—
/ .

XENIX®System V

Operating System

User’s Guide

O

Information in this document is subject to change without notice and does not represent a
commitment on the part of The Santa Cruz Operation, Inc. nor Microsoft Corporation.
The software described in this document is furnished under a license agreement or
nondisclosure agreement. The software may be used or copied only in accordance with
the terms of the agreement. It is against the law to copy this software on magnetic tape,
disk, oranyother medium for any purpose other than the purchaser’s personal use,

Portions © 1980, 1981, 1982, 1983, 1984, 1985, 1986, 1987 Microsoft Corporation.
Allrightsreserved.

Portions © 1983, 1984, 1985, 1986, 1987 The Santa Cruz Operation, Inc.
Allrightsreserved.

ALL USE, DUPLICATION, OR DISCLOSURE WHATSOEVER BY THE
GOVERNMENT SHALL BE EXPRESSLY SUBJECT TO RESTRICTIONS AS SET

“FORTHIN SUBDIVISION-(b)-(3)-(ii)) FOR RESTRICTEDRIGHTS IN COMPUTER _ __.

SOFTWARE AND SUBDIVISION (b) (2) FORLIMITED RIGHTS INTECHNICAL
DATA,BOTHA S SET FORTHINFARS52.227-7013.

Thisdocument wastypesetwithan IMAGEN® 8/300LaserPrinter.

Microsoft, MS-DOS, and XENIXare ttademarks of Microsoft Corporation.
IMA GENisaregistered trademark of IMA GEN Corporation.

SCO Document Number: XG-4-1-87-4.0

o

Acknowledgments

This manual builds on the writing of many others. In many cases, the con-
tent here is identical, in whole or in part, to papers and manuals written at
Bell Laboratories. In particular, Chapters 2isadapted from papers written
by Brian Kernighan. Chapter 3 is adapted from a document written by
Kurt Shoens at the University of California at Berkeley. Chapter 4 is
adapted from documentswritten by G. A. Snyder, J. R. Mashey, and S. R.
Bourne. Chapter 6is from a paper written by Robert Morris and Lorinda
Cherry. The work of those mentioned above, and countless others, is
gratefully acknowledged.

Contents

BAR B WDONOLWLLL
OVONOANDIDLON R

DRSS
oNAnMAhLRNR

N
O

4.10
4.11
4.12
4.13

Introduction

Overview 1-1

AboutThisGuide 1-1

WhereTo Find MoreInformation 1-1
Notational Conventions 1-3

vi: A Text Editor

Introduction 2-1
Demonstration 2-1

EditingTasks _2-17 :
Solving Common Problems 2-54 T T

SettingUp Your Environment 2-55
Summaryof Commands 2-61

mail ___________________ —_——

Introduction 3-1

Demonstration 3-2

Basic Concepts 3-4

Usingmail 3-9

Commands 3-14

Leaving Compose ModeTemporarily 3-23
SettingUp Your Environment: The .mailrc File 3-27
UsingAdvanced Features 3-31

Quick Reference 3-34

The Shell

Introduction 4-1

Basic Concepts 4-1

Shell Variables 4-10

The Shell State 4-16

A Command’s Environment 4-17
Invokingthe Shell 4-18

Passing Arguments to Shell Procedures 4-19
Controlling the Flow of Control 4-21

Special Shell Commands 4-33

Creation and Organization of Shell Procedures 4-36
More AboutExecution Flags 4-38

Supporting Commands and Features 4-38
Effective and Efficient Shell Programming 4-45

4.14 ShellProcedure Examples 4-49
4.15 Shell Grammar 4-57

be: A Calculator

Introduction 5-1
Demonstration 5-1
Tasks 5-4

Langiage Reference 5-14

PERTEY

Building a Communication System

Introduction 6-1
WhatYouNeed 6-2
Installing A DirectWire 6-2
InstalingaModem 6-4
Installinga uucp System 6-9
Maintainingthe System 6-29
Details of Operation 6-33

Nouhhwoek

The C-Shell

Introduction 7-1

Invokingthe C-shell 7-1

Using Shell Variables 7-2

Usingthe C-Shell History List 7-4
UsingAliases 7-7
RedirectingInputand Output 7-8
CreatingBackground and Foreground Jobs 7-9
UsingBuilt-In Commands 7-10
CreatingCommand Scripts 7-12
Usingthe argv Variable 7-12
SubstitusingShell Variables 7-13
UsingExpressions 7-15

Usingthe C-Shell: A Sample Script 7-16
UsingOtherControlStructures 7-19
Supplying Input to Commands 7-20
CatchingInterrupts 7-20
UsingOther Features 7-21
StartingaLoop at a Terminal 7-21
UsingBraces with Arguments 7-22
Substituing Commands 7-23
SpecialCharacters 7-23

NNNNNNNNNNNNNNN 9 000000 & Luny o

[Y T TG-S R K- X7 P RIS

nNHpLORO

NNNNaN
=
RRBERIH

8 Using The Visual Shell
8.1 Whatisthe Visual Shell? 8-1
8.2 Getting Started with the Visual Shell 8-1

00 oo
&~ w

ddd4netdig
VOO NN

The Visual Shell Screen 8-2
Visual Shell Reference 8-6

ed

Introduction A-1

Demonstration A-1

Basic Concepts A-2

Tasks A-3

Context and Regular Expressions A-29
Speeding Up Editing A-44

Cutting and Pastingwith the editor A-48
EditingScripts A-50

Summary of Commands A-51

i -

Chapter1

Introduction

1.1 Overview 1-1
1.2 AboutThisGuide 1-1
1.3 WhereTo Find More Information 1-1

1.4 NotationalConventions 1-3

Introduction

1.1 Overview

This guide introduces several basic XENIX facilities, including mail, text
editors,and powerful operatingenvironments called “‘shells.”

1.2 AboutThis Guide

This guideis organized as follows:

Chapter 1, “Introduction,” gives an introduction and overview of the
XENIX system. It also gives a list of conventions used throughout this
guide.

Chapter2, “vi,” explains howto use the screen editor, vi(C).

Chapter3, “mail,” describes the XENIX mail (C) facility and explains how
to send andreceive mail.

Chapter 4, “The Shell,” describes use of the shell, (sh (C)),C(;m_m_a_n(;
interpreter and how to write procedures that can be executed by sh.

Chapter 5, “be: A Calculator,” explains how to use be(C) a sophisticated
calculator program.

Chapter 6, “Building a Communications System,” explains how to setup a
system to permit communication between XENIX and/or UNIX systems
usingdial-up communication lines.

Chapter 7, “The C-Shell,” describes how to use e¢sh(C). It covers the syn-
tax and function of C-shell, (¢esh (C)), commands and features, and how
to create shell procedures.

Chapter 8, ‘“Using The Visual Shell,” describes the use and behavior of the
Visual Shell, (vsh (C)), which is a menu-driven XENIX shell. This
chapterassumesthe reader is familiar with some general XENIX concepts,
butvshcanbe used by first-time users.

Appendix A “ed” explains how to use the editor, ed(C).

1.3 Where To Find More Information

This guide does not attempt to give information about installing, manag-
ing, and maintaining the system, nor does it discuss document prepara-
tion, software development, ormany of the specialized utilitiesavailable in
other XENIX system products.

1-1

XENIX User’s Guide

You can find more information on these subjects in the guides found in the
followingbinders:

“Run Time Environment”

TheXENIX Installation Guide describes how to install and set up
the XENIX system on your computer.

Introduction to XENIX introduces the XENIX system by present-
ingkeyconceptsin a tutorialformat.

TheXENIX Operations Guide explains how to manage and main-
tain the system.

Hardiware Dependent Reference serves as a comprehensive com-
mand reference, for Hardware Dependent (HW) commands.

“User’sReference”

The XENIX User's Reference serves as a comprehensive,
hardware independent, Operating System, command reference.
A concise but complete description of each command is avail-
able here. It includes manual pages for Commands(C),
Miscellaneous(M), and File Formats(F).

“Programmer’s Reference”

The XENIX Programmer’s Reference serves as a comprehensive
Development System command reference. It includes the
manual page reference sections for Programming
Commands(CP), System Calls(S), and DOS Routines(DOS).
Thisguideis part of the optional XENIX Development System.

“Programmer’s Guide I”’

1-2

The XENIX Programmer’s Guide discusses how to use the pro-
gramming tools available in the XENIX programming environ-
ment. This guide is part of the optional XENIX Development
System.

"C Language Reference" describes the various elements of the C
programminglanguage. Itisintended as a reference for program-
mers already familiar with C or another language. This guide is
part of the optional XENIX Development System.

Introduction

“Programmer’s Guide IT”

. C User’s Guide discusses writing C language programs that inter-
('\} face to the XENIX operatingsystem. It provides reference to sys-
: tem calls, subroutines, and file formats. This guide is part of the

optional XENIX Development System.

CLibrary Guide provides information about the standard include
files, tells how to build user interfaces for C programs, provides a
full description of error messages, and provides information on
cross development including a list of library routines common to
both XENIX and DOS. This guide is part of the optional XENIX
Development System.

Macro Assembler (MASM) User’s Guide explains how to create
and debug assembly language programs using the Macro Assem-
bler, MASM, (masm (CP)). This guide is part of the optional
XENIX Development System.

Macro Assembler (MASM) Reference Manual describes the usage
and input syntax of the Macro Assembler, MASM, (masm
(CP)). This. guide is part of the optional XENIX Development
System.

| Q “Text Processing Guidc”

The XENIX Text Processing Guide explains how to use the text
processing and text formatting tools and includes the manual
pages for Text Commands(CT). It is a part of the optional
XENIX Text Processing System.

1.4 NotationalConventions

Thisguide uses anumber of notational conventions to describe the syntax
of XENIX commands:

Initial Capitals Initial Capitals indicate thename of acommand
or mode. When a command is introduced it is
followed by the keystroke that invokes it, (i.e.

the Insert (i) command).
boldface Boldface indicates a command, option, flag, or
s program name to be entered as shown.
L } Keystrokes are boldfaced when they indicate a
e command to enter as shown, (i.e. enter the i

command and pressRETURN).

Boldfaceindicates the name of alibrary routine.

1-3

XENIX User’s Guide

(To find more information on a given library
routine consult the “Alphabetized List” in your
XENIX Reference Manual for the manual page
that describesit.)

italics Italics indicate a filename. This pertains to
library include filenames (i.e. stdio.h), as well
as,otherfilenames (i.e. /ezc/ztys).

Italics indicate a placeholder for a command
argument. When entering a command , a place-
holder must be replaced with an appropriate
filename, number, or option.

Italics indicate a specific identifier, supplied for
variables and functions, when mentioned in
text.

Italics indicate a reference to part of an exam-
ple.

Italics indicate emphasized words or phrases in
text.

[1 Brackets indicate that the enclosed item is
optional. If you do not use the optional item,
the program selects a default action to carry out.

Brackets indicate the position of the cursor in
text examples.

Ellipsesindicate that you can repeat the preced-
ingitem anynumberof times.

Vertical ellipses indicate that a portion of a pro-
gram example isomitted.

Quotation marks indicate the first use of a
technical term.

Quotation marks indicate areference to a word
rather than a command.

1-4

Chapter2
vi: A Text Editor

2.1 Introduction 2-1

2.2 Demonstration 2-1
2.2.1 Enteringthe Editor 2-2
2.2.2 InsertingText 2-3
2.2.3 Repeatinga Command 2-4
2.2.4 UndoingaCommand 2-4
2.2.5 Movingthe Cursor 2-5
T T 226 Deleting2=6— T e
.2.7 SearchingforaPaitern 2-10
.8 Searchingand Replacing 2-11
.9 Leavingvi 2-14
.10 Adding Text From AnotherFile 2-14
.11 LeavingviTemporarily 2-15
.12 Changing YourDisplay 2-15
.13 Cancelingan EditingSession 2-16

@

NNNI\)NN

N
w
o

itingTasks 2-17

.1 Howto Enterthe Editor 2-17

.2 MovingtheCursor 2-18

.3 MovingAroundinaFile:Scrolling 2-21

.4 InsertingTextBeforethe Cursor:iandI 2-22
Appending Afterthe Cursor:aand A 2-22
CorrectingTyping Mistakes 2-23

7 Openinga NewLine 2-23

.8 Repeatingthe LastInsertion 2-23

.9 InsertingTextFromOtherFiles 2-23

Inserting Control Charactersinto Text 2-28

Joining and BreakingLines 2-28

Deleting a Character:xand X 2-28

Deletinga Word:dw 2-29

Deletinga Line: Danddd 2-29

Deleting an Entire Insertion 2-30

Deleting and ReplacingText 2-30

Moving Text 2-34

Searching:/and ? 2-38

Searching and Replacing 2-40

Pattern Matching 2-43

21 Undoinga Command:u 2-45

.22 RepeatingaCommand:. 2-47

[TN I gy T B N
SV NONMPWLNR=O

O

Nwwwwwwwwwwmwwwwmwmwmwm [SESESESESNNESY.
l\)

wmwwwmmwwwmmwmmmwwwmwm

2.3.23 Leavingthe Editor 2-48

2.3.24 Editinga Series of Files 2-49

2.3.25 Editinga New File Without Leaving the Editor 2-51
2.3.26 Leaving the Editor Temporarily: Shell Escapes 2-52
2.3.27 Performinga Series of Line-Oriented Commands: Q 2-53
2.3.28 Finding Out What File Yov’reIn 2-53

2.3.29 FindingOut WhatLine You’reOn 2-54

2.4 SolvingCommon Problems 2-54

2.5 SettingUp Your Environment 2-55
2.5.1 Settingthe Terminal Type 2-56
.2 Setting Options: The set Command 2-56
.3 Displaying Tabs and End-of-Line:list 2-57
.4 Ignoring Case in Search Commands: ignorecase 2-58
.5 Displaying Line Numbers: number 2-58
.6 Printingthe Numberof Lines Changed: report 2-58
.7 Changing the Terminal Type:term 2-58
.8 Shortening Error Messages:terse 2-59
.9 TurningOff Warnings: warn 2-59
.10 Permitting Special Charactersin Searches: nomagic 2-59
.11 Limiting Searches: wrapscan 2-59
.12 Turning on Messages: mesg 2-60
13 Customizing Your Environment: The .exrc File 2-60

NNMNNNNNNMNM
U\UthUlUHJIUIUlU\U\U\Ln

2.6 Summaryof Commands 2-61

vi: A Text Editor

2.1 Introduction

Any ASCII text file, such as a program or document, maybe created and
modified using a text editor. There are two text editors available on the
XENIX system, ed and vi. edis discussed in Appendix A ofthis manual.

vi (which standsfor‘visual’”’) combinesline-oriented and screen-oriented
features into a powerful set of text editing operations that will satisfy any
text editingneed.

The first part of this chapter is a demonstration that gives you some hands-
on experience with vi. Itintroducesthe basic concepts you must be familiar
with before you can really learn to use vi, and shows you how to perform
simple editing functions. The second part is a reference that shows you
how to perform specific editing tasks. The third part describes how to set
up your vienvironment and how to set optional features. The fourth part s
asummary of commands.

- -———-Because viissuch-apowerfuleditor;ithasmanymore commands-thanyou

O

can learn at onesitting. If youhave not used a text editor before, the best
approach is to become thoroughly comfortable with the concepts and
operations presented in the demonstration section, then refer to the
second part for specific tasks you need to perform. All the steps needed to
perform a given task are explained in each section, so some information is
repeated several times. When you are familiar with the basic vicommands
youcan easilylearn how to use the more advanced features.

If you have used a text editor before, you may want to turn directly to the
task-oriented part of this chapter. Begin by learning the features you will
use most often. If you are an experienced user of vi you may prefer to use
vi(C)in the XENIX Reference Manualinstead of this chapter.

This chapter coversthe basic text editingfeaturesof vi. For more advanced
topics, and features related to editing programs, refer to vi(C) in the
XENIX Reference Manual.

2.2 Demonstration

The following demonstration gives you hands-on experience using vi, and
introduces some basic concepts that you must understand before youcan
learn more advanced features. Youwill learn howto enter and exitthe edi-
tor, insert and delete text, search for patterns and replace them, and how
to insert text from other files. This demonstration should take one hour.
Remember that the best way to learn vi is to actually use it, so don’t be
afraid to experiment.

Beforeyou start the demonstration, make sure that your terminal hasbeen
properly setup. Seesection 2.5.1, “Setting the Terminal Type” , for more
information about setting up yourterminal for use with vi.

XENIX User’s Guide

2.2.1 Entering the Editor
To enterthe editor and create a file named temp, enter:
vi temp

Your screen will look like this:

"temp" [New file]

Note that we show a twélve-line screen to save space. In reality, vi uses
whatever size screen youhave.

You are initially editing a copy of the file. The file itself is not altered until
you save it. Saving a file is explained later in the demonstration. The top
line of your display is the only line in the file and is marked by the cursor,
shown above as an underline character. In this chapter, when the cursor is
on a character that character will be enclosed in square brackets ([]).

The line containing the cursor is called the current line.

The lines containing tildes are not part of the file: they indicate lines on the
screen only, notreal lines in the file.

2-2

O

vi: A TextEditor

2.2.2 Inserting Text

Tobegin, create some text in the file femp by using the Insert (i) command.
To do this, press:
i

Next, enter the following five lines to give yourself some text to experiment
with. Press RETURN at the end of each line. If you make a mistake, use the
BKSP key to erase the errorand enterthe word again.

Files contain text.
Textcontainslines.
Lines contain characters. =
Characters form words.
Words form text.

Press the ESCAPE key (abbreviated ESC) when you are finished.

Like most vi commands, the i command is not shown (or “echoed”) on
your screen. The command itself switches you from Command mode to
Insertmode.

When you are in Insert mode every character you enter is displayed
on the screen. In Command mode the characters you enter are not
placed in the file as text; they are interpreted as commands to be
executed on the file. If you are not certain which mode you are in,
press ESC until you hear the bell. When you hear the bell you

are in Command mode.

Once in Insert mode, the characters you enter are inserted into the file;
they are notinterpreted as vi commands. To exit Insert mode and reenter
Command mode you will always press ESC. This switchingbetween modes
occurs oftenin vi, and it isimportant to get used to it now.

2-3

XENIX User’s Guide

2.2.3 Repeating a Command

Next comes a command that you will use frequently in vi: the Repeatcom-
mand. The Repeat command repeats the most recent Insert or Delete
command. Since we have just executed an Insert command, the Repeat
command repeats the insertion, duplicating the inserted text. The Repzat
command is executed by entering a period (.) or “dot” . So, to add five
more lines of text, enter “.”. The Repeat command is repeated relative to
the location of the cursor and inserts text below the current line.
(Remember, the current line is always the line containing the cursor.)
Afteryouenterdot (.), your screen will looklike this:

Files contain text.
Textcontainslines.
Linescontain characters.
Characters form words.
Words form text.
Filescontain text.

Text contains lines.
Linescontain characters.
Characters form words.
Words form text.

2.2.4 Undoing a Command

Another command which is very useful (and which you will need often in
thebeginning)is the Undo (u) command. Press

u

and notice that the five lines you just finished inserting are deleted or
“undone”.

2-4

vi: A TextEditor

Files contain text.
Textcontainslines.
Lines contain characters.
Characters form words.
Words form text. -

Nowenter:

u

again, and the five lines arereinserted! This undo feature can be very use-
fulinrecoveringfrominadvertent deletions orinsertions.

2.2.5 Moving the Cursor

Now let’s learn how to move the cursor around on the screen. In addition
to the arrow keys, the following letter keys also control the cursor:

h Left

1 Right
k Up

j Down

The letter keys are chosen because of their relative positions on the key-
board. Remember that the cursormovement keys only work in Command

mode.

Try moving the cursor using these keys. (First make sure you are in Com-
mand mode by pressingthe ESC key.) Then, enter the Hcommand to place
the cursor in the upper left corner of the screen. Then enter the L com-
mand tomove to thelowestlineonthe screen. (Note that caseissignificant
in our example: L moves to the lowestline on the screen; whilel moves the
cursor forward one character.) Next, try moving the cursor to the last line
in the file with the goto command, G. If youenter 2G, the cursor moves to
the beginning of the second line in the file; if you have a 10,000 line file, and
enter 8888G, the cursor goes to the beginning of line 8888. (If you have a
600line file and enter 800G the cursor does not move.)

2-5

XENIX User’s Guide

These cursor movement commands should allow you to move around well
enough for this demonstration. Other cursor movement commands you
mightwantto tryout are:

» o o g

Moves forward a word
Backsup aword
Moves to the beginning of aline

Movesto the end of aline

You can move through manylines quickly with the scrolling commands:

Ctrl-u
Ctrl-d
Ctrl-f

Ctrl-b

2.2.6 Deleting

Scrollsup 1/2 screen
Scrolls down 1/2 screen
Scrolls forward one screenful

Scrollsbackward one screenful

Now that we know how to insert and create text, and how to move around
within the file, we are ready to delete text. Many Delete commands can be
combined with cursor movement commands, as explamed below. The
most common Delete commandsare:

dd

dw

ds

do

2-6

Deletes the current line (the line the cursor is on), regard-
less of the location of the cursor in the line.

Deletes the word above the cursor. If the cursor is in the
middle of the word, deletes from the cursor to the end of
the word.

Deletes the character above the cursor.

Deletes from thecursorto the end of the line.

Deletes from the cursorto the end of the line.

Deletes from the cursor to the start of the line.

Repeats the last change. (Use this only if your last com-
mand was a deletion.)

O

O

vi: A Text Editor

To learn how all these commands work, we will delete various parts of the
demonstration file. To begin, press ESC to make sure you are in Command
mode, thenmovetothefirstlineof thefileby entering;:

1G
At first, your file should look like this:

[Fliles contain text.
Textcontains lines.
Lines contain characters.
Characters form words.
Words form text.

Files contain text.

Text contains lines.
Lines contain characters.

-~———— —————{-Charactersformwordsz-—--—-—

Words form text.

To deletethe firstline, enter:
dd

Yourfileshould nowlook like this:

[Tlextcontainslines.
Lines contain characters.
Characters form words.
Words form text.

Files contain text.

Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

Delete the word the cursor is sitting on by entering:

dw

2-7

XENIX User’s Guide

After deleting, your file shouldlook like this:

[clontains lines.

Lines contain characters.
Characters form words.
Words form text.

Files contain text.

Text contains lines.
Linescontain characters.
Characters form words.
Words form text.

You can quickly delete the character above the cursor by pressing:
X

This leaves:

[o]ntainslines.

Lines contain characters.
Characters form words.
Words form text.

Files contain text.

Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

Now enter a w command to move your cursor to the beginning of the word
lineson the first line. Then, to delete to the end of the line, enter:

ds$

2-8

vi: A Text Editor

Your filelooks like this:

ontains_

Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

Files contain text.

. Text contains lines.

: Lines contain characters.
Characters form words.
Words form text.

To delete all the characters on the line before the cursor enter:
do

N Thisleaves asingle spaceon theline:
(

Lines contain characters.
Files contain text.

Text contains lines.
Characters form words.

i Words form text.

Lines contain characters.
Characters form words.
Words form text.

2-9

XENIX User’s Guide

For review, let’s restore the first two lines of the file.
Pressito enter Insert mode, then enter:

Files contain text.
Textcontainslines.

Press ESC to go back to Command mode.

2.2.7 Searching for a Pattern
You can search forward for a pattern of characters by entering a slash (/)
followed by the pattern you are searching for, terminated by a RETURN.
For example, make sure you are in Command mode (press ESC), then
press

H
to move the cursorto the top of the screen. Now, enter:

/char

Do not press RETURN yet. Your screen should look like this:

Files contain text.
Textcontainslines.
Linescontain characters.
Characters form words.
Words form text.
Filescontain text.
Textcontainslines.
Lines contain characters.
Characters form words.
Words form text.

/char_

Press RETURN. The cursor moves to the beginning of the word characters
on line three. To search for the next occurrence of the pattern char, press
n (asin “next”). This will take you to the beginning of the word characters
on the eighth line. If you keep pressing ““n” vi searches past the end of the
file, wraps around to the beginning, and again finds the char on line three.

2-10

vi: A Text Editor

Note that the slash character and the pattern that you are searching for
appear atthebottom of the screen. This bottom lineis the vi status line.

The status line appears at the bottom of the screen.

It is used to display information, including patterns you
are searching for, line-oriented commands (explained
later in this demonstration), and error messages.

For example, to get statusinformation about the file, press Ctrl-g. Your
screen should look like this:

Files contain text.

Text contains lines.

Lines contain characters.

Characters form words.
Words form text.

) Files contain text.

Text contains lines.

Lines contain [c]haracters.

Characters form words.

Words form text.

"temp" [Modified]line 4 of 10 -~4% --

The status line on the bottom tells you the name of the file you are editing,
whetherit has been modified, the currentline number, the number oflines
in the file, and your location in the file as a percentage of the number of
linesin the file. The statusline disappears as you continue working.

2.2.8 Searching and Replacing

Let’s say you want to change all occurrences of text in'the demonstration
(~ file to documents. Rather than search for text ’, then delete it and insert
documents, you can do it all in one command. The commands you have
learned so far have all been screen- oriented. Commands that can perform

N~

(

2-11

XENIX User’s Guide

more than one action (searching and replacing) are line-oriented com-
mands.

Screen-oriented commands are executed at the location of the
cursor. You do not need to tell the computer where to perform
the operation; it takes place relative to the cursor. Line-oriented
commands require you to specify an exact location (called an
“address”) where the operation is to take place.
Screen-oriented commands are easy to enter, and provide
immediate feedback; the change is displayed on the screen.
Line-oriented commands are more complicated to enter, but
they can be executed independent of the cursor, and in more
than one place in a file at a time.

All line-oriented commands are preceded by a colon which acts as a
prompt on the status line. Line-oriented commands themselves are
entered on thisline and terminated with a RETURN.

In this chapter, all instructions for line-oriented
commands will include the colon as part of the command.

To change text to documents, press ESC to make sure you are in Command
mode, then enter:

:1,$s/text/documents/g
This command means “From the first line (1) to the end of the file ($), find

text and replace it with documents (s/text/documents/) everywhere it
occurs on each line (g)”.

2-12

vi: A TextEditor

PressRETURN. Yourscreen should looklikethis:

L Filescontain documents.
o Text containslines.
Lines contain characters.
Characters form words.
Words form documents.
Filescontain documents.
Text contains lines.

Lines contain characters.
Characters form words.
[W]ords form documents.

-+-—--=-- —--Note that Fextinlines two-and eight-wasnot changed-Case issignificant-in- - - -
searches.

Just for practice, use the Undo command to change documents back to
text. Press:

IO
;

Yourscreennowlookslike this:

[Fliles contain text.

Text contains lines.
Lines contain characters.
Characters form words.
Words form text.
Filescontain text.

Text contains lines.
Lines contain characters.
Charactersform words.
Words formtext.

O

2-13

XENIX User’s Guide

2.2.9 Leaving vi
All of the editing you have been doing has affected a copy of the file, and
not the file named remp that you specified when youinvoked vi. To save the
changes you have made, exit the editor and return to the XENIX shell,
enter:

X

Remember to press RETURN. The name of the file, and the number of
lines and characters it contains are displayed on the statusline:

"temp" [New file]101lines, 214 characters

Then the XENIX prompt appears.

2.2.10 AddingTextFrom AnotherFile

In this section we will create anew file, and insert text into it from another
file. First, create a new file named practiceby entering:

vi practice
This file is empty. Let’s copy the text from temp and put it in practice with
theline-oriented Read command. Press ESC to make sure you are in Com-
mand mode, then enter:

r temp

Yourfile should look like this:

[Flilescontaintext.

Text contains lines.
Linescontaincharacters.
Charactersform words.
Wordsform text.

Files contain text.

Text containslines.
Lines contain characters.
Characters form words.
Words form text.

2-14

- vi: A TextEditor

The text from temp has been copied and put in the current file practice.
There is an empty line at the top of the file. Move the cursor to the empty
line and delete it with the dd command.

2.2.11 Leaving vi Temporarily

vi allows you to execute commands outside of the file you are editing, such
asdate. To find out thedate and time, enter:

:!date

Press RETURN. This displays the date, then prompts you to press RETURN
to reenter Command mode. Go ahead and tryit. Your screenshouldlook
similar to this:

Files contain text.

Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

Files contain text.

Text contains lines.
Lines contain characters.
Charactersform words.
Words form text.

:!date
Mon Jan 916:33:37 PST 1985
[Hitreturn to continue]

2.2.12 Changing Your Display

Besides the set of editing commands described above, there are a number
of options that can be set either when you invoke vi, or later when editing.
These optionsallow you to control editing parameters such as line number
display, and whether or not case is significant in searches. In this section
we will learn howto turn on linenumbering, and how to look at the current
optionsettings.

2-15

XENIX User’s Guide

To turn on automatic line numbering, enter:

:setnumber

Press RETURN. Your screen is redrawn, and line numbers appear to the
left of thetext. Your screen looks like this:

Files contain text.

Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

Files contain text.

Text contains lines.
Lines contain characters.
Charactersform words.
Words form text.

OV UNHLWLNOE

U

i

Youcan geta completelist of the available options by entering:

set all
and pressing RETURN. Setting these options is described in section 2.5
“Setting Up Your Environment’, but it is important that you be aware of
their existence. Depending on what you are working on, and your own

preferences, you will want to alter the default settings for many of these
options.

2.2.13 Canceling an Editing Session

Finally, to exit vi without savingthe file practice, enter:

:q!

and press RETURN. This cancels all the changesyou have made to practice
and, since it is a new file, deletes it. The prompt appears. If practice had
already existed before this editing session, the changes you made would be
disregarded, but the file would still exist.

2-16

O

vi: A TextEditor

This completes the demonstration. You havelearned how to getinand out
of vi, insert and delete text, move the cursor around, make searches and
replacements, how to execute line-oriented commands, copy text from
otherfiles, and cancel an editing session.

There are many more commands to learn, but the fundamentals of using vi
have been covered. The following sections will give you more detailed

information about these commands and about vi’s other commands and
features.

2.3 Editing Tasks
The following sections explain how to perform common editing tasks. By
followingthe instructions in each section you will be able to complete each

task described. Features that are needed in several tasks are described
eachtimetheyare used, so some information isrepeated.

2.3.1 HowtoEntertheEditor
There are several ways to begin editing, depending on what you are plan-
ningto do. This section describes how to start, or “invoke” the editor with

one filename. To invoke vi on a series of files, see section 2.3.24, “Editinga
Series of Files”.

Witha Filename

The most common way to enterviis to enter the command vi and the name
of the fileyou wish to edit:

vi filename

If filename does not already exist, a new, emptyfile iscreated.

Ata ParticularLine

You can also enter the editor at a particular place in a file. For example, if
you wish to start editing a file at line 100, enter:

vi +100 filename

The cursoris placed at line 100 of filename.

2-17

XENIX User’s Guide

Ata ParticularWord

If you wish to begin editing at the first occurrence of a particular word,
enter:

vi +/word filename
The cursor is placed at the first occurrence of word. For example, to begin
editingthe file temp at the the first occurrence of contain, enter:

vi +/contain temp

2.3.2 Moving the Cursor

The cursor movement keys allow you to move the cursor around in a file.
Cursor movement can only be done in Command mode.

‘Moving the Cursor By Characters: h,j k,],SPACE,BKSP

The SPACE bar and the 1key move the cursor forward a specified number
of characters. The BKSP key and the h key move it backward a specified
number of characters. If no number is specified, the cursor moves one
character. Forexample, tomovebackward four characters, enter:

4h

You can also move the cursor to a designated character on the current line.
Fmoves the cursor back to the specified character, fmoves it forward. The
cursor rests on the specified character. For example, to move the cursor
backward to the nearest p on the current line, enter:

Fp
To move the cursor forward to the nearest p, enter:

fp
The T and t keys work the same way as f and F, but place the cursor
immediately before the specified character. For example, to move the cur-

sorbackto the space nextto the nearest pin the current line, enter:

Tp

2-18

vi: A TextEditor

If the p were in the word telephone, the cursor would sit on the 4.

The cursor always remains on the same line when you use these com-
mands. If you specify a number greater than the number of characters on
theline, the cursordoesnotmovebeyond the beginningorend of thatline.

Movingthe CursorbyWords:w, W,b,B, e ,E

The w key moves the cursor forward to the beginning of the specified
number of words. Punctuation and nonalphabetic characters (such as
1@#3$% &*()_+{}[]"N'<>/) are considered words, so if a word is fol-
lowed by a comma the cursor will count the comma in the specified
number.

Forexample, your cursorrestson the firstletter of thissentence:

No, Ididn’t know hehad returned.

Ifand ydu press

6w
the cursor stops on the kin know.

W works the same way as w, but includes punctuation and nonalphabetic
characters as part of theword. Usingthe above example, if you press

6w

the cursor stops on the r in returned; the comma and the apostrophe are
included in their adjacent words.

The e and E keys move the cursor forward to the end of a specified number
of words. The cursor is placed on the last letter of the word. The e com-
mand counts punctuation and nonalphabetic characters as separate
words; E doesnot.

B and b move the cursor back to the beginning of a specified number of
words. The cursor is placed onthe first letter of the word. The b command
counts punctuation and nonalphabetic characters as separate words; B
does not. Using the above example, if the cursor is on the r in returned,
enter:

4b

and the cursor moves to the zin didn’t.

2-19

XENIX User’s Guide

Enter:
4B
andthe cursormovestothefirstd in didn’z.

Thew, W, b and B commands will move the cursor to the next line if thatis
where the designated word is, unless the current line ends in a space.

Moving the CursorbyLines
Forward: j, Ctrl-n, +,RETURN, LINEFEED, $

The RETURN, LINEFEED and + keys move the cursor forward a specified
number of lines, placing the cursor on the first character. For example, to
movethe cursor forward sixlines, enter:

6+

The j and Ctrl-n keys move the cursor forward aspecified number of lines.
The cursor remains in the same place on the line, unless there is no charac-
terin that place, in which case it moves to the last character on the line. For
example, in the following two lines if the cursorisresting on the e in charac-
ters, pressingj movesit to the period at the end of the second line:

Lines contain characters.

Text contains lines.

The dollar sign($) moves the cursor to the end of a specified number of
lines. For example, to move the cursor to the last character of the line four
lines down from the current line, enter:

4%

Backward: k, Ctrl-p

Ctrl-p and kmove the cursor backward a specified number of lines, keep-
ingit on the same place on the line. For example, to move the cursor back-
ward fourlines from the currentline, enter:

4

2-20

vi: A TextEditor

Movingthe Cursoronthe Screen: H,M, L

The H, M and L keys move the cursor to the beginning of the top, middle
andbottomlines of the screen, respectively.

2.3.3 Moving Aroundin a File: Scrolling

The following commands move the file so different parts can be displayed
on the screen. The cursor is placed on the first letter of the last line
scrolled. '

Scrolling Up Partofthe Screen: Ctrl-u

Ctrl- u scrolls up one-half screen.

- ScrollingUp the ¥ull Screen: Cto-b

Ctrl-b scrolls up afullscreen.

Scrolling Down Part of the Screen: Ctri-d

Ctrl-d scrollsdown one-half screen.

Scrolling Down a FullScreen: Ctrl-f

Ctrl-fscrolls down a full screen.

PlacingaLineatthe Topofthe Screen: z
To scroll the current line to the top of the screen, press:
Z

then press RETURN. To place a specific line at the top of the screen, pre-
cede the zwiththeline number, as in

33z
Press RETURN, and line 33 scrolls to the top of the screen. For information

on how to display line numbers, see section 2.5.5, “Displaying Line
Numbers: number”.

2-21

XENIX User’s Guide

2.3.4 Inserting Text Before the Cursor:iandI

You can begin inserting text before the cursor anywhere on a line, or at the
beginning of a line. In order to insert text into a file, you must be in Insert
mode. To enter Insert mode press:

i
The ‘i’ does not appear on the screen. Any text typed after the “i”
becomes part of the file you are editing. To leave Insert mode and reenter

Command mode, press ESC. For more explanation of modes in vi, see sec-
tion 2.2.2, “Inserting Text”.

Anywhereon aLine:i

To insert text before the cursor, use the icommand. Pressthe ikey toenter
Insert mode (the “i” does not appear on your screen), then begin entering
your text. To leave Insert mode and reenter Command mode, press ESC.
AttheBeginning oftheLine: I

Using an uppercase “I”’ to enter Insert mode also moves the cursor to the
beginning of the current line. It is used to start an insertion at the beginning
of the current line.

2.3.5 Appending Afterthe Cursor: a and A

You can begin appending text after the cursor anywhere on aline, or at the
end of aline. Press ESC to leave Insert mode and reenter Command mode.
Anywhereon aLine: a

To append text after the cursor, use the a command. Press the a key to
enter Insert mode (the “a” does not appear on your screen), then begin
entering your text. Press ESC to leave Insert mode and reenter Command
mode.

Atthe end ofa Line: A

Using an uppercase “A” to enter Insert mode also moves the cursor to the

end of the current line. It is useful for appending text at the end of the
current line.

2-22

vi: A TextEditor

2.3.6 CorrectingTyping Mista kes

If you make a mistake while you are typing, the simplest way to correct it is
with the BKSP key. Backspace across the line until you have backspaced
overthemistake, then retype the line. You can only do this, however, if the
cursor is on the same line as the error. See sections 2.3.12 through 2.3.15
for otherwaystocorrect typing mistakes.

2.3.7 Opening aNewLine

To open a new line above the cursor, press O. To open a new line below
the cursor, press 0. Both commands place you in Insert mode, and you
may begin entering immediately. Press ESC to leave Insert mode and
reenter Command mode.

You may also use the RETURN key to open new lines above and below the
cursor. To open a line abovethe cursor, move the cursor to the beginning

-of theline, pressito enterInsertmode, thenpress RETURN. (Forinforma=. _...

tion on how to move the cursor, see section 2.3.2, “Moving the Cursor”.,)
To open alinebelow the cursor, move the cursor to the end of the current
line, pressito enter Insert mode, then press RETURN.

2.3.8 Repeating the Last Insertion

Ctrl- @ repeats the last insertion. Press i to enter Insert mode, then press
Ctrl- @.

Ctrl- @ only repeats insertions of 128 characters or less. If more than 128
characterswereinserted, Ctrl- @ does nothing.

For other methods of repeating an insertion, see section 2.3.8, “Repeating
the Last Insertion”, section 2.3.9, “Inserting Text From Other Files”, and
section 2.3.22, “Repeatinga Command”.

2.3.9 Inserting Text From Other Files

To insert the contents of another file into the file you are currently editing,
use theRead (r) command. Move the cursor to the line immediately above

the place you wantthenewmaterial to appear, then enter:

ir filename
where filename is the file containing the material to be inserted, and press
RETURN. The text of filename appears on the line below the cursor, and

the cursor moves to the first character of thenewtext. Thistextis a copy;
the original filename still exists.

2-23

XENIX User’s Guide

Inserting selected lines from another file is more complicated. The
selected lines are copied from the original file into a temporary holding
place called a “buffer”, theninsertedinto the newfile.

1.

Toselect the linestobecopied, save your original file with the Write
(:w) command, but do not exit vi.

Enter:
:e filename

where filenameisthefile that contains the text you want to copy, and
pressRETURN.

Move the cursorto the firstline you wish to select.
Enter:
mk

This “marks” the firstline of text to be copied into the new file with
the letter “k”.

Move the cursor to the lastline of the selected text. Enter:
"ay’k

The lines from your first “mark’ to the cursor are placed, or
“yanked” into buffer a. They will remain in buffer a until you
replace them with other lines, or until you exit the editor.

Enter:
e#

to return to your previous file. (For more information about this
command, see section 2.3.25, “Editing a New File Without Leaving
the Editor”.) Move the cursor to the line above the place you want
thenewtextto appear, then enter:

IIap
This “puts” a copy of the yanked lines into the file, and the cursoris
placed on the first letter of this new text. The buffer still contains the
originalyanked lines.

Youcan have26buffersnamed a, b, ¢, up to and includingz. To name and
select different buffers, replace the a in the above examples with whatever
letter you wish.

2-24

O

vi: A TextEditor

You may also delete text into a buffer, then insert it in another place. For
information on this type of deletion and insertion, see section 2.3.17,
“Moving Text”.

Copying Lines From Elsewhere in the File

To copy lines from one place in a file to another place in the same file, use
the Copy (co) command.

co is a line-oriented command, and to use it you must know the line
numbers of the text to be copied and its destination. To find out the
number ofthe current line enter:

qnu

and press RETURN. Theline number and thetext of thatline are displayed
on thestatusline. To find out the destination line number, move the cursor

- to-the.ine above where youwantthe copied text to.appear.and repeat the ..

:nu command. Youcan also make linenumbers appear throughout the file
with the linenumber option. Forinformation on howto set this option, see
section 2.5.5, “Displaying Line Numbers: number”. The followingexam-
ple uses the number option to display line numbersin a file.

1[Fliles contain text.

2 Text contains lines.
3Linescontain characters.
4 Characters form words.
SWordsform text.

Using the above example, to copylines 3 and 4 and put them between lines
land?2, enter:

:3,4col

2-25

XENIX User’s Guide

Theresultis;

1Filescontain text.

2 Lines contain characters.
3[C]haractersform words.
4Text contains lines.

5 Linescontain characters.
6 Charactersform words.
7Words form text.

If you have text that is to be inserted several times in different places, you
can save it in a temporary storage area, called a “buffer”, and insert it
whenever it is needed. For example, to repeat the first line of the following
text after the last line:

[Fliles contain text.

Text contains lines.
Linescontain characters.
Charactersform words.
Words form text.

1. Move the cursor over the Fin Files. Enter the following line, which
willnotbe echoed on yourscreen:

ayy

This “yanks” the first line into buffer a. Move the cursor over the W
in Words.

2-26

vi: A TextEditor

2. Enterthefollowingline:

ap
This “puts” a copy of the yanked line into the file, and the cursor is

placed on the first letter of thisnew text. The buffer still contains the
originalyanked line.

Yourscreenlookslike this:

Files contain text.
Textcontains lines.
Lines contain characters.
Charactersform words.
Words form text.

[Fliles contain text.

If you wish to “yank” several consecutive lines, indicate the number of
lines you wish to yank after the name of the buffer. For example, to place
threelinesfrom the above text in buffer a, enter:

" a3yy

You can also use “yank” to copy parts of aline. For example, to copy the
words Filescontain, enter:

2yw

This yanks the next two words, including the word on which you place the
cursor. Toyank thenextten characters, enter:

10yl

Iindicates cursor motion to the right. Toyank to the end oftheline you are
on, fromwhere you are now, enter:

y$

2-27

XENIX User’s Guide

2.3.10 Inserting Control Characters into Text

Many control characters have special meaning in vi, even when typed in
Insert mode. Toremove their special significance, press Ctrl-vbefore typ-
ing the control character. Note that Ctrl-j, Ctrl-q,and Ctrl-s cannot be
inserted astext. Ctrl-jisanewline character. Ctrl- q and Ctrl-s are mean-

ingful to the operating system, and are trapped by it before they are inter-
preted byvi.

2.3.11 Joining and Breaking Lines
To join two lines ptess:
J
while the cursoris on the first of the two lines you wish to join.

Tobreak onelineintotwolines, positionthe cursor on the space preceding
the first letter of what will be the second line, press:

r

then press RETURN.

2.3.12 Deleting a Character: xandX

The x and X commands delete a specified number of characters. The x
command deletes the character above the cursor; the X command deletes
the character immediately before the cursor. If no number is given, one
character is deleted. For example, to delete three characters following the
cursor (including the character above the cursor), enter:

3x

Todeletethreecharactersprecedingthe cursor, enter:

3X

2-28

9

vi: A TextEditor

2.3.13 Deleting a Word:dw

The dw command deletes a specified number of words. If no number is
given, one word is deleted. A word is interpreted as numbers and letters
separated by whitespace. When a word is deleted, the space after it is also
deleted. For example, to delete three words, enter:

3dw

2.3.14 DeletingaLine: Dand dd

The D command deletes all text following the cursor on thatline, including
the character the cursoris restingon. The dd command deletes a specified
number of lines and closes up the space. If no number is given, only the

currentlineis deleted. Forexample, to delete three lines, enter:

3dd

Another way to delete several lines is to use a line-oriented command. To
use this command it helps to know the line numbers of the text you wish to
delete. For information on howto display line numbers, see section 2.5.5,
“Displaying Line Numbers: number?”.
Forexample, to deletelines 200 through 250, enter:

:200,250d
PressRETURN.
When the command finishes, the message:

50lines
appears on thevistatusline, indicatinghow many lines were deleted.
Itis possible to remove lines without displayingline numbers using short-

hand “addresses”. For example, to remove all lines from the current line
(theline the cursor rests on) to the end of the file, enter:

,8d

2-29

XENIX User’s Guide

The dot (.) represents the current line, and the dollar sign stands for the
lastlinein the file. To delete the currentline and 3linesfollowingit, enter:

.,+3d

Todeletethecurrentline and 3lines precedingit, enter:
:.,-3d

Formoreinformation on using addresses in line-oriented commands, see
vi(C) in theXENIX Reference Manual.

2.3.15 Deleting an Entire Insertion

If you wish to delete all of the text you just entered, press Ctrl-u while you
are in Insert mode. The cursor returns to the beginning of the insertion.
The text of the original insertion is still displayed, and any text you enter

replaces it. When you press ESC, any text remaining from the original
insertion disappears.

2.3.16 DeletingandReplacingText

Several vi commands combine removing characters and entering Insert
mode. The following sections explain how to use these commands.

Overstriking:randR
Thercommand replacesthe character underthe cursor with the next char-
acter entered. To replace the character under the cursor with a “b”’, for
example, enter:

rb
If anumber is given before r, that number of charactersis replaced with the
next character entered. For example, to replace the character above the
cursor, plus the next three characters, with the letter “b”’, enter:

4rb

Notethat you now have four “b”’sin arow.

2-30

vi: ATextEditor

The R command replaces as many characters as you enter. To end the
replacement, press ESC. For example, to replace the second line in the fol-
lowingtextwith “Spellingisimportant.”:

a

Files contain text.

Text contains lines.
Lines contain characters,
Characters form words.
Words formtext.

Move the cursor overthe T'in Text. Press R, then enter:

O Spellingis important.

Press ESC to end the replacement. If you make a mistake, use the BKSP
keyto correctit. Yourscreen should nowlook likethis:

Files contain text.
Spellingisimportant].]
Lines contain characters,
Characters form words.
Words form text.

2-31

XENIX User’s Guide

Substituting: s and S

The s command replaces a specified number of characters, beginning with
the character under the cursor, with text you enter. For example, to substi-
tute “xyz” for the cursor and two characters following it, enter:

3sxyz

The S command deletes aspecified number of lines and replaces them with
text you enter. You may enter as many new lines of text as you wish; S
affects only how manylines are deleted. If no number is given, one line is
deleted. Forexample, to delete four lines, including the current line, enter:

4S

This differs from the R command. The S command deletes the entire
currentline; theR command deletes textfrom the cursoronward.

Replacing a Word: cw

The ew command replaces a word with text you enter. For example, to
replace the word “bear” with the word “fox”, move the cursor over the ““b”
in “bear”. Press:

cw

€9
Iy

A dollar sign appears over the
isbeingreplaced. Enter:

in bear, markingthe end of the text that

fox

and press ESC. Therestof “bear” disappears and only “fox” remains.

Replacing the RestofaLine:C

The C command replaces text from the cursor to the end of the line. For
example, to replace the text of thesentence:

Who’s afraid of the bigbad wolf?

2-32

vi: A TextEditor

from big totheend, movethe cursorovertheb in big and press:

C
A dollarsign (3) replacesthe question mark (?) attheend of theline. Enter
the following:

littlelamb?

Press ESC. Theremainingtextfrom the original sentence disappears.

Replacing a Whole Line: cc

The cc command deletes a specified number of lines, regardless of the
location of the cursor, and replaces them w1th textyou enter. If no number

- isgiven,thecurrentlineisdeleted: - - --- -« st e e

Replacing a Particular Word ona Line

If a word occurs several times on one line, it is often convenient to use a
line-oriented command to replace it. For example, to replace the word
removing with “deleting” in thefollowingsentence:

Invi,removingalineisaseasyasremoving a letter.

Make sure the cursor is at the beginning of that line, and enter:
:s/removing/deleting/g

Press RETURN. This line-oriented command means “Substitute (s) for the

word removing the word deleting, everywhere it occurs on the current line

(g)”’. Ifyoudon’tinclude a gatthe end, only thefirst occurrence of remov-

ingis changed.

For more information on using line-oriented commands to replace text,
see section 2.3.19, “Searching and Replacing.”

2-33

XENIX User’s Guide

2.3.17 Moving Text

To move a block of textfrom one placein a file to another, you can use the
line-oriented m command. Youmust know the linenumbers of yourfile to
use this command. The number option displays line numbers. To set this
option, press ESC to make sureyouarein Command mode, thenenter:

set number
Line numbers will appear to the left of yourtext. For more information on
setting the number option, see section 2.5.5, “Displaying Line Numbers:

number”.

The following example uses the number option. For other ways to display
line numbers, see section 2.3.29, “Finding Out What Line You’re On”.

1[Fliles contain text.
2Textcontains lines.
3Linescontain characters.
4Characters form words.
SWords form text.

Toinsertlines 2 and 3 between lines4and 9, enter:

2,3m4

2-34

Yourscreen should look like this:

1 Files contain text.

2 Characters form words.

3 Text containslines.
4Linescontain characters.
S[W]ordsform text.

Toplaceline S afterline 2, enter:

:Sm?2

Aftermoving, yourscreen should look likethis:

1Filescontaintext.

2 Characters form words.
3[W]ordsform text.
4Textcontainslines.

S Linescontain characters.

Tomakeline4thefirstlineinthefile, enter:

:4m0

vi: A Text Editor

2-35

XENIX User’s Guide

Your screen should look like this:

1[T]Jextcontainslines.

2 Files contain text.

3 Charactersform words.
4 Wordsform text.
5Linescontain characters.

You can also delete text into a temporary storage place, called a ‘“‘buffer”,
and insert it wherever you wish. When text is deleted it is placed in a
“deletebuffer”. There arenine “‘delete buffers”.

The first buffer always contains the most recent deletion. In other words,
the first deletion in a given editing session goes into buffer 1. The second
deletion also goes into buffer 1, and pushes the contents of the old buffer 1
into buffer 2. The third deletion goesinto buffer 1, pushing the contents of
buffer 2 into buffer 3, and the contents of buffer 1 into buffer 2. When
buffer 9 has been used, the next deletion pushes the current text of buffer 9
off the stack and it disappears.

Text remains in the delete buffers until it is pushed off the stack, or until

you quit the editor, so itis possible to delete text from one file, change files
withoutleavingthe editor, and place the deleted text in another file.

2-36

vi: A TextEditor

Delete buffers are particularly useful when you wish to remove text, store
it, and putit somewhere else. Usingthe followingtext as an example:

[Fliles contain text.

Text contains lines.
Lines contain characters.
Characters form words.
Words form text.

Delete the firstlineby entering:
' dd

C' Delete the third line the same way. Now move the cursor to the last line in
the example and press:

"lp

The line from the second deletion appears:

Text contains lines.
Characters form words.
Words form text.

[Llines contain characters.

O L

2-37

XENIX User’s Guide

Nowenter:

n2p

Thelinefrom the first deletion appears:

Text contains lines.
Characters form words.
Words form text.

Lines contain characters.
[Fliles contain text.

Inserting text from a dclcte buffer does not remove the text from the buffer.
Since the text remains in a buffer until it is either pushed off the stack or
untilyou quittheeditor, youmayuse it as many times asyouwish.

Itisalso possible to place text innamed buffers. Forinformation on howto

create named buffers, see section 2.3.9, “Inserting Text From Other
Files™.

2.3.18 Searching:/and ?

You can search forward and backward for patterns in vi. To search for-
ward, press the slash (/) key. The slash appears on the statusline. Enter the
characters you wish to search for. Press RETURN. If the specified pattern
exists, the cursor will move to the first character of the pattern.
Forexample, to search forward in the file for the word “account”, enter:

/account

2-38

vi: A Text Editor

Press RETURN. The cursor is placed on the first character of the pattern.
To place the cursor atthe beginning of the line above “account”,for exam-
ple, enter:

/account/-
To place the cursor at the beginningof the line two lines above the line that

contains‘“account”, enter:

laccount/-2

To place the cursortwo lines below “account”, enter:
/account/+2
Tosearchbackwardthrough a file; use 2instead of / to startthe search. For-.
example, to find all occurrences of “account” abovethe cursor, enter:
?account
To search for a pattern containing any of the special characters (. *\[]~ $
and "), each special character must be preceded by a backslash. For exam-~
ple, tofind the pattern “U.S.A.”, enter:
/U\.S\ AN/

You can continue tosearch for a pattern by pressing:
n

aftereach search. The pattern is unaffected by intervening vi commands,
and you can use n to search for the pattern untilyou enter a new pattern or
quittheeditor.

vi searches for exactly what you enter. If the pattern you are searching for
contains an uppercase letter (forexample, if it appears at the beginning of a
sentence), vi ignores it. To disregard case in a search command, you can

settheignorecase option:

:set ignorecase

2-39

XENIX User’s Guide

By default, searches “wraparound’” the file. That is, if asearchstartsin the
middle of a file, when vireaches the end of the file it will “wrap around” to
the beginning, and continue until it returns to where the search began.
Searches will be completed faster if you specify forward or backward
searches, depending on where you think the patternis.

If you do not want searches to wrap around the file, you can change the
“wrapscan” option setting. Enter:

:set nowrapscan
and press RETURN to prevent searches from wrapping. For more informa-

tion about setting options, see section 2.5, “Setting Up Your Environ-
ment”.

2.3.19 Searching and Replacing

The search and replace commands allowyou to perform complex changes

to a file in a single command. L.earming how to use these commands is a

mustforthe serious user of vi.

The syntax of asearch and replace command is:
g/patternl/s/[pattern2)/[options]

Brackets indicate optional parts of the command line. The g tells the com-

puter to execute the replacement on every line in the file. Otherwise the

replacement would occur only on the current line. The options are
explained in the following sections.

2-40

| vi: A TextEditor

To explain these commands we will use the example file from the demons-
tration run:

[Fliles contain text.

Text contains lines.
Lines contain characters.
Charactersform words.
Wordsform text.

Replacing a Word

)

) To replace the word ‘“contain” with the word “are” throughout the file,
enter the followingcommand:

(

:g/contain /s//are /g

This command says “On each line of the file (g), find contain and substi-
tuteforthatword (s//) theword are, everywhere it occurs on that line (the
second g)”. Note that aspaceisincludedin the search pattern for contain;
withoutthe spacecontainswould also be replaced.

2-41

XENIX User’s Guide

After the command executes yourscreenshould looklike this:

{F]iles are text.

Text contains lines.
Linesarecharacters.
Characters form words.
Words form text.

Printing allReplacements

To replace “contain” with “are” throughout the file, and print every line
changed, use the p option:

:g/contain /s//are /gp
Press RETURN. After the command executes, each line in which ‘“con-

tain’ was replaced by “‘are” is printed on the lower part of the screen. To
remove theselines, redraw the screen by pressing Ctrl-1.

Choosing a Replacement

Sometimes you may not want to replace every instance of agiven pattern.
The ¢ option displays every occurrence of pattern and waits for you to
confirm that you want to make the substitution. If you press y the substitu-
tion takes place; if you press RETURN the next instance of pattern is
displayed.

Torun thiscommand on the example file, enter:

:g/contain/s//are/gc

2-42

Matching the Beginning of a Line

vi: A Text Editor

Press RETURN. Thefirstinstanceof “contain’ appears on the statusline:
Files containtext.

Pressy, then RETURN. Thenextoccurrence of contain appears.

2.3.20 Pattern Matching

Search commmands often require, in addition to the characters you want
to find, a context in which you want to find them. For example, you may
want to locate every occurrence of a word at the beginning of a line. vi pro-
vides several special characters that specify particular contexts.

When a éaret(') is placed at the beginningof a pattern, only patterns found
at the beginning of a line are matched. For example, the following search
patternonlyfinds “text”whenitoccurs as the first word on aline:

[text/

To search for a caret that appears as text you must precede it with a
backslash (\).

Matching the End ofa Line
When a dollar sign ($) is placed at the end of a pattern, only patterns found
atthe end of aline are matched. For example, the following search pattern
only finds “text” when itoccursasthe last word on a line:

/text$/

To search for a dollar sign that appears as text you must precede it with a
backslash (\).

2-43

XENIX User’s Guide

Matching AnySingle Character
When used in a search pattern, the period (.) matches any single character
except the newline character. For example, to find allwords that end with
“ed”, use thefollowing pattern:

led /
Notethe spacebetween thed and theb ackslash.

Tosearchfora periodin the text, youmustprecedeit with abackslash (\).

Matching a Range of Characters

A set of characters enclosed in square brackets matchesanysingle charac-
terin the range designated. For example, the search pattern:

/a—z)/

finds any lowercase letter. Thesearch pattern:
/[aA]pple/
finds all occurrences of “apple” and “ Apple”.
To search for a bracket that appears as text, you must precede it with a
backslash (\).
Matching Exceptions

A caret (A) at the beginning of string matches every character except those
specified in string. Forexample thesearch pattern:

(a2

finds anythingbut a lowercase letter or anewline.

MatchingtheSpecial Characters

To place a caret, hyphen or square bracket in a search pattern, precede it
with abackslash. To search foracaret, forexample, enter:

NS

2-44

_ Your Environment”.

vi: A TextEditor

Ifyouneed to search formanypatterns that containspecial characters, you
canresetthemagic option. To do this, enter:

:nomagic
This removes the special meaning from the characters ., \, §, [and]. You
can include them in search and replace commands without a preceding
backslash. Notethatthe special meaning cannot be removed from the spe-
cial characters star (*) and caret (); these must always be preceded by a
backslash in searches.

To restore magic, enter:

:set magic

For more information about setting options, see section 2.5, “Setting Up

2.3.21 Undoinga Command:u

Any editing command can be reversed with the Undo (u) command. The
Undo command works on both screen-oriented and line-oriented com-~
mands. For example, if youhave deleted aline and then decide you wish to
keepit, pressu and thelinewill reappear.

Use the followingline as an example:

(T]ext containslines.

2-45

XENIX User’s Guide

Place the cursor over the “c” in “contains”, then delete the word with the

dw command. Your screen should look like this;

Text [l]ines.

Pressuto undothedwcommand. contains reappears:

Text[clontainslines.

2-46

vi: ATextEditor

Ifyoupressu again, “‘contains” is deleted again:

Text [1]ines.

- -It is important to remember that u only undoes the last command. For-

example, if youmake aglobalsearch and replace, then delete afew charac-
terswith the x command, pressingu will undo the deletions but not the glo-
balsearch andreplace.

2.3.22 Repeatinga Command: .

Any screen-oriented vi command can be repeated with the Repeat (.)
command. Forexample, if youhave deletedtwowordsbyentering;

2dw

you may repeat this command as many #mes as you wish by pressing the
period key (.). Cursor movement does not affect the Repeat command, so
youmay repeat a command as many times and in as many placesin a file as
youwish.

The Repeatcommand only repeats the last vicommand. Carefulplanning
can save time and effort. For example, if you want to replace a word that
occurs several times in a file (and for some reason you do not wish to use a
global command), use the ew command instead of deletingthe word with
the dw command, then inserting new text with the i command. By using the
cw command you can repeat the replacement with the dot (.) command. If
you delete the word, then insert new text, dot only repeats the replace-
ment.

2-47

XENIX User’s Guide

2.3.23 Leaving the Editor

Thereareseveral waysto exitthe editor and save any changes youmayhave
made to the file, One wayisto enter:

X
and press RETURN. This command replaces the old copy of the file with
the new one you have just edited, quits the editor, and returns you to the
XENIX shell. Similarly, if youenter:

VA
the same thing happens, except the old copy file is written out only if you
have made any changes. Note that the ZZ command is not preceded by a

colon,andisnotechoed onthescreen.

To leave the editor without saving any changes you have made to the file,
enter:

1q!
The exclamation point tells vi to quit unconditionally. If you leave out the

exclamation point:

q
viwillnotletyouquit. You will see the error message:
Nowrite sincelast change (:quit! overrides)

This message tells you to use :q! if you really want to leave the editor
without saving your file.

Savinga File WithoutLeaving the Editor

There are many occasions when you must save a file without leaving the
editor, such as when starting a new shell, or moving to another file. Before
you can perform these tasks you must first save the current file with the
Write (:w) command:

w

2-48

vi: A Text Editor

You do notneed to enter the name of the file; vi remembers the name you
used when you invoked the editor. If you invoked vi without a filename,
youmayname the file by entering:

:w filename

where ﬁlename isthename of thenew file.

2.3.24 Editing a Series of Files

Entering and leaving vi for each new file takes time, particularly on a
heavily used system, or whenyou are editing large files. If youhave many
files to editin one session, you caninvoke viwith more than one filename,
andthus edit more than one filewithoutleaving the editor, asin:

vi filel file2- file3 file4- fileS file6
But entering many filenames is tedious, and you may make a mistake. If
you mistype a filename, you must either backspace over to mistake and
reenter the line, orkill the whole line and reenter it. It is more convenient
to invoke viusingthe special characters as abbreviations.
Toinvoke vionthe abovefileswithouttypingeach name, enter:

vi file*
This invokes vi on all files that begin with the letters “file”. You can plan
your filenames to save time in later editing. For example, if you are writinga
document that consists of manyfiles, it would be wise to give each file the
same filename extension, such as “.s”. Then you can invoke vi on the

entire document:

vi *.§

You canalso invoke vion a selected range of files:
vi [3-5]%s
or

vi [a-h]*

2-49

XENIX User’s Guide

Toinvokevion all files that are fiveletterslong, and have anyextension:

For more information on using special characters, see Chapter 3 of the
Introduction to XENIXmanual, section 3.3.4, “Special Characters”.

When you invokeviwith more than one filename, you will see the following
message when the first file is displayed on the screen:

xfilesto edit
After youhavefinished editing a file, save it with the Write (:w) command,
then go to the next file with the Next (:n) command:

n
The next file appears, ready to edit. It is not necessary to specify a
filename; the files are invoked in alphabetical (or numerical, if the
filenamesbegin withnumbers) order.
Ifyouforgetwhatfilesyouareediting, enter:

:args
The list of files appears on the status line. The current file is enclosed in
squarebrackets.
To editafile out of order, such as file4 after file2, enter:

:e filed

instead of usingthe (:n) command. If you enter:
‘n
after you finish editing file4, you willgoback to file3.
If you wish to start again from the beginning of the list, enter:

rIrew

2-50

vi: A Text Editor

Todiscardthechangesyoumadeand start again at the beginning, enter:

rew!

2.3.25 Editing a New File WithoutLeaving the Editor

You can start editing anotherfile anywhere on the XENIX system without
leaving vi. This saves time when you wish to edit several files in one session
that are in different directories, or even in the same directory. For exam-
ple, if you have finished editing /usr/joe/memo and you wish to edit
Jusr/marylletter, first save the file memo with the Write (:w) command then
enter:

:e /usr/mary/letter

lusr/maryl/letter appears on yourscreen just as though you had left vi.

Note

You rmust write out yourfilewith the Write (:w) command to save the
changesyou have made. If you try to edit a second file without writing
out the first file, the message “No write since last change (:e! over-
rides)” appears. If you use :e! allyour changes to the first file are dis-
carded.

If you want to switch back and forth between two files, vi remembers the
name of the last file edited. Using the above example, if you wish to go
back and edit the file /usr/joe/memo after you have finished with
lusrimarylletter, enter: :

e#

The cursor is positioned in the same location it was when you first saved
lusr/joe/memo.

2-51

XENIX User’s Guide

2.3.26 Leaving the Editor Temporarily: ShellEscapes
You can execute any XENIX command from within vi using the shell

Escape (1) command. For example, if you wish to find out the date and
time, enter:

:ldate
The exclamation point sends the remainder of the line to the shell to be
executed, and the date and time appear on the vistatusline. You can use
the ! to perform anyXENIX command. To send mailto joe withoutleaving
the editor, enter:

:lmail joe

Type your message and send it. (For more information about the XENIX
mail system, see Chapter 3, “mail”.) After you send it, the message

[Hitreturn to continue]
appears. Press RETURN to continue editing.

If you want to perform several XENIX commands before returning to the
editor, you can invoke anew shell:

:Ish

The XENIX prompt appears. You may execute as many commands as you
like. Press Ctrl- d to terminate the new shell and return to your file.

If you have not written out your file before a shell escape, you will see the
message:

[No write sincelast change]
It is a good idea to save your file with the Write (:w) command before exe-
cuting an escape, just in case something goes wrong. However, once you
become an experienced vi user, you may wish to turn off this message. To
turn off the “No write” message, reset the warn option, asfollows:

:setnowarn

Formore information about setting options in vi, see section 2.5, “Setting
Up Your Environment”.

2-52

vi: A TextEditor

2.3.27 Perforing a Series of Line- Oriented Commands: Q

If you have several line-oriented commands to perform, you can place
yourselftemporarilyin Line-oriented mode by entering:

Q

while you are in Command mode. A colon prompt appears on the status
line.

Commandsexecuted in this mode cannot be undone with the u command,
nor do they appear on the screen until you re-enter Normal vi mode. To
re-enter Normalvimode, enter:

vi

2.3.28 Finding QutWhatFile YoureIn

If you forget what file you are editing, press Ctrl- g while you are in Com-
ﬁlﬁ;d mode. A line similar to the following appears appears on the status
“memo” [Modified]line12 of 100--12%--

From left to right, the followinginformation isdisplayed:

- Thenameof thefile

— Whether ornotthe file has been modified

- Thelinenumberthecursoris on

— Howmanylines there are in the file

~ Yourlocation in the file (expressed as a percentage)

This command is also useful when you need to know the line number of the
currentlineforaline-oriented command.

Thesameinformation can be obtained byentering:

Afile

or

2-53

XENIX User’s Guide

2.3.29 Finding OutWhatLine You’re On

Tofind outwhatline ofthe fileyou are on, enter:

‘nu

and press RETURN. This command displays the current line number and
the text of theline.

To display line numbers for the entire file, see section 2.5.5, “Displaying
Line Numbers: number”

2.4 Solving Common Problems

The following is a list of common problems that you may encounter when
usingvi, along with the probable solution.

2-54

Idon’tknowwhichmode I'min.

