt(S)
adb(CP)
imacct(C)
charmap(CT)
ctermid(S)
ptx(CT)
random(C)
rand(S)
makekey(M)
abort(S)
cftow(CP)
cxref(CP)
ncheck(C)
lex(CP)
drand48(S)
aliashash(M)
getc(S)
getch(DOS)
getc(S)
getche(DOS)
getcwd(S)
getuid(S)
getenv(S)
getuid(S)
getuid(S)
getgrent(S)
getgrent(S)
getgrent(S)
getlogin(S)
getopt(S)
getopt(C)
getpass(S)
getpid(S)
getpid(S)
getpid(S)
getpw(S)
getpwent(S)
getpwent(S)
getpwent(S)
fgetc(DOS)
getch(DOS)
shmget(S)
cgets(DOS)
gets(S)
gets(CP)

I-21

Permuted Index

getche: Gets and echoes a character. .
ulimit: Gets and sets user limits. • • •

getc, getchar, fgetc, getw: Gets character or word from a}
dosexterr: GetsDOSerrormessages. •

nlist: Gets entries from name list.
a stream. gets,fgets: Gets a string from

umask: Sets and getsfilecreationmask.
stat, fstat: Gets file status . • • • • •

ustat: Gets file system statistics.
standard input. gets: Gets a string from the

getlogin: Getsloginname. • •
logname: Gets login name. • • • •

msgget: Gets message queue.
files. xlist, fxlist: Getsnamelistentriesfrom
system. uname: GetsnameofcurrentXENJX

vector. getopt: Gets option letter from argument
/getpwnam, setpwent, endpwent: Gets password file entry. • • • •

ID. getpw: Getspasswordforagivenuser
times. times: Getsprocessand child process .

getpid, getpgrp, getppid: Gets process, process group, and/
real/ /geteuid, getgid, getegid: Gets real user, effective user, o

semget: Gets setofsemaphoreso • • 0
file pointer, tell: Gets the current position of the

fi.lelength: Gets thelengthofafi.le.
cuserid: Getstheloginname of the user.

tty: Getstheterminal's nameo
time, ftime: Getstimeanddate . • • • • 0

getenv: Getsvalueforenvixonmentname.
and terminal settings used by getty, gettydefs: Speed

modes, speed, and line/ getty: Sets terminal type,
settings used by getty. gettydefs: Speed and terminal

getegid: Gets real user,/ getuid, geteuid, getgid,
from a/ getc, getchar, fgetc, getw: Getscharacterorword •

of directories. Is: Gives information about contents
date and time/ ctime, localtime, gmtime, asctime, tzset: Converts

longjmp: Perfonns a nonlocal "goto". setjmp, • • • • • . •
and checks access to a resource governed by a semaphore. I Awaits

cfiow: Generates C flow graph. • . • • • • • • • .
file for a pattern. grep, egrep, fgrep: Searches a

/real user, effective user, real group, and effective group IDs.
/getppid: Gets process, process group, and parent process IDs.

newgrp: Logs user into a new group. • . • • . • • • • o
copy: Copies groups of files. • • • • • • .

updates, and regenerates groups of programs. /Maintains,
grpcheck: Checks group file. •

signals. ssignal, gsignal: Implements software
shutdn: flushes block JJO and halts the CPU. • • • . • • •

file systems and shuts down the/ haltsys, reboot: Closes out the
serial sequence packet protocol handler. ips: Imagen

ips, isbs, ipbs: IMAGEN protocol handlers. . • • • •
nohup: Runs a command immune to hangups and quits.

cmchk: Reports hard disk blook size.
dparam: Displays/changes hard disk characteristics.

hd: Internal hard disk drive.
hcreate, hdestroy: Manages hash search tables. hsearch,

1-22

getche(DOS)
ulimit(S)
getc(S)
dosexter(DOS)
nlist(S)
gets(S)
umask(S)
stat(S)
ustat(S)
gets(CP)
getlogin(S)
logname(C)
msgget(S)
xlist(S)
uname(S)
getopt(S)
getpwent(S)
getpw(S)
times(S)
getpid(S)
getuid(S)
semget(S)
tell(DOS)
fileleng(DOS)
cuserid(S)
tty(C)
time(S)
getenv(S)
gettydefs(F)
getty(M)
gettydefs(F)
getuid(S)
getc(S)
Is(C)
ctime(S)
setjmp(S)
waitsem(S)
cflow(CP)
wep(C)
getuid(S)
getpid(S)
newgrp(C)
copy(C)
make(CP)
grpcheck(C)
ssignal(S)
shutdn(S)
haltsys(C)
ips(C)
ips(M)
nohup(C)
cmchk(C)
dparam(C)
hd(HW)
hsearch(S)

(
aliashash: Micnet alias hash table generator.

spell, hashmake, spellin, hashcheck: Finds spelling/ • •
Finds spelling errors. spell, hashmake, spellin, hashcheck:

search tables. hsearch, hcreate, hdestroy: Manages hash
hexadecimalfonnat. hd: Displays files in • • • • .

hd: Internal hard disk drive.
tables. hsearch, hcreate, hdestroy: Manages hash search

�l!'ecuta�Ie binary files_. _ hdr: Pisplays selec;t_�q mu1s of
Changes executable binary file headers. fix.hdr:

program. assert: Helpsverifyvalidityof
hd: Displays files in hexadecimal format.

Machine: Description of host machine.
Manages hash search tables. hsearch, hcreate, hdestroy:

between imPRESS format and human -readable format. /Convert
sinh, cosh, tanh: Performs hyperbolic functions. • • • • •

hyphen: Finds hyphenated words.
hyphen: Finds hyph�nated words. • •

Euclidean distance, hypot, cabs: Determines
chgrp: Changes group ID. . • •

chown: Changes owner ID. . • • . • • . • •
Getspasswordforagiven user ID. getpw: • • . • •

and names. id: Prints user and group IDs
setpgrp: Sets process group ID. • • • • • •

mkuser: Adds a login ID to the system. . • •
systemid: The Micnet system identification file.

devnm: Identifies device name.
what: Identifiesfiles. • . • •

id: Prints user and group IDs and names.
group, and parent process IDs. /Gets process, process

real group, and effective group IDs. /real user, effective user,
setgid: Setsuserandgroup IDs. setuid, • • . • • • • •

accounting report. imacct: Generate an IMAGEN
core: Format of core image file. . • • • • • • •

mem, kmem: Memory image file. . • • • • • • •
imacct: Generate an IMAGEN accounting report.

imprint: Prints text files on an WAG EN printer.
imprint: print text files on an IMAGEN printer.

/imagen.spp, imagen.remote: IMAGEN printerinterface/
itroff: Troffto an IMAGEN printer.

ipr, oldipr:Putfilesontothe IMAGEN printer queue.
ips, isbs, ipbs: IMAGEN protocol handlers.

protocol handler. ips: Imagen serial sequence packet
imagen.remote:/ imagen.sbs, imagen.pbs, imagen.spp,

/i_magen.pbs, imagen.spp, imagen.remote: IMAGEN printer/
imagen.spp, imagen.remote:/ imagen.sbs, imagen. pbs,

IMAGEN/ imagen.sbs, imagen.pbs, imagen.spp, imagen.remote: •
nohup: Runs a command immune to hangups and quits.

ssignal, gsignal: Implements software signals.
deco, en co: Convert between imPRESS format and/

ca1imp: Convert C/ AfT files to imPRESS format.
dviimp: ConvertDVIfiles to imPRESS format.

IMAGEN printer. imprint: printtextfiles on an
IMAGEN printer. imprint: Prints text files on an

backup: Incrementaldumptapeformat.
dwnp: Incrementaldumptapeformat.

Permuted Index

aliashash(M)
spell(CT)
spell(CT)
hsearch(S)
hd(C)
hd(HW)
hsearch(S)
hd;(CP)
fixhdr(C)
assert(S)
hd(C)
machine(HVV)
hsearch(S)
deco(Cf)
sinh(S)
hyphen(CT)
hyphen(CT)
hypot(S)
chgrp(C)
chown(C)
getpw(S)
id(C)
setpgrp(S)
mkuser(C)
systemid(M)
devnm(C)
what(C)
id(C)
getpid(S)
getuid(S)
setuid(S)
imacct(C)
core(F)
mem(M)
imacct(C)
imprint(C)
imprint(Cf)
imagen(M)
itroff(CT)
ipr(C)
ips(M)
ips(C)
imagen(M)
imagen(M)
imagen(M)
imagen(M)
nohup(C)
ssignal(S)
deco(CT)
catimp(CT)
dviimp(CT)
imprint(Cf)
imprint(C)
backup(F)
dump(F)

I-23

Pennutedlndex

backup: Performs incremental file system backup.
dump: Perfonns incremental file system backup.

restore, restor: Invokes incremental file system/
ptx:: Generates a permuted index. • • • • •

/Default backup device information. • • • •
printslineprinterstatus information. lpstat:

pstat: Reports system infonnation. • • • •
initialization. init, inir: Process control

initialization. init, inir: Process control
lnit, inir: Process control initialization.
process. popen, pclose: Initiates 1/0 to or from a

terminals file. inittab: Alternative login
clri: Clears inode. • • • • • • •

in ode: Fonnat of aninode.
inode: Format of an inode. • • • • •

ncheck: Generates names from in ode numbers.
inp: Returns a byte. • •

fwrite: Performs buffered binary input and output. fread,
Performs standard buffered input and output. stdio:

Convertsandfonnatsconsole input. cscanf:
Gets a string from the standard input. gets:

sscanf: Converts and formats input. scanf, fscanf,
Ellminates .so'sfromnroff input. soelim:
Pushes character back into input stream. ungetc:

uustat: uucp status inquiry and job control.
script. install: Installation shell
install: Installation shell script.

creatsem: Creates an instance of a binary semaphore.
int86: Executes an interrupt. •
int86x: Executes an interrupt.

call. intdos: Invokes a DOS system
call. intdosx: Invokes aDOS system

abs: Returns an integer absolute value.
fl64a: Converts between long integer and base 64 ASCII.

sputl, sgetl: Accesses long integer data in a/ . .
the absolute value of a long integer. labs: Returns • •

atoL atoi: Converts string to integer. strtol, • • • • •
llto13: Converts between 3-byte integers and long integers.

itoa: Converts numbers to integers. • • • • • • •
between 3-byte integers and long integers. /ltol3: Converts

ltoa: Converts long integers to characters. • •
for Object Modules. 86rel: Intel8086 Relocatable Format

imagen.remote: IMAGEN printer interlace scripts. /imagen.spp,
termio: General terminal interlace. • • • • • •

I, tty2[a-hJ , tty2[A-H]: Interlace to serial ports.
tty: Special terminal interlace. • • • • • •

lpl, lp2: Lineprinter device interfaces. lp, lpO,
hd: Internal hard disk drive.

spline: Interpolates smooth curve.
arestrictedshell (command interpreter). rsh:Invokes

sh: Invokes the shell command interpreter. • . • • • •
sh V: Invokes the shell command interpreter. • • • • • •

csh: Invokes a shell command interpreter with C-like syntax.
ipcs: Reports the status of inter-process communication/

package. ftok: Standard interprocess communication •

1-24

backup(C)
dump(C)
restore(C)
ptx(CT)
archive (F)
lpstat(C)
pstat(C)
init(M)
init(M)
init(M)
popen(S)
inittab(F)
clri(C)
inode(F)
inode(F)
ncheck(C)
inp(DOS)
fread(S)
stdio(S)
cscanf(DOS)
gets(CP)
scanf(S)
soelim(CT)
ungetc(S)
uustat(C)
install(M)
install(M)
creatsem{S)
int86(DOS)
int86x(DOS)
intdos(DOS)
intdosx(DOS)
abs(S)
a64l(S)
sputl(S)
labs(DOS)
strtol(S)
13tol(S)
itoa(DOS)
13tol(S)
ltoa(DOS)
86«l(F)
imagen(M)
termio(M)
serial(HW)
tty(M)
lp(HW)
hd(HW)
spline(CP)
rsh(C)
sh(C)
shV(C)
csh(C)
ipcs(C)
stdipc(S)

/
I
"--

c��

/-
(
__/

pipe: Creates an interprocess pipe.
int86: Executes an interrupt.

int86x: Executes an interrupt.
Suspends execution for a short interval. nap:

sleep: Suspends execution for an interval.
sleep: Suspends execution for an interval.

services, library routines and/ intra: Introduces system
processing commands. intra: Introduces text

commands. intro:Introduces XENIX
Development System commands. intra: Introduces XENIX

development functions. intra: Introduction to DOS cross
fonnats. intra: Introduction to fi1e

related miscellaneous features/ intra: Introduction to machine
miscellaneous features and/ intra: Introduction to . .
library routines lind/ intra: Introduces system services,

commands. intra: Introduces text processing
intra: Introduces XENIX commands.