Press ESC until the bell rings. When the bell rings you are in Com-
mandmode.

Ican’tgetoutofa subshell.
Press Ctrl-d to exit any subshell. If you have created more than one
subshell (not a good idea, usually), keep pressing Ctrl-d until you
see the message:
[Hit return to continue]
Imade aninadvertent deletion (or insertion).
Pressutoundothelast Delete or Insert command.
There are extracharacters on my screen.
Press Ctrl-1to redraw the screen.

When Itype, nothing happens.

vi has crashed and you are now in the shell with your terminal
characteristics set incorrectly. Toreset the keyboard, slowly enter:

stty sane

then press Ctrl-j or LINEFEED. Pressing Ctrl-j instead of RETURN
is important here, since it is quite possible that the RETURN key will

vi: A Text Editor

not work as a newline character. To make sure that.other terminal
characteristics have not been altered, logoff, turn yourterminal off,
tum your terminal back on, and then log back in. This should
guarantee that your terminal’s characteristics are back to nornal.
Thisproceduremayvarysomewhat dependingon the terminal.

The system crashed while I'wasediting. .

Normally, vi will inform you (by sending yoﬁ mail) that your file has
been saved before acrash. The filecanberecovered by entering:

vi -r filename

If vi was unable to save the file before the crash, it is irretrievably
lost.

Ikeep getting a colon on the status line when I pressRETURN

- Youarein-line-oriented Command mode. Enter:- -~ - -+ - -

vi
toreturntonormalvi Command mode.

1get the error message ‘“Unknown terminal type [Using open mode]
when I invoke vi.

Your terminal type is not set correctly. To leave Open mode, press
ESC, then enter:

wq

and press RETURN. Tum to section 2.5.i, “Setting the Terminal
Type” forinformation on how to set yourterminaltype correctly.

2.5 Setting Up Your Environment

There are a number of options that can be set that affect your terminal
type, how files and error messages are displayed on your screen, and how
searches are performed. These options can be set with the set command
whileyou are editing, ortheycan be placed in the vistartupfile, .exrc. (The
.exrcfileisexplained insection2.5.13.) Thefollowingsections describe the
mostcommonly used options and how to set them. Thereis a complete list

C\ of options invi(C) in the XENIX Reference Manual.

2-55

XENIX User’s Guide

2.5.1 Settingthe TerminalType

Before you can use vi, youmustset the terminal type, if this has not already
been done foryou, by definingthe TERM variablein your.profilefile. (The
.profilefileis explained in theXENIX User’s Guide.) The TERM variable is
a number that tells the operating system what type of terminal you are
using. To determine this number you must find out what type of terminal
you are using. Then look up this typein Terminals(M) in the XENIX Refer-
ence Manual. If you cannot find your terminal type or its number, consult
your System Administrator.

For these examples, we will suppose that you are using an HP 2621 termi-
nal. For the HP 2621, the TERM variable is 2621, How you define this
variable depends on which shell you are using. You can usually determine

which shell you are using by examining the prompt character. The Bourne
shell prompts with a dollar sign ($); the C-shell prompts with a percent sign

(%).

Setting the TERM variable: The Visual Shell

If you are using the Visual Shell the terminal type has already been set, and
youdo notneed tochangeit.

Setting the TERM variable:The Bourne Shell

To set yourterminaltype to 2621 place the following commands in the file
.profile:

TERM=2621
export TERM

Setting the TERM variable: The C Shell

To set your terminal type to 2621 for the Cshell, place the following com-
mandinthefile.login:

setenv TERM 2621

2.5.2 Setting Options: The set Command

The set command is used to displayoption settings and to set options.

2-56

C

vi: ATextEditor

Listing the Available Options
To getalist of the options available to you andhow they are set, enter:
setall

Your displayshouldlook similar to this:

noautoindent open noslowopen
autoprint nooptimize tabstop=8
noautowrite paragraphs=IPLPPPQPPLIbp taglength=0
nobeautify noprompt ttytype=h19
directory=/tmp noreadonly term=h19
noerrorbells redraw noterse
hardtabs=8 report=5 warn
noignorecase scroll=4 - window=8
nolisp sections=NHSHH HU wrapscan

-nolist - - - shell=/bin/sh - - -~ -~ .- . wrapmargin=0
magic shiftwidth=8 nowriteany
nonumber noshowmatch

This chapter discusses only the most commonly used options. For infor-
mation about the options not covered in this chapter, see vi(C) in the
XENIXReference Manual.

Setting an Option

To setan option, use thesetcommand. Forexample, to set the ignorecase
option so that case is notignored in searches, enter:

set noignorecase

2.5.3 Displaying Tabs and End-of-Line: list

The list option causes the “hidden” characters and end-of-line to be
displayed. The default settingis nolist. T o display these characters, enter:

:set list

Your screen is redrawn. The dollar sign ($) represents end-of-line and
Ctrl-i (I) represents thetab character.

2-57

XENIX User’s Guide

2.5.4 Ignoring Case in Search Commands: ignorecase

By default, case is significant in search commands. To disregard case in
searches, enter:

:set ignorecase
To change this option, enter:

:set noignorecase

2.5.5 Displaying Line Numbers: number

It is often useful to know the line numbers of a file. To display these
numbers, enter:

:set number

This redraws your screen. Numbers appear to the left of the text. To
remove linenumbers, enter:

:setnonumber

2.5.6 Printingthe Number of Lines Changed: report

The report option tells you the number of lines modified by a line-oriented
command. For example,

:set report=1

reports the number of lines modified, if morethan oneline is changed. The
defaultsettingis:

report=5
which reports the number of lines changed when more than five lines are
modified.
2.5.7 Changingthe Terminal Type:term

If you are logged in on a terminal that is a different type than the one you
normally use, you can check the terminal type setting by entering:

:set term

2-58

e

vi: A Text Editor

Press RETURN. See section 2.5.1, “Setting the Terminal Type” for more
information about TERM variables.
2.5.8_ Shortening Error Messages: terse

Afteryoubecome experienced with vi, youmaywant to shorten your error
messages. To change from thedefault noterse, enter:

setterse
Asanexample of the effect of terse, when terse is set the message:

No write sincelast change, quit! overrides

. becomes:

No write

2.5.9 Turning Off Warnings: warn

After you become experienced with vi, you may want to turn off the error
message that appears if you have not written out your file before a Shell
Escape (:!) command. To turn these messages off, enter:

:setnowarn

2.5.10 Permitting Special Characters in Searches: nomagic

Thenomagic option allows theinclusion of thespecialcharacters (. \ $[])
in search patterns without a preceding backslash. This option does not
affect caret () or star (*); they must be preceded by a backslash in
searches regardless of magic. To set nomagic, enter:

:setnomagic

2.5.11 Limiting Searches: wrapscan

By default, searches in vi “wrap” around the file until they return to the
place they started. To save time you may want to disable this feature. Use
the following command:

:setnowrapscan

2-59

XENIX User’s Guide

When this option is set, forward searches go only to the end of the file, and
backward searches stop at the beginning,.

2.5.12 Turning on Messages: mesg

If someone sends you a messagewiththe write command whileyouarein vi
thetext of the message will appear on your screen. To removethe message
from your display you must press Ctrl-1. When you invoke vi, write permis-
sion to your screen is automatically turned off, preventing write messages
from appearing. If you wish to receive write messages while in vi, reset this
option asfollows:

setmesg

2.5.13 Customizing YourEnvironment: The .exrc File

Each time vi is invoked, it reads commands from the file named .exrc in
your home directory. This file sets your preferred options so that they do
notneed to be seteachtime youinvokevi. A sample.exrcfilefollows:

setnumber
setignorecase
setnowarn
setreport=1

Each time you invoke vi with the above options, your file is displayed with
line numbers, case is ignored in searches, warnings before shell escape
commands are turned off, and any command that modifies more than one
linewill display a message indicatinglhhow manylines were changed.

2-60

2.6 Summary of Commands

vi: A Text Editor

The following tables contain all the basic commands discussed in this

chapter.
Entering vi
Typing this: Does this:
vi file Starts at line 1
vi +n file Starts atline n
vi + file Startslastline
Starts at pattern

' Vl —r"ﬁle

vi +/pattern file

‘Recovers ﬁle after 'a_ sys—

tem crash

2-61

XENIX User’s Guide

CursorMovement
Pressing thiskey: Does this:
h Moves 1space left
1 Moves 1 space right
SPACEBAR Moves 1 space right
w Moves 1 word right
b Moves 1 word left
k Moves 1line up
j Moves1line down
RETURN Moves 1line down
) Moves to end of sentence
(Moves to beginning of sentence
} Movesto beginning of paragraph
{ Movesto end of paragraph
Ctrl-w Moves to first character of inser-
tion
Ctrl-u Scrollsup 1/2 screen
Ctrl-d Scrolls down 1/2 screen
Ctrl-f Scrolls down one screen
Ctrl-b Scrolls up one screen

2-62

C

/
Inserting Text
Pressing Startsinsertion:
i Beforethe cursor
I Before firstcharacter on the line
a Afterthe cursor
A Afterlastcharacteron theline
o On nextline down
o On the line above
r On current character, replaces
onecharacter only. oo
R On current character, replaces
until ESC
Delete Commands
Command Function
dw Deletes a word
do Deletes to beginning of line
d$ Deletestoend ofline
3dw Deletes 3 words
dd Deletes the currentline
5dd Deletes Slines
X Deletes acharacter

vi: A Text Editor

2-63

XENIX User’s Guide

Change Conunands

Conunand Function

cw Changes 1word

3cw Changes 3words

cc Changes currentline

Scc Changes 5lines

Search Commands

Command Function Example

/and Finds the next and,stand,grand
occurrence of and

?and Findsthe previous and, stand, grand
occurrence of and

" The Finds next line The,Then, There
that starts with
The

/[bBJox/ Finds the next
occurrence of box
orBox

n Repeats the most
recent search, in
the same direction

2-64

vi: A TextEditor

Search and Replace Commands

7 Command Result Example

:s/pear/peach/g All pears become
peach on the
currentline

' :1,9s/file/directory Replaces file with filename becomes
directory from line - directoryname

1totheend.

:g/onel/s//1/g Replaces every one becomes 1,
occurrence of one oneself becomes
with 1. 1self, someone

becomessomel

Pattern Matching: Special Characters

\]
C' This character: Matches:

B Beginningof aline
$ End of aline

! Anysinglecharacter
M A range of characters

2-65

XENIX User’s Guide

Leavingvi

Command Result

W Writes outthe file

X Writes out the file, quits
vi

:q! Quits vi without saving
changes

lcommand Executes command

:Ish Forks anew shell

Wcommand Executes command and
places output on current
line

e file Edits file (save current
file with :w first)

2-66

vi: A Text Editor

Options

Thisoption: Does this:

all Lists all options

term Setsterminal type

ignorecase Ignores case in searches

list Displaystab and end-of-line characters

number Displays line numbers

report Printsnumber of lineschanged by a line-oriented command

terse Shortens error rhessages -

warn Turns off “no write” warning before escape

nomagic Allowsinclusion of special characters in search patterns
without a precedingbackslash

nowrapscan Prevents searches from wrapping around the end or
beginningofafile.

mesg . Permits display of messages sent to your terminalwith

the write command

2-67

Replace this Page
with Tab Marked:

mail

@ U

Chapter3

mail

31
3.2

33

3.4

3.5

Introduction 3-1

Demonstration 3-2

3.2.1 Composingand Sendinga Message 3-2
3.2.2 Readingmail 3-3

3.2.3 Leavingmail 3-4

Concepts 3-4
mailboxes 3-5
Messages 3-5
Modes 3-6
Message-Lists 3-7
Headers 3-8
Command Syntax 3-9

wwwwwum
O\Ln.bl.o)l\)b—*o

singmail 3-9

Entering and Exitingmail 3-9
Sendingmail 3-10
Readingmail 3-11
Disposingofmail 3-11
Composingmail 3-12
Forwardingmail 3-12
Replyingtomail 3-13
SpecifyingMessages 3-13
CreatingMailinglists 3-13
SendingNetwork mail 3-14
Setting Options 3-14

5
0q

P
H OO\ N NN

r—nO

mmands 3-14
GettingHelp: helpand ? 3-15
Readingmail:p, +, —, and restart 3-15

[e]

Displayingthe First Five Lines:t 3-16
.5 DisplayingHeaders:h 3-17
.6 Deleting Messages:d anddp 3-17
.7 UndeletingMessages:u 3-18
.8 Leavingmail:qandx 3-18
.9 Saving Yourmail:s 3-18
.10 SavingYourmail:w 3-19
.11 SavingYourmail:mb 3-19

WLWWLWLWLLLLLWEO LLWLWLWWLLLLWWLG mwwwwww

Lbhbnuhukhkhibn

1
2
.3 Finding Out the Number ofthe Current Message: =
4

3-16

w
o

w
<2

mchr

w
o0

.12 SavingYourmail:ho 3-19

.13 Printing YourmailontheLineprinter:] 3-19
.14 Sendingmail:m 3-20

.15 Replyingto mail:rand R 3-20

.16 Forwardingmail:fandF 3-20

.17 Creatingmailingl.ists:a 3-21

.18 Settingand Unsetting Options: seanduns 3-21
.19 Editinga Message: eandv 3-21

.20 Executing Shell Commands: shand! 3-22

.21 Finding Out the Number of Charactersin a Message:si 3-22
.22 Changingthe Working Directory:cd 3-22

.23 ReadingCommandsFrom aFile:so 3-23

ving Compose ModeTemporarily 3-23

1 GettingHelp:™? 3-23

2 Printingthe Message: p 3-23

3 Editingthe Message:"eand”v 3-23

4 EditingHeaders:"t,"c,”b, s, "Rand"h 3-24
5 AddingaFiletothe Message: rand~d 3-25
6 Enclosing Another Message: ' mand™™M 3-26
7 Savingthe Messagein aFile:"w 3-26

8 Leavingmail Temporarily: “!and | 3-26

.9 Escapingto mail Command Mode:": 3-27
.10 Placing a Tilde atthe Beginningofa Line: ™ 3-27

n uwgpwwwwp@wg‘ WWWWWLWWLWLWLWW
i)

etting Up Your Environment: The .mailrcFile 3-27

.7.1 The Subject Prompt: asksubject 3-28

.7.2 The CCPrompt:askcc 3-28

.7.3 Printing theNext Message: autoprint 3-28

.7.4 Listing Messages in Chronological Order: chron and

LWWLWw

on 3-29

3.7.5 UsingthePeriodioSend a Message: dot 3-29

3.7.6 Sendingmail While in mail: execmail 3-29

3.7.7 IncludingYourselfin a Group: metoo 3-29

3.7.8 Saving Aborted Messages: save 3-29

3.7.9 Printingthe Version Header: quiet 3-29

3.7.10 Choosingan Editor:TheEDITOR String 3-30
3.7.11 Choosingan Editor:The VISUAL String 3-30
3.7.12 Choosinga Shell: The SHELL String 3-30

3.7.13 Changingthe Escape Character:Theescape String 3-30
3.7.14 SettingPage Size: The page String 3-30

3.7.15 SavingOutgoingmail: Therecord String 3-31
3.7.16 Keepingmailinthe System mailbox: autombox 3-31
3.7.17 ChangingthetopValue: Thetoplines String 3-31
3.7.18 Sending mail OverTelephone Lines: ignore 3-31
Using Advanced Features 3-31

3.8.1 Command Line Options 3-31
3.8.2 Usingmail asaReminder Service 3-33

@

N

O

3.9

3.8.3 HandlingLarge Amountsofmail 3-33
3.8.4 Maintenance and Administration 3-34

Quick Reference 3-34

39.1 Command Summary 3-35

3.9.2 Compose Escape Summary 3-39
3.9.3 OptionSummary 3-41

mail

3.1 Introduction

The XENIX mail system is a versatile communication facility that allows
XENIX usersto compose, send, receive, forward, and replyto mail. Users
can also create distribution groups and send copies of messages to multiple
users. These functions are integrated into XENIX so that all users can
quicklyandeasilycommunicate with each other.

This chapter is organized to satisfy the needs of both the beginning and
advanced user. The first sections discuss basic concepts, tasks, and com-
mands. Later sections discuss advanced topics and provide quick refer-
ence to the mail program’s many functions. The major sections in this
chapter are:

Demonstration Shows new usershow to get started.

Basic Concepts Discusses the fundamental ideas and termi-
nology used in mail.

Usingmail Showshow to perform common mailing pro-

cedures such as composing, sending, for-
warding, and replying to mail.

Commands Discusses each mail command.

LeavingCompose Mode Temporarily
Discusses and gives examples of each com-
mand available when composing a message.
These commands are called ‘“compose
escapes.”

SettingUp Your Environment
Discusses the user’s mail startup file and
options that may be set to customize func-
tions.

Using Advanced Features
Discusses advanced features such as using
mail as a reminder service and handling a
largevolume of mail.

Quick Reference Summarizes all commands, compose
escapes, and options.

XENIX User’s Guide

3.2 Demonstration

The mail command lets you perform two distinct functions: sending mail
and disposing of mail. In this demonstration, we will show you how to send
mail to yourself, read amessage, deleteit, and exitthe mail program.

3.2.1 Composing andSending a Message

Tobegin, enter:

mail self

where self is your user name. Next, enter the following lines. Press
RETURN at the end of eachline.

This is ame$sage sent to myself.
Icompose amessage by entering lines of text.
Press Ctrl-d on anewline to end the message.

As you enter the message you can use “‘compose escapes’ to perform spe-
cial functions. To geta list of the available compose escapes, enter:

~?
onanewline. Tospecifyasubject, use the”s escape. Forexample, enter:
“s Sample subject

To specify a list of people to receive carbon copies use the "¢ escape. For
example, enter:

“c abel

Toviewthe message asit willappear when yousendit, enter:

P
This will display the following;:

Message contains:

To: self

Subject: Sample subject
Cc: abel

This is amessage sentto myself.

Icompose amessagebyenteringlines of text.
Press Ctrl-d on anewline to end the message.

3-2

mail

Finally, press Ctrl-d by itself on a line, to end the message and send it to
those that you have mentioned in the To: and the Cc: fields. You will exit
from the mail program and return to the XENIX shell. Once you have sent
mail, there is no way to undo the act, so be careful.

3.2.2 Reading mail
Within a shorttime, you should receive the message:
Youhave mail.

{Youmust press RETURNbefore this message will appear on your screen.)
This message informs you thatthe message you have just sent has arrived in
your systen? mailbox. To read this message and any others that may have
beensenttoyou, enter:

mail

mail then displays a sign-on message and a list of meééage ‘headers that
look somethinglike this:

Mail version 3.0 August 30, 1985. Type ? for help.
1message:
1self Fri Aug3112:26 7/188“Sample subject”

When there is more than one message in your mailbox, the most recent
messageis displayed at the top of the list. The message at the top of the list
has the highest number. The messages are numbered in ascending order
from leastrecent to most recent. The message header includes who sent
the message, when it was sent, the number of lines and characters, and the
subject of the message. The underscore prompt prompts you to enter a
mailcommand. Now enter:

?
to gethelp on allthe available mailcommands. Next, enter:

p

3-3

XENIX User’s Guide

to see the message that yousentto yourself. mail displaysthe following:
>Fromself Fri Aug2012:26:521985
To: self
Subject: Sample subject
Thisis amessage sent to myself.

Icomposeamessage by enteringlines of text.
Press Ctrl-d on anewline to end the message.

Notethat the message you sent to yourself now contains information about
the sender of the message~-aline telling who sent the message and when it
wassent. The next line tells who the message was sent to. A subject and
carbon copy (Cc:) field can be specified by the sender. If they are present,
theytoo aredisplayed when youread the message.

3.2.3 Leaving mail
If this message has no real use, you can delete it by entering:
d
To getoutof mall, enter:
q
mail then displaysthe message
O messagesheld in /usr/spool/mail/self
and returns you to theXENIX shell.
This endsthe demonstration. For more detailed information, see the dis-
cussionsin the following sections.
3.3 Basic Concepts

It is much easier to use mail if you understand the basic concepts that
underlieit. The concepts discussed in this section are:

- Mailboxes

- Messages

3-4

()

mail

- Modes

— Command syntax

3.3.1 mailboxes

- Itis useful to think of the mail system as modeled after a typical postal sys-

tem. What is normally called a post office is called the “system mailbox” in
this chapter. The system mailbox contains a file for each userin the direc-
tory /usr/spool/mail. Your own personal or “user mailbox” is the file
named mbox in your home directory. mail sent to you is put in your system
mailbox; you may choose to save mail in your user mailbox after you have
read it. Note that the user mailbox differs from a real mailbox in several
respects:

1. Youdecide whether mailis to be placed in the usermailbox; itisnot
automatically placed there.

2. The user mailbox is 7ot the place where mail is initially routed—that
place is the system mailb oxin the directory /usr/spool/mail.

3. mail isnot picked up fromyourusermailbox.

3.3.2 Messages

In mail, the message is the basic unit of exchange between users. Messages
consist of two parts: a heading and a body. The heading contains the fol-
lowingfields:

To: This field is mandatory. It contains one or more valid user
namestowhichyoumaysend mail.

Subject: Thisoptionalfield contains text describingthe message.

Cc: The carbon copyfield contains one or more valid names of
those who are to receive copies of amessage. Message reci-
pients see these names in the received message. This field
can be empty.

Bee: The blind carbon copyfield contains the one or more valid
names of people who are to receive copies of a message.
Recipients do not see these namesin the received messages.

This field can be empty.

3-5

XENIX User’s Guide

Return-receipt-to:
The return receipt to: field contains the valid name or
names of those who are to receive an automatic ack-
nowledgement of the message. Thisfieldcanbe empty.
The body of a message is text exclusive of the heading. The body can be
empty.
3.3.3 Modes

Often, the biggest hurdle to using mail is understanding what modes of
operation areavailable. Thissection discusses each mode.

When you invoke mail you are using the shell. If you want to mail a letter
without entering mail command mode, you can do so by entering:

mail john < letter

Here, the file letter is sent to the user john.

Note

Be very careful when mailing a file with the input redirection symbol
(<). Ifyouaccidentallyenterthe outputredirection symbol (>), you
will overwrite thefile, destroyingits contents.

Youcan enter a message from yourshellby entering:

mail john
Next, enterthetextof your message asfollows:

Thisisthetext of the message.
PressRETURN to start a newline, then Ctrl-d to send the message.
Messages such as the one above are created in mail’s compose mode.
When enteringtextin compose mode, there areseveral special keys associ-
ated with line editing functions: these are the same special characters that
are available to you when executingnormalXENIX commands. For exam-
ple, you can kill theline you are editingby enteringCtrl-u, normally the kill
character. To backspace, pressthe BACKSPACE Key or Ctrl-h.
>From compose mode, you can issue commands called compose escapes.

These are also called tilde escapes because the command letters are pre-
ceded by a tilde (7). When you execute these commands you are

3-6

7N

temporarily leaving or escaping from compose mode; hence the name.
Note that once you have pressed RETURN to end a line, you cannot
change thatlinefrom within compose mode. Youmust enter editmode in
ordertochange thatline.

The most common way ofusingmailis to justenter:
mail

This automatically places you in mail command mode. In this mode, you
are prompted by an underscore for commands that permit you to manage
yourmail.

You can enter edit mode from either compose mode or command mode.
In edit mode, you edit thebody of a message using the full capabilities of an
editor. To enter edit mode from command mode, use either the e or edit
command to enter ed, orthev orvisual command to entervi. (Vimaynot
be available on your system.) Toenter edit mode from compose mode, use
the compose escapes “eand “v; respectively. - T

3.3.4 Message-Lists

Many mail commands take alist of messages as an argument. A message-
list is a list of message numbers, ranges, and names, separated by spaces or
tabs. Message numbers may be either decimal numbers, which directly
specify messages, or one of the special characters ", . , or 8, which specify
the first, current, or last undeleted message, respectively. Here, relevant
means notdeleted.

A range of messages is two message numbers separated by a dash. To
display the first four messages onthescreen, enter:

pl-4

To display all the messages from the current message to the last message
enter: .

p-—$
A name is a user name. Messages can be displayed by specifyingthe name
of the sender. For example, to display each message sent to you by john,

enter:

pjohn

3-7

XENIX User’s Guide

As a shorthand notation, you can specify star (*)to get all undeleted mes-
sages. For example, to display all messages except those that have been
deleted, enter:

p*
Todelete all messages, enter:
d*
Torestore allmessages, enter:
u*
Allthree of these commands are described later in detail in Section 3.5,
“Commands.”
3.3.5 Headers
When you enter mail, a list of message headersis displayed. A headerisa
single line of text containing descriptive information about a message.
(Note that we use the word heading to describe the first part of a message,
and header to describe mail’s one-line description of a message.) The
information includes:
— Thenumber of the message
— Thesender
—~ Thedatesent
— Thenumber of characters and lines
— The subject (if the message contains a Sub ject: field)
Message headers are displayed in windows with the headers command. A
header window containsno more than 18 headers. If there are fewer than
18 messages in the mailbox, all are displayed in one header window. If
thereare morethan 18 messages, then thelistis divided into an appropriate
number of windows. You can move forward one window at a time with the

command:

headers +

3-8

s

S

mail

andmovebackward one window at a time with thecommand:
headers -

commands.

3.3.6 Command Syntax

Each mail command has its own syntax. Some take no arguments, some
take only one, and others take several arguments. The more flexible com-
mands, such as print, accept combinations of message-lists and user
names. For these commands, mail first gathers all message numbers and
ranges, then finds all messages from any specified user names. The full
message-list is the intersection of these two sets of messages. Thus, the
message-list “4-15 miller” matches allmessages between 4 and 15 that are
from miller.

Each mail command is entered on a line by itself, and any arguments fol-
low the command word. The command need not be entered in its
entirety—the first command that matches the entered prefix is used. For
example, you can enter “p” instead of “print” for the print command and
“h” instead of “headers” for the headers command.

After the command itself is entered, one or more spaces should be entered
toseparate the command fromits arguments. If a mail command does not
take arguments, any arguments you give are ignored and no error occurs.
Forcommands that take message-lists as arguments, if no message-list is
given, the last message printed is used. If it does not satisfy the require-
ments of the command, the search proceeds forward. If there are no mes-
sages ahead of the currentmessage, the search proceeds backwards, and if
thereareno valid messages atall, mail displays:

No applicable messages

3.4 Using mail

This section describes how to perform some basic tasks when using mail.
More detailed discussions of each of these commands are presented in
later sections.

3.4.1 Entering and Exiting mail

Tobegin a session with mail, enter:

mail

3-9

XENIX User’s Guide

The headers for each received message are then displayed one screenful at
atime. To display the next screenful of headers (if any), enter:

h+

To end the mail session, use the quit (q) command. All messages remain
in the system mailbox unless they have been deleted with the delete (d)
command, saved with the save or write command, or held in your user
mailbox with the mbox command. Deleted messages are discarded. The
—f command line option causes mail to read in the contents of mbox.
Optionally, a filename may be given as an argument to ~f, so that the
specified fileisread instead. When you quit, mail writes all messages back
to this file.

If you send mail over a noisy phone line, you will notice that many of the
bad characters turn out to be RUBOQUT or DEL character. These charac-
ters cause mail to abort messages. To deal with this annoyance, you can
invoke mail with the =i option which causes these bad characters to be
ignored.

3.4.2 Sending mail

To send a message, invoke mail with the names of the people and groups
you want to receive the message. Next, enter your message. When you are
finished, press Ctrl-d at the beginning of a line. The message is automati-
cally sent to the specified people. While enteringthe text of your message,
you can escape to an editor or perform other useful functions with com-
pose escapes. Section 3.4.5, “Composing mail,” describes some features
of mail available to help you when composing messages.

If you have a file that contains a written message, you can send it to sam,
bob, and john by entering:

mail sam bob john < letter

where letter is the name of the fileyou are sending.

Note

Be very careful when mailing a file with the input redirection symbol
(<). If you accidentally enter the outputredirection symbol(>), you
will overwrite the file, destroyingits contents.

If mail cannot be delivered to a specified address, you will either be
notified immediately, in which case a copy of the undeliverable message is

3-10

mail

appended to the file dead.letter, or you will be notified via return mail, in
which case a copyisincluded in the return mail message.

3.4.3 Reading mail
Toreadmessages sent to you, enter:
mail

mail then checks your mail out of the system mailbox and prints out a one-
line header of each message, one screenful at a time. Enter “h+” to view
the next screenful. The most recent message is initially the first message
(numbered highest, because messages are numbered chronologically) and
maybe printed usingthe print command. Youcanmoveforwardonemes-
sage by pressing RETURN or entering “+”. To move forward n messages
use “+n”. You can move backwards one message with the “—”’ command
or move backwards n messages and print with “~n”. You can also move to
anyarbitrarymessage and printit by enteringits number.

If new messages arrive while you are in mail, the following message
appears:

Newmailhas arrived--type ‘restart’ to read.
Enter:
restart

and theheaders of the new messages are displayed.

3.4.4 Disposing of mail

After examining a message youcan deleteit with the delete (d) command,
reply to it with the reply (r) command, forward it with the forward ()
command, or skip to the next message by pressing RETURN. Deletion
causes the mail program to forget about the message. This is notirreversi-
ble; the message can be undeleted with the undelete (u) command by
entering:

wnumber

3-11

XENIX User’s Guide

3.4.5 Composing mail

To compose mail, you must enter compose mode. Do this from XENIX
command level by entering:

mail john

where john is the name of a user to whom youwanttosend mail. >From
mail command mode, you can enter compose mode with the mail, reply,
or Reply commands. Once in compose mode, the text that you enter is
appended one line at a time to the body of the message you are sending.
Normal line editing functions are available when entering text, including
Ctrl-u to kill a line and Backspace to back up one character. Note that
when you enter two interrupts in a row (i.e., pressing INTERRUPT twice),
yourcompositionis aborted.

While you are composing a message, mail treats lines beginning with the
tilde character (~) in a specialway. This character introduces commands
called compose escapes. For example, entering:

m

byitself on a line places a copy of the most recently printed message inside
the message you are composing. The copyisshiftedright one tabstop.

Other escapes set up headingfields, add and delete recipients to themes-
sage, allow you toescape to an editor, let you revise the message body, or
run XENIX commands. To get a list of the available compose escapes
when in compose mode, enter:

-7
See also Section 3.6, “Leaving Compose Mode Temporarily,” later in this
chapter.
3.4.6 Forwarding mail
Toforwarda message, use theforward (f) command. Forexample, enter:
fjohn
to place a copy of the current message inside a new message. The copyis
shifted right one tabstop, and the new messageisforwardedto John. John
will receive amessage headingindicating thatyouhave forwarded the mes-

sage. The Forward (F) command works just like its lowercase counter~
part, except that the forwarded message is not shiftedright one tabstop.

T

message; hence, youcan enter:

mail

3.4.7 Replying to mail

You can use the reply command to set up a response to a message,
automatically addressing a reply to the person who sent the original mes-
sage. Youcan enter text and send the message by pressing Ctrl-d on a line
by itself. The Reply command works just like its lowercase counterpart,
except that the message is sent to others named in the original message’s
To:and Cc: fields.

3.4.8 Specifying Messages

Commands such as print and delete can be given a message-list argument
to apply to several messages at once. Thus “delete 2 3” deletes messages 2
and 3, while “delete 1-5” deletes messages 1 through 5. A star (*)
addresses all messages, and a dollar sign ($) addresses the last (highest
numbered) message. The top (t) command displays the first five lines of a

top *
to display the first five lines of every message. Message-lists can contain

combinations of lists, ranges, and names. For example, thefollowingcom-
mand displays all messages from tom or bob and numbered 2, 4, 10, 11, or

p tom bob 2 4 10-12

3.4.9 CreatingMailing Lists
You can create personal mailing lists so that, for example, you can send
mailto cohortsand have it goto a group of people. Suchlists are defined by
placing an alias line like:

alias cohorts bill bob barry
in the file .mailrc in your home directory. The current list of such aliases
can be displayed with the alias (a) mail command. Personal aliases are
cxpanded in mail sent to others so that they will be able to Reply to each
individual recipient. For example, the To: field in a message sent to
cohortswillread:

To: billbob barry
and not:

To: cohorts

3-13

XENIX User’s Guide

Normally, system-wide aliases are available to all users. These are
installed by whoever is in charge of your system. For more information,
see section 3.8, “Using Advanced Features,” later in this chapter.

3.4.10 SendingNetwork mail

mail can be sent between XENIX machines connected with Micnet by
specifying a machine name and the user name on that machine, separated
byacolon:

machine:user

If appropriate gateways are known to your system, you can send mail to
sites within the UUCPnetwork using the syntax:

machineluser

(Be sure to escape the exclamation point (!) by preceding it with a
backslash (\) when giving it on a csh command line.) mail may also inter-
pret other characters in the mail path when dealing with other networks.
In most cases, aliases should be set up so that specifying machine namesis
unnecessary. For more information about sending network mail, see the
XENIX Operations Guide. For more information about UUCP, see the
XENIX Reference Manual.

3.4.11 Setting Options

mail has several options that you can set from mail command mode or in
the file .mailrc in your home directory. For example, “set askcc” enables
the askce switch and causes prompting for additionsto the Cc: field when
youfinish composing a message. These and other options are discussed in
Section 3.7 “Setting Up Your Environment: The .mailrc File.”

3.5 Commands

This section describes each of the commands available to you in mail com-
mand mode. The examples in this section assume you have invoked mail
and that you have several messages you want to dispose of. Note that in
general, mail commands can be invoked with either the name of the com-
mand or a one- or two-character mnemonic abbreviation. In the text of
the command descriptions below, this mnemonic abbreviation is enclosed
in parentheses after the name of the command. Allcommands are printed
inboldface, exceptin the examples.

3-14

N

)

(

mail

3.5.1 Getting Help: help and?

The help (?) command displays a brief summary of all mail commands, so
if youevergetstuckwhen you arein mail command mode, enter:

?
or:

help

3.5.2 Reading mail:p, +, —,and restart

To look at a specific messzige, use the print (p) command. For example,
pretendyouhave a header-listthatlookslike this:

- 3john Wed Sep-2109:2126/782“Notice”

2sam Tue Sep2022:556/83 “Meeting”
I1tom MonSep1901:236/84 “Invite”

Reading from the left, each header contains the message number, who
sent it, the day, date, and time it was sent, the number of lines and charac-
tersinthemessage, and its subject.
To examine the second message, enter:

p2
This might causemailtorespond with:

Message 2:

>From sam TueJune2022:551985

Subject: Meeting

Meetingeveryone, please donotforget!

To look at message 3, enter:

orto look at message 1, enter:
+

The commands + and = execute relative to the last message referred to,
which in our example was 2. For large numbers of messages, you can skip

3-15

XENIX User’s Guide

forward and backward bythe number of messages specified as an argument
to + and -. Forexample, entering:

+3
skipsforward three messages. If youenter:

p *
then allmessages are displayed, since the star(*) matches all messages.
Pressing RETURN displays the next message in the header-list. You can
always go to a message and print it by giving its message number or one of
the special characters, caret ("), dot (.), or dollar sign ($). In the example

where message 2 is the current message, to display the current message,
enter:

To displaymessage 1, enter:

To displaymessage3, enter:

$

When new mail arrives while you are in mail, the message ‘“‘New mail has
arrived—type ‘restart’ to read.” If you wish toread thenewmessages, enter:

restart

The headers of the new messages appear.

3.5.3 Finding Outthe Numberofthe CurrentMessage: =

The number (=) command displays the message number of the current
message. Ittakes no arguments.

3.5.4 Displaying the First Five Lines : t

The top (t) command takes a message-list and displays the first five lines
of each addressed message. Forexample:

top2-12

3-16

2N

-

N

mail

displays the first five lines of each of the messages 2 through 12. Note that
thenumber of lines displayed by top can be set with the toplines option.

3.5.5 Displaying Headers: h
Theheaders (h)command displays headerwindows or lists of headers. A
headerwindow contains no more than 18 headers. With no argument, the
headers command displays a header window in which the current message
headeris displayed at thecenter of the window.
To examinethe next setof 18headers, enter:

h+
To examine the previous set, enter:

h-
Both plus and minus take an optional numeric argument thatindicates the
number of header windows to move forward or backward before printing.
If a message-list is given, then the headers command displays the header
line foreach message in the list, disregarding all windowing. For example:

hjoe

displays allthe message headers from joe. The followingare some charac-
teristics of the header-list:

— Deleted messages do notappear in thelisting.
— Messages saved with the save command are flagged with a star (*).
—~ Messagesto be savedin your usermailboxare flaggedwith an “M?”.
— If the autombox option is set, messages held with the hold com-
mand are flagged with an “I3”. .
3.5.6 Deleting Messages: d and dp
Unless you indicate otherwise, each message you receive is automatically
saved in the system mailbox when you quit mail. Often, however, you do
notwant to save messages youhavereceived. To delete messages, use the
delete (d) command. Forexample:
delete 1
prevents mail from retaining message 1 in the system mailbox. Themes-

sage will disappear altogether, along withitsnumber.

3-17

XENIX User’s Guide

The dp command deletes the current message and displays the next mes-
sage. Itis useful for quickly reading and disposing of mail. Using dp is the
same as using the d command with the auzoprint option set. See also the
undelete command, below.

3.5.7 Undeleting Messages: u

The undelete (u) command causes a message that has been previously
deleted with d or dp to reappear asif ithad never been deleted. For exam-
ple, to undelete message 3, enter:

u3

You cannot undelete messages from previous mail sessions; they are per-
manently deleted.

3.5.8 Leaving mail : q and x

Whenyou have read allyour messages, you can leave mailwith the quit(q)
command. All messages are held in your system mailbox, except the fol-
lowing:

~ Deleted messages, which are discarded irretrievably.

— Messages marked with the mbox command, which are saved in
mboxin your home directory (thatis, yourusermailbox).

— Messages saved with thesave and write commands aredeleted from
the system mailbox. Forwarded messages are not deleted.

Note that if the autombox option is set, messages that you have read are
automatically saved in your user mailbox. If you wish to leave mail quickly
without altering either your system or user mailbox, you can use the exit (x
) command. This returns you to the shell without changing anything: no
messages are deleted or saved. Files that you invoke with the mail ~f
switch are unaffected as well.

3.5.9 SavingYourmail: s

The save (s) command letsyousave messages to filesotherthanmbox. By
using save, you can organize your mail by putting messages in appropriate
files. The save command writes out each message to the file given as the
last argument on the command line. For example, the following command
appends messages 1-5 to the fileletters :

s 1-Sletters

3-18

mail

Thefile lettersis created ifitdoesnotalready exist. Saved messages are not
automatically retained in the system mailbox when you quit, nor are they
selected by the print command described above, unless explicitly
requested. Each saved message is marked with a star (*).

Save writes out the entire message, including the To:, Subject:, and Cc:
fields. In comparison, the write command, discussed below, writes out
only the bodies of the specified messages. ’

3.5.10 Saving Yourmail: w

The write (w) command writes out the body of each message to the file
given as the last argument on the command line. Each written message is
marked with a star (*). The syntax is similar to that of the save command.

For example,

w3-17john elliot book

' writes out the bodies of all messages from john and elliot in the number

range 3-17. Theyare concatenated totheend of the filenamed book.

3.5.11 SavingYourmail:mb

The mbox (mb) command marks each message speciﬁed in a message-
list, so that all are saved in the user mailbox when a quit command is exe-
cuted. Message headers are marked with an “M?” to show that they are to
be saved in mbox.

3.5.12 Saving Yourmail: ho

The hold (ho) command takes a message-list and markseach message so
that it is saved in your system mailbox instead of deleted or saved in mbox
when you quit. Saving of filesin the system mailboxhappens by default, so
use hold only when you have also s¢t the autombox option.

3.5.13 Printing Your mail on the Lineprinter: 1

Thelpr (1) command paginates and prints out messages to the lineprinter.
It takes a message-list as its argument, then paginates and prints out each
message. Forexample:

ldoug

prints outeach message from theuserdougon the lineprinter.

3-19

XENIX User’s Guide

3.5.14 Sending mail: m

To send mailto auser, use themail (m) command.*This sends mail in the
manner described for the reply command, except that you supply a list of
recipients either as an argument or by entering them in the To: field. All
compose escapes work in mail. Note that the mail command is in most
waysidentical to entering mail users at the XENIX commandlevel.

3.5.15 Replying to mail: randR

Often, you want to deal with a message by responding to its author right
away. The reply (r) command is useful for this purpose: it takes a
message-list and sends mail to the author of each message. The original
message’s subject field is copied as the reply’s subject. Each message is
created in compose mode; thus all compose escapes work in reply, and
messages are terminatedb ypressing Ctrl-d.

The Reply (R) comm and works just like its lowercase counterpart, except
that copies of the reply are also sent to everyone shown in the original
message’s To: and Cc: fields.

3.5.16 Forwarding mail: fandF
To forward a copy of a message, use the forward (f) command. This
causes a copy of the current message to be sent to the specified users. The
message is marked as saved, and then deleted from the system mailbox
when you exit mail. For example, toforward the current message to some-
one whoselogin name is john, enter:

fjohn
John will receive the forwarded message, along with a heading showing
thatyou are the one who forwarded it. The forwarded message isindented
one tab stop inside the new message. An optional message number can
also be given. Forexample:

f2johnbill
forwardsmessage 2tojohn and bill.

The Forward (F) command is identical to the lowercase forward com-
mand, except that the forwarded messageisnotindented.

3-20

mail

3.5.17 Creating mailing Lists:a

The alias { a) command links a group of names with the single name given
by the first argument, thus creating a mailing list. For example, you could
enter: .

alias beatles john paul george ringo

so that whenever you used the name beatles in a destination address (as in
“mail beatles’), it would be expanded so thiat you are reallyreferringto the
four names aliased to beatles. With no arguments, alias displays all
currently-defined aliases. With one argument, it prints out the users
defined by the given alias.

Youwill probably want to define aliases in the startup file, .mailrc, so that
you do not have to redefine them each time you invoke mail. See section
6.7, “Setting Up Your Environment: The .mailrc File,” formore informa-
tion.

3.5.18 Setting and Unsetting Options: s e and uns

mail switch and string options can be set with the mail commands setand
unset. A switch option s either on or off (set or unset). Stringoptionsare
strings of characters that are assigned values with the syntax option=string.
Multiple options may be specified on a line. It is most useful to place set
and unset commands in the file .mailrc in your home directory, where they
become your own personal default options when you invoke mail. For
example, you might have a setcommand that looked like this:

set dotmetoo toplines=10 SHELL=/usr/bin/sh

The options dot and metoo are switch options; toplines and SHELL are
string options.

The command

set ?
displays a list of the available options. See the section “Setting Up Your
Environment,” for descriptions of these options.
3.5.19 Editinga Message:eand v
Invoke the edit command to edit individual messages while using the text
editor. The edit command takes a message list and processes each message

in turn by writingit to a temporaryfile. The editor, ed, is then automatically
imvoked so thatyou can edit thetemporaryfile. When you finish editing the

3-21

XENIX User’s Guide

message, write the message out, then quit the editor. mail reads themes-
sagebackintothemessagebufferandremovesthe temporaryfile.

It is often useful to be able to invoke either a line or visual editor, depend-
ing on the type of terminal you are using. To invoke vi, you can use the
visual (v) command. The operation of the visual command is otherwise
identical to that of the edit command.

3.5.20 Executing Shell Commands: shand !

To execute a shell command without leaving mail, precede the command
with an exclamation point. Forexample:

ldate
displaysthe current date withoutleavingmail. To enteranew shell, enter:
sh

To exit from this new shell and return to mail command mode, press Ctrl-
d.

3.5.21 Finding Out the NumberofCharacters ina Message: si

The size (si) command displays the number of characters in each message
in amessage-list. For example, the command: “si 1-4” might display:

4: 234
3: 1000
2:23
1: 456

3.5.22 Changing the Working Directory: cd

The cd command changes the working directory to the name of the direc-
tory you give it as an argument. If no argument is given, the directory is
changed to your home directory. This command works just like the nor-
mal XENIX cd command. (Note that exiting mail returns you to the direc-
tory from which you entered mail; thus the mail cd command works only
within mail.) You may want to place a cd command in your ./mailrc file so
that you always begin executing mail from within the same directory.

3-22

C

mail

3.5.23 ReadingCommands From a File: so

The source (so) command reads in mail commands from named file.
Normally, these commandsare alias, set, and unset commands.

3.6 Leaving Compose Mode Temporarily

While composing a message to be sent to others, it is often useful to printa
message, invoke the text editor on a partial message, execute a shell com-
mand, or perform some other funchon. mail provides these capabilities
through compose escapes (sometimes called tilde escapes) which consist of
a tilde (7) at the beginning of a line, followed by a single character that
specifies the function to be performed. These escapes are available only
when you are composing a new message. They have no meaning when you
areinmail command mode. The available compose escapesare described
below.

3.6.1 Getting Help: ~?

The help escape is the first compose escape you should know because it
tellsyouaboutalltheothers. Forexample, if youenter:

"7
a brief summary of the available compose escapes is displayed on your
screen. Note that™h promptsfor heading fields and and does not give help.
3.6.2 Printingthe Message: “p

To print the current text of a messageyou are composing, enter:

p

This prints aline of dashes and the headingand body of the message so far.

3.6.3 Editing the Message: "eand "v

If you are dissatisfied with a message as it stands, you can edit the message
byinvokingthe editor, ed, with the editor escape, “e. This causes themes-
sage to be copied into a temporaryfileso thatyou can'editit. Similarly, the
“vescape causes the message to be copied into a temporary file so thatyou

3-23

XENIX User’s Guide

can editit with the vieditor. After modifyingthe message to your satisfac-
tion, writeit out and quit the editor. mail responds by entering:

(continue)

afterwhich you may continue composing your message.

3.6.4 Editing Headers:"t, "¢, b, "s, "Rand"h
To add additionalnames to thelist of message 1ecipients, enter the escape:
“t namel name?2 ...
You can name as many additional recipients as you wish. Note that users
originally on the recipient list will still receive the message: you cannot
remove anyone from the recipient list with “t. To remove a recipient, use
the "Thcommand, which is discussed later in this section.
Youcanreplace or add a subjectfield by using the ”s escape:
“s line- of-text
This replaces any previous subject with line- of- text. The subject, if given,
appears near the top of the message, prefixed with the heading Subject..
You can see what the message looks like by using “p, which displays all
headingfields along with the body of the text.

You may occasionally prefer to list certain people as recipients of carbon
copies of a message ratherthan direct recipients. Theescape:

“c namel name?2 ...
adds thenamed people to the Cc: list. The escape:

“cc namel name? ...
performsanidentical function. Similarly, the escape:

b namel name?2 ...
addsthenamed peoplet o the Bec: (Blind carbon copy) list. The people on
this list receive a copy of the message, but are not mentioned anywhere in
the message you send. Rememberthatyoucan always execute a “p escape

to see what the message looks like.

Theescape:

R

3-24

mail

adds or changes the person or persons named in the return-receipt- to:
field.

The recipients of the message are givenin the To: field; the subjectis given
in the Subject: field, carbon copy recipients are given in the Cc: field and
the return receipt recipient in the Return-receipt-to: field. If you wish to
edit these in ways impossible with the “t, ”s, “c, and "R escapes, you can
use: .

“h

where h stands for “heading.” The escape “h displays To: followed by the
current list of recipients and leaves the cursor at the end of the line. If you
enter ordinary characters, they are appended to the end of the current list
of recipients. You can also use the normal XENIX command line editing
characters to edit these fields, so you can erase existing heading text by
backspacingoverit.

. When you press RETURN, mail advances to the Subject: field, where the . . .

same rules apply. Another RETURN brings you to the Cc: field, another
bringsyoutothe Bcc: field, and yet another to the Return-receipt-to: field.
Each of these fields can be edited in the same way. Finally, another
RETURN leaves you appending text to the end of your message body. As
always, you can use “p to print the current text of the heading fields along
with thebodyof the message.

3.6.5 Adding a File to the Message: “rand ~d

It is often useful to be able to include the contents of some file in yourmes-
sage. Theescape:

“r filename

is provided for this purpose, and causes the named file to be appended to
your current message. mail complainsif the file does not existor cannot be
read. Iftheread is successful, mail displays the numberoflines and charac-
tersappended toyourmessage.

As aspecial case of 1, the escape:

“d
reads in the file dead.letter in your home directory. This is often useful
because mail copies the text of yourmessage buffer to dead.letter whenever

you abort the creation of a message. You can abort the message by entering
two consecutive interrupts or by entering a “q escape.

3-25

XENIX User’s Guide

3.6.6 Enclosing Another Message: “mand "M

If you are sending mail from within mail’s command mode, you caninserta
message, that was previously sent to you, into the message that you are
currently composing. For example, you might enter:

m4

This reads message 4 into the message you are composing, shifted rightone
tab stop. The escape:

™M 4
performs the same function, but with no right shift. You can name any
nondeleted message or list of messages.
3.6.7 Saving the Message in a File: "w
To savethe currenttext of a message bodyin afile, use:

“w filename
mail writes out the message body to the specified file, then displays the
number of lines and characters written to the file. The “w escape does not
write the message heading to the file.
3.6.8 Leaving mall Temporarily: "! and " |
T otemporarilyescape to the shell, use the escape:

“lcommand
This executes command and returns you to mail compose mode without
altering your message. If you wish to filter the body of your message
through a shell command, use:

“rommand
This pipes your message through the command and uses the output as the
new text of your message. If the command produces no output, mail
assumes that something is wrong. It retains the old version of your mes-

sage, and displays:

(continue)

3-26

N

mail

3.6.9 Escaping tomail Command Mode: ~:
To temporarilyescape to mail command mode, use either of the escapes:

“:mail- command

~_nail-command

You can then execute any mail command that you want. Note that this
escape will not work in most cases if you enter compose mode from the
XENIX shell. It depends on the command used (set and unset will work),
but most commands that involve message lists are not allowed. You will
receive the message:

May not execute cmd whilecomposing

' 3.6.10 Placing a Tilde at the Beginning of a Line: -

If you wish to send a message that contains aline beginningwith atilde, you
must enter ittwice. Forexample, entering:

~“~Thisline beginswithatilde.
appends:

~Thislinebeginswith a tilde.
to your message. The escape character can be changed to a different char-
acter with the escape option. (For information on how to set options, see
section 6.7, “Setting Up Your Environment: The .mailrc File.””) If the
escape characterisnot atilde, then this discussion applies to that character
andnotthetilde.

3.7 Setting Up Your Environment: The .mailrc File

Whenever mail is invoked, it first reads the file /usr/lib/mail/mailrc then
the file . mailrcin the user’shome directory. System-wide aliases

3-27

XENIX User’s Guide

are defined in /usr/lib/mail/mailrc. Personal aliases and set options are
defined in.mailrc. The followingis a sample. mailrc file:

numbersign introduces comments
personal aliases office and cohorts are defined below

alias officebill steve karen
alias cohorts john mary bob beth mike

set dot lets messages be terminated by period on newline

set askcc says to prompt for Cc: list after composing message
setdot askcc

cd changes directory to different current directory

cd

3.7.1 The Sub ject Prompt: asksubject

The asksubject switch causes prompting for the subject of each message
before you enter compose mode. If you respond to the prompt with a
RETURN, thenno subjectfield is sent.

3.7.2 The CC Prompt: askcc

The askcc switch causes prompting for additional carbon copy recipients
when you finish composing a message. Responding with a RETURN sig-

nals your satisfaction with the currentlist. Pressing INTERRUPT displays:

interrupt
(continue)

so that you canreturn to editingyourmessage.

3.7.3 Printing the Next Message: autoprint

The autoprintswitch causes the delete command to behave like dp. After
deleting a message, the next message in the list is automatically printed.
Printing also occurs automatically after execution of an undelete com-
mand.

3-28

®

mail

3.7.4 ListingMessages in Chronological Order: chronand mchron

The chron swiich causes messages to be listed in chronological order. By
default, messages are listed with the mostrecent first. Set chron when you
want to read a series of messages in the ordertheywerereceived.

The mchron switch, like chron, displays messages in chronological order,
but lists them in the opposite order, that is, highest-numbered, or most
recent, first. This is useful if you keep a large number of messages in your
mailbox and you wish to list the headers of the most recently received mail
first but read the messages themselves in chronological order.

3.7.5 Using the Period to Send a Message: dot

Thedot switch lets you use a period (.) as an end-of-transmission charac-
ter, as well as Ctrl-d. Thisoptionis available for those who are used to this
convention when editing with the editor, ed.

3.7.6 Sending mail While in mail: execmail

Itis often desirable to reply to a piece of mail, or send mail while reading
yourmailfile. Thisprocessis speeded up by the use of the execmail option,
It causes the underbar prompt to return before mailis finished being sent.
This frees the user to continue while mail performs mailing functionsin the
background.

3.7.7 IncludingYourselfina Group: metoo
Usually, when a group is expanded that contains the name of the sender,

the sender is removed from the expansion. Setting the metoo option
causesthesenderto beincluded in the group.

3.7.8 Saving Aborted Messages: save

The nosave switch prevents aborted messages from beingappended to the
file dead.letter in your home directory; messages are saved by default. You
can abort messages when you are in compose mode by enteringtwo inter-
rupts or a”q compose escape.

3.7.9 Printing the Version Header: quiet
The quiet switch suppresses the printing of “<n> messages:” before the

header-list, and suppresses printing of the version headerwhen mailis first
invoked. .

3-29

XENIX User’s Guide

3.7.10 Choosing an Editor: The EDITOR String

The EDITOR string contains the pathname of the text editor to use in the
edit command and “e escape. If not defined, then the defaulteditoris used.
Forexample:

set EDITOR=/bin/ed

3.7.11 Choosing an Editor: The VISUAL String

The VISUAL string contains the pathname of the text editor used in the
visual command and “v escape. Forexample:

set VISUAL=/bin/vi

Bydefault, viistheeditorused.

3.7.12 Choosing a Shell: The SHELL String

The SHELL string contains the name of the shell to use in the ! command
and the "} escape. A default shell is used if this option is not defined. For
example:

setSHELL=/bin/sh

3.7.13 Changing the Escape Character: Theescape String

The escape string defines the character to use in place of the tilde (7) to
denote compose escapes. For example:

setescape=*

With this setting, the asterisk becomes the new compose escape character.

3.7.14 Setting Page Size: The page String

The page string causes messages to be displayed in pages of size n lines.
Youare prompted with aquestionmark between pages. PressingRETURN
causes thenext page of the current message to be displayed. By default this
paging feature is turned off.

3-30

N

mail

3.7.15 Saving Outgoing mail: The record String
The record string sets the pathname of the file used to record all outgoing
mail. If not defined, then outgoing mailis not copied and saved. For exam-
ple:

setrecord=/usr/john/recordfie
With this setting, all outgoing mail is automatically appended to the file
[usr/ john/ recordfile.
3.7.16 Keeping mail in the System mailbox: autombox
The autombox switch determines whether messagesremain in the system
mailbox when you exit mail. If you set autombozx, the examined messages
are automatically placed in the mbox file in your home directory (your user
mailbox). Theyare removed fromthe system mailbox when you quit.
3.7.17 Changing the top Value: The toplines String

The toplines string sets the number of lines of a message to be displayed
with the top command. By default, this valueis five. For example:

settoplines=10
With this setting, ten lines of each message are displayed when the top
command is used.
3.7.18 Sending mail OverTelephone Lines: ignore
The ignore switch causes interrupt signals from your terminalto be ignored
and echoed as at-signs (@). This switch is normally used only when com-
municating with mail over 1clephone lines.
3.8 Using Advanced Features
This section discusses advanced features of mailusefulto those with some
existing familiarity with the XENIX mailsystem.
3.8.1 Command Line Options

One very useful command line option to mail is the —s “subject’” switch.
Youcan specify asubject on the command linewith this switch. For

3-31

XENIX User’s Guide

example, you could send a file named letter with the subjectline, “Impor-
tant Meeting at 12:00”°, by enteringthe following:

mail-s “Important Meeting at 12:00” johnbob mike <letter
To include other header fields in your message, you can use the following
options:
-buser Addstheblind carbon copyfield tothemessage header.
—cuser Addsthecarboncopyfield to the message header.
—ruser Addsthe return-receipt to: field to the message header.
None of the above options maybe specified more than once on amail com-
mand line. If multiple arguments are required for an option, the entire
argument set must be enclosed in quotes, as in:
mail -r “meeting” -b singleuser -c “xyz’’ user user2
mail also allows you to edit files of messages by using the —f switch on the
command line. For example:
mail ~f filename
causes mail to edit filename and the command:
mail~f
causes mailtoread mbox in your home directory. All the mail commands
except hold are available to edit the messages. When you enter the quit
command, mail writes the updated file back.
If you send mail over a noisy phone line, youmaynotice that bad charac-
ters are transmitted. These are characters that abort messages: RUBOUT
and DEL. You can invoke mail with the —i switch to ignore these bad char-

acters.

When you enter the mail program (as opposed to sending a message from
command level), two command line options are available:

-R Makes the mail session read-only, preventing alteration of the
mailbeingread.

—uuser Readsin user’s mailinstead of your own.

3-32

mail

3.8.2 Using mail as a Reminder Service

Besidessendingand receiving mail, you can use mail as a reminder service.
Several XENIX commands have this idea built in to them. For example,
the XENIX Ip command’s =m switch causes mail to be sent to the user
after files have been printed on the lineprinter. XENIX automatically
examines the file named calendar in each user’s home directory and looks
forlines containing either today or tomorrow’s date. These lines are sent
by mail as a reminder of important events.

If you program in the shell command language, you can use mail to signal
the completion of a job. For example, you might place the following two
lines in a shell procedure:

biglongjob
echo “biglongjob done” |mail self

. Youcan also create a alogfile that you want to mail to yourself.. For exam-.

ple, youmighthave a shell procedurethatlookslike this:

dosomething >logfile
mail self <logfile

For information about writing shell procedures, see Chapter 4 of this
manual, “The Shell.”

3.8.3 Handling Large Amounts of mail

Eventually, you will face the problem of dealingwith an accumulation of
messages in youruser mailbox. There are a number of strategies that you
can employ to solve this problem concerning space’in your mailbox file.
Keepinmind the dictum:

When in doubt, throwit out.

This means that you should only save important mail in your user mailbox.
If your mailbox file becomes large, you must periodically examine its con-
tents to decide whether messages are stillrelevant. To save space, consider
summarizing verylong messages.

The previously mentioned measures are not always helpful enough in
organizing the many messages that you are likely to receive. Another
effective approach is to save mailin files organized bysender, by topic, or
by acombination of thetwo. Create these filesin a separate mail directory;
you can access these mailbox files with the mail —f filename switch. How-
ever, be forewarned-this approach to organizing mail quickly eats up disk
space.

3-33

XENIX User’s Guide

3.8.4 Maintenance and Administration

The following is a list of the programs and files that make up the XENIX
mail system:

/usr/bin/mail
/usr/lib/mail/mailrc
/usr/spool/mail/*

/usr/name/dead.letter

/usr/name/mbox
/usr/name/.mdilrc
/usr/lib/mail/mailhelp.cmd
/usr/lib/mail/mailhelp.esc
/usr/lib/mail/mailhelp.set
/usr/lib/mail/aliases
/usr/lib/mail/aliases.hash
/usr/lib/mail/faliases
/usr/lib/mail/maliases

/usr/lib/mail/maliases.hash

mail program
mail system initialization file
System mailbox files

File where undeliverable mail is
deposited

Usermailbox
Usermailinitialization file
mailcommand helpfile

mail composeescapehelpfile
mailoptionhelpfile
System-~wide aliases
System-wide aliasdatabase
Forwardingaliases

Machine aliases

Optional machine aliases database

A system-wide distribution listis kept in /usr/lib/ mail /aliases. A system
administrator is usually in charge of this list. These aliases are kept in a
vastly different syntax from .mailrc, and are expanded when mail is sent.
Youwillnormallyneed special permission to change system-~wide aliases.

3.9 Quick Reference

The following sections provide quick reference to the available com-
mands, compose escapes, and options.

3-34

@

mail

3.9.1 Command Summary

Given below are the name and syntax for each command, the abbreviated
form (in brackets), and a short description. Many commands have
optional arguments; most can be executed without anyarguments at all. In
particular, commands that take a message-list argument will default to the
current message if no message-list is given. In the following descriptions,
boldface denotes the name of a command, compose escape or option.
Italics are used for arguments to commands or compose escapes. Thevert-
ical bar indicates selection and is used to separate the arguments from
which you may select. Allothertext should be read literally.

RETURN

+n

-n

-~

Ishell-cmd

Alias users

alias name users

cd directory

delete mesg-list

Displays the next message.

[+] With no » argument, it displays the next
message. If given anumeric argument », goes to
thenth message and displaysit.

[=]-With no » argument, goes.to the previous

message and displays it. If given a numeric argu-
ment 1, goes to the nth previous message and
displaysit.

Displays the firstmessage.
Displays the last message.

Displays the message number of the current
message.

Displays the summary of mail commands in
/usr/lib/mail/mailhelp.cmd.

Executes the shell command that follows. No
spaceis needed after theexclamation point.

Displays system-wide aliases forusers. Atleast
one user must be specified.

[a] Aliases users to name. With no name argu-
ments, displays all currently defined aliases.
With one argument, displays the users aliased by
the given name argument.

[¢] Changes the user’s working directory to the
specified directory. If no directoryis given, then
changesto the user’s home directory.

[d] Deletes each message in the given message-
list.

3-35

XENIX User’s Guide

dp mesg-list

echo path

edit mesg-list

exit[!]

file

Deletes the current message and displays the
next message.

Expandsshell metacharacters.

[e] Takes the given message-list and points the
text editor at each message in turn. Onreturn to
command mode, the edited message is read
back in. See alsothe visnal command.

[x] Immediately returns to the shell without
modifying the system mailbox, the user mail-
box, or afile specified with the —fswitch.

[fi] Displays thename of the mailbox file.

forward mesg- num user-list

[f] Takes a user-list argument and forwards the
current message to each name. The message
sent to each 1s indented and shows that the
sender has passed it on. The mesg- num argu-
ment is optional, and is used to forward the
numbered message instead of the default mes-
sage.

Forward mesg- num user- list

[F] Same as forward except that the message is
notindented.

headers +n |-n |mesg- list

help

hold mesg- list

3-36

[h] With no argument, lists the current range of
headers, whichis an 18-message group. If a plus
(+) argument is given, then the next 18-message
groupis displayed, and if a minus (-) argument
1s given, the previous 18-message group is
displayed. Both plus and minus accept an
optional numeric argument indicating the
number of header-windows to move forward or
backward. If a message-list is given, then the
message-header for each message in the list is
displayed.

Same as ? above. Prints the summary of mail
commandsin /usr/lib/maill/ mailhel p.cmd.

[ho] Takes a message-list and marks each mes-
sage to be saved in the user’s system mailbox
instead of in mbox.

@

list

Ipr mesg-list

mail [user-list]

mbox mesg-list-

mail

Printslist of mail commands.

[1] Prints each of the messages in the required
message-list on the lineprinter. Messages are
piped through prbefore beingprinted.

[m] Takes a1 optional user-list argument and
sends mail to each name after entering compose
mode.

[mb] Marks messages given in the message-list
argument to be saved in the user mailboxwhen a
quit is executed. Message headers contain an
Initial letter “M” to show that they are to be
saved.

move mesg-listmesg- num

print mesg- list

quit

reply mesg- list

Reply mesg-list

restart

Places the messages specified in mesg-list after

- the message specified in mesg-num. If mesg- -

numis 0, mesg- list moves to the top of the mail-
box.

[p]Takesa message-list and displays each mes-
sage ontheuser’s terminal.

[q] Terminates the mail session, retaining all
nondeleted, unsaved messages in the system
mailbox. If the autombox option is set, then
examined messages are saved in the user mail-
box, deleted messages are discarded, and all
messages marked with the hold command are
retained in the system mailbox.

If you are executing a quit while editing a mail-
box file with the —~f flag, the mailbox file is
rewritten and the user returns to the shell.

[r]Takes a message-list and sends mail to each
message author justlike the mailcommand.

[R] Sends areplyto users named in the To; and
Cc: fields, as well as the original sender.

Reads in mail that arrives during the cuirent
mail session.

save mesg-list filename

[s] Takes an optional message-list and a
filename and appends each message in turn to

3-37

XENIX User’s Guide

set

set option- list

shell

size mesg-list

source file

string string mesg-list

top

undelete mesg-list

unset options

visual mesg-list

whois

3-38

the end of the file. The default message is the
current message.

[se]Displaysalist of available options.

[se] With no arguments, displays all variable
values. Otherwise, sets option. Arguments are
of the form option=value, if the option is a
skring option or just option, if the option is a
switch. Multiple options maybe seton oneline.

[sh]Invokes an interactive version of the shell.

[si] Takes a message-list and displays the size in
characters of each message.

[so] Reads and executes mail commands from
the named file.

Searches for string in mesg-list. It no mesg-list is
specified, all undeleted messages are searched.
Ignores case in search.

[t] Takes amessage-list and displays the top five
lines. The number oflines displayed is set by the
variable toplines.

[u] Takes a message-list and marks each one as
not being deleted. Each message in the list must
previously have beendeleted.

[uns] Takes a list of option names and discards
theirremembered values; this is the opposite of
set.

[v] Takes a message-list and invokes the vi edi-
toroneach one.

Looks up a list of target mail recipients and
prints the real names or descriptions of each
recipient. If the first character of the first argu-
ment is alphabetic, the arguments arelooked up
without change. Otherwise, the arguments are
assumed to be a message list, in the format
specified in the mail User’s Guide. For each
message in the list, the “From” person is
extracted from the header and added to list of
userstobe searched.

mail

write mesg- list filename

[w] Writes the message bodies of messages given
by the message-list to the file given by filename.

3.9.2 Compose Escape Summary

Compose escapes are used when composing messages to perform special
functions. They are only recognized at the beginning of lines. The escape
character can be set with theescape stringoption.(See section 6.7.14, “The
escape String.”’) Abbreviations for each escape are in brackets.

Hereis a summary of the composeescapes:

“Ustring

“lcommand

“lcommand

Inserts thestringof textin the message prefaced by a
single tilde ().

Prints outhelp for compose escapeson terminal.
SameasCtrl-d on anewline.

Executes ashellcommand, then returns to compose
mode. :

Pipes the message body through the command as a
filter. Replaces the message body with the output of
the filter. If the command gives no output or ter-
minates abnormally, retains the original message
body.

~_mail-command Executes a mail command, then returns to compose

mode.

“imail-command Executes a mail command, then returns to compose

“alias

mode.

- ["a]Displays alistof private aliases.

“alias aliasname [a] Displays the names included in private

aliasname.

~alias aliasname users

“Alias

["a]Adds users to private aliasnamelist.

[A] Performs aliasing by first examining private
aliases and then system-wide aliases using all three
global alias files. Only the final result is printed
(non-local mail recipients will have the complete
delivery path printed). The user list is taken from
header fields.

3-39

XENIX User’s Guide

“Alias users

“bec name...
“ccname...

“dead

“editor

“headers

["A] Performs aliasing by first examining private
aliases and then system-wide aliases using all three
global alias files. Only the final result is printed
(non-local mail recipients will have the complete
delivery path printed). At least one user must be
specified.

["b] Addsthe given namesto the Bcc: field.
["c] Addsthegivennameto the cc: field.

["d] Readsthe file dead. letter from your home direc-
toryinto the message.

["e] Invokes the line editor on the message being
sent. Exitingthe editor returns the user to compose
mode.

["h] Edits the message heading fields by printing
each one in turn and allowing the user to modify each
field.

“message mesg- list

[Fm] Reads the named messages into the message
being sent, shifted right one tab. If no messages are
specified, reads the current message.

“Message mesg-list

“print

“Print

“quit

“read filename

“Return name

“shell

“subject string

3-40

["M] Same as~message except withnoright shift.

["p] Prints the message buffer prefaced by the mes-
sageheading.

["P] Prints the real names or descriptions (in
parentheses) after each recipient.

[Tq] Aborts the message being sent, copying the mes-
sage to dead.letter in your home directory it the save
optionis set.

{"r] Readsthe named file into the message.

["R] Adds the given names to the Return- receipt- to:
field.

["sh]Invokes ashell.

[s] Causes the named string to become the current
subject field.

®

mail

“toname... ["t] Adds the given names to the To: field.

“visual ["v] Invokes the vi editor to edit the message buffer.
Exitingthe editorreturns the user to compose mode.

“write filename [~w] Writes the message body to thenamed file.

3.9.3 Option Summary

Options are controlled with the set and unset commands. An option is
either a switch or astring. A switchiseitheron or off, while a stringoption
has avaluethatisa pathname, anumber, or a single character. Options are
summarized below.

askcc Causes promptingfor additional carbon copy recipients
at the end of each message. Pressing RETURN retains
the currentlist.

asksubject Causes prompting for the subject of each message you
send. The subject is a line of text terminated by a
RETURN.

autombox Usually messages are retained in the system mailbox
when the user quits. However, if this option is set,
examined messages are automatically appended to the
usermailbox.

autoprint Causes the delete command to behave like dp. Thus,
after deleting (or undeleting) a message, the next one is
printed automatically.

chron Causes messages to be listed in chronological order.

dot Causes a single period on a newline to act as the EOT
character. The normal end-of-transmission character,
Ctrl-d, stillworks.

EDITOR= Pathname of the text editor to use in the editcommand
and “e escape. If not defined, then a default editor is
used.

escape=char If defined, sets char as the character to use in place of
thetilde () to denotecomposeescapes.

ignore Causes interrupt signals from your terminal to be
ignored and echoed as at-signs (@).

3-41

XENIX User’s Guide

mchron

metoo

nosave

page=n

quiet

record=

SHELL=

toplines=

verify

VISUAL=

3-42

Causes messages to be listed in numerical order (most
recently received first), but displayed in chronological
order.

Normally, before sending, the name of the sender is
removed from alias expansions. If metoo is set, then the
name of the sender is not removed.

Prevents saving of the message buffer in the file
dead.letter in the home directory, after two consecutive
interrupts ora~q escape.

Specifies the number of lines (1) to be printed in a
“page” of text when displayingmessages.

Suppresses the printing of the version when mailis first
invoked.

Setsthe pathname of thefile used to record all outgoing
mail. If not defined, then outgoing mail is not copied.

Pathnameoftheshell to use in the! command and the™!
escape. A default shell is used if this option is not
defined.

Sets the number oflines of a message to be printed with
the top command. Default is fivelines.

Causes each target mail recipient to be verified. This
option permits errors made while composing messages
to be corrected orignored.

Pathname of the text editor to use in the visual com-
mand and“vescape. The defaultisforthe vieditor.

P00 OGSO S T U.I NI 6806 00 IOITE LD HDEDEDSNDEDEEIOD RO E

Replace this Page
with Tab Marked:

Shell

Chapter4
The Shell

4.1 Introduction 4-1

4.2

4.3

4.4

4.5
4.6
4.7
4.8

Basic Concepts 4-1

4.2.1 How ShellsAre Created 4-2
Commands 4-2

Howthe ShellFindsCommands 4-3
Generation of Argument Lists 4-3
QuotingMechanisms 4-4

Standard Inputand Output 4-5
Diagnosticand Other Outputs 4-6
Command Lines and Pipelines 4-7
Command Substitution 4-9

»
N
()

APAARAN
NN NN
LVouobhn

ShellVariables 4-10

4.3.1 Positional Parameters 4-10
4.3.2 User-Defined Variables 4-11
4.3.3 Predefined Special Variables 4-14

The ShellState 4-16

4.4.1 ChangingDirectories 4-16
442 The.profileFile 4-16
4.43 Execution Flags 4-17

A Command’s Environment 4-17
InvokingtheShell 4-18

Passing Argumenisto Shell Procedures 4-19

ControllingtheFlowof Control 4-21
4.8.1 Usingtheil Statement 4-23

4.8.2 Usingthecase Statement 4-24

4.8.3 Conditional Looping: whileanduntil 4-25

4.8.4 LoopingOveralist: for 4-26

4.8.5 LoopControl; break and continue 4-27

4.8.6 End-of-Fileandexit 4-28

4.8.7 Command Grouping: Parenthesesand Braces 4-28
4.8.8 DefiningFunctions 4-29

4.8.9 Input/OutputRedirection and Control Commands 4-30
4.8.10 Transfer BetweenFiles: TheDot(.) Command 4-30

4.8.11 Interrupt Handling: trap 4-31
4.9 Special ShellCommands 4-33
4.10 Creation and Organization of Shell Procedures 4-36
4.11 More About Execution Flags 4-38

4.12 SupportingCommandsand Features 4-38
4.12.1 Conditional Evaluation:test 4-38

4.12.2 EchoingArguments 4-40
4.12.3 Expression Evaluation: expr 4-41
4.12.4 TrueandFalse 4-41
4.12.5 In-LineInput Documents 4-41
4.12.6 Input/ Output Redirection UsingFile Descriptors 4-42
4.12.7 Conditional Substitution 4-43
4.12.8 InvocationFlags 4-45

4.13 Effective and Efficient Shell Programming 4-45
4.13.1 Number ofProcesses Generated 4-46
4.13.2 NumberofDataBytesAccessed 4-47
4.13.3 ShorteningDirectory Searches 4-48

4.13.4 Directory-Search Orderandthe PATH Variable 4-48
4.13.5 Good Waysto SetUpDirectories 4-49

4.14 ShellProcedure Examples 4-49
4.15 Shell Grammar 4-57

@

The Shell

4.1 Introduction

When users loginto XENIX , theycommunicate with one of serveralinter-
preters. This chapter discusses the shell command interpreter, sh. This
interpreter is a XENIX program that supports a very powerful command
language. Each invocation of this interpreter is called a shell; and each
shell has one function: to read and execute commands from its standard
input.

Because the shell gives the user a high-level language in which to communi-
cate with the operating system, XENIX can perform tasks unheard of in
less sophisticated operating systems. Commands that would normally
have to be written in a traditional programming language can be written
with just a few lines in a shell procedure. In other operatingsystems, com-
mands are executed in strict sequence. With XENIX and the shell, com-
mandscanbe:

° Combinea toformnewcommands

° Paésed positional parameters

® Addedorrenamed bytheuser

e Executed within loops orexecuted conditionally

® (Created forlocal execution withoutfear of name conflict with other
user commands

e Executed in the background without interrupting a session at a ter-
minal

Furthermore, commands can “redirect’” command input from one source
to another and redirect command output to a file, terminal, printer, or to
anothercommand. This provides flexibilityin tailoring a task for a particu-
larpurpose.

4.2 Basic Concepts
The shell itself (that is, the program that reads your commands when you
login orthatisinvoked with thesh command)is a program writteninthe C

language; it is not part of the operating system proper, but an ordinaryuser
program.

4-1

XENIX User’s Guide

4.2.1 HowShells Are Created

In XENIX , a process is an executing entity complete with instructions,
data, input, and output. All processes have lives of their own, and may
even start (or “fork™) new processes. Thus, at any given moment several
processes may be executing, some of which are ‘“‘children” of other
processes.

Users loginto the operating system and are assigned a “shell’” from which
they execute. This shell is a personal copy of the shell command interpreter
that is reading commands from the keyboard: in this context, the shell is
simply another process.

In the XENIX multitasking environment, files may be created in one phase
and then sent off to be processed in the “background.’’This allows the user
to continue workingwhile programs are running.

4.2.2 Commands

The most common way of using the shell is by entering simple commands
at your keyboard. A simple command is any sequence of arguments
separated by spaces or tabs. The first argument (numbered zero) specifies
the name of the command to be executed. Any remaining arguments, with
afew exceptions, are passed as arguments to that command. Forexample,
the followingcommand line might be entered to request printing of the files
allan, barry, and calvin:

lpr allan barry calvin

If the first argument of a command names a file that is executable (as indi-
cated by an appropriate set of permission bits associated with that file) and
is actually a compiled program, the shell, as parent, creates a child process
that immediately executes that program. If the file is marked as being exe-
cutable, but is not a compiled program, it is assumed to be a shell pro-
cedure, that is, a file of ordinary text containing shell command lines. In
this case, theshellspawns anotherinstance of itself (a subshell) toread the
fileand execute the commandsinside it.

From the user’s viewpoint, compiled programs and shell procedures are
invoked in exactly the same way. The shell determines which implementa-
tion has been used, rather than requiring the user to do so. This provides
uniformity of invocation.

4-2

The Shell

4.2.3 How the Shell Finds Comimands

Theshellnormally searches for commands in three distinctlocations in the
file system. The shell attempts to use the command name as given; if this
fails, it prepends the string /bin to the name. If thelatteris unsuccessful, it
prepends /usr/bin to the command name. The effectis to search, in order,
the current directory, then the directory /bin, and finally, /usr/bin. For
example, the pr and man commands are actually the files /bin/pr and
/usr/bin/man, respectively. A more complex pathname may be given,
either to locate a file relative to the user’s current directory, or to access a
command with an absolute pathname. If a given command name includes
a slash (/) (for example, /bin/sort dir/cmd), the prepending is not per-
formed. Instead, a single attempt is made to execute the command as
named.

This mechanism gives the user a convenient way to execute public com-
mands and commandsin ornearthe currentdirectory, aswell as the ability
1o execute any accessible command, regardless of its location in the file
structure. Because the current directory is usually searched first, anyone
can possess a private version of a public command without affecting other
users. Similarly, the creation of a new public command does not affect a
userwhoalreadyhas a private command with the same name. The particu-
lar sequence of directories searched may be changed by resetting the shell
PATHvariable. (Shell variables are discussed later in this chapter.)

4.2.4 Generation of Argument Lists

The arguments to commands arevery often filenames. Sometimes, these
filenames have similar, but notidentical, names. To take advantage of this
similarity in names, the shelllets the user specify patterns that match the
filenames in a directory. If apattern is matched by one or more filenames
in a directory, then those filenames are automaticallygenerated by the shell
as arguments to the command.

Most characters in such a pattern match themselves, but there are also
XENIX special characters that may be included in a pattern. These special
characters are: the star (*), which matches any string, including the null
string; the question mark (?), which matches any one character; and any
sequence of characters enclosed within brackets ([and J), which matches
any one of the enclosed characters. Inside brackets, a pair of characters
separated by a dash () matches any character within the range of that pair.

4-3

XENIX User’s Guide

Thus [a—de]is equivalent to[abcde]. Examples of metacharacter usage:

* Matches allnamesin the current directory

temp Matches all names containing ‘‘temp”’

[a-f]* Matches allnamesbeginningwith ““a” through ‘%’
*.c Matches all names endingin ““.c”

Just/bin/? Matchesall single-character namesin /usr/bin

This pattern-matching capability saves typing and, more importantly,
makes it possible to organize information in large collections of files that
arenamed in a structured fashion, using common characters or extensions
toidentifyrelated files.

Patternmatching has somerestrictions. If the first character of a filename
is a period (.), it can be matched only by an argument that literally begins
with a period. If a pattern does not match any filenames, then the pattern
itselfis theresult of thematch.

Note thatdirectory names should not contain any of the following charac-
ters:

*?[]

If these characters are used, then infinite recursion mayoccur during pat-
tern matching attempts.

4.2.5 Quoting Mechanisms

Several characters, including <,>,*,?,[and], have special meanings to

the shell. To remove the special meaning of these characters requires

some form of quoting. This is done by using single quotation marks () or

double quotation marks (')to surround a string. A backslash (\) before a

single character provides this function. (Back quotation marks () areused

only for command substitution in the shell and do not hide the special

meanings of anycharacters.)

All characters within single quotation marks are taken literally. Thus:
echostuff="echo $?$*; Is *| wc’

resultsin the string:

echo 2*;ls *| we

being assigned to the variable echostuff, but it does not result in any other
commands being executed.

4-4

The Shell

Within double quotation marks, the special meaning of certain characters
does persist, while all other characters are taken literally. The characters
that retain their special meaning are the dollar sign (§), the backslash (\),
the back quotation mark ("), and the double quotation mark. (") itself.
Thus, within double quotation marks, variables are expanded and com-~
mand substitution takes place (both topicsare discussed in later sections),
However, -any commands in-a-command -substitution are-unaffected by
double quotation marks, sothatcharacters such as star (*) retain their spe-
cial meaning.

To hide the special meaning of the dollar sign ($) and single and double
quotation marks within double quotation marks, precede these characters
with a backslash (\). Outside of double quotation marks, precedinga char-
acter with a backslash is equivalent to placing single quotation marks
around that character. A backslash (\) followed by a newline causes that
newline to be ignored. The backslash-newline pair is therefore useful in
allowingcontinuation of longcommand lines.

Somie examiples of giioting are displayed below:

Input Shell interprats as:

e The back gquotation mark {™}
The double quotation mark (™)
““echo one*” | the one word ‘““‘echo one*”
A The double guotation mark "}

TR

"echo one*" | the one word ‘“one”

i illegnl (expects another)
one_two the two words “one” & ‘‘two”
"one two" the one word “one 1wo”

‘one two’ the one_word_ ‘“one two”

‘one * two’ the one word “one * two”
"one * two" the one word_‘‘one * two”
‘echo one’ the one word ‘“one”

4.2.6 Standard Inputand Output

In general, most commands do not know or care whether their input or
output is coming from or going to a terminal or a file. Thus, a command
can be used conveniently either at a terminal or in a pipeline. A few com-
mands vary theiractions depending on the nature of theirinput or output,
either for efficiency, or to avoid useless actions (such as attempting ran-
dom access I/0 on a terminal or a pipe).

When a command begins execution, it usually expects that three files are
already open: a ‘“‘standard input”, a “‘standard output™, and a ‘“diagnostic

4-5

XENIX User’s Guide

output” (also called “standard error”). A numbercalled a file descriptoris
associated with each of these files. By convention, file descriptor Ois asso-
ciated with the standard input, file descriptor 1 with the standard output,
and file descriptor 2 with the diagnostic output. A child process normally
inherits these files from its parent; all three files are initially connected to
the terminal (Oto the keyboard, 1 and 2 to the terminal screen). The shell
permits the files to be redirected elsewhere before control is passed to an
invoked command.

Anargument totheshell of theform “<file” or “> file” opens thespecified
file as the standard input or output (in the case of output, destroying the
previous contents of file, if any). An argument of the form “>>file”
directs the standard output to the end of file, thus providing a way to
append data to the file without destroying its existing contents. In either of
thetwo output cases, the shellcreates file if it does not already exist. Thus:

> output

alone on a line creates a zero-length file. The following appends to file log
the list of users who are currently logged on:

who >> log
Such redirection arguments are only subject to variable and command sub-
stitution; neither blank interpretation nor pattern matching of filenames
occurs after these substitutions. Thismeans that:

echo ‘thisisatest” > *.gal

produces a one-line file named *.gal. Similarly, an error message is pro-
duced by the following command, unless youhave a filewith the name *?”’;

cat < ?
Special characters are not expanded in redirection arguments because
redirecion arguments are scanned by the shell before pattern recognition
and expansion takes place.
4.2.7 Diagnostic and Other Outputs
Diagnostic output from XENIX commands is normally directed to the file

associated with file descriptor2. (Thereisoften aneed for an error output
file that is different from standard output so that error messages do not get

4-6

()

The Shell

lostdown pipelines.) You can redirect this error output to afileby immedi-
ately prepending the number of the file descriptor (2 in this case) to either
output redirection symbol (> or >>). The following line appends error
messagesfrom the cc command to the file named ERRORS:

cc testfile.c 2>> ERRORS

Note that the file descriptor number must be prepended to the redirection
symbol without any intervening spaces or tabs; otherwise, the number will
be passed as an argument to the command.

This method may be generalized to allow redirection of output associated
with any of the first ten file descriptors (numbered 0-9). For instance, if
cmd puts output on file descriptor9, then the following line will direct that
outputto the filesavedata:

cmd 9> savedata

‘A command ofteii generates staridard output and error output, and might

even have some other output, perhaps a data file. In this case, one can
redirect independently all the different outputs. Suppose, for example,
that cmd directs its standard output to file descriptor 1, its error output to
file descriptor 2, and builds a data file on file descriptor 9. The following
would direct each of these three outputs to,adifferent file:

cmd >standard 2> error 9> data

4.2.8 CommandLines and Pipelines

A sequence of commands separated by the vertical bar (|) makes up a
pipeline. In a pipeline consisting of more than one command, each com-
mand is run as a separate process connected to its neighbors by pipes, that
is, the output of each command (exceptthe last one) becomes the input of
the next command inline.

A filter is a command that reads its standard input, transforms it in some
way, then writes it asits standard output. A pipeline normally consists of a
series of filters. Although the processes in a pipeline are permitted to exe-
cute in parallel, each program needs to read the output of its predecessor.
Many commands operate on individual lines of text, reading a line, pro-
cessing it, writingit out, and looping back formore input. Some mustread
large amounts of data before producing output; sort is an example of the
extreme case that requires all input to be read before any output is pro-
duced. Thefollowingis an example of a typical pipeline:

nroff —-mm text| col| lpr

4-7

XENIX User’s Guide

nroff is a text formatter available in the MENIX Text Processing System
whose output may contain reverse line motions, col converts these
motions to aform that can be printed on aterminal lackingreverse-motion
capability, and Ipr does the actual printing. The flag~mmindicatesone of
the commonly used formattingoptions, and textis the name of the fileto be
formatted.

The followingexamples illustrate the variety of effectsthatcanbe obtained
by combining a few commands in the ways described above. It may be
helpful to try these at a terminal:

4-8

who
Printsthelistoflogged-in usersontheterminal screen.

who >>log
Appends thelist oflogged-in users to the end of filelog.

who | we -1
Prints the number of logged-in users. (The argument to wc is pro-
nounced “minusell”.)

who | pr
Printsa paginated list of logged-in users.

who | sort
Prints an alphabetized list of logged-in users.

who | grep bob
Prints the list of logged-in users whose login names contain the
stringbob.

who | grep bob | sort | pr
Printsan alphabetized, paginated list oflogged-in users whose login
names contain the string bob.

{ date;who | wc-1; } >> log

Appends (to file log) the current date followed by the count of
logged-in users. Be sure to place a space after the left brace and a
semicolonbeforetherightbrace.

who [sed —e “s/ .*//’| sort| uniq —d

Prints only the login names of all userswho are logged in more than
once. Note the use of sed as a filter to removecharacters trailing the
login name from each line. (The “.** in the sed command is pre-
ceded by a space.)

The Shell

The who command does not by itself provide options to yield all these
results— they are obtained by combining whe with other commands. Note
that who just serves as the data source in these examples. As an exercise,
replace “who | with “</etc/passwd” in the above examples to see how a
file can be used as a data source in the sameway. Notice that redirection
arguments may appear anywhere on the command hne, even at the start.
This means that:

< infile >outfile sort | pr
isthe same as:

sort < infile | pr > outfile

4.2.9 Command Substitution

Any command line can be placed within back quotation marks (*...") so
that the output of the command replaces the quoted command line itself.
This concept is known as command substitution. The command or com-
mands enclosed between back quotation marks are first executed by the
shell and then their output replaces the whole expression, back quotation
marks and all. This feature is often used to assign to shell variables. (Shell
variables are described in the next section.)

For example:

today="date"
assigns the stringrepresentingthe current date to the variable “today”; for
example “Tue Nov 26 16:01:09 EST 1985”. The following command saves
thenumber oflogged-in users in the shell variable users :

users="who | w¢ -T
Anycommand that writes to the standard output can be énclosed in back
quotation marks. Back quotation marksmaybe nested, buttheinside sets
must be escaped with backslashes {\). Forexample:

logmsg="echo Your login directory is \'pwd\™
will display the line “your login directory is name o flogin directory”. Shell
variables can also be given values indirectly byusingthe read and line com-
mands. The read command takes a line from the standard input (usually

your terminal) and assigns consecutive words on that line to any variables
named.

4-9

XENIX User’s Guide

Forexample:
read first init last
takes aninputline of the form:
G. A. Snyder
and has the same effect as entering:
first=G. init=A. last=Snyder
Theread command assigns anyexcess “‘words’’ to the last variable.

The line command reads a line of input from the standard input and then
echoes it to the standard output.

4.3 Shell Variables

The shell has several mechanisms for creating variables. A variable is a
name representing a string value. Certain variables are referred to as posi-
tional parameters ; these are the variables that are normally set only on the
command line. Other shell variables are simply names to which the user or
the shell itself may assign string values.

4.3.1 Positional Parameters

When a shell procedure is invoked, the shell implicitly creates positional
parameters. The name of the shell procedure itself in position zero on the
command line is assigned to the positional parameter $0. The first com-
mand argument is called §1, and so on. The shiftcommand maybe used to
access arguments in positions numbered higher than nine. For example,
the following shell script might be used to cycle through command line
switches and then process allsucceedingfiles:

while test -n "$1"
do case $1 in
—a) A=aoption ; shift ;;
—-b) B=boption ; shift ;;
—c) C=coption ; shift ;;
—*) echo "bad option" ; exit 1 ;;
*) process rest of files
esac
done

4-10

The Shell

One can explicitly force values into these positional parameters by using
the setcommand. Forexample:

set abc def ghi

assigns the string “abc” to the first positional parameter, $1, the string
“def” to $2, and the string “ghi” to $3. Note that $0 may not be assigned a
value in this way- it always refers to the name of the shell procedure; orin
the login shell, to the name ofthe shell.

4.3.2 User-Defined Variables

The shell also recognizes alphanumeric variables to which string values
maybe assigned. A simpleassignmenthas thesyntax:

name=string

Thereafter, $narie will yield the valué string. A name is a sequence of
letters, digits, and underscores that begins with a letter or an underscore.
No spaces surround the equal sign (=) in an assigninent statement. Note
that positional parametersmaynot appear on theleftside of an assignment
statement;theycanonlybeset asdescribed in the previous sec#on.

More than one assignment may appear in an assignment statement, but
beware: the shell per forms the assignments from right to left. Thus, the fol-
lowingcommand lineresultsin the variable “A” acquiringthe value “abc”:

A=3$B B=abc

The following are examples of simple assignments. Double quotation
marks around the right-hand side allow spaces, tabs, semicolons, and
newlines to be included in a string, while also allowingvariable subs#tution
(also known as “parameter substitution”’) to occur. This means that refer-
ences to positional parameters and other variable names that are prefixed
by a dollar sign (§) are replaced by the corresponding values, if any. Single
quotation marks inhibit variable substitution:

MAIL=/usr/mail/gas
echovar="echo $1 $2 $3 $4"
slars=*##+*

asterisks="$stars”

In the above example, the variable echovar has as its value the string con-
sisting of the values of the first four positional parameters, separated by
spaces, plusthestring“echo”. No quotation marksareneeded around the
string of asterisksbeing assigned to stars because pattern matching (expan-
sion of star, the question mark, and brackets) does not apply in this con-
text. Note that the value of $asterisks is the literal string “$stars”, not the
string ‘“*****» hecause the single quotation marks inhibit substitution.

4-11

XENIX User’s Guide

In assignments, spaces are not re-interpreted after variable substitution,
so thatthe following example results in $first and $second having the same
value:

first="a string with embedded spaces’
second="$first

In accessing the values of variables, you may enclose the variable name in
braces { ... } todelimit the variable name from any following string. In par-
ticular, if the character immediately following the name is a letter, digit, or
underscore, then the braces are required. For example, examine the fol-
lowinginput:

a="This is a string’
echo “${a}ent test of variables.”

Here, theechocommand prints:
This is astringent test of variables.

If no braces were used, the shell would substitute a null value for “$aent”
and print:

testofvariables.

The following variables are maintained by the shell. Some of them are set
bytheshell, and all of them can be resetby the user:

HOME Initialized by the login program to the name of the
user’s login directory, that is, the directory that
becomes the current directory upon completion of a
login; cd without arguments switches to the SHOME
directory. Using this variable helps keep full path-
names outof shell procedures. Thisis of greatbenefit
when pathnames are changed, either to balance disk
loads or to reflect administrative changes.

IFS The variable that specifies which characters are inter-
nal field separators. These are the characters the shell
uses duringblank interpretation. (If youwantto parse
some delimiter-separated data easily, you can set IFS
to include that delimiter.) The shell initally sets IFS
toincludetheblank, tab, and newline characters.

MAIL The pathname of a file where your mail is deposited.
If MATIL is set, then the shell checks to see if anything
has been added to the file it names and announces the
arrival of new mail each ®ime you return to command

4-12

MAILCHECK

MAILPATH

SHACCT

SHELL

PATH

The Shell

level (e.g., by leaving the editor). MAIL is not set
automatically; if desired, it should be set (and option-
ally "exported") in the user’s .pwfile. (The export
command and .profile file are discussed later in this
chapter.) (The presence of mail in the standard mail
file is also announced at logm, regardless of whether
MAIL isset.) . : :

This parameter specifies how often (in seconds) the
shell will check for the arrival of mail in
the files specified by the MAILPATH or MAIL
parameters. The default value is 600 seconds (10
minutes). If set to 0, the shell will check before each
prompt.

A colon (;) separated list of filenames. If this parame-~
ter is set, the shell informs the user of the arrival of
mail in any of the specified files. Each file name can
be followed by % and a message that will -be printed -
when the modification time changes. The default
message is you have mail.

If this parameter is set to the name of a file writable by
the user, the shell will write an accounting record in
the file for each shell procedure executed. Account-
ingroutines such as acctzcom(C) and accton(C) canbe
used to anaylze the data collected.

When the shell is invoked, it scans the environment
for thisname. Ifitisfound and thereisan ‘r’ in the file
name part of its value, the shell becomes a restricted
shell.

Thevariablethat specifies the search path used by the
shellin findingcommands. Itsvalueis an ordered list
of directory pathnames separated by colons. The
shellinitializes PATH to thelist :/bin:/usr/binwhere a
null argument appears in front of the first colon. A
null anywhere in the path list represents the current
directory. On some systems, a search of the current
directory is not the default and the PATH variable is
initialized instead to /bin:/usr/bin. If you wish to
search your current directory last, rather than first,
use:

PATH=/bin:/usr/bin:
Below, the two colons together represent a colon fol-

lowed by a null, followed by a colon, thus naming the
current directory. You could possess a personal

4-13

XENIX User’s Guide

CDPATH

PS1

PS2

directory of commands (say, SHOME/bin) and cause
it to be searched before the other three directories by
using:

PATH=$HOME/bin::/bin:/usr/bin
“PATH”isnormally setin your .profile file.

This variable defines the search path for the directory
containing arg. Alternative directory names are
separated by a colon (:). The default path is <null>

(specifying the current directory). The current direc-
toryis specified by a null path name, which can appear
immediately after the equal sign or between the colon
delimiters anywhere else in the path list. If arg begins
with a / then the search path is not used. Otherwise,

each directory in the path is searched for arg.

The variable that specifies what string is to be used as
the primary prompt string. If the shell is interactive, it
prompts with the value of PS1 when it expects input.
The defaultvalue of PS1is “$ » (a dollar sign () fol-
lowed by ablank).

The variable that specifies the secondary prompt
string. If the shell expects more input when it
encounters a newline in its input, it prompts with the
value of PS2. The default value for this variable is
“> ”’ (agreater-than symbolfollowed by aspace).

In general, you should be sure to export all of the above variables so that
their values are passed to allshells created from your login. Use export at
the end of your.profile file. Anexample of an export statement follows:

export HOME IFS MAIL PATH PS1 PS2

4.3.3 Predefined Special Variables

Several variables have special meanings; the following are set only by the

shell:

$# Records the number of arguments passed to the shell, not
counting the name of the shell procedure itself. For
instance, $# yields the number of the highest set positional
parameter. Thus:

4-14

shcmd abec

n’/ N

|

A
Pl
{ i
Sl

$?

53

$!

The Shell

automatically sets $# to 3. One of its primary uses is in
checking for the presence of the required number of argu-
ments:

if test $# -1t 2
then

echo “two or moreargsrequired’; exit
fi

Contains the exit status of the last command executed (also
referred to as “return code”, “exit code”, or “value”). Its
value is a decimal string. Most XENIX commands return
zero to indicate successful completion. The shell itself
returns the current value of $? asits exit status.

The process number of the current process. Because pro-
cess numbers are unique among all existing processes, this
string is often used to generate unique names for temporary

* files. XENIX provides no mechanism for the automatic

creation and deletion of temporaryfiles; a file exists until it is
explicitly removed. Temporary files are generally undesir-
able objects; the XENIX pipe mechanism is far superior for
many applications. However, the need for uniquely-named
temporary{ilesdoes occasionallyoccur.

The following example illustrates the recommended practice
of creating temporary files; note that the directories /usr and
lusr/tmp are cleared outifthe systemisrebooted.

use current process id
to form unique temp file
temp=/usr/tmp/3$$

Is > $temp

commands here, some of which use $temp
rm -F $temp

clean up at end

The process number of the last process run in the back-
ground (using the ampersand (&)). This is a string contain-
ingfrom one to five digits.

A string consisting of names of execution flags currently

turned on in the shell. For example, $— might have the value
“xv” if you aretracingyour output.

4-15

XENIX User’s Guide

4.4 The ShellState

The state of a given instance of the shell includes the values of positional
parameters, user-defined variables, environment variables, modes of exe-
cution, and the current working directory.

The state of a shell may be altered in various ways. These include changing
the working directory with the e¢d command, setting several flags, and by
reading commands from the specialfile, .profile, in yourlogin directory.

4.4.1 Changing Directories

The c¢d command changes the current directory tothe one specified asits
argament. This can and should be used to change to a convenient place in
the directory structure. Note that cdis often placed within parentheses to
cause a subshell to change to a different directory and execute some com-
mandswithout affecting the original shell.

For example, the first sequence below copies the file /etc/passwd to
lusr/you/ passwad ; the second example first changes directory to /etc and
then copies thefile:

cp /etc/passwd /[usr/you/passwd
(cd /etc; cp passwd /usr/you/passwd)

Note the use of parentheses. Both command lines have the same effect.

If the shell is reading its commands from a terminal, and the specified
directory does not eaist (or some component cannot be searched), spelling
correction is applied to each component of directory, in a search for the
“correct” name. The shell then asks whether or not to try and change
directoryto the corrected directoryname; an answer of » means “no”’, and
anything else is taken as “yes.”

4.4.2 The .profile File

The file named .profile isread eachtime you login to XENIX. Itis normally
used to execute special one-time-only commands and to set and export
variables to all later shells. Only after commands are read and executed
from .profile, does the shell read commands from the standard input-usu-
allythe terminal.

4-16

The Shell

4.4.3 Execution Flags

The set command lets you alter the behavior of the shell by setting certain
shell flags. Inparticular, the =x and —v flags maybe useful when invoking
the shell as a command from the terminal. The flags -x and -vmay be set
byentering:

set ~xv
The sameflags maybe turned off by entering:

set +xv

These two flags have the following meaning;

-V Input lines are printed as they are read by the shell. Thisflag
is particularly useful for isolating syntax errors. The com-
mands on each input line are executed after thatinput line is
printed.

-X Commands and their arguments are printed as they are exe-
cuted. (Shell control commands, such as for, while, etc., are
not printed, however.) Note that —=x causes a trace of only
those commands that are actually executed, whereas =v
prints eachline of inputuntilasyntaxerroris detected.

The set command is also used to set these and other flags within shell pro-
cedures.

4.5 ACommand’s Environment

All variables and their associated values that are known to a command at
the beginning of its execution make up its environment. This environment
includes variables that the command inherits from its parent process and
variables specified as kéyword parameters on the command line that
invokesthe command.

The variables that a shell passes to its child processes are those that have
been named as arguments to the exportcommand. The export command
places thenamed variables in the environments of both the shell and allits
future child processes.

4-17

XENIX User’s Guide

Keyword parameters are variable-value pairs that appear in the form of
assignments, normally before the procedure name on a command line.
Such variables are placed in the environment of the procedure being
invoked. Forexample:

keycommand
echo $a $b

This is a simple procedure that echoes the values of two variables. Ifitis
invoked as:

a=keyl b=key2 keycommand
then theresulting outputis:
keyl key2

Keyword parameters are not counted as arguments to the procedure and
do not affect $#.

A procedure may accessthe value of any variable inits environment. How-
ever, if changes are made to the value of a variable, these changes are not
reflected in the environment; they are local to the procedure in question.

In order for these changes to be placed in the environment that the pro-
cedure passes to its child processes, thevariable must be named as an argu-
ment to the exportcommand within that procedure. T o obtain alist of vari-
ables that have been made exportable from the current shell, enter:

export

You will also get a list of variables that have been made readonly. To geta
list of name-value pairs in the current environment, enter either:

printenv
or
env
4.6 Invoking the Shell

The shellis a command and may be invoked in the same way as any other
command:

sh proc [arg...] A new instance of the shell is explicitly

invoked to read proc. Arguments, if any,
can be manipulated.

4-18

The Shell

sh -vproc [arg...] This is equivalent to putting “set —v” at the
beginning of proc. It can be used in the
same way for the —x, —e, —u, and —n
flags.

procarg...] If proc is an executable file, and is not a
compiled executable program, the effectis
similar to that of:

sh proc args

An advantage of thisform is that variables
that have been exported in the shell will
still be exportedfrom proc when this form
is used (because the shell only forks to
read commands from proc). Thus any
changes made within proc to the values of
exported variables will be passed on to
subsequent commands invoked from
proc.

4.7 Passing Arguments to Shell Procedures

When a command line is scanned, any charactersequence of theform $ris
replaced by the nth argument to the shell, counting the name of the shell
procedure itself as $0. This notation permits direct reference to the pro-
cedure name and to as many as nine positional parameters. Additional
arguments can be processed using the shift command or by using a for
loop.

The shift command shifts arguments to the left; i.e., the value of $1 is
thrown away, $2 replaces $1, $3 replaces $2, and so on. The highest-
numbered positional parameter becomes unset ($0 is never shifted). For
example, in the shell procedure ripple below, echo writesits arguments to
thestandard output,

ripple command
while test $# != 0

do
echo $1 $2 $3 $4 $5 $6 $7 $8 $9

shift
done

4-19

XENIX User’s Guide

Lines that begin with a number sign (#) are comments. The looping com-
mand, while, is discussed in “Conditional Looping: while and until” in this
chapter. If the procedure wereinvoked with:

ripple a b ¢
it would print:

abc
bc
c

The special shell variable “star” ($*) causes substitution of all positional
parameters except $0. Thus, the echo line in the ripple example above
could be written more compactly as:

echo $*

These two echo commands are notequivalent: the first prints atmost nine
positional parameters; the second prints all of the current positional
parameters. The shell star variable ($*) is more concise and less error-
prone. One obvious application is in passing an arbitrary number of argu-
ments to acommand. For example:

wc $*
counts the words of each of the filesnamed onthe command line.

It is important to understand the sequence of actions used by the shell in
scanning command lines and substituting arguments. The shell first reads
input up to a newline or semicolon, and then parses that much of theinput.
Variables are replaced by their values and then command substitution (via
back quotation marks) is attempted. I/O redirection arguments are
detected, acted upon, and deleted from the command line. Next, the shell
scans the resulting command line for internal field separators, that is, for
any characters specified by IFS to break the command line into distinct
arguments; explicit null arguments (specified by "' or”) areretained, while
implicit null arguments resulting from evaluation of variables that are null
or not set are removed. Then filename generation occurs with all meta-
characters being expanded. The resulting command line is then executed
by the shell.

Sometimes, command lines are built inside a shell procedure. In this case,
itis sometimes useful to have the shell rescan the command line after all the
initial substitutions and expansions have been performed. The special
command evalis available for this purpose. evaltakes acommand line as

4-20

The Shell

its argument and simply rescans the line, performing any variable or com-
mand substitutions that are specified. Consider the following (simplified)
situation:

command=who
output=" | we -I’
_eval $command $output

This segment of code resultsin the execution of the command line:

who | we -1

Uses of eval can be nested so that a command line can be evaluated several
times.

4.8 Controlling the FlowofControl

The shell provides several commands that implement a variety of control
structures useful in controlling the flow of control in shell procedures.
Before describingthese structures, a few terms need to be defined.

A simplecommand is any single irreducible command specified by the
name of an executablefile. I/O redirection arguments can appearin a sim-
ple command line and are passed to the shell, 7ot to the command.

A command is a simple command or any of the sheéll control commands
described below. A pipeline is a sequence of one or more commands
separated by vertical bars (|). In a pipeline, the standard output of each
command but the lastis connected (by a pipe) to the standard input of the
next command. Each command in a pipeline is run separately; the shell
waits for the last command to finish. The exit status of a pipeline is the exit
status of last process in the pipeline.

A commandlist is a sequence of one or more pipelines separated by a semi-
colon (), an ampersand (&), an “and-if” symbol (&&), or an “or-if”’ (||)
symbol, and optionally terminated by a semicolon or an ampersand. A
semicolon causes sequential execution of the previous pipeline. This
means that the shell waits for the pipeline to finish before reading the next
pipeline. On the other hand, the ampersand (&) causes asynchronous
background execution of the preceding pipeline. Thus, both sequential
and background execution are allowed. A background pipeline continues
execution until it terminates voluntarily, or untilits processes are killed.

4-21

XENIX User’s Guide

Other uses of the ampersand include off-line printing, background compi-
lation, and generation of jobs to be sent to other computers. For example,
if youenter:

nohup cc prog.c&

You may continue working while the C compiler runs in the background.
A command line ending with an ampersand is immune to interrupts or
quits that you might generate by typing INTERRUPT or QUIT. However,
Ctrl-d will abort the command if you are operating over a dial-up line or
have sty hupcl. In this case, it is wise to make the command immune to
hang-ups (i.e., logouts) as well. The nohup command is used for this pur-
pose. In the above example without nohup, if you log out from a dial-up
line while cc is still executing, cc will be killed and your output will disap-
pear.

The ampersand operator should be used with restraint, especially on
heavily-loaded systems. Other users will not consideryou agood citizen if
you start up alargenumber of background processes without a compelling
reason fordoingso.

The and-if and or-if (&& and 1)} operators cause conditional execution of
pipelines. Both of these are of equal precedence when evaluating com-
mand lines (butboth are lowerthanthe ampersand (&) and the vertical bar
(D). Inthecommandline:

cmdl [f cmd2
the first command, cmd1, is executed and its exit status examined. Only if

cmdl fails (i.e., has a nonzero exit status) is cmd2 executed. Thus, thisisa
moretersenotationfor:

if cmdl

test $2 1= 0
then

cmd?2
fi

The and-if operator (&&) yields a complementary test. For example, in
the followingcommand line:

cmdl && cmd2
the second command is executed only if the first succeeds (and has a zero
exit status). In the sequence below, each command is executed in order
until one fails:

cmdl && cmd?2 && cmd3 && ... && cmdn

4-22

The Shell

A simple command in a pipeline may be replaced by a command list
enclosed in either parentheses or braces. The output of allthe commands
so enclosed is combined into one stream thatbecomestheinputto the next
command in the pipeline. The following line formats and prints two
separate documents:

{ nroff -mm textl; nroff -mm text2; }.|Ipr ...

Notethataspace is needed after theleftbrace and that a semicolon should
appear before theright brace.

4.8.1 UsingtheifStatement

The shell provides structured conditional capability with the if command.
The simplest if command has the followingform:

if command-list
then command-list
fi

The command list following the if is executed and if the last command in
thelisthas a zero exit status, then the command list that follows thenis exe-
cuted. Theword fiindicates the end of the if command.

To cause an alternative set of commands to be executed when there is a
nonzero exit status, an else clause can be given with the following struc-
ture:

if command-list
then command-list
else command-list
fi

Multiple tests can be achieved in an if command by using the elif clause,
although the case statement may be better for large numbers of tests. For
example:

if test —f "$1"

is $1 a file?
then pr §1
elif test —d "$1"
- else, is $1 a directory?

then (cd $1; pr *)
else echo $1 is neither a file nor a directory

4-23

XENIX User’s Guide

The above example is executed as follows: if the value of the first positional
parameter is a filename (-f), then print that file; if not, then check to see if
it is the name of a directory (-d). If so, change to that directory (cd) and
print all the files there (pr *). Otherwise, echo the error message.

Theif command may be nested (butbe sure to end each one with afi). The
newlinesin the above examples of if maybe replaced by semicolons.

The exit status of the if command is the exit status of the last command exe-
cuted in any then clause or else clause. If nosuch command was executed,
ifreturns a zero exitstatus.

Note that an alternate notation for the test command uses brackets to
enclose the expression being tested. For example, the previous example
mighthave beenwritten as follows:

if [—f"$1"]

is $1 a file?

then pr $1

elif [-d "$1"]

else, is $1 a directory?

then (cd $1; pr *)
else echo $1 is neither a file nor a directory
fi

Note that a space after the left bracket and one before therightbracket are
essentialin thisform ofthe syntax.

4.8.2 Using the case Statement

A multiple test conditional is provided by the case command. The basic
format of the case statement is:

case string in
pattern) command-list ;;
pattern) command-list ;;
esac

The shell tries to match string against each pattern in turn, using the same
pattern-matching conventions as in filename generatlon If a match is
found, the command list following the matched pattern is executed; the
double semicolon (;;) serves as a break out of the case and is required after
each command list except the last. Note that only one pattern is ever
matched, and that matches areattempted in order, so that if a star (*)is the
first pattern in a case, no other patterns arelooked at.

4-24

The Shell

More than one pattern may be associated with a given command list by
specifyingalternate patterns separated by vertical bars (|).

case $i in
*c) cc $i
N
*h | *sh)

: do nothing

*) echo "$i of unknown type"

esac

In the above example, no action is taken for the second set of patterns
because the null, colon (:) command is specified. The star (*) is used as a
default pattern, becauseit matches any word.

The exit status of case is the exit status of the last commandexecuted in the
case command. If no commands are executed, thén case has a zero exit
status.

4.8.3 ConditionalLooping: while and until
A whilé command has the generalform:

while command-list
do

command- list
done '

The commands in the first command-list are executed, and if the exit
status of the last command in thatlistis zero, then the commands in the
second command-list are executed. This sequence is repeated as long as
the exit status of thefirst command-list is zero. A loop can be executed as
long as the first command-list returns a nonzero exit status by replacing
while with until.

Any newline in the above example may be replaced by a semicolon. The
exit status of a while (or until) command is the eait status of the last com-
mand executed in the second command- list. If no such command is exe-
cuted, while (oruntil) has a zero exit status.

4-25

XENIX User’s Guide

4.8.4 Looping Over a List: for

Often, one wishes to perform some set of operations for each file in a set of
files, or execute some command once for each of several arguments. The
for command can be used to accomplish this. The for command has the
format:

for variable in word-list
do

command-list
done

Hereword-listis alist of strings separated by blanks. The commands in the
command-list are executed once for each word in the word-list. Variable
takes on as its value each word from the word list, in turn. The word listis
fixed afteritis evaluated thefirst time. Forexample, the following for loop
causes each of the C source files xec.c, cmd.c, and word.c in the current
directory to be compared with a file of the same name in the directory
lusr/src/cmd/sh:

for CFILE in xec cmd word

do diff $CFILE.c /usr/src/cmd/sh/$CFILE.c
done

Note that the first occurrence of CFILE immediately after the word forhas
no preceding dollar sign, since the name of the variable is wanted and not
itsvalue.

You can omit the “in word-list” part of a for command; this causes the
current set of positional parameters tobeusedin place of word-list. Thisis
useful when writing a command that performs the same set of commands
for each of an unknown number of arguments.

As an example, create a file named echo2 that contains the following shell
script:

for word
do echo $word$word
done

Give echo2execute status:
chmod +x echo2

Nowtype the following command:

echo2 ma pa bo fi yo no so ta

4-26

The Shell

The output fromthiscommand is:

mama
papa
bobo
fifi
yoyo
nono
S0S0
tata

4.8.5 Loop Control: breakand continue

The break command can be used to terminate execution of a while or a for
loop. The continue command immediately starts the execution of the next
iteration of theloop. These commands are effective onlywhen theyappear
betweendo and done.

Thebreak command terminates execution of the smallest (i.e., innermost)
enclosing loop, causing execution to resume after the nearest following
unmatched done. Exitfrom 7 levelsis obtained bybreakn.

The continue command causes execution to resume at the nearest enclos-
ing for, while, or until statement, i.e., the one that begins the innermost
loop containingthe continue. You can also specify an argument # to con-
tinue and execution willresume atthenthenclosingloop:

This procedure is interactive.
"Break" and "continue" commands are used
to allow the user to control data entry.
while true #loop forever
do echo "Please enter data"

read response

case "Jresponse"” in

"done") break

no more data

2

"") # just a carriage return,
keep on going
continue

iy
*) # process the data here
b
esac
done

4-27

XENIX User’s Guide

4.8.6 End- of-File and exit

When the shellreaches the end-of-file in a shell procedure, it terminates
execution, returning to its parent the exit status of the last command exe-
cuted prior to the end-of-file. The toplevelshellis terminated by typinga
Ctrl-d (which logs the user out of XENIX).

The exit command simulates an end-of-file, setting the exit status to the
value of its argument, if any. Thus, a procedure can be terminated nor-
mallybyplacing“exit 0” at the end of thefile.

4.8.7 Command Grouping: Parentheses and Braces

There are two methods for grouping commands in the shell: parentheses
and braces. Parentheses cause the shell to create a subshell that reads the
enclosed commands. Both the right and left parentheses are recognized
wherever they appear in a command line-they can appear as literal
parentheses only when enclosed in quotation marks. For example, if you
enter:

garble(stuff)
the shell prints an error message. Quoted lines, such as:

garble”("stuff")"
"garble(stuff)"

are interpreted correctly. Other quoting mechanisms are discussed in
“Quoting Mechanisms” in this chapter.

This capabilityof creating a subshell by grouping commands is useful when
performing operations without affecting the values of variables in the
current shell, or when temporarily changing the working directory and exe-
cuting commands in the new directory without having to return to the
current directory.

The current environment is passed to the subshell and variables that are
exported in the current shell are also exported in the subshell. Thus:

CURRENTDIR="pwd’; cd /usr/docs/otherdir;
nohup nroff doc.n > doc.cuf&; cd SCURRENTDIR

and
(cd /usr/docs/otherdir; nohup nroff doc.n > doc.out&)
accomplish the same result: /usr/docs/otherdir/doc.n is processed by nroff

and the output is saved in /usr/docs/otherdir/doc.out. (Note that nroffis a
command available in the 2ENIX Text Processing System.) However, the

4-28

-

The Shell

second example automatically puts you back in your original working
directory. In the second example above, blanks or newlines surrounding
the parentheses are allowed but not necessary. When enteringa command
line at your terminal, the shell will promptwith the value of the shell vari-
able PS2if an end parenthesis is expected.

Braces ({ and }) may also be used to group commands together. Both the
left ‘and the right brace are recognized only if they appear as the first
(unquoted) word of a command. The opening brace may be followed by a
newline (in which case the shell prompts for more input). Unlike
parentheses, no subshellis created for braces: the enclosed commands are
simply read by the shell. The braces are convenient when you wish to use
the (sequential) output of several commands asinputto one command.

The exit status of a set of commands grouped by either parentheses or
bracesis the exit status of thelast enclosed executed command.

4.8.8 Defining Functions

The shellincludes a function definition capability. Functions are like shell
scripts or procedures except that they reside in memory and so are exe-
cuted bythe shell process, notby aseparate process. The basic formis:

name () {list;}

list can include any of the commands previously discussed. Functions can
be defined in one section of a shell script to be called as many times as
needed, making them easier to write and maintain. Hereis an example of a
function called “getyn’:

Prompt for yes or no answer - returns non-zero for no

getyn() {

while echo "0* (y/n)? c">&2

do read yn rest
case $yn in
[yY]) return O 5
[nN]) return 1 :
*) echo "Please answer y or n" >&2 ;:
esac.

done

In this example, the function appends a “(y/n)?” totheoutputand accepts
“Y?, “y”, “n” or “N” as input, returning a 0 or 1. If the inputis anything
else, the function prompts the user for the correct input. (Echo should
neverfail, so the while-loop is effectively infinite.)

4-29

XENIX User’s Guide

Functions are used just like other commands; an invocation of getyn might
be:

getyn "Do you wish to continue" || exit

However, unlike other commands, the shell positional parameters $1, $2,
..., are set to the arguments of the function. Since an eaitin a function will
terminate the shell procedure, the return command should be used to
return a value back to the procedure.

4.8.9 Input/Output Redirection and Control Commands

The shellnormally does not fork and create a new shell when it recognizes
the control commands (other than parentheses) déscribed above. How-
ever, each command in a pipeline is ruin as a separate process in order to
direct input to or dutput from each command. Also, when redirection of
input or output is specified explicitly to a control command, a separate pro-
cess is spawned to execute that command. Thus, when if, while, until,
case, and for are used in a pipeline consisting of more than one command,
the shell forks and a subshell runs the control command. This has two
implications:

1. Anychangesmade to variables within the controlcommand are not
effective once that control command finishes (this is similar to the
effect of using parentheses to group commands).

2. Control commands run slightly slower when redirected, because of
the additional overhead of creating a shell for the control com-
mand.

4.8.10 Transfer Between Files: The Dot (.) Command
A commandlineoftheforin:

proc
causes the shellto read commandsfrom proc without spawning a new pro-
cess. Changes made to variables in proc are in effect after the dot com-
mand finishes. Thisis a good way to gather a number of shell variable ini-
walizations into one file. A common use of this command is to reinitialize

the top level shell by reading the .profile file with:

.profile

4-30

The Shell

4.8.11 Interrupt Handiing: trap

Shell procedures can use the trap command to disable a signal (cause it to
beignored), orredefine its action. The form ofthe trap command is:

trap arg signal-list
Hereargis a string to be interpreted as a command list and signal-list con-

sists of one ormoresignalnumbers as described in signal (S) in the XENIX
Reference Manual. The mostimportant of these signals follow:

Number Signal

0 Exit from the shell

1 HANGUP

2 INTERRUPT character (DELETE or RUB OUT)

3 QUIT (Ctrl-\)

9 KILL (cannot be caught or ignored)

1 Segmentation violation (cannot be caught or ignored)
15 Software termination sigmal

The commands in arg are scanned at least once, when the shell first
encounters the trap command. Because of this, it is usually wise to use sin-
gle rather than double quotation marksto surround thése commands. The
former inhibit immediate command and variable substitution. This
becomesimportant, forinstance, when one wishestoremovetemporary
files and the names of those files have not yet been determined when the
trap command is first read by the shell. The following procedure will print
the name of the currentdirectoryin the user information astohow much of
the job was done:

trap ‘echo Directory was ‘pwd” when interrupted” 2 3 15
for i in' /bin /usr/bin /usr/gas/bin
do
cd $i
commands to be executed in directory $i here
done

Beware that the same procedure with double rather than single quotation
marks does something different. The following prints the name of the
directory from which the procedure was first executed:

trap "echo Directorywas "pwd" wheninterrupted” 2 3 15
A signal 11 can never be trapped, because the shell itself needs to catch it
to deal with memory allocation. Zero is interpreted by the trap command

as a signal generated by exiting from a shell. This occurs eitherwith an exit
command, or by “falling through” to the end of a procedure. If arg is not

4-31

XENIX User’s Guide

specified, then the action taken upon receipt of any of the signals in the sig-
nal list isreset to the default system action. Ifargis an explicit null string (*

or'"), thenthesignalsinthe signal list areignored by the shell.

The trap command is most frequently used to make sure that temporary
files are removed upon termination of a procedure. The preceding exam-
ple would be written more typically as follows:

temp=$HOME/temp/$$
trap Tm -F $temp; exit" 01 2 3 15
1s> $temp

commands that use $temp here

In this example, whenever signal 1 (hangup), 2 (interrupt), 3 (quit), or
15(terminate) is received by the shell procedure, or whenever the shell pro-
cedure is about to exit, the commands enclosed between the single quota-
tion marks are executed. The exit command must beincluded, or else the
shell continues reading commands where it left off when the signal was
received.

Sometimes the shell continues reading commands after executing trap
commands. The following procedure takes each directory in the current
directory, changes to that directory, prompts with its name, and executes
commands typed at the terminal until an end-of-file (Ctri-D) or an inter-
rupt is received. An end-of-file causes the read command to return a
onzero exit status, and thus the while loop terminates and the next direc-
torycycleis initiated. An interruptisignored whileexecutingthe requested
commands, but causes termination of the procedure when it is waiting for
input:

d="pwd’
for i m*
do if test ~d $d/$i
then cd $d/$i
while echo "$i:"

trap exit 2
read x

do trap : 2
lgnore interrupts
eval $x

done

fi
done

4-32

.'/’ h

The Shell

Several traps may be in effect at the same time: if multiple signals are
received simultaneously, they are serviced in numerically ascendingorder.
To determine which traps are currently set, enter:

trap

Itis important to understand some things about the way in which the shell
implements the trap command. When a signal (other than 11) is received
by the shell, it is passed on to whatever child processes are currently exe-
cuting. When these (synchronous) processes terminate, normally or
abnormally, the shell polls any traps that happen to beset and executes the
appropriate trap commands. This process is straightforward, exceptin the
case of traps set atthe command (outermost, or login)level. In this case, it
is possible that no child process is running, so before the shell polls the
traps, itwaitsfor the termination of the first process spawned after the sig-
nal was received.

When a signal is redefinedin a shell script, this does notredefine the signal
for programs invoked by that script; the signal is merely passed along. A
disabled signalis not passed.

For internal commands, the shell normally polls traps on completion of
the command. An exception to this rule is made for the read command,
for which traps are serviced immediately, so thatread can be interrupted
while waiting for input.

4.9 Special Shell Commands

There are several special commandsthat are internal to the shell, some of
which have already been mentioned. The shell does not fork to execute
these commands, so no additional processes are spawned. These com-
mands should be used whenever possible, because theyare, in general, fas-
terand moreefficientthan otherXENIX commands.

Several of the special commands have already been described because they
affect the flow of control. They are dot (.), break, continue, exit, and
trap. The set command is also a special command. Descriptions of the
remainingspecialcommands are given here:

: The null command. This command does
nothing and can be used to insert comments
in shell procedures. Its exit status is zero
(true). Its utility as a commeit character has
largely been supplanted by the number sign
(#) which can be used to insert comments to
the end-of-line. Beware: any arguments to
the null command are parsed for syntactic
correctness; when in doubt, quote such

4-33

XENIX User’s Guide

cd arg

exec arg...

hash [—r] name

newgip arg...

pwd

read var...

4-34

arguments. Parameter substitution takes
place, just asin other commands.

Make arg the current directory. Ifargisnota
valid directory, or the useris not authorized to
access it, a nonzero exit status is returned.
Specifying c¢d with no arg is equivalent to
entering “cd$HOME” which takes you to
your home directory.

If arg is a command, then the shell executes
the command without forking and returning
to the current shell. This is effectively a
“goto” and no new process is created. Input
and output redirection arguments are allowed
on the command line. If only input and out-
put redirection arguments appear, then the
input and output of the shell itself are
modified accordingly.

For each name, the location in the search
path of the command specified by name is
determined and remembered by the shell
The =r option causes the shell to forget all
remembered locations. If no arguments are
given, information about remembered com-
mands is presented. Hirs is the number of
times a command has been invoked by the
shell process. Cost is a measure of the work
required to locate a command in the search
path. There are certain situations which
require that the stored location of acommand
be recalculated. Commands for which this
will be done are indicated by an asterisk (*)
adjacent to the hits information. Cost will be
incremented when the recalculationisdone.

The newgrp command is executed, replacing
the shell. Newgrp in turn creates a new shell.
Beware: only environment variables will be
known in the shell created by the newgrp
command. Any variables that were exported
willno longer be marked as such.

Print the current working directory. See
pwd(C)forusageand description.

One line (up to a newline) is read from the
standard input and the first word is assigned
to the first variable, the second word to the

readonly var. ..

return n

times

type name

ulimit [-f]} n

umask nnn

The Shell

second variable, and so on. All words left
overare assigned to thelastvariable. The exit
status of read is zero unless an end-of-file is
read.

The specified variables are made readonly so

.. that no subsequent assignments maybe made

tothem. If no arguments are given, alistof all
readonly and of all exported variables is
given.

Causes a function to exit with thereturn value
specified by n. If n is omitted, thereturnstatus
isthatof thelast command executed.

The accumulated user and system times for
processes run from the current shell are
printed.

For each name, indicate how it would be
interpreted if used as a command name.

This imposes a size limit of n blocks on files
written. The —f flag imposes a size limit of n
blocks on files written by child processes (files
of any size may be read). With no argument,
the current limit is printed. If no option is
given and a number is specified, -f is
assumed. !

The user file creation mask is set to nnn. If
nnn is omitted, then the current value of the
mask is printed. This bit-mask is used to set
the default permissions when creating files.
For example, an octal umask of 137
corresponds to the following bit-mask and
permission settings for anewlycreated file:

user | group | other
Octal 1 3 7
bit-mask 001 011 111
permissions 1 rw- | r-- -—-

See umask(C) in the XENIX Reference
Manual forinformation on thevalue of nnn.

4-35

XENIX User’s Guide

unset name For each name, remove the corresponding
variable or function. The variables PATH,
PS1, PS2, MAILCHECK and IFS cannot be
‘unset.

wait n The shell waits for all currently active child
processes to terminate. If z is specified, the
shell waits for the specified process to ter-
minate. The exit status of wait is alwayszero if
nis not given; otherwise itis the exit status of
child n.

4.10 Creation and Organization of Shell Procedures
A shellprocedure can be created in two simple steps. The first is building
an ordinarytext file. The second is changing the mode of the file to make it
executable, thus permittingit to be invoked by:

proc args
rather than

sh proc args
The second step ma¥y be omitted for a procedure to be used once or twice
and then discarded, but is recommended for frequently-used ones. For
example, create a file named mailallwith the followingcontents:

LETTER=31

shift

for i in $*

do mail $i < SLETTER

done
Nextenter:

chmod +x mailall
The new command might then be invoked from within the current direc-
tory by entering:

mailall letter joe bob

Here letter is the name of the file containing the message youwant to send,
andjoe and bobarepeopleyou want to send the message to. Note that

4-36

The Shell

shell procedures must always be atleastreadable, so thatthe shellitselfcan
read commands from the file.

If mailallwere thus created in a directorywhose name appears in the user’s
PATH variable, the user could change working directories and stillinvoke
themailall command.

Shell procedures are often used by usersrunning the csh. However, if the
first character of the procedure is a # (comment character), the csh
assumes the procedure is a ¢sh script, and invokes /bin/csh to execute it.
Always start sh procedures with some other character if csh users are to
runthe procedure at any time. Thisinvokesthestandardshell /bin/sh.

Shell procedures maybe created dynamically. A procedure may generate
a file of commands, invoke another instance of the shell to execute that
file, and then remove it. An alternate approach is that of using the dot
command (.) to makethe current shellread commands from the newfile,
allowing use of existing shell variables and avoiding the spawning of an
additional process for another shell.

Many users prefer writing shell procedures to writing programs in C or
other traditional languages. Thisis truefor several reasons: '

1. A shellprocedure is easy to create and maintain because it isonlya
file of ordinary text.

2. A shell procedure has no corresponding object program that must
be generated and maintained.

3. A shell procedureiseasyto create quickly, use afew times, and then
remove.

4, Because shell procedures are usually short in length, written in a
high-level programming language, and kept only in their source-
language form, they are generally easy to find, understand, and
modify.

By convention, directories that contain only commands and shell pro-
cedures arenamed bin. Thisname is derived from the word “binary”, and
is used because compiled and executable programs are often called
“binaries” to distinguish them from program source files. Most groups of
users sharing common interests have one or more bin directories set up to
hold common procedures. Some users have their PATH variable list
several such directories. Although you can have a number of such direc-
tories, it is unwise to go overboard: itmaybecome difficult to keep track of
your environment and efficiency may suffer.

4-37

XENIX User’s Guide

4.11 More AboutExecution Flags

There are several execution flags available in the shell that can be useful in
shellprocedures:

-e This flag causesthe shell to exitimmediately if any command
that it executes exits with a nonzero exit status. This flag is
useful for shell procedures composed of simple command
lines; itis not intended for use in conjunction with other con-
disional constructs.

-u This flag causes unset variables to be considered errors when
substituting variable values. This flag can be used to effect a
globalcheck on variables, rather than usingconditional sub-
stitution to check each variable. o

-t This flag causes the shell to exit after reading and executing .
the commands on the remainder of the current input line.
This flag is typically used by C programs which call the shell
to execute a single command.

-1 Thisis a “don’t execute” flag. On occasion, one maywant to
check a procedure for syntax errors, but not execute the
commands in the procedure. Using “set—nv” at the begin-
ning of a flle will accomplish this.

-k This flag causes all arguments of the form variable=value to
be treated as keyword parameters. When this flagis not set,
only such arguments that appear before the command name
areweated askeyword parameters.

4.12 Supporting Commands andFeatures

Shell procedures can make use of any XENIXcommand. The commands
described in this section are either used especially frequently in shell pro-
cedures, or are explicitly designed for such use.

4.12.1 Conditional Evaluation: test

Thetestcommand evaluates the expression specified byitsargaments and,
if the expression is true, test returns a zero exit status. Otherwise, a
nonzero (false) exit status is returned. test also returns a nonzero exit
status if it has no arguments. Often it is convenient to use the test com-
mand as the first command in the command list following an if or a while.
Shell variables used in test expressions should be enclosed in double quo-
tation marksif thereisanychance of their being null or not set.

4-38

The Shell

The square brackets maybeused as an aliasto test, sothat:

[expression]

hasthe same effect as:

test. expression

Note that the spaces before and after the expression in brackets are essen-

tial.

The following s a partial list of the options that can be used to construct a
conditional expression:

-r file

-w file
~x file

- file

~d file
~f file
~z 51
-n s?

-t fildes

51 ~52
sl l=s2
s1

nl —eq n2

True if the named file emists and is readable by the
user.

Trueifthenamedfile emists and is writable by the user.

True if the named file exists and is executable by the
user.

Trueif thenamed file existsand has asizegreaterthan
zero. .

Trueifthenamedfileis a directory.

- Trueifthenamed fileis an ordinaryfile.

Trueif thelength of strings1 is zero.

Trueif thelength of the strings? isnonzero.

True if the open file whose file descriptor number is
fildes is associated with a terminal device. If fildes is
notspecified, file descriptor 1isused bydefault.
Trueif stringss? and s2areidentical.

Trueif strings s1 ands2 are not identical.

Trueifsl isnotthenull string.

True if the integers nl and n2 are algebraically equal,;
other algebraic comparisons are indicated by —ne
(not equal), =gt (greater than), ~ge (greater than or

equalto), =1t (less than), and =le (less than or equal
to).

4-39

XENIX User’s Guide

Thesemaybe combined with the following operators:
! Unarynegation operator.
-a Binarylogical AND operator.

=) Binary logical OR operator; it has lower precedence
than the logical AND operator (-a).

(expr) Parentheses for grouping; they must be escaped to
remove their significance to the shell. In the absence
of parentheses, evaluation proceeds from left to right.

Note that all options, operators, filenames, etc. are separate arguments to
test.
4.12.2 Echoing Arguments
The echo command has the following syntax:

echo [options] [args]
echo copiesits arguments tothe standard output, each followed by a single
space, except for the last argument, which is normally followed by a new-
line. You can use it to prompt the user for input, to issue diagnostics in
shell procedures, or to_add afewlines to an output stream in the middle of
a pipeline. Another use is to verify the argument list generation process
before issuing acommand that does something drastic.
Youcanreplace thels command with

echo *
becausethe latter isfaster and prints fewer lines of output.
The —n option to echo removes the newline from the end of the echoed
line. Thus, the following two commands prompt for input and then allow

entering on the sameline as the prompt:

echo —n ‘enter name:”
readname

The echo command also recognizes several escape sequences described in
echo (C)in the XENIX Reference Manual.

i

440

Rl

———

The Shell

4.12.3 Expression Evaluation: expr

The expr command provides arithmetic and logical operations on integers
and some pattern-matchingfacilities on its arguments. It evaluates a single
expression and writes the result on the standard output; expr can be used
inside grave accents to set a variable. Some typical examples follow:

increment $A

A="expr $a + I’

put third through last characters of
$1 into substring

substring="expr "$1" : ".\(*\) **

obtain length of $1

c=expr "$1" : “*¥ °°

The most common uses of exprare in countingiterations of a loop and in
usingits pattern-matchingcapabilityto pick apart strings.

4.12.4 True and False

The true and false commands perform the functions of exiting with zero
and nonzero exit status, respectively. The true and false commands are
often used to implement unconditional loops. For example, you might
enter:

while true
do echo forever
done

Thiswill echo “forever” on the screen untilan INTERRUPT is entered.