System commands. intra: Introduces XENIX Development
development functions. intra: Introduction to DOS cross . .

intro: Introduction to file formats.
miscellaneous features/ intra: Introduction to machine related

featuresandfiles. intra: Introduction to miscellaneous
be: Invokes a calculator.

yacc: Invokes a compiler-compiler.
bdos: Invokes a DOS system call.

intdos: Invokes a DOS system call.
intdosx: Invokes a DOS system call.

debugger. adb: Invokes a general-purpose
m4: Invokes a macro processor.

calendar: Invokes a reminder service.
(command interpreter). rsh: Invokes a restricted shell

red: Invokes a restricted version of.
display/ vi, view, vedit: Invokes a screen-oriented

interpreter with C-like/ csh: Invokes a shell command
ex:: Invokes a text editor.

calculator. de: Invokes an arbitrary precision
restore, restor: Invokes incremental fi1e system/

sdb: Invokes symbolic debugger.
cc: Invokes the C compiler.
ld: Invokes the link editor.
ld: Invokes the link editor.

interpreter. sh: Invokes the shell command
interpreter. shV: Invokes the shell command

sed: Invokes the stream editor.
ed: Invokes the text editor.

masm: InvokestheXENIXassembler.
shutdn: Flushes block I/0 and halts the CPU.

popen, pc!ose: Initiates
devices.

abort: Generates an
ips, isbs,

semaphore set or shared memory.
inter-process communication/

IMAGEN printer queue.
DVIformat.

I/O to or from a process.
ioctl: Controls character
lOT fault.
ipbs: IMAGEN protocol handlers.
ipcrm: Removes a message queue,
ipcs: Reports the status of
ipr. oldipr: Put fi1es onto the
iprint: Converts text fi}es to

Permuted Index

pipe(S)
int86(DOS)
int86x(DOS)
nap(S)
,[eep(C)
,[eep(S)
Intro(S)
Intro(CT)
Intro(C)
Intro(CP)
intro(DOS)
Intro(F)
Intro(HW)
Intro(M)
Intro(S)
Intro(CT)
Intro(C)
Intro(CP)
intro(DOS)
Intro(F)
Intro(HW)
Intro(M)
be(C)
yacc(CP)
bdos(DOS)
intdo,(DOS)
intdo,.(DOS)
adb(CP)
m4(CP)
calendar(C)
"h(C)
red(C)
vi(C)
c'h(C)
ex(C)
de(C)
restore(C)
oob(CP)
cc(CP)
ld(CP)
ld(M)
'h(C)
shV(C)
sed(C)
ed(C)
masm(CP)
'hutdn(S)
popen(S)
ioctl(S)
abort(S)
ip,(M)
ipcrm(C)
ipc,(C)
ipr(C)
iprint(C)

I-25

Pennutedlndex

packet protocol handler. ips: Imagen serial sequence
handlers. ips, isbs, ipbs: IMAGEN protocol

/islower, isdigit, isxdigit, isalnum, isspace, ispunct,/
isdigit, isxdigit,/ ctype, isalpha, isupper, islower,

/isprint, isgraph, iscntrl, isascii, tolower, toupper,/
device. isatty: Checks for a character

terminal. ttyname, isatty: Findsthename ofa •
handlers. ips, isbs, ipbs: IMAGEN protocol

/ispunct, isprint, isgraph, iscntrl, isascii, tolower,/ •
/isalpha, isupper, islower, isdigit, isxdigit, isalnum,/
/isspace, ispunct, isprint, isgraph, iscntrl, isascii,/ .

ctype, isalpha, isupper, islower, isdigit, isxdigit,/
/isalnum, isspace, ispunct, isprint, isgraph, iscntrl,/ •
/isxdigit, isalnum, isspace, ispunct, isprint, isgraph,/

/isdigit, isxdigit, isalnum, isspace, ispunct, isprint,/
isxdigit,/ ctype, isalpha, isupper, islower, isdigit, •
/isupper, islower, isdigit, isxdigit, isalnum, isspace,/

news:Printnews items . • • • • • • • • •
integers. itoa: Converts numbers to

printer. itroff: TrofftoaniMAGEN
Bessel functions. bessel, jO,jl, jn, yO, yl, yn: Performs

Bessel functions. bessel,jO, jl, jn, yO, yl, yn: Performs •
functions. bessel, jO, jl, jn, yO, yl, yn: Performs Bessel

join: Joins two relations.
join: Joins two re1ations. • • • • •

keystroke. kbhit: Checks the console for a
error: Kernel error output device.

make key: Generates an encryption key. • • • • • • • • • •
keyboard: The PC keyboard. • • • • • • • •

keyboard: The PC keyboard.
setkey: Assigns the function keys. • • • • • • •

kbhit: Checks the console for a keystroke. • • . • • • •
process or a group of/ kill: Sends a signal to a

kill: Terminates a process.
mem, kmem: Memoryimagefile.

contents of directory. 1: Lists information about
3-byte integers and long! 13tol, ltol3: Converts between
integer and base 64/ a641, 164a: Converts between long •

of a long integer. labs: Returns the absolute value
cpp: The C language preprocessor.

lint: Checks C language usage and syntax.
diction: Checks language usage.

explain: Corrects language usage.
shl: Shell layer manager.
columns. lc: Lists directory contents in

distributed. srand48, seed48, lcong48: Generates uniformly
ld: Invokes the link editor.
ld:Invokesthelink editor.

floating-point number/ frexp, ldexp, modf: Splits
filelength: Gets the length of a file. • • • • •
strlen: Retwns the lengthofastring. • • • •

get opt: Gets option letter from argument vector.
banner: Prints large letters. • • • • • • • • •

lexical analysis. lex: Generates programs for
lex: Generates programs for lexical analysis. • . • • •

1-26

ips(C)
ips(M)
ctype(S)
ctype(S)
ctype(S)
isatty(DOS)
ttyname(S)
ips(M)
ctype(S)
ctype(S)
ctype(S)
ctype(S)
ctype(S)
ctype(S)
ctype(S)
ctype(S)
ctype(S)
news(C)
itoa(DOS)
itmff(Cf)
bessel(S)
bessel(S)
bessel{S)
join(C)
join(C)
kbhit(DOS)
error(M)
makekey(M)
keyboard(HW)
keyboard(HW)
setkey(C)
kbhit(DOS)
kill(S)
kill(C)
mem(M)
I(C)
13tol(S)
a64l(S)
labs(DOS)
cpp(CP)
lint(CP)
diction(CT)
explain(CT)
shl(C)
lc(C)
drand48(S)
Id(CP)
ld(M)
frexp(S)
lileleng(DOS)
strlen(DOS)
getopt(S)
banner(C)
Iex(CP)
lex(CP)

(

C!

(:

and update. }search, lfind: Performs linear search
ar: Maintains archives and libraries, • • • . •

Converts archives to random libraries. ranlib:
ordering relation for an object library, larder: Finds

/Introduces system services, library routines and error/
ulimit: Gets and sets user limits. . • • • • . •

line: Reads one line. . • • • . • • •
}search, !find: Performs linear search and update.

col: Filters rev-erse linefeeds. • • • • • •
cancel: Send/cancel requests to lineprinter. lp, lpr,

lpr: Sends files to the lineprinter queueforprinting.
lpshut, lpmove: Starts/stops the lineprinter request. lpsched, .

Ipadmin: Configures the lineprinter spooling system.
lpstat: prints lineprinter status information.

Adds, reconfigures and maintains lineprinters. lpinit: • • • •
files. comm: Selects or rejects lines common to two sorted

uniq: Reports repeated lines in a file. • • •
look: Finds lines in a sorted list.

head: Prints the first few lines of a stream.
paste: Merges lines of files. • • .

we: Counts lines, words and characters.
ld: Invokes the link editor.
ld: Invokes the link editor. • • . . • • •

a. out: Format of assembler and link editor output.
existing file. link: Links anew filename to an
ln: Makes a link to a file . • • • . • ,

dosld: XENIX toMS-DOS cross linker. • • • • • • • • •
existingfile. link: Links a newfilename toan •

and syntax. lint: Checks C language usage
xlist, fxlist: Gets name list entries from files.

look: Finds lines in a sorted list.
nlist: Gets entries from name list. • • • . • . • •

nm: Prints name list. • . • • • • • •
byf.sck. checklist: List of file systems processed

terminals: List of supported terminals.
varargs: variable argument list. • • • • • • • • • . •

of a varargs argument list. /Prints formatted output
cref: Makes across-reference listing. . • • • . . • • •

columns.lc: Lists directorycontentsin •
of directory. 1: Lists information about contents

who: Lists who is on the system. •
In: Makes a link to a file. • •

tzset: Converts date and/ ctime, localtime, gmtime, asctime,
end, etext, edata: Last locations in program.

memory. lock: Locksa process in primary
memory. plock: Lock process, text, or data in .

record locking on files. lockf: Provide semaphores and
region for reading or writing. locking: Locks or unlocks a file

Provide semaphores and record locking on files. lockf:
memory. lock: Locks a process in primary •

for reading or/ locking: Locks or unlocks a file region
gamma: Performs log gamma function.

exponential, logarithm.! exp, log, pow, sqrt , loglO: Performs

logarithm,/ exp, log, pow, sqrt, loglO: Performs exponential, .

/loglO: Perlomts exponential, logarithm, power, square root/

Permuted Index

lsearch(S)
ar(CP)
ranlib(CP)
lorder(CP)
Intm(S)
ulimit(S)
line(C)
lsearch(S)
col(CT)
lp(C)
lp;(C)
lpsehed(C)
lpadmin(C)
Jp,tat(C)
Jpinit(C)
comm(C)
uniq(C)
Jook(CT)
head(C)
paste(CT)
we(C)
Id(CP)
ld(M)
a.out(P)
link(S)
Jn(C)
do,Jd(CP)
link(S)
lint(CP)
xli,t(S)
Jook(CT)
nlist(S)
nm(CP)
checklist(F)
termina1s(M)
varargs(S)
vprintf(S)
c;e!(CP)
Jc(C)
I(C)
who(C)
Jn(C)
ctime(S)
end(S)
Jock(S)
plock(S)
Jockf(S)
Jocking(S)
Jockf(S)
Jock(S)
Jocking(S)
gamma(S)
exp(S)
exp(S)
exp(S)

I-27

Permuted Index

mkuser: Addsa loginiDto thesystem.
getlogin: Gets login name.

logname: Gets login name.
cuserid: Gets the login name of the user.

logname: Fmds loginnameofuser.
passwd: Changes login password.

terminal: Login terminal.
inittab: Alternative login terminals file.

ttys: Login terminals file.
Sets up an environment at login time. profile:

user. logname: Finds login name of
logname: Gets login name. • •

newgrp: Logsuserinro anewgroup.
''goto". setjmp, longjmp: Performsanonlocal

for an object library. I order: Finds ordering relation
uppercase. strupr: Converts lowercase characters to

Converts uppercase characters to lowercase. strlwr:
device interfaces. lp, lpO, lpl, lp2: Lineprinter

requests to lineprinter. lp, lpr, cancel: Send/cancel
device interfaces. lp, lpO, lpl, lp2: Lineprinter

interfaces. lp, lpO, lpl, lp2: Line printer device
interfaces. lp, lpO, lpl, lp2: Lineprinter device

lineprinter spooling system. Ipadmin: Configures the . •
maintains lineprinters. lpinit: Adds, reconfigures and

lineprinter/ lpsched, lpshut, lpmove: Starts/stops the •
requests to lineprinter. lp, lpr, cancel: Send/cancel •

lineprinter queue for printing. lpr: Sends files to the
Starts/stops the lineprinter/ lpsched, lpshut, lpmove:

lineprinter request. lpsched, lpshut, lpmove: Starts/stops the
status information. Ipstat: prints lineprinter • • •

contents of directories. Is: Gives information about
search and update. I search, lfind: Performs linear

pointer. lseek: Moves read/write file
characters. ltoa: Converts long integers to

integers and long/ 13tol, ltol3: Converts between 3-byte
m4: Invokes a macro processor.

machine. Machine: Description of host
Machine: Description of host machine. • • • • • • • • •

features/ intra: Introduction to machine related miscellaneous
Accesses long integer data in a machine-independent. /sgetl:

m4: Invokes a macro processor. • • • • • •
mmcheck: Checks usageofMM macros. checkmm, • • • . •

formatted with themm macros. mm: Prints documents
program. tape: Magnetic tape maintenance

Sends, reads or disposes of mail. mail: • • • • • • • •
of mail. mail: Sends, reads or disposes

daemon.mn: Micnet mailer daemon.
free, realloc, calloc: Allocates main memory. malloc,

fdisk: Maintain disk partitions.
libraries. ar: Maintains archives and

Ipinit: Adds, reconfigures and maintainslineprinters.
regenerates groups of/ make: Maintains, updates, and

systty: System maintenance device.
tape: Magnetic tape maintenance program.

key. makekey: Generates an encryption

l-28

mkuser(C)
getlogin(S)
logname(C)
cuserid(S)
Iogname(S)
passwd(C}
terminal(HW)
inittab(F)
ttys{M)
profile{M)
logname(S)
Iognarne(C)
newgrp(C)
setjmp{S)
Iorder(CP)
strupr(DOS)
strlwr{DOS)
lp(HW)
Ip{C)
lp(HW)
lp{HW)
lp(HW)
Ipadmin(C)
lpinit(C)
lpsohed{C)
lp(C)
lpr(C)
lpsched{C)
lpsched{C)
lp,.at(C)
Is{ C)
lsearch(S)
lseek{S)
ltoa(DOS)
13tol{S)
m4{CP)
machine(HW)
machine(HW)
Intro(HW)
sputl{S)
m4{CP)
checkmm(CT)
mm(CT)
tape(C)
mail{ C)
mail(C)
daemon.mn(M)
mailoc(S)
!disk{ C)
ar(CP)
Ipinit(C)
make(CP)
systty(M)
tape(C)
makekey(M)

(

(
"-....__ /

cref: Makes a cross-reference listing.
execseg: makes a data region executable.