4.12.5 In-Line Input Documents
Uponseeingacommandline of the form:
command << eofstring

where eofstring is any arbitrary string, the shell will take the subsequent
lines as the standard input of command until aline is read consistingonly of
eofstring. (By appending a minus (-) to the input redirection symbol
(<<), leading spaces and tabs aredeleted from each line of the input docu~
ment before the shell passesthelineto command.)

The shell creates a texlr1i)orary file containing the input document and per-

forms variable and command substitution on its contents before passing it
to the command. Pattern matching on filenames is performed on the argu-

4-41

XENIX User’s Guide

ments of command linesin command substitutions. In orderto prohibitall
substitutions, youmay quote any character of eofstring:

command < < \eofstring

The in-line input document feature is especially useful for small amounts
of input data, where it is more convenient to place the datain the shell pro-
cedure than to keepit in a separate file. For instance, you could enter:

cat<<-xx
Thismessage will be printed on the
terminal with leading tabs and spaces
removed.

xx

This in-line input document feature is most useful in shell procedures.
Notethatin-line input documents may not appear within grave accents.

4.12.6 Input / OutputRedirection Using File Descriptors

We mentioned above that a command occasionally directs output to some
file associated with a file descriptor other than 1 or 2. In languages such as
C, one can associate output with any file descriptor by using the write (S)
system call (see the XENIX Reference Manual). The shell providesits own
mechanism for creating an output file associated with a particular file
descriptor. Byentering:

fal >& fd2

where fdl and fd2 are valid file descriptors, one can direct output that
would normally be associated with file descriptor fdI to the file associated
with fd2. The default value for fdI and fd2 is 1. If, at run time, no file is
associated with fd2, then the redirection is void. The most common use of
this mechanism is that of directing standard error output to the same file as
standard output. Thisis accomplished byentering:

command 2>&1

If you wanted to redirect both standard output and standard error output
to the same file, you would enter:

command 1>file 2>&1
The order here is significant: first, file descriptor 1 is associated with file;
then file descriptor 2 is associated with the same file as is currently associ-

ated with file descriptor 1. If the order of the redirections were reversed,
standard error output would go to the terminal, and standard outputwould

4-42

The Shell

goto file, because at the time of the error output redirection, file descriptor
1stillwouldhavebeen associated with the terminal.

This mechanism can also be generalized to the redirection of standard
input. Youcould enter:

Jda <& fab.

to cause both file descriptors fda and fdb to be associated with the same
inputfile. If fda or fdb is not specified, file descriptor Ois assumed. Such
input redirection is useful for a command that uses two or more input
sources.

4.12.7 Conditional Substitution

Normally, the shell replaces occurrences of $variable by the string value
assigned to variable, if any. However, there exists a special notaion to
allow conditional substitution, dependent upon whether the variable is set
or not null. By definition, a variable is set if it has ever been assigned a
value. The value of a variable canbe the null string, which may be assigned
to avariablein anyone ofthefollowingways:

A=
bcd=llll
efg="
set 3 ALLL

The first three examples assign null to each of the corresponding shell vari-
ables. The last example sets the first and second positional parameters to
null. The followingconditional expressions depend upon whether a vari-
able is set and not null. Note that the meaning of braces in these expres-
sions differs from their meaning when used in grouping shell commands.
Parameter as used belowrefers to either a digit or a variable name.

${variable :-string} If variable is set and is nonnull, then substi-
tute the value $variable in place of this
expression. Otherwise, replace the expres-
sion with string. Note that the value of vari-
able is not changed by the evaluation of this
expression.

${variable =string} If variable is set and is nonnull, then substi-
tute the value $variable in place of this
expression. Otherwise, set variable to
string, and then substitute the value $vari-
able in place of this expression. Positional
parameters may not be assigned values in
thisfashion.

4-43

XENIX User’s Guide

${variable :1string}

${variable :+string}

If variable is set and is nonnull, then substi-
tute the value of variable for the expression.
Otherwise, print amessage of the form

variable: string

and exit from the current shell. (If the shell
is the login shell, it is not exited.) If string is
omitted in this form, then the message

variable: parameter null or not set
isprinted instead.

If variable is set and is nonnull, then substi-
tute string for this expression. Otherwise,
substitute the null string. Note that the value
of variable is not altered by the evaluation of
this expression.

These expressions may also be used without the colon. In this variation,
the shell does not check whether the variable isnull or not; it only checks
whether the variable has everbeen set.

Thetwo examples belowillustrate the use of thisfacility:

1. This example performs an explicit assignment to the PATH vari-

able:

PATH=${PATH:-":/bin:/usr/bin"}

This says, if PATH has ever been setand is not null, then it keeps its
current value; otherwise, setit to the string“:/bin:/usr/bin”.

2. Thisexample automatically assigns the HOME variable a value:

cd ${HOME:="/usr/gas’}

If HOME is set, and is not null, then change directory to it. Other-
wise set HOME to the given value and change directory to it.

4-44

The Shell

4.12.8 Invocation Flags

There are five flagsthat maybe specified on the command line when invok-
ingthe shell. Theseflags may not be turned on with the setcommand:

-i If thisflag is specified, or if the shell’sinput and output are
both attached to a terminal, the shell is interactive, In such a
shell, INTERRUPT (signal 2) is caught and ignored, and
TERMINATE (signal 15) and QUIT (signal3) areignored.

-s If this flagis specified orif no input/output redirection argu-
ments are given, the shell reads commands from standard
input. Shell outputiswritten to file descriptor2. All remain-
ingarguments specify the positional parameters.

-c When this {lagis turned on, the shell reads commands from
the first string following the flag. Remaining arguments are
ignored.

-t When this flagis on, a single command is read and executed,

then theshell exits. This flagis not usefulinteractively, butis
intended for use with C programs.

-r If this flag is present the shell is a restricted shell (see rsh

().

4.13 Effective and EfficientShellProgramming

This section outlines strategies for writing efficient shell procedures, ones
that do not waste resources in accomplishing their purposes. The primary
reason for choosing a shell procedure to perform a specific function is to
achieve a desired result at a minimum human cost. Emphasis should
always be placed on simplicity, clarity, and readability, but efficiency can
alsobe gained through awareness of afewdesign strategies. In many cases,
an effective redesign of an existing procedure improves its efficiency by
reducing its size, and often increases its comprehensibility. In any case,
you should not worry about optimizing shell procedures unless they are
intolerably slow or are known to consume an inordinate amount of a
system’s resources.

The same kind of iteration cycle should be applied to shell procedures asto
other programs: write code, measure it, and optimize only the few impor-
tant parts. The user should become familiar with the time command,
which can be used to measure both entire procedures.and partsthereof. Its
use is strongly recommended; human intuition is notoriously unreliable
when used to estimate timings of programs, even when the style of pro-
gramming is a familiar one. Each timing test should be run several times,
because theresults are easily disturbed by variationsin system load.

4-45

XENIX User’s Guide

4.13.1 NumberofProcesses Generated

When large numbers of short commands are executed, the actual execu-
tion time of the commands may well be dominated by the overhead of
creating processes. The procedures that incur significant amounts of such
overhead are those that perform much looping, and those that generate
command sequences to be interpreted by anothershell.

If you are worried about efficiency, it is important to know which com-

mands are currently built into the shell, and which are not. Here is the
alphabeticallist of those that are built in:

break case cd continue echo

eval exec exit export for

if read readonly return set
shift test times trap umask
until wait while :

{+

Parentheses, (), are built into the shell, but commands enclosed within
them are executed as a child process, i.e., the shell does a fork, but no
exec. Anycommand notin the above list requiresb oth fork and exec.

The user should always have at least a vague idea of the number of
processes generated by a shell procedure. In the bulk of observed pro-
cedures, the number of processes created (not necessarily simultaneously)
can bedescribed by:

processes=(k*n)+c
where k and c are constants, and » maybe the number of procedure argu-
ments, the number of lines in some input file, the number of entries in
some directory, or some other obvious quantity. Efficiency improvements
are most commonly gained byreducingthe value of k, sometimes to zero.

Any procedure whose complesity measure includes #~2 terms or higher
powers of n is likely tobe intolerablyexpensive.

4-46

The Shell

Asanexample, here isan analysis of a procedure named split, whose text is
given below:

split
trap rm temp$$; trap 0 exitt 012315
startl=0 start2=0
b=TA-Za-z]
cat > temp$$
read stdin into temp file
save original lengths of $1, $2

if test —s "$1"

then startl="wc -1 < $1°
fi

if test —s "$2"

then start2="wc -1 < $2°
fi

grep "$b" temp$$ >> $1
linés with letters onto $1
grep -v "$b" temp$$ | grep T0-9) >> $2
lines without letters onto $2
total=" ‘wc-1< temp$$" "
endl=" ‘wc-1<$1""'
end2=" "wc-1<$2" "
lost=" ‘expr $total — \($end1 - $start1\) \
- \($end2 - $start2\)" "
echo "$total read, $lost thrown away"

For each iteration of the loop, there is one expr plus either an echo or
another expr. One additional echo is executed at the end. If n is the
numberoflines ofinput, thenumber of processesis2*n + 1.

Sometypes of procedures should not be written using the shell. For exam-
ple, if one or more processes are generated for each character in some file,
it is a good indication that the procedure should be rewritten in C. Shell
proceduresshould not be used to scan or build files a character at a time.

4.13.2 NumberofData Bytes Accessed

It is worthwhile to consider any action that reduces the number of bytes
read or written. Thismaybe important for those procedures whose time is
spent passing data around among a few processes, rather than in creating
large numbers of short processes. Some filters shrink their output, others
usuallyincrease it. Italways paysto putthe shrinkers first when the order is

4-47

XENIX User’s Guide

irrelevant. For instance, the second of the following examples is likely to
be faster because theinputto sort will be much smaller:

sort file | grep pattern
grep pattern file | sort

4.13.3 Shortening Directory Searches

Directory searching can consume a great deal of time, especially in those
applications that utilize deep directory structures and long pathnames.
Judicious use of cd, the change directory command, can help shorten long
pathnames and thus reduce the number of directory searches needed. As
an exercise, try thefollowing commands:

Is -1 /usr/bin/* >/dev/null
cd /usr/bin; Is =1 * >/dev/null

The second command will run faster because of the fewer directory
searches.

4.13.4 Directory-Search Orderand the PATH Variable

The PATH variable is a convenient mechanism for allowing organization
and sharing of procedures. However, it must be used in a sensible fashion,
or the result maybe a great increase in system overhead.

The process of finding a command involves reading every directory
included in every pathname that precedes the needed pathname in the
current PATH variable. As an example, consider the effect of invoking
nroff (i.e., /usr/bin/nroff) when the value of PATH is “:/bin:/usr/bin”.
The sequence of directoriesread is:

/

/bin

/

Jusr
/usr/bin

This is a total of six directories. A long path list assigned to PATH can
increase this number significantly.

4-48

2

The Shell °

The vast majority of command executions are of commands found in /bin
and, to a somewhat lesser extent, in /usr/bin. Careless PATH setup may
lead to a great deal of unnécessary searching. The following four examples
are ordered from worst to best with respect to the efficiency of command
searches:

:/usr/john/bin:/usr/localbin:/bin:/usr/bin
:/bin:/usr/john/bin:/usr/localbin:/usr/bin
:/bin:/usr/bin:/usr/john/bin:/usr/localbin
/bin::/usr/bin:/usr/john/bin:/usr/localbin

The first one above should be avoided. The others are acceptable and the
choice amongthemis dictated by therate of changein the set of commands
keptin /binand /usr/bin.

A procedure that is expensive because it invokes many short-lived com-
mandsmay often be speeded up by setting the PATH variable inside the
procédure so that thé fewest possible directories are searched in an
optimum order.

4.13.5 Good Ways to SetUp Directories

It is wise to avoid directories that are larger than necessary. You should be
aware of several special sizes. A directory that contains entries for up to 30
files (plus the required . and ..) fits in a single disk block and can be
searched veryefficiently. Onethathasupto286 entriesisstill asmalldirec-
tory; anything larger is usually a disaster when used as a working directory.
It is especially important to keep login directories small, preferably one
block at most. Note that, as a rule, directories never shrink. This is very
important to understand, because if your directory ever exceeds either the
30 or 286 thresholds, searches will be inefficient; furthermore, even if you
delete files so that thenumber of files is less than either threshold, the sys-
tem willstillcontinueto treat the directoryinefficiently.

4.14 Shell Procedure Examples

The power of the XENIX shell command language is most readily sgen by
examining how many labor-saving XENIX utilities can be combined to
perform powerful and useful commands with very little programming
effort. This section gives examples of procedures that do just that. By
studying these examples, you will gain insight into the techniques and
shortcuts that can be used in programming shell procedures (also called
“scripts”). Note the use of the null command (:) to begin each shell pro-
cedureandtheuse ofthe numbersign (#) to introduce comments.

4-49

" XENIX User’s Guide

Itisintended that the followingsteps be carried outfor each procedure:

1. Placethe procedurein afilewith theindicatedname.

2. Givethefile execute permission with the.chmod command.

3. Move the file to a directory in which commands are kept, such as
yourown bin directory.

4. Make sure that the path of the bin directoryis spec1ﬁed inthe PATH
variable found in . profile.

5. Executethenamed command.

BINUNIQ

Is /bin /fusr/bin | sort | uniq —d

This procedure determines which files are in both /bin and /usr/bin. 1t is
done because files in /bin will “override” those in /usr/bin during most
searches and duplicates need to be weeded out. If the /usr/bin file is
obsolete, then space is being wasted; if the /bin file is outdated by a
corresponding entry in /usr/bin then the wrong version is beingrun and,
again, space is being wasted. This is also a good demonstration of “sort |
uniq” to find matches and duplications.

COPYPAIRS

4-50

Usage: copypairs filel file2 ...
Copies filel to file2, file3 to filed, ...
while test "$2" = ""

do
cp $1 §2
shift; shift
done
if test "§1" = ""
then echo "$§0: odd number of arguments" > &2
fi

The Shell

This procedure illustrates the use of a while loop to process a list of posi-
tional parameters that are somehow related to one another. Here a while
loop is much better than a for loop, becausé you can adjust the positional
parameters with the shift command to handle related arguments.

COPYTO T,
Usage: copyto dir file ...
Copies argument files to "dir",
making sure that at least
two arguments exist, that "dir" is a directory,
and that each additional argument
is a readable file.

if test $# -1t 2
then echo "$0: usage: copyto directory file ...">&?2
elif test ! -d $1
then echo "$0: $1 is not a directory";> &2
else dir=%$1; shift
for eachfile
do cp $eachfile $dir
done
fi

This procedure uses an if command with several parts to screen out
improper usage. The forloop atthe end of the procedure loops over all of
the arguments to copytobut the first; the original $1 is shifted off.

DISTINCT1

Usage: distinctl

Readsstandard inputandreportslist of

alphanumeric strings that differ onlyin case,
givinglowercase form of each.

tr —cs “A-Za-z0-9" "\012° | sort—u |\

tr “A-Z° “a-z" | sort | uniq —-d

This procedure is an example of the kind of process thatis created by the
left-to-right construction of a long pipeline. Note the use of the backslash
at the end of the firstline as the line continuation character. It may notbe
immediately obvious how this command works. You may wish to consult
tr (C), sort (C), and uniq (C) in the XENIX Reference Manual if you are
completely unfamiliar with these commands. The tr command translates

4-51

XENIX User’s Guide

all characters except letters and digits into newline characters, and then
squeezes out repeated newline characters. This leaves each string (in this
case, any contiguous sequence of letters and digits) on aseparateline. The
sort command sorts thelines and emits only one line from any sequence of
oneormore repeated lines. The next tr converts everything to lowercase,
so that identifiers differing only in case become identical. The output is
sorted again to bring such duplicates together. The “uniq-d” prints
(once) only those lines that occur more than once, yielding the desired list.

Theprocessof buildingsuch a pipeline relies on the fact that pipes and files
can usually be interchanged. The first linc below is equivalent to the last
two lines, assuming that sufficient disk space is available:

cmdl | cmd2 | cmd3

cmdl > templ; < templ cmd2 > temp?2; < temp2 cmd3
rm temp[123]

Starting with a file of test data on the standard input and working from left
to right, each command is executed taking its input from the previous file
and putting its output in the next file. The final outputis then examined to
make sure that it contains the expected result. The goalis to create a series
of transformations that will convert the input to the desired output.

Although pipelines can give a concise notation for complex processes, you
should exercise some restraint, since such practice often yields
incomprehensible code.

DRAFT

Usage: draft file(s)
Printmanual pagesfor Diablo printer.
foriin $*
do nroff ~man $i |lpr
done

Users often write this kind of procedure for convenience in dealing with
commands that require the use of distinct flags that cannot be given default
values that are reasonable for all (or even most) users.

4-52

EDFIND

Usage: edfind filearg
Findsthelastoccurrencein 'file"ofaline

3lines (theonebefore, theline itself,

#
#
whose beginningmatches "arg”, then prints. ...
#
#
ed

andtheoneafter)
- $1<< -EOF

7827

—+p

q

EOF

The Shell

This illustrates the practice of using ed in-line input scripts into which the

shell can substitute the values of variables.

EDLAST

Usage:edlast file
Printsthelastlineoffile,
then deletes thatline.
ed — $1 <<-\!

3p

$d

w

q

echodone

This procedure illustrates taking input from within the file itself up to the
exclamation point (!). Variable substitution is prohibited within the input

textbecause of the backslash.

4-53

XENIX User’s Guide

FSPLIT
Usage: fsplit filel file2
Reads standard input and divides it into 3 parts
by appending any line containing at least one letter
to filel, appending any line containing digits but
no letters to file2, and by throwing the rest away.

count=0 gone=0
while read next

do
count="expr $count + 1™
case "$next" in
*A-Za-z]¥)
echo "$next" >> $1 ;:
*0-91%)
) echo "$next" >> $2 ;;
*
gone=""expr $gone + 1"
esac
done

echo "$count lines read, $gone thrown away"

Each iteration of the loop reads a line from the input and analyzes it. The
loop terminates only when read encounters an end-of-file. Note the use of
the exprcommand.

Do not use the shell toread aline at a time unless you must because it can
be an extremelyslowprocess.

LISTFIELDS

'grep $* | tr ™" "\012"

This procedure lists lines containing any desired entry that is given to it as
an argument. It places any field that begins with a colon on a newline.
Thus, if given thefollowinginput:

joenewman: 13509 NE 78th St: Redmond, Wa 98062

4-54

The Shell

list field swill produce this:

. joe newman
T 13509NE 78th St
Redmond, Wa98062

Notetheuse of the trcommand to transpose colons tolinefeeds.

MKFILES

Usage: mkfiles pref [quantity]

Makes "quantity" files, named prefl, pref2, ...
Default is 5 as determined on following line.
quantity=${2-5}

i=1
while test "$i" -le "$quantity"”
do
> §18i
i="expr $i + 1"
F : . done :

The mik files procedure uses output redirection to create zero-length files.
The exprcommandisused for countingiterations of the while loop.

NULL

Usage: null files
Create each of the named files as an empty file.
for eachfile
do
>$eachfile
done

This procedure uses the fact that output redirection creates the (empty)
outputfileif afile does not alreadyexist.

4-55

XENIX User’s Guide

PHONE

Usage: phone initials ...
Prints the phone numbers of the
people with the given initials.
echo “inits ext home’
grep "$1" << END

itk 1234 999-2345

Ibj 2234 583-2245

hst 3342 988-1010

jga 4567 555-1234
END

This procedure is an example of using an in-line input script to maintain a

small database.
TEXTFILE
if test "§1" = "-s"
then
Return condition code
shift
if test —z "$0 $*" # check return value
then
exit 1
else
exit 0
fi
fi

4-56

if test $# -1t 1

then echo "$0: Usage: $0 [—s] file ..." 1>&2
exit 0

fi

file $* | fgrep * text’ | sed s/: .*//

|

The Shell

To determine which files in a directory contain only textual information,
textfile filters argument lists to other commands. For example, the follow-
ingcommand line will print all the text files in the currentdirectory:

pr ‘textfile* | lpr

_ This procedure alsouses an —s flag which silently tests whether any of the

files in the argument list is a text file.

WRITEMAIL

Usage: writemail message user
If user is logged in,

writes message to terminal;

otherwise, mails it to user.

echo "$1" | { write "$2" | mail "$2" ;}

This procedure illustrates the use of command grouping. ‘The message
specified by$1ispipedto boththe write command and, ifwrite fails, to the
mailcommand.

4.15 ShellGrammar

item: word
input- out put
name = value

simple-command: item
simple-command item

command: simple- command
(command-list)
{ command-list }
for name do command-list done
for name in word do command-list done
while command-list do command-list done
until command- list do command-list done
case word in case-part esac
if command-list then command-list else-part fi

4-57

XENIX User’s Guide

pipeline: command
pipeline | command
andor: pipeline
andor && pipeline
andor | pipeline
command-list: andorA

command-list ;
command-list &
command-list ; andor
command- list & andor

input-output:> file
< file
<< word
>> file
digit > file
digit < file
digit >> file

file: word
& digit

case-part. pattern) command-list 3;

pattern: word
pattern | word

else-part: elif command-list then command-list else-part
else command- list ;

empty

empty:

word: a sequence of nonblank characters

name: a sequence of letters, digits, or underscores
starting with a letter

digit: 0123456789

4-58

The Shell

Metacharacters and Reserved Words

1. Syntactic

| Pipe symbol

&& And-if symbol

II Or-if symbol

H Command separator

0 Case delimiter

& Background commands
) Command grouping

< Input redirection

<< Inputfromaheredocument
> Output creation

>> Output append

Comment to end of line

2. Patterns
* Matchany character(s)includingnone
? Matchanysinglecharacter
[...] Match anyof enclosed characters

3. Substitution

${...} Substitute shell variable
T Substitute command output

4. Quoting

\ Quote next character asliteral with no special meaning
Quote enclosed characters excepting the back quota-
tion marks (")

Quote enclosed characters excepting: §~\"

4-59

XENIX User’s Guide

5. Reserved words

if esac
then for
else while
elif until
fi do
case done
in {1}

4-60

" N Nl N N W St - e SN R S N N N N O S i i St Nt N N e e A M N g i e A e R R P R e P P R Y

Replace this Page
with Tab Marked:
bc Calculator

Chapter5
bc: A Calculator

5.1 Introduction 5-1
5.2 Demonstration 5-1

5.3 Tasks 5-4

ComputingwithIntegers 5-4

Specifying Inputand OutputBases 5-5
ScalingQuantities 5-6

UsingFunctions 5-8

Using Subscripted Variables 5-9

Using Control Statements: if, whileand for 5-10
UsingOther Language Features 5-12

w
[9%]
ey

wisto b
Nounmhwd

5.4
1 Tokens 5-14

2 Expressions 5-15

3 FunctionCalls 5-16
4 UnaryOperators 5-16

anguage Reference 5-14

.5 Multiplicative Operators 5-17
.6 Additive Operators 5-17

.7 Assignment Operators 5-18
.8 RelationalOperators 5-18
.9 Storage Classes 5-19

.10 Statements 5-19

nuuLuLuLLLULLE LLLL LWL

4
4
4
4
4
4
4
4
4
4

be: A Calculator

5.1 Introduction

. be is a program that can be used as an arbitrary precision arithmetic calcu-
2 lator. be’s output is interpreted and executed by a collection of routines
: which can input, output, and do arithmetic on indefinitely large integers
and on scaled fixed-point numbers. Although you can write substantial
programs_with be, it is often used &s an interactive tool for performing
calculator-like computations. The language supports a complete set of
control structures and functions that can be defined and saved for later
execution. The syntax of be has been deliberately selected to agree with
the C language; those who are familiar with C will find few surprises. A
small collection of library functions is also available, including sin, cos,
arctan, log, exponential, and Bessel functions of integer order.

Common usesforbc are:

— Computation with large integers.

— Computations accurateto many decimal places.

— Conversions of numbers from one base to another base.
There is a scaling provision that permits the use of decimal pointnotation.
Provision is made for input and output in bases other than decimal.

\ Numbers can be converted from decimal to octal simply by settingthe out-
/ putbaseequalto 8.

The actuallimit on the number of digits that can be handled depends on
the amount of storage .available on the machine, so manipulation of
numbers withmanyhundreds of digitsis possible.

5.2 Demonstration

This demonstration is designed to show you:

Howtogetinto andoutofbe.

Howto perform simple computations.

— Howexpressionsareformed and evaluated.

Howto assign values to registers.

A normal session with be begins by invoking the program with the com-

! mand:

o
o/
be

XENIX User’s Guide

Toexitbe enter:
quit

or press Ctrl—d. Once youhave entered be, youcan useitverymuchlikea
normal calculator. As with the XENIX shell, commands are read as
command-lines, so each line that you enter must be terminated by a
RETURN, Throughout this chapter, the RETURN is implied at the end of
each command line. Within be, normal processing of other keys, such as
BACKSPACE and INTERRUPT, also works.

Forexample, enter the simpleinteger S:
5

Output is immediately echoed on the next line to the standard output,
which is normally the terminal screen:

5

Here 5 is a simple numeric expression. However, if you enter the expres-
sion:

5%5.25

(where the star (*) is the multiplication operator) a computation is exe-
cuted and the result printed on the nextline:

26.25

Whathas happened here is that the line 5*5. 25 has been evaluated, i.e., the
expression has been reduced to its most elementary form, which is the
number 26.25. The process of evaluation normallyinvolves some type of
computation such as multiplication, division, addition, or subtraction.
For example, all four of these operations are involved in the following
expression:

(10*5)+50-(50/2)
When this expression is evaluated, the subexpressions within parentheses
are evaluated first, just as they would be with simple algebra, so that an
intermediate step in the evaluation is “50+58-25"which ultimately reduces
to thenumber “75%.

The simple addition:
10.45+5.5555555

5-2

)

be: A Calculator

" produces the output:

16.0055555
Note how precision isretained in the above result.
The two-part multiplication:

(8*9)*7
producesthe answer:

504

The last part of this demonstration shows you how to store values in special
alphabeticregisters. For example, enter: ;

a=100;b=5

What happens here isthat the registers a and b are assigned the values 100
and 5, respectively. The semicolon is used here to place multiple be state-
ments on a singleline, justas itis used in the XENIX shell. Thiscommand
line produces no outputbecauseassignment statementsarenot considered
expressions. However, the registers @ and b can now be used in expres-
sions. Thus you can now enter:

a*b;a+b
to produce:

500
105

To exit be, rememberto enter:
quit
or press Ctrl-d.

This ends the demonstration. Following sections describe use of be in
more detail. The final section of this chapter is a belanguage reference.

5-3

XENIX User’s Guide

5.3 Tasks

This section describes how to perform common be tasks. Mastery of these
tasksshouldturnyouinto acompetentbeuser.

5.3.1 Computing withIntegers

The simplest kind of statement is an arithmetic expression on a line by
itself. Forinstance, if you enter:

142857+ 285714
and press RETURN, be responds immediatelywith the line:
428571
Other operators also can be used. The complete listincludes:
+ =%/ %"
They indicate addition, subtraction, multiplication, division, modulo
(remaindering), and exponentiation, respectively. Division of integers

produces an integer result truncated toward zero. Division by zero pro-
ducesan errormessage.

Anyterminan expression can be prefixed with aminus sign toindicate that
itis to be negated (thisisthe “unary” minus sign). For example, the expres-
sion:

7+-3
isinterpreted to meanthat~3istobe addedto 7.

More complex expressions with several operators and with parentheses are
interpreted just as in FORTRAN, with exponentiation (") performed first,
then multiplication (*), division (/) modulo (%), and finally, addition (+),
and subtraction (-). The contents of parentheses are evaluated before
expressions outside the parentheses. All of the above operations are per-
formed from left to right, except exponentiation, which is performed from
right to left.

Thus the following two expressions:
ab'c and a (b"c)
are equivalent, as are the two expressions:

a*b*c and (a*b)*c

5-4

be: A Calculator

be shares with FORTRAN and Cthe convention thata/b*c is equivalent to
(a/b)*c.

Internal storage registers to hold numbers have single lowercase letter
names. The value of an expression can be assigned to a register in the usual
way, thusthe statement:

x¥x+3

has the effect of increasing by 3 the value of the contents of the register
named “x””. When, as in this case, the outermost operator is the assign-
ment operator (=), then the assignment is performed but the result is not
printed. Thereare 26 available named storage registers, one for each letter
ofthealphabet. : '

There is also a built-in square root function whose result is truncated to an
integer (see also Section 5.5.3.3, “Scaling”). Forexample, thelines:

x=sqrt(191)
x

producethe printed result:

13

5.3.2 SpecifyingInputand OutputBases

There are special internal quantities in be, called ibase and obase. ibaseis
initially set to 10, and determines the base used for interpreting numbers
thatareread bybe. Forexample, thelines:

ibase =8
11

produce the outputline:
9
and you arealisetup to do octalto decimal conversions. However, beware
of trying to change the inputbase back to decimal by entering:
ibase=10

Becausethe number 101is interpreted as octal, this statement has no effect.
For those who deal in hexadecimal notation, the uppercase characters
A-F are permitted in numbers (no matter what base is in effect) and are

interpreted as digits having values 10-15, respectively. These characters
mustbeuppercase andnotlowercase.

5-5

XENIX User’s Guide

The statement:
ibase= A

changes you back to decimal input base no matter what the current input
base is. Negative and large positive input bases are permitted; however no
mechanism has been provided for the input of arbitrary numbers in bases
lessthan 1 andgreaterthan 16.

obaseis used as the base for output numbers. The value of obase is initially
setto a decimall0. The lines:

obase=16
1000

producethe outputline:
3E8

Thisisinterpreted as a three-digit hexadecimal number. Very large output .
bases are permitted. For example, large numbers can be output in groups
of five digits by setting obase to 100000. Even strange output bases, such as
negativebases, and 1 and 0, arehandled correctly.

Very large numbers are split across lines with seventy characters per line.
A split line that continues on the next line ends with a backslash (\).
Decimal output conversion is fast, but output of very large numbers (i.e.,
more than 100 digits) with otherbasesis rather slow.

Remember that ibase and obase do not affect the course of internal com-
putation or the evaluation of expressions; theyonly affectinput and output
conversion.

5.3.3 Scaling Quantities

A specialinternal quantity called scale is used to determine the scale of cal-
culated quantities. Numbers can have up to 99 decimal digits after the
decimal point. This fractional part is retained in further computations.
We refer to the number of digits after the decimal point of a number as its
“scale.”’

Whentwoscaled numbers arecombined by means of one of the arithmetic
operations, the result has a scale determined bythe followingrales:

Addition, subtraction
The scale of the result is the larger of the scales of the
two operands. There is never any truncation of the
result.

5-6

SN

Multiplication

Division
Modulo

Exponentiation

Square Root

be: A Calculator

The scale of the result is never less than the max-
imum of the two scales of the operands, never more
than the sum of the scales of the operands, and sub-
ject to those two restrictions, the scale of the result is
set equal to the contents of the internal quantity,
scale.

The scale of a quotient is the contents of the internal
quantity, scale,

The scale of a remainder is the sum of the scales of
the quotientand the divisor.

The result of an exponentiation is scaled as if the
implied multiplications were performed. An
exponent mustbe aninteger.

The scale of a square root is set to the maxamum of
the scale of the argument and the coiiterits of s¢ale.

Allof the internal operations are actually carried outin terms of integers,
with digits being discarded when necessary. In every case where digits are
discarded truncation is performed withoutrounding.

The contents of scale must be no greater than 99 and no lessthan 0. Itisini-

tiallysetto O.

The internal quantities scale, ibase, and base can be used in expressions
justlikeothervariables. Theline:

scale=scale+1

increasesthe value of scalebyone, and theline:

scale

causesthe current value of scale to be printed.

The value of scale retains its meaning as a number of decimal digits to be
retained ininternal computation even when ibase orobase arenotequalto
10. The internal computations (which are still conducted in decimal,
regardless of the bases) are performed to the specified number of decimal
digits, never hexadecimal or octal or anyotherkind of digits.

5-7

XENIX User’s Guide

5.3.4 Using Functions

The name of a function is a single lowercase letter. Function names are
permitted to use the same letters as simple variable names. Twenty-six
different defined functions are permittedin addition to the twenty-sixvari-
ablenames.

Theline:
definea(x){

begins the definition of a function with one argument. This line must be
followed by one or more statements, which make upthe body of the func-
tion, ending with a right brace (}). Return of control from a function
occurs when a return statement isexecuted or when the end of the function
isreached.

The return statement can takeeither of thetwoforms:

return
return(x)

In the first case, the returned value of the function is O; in the second, it is
the value of the expression in parentheses.

Variables used in functions can be declared as automatic by a statement of
the form:

autox,y,z

There can be only one auto statementin a function and it must be the first
statementin the definition. These automatic variables are allocated space
and initialized to zero on entry to the function and thrown away on return.
The values of any variables with the same names outside the function are
not disturbed. Functions can be called recursively and the automatic vari-
ables at each calllevel are protected. The parameters named in a function
definition are treated in the same way as the automatic variables of that
function, with the single exception that they are given a value on entry to
the function. An example of afunction definition follows:

define a(x,y){
autoz
z=x*y
return(z)

The value of this function, when called, will be the product of its two argu-
ments.

5-8

N

S

be: A Calculator

A function is called by the appearance of itsname, followed by a stringof
arguments enclosed in parentheses and separated by commas. The result
isunpredictable if the wrongnumber of arguments is used.

Ifthefunction “a” isdefined as shown above, thentheline:
a(7,3.14).
would printthe result:

21.98

Similarly, theline:
x=a(a(3,4),5)
would cause the value of “x” tobecome 60.

Functions can require no arguments, but still perform some useful opera-
tion or return a useful result, Such functions are defined and called using
parentheses withnothingbetween them. For example:

b()

callsthefunction named b.

5.3.5 Using Subscripted Variables

A single lowercase letter variablename followed by an expression in brack-
ets is called a subscripted variable and indicates an array element. The
variable name is the name of the array and the expression in brackets is
called the subscript. Only one-dimensional arrays are permitted in be.
The names of arrays are permitted to collide with the names of simple vari-~
ables and function names. Any fractional part of a subscript is discarded
before use. Subscripts must be greater than or equal to zero and less than
orequal to 2047.

Subscripted variables can be freely used in expressions, in function calls
andinrcturn statcments,

An array name can be used as an argument to a function, asin:

f(al 1)

5-9

XENIX User’s Guide

Arraynames can also be declared as automatic in afunction definition with
the use of empty brackets:

definef(a[])
auto a[|

When an array name is so used, the entire contents of the array are copied
for the use of the function, then thrown away on exit from the function.
Arraynamesthatreferto whole arrays cannot be used in anyother context.

5.3.6 UsingControl Statements: if, while and for

Theif, while, and for statements are used to alter the flow within programs
or to cause iteration. The range of each of these statements is a following
statement or compound statement consisting of a collection of statements
enclosed in braces. They are written as follows:

if (relation) statement
while (relation) statement
for (expressionl ;relation ; expression2)statement

A relation in one of the control statements is an expression of the form:
expressionl rel-op expression2

where the two expressions are related by one of the sixrelational operators:

<> <=>===|=

Note that a double equal sign (==) stands for “equal to” and an
exclamation-equal sign ?!=) stands for “not equalto”. Themeaningof the
remainingrelational operatorsis their normal arithmetic and logical mean-
ing.

Beware of usingasingleequalsign (=) instead of the double equalsign (==
in arelational. Both of these symbols arelegal, so youwill not get a diagnos-
tic message. However, the operation will not perform the intended com-
parison.

The if statement causes execution of its range if and only if the relation is
true. Then control passes to thenext statement in the sequence.

The while statement causes repeated execution of its range as long as the
relation istrue. The relation is tested before each execution of itsrange and
if the relation is false, control passes to the next statement beyond the
range of the while statement.

5-10

be: A Calculator

The for statement begins by executing expressionl. Then the relation is
testedand, if true, the statementsin therange of the forstatement are exe-
cuted. Then expression2 is executed. The relation is tested, and so on. The
typical use of the forstatement is for a controlled iteration, as in the state-
ment:

for{i=1;i<=10;3={+1}1
which will print the integers from 1to 10.
The following are some examples of the use of the control statements:

definef(n){
autoi, x
x=1
for(i=1; i<=n;i=i+1) x=x*i
return(x)

The line:

f(a)
prints““a”factorialif “‘a” is a positiveinteger.

The following is the definition of a function that computes values of the
binomial coefficient (“m” and “n” are assumed to be positive integers):

defineb(n,m){
autox, j
x=1
for(j=1;j<=m;j=j+1) x=x*(n-j+1)/j
return(x)

5-11

XENIX User’s Guide

The following function computes values of the exponential function by
summing the appropriate series without regard to possible truncation
errors:

scale=20

define e(x){
autoa,b,c,d,n
a=1

B AROGC
g
= Ok =

while(1==1) {
a=a*x
b=b*n
c=c+a/b
n=n+1
if(c==d) return(c)
d=c

5.3.7 Using OtherLanguage Features

Some language features that every user should know about are. listed

below.

5-12

Normally, statementsareentered one to a line. Itisalso permissible
to enter several statements on a line if they are separated by semi-
colons.

If an assignment statement is placed in parentheses, it then has a
value and can be used anywhere that an expression can. For exam-
ple, theline:

(x=y+17)

not only makes theindicated assignment, but also prints the result-
ingvalue.

The following is an example of a use of the value of an assignment
statement even when itisnot placed in parentheses:

x= afi=i+1]

This causes a value to be assigned to “x’ and also increments “i”’
beforeitis used as a subscript.

l/
\
.

o

be: A Calculator

— The following constructions work in bc in exactly the same manner

astheydoin the Clanguage:

Construction | Eguivalent
X=y=z x=(y=z}
x=ty | x=x+y
X==y XA—=X—V
Xx=*y x=x%*v
x=fv x=%/v
=%y x=x%y
=y X=XV
X4+ (=x+1}-1
X—= (r=g-1%1
++x X=x+1
——X x=x-1

Evenif youdon’tintend to use these constructions, if you enter one
inadvertently, something legal but unexpected may happen. Be
aware that in some of these constructions spaces are significant.
There is a real difference between “x=-~y’’ and “x= —y”. The first
replaces “x” by “x—y” and the second by “~y”.

The comment convention is identical to the C comment conven-
tion. Comments begin with “/*’ and end with “*/”.

There is a library of math functions that can be obtained by enter-
ing:

be-1

when you invoke be. This command loads the library functions
sine, cosine, arctangent, naturallogarithm, exponential, and Bessel
functxons of mteger order. These are named “s”, “c”, “a”, “1”
“e”, and “j(n,x)”, respectively. This library sets scale to 20 by
default.

Ifyouenter:
befile...
be will read and execute the némed file or files before accepting

commands from the keyboard. In this way, you can load your own
programs and function definitions.

5-13

XENIX User’s Guide

5.4 Language Reference

This section is a comprehensive reference to the be language. It contains a
more concise description of the features mentioned in earlier sections.

5.4.1 Tokens

Tokens are keywords, identifiers, constants, operators, and separators.
Token separators can be blanks, tabs or comments. Newline characters or
semicolons separate statements.

Comments

Identifiers

Keywords

Constants

5-14

Comments are introduced by the characters “/*” and
are terminated by**/”.

There are three kinds of identifiers: ordinary
identifiers, array identifiers and function identifiers.
All three types consist of single lowercase letters.
Array identifiers are followed by square brackets,
enclosing an optional expression describing a sub-
script. Arraysaresinglydimensioned and can contain
up to 2048 elements. Indexingbegins at0 so an array
can be indexed from O to 2047. Subscripts are trun-
cated to integers. Function identifiers are followed by
parentheses, enclosing optional arguments. The
three types of identifiers do not conflict; a program
can have a variable named “x”, an array named “x”,
and a function named “x”, all of which are separate
and distinct.

The following are reserved keywords:

ibase if
obase break
scale define
sqrt auto
length return
while quit
for

Constants are arbitrarily long numbers with an
optional decimal point. The hexadecimal digits A -F
are also recognized as digits with decimal values
10-15, respectively.

be: A Calculator

5.4.2 Expressions

All expressions can be evaluated to a value. The value of an expression is

I always printed unless the main opl Storis an assignment. The precedence
o of expressions (i.e., theorderin which theyare evaluated) is as follows:
Function calls
Unaryoperators
Multiplicative operators
Additive operators
Assignment operators
Relational operators
There are several types of expressions:
Named expressions
Named expressions are places where values are stored. Simply
stated, named expressions are legal on the left side of an assign-
S ment. The value of anamed expression is the value stored in the
/ placenamed.
NP
identifiers
Simpleidentifiers are named expressions. They have an
initial value of zero.
array- name [expression]
Array elements are named expressions. They have an
initial value of zero.
scale, ibase and obase
The internal registers scale, ibase, and obase are all
named expressions. Scale is the number of digits after
the decimal point to be retained in arithmetic operations
and has aninitial value of zero. Ibase and obase are the
input and output number radixes respectively. Both
ibase and obase haveinitialvalues of 10.
Constants
s Constants are primitive expressionsthatevaluate to themselves.
i
~ Parenthetic Expressions

An expression surrounded by parentheses is a primitive expres-
sion. The parentheses are used to alter normal operator pre-
cedence.

XENIX User’s Guide

Function Calls
Function calls are expressions that return values. They are dis-
cussed in section 5.4.3.

5.4.3 Function Calls

A function call consists of a function name followed by parentheses con-
taining a comma-separated list of expressions, which are the function
arguments. The syntaxis as follows:

function- name ([expression|[, expression...]])

A whole array passed as an argument is specified by the array name fol-
lowed by empty square brackets. All function arguments are passed by
value. As aresult, changes made to the formal parameters have no effect
on the actual arguments. If the function terminates by executing a return
statement, the value of the function is the value of the expression in the
parentheses of the return statement, or 0if no expression is provided or if
there is no return statement. Three built-in functions are listed below:

sqrt (expr) The result is the square root of the expression and is
truncated in the least significant decimal place. The
scale of the resultis the scale of the expression or the
value of scale, whicheveris larger.

length (expr) The result is the total number of significant decimal
digits in the expression. The scale of the result is zero.

scale (expr) The resultis the scale of the expression. The scale of
the resultiszero.
5.4.4 Unary Operators
The unaryoperatorsbind right toleft.
— expr The result is the negative of the expression.
++ named_expr The named expression is incremented by one. The
result is the value of the named expression afterincre-
menting.
- — named_expr The named expression is decremented by one. The

result is the value of the named expression after decre-
menting.

5-16

be: A Calculator

named_expr ++ The named expression is incremented by one. The
: result is the value of the named expression before
incrementing.

Y named_expr —- The named expression is decremented by one. The
result is the value of the named expression before
decrementing.

5.4.5 Multiplicative Operators
The multiplicative operators (*, /, and %) bind from left to right.
expr¥expr The result is the product of the two expressions. If
“a” and “b” are the scales of the two expressions,
then the scale of theresultis:
min (a+b, max(scale, a, b))

exprlexpr The result is the quotient of the two expressions. The
scale of the result is the value of scale.

expr%expr The modulo operator (%) produces the remainder of

the division of the two expressions. More precisely,

/—\ \ a%Db is a—a/b*b. The scale of the resultis the sum of
NG the scale of the divisor and the value of scale. -

; expr expr The exponentiation operator binds right to left. The

: result is the first expression raised to the power of the
second expression. The second expression must be
an integer. If “a”isthe scale of the left expressionand
“b” isthe absolute value of the right expression, then
the scale of the resultis:

min (a*b, max(scale,a)) - -

5.4.6 Additive Operators
The additive operators bind left to right.
expr+expr The result is the sum of the two exprcssions. The
scale of the result is the maximum of the scales of the
expressions.
(-’ - expr—expr The result is the difference of the two expressions.

. : _ Thescale of the result is the maximum of the scales of
R the expressions.

5-17

XENIX User’s Guide

5.4.7 Assignment Operators

The assignment operators listed below assign values to the named expres-
sion on the left side.

named_expr=expr
This expression results in assigning the value of the expres-
sion on therighttothe named expression on the left.

named_expr=-+expr
The result of this expression is equivalent to
named_expr=named_expr+expr.

named_expr=—expr
The result of this expression 1is equivalent to
named_expr=named_gxpr—expr.

named_expr=*expr
The result of this expression is equivalent to
named_expr=named_expr*expr.

named_expr=/expr
The result of this expression is equivalent to
named_expr=named_expr/expr.

named_expr=%expr
The result of this expression is equivalent to
named_expr=named_expr%expr.

named_expr="expr
The result of this expression is equivalent to
named_gexpr=named_expr expr.

5.4.8 Relational Operators

Unlike all other operators, the relational operators are only valid as the ’
object of an if or while statement, orinside aforstatement.

These operators arelisted below:
expr<expr
expr>expr
expr<=expr

expr>=expr

5-18

bc: A Calculator

expr==expr

expri=expr

5.4.9 Storage Classes

There are only two storage classesin be: global and automatic (local). Only
identifiers that are to be local to a function need to be declared with the
auto command. The arguments to a function are local to the function. All
otheridentifiers are assumed to be globaland available toall functions.

All identifiers, global and local, have initial values of zero. Identifiers
declared as auto are allocated on entry to the function and released on
returning from the function. They, therefore, do notretain values between
function calls. Note that auto arrays are specified by the array namer, fol-
lowed byemplysquare brackets.

Automatic variables in be do not work the same way as in C. Onentryto a
function, the old values of the names that appear as parameters and as
automatic variables are pushed onto a stack. Untilreturn is made from the
function, reference to these namesrefersonlyto the new values.

5.4.10 Statements

Statements must be separated by a semicolon or a newline. Except where
altered by control statements, execution is sequential. There are four types
of statements: expression statements, compound statements, quoted
string statements, and built-in statements. Each kind of statement is dis-
cussed below:

Expression statements
When a statement is an expression, unless the main
operator is an assignment, the value of the expression
is printed, followed by a newline character.

Compound statements
Statements can be grouped together and used when
one statement is expected by surrounding them with
curlybraces ({ and [,J})

Quoted string statements
Forexample:

"string"

prints the stringinside the quotation marks.

5-19

XENIX User’s Guide

Built-in statements

5-20

Built-in statements include auto, break, define, for,
if, quit, return, and while.

The syntax for each built-in statement is given below:
Auto statement

The auto statement causes the values of theidentifiers
to be pushed down. The identifiers can be ordinary
identifiers or array identifiers. Array identifiers are
specified by followingthe array name by empty square
brackets. The auto statement must be the first state-
mentin afunction definition. Syntax of theauto state—
mentis:

auto identifier [, identifier]
Break statement

The break statement causes termination of a for or
while statement. Syntaxfor the break statement is:

break
Define statement

The define statement defines a function; parameters
to the function can be ordinary identifiers or array
names. Array names must be followed by empty
square brackets. The syntax of the define statement
is:

define (([parameter[, parameter ...]|){statements}
For statement
Theforstatement is the same as:
first- expression
while (relation) {

statement
last- expression

g

All three expressions must be present. Syntax of the
forstatementis:

for (expression; relation;ex pression) Statement

be: A Calculator

If statement

The statement is executed if the relation is true. The
VR syntaxis as follows:

- if (relation) statement
Quit statement

The quit statement stops execution of a be program

and returns control to XENIX when it is first encoun-
i tered. Because itisnot treated as an executable state-
ment, it cannot be used in a function definition or in
an if, for, or while statement. Note that entering a
Ctrl-d at the keyboard is the same as entering “quit”.
Thesyntax of thequitstatement s as follows:

quit
Return statement

The return statement terminates a function, pops its
auto variables off the stack, and specifies the result of
thefunction. The result of the function is the result of
the expression in parentheses. The first form is
equivalent to “return(0)”. The syntax of the return
statement is as follows:

S

¢

return(expr)
While statement
The statement is executed while the relation is true.

The test occurs before each execution of the state-
ment. The syntax of the while statement is as follows:

while (relation) statement

5-21

SOOI TGRSO e B

B S N BN S SOSFR = by S SO Ml N

iiiiii e I A T il T o Ty T M N T N N o I L Y W g, W N W W _ R WL

G EBOUEBOROSPITREVIGOOICEDTOITICITEESLEDPIOD DD

= DLl - e PRl gt s Nt il U Rl N Y s Nl Pl et it Rl T e A el = N e A St ™ T ™ ™ iaay” At Flat A 2N

th Tab Marked:

W1

Replace this Page

uucp

Chapter6
Building a

... Communication System

6.1 Imtroduction 6-1
6.1.1 HowTo UseThis Guide 6-1

6.2 WhatYouNeed 6-2

6.3 InstallingA Direct Wire 6-2
6.3.1 ChooseaSerialLine 6-3
6.3.2 Connecta Serial Wire 6-3

6.4 InstallingaModem 6-4
6.4.1 Choosea SerialLine 6-5
6.4.2 Setthe Dialing Configuration 6-5
43 ConnecttheModem 6-6
.4.4 ConfiguringaHayes Smartmodem 2400 6-6
4.5 Variable Rate Modems 6-8
4.6 Testthe Modem 6-8

6.5 Installingauucp System 6-9
6.5.1 uuinstall 6-11
| 6.5.2 ChoosingauucpSiteName 6-13
| 6.5.3 CreatingaDial-InSite 6-14
' 6.5.4 CreatingaDial-OutSite 6-22

6.5.5 Create aTransmission Schedule 6-26
6.5.6 LinkingmicnetSites 6-28
6.6 Maintainingthe System 6-28
6.6.1 Displayingand MergingLogFiles 6-29
6.6.2 Cleaningthe uucp Spool Directory 6-29
6.6.3 ReclaimingLogFiles after a Crash 6-30
6.6.4 ReclaimingDataFiles aftera Crash 6-30
6.6.5 Checkingthe Transmission Status 6-31
6.6.6 CheckingforLocked Sites orDevices 6-32
6.6.7 CreatingMaintenance ShellFiles 6-32
6.7 Details of Operation 6-32

C 6.7.1 uucpPrograms 6-33

a0

NNNNN2
N AEWN

uucp Directories and Files 6-33

uucp — Site-to-SiteFileCopy 6-34

uux — Site To Site Execution 6-37
uucico — CopyIn, CopyOut 6-39
uuxqt—uucp Command Execution 6-43
Security 6-43 '

s

Building a Communication System

6.1 Introduction
This chapter explains how to build a communication system for your com-
puter using either a direct serial line or a normal telephone line and a
Hayes Smartmodem. A communicationsystem providesawayto:

® T ogintothe computerfrom a remote terminal or computer.

e Usethe cu(C) commandto callandlogin to other computers.

® Use the uucp(C) command to copyfiles to and from remote com-
puters.

® Use the nux(C) command to execute remote commands, including
the maii(C) program (rmail) on a remote computer.

In particular, the communication system is a practical solution to the prob-
lem of two micnet networks (seethe XENIX Operations Guide) that cannot

‘be connected because of distance or cost of cable.

Allcommunication tasks are supported by a variety of filesand directories,
Tinaddition, the tasksinvoked by the uucp and uux commands are actually
performed by a system of underlying programs, called the uucp system.
Thefilesand underlyingprogramsare described infulllater in this chapter.

The following sections explain how to install a modem, and how to
configure the necessary filesfor your system. They also explain howto and
maintain auucp system, and describe the detailsof howitworks.

6.1.1 HowTo Use This Guide

This guide describes how to build a uucp system and covers both hardware
installation, and software configuration. Topics are first presented in a

generalform, thenin greater detail.

Each control file is first described in general form. Then, you are shown
howto configure the file with the uuingtall utility.

You do not need to use uuinstall to set up your communication system.
However, this utility helps you to be more accurate when you configure the
system.

Be sure to read the text carefully, since there are many similar commands
and actions.

6-1

XENIX User’s Guide

6.2 WhatYouNeed
Toinstalla direct wire communication system onyour computer, youneed

® Atleast one RS-232serialline (or serial port) on your computer to
use foruucp and cu.

® The uucp programs and files extracted from your XENIX System
distribution.

If you want to use your computer as a dial-in and/or dial-out site with a
modem, youalsoneed:

o A modem. The default supported modem is a Hayes Smartmodem
1200, but you can modify the supplied dialing routines for other
modems.

e A standard telephone jack for access to the telephone system
(touch toneline required for the Hayes).

® An RS-232cable to connecttheseriallineto themodem.
Finally, since many of the tasks you must perform require special permis-
sions, you must login to your computer’s super-user account before per-
forming them. Check with your computer’s system manager before
proceeding with this installation, or turn to the XENIX Operations Guide
for instructions on how to login as the super-user.

6.3 Installing A Direct Wire

This section describes how toinstall a direct wire between two computers.
To connect two computers with adirect wire, youneed to:

® Chooseaserial line on each machine.

e Connecta serial wire (RS-232) between the two machines, using the
chosen serial lines.

e Decide which machine is the dial-in site and which is the dial-out
site. The dial-outsite callsup andlogsin to the dial-in site.

When you finish with these steps, you can proceed with next sections to
actually set up the sites.

6-2

Building a Communication System

6.3.1 Choose a Serial Line
On each machine, you must choose the RS-232 serial line you warit to use.
Ifthere are no lines available, you mmustinstall anewserial line or make one
availab le byremoving any device connected to it. If youremove a terminal,
makesureno oneislogged in.
Once you have chosen a serial lines, find the name of the device special file
associated with the line by looking in Appendix A of the XENIX Opera-
tions Guide. Thefilename should have the form

/dev/ttynn
where #12 is the number of the corresponding line. For example, /dev/ttyla
usually corresponds to serial line 0. You need the name of the actual line
forlatersteps.

Theseriallineyouuse foryourcommunicationsystem should be owned by
uucp. Tomakesurethelineisowned byuucp enter this command:

chown uucp /dev/ttynn

where 7in is the number of the correspondingline.

6.3.2 Connecta Serial Wire

You connect two computers together using an RS-232 cable. The actual
pin configurations sometimes varybeiween machines.

Typically, the wire should connect pins 2, 3, and 7 (and/or 20) on one com-
puter tothesame pins on thesecond computer. Sometimes the cable must
be nulled, which means that pin 2 on one machine is connected to pin 3 on
the other, andviceversa.

Since the connections can vary, you should check the hardware manuals
foreach computer to determine the proper pin connections.

Testing A Connection

Forthissection, tty2a isused as the example serialline forboth machines.

Totestthewireconnection betweentwo machines, follow these steps:

1. Disablethe serial lines on eachmachine. On eacli computer, enter
the command:

disable /dev/tty2a

6-3

XENIX User’s Guide

2.

Attach one end of the serial wire to one of themachines. Attach the
otherend to the standard data port of a terminal.

Enterthis command atthe computer:
(stty 9600; date) < /dev/tty2a > /dev/tty2a

tty2a is our example serial line, and the date command provides
sample output.

You should see the output of the date command appear on the ter-
minal screen. Repeat this procedure on the othermachine.

If this doesn’twork, check the following:

— Thewireis plugged in properly at each end.
— Thecontinuity of thewire.

— Theterminalis configured correctly

(baud rate, parity, etc.).

The seriallineis disabled.

Youare usingthe correct pinnumbers.

|

Note

An unterminated serial line can cause serious system problems. Do
not leave serial lines dangling.

6.4 Installinga Modem

With a modem, you can communicate with computers over standard
phonelines. These are the steps to installamodem:

Choose a serial line.
Set the dialingconfiguration.
Connect the modem.

Testthe connection.

The following sections explain each step in detail. Malce sure you inform
the telephone company of your intent to use amodem with your telephone

line.

6-4

:/,.q.\

Building a Communication System

You should be particularly careful, since certain telephone services (such
as “callwaiting”) can disruptuuep conversations.

6.4.1 Choose a SerialLine

to the modem. Ifthereare no lines available, you must install a new serial
line or make one available by removing any device connected to it. If you
remove a terminal, make sure no one islogged in.

Once youhave chosen a serial line, find the name of the device special file
associated with the line by looking in Appendix A of the XENIX Opera-
tions Guide. The filename should have the form

/dev/ttynn
where nn is the number of the correspondingline. For example, /dev/ttylA
usually corresponds to serial line COMM 1. You need the name of the

actualline forlater steps.

The serialline youuse for your communication system should be owned by
uucp. Tomakesurethelineis owned byuucp enter thiscommand:

chown uucp /dev/ttynn

where nnisthe number of the correspondingline.

6.4.2 SettheDialing Configuration

In this communication system, your modem can be used to both send and
receive calls. You must set the appropriate switches on the modem. (If
you are setting up a Hayes Smartmodem 2400, see the next section for
configuration instructions.) Follow these steps to configure a Hayes
Smartmodem 1200:

1. Remove the front cover of the modem and locate the 8-pin
configuration switch. (Seethe Hayes Reference Manual for instruc-
tions on howtoremovethecoverand locate the switch.)

2. Setthe pinson the configuration switch to the following positions:

i T - 3 4 B] 7 3
up o | o o | e
down °) L)

3. Replacethefrontcover.

6-5

XENIX User’s Guide

If you have a different modem, consult your reference manual for the
properswitch settingsto both send and receive calls.

6.4.3 Connectthe Modem

Once your modem’s dialing configuration is set, you are ready to connect
the modem to your computer. For proper modem operation, the RS-232
cable must provide the pin connections shown below.

Note that the computer’s serial connector must have a DTE (Data
Terminal Equipment) configuration. The modem is assumed to have a
DCE (Data Communications Equipment) configuration.

Pin Connections
Computer Modem

(DTE) (DCE)

1 1

2 2

3 3

6 6

7 7

8 8

20 20

These pin connections are explained in the Hayes Reference Manual.

Review the installation instructions given in the Hayes Reference Manual,
then follow these steps:

1. Connect the RS-232 serial cable to the serial line connector on the
modem, then to the serial line connector on your computer. Make
sure the cable is fully connected. (If you are using a Hayes 2400, a
2-3-7 pin cable is not sufficient. We suggest a ribbon cable to con-
nect all appropriate wires.)

2. Plug the telephone line cable into the telephone connector on the
modem, then into thetelephone wall jack.

3. Plugin thepowercordofthemodem.

6.4.4 Configuring a Hayes Smartmodem 2400

Although most aspects of modem installation are similar, the Hayes 2400
Smartmodem requires on-line configuration if it is to be used as a dial-in
line. Note that the Hayes 2400will not answer the phone with a 2400 baucd
carrierif it was not set up with 2400 baud commands.

6-6

T

———

P
\

-

Building a Communication System

Make sure that the /usr/lib/uucp/L-devices file contains an entry for the
line:

DIR ttynn O 2400

You must then configure the modem by issuing set up commands via
cu(C). Enter:

cu -s2400 -1 ttynn dir
where nnisthe “tty”’ number of the serial line. Press RETURN.

Next, enterthe following commands to configure the modem. Theywill be
saved in the modem’s non-volatile memory. If youdo notwantto save the
settings, do not enterthe last command (at&w). Commands are in the left
column and short descriptions of what they do are in the right column. Fol-
low each commandwitha RETURN:

at&f Fetch factory configuration.

att . Tonedialing.

atl0 Low speaker volume.

at&d?2 Setdtr“2”: goon hook when dtrdrops.

até&ecl Setdcd “1: ded tracks remote carrier.

ats0=1 Answer phone after 1 ring (AA light should
come on).

ats2=128 Disable modem escape sequence.

ate0 No echo (modem will no longer echo what is
senttoit).

atql - Quiet mode (modem will not respond with

“OX?” after this command or any that follow).
at&w Savessettingsin non-volatile memory.

Exit from cu by enteringa “tilde” and a “period”, followed by a RETURN:

6-7

XENIX User’s Guide

Set up diallHA24 as the default dialer program with the following com-
mands:

cd /usr/lib/uucp
In dialHA24 dial

The modem is now configured and readyfortesting.

6.4.5 Variablc Ratc Modems

Some modems can determine the connection baud rate from the carrier
sentbyaremote system. These modems inform the local system of the con-
nection baud rate before issuing the carrier detect signal. The Hayes 2400
dialer supplied with uucp detects different connection baud rates and
informsuucp and cu when it exits with a successful connection.

The speed fields in L- devices and L.syscan specify a range of baud rates for
a connection. If a dialer supports baud rates from 300 to 2400 baud, enter
the baud rate range in the speed field of L- devices as follows:

300-2400

If a dialer/modem does not allowvariablebaudrates, place a single baud in
the speed field. If a remote system supports several different speeds, place
the range of baudratesin the speed field of L.sys. If the remote system con-
nects at a single baud rate, place that numberin L.sys. uucp passes the
intersecton of the L.sys and L- devices baud rate ranges to the dialer when
connecting. If the dialer connects outside of the baud range, it returns a
bad baudrateerror. Otherwise, it returnsthebaudrate of the connection.
6.4.6 Testthe Modem
As the last step of the modem installation, you should testthe modem to
make sure that it can send and receive calls. Once you have verified that
the modem is working, you can begin to use the communication system.
To test the modem, follow these steps:

1. Startthe computerand login asthe super-user.

2. Disable the modem serialline by entering

disable /dev/ttynn

where nn is the ““tty” number of the serial line.

6-8

Building a Communication System

3. Turnonpowertothemodem.

4. If you are using a Hayes 1200, make sure the volume switch on the
- modem is at an appropriate level. You must be able to hear the
. modem to carry out this test successfully. See the Hayes Reference
| - Manualforthelocation of this switch.

5. Invokethedial(C) program usinga command line of the form:
/usr/lib/uucp/dial /dev/ttynn number speed

where /dev/ttynn is the filename of your serial line, and number is
your telephone number (the number of the telephone jack your
! modem is connected to). dial will use ungetty(C) to disable the line
; for the duration of the call. For example, if your serial line is
/dev/ttyl and the numberis “5551234,” enter:

/usr/lib/uucp/dial /dev/ttyl 5551234 1200

6. Listen carefully to the modem. You should hear each digit as the
number is dialed, then hear the busysignalwhen the telephone sys-
tem #ries to make connection with your modem.

7. If the busy signal is present, wait a fewmoments and listen carefully
for the modem to hangup. The modem automatically discontinues
N anycallforwhichitcannotmake a connection.

)

8. If the busy signalis not present, make sure you have connected the
modem to the telephone jack. Malke sure the jack is connected to
the phone system. Make sure you gave the correct number when
invoking dial.

9. Ifyoudid nothearthe modem dial, make sure the volume switch is
up. Make surethe modem is connected to the correct serial line and
that the cable connection is tight. Make sure you gave the correct
filenamewhen invoking dial. Make sure modem’s power is on.

6.5 Installinga uucp System

When youinstalltheuucp system, you configure a series of files which con-
tain information about, and control the actions of the uucp programs.
You can modify these files with a standard text editor, or youcan use the

C— _ uuinstall utility.
- To install a uucp system you:
® Setupthe proper hardware (directwire ormodem).

6-9

XENIX User’s Guide

® Choose a system name for your computer (systemid).
® (Create either adial-in ordial-out site, or a combination of both.

o Create a transmission schedule to ensure that communications
operate automatically.

Note that when you install the uuep system, or make any modifications,
you should be logged in as root. Virtually all of the uucp files are writable
only by the super-user, and many of them are also readable and executable
only by root. Make sure when you are done that all of the uucp files are
owned by uucp and not root. uucp will not work correctly if it cannot read
or write all of its files.

There aretwo ways to configure auuep site:
® Asadial-insite.
® Asadial-outsite.

As a dial-in site, other computers call up and log in to your system. They
can transfer files and execute certain commands.

As a dial-out site, your computer calls up other computers and logs in.
Your computer initiates file aransfers to and from the remote machine, as
well as local and remote command execution.

Note

The terms dial-in, dial-out and call describe the communication
process forboth direct wire and modem/telephone sites.

You can configure yoursystem as both a dial-in and dial-out site, although
it cannot function as both at exactly the same time. This is because the
serial line is enabled at a dial-in site, and disabled at a dial-out site.
Options to configure a port as a dial-in/dial-out line are discussed at the
end of “Creatinga Dial-out Site.”

When you wish to use the port to dial out, the dial(M) command uses
ungetty(C) to disable the port while the call is taking place, and to enable it
again when the call is done. Because of this, you should not have to issue a
separate command tochangethe status of the port before making a call.

6-10

Building a Communication System

The followingsections explain how to use the uuninstall utility to create files
for both kinds of sites. They also explain how to create a transmission
schedule usingeron and howto link togethermicnet sites.

6.5.1 uuinstall

uuinstallhelps youinstallinformation in various uuep controlfiles. To use
the uuinstall utility, login as root.

Then, enter:

uuinstall
The screen displays the main menu:

UUCPAdministration Utility
Choose one of the following options: _
1. Examineorupdate system identification.
2. Examine orupdatedial-in or dial-out devices.
3. Exém_ine orupdate dialingcode abbreviations.
4. Examine orupdate system connections.
Examine orupdate UUCPusers.

6. Terminatethisprogram.

Choose anop#on:
uuinstall returns to this display after performing the action you request.

You also return to this main menu if you only press RETURN at a menu
option without entering any data.

6-11

XENIX User’s Guide

Each menu option acts on aparticular control file:

Menu
Option

Control File

Function

1.

/etc/systemid

/usr/lib/uucp/L-devices

/usr/lib/uucp/L-~dialcodes

/usr/lib/uucp/L.sys

/usr/lib/uucp/USERFILE

Contains the uucp name
of your computer. Other
computers on the uucp
network know your com-
puter by thisname.

Describes the devices on
your computer which are
connected to other com-
puters on the uucp net-
work.

Contains alist of abbrevi-
ations used in the dialing
codes for placing calls to
other computers.

Lists the systems on the
uucp network you can
call, or which call you. It
also specifies when you
can call, or are called,
which seriallines are used
andthebaudrateused.

Defines which directories
a given site (or a given
user) may access usingthe
uucp and uux commands.

Thereis an additional file that you cannot change with the uuins tall utility:

/usr/lib/uucp/L.cmds

Contains a list of allcommands which the

uucp programs are allowed to execute.
This list overrides the default allowable
commands. The file can be changed with
any standard text editor.

When you have made allnecessarychanges to the uucp controlfiles, enter
option ‘6’ to exitfrom the program. The uuinstall utility then displays:

Do you want to update the UUCPcontrol files?

If you enter ‘y’, the control files are updated. Any otherresponse causes
the uuinstall utility to exit without making anychangesto the files. Each of

6-12

./- \!

Building a Communication System

the options in the main uuinstall menu are described in detail later in this
chapter.

You can also invoke the uuinstall program with a - r command line option.
This allows you to read the current settings of the uuinstall menu options,
butwillnotallowyoutomake anychangeswhenyouexitthe program.

You must be the super-user to run uuinstall. Refer to uuinstall(C) in the
XENIX Reference for more information.

6.5.2 Choosing auucpSiteName

In a uucp system, every computer belongs to a “site.” A siteis anycom-
puter or anymicnet network that can communicate with theuuep system.

To distinguish one site from another, every site must have a unique site
name.”” A sitename is anycombination ofletters and digits that begins with
aletter and is no more than seven characterslong. The site name may then
be used in uwucp and nux commands to direct transmissions to the
appropriate computer or micnet network.

The site name should suggest some characteristic of the site, such as its
location or affiliation. For example, a site in Chicago can be named “‘chi-
cago,” or a site in the legal department can be named “legal.” The site
namemustbe unique. Thatis, noothercomputerthatcallsyourcomputer
oriscalled byyourcomputer can have the same sitename. -

Onceyouchose a site name, add it to the /etc/systemid file as described in
thenextsection.

Creatingthe systemid File

Each site must have a /etc/systemid file. The file defines the site name of

the given site and associates the site with a micnet network, if any. The file
has theform:

sitename
[machinename]
sitename The name of the givensite

machinename The micnet machine name for that computer. If the
system is not connected to a micnet network, the
machinename is optional.

6-13

XENIX User’s Guide

For example, this entry defines a site named ‘“‘chicago” whose micnet
machine name is ‘“‘brewster’’”:

chicago
brewster
To setup the systemid file for yoursystem, enter:
uuinstall
At the main menu, choose option ‘1.’ The current site name and machine
name is displayed and you are prompted for any changes to either of these
names. If youwant tomake anychanges, you are prompted to enterthem.
Since uucp systems are often created after a micnet network has been esta-
blished, the systemid file usually already exists on a given site. In this case,
you must add the site name to the beginning of each systemid file on each
computer in themicnetnetwork.
Note that you may list more than one machine name if desired, but each
name must be on a separate line. For afull description of the systemid file,
see systemid (M) in the XENIX Reference Manual.
6.5.3 Creating a Dial-In Site
To create a dial-in site forlogins by remote terminals or computers, you:
® Choose aserialline.
® Disabletheserialline.

e Editthe serialline entryinthe /etc/tiysfile.

Then you place information into several control files to allowloggingin on
theserialline youhave chosen:

e Usemkuser(C)to add alogin entryfor uusite.
o Adduseraccessinformation tothe USERFILEfile.

® Setaccess permissions inthe L.cmds file. Any permissions listed in
thisfile override the uucp default permissions.

e Useuuinstall to add uusite information to L.sys.

o Enabletheserialline.

6-14

N

Building a Communication System

Choose a SerialLine

Use a line with modem control for the dial-in line. Refer to “Choose a
Serial Line” formore information.

Disable the Serial Line

Disabling the serial line is the next step in creating a dial-in line. To disable
theserialline, follow these steps:

1. Ifyouareusingamodem, makesureitisinstalled andtested.
2. Makesureyouareloggedin as the super-user.
3. Disablethe serialline by entering;
disable /dev/ttynn
where nn is the number of your serial line. If the line is already dis-

abled, the command displays an error message that you can safely
ignore.

Edit/etc/ttys

Thefile /etc/utys contains a list of possible login terminals. Enter the com-
mand:

cat /etc/ttys
You see aseries of entries for the different seriallines.
Theform of an entryis:
xxttynn
Where:
XX Two digits. The firstis either a one (1), which means the line is
enabled, or a zero (0), which means the line is disabled. The
second is a number or letter which defines the baud rate of the

line.

nn Thenumberofthetty.

6-15

XENIX User’s Guide

An example entryfor a serialline connected to a modem might be:

02tty2a
The first digit is a zero, which means the line is disabled, so that terminals
or computers cannot login on thatline. That digit changes to a one when

you use the enable command (the next step).

The second digit, ‘2, meansthat the getty running on thatline cycles the
baudrates of that line between 1200, 2400, and 300baud.

Foradirectline, the entry might be:

06tty2 A
If youneed to change an entry, do so with a standard text editor. Formore
information on /etc/ttys, and the various control codes, see getty(M) in the
XENIX Reference.

Createuucp Login Entries

A dial-in site must provide a login entry for the sites that call it. These
entries are placed in the /etc/ passwd file.

A uucp login entry has the same form as an ordinary user login entry (see
Chapter 3 in the XENIX Operations Guide), but has a special login direc-
tory and login program instead of the normal user directory and shell.

To create a uucp login entry, use the mkuser(C) program and follow these
steps:

1. Choose a new login name and a user ID for the uucp login. The
name may be any combination of letters and digits that is no more
than eight characterslong. The user ID mustbe an integer number
in the range 200to 65535.

Makesurethe name and ID areunique. A uucp login entrymust not
have the same name orID as any otherlogin entry.

2. Enter:
[etc/mkuser
Follow the program menus and prompts to add the user(s) you wish.
Fora shell type, use “uucp Login.”
3. mkuser prompts you to enter a password for the new user. Thisis

optionalforuucp logins.

6-16

Building a Communication System

You can either create new login entries for each site that calls yoursite, or
use one entryforall sites.

Note

A site that dials in to yourcomputermust knowif its login has a pass-
word. Each site also needsto knowwhatits passwordis, otherwiseit
cannot logintoyour system.

SetUp the USERFILE

The USERFILE file defines which directories a given site (or a given user)
may access using the uucp and uux commands. You should create one
USERFILE entryforeach site or user with a login entryin the /etc/ passwd
file. Each entryhastheform

login,sitename[c] pathname...

login Thelogin name for a given site (optional).

sitename Thesitenameof a given site (optional).

c The c option indicates a callback should occur.

pathname One or more full pathnames of the dlrectory(s) the
givensitemayaccess.

The following rules explain how accessisgrantedfor each entry.

1. A calling site is granted access to those directories defined in an
entrycontainingits sitename.

2. A calling site whose name does not appear in an entwy is granted
access to the directories defined for the first entry without a site
name.

3. Auseris granted access to those directories defined in an entry con-
taininghisloginname.

4, A user whose login name does not appear in an entry is granted
access to directories defined in the first entry without a login name.

6-17

XENIX User’s Guide

You mayhave more than one entry with the same login name if you want.
However, youmust make sure that atleastone of these entries also has the
site name of any calling site which can login with that name, or that one of
these entries has no site name.

Forexample, consider the following entries.

uuccg,chicago /usr /usr2/market
uucp, /usr/vendor

schmidt, /usr/vendor

s /usr/spool/uucp/uucppublic

The site named “‘chicago” has access to files in the directories named
“fusr” and “/usr2/market”. Other sites that login as user "uucp” will be
granted access to “/usr/vendor” only. Any local or remote user named
“schmidt” is granted access to the directory “/usr/vendor”. All other
users have access to “/usr/spool/uucp/uucppublic” only.

You can enter this information by choosing opfion ‘5’ of the uuinstall pro-
gram.

You are prompted as to whether you want to see the current entries in the
userfile. If youenter ‘y,” you see a screen display similar to the following:

Logn Sitename Paths

0. uucg chicago
1 ANYLOGIN ANYSITE

The ANYLOGIN and ANYSITE entries are special entries displayed when-
ever ablanklogin name or site field are encountered in the userfile.

You are then asked whether you want to add or delete an entryin the file.
Entries are always deleted by specifyingthe entry number (#)shownin the
first column of the screen display. If you request that an entry be added,
you are prompted for the login name, site name and path names of the new
entry. If you press RETURN inresponse to this prompt, the display returns
to the main uuinstallmenu.

In response to the requests for a login name and site name, you may enter
the spemal name “A” (meaning “ANY”) which corresponds to a blank
field in the userfileforthelogin or sitenames. The promptsfor pathnames
continue until youentera blank line.

6-18

C

Building a Communication System

Create the L.cmds File

You do not need to create the file L.cmds unless you have special security
considerations. The uucp login shell may execute only the following
default commands:

® lpr ® mail
® rmail ® rnews
® who

If you place a list of commands in the file L.cmds, that list supersedes the
default allowable commands. If the L.cmds file exists, but is empty, no
commands are allowed.

If you want your machine to immediately forward files from a remote
machine to other machines, the command /usr/lib/uucp/uucico must be
presentinthe L.cmds file. Otherwise, files will be forwarded the next time
your machine connectswith the remote machine.

Create the L.sys File
The /usr/lib/uucp/L.sys file defines the names, telephone numbers, and
login information of all sitesin the system. (Note that tabs should not be

used asfield separators.) The file contains one ormore entrieso fthe form

sitename time device speed phone login

With:

sitename Thename ofthe site to be called,

time A combination of letters and digits that gives the
weekdays and times when the givensitecan be called,

device Thename of the device through which the givensite is
tobecalled,

speed Theline speed f orthecall,

phone The phone number of the given site, and

login Login information required tologin to the given site.

6-19

XENIX User’s Guide

Thetimedefineswhen the given site can makecallsto othersites. Ithasthe
form

days times

where days is a list of one or more days of the week, and times is a range of
times of day. The days of the week may be “Su”, “Mo”’, “Tu”, “We”,
“Th”, “Fr’, “Sa”, “Wk”, “Any”, and“Never”. “Wk” means “any week-
day,” “Any” stands for “any time,” and “Never” indicates that the site is
nevercalled (except by special request).

The time of day must be given as a four-digit number. The first pair of
digits gives the hour (in terms of a 24 hour clock), the second pair gives the
minutes. A range of times is a pair of times of the day separated by a
hyphen (-). For example, the entry

MoTuTh0800-1230

allows the given site to be called any Monday, Tuesday, or Thursday from 8
inthemorningto 12:30in the afternoon.

The device must be the keyword “ACU?” if you are using a modem. If you
are using a direct line to the other site, then you must give the filename of
the serial line (or otherdevice) youintend to use (for example, ttyla).

speed is the baud rate that the remote system will connect at. A range of
baudratesmay be used hereif the remote system canconnectat more than
one baud rate. A range is specified by a minimum and a maximum baud
rate separated by a dash. uncp passes the intersection of the L.sys speed
and L- devices speed fields to the dialer.

The phone must be the telephone number of the given site. It must have the
correct number of digits (including area code if necessary) or be a combi-
nation of L-dialcodes abbreviations and digits. L-dialcode abbreviations
must go before any digits. Do not use hyphens. For example, “5551234” is
avalid local number and “2065551234” is a valid long distance number. If
the abbreviation “sc” is defined to be “555,” then “sc” may be used in
place of ©“5551234.”

With the Hayes modem, youmayuse a comma (,) in a number to cause a
delaywhen dialing. Thisisusefulifyou must dial for an outside line before
placingthe call.

Forexample, the number “9,5551234” causes a delay immediately after the
“9” js dialed. After the delay, therest of the number is dialed. If you are not
using a modem, then phone must be the filename of the device you intend
to use instead of a phone number.

6-20

Building a Communication System

The login must be a sequence of names, numbers, and other information
that represents the steps required to login to the given site. This sequence
hastheform

expect send | expect send]...

where expect is the prompt or message that you expect the-given site to
return to the calling site, and send is the name, number, or other informa-
tion that you want to send in response to the expected prompt or message.

Forexample, thefollowingisthelogin sequenceforatypical XENIX site
ogin: uuccg ssword: market

Note that “ogin:”’ and “ssword:” are given instead of the complete
prompts “Login:” and “Password:”. Only the last eight characters in each
expected prompt or message are examined, so you do not need to give the
precedingcharactersif you want to save space.

If you anticipate problems during the login sequence, you may include a
conditional response immediately after each expected prompt or message.
This conditionalresponse hastheform

expect | —send—expectl | ...

where expect is the prompt or message you expect the given site to return,
send is the name or number you want to send if the prompt or message
returned is not correct, and expect! is the prompt or message you expect
after sending the conditional response. For example, the following shows
howtoinvokethe“login” promptifitis notimmediately present.

--ogin-@-ogin-uuccg ssword: market
There are three special keywords that you may use in the login sequence.
The “@? keyword causes an end of transmission character to be sent, the
“BREAK?” keyword causes a break character to be sent, and the PAUSEn
keyword causesuucico to waitforn seconds before continuing.
The complete L.sysentryis one line, asshown bythefollowingexample:
chicago Any ACU 1200 5551234 ogin: uucp ssword: market
Set up the L.sys file by choosing option ‘4’ of the uuinstallcommand. You

are prompted as to whether you want to see the current entries in the L.sys
file.

6-21

XENIX User’s Guide

If youenter ‘y,’ you see a screen display similar to the following:

Entry#: 0
System name: chicago
Timeto call: Any
Line: ACU
Speed: 1200
Phone#: 5551234

Login sequence: ogin: uucp ssword: market

Press Enter to see next entry

A new entry is displayed each time you press the RETURN key. You are
then asked whether you want to add or delete an entry in the file. Entries
are always deleted by specifying the entry number (#) shown in the first
field for each displayed entry. If you request that an entry be added, you
are prompted for each field in turn. If you press RETURN in response to
this prompt, you return to the main uuinstallmenu.

The response to the prompt, concerningthe line to use for the call, canbe

either “A,” for an ACU, orthe device number of the ttyto be used for the
connection.

Enable the Serial Line

Thenextstepis to enable the serial line forlogins. For example, to enable
/devltty2A, enter:

enable tty2A
Your computer can now receive calls fromremoteterminals or computers
and prompt for a login name on /dev/tty 2A.

Y\g.s.‘t Creatinga Dial-OutSite

To create a dial-out site, you choose a serial line and then place informa-
tion into several control files to allow use of the serialline you have chosen:

® Add useraccessinformation tothe USERFILE file.

® Setaccesspermissionsin the L.cmds file. Any permissions listed in
thisfile override the wucp default permissions.

e Create, ormodify, theL-devicesfile.

6-22

Building a Communication System

® Placeinformation aboutlogins onremote computers in the L.sys

Then, youinstall the dialinginformation your system uses to call and login
to othercomputers:

® Setupthedial program.

® Place dialing abbreviations for remote computers in the L-
dialcodesfile.

e (Create a transmission schedule in the form of a shell script to be
called periodicallybythe cron program.

With a dial-out line you can call and login to other computers by using the
cu(C) command. The cu command uses the L-devices file to locate the
correct serial line and set the proper line speed when these values are not
explicitly given on the cu command line. cu also automatically disables the
line for the duration of the callwith ungetty(C).

The following sections explain how to create some of the necessary files.
Editing/etc/tiys, file, creatingthe USERFILE, L.cmds, and L.sysfilesand
enabling and disabling the lines is discussed in the previous section “Creat-
inga Dial-In Line.”

Note

You can configure a single port to act as a dial-in/dial-out port, with
the port toggling from dial-in to dial-out automatically. (Refer to
“Dialing In and Outon the Same Line” at the end of thissection.)

SetUptheL- devices File

The L- devices file defines the devices you intend to use to implement the
dial-out line. The file is also used by programs in the uucp system (as
described later). Use the uuinstall utility to set up this file.

Invoke uuinstall and select option ‘2° at the main menu. You are then
asked if you want to see the current devices.

Enter ‘y’and yousee a screen similar to this:

6-23

XENIX User’s Guide

Type Line Call-Unit Speed

0. ACU ttyla ttyla 1200
1. DIR tty2a 9600

The program prompts if you want to add or delete an entry in the tile.
Entries are always deleted by specifying the entrynumber (#) shown in the
first column on the screen display.

If you request that an entry be added, you are prompted for the type of
imit, eitheran ACU or adirect line. Enter ‘A’ for an automatic calling unit
(modem) or ‘D’ for a direct line. You must use capitalletters. If you press
RETURN inresponse to this prompt, you arereturned to the main menu.

If youspecifyan ACU, you are prompted for the unitnumber of the calling
unit and the line. Respond with justthenumberin each case, the uuinstall
program supplies the “tty” prefix. If you specify a direct line, you are
prompted forthe linenumber.

If the call- unit field of the L- devices file contains a complete pathname, it
will be used as the name of the dialer program. The device in the line field
will be used both as the line and the call unit. This feature allows the use of
different modems on differentlines, each with a separate dial program.,

Finally, you are prompted for the speed of the line. Your response is
checkedand, ifitisinvalid,youare prompted for avalid response.

If the modem and dialer connected to thisline support variable baud rates,
a range of baud rates can be specified by placing the lowest rate and the
highestrate, separated bya dash, in the speed field.

uucp will compute the intersection of the speed fields in the L.sys and L-
devices files and pass the result to the dialer when connecting to a remote
system. If either L.sys or L-devices contain a single baud rate, that rate is
passed to the dialer which returns an erroriftheremote system did not con-
nect atthatrate.

SetUp the Dial Program

Select (or create) the dial program youneed foryour modem. The default
dial program is for a Hayes Smartmodem 1200/1200B. Other dial pro-
grams (for Racal Vadic modems) are also supplied. If you need to use a
dial program other than the default dial, move /usr/lib/uucp/dial to
lusr/lib/luucp/dial.hayes. You can then move the appropriate dial pro-
gram to /usr/lib/uucp/dial. The directory /usr/lib/uucp also includes
relinkable files necessary for producing dial programs for other kinds of
modems. Refer to Chapter 7,“Using Peripheral Devices,” in the XENIX
Operations Guide and the manual pages dial(M) and dial(S) formoreinfor-
mation on creating dial programs.

6-24

Building a Communication System

Create the L-dialcodes File
The L-dialcodes file defines abbreviations for often used telephone
A prefixes and area codes. Youmay use these abbreviations in the L.sys file
: when forming the telephonenumbers of remote sites.
The L-dialcodes filemay contain one or moreentries.of theform
abbreviation dial-sequence
where abbreviationis any combination of letters and digits that begins with
a letter, and dial-sequence is any combination of digits that represents a
telephone prefix, areacode or anyotherpartof atelephone number.
Forexample, the entry
ch 555
defines theabbreviation “ch” to be the telephone prefix “555.”
Set up the L-dialcodes using option ‘3’ of the uuninstall program. You are
prompted as to whether you want to see the current contents of the L-

dialcodesfile.

[\ Ifyouentery,” yousee a screendisplaysimilarto the following:

Abbreviation Code
0. Pasa 1818
; 1. SntCrz 408
! 2. London 011441

You are then prompted to add or delete an entry in the file. Entries are
always deleted by specifying the entry number (#), shown in the first
column of the screendisplay. If yourequest that an entry be added, you are
prompted for the abbreviation and the dialing code for each entry. If you
press RETURN in response to this prompt, the display returns to the main
uuinstallmenu.

Note entry zero. In order for our example site to call area code 818
(Pasadena, CA), the area code must be prefixed with a one (1). Thus, the
dial code “Pasa” isequivalant to “1818.”

6-25

XENIX User’s Guide

IntheL.sysfile, hereishowyouwould usethis exampledial code:
plytch Any ACU 1200 Pasa7931211 login uucp ssword: oaktree

The next section describes thefile in greater detail.

6.5.5 Create a Transmission Schedule

In the uucp system, the uucico program carries out all wransmissions
between your site and other sites, sending and receiving files and com-
mands as long as there is work for it to do. On a dial-in site, uucico is
alwaysstarted whenever a callingsitelogsin.

However, on a dial-outsite, uucico is only started when explicitly invoked.
This means you must periodically start up the program on a dial-out site to
ensure that all tradsmissions requested by the uucp and wux programs are
completed.

You can dothisin one of two ways:
e Invoketheprogrammanually wheneveryouneedit, or

® C(Create a shell script and let the cron program invoke uucico
automatically accordingto a schedule of transmissions.

The most convenient methodis to let cron runuucicoforyou. To do this,
you must choose a schedule of times to invoke uucico then create a file
lusr/spool/cron/crontabs/uucp for thisschedule. This file has the form:

minutes hour day month day-of-week command-line

where minutes, hour, day, month, and day- of- week give the exact day of
the year and time of day to execute the given command-line. Each item,
except the command-line, must be aninteger number within an acceptable
range, for example, Oto 59 for minutes.

A sequence of values for one item may be given by separating the values
with commas. Also, an asterisk (*) may be given to represent all accept-
able values. The command-line must be the name of the shell script you
have created to invoke uucico.

You can add an entry to the /usr/spool/cron/crontabs/uucp file by using a
XENIX text editor. Formore information aboutthefile, see cron (C)in the
XENIX ReferenceManual. For example, the entry:

15,45 * * * * /fugr/lib/uucp/transmit
invokes the shell script “transmit” every 30 minutes (at 15 minutes past the

hour and 45 minutes past the hour)to sites for which requests are pending.

6-26

(O

Building a Communication System

Theentry:
0 0 * * * /usr/lib/uucp/transmit
invokes ‘‘transmit” every day at midnight, and the entry:
15 2,4,6 * * * Jusr/lib/uucp/wansmit
invokesthe script every dayat “2:15,”” ““4:15,” and “6:15” in the morning.

A shell script is simply a text file that contains one or more XENIX com-
mands. For example, this shell script antomaticalyinvokes uucico:

uucico -rl -ssitename

Use the —s option if you want to force a call to the given site even if no
requests for transmissions exist on the calling site. Note thatthe —S option
may be used in place of the =s option if youwant toignoretherange of cal-
ling times given in the L.sys file. Use one uucico command for each site
you want to call. If you want to call only those sites for which requests
exist, give a single uucico command, but do not specify the —s or =S
option with the command.

DialingInand Outonthe SameLine

It is possible to use a single port for dial-in and dial-out operations without
having to disable/enable it for each use. The dialers distributed with yucp
performthis function as appropriate when used to dial out to aremote site.
All that is necessaryis a modification to the L.sys file that refers to the line
you alreadyconfigured for your site.

Use the uuinstall command. Place the swing ”Any” in the “’time to call”
column for the dial-in/dial-out serial line, if it is not already there. The
linecannowbe used as a dial-in/dial-out port. : :

You can create a shell script byusing anyXENIX text editor. For conveni-
ence, thescript should be placedin the /usr/lib/uucp directory and mustbe
given execute permissions for everyone. Note that you can also add uucp
maintenance programs to the script. See the section “Creating
Maintenance Shell Files” laterinthischapter.

6-27

XENIX User’s Guide

6.5.6 Linking micnetSites
To use a uucp system with your micnet network, followthese steps:
1. Addtheentry
uucp:

to the maliases file of the computer on which the uucp system is
installed.

2. Forall other computersin your site, add the entry
uucp:machine- name:

to the maliases file. The machine-name must be the name of the
computer on which theuucp system isinstalled. Thislonger form of
entry may also be used on the computer on which the uucp system is
installed.

You can test the uucp system by mailing a short letter to yourself via
another site. For example, if you are on the site “chicago”, and there is
anothermicnetsitenamed “seattle” in the system, then the command

mail seattle!lchicago!johnd

sends mail to the “seattle” site, then back to your “chicago” site, and
finally to the user “johnd” in your micnet network. Note that a uucp sys-
tem usually performs its communica®ion tasks according to a fixed
schedule and maynotreturn mail immediately.

6.6 Maintaining the System

This section explains how to maintain the uucp system. In particular, it
explains how to display and merge the content of uucp log files, how to
remove old requests and files from the spool directories, and how to solve
some common problems.

You can automate some maintenance tasks by creating shell command
files and initiating these files with crontab entries. Other tasks require
manual modification. Some sample shell files are given toward the end of
this section.

6-28

Building a Communication System

6.6.1 Displaying and Merging Log Files

You can display a record of the transmissions requested and completed to
a given site or user by using the uulog(C) command. The user or sitename
must have been previously added to the network with the uusub -a com-
mand. Anyusers or sites not added to the network with this command will
not-belocated by uulog.-The command displays the contents of the indivi-
dual log files created for a given site or user and merges these entries with
the system log file LOGFILE. The log files contain information about
queued requests, calls to remote sites, execution of uux commands, and
file copyresults. The command has theform

uulog —ssitename —uuser
where —ssitename indicates the site whose logfiles are to be displayed, and
—uuser specifiesthe user whose logfilesare to be displayed. If you do not
specify a sitename and user, log files for all sites and users are displayed.
The command placesthe newlogfilesatthe beginningof the existing LOG-
FILE.
The logfiles are originally created in the /usr/spool/uucp directory as indi-
vidualfiles, but should be copied to the LOGFILE on aregular basis since
theyarenot copied automatically. Forexample,thecommand

uulog
merges alllogfiles and displays theircontents. The command

uulog —schicago
merges onlylogfilescreated forthesite “chicago.”
Note that the system LOGFILE should be removed periodically sinceitis
copiedeach time newlogfiles are putinto the file.
6.6.2 Cleaning the uucp SpoolDirectory
Youcanremove unwanted vucpsystem files from the uucp spool directory

by using the uuclean command. The command removes temporary data,
LOG, system status, and lock filesfrom the spool directoryif they are more

- than a givennumber of hoursold. The command has the form

vuclean —ddir —m —nhours —ppre —xn

6-29

XENIX User’s Guide

where —ddir names the directory to be scanned, —mcauses mail to be sent
to the owner of each file removed, —nhours gives the age in hours of files to
be removed, ~ppre causes files with the given prefix to be examined and
removed, and —xn directs the command to give the nth level of debugging
output. Up to 10 file prefixes may be specified with the —p op¥on. If ~mis
used, most mail is sent to the owner of the uucp programs since most files
putinto the spool directory are owned by the owner of the uucp programs.
This is a result of the setuid bit being set on these programs. The default
number of koursis72 (3 days).

‘The uuclean program should be run once a day. You can invoke it
automatically by using a system daemon such as cron. The command

uuclean -pTM

removes all temporary data files that are at least three days old. The com-
mand

uuclean —pLCK -hl -m

removes alllock files that are atleast an hour old and mails a list of each file
removed to the owner.

The uuclean command may also be run as needed to remove unwanted
files after a system crash or an aborted uucp program.

6.6.3 Reclaiming Log Files aftera Crash

You can reclaim individual logfiles after a system crash by changing their
access mode with the chmod(C) command, then using uulog command.
After a transmission failure or system crash, the individual log file for the
transmission may be left with access mode 0222 making it impossible for
the uulog command to read the file. Toreclaim the log file, you must use
chmod to change the access mode to 0666. You can then let uulog merge
them with the LOGFILE.

6.6.4 Reclaiming Data Files aftera Crash

You can check the status of files transmitted from a remote site and possi-
bly reclaim some or all of the data lost during an aborted transmission by
examining system data files. The data files contain the contents of files
copied from remote sites. These files are temporarily kept in the
/usr/spool/uucp directory and their names have the form

TM.pid.ddd

6-30

Building a Communication System

where pid is a process-id and ddd is a sequen#al three-digitnumber start-
ing at zero for each invocation of uucico and incremented for each file
received.

The temporary data filesare normally moved to the requested destination
immediately after the transmission has finished. However; if a transmis-
sionhasfailed orthe system has crashed; thefile remainsinthe spooldirec-
tory. You can examine the contents of this file with the cat(C) command.
If desired, you canreclaim the file by moving it to a newlocation with the
mv(C) command. Leftover data files that cannot be reclaimed should be
removed using the uuclean command.

6.6.5 Checkingthe Transmission Status

Youcan checkthestatus of transmissions between sitesin the uucp system
by examining the system status files. System status files contain informa-
tion about login, dialup, or sequence check failure, as well as the talking
statuswhen two machinesare conversing.

The files are kept in the /usr/spool/uucp directory and their names have the
form

STST.sitename
where sitename is the name of the remote site.

Normally, system status files are removed after each successful transmis-
sion, butwhen a failure occurs, the uucp system copies informasion about
the failure to the file and leaves it in the directory. This prevents the uucp
system from making further calls to the givensitefor about an hour, orfor
sequencecheckfailures, until the file isremoved.

To examine the status, use the cat command to display the contents of the
file. If problems with transmissions are detected it may indicate a problem
with the modem or with the serialline connected to the modem.

If a system status file has been left due to a program or system crasl, the file
may prevent all subsequent transmissions to the given site. In this case, the
filemustberemoved before attemptingfurther calls.

When dialingout a statusfile will only becreated when there isa problem at
the remotesite. Localmodemandlineproblemsdo notcreatestatus files.

6-31

XENIX User’s Guide

6.6.6 CheckingforLocked Sites orDevices

You can make sure the uucp system is not intentionally preventing
transmissions to a given site or through a given device by examining the sys-
tem lock files. The uucp system creates a lock file for each site beingcalled
and for each device being used to call a site. Lock files prevent the uucp
system from attempting to duplicate conversations with a given site, or
from placingmul#iple calls on the same device.

The lock files are kept in the /usr/spool/uucp directory and their names
have the form

LCK..str
wherestris either a sitename orthename of the calling device.

Since lock files prevent all calls to a given site or through agiven device, itis
wise to make sure no unnecessary lock files are left in the directory. If a
transmission has been aborted orthe system has crashed, thelockfiles will
prevent subsequent transmissions for about 24 hours. Ifyou want to place
a call before this time, you must remove the file using the uuclean com-
mand.

6.6.7 Creating Maintenance Shell Files

The uulog and uuclean commands can be invoked automatically by plac-
ingthem in a shell file and creatinga crontab file for the shell file. The sys-
tem daemon cron then invokes the commands at the given times and most
of the simple maintenance willbe performed. For example, youcan create
a shellfile that removes TM, ST, LCK files daily, as wellas the C. or D. files
for work which cannot be accomplished for reasons such as bad phone
number and login changes. In this case, the shell file should contain the
commands

/usr/lib/uucp/uuclean —pTM -pC. —pD.
/usr/lib/uucp/uuclean —pST —pLCK —nl2

Note that the =n12 op#ion causes the STand LC Kfiles olderthan 12 hours
to be deleted. An appropriate crontab entry must be created in order to
invoke the shell file automatically.

6.7 Details of Operation

This section describes the details of uucp system program operation. It

explains the processes used to create system communicaton and defines
thefiles used to supportthe system.

6-32

N

Building a Communication System

6.7.1 uucp Programs

The uucp system consists of four primary and four secondary programs.
The primary programs are

uucp This program creates work and gathers data files in the
spool directoryforthe transmission of files.

uux This program creates work and execute files, and gathers
data files for the remote execution of XENIX commands.

uucico This program executes thework filesfor datatransmission.

uuxqt This program executes XENIX commands found in execu-
tionfiles.

The secondary programs are

uulog This program updates the log file with new entries and
reportson the status ofuucp requests.

uvuclean This program removes old files from the spool directory.
dial This program directs the modem to dial a remote site.

uusub This program monitors the uucp network.

6.7.2 uucp Directories and Files

During execution of the uucp programs, the uucp system uses files from
the following three directories:

lusr/lib/luucp
This is the directory used for uucp and nusub system files
and all executable programs other than uucp and nux.
lusr/spool/uucp
This is the spool directory used during uucp execution
and for the uusub SYSLOGfile.

lusr/spool/uucp/. XQTDIR
This directory is used during execution of execute files.

Filesare created in a spool directory for processing by the uucp daemons.
Therearethree types of filesusedforthe execution of work:

Datafiles Contain data for transfer to remote sites

6-33

XENIX User’s Guide

Work files Contain directions for file transfers between
sites

Execution files Contain directions forXENIX command execu-
tions which involve the resources of one or
more sites.

6.7.3 uucp — Site- to-Site File Copy

The wucp program is the user’s primary interface with the system. The
uucp program was designed tolook like the cp command. The syntaxis

uucp [option]...source ... destination

where source and destination may contain the prefix sitename! which indi-
cates the site on which the file orfilesreside or where they willbe copied.

Note

uucp makes no distinction between binary and text files. However,
the set uid and set gid fiags will not accompany the binary file and
must be set by someone (or some command) once the binary has
arrived at its destination. In addition, the recipient should check the
file permissions and ownership for appropriateness.

The optionsinterpreted byuucp are
-d Make directories when necessary for copying the file.

—c Do not copy source files to the spool directory, but use the
specified source when the actual transfer takes place.

-r Spoolonly, don’tinvoke uucico.

-m Sendmail on completion of the work.

-n - Notify a user at the remote site that files have arrived. This
option will also change the owner of the file to the notified
user.

6-34

.f/

N

Building a Communication System

Thefollowing options are used primarilyfor debugging:

—sdir Use directory dir forthe spool directory.

—Xnum Use num as the level of debugging output.
The destination may be a directory name, in which case the file name is
taken from the last part of the source’s name. The source name may con-
tain special shell characters such as “?*[]”. If a source argument has a
sitename! prefix for a remote site, the file name expansion will be done on
theremote site. '
Thecommand

uucp *.c chicago!/usr/dan

sets up the transfer of all files whose names end with .c to the /u.sr/dan
directory on the chicago machine.

The source and/or destination names may also contain a “user prefix. This
translates to the login directory on the specified site. For names with par-
tial pathnames, the current directory is prepended to the file name. File
names with ““../” are not permitted.

Thecommand

uucp chicago!"dan/*.h "dan

sets up the transfer of files whose names end with .2 in dan’s login directory
to dan’slocallogindirectory.

For each source file, the program checks the source and destination
filenames and the site-part of each to classify the work into one of five

types:

1. Copysourcetodestination onlocalsite.
Receivefilesfrom othersites.
Send files to remote sites.

Send files from remote sites to another remote site.

LA

Receive files from remote sites when the source contains special
shellcharactersas mentioned above.

Afterthe work has been set up in the spool directory, the uucico program
must be started totryto contact the other machine to execute the work.

6-35

XENIX User’s Guide

CopyingFilesto a Local Destination

A cp command is used to do type 1 work. The —d and the —m options are
nothonoredin this case.

ReceivingFiles from OtherSites

For type 2 work a oneline work file is created for each file requested, and is

put in the spool directory with the following fields, each separated by a
blank:

(1] R

2] The full pathname of the source or a “user/pathname. The
“userpartisexpanded onthe remote site.

[3] The full pathname of the destination file. If the “user nota-
tion is used, it will be immediately expanded to be the login
directoryforthe user.

[4] The user’sloginname.

[5] A “-” followed by an op#on list. (Only the =m and ~d

options appearin thislist.)

Sending Files to Remote Sites

For type 3 work, a work file is created for each source file and the source
file is copied into a data file in the spool directory. (A —c option on the
uucp program prevents the data file frombeingmade. In this case, the file
will be transmitted from the indicated source.) Pathnames are checked
usingthe USERFILE to verify access to the requested directory. The fields
of each entry are given below.

(1] S

[2] Thefull pathname of the source file.

[3] The full pathname of the destination or “user/filename.

4] The user’slogin name.

[51 A “—followed by an option list.

(6] The name of the data filein the spool directory.

(7 The file mode bits of the source file in octal print format
(e.g-0666).

6-36

~

Building a Communication System

Copying Files Between Sites

Fortype4and 5Swork, uucp generates a uucp command line and sends itto
theremote machine; the remote uucico executes the command line.

6.7.4 nux — Site To Site Execution

The nux command is used to set up the execution of a XENIX command
where the executionmachine and/or some ofthefilesareremote. The syn-
taxof theuuxcommandis

uux [—][option]... command- string

where command- string is made up of one or more arguments. All special
shell characters such as “<> [” must be quoted either by quotingthe entire
command string, or by quoting the character as a separate argument.
Within the command string, the command and file names may contain a
sitename! prefix. All arguments which do notcontain a “!” arenot treated
asfiles. (They are not copied to the execution machine.)

A = (dash) is used to indicate that the standard input for the given com-
mand should be inherited from the standard input of the uux command.
The onlyoption is essentially for debugging: —xnum directs the command
to use a number (1-9) num as thelevel of debugging output. The higher the
number, the more debugginginformation is provided.

The command
pr abc [uux — chicagolrmailjoe

will set up the output of “prabc” as standard input to a mail command to
be executed on site usg.

uux generates an execute file which contains the names of the files required -
for execution (including standard input), the user’s login name, the desti-
nation of the standard output, and the command to be executed. This file
is either put in the spool directory for local execution or sent to the remote
siteusinga generated send command (type 3 above).

For required files which are not on the execution machine, nux will gen-
erate receive command files (type 2 above). These command-files are put
on the execution machine and executed by the wucico program. (This
works only if the local site has permission to put files in the remote spool
directoryas controlled bytheremote USERFILE.)

The execute file is processed by the uuxqt program on the execution

machine. It is made up of several lines, each of which contains an
identification character and one or more arguments. The order of the lines

6-37

XENIX User’s Guide

in the file is not relevant and some of the lines may not be present. Each
lineis described below.

UserLine
U user site
where the user and site are the requestor’s login name and site.
RequiredFile Line
F filenamereal-name
where the filename is the generated name of afile for the execute machine
and real-name is the last part of the actual file name (contains no path
information). Zero or more of these lines may be present in the execute
file. Theuwuxqtprogram checks forthe existence of all required files before
the command is executed.
Standard InputLine
1 filename
The standard input is either specified by a “<” in the command-string or
inherited from the standard input of the nux command if the — option is
used. If a standard inputis not specified, /dev/nullis used.
Standard OutputLine
O filename sitename
The standard output is specified by a ““>” within the command-string. If a
standard output is not specified, /dev/null is used. (Note that the use of
“>>"isnotimplemented.)
CommandLine
Ccommand [arguments] ...
The arguments are those specified in the command string. The standard
input and standard output does not appear on this line. Allrequired files
are moved to the execution directory (a subdirectory of the spool direc-
“tory) and the XENIX command is executed using the shell. In addition, a
shell PATH statement is prepended to thecommand line as specified in the

uuxqtprogram.

After execution, the standard output is copied or set up to be sent to the
proper place.

6-38

C

Building a Communication System

uux is used by mail(C) when sending mail to a remote site. If you do not
want mail to callthe remote siteimmediately, place theline “‘spoolonly” in
the file /etc/default/mail.

6.7.5 uucico — Copy In, Copy Out
The uucico pfoéfarﬁ performs thef oliowingrﬁé jor functions:
— Scanthespooldirectoryforwork.
— DPlaceacallto aremote site.
— Negotiatealine protocol to be used.
— Executeallrequests from both sites.
— Logworkrequestsand work completions.

uucico may be started by a system daemon, by the user (this is usually for
testing), or by a remote site. (The uucico program should be specified as
the shellfield in the /etc/passwvd fileforthe uucplogins.)

When started with the =r1option, the programis considered to be in MAS-
TERmode. Inthismode, a connectionismade to a remote site. If started
by aremote site, the program is considered to be in SLAVE mode.

The MASTER mode operates in one of two ways. If no site name is
specified (the =s option not specified) the program scans the spool direc-
tory for sites to call. If a site nameisspecified, that site is called, and works
onlybe done forthatsite.

The uucico program must generally be started directly by the user or by
another program, such as a shell script invoked by cron. There are several
options used for execution:

-rl Start the program in MASTER mode. Thisis used when
uucico is started by a program or cron shell.

—ssitename Do work only for site sitename. If —s isspecified, a call to
the specified site is madc cven if there is no work for site
sitename in the spool directory, but call only when times
in the L.sys file permit it. This is useful for polling sites
which do not have the hardware to initiate a connection.

—Ssitename Do work only forsitesitename. If =S isspecified, a call to
the specified site is made even if there is no work for the
site in the site in the spool directory. Unlike —s, this
option ignores the call times for the sitename given in the
L.sysfile.

XENIX User’s Guide

The following options are used primarily for debugging:
—ddir Use directorydirforthe spool directory.
—Xnum Use numas thelevel of debugging output.
The next part of this section describes the major steps within the uucico
program.
Scanning For Work
The names of the work related files in the spool directoryhave the format
type . sitename grade number
where type may be “C” for copy command file, “D? for data file, “X” for
execute file, sitename is the remote site, gradeis a character, and number is
afour-digit, padded sequence number.
The file
C.res45n0031

is a work file for a file transfer between the local machine and the ‘‘res45”
machine.

The scan for work is done by looking through the spool directoryfor work
files (files with prefix “C.”). A list is made of all sites to be called. uucico
calls the site specified by the —s or =S option and process the correspond-
ingwork files.
Calling a Remote Site
The call is made using information from several files which reside in the
uucp program directory. Atthe start of the callprocess, alock issetto for-
bid multiple conversations between the same two sites. The lock filename
has the form

LCK..str

where st is the device name. The file is in the /usr/spool/uucp directory.

The site name is found in the L.sys file. The information contained for
eachsite is

[1] Sitename

6-40

Building a Communication System

[2] Timesto callthesite (days-of-week and times-of-day)

[3] Device or device type to be used for call

[4] line speed

(5] phone number if field [3] is “ACU,” or the device name
(same asfield [3])if not

[6] Login information (multiple fields)

Thetimefield ischecked against the present time to see if the callshould be
made.

The phone number may contain abbreviations (for example, mh, py, bos-
ton)which get translated into dial sequences usingthe L-dialcodes file.

The L-devices file is scanned using device type and line speed fields from
the L.sys file to find an available device for the call. The program trys all
devices which satisfy these fields until the call is made or until no more
devices can be tried. If adeviceissuccessfullyopened, alock file is created
so that another copy of uucico will not try to use it. If the callis complete,
the login informationinthelastfield of L.sysis used to login.

The conversation between the two uucico programs begins with a
handshake started by the SLA VE site. The SLAVE sends a message to let
the MASTER knowitis readyto receive the site identification and conver-
sation sequence number. The response from the MASTER is verified by
the SLAVE and if acceptable, protocol selection begins. The SLAVE can
also reply with a call-back required message, in which case the current
conversationis terminated.

SelectLine Protocol
Theremote sitesends amessage

Pproto-list
where proto-list is a string of characters, each representinga line protocol.
The calling program checks the protocol list for a letter corresponding to
an available line protocol and returns a use protocol message. The mes-
sagehastheform

Ucode

where code is either a one character protocol letter or “N”’ which means
thereisno common protocol.

6-41

XENIX User’s Guide

Processing Work

Theinitialrole of MASTER or SLAVE for the work processingis the mode
in which each program starts. (The MASTER has been specified by the
—rl option.) The MASTER program does a work search similar to the one
used in thesection “Scanning For Work ™.

There are five messages used during the work processing, each specified by
the first character of the message. Theyare

S Send afile

R Receive afile

C Copycomplete

X Executeauucp command
H Hangup

The MASTER sends “R,” “S,” or “X” messages until all work from the
spool directory is complete, at which point an “H” message is sent. The
SLAVEreplies with the first letter of the request and either theletter “Y”’
or “N” for yes or no. For example, the message “SY” indicates that it is
okay to send a file. While in SLAVE mode, the standard error of uucico is
redirected to the file /usr/spoolluucp/ AUDIT.

The send and receive replies are based on permission to access the
requested file/directory using the USERFILE and read/write permissions
of thefile/directory. Aftereach fileis copied into the spool directory of the
receiving site, a copy-complete message is sent by the receiver of the file.
The message “CY”’ willbe sent if thefile has successfullybeen moved from
the temporary spool file to the actual destination. Otherwise, a “CN” mes-
sageis sent. (In the case of “CN,” the transferred file will be in the spool
directory with a name beginning with “TM.)” The requests and results are
logged on both sites.

Thehangup response is determined by the SLA VE program by a work scan
of the spooldirectory. If work forthe remote site emistsin the SLAVE’s
spooldirectory, an “HN” message is sent and the programsswitch roles. If
noworkeaists, an “HY” response is sent.

Terminating a Conversation

When an “HY” message is received by the MASTER it is echoed back to
the SLAVE and the protocols are turned off. Each program sends a final
“O0” message to the other. The original SLAVE program cleans up and
terminates. The MASTER proceeds to call other sites and process work as
long as possible or terminate if a —s option was specified.

6-42

I

Building a Communication System

6.7.6 uuxqt—uucp Command Execution

Theuuxqt program is used to process execute files generated by nux. The
unxqt program is started by the uucico program. The program scans the
spool directory for execute files (prefix X.). Each one is checked to see if
all the required files are available and if so, the command line or send line is
executed.

The execute file isdescribedin “uux - Site to Site Execution”.
The execution is accomplished by executingthe shellcommand
sh —c

with the command line after appropriate standard input and standard out-
puthave been opened. If a standard output is specified, the program will
create a send command or copy the output file as appropriate.

6.7.7 Security

Theuucp system, left unrestricted, allows any outside user to execute any
commands and copy in/out any file which is readable/writable by the uucp
login user. Itisup to the individual sites to be aware of this and apply the
protections that theyfeelare necessary.

There are several security features available aside from the normal file
mode protechons. Thesemust be set up bytheinstaller of the uucp system.

The login for uucp does not get a standard shell. Instead, the uucico pro-
gramis started, and receives a special, restricted shell. Therefore, the only
work that can be done is through uucico.

A path check is done on file names that are to be 'sent or received. The
USERFILE supplies the information for these checks. The USERFILE
can also be set up to require call-back for certain login-ids. See “Uucp
Directories and Files.”

A conversation sequence countcanbesetup so thatthe called system can
be more confident of the caller’sidentity.

The uuxqt program comes with a list of commands that it executes. The list
of allowable commands can be altered with the L.cmds file.

A PATH shell statement is prepended to the command line as specified in
the unxqgt program.

The L.sys file should be owned byuucp and have mode 0400 to protect the
phone numbers and login information forremote sites. (The uucp,

6-43

XENIX User’s Guide

uucico, uux, and uuxqt programs should be also owned by uucp and have
the setuid bitset.)

When sendingfiles via uuep the —n user option can be used to change the
owner and group of thefile to user ontheremotesystem. Default privileges
are read/writeall if =n isnot used.

6-44

Replace this Page
with Tab Marked:

C-Shell

AT, T T A i sl g e i

W,

L IR S it gt ™ Ay

@

5

Chapter7
The C-Shell

7.1 Introduction 7-1

7.2 Invokingthe C-shell 7-1

7.3 UsingShell Variables 7-2

7.4 Usingthe C-Shell HistoryList 7-4

7.5 Using Aliases 7-7

7.6 Redirecting Inputand Output 7-8

7.7 CreatingBackground and ForegroundJobs 7-9
7.8 UsingBuilt-In Commands 7-10

7.9 CreatingCommand Scripts 7-12

7.10 Usingthe argvVariable 7-12

7.11 SubstitutingShell Variables 7-13

7.12 UsingExpressions 7-15

7.13 Usingthe C-Shell: A Sample Script 7-16
7.14 Using Other Control Structures 7-19
7.15 SupplyingInputto Commands 7-20
7.16 CatchingInterrupts 7-20

7.17 Using Other Features 7-21

7.18 Startingal.oopataTerminal 7-21

7.19 UsingBraceswith Arguments 7-22

7.20 Substituting Commands 7-23

7.21 Special Characters 7-23

N

The C-Shell

7.1 Introduction

The C-shell program, csh, is a command language interpreter for XENIX
system users. The C-shell, like the standard XENIX shell sk, is an interface
between you and the XENIX commands and programs. It translates com-
mand lines entered at a terminal into corresponding system actions, gives
you access. 1o information, such as your login name, home directory, and
mailbox, and lets you construct shell procedures for automating system
tasks.

This appendix explains how to use the C-shell. Italso explains the syntax
and function of C-shell commands and features, and shows how to use
these features to create shell procedures. The C-shellis fully described in
csh (C) in theXENIX ReferenceManual.

7.2 Invokingthe C- shell

Youcan invoke the C-shell from another shell by usingthe esh command.
To invoke the C-shell, enter:

csh

at the standard shell’s command line. You can also direct the system to
invoke the C-shell for you when you log in. If you have given the C-shell as
your login shell in your /etc/passwd file entry, the system automatically
starts the shell when you login.

Afterthe system starts the C-shell, the shell searches your home directory
for the command files .cshrc and .login. If the shell finds the files, it exe-
cutes the commands contained in them, then displays the C-shell prompt.

The .cshrc file typically contains the commands you wish to execute each
time you start a C-shell, and the .login file contains the commands you
wish to execute afterlogging in to the system. For example, the followingis
the contents of a typical.login file:

set ignoreeof

set mail=(/usr/spool/mail/bill)
set time=15

set history=10

mail

This file contains several set commands. The set command is executed
directly by the C-shell; there is no corresponding XENIX program for this
command. Set sets the C-shell variable “ignoreeof”” which shields the C-
shell from logging out if Ctrl-d is hit. Instead of Ctrl-d, the logout com-
mand is used to log out of the system. By setting the “mail’’ variable, the

7-1

XENIX User’s Guide

C-shellis notified that it is to watch for incoming mail and notify you if new
mailarrives.

Next the C-shell variable “time” is set to 15 causingthe C-shell to automat-
ically print out statistics lines for commands that execute for at least 15
seconds of CPU time. The variable “history” is set to 10 indicating that the
C-shell will remember the last 10 commands typed in its history list,
(described later).

Finally, theXENIXmailprogramis invoked.

When the C-shell finishes processing the .login file, itbegins reading com-
mands from the terminal, promptingfor each with:

%
Whenyoulogout (bygiving the logout command) the C-shell prints:
logout

and executes commands from thefile./ogout if it exists in your home direc-
tory. After that, the C-shell terminates and XENIX logs you off the sys-
tem.

7.3 Using Shell Variables

The C-shell maintains a set of variables. Forexample, in the above discus-
sion, the variables ‘“history” and “time” had the values 10 and 15. Each
C-shell variable has as its value an array of zero or more s#wrings. C-shell
variables may be assigned values by the set command, which has several
forms, the mostuseful of which is:

set name = value

C-shell variables may be used to store values that are to be used later in
commands through a substitution mechanism. The C-shell variables most
commonly referenced are, however, those that the C-shell itself refers to.
By changing the values of these variables you can directly affect the
behavior ofthe C-shell.

One of the most important variables is “path”. This variable contains alist
of directory names. When you enter a command name at your terminal,
the C-shell examines each named directoryin turn, until it finds an execut-
able file whose name corresponds to the name you entered. The set com-
mand with no arguments displays the values of all variables currently
defined in the C-shell.

7-2

The C-Shell

The followingexample shows typical default values:

argv
home /usr/bill
path (. /bin /usr/bin)

prompt %
shell /bin/csh
status 0

This outputindicates thatthe variable “path’ begins with the currentdirec-
tory indicated by dot (.), then /bin, and /usr/bin. Your own local com-
mands may be in the current directory. Normal XENIX commands reside
in /binand /usr/bin.

Sometimes a number of locally developed programs reside in the directory
lusr/local. If you want all C-shells that you invoke to have access to these
newprograms, place the command:

set path=(. /bin /usr/bin /usr/local)

in the .cshrc file in your home directory. Try doing this, then logging out
and back in. Enter:

set
to see that the value assigned to “path” has changed.

You should be aware that when you login the C-shell examines each direc-
tory that you insert into your path and determines which commands are
contained there, except for the current directory which the C-shell treats
specially. This means that if commands are added to a directory in your
search path after you have started the C-shell, they will not necessarily be
found. If you wish to use a command which has been added after you have
logged in, you should give the command:

rehash

to the C-shell. Rehash causes the shell to recompute its internal table of
command locations, so that it will {ind the newly added command. Since
the C-shell has tolook in the current directory on each command anyway,
placing it at the end of the path specification usually works best and
reduces overhead.

Other useful built in variables are “home’ which shows your home direc-
tory, and “ignoreeof” which can be set in your .login file to-tell the C-shell
not to exit when it receives an end-of-file from a terminal. The variable
“ignoreeof” is one of several variables whose value the C-shell does not
care about;the C-shellis only concerned with whether these variables are
set or unset.

7-3

XENIX User’s Guide

Thus, to set “ignoreeof” you simply enter:

set ignoreeof
and to unset it enter:

unset ignoreeof
Some other useful built-in C-shell variables are “noclobber” and “mail”.
The syntax:

>filename
which redirects the standard output of a command just as in the regular
shell, overwrites and destroys the previous contents of the named file. In
this way, you may accidentally overwrite a file which is valuable. If you
prefer that the C-shell not overwrite files in this way you can:

set noclobber
inyour.loginfile. Thenentering:

date > now
causes an error message if the file now already exists. You can enter:

date >! now
if you really want to overwrite the contents of now. The “>! is a special
syntax indicatingthat overwriting or “clobbering” the file is ok. (The space
between the exclamation point (!) and the word “now” is critical here, as

“lnow” would be an invocation of the history mechanism, described
below, and have a totallydifferent effect.)

7.4 Using the C-Shell History List

The C-shell can maintain a historylistinto which it places the text of previ-
ous commands. It is possible to use a notation that reuses commands, or
words from commands, in forming new commands. This mechanism can
be used to repeat previous commands or to correct minor typing mistakes
in commands.

The following figure gives a sample session involving typical usage of the
history mechanism of the C-shell. Boldface indicates user input:

7-4

o

% cat bug.c
main()

printf("hello);

% cc !$
cc bug.c
bug.c(4) :error 1: newline in constant
% ed 1§
ed hug.c
28
3s/);/"&/p
printf("hello");
w
29

% lc

cc bug.c

% a.out

hello% le
ed bug.c

29

3s/1o/1o0\\n/p
printf("hello\n");

w

31

q

% !¢ —o bug

cc bug.c —o bug

% size a.out bug

a.out: 5124 + 614 + 1254 = 6692 = 0x1b50

bug: 5124 + 616 + 1252 = 6692 = 0x1b50

% Is =1 1%

Is =1 a.out bug

—rwxr—ar—x 1 bill 7648 Dec 19 09:41 a.out
—rwxr—xr-x 1 bill 7650 Dec 19 09:42 bug
% bug

hello

% pr bug.c | Ipt

Ipt: Command not found.

% Ipt lpr

pr bugc | lpr

%

The C-Shell

In this example, we have a very simple C program thathas a bugoriwoin
the file bug.c, which we cat out on our terminal. We then try to run the C
compiler on it, referring to the file again as “!$”’, meaningthe last argument
to the previous command. Here the exclamation mark (!) is the history
mechanism invocation metacharacter, and the dollar sign ($) stands for

7-5

XENIX User’s Guide

the last argument, by analogy to the dollar sign in the editor which stands
forthe end-of-line.

The C-shell echoed the command, asit would have been typed without use
of the history mechanism, and then executed the command. The compila-
tion yielded error diagnostics, so we now edit the file we were trying to com-
pile, fix the bug, and run the C compiler again, this time referring to this
command simply as ““!c”’, which repeats the last command that started with
the letter ““c”.

If there were other commands beginning with the letter “c” executed
recently, we could have said “lcc” or even “Icc:p” which prints the last
command starting with “cc” without executing it, so that you can check to
see whether you really want to execute a given command.

After this recompilation, we ran the resulting a.out file, and then noting
that there still was a bug, ran the editor again. After fixing the program we
ran the C compiler again, but tacked onto the command an extra “—o bug”
telling the compiler to place the resultant binary in the file bug rather than
a.out. In general, the history mechanisms may be used anywhere in the
formation of new commands, and other characters may be placed before
and after the substituted commands.

Wethenran the size command to see how large the binary program images
we have created were, and then we ran an “Is -1’ command with the same
" argument list, denoting the argument list:

!*
Finally, we ran the program bug to see that its outputisindeed correct.

To make alisting of the program, we ran the prcommand on the file bug.c.
In order to print the listing at a lineprinter we piped the output to Ipr, but
misspelled it as “Ipt”. To correct this we used a C-shell substitute, placing
the old text and new text between caret () characters. This is similar to the
substitute command in the editor. Finally, we repeated the same com-
mandwith:

1
and sentits output to the lineprinter.

There are other mechanisms available for repeating commands. The his-
tory command prints out anumberedlist of previous commands. Youcan
then refer to these commands bynumber. There is a way to refer to a previ-
ous command by searching for a string which appeared in it, and there are
other, less useful, ways to select arguments to include in a new command.
A complete description of all these mechanisms is given in esh (C) the
XENIX Reference Manual.

7-6

//-_\

A

The C-Shell

7.5 Using Aliases

The C-shell has an alias mechanism that can be used to make transforma-
tions on commands immediately after they are input. This mechanism can
be used to simplify the commands you enter, to supply default arguments
to commands, or to perform transformations on commands and their

. arguments. The alias facility is similar-to a.macro facility. Some of the

features obtained by aliasing can be obtained also using C-shell command
files, but these take place in another instance of the C-shell and cannot
directly affect the current C-shell’s environment or involve commands
such as cd whichmustbe donein the current C-shell.
For example, suppose there is anewversion of the mailprogram on the sys-
tem called newmail that you wish to use instead of the standard mail pro-
grammail. If youplace the C-shellcommand

alias mail newmail
in your .cshrc file, the C-shell will transform an input line of the form:

mail bill
into a call on newmail. Suppose you wish the command Is to always show
sizes of files, that is, to always use the —s option. In this case, you can use
the alias command to do:

alias Is Is —s
oreven:

alias dir 1s -s
creatinga newcommand named dir. If we then enter:

dir “hill
the C-shell translates thisto:

1s -s /usr/bill

Note that the tilde (7) is a special C-shell symbol that represents the user’s
home directory.

Thus the alias command can be used to provide short names for com-
mands, to provide default arguments, and to define new short commands
in terms of other commands. It is also possible to define aliases that con-
tain multiple commands or pipelines, showing where the arguments to the
original command are to be substituted using the facilities of the history
mechanism.

7-7

XENIX User’s Guide

Thus the definition:
alias cd ‘cd \I* ; Is ~

specifies an Is command after each cd command. We enclosed the entire
alias definition in single quotation marks (*) to prevent most substtutions
from occurring and to prevent the semicolon (;) from being recognized as a
metacharacter. The exclamadion mark (1) is escaped with a backslash (\) to
prevent it from being interpreted when the alias command is entered. The
“\I*» here substitutes the entire argument list to the prealiasing c¢d com-
mand; no error is given if there are no arguments. The semicolon separat-
ing commandsis used here to indicate that one command is to be done and
then the next. Similarly the following example defines a command that
looks upits first argument in the password file.

alias whois ‘grep \!” /etc/passwd’

The C-shell currentlyreads the .cshrc file each time it starts up. If you place
a large number of aliases there, C-shells will tend to start slowly. You
should try to limit the number of aliases you have to areasonable number
(10 or 15is reasonable). Too many aliases causes delays and makes the sys-
tem seem sluggish when you execute commands from within an editor or
otherprograms.

7.6 RedirectingInputand Output

In addition to the standard output, commands also have a diagnostic out-
put that is normally directed to the terminal even when the standard output
is redirected to a file or a pipe. It is occasionally useful to direct the diag-
nostic output along with the standard output. For instance, if you want to
redirect the output of along running command into a file and wish to have a
recordof anyerror diagnosticit produces you can enter:

command > & file

The “> &” here tells the C-shell to route both the diagnostic output and
the standard output into file. Similarlyyou can give the command:

command |& lpr

to route both standard and diagnostic output through the pipe to the line-
printer. Theform:

command >&! file

is used when “no clobber” is set and file already exists.

7-8

!

()

~_

The C-Shell

Finally, usetheform:

command >> file

to append output to the end of an existing file. If “noclobber” is set, then
an error results if file does not exist, otherwise the C-shell creates file. The
form:

command >>! file

lets you append to a fileeven if it does not exist and “noclobber” is set.

7.7 Creating Backgroundand ForegroundJobs

When one or more commands are entered together as a pipeline or as a
sequence of commands separated by semicolons, a single job is created by
the C-shell consisting of these commands together as a unit. Single com-
mands without pipes or semicolons create the simplest jobs. Usually,
every line entered to the C-shell creates a job. Each of the following lines
creates ajob:

sort < data
Is ~s | sort -n | head -5
mail harold

If the ampersand metacharacter (&) is entered at the end of the com-
mands, thenthe job is started as a background job. Thismeansthatthe C-
shell does notwaitforthe job to finish, but instead, immediately prompts
for another command. The job runs in the background at the same time
that normaljobs, called foreground jobs, continue to be read and executed
bythe C-shell. Thus:

du > usage &

runs the du program, which reports on the disk usage of your working
directory, putsthe outputinto the fileusage and returns immediately with a
prompt forthe next command without waiting for du to finish. The du pro-
gram continues executing in the background until it finishes, even though
you can enterand execute more commands in the mean time. Background
jobs are unaffected by any signals from the keyboard such as the INTER-
RUPT or QUIT signals.

The Kkill command terminates a background job immediately. Normally,

this is done by specifying the process number of the job you want killed.
Process numbers can be found with the ps command.

7-9

XENIX User’s Guide

7.8 UsingBuilt-In Commands
Thissection explains how to usesome of thebuilt-in C-shell commands.

The alias command described above is used to assign new aliases and to
display existing aliases. If given no arguments, alias prints the list of
current aliases. It may also be given one argument, such as to show the
current alias for a given string of characters. For example:

alias Is
prints the current alias for the string*“ls”.

The history command displays the contents of the history list. The
numbers given with the history events can be used to reference previous
events that are difficult to reference contextually. There is also a C-shell
variable named “prompt”. Byplacingan exclamation point (!) in its value
the C-shell will substitute the number of the current command in the his-
torylist. Youcan use thisnumber to refer to a command in a history subssi-
tution. For example, you could enter:

set prompt="\! %

Note that the exclamation mark (!) had to be escaped here even within
back quotes.

The logout command is used to teiminate a login C-shell that has
“ignoreeof” set.

The rehash command causes the C-shell to recompute a table of com-
mand locations. This is necessary if you add a command to a directory in
the current C-shell’s search path and want the C-shell to find it, since oth-
erwise the hashing algorithm may tell the C-shell that the command wasn’t
in thatdirectorywhen the hash table was computed.

The repeat command is used to repeata command several times. Thus to
make 5 copies of the file one in the file fiveyou could enter:

repeat 5 cat one >> five

7-10

The C-Shell

The setenv command can be used to set variables in the environment.
Thus:

setenv TERM adm3a
sets the value of the environment variable “TERM?” to “adm3a”. The pro-
grameny existsto.printoutthe environment. Forexample,-its output might-
look like this:

HOME-=/usr/bill

SHELL=/bin/csh

PATH=:/usr/ucb:/bin:/usr/bin:/usr/local

TERM=adm3a
USER=bill

The source command is used to force the current C-shell to read com-
mandsfrom afile. Thus:
source .cshrc

can be used after editing in achange to the.cshrcfile that you wish to take
effectbefore thenexttimeyoulogin.

Thetime command is used to cause a command to be timed no matter how
much CPU timeittakes. Thus:

time cp /etc/rc /usr/bill/rc
displays:
0.0u 0.1s 0:01 8%
Similarly:
- time wc /etc/rc /usr/bill/rc
displays:
52 178 1347 /etc/rc
52 178 1347 /usr/bill/rc
104 356 2694 total
0.1u 0.1s 0:00 13%
This indicates that the cp command used a negligible amount of user time

(u) and about 1/10th of a second system time (s); the elapsed time was 1
second (0:01). The word count command wc used 0.1 seconds of user time

7-11

XENIX User’s Guide

and 0.1 seconds of system time in less than a second of elapsed time. The
percentage “13%”’ indicates thatover the period when it was active the we
command used an average of 13 percent of the available CPU cycles of the
machine.
The unalias and unset commands are used to remove aliases and variable
definitions from the C-shell. The command unsetenv removes variables
from the environment.
7.9 Creating Command Scripte
It is possible to place commands in files and to cause C-shells to be
invoked to read and execute commands from these files, which are called
C-shell scripts. This secon describes the C-shell features that are useful
when creating C-shell scripts.
7.10 UsingtheargvVariable
A csh command script may be interpreted by saying:

csh script argument ...
where scriptisthe name of the file containing a group of C-shell commands
and argument is a sequence of command arguments. The C-shell places
these argumentsin the variable “argv”’ and then begins to read commands
from script. These parameters are then available through the same
mechanisms that are used toreferenceanyother C-shell variables.
If youmakethefilescript executable by doing:

chmod 755 script
or:

chmod +x script
and then place a C-shell comment at the beginning of the C-shell script
(i.e., begin the file with a number sign (#)) then /bin/cshwill automatically
beinvoked to execute script when you enter:

script

If the file does not begin with a number sign (#) then the standard shell
/bin/sh will be used to execute it.

7-12

The C-Shell

7.11 Substituting Shell Variables

After each input line is broken into words and history substitutions are
done on it, the input line is parsed into distinct commands. Before each
command is executed a mechanism known as variable substitution is per-
formed on these words. Keyed by the dollar sign ($), this substitution
replaces the names of variables bytheirvalues. Thus:

echo $argv

when placed in a command script would cause the current value of the vari-
able “argv”” to be echoed to the output of the C-shell script. It is an error
for “argv” to be unset at this point.

A number of notations are provided for accessing components and attri-
butes of variables. The notation:

$7name

expandé to 1if name s set or to 0if name is not set. It is the fundamental
mechanism used for checking whether particular variables have been
assigned values. All other forms of reference to undefined variables cause
errors.

Thenotation:
$#name

expands to the number of elements in the variable “name”. To illustrate,
examine the following terminal session (input isin boldface):

% set argv=(a b c)
% echo $2argv

1

% echo $#argv
3

% unset argv

% echo $?argv

0 .
% echo $argv
Undefined variable: argv.
%

7-13

XENIX User’s Guide

It is also possible to access the components of a variable that has several
values. Thus:

$argv(1]

gives the first component of ““argv’’ orin the example above “a”. Similarly:
$argv[$#argv]

would give “c’’, and:
$argv[1-2]

would give:
ab

Other notations useful in C-shell scripts are:
$n

where nisaninteger. Thisis shorthand for:
$argv[n]

the n’th parameter and:
$*

which is a shorthand for:
$argv

The form:

$$

7-14

(>

The C-Shell

expands to the process number of the current C-shell. Since this process
number is unique in the system, it is often used in the generation of unique
temporary filenames.

One minor difference between “$r°” and “$argv[n]’ should be noted here.
The form: “$argv(n I’ will yield an error if n is not in the range 1-$#argv
while “$n” will never yield an out-of-range subscript error. This is for
compatibilitywith the way older shells handle parameters.

Another important point is that itis never an error to give a subrange of the

form: “n—"%; if there are less than “n’> components of the given varjable

then no words are substituted. A range of the form: “m-n” likewise

returps an emply vector without giving an error when “m” exceeds the
({398}

number of elements of the given variable, provided the subscript “n” is in
range.

7.12 Using Expressions

To construct useful C~shell scripts, the C-shell must be able to evaluate
expressions based on the values of variables. In fact, all the arithmetic
operations of the C language are available in the C-shell with the same pre-
cedence that they have in C. In particular, the operakons “=="" and “!=”
compare strings and the operators “&&” and “[|’ implement the logical
AND and OR operations. The special operators “="" and “!"”’ are similar
to “=="" and “!=" except that the string on the right side can have pattern
matching characters (like *, ? or [and]): These operators test whether the
stringon theleftmatches the pattern on theright.

The C-shell also allowsfile inquiries of the form:
~? filename

where question mark (?) is replaced by a number of single characters. For
example, the expression primitive:

—e filename

tells whether filename exists. Other primitives test for read, write and exe-
cuteaccess to thefile, whetheritis a directory, orifit has nonzero length.