SCCS file. delta: Makes a delta (change) to an
mkdir: Makes a directory. • • • • •

or ordinary file. mknod: Makes a directory, or a special
In: Makesalink toafile.

mktemp: Makes a unique filename,
another user. su: Makes the user a super-user or

A1IocatE:smainmerrlory. malloc, free, reaiioc, calloc:
shl: Shelllayer manager. • . • • • • . •

tsearch, tfind, tdelete, twalk: Manages binary search trees.
hsearch, hcreate, hdestroy: Manages hash search tables.

/floating-point number into a mantissa and an exponent. •
ascii: Map ofthe ASCTI character set.

mapping. mapchan: Configure tty device
mapping files. mapchan: Formatofttydevice

convkey: Configure monitor/ mapkey, map scm, mapstr,
mapchan: Format of tty device mapping files. • • • • • •
mapchan: Configure tty device mapping. • • • • • • • •

Configure monitor screen mapping. /mapstr, convkey:
Configure monitor/ mapkey, mapscrn, mapstr, convkey:

monitor screen/ mapkey, mapscrn, mapstr, convkey: Configure
diffmk: Marks differences between files.

umask: Sets file-creation mode mal':k . • • • . • • , • , •
Setsandgetsfilecreation mask. umask: • • . • . • . •

assembler. masm: Invokes the XENIX
master: Master device information table.

information table. master: Master device • • •
Regular expression compile and match routines. regexp: • •

/neqn, checkeq, eqncheck: Formats mathematical text fornroff,/
neqn: Formats mathematics. . • • • • •

function. matherr: Error-handling
mem, kmem: Memory image file.

mem, kmem: Memory image file. • • • • •
queue� semaphore set or shared memory. /Removes a message

lock: Locks a process in primary memory. • • • • • •
realloc, calloc: Allocates main memory. malloc, free,

shmctl: Controls shared memory operations.
shmop: Performs shared memory operations.

Lock process, text, or data in memory. plock:
shmget: Gets a shared memory segment.

Reports virtual memory statistics. vmstat:
administration/ sysadmsh: Menu driven system

sort: Sorts and merges files. • . • • • •
paste: Merges lines of files.

sent to a tenninal. mesg: Pemtits or denies messages
msgctl: Provides message control operations.

mkstr: Creates an error message file from C source.
msgop: Message operations.

msgget: Gets message queue. • • • • ,
shared memory. ipcrm: Removes a message queue, semaphore set or

console messages. messages: Description of system
dosexterr: Gets DOS error messages. • • . • •

Description of system console messages. messages:
errno: Sends system error messages. /sys_nerr,

Permuted Index

crcf(CP)
execseg(S)
dclta(CP)
mkdir(C)
mknod(S)
ln(C)
mktemp(S)
su(C)
malloc(S)
shl(C)
tsearch(S)
hsearch(S)
frexp(S)
ascii(M)
mapchan(M)
mapchan(F)
mapkey(M)
mapchan(F)
mapchan(M)
mapkey(M)
mapkey(M)
mapkey(M)
diffmk(CT)
urn ask(C)
umask(S)
masm(CP)
master(F)
master(F)
regcxp(S)
eqn(CT)
neqn(CT)
matherr(S)
mem(M)
mem(M)
ipcnn(C)
lock(S)
malloc(S)
shmcti(S)
shmop(S)
plock(S)
shmget(S)
vmstat(C)
sysadmsh(C)
sort(C)
paste(CT)
mesg(C)
msgcti(S)
mkstr(CP)
msgop(S)
msgget(S)
ipcnn(C)
messages(M)
dosexter(DOS)
messages(M)
perror(S)

I-29

Permuted Index

mesg: Permits or denies messages sent to a terminal.
telinit, mkinittab: Alternative method of turning terminals on/

generator. aliashash: Micnet alias hash table
faliases: Micnet aliasing files.

micnet: The Micnet default commands file.
daemon.mn: Micnet mailer daemon.

file. systemid: The Micnet system identification
commands file. micnet: The Micnet default

top, top.next: The Micnettopologyfiles. • • •
/Introduction to machine related miscellaneous features and/

files. intra: Introduction to miscellaneous features and
mkdir: Creates a new directory.
mkdir. Makes a directory.
mkfs: Constructs a file system.

tumingtenninalson/ telinit, mkinittab: Alternative method of
mknod: Builds special files.

special or ordinary file. mknod: Makes a directory, ora •
file from C source. mkstr: Creates an error message

mktemp: Makes a unique filenaine.
system. mkuser: Adds aloginiD to the .

mmcheck: Checksusageof MMmacros. checkmm,
with themm macros. mm: Prints documents fonnatted

macros. checkmm, mmcheck: Checks usage ofMM
mmt: Typesets documents.

system table. mnttab: Format of mounted file
umask: Sets file-creation mode mask. •

chmod: Changes modeofafile.
setmode: Sets translation mode.

dial: Dials a modem. • . •
getty: Sets tenninal type, modes, speed, and line/

tset: Sets tenninal modes. • • . • • . •
number into a/ frexp, ldexp, modf: Sp1itstloating-point

settime: Changes the access and modification dates of files.
touch: Updates access and modification times of a :file.
utime: Sets file access and modification times. . • •

Relocatable Fonnat for Object Modules. 86rel: Intel8086
profile. monitor: Prepares execution

/mapstr, convkey: Configure monitor screen mapping.
Setsthe options forthevideo monitor. stty: • • . • • •

uusub: Monitoruucp network.

I-30

tty[Ol-n], color, monochrome, ega,. screen:
fstab: File system mount and check commands.

mount: Mounts a file structure.
mount: Mounts a file system.

mnttab: Fonnat of mounted file system table.
/Defaultinfonnationfor mountingfilesystems. •

mount: Mountsafilestructi.Ire.
mount: Mountsafilesystem.

specific address. movedata: Copies bytes from a
mvdir: Moves a directory. • • • • •

directories. mv: Moves or renames files and
lseek: Movesread/writefile pointer.

dosld: XENIX to MS-DOScrosslinker.
operations. msgctl: Provides message control

msgget: Gets message queue. • •

mesg(C)
telinit(C)
aliashash(M)
aliases(M)
micnet(M)
daemon.mn(M)
systemid(M)
micnet(M)
top(M)
Intro(HW)
Intro(M)
mkdir(DOS)
mkcfu(C)
rnkfs(C)
telinit(C)
mknod(C)
mknod(S)
mkstr(CP)
mktemp(S)
mkuser(C)
checkmm(CT)
mm(CT)
checkmm(CT)
mmt(CI')
mnttab{F)
umask(C)
chmod(S)
setmode(DOS)
dial(M)
getty(M)
tset(C)
frexp(S)
settime(C)
touch(C)
utime(S)
86rel(F)
monitor(S)
mapkey(M)
stty(HW)
uusub(C)
screen(HW)
fstab(F)
mount(C)
mount(S)
mnttab(F)
filesys(F)
mount{ C)
mount(S)
movedata(DOS)
mvdir(C)
mv(C)
lseek(S)
dosld(CP)
msgctl(S)
msgget(S)

(
"·

msgop: Message operations.
directories. mv: Moves or renames files and

mvdir: Moves a directory.
devnm: Identifies device name.

Gets value for environment name. gctenv:
getlogin: Gets login name.

logname: Gets login name.
pwd: Prints working directory name.

tty: Gets the temtinal's ·name.
ncheck: Generates names from inodenumbers.

basename: Removes directory names from pathnames. •
Prints userand group iDsand names. id: . • • • • • •

archive. dumpdir: Prints the names of files on a backup
term: Conventional names. • • • • • • • •

short interval. nap: Suspends execution for a
access to a resource/ waitsem, nbwaitsem: Awaits and checks

in ode numbers. ncheck: Generates names from
mathematical text for/ eqn, neqn, checkeq, eqncheck: Fonnats

neqn: Formats mathematics . . .
network. netutil: Administers the XENIX

netutil: Administers theXENIX network.
uusub: Monitoruucp network. . • • • . • . . . •

text file. newform: Changes the format of a
group. newgrp: Logsuserinto anew

news: Print news items. • • . . . • •
news: Print news items.

/fetch, store, delete, firstkey, nextkey: Perfom1s database/
process. nice: Changes priority of a •

different priority. nice: Runs a command at a •
nl: Adds line numbers to a file.

list. nlist: Gets entries from name •
nm: Prints name list.

hangups and quits. nohup: Runs a command immune to
setjmp, longjmp: Performs a nonlocal "goto". • • •

false: Returns with a nonzero exit value.
nroff: A text formatter.

soelim: Eliminates .so's from nroffinput.
tbl: Formats tables for nroff ortroff.

Terminaldrivingtablesfor nroff. tenn:
Formats mathematical te>..1 for nroff, troff. I eqncheck:

constructs. deroff: Removes nroff/troff, tbl, and eqn
null: The null file. • . . •

null: The null file.
factor: Factor a number.

random: Generates a random number.
rand, srand: Generates a random number.

a string to a double-precision number. strtod, atof: Converts
atoi, atol: Converts ASCllto numbers. atof, • • • • • •

library routines and error numbers. /system services,
Generates namesfrominode numbers. ncheck:

nl: Adds line numbers to afi1e. • • •
ultoa: Converts numbers to characters.

itoa: Converts numbers to integers.
size: Printsthe size of an object file. • • • • • •

the printable strings in an object file. strings: Finds

Permuted Index

m'gop(S)
mv(C)
mvdir(C)
devnm(C)
getenv(S)
getlogin(S)
logname(C)
pwd(C)
tly(C)
ncheck(C)
basename(C)
id(C)
dumpdir(C)
tenn(CT)
nap(S)
waitsem(S)
ncheck(C)
eqn(CT)
neqn(CT)
netutil(C)
netutil(C)
uu,ub(C)
newform(C)
newgrp(C)
news(C)
news(C)
dbm(S)
nice(S)
nice(C)
nl(C)
nli,t(S)
nm(CP)
nohup(C)
'eljmp(S)
fal,e(C)
nroff(CT)
soelim(CT)
tb!(CT)
tem1(F)
eqn(CT)
deroff(CT)
null(M)
null(M)
factor(C)
r:mdom(C)
rand(S)
strtod(S)
alof(S)
lnlro(S)
ncheck(C)
nl(C)
ultoa(DOS)
itoa(DOS)
size(CP)
'lrings(CP)

1-31

Permuted Index

Finds orderingrelationforan object library. larder. • • •
8086 Relocatable Format for Object Modules. 86rel: Intel

a process until a signal occurs. pause: Suspends
od: Displaysfilesin octalformat . • • • • •

format. od: Displays files in octal
Invokesarestrictedversion of. red: • • • • • • •
of turning terminals on and off. I Alternative method

fp_off, fp_seg: Return offset and segment. • •
IMAGEN printer queue. ipr, oldipr: Putfilesontothe .
new file or rewrites an existing one. creat: Creates a

ipr, oldipr: Put files onto the IMAGEN printer queue.
and writing. sop en: Opens a file for shared reading

opensem: Opensasemaphore.
fopen, £reopen, fdopen: Opens a stream. • • • . . •

writing. open: Opensfileforreadingor . • •
opensem: Opens a semaphore.

closedir: Performs directory operations.
msgctl: Provides message control operations.

msgop: Message operations.
semctl: Controls semaphore operations.

semop: Performs semaphore operations.
shmctl: Controls shared memory operations.

shmop: Performs shared memory operations.
strdup: Performs string operations.

vector. getopt: Gets option letter from argwnent
stty: Sets the options for a terminal.
stty: Sets the options for the video monitor.

getopt: Parses command options. • • • . • . • • . •
library, larder: Finds ordering relation for an object

a directory, ora special or ordinary file. mk:nod:Makes
Copiesfilearchivesin and out. cpio: • • • • • . • . •

dial:Establishesan out-goingtenninalline/ • • •
port. outp: Writes a byte to an output

of assembler and link editor output. a. out: Format
flush all: Flushes all output buffers. • •

ecvt, fcvt, gcvt: Performs output conversions.
cprintf:Formats output. • • • • •

error: Kernel error output device.
buffered binary input and output. fread, fwrite: Performs

/vsprintf: Prints formatted output of a varargs/
outp: Writes a byte to an output port. • • • • •

pr: Prints files on the standard output. . • • • • . •
fprintf, sprint£: Formats output, printf, • • . •

standard buffered input and output. stdio: Performs
chown: Changes the owner and group of a file.

chown: Changes owneriD . • • . • • • •
quat: Summarizes file system ownership. • . • • • •

and expands files. pack, peat, unpack: Compresses
interprocesscommunication package. ftok: Standard

ips: Imagen serial sequence packet protocol handler.
Gets process, process group, and parent process IDs. /getppid:

getopt: Parses command options.

1-32

fdisk: Maintain disk partitions. • • • • • • • • •
files. hdr: Displays selected parts of executable binary • .

passwd: Changes login password.

lorder(CP)
86rel(F)
pause(S)
od(C)
od(C)
red(C)
te!init(C)
fp_seg(DOS)
ipr(C)
creat(S)
ipr(C)
sopen(DOS)
opensem(S)
fopen(S)
open(S)
opensem(S)
directory(S)
msgctl(S)
msgop(S)
semctl(S)
semop(S)
shmctl(S)
,Jrmop(S)
string(S)
getopt(S)
stty(C)
stty(HW)
getopt(C)
lorder(CP)
mknod(S)
cpio(C)
dia!(S)
outp(DOS)
a.out(F)
fiushall(DOS)
ecvt(S)
cprintf(DOS)
error(M)
fread(S)
vprintf(S)
outp(DOS)
pr(C)
printf(S)
stdio(S)
chown(S)
chown(C)
quo!(C)
pack(C)
stdipc(S)
ips(C)
getpid(S)
getopt(C)
fdisk(C)
hdr(CP)
passwd(C)

(
\

C) j

passwd: The password file. • • .
pwadmin: Performs password aging administration. •

setpwent, endpwent: Gets password file entry. /getpwnam,
putpwent: Writes a password file entry.

passwd: The password file. • • • . • •
pwcheck: Checks password file. • • • . • •

getpw: Gets password fora given user ID.
getpass: Reads a password. • • • • • • •

- passwd� Changes-login password. • • • • • • • -
paste: Merges lines of files.

Deliversdirectorypartof pathname. dimame:
directory. getcwd: Get the pathname of current working

Removes directory names from pathnames, basename:
fgrep: Searches a file fora pattern. grep, egrep,

Searches for and processes a pattern in a file. awk:
a signal occurs. pause: Suspends a process until
keyboard: The PC keyboard. • • • • • • •

expands files. pack, peat, unpack: Compresses and
a process. popen, pclose: Initiates 1/0 to or from

bsearch: Performs a binary search.
setjmp, longjmp: Performs anonlocal "goto".

qsort: Performs a quicker sort. • •
floor, fabs, ceil, fmod: Performs absolute value, floor,/

bessel,jO, jl, jn, yO, yl, yn: Performs Bessel functions.
and output. fread, fwrite: Performs buffered binary input
/delete, firstkey, nextkey: Performs database functions.

closedir: Performs directory operations.
exp, log, pow, sqrt, loglO: Performs exponential, logarithm,/

restores files. sysadmin: Performs file system backups and
sinh, cosh, tanh: Performs hyperbolic functions . •

backup. backup: Performs incremental file system
backup. dump: Performsincremental file system

update. lsearch, lfind: Performs linear search and . •
gamma: Performs log gamma function.

ecvt, fcvt, gcvt: Performs output conversions.
administration. pwadmin: Performs password aging

functions. curses: Performs screen and cursor
semop: Performs semaphore operations.

operations. shmop: Performs shared memory
and output. stdio: Performs standard buffered input

strdup: Performs string operations.
/tgetftag, tgetstr, tgoto, tputs: Performs terminal functions. •

tan, asin, acos, atan, atan2: Performs trigonometric/ /cos,
chmod: Changes the access permissions of a file or/

to a terminal. mesg: Permits or denies messages sent
ptx: Generatesa permuted index. . . • • •
acct: Format of per-processaccountingfile.

ermo: Sends system error/ perror, sys_errlist, sys_nerr,
split: Splits a file into pieces. • • . • • • • • •

pipe. pipe: Creates an interprocess
pipe: Creates an interprocess pipe. • • • • . • • • • •

tee: Creates a tee in a pipe. • • • • • . • • • •
data in memory. plock: Lock process, text, or

rewind: Repositions a file pointer in a stream. /ftell,
I seek: Moves read/write file pointer. • . • • • • • . .

Permuted Index

passwd(M)
pwadmin(C)
getpwent(S)
putpwent(S)
passwd(M)
pwcheck(C)
getpw(S)
gctpass(S)
passwd(C)
paste(CT)
dimame(C)
getcwd(S)
basename(C)
g.-ep(C)
awk(C)
pause(S)
keyboard(HW)
pack(C)
popen(S)
bsearch{S)
setjmp(S)
qsort(S)
fioor(S)
bessel(S)
fread(S)
dbm(S)
directory(S)
exp(S)
sysadmin(C)
sinh(S)
backup(C)
dump(C)
lsearch(S)
gamma(S)
ecvt(S)
pwadmin(C)
curses(S)
semop(S)
shmop(S)
stdio(S)
string(S)
tenncap(S)
trig(S)
chmod(C)
mesg(C)
ptx(CT)
acct(F)
perror(S)
split(C)
pipe(S)
pipe(S)
tee(C)
plock(S)
fseek(S)
lseek(S)

1-33

Permuted Index

the current position of the file pointer. tell: Gets . . • • .
or from a process. pop en, pclose: Initiates VO to

outp: Writes a byte to an output port. • . • • • • • • • . •
, tty2[A-Hl Interlace to serial �orts. /, ttyl[A-HJ , tty2[a-h]

exponential,/ exp, log, pow, sqrt, loglO: Performs • •
/Performs exponential, logarithm, power, square root functions.

output. pr: Prints files on the standard
de: Invokes an arbitrary precision calculator.

statistical processing. prep: Prepares text for • • • .
troff. cw, checkcw, cwcheck: Prepares constant-width text for

monitor: Prepares execution profile.
processing. prep: Prepares text for statistical •

cpp: The Clanguage preprocessor. , • • • • •
unget: Undoes a previous get of an SCCS file.

lock: Locks a process in primary memory. • • • . .
types: Primitive system data types.
news: Printnewsitems. • • • • •

printer. imprint: printtextfilesonanTh1AGEN
file. strings: Finds the printable strings in an object
lp, lpO, lpl, lp2: Line printer device interfaces.

PrintstextfilesonaniMAGEN printer. imprint: • • •
printtextfilesonaniMAGEN printer. imprint: • • • •

/imagen.remote: IMAGEN printer interface scripts. •
itroff: Troffto an IMAGEN printer. • , • •
Put files onto the IMAGEN printer queue. ipr, oldipr:

disable: Turns offtenninals and printers. • • • . •
Turns on terminals and line printers. enable: • • •

Formats output. printf, fprintf, sprintf:
to the lineprinter queue for printing. lpr: Sends files

cal: Prints a calendar. • • •
prs: Prints an sees file. • •

sddate: Prints and sets backup dates.
date: Prints and sets the date.

activity. sact: Prints current sees file editing
themmmacros. mm: Printsdocumentsformatted with

output. pr: Printsfilesonthe standard •
vprintf, vfprintf, vsprintf: Prints formatted output of a/

banner: Prints large letters.
information. lpstat: printslineprinterstatus

nm: Printsnamelist.
acctcom: Searches for and prints process accounting files.

yes: Prints string repeatedly.
printer. imprint: PrintstextfilesonaniMAGEN

stream. head: Prints the first few lines of a
XENIX system. uname: Prints the name of the current

backup archive. dumpdir: Prints the nHIDes of files on a
file. size: Printsthesizeofanobject • •

names. id: Printsuserandgroup iDsand
pwd: Printsworkingdirectoryname.

Runs a command at a different priority. nice:
nice: Changes priority of a process.

acct: Enables or disables process accounting.
acctcom: Searches for and prints process accounting files.

alarm: Sets a process' alarm clock.
times: Gets process and child process times.

I-34

tell(DOS)
popen(S)
outp(DOS)
serial(HW)
exp(S)
exp(S)
pr(C)
de(C)
prep(CT)

, cw(CT)
monitor(S)
prep(Cf)
cpp(CP)
unget(CP)
lock(S)
types(F)
news(C)
imprint(CT)
striogs(CP)
lp(HW)
imprint(C)
imprint(CT)
imagen(M)
itroff(Cf)
ipr(C)
disable(C)
enable(C)
priotf(S)
lpr(C)
cal(C)
prs(CP)
sddate(C)
date(C)
sact(CP)
mm(CT)
pr(C)
vpriotf(S)
banner(C)
lpstat(C)
nm(CP)
acctcom(C)
yes(C)
imprint(C)
head(C)
uname(C)
dumpdir(C)
size(CP)
id(C)
pwd(C)
nice(C)
nice(S)
acct(S)
acctcom(C)
alarm(S)
times(S)

(
init, inir: Process control initialization.

exit: Terminates the calling process.
exit, _exit: Terminates a process. • • • • • • • •

fork: Creates a new process. • • • • • • • •
/getpgrp, getppid: Gets process, process group, and parent/

setpgrp: Sets process group ID.
process group, and parent process IDs. /Gets process,

lock: Locks a process in primarymemory.
kill:Tennina:tes a process-. .- • • • • -. • • •

nice: Changes priority of a process. • • • • • • • • •
kill: Sends a signal to a process or a group of processes.

Tnitiatef': T/0 10 or from a process. popen, pclose: • •
getpid,getpgrp, getppid: Gets process, process group, and/

ptrace: Traces a process . • • •
spawnl, spawnvp: Creates a new process. • • • • • • •

ps: Reports process status. • • • •
memory. plock: Lock process, text, or data in

times: Gets process and child process times.
wait: Waits for a child process to stop or terminate.

Suspends/restartsagetty process. ungetty: • • • • •
pause: Suspends a process until a signal occurs.

sigsem: Signals a process waiting on a semaphore.
checklist: List of :file systems processed byfsck. • • • • •

awk: Searches for and processes a pattern in a file.
to a processor a group of processes. kill: Sends a signal

Awaitscompletionofbackground processes. wait:
intra: Introduces text processing commands.

Preparestextforstatistical processing. prep:
shutdown: Terminates all processing. • • • • •

m4: Invokesamacro processor . • • • • • •
prof: Displays profile data.

time profile. profil: Creates an execution
prof: Displays profile data. •

monitor: Prepares execution profile. • • • • • • • • •
Creates an execution time profile. profil: • • • • • •

at login time. profile: Sets up an environment
assert: Helps verify validity of program.

boot: XENIXboot program.
etext, edata:Lastlocationsin program. end,

tape: Magnetic tape maintenance program.
cb: Beautifies C programs. • •

lex: Generates programs for lexical analysis.
and regenerates groups of programs. /Maintains, updates,

stack requirements for C programs. stack use: Detennines
xref: Cross-reference�; C programs. • • . • . • • • •

xstr: Extracts strings from C programs. • • • • • • • • •
day. asktime: Promptsforthecorrecttimeof

Imagen serial sequence packet protocol handler. ips: • • • •
ips, isbs, ipbs: IMAGEN protocol handlers. • • • • .

locking on files. lockf: Provide semaphores and record
operations. msgctl: Providesmessagecontrol

prs: Prints an SCCS file. •
ps: Reports process status.

sxt: Pseudo-device driver.
information. pstat: Reports system • •

Permuted index

init(M)
exit(DOS)
exit(S)
fork(S)
getpid(S)
setp!l')l(S)
getpid(S)
Jock(S)
kill(C)
nice(S)
kill(S)
popen(S)
getpid(S)
ptrace(S)
spawn(DOS)
ps(C)
plock(S)
times(S)
wait(S)
ungetty(M)
pause(S)
sigsem(S)
checklist(F)
awk(C)
kill(S)
wait(C)
Intro(CT)
prep(CT)
shutdown(C)
m4(CP)
prof(CP)
profil(S)
prof(CP)
monitor(S)
profil(S)
profile(M)
assert(S)
boot(HW)
end(S)
tape(C)
cb(CP)
lex(CP)
make(CP)
stackuse(CP)
xref(CP)
xstr(CP)
asktime(C)
ips(C)
ips(M)
lockf(S)
msgctl(S)
prs(CP)
ps(C)
sxt(M)
pstat(C)

1-35

Permuted Index

ptrace: Traces a process.
ptx: Generates a permuted index.

stream. ungetc: Pushes character back into input
a character or word on aJ putc, putchar, fputc, putw: Puts

console. putch: Writes a character to the •
character or word on a/ putc, putchar, fputc, putw: Puts a

environment. putenv: Changes or adds value to
entry. putpwent: Writes a password file

putc, putchar, fputc, putw: Puts a characterorwcird on a/
puts, fputs: Puts a string on a stream. • •

cputs: Puts a string to the console.
stream. puts, fputs: Puts a string on a

on a/ putc, putchar, fputc, putw: Puts a character or word
administration. pwadmin: Performs password aging

pwcheck: Checks password file.
name. pwd: Prints working directory

q sort: Performs a quicker sort.
tput: Queries the terminfo database.