1t is possible to test whether a command terminates normally, by using a
primitive of the form:

{ command }
which returns 1 if the command exits normally with exit status 0, or 0if the
command terminates abnormally or with exit status nonzero. If more

detailed information about the execution status of a command is required,
it can be executed and the ‘‘status” variable examined in the next

7-15

XENIX User’s Guide

command. Since “$status” is set by every command, its value is always
changing.

For the full list of expression components, see csh(C) in the XENIX Refer-
ence Manual.

7.13 Usingthe C-Shell: A SampleScript

A sample C-shell script follows that usesthe expression mechanism of the
C-shell and some of its control structures:

#

Copyc copies those C programs in the specified list
to the directory “/backup if they differ from the files
already in “/backup

#

set noglob

foreach i ($argv)

if ($i I" *.c) continue # not a .c file so do nothing

if (I -r “/backup/$iit) then
echo $iit not in backup... not cp\'ed
continue

endif

cmp -s $i “/backup/$iit # to set $status

if ($status != Q) then
echo new backup of $i
cp $i “/backup/$i:t
endif
end

This script uses the foreach command, which iteratively executes the
group of commandsbetween the foreach and the matching end statements
for each valie value of the variable ““i”. If youwant to look more closely at
what happends during execution of a foreach loop, you can use the debug
command break to stop execution at any point and the debug command
continue to resume execution. The value of the iteration variable (i in this
case)will stay at whatever it was when the last foreachloop was completed.

The“noglob” variable is set to prevent filename expansion of the members
of “argv”. This is a good idea, in general, if the arguments to a C-shell
script are filenames which have already been expanded or if the arguments
may contain filename expansion metacharacters. It is also possible to
quote each use of a “$” variable expansion, but this is harder and less reli-
able.

7-16

5

-
.

The C-Shell

The other control construct is a statement of the form:

if (expression) then
command

endif

The placement of the keywords in this statement is not fleaible due to the
current implementation of the C-shell. The following two formatsare not
acceptable to the C-shell: ’

if (expression) # Won’t work!
then

command
endif

and:

if (expression) then command endif # Won’t work

The C-shell does have anotherform of the if statement:
if (expression) command
whichcan be written:

if (expression) \
command

Here we have escaped the newline for the sake of appearance. The com-
mand must not involve “ |”, “&” or “;”” and must not be another control
command. The second form requires the final backslash (\) to immedi-

ately precede the end-of-line.

The more general if statements above also admit a sequence of else—if
pairsfollowed by a single else and an endif, for example:

if (expression) then
commands

else if (expression) then
commands

else
commands
endif

7-17

XENIX User’s Guide

Another important mechanism used in C-shell scripts is the colon (:)
modifier. We can use the modifier :r here to extract the root of a filename
or :e to extract the extension. Thus if the variable “i”’ has the value
Imnt/foo.barthen

echo $i $irr Sie
produces:
/mnt/foo.bar /mnt/foo bar

This example shows how the :r modifier strips off the trailing “.bar” and
the :e modifier leaves onlythe “bar”. Other modifierstake off thelast com-
ponentof apathnameleavingthehead :horallbutthelastcomponentof a
pathname leaving the tail :t. These modifiers are fully described in the
¢sh(C) entry in the XENTX Reference Manual. Tt is also possible to use the
command substitution mechanism to perform modifications on strings to
then reenter the C-shell environment. Since each usage of thismechanism
involves the creation of a new process, it is much more expensive to use
than the colon (:) modification mechanism. It is also important to note
that the current implementation of the C-shell limits the number of colon
modifiers on a “$” substitution to 1. Thus:

% echo $i $i:h:t
produces:

/a/b/c /alb:t
and does not do what you might expect.
Finally, we note that the number sign character (#) lexically introduces a
C-shellcomment in C-shell scripts (but not from the terminal). Allsubse-
quent characters on the inputline after a number sign are discarded by the

C-shell. This character can be quoted using “”” or “\” to placeit in an
argumentword.

7-18

N
Voo

The C-Shell

7.14 Using Other Control Structures

The C-shell also has control structures while and switch similar to those of
C. Thesetaketheforms:

while (expression)
commands
end

and:
switch (word)

case strl:
commands
breaksw

case strm:
commands
breaksw

default:
commands
breaksw

endsw

For details see the manual section for esh(C). C programmers should note
that we use breaksw to exait from a switch while break eaits a while or
foreach loop. A common mistake to make in C-shell scripts is to use
breakratherthan breakswin switches.

Finally, the C-shell allows a goto statement, with labels looking like they
doinC:

loop:

commands
goto loop

7-19

XENIX User’s Guide

7.15 Supplying Inputto Commands

Commands run from C-shell scripts receive by default the standard input
of the C-shell which is running the script. It allows C-shell scripts to fully
participate in pipelines, but mandates extra notation for commands that
are to take inline data.

Thusweneed a metanotation for supplyinginline datato commandsin C-
shell scripts. For example, consider this script which runs the editor to
delete leadingblanks from the lines in each argument file:

deblank —— removeleadingblanks
foreach i ($argv)

ed — $i <<~ EOF

1,8s/ [1¥//

w

q
‘EOF
end

Thenotation:
<< ‘EOF

means that the standard input for the ed command is to come from the text
in the C-shell script file up to the next line consisting of exactly EOF. The
fact that the EOF is enclosed in single quotation marks (), i.e., it is
quoted, causes the C-shell to not perform variable substitution on the
intervening lines. In general, if any part of the word following the “<<”
which the C-shell uses to terminate the texttobe given to the command is
quoted then these substitutions will not be performed. In this case since
we used the form “1,$” in our editor script we needed to insure that this
dollar sign was not variable substituted. We could also have insured this by
precedingthe dollarsign ($) with abackslash (\), i.e.:

LNSs/ [T/
Quoting the EOF terminator is a more reliable way of achieving the same
thing.
7.16 Catching Interrupts
If our C-shell script creates temporary files, we may wish to catch interrup-
tions of the C-shell script so that we can clean up these files. We can then

do:

onintrlabel

7-20

The C-Shell

wherelabelisalabel in our program. If an interruptisreceived the C-shell
will do a “‘goto label” and we can remove the temporary files, then do an
exit command (which is built in to the C-shell) to exit from the C-shell
script. If wewish to exit with nonzero status we can write:

exit(1)

toexitwithstatus 1.

7.17 Using Other Features

There are other features of the C-shell useful to writers of C-shell pro-
cedures. The verbose and echo options and the related ~v and —x com-
mand line optionscan be used to helptrace the actions of the C-shell. The
~n option causes the C-shell only to read commands and not to execute
them and may sometimes be of use.

One other thing to note is that the C-shell will not execute C-shell scripts
that do not begin withthenumbersign character (#), thatis C-shell scripts
that do notbegin with acomment.

There is also another quotation mechanism using the double quotation
mark ("), which allows only some of the expansion mechanisms we have so
far discussed to occur on the quoted string and serves to make this string
into a single word as the single quote (") does.

7.18 Starting a Loop ata Terminal

It is occasionally useful to use the foreach control structure at the terminal
to aid in performing a number of similar commands. Forinstance, ifthere
were three shells in use on a particular system, /bin/sh, /bin/nsh, and
/bin/csh, you could count the number of persons using each shell by using
the followingcommands:

grep—ccsh /etc/passwd
grep —c nsh$ /etc/passwd
grep—c —vsh$ /etc/passwd

Since these commands are very similar we can use foreach to simplify
them:

$ foreachi ('sh$ “csh$ -—vsh$’)
?grep —c $i/etc/passwd
?end

Note here that the C-shell prompts for input with “? ” when reading the
body of the loop. This occurs only when the foreach command is entered
interactively.

XENIX User’s Guide

Also useful with loops are variables that contain lists of filenames or other
words. Forexample, examine the following terminal session:

% set a=('1s")

% echo$a
csh.nesh.rm/fR
% ls

csh.n

csh.rm

% echo$#a

2

The setcommand here gave the variable “a” alist of all the filenames in the
current directory as value. We can then iterate over these names to per-
form any chosen function.

The output of a command within b ack quotation marks () isconverted by
the C-shell to a list of words. You can also place the quoted string within
double quotation marks (*) to take each (nonempty) line as a component
of the variable. This prevents the lines from being split into words at
blanks and tabs. A modifier :x exists which can be used later to expand
each component of the variable into another variable by splitting the origi-
nal variable into separate words at embedded blanks and tabs.

7.19 UsingBraces with Arguments

Anotherform of filename expansion involvesthecharacters, ““{’> and “}”.
These characters specify that the contained strings, separated by commas
(,) are to be consecutively substituted into the containing characters and
the results expanded left toright. Thus:

A{strl,str2,...strn}B
expands to:
AstrlB Astr2B ... AstmB

This expansion occurs before the other filename expansions, and may be
applied recursively (i.e., nested). The results of each expanded string are
sorted separately, left to right order being preserved. The resulting
filenames are not required to exist if no other expansion mechanisms are
used. This means that this mechanism can be used to generate arguments
which are not filenames, but which have common parts.

A typical useof this would be:

mkdir “/{hdrs, retrofit,csh}

7-22

The C-Shell

to make subdirectories Adrs, retrofit and cshin your home directory. This
mechanism is most useful when the common prefix is longer than in this
example:

chown root /usr/demo/{filel,file2,...}

7.20 Substituting Commands
A command enclosed in accent symbols (") is replaced, just before
filenames areexpanded, by the outputfromthat command. Thus, itis pos-
sible to do:
set pwd="pwd"
to save the current directory in the variable “pwd” or to d o:
vi ‘grep -1 TRACE *.c*
to run the editor vi supplying as arguments those files whose names end in
which have the string “TRACE” in them. Command expansion also
occurs in input redirected with “<<”’ and within quotation marks ().
Referto csh(C)inthe XENIX Reference Manualformore information.
7.21 Special Characters
The following table lists the special characters of esh and the XENIX sys-
tem. A number of these characters also have special meaning in expres-
sions. See the esh manualsection for a completelist.
Syntactic metacharacters
: Separatescommands to be executed sequentially
| Separatescommands in apipeline

() Bracketsexpressions and variable values

& Follows commands to be executed without waiting for comple-
tion

Filename metacharacters
/ Separates components of a file’s pathname

Separatesrootpartsof afilename from extensions

7-23

XENIX User’s Guide

? Expansion character matching any single character
* Expansion character matchinganysequence of characters

[1 Expansion sequence matching any single character from a set of
characters

Used attheb eginningof afilename to indicate home directories
{} Used tospecify groups of arguments with common parts
Quotation metacharacters
\ Prevents meta-meaningof followingsingle character

”

Prevents meta-meaningof a group of characters
" Like’, but allows variable and command expansion
Input/output metacharacters
< Indicatesredirected input
> Indicatesredirected output
Expansion/Substitution Metacharacters
$ Indicates variable substitution
! Indicates history substitution
Precedes substitution modifiers
Used in specialforms of history substitution
: Indicates command substitution
QOther Metacharacters

Beginsscratch filenames; indicates C-shell comments

— Prefixesoption (flag) arguments to commands

7-24

2

TR Ty BT N
e P PPN PN P A N Yy e bG.IEI...uDdIil.I.Ll..rﬂ,...l._EI._nl..rlh.l..-‘D‘h-lD.kllOl.CDGDJl‘I.DO.!.Dll.._F.Dﬁl0l..i.l‘l."l@i.&ﬂﬂ@lﬂkﬁbﬁ.ﬁﬁ!r

Replace this Page
with Tab Marked
Visual Shell

Chapter8

Using The Visual Shell

81
8.2

8.3

84

Whatisthe Visual Shell? 8-1

Getting Started with the Visual Shell 8-1
8.2.1 EnteringtheVisualShell 8-2
8.2.2 GettingHelp 8-2

8.2.3 Leavingthe VisualShell 8-2

The Visual Shell Screen 8-2

8.3.1 StatusLine 8-2

8.3.2 Message Line 8-3

8.3.3 Main Menu 8-3

8.3.4 Command OptionMenu 8-3
8.3.5 Program Output 8-4

8.3.6 ViewWindow 8-4

Visual Shell Reference 8-6

8.4.1 Visual ShellDefaultMenu 8-6
8.4.2 Options 8-8

8.4.3 Print 8-10

8.4.4 (Quit 8-10

8.45 Run 8-10

.6 View 8-10
.7 Window 8-11
.8 Pipes 8-11
.9 Count 8-11
.10 Get 8-11
.11 Head 8-12
12 More 8-12
.13 Run 8-12
.14 Sort 8-12
.15 Tail 8-13

()

Using The Visual Shell

8.1 Whatis the Visual Shell?

The visual shell, vsh, is a menu-driven XENIX shell. This chapter
describes the use and behavior of the vsh. This chapter assumes that the
reader is familiar with some general XENIX concepts, specifically the
structure of XENIX filesystems and thenature of a XENIX ‘command’. No
familiarity with anyother shell, however, is assumed. If youarea first-time
user of the visual shell, please completely read the narrative sections of this
chapter.

A ‘shell’is a program which passes a command to an operating system, and
displays the result of running the command. The XENIX shells can also
create ‘pipelines’ for passing the output of one command to another com-
mand or ‘redirect’ theoutputinto afile.

The other XENIX shells available are sh and esh. These shells are called
‘command-line oriented’ shells. This means that the user enters com-
mands onelineata time. The shand esh shells are full computer langnages
whichrequire study and some programming knowledge to use effectively.
These command-line shells are powerfuland efficient.

The vsh is a ‘menu-oriented’ shell. In a menu-oriented shell, the user is
given the available commands, or some of the available commands. The
user canrun thecommand, by selecting from themenu.

The visual shell is a good shellforusers who may notwantto master a pro-
gramming language right away justto use XENIX or a specfic XENIX appli-
cation. All visual shell users should additionally become familiar with
some command-line shell usage.

Users familiar with command-line shells are in for a pleasant surprise if
they try the visual shell. Experienced users will appreciate the efficiency
and versatility of the visual shell. The distinction is very much akin to the
difference between aline-oriented text editor and afull-screen editor.

A menu shell can be used effectively with very little study. On the other
hand, a menu shell can also restrict the user from using the operating sys-
tem in creative, possibly more efficient ways. The Microsoft visual shell
strikes a balance in this regard. The visual shell is designed to do all of the
thingsthat the command-line shellscan do.

8.2 Getting Started with the Visual Shell
Thissection describes how to enter, obtain help about, and leave the visual

shell. This section also describes what you see on the screen while running
the visual shell and how the menus work.

8-1

XENIX User’s Guide

Note the following convention for specifying keystrokes. Ctrl refers to the
Ctrl key. Ctrl-C means pressing the Ctrl and ‘c’ keys at the same time.
ALT refers to the ALT shiftkey. ALT-H means pressingthe ALT and ‘H’
keysatthesame time. Note theirrelevanceof case in enteringMenu Selec-
tion characters. For instance, presseither ‘Q’ or ‘q’ torun the “Quit” com-
mand from themain menu.

8.2.1 Entering the Visual Shell

Login to XENIX. If you arenot sure how to login, consult the Operations
Guide or have someone knowledgeable about XENIX help you. When you
have a shell prompt (typically ‘$’ or ‘%’), the operating system is waitingfor
acommand. Enterthe command:

vsh

and pressRETURN.

8.2.2 Getting Help

If at anytime you are not sure what to do, either run the “Help” Menu
Selection or press ALT-H. Refer to the reference section of this chapter
forinformation about the Help command.

8.2.3 Leaving the Visual Shell

To exit the visual shell select the Quit command from the main menu. The
simplest way to do this is to simply press ‘q’ or ‘Q’. In response to the
prompt “Type Yto confirm”, enter ‘y’ orY’. If you don’twant to exit the
visual shell yet (perhaps you pressed ‘q’ by mistake), enter any other char-
acter but ‘y’ or ‘Y’. If youhaveinvoked the visualshell from anothershell,
asdescribed above, you will need to log out from XENIX by enteringCirl-D
or ‘logout’ and pressing RETURN. If the visualshell is your default shell,
youwill automatically belogged out.

8.3 The Visual Shell Screen

8.3.1 Status Line

The bottom line on the screen is called the ‘status line’. The status line
displays the name of the current working directory, notifies you if you have
mail, and gives the date, time and the name of the operating system.

8-2

®

Using The Visual Shell

8.3.2 Message Line

The line above the ‘status line’ is called the ‘message line’. The message
linedisplays special output from XENIX commands, such aserrorreports.

8.3.3 MainMe.nu

The next section of the screen above the message line is the ‘main menu’.
Themain menudisplays a selection of useful XENIX commands.

The currently selected menu command is highlighted on the screen. To
select any command, press the SPACE BAR. The next highlighted com-
mand is selected. The BACKSPACE key will move to the previous com-
mand. Move through the menu until you have found the command you
want. Torun the currently selected command, press RETURN.

Youmay also enter thefirstletter of acommand to select that command. If
you enter the first letter of the command, you do not need to press
RETURN. .

If you enter a letter which does not correspond to a menu selection, the
message:

Not avalid option

is displayed. Tryanother option.

8.3.4 Command Option Menu

When you have selected a command, the main menu is replaced with a
command option menu. The command option menu gives the options
available with the specific command. You must fill in the options with
appropriateresponses.

If you wish to return to the main menu without running the command,
press Ctrl-C, (cancel). If you want to run the command with the selected
optionspress RETURN.

8-3

XENIX User’s Guide

Thefollowingkeystrokes alloweditingof option responses.

Ctrl-1I, Ctrl-A,orTAB Movetonextfield in options menu.

Ctrl-Y orDEL Delete characterunder cursor.

Ctrl-L Movecursor to character to right of
current position in current option
field.

Ctrl-K Move cursor to character to left of
current position in current option
field.

Cwl-P Move cursor to word in current
field toright of the current word.

Ctrl-O Move cursor to word in current

field to left of the currentword.

8.3.5 Program Output

While running a command, commands given and output (unless
redirected) are displayed above the menu and belowtheviewwindow. The
outputscrolls up: moves frombottom to top. Lines scrolling off the top of
the output window disappear.

Visualshellcommand lines are listed with each argument preceded by the
number in the argument list enclosed in parentheses. The command is
named in the output window by the menucommand. Hence, if you run the
command /bin/ls with the argument - R, the output windowwill displaythe
commandline as follows:

Run (1)/bin/1s (2)-R(3)

To change the command line format to reflect the actual XENIX command
line generated by thevisualshell, use theOptions Outputmenucommand.

8.3.6 ViewWindow

A menu of currently accessible files and directories can be displayed at the
top of the screen in alphabetical order, left to right, top to bottom. Note
that this displayis the same as that obtained usingtheviewcommand. This
will be referred to as the ‘viewwindow’ in this chapter. If the directory list
is larger than the current windowsize, you may scroll through using the key
commands given below. To reset the window size, use the ‘Window’ main
menu command.

The currently selected item is highlighted in the view window. Use the

arrow keys and other key commands given at the end of this section to
move the highlight around the window.

8-4

Using The Visual Shell

If a directory is beinglisted, subdirectories are shown enclosed in square
brackets. To view a subdirectory, press ‘=’ while the directory is
highlighted. To return to the previous directory after viewing a subdirec-
tory, press ‘~’. The parent directory of the current directory is shown as
‘[..]. Thecurrent directory is shown as ‘[.J’. Executable files are preceded
by an asterisk. The last modification date of the currently selected item is
given at the right margin of the last line of the window. The name of the
item in view in the currentwindow is given in the upper right-hand corner
ofthewindow.

The view window may also display contents of files. Highlight a file, and
press ‘=". You may scroll through the file using the key commands given
below. While viewing afile, the highlighted area cqvers one line.

If you press ‘=’ while an executable file is highlighted, that file will be run.

If the visual shellrequires a file or directory name, the currently selected
View Window item can be automatically entered in the relevent option
field by pressing any directional movement key following selection of the
command. This method saves keystrokes and reduces the chance of mak-
ing a mistake while enteringa command. On the other hand, if you wishto
enter a file or directory in an option field, enterin the name after selecting
the command.

Use these keystrokes to select files from the view window:

WINDOWMOTIONKEYS
Ctrl-Q Moveto start (first item alphabetically) of view window.
Ctrl-Z Move to end (lastitem alphabetically) of viewwindow.

Ctrl-RCtrl-E Scroll view window up.

Ctrl-RCtrl-S Scroll view windowdown.

= Viewindicated item, either file or directory. If no view
window is present, the current working directory is
displayed.

- Return window display to parent directory of currently
listed directory. If viewing a file, exit from viewingthat
file. Lastviewwindowisreturned to.

DIRECTIONAL MOVEMENT KEYS
ARROWUPor Ctrl-E Move highlight up in view window.
ARROWDOWNorCtrl-X Movehighlightdown in view window.

ARROWLEFT or Ctrl-S Movehighlightleftin viewwindow.
ARROWRIGHT orCtrl-D Movehighlight right in view window.

Movement beyond the left or right margin will proceed to the nextitem on
the previous or nextline unlessat the edge of the view window. Movement

8-5

XENIX User’s Guide

beyond the top or bottom edge of the current window will scroll the view
window up or down if there are more items in that direction in the view win-
dow.

Note that there are two ways to move the highlight around. Either use the
keypad arrow keys or the cluster of four keys on the far left of the keyboard
‘e’, ‘X, ‘s’, and ‘d’ shifted withCtrl.

While viewing a file, the directional movement keys for up and left move
the highlight up, and the keys for down and right move the highlighted line
down.

8.4 VisualShellReference

8.4.1 VisualShellDefaultMenu

This section describes the default visual shell menu commands and
options. The menu options are displayed at the bottom of the screen
above the statusline.

Toinvoke acommand, move the highlight forward through the main menu
using the space bar or the tab key, or backwards using the backspace key.
Or simply press the firstletter of the command.

Most commands require entering options. Move the cursor to the field
using the SPACE BAR, TAB key or BACKSPACE key, and enter your
response. To edit the options, refer to the key commands listed above in
the section in this chapter labeled “Command Option Menu”. To select
an item from a View Window listing for insertion in a field, refer to the sec-
tionin thischapterlabelled “View Window”.

Note that some options have ‘switches’ with predefined (default) selec-
tions. The currently selected switch setting is highlighted. The default is
the parenthesized setting. Forinstance, in the switch:

Recursive: (yes)no

the default is recursive. To change a switch, select the field and press the
SPACEBARoOrBACKSPACE.

Copy

The Copy command can copy files and directories. To copy a file, select
“File” from the options, to copy a directory, select “Directory’”. A sub-
menuthen appears. Enter the file or directory you wish copied in the from:

8-6

(|
\\“_

N
‘.__/;.

Using The Visual Shell

field. Enterthefile or directory youwish copied to the zo: field. Note thatif
theitem intheto: field already exists, it isoverwritten, so be careful.

The Copy Directory sub-menu has a switch “recursive”. If this switch is
set to yes, all sub-directories and their contents below the specified direc-
tory willbe copied.

Delete

The Delete command can remove files and directories. In the DELETE
name: field, enter the name of the file or directory you want to remove.
Notethat oncethefile or directoryis deleted, the contents are permanently
removed unless youhave another copy, so be careful.

Edit

The Edit command invokes the full-screen editor vi. The current direc-
tory is displayed in the output window. Enter in the option field EDIT
filename: thename of the file you wish to edit using vi.

To learn vi, refer to “vi: a Screen Editor” in the XENIX User’s Guide, and
the vi(C) manual page in the XENIX Reference Manual. A vi reference
cardis also available.

Help

The Help command (also available by pressing ALT-H at any time), can
giveonline help regarding many aspects of visual shell use. The view win-
dow displays the help file. Use the menu to select the topic you need help
with. For instance, move the highlight to ‘Keyboard’ using the SPACE
BAR and press RETURN to view the help file starting at the ‘Keyboard’ sec-
tion. The ‘Next’ and ‘Previous’ fields in the menu will scroll through the the
help file, from the present location, one screen at a time. Your work will
remain undisturbed. To return from Help, press Ctrl-C or select the
‘Resume’ menuoption.

Mail

The Mail command enters theXENIX mail system. There are two options:
“Send” and “Read” For more information about mail, refer to the section
of the XENIX Users Guide titled “Mail”, or refer to the mail(C) manual

page.

8-7

XENIX User’s Guide

Name

The Name command renames an existing file or directory. There are two
fields, From: and To:. Enter the name of the file or directory you want to
renamein From:andthenewnamein To:.

8.4.2 Options

The Options Main Menu Selection provides four sub-mcnus, These sub-

menus run commands which are used infrequently, or which have irrevo-
cableresults.

DirectoryOption
The Directorycommand has two sub-menus, Make and Usage.

Make Directory Option:

This command creates anew directory named what you enter in the name:
field.

UsageDirectoryOption:

Counts the number of disk blocks in the directories specified in the name:

field. The format is the same as the XENIX command Is -s. Refer to the
manual pagels(C).

FileSystem Option

FileSystem has five sub-menus: Create, FilesCheck, SpaceFree, Mount
and Unmount.

Create FileSystem Option:

Create FileSystem makes a XENIX filesystem. The Create command per-
forms radical system maintenance and may have irrevocable effects. Care
is advised when using Create FileSystem.

The functionality is the same as mkfs(C). Consult the mkfs(C) manual

page before running Create FileSystem. Create FileSystem prompts you
for device, block size, gap number and block number. Refer to Chapter 3,

8-8

O

Using The Visual Shell

“Using File Systems”, in the XENIX Operations Guide, for information on
creating file systems.

FilesCheck FileSystem Option:

FilesCheck checks the consistency of a XENIX filesystem and attempts
repair if damage is detected. The FilesCheck command performs radical
system maintenance and may have irrevocable effects. Care is advised
whenusingFilesCheck.

The functionality is the same as fsck(C). Consult the fsck(C) manual page
before running FilesCheck. FilesCheck prompts you for the device to
check.

OutputOption:

The Output Option command has one switch, commands like: VShell
XENIX . The default is VShell. IF VShell is set, the vsh form of com-
mands given appear in the upward scrolling output window. Jf XENIX is
specified, the XENIX command line which vsh generated is shown
instead.

Permissions Option

The Permissions Option command allows changing the access permissions
on files and directories. The functionality is the same as the chmod(C)
command. Consult the chmod manual page if you do not understand the
conceptof XENIX permissions.

In the name: field enter the name of the file or directory you wish to alter
the permissions on. You may only alter the permissions on files and direc-
toriesyouown. There arefourswitches, who:, read:, write:, and execute:.

The who: switch has four settings, All, Me, Group and Others. Allis the
default. Allrefers to yourself, those with the same group id as yourself and
others. Me refers to yourself. Group refers to allotherswithyourgroupid.
Orhers referstothose outside your group.

The read, write and execute switches have two settings, yes and no. The
default is yes for Me, and no for Group and Others. This grants the given
type of permission to those specified in the who: switch. No takes away the
given type of permissionfrom those specified in the who: switch.

8-9

XENIX User’s Guide

8.4.3 Print

The Print command puts a file or files in the queue foryour lineprinter. In
the filename: optionfield, enter the file orfiles you want to print.

8.4.4 Quit

The Quit command exits the visual shell. The only option is Enter Y to
confirm:. Enter ‘Y’ or ‘y’ if you really want to quit. Any other key cancels
the quit.

8.4.5 Run

The Run command executes a program or shell script. The name: option
takes the name of an executable file. In the parameters: option field enter
flags to pass to the executable file. The output: option can specify a file to
redirect output to, or another program to send the outputto. Enter a verti-
calbar ‘| in the output field to use the pipe menu.

It is also possible to run an executable file by highlighting the name of the
file in the View Window and pressing ‘=’.

8.4.6 View

The View command allows you to inspect without altering the contents of
files and directories. View is also available at any time for an item
highlighted in the View Window by pressing ‘=". See the section above
labelled ‘View Window’ for the details of using View.

To alter the height and characteristics of the View Window, use the ‘Win-
dow’ menuoption. See the section below labelled “Window”.

If you have invoked View from the menu, enter the name of the file or
directory you wish to view in the VIEW name: field, or select from a direc-
toryviewwindow.

To return from any Viewaction to the previously displayed View Window,
press the minus key ‘-’.

If you View a non-executable binary file, non-ascii characters are
displayed as the character ‘@’.

8-10

r,/—-‘-‘\

N

Using The Visual Shell

8.4.7 Window

The Window command alters the height and redraw characteristics of the
visual shell View Window.

The
WINDOWredraw: Yes (No)
switch tums redraw of the viewwindow on or off after running a command.

The heightinlines: field changes the number of lines displayed in the view
window. The minimum window height is 1 line. The default window
heightis S lines. The masimum window heightis 15lines.

8.4.8 Pipes

XENIX allows output from one program to be passed to another program
or to be putin a file. This is called ‘piping’ or plpelmmg If the output is
placed in afileitis said to be ‘redirected’. Pipingis supporled in the visual
shell through the pipe menu.

The Pipe menu is invoked by entering a vertical bar ‘f character in any
option field named output:. Forinstance, the Run main menu and the Pipe
menuitself have an output: field. The available Pipe menu commands are
Count, Get, Head, More, Run, Sort and Tail. Each Pipe menu sub-
command also has an output: field, which allows construction of pipelines
of arbitrary length.

8.4.9 Count

Count counts words, lines and characters in the input pipe. The defaultis
all of the above. There is a switch for each type of item to count. The
Count Pipe Menu option corresponds to the XENIX command we. Con-
sultthemanual page we(C) for an explanation.

8.4.10 Get

Get looks for patterns in the input pipe. The pattern maybe verbatim, or
you may specify a “regular expression” to look for. Regular expressions
may contain ‘wildcard’ characters which represent sets of strings. Consult
the manual page grep (C), for theavailablewildcard characters.

The first Get switch is Unmatched (Yes) No. If you specify Yes (the
default), all lines containing the given pattern will be output. If
Unmatched is set to off, all lines not containing the given pattern are out-

put.

8-11

XENIX User’s Guide

The second Get switch is ignore case: which suppresses the case while
looking for the regular expression. The default is off.

The third Get switch is line numbers:, which reports the line in the input
stream which the regular expression was matched on. The defaultis on.

8.4.11 Head

Head prints a specified number of lines of the input stream starting from
the firstline. The lines: field maybe set to specify the numberoflines at the
head of theinput stream to print. The defaultis 5 lines.

The Head Pipe Menu option corresponds to the XENIX command head.
Consult the manual page head(C)for an explanation.

8.4.12 Moxe

More allows viewing an input stream one screen at a time. The More Pipe
Menu option invokes the XENIX command more. Consult the manual
page more(C) for an explanation.

8.4.13 Run

The Run Pipe Menu option allows the specification of any command not in
the Pipe menu. The functionalityis the same asthe visual shell Main Menu
Option “Run”.

8.4.14 Sort

The XENIX sort utility can be invoked through the Sort Pipe menu option.
Theinputskream issorted.

The first Sort switch is order: < >. Select ‘>’, the default, to sort in
ascendingorder. Select ‘<’to sortin descendingorder.

The second Sort switch suppresses the case of characters in the sort. The
defaultis off.

The third Sort switch sorts the input stream assuming an initial numeric
field is in the input stream. If this switch is off, initial numbers are sorted in
ascii order, which means that a line beginning with ‘10’ will be output
before the line beginning with 2. The default is off.

The fourth Sort switch sorts the input stream in alphabetical order, rather
than asciiorder.

8-12

Using The Visual Shell

The Sort Pipe Menu option corresponds to the XENIX command sort.
Consultthe manual page sort(C) for an explanation.

8.4.15 Tail

Tail prints a specified number of lines of the input stream up to the end of
the stream. The lines: field may be set to specify the number of lines to

print. The default is 15lines.

The Tail Pipe Menu option corresponds to the XENIX command tail.
Consult the manual page tail(C) for an explanation.

8-13

P T T T T T e T T T P L L L T, R L L L R L A)

R kA L i et Y

e..
o
DO
Ay A
R
=
o L
O <
FaT
oE o
e @

TN

Appendix A
ed

A.1 Introduction A-1

A.2 Demonstration A-1

A.3 BasicConcepts A-2
A.3.1 TheEditingBuffer A-2
A.3.2 Commands A-2
A.3.3 LineNumbers A-2

A4

=
o

A-3

Entering and Exiting TheEditor A-3
Appending Text:a A-3

Writing OutaFile:w A-5

LeavingThe Editor:q A-5

Editing A NewFile:e A-6
ChangingtheFile to Write Outto:f A-7
ReadinginaFile:r A-7

DisplayingLines On The Screen:p A-8
Displaying The Current Line:dot (.) A-10
10 DeletingLines:d A-13

.11 Performing Text Substitutions:s A-14
.12 Searching A-16

.13 Changingand InsertingText:c andi A-20
.14 MovingLines:m A-22

mowuabhwoRE

.15 Performing Global Commands: gandv A-23
.16 Displaying Tabs and Control Characters:1 A-26
.17 UndoingCommands:u A-27

.18 MarkingYourSpotinaFile:k A-27

.19 TransferringLines:t A-28

.20 Escapingto the Shell:! A-28

A5 ntextand Regular Expressions A -29
Period: (.) A-30

Backslash: \ A-32
DollarSign:$ A-34

d
2
3
.4 Caret: A-36
.S
.6
7
.8

[}

Star:* A-36
Brackets:[and] A-39
Ampersand: & A-40
SubstitutingNewLines A-41

>0 >>>>>>>>>>>>>>}>p>>>

U'thU'l(J\UIU’IU'lU]

A7

A8
A.9

A.5.9 Joininglines A-42
A.5.10 RearrangingaLine:\(and\) A-43

SpeedingUp Editing A-44

A.6.1 Semicolon:; A-46

A.6.2 Interruptingtheeditor A-48
Cuttingand Pastingwiththeeditor A-48
A.7.1 InsertingOneFileIntoAnother A-48
A.7.2 WritingOutPartofaFile A-49
EditingScripts A-50

Summaryof Commands A-51

ed

A.1 Introduction

ed is a text editor used to create and modify text. The text is normally a
document, a program, or data for a program, thus ed is a truly general pur-
pose program. Note that the line editor ex, available with other XENIX
packages is verysimilar to ed, and therefore this chapter can be used as an
introduction to ex as wellasto ed. e

A.2 Demonstration

This section leadsyou through a simple session with ed, givingyou afeelfor
howitisused andhowit works. To begin the demonstration, invoke ed by
entering:

ed

This invokes the editor and begins your edi%ng session. ed has no prompt
unless -o string is used on the command line to specify one. A blank line
prompts you for commands to be entered. Initially, you are editing a tem-
poraryfile that you can later copyto anyfile that you name. This temporary
fileis called the “editingbuffer,” because it acts as abufferbetween the text
you enter and the file that you will eventually write out your changes to.
Typically, the first thingyou will want to do with an empty buffer is add text
to it. Forexample, after the prompt, enter:

a
thisislinel
thisisline 2
thisisline3
thisisline 4
Ctrl-D

This “appends” four lines of text to the buffer. To view these lines on your
screen, enter:

L4p

where the “1,4” specifies a line numberrange and the p command “prints”
the specified lines on the screen.

Nowenter:

2p

XENIX User’s Guide

toviewline numbertwo. Nextenter:

p

This prints out the current line on the screen, which happens to be line
number two. By default, most ed commands operate on only the current
line.

A.3 Basic Concepts

This section illustrates some of the basic concepts that you need to under-
stand to effectively use ed.

A.3.1 The Editing Buffer

Each time you invoke ed, an area in the memory of the computer is allo-
cated for you to perform all of your editing operations. This area is called
the “editing buffer.” When you edit afile, the fileis copied into this buffer
where you will work on the copy of the original file. Only when you write
out your file, do you affect the original copy ofthefile.

A.3.2 Commands

Commands are entered at your keyboard. Like normal XENIX com-
mands, enwry of a command is ended by enteringa NEWLINE. After you
enter NEWLINE the command is carried out. In the following examples,
we will presume that entry of each command is completed by entering a
NEWLINE, although this will not be shown in our examples. Most com-
mands are single characters that can be preceded by the specification of a
line number or a line number range. By default, most commands operate
on the “current line” described below in the section ‘“Line Numbers.”
Many commands take filename or string arguments that are used by the
command when it is executed.

A.3.3 Line Numbers

Anytime you execute a command that changes the number of lines in the
editing buffer, ed immediatelyrenumbers thelines. At all times, everyline
in the editing buffer has a line number. Many editing commands will take
either single line numbers or line number ranges as prefixing arguments.
These arguments normally specify the actual lines in the editing buffer that
are to be affected by the given command. By default, a special line number
called “dot” specifies the current line.

~

ed

A.4 Tasks
This section discusses the tasks you perform in everyday editing. Fre-
quently used and essential tasks are discussed near the beginning of this
section. Seldom used and special-purpose commands are discussed later.
A.4.1 Entering and Exiting TheEditor
Thesimplest way to invoke edisto enter:

ed
The most common way, however, is to enter:

ed filename
where filename is the name of a new or existingfile.
To exitthe editor, allyou need to do is enter:

q

If youhave not yet written out the changes you have made to your file, ed
wamnsyouthat you willlose these changes bydisplayingthe message:

?

If youstill want to quit, enter another q. In mostcases you will wantto exit
by entering: .

w
q

sothatyou first write outyour changes and onlythen esitthe editor.

A.4.2 Appending Text: a

Suppose that you want to create some text starting from scratch. This sec-
tionshows you how to cnter textin a file, just togetstarted. Laterwe’lltalk
abouthowto changeit.

When you first invoke ed, it is like working with a blank piece of paper—
there is no text or information present. Text must be supplied by the per-
son using ed, usually by entering the text, or by reading it in from a file. We
will start by entering some text, and discuss how toread files later. -

In ed terminology, the text beingworked on is said to be “keptin abuffer.”
Think of the buffer as a workspace, or simply as a place where the

A-3

XENIX User’s Guide "

information that you are going to be editingis kept. In effect, the buffer is
the piece of paper on which you will write, make changes, and save (write
to the disk).

You tell ed what to do to your text by entering instructions called “com-
mands.” Most commands consist of a single letter, each entered on a
separateline. ed prompts with an asterisk (*).

The promptcan be turned on and off with the prompt command, P.
The first command we will discuss is append (a), written as the letter “a”
onalinebyitself. Itmeans “append (or add)textlines to the buffer, as they
areentered.’ Appendingis like writing new material on a piece of paper.

To enterlines of text into thebuffer, enteran ““a” followed by a RETURN,
followedbythelines of text you want, as shown below:

a

Nowisthetime

forallgood men

to come to the aid of their party.

To stop appending, enter alinethat containsonlya period. The period (.)
tells ed that you have finished appending. (You can also use Ctrl-D, but we
will use the period throughout this discussion.) If ed seems to be ignoring
you, enter an extra line with just a period (.) on it. You may find you’ve
added some garbagelines toyourtext, whichyouwill have to take out later.

After appending is completed, the buffer contains the following three
lines:

Nowis the time
for all good men
to come to the aid of their party.

Thea and . aren’tthere, becausetheyarenot text.

To add more text towhat you already have, enter another acommand, and
continue entering yourtext.

If youmake an error in the commands you enter to ed, it will tell you by
displayingthe message:

?

error message

("—\

ed

A.4.3 Writing OutaFile: w

Youwill probably want to save your text forlateruse. To write out the con-
tents of the bufferinto a file, use the write (w) command, followed by the
name of the file that you want to write to. This copies the contents of the
buffer to the specified file, destroyingany previous contents of the file. For
example, tosave the textin afilenamed text, enter;

w text

Leave a space between w and the filename. ed responds by displaying the
number of characters it has written out. For instance, ed might respond
with

68

(Remember that blanks and the newline character at the end of each line
areincludedin the character count.) Writing out a file just makes a copy of
the text— the buffer’s contents are not disturbed, so you can go on adding
text to it. If you invoked ed with the command “ed filename,” then by
default, awcommand by itself willwrite the buffer out to filename.

Note that ed at all times works on a copy of a file, not the file itself. No
change in the contents of a file takes place until you give a w command.
Writingoutthe textto afile from time to time as it is beingcreated is a good
idea. If the system crashes, or you make a mistake (not saving the file on
disk), youwill lose all of the textin the buffer, butanytextthat was written
out to afile is relatively safe.

A.4.4 Leaving The Editor: q

To terminate a session with ed, savethetextyou’re working on by writingit
to a fileusingthew command, then enter:

q

The system responds with the XENIX prompt character. If you try to quit
withoutwriting out the file ed will display:

?

At that point, write out the text if you want to save it; if not, entering
another “q” will get you out of the editor.

XENIX User’s Guide

Exercise
Entered and create some textbyentering:

a
...text...

Write it out by entering:
w filename

Thenleave ed byentering:

q

Next, use the cat command to displaythefile on your terminal screen to see
thateverything has worked.

A.4.5 Editing A NewFile: e

A common way to gettextintoyour editingbufferis toreaditinfrom afile.
Thisiswhat you do to edit text that you have saved with thewcommandin a
previous session. Theedit(e)command placestheentire contents of afile
in the buffer. If you had saved the threelines “Nowis thetime” etc., with a
w

command in an earlier session, the ed command:

e text

would place the entire contents of the file text into the buffer and respond
with

63

which is the number of characters in text. If anything is already in the
buffer, itis deleted first.

If you use the e command to read a file into the buffer, then you don’tneed
to use afilename after aw command. ed remembers thelast filename used
in an e command, and w will write to this file. Thus, a good way to operate
is this:

ed

e file

[editing session]
w

q

ed

This way, youcan enter wfrom time to time and be secure inthe knowledge
that if you entered the filename right in the beginning, you are writing outto
the proper file each time.

A.4.6 ChangingtheFileto Write Outto: f

You can find out the last file written to at any time usmg the file (f)com-
mand. Just enter f without a filename. You can also change the name of
the remembered filename with f. Thus, a useful sequenceis:

ed precious
f junk

which gets a copy of the file named precious, then usesfto save the text in
the file junk. The original file will be preserved as precious.

A.4.7 Reading in a File: r

Sometimesyouwanttoread afileinto the buffer without destroyingwhatis
already there. Thisfunction is usefulfor combiningfiles. Thisis done with
theread (r)command. The command:

r text

reads the filetextinto your editing buffer and adds it to the end of whatever
isalreadyin the buffer.
For example, suppose you have performed a read after an edit:

e text
r text

The buffer now contains nwo copies of text (i.e., six lines):

Nowisthetime

for all good men

to come to the aid of their party.
Nowis the time

forall good men

to come to the aid of their party.

Like the w and e commands, after the reading operation is complete r
printsthe number of characters read in.

XENIX User’s Guide

Exercise

Experiment with the e command byreadingand printing various files. You
may get the followingerrormessage:

name
cannotopeninputfile

where name is the name of a nonexmistent file. This means that the file
doesn’t exist, typicallybecause you spelled the filename wrong, or perhaps
because you do not have permission to read from or write to that file. Try
alternately reading and appending, to see how they work. Verify that the
command:

ed file.text
is equivalent to

ed
e file.text

A.4.8 Displaying Lines OnThe Screen: p

Use the “print”’(command to print the contents of the editing buffer (or
parts of it) on the terminal screen. Specify the lines where you want print-
ing to begin and where you want it to end, separated by a comma and fol-
lowed by the letter ““p”. Thus, to print the first two lines of the buffer
(thatis, lines 1 through 2) enter:

1,2p
eddisplays:

Nowis the time
forall good men

Suppose you want to print @il the lines in the buffer. You could use “1,3p”
asshown above if youknew there were exactly3lines in thebuffer. Butyou
will rarely know how many lines there are, so ed provides a shorthand sym-
bol fortheline number of the last line in the buffer—the dollarsign ($). Use
it as shown below:

1,$p

ed

This will print allthe linesin the buffer (fromline 1 to thelastline). If you
want to stop the printing before it is finished, press the INTERRUPT key.
edthendisplays:

f,
interrupt

and waits for the next command.
To print thelastline of the buffer, enter:
$p

You can print any single line by entering the line number, followed by a p.
Thus:

1p
produces the response:
Nowis the time
whichis thefirstline of the buffer.
In fact, ed lets you abbreviate even further: you can print any single line by

entering just the line number; there’s no need to enter the letter p. If you
enter:

$

ed printsthelastline of the buffer.

You can also use $ in combinations like:
$-L%p

which prints the lasttwo lines of the buffer. This helps when you want to
seehowfaryou arein your entering.

The next step is to use address arithmetic to combine the line numbers like

" dot (.)and dollar sign ($) with plus (+) and minus (). (Note that “dot” is
- shorthand forthe currentline, and is discussed in a later section.) Thus:

$-1

prints the next tolastline of the current file (that is, oneline before the line
$). Forexample, to recallhowfaryouwere in a previous editingsession:

$-5.%p

XENIX User’s Guide

prints the last six lines. (Be sure you understand why it’s six, not five.) If
there aren’t sixlinesin thefile, an error message is displayed.

The command:
-3,.+3p

prints from three lines beforethe current line (line dot)to three lines after.
The plus (+) can be omitted. Thus:

.-3,.3p
isidentical in meaning,.

Another area in which you can save entering effort in specifying lines is to
use plusandminusas line numbers by themselves. For example:

by itself is a command to move back one line in the file. In fact, you can
string several minus signs together to move back that many lines. For
example:

movesback three lines, as does:
-3

Thus:
-3,+3p

is alsoidentical to

9.-3p+3p

A.4.9 Displaying The CurrentLine: dot (.)
Suppose your editing buffer still contains the following six lines:

Nowis the time

for all good men

to come to the aid of their party.
Nowis the time

for all gopod men

to come to the aid of their party.

ed

If youenter:

1,3p
ed displays:

Now s the time

forallgoodmen

tocometotheaid of their party.
Try entering:

p
This prints:

to come to the aid of their party.
which is the third line of the buffer. In fact, it is the last (mostrecent) line
that youhave done anythingwith. You can repeat this p command without
line numbers, and ed will continue to printline 3.
This happens because ed maintains a record of the last line that you did
anything to (in this case, line 3, which you just printed) so that it can be
used instead of an explicit line number. The line most recently acted on is
referred to with a period (.) andiscalled “dot.”” Dotis alinenumberin the
same waythat dollar ($) is; it means “the current line” or loosely, “the line

you most recently did something to.”” You can use it in several ways. One
wayis to enter:

-3p

This prints all the lines from (and including) the current line clear to the
endofthebuffer. In our example, these arelines3 through 6.

Some commands change the value of dot, while others do not. The p com-
mand sets dotto thenumberofthelastline printed. Inthe example above,
psetsdotto 6.
Dotis often used in combinations like this one:

+1

Orequivalently:

A+lp

XENIX User’s Guide

This means, “print the nextline” and is one way of steppingslowly through
the editingbuffer. You can also enter:

~1
This means, “print the line before the current line.” This enables youto go

backwards through the file if you wish. Another useful command is shown
below:

- 3 e 1 p
which printsthe previous three lines.

Don’tforgetthat all of these change the valueofdot. Youcan find out what
dotis at anytimebyentering:

ed responds by printingthe value of dot. Essentially, p can be preceded by
zero, one, or two line numbers. If no line number is given, ed prints the
“current line” the line that dot refers to. If one line number is given (with
or without the letter p), ed prints that line (and dot is set there); and if two
line numbers are given, ed prints all the lines in that range (and sets dot to
the last line printed). If two line numbers are specified, the first cannot be
biggerthan the second.

Pressing RETURN once causes printingof thenextline. Itisequivalentto:

+1p

Tryit. Next, tryentering a minussign (—)by itself; itis equivalent to enter-
ing:

~1p

A-12

ed

Exercise

Create some text usingthe a command, and experiment with the p com-
mand. You will find, for example, that you can’t print line O, or a line
beyond the end of the buffer, and that attempting to print lines in reverse
order using “3,1p,” doesnot work.

A.4.10 Deleting Lines: d

Supposeyou want to remove three extralinesin the buffer. Use the delete
(d) command. Its action is similar to that of p, except that d deletes lines
instead of printing them. Thelines to be deleted are specified for d exactly
astheyareforp. Thus, thecommand:

4,$d

deletes lines 4 through the end. There are now three lines left in our exam-
ple, and you can check by entering:

1,%p

Notice that $ now is line 3! Dot is set to the next line after the last line
deleted, unless thelastlinedeletedis the lastline in the buffer. In that case,
dotissetto $.

Exercise

Experiment with the a, e, r, w, p, and d commands until you are sure that
youknow what they do, and until you understand how dot (.), dollar ($),
andline numbers are used.

Try using line numbers with a, r, and w, as well. You will find that a
appends lines after theline number that you specify (rather than after dot);
thatr reads in afile after thelinenumberyou specify (not necessarily at the
end of the buffer); and that w writes out exactly the lines you specify, not
the whole buffer. These variations are sometimes useful. For instance,
youcaninsertafileatthebeginning of a buffer by entering:

Or filename
and you can enter lines at the beginning of the bufferby entering:

Oa
[input text here]

A-13

XENIX User’s Guide

Noticethatentering:

W
isvery differentfrom entering:

w
since the former writes out only a single line and the latter writes out the
wholefile.
A.4.11 P erforming Text Substitutions: s
One of the most important ed commands is the substitute (s) command.
This is the command that is used to change individual words or letters
within a line or group of lines. It is the command used to correct spelling
mistakes and entering errors.
Suppose that, due to a typingerror, line 1is:

Nowisth time

The letter “e’” has been left off of the word “the” You can use s to fix this
up asfollows:

1s/th/the/

This substitutes for the characters ‘‘th”” the characters ‘‘the” in line 1. To
verify that the substitution has worked, enter:

p
to get:

Nowisthetime
which iswhatyouwanted. Notice thatdot must be the line where the sub-
stitution took place, since the p command printed that line. Dot is always
setthis waywith thes command.
The syntaxforthe substitute command follows:

[starting- line,ending- linel s/ pattern/ replacement/ cmds
Whatever string of characters is between the first pair of slashes is replaced

by whatever is between the second pair, in all the lines between starting-
line and ending- line. Only the first occurrence on each line is changed,

A-14

5

ed

however. Changing every occurrence is discussed later in this section. The
rules for line numbhers are the same as those forp, except that dot is set to
thelastline changed. (If no substitution takes place, dot is not changed.
This displays the error message:

f,
searchstringnot found

Thus, you can enter:

1,%s/speling/spelling/
and correct the first spellingmistake on eachline in the text.
If nolinenumbers are given, the s command assumes we mean “make the
substitution on line dot” so it changes things only on the currentline. This
leads to the following sequence:

s/something/somethingelse/p
which makes a correction on the current line, then prints it to make sure
the correction worked out right. Ifit didn’t, you can try again. (Notice that
the p is on the sameline as the s command. With few exceptions, p canfol-
lowanycommand; no othermulticommand lines are legal.)
Itisalsolegaltoenter:

s/string//
which means “change the first string of characters to nothing” or, in other
words, remove them. This is useful for deleting extra words in a line or
removingextraletters from words. For instance, if you had

Nowzxxis the time
youcould enter:

s/xx//p
to show:

Nowis the ime

Noticethat two adjacent slashesmean “no characters” not a space. There
isadifference.

XENIX User’s Guide

Exercise

Experiment with the substitute command. Seewhat happens if you substi-
tute aword on a line with several occurrences of that word.
Forexample, enter:

a
the othersideofthecoin

s/the/on the/p
Thisresultsin:
on the other side of the coin

A substitute command changes only the first occurrence of the first string.
You can change all occurrences by adding a g (for “global” to the s com-
mand, asshownbelow:

sl...]...1g

Tryusing characters other than slashes to delimit thetwo sets of characters
in the s command. Anything should work except spaces or tabs.

A.4.12 Searching

Now that youhave been shown the substitute command, you can move on
to anotherimportantconcept: contextsearching,

Suppose you have the original three-line textin the buffer:

Nowis the time
for all good men
to come to the aid of their party.

Suppose you want to find the line that contains the word “their” so that you
can change it to the word “the” With only three lines in the buffer, it’s
pretty easy to keep track of which line the word “their” is on. But if the
buffer contains several hundred lines, and youhave been making changes,
deleting and rearranging lines, you would no longer really know what this
line number would be. Context searchingis simply amethod of specifying
the desired line, regardless of its number, by specifying a textual pattern
containedin the line.

The way to “search for a line that contains this particular string of charac-
ters” is to enter: '

/stringof characters wewantto find/

A-16

ed

Forexample, the ed command:
/their/

is a context search sufficient to find the desired line. It will locate the next
occurrence of the characters beiween the slashes (that is, “their””). Note
thatyou donotneed to enterthe final slash. The above search command is
the sameasentering:

_ Itheir

The search command sets dot to the line on which the pattern is found and
printsit for verification:

tocometothe aid of their party.

“Next occurrence” means that ed starts looking for the stringat line ““.+1,”
searches to the end of the buffer, then continues at line 1 and searches to
line dot. (Thatis, the search “wraps around” from $ to 1.) It scansall the
lines in the buffer until it eitherfinds the desired line, or getsback to dot. If
the given string of characters can’t be found in anyline, ed displays the
error message: :

9
search stringnotfound

Otherwise, ed displays the lineitfound. You can also search backwardsin
a file for search strings by using question marks instead of slashes. For
example:

thing?
searches backwards in the file for the word “thing"" asdoes:
Tthing

This is especially handy when you realize that the string you want is back-
wards from the currentline.

The slash and question mark are the onlycharacters you can use to delimit

a context search, though you can use any character in a substitute com-
mand. Ifyougetunexpected results usinganyof thecharacters:

L[\ &

read Section A.5, “Context and Regular Expressions.”

A-17

XENIX User’s Guide

You can do both the search for the desired line and a substitution at the
same time, as shown below:

/their/s/their/the/p
This displays:
to come to the aid of the party.

The above command contains three separate actions. The first isa context
search for the desired line, the second is the substitution, and the third is
the printing of theline.

The expression “/their/” is a context search expression. In their simplest
form, all context search expressions are a string of characters surrounded
by slashes. Context searches are interchangeable with line numbers, so
they can be used by themselves to find and print a desired line, or as line
numbersfor some other command, likes. They wereused both waysin the
previous examples.

Suppose the buffer contains the three familiar lines:
Nowisthetime
forallgoodmen
to cometo theaidof their party.

The edlinenumbers:

/Now/+1
/good/
/party/-1

are all context search expressions, and they all refer to the same line (line
2). To make a changein line 2, enter:

/Now/+1s/good/bad/
or

/good/s/good/bad/
or

/party/-1s/good/bad/

ed

The choice is dictated only by convenience. Forinstance, you could print
all three lines by entering:

/Now/,/party/p
or
" /Now/,/Now/+2p
or any similar combination. The first combination is better if you don’t

knowhow manylines are involved.

The basic rule is that a context search expression is the same as a line
number, soitcanbe used whereveraline numberisneeded.

Suppose yousearchfor:

Nisting/
and when the line is printed, you discover that itisn’t the “listing® that you
wanted, so it is necessary to repeat the search. Youdon’thave to reenter
the search, because the construction:

1/
is a shorthand expression for “the previous pattern that was searched for”

whateveritwas. This can be repeated as manytimes asnecessary. Youcan
also go backwards, since:

7?
searches for the same pattern, butin the reverse direction.

You can also use / /, as the left side of a substitute command, tomean “the
mostrecent pattern.”” For example, examine:

Nisting/
ed prints the line containing "listing".
s//good/p

This changes “listing” to “good.”. To gobackwards and change “listing” to
“good” enter:

??s//good/

XENIX User’s Guide

Exercise

Experiment with context searching. Scan through a body of text with
several occurrences of the same string of characters using the same context
search.

Try using context searches as line numbers for the substitute, print, and
delete commands. (Contextsearchescan also be used with ther, w, and a
commands.)

Try context searchingusing 2¢ext? instead of / text /. This scans linesin the
buffer in reverse order instead of normal order, which is sometimes useful
if you go too far while looking for a string of characters. It’s an easy way to
back upin the file you're editing,

If youget unexpected results with any of the characters
LS\ &

read Section A.5, “Context and Regular Expressions.”

A.4.13 Changing and Inserting Text: cand i

This section discusses the change (¢) command, which is used to change
or replace one or more lines, and the insert (1) command, which is used
forinsertingone or morelines.

The ¢ command is used to replace anumber of lines with different lines that
you type at the terminal. For example, to change lines ““.+1” through “$”
to something else, enter:

+1,%¢c
typethelinesoftextyouwanthere...

Thelines you enter between the ¢ command and the dot (.) willreplace the
originally addressed lines. This is useful in replacing a line or several lines
thathaveerrorsin them.

If only one line is specified in the ¢ command, then only that line is
replaced. (You can enter as many replacement lines as you like.) Notice
the use of a period to end the input. This works just like the period in the
append command and must appear by itself on a new line. If no line
numberis given, the current line specified by dot is replaced. Thevalue of
dot is set to the last line you typed in. Note that the terminating period and
the line referenced by dot are completely different: the first is used simply
to terminate a command, the second points at a specific line of text,

A-20

ed

Theicommand is similar to the append command. Forexample:

/string/i
type thelinesto be inserted here ...

inserts-the given text before the next line that contains “string.” The text
between i and the terminating period is inserted before the specified line. If
no line numberis specified, dotisused. Dotissetto thelastlineinserted.

Exercise

The ccommandislikea combination of delete followed byinsert. Experi-
ment to verify that: '

start,end d

itext]

is alinost the same as:

start,endc
[text]

These are not precisely the same, if the lastline gets deleted.

Experiment with a and i to see that they are similar, but not the same.
Observe that:

line-number a
[text]

appends ajter the given line, while:
line-number i

[text]

XENIX User’s Guide

inserts before it. If no line number is given, iinsertsbeforeline dot, while a
appendsafterlinedot.

A.4.14 MovingLines: m

The move (m) commandletsyoumove a group of lines from one place to
another in the buffer. Suppose you want to put the first three lines of the
bufferattheendinstead. Youcould doitby entering:

1,3wtemp
$rtemp
1,3d

where temp isthe name of a temporary file. However, you can do it easily
withthemcommand:

1,3m$
This will movelines 1 through 3to the end of the file.
The general case is:

start-line,end- linemafter- this-line
There is a third line to be specified: the place where the moved text gets
put. Of course, the lines to be moved can be specified by context searches.
Ifyouhad:

First paragraph

end of first paragraph.

Second paragraph

end of second paragraph.
you could reverse the two paragraphs like this:

/Second/,/end of second/m/First/-1

Notice the —1. The moved text goes after the line mentioned. Dot gets set
to the last line moved. Yourfile willnowlook like this:

Second paragraph

end of second paragraph
First paragraph

end of first paragraph

i

5

ed

As another example of a frequent operation, you can reverse the order of
two adjacent lines by moving the first line after the second line. Suppose
thatyouarepositioned atthefirstline. Then:

m+

moves line dot to one line after the currentline-dot. If you are positioned
onthesecond line:

m -
moves line dot to one line after the current line dot.

The m command is more efficient than writing, deleting and rereading.
The main difficulty with the m command is that if you use patterns to
specify both the lines you are moving and the target, you have to take care
to specify them properly, or you may not move the lines you want. The
result of a bad m command can be a mess. Doing the job one step at a time
makes it easier for you to verify, at each step, that you accomplished what
youwanted. Itis also a good idea to issue a w command before doing any-
thingcomplicated; then ifyoumakea mistake, it’s easyto backup to where
youwere.

For more information on movingtext, see Section A.4.18, “Marking Your
Spot in aFile:k” in this Appendix.
A.4.15 Performing Global Commands: g and v

The “global” commands g and v are used to execute one or more editing
commands on alllines that either contain g or do not contain v, a specified
pattern.

Forexample, the command:

g/XENTX/p
prints all lines that contain the word “XENIX.” The pattern that goes
between the slashes can be anything that could be used in a line search orin
asubstitute command; exactly the same rulesand limitations apply.
Forexample:

g/ \./p
prints all the trofTformattingcommands in a file. “..”. For an explanation

of the use of the caret (') and the backslash (\), see Section A.5, “Context
and Regular Expressions’ in this Appendix.

111

XENIX User’s Guide

The v, command is identical to g, exceptthatit operates on thoselines that
do not contain an occurrence of the pattern. (Mnemonically, the “v’’ can
bethoughtof as partof the word “in verse”.

For example:
v/"\./p
printsallthe lines that do notbegin with a period (i.e., the actualtextlines).

Any command can follow g or v. For example, the following command
deletesalllines that begin with ..”

g \./d
This command deletes allempty lines:

g/"$/d

Probably the most useful command that can follow a global command is
the substitute command. For example, we could change the word “Xenix”
to “XENIX” everywhere, and verify that it really worked, with:

g/Xenix/s//XENIX/gp

Notice that we used / / in the substitute command to mean “the previous
pattern” in this case, “Xenixz.”’ The p command executes on each line that
matches the pattern, not just on those in which a substitution took place.

The global command makes two passes over the file. On the first pass, all
lines that match the pattern are marked. On the second pass, each marked
lineis examined in turn, dotis setto that line, and the command executed.
This means that it is possible for the command that follows a g or v com-
mand to use addresses, set dot, and so on, quite freely. Forexample:

g/"\.P/+

ed

prints the line that follows each “.P” command (the signal for a new para-
graphin some formatting packages). Remember that plus (+) means “one
line pastdot.”” And:

g/topic/?7\.H?p

searches for each line that contains the word *‘topic” scans backwards
until it finds a line that begins with a “.IH” (a heading) and prints it, thus
showing the headings under which “topic” is mentioned. Finally:

¢/ \EQ/+,/'\.EN/-p

prints all the lines thatlie between lines beginning with “.EQ” and “.EN”
formattingcommands.

The g and v commands can also be preceded by line numbers, in which
case the lines searched are onlythose in the range specified.

It is possible to give more than one command under the control of a global
command. For example, suppose the task is to change “x” to “y*’ and “a”
to“b” onalllines that contain “thing.” Then:

g/thing/s/x/y/\
s/a/b/

is sufficient. The backslash (\) signals the g command thatthe set of com-
mands continues on the next line; the g command terminates on the first
line that does not end with abackslash.

Notethatyou cannot use a substitute command to insert anewline within a
gcommand. Watch outforthis.

Thecommand:

g/x/slly/\
s/albl/

does not work as you mightexpect. The remembered patternis the last pat-
tern that was actually executed, so sometimes it will be “x” (as expected),
and sometimes it will be “a” (not expected). You must spell it out, as
shown:

g/x/slx/y/\
s/alb/

XENIX User’s Guide

It is also possible to execute a, ¢ and i commands as part of a global com-
mand. As with othermultiline constructions, add a backslash atthe end of
each line except the last. Thus, to add an ““.nf”” and “.sp”’ command before
each “.EQ” line, enter:

g/"\.EQ/i\
.af\
.sp

There is no needfor afinal line containing a period (.) to terminate the i
command, unless there are further commands to be executed under the
globalcommand.

A.4.16 Displaying Tabs and Control Characters: 1

ed provides two commands for printing the contents of the text you are
editing. Youshould already be familiar with p, in combinations like:

1,%p
to print all thelinesyou are editing, or:
s/abc/def/p

to change “abc” to “def” on the current line. Lessfamiliaris the “list” (1)
command which gives slightly more information than p. In particular, 1
makesvisible characters that are normally invisible, such as tabs and back-
spaces. If youlist a line that contains some of these, 1 prints each tab as
“>? and each backspace as ‘“‘<” This makes it much easier to correct the
sort of entering mistake thatinserts extra spaces adjacentto tabs, orinserts
abackspace followed by a space.

Thel command also “folds’ long lines for printing. Anyline that exceeds
72 charactersis printed on multiple lines; each printed line except the last is
terminated by a backslash (\), so you can tell it was folded. This is useful
for printinglines longer than the width of your terminal screen.

Occasionally, the 1 command will print a string of numbers preceded by a
backslash, such as \O7 or\16. These combinations are used to make visible
characters that normally don’t print, like form feed, vertical tab, or bell.
Eachbackslash-number combination represents a single ASCII character.
Note that numbers are octal and not decimal. When yousee such charac-

- ters, be aware that they may have surprising meanings when printed on
some terminals. Often, their presence indicates an error in entering,
because theyarerarelyused.

A-26

ed

A.4.17 Undoing Commands: u
Occasionally, you will make a substitution in a line, only to realize too late
thatit was amistake. Theundo (u)command, letsyou “undo” the last
substitution. Thus the last line that was substituted can be restored to its
previous state by entering:

u

This command does notwork with the g and vcommands.

A.4.18 Marking Your SpotinaFile: k
The mark command, k, provides a facility formarkingaline with a particu-
lar name, so that you can later reference it by name, regardless of its actual
linenumber. Thiscan be handyformovinglines andkeepingtrack of them
astheymove. Forexample:

kx
marks the current line with the name “x.” If a line number precedes the k,

that line is marked. (The mark name must be a single lowercase letter.)
Youcanreferto themarked line with thenotation:

,

X

Note the use of the single quotation mark (“) here. Marks are very useful
for moving things around. Find the first line of the block to be moved and
then mark it with:

ka
Then find thelastline and mark it with:

kb

Go to the placewhere the textis to be inserted and enter:

“a,”bm.

A line can have only one mark name associated withitatany given time.

A-27

XENIX User’s Guide

A.4.19 Transferring Lines: t

We mentioned earlier the idea of savinglines that are hard to type or used
often, to cutdown on entering time. ed provides another command, called
t (for transfer) for making a copy of a group of one or more lines at any
point. This is often easier than writing and reading.

Thet command is identical to the m command, except thatinstead of mov-
inglines it simply duplicates them at the place you named. Thus:

1.5t
duplicatesthe entirecontentsthatyouareediting.

A common usefortis to createa series of lines that differ only slightly. For
example, you can enter:

a
Nowis thetimeforallgood men to come to the aid of their party.

t. [make a copy]
s/men/women/ [changeit a bit]
t [make third copy]

s/Nowis/ yesterdaywas/ [change it abit]

Yourfile willlook like this:
Nowis thetime forallgoodmen to come to the aid of their party.

Now is the timie for all good women to come to the aid of theirparty.
Yesterday was the time forall good women to come to the aidof theirparty.

A.4.20 Escaping to the Shell: !
Sometimes it is convenient to temporarily escape from the editor to exe-
cute a XENIX command without leaving the editor. The shell escape (!)
command, provides awayto do this.
If youenter:

lcommand
your current editing state is suspended, and the XENIX command you

asked for is executed. When the command finishes, ed will signal you by
printinganother exclamation (*). At that point, you can resume editing.