Sends files to the lineprinter queue for printing. lpr:
files onto the IMAGEN printer queue. ipr, oldipr: Put

msgget: Gets message queue. • • • • • • •
ipcrm: Removes a message queue, semaphore set or shared/

qsort: Performsa quickersort . • • • • • • •
acommandim.muneto hangups and quits. nohup: Runs • • • • . •

ownership. quot: Summarizes file system . •
number. rand, srand: Generates a random
number. random: Generates a random

ranlib: Converts archives to random libraries.
random: Generatesa randomnumber . . • • • •

rand, srand: Generatesa random number. . • • • •
random hbraries. ranlib: Converts archives to

clockrate: Changes clock rate. • • • • • • • • • •
FORTRAN into standard FORTRAN. ratfor: Converts Rational

FORTRAN. ratfor: Converts Rational FORTRAN into standard
systems. rep: Copies files across XENIX

data to be read. rdchk: Checks to see if there is
to seeifthereis data to be read. rdchk: Checks

read: Reads from a file.
sop en: Opens a file for shared reading and writing. • •

orunlocksafileregionfor readingorwriting. /Locks
open: Opens file for reading or writing.

getpass: Readsapassword.
defopen, defread: Reads default entries.

read: Reads from a file. • •
line: Reads one line.

mail: Sends, readsord.lsposesofmail.
lseek: Moves read/write file pointer.

memory. malloc, free, realloc, calloc: Allocates main
clock: The system real-time(time of day) clock.

setclock: Sets the system real-time(timeofday) clock.
systems and shuts down/ haltsys, reboot: Closes out the file

Specifies what to do upon receipt of a signal. signal:
lineprinters. lpinit: Adds, reconfigures and maintains

lockf: Provide semaphores and record locking on files.
version of. red: Invokes a restricted •

I-36

ptrace(S)
ptx(CT)
ungetc(S)
putc(S)
putch(DOS)
putc(S)
putenv(S)
putpwent(S)
putc(S)
puts(S)
cputs(DOS)
puts(S)
putc(S)
pwadmin(C)
pwcheck(C)
pwd(C)
qsort(S)
tput(C)
lpr(C)
ipr(C)
msgget(S)
ipcnn(C)
qsort(S)
nohup(C)
quot(C)
rand(S)
random(C)
ranlib(CP)
random(C)
rand(S)
ranlib(CP)
clockrate(HW)
ratfor(CP)
ratfor(CP)
rep(C)
rdchk(S)
rdchk(S)
read(S)
sopen(DOS)
locking(S)
open(S)
getpass(S)
defopen(S)
read(S)
line(C)
mail(C)
!seek(S)
mailoc(S)
clock(M)
setclock(M)
haltsys(C)
signal(S)
lpinit(C)
lockf(S)
red(C)

regular expressions. regex, regcmp: Compiles and executes
expressions. regcmp: Compi1esregular

make: Maintains, updates, and regenerates groups of programs.
executes regular expressions. regex, regcmp: Compiles and
compile and match routines. regexp: Regular expression

execseg: makes a data region executable.
locking: Locks or unlocks a file region for reading orwriting.

match routines. regexp: Regular expression compile and
regcmp: Compiles regular expressions. • -. • •

regcmp: Compiles and executes regular expressions. reg ex,
sorted files. comm: Selects or rejects line:; common to two

intra: Introduction to machine related miscellaneous features/
larder: Finds ordering relation for an object library. •

join: Joins two relations. • • • • • • • • •
Modules. 86rel: Intel 8086 RelocatableFonnat forObject

strip: Removes symbols and relocation bits. • • • • • • •
value, floor, ceiling and remainder functions. /absolute

calendar: Invokes a reminder service. • • • • • •
remote XENIX system. remote: Executes commands on a

remote: Executes commands on a remote XENIX system.
nux: Executes command on remote XENIX. • • • • • •

file. rmdel: Removes a delta from an sees
semaphore set or shared/ ipcrm: Removes a message queue,

system. rmuser: Removes a user account from the
rmdir: Removes directories.

unlink: Removes directory entry.
pathnames. basename: Removes directory names from

rm, nndir: Removes files or directories. •
eqn constructs. deroff: Removes nroff/troff, tbl, and

bits. strip: Removes symbols and relocation
directory. rename: renames a file or

rename: renames a file or directory. •
mv: Moves or renames files and directories.

fsck: Checks and repairs file systems. •
uniq: Reports repeated lines in a file.

yes: Prints string repeatedly.
Generate an Th!AGEN accounting report. imacct:

blocks. df: Report numberoffree disk
clock: ReportsCPUtimeused . •

cmchk: Reports hard disk block size.
ps: Reports process status.

file. uniq: Reportsrepeatedlines ina •
pstat: Reports system information.

inter-process/ ipcs: Reports the status of
vmstat: Reports virtual memory statistics.

stream. fseek, ftell, rewind: Repositions a file pointer in a
Starts/stops the lineprinter request. /lpshut, lpmove:

Ip, Ipr, cancel: Send/cancel requests to lineprinter.
stack use: Determines stack requirements for C programs.

I Awaitsandchecksaccess to a resourcegovemedbya/
incremental file/ restore, restor: Invokes •

Invokes incremental file system/ restore, restor: • • • •
Invokesincrementalfile system restorer. /restor: • • •

Performs file system backups and restores files. sysadmin:
interpreter). rsh: Invokes a restricted shell (command

Pennutedlndex

regex(S)
regcmp(CP)
make(CP)
regex(S)
regexp(S)
execseg(S)
Iocking(S)
regexp(S)
regclrip(CP)
regex(S)
comm(C)
Tntro(HW)
Iorder(CP)
join(C)
86rel(F)
strlp(CP)
ftoor(S)
calendar(e)
remote(C)
remote(C)
nux(C)
nndel(CP)
ipcnn(C)
nnuser(C)
nndir(C)
unlink(S)
basename(C)
nn(C)
deroff(CT)
strip(CP)
rename(DOS)
rename(DOS)
mv(C)
fsck(C)
uniq(C)
yes(C)
imacct(C)
df(C)
clock(S)
cmchk(C)
ps(C)
uniq(C)
pstat(C)
ipcs(C)
vmstat(C)
fseek(S)
lpsched(C)
Ip(C)
stackuse(CP)
waitsem(S)
restore(C)
restore(C)
restore(C)
sysadmin(C)
rsh(C)

I-37

Permuted Index

red: Invokes a restricted version of.
fp_off, fp_seg: Return offset and segment.

stat: Data returned by stat system call.
inp: Returns a byte. • • • • • •

console buffer. ungetch: Retumsacharactertothe •
value. abs: Returns an integer absolute

long integer. labs: Returns the absolute value of a
strlen: Returns the length of a-string.

value. false: Returns with a nonzero exit
true: Returns with a zero exit value.

col: Filters reverselinefeeds. • • • • • •
in a string. strrev: Reverses the order of characters

pointer in a/ fseek., ftell, rewind: Repositions a file
creat: Creates anew file or rewrites an existing one. • • • •

directories. rm, rmdir: Removes files or
SCCS file. rmdel: Removes a delta from an

nndir: Deletes a directory. •
rmdir: Removes directories. • •

directories. rm, rmdir:Removesfiles or • • • •
from the system. nnuser: Removes a user account

chroot: Changes the root directory. • • • • • •
chroot: Changes root directory for command.

logarithm, power, square root functions. /exponential,
/system services, library routines and error numbers.

expressioncompileandmatch routines. regexp: Regular
(command interpreter). rsh: Invokes a restricted shell

priority. nice: Runs a command at a different
and quits. nohup: Runs a command immune to hangups

editing activity. sact: Prints current SCCS file • •
space allocation. sbrk, brk: Changes data segment

work. uUcico: Scanthespooldirectoryfor
and formats input. scanf, fscanf, sscanf: Converts

bfs: Scansbigfiles. • • • • • •
creates bad track/ badtrk: Scans fixed disk for flaws and

help: Asks for help about SCCS commands.
the delta commentary of an SCCS delta. cdc: Changes

comb: Combines sees deltas. • • • • •
Mak.es adelta(change) toan SeCSfile. delta: • • • •

sact: Prints current sees file editing activity.
prs: Prints an sees file. • • • •

rmdel: Removes adeltafrom an sees file. • • • •
Comparestwoversionsofan SCCS:fi.le. sccsdiff:

sccsfile: Format of an sees file. • • •
Undoesapreviousgetofan SCCSfile. unget: •

val: Validates an SeCSfile. • • • •
admin: Creates and administers sees files.

1-38

of an SCCS file. sccsdiff: Compares two versions
file. sccsfile: Format of an sees

curses: Performs screen and cursor functions.
clear: Clears a terminal screen. • • • • • • • •

setcolor: Set screen color. • • • • • •
convkey: Configure monitor screen mapping. /mapstr.

color, monochrome, ega,. screen: tty[Ol-n], • . • •
vi, view, vedit: Invokes a screen-oriented display editor.
install: Installation shell script. • • • • • • • . • •

red(C)
fp_reg(DOS)
stat (F)
inp(DOS)
ungetch(DOS)
abs(S)
labs(DOS)
strlen(DOS)
false(C)
true(C)
col(Cf)
strrev(DOS)
fseek(S)
creat(S)
rm(C)
nndel(CP)
rmdir(DOS)
nndir(C)
rm(C)
rmuser(C)
chroot(S)
chroot(C)
exp(S)
Intro(S)
regexp(S)
rsh(C)
nice(C)
nohup(C)
sact(CP)
sbrk(S)
uucico(C)
scanf(S)
bfs(C)
badtrk(M)
help(CP)
cdc(CP)
comb(CP)
delta(CP)
sact(CP)
prs(CP)
rmdel(CP)
sccsdiff(CP)
sccsfile(F)
unget(CP)
val(CP)
adm!n(CP)
sccsdiff(CP)
sccsfile(F)
curses(S)
clear(C)
setcolor(C)
mapkey(M)
screen(HW)
vi(C)
install(M)

c�

c

IMAGENprinterinterface scripts. /imagen.remote:
sdb: Invokes symbolic debugger,

dates. sddate: Prints and sets backup
access to a shared datal sdenter, sdleave: Synchronizes •

shared data segment. sdget, sdfree: AttacheS and detaches a
detaches a shared data segment. sdget, sdfree: Attaches and

shared data access. sdgetv, sdwaitv: Synchronizes
side-by-side. sdiff: Compares files

a shared data segment. sdenter, sdleave: Synchronizes acCess tci
data access. sdgetv, sdwaitv: Synchronizes shared

!search, lfind: Performs linear search and update.
bsearch: Performs a binary search. • • • • • • . . •

hcreate, hdestroy: Manages hash search tables. hsearch,
tdelete, twalk: Manages binary search trees. tsearch, tfind,

grep, egrep, fgrep: Searches a file for a pattern.
accounting files. acctcom: Searches for and prints process

pattern in a file. awk: Searches for and processes a •
sed: Invokes the stream editor.

uniformly distributed. srand48, seed48, lcong48: Generates
brkctl: Allocates data in a far segment. • • • • • • • • •

fp_seg:Return offsetand segment. fp_off, • . • . • •
access to a shared data segment. /sdleave: Synchronizes

and detaches a shared data segment. I sdfree: Attaches
shmget: Gets a shared memory segment. • • • • • • • • .

sbrk, brk: Changes data segment space allocation.
segread: command description.

a file. cut: Cuts out selected fields of each line of •
binary files. hdr: Displays selected parts of executable
to two sorted files. comm: Selects or rejects lines common

Creates an instance of a binary semaphore, creatsem:
opensem: Opens a semaphore. • • • • •

semctl: Controls semaphore operations.
semop: Perlorms semaphore operations.

ipcrm: Removes a message queue, semaphore set or shared memory.
Signals a process waiting on a semaphore. sigsem: • • • • •

to a resource governed by a semaphore. /and checks access
files. lockf: Provide semaphores and record locking on

semget: Gets set of semaphores. • • • • • • • • •
operations. semctl: Controls semaphore • •

semget: Gets set of semaphores.
operations. semop: Petfonnssemaphore •

lineprinter. Ip, lpr, cancel: Send/cancel requests to • • •
group of processes. kill: Sends a signal to a process ora

queue for printing. lpr: Sends files to the lineprinter
mail. mail: Sends. reads or disposes of