A-28

A

™

ed

A.5 Context and Regular Expressions

Youmay have noticed that things don’t work right when you use characters
such as the period (.), the asterisk (*), and the dollar sign ($) in context
searches and with the substitute command. Thereason is rather complex,
although the solution to the problem is simple. ed treats these characters
as special. Forinstance, in acontext search or the firststringof the substi-
tute command, the period (.) means “anycharacter” not a period, so:

Ix.y/
means a line with an “x’ any character, and a “y”’notjust aline with an “x”
aperiod, and a “y” A complete list of the special characters that can cause
problems follows:

TSN/
The next few subsections discuss how to use these characters to describe
patterns of text in search and substitute commands. These patterns are
called “regular expressions” and occur in several other important XENIX
commands and utilities, including grep (C), sed(C) (See the XENIX Refer-
ence Manual).

Recall that a trailingg after a substitute command causes all occurrences to
bechanged. With:

s/this/that/
and
s/this/that/g
The first command replaces the first “this” on theline with “that.” If there

is more than one “this” on the line, the second form with the trailing g
changesall of them.

A-29

XENIXUser’s Guide

Either form of the s command can befollowed by p or1to print or list the
contents of the line. For example, all of the following are legal and mean
slightly different things:

s/this/that/p
s/this/that/]
s/this/that/gp
s/this/that/gl
Make sure you know what the differences are.

Of course, any s command can be preceded by one or two line numbers to
specify that the substitution is to take place on a group of lines. Thus:

1,$s/mispell/misspell/

changes the first occurrence of “mispell” to “misspell” in each line of the
file. But:

1,$s/mispell/misspell/g

changesevery occurrence ineachline (and thisis morelikely to be what you
wanted).

Ifyouadd ap orltothe end of any of these substitute commands, only the
lastline changed is printed, not all the lines. We will talk later abouthow to
print all the lines that were modified.

A.5.1 Period: (.)

The first metacharacter that we will discuss is the period (.). On the left
side of a substitute command, or in a search, a period stands for any single

character. Thusthesearch:

Ixy/

N

e

ed

finds any line where “x” and “y” occur separated by a single character, as
in:

x+y
x-y
Xy
xzy
andso on.

Since a period matches a single character, it gives you a way to deal with
funnycharacters printed byl. Suppose you have a line thatappears as:

th\07is

when printed with the 1 command, and that you want to getrid of the \07,
which represents an ASCIIbell character.

The most obvious solution is to enter:

s/\07//

but this will fail. Another solution is to retype the entire line. This is
guaranteed, and is actually quite reasonable if the line in question isn’t too
big. But for a very long line, reentering is not the best solution. This is
where the metacharacter “..” comesin handy. Since \Q7reallyrepresentsa
single character, if we enter:

s/th.is/this/

the job is done. The period matches the mysterious character between the
“h” and the “i” whateveritis.

Sincethe period matches any single character, thecommand:
sl./,/

converts the first character on a line into a comma (,), which very often is
notwhatyouintended. The special meaning of the period can be removed
byprecedingit with abackslash.

As is true of many characters in ed, the period (.) has several meanings,
dependingonitscontext. Thislineshowsall three:

.sl.d./

The first period isthe line number of the line we are editing, which is called
“dot.” The second period is a metacharacter that matches any single char-
acter on that line. The third period is the only one that reallyis an honest,
literal period. (Remember that a period is also used to terminate input

A-31

XENIX User’s Guide

from the a and i commands.) On the right side of a substitution, the period
(.)is notspecial. If you applythis command to the line:

Nowis the fime.
theresultis:
.owisthetime.

which is probably not what youintended. To changethe period at the end
of thesentenceto acomma, enter:

s/\./,/
The special meaning of the period can be removed by preceding it with a
b ackslash.
A.5.2 Backslash: \
Since a period means “any character” the question naturally arises: what
do you do when you really want a period? For example, how do you con-
verttheline:

Nowis the time.
into

Nowis the time?
The backslash (\), turns off any special meaning that the next character
might have; in particular, “\”converts the “.”’ from a
“match anything”
into a literal period, so youcan use it to replace the period in “Now is the
time.” like this:

s/\./?/
The pairof characters “\.” is considered byed to be a single real period.
The backslash can also be used when searchingforlinesthat contain a spe-
cial character. Suppose youarelookingfor aline that contains:

atthe start ofaline. Thesearch:

/.DE/

A-32

=

-

ed

isn’t adequate, foritwill find lines like:
JADE
FADE
MADE

because the““.” matchestheletter A’ on each of thelinesin question.
Butif you enter:

N\.DE/
onlylines that con-tain “.DE” arefound.
The backslash can be used to turn off special meanings for characters other
than the period. For example, consider finding a line that contains a
backslash. Thesearch:

N
will not work, because the backslash (\) isn’t a literal backslash, but
instead means that the second slash (/) no longer delimits the search. By
preceding a backslash with another backslash, you can search for a literal
backslash:

A\Y}
You can search for aforward slash (/) with:

N

The backslash turns off the special meaning of the slash immediately fol~
lowing, so that it doesn’t terminate the slash-slash construction prema-
turely.

A miscellaneous note about backslashes and special characters: you can
use any character to delimit the pieces of an s command; there is nothing
sacred aboutslashes. (Butyoumustuse slashesfor context searching.) For
instance, in aline that contains several slashesalready, such as:

//exec //sysfort.go//etc...
you could use a colon as the delimiter. T o delete all the slashes, enter:

si/:g
The resultis:

exec sys.fort.go etc...

A-33

XENIXUser’s Gnide

When you are adding text with a or i or ¢, the backslash has no special
meaning, and youshould only putin one backslash for each one you want.
Exercise
Find two substitute commands, each of which converts theline:

\x\.\y
into theline:

\x\y

Here are several solutions; you should verif y that each works:

s/\\\.//
s/x../x/
s/..yly/

A.5.3 DollarSign: $

The dollar sign “$” stands for “the end of the line.” Suppose you have the
line:

Nowis the

and you want to add the word “time” to the end. Use the dollar sign ($) as
shownbelow:

s/$/time/
to get:

Nowis the time

A-34

ed

A space is needed before “time” in the substitute command, or you will
get:

Nowis thetime
You can replace the second comma in the following line with a period
withoutalteringthe first.

Nowis the time, for all good men,
The command needed is:

s/,$1./
to get:

Nowis the time, for all good men.
The dollar sign ($), here, provides context to make specific which comma
we mean. Without it, the s command would operate on the first comma to
produce:

Nowis the time. forall good men,

To convert:
Now is the time.
into: .
Nowisthetime?

aswedid earlier, we can use:

s/.$/
Liketheperiod (.), the dollarsign (§) has multiple meanings depending on
context. Inthefollowingline:

$s/$/$/

the first “$” refers to the last line of the file, the second refers to the end of
thatline, and the thirdisa literaldollar signto be added tothatline.

XENIXUser’s Guide

A.5.4 Caret:”

The caret (") stands for the beginning of the line. For example, suppose
you arelookingfor aline that begins with “‘the.” If you enter:

/the/

you will probably find several lines that contain “the” in the middle before
arriving at the one you want. But, by entering:

[‘the/
younarrow the context, and thusarrive at the desired line more easily.

The other use of the caret (") enables you to insert something at the begin-
ningof aline. Forexample:

sl™t/
placesaspaceatthebeginningofthe currentline.

Metacharacters can be combined. To search for a line that contains only
the characters:

.P

you can use the command:

I\.P$/

A.5.5 Star: *
Supposeyouhavealine thatlookslike this:
textx ytext

where “text’ stands for lots of text, and there are an indeterminate number
of spaces between the “x” and the “y.”” Suppose the job is to replace all the
({5)]

spaces between “x” and “‘y” with a single space. The line is too long to
retype, and there are too many spaces to count.

This is where the metacharacter “star” (*) comes in handy. A character
followed by a star stands for as many consecutive occurrences of that char-
acter as possible. Torefer to all the spaces atonce, enter:

s/x*y/xy/

A-36

ed

The “* means “as many spaces aspossible.” Thus “x *y’meansan “x” as
({3}

manyspaces as possible, then a“‘‘y

The star can be used with any character, not just a space. If the original
example was:

then all minus signs (-) can be replaced by a single space with the com-
mand:

s/x—*y/xy/

Finally, suppose that the line was:

Ifyouenter:

s/x.*y/xy/
The result is unpredictable. If there are no other x’s or y’s on the line, the
substitution will work, but not necessarily. The period matches any single
character so the “.*’ matches as many single characters as possible, and

unlessyou are careful, it canremove more of the line than you expected.
Forexample,ifthelineis:

then entering:
s/x.*y/xy/

takes everything from the first “x” to the last “y” which, in this example, is
morethan youwanted.

The solution is to turn off the special meaning of the period (.) with the
backslash (\):

s/x\.*y/xy/

Now the substitution works, for “\.*”” means ‘‘as many periods as possi-
ble.”

There are times when the pattern ““.*” is exactly whatyou want. Forexam-
ple, tochange:

Nowis the time for allgood men

A-37

XENIX User’s Guide

into:
Nowisthe time.
use “.*” toremoveeverythingafter the “for.”
s/ for.*/./
There are a couple of additional pitfalls associated with the star (*). Most
notableis the fact that “as many as possible’ means zero or more. The fact

that zero is a legitimate possibility, is sometimes rather surprising. For
example, if our line contained:

xyCJtext] B T y[Ttext
where the squares represent spaces, and we entered:

s/x*y/=y/
the first “xy”’ matches this pattern, forit consists of an “x’ zero spaces, and
a “y.” The result is that the substitute acts on the first “xy”’ and does not
touch the later one that actually contains some interveningspaces.
The wayaround thisis to specify a pattern like:

I=COy/

€22

whichsaysan “x’’ aspace, then as many more spaces as possible, and then
a “y” (i.e., one or more spaces).

The other pitfall associated with the star (*) again relates to the fact that
zero is alegitimate number of occurrences of somethingfollowed by a star.
The command:

s/x*/ylg
when applied to the line:

abcdef

produces:

yaybycydyeyfy

/r'-.‘\.

ed

which is almost certainlynot what was intended. The reason for thisis that
zero is a legitimate number of matches, and there are no x’s at the begin-
ningoftheline (so that getsconvertedinto a “y,” nor between the “a” and
the “b” (so thatgets converted into a““y,” and so on. Ifyoudon’twant zero
maltches, enter:

s/xx*/ylg

since “xx*” is one or more x’s.

A.5.6 Brackets: [and]

Suppose that you want to delete any numbers that appearat the beginning
of alllinesof a file. Youmighttrya series of commandslike:

1,8s/71*//
1,3s/72%//
1,3s/°3*//

and so on, but this is clearly going to take forever if the numbers are long.
Unless you want to repeat the commandsoverand over, untilfinally all the
numbers are gone, you must get all the digits on one pass. That is the pur-
pose of the brackets.

The construction:
[0123456789]
matches any single digit; the whole thing is called a “character class.” With

a character class, the job is easy. The pattern “[0123456789]* matches
zero or more digits (an entire number), so:

1,3s/7[0123456789]*//
deletes all digits from the beginning of alllines.

Any characters can appear within a character class, and there are only
three special characters (,], and-) inside the brackets; even the backslash
doesn’t have a special meaning. To search for special characters, for
example, youcan enter:

1L\

It’s a nuisance to have to spell out the digits, so you can abbreviate them as
[0-9]; similarly, [a—z] stands for the lowercase letters, and [A~Z] for
uppercase.

A-39

XENIX User’s Guide

Within [], the “[” is not special. To get a “J”” (or a “~” into a character
class, make it the first character.

You can also specify a class that means “none of the following characters.”
Thisisdonebybeginningthe class with acaret ("). Forexample:

[0-9]

stands for “anycharacter except a digit.” Thus, you might find the firstline
that doesn’t begin with a tab or space with asearchlike:

/I"[(space)(tab)}/
Within a character class, the carethas a special meaningonlyif it occurs at
thebeginning. Verifythat:

Ty
finds aline that doesn’t begin with a caret.
A.5.7 Ampersand: &
To saveentering, the ampersand (&) can be used in substitutions to signify
the string of text that was found on the left side of a substitute command.
Suppose you have the line:

Nowisthe time
and you want to make it:

Nowisthebesttime
Youcanenter:

s/the/the best/
It’s unnecessary to repeat the word “the.” The ampersand (&) eliminates
this repetition. On the right side of a substitution, the ampersand means

“whatever was just matched” so you can enter:

s/the/& best/

ed

and the ampersand will stand for ““the.” This isn’t much of a savingif the
thing matched is just “the” but if the match is very long, orif it is something
like “.¥*”whichmatches alot of text, you can save some tedious entering.
There is also much less chance of making an enteringerror in the replace-
ment text. For example, to put parentheses in a line, regardless of its
length, enter:

s/ *(&)/

The ampersand can occur more than once on theright side. Forexample:
s/the/ & best and & worst/
makes:
Nowisthebest and the worsttime
and:
s/ *¥1&? &N/
converts the originalline into:
Nowis thetime? Nowis the time!!
To get aliteral ampersand, use the backslash to turn off the special mean-
ing. Forexample:
s/ampersand/\&/
converts the word into the symbol. The ampersand is not special on the
leftside of a substitute command, onlyon therightside.
A.5.8 Substituting New Lines
ed provides a facility for splitting a single line into two or more shorter lines
by “substituting in a newline.” For example, suppose a line has become
unmanageably longbecause of editing. If it looks like:
....textxytext.....

youcanbreakitbetween the “x’ and the “y” likethis:

s/xy/x\
y/

A-41

XENIX User’s Guide

This is actually a single command, although it is entered on two lines.
Because the backslash (\) turns off special meanings, a backslash at the
end of aline makes the newline there no longer special.
You can, in fact, make a single line into several lines with this same
mechanism. Asanexample, consideritalicizingtheword “very”in along
line by splitting ““very” onto a separate line, and preceding it with the for-
mattingcommand “.I.”” Assume the line in question looks like this:

text a verybigtext
The command:

s/ very/\

I\

very\

/

converts the line into four shorter lines, precedingthe word “very” with
theline “.I”’ and eliminating the spaces around the “very” at the same time.

When a newline is substituted in a string, dot is left at the last line created.

A.5.9 JolningLines

Lines maybe joined together, with the j command. Assume that you are
given the lines:

Nowis
the time

Suppose that dotis setto the firstline. Thenthe command:
i

joins them together to produce:
Nowis the time

No blanks are added, which is why a blank was shown at the beginning of
the second line.

N

ed

All by itself, aj command joinsthe lines signified by dot and dot™+71, but
any contiguous set of lines can be joined. Just specify the starting and end-
inglinenumbers. Forexample:

1,%jp

joinsallthelinesinafileinto onebigline and prints it.

A.5.10 Rearranginga Line: \(and\)

Recall that “&” is shorthand for whatever wasmatched by the left side of
ans command. In muchthe same way, you can capture separate pieces of
what was matched. The only difference is that you have to specify on the
left side just what pieces you’re interested in.

Supposethatyouhave afile of lines that consist of names in the form:

Smith, A.B.
Jones, C.

and so on, and youwant theinitialsto precede the name, asin:

A, B. Smith
C.Jones

Itis possible to do this with a series of editing commands, butitis tedious
and error-prone.

The alternative is to “tag” the pieces of the pattern (in this case, the last
name, and the initials), then rearrange the pieces. On theleftside of a sub-
stitution, if part of the pattern is enclosed between \(and \), whatever
matched that part is remembered, and available for use on the right side.
On the right side, the symbol, “\1” refers to whatever matched the first
\(...\) pair; “\2”to the second\(...\), and so on.

Thecommand:
1,$s/”\([.*]\), GV TAVAVY)

although hard to read, does the job. The first \(...\), matches the last
name, which is any string up to the comma; this is referred to on the right
side with “\1.” The second \(...\), is whatever follows the comma and any
spaces, and isreferred to as “\2.”

With any editing sequence this complicated, it is unwise to simply run it
and hope. The global commands, g and v, provide a way for you to print
exactly those lines which were affected by the substitute command, and
thus, verify that it did what you wanted in all cases.

XENIX User’s Guide

A.6 Speeding Up Editing

One of the most effective ways to speed up your editing is knowing what
lines will be affected by a command. If you do not specify the lines it is to
act on, and on what line you will be positioned (i.e., the value of dot)when
a command finishes, your editingspeed is slowed. If you can edit without
specifying unnecessary line numbers, you can save a lot of entering.

For example, if you issue a search command like:
/thing/

you are left pointing at the nextline that contains “thing.”” Then no address
isrequired with commandslike s, to make a substitution on thatline, or p,
to printit, orl, tolistit, ord, to deleteit, or a, to append text afterit, ore,
tochangeit, ori, toinsert textbefore it.

Whathappens if there is no occurrence of “thing.” Dotis unchanged. This
is also true if the cursor was on the only occurrence of “thing” when you
issued the command. The same rules hold for searches that use ?...?7; the
only difference is the direction in which you search.

The delete command, d, leaves dot pointing at the line that followed the
last deleted line. When the line dollar ($) gets deleted, however, dot points
atthe newline$.

The line-changing commands a, ¢, and i, by default, all affect the current
line. If you give no line number with them, a appends text after the current
line, ¢ changes the currentline, and i inserts text before the currentline.

The a, ¢, and i commands behave identically in onerespect; whenyoustop
appending, changing or inserting, dot points at the last line entered. Thisis
exactly what you want when entering and editingon the fly.

Forexample, youcan enter:

a
text
botch (minorerror)

s/botch/correct/ (fixbotched line)
a
more text

T

ed

without specifying any line number for the substitute command or for the
second append command. Oryoucan enter:

a
text
horriblebotch (major error)

c (.r.épla.ce. entire line)
fixedupline

Experimentto determine what happensif you add no lines with an a, ¢, ori
command.

Ther command readsa fileinto the text beingedited, attheend if you give

no address, or after the specified line if you do. In either case, dot points at
the last line read in. Remember that you can even enter:

Or

toread afilein at the beginning of the text. (You can also enter Oz or Zito
start addingtextatthe beginning.)

The wcommand writes out the entire file. If you precede the commandby
one line number, that line is written out. If you precede it by two line
numbers, that range of lines is written out. The w command does not
change dot: the current line remains the same, regardless of what lines are
written out. Thisistrue even if you enter something like:

/'\.AB/,/'\.AE/wabstract
whichinvolvesa context search.

(Since thew command s so easyto use, you should save what you are edit-
ing regularly, asyougoalongjust in case the system crashes, orin case you
accidentally delete what you’re editing,)

The general rule is simple: you are left sitting on the lastline changed; if
there were no charges, then dotis unchanged. To illustrate, suppose that
there are three lines in the buffer, and the line given by dot is the middle
one:

x1
x2
x3

XENIXUser’s Guide

Then the command:
—,+s/xlylp

prints the third line, which is the last one changed. But if the three lines
hadbeen:

x1

2
3

and the same command had been issued while dot pointed at the second
line, only the first line would be changed and printed, and that is where dot
wouldbeset.

A.6.1 Semicolon: ;

Searches with /.../ and ?...? start at the current line and move forward or
backward, respectively, until theyeitherfind the pattern, or get back to the
current line. Sometimes, thisisnotwhatyou want. Suppose, for example,
that the buffer containslineslikethis: .

a.b
be

Starting at line 1, youwould expectthe command:
/al /blp

to print all the lines from the “ab’ to the “bc” inclusive. This is not what
happens. Both searches (for “a” and for “b” start from the same point,
and thus, they both find the line that contains “ab.” As a result, a single
line is printed. Worse, if there had been a line with a “b” in it before the
“ab” line, then the print command would be in error, since the second line
number would be less than the first, and it is illegal to try to print lines in
reverse order.

This is because the comma separator for line numbers doesn’t set dot as

each address is processed; each search starts from the same place. In ed,
the semicolon (;) can be used just like the comma, with the single

A-46

-~

ed

difference that use of a semicolon forcesdot to be set atthe timethe semi-
colon is encountered, as the line numbers are being evaluated. In effect,
the semicolon “moves” dot. Thus, in our example above, the command:

/al;/blp
prints the range of lines from “ab” to “bc¢” because after the “a” isfound,
dot is set to that line, and then “b” is searched for, starting beyond that
g bey

line.

This property is most useful in a very simple situation. Suppose you want
to find the secondoccurrence of “thing.” You could enter:

/thing/
/!

but this prints the first occurrence as well as the second, and is a nuisance
when youknowverywell thatitis onlythe second oneyou’reinterested in.
The solution isto enter:

/thing///

This says “find the first occurrence of “thing” set dot to that line, then find
the second occurrence and printonlythat”.

Closelyrelated is searching for the second tolast occurrence of something,
asin:

7something?;??
Finally, bear in mind that if you want to find thefirst occurrence of some-
thingin afile, starting at an arbitrary place within the file, itis not sufficient
to enter:
1;/thing/
because, if“thing” occurs on line 1, it will notbe found. The command:
0;/thing/

will work because it starts the search atline 1. This isoneofthe fewplaces
whereOis alegalline number.

XENIX User’s Gnide

A.6.2 Interrupting the editor

As a final note on what dot gets set to, youshould be aware that if you press
the INTERRUPT key while ed is execuding a command, your file is
restored, as much as possible, to what it was before the command began.
Naturally, some changes areirrevocable; if youarereadingin or writingout
a file, making substitutions, or deleting lines. These will be stopped in
some unpredictable state in the middle (which is whyit usuallyisunwise to
stopthem). Dotmayormaynotbe changed.

If you are using the print command, dotis notchanged until the printingis
done. Thus, ifyoudecideto printuntilyousee an interestingline, and then
press INTERRUPT, to stop the command, dot will not be set to that line or
even nearit. Dotisleftwhere itwas when thep command was started.

A.7 Cuntting and Pasting with the editor

This section describes how to manipulate pieces of files, individual lines or
groups of lines.

A.7.1 Inserting One File Into Another

Suppose you have a file called memo, and you want the file called zable to
be inserted just after a reference to Table 1. That is, in memo, somewhere
is aline that reads:

Table 1showsthat...
andthedatacontainedin table hasto gothere.

To put table into the correct place in the file edit memo, find “Table 1” and
add thefile tableright there:

ed memo
/Table1/
response fromed
.T table

Thecritical line is thelast one. The r command reads a file; hereyouasked
forit to be read in right afterline dot. Anxrcommand, without any address,
adds lines at the end, so it is the same as “$r.”

ed

A.7.2 Writing OutPartofa File

The other side of the coin is writing out part of the document you’re edit-
ing. For example, you may want to split the table from the previous exam-~
pleinto a separate file so it can be formatted and tested separately. Sup-
pose that in the file beingedited we have:

TS
[lots of stuff]
TR

which is the waya tableis setupforthe tbl program. To isolate thetablein
a separate file called zable, first find the start of the table (the ““.TS” line),
then write out theinteresting part. For example, firstenter:

I"\.TS/
This prints out the found line:
.TS
Nextenter:
./"\.TE/wtable
and thejob is done. Note thatyou can do itallat once with:

IN\.TS/;/"\.TE/wtable

The point is that the'w command can write out a group of lines, instead of
the whole file. In fact, you can write out a single line if you like; just give
one line number instead of two. If you have just entered a complicated line
and you know that it (or somethinglike it) is goingto be needed later, then
saveit, do notretypeit.

Forexample, in the editor, enter:

a
lotsof stuff
horrible line

W temp
a
more stuff

.rtemp

a
more stuff

A-49

XENIX User’s Guide

A.8 Editing Scrip#s

If a fairly complicated set of editing operationsis to be done on a whole set
of files, the easiest thing to do is to make up a “script” (i.e., a file that con-
tains the operadons you want to perform, then apply this scriptto each file
inturn).

For example, suppose you want to change every “Xenix” to “XENIX"’ and
every “USA” to “America” in a large number of files. Enter the following
linesinto the file script:

g/Xenix/s//IXENI/g
g/USA/s//Americalg

\
q

Nowyoucan enter:

ed —filel <script
ed~-file2 <script

Thiscauses ed to takeits commands from the prepared file script. Notice
that the whole job has to be planned in advance, and that by using the
XENIX shell command interpreter, you can cycle through a set of files
automatically. The dash () suppresses unwanted messages from ed.

When preparing editing scripts, you mayneed to place a period as the only
character on a line to indicate termination of input from an a or i com-
mand. This is difficult to do in ed, because the period you type will ter-
minate input rather than be inserted in thefile. Usinga backslash to escape
the period won’t work either. One solution is to create the script using a
character such as the at-sign (@), to indicate end of input. Then, later, use
thefollowingcommand to replacethe at-sign with a period:

s @$/./

A-50

—

ed

A.9 SummaryofCommands

This following is a list of all ed commands. The general form of ed com-
mands is the command name, preceded by one or two optional line
numbers and, in the case of e, f, r, and w, followed by a filename. Onlyone
command is allowed per line, but ap command may follow any othercom-
mand (excepte, f,r,w, and q). :

a Appends, i.e., adds lines to the buffer (at line dot, unless a
differentlineisspecified). Appendingcontinuesuntila period
is entered on a new line. The value of dot is set to the last line
appended.

c Changes the specified lines to thenew text which follows. The
newlines are terminated by a period on a new line, aswith a.
If no lines are specified, replace line dot. Dotis set to the last
line changed.

d Deletes the lines specified. If none are specified, deletes line
dot. Dotissetto the first undeleted line followingthe deleted
lines unless dollar ($) is deleted, in which case dot is setto dol-
lar.

e Edits a new file. Any previous contents of the buffer are
thrown away, so issue aw command first.

f Prints the remembered filename. If aname followsf, then the
remembered name is set to it.

g The command g/ string /commands executes commands on
those lines that contain string, which can be any context
search expression.

i Inserts lines before specified line (ordot) until a single period

istyped on anew Jine. Dot is set to thelastlineinserted.

1 Lists lines, making visible nonprinting ASCII characters and
tabs. Otherwise similartop.

m Moves lines specified to after the line named after m. Dot is
settothelastlinemoved.

p Prints specified lines. If none are specified, print the line
specified by dot. A single line numberis equivalent to a com-
mand. A singleRETURN prints ““.+1” thenextline.

q Quits ed. Your work is not saved unless youfirstgive a w com-
mand. Giveittwicein arowto abortedit. '

XENIX User’s Guide

Reads a file into buffer (at end unless specified elsewhere).
Dotissetto thelastline read.

The command “s/ stringl / string2 /”’ substitutes the pattern
matched by stringl with the string specified by string2 in the
specified lines. If no lines are specified, the substitution takes
place only on the line specified by dot. Dot is set to the last
line in which a substitution took place, which means that if no
substitution takes place, dot remains unchanged. The s com-
mand changes onlythe first occurrence of stringl on a line; to
change multiple occurrences on a line, enter a g after the final
slash.

Transfers specified lines to the line named aftert. Dotissetto
thelastlinemoved.

The command v/ string / commands executes commands on
those lines that donot contain string.

Undoes the last substitute command.
Writes out theeditingbufferto afile. Dot remains unchanged.

Printsvalue of dot. (An equalsign by itself prints the value of
$.)

fcommand

[stringl/

2string ?

Thelinelcmd-line causes cmd-line to be executed as a XENIX
command.

Context search. Searches for next line which contains this
string of characters and prints it. Dot is set to the line where
stringwasfound. The search starts at.+1, wraps around from
$to 1, and continues to dot, if necessary.

Context search in reverse direction. Starts search at .1 ,
scansto 1, wraps around to $.

Bt IR P

Index

Argument (continued)
substitution sequence 4-20
test command argument 4-40
CHARACTERS fest com,
expr command effect 4-41
Arithmetic bc

. c‘;)inzu_r;and askcc option mail
{} command Braces command ({ }) f:;seu!:fc(t*ﬁ’ ption mail
: command Colon command (:) bcn

. command Dot command (.)

! command escape command (!)

/ command vi

$# variable, argument recording 4-14
$? variable, command exit status 4-15
$- variable, execution flags 4-15

$$ variable, process number 4-15

0 command vi

comment convention 5-13, 5-14
multiplication operator symbol 5-2, 5-4
directory name, use avoidance 4-4
mail
-character matching 3-8
message saved, header notation 3-17, 3-1¢
metacharacter 4-3, 4-59
pattern matching metacharacter
special shell variable 4-20
At sign (@), mail 3-31, 3-41
A auto command, bc 5-19
autombox option mail
autoprint option mail
a command
alias 3-13
appending ed B
ed use ed
mail 3-13, 3-21, 3-35
-a operator 4-40

» pe. b command vi

: ﬁgg;non be -b option
command 3-13 Barg]z:;rg;i%l job
C-shell use 7-7 C-shell use C-shell

Ampersand (&)
see also And-if operator (&&)
background process 4-22, 4-59
command list 4-21

Background process
$! variable 4-15
ampersand (&) operator 4-22, 4-59
dial-up line

ed use ed

. s . Ctrl-d effect 4-22
interrupt, quit immunity 4-22 nohu

. - p command 4-22
jobs to other computers 4-22 INTERR UPT immunity 4-22

metacharacter ed s .
off-line printing 4-22 QUIT immunity 4-22

use restraint 4-22
And-if operator (&&) Bal;::(slash)
gggé:;agg;:lsltj;—iizz comment conventipn 5-13, 5-14
desi };te d 3_59 line continuatioff notation 5-6
A C-shell use C-shell
Append ed ed

ed procedure ed bol O line continuation notation 4-51
output append symbol Qutput metacharacter escape 4-4

Argument i
quoting 4-59
ﬁ.lename.4-3 BACKSPACE key
list creation 4-3 be 5-2
mail commands 3-9 mail 3-12, 3-6
number checking, $# variable 4-15 be ’

processing 4-19
redirection argument location 4-9
shell argument passing 4-19

addition operator
evaluation order 5-15

I-1

Index

bc (continued)
addition operator (continued)
left to right binding 5-4
scale 5-17, 5-6
symbol (+) 5-4
additive operator
see also Specific Operator
left to right binding 5-17
alphabetic register storage register
arctan function
availability 5-1
loading procedure 5-13
array
auto array 5-19
characteristics 5-14
identifier 5-14, 5-20
name 5-9
named expression 5-15
one-dimensional 5-9
assignment operator
designated, use 5-18
evaluation order 5-15
positioning effect 5-5
symbol (=) 5-5
assignment statement 5-12
asterisk (*)
comment convention 5-13, 5-14

multiplication operator symbol 5-2, 5-4

auto
command 5-19
keyword 5-14
statement
built-in statement 5-20
backslash (\)
comment convention 5-13, 5-14
line continuation notation 5-6
BACKSPACE key 5-2
bases 5-5
bc command
file reading, execution 5-13
invocation 5-1
bc -1 command 5-13
Bessel function
availability 5-1
loading procedure 5-13

braces ({})

compound statement enclosure 5-19

function body enclosure 5-8
brackets ([])

array identifier 5-14

auto array 5-19

subscripted variable 5-9
break, keyword 5-14
break statement

built-in statement 5-20
built-in statement 5-20
caret ('), exponentiation operator

symbol 5-4
command bc command

I-2

be (continued)
comment convention 5-13, 5-14
compound statement 5-19
constant
composition 5-14
defined 5-15
construction
diagram 5-13
space significance 5-13
control statements 5-10
cos function
availability 5-1
loading procedure 5-13
define, keyword 5-14
define statement
built-in statement 5-20
description, use 5-20
demonstration run 5-1
description 5-1
division operator
left to right binding 5-17, 5-4
scale 5-17, 5-7
symbol (/)5-4
equal sign (=)
assignment operator symbol 5-5
relational operator 5-10, 5-19
equivalent constructions diagram 5-13
evaluation sequence 5-2
exclamation point (!)
relational operator 5-10, 5-19
exit 5-2, 5-3
exponential function
availability 5-1
loading procedure 5-13
exponentiation operator ‘
right to left binding 5-17, 5-4
scale 5-17, 5-7
symbol () 5-4
expression
enclosure 5-15
evaluation order 5-15
named expression 5-15
statement 5-19
for, keyword 5-14
for statement
break statement effect 5-20
built-in statement 5-20
description, use 5-10
format 5-21
range execution 5-11
relational operator 5-18
function
argument absence 5-9
array 5-9
calling function call
definition procedure 5-8
form 5-8
identifier 5-14
name 5-8

Index

be (continued) be (continued)
frction (continued) minus sign (-) (continued)
parameters 5-8 subtraction operator symbol 5-4
return statement return statement unary operator symbol 5-16, 5-4
. terinination, return statement 5-21 modulo operator
,/_h " variable automatic 5-8 left to right binding 5-17, 5-4
i . functon call scale 5-17, 5-7
N defined 5-16 symbol (%) 5-4
description 5-16 multiplication operator
. evaluation order 5-15 . see also Specific. Operator . .
procedure 5-9 evaluation order 5-15
syntax 5-16 left to right binding 5-17, 5-4
global storage class 5-19 scale 5-17, 5-7
greater-than sign (>), relational symbol (*)} 5-2, 5-4
operator 5-10, 5-19 named expression 5-15
hexadecimal digit negative number, unary minus sign (-) 5-4
ibase 5-5 obase
obase 5-6 conversion speed 5-6
: value 5-14 defined 5-15
' ibase description 5-6
; decimalinput setting 5-6 hexadecimal notation 5-6
: defined 5-15 initial setting 5-6
initial setting 5-5 keyword 5-14
keyword 5-14 named expression 5-15
named expression 5-15 variable 5-7
setting 5-5 operator
variable 5-7 see also Specific Operator
identifier designated, use 5-4
array array parentheses (())
auto statement effect 5-20 expression enclosure 5-15
/—\ i description 5-14 function identifier argument
_/ global 5-19 enclosure 5-14
local5-19 percentage sign (%), modulo operator
named expression 5-15 symbol 5-4
value 5-19 plus sign (+)
. if, keyword 5-14 addition operator symbol 5-4
. if statement unary operator symbol 5-16
: built-in statement 5-20 program flow alteration 5-10
i description, use 5-10 quit command 5-2, 5-3
format 5-21 quit, keyword 5-14
range execution 5-10 quit statement
relational operator 5-18 be exit 5-21
INTERRUPT key 5-2 built-in statement 5-20
introduction 5-1 quoted string statement 5-19
invocation 5-1 register storage register
keywords designated 5-14 relational operator
language features 5-12 designated 5-10, 5-18
length evaluation order 5-15
built-in function 5-16 RETURN key 5-2
keyword 5-14 return, keyword 5-14
less-than sign (<), relational operator 5-10, return statement
5-19 built-in statement 5-20
: line continuasion notation 5-6 description 5-21
: . . local storage class 5-19 forn 5-8
s log function scale
N availability 5-1 addition operator 5-17, 5-6
A loading procedure 5-13 arctan function 5-13
math function library bc -1 command Bessel function 5-13
minus sign (-) built-in function 5-16

Index

bce (continued)
scale (continued)
command 5-7
cos function 5-13
decimal digit value 5-7
defined 5-15
description 5-6
division operator 5-17, 5-7
exponential function 5-13
exponentiation operator 5-17, 5-7
initial setting 5-7
keyword 5-14
length function 5-16
length maximum 5-6
log function 5-13
modulo operator 5-17, 5-7
multiplication operator 5-17, 5-7
named expression 5-15
sin function 5-13
square root effect 5-16, 5-7
subtraction operator 5-17, 5-6
value printing procedure 5-7
variable 5-7
scale command 5-7
semicolon (;), statement
separation 5-19, 5-3
sin function
availability 5-1
loading procedure 5-13
slash (/), division operator symbol 5-4
space significance 5-13
square root
built-in function 5-16
keyword 5-14
result as integer 5-5
scale procedure 5-7
sqrt keyword 5-14
statement
see also Specific Statement
entry procedure 5-12
execution sequence 5-19
separation methods 5-19
types designated 5-19
storage
classes 5-19
register 5-5
subscript
array array
description 5-9
fractions discarded 5-9
truncation 5-14
value limits 5-9
subtraction operator
left to right binding 5-4
scale 5-17, 5-6
symbol (-) 5-4
syntax 5-1
token composition 5-14
truncation use, when 5-7

L4

bc (continued)
unary operator
designated 5-16
evaluation order 5-15
left to right binding 5-16
symbol (-) 5-4
value 5-14
variable
automatic 5-19, 5-8
name 5-8
subscripted subscript
while, keyword 5-14
while statement
break statement effect 5-20
built-in statement 5-20
description, use 5-10
execution 5-21
range execution 5-10
relational operator 5-18
bc command
bc invocation 5-1
file reading, execution 5-13
bc -1 command, bc 5-13
“bee escape mail
Bessel function bc
/bin directory
command search 4-3
contents 4-37
name derivation 4-37
/usr/bin duplicate determination 4-50
Binary logical
and operator 4-40
or operator 4-40
BINUNIQ shell procedure 4-50
BKSP
vi cursor movement 2-18
Bourae shell
TERM variable 2-56
terminal type 2-56
Braces { })
bc
compound statement enclosure 5-19
function body enclosure 5-8
command ({ }) 4-46
command grouping 4-28
pipeline, command list enclosure 4-23
variable
conditional substitution 4-43
enclosure 4-12
Braces command ({ }) 4-46
Brackets ([])
be
array identifier 5-14
auto array 5-19
subscripted variable 5-9
directory name, use avoidance 4-4
ed metacharacter ed
metacharacter 4-3, 4-59
pattern matching - metacharacter

Brackets ([]) (continued)

test command, use in lieu of 4-39
break command

for command control 4-27

loop control 4-27

shell built-in command 4-46

special shell command 4-33

while command control 4-27
Buffer

ged

gvi
Building a Communication System uucp

C

ccommand ed
C language
be
comment convention similarity 5-13
syntax agreement 5-1
shell language 4-1
—c option
mail 3-32
-c option, shell invocation 4-45
Calculation bc
Calculator functons bc
Calendar reminder service 3-33
Caret ()
bc, exponentiation operator symbol 5-4
ed use ed
mail, first message specification 3-16, 3-35,
case command
description, use 4-24
exit status 4-25
redirection 4-30
shell built-in command 4-46
Case delimiter symbol (;;) 4-59
Case-part 4-58
cat command
ed ed
“cc escape mail
cd command
directory change 4-16
mail 3-22, 3-35
parentheses use 4-16
time consumption minimization 4-48
CDPATH variable 4-14
Character class ed
chron option mail
Colon ()
command Colon command (:)
mail
command escape 3-27
network mail 3-14
PATH variable use 4-13
shell built-in command 4-46

Index

Colon (:) (continued)
variable conditional substitution 4-44
vi use vi
Colon command (;)
shell built-in command 4-46
Command
defined 4-21
delimiter ed
ed commands ed
enclosure in_parentheses (()), effect 4-46
environment 4-17
execution 4-2
time 4-46
exit statns FExit status
grammar 4-57
grouping
exit status 4-29
parentheses (()) use 4-59
procedure 4-28
WRITEMALIL. shell procedure 4-57
keyword parameter 4-17
line Command line
list Command list
mail commands summary 3-35
multiple commands entry 4-9
output substitution symbol 4-59
private command name 4-3
public command name 4-3
search
PATH variable 4-13
process 4-48
separation symbol (;) 4-59
shell, built-in commands designated 4-46
simple command
defined 4-2, 4-21
grammar 4-57
slash (/) beginning, effect 4-3
special shell commands
Shell
Specific Special Command
substitution
back quotation marks (*) 4-4
double quotation marks (") 4-5
procedure 4-9
redirection argument 4-6
vi commands vi
Command line
execution 4-20
options
see also Specific Option
designated 4-45
pipeline, use in 4-23
rescan 4-20
scanning sequence 4-20
substitution 4-9
Command list
case command, execution 4-24
defined 4-21
for command, execution 4-26

Index

Command list (continued) C-shell (continued)
grammar 4-57 backslash (\) (continued)
Communication mail root parts separation from extension 7-23
Compose escapes 3-1 boolean AND operation implementation 7-
see also mail 15
continue command boolean OR operation implementation 7-15
for command control 4-27 braces ({ })
shell built-in command 4-46 argument expansion use 7-22
special shell command 4-33 argument grouping 7-23
unkl command control 4-27 brackets ([])
while command control 4-27 character matching 7-23
Control command break command
see also Specific Control Command foreach statement exit 7-19
function 4-29 loop break 7-16
redirection 4-3@ while statement exit 7-19
Copy command vi breaksw command
COPYPAIRS shell procedure 4-50 switch exit 7-19
COPYTO shell procedure 4-51 ¢ command
csh command : reuse 7-4
C-shell invocation 7-1 carat ()
C-shell history substitution use 7-24
|{& symbol character matching 7-23
redirection use 7-8 colon (:)
alias command script modifier 7-18
listing 7-10 substitution modifier use 7-24
multiple command use 7-7 command
number limitation 7-8 see also Specific command
pipeline use 7-7) continue
quoting 7-8 loop use 7-16
removal 7-12 default argument supply 7-7
use 7-10, 7-7 du 7-9
ampersand (&) execution status 7-15
background job symbol 7-9 expansion 7-23
background job use 7-23 file script
boolean AND operation implementation foreach 7-21
(&&) 7-15 exit 7-19
if statement, avoidance 7-17 script use 7-16
redireciion symbol 7-8 history
appending see also history
noclobber variable effect 7-9 use 7-10
symbol (>>) 7-9 history list 7-4
argument input supply 7-20
expansion 7-22 location determination 7-10
group specification 7-23 location recomputation 7-3
argv variable logout 7-1, 7-10
filename expansion prevention 7-16 multiple commands commands, multiple
script arguments contents 7-12 prompt symbol (%) 7-2
arithmetic operations 7-15 quoting 7-22
asterisk (*) quoting, replacement 7-23
character matching 7-23 read only option 7-21
script notation 7-14 reading from file 7-11
background job rehash 7-3
procedure 7-9 repetition 7-10
symbol (&) 7-9 repetition mechanisms 7-6
termination procedure 7-9 separation 7-23
backslash (\) separation symbol (;) 7-8
if statement use 7-17 set 7-2
metacharacter cancellation 7-24 see also set
metacharacter escape 7-8 similarity, foreach command use 7-21

1-6

C-shell (continued)

\

)

-
~

C

command (continued)

simplification 7-7
source

command reading 7-11
substitution

string modification 7-18

symbol 7-24
termination testing 7-15
timing 7-11)
transformation 7-7
unalias

alias removal 7-12
unset

variable removal 7-12
unsetenv

variable removal form environment 7-12

command prompt symbol (%) 7-2
command substitution
string modification 7-18
commands, multiple
alias use 7-7
single job 7-9
comment
metacharacter 7-24
script use 7-12
symbol 7-18
continue command
loop use 7-16
«cshrc file
alias placement 7-7
use 7-1

' diagnostic output

direction 7-8
redirection redirection
directory
examination 7-3
listing 7-2
disk usage 7-9
dollar sign (3)
last argument symbol 7-6
process number expansion 7-14
variable substitution symbol 7-13
variable substitution use 7-24
du cormmand 7-9
:e modifier 7-18
echo option 7-21
else-if statement use 7-17
environment
printing 7-11
setting 7-11
variable removal 7-12
equal sign (=)
string comparison use (==), (=7) 7-15
exclamation point (!)
history list substitution use 7-10

history mechanism invocation character

use 7-5
history substitution use 7-24

Index

C-shell (continued)
exclamation point (!) (continued)
string comparison use (!=), (!") 7-15
syntax use 7-4
execute primitive 7-15
existence primitive 7-15
expansion
control 7-21
metacharacters designated 7-24
expression
enclosure 7-23
evaluation 7-15
primitives 7-15
extension extraction 7-18
file
appending 7-9
command content script
enquiries 7-15
file overwriting
prevention 7-4
procedure 7-4
filename
expansion 7-22
expansion prevention 7-16
home directory indication 7-23
metacharacters designated 7-23
root extraction 7-18
scratch filename metacharacter 7-24
foreach command 7-21
exit 7-19
script use 7-16
goto label
script cleanup 7-21
goto statement 7-19
greater-than sign (>)
redirection symbol 7-8, 7-24
history
command 7-6
use 7-10
list 7-4
command substitution 7-10
contents display 7-10
mechanism
alias, use 7-7
invocation character 7-5
use 7-6
substitution symbol 7-24
variable 7-2
home variable 7-3
if statement use 7-17
ignoreeof variable 7-1, 7-3
input
execution procedure 7-13
metacharacters designated 7-24

variable substitution variable substitution

INTERRUPT key

background job, effect 7-9
invocation procedure 7-1
kill command

1-7

Index

C-shell (continued)
kilt command (continued)
background job termination 7-9
less-than sign (<)
redirection symbol 7-24
script inline data supply (<<) 7-20
logging out
logout command use 7-1, 7-10
procedure 7-2
shield 7-1
Jogin file use 7-1
logout command
use 7-1, 7-10
Jogout file use 7-2

loop
break 7-16
input prompt 7-21
variable use 7-22
mail
program invocation 7-2
variable 7-4
new mail notification 7-1
metacharacter
cancellasion 7-24
expansion metacharacter 7-24
filename metacharacter 7-23
input metacharacter 7-24
output metacharacter 7-24
quotation metacharacter 7-24
substitution metacharacter 7-24
syntactic metacharacter 7-23
metasyntax
exclamation point (!) use 7-4
minus sign (-)
option prefix 7-24
modifiers 7-18
n key
script error absence 7-15
script notation 7-14
-n option 7-21
new program access 7-3
noclobber variable
appending procedure 7-9
redirection symbols 7-8, 7-4
noglob variable
filename expansion prevention 7-16
number sign (#)
C-shell comment symbol 7-12, 7-21
C-shell comment use 7-18, 7-24
scratch filename use 7-24
onintr label
script cleanup 7-21
option
metacharacter 7-24
output
diagnostic output diagnostic output
metacharacters designated 7-24
redirection redirection
parentheses (())

I-8

C-shell fcontinued)

parentheses (()) (continued)
expression enclosure 7-23
path variable 7-2
pathname
component separation 7-23
percentage sign (%)
command prompt symbol 7-2
pipe symbol ([)
boolean OR operation
implementation (]|) 7-15
command separation 7-23
if statement, avoidance 7-17
redirection symbol 7-8
pipeline
alias, use 7-7
primitives expression primitives
printenv
environment printing 7-11
process number
expansion notation 7-14
listing 7-9
prompt variable 7-10
Ps command
process number listing 7-9
question mark (?)
character matching 7-23
loop input prompt 7-21
QUIT signal
background job, effect 7-9
quotation marks
back (*)
command quoting 7-22
command substitution use 7-24
double () 7-21, 7-22, 7-24
single (°)
alias quoting 7-8
metacharacters cancellation 7-24
quoted string, effect 7-21
scriptinline data quoting 7-20
quotation metacharacters designated 7-24
:r modifier 7-18
read primitive 7-15
redirection
diagnostic output 7-8
output 7-8
symbols designated 7-24
rehash command
command location recomputation 7-10,
7-3
repeat command
command repetition 7-10
root part
extension, separation 7-23
script
clean up 7-20
colon (:) modifier 7-18
command input 7-20
comment required 7-21

7

C-shell (continued)
script (continued)
description 7-12
example 7-16
execution 7-12
exit 7-21
inline data supply 7-20
interpretation 7-12
interruption catching 7-20
metanotation for inline data 7-20
modifiers 7-18
notations 7-14
range 7-15
variable substitution variable substitution
semicolon (;)
command separation 7-23, 7-8
if statement, avoidance 7-17
set command
variable listing 7-2
variable value assignment 7-2
setenv command
environment setting 7-11
slash (/)
pathname component separation 7-23
source command
command reading 7-11
status variable 7-16
string
comparison 7-15
quoting 7-22
substitution metacharacters designated 7-24
switch statement
exit 7-19
form 7-19 .
syntactic metacharacters designated 7-23
TERM variable 2-56
terminal type setting 2-56
then statement use 7-17
tilde (7)
home directory indication 7-23
string comparision (=7), (I") 7-15
time
command timing 7-11
variable 7-2
unalias command
alias removal 7-12
unset command
variable removal 7-12
unsetenv command
variable removal from environment 7-12
unsetting procedure 7-4
-v command line option 7-21
variable :
see also Specific Variable
component access
notations 7-13, 7-14
definition removal 7-12
environment variable setting 7-11
expansion 7-13, 7-22

Index

C-shell (continued)
variable (continued)
listing 7-2
loop use 7-22
removal from environment 7-12
setting procedure 7-3
substitution
see also variable substitution
substitution metacharacter 7-2
use 7-2. B .
value assignment 7-2
check 7-13
variable substitution
procedure 7-13
verbose option 7-21
while statement
exit 7-19
form 7-19
write primitive 7-15
-x command line option 7-21
.cshrc file
C-shell use 7-1
Ctrl-d
bc exit 5-2, 5-3
mail
message sending 3-10, 3-3
reply message termination 3-13, 3-20
shell exit 3-22, 4-28
vi, scroll 2-21
Ctil-f
vi, scroll 2-21
Ctrl-g
vi, file status information 2-11
Ctrl-h, mail 3-6
Ctrl-u
mail, line killing 3-12, 3-6
vi, scroll 2-21
Current line
see vi
Cursor movement
vi see vi
Cutting and pasting procedure see ed

D

d command

ed use see ed
d$ command see vi
d0 command see vi
dd command see vi
“dead escape see mail
Delete buffer see vi
Deletion

vi procedure see vi
Delimiter see ed
Diagnostic output see Output
dial

Index

dial (continued)
see also uucp
and uucp 6-34
Dial-up line see Background process
Digit grammar 4-58
Directory
C-shell
listing 7-2
use see C-shell
name, metacharacter avoidance 4-4
search
optimum order 4-48
PATH variable 4-48
sequence change 4-3
size effect 4-49
time consumption 4-48
size consideration 4-49
DISTINCT?1 shell procedure 4-51
Division see bc
Dollar sigh ($)
ed use see ed
mail, final message specification 3-16, 3-35,
3-7
positional parameter prefix 4-10, 4-11
P81 variable default value 4-14
variable prefix 4-11
vi see vi
Dot (.)
command see Dot command (.)
ed use see ed
mail, current message specification 3-16, 3-7
option see mail
vi use see vi
Dot command (.)
description, use 4-30
shell built-in command ¢-46
shell procedure alternate 4-37
special shell command 4-33
dp command see mail
DRATFT shell procedure 4-52
dw command see vi

E

e command
ed use see ed
mail 3-36, 3-7
mailR 3-21
-e option, shell procedure 4-38
echo command
description, use 4-40
mail 3-36
-n option effect 4-40
shell built-in command 4-46
syntax 4-40
ed
a command

I-10

ed (continued)
a command (continued)
append A-3, A-51
backslash (\) characteristics A-34
dot(.) setting A-44, A-51
global combination A-26
input termination A-32, A-4
abortion, q command A-51
address arithmetic A -9
ampersand (&)
literal A-41
metacharacter A-40
substitution A-40
append see a command
asterisk (*), metacharacter A-29, A-36
at sign (@), script A-50
backslash (\)
a command A-34
c command A-34
g command A-25
i command A-34
line folding A-26
literal A-33
metacharacter A-29, A-32
metacharacter escape A-32, A-33, A-41,
A-42
multiline construction A-26
number string A-26
v command A-25
backspace printing A-26
brackets ([])
character class A-39
metacharacter A-29, A-39
buffer
description A-3
writing to file see w command
c command
backslash (\) characteristics A-34
dot (.) setting A-20, A-44, A-51
global combination A-26
input termination A-20
line change A-20, A-51
caret ()
character class A-39
line beginning notation A-36
metacharacter A-29, A-36
cat command A-6
change command see ¢ command
character
deletion at line beginning A-39
character class A-39
command
see also Specific Command
combinations A-25
delimiter character A-33
description A-4
editing command see e command
form A-51
INTERRUPT key effect A-48

&

ed (continued)

command (continued)
listing A-51
multicommand line restrictions A-15
summary A-51
context search see search
current line see dot (.)
cutting and pasting
move command see m command
procedures A-48
d command
deletion A-13, A-51
dot (.) setting A-44, A-51
deletion see d command
delimiter
character choice A-33
description A-1
dollar sign ($)
last Jine notation A-13, A-35, A-8
line end notation A-34, A-35
metacharacter A-29, A-34
multiple functions A-35
dot (.)
current line notation A-9
description A-11
determination A-44
search setting A-17, A-52
substitution setting A- 14
symbol (.) A-11, A-31
value determination A-12, A-52
duplication see t command
e command A-51, A-6
edit see e command
entry A-3
equals sign (<)
dot value printing (=) A-12, A-52
last Jine value printing A-52
escape command () A-28, A-52
exclamation point (!)
escape command A-28
exit see ¢ command
f command A-51, A-7
file
insertion into another file A-48
writing out A -49
filename
change A-7
recovery A-7
remembered filename printing A-51, A-7
folding A-26
g command
a command combination A-26
backslash (\) use A-25
c command combination A-26
command combinations A-24, A-25
dot (.) setting A-24
i command combination A-26
line number specifications A-25
multiline construction A-26

Index

ed (continued)
g command (continued)
s command combination A-24, A-52
search, command execution A-23, A-5]
substitution A-16, A-29
trailing g A-29
global command
see g command
see v command
greater-than sign (>)
tab notation A-26
grep command A -29
hyphen (-), character class A-39
i command
backslash (\) characteristics A-34
dot (.) setting A-21, A-44, A-51
global combination A-26
input termination A-32
insertion A-20, A-51
in-line input scripts 4-53
input
termination A-20, A-32, A-4
insert command see i command
INTERRUPT key
command execution effect A-48
dot (.) setting A-48
print stopping A-9
introduction A-1
invocation A-3 .
j command, line joining A-42
k command line markmg A-27
1 command
folding A-26
line listing A-26, A-51
nondisplay character printing A-26
number string A-26
s command combination A-30
less-than sign (<)
backspace notation A-~26
line
beginning see line beginning
break see splitting
end see line end
folding A-26
joining A-42
marking A-27
moving see m command
number see line number
rearrangement A-43
splitting A-41
writing out A -49
line beginning
character deletion A-39
notation A-36
line end
notation A-34
line number
0 as line number A-47
combinations A-9

I-11

Index

ed (continued)

line number (continued) ed (continued)
summary A-51 q command (continued)
list see | command ‘w command combination A-51
m command question mark (?)
dot (.) setting A-23, A-51 exit warning A-3
line moving A-22, A-51 search error message (?7) A-17
warning A -23 search repetition (??) A-19
mail system see mail search, reverse direction (? ?) A-17, A-52
marking see k command write warning A-5
metacharacter quit see @ command
ampersand (&) A-40 quotation marks, single ()
asterisk (*) A-29, A-36 line marking A-27
backslash (\) A-29, A-32 r command
brackets ([]) A-29, A-39 dot (.) setting A-45, A-52
caret () A-29, A-36 file insertion A-48
character class A-39 positioning without address A-48
combination A =36 read file A-52, A-7
dollar sign ($) A-29, A-34 reading see r command
escape A-33, A-41 regular expression
period (.) A-29, A-30 description A-29
search A-39 metacharacter list A-29
slash (/) A-29 RETURN key, printing A-51
star (*) A-29, A-36 s command
minus sign (-), address arithmetic A-9 ampersand (&) A-40
move character match A-30
command see m command description, use A-14, A-52
line marking A-27 dot (.) setting A-15, A-44, A-52
multicommand line restrictions A-15 g command combination A-16,
new line A-24, A-52
substitution A-41 1 command combination A-30
nondisplay character printing A-26 line number A-30
p command new line A-41
dot (.) setting A-48 p command combination A-30
multicommand line A-15 search combination A-18
printing A-51, A-8 text removal A-15
s command combination A-30 trailing g A-29
pattern search see search undoing A-27
period (.) v command combination A-24
a command input termination A-32, A-4 script A-50
¢ command input termination A-20 search
character substitution A-30 dot (.) setting A-52
dot symbol see Dot (.) error message (7) A-17
i command input termination A-32 forward search (/ /) A-16, A-52
literal A-32 global search see g command
metacharacter A-29, A-30 global search see v command
s command, effect A-30 metacharacter problems A-29
script problems A-50 next occurrence description A-17
search problems A-29 procedure A-16
troff command prefix A-23 repetition (//), (??) A-19
plus sign (+), address arithmetic A-9 reverse direction (? 7) A-17
print separator A-46
command see p command substitution combination A-18
line folding A-26 sed command A-29
RETURN key effect A-12 semicolon (;)
stopping A-9 dot (.) setting A-47
q command search separator A-46
abortion use A-51 shell
quit session A-5, A-51 escape see escape command (!)
slash (/)

1-12

Index

ed (continued) Equal sign (=) (continued)
slash (/) (continued) be
: delimiter A-33 assignment operator symbol 5-5
: literal A-33 relational operator 5-10, 5-19
; . metacharacter A-29 ed use see ed
P search forward (/ /) A-16, A-52 mail, message number printing 3-16, 3-35
) search repetition (//) A-19 variable
Pt special character see metacharacter conditional substitution 4-43
! spelling correction see s command string value assignment 4-11
. star (*), metacharacter A-29, A-36 Error output redirection 4-42.
i substitution ESCAPE key
: command see s command vi see vi
| t command Escape string, mail 3-30, 3-41
i dot (.) setting A-52 eval command
transfer line A-28, A-52 command line rescan 4-20
tab printing A-26 shell built-in command 4-46
tbl command A -49 ex, ed similarity A-1
termination see Q command) Exclamation point (!)
text bc, relational operator 5-10, 5-19
removal see s command C-shell use see C-shell
saving A-5 . ed use see ed
transfer see t command mail
troff command printing A-23 network mail 3-14
typing error correction see s command shell command execution 3-22, 3-26, 3-35
u command unary negation operator 4-40
undo A-27, A-52 vi see vi
undo see u command exec command 4-34, 4-46
* v command Exit code see $? variable
a command combination A-26 exit command
— backslash (\) use A-25 shell built-in command 4-46
! B ¢ command combination A-26 shell exit 4-28
‘~\ B command combinations A-24, A-25, A- special shell command 4-33
-~ 26 Exit status
dot (.) setting A-24 $? variable 4-15
global search, substitute A-23, A-52 case command 4-25
i command combination A-26 cd arg command 4-34
: line number specifications A-25 colon command (:) 4-33
X s command combination A-24 - command grouping 4-29
: w command false command 4-41
description, use A-5 if command 4-24
f dot (.) setting A-45, A-52 read command 4-35
‘ e command combination A-51 true command 4-41
file write out A-49 until command 4-25
frequent use advantages A-45 wait command 4-36
line write out A-49 while command 4-25
write out A-49, A-5, A-52 export command
write out shell built-in command 4-46
command see w command - variable
warning A-5 example 4-14
EDFIND shell procedure 4-53 listing 4-18
“editor escape see mail setting 4-17
Editor see ed expr command 4-41

EDITOR string, mail 3-30, 3-41
EDLAST shell procedure 4-53
» elif clause see if command
{ else clause see if command
.- Else-part grammar 4-58
Empty grammar 4-58
Equal sign (=)

Index

F

f command
ed use see ed
mail 3-11, 3-12, 3-20, 3-36
F command, mail 3-12, 3-20, 3-36
-f option, mail 3-10, 3-32
false command 4-41
fi command
if command end 4-23
mail 3-36
File
creation
MKEFILES shell procedure 4-55
with vi 2-2
descriptor see File descriptor
grammar 4-57
mail system files see mail
pattern search see ed
pattern search see grep command
pipe interchange 4-52
shell procedure creation 4-36
textual contents determination 4-57
variable file creation see Variable
File descriptor
description, use 4-6
redirection 4-42, 4-7
Filename
argumeat 4-3
ed see ed
Filter
description 4-7
order consideration 4-47
Flag see Option
for command
break command effect 4-27
continue command effect 4-27
description, use 4-26
redirection 4-30
shell built-in command 4-46
for loop, argument processing 4-19
fork command 4-46
FSPLIT shell procedure 4-54
Function
control command 4-29

G

G command
vi see vi
g command see ed
Global
ed use see ed
variable check 4-38
goto command
see G command 2-5

1-14

Greater-than sign (>)
bc, relational operator 5-10, 5-19
PS2 variable default value 4-14
redirection symbol 4-59

grep command
ed see ed

H

h command
mail 3-17, 3-36, 3-9
H command
vi use see vi
H flag, mail 3-17
hash command
description 4-34
special shell command 4-34
headers command see mail
“headers escape see mail
help
vsh 8-2
history command
C-shell use 7-6
ho command see mail
HOME variable
conditional substitution 4-44
description 4-12

I

i command see ed
-i option
mail 3-10, 3-31, 3-32, 3-41
shell invocation 4-45
if command
COPYTO shell procedure 4-51
description, use 4-23
exit status 4-24
fi command required 4-24
multiple testing procedure 4-23
nesting 4-24
redirection 4-30
shell built-in command 4-46
test command 4-38
IFS variable 4-12
ignore option see mail
ignorecase option see vi 2-39
In-line input document see Input
Input
ed see ed
grammar 4-57
in-line input
document 4-41
EDFIND shell procedure 4-53

™,

Input (continued)
standard input file 4-5
Insert mode see vi
Insertion see ed
Internal field separator
shell scanning sequence 4-20
specificaiton by IFS variable 4-12
Interrupt
handling methods 4-31
key see INTERRUPT key
INTERRUPT key
background process immunity 4-22
bc 5-2
ed use see ed
mail
askcc switch 3-28
message abortion 3-12, 3-29
Invocation flag see Option
Item grammar 4-57

J

j command
ed use see ed
vi use see vi

K

k command
ed use see ed
vi use see vi
-k option, shell procedure 4-38
Keyword parameter
description 4-17
-k option effect 4-38
kill command
C-shell use see C-shell

L

1 command
ed use see ed
mail 3-19, 3-37
L command
vi use see vi
Less-than sign (<)
be, relational operator 5-10, 5-19
redirection symbol 4-59

" Line

beginning see ed
writing out see ¢d
line command

Index

line command (continued)
shell variable value assignment 4-9
linenumber option see vi
Line-oriented commands
see vi 2-12
Jist command
mail 3-37
Jist option see vi
LISTFIELDS shell procedure 4-54
Logging out
shell termination 4-28
Login directory
defined 4-12
.login file
C-shell use 7-1
logout command
C-shell use 7-1
Jogout file
C-shell use 7-2
Looping
break command 4-27
continue command 4-27
control 4-27
expr command 4-41
false command 4-41
for command 4-26
iteration counting procedure 4-41
time consumption 4-46
true command 4-41

unconditional loop implemen#ation 4-41

until command 4-25
while command 4-25
while loop 4-51
1p command
mail
-m option 3-33
Ipr command
mail
message printing 3-19, 3-37
Is command
echo * use in lieu of 4-40

M

m command
ed see ed
mail 3-20, 3-37

M flag see mail

~-m option, mail 3-33

magic option see vi

mail
~ ~ seetilde quote escape (")
? command see help command (?)
~: see command escape (:)
~? see help escape (“7)
“! see shell escape (7!)
a command see alias

I-15

Index

mail (continued)
accumulation 3-33
alias
a command 3-13, 3-21, 3-35
Alias, displays system-wide aliases 3-35
display 3-13
network mail 3-14
personal 3-13, 3-28
R command 3-13
system-wide 3-28
askcc option 3-14, 3-28, 3-41
asksubject option 3-28, 3-41
asterisk (*)
character matching 3-8
message saved, header notation 3-17, 3-19
at sign (@), ignore switch echo 3-31, 3-41
autombox option
description, use 3-31, 3-41
effect 3-18
H flag 3-17
ho command 3-19
autoprint option 3-28, 3-41
“b escape 3-24
~b option 3-32
BACKSPACE key 3-12, 3-6
“bece escape 3-40
Bcc field see blind carbon copy field
blind carbon copy field
description 3-5
editing 3-24, 3-25
escape see “bcc escape
box see mailbox
“c escape 3-24
—c option 3-32
carbon copy field
additions prompt 3-14
blind see blind carbon copy field
description 3-5
display 3-4
editing 3-25
escape see “c escape
escape see “cc escape
option see askcc option
R command effect 3-13
caret ("), first message specification
3-16, 3-35, 3-7
~cc escape 3-40
cc field see carbon copy field
cd command 3-22, 3-35
chron option 3-29, 3-41
colon ()
escape see command escape (™:)
network mail 3-14
command
see also Specific Command
descriptions 3-14
escape (") 3-27
escape see command escape (":)
invocation 3-14

1-16

mail (continued)

command (continued)
line options 3-31
mode see command mode
summary 3-35
syntax 3-9
command escape (7:) 3-27, 3-39
command line options 3-31
command mode
description, use 3-7
help command 3-15
options setting 3-14
compose escape (7|) 3-39
compose escapes
see also Specific Escape
compose mode exit 3-6
edit mode entry 3-7
heading escapes 3-24
listing 3-12, 3-2
m command 3-20
reply 3-20
summary 3-39
symbol
H3-39
tilde () component 3-12
compose mode
COMPpOSe escapes see COmpose escapes
description, use 3-6
edit mode entry 3-7
entry from command mode 3-12
entry from shell 3-12
tilde escapes see compose escapes
concepts 3-4
C-shell
new mail notification 7-1
Ctrl-d
message reply 3-13, 3-20
message sending 3-10
Cwxl-h, backspace 3-6
Ctrl-u, line killing 3-12, 3-6
d command 3-11, 3-17, 3-35, 3-4, 3-8
~d escape 3-25, 3-40
“dead escape 3-25, 3-40
dead.letter file
escape see ~d escape
nosave switch effect 3-29
undelivered message receipt 3-11
deletion see message
distribution list creation 3-13
dollar sign ($)
final message specification 3-7, 3-16, 3-35
dot (.), current message specification 3-16,
3-7
dot option 3-29, 3-41
dp command 3-18, 3-36
e command 3-21, 3-36
“e escape 3-23, 3-40
echo command 3-36
editor escape

mail (continued)
editor escape (continued)
see “e escape
see "v escape
editor escape 3-23
EDITOR stiing 3-30, 3-41
entry 3-9
equal sign (=)
message number printing 3-16, 3-35
escape string 3-30, 3-41
exclamation point (1)
network mail 3-14
shell command execution 3-22, 3-26, 3-35
execmail 3-29
exit
q command 3-10, 3-18, 3-37, 3-4
x command 3-18, 3-36
f command 3-11
F command 3-12, 3-20, 3-36
-f option 3-10, 3-32
fi command 3-36
file switch see -f option
files designated 3-34
forwarding
messages not deleted 3-18
procedure see f command
h command 3-17, 3-36, 3-9
“h escape 3-25, 3-40
H flag, message saving 3-17
header
characteristics 3-17
command see h command
compose escapes 3-24
composition 3-5
defined 3-8
display 3-10, 3-3, 3-8
listing 3-36
windows 3-17, 3-8
“headers escape 3-25, 3-40
help
command (?) 3-15, 3-3
escape (7?) 3-23, 3-39
help escape ("?) 3-12
ho command
description 3-19
H flag 3-17
message saving 3-36
hold command see ho command
-i option 3-10, 3-31, 3-32, 3-41
ignore switch see -i option
INTERRUPT key
message abortion 3-12, 3-29
recipient list 3-28
introduction 3-1
1 command 3-19, 3-37
line killing 3-12, 3-6
list command 3-37
1p command
-m option 3-33