/sys_errlist, sys_nerr, erma: Sends system error messages.
mesg: Permits or denies messages sent to a terminal.

handler. ips: Imagen serial sequence packet protocol
, tty2[A-H]: Interfaceto serial ports. /, tty2[a-hJ

handler. ips: Imagen serial sequence packet protocol
calendar: Invokes a reminder service. • • • • • • • • •

error/ intra: Introduces system services, library routines and
MapoftheASCITcharacter set. ascii: • • • • • •

buffering to a stream. setbuf, setvbuf: Assigns
real-time (time of day) clock. setclock: Sets the system

Permuted Index

lln"JlCD(M)
sdb(CP)
sddate(C)
sdenter(S)
sdget(S)
sdget(S)
sdgetv(S)
sdiff(C)
sdenter(S)
sdgetv(S)
lsearch(S)
bsearch(S)
hsearch(S)
tsearch(S)
grep(C)
acctcom(C)
awk(C)
sed(C)
drand48(S)
brkctl(S)
fp_seg(DOS)
sdenter(S)
sdget(S)
shmget(S)
sbrk(S)
segread(DOS)
cut(CT)
hdr(CP)
comm(C)
creatsem(S)
opensem(S)
semctl(S)
semop(S)
ipcrm(C)
sigsem(S)
waitsem(S)
lockf(S)
semget(S)
semctl(S)
"'mget(S)
"'mop(S)
lp(C)
kill(S)
lpr(C)
mail(C)
perror(S)
mesg(C)
ips(C)
serial(HW)
ips(C)
calendar(C)
Intro(S)
ascil(M)
setbuf(S)
setclock(M)

I-39

Permuted Index

setcolor: Set screen color. , •
setuid, setgid: Sets user and group IDs.

getgrent, getgrgid, getgmam, setgrent, endgrent:Getgroup/
nonlocal "goto". setjmp, longjmp:Performs a •

keys. setkey: Assigns the function •
table. setmnt: Establishes /etc/mnttab

setmode: Sets translation mode.
setpgrp: Sets process group ID.

getpwent, getpwuid, getpwnam, setpwent, endpwent: Gets/
alarm: Sets a process' alarm clock.

to one charater. strset: Sets all characters in a string
mask. umask: Sets and gets file creation

sddate: Prints and sets backup dates.
execution. env: Setsenvironmentforcommand

modification times. utime: Setsfileaccessand • • • • •
umask: Sets file-creation mode mask.

setpgrp: SetsprocessgroupiD;
tset: Sets terminal modes.

speed, and line/ getty: Sets terminal type, modes,
base. cmos: Displays and sets the configuration data

date: Prints and sets the date. • • • • • •
stty: Sets the options fora terminal.

monitor. stty: Setstheoptionsforthevideo •
ofday) clock. setclock: Setsthesystemreal-time{time

stime: Setsthetime. • • • • • • •
setmode: Sets translation mode.

time. profile: Sets up an environment atlogin
setuid, setgid: Sets user and group IDs. • • •

ulimit: Gets and sets user limits. • • • • • • •
modification dates of files. settime: Changes the access and

gettydefs: Speed and terminal settings used by getty. • • • •
group IDs. setuid, setgid: Sets user and

stream. setbuf, setvbuf: Assigns buffering to a
data in a/ sputl, sgetl: Accesses long integer

interpreter. sh: Invokes the shell command
sdgetv, sdwaitv: Synchronizes shared data access. • • • • .

Synchronizes access to a shared data segment. /sdleave:
sdfree: Attaches and detaches a shared data segment. sdget,

message queue, semaphore set or shared memory. ipcnn: Removes a
shmctl: Controls shared memory operations.
shmop: Performs shared memory operations.

shmget:Getsa sharedmemorysegment.

I-40

sop en: Opens a file for shared reading and writing.
rsh: Invokes a restricted shell (command interpreter).

sh: Invokes the shell command interpreter.
sh V: Invokes the shell command interpreter,

C-likesyntax. csh: Invokesa shellcommandinterpreterwith
system: Executes a shell command.

shl: Shelllayermanager.
install: Installation shell script.

shl: Shellla yer manager,
operations. shmctl: Controls shared memory

segment. shmget: Gets a shared memory .
operations. shmop: Petfonns shared memory

nap: Suspends execution for a short interval. • • • • • • • •

setcolor(C)
setuid(S)
getgrent(S)
setjmp(S)
setkey(C)
setmnt(C)
setmode{DOS)
setpgrp(S)
getpwent(S)
alarm(S)
strset(DOS)
umask(S)
sddate(C)
env(C)
utime(S)
umask(C)
setpgrp(S)
tset(C)
getty(M)
cmos{HW)
date(C)
stty(C)
stty(HW)
setclock(M)
stime{S)
setmode(DOS)
profile(M)
setuid(S)
ulimit(S)
settime(C)
gettydefs(F)
setuid(S)
setbuf(S)
sputi(S)
sh(C)
sdgetv(S)
sdenter(S)
sdget(S)
ipcnn(C)
shmctl(S)
shmop(S)
shmget(S)
sopen(DOS)
rsh(C)
sh(C)
shV(C)
csh(C)
system(S)
shl(C)
install(M)
shl(C)
shmcti(S)
shmget(S)
shmop(S)
nap(S)

halts the CPU, shutdn : Flushes block 110 and
processing. shutdown: Terminates all

Closes out the file systems and shuts down the system. /reboot:
interpreter. shV: Invokes the shell command

sdiff: Compares files side-by-side.
Suspends a process until a signal occurs. pause:

what to do upon receipt of a signal. signal: Specifies
upon receipt of a signal. signal: Specifies what to do

of ProcesSes. kill: Sends a sigllal tO a processor a grouP
semaphore. sigsem: Signals a process waiting on a

gsignal: Implements software signals. ssignal, • • • • •
waiting on a semaphore. sigsem: Signals a process

atan2: Performs trigonometric/ sin, cos, tan, asin, acos, atan,
hyperbolic functions. sinh, cosh, tanh: Performs

cmchk: Reports hard disk block size. • • • • • •
chsize:Cbangesthe si:r.eofafile. • • • • •

size: Prints the size of an object file.
object file. size: Prints the size of an

interval. sleep: Suspends execution for an
interval. sleep: Suspends execution for an

current/ ttyslot: Finds the slot in the utmp file of the
spline: Interpolates smooth curve. • • • • • •

nroffinput, soelim: Eliminates .so's from
ssignal, gsignal: Implements software signals. • • • • •

reading and writing. sop en: Opens a file for shared
qsort: Performs a quicker sort. • • • • • • • • • •

sort: Sorts and merges files.
orrejects lines common to two sorted files. comm: Selects

look: Finds lines in a sorted list. • • • • • •
tsort: Sorts a file topologically.

sort: Sorts and merges files.
soelim: Eliminates .so'sfromnroffinput . •

an error message file from C source. mkstr: Creates
sbrk, brk: Changes data segment space allocation. • • •

process. spawnl, spawnvp: Creates a new
spawnl, spawnvp: Creates anew process.

movedata: Copies bytes from a specific address.
cron: Executes commands at specified times.

receipt of a signal. signal: Specifies what to do upon
/Sets terminal type, modes, speed, and line discipline.

by getty. gettydefs: Speed and terminal settings used
bashcheck: Finds spelling! spell, hashmake, spellin,
spe1ling/ spell, hashmake, spellin, hashcheck: Finds

spellin, hashcheck: Finds spelling errors. /hashmake,
curve. spline: Interpolates smooth

pieces. split: Splits a file into
split: Splits a file into pieces.

context. csplit: Splits files according to
into a/ frexp, ldexp, modf: Splitsfioating-pointnumber

uucico: Scan the spool directoryforwork.
uuclean: Clean-up theuucp spool directory.

Configures the lineprinter spooling system. Ipadmin:
printf, fprintf, spriutf: Formats output. •

integer data in a/ sputl, sgetl: Accesses long
exponential,/ exp, log, pow, sqrt, IoglO: Performs

Permuted litdex

shutdn(S)
shutdown(C)
hallsys(C)
shY(C)
sdiff(C)
pause(S)
signal(S)
signal(S)
kill(S)
sigsem(S)
ssignal(S)
sigscm(S)
trig(S)
sinh(S)
cmchk(C)
chsize(S)
size(CP)
size(CP)
sleep(C)
sleep(S)
ttyslot(S)
spline(CP)
soelim(CT)
ssignal(S)
sopen(DOS)
qsort(S)
sort(C)
comm(C)
look(CT)
tsort(CP)
sort(C)
soelim(CT)
mkst<(CP)
sb<k(S)
spawn(DOS)
spawn(DOS)
movedata(DOS)
cron(C)
signal(S)
getty(M)
gettydefs(F)
speli(CT)
speli(CT)
speli(CT)
spline(CP)
split(C)
split(C)
csplit(C)
f«xp(S)
uucico(C)
uuclean(C)
lpadmin(C)
printf(S)
sputl(S)
exp(S)

I-41

Permuted Index

exponential, logarithm, power, square root functions. /Performs
number. rand, srand: Generates a random

Generates uniformly/ srand48, seed48, lcong48:
input. scanf, fsca,nf, sscanf: Converts and formats

software signals. ssignal, gsignal: Implements
programs. stackuse:Determ.ines stackrequirementsforC

requirements for C programs. stackus.e: Determines stack
output. stdio: Performs standard buffered input and

Converts Rational FORTRAN into standard FORTRAN. ratfor:
gets: Gets a string from the standard input. • • • • • •

communication package. ftok: Standard interprocess • • •
pr: Prints files on the standard output. • • • • •

Ipsched, Ipshut, lpmove: Starts/stops the lineprinter/
system call. stat: Data returned by stat

stat, fstat: Gets file status.
stat: Data returned by stat system call.

prep: Prepares text for statistical processing. • •
ustat: Gets file system statistics. • • • • • • •

virtual memory statistics. vmstat: Reports
fileno: Detennines stream status. ferrer, feof, clearerr,

lpstat: prints lineprinter status information. • • • •
uustat: uucp status inquiry and job control.

communication/ ipcs: Reports the status of inter-process
ps: Reports process status. • • • • • • •

stat, fstat: Gets file status. • • • • • • •
buffered input and output. stdio: Performs standard

stime:Setsthetime.
Waits fora child process to stop or tenninate. wait:

nextkey:/ dbminit, fetch, store, delete, :firstkey, •
operations. strdup: Perfonns string
Invokes the o;;tream editor. sed:

fflush: Closes or flushes a stream. fclose, • • • •
Gets a character from a stream. fgetc, fgetchar:

fopen, freopen, fdopen: Opens a stream. • • • • • • •
fputch_ar: Write a character to a stream. fputc, • • • •

Repositions a file pointer in a stream. fseek, ftell, rewind:
Gets character or word from a stream. /getchar, fgetc, getw:

fgets: Getsa stringfroma stream. gets, • • • • • • •
Printsthefirstfewlinesofa stream. head: • • • • • • •

Puts a character or word on a stream. /putchar, fputc, putw:
puts,fputs:Putsastringona stream. • • • • • • • •

setvbuf: Assigns b¢fering to a stream. setbuf,
clearerr, fileno: Determines stream status. ferror, feof,

Pushescharacterbackintoinput stream. ungetc:

I-42

fclose, fcloseall: Closes streams. • • • • •
cgets: Gets a string. • • • • • •

gets, fgets: Gets a string from a stream.
gets: Gets a string from the standard input.

puts, fputs:Putsa stringonastream.
strdup: Performs string operations.

yes: Prints string repeatedly. •
strlen: Returns the length of a string. • • • • •

the order of characters in a string. strrev: Reverses
strtod, atof: Converts a stringtoadouble-precision/

strtol, atol, atoi: Converts string to integer. • • • • .

exp(S)
rand(S)
drand48(S)
scanf(S)
ssignal(S)
stackuse(CP)
stackuse(CP)
stdio(S)
ratfor(CP)
gets(CP)
stdipc(S)
pr(C)
Jpsched(C)
stat(F)
stat(S)
stat(F)
prep(CT)
ustat(S)
vmstat(C)
ferror(S)
Ipstat(C)
uustat(C)
ipcs(C)
ps(C)
stat(S)
stdio(S)
stime(S)
wait(S)
dbm(S)
string(S)
sed(C)
fclose(S)
fgetc(DOS)
fopen(S)
fputc(DOS)
fseek(S)
getc(S)
gets(S)
head(C)
putc(S)
puts(S)
setbuf(S)
ferror(S)
ungetc(S)
fclose(DOS)
cgets(DOS)
gets(S)
gets(CP)
puts(S)
string(S)
yes(C)
strlen(DOS)
strrev(DOS)
strtod(S)
strtol(S)

(�\

strset: Sets all characters in a string to one charater. • •
cputs: Puts a string to the console.

strings in an object file. strings: Finds the printable
xstr: Extracts strings from C programs.

strings: Finds the printable strings in an object file.
relocation bits. strip: Removes symbols and

string. strlen: Returns the length of a
characters to lowercase, strlwr: Converts uppercase

characters in il string. strrev: Reverses the order Of
string to one charater. strset: Sets all characters in a

to a double-precision number. strtod, atof: Converts a string
string to integer. str1 ol, at a), atoi: Converts

mpunt: Mounts a file structure. . • • • • . •
umount: Dismounts a file structure.

characters to uppercase. strupr: Converts lowercase
terminal. sHy: Sets the options for a

video monitor. stty: Sets the options for the
of a document. style: Analyzes characteristics

or another user. su: Makes the user a super-user
counts blocks in afile. sum: Calculates checksum and

du: Summarizes disk usage.
ownership. quat: Summarizes file system
sync: Updates the super-block.
sync: Updates the super-block.

su: Makes the user a super-user or another user.
terminals: List of supported terminals.

signal occurs. pause: Suspends a process until a
interval. nap: Suspends execution for a short

interval. sleep: Suspends execution for an
interval. sleep: Suspends execution for an

process. ungetty: Suspends/restartsagetty
swab: Swaps bytes.

swapadd: Adds swap area • • • . • •
swapctl: Adds swap area • • • . • •

swapadd: Adds swap area
swapctl: Adds swap area •

swab: Swaps bytes. • • • • • •
sxt: Pseudo-device driver.

sdb: Invokes symbolic debugger. • • •
strip: Removes symbols and relocation bits.

sync: Updates the super-block.
sync: Updates the super-block.

data segment. sdenter, sdleave: Synchronizes access to a shared
sdgetv, sdwaitv: Synchronizes shared data access.

command interpreter with C-like syntax. csh: Invokes a shell
ChecksClanguageusageand syntax. lint: . • • • • • • •

backups and restores files. sysadmin: Performs file system
administration utility. sysadmsh: Menu driven system

Sends system error/ perror, sys_errlist, sysJterr, ermo:
error/ perror, sys_errlist, sys_nerr, erma: Sends system

Automatically boots the system. autoboot:
config: Configures a XENIX system. • • • • • • • • • •

cu: Calls another XENIX system. • • • . • • • • • .
file systems and shuts down the system. /reboot: Closes out the

the lineprinter spooling system. Ipadmin: Configures •

Permuted Index

strset(DOS)
cputs(DOS)
strings(CP)
xstr(CP)
strings{CP)
strip(CP)
strlen(DOS)
strlwr(DOS)
strrev(DOS)
strset(DOS)
strtod(S)
strtol(S)
mount(C)
umount(C)
strupr(DOS)
stty(C)
stty(HW)
style(CT)
su(C)
sum(C)
du(C)
quot(C)
sync(C)
sync(S)
su(C)
terminals(M)
pause(S)
nap(S)
s!eep(C)
sleep(S)
ungetty(M)
swab(S)
swapadd(S)
swapctl(C)
swapadd(S)
swapctl(C)
swab(S)
sxt(M)
sdb(CP)
strip(CP)
sync(C)
sync(S)
sdenter(S)
sdgetv(S)
csh(C)
!int(CP)
sysadmin(C)
sysadmsh(C)
perror(S)
perror{S)
autoboot(M)
config(C)
cu(C)
haltsys(C)
Ipadmin(C)

I-43

Permuted Index

mkfs: Constructs a :file system.
mkuser: Adds a login ID to the system.

mount: Mounts a:file system.
commands on aremoteXENIX system. remote: Executes

Removes a user account from the system. rmuser:
umount:Unmountsa:file system. • . • • • •

the name of the currentXENIX system. uname: Prints
Getsname ofcurrentXENIX system. uname:

who: Lists who is on the system. • • • • • •
identification file, systemid: TheMicnet system

/reboot: Closes out the file systems and shuts down the/
fsck: Checks and repairs :file systems. • • • • • • •

checklist: List of file systems processed by jsck. •
rep: Copies files across XENIX systems. • • • • • • • •

device. systty: System maintenance
for flaws and creates bad track table. badtrk: Scans fixed disk

alias hash: Micnet alias hash table generator.
Masterdeviceinformation table. master:

Fonnatofmountedfilesystem table. mnttab: •
setmnt: Establishes /etc/mnttab table. • • • • •

tbl: Formats tablesfornroffortroff.
term: Terminal driving tables fornroff ..

hdestroy: Manages hash search tables. hsearch, he reate,
ctags: Creates a tags file. • • • • • • •

a file. tail: Delivers the last part of
Performs/ sin, cos, tan, asin, acos, atan, atan2:

functions. sinh, cosh, tanh: Performs hyperbolic
backup: Incremental dump tape format. • • • • • • •

dump: Incremental dump tape format. • • • • • • •
program. tape: Magnetic tape maintenance

tape: Magnetic tape maintenance program.
tar: archive format. • •
tar: Archives files.

deroff: Removes nroff/troff, tbl, and eqn constructs.
troff. tbl: Formats tables fornroff or

search trees. tsearch, tfind, tdelete, twalk: Manages binary
tee: Creates a tee in a pipe. • .

tee: Creates a tee in a pipe. • • • • • • • •
method of turning terminals on/ telinit, mkinittab: Alternative

temporary file. trnpnam, tempnam: Creates a name for a
tmpfile: Creates a temporary file. • • • • . •

tempnam: Creates a name fora temporary file. tmpnam,

I-44

term: Conventional names.
fornro:ff. tertn: Terminal driving tables

terminfo/ capinfo: convert term cap descriptions into
data base. termcap: Terminal capability

tenncap: Terminal capability data base.
terminfo: terminal capability data base.

Generatesafilenamefora terminal. ctermid: • • • • •
terminfo: terminal description database.

nroff. term: Terrninal'drivingtablesfor •
tgetstr, tgoto, tputs: Performs terminal functions. /tgetflag,

termio: General terminal interface.
tty: Special terminal interface.

dial: Establishes an out-going terminal line connection.

mkfs(C)
mkuser(C)
mount(S)
remote(C)
rmuser(C)
umount(S)
uname(C)
uname(S)
who(C)
systemid(M)
haltsys(C)
fsck(C)
checklist(F)
rep(C)
systty(M)
badtrk(M)
aliashash(M)
master(F)
mnttab(F)
setmnt(C)
tbl(CI')
term(F)
hsearch(S)
ctags(CP)
tail(C)
trig(S)
sinh(S)
backup(F)
dump(F)
tape(C)
tape(C)
tar(F)
tar(C)
deroff(CT)
tbl(CI')
tsearch(S)
tee(C)
tee(C)
telinit(C)
tmpnam(S)
tmplile(S)
tmpnam(S)
term(CT)
term(F)
capinfo(C)
terrncap(M)
termcap(M)
terminfo(M)
cterrnid(S)
tenninfo(S)
term(F)
termcap(S)
terrnio(M)
tty(M)
dial(S)

c

terminal: Login terminal.
or denies messages sent to a terminal. mesg: Permits

tset: Sets terminal modes.
clear: Clears a terminal screen.

gettydefs: Speed and terminal settings used by getty.
stty: Sets the options for a terminal.

terminal: Login terminal. • • • • • • • • •
isatty: Findsthenameofa terminal. ttyname, • • • • •
line discipline. getty: Sets tem1inal type, modes, speed, and

enable: Turns on terminals and line printers.
disable: Turns off terminals and printers.

inittab: Alternative login tenninals file. . • • • •
ttys: Login terminals file. • • • • •
terminals. terminals: List of supported

tty: Gets the tenninal's name.
/Alternative method of turning terminals on and off.

terminals: List of supported tenninals. . • • • •
for a child process to stop or terminate. wait: Waits

exit, _exit: Terminates a process.
kill: Terminates a process.

shutdown: Terminates all processing.
exit: Terminates the calling process.

tic: Terminfo compiler.
tput: Queries the tenninfo database. • • • • •

termcap descriptions into terminfo descriptions. /convert
tenninfo: Format of compiled terminfo file. • • • • • • .

terminfofile. tenninfo: Format of compiled
data base. tenninfo: terminal capability •
database. tenninfo: terminal description
interface. tennio: General terminal

lest: Tests conditions.
test: Testsconditions.

ed: Invokes the text editor.
ex: Invokes a text editor.

newform: Changes the format of a text file. .
cliff: Compares two text files.

imprint: Prints text files on an IMAGEN printer.
imprint: print text files on an IMAGEN printer.

iprint: Converts text files to DVI format.
eqncheck: Formats mathematical text for nroff, troff. /checkeq,

prep: Prepares text for statistical processing.
cwcheck: Prepares constant-width text for troff. cw, checkcw,

nroff: A textfonnatter . • • • • •
plock: Lock process, text, or data in memory.

intro: Introduces text processing commands.
troff: Typesets text. • • • , • • • . •

binary search trees. tsearch, Hind, tdelete, twalk: Manages
tgetstr, tgoto, tputs: Performs/ tgetent, tgetnum, tgetftag,

Performs/ tgetent, tgetnum, tgetfiag, tgetstr, tgoto, tputs:
tgoto, tputs: Performs/ tgetent, lgetnum, tgetftag, tgetstr,

tgetent, tgetnum, tgetfiag, tgetstr, tgoto, tputs: Perfonns/
/tgetnum, tgetfiag, tgetstr, tgoto, tputs: Performs terminal/

tic: Tenninfo compiler.
Executes commands at a later time. at, batch: • • • • • •

time, ftime: Gets time and date.

Permuted hzdex

tenninal(HW)
mesg(C)
tset(C)
clear(C)
gettyde!s(F)
stty(C)
tenninal(HW)
ttyname(S)
getty(M)
enable(C)
disable(C)
inittab(F)
ttys(M)
tenninals(M)
tty(C)
telinit(C)
tem1inals(M)
wait(S)
exit(S)
kill(C)
shutdown(C)
exit(DOS)
tic(C)
tput(C)
capinfo{C)
tenninfo(F)
tenninfo(F)
terminfo(M)
tenninfo(S)
tennio(M)
test(C)
test(C)
ed(C)
ex(C)
newfonn(C)
diff(C)
imprint(C)
imprint(CT)
iprint(C)
eqn(CT)
prep(CT)
cw(CT)
nroff(CT)
plock(S)
Intro(CT)
troff(CT)
tsearch(S)
tenncap(S)
tenncap(S)
tenncap(S)
termcap(S)
termcap(S)
tic(C)
at(C)
time(S)

l-45

Permuted Index

clock: The system real-time (time of day) clock. • • • .
Sets the system real-time (time of day) clock. setclock:

Sets up an environment at login time. profile:
stime: Sets the time. • • •

Executescommands at specified times. cron: •
Gets process and child process times. times:

file access and modification times. utime: Sets
file. tmpfile: Creates a temporary

foratemporaryfile. tmpnam, tempnam: Creates a name
/isascii, tolower, toupper, toascii: Classifies or converts/

conv, toupper, tolower, toascii: Translates characters.
characters. conv, toupper, tolower, toascii: Translates

/i:sgraph, iscntrl, isascii, tolower, toupper, toascii:/ . .
topology files. top, top.next: TheMicnet • .

files. top, top.next: TheMicnettopology
tsort: Sortsafile topologically. • • • • •

top, top.next: TheMicnet topology files. • • • • • • •
modification times of a file. touch: Updates access and • •

/iscntrl, isascii, tolower, toupper, toascii: Classifies or/
Translates characters. conv, toupper, tolower, toascii:

database. tput: Queriestheterminfo
/tgettlag, tgetstr, tgoto, tputs: Performs terminal/

tr: Translates characters.
ptrace: Traces a process. • • •

disk for .flaws and creates bad track table. /Scans fixed
conv, toupper, tolower, toascii: Translates characters.

tr: Translatescharacters.
setmode: Sets translation mode.

ftw: Walks a file tree. • • • . • • •
twalk.: Manages binary search trees. tsearch, tfind, tdelete,

acos, atan, atan2: Performs trigonometric functions. /asin,
Prepares constant-width text for troff. cw, checkcw, cwcheck:

mathematical text for nroff, troff. /eqncheck: Formats •
tbl: Formats tablesfornroffor troff. • • . • • • • • • •

itroff: Troff to an IMAGEN printer.
troff: Typesets text. • • • •

file. channap: Generate troffwidthfilesandcatab
Manages binary search trees. tsearch, tfind, tdelete; twalk:

tset: Sets terminal modes.
topologically. tsort: Sorts a file

mapchan: Format of tty device mapping files. •
mapchan: Configure tty device mapping. • • •

tty: Gets the terminal's name.
tty: Special terminal interface.

monochrome, ega,. screen: tty[Ol-n], color,
tty2[a-h] , tty2(A-H]'/ ttyl[a-h] , tty![A-II] ,

tty2[A-HP nterlace/ ttyl[a-h] ttyl[A-H] , tty2[a-h] ,
tty2[A-H]'/ ttyl[a-h] , ttyl[A-H] , tty2[a-h],

Interface/ ttyl[a-h] , ttyl[A-H] tty2[a-h] , tty2[A-H] '

I-46

to/ ttyl[a-h] , ttyl[A-H] , tty2[a-h] , tty2[A-H]' Interlace
ports. I, ttyl[A-H] , tty2[a-h] tty2[A-H]' Interlace to serial •

I, ttyl[A-H] , tty2[a-h] , tty2[A-H]' Interlace to serial/
of a terminal. ttyname, isatty: Finds the name

ttys: Login terminals file.
utmp file of the current user. ttyslot: Finds the slot in the • .

clock(M)
setclock(M)
profile(M)
stime(S)
cron(C)
tlmes(S)
utime(S)
tmpfile(S)
tmpnam(S)
ctype(S)
conv(S)
conv(S)
ctype(S)
top(M)
top(M)
tsort(CP)
top(M)
touch(C)
ctype(S)
conv(S)
tput(C)
termcap(S)
tr(C)
ptrace(S)
badtrk(M)
conv(S)
tr(C)
setmode(DOS)
ftw(S)
tsearch(S)
trig(S)
cw(CT)
eqn(CT)
tbl(CT)
itroff(CT)
troff(CT)
channap(CT)
tsearch(S)
tset(C)
tsort(CP)
mapchan(F)
mapchan(M)
tty(C)
tty(M)
screen(HW)
.serial(HW)
serial(HW)
serial(HW)
serial(HW)
serial(HW)
serial(HW)
serial(HW)
ttyname(S)
ttys(M)
ttyslot(S)

/mkinittab: Alternative method of tumingterminals on and off.
printers. disable: Turns offterminals and

accton: Turns on accounting.
printers. enable: Turns on terminals and line

trees. tsearch, tfind, tdelete, twalk: Manages binary search
dtype: Determines disk type. . • • • • • . • • •

file: Determines file type. • • • • • . . • • •
getty: Setstenninal type, modes, speed, and line/

types. types: Primitive system data
types: Primitive system data types. • . . • • • •

mmt: Typesets documents.
troff: TYPesets text.

variable. TZ: Time zone environment
/localtime, gmtime, asctime, tzset: Converts date and time to/

uadmin: administrative control.
limits. ulimit: Gets and sets user

characters. ultoa: Converts numbers to
creation mask. umask: Setsand getsfile •

mask. umask: Sets file-creation mode
structure. umount: Dismounts a file

umount: Unmounts a file system.
XENIXsystem. uname : Gets nameofcurrent • •

current XENIX system. uname: Prints the name of the
file. unget: Undoes a previousget ofan SCCS

an SCCS file. unget: Undoes a previous get of
into input stream. ungetc: Pushes character back

the console buffer. ungetch: Returns a character to
getly process. ungetty: Suspends/restarts a •

seed48, lcong48: Generates uniformly distributed. srand48,
a :file. uniq: Reports repeated lines in

mktemp: Makes a unique filename.
unils: Converts units.

units: Converts units. . • • • • • •
unlink: Removes directory entry.

reading or/ locking: Locks or unlocks a file region for
umount: Unmounts a file system. • • • •

files. pack, peat, unpack: Compresses and expands
Performs linearsearchand update. lsearch, Uind:

times of a file. touch: Updates access and modification
of programs. make: Maintains, updates, and regenerates groups

sync: Updates the super-block.
sync: Updates the super-block.

lowercase. strlwr: Converts uppercase characters to
Converts lowercase characters to uppercase. strupr:

lint: ChecksClanguage usage and syntax.
diction: Checks language usage.

du: Summarizes disk usage.
explain: Corrects language usage.

checkmm, mmcheck: Checks usage ofMMmacros.
clock: Reports CPU time used. • • . • • • •

user. su: Makes the userasuper-user or another
rmuser: Removes a user account from the system.

id: Prints user and group IDs and names.
setuid, setgid: Sets userandgroup IDs.

Getstheloginnameofthe user. cuserid: • • • • • • •

Permuted Index

telinit{C)
di,able(C)
accton(C)
enable(C)
tsearch(S)
dtype(C)
file(C)
getty(M)
type,(F)
type,(F)
mmt(CT)
tmff(CT)
tz(M)
ctime(S)
uadmin(S)
ulimit(S)
u!toa(DOS)
umask(S)
umask(C)
umount(C)
umount(S)
uname{S)
uname{C)
unget(CP)
unget(CP)
ungetc(S)
ungetch(DOS)
ungetty(M)
drand48(S)
uniq(C)
mktemp(S)
units(C)
units(C)
unlink(S)
Jocking(S)
umount(S)
pack(C)
lsearch{S)
touch(C)
make(CP)
'ync(C)
'ync(S)
strlwr(DOS)
strupr(DOS)
lint(CP)
diction(CT)
du(C)
exp!ain(CT)
checkmm(CT)
clock(S)
'u(C)
nnuser(C)
id(C)
Setuid(S)
cuserid{S)

1-47

Permuted Index

/getgid, getegid: Gets real user, effective user, real/
environ: The userenvironment.

getpw: Gets password for a given user ID. • • • • • •
newgrp: Logs userinto anewgroup.

ulimit: Gets and sets user limits.
logname: Finds login name of user. • • • • . • •

group/ /Gets real user, effective user, real group, and effective
the user a super-user or another user. su: Makes

in the utmp file of the current user. ttyslot: Finds the slot
write: Writes to another user.

finger: F'tnds information about users. • • • • • • • •
wall: Writestoall users . • • • • • • • •

statistics. ustat: Gets file system •
driven system administration utility. sysadmsh: Menu

modification times. utime: Sets file access and
utmp, wtmp: Formats of utmp and wtmp entries.

endutent, utmpname:Accesses utmpfile entry. • • • • •
ttyslot: Finds the slot in the utmp file of the current user.

wtmp entries. utmp, wtmp: Formatsofutmp and
entry. endutent, utmpname:Accessesutmpfile •

forwork. uucico: Scan the spool directory
directory. unclean: Clean-uptheuucp spool

Administers UUCP control files. uuinstall:
uusub: Monitor uucp network. • • • • •

unclean: Clean -up the uucp spool directory. • • • •
control. uustat: uucp status inquiry and job o •

files. uuinstall: Administers UUCP control
file copy. uuto, uupick: PublicXENIX-to-XENIX

job control. uustat: uucp status inquiry and
uusub: Monitoruucp network. • o

XENIX-to-XENIXfilecopy. uuto, uupick: Public • • • • • •
XENIX. uux:: Executes command on remote

val: Validates an SCCSfile.
val: Validates an SCCS file.

assert: Helps verify validity of program.
abs: Returns an integer absolute value. • • • • • o • •

Retumswith anonzero exit value. false: • • • • •
ceil, fmod: Performs absolute value, floor, ceiling and/ /fabs,

getenv: Gets value for environment name.
labs: Returns the absolute value of along integer.

putenv: Changes or adds value to environment. • • •
true: Returns with a zero exit value. • • • • . . • • • •

varargs: variable argument list.
varargs: variable argument list. • • • .

TZ: Time zone environment variable. • • • • • • • • .
Gets option letterfromargument vector. getopt: . • • • . . .

display editor. vi, view, vedit:Invokes a screen-oriented
assert: Helps verifyvalidityofprogram.

red: Invokes a restricted version of. • • • • • •
sccsdiff: Compares two versions of an SCCS file.

formatted output of a/ vprintf, vfprintf, vsprintf: Prints
screen-oriented display editor. vi, view, vedit: Invokes a

1-48

sttr, Setstheoptionsforthe video monitor. • • • •
screen -oriented display/ vi, view, vedit: Invokes a •

vmstat. Reports virtual memory statistics.

getuid(S)
environ(M)
getpw(S)
newgrp(C)
ulimit(S)
logname(S)
getuid(S)
'u(C)
tty,lot(S)
write(C)
finger(C)
wall(C)
ustat(S)
'Y'"dm'h(C)
utime(S)
utmp(M)
getut(S)
tty,Jot(S)
utmp(M)
getut(S)
uucico(C)
uuclean(C)
uuin,tall(C)
uusub(C)
uuclean(C)
uustat(C)
uuinstall(C)
uuto(C)
uustat(C)
uusub(C)
uuto(C)
uux(C)
va!(CP)
va!(CP)
as'ert(S)
ab,(S)
fa!,e(C)
ftoor(S)
getenv(S)
!ab,(DOS)
putenv(S)
true(C)
varargs(S)
varargs(S)
tz(M)
getopt(S)
vi(C)
assert(S)
red(C)
'cc,diff(CP)
vprintf(S)
vi(C)
'tty(HW)
vi(C)
v1mtat(C)

statistics. vmstat: Reports virtual memory
file system: Fonnat of a system volume. . . . • • . • •

Prints formatted output of a/ vprintf, vfprintf, vsprintf:
output of a/ vprintf, vfprintf, vsprintf: Prints formatted

background processes. wait: Awaits completion of
to stop or terminate, wait: Waits fora child process

sigsem: Signals a process waiting on a semaphore. • . •
stop or terminate. wait: Waits for a child process to . •

checkS-access to a resource/ waitsem, nbWaitSem: Awaits and
ftw: Walks a file tree. • . • • •

wall: Writes to all users.
characters. we: Counts lines, words and

whodo: Determines who is doing what. • • • • • • • • • •
what. whodo: Determines who is doing

channap: Generate troff width files and catab file.
hyphen: Finds hyphenated words. • • • • •

Scan the spool directory for work. uucico:
cd: Changes working directory,

chdir: Changes the working directory,
Get the pathname of current working directory. getcwd:

pwd: Prints working directory name. •
fputc, fputchar: Write a character to a stream.

write: Writes to a file.
write: Writes to another user,

outp: Writes a byte to an output port.
console. putch: Writes a character to the • •

putpwent: Writes a password file entry.
write: Writes to a file. • • • •
wall: Writes to all users.

write: Writes to another user.
a fileregion forreadingor writing. /Locks or unlocks

open: Opens file for reading or writing. . • • • • •
a file for shared reading and writing. so pen: Opens

utmp, wtmp: Fonnats ofutmp and v.rtmp entries.
entries. utmp, wtmp: Formats ofutmp and wtmp

commands. xargs: Constructs and executes
Assembler. asx: XENIX8086/186/286/386

masm: Invokes the XENIX assembler.
boot: XENIXbootprogram.

intra: Introduces XENIXcommands.
commands. intra: Introduces XENIXDevelopment System

netutil: Administers the XENIX network.
config: Configures a XENIX system.

cu: Calls another XENIX system.
Executes commands on a remote XENIX system. remote:

Prints the name of the current XENIX system. uname:
uname: Gets name of current XENIX system.

rep: Copies files across XENIXsystems.
dos]d: XENIX to MS-DOS cross linker.

uux: Executes command on remote XENIX. . . . • • • • • •
uuto, uupick: Public XENIX-to-XENIXfilecopy.

entries from files. xlist, f:x1ist: Gets name list
programs. xref: Cross-references C
programs. xstr: Extracts strings from C

functions. bessel, jO, jl, jn,)10, yl, yn: Performs Bessel •

Permuted Index

vmstat(C)
filesystem(F)
vprintf(S)
vprintf(S)
wait(C)
wait(S)
sigsem(S)
wait(S)
waitsem(S)
ftw(S)
wall(C)
wo(C)
whodo(C)
whodo(C)
channap(CT)
hyphen(CT)
uucico(C)
cd(C)
chdir(S)
getcwd(S)
pwd(C)
fputc(DOS)
write(S)
write(C)
outp(DOS)
putch(DOS)
putpwent(S)
write(S)
wall(C)
write(C)
locking(S)
open(S)
sopen(DOS)
utmp(M)
utmp(M)
xargs(C)
asx(CP)
masm(CP)
boot(HW)
Intra(C)
Intro(CP)
netutii(C)
config(C)
cu(C)
remote(C)
uname(C)
uname(S)
rep(C)
dosld(CP)
uux(C)
uuto(C)
xlist(S)
xm!(CP)
xstr(CP)
bessel(S)

I-49

Pennuted Index

1-50

bessel, jO, jl, jn, yO, yl, yn: Performs Bessel/ • •
compiler-compiler. yacc:Invokesa • • • • • •

yes: Prints string repeatedly.
bessel, jO, jl, jn, yO, yl, yn: PerformsBesselfunctions.

true: Returns with a zero exit value. • • • • • •
TZ: Time zone environment variable.

bessel(S)
yacc(CP)
yes(C)
bessel(S)
true(C)
tz(M)

·�.
i

·..__/

04-01-87

SC0-512-210-034