Index

mail (continued)
lpr command
message printing 3-19, 3-37
m command 3-20, 3-37
"M escape 3-26
M flag, message saving 3-17
~-m option 3-33
mail command
command mode entry 3-10, 3-7
compose mode entry 3-12
help 3-3
message reading 3-11, 3-3
message sending 3-2, 3-37
mail escapes see “m escape
mailbox see mailbox
.mailrc file
alias contents 3-21
distribution list creation 3-13
example 3-28
options setting 3-14
set command 3-21
unset command 3-21
mb command 3-19, 3-37
mbox command see mb command
mchron option 3-42
message
abortion 3-10, 3-12, 3-29
advancement 3-11, 3-35
body 3-6
composition 3-5
deletion 3-11, 3-17, 3-18, 3-35, 3-4, 3-8
deletion undoing 3-18
description 3-5
editing 3-12, 3-21, 3-22, 3-32, 3-36
file inclusion 3-25
forwarding see forwarding
header see header
insertion into new message 3-26
list see message-list
listing 3-3
number see message number
printing see printing
range description 3-7
reading 3-10, 3-11, 3-3
reading into file 3-10
reply see reply command
saving see saving
sending see sending
size 3-22, 3-38
specification 3-13
undeletion 3-11
“message escape 3-40
message number
command 3-16, 3-35
message printing 3-11
printing 3-16, 3-35
types 3-7
message-list
argument, multiple messages'3-13

I-17

Index

mail (continued) mail (continued)
message-list (continued) “read escape 3-25, 3-40
composition 3-7 recipient list, name addition 3-24
full message-list description 3-9 record string 3-31, 3-42
metacharacters 3-16, 3-7 reminder service 3-33
metoo option 3-29, 3-42 Reply command see R command
minus sign (-), message advancement 3-35 return receipt request field 3-6
network mail 3-14 s command
noisy phone line 3-10 see also saving
nosave option 3-29, 3-42 flag 3-17
number command see message number message saving 3-18, 3-37
options system mailbox, message deletion 3-18
see also Specific Option “s escape 3-24, 3-40
command line options 3-31 -s option 3-31
setting 3-14 saving
summary 3-41 asterisk (*) notation 3-19
switch option setting 3-21 automatic 3-17
organization 3-33 command see s command
p command flag 3-17
message printing 3-15, 3-3, 3-37, 3-8 ho command 3-36
syntax 3-9 M flag 3-17
“p escape 3-23 message display 3-4
page option 3-30 s command 3-18, 3-37
period (.), dot use see dot(.) system mailbox 3-10
phone line noise 3-10 w command 3-19, 3-39
plus sign (+), message advancement 3-35 se command see set command
“print escape 3-40 sending
printing cancellation impossible 3-3
command see lpr command multiple recipients 3-10
command see p command network mail 3-14
escape see “p escape procedure 3-10
lineprinter see lpr command to self 3-2)
procedure 3-11, 3-8 session abortion 3-11
top five lines see t command set command
programs designated 3-34 description, use 3-21, 3-38
prompt 3-3 option control 3-41
q command set options defined 3-28
exit 3-10, 3-18, 3-37, 3-4 sh command 3-22, 3-38
message abortion 3-29 shell
question mark (?) commands 3-22
command summary printing 3-35 escapes(™!), (7|) 3-26
compose escape help see help escape (*?) SHELL stiing 3-30, 3-42
help command 3-15 si command 3-22, 3-38
quiet option 3-29, 3-42 so command 3-23, 3-38
~quit escape 3-40 source command see so command
R command special characters see metacharacters
alias effect 3-13 startup file 3-27
compose mode eatry 3-12 string option
r command setting 3-21
message reply 3-11 summary 3-41
R command subject
message reply 3-13, 3-20 field 3-4, 3-5
r command switch see asksubject option
message reply 3-37 switch see -s option
“r escape 3-25, 3-40 “subject escape 3-24, 3-40
-R option 3-32 switch see Option
read escape system
see ~d escape composition 3-34
see “r escape mailbox, message retention 3-10

1-18

h

-

mail (continued)

t command
message top printing 3-13, 3-16, 3-38
toplines option 3-17

"t escape 3-24, 3-41

tilde
quote escape ("~ 7) 3-27, 3-39
see also compose escapes

“to escape 3-24, 3-41

to field
mandatory 3-5
R command effect 3-13

top command see t command

toplines
option 3-42
string 3-31

u command 3-11, 3-18, 3-38, 3-8
—u option 3-32
undeletion see u command
unset command
description, use 3-21, 3-38
option control 3-41
v command 3-22, 3-38, 3-7
“v escape 3-23, 3-41
vertical bar (|) escapesee shell escape (~|)
“visual escape 3-23, 3-4
VISUAL string 3-30, 3-42
w command
message write out 3-19, 3-39
system mailbox, message deletion 3-18
“w escape 3-26, 3-41
“write escape 3-26, 3-41
write out see w command
x command
exit 3-18, 3-36
session aborkion 3-11
mail command see mail
MAIL variable 4-12
mailbox
cleaning out 3-33
command 3-19
reading in 3-10
system mailbox 3-5
user mailbox
filename 3-5 .
message saving notation 3-17

"MAILCHECK variable 4-13

MAILPATH variable 4-13
Marking see ed
mb command see mail
mbox command see mail
mbox file see mailbox
mchron option

mail 3-42
mesg option see vi
“Message escape see mail
Metacharacter

asterisk (*) 4-59

brackets ([]) 4-59

Index

Metacharacter (confinued)
directory name use avoidance 4-4
escape 4-4
list designated 4-59
mail 3-16, 3-7
question mark (?) 4-59
redirection restriction 4-6
metoo option see mail
Minus sign (-)
subtraction operator symbol 5-4
unary operator symbol 5-16, 5-4
mail, message advancement 3-35
redirection effect 4-41
subtraction operator symbol 5-4
variable conditional substitution 4-43
MKFILES shell procedure 4-55
Multiple way branch see case command
Multiplication see be

N

n command see vi
-n option
echo command 4-40
shell procedure 4-38
Name grammar 4-58
newgip command
description 4-34
special shell command 4-34
Newline substitution see ed
next command see vi 2-50
nohup command 4-22
nosave option see mail
Notational conventions 1-3
nu command see vi 2-25
Null command see Colon command (:)
NULL shell procedure 4-55
Number sign (#), comment symbol 4-59

o

-0 operator 4-40

Operator see bc

Option
see also Specific Option
DRAFT shell procedure 4-52
invocation flags 4-45
mail options see mail
tracing, $- variable 4-15
vi options see vi

Or-if operator (||)
command list 4-21
description, use 4-22

Index

Or-if operator (||) (continued)
designated 4-59

Output
append symbol (>) 4-59
append symbol (>>) 4-6
creation symbol (>) 4-59
diagnostic output file 4-6
error redirection 4-42
grammar 4-57
standard error file see diagnostic output file
standard output file 4-5

P

p command
ed use see ed
mail
message printing 3-15, 3-3, 3-37, 3-8
syntax 3-9
page option see mail
Parentheses (())
bc

expression enclosure 5-15
function identifier argument enclosure 5-
14
command grouping 4-28, 4-46, 4-59
pipeline, command list enclosure 4-23
test command operator 4-40
PATH variable
conditional substitution 4-44
C-shell use see C-shell
description 4-13
directory search
effect 4-48
sequence change 4-3
Pattern
grammar 4-58
metacharacter 4-59
Pattern matching facility
case command 4-24
expr command argument effect 4-41
limitations 4-4
metacharacter see Metacharacter
redirection restriction 4-6
shell function 4-3
variable assignment, not applicable 4-11
Percentage sign (%), bc modulo operator
symbol 5-4
Period (.)
ed use see ed
pattern matching facility restrictions 4-4
vi see vi
PHONE shell procedure 4-56
PID

$! variable 4-15

Pipe
compose escapes see mail

I-20

Pipe (continued)
file interchange 4-52
symbol (|) 4-59
Pipeline
command list 4-23
C-shell use see C-shell
defined 4-21
description 4-7
DISTINCT1 shell procedure 4-51
filter 4-7
grammar 4-57
notation designated 4-7
procedure 4-7
Plus sign (+)
be

addition operator symbol 5-4
unary operator symbol 5-16
mail, message advancement 3-11, 3-35
variable conditional substitution 4-44
Positional parameter
description 4-10
direct access 4-19
null value assignment 4-43
number yield, $# variable 4-14
parameter substitution 4-11
positioning 4-11
prefix () 4-11
setting 4-11
variable assignment statement
positioning 4-11
“print escape see mail
Printing
command see p command
ed see ed
mail see mail
Process
defined 4-2
number see PID
.profile file
description, use 4-16
PATH variable setting 4-14
variable export 4-14
ps command
C-shell use see C-shell
PS1 variable 4-14
PS2 variable 4-14

Q

q command
ed exit see ed
mail
exit 3-10, 3-18, 3-37, 3-4
message abortion 3-29
q! see vi
Question mark (?)
directory name, use avoidance 4-4
ed use see ed

Question mark (?) (continued)
mail
command summary printing 3-35
compose escape listing 3-12, 3-2, 3-23
help command 3-15, 3-3
metacharacter 4-3, 4-59
pattern matching see metacharacter
variable conditional substitution 4-44
quiet option see mail
quit command
see also q command
bc exit 5-2, 5-3
“quit escape see mail
QUIT key, background process immunity 4-22
Quotation marks
back ()
command substitution 4-4, 4-9
quoting 4-59
double (") 4-11, 4-39, 4-4, 4-59
single (*)
C-shell use see C-shell
metacharacter escape 4-4
trap command 4-31
variable substitution inhibition 4-11
Quoting '
see also Quotation marks
backslash (\) use 4-59
metacharacter escape 4-4

R

r command
ed use see ed
mail use see mail
R command see mail
~r option
mail 3-32
read command
see also vi
see also ed
exit status 4-35 .
shell built-in command 4-46
special shell command 4-34
“read escape see mail
Read see r command
readonly command
description 4-35
shell built-in command 4-46
special shell command 4-35
Record string see mail
Redirection
argument location 4-9
case command 4-30
cd arg command 4-34
control command 4-30
diagnostic output 4-6
file descriptor 4-42

Index

Redirection (continued)
for command 4-30
if command 4-30
minus sign (-) effect 4-41
pattern matching,use restriction 4-6

simple command line, appearance 4-21

special character, useresiriction 4-6
symbols :
(<), (>) 4-59

until command 4-30

while command 4-30
Regular expressions see ed
rehash command

C-shell use .see C-shell
Reminder service

mail 3-33
Repeat command

see vi 2-47 .
reply command see mail
Report option see vi
Reserved word listing 4-60
Return code see $? variable
return command

shell built-in command 4-46
RETURN key

bc 5-2

S

s command
ed use see ed
mail 3-17, 3-18, 3-37
-s option
mail, subject specification 3-31
shell invocation 4-45
scale command 5-7
Scale see bc
Screen-oriented commands see vi
Scripts
see ed
see Shell
se command see set command
Searching
ed see ed
vi see vi
sed command see ed
Semicolon (;)
bc, statement separation 5-19, 5-3
case command break 4-24
case delimiter symbol 4-59
command list 4-21
command separator symbol 4-59
C-shell use see C-shell
ed use see ed
Serial lines
modem connection 6-3, 6-5.
set all see vi

I-21

Index

set command
C-shell
variable value assignment 7-2
mail
description, use 3-21, 3-38
opt#ion control 3-41
name-value pair listing 4-18
positional parameters setting 4-11
shell built-in command 4-46
shell flag setting 4-17
special shell command 4-33
sh command
see also Shell
description 4-1
mail 3-22, 3-35, 3-38
shell invocation 4-18
SHACCT variable 4-13

Shell (continued)

pattern matching facility see Pattern
matching facility

positional parameter see Positional parameter

procedure
see also Specific Shell Procedure
advantages over C programs 4-37

byte access reduction consideration 4-47

creation 4-36

description 4-2

directory 4-37

efficiency analysis 4-46
efficiency awareness 4-46
examples designated 4-49
filter ordcr consideration 4-47
op#on see option

scripts designation 4-49

Shell time command 4-45
argumnent passing 4-19 writing strategies 4-45
command redirection ability 4-6

see also Specific Command scripts see procedure
executing while in vi 2-15 special command
search procedure 4-3 see also Specific Special Command
compose escapes see mail designated 4-33
conditional capability 4-23 special shell variable 4-20
creation state 4-16
procedure 4-2 SHELL
description 4-1 string 3-30, 3-42
-e option 4-38 variable 4-13
entry, mail mode source 3-22 Shell
escape string see SHELL string
ed procedure see ed -t option 4-38
mail procedure see mail -u option 4-38
execution -v option 4-17
flag see option variable see Variable
sequence 4-20 -x option 4-17
termination 4-28 Shell command
exit execuiing while in vi 2-15
-e option 4-38 shift command
mail mode return 3-22 argument processing 4-19
procedure 4-28 shell built-in command 4-46
-t option 4-38 si command see mail
function 4-1 Simple command see Command
grammar 4-57 Slash (/)
in-line input document handling 4-41 be, division operator symbol 5-4
interactive 4-45 command prepending suppression 4-3
interruption procedure 4-31 ed use see ed
invocation search command see vi
option 4-45 so command see mail
procedure 4-18 Special character
-k option 4-38 see also Metacharacter
mail ed use see Ed
invocation 3-6 pattern matching facility 4-3
shell commands 3-22 Standard
-n option 4-38 error file see Output
option error output see Error output
see also Specific Option input file see Input
designated, use 4-38 output file see Output
setting 4-17 Star (*)

I1-22

)

O

Star (*) (continued)
see also Asterisk (*)
ed metacbaracter see ed
String
searchmg for see vi, searchmg
String option see mail
String variable 4-11
“subject escape see mail
Subshell, directory change 4-16
Subsmunon command see s.command
Subtraction see bc
Switch see Option
System
mailbox see mailbox
System security with uucp see uucp

T

t command
ed use see ed
mail 3-13, 3-16, 3-17, 3-38
~t option, shell procedure 4-38
Table command see ed
Tabs
ed see ed
tbl command see ed
Temporary file
trap command, removal 4-32
use recommendation 4-15
term option see vi
terse option see vi
test command
argument 4-40
brackets ([]) use in lieu of 4-39
description, use 4-38
operators 4-40
options 4-39
shell built-in'command 4-46
Text editor
ed see ed
ex see ex
. vi see vi)
TEXTFILE shell procedure 4-56
then clause see if command
Tilde escape see mail
time command 4-45
“to escape see mail
Top command see t command
Toplines option see mail
Toplines string see mail
Transfer command see t command
trap command
description, use 4-31
implementation method 4-33
multiple traps 4-33
special shell command 4-33
temporary file removal 4-32

Index

troff see ed
true command 4-41
ttys file

and uucp 6-15
type 4-35

U

u command
ed use see ed
mail 3-18, 3-38, 3 8
see vi
—u option
mail 3-32
-u option
shell procedure 4-38
ulimit 4-35
umask command
description 4-35
shell built-in command 4-46
special shell command 4-35
Undo command
see ed
see Vi
unset command see mail
until command
continue command effect 4-27
description, use 4-25
exit status 4-25
redirection 4-30
shell built-in command 4-46
User
mailbox see mailbox
/usr/bin directory
/bin duplicate determination 4-50
command search 4-3
uucico
see also uucp
calling a remote site
handshake sequence 6-42
line protocol 6-42
terminating a conversation 6-43
calling a remote site 6-41
functions 6-40
MASTER mode 6-40
options 6-40
processing work 6-43
scanning for work 6-41
SLAVE mode 6-40
special shell 6-40
starting 6-40
terminating a conversation 6-43
work files 6-41
uucico 6-34
uuclean 6-34
see also uucp
uucp

1-23

Index

uucp (continued)
C.* files 6-41
calling a remote site 6-41
handshake sequence 6-42
line protocol 6-42
terminating a conversation 6-43
command syntax 6-35
copying files
between sites 6-38
to a local destination 6-36
cron 6-11, 6-23
automatic cleaning 6-33
crontab
automatic cleaning 6-33, 6-27
D.* files 6-41
details of operation 6-33
directories and files 6-34
types of files 6-34
uucico 6-40
dial 6-34
dialing in
dial in site 6-14
enable command 6-22, 6-14
dialing in and out 6-28
dialing out 6-22
dial out site 6-22
L-devices
file 6-24
L-devices 6-23
directories and files 6-34
/etc/ttys 6-15
execute file 6-38
installing 6-9
inwroduction 6-1
LCK..* files 6-33
description 6-41
L.cmds 6-12, 6-14, 6-19, 6-23, 6-44
L-devices 6-12, 6-23, 6-24
L-dialcodes 6-12, 6-23, 6-25
used in L.sys 6-25, 6-26
limiting permissible commands (with
L.cmds) 6-19
linking micnet sites 6-29
lock files 6-33
description 6-41
LOGFILE 6-30
login entries 6-16
L.sys 6-12, 6-19, 6-23
maintaining the system 6-29
cleaning the spool directory 6-30
creating maintenance shell files 6-33
locked devices 6-33
locked sites 6-33
log files 6-30
reclaiming data files 6-31
reclaiming log files 6-31
transmission status 6-32
uuclean 6-30
MASTER mode 6-40

I-24

uucp (continued)
modem 6-2
configuring a modem 6-6
connecting a modem 6-6
dialing configuration 6-5
dialing in 6-14
dialing out 6-22
installing 6-4
pin connections 6-2
serial lines 6-3, 6-5
testing 6-8
variable 6-8
options 6-35
processing work 6-43
programs 6-34
receiving files 6-37
sending files to remote sites 6-37
serial line
enabling 6-24
serial lines 6-3, 6-5
enabling 6-15
sitename
choosing 6-13
SLAVE mode 6-40
special (meta) characters 6-36
standard input line (execute file) 6-39
standard output line (execute file) 6-39
STST.* files 6-32
system security
L.cmds 6-44, 6-44
systernid 6-12
systemid file
creating 6-13
terminating a conversation 6-43
TM.* files 6-31
transmission schedule 6-26
cron 6-27
crontab 6-27
dialing in and out 6-28
types of work 6-26
copying files
between sites 6-38
to a local destination 6-36
receiving files 6-37
sending files to remote sites 6-37
USERFILE
setting up 6-17, 6-12, 6-14, 6-23, 6-37
using mail with uucp 6-29
/usr/lib/uucp 6-34
/usr/spool/uucp 6-34
uucico 6-26, 6-34, 6-36
calling a remote site 6-41
forcing a call at any time (-S) 6-27
forcing a call (-s) 6-27
from a shell script 6-27, 6-28
functions 6-40
options 6-40
scanning for work 6-41
special shell 6-40

uucp (continued)
uucico 6-26, 6-34, 6-36 (continued)
starting 6-40
work files 6-41
unclean 6-30, 6-34
automatic cleaning with cron 6-33
lock files 6-33
uuinstall 6-11
L-devices 6-24
L.sys 6-21
systemid 6-14
usage 6-11
USERFILE 6-18
with -r option 6-13
uulog 6-30, 6-34
automatic running with cron 6-33
uux 6-1, 6-34, 6-38
comand syntax 6-38
LOGFILE 6-30
options 6-38
PATH in uuxqt 6-39
standard
input (““-” option) 6-38
input line (execute file) 6-39
output 6-38
output line (execute file) 6-39
uuxqt
execute file
PATH 6-39, 6-34, 6-44

what you need 6-2
N OX.* files 6-41
/" uulog 6-34

see also uucp
uux 6-1, 6-34, 6-38
see also uucp
command syntax 6-38
options 6-38
standard
input (*-” option) 6-38
input line (execute file) 6-39
output 6-38, 6-39
output line (execute file) 6-39
uuxqt
execute file 6-38
uuxqt
see also uucp

\

v command
ed use see ed
-~ mail 3-22, 3-38, 3-7
‘v option, input line printing 4-17
__Value see §? variable
Variable
$# variable 4-14
$- variable 4-15

Index

Variable (continued)

assignment
line command 4-9
string value 4-11
be variable see be
command environment composition 4-17
conditional substitution 4-43
description 4-10
double quotation marks (") 4-11
enclosure 4-12
execution sequence 4-11
expansion 4-5
export 4-14
expr command 4-41
file creation 4-30
global check 4-38
HOME see HOME variable
IFS see IFS variable
keyword parameter 4-17
listing procedure 4-18
MAIL see MATL variable
MATILCHECK see MATLCHECK variable
MATILPATH see MAILPATH variable
name defined 4-11
null value assignment procedure 4-43
PATH see PATH variable
positional parameter see Positional parameter
prefix (§) 4-11
PS1 see PS1 variable
PS2 see PS2 variable
set variable defined 4-43
SHACCT see SHACCT variable
SHELL see SHELL variable
special variable 4-14
string value assignment 4-11
substitution
double quotation marks (4-11
notation 4-59
redirection argument 4-6
single quotation marks () 4-11
space interpretation 4-12
-u option effect 4-38
test command 4-38
types designated 4-12

Vertical bar (|)

mail escape 3-26
or-if operator symbol (||) 4-21
pipeline notation 4-7

vi

. command 2-4
/ command searching 2-10
0 command
cursor movement 2-6
appending text
A 2-
see also inserting text
args conunand 2-50
b command, cursor movement 2-6
breaking lines 2-28

I-25

Index

vi (continued) vi (continued)

buffers cursor movement (continued)
delete 2-36 $ key 2-20
naming 2-25 see also scrolling
selecting 2-25 b2-19
C command 2-32 backward 2-20
C shell BKSP 2-18
prompt 2-56 . by character 2-18

canceling changes 2-48

caret (), pattern matching 2-43, 2-44

cc command 2-33
co (copy) command 2-25
colon (:)
linc-orientad command, use 2-12
status line prompt 2-12
command
see also Specific Command
line-oriented 2-12
repeating, dot (.) use 2-6

screen-oriented see screen-oriented

commands 2-12
command mode
cursor movement 2-5
entering 2-3
control characters, inserting 2-28
copying lines 2-25
correcting mistakes 2-23
crash, recovery 2-54
C-shell
TERM variable 2-56
terminal type setting 2-56
Ctrl-b
scrolling 2-6
Ctrl-d
scrolling 2-6
subshell exit 2-54
Ctrl-f
scrolling 2-6
Ctrl-g
file status information 2-11, 253
Ctrl-j
inserting 2-28
Ctrl-1
screen redraw 2-54
Ctrl-q
inserting 2-28
Ctrl-s
inserting 2-28
Ctrl-u
deleting an insertion 2-30
scrolling 2-6
Ctrl-v
use 2-28
current line
deleting 2-29, 2-6
designated 2-2
line containing cursor 2-4
number, finding out 2-25
cursor movement

I-26

by lines 2-20
by words 2-19
Ctrl-n 2-20
Ctrl-p 2-20
down 2-18, 2-5
e2-19
F2-18
forward 2-20
h2-18
H2-21
j2-18, 2-20
k 2-18, 2-20
keys 2-5
12-18
L 2-21
left 2-18, 2-19, 2-5
line beginning 2-6
line end 2-6
LINEFEED key 2-20
lower left screen 2-5
M2-21
RETURN key 2-20
right 2-18, 2-19, 2-5
screen 2-21
scrolling see scrolling
SPACEBAR 2-18
t2-18
to end of file 2-5
up 2-18, 2-5
upper left screen 2-5
w2-19
word backward 2-6
word forward 2-6
cw command 2-32
d$ command 2-6
d0 command 2-6
date, finding out 2-15
dd command 2-29, 2-6
delete buffer
use 2-36
deleting text
by character 2-28
by line 2-29
by word 2-29
D 2-29
dd command 2-29, 2-6
deleting an insertion 2-30
dw command 2-29
methods 2-6
repeating deletion 2-47
undoing 2-45

P

BN

vi (continued)
deleting text (continued)
undoing deletion 2-5
x command 2-28
demonstration 2-1
description 2-1
dollar sign (§)
cursor movement 2-6
pattern matching 2-43
use in line address 2-30
dot (.) command 2-6
dot, use in line address 2-30
dw command 2-6
editing several files
changing the order 2-50
end -of-line
displaying 2~57
entering
at a specified line 2-17
at a specified word 2-18
procedure 2-2
with filename 2-17
with several filenamés 2-49
€ITOr messages
shortening 2-59
turning of f 2-52
ESCAPE, Insert mode exit 2-3, 2-54
exclamation point (!)
shell escape 2-15
exiting
:q! 2-16
saving changes 2-48
saving file 2-14
temporarily 2-15, 2-52
without saving changes 2-48
:x command 2-16, 2-48
ZZ command 2-48
.exrc file 2-60
- file
creating 2-2
not saving, :q! 2-16
saving 2-16
status informnation display 2-11
status information procedure 2-11
filename :
finding out 2-53
planning 2-49
G command
cursor movement 2-5
goto command see G command
H command
cursor movement 2-5
i command
inserting text 2-3
ignorecase option 2-39, 2-57, 2-58
insert command 2-3
insert mode
entering 2-3
exiting 2-3

Index

vi (continued)
inserting text
see also appending text
control characters 2-28
from another file 2-14
from other files 2-14, 2-23, 2-24
i2-22
insert mode 2-3
repeating insert 2-23, 2-47
undoing 2-45
undoing insert 2-5, 2-54
invoking see entering
j command
cursor movement 2-5
joining lines 2-28
k command
cursor movement 2-5
1 command '
cursor movement 2-5
leaving see exiting
line addressing
dollar sign 2-30
dot (.) 2-30
procedure 2-29
line numbers, displaying
linenumber option 2-16, 2-58
:nu command 2-25
nu command 2-54
line-oriented commands
:args 2-50
colon (:) use 2-12
deleting text 2-29
e 2-24
:e# 2-51
entering 2-12
:£2-53
:file 2-53
mode 2-53
moving text 2-34
:n 2-50
nu 2-25, 2-54
:q 2-48
:r 2-23
rrew 2-50
:§2-33
status line, display 2-11
w 2-24
‘wq 2-48
list option 2-57
.login file
terminal type setting use 2-56
magic option 2-45, 2-59
marking lines 2-24
mesg option 2-60
mistakes, correcting 2-23
mode
determining 2-54
see also command mode
see also insert mode

1-27

Index

Vi (continued)
‘mode (continued)
see also line-oriented command mode
moving text 2-34
n command 2-10, 2-39
new line, opening 2-23
next command 2-50
number option 2-58
opening a new line 2-23
options
displaying 2-57
ignorecase 2-39, 2-57
list 2-16, 2-57
magic 2-45, 2-59
mesg 2-60
number 2-25, 2-34, 2-58
report 2-58
setting 2-55, 2-57
term 2-58
terse 2-59
wamn 2-52, 2-59
wrapscan 2-40, 2-59
overstrike commands 2-30
pattern matching
see also searching
beginning of line 2-43
caret () 2-44
character range 2-44
end of line 2-43
exceptions 2-44
special characters 2-44
square brackets ([]) 2-44
period (.)
see also dot (.) command
pattern matching 2-44
Repeat command symbol 2-4
problem solving 2-54
.profile file
terminal type setting 2-56
putting 2-24
q! 2-16
Q command, line-oriented Command mode
2-53
quitting see exiting
r command 2-14, 2-30
read command 2-14
redrawing the screen 2-54
Repeat command 2-47
repeating a command 2-47
replacing
a line 2-32, 2-33
aword 2-32, 2-33
report option 2-58
rew command 2-50
S command 2-32
saving a file 2-49
screen, redrawing 2-54
screen-oriented commands 2-12
scrolling

1-28

vi (continued)
scrolling (continued)
backward 2-6
down 2-21, 2-6
forward 2-6
up 2-21, 2-6
searching
see also searching and replacing
see also slash (/)
backward 2-39
caret () 2-44
caret () use 2-43, 2-43
case significance 2-39, 2-58
dollar sign ($) 2-43
forward 2-10, 2-38
next command 2-39
period (.) 2-44
procedure 2-10
repetition 2-10
special characters 2-39, 2-59
square brackets ([]) 2-44
status line, display 2-11
wrap 2-10, 2-40, 2-59
searching and replacing
a word 2-41
c option 2-42
choosing replacement 2-42
command syntax 2-40
p option 2-42
printing replacement 2-42
session, canceling 2-16
set all, option list 2-16
set command 2-16, 2-55, 2-57
setting options 2-16, 2-55, 2-57
shell
command, executing 2-15
escape 2-52
slash (/)
search command delimiter 2-10
special characters
matching 2-44
searching for 2-39, 2-59
vi filenames 2-49
status line
line-oriented command entry 2-12
location 2-11
prompt, colon (:) use 2-12
string
pattern matching 2-44
searching for see searching
subshell
exiting 2-54
substitute commands 2-32
switching files 2-51
system crash
file recovery 2-55
tabs
displaying 2-57
TERM variable

®

vi (continued)

TERM variable (continued)
Bourne shell 2-56
Visual Shell 2-56

TERM variable 2-56

termcap 2-56

terminal type setting
Bourne shell 2-56
C-shell 2-56
how 2-58
Visual Shell 2-56

terse option 2-59

time, finding out 2-15

u command 2-4, 2-45, 2-54

undo command see u command

w command, cursor movement 2-6

warn option 2-52, 2-59
warnings, turning off 2-59
word, deleting 2-6
wrapscan option 2-40, 2-59
write messages 2-60
writing out a file
:wq command 2-48, 2-49
:x command 2-16, 2-48
x command 2-6
yanking lines 2-24, 2-27
ZZ command 2-48
vi, mail
compose escape, v 3-41
editing 3-22
entry from command mode 3-7
entry from compose mode 3-7
VISUAL string 3-42
visual command see mail
“visual escape see mail
Visual shell
see also vsh
description 8-1
TERM variable 2-56
terminal type 2-56
VISUAL string see mail
vsh
Alt-h
help key 8-2
cancel key 8-3
command option menu 8-3
command output
shell output 8-9
vshell output 8-9, 8-9
command piping 8-11
copy file or directory option 8-6
count option 8-11
create file system 8-8
Ctrl-C
cancel key 8-3
cursor motion keys 8-3
delete file or directory option 8-7
‘description 8-1
edita file 8-7

vsh (continued)

editing options keys 8-3
entering the shell 8-2
exit 8-10
file systems

check file system 8-9
get option 8-11
grep 8-11
head option 8-11, 8-12
help key 8-2
help menu 8-7
invoking commands 8-6
invoking the shell 8-2
keystrokes 8-2
leaving 8-10, 8-2
list files 8-10
mail option 8-7
main menu 8-3
menu selection 8-3
message line 8-3
more

option 8-12
move cursor 8-3
name option 8-8
options menu

file systems 8-8

list files 8-8

make directory 8-8, 8-8

pattern recognition 8-11
permissions option 8-9
pipe options 8-11
print

a file 8-10

option 8-10
quit

key 8-2
quit 8-10
rename file option 8-8
run

option 8-10

shell command 8-10
scroll through file 8-12
send {ile to printer 8-10
set {ile perinissions 8-9
shell command 8-10
sort option 8-11, 8-12
status line 8-2
tail option 8-11, 8-13
TERM variable 2-56
tenminal type 2-56
view file 8-10
view option 8-10
view window

motion keys 8-5

moving cursor 8-4, 8-4

window
adjustment 8-11
option 8-11

window motion

Index

I-29

Index

vsh (continued)
window motion (continued)
keys 8-5 7
word, line, character counts 8-11

z command
w vi scroll 2-21
ZZ command see vi "

w command
ed use see ed
mail
message saving 3-19
message write out 3-39
system mailbox, message deletion 3-18
vi use see vi
wait command
description 4-36
shell built-in command 4-46
special shell command 4-36
warn option see vi
while command
break command effect 4-27
continue command effect 4-27
description, use 4-25
exit status 4-25
loop 4-51
redirection 4-30
shell built-in command 4-46
test command 4-38
Word
grammar 4-58
wrapscan option see vi
“write escape see mail
Write out see w command
WRITEMAIL shell procedure 4-57

X

x command
mail
exit 3-18, 3-36
session abortion 3-11
Vi use see vi
-x option, command printing 4-17
XENIX command
directory residence
C-shell 7-3

I-30

g

03-17-87
SCO-512-210-024

INTRO (F) INTRO (F)

Name

intro — Introduction to file formats,

Description

This section outlines the formats of various files. Usually, these
structures can be found in the directories /usr/include or
/usr/include/sys.

A

April 1, 1987

Page 1

86REL (F) 86REL (F)

Name

86rel — Intel 8086 Relocatable Format for Object Modules.

Syntax

#include <sys/relsym86.h>

Description

Intel 8086 Relocatable Format, or 86rel, is the object module for-
mat generated by masm(CP), and the input format for the linker
ld(CP). The include file relsym86.h specifies appropriate defini-
tions to access 86rel format files from C. For the technical details
of the 86rel format, see Intel 8086 Object Module Format External
Product Specification.

An 86rel consists of one or more variable length records. Each
record has at least three fields: the record type, length, and check-
sum. The first byte always denotes the record type. There are
thirty-one different record types. Only eleven are used by Id(CP)
and masm(CP). The word after the first byte is the length of the
record in bytes, exclusive of the first three bytes. Following the
length word are typically one or more fields. Each record type has
a specific sequence of fields, some of which may be optional or of
varying length. The very last byte in each record is a checksum.
The checksum byte contains the sum modulo 256 of all other bytes
in the record. The sum modulo 256 of all bytes in a record, includ-
ing the checksum byte, should equal zero.

With few exceptions, 86rel strings are length prefixed and have no
trailing null. The first byte contains a number between 0 and 40,
which is the remaining length of the string in bytes. Although the
Intel specification limits the character set to upper case letters,
digits, and the characters “?”, “@”, “:”, “.”, and “_”, masm(CP)
uses the complete ASCII character set.

The Intel Object Module Format (OMF) specification uses the term
“index” to mean a positive integer either in the range 0 to 127, or
128 to 32,768. This terminology is retained in this document and
elsewhere in the 86rel literature. An index has one or two bytes. If
the first byte has a leading O bit, the index is assumed to have only
one byte, and the remainder of the byte represents a positive
integer between 0 and 127. If the second byte has a leading 1 bit,
the index is assumed to take up two bytes, and the remainder of
the word represents a positive integer between 128 and 32,768.

April 1, 1987 Page 1

86REL (F)

86REL (F)

Following is a list of record types and the hexadecimal value of
their first byte, as defined in relsym86.h.

#define MRHEADR
#define MREGINT
#define MREDATA
#define MRIDATA
#define MOVLDEF
#define MENDREC
#define MBLKDEF
#define MBLKEND
#define MDEBSYM
#define MTHEADR

#define MLHEADR
#define MPEDATA
#define MPIDATA

#define MCOMENT
#define MMODEND
#define MEXTDEF
#define MTYPDEF
#define MPUBDEF
#define MLOCSYM
#define MLINNUM
#define MLNAMES
#define MSEGDEF
#def' me MGRPDEF
#define MFIXUPP
#define MINONE1
#define MLEDATA
#define MLIDATA

#define MLIBHED
#define MLIBNAM
#define MLIBLOC
#define MLIBDIC
#define M386END
#define MPUB386
#define MLOC386
#define MLIN386
#define MSEG386
#def'me MFIX386
#define MLED386
#define MLID386

Ox6e /*rel module header/*
0x70 /*register initialization*/

0x72 /*explicit (enumerated) data image*/
0x74 /*repeated (iterated) data image*/

0x76 /*overlay definition*/

0x78 /*block or overlay end record*/

0x7a /*block definition*/

0x7c /*block end*/

0x7e /*debug symbols*/

0x80 /*module header,
usually first in a rel file/

0x82 /*link module header*/

0x84 /*absolute data image*/

0x86 /*absolute repeated (iterated)
data image/

0x88 /*comment record*/

0x8a /*module end record*/

0x8c /*external definition*/

0x8e /*type definition*/

0x90 /*public definition*/

0x92 /*local symbols*/

0x94 /*source line number*/

0x96 /*name list record*/

0x3 /*segment definition*/

0x9a /*group definition*/

0x9¢ /*fix up previous data image*/

0x9e / *none*})

0Oxa0 /*logical data image*/

0Oxa2 /*logical repeated (iterated)
data image/

Oxa4 /*library header*/

0xa6 /*library names record*/

Oxa8 /*library module locations*/

Oxaa /*library dictionary*/

0x86 /*32 bit module end record*/

0x91 /*32 bit public definition*/

0x93 /*32 bit logical symbols*/

0x95 /*32 bit source line number*/

0x99 /*32 bit segment definition*/

0x9d /*fix up previous 32 bit data image*/

Oxal /*32 bit logical data image*/

0Oxa3 /*32 bit logical repeated (iterated) data image*/

In the following discussion, the salient features of each record type
are given. If the record is not used by either masm(CP) or I1d(CP),

it is not listed.

April 1, 1987

Page 2

86REL (F)

THEADR
C
- COMENT
MODEND
EXTDEF
2 \
N2
TYPDEF
PUBDEF
O
LNAMES

April 1, 1987

86REL (F)

The record type byte is 0x80. The THEADR record
specifies the name of the source module at
assembly-time (see Notes). The sole field is the T-
MODULE NAME , which contains a length-prefixed
string derived from the base name of the source
module.

The record type byte is 0x88. The COMENT record
may contain a remark generated by the compiler sys-
tem. mams(CP) inserts the string “XENIX 8086
ASSEMBLER .”

The record type byte is 0x8a. The MODEND record
terminates a module. It can specify whether the
current module is to be used as the entry point to the
linked executable. If the module is an entry point,
the MODEND record can then specify the address of
the entry point within the executable.

The record type byte is 0x8c. The EXTDEF record
contains the names and types of symbols defined in
other modules by a PUBDEF record (see below).
This corresponds to the C storage class ‘“‘extern.”
The fields consist of one or more length-prefixed
strings, each with a following type index. The indices
reference a TYPDEF record seen earlier in the
module. masm(CP) generates only one EXIDEF per
exterior symbol.

The record type byte is Ox8e. The TYPDEF record
gives a description of the type (size and storage attri-
butes) of an object or objects. This description can
then be referenced by EXTDEF , PUBDEF , and
other records.

The record type byte is 0x90. The PUBDEF record
gives a list of one or more names that may be refer-
enced by other modules at link-time (“publics”).
The list of names is preceded by a group and seg-
ment index, which reference the location of the start
of the list of publics within the current segment and
group. If the segment and group indices are zero, a
frame number is given to provide an absolute address
in the module. The list consists of one or more of
length-prefixed strings, each associated with a 16-bit
offset within the current segment and a type index
referring to a TYPDEF .

The record type byte is 0x96. The LNAMES record
gives a series of length-prefixed strings which are
associated with name indices within the current
module. Each name is indexed in sequence given

Page 3

86REL (F)

SEGDEF

GRPDEF

FIXUPP

LEDATA

See Also

86REL (F)

starting with 1. The names may then be referenced
within the current module by successive SEGDEF and
GRPDEF records to provide strings for segments,
classes, overlays or groups.

The record type byte is 0x98. The SEGDEF record
provides an index to reference a segment, and infor-
mation conceming segment addressing and attributes.
This index may be used by other records to refer to
the segment. The first word in the record after the
length field gives information about the alignment,
and about combination attributes of the segment.
The next word is the segment length in bytes. Note
that this restrains segments to a maximum 645,536
bytes in length. Following this word is an index (see
above) for the segment. Lastly, the SEGDEF may
optionally contain class and/or overlay index fields.

The record type is 0x9a. The GRPDEF record pro-
vides a name to reference several segments. The
group name is implemented as an index (see above).

The record byte is 0x9c. The FIXUPP record
specifies one or more load-time address
modifications (“fixups™). Each fixup refers to a loca-
tion in a preceeding LEDATA (see below) record.
The fixup is specified by four data; a location, a
mode, a target and a frame. The frame and target
may be specified explicitly or by reference to an
already defined fixup.

The record type byte is 0xa0. This record provides a
contiguous text or data image which the loader
ld(CP) uses to construct a portion of an 8086 run-
time executable. The image might require additional
processing (see FIXUPP) before being loaded into the
executable. The image is preceeded by two fields, a
segment index and an enumerated data offset. The
segment index (see INDEX) specifies a segment given
by a previously seen SEGDEF . The enumerated data
offset (a word) specifies the offset from the start of
this segment.

as(CP), 1d(CP)

April 1, 1987

Page 4

PN

@

()

86REL (F) 86REL (F)

Notes

If you attempt to load a number of modules assembled under the
same basename, the loader will try to put them all in one big seg-
ment. In 286 programs, segment size is limited to 64K. In a large
program the resulting segment size can easily exceed 64K. A large
model code executable results from the link of one or more
modules, composed of segments that aggregate into greater than
64K of text.

Hence, be sure that the assembly-time name of the module has the
same bascname as the source. This can occur if the source module
is preprocessed not by cc(CP), but, for example, by hand or shell
script, prior to assembly. The following example is incorrect:

#incorrect

cc -E modulel.c |filter > x.c
cc Xx.c

mv x.0 modulel.o

cc -E module2.c |filter > x.c
cc X.C

myv x.0 module2.o0

cc -E module3.c |filter > x.c
cC X.C

mv x.0 module3.o

1d modulel.o module2.0 module3.o

To avoid this, each of the modules should have a unique name
when assembled, as follows:

#correct

cc -E modulel.c |filter > x.c
cc -S x.c

myv x.s modulel.s

as modulel.s

1d modulel.o module2.0 module3.0

April 1, 1987 Page 5

P

A.OUT (F) A.OUT (F)

Name

a.out — Format of assembler and link editor output.

Description

A.out is the output file of the assembler masm and the link editor
ld. Both -programs will make a.out executable if there were no
errors in assembling or linking, and no unresolved external refer-
ences.

The format of a.out, called the x.out or segmented x.out format, is
defined by the files /usr/include/a.out.h and
/usr/include/sys/relsym.h. The a.out file has the following general
layout:

1. Header.

2. Extended header.

3. File segment table (for segmented formats).

4. Segments (Text, Data, Symbol, and Relocation).

In the segmented format, there may be several text and data seg-
ments, depending on the memory model of the program. Segments

within the file begin on boundaries which are multiplies of 512 bytes
as defined by the file’s pagesize.

Format

* The main and extended header structures.

* For x.out segmented (XE_SEG):

* 1) fields marked with (s) must contain sums of xs_psize for
* non-memory images, or xs_vsize for memory images.

* 2) the contents of fields marked with (u) are iindefined.

*/

struct xexec { /* x.out header */
unsigned short x_magic; /* magic number */
unsigned short x_ext; /* size of header extension */
long x_text; /* size of text segment (s) */
long x_data; /* size of initialized data (s) */
long x_bss; /* size of uninitialized data (s) */
long X_syms; /* size of symbol table (s) */
long x_reloc; /* relocation table length (s) */
long x_entry; /* entry point, machine dependent */

April 1, 1987 Page 1

A.OUT (F) A.OUT (F)

char x_cpu; /*cpu type & byte/word order */
char x_relsym; /* relocation & symbol format (u) */
unsigned short X_renv; /* run-time environment */
b
struct xext { /* x.out header extension */
long xe_trsize; /* size of text relocation (s) */
long xe_drsize; /* size of data relocation (s) */
long xe_tbase; /* text relocation base (u) */
long xe_dbase; /* data relocation base (u) */
long xe_stksize; /* stack size (if XE_FS set) */
/* the following must be present if XE_SEG */
long Xxe_segpos; /* segment table position */
long Xe_segsize; /* segment table size */
long xe_mdtpos; /* machine dependent table position */
long xe_mdtsize; /* machine dependent table size */
char xe_mdttype; /* machine dependent table type */
char xe_pagesize; /* file pagesize, in multiples of 512 */
char xe_ostype; /* operating system type */
char xe_osvers; /* operating system version */
unsigned short xe_eseg; /* entry segment, machine dependent */
unsigned short xe_sres; /* reserved */
b
struct xseg { /* x.out segment table entry */

unsigned short xs_type; /* segment type */
unsigned short xs_attr; /* segment attributes */
unsigned short xs_seg; /* segment number */

char xs_align; /* log base 2 of alignment */

char Xs_cres; /* unused */

long xs_filpos; /* file position */

long Xs_psize; /* physical size (in file) */

long Xs_vsize; /* virtual size (in core) */

long xs_rbase; /* relocation base address/offset */

unsigned short xs_noff; /* segment name string table offset */
unsigned short xs_sres; /* unused */

long xs_lres; /* unused */
be
struct xiter { /* x.out iteration record */
long Xi_size; /* source byte count */
long xi_rep; /* replication count */
long xi_offset; /* destination offset in segment */

+

April 1, 1987 Page 2

A.OUT (F)

struct xlist { /* xlist structure for xlist(3). */
unsigned short xl type; /* symbol type */
unsigned short xl_seg; /* file segment table index */

long xI_value; /* symbol value */
char *x]_name; /* pointer to asciz name */
b
struct aexec { /* a.out header */
unsigned short xa_magic; /* magic number */
unsigned short xa_text; /* size of text segment */
unsigned short xa_data; /* size of initialized data */
unsigned short xa bss; /* size of unitialized data */
unsigned short xa_syms; /* size of symbol table */
unsigned short xa_entry; /* entry point */
unsigned short xa_unused; /* not used */
unsigned short xa_flag; /* relocation info stripped */
b
struct nlist { /* nlist structure for nlist(3). */
char n_name[8]; /* symbol name */
int n_type; /* type flag */
unsigned n_value; /* value */
b
struct bexec { /* b.out header */

long xb_magic; /* magic number */

long xb_text; /* text segment size*/

long xb_data; /* data segment size */

long xb_bss; /* bss size */

long xb_syms; /* symbol table size */

long xb_trsize; /* text relccation table size */
long xb_drsize; /* data relocation table size */
long xb_entry; /* entry point */

}

See Also

masm(CP), 1d(CP), nm(CP), strip(CP), xlist(S).

April 1, 1987

A.OUT (F)

Page 3

ACCT (F) ACCT (F)

Name

acct — Format of per-process accounting file.
F Description

form defined by <sys/acct.i>.

In ac_flag, the AFORK flag is turned on by each fork(S) and
turned off by an exec(S). The ac_comm field is inherited from the
parent process and is reset by any exec. Each time the system
charges the process with a clock tick, it also adds the current pro-
cess size to ac_mem computed as follows:

, .
e Files produced as a result of calling acct(S) have records in the
|
|

(data size) + (text size) / (number of in-core processes using
text)

The value of ac_rnem/ac_stime can be viewed as an approximation
to the mean process size, as modified by text-sharing.

See Also

" acct(C), acctcom(C), acct(S)
5

Notes

The ac_mem value for a short-lived command gives little informa-
tion about the actual size of the command, because ac_smem may
- be incremented while a different command (e.g., the shell) is being
! executed by the process.

April 1, 1987 Page 1

AR (F) AR (F)

Name

ar — Archive file format.

<" ., Description
The archive command ar is used to combine several files into one.
Archives are used mainly as libraries to be searched by the link edi-
tor 1d(C).
A file produced by ar has a magic number at the start, followed by
the constituent files, each preceded by a file header. The magic
number is 0177545 octal (or 0xff65 hexadecimal). The header of
each file is declared in /usr/include/ar.h.
Each file begins on a word boundary; a null byte is inserted
between files if necessary. Nevertheless the size given reflects the
actual size of the file exclusive of padding.

Notice there is no provision for empty areas in an archive file.

See Also

C‘ ar(CP), 1d(CP)

April 1, 1987 Page 1

ARCHIVE (F) ARCHIVE (F)

Name

archive - Default backup device information.

Q A Description

! letc/default/archive contains information on system default backup
| : devices for use by sysadmin(C). The device entries are in the fol-
: lowing format:

name=value [name=value] ...

value may contain white spaces if quoted, and newlines may be
escaped with a backslash.

The following names are defined for /etc/default/archive:

bdev Name of the block interface device.

cdev Name of the character interface device.

size Size of the volume in either blocks or feet.

density Volume density, such as 1600. If this value is miss-
q ing or null, then size is in blocks; otherwise the size
(\/ is in feet.

format Command used to format the archive device.

blocking Blocking factor.

desc A description of the device, such as “Cartridge

Tape.”
See Also
sysadmin(C)

| April 1, 1987 Page 1

/‘"‘\

AN

BACKUP (F) BACKUP (F)

Name

backup - Incremental dump tape format.

Description

The backup and restore commands are used to write and read
incremental dump magnetic tapes. - e e

The backup tape consists of a header record, some bit mask
records, a group of records describing file system directories, a

group of records describing file system files, and some records
describing a second bit mask.

The header record and the first record of each description have the
format described by the structure included by:

#include <dumprestor.h>
Fields in the dumprestor structure are described below.
NTREC is the number of 512 byte blocks in a physical tape record.
MLEN is the number of bits in a bit map word. MSIZ is the

number of bit map words.

The TS_. entries are used in the c_type field to indicate what sort of
header this is. The types and their meanings are as follows:

TS_TYPE Tape volume label.

TS_INODE A file or directory follows. The c.dinode field is a
copy of the disk inode and contains bits telling what
sort of file this is.

TS_BITS A bit mask follows. This bit mask has one bit for
each inode that was backed up.

TS_ADDR A subblock to a file (TS_INODE). See the descrip-
tion of c_count below.

TS_END End of tape record.

TS_CLRI A Dbit mask follows. This bit mask contains one bit
for all inodes that were empty on the file system
when backed up.

MAGIC All header blocks have this number in c_nagic.

CHECKSUM Header blocks checksum to this value.

April 1, 1987 Page 1

BACKUP (F)

BACKUP (F)

The fields of the header structure are as follows:

c_type
c_date
c_ddate
c_volume

c_tapea

c_inumber

c_inagic

c.checksum

c_dinode

c_count

c_addr

The type of the header.

The date the backup was taken.

The date the file system was backed up.
The current volume number of the backup.

The current block number of this record. This is
counting 512 byte blocks.

The number of the inode being backed up if this is of
type TS_INODE.

This contains the value MAGIC above, trancated as
needed.

This contains whatever value is needed to make the
block sum to CHECKSUM.

This is a copy of the inode as it appears on the file
system.

The following count of characters describes the file.
A character is zero if the block associated with that
character was not present on the file system; other-
wise, the character is nonzero. If the block was not
present on the file system no block was backed up
and it is replaced as a hole in the file. If there is not
sufficient space in this block to describe all of the
blocks in a file, TS_LADDR blocks will be scattered
through the file, each one picking up where the last
left off.

This is the array of characters that is used as
described above.

Each volume except the last ends with a tapemark (read as an end
of file). The last volume ends with a TS_END block and then the

tapemark.

The swucture idates describes an entry of the file where backup his-

tory is kept.

See Also

backup(C), restore(C), filesystem(F)

April 1, 1987

Page 2

CHECKLIST (F) CHECKLIST (F)

Name

checklist — List of file systems processed by fsck.

< I Description

- The /etc/checklist file contains a list of the file systems to be
checked when fsck(C) is invoked without arguments. The list con-
tains at most 15 special file names. Each special file name must be
on a separate line and must correspond to a file system.

See Also
fsck(C)

April 1, 1987 Page 1

CORE (F) CORE (F)

Name

core — Format of core image file.

Description

XENIX writes out a core image of a terminated process when any of
various errors occur. See signal(S) for the list of reasons; the most
common are memory violations, illegal instructions, bus errors, and
user-generated quit signals. The core image is called core and is
written in the process’ working directory (provided it can be; nor-
mal access controls apply). A process with an effective user ID dif-
ferent from the real user ID will not produce a core image.

The first section of the core image is a copy of the system’s per-
user data for the process, including the registers as they were at the
time of the fault. The size of this section depends on the parame-
ter wusize, which is defined in /usr/include/sys/param.h. The
remainder represents the actual contents of the user’s core area
when the core image Was Wwritteri. If the text segment is read-only
and shared, or separated from data space, it is not dumped.

The format of the information in the first section is described by
the wuser structure of the system, defined in
Jusr/include/sys/user.h. The locations of registers, are outlined in
/usr/include/sys/reg.h.

See Also

adb(CP), setuid(S), signal(S)

April 1, 1987 Page 1

CPIO (F) CPIO (F)

Name

cpio — Format of cpio archive.

/"" N Description
N The header structure, when the ¢ option is not used, is:

struct {
short h_magic,
h_dev,
h_ino,
h_mode,
h_uid,
h_gid,
h_nlink,
h_rdev,
h_mtime[2],
h_namesize,
h_filesize[2];
char h_name[h_namesize rounded to word];
} Hdr;

When the ¢ option is used, the header information is described by
. the statement below:

S sscanf(Chdr,""/oGo°/o60%60%60 %60%60%60%60% 1110%60%60% S",
&Hdr.h_magic,&Hdr.h_dev,&Hdr.h_ino,&Hdr.h_mode,
&Hdr.h_uid,&Hdr.h_gid, &Hdr.h_nlink,&Hdr.h_rdev,
&Longtime,&Hdr.h_namesize,&Longfile, Hdr.h_name);

Longtime and Longfile are equivalent to Hdr.h mtime and
Hdr.h_filesize, respectively. The contents of each file is recorded
in an element of the array of varying length structures, archive,
together with other items describing the file. Every instance of
h_magic contains the constant 070707 (octal). The items h._dev
through h_nutime have meanings explained in staz(S). The length of
the null-terminated pathname h.name, including the null byte, is
given by h_namesize.

The last record of the archive always contains the name
TRAILER!!. Special files, directories, and the trailer are recorded
with h_filesize equal to zero.

See Also

P
[\ cpio(C), find(C), stat(S)

April 1, 1987 Page 1

DIR (F) DIR (F)

Name

dir - Format of a directory.

Syntax

TN

— #include <sys/dir.h>

Description

A directory behaves exactly like an ordinary file, except that no
user may write into a directory. The fact that a file is a directory is
indicated by a bit in the flag word of its inode entry (see
filesystem(F)). The structure of a directory is given in the include
file fusr/include/sys/dir.h.

By convention, the first two entries in each directory are‘“dot” (.)
and “dotdot” (..). The first is an entry for the directory itself. The
second is for the parent directory. The meaning of dotdot is modi-
fied for the root directory of the master file system; there is no
parent, so dotdot has the same meaning as dot.

. See Also
I
|
C’ filesystem(F)

April 1, 1987 Page 1

DUMP (F) DUMP (F)

Name

dump — Incremental dump tape format.

Description

The dump and restor commands are used to write and read incre-
mental dump magnetic tapes.

The dump tape consists of a header record, some bit mask records,
a group of records describing file system directories, a group of
records describing file system files, and some records describing a
second bit mask.

The header record and the first record of each description have the
format described by the structure included by:

#include <dumprestor.h>
Fields in the dumprestor structure are described below.
NTREC is the number of 512 byte blocks in a physical tape record.
MLEN is the number of bits in a bit map word. MSIZ is the

number of bit map words.

The TS_ entries are used in the c_type field to indicate what sort of

 header this is. The types and their meanings are as follows:

. TS_TYPE .Tape volume label.

TS.JNODE A file or directory follows. The c.dinode field is a
copy of the disk inode and contains bits telling what
sort of file this is.

TS.BITS A bit mask follows. This bit mask has a one-bit for
each inode that was dumped.

TS_ADDR A subblock to a file (TS_INODE). See the descrip-
tion of c_count below.

TS_END End of tape record.

TS_CLRI A bit mask follows. This bit mask contains a one-bit
for all inodes that were empty on the file system
when dumped.

MAGIC All header blocks have this number in c_rnagic.

CHECKSUM Header blocks checksum to this value.

April 1, 1987 Page 1

DUMP (F)

DUMP (F)

The fields of the header structure are as follows:

c_type
c_date
c_ddate
c_volume

c_tapea
c_inumber
c_,magié
c_checksum
c_dinode

c_count

c_addr

The type of the header.

The date the dump was taken.

The date the file system was dumped from.
The current volume number of the dump.

The current block number of this record. This is
counting 512 byte blocks.

The number of the inode being dumped if this is of
type TS_INODE.

This contains the value MAGIC above, truncated as
needed.

This contains whatever value is needed to make the
block sum to CHECKSUM.

This is a copy of the inode as it appears on the file
system.

This is the count of characters following that describe
the file. A character is zero if the block associated
with that character was not present on the file sys-
tem, otherwise the character is nonzero. If the block
was not present on the file system no block was
dumped and it is replaced as a hole in the file. If
there is not sufficient space in this block to describe
all of the blocks in a file, TS_ADDR blocks will be
scattered through the file, each one picking up where
the last left off.

This is the array of characters that is used as
described above.

Each volume except the last ends with a tapemark (read as an end
of file). The last volume ends with a TS_END block and then the

tapemark.

The structure idates describes an entry of the file where dump his-

tory is kept.

See Also

dump(C), restor(C), filesystem(F)

April 1, 1987

Page 2

l/-\\

m
\. _

FILESYS (F)

Name

FILESYS (F)

filesys ~ Default information for mounting filesystems.

Description

letc/default/ filesys contains information for mounting filesystems in
the following format:

name=value [name=value] ...

value may contain white spaces if quoted, and newlines may be
escaped with a backslash.

mnt (see mount(C)) and sysadmin(C) use the information in the
letc/default/ filesys when the system comes up multiuser. The fol-
lowing names are defined for /erc/default/filesys:

bdev
cdev

size
mountdir

desc

mountflags
fsckflags

rcmount

See Also

Name of the block interface device.

Name of the character interface device.

Size in blocks.

Directory on which the filesystem is mounted.

A description of the ﬁlesystem For example,
“User filesystem."

Any flags passed to the mount(C) command.

Any flags passed to the fsck(C) command.

Whether or not to mount the filesystem when the
system goes multiuser. Can be “yes”, “no” or

“prompt”. If set to “prompt”, you are prompted
when it is time to mount the filesystem.

mount(C), sysadmin(C)

April 1, 1987

Page 1

FILESYSTEM (F) FILESYSTEM (F)

Name

file system — Format of a system volume.

Syntax

#include <sys/filsys.h>
#include <sys/types.h>
#include <sys/param.h>

Description

Every file system storage volume (for example, a hard disk) has a
common format for certain vital information. Every such volume is
divided into a certain number of 256 word (512 byte) blocks. Block
0 is unused and is available to contain a bootstrap program or other
information.

Block 1 is the super-block. The format of a super-block is
described in /usr/include/sys/filesys.h. In that include file, S_isize
is the address of the first data block after the i-list. The i-list starts
just after the super-block in block 2; thus the i-list is s_isize—2
blocks long. S_fsize is the first block not potentially available for
allocation to a file. These numbers are used by the system to check
for bad block numbers. If an “impossible” block number is allo-
cated from the free list or is freed, a diagnostic is written on the
console. Moreover, the free array is cleared so as to prevent
further allocation from a presumably corrupted free list.

The free list for each volume is maintained as follows. The s_free
array contains, in s_free[l], ..., s_free[s_nfree—1], up to 49 numbers
of free blocks. S_free[0] is the block number of the head of a
chain of blocks constituting the free list. The first long in each
free-chain block is the number (up to 50) of free-block numbers
listed in the next 50 longs of this chain member. The first of these
50 blocks is the link to the next member of the chain. To allocate
a block: decrement s_nfree, and the new block is s_free[s_nfree]. If
the new block number is 0, there are no blocks left, so give an
error. If s_nfree becomes 0, read in the block named by the new
block number, replace s_sifree by its first word, and copy the block
numbers in the next 50 longs into the s_free array. To free a block,
check if s_rnfree is 50; if so, copy s.nfree and the s_free array into
it, write it out, and set s_nfree to 0. In any event set s_free[s_nfree]
to the freed block’s number and increment s_nfree.

S_tfree is the total free blocks available in the file system.
S_ninode is the number of free i-numbers in the s_inode array. To

allocate an inode: if s_ninode is greater than 0, decrement it and
return s_jnode[s_ninode]. If it was O, read the i-list and place the

April 1, 1987 Page 1

FILESYSTEM (F) FILESYSTEM (F)

numbers of all free inodes (up to 100) into the s_jnode array, then
try again. To free an inode, provided s_ninode is less than 100,
place its number into s_inode[s_ninode] and increment s_ninode. If
s_ninode is already 100, do not bother to enter the freed inode into
any table. This list of inodes only speeds up the allocation process.
The informasion about whether the inode is really free is main-
tained in the inode itself.

S_tinode is the total free inodes available in the file system.

S_flock and s_ilock are flags maintained in the core copy of the file
system while it is mounted and their values on disk are immaterial,
The value of s_fmod on disk is also immaterial, and is used as a
flag to indicate that the super-block has changed and should be
copied to the disk during the next periodic update of file system
information. :

S_ronly is a read-only flag to indicate write-protection.

S_time is the last time the super-block of the file system was
changed, and is a double precision representation of the number of
seconds that have elapsed since 00:00 Jan. 1, 1970 (GMT). During
a reboot, the s_time of the super-block for the root file system is
used to set the system’s idea of the time.

I-numbers begin at 1, and the storage for inodes begins in block 2.
Also, inodes are 64 bytes long, so 8 of them fit into a block.
Therefore, inode i is located in block (i+15)/8, and begins
64x((i+15) (mod 8)) bytes from its start. Inode 1 is reserved for
future use. Inode 2 is reserved for the root directory of the file sys-

tem, but no other i-number has a built-in meaning. Each inode
represents one file. For the format of an inode and its flags, see

iriode(F).

Files
/usr/include/sys/filsys.h

/usr/include/sys/stat.h

See Also
fsck(C), mkfs(C), inode(F)

April 1, 1987 Page 2

n

FSTAB (F) FSTAB (F)

Name

fstab — File system mount and check commands.

Descrip tion

f5tab is an ASCII text file containing information that is passed to
the mount(C) and fsck(C) commands that are executed from
/etc/re. A typical /etc/fstab file might look like this:

device directory optional fla
/dev/u /u fsckflags="-y -D"
/dev/archive /archive mountflags="-r" fsckflags="-f"

The first column lists the device to be mounted and the second
column gives the mount point (directory) for the device.

The third column lists any optional flags. Optional flags are:

fsckflags - Flags that are passed to fsck.
mountflags - Flags that are passed to mount.
prompt - If set to “y”, prompts whether or not to

mount filesystem. Default is “n”.

Comment lines start with a number sign (#).

See Also
fsck(C), mount(C)

April 1, 1987 Page 1

N

C

|
/

GETTYDEFS (F) GETTYDEFS (F)

Name

gettydefs — Speed and terminal settings used by getty.

Des cription

The /etc/gettydefs file contains information used by getty (M) to set
up -the speed and terminal settings-for a:line. It supplies informa-
tion on what the login prompt should look like. It also supplies the
speed to try next if the user indicates the current speed is not
correct by typing a BREAK character.

Each entry in /etc/gettydefs has the following format:

label# initial-flags # final-flags # login-prompt #next-label [#
login-program]

Each enwy is followed by a blank line. The various fields can con-
tain quoted characters of the form \b, \n, \c, etc., as well as \nnn,
where nnn is the octal value of the desired character. The various
fields are:

label Identifies the /etc/gettydefs entry to getty. This
: could be a letter or number. The label corresponds
“to the line mode field in /etc/ttys. Init passes the

line mode as an argument to getty.

initial-flags ~ Sets the initial ioctl(S) settings if a terminal type is
not specified to gerty. The flags that getty under-
stands are the same as the ones listed in rry(M).
Normally only the speed flag is required in the
initial- flags. Getty automatically sets the terminal to
raw input mode and takes care of most of the other
fiags. The initial- flag settings remain in effect until
getty executes login(M).

final-flags Sets the same values as the initial-jlags. These flags
' are set just prior to getty executing login-program.
The speed flag is again required. The composite
flag SANE takes care of most of the other fiags that
need to be set so that the processor and terminal
are communicating in a rational fashion. The other
iwo commonly specified final-flags are TAB3, so
that tabs are sent to the terminal as spaces, and
HUPCL, so that the line is hung up on the final
close.

login-prompt Contains login prompt message that greets users.
Unlike the above fields where white space is ignored
(a space, tab, or new-line), it is included in the
login-prompt field. The ‘@ in the login-prompt

April 1, 1987 Page 1

GETTYDEFS (F)

next-label

login-program

GETTYDEFS (F)

field is expanded to the first line in /ete/systemid
(unless the ‘@’ is preceded by a ‘\’). Several char-
acter sequences are recognized, including:

Linefeed
\r Carriage return
\v Vertical tab

\nnn (3 octal digits) Specify ASCII character
\t Tab

\f Form feed

\b Backspace

Identifies the next entry in gettydefs for getty to try if
the current one is not successful. Getty tries the
next label if a user presses the BREAK key while
attempting to log in to the system. Groups of
entries, for example; for dial-up lines or for TTY
lines, should form a closed set so that getty cycles
back to the original entry if none of the entries is
successful. For instance, 2400 linked to 1200,
which in turn is linked to 300, which finally is linked
to 2400.

The name of the program that actually logs the user
onto XENIX. The default program is /etc/login. If
preceded by the keyword AUTO, getty will not
prompt for a username, but instead uses its first
argument as the username and executes the login-
program immediately.

If getty is called without a second argument, then the first entry of
/etc/gettydefs is used, thus making the first entry of /etc/gettydefs
the default entry. The first entry is also used if getty can not find
the specified label. If /etc/gettydefs itself is missing, there is one
enwy built into the command which will bring up a terminal at 300

baud.

After modifying /etc/gettydefs, run it through gerty with the check
option to be sure there are no errors.

Files

/etc/gettydefs

See Also

ioctl(8S), getty(M), login(M)

April 1, 1987

Page 2

INITTAB (F) INITTAB (F)

Name

inittab — Alternative login terminals file.

;
N

Description

telinit(C) reads inittab and converts it into a rtys(M)~format file.
initM) reads /etc/ttys to determine for which terminals logins are
allowed.

Each line in inittab has the form:
id:run-levels:action:/etc/getty tty mode

id A one- to four-character name that uniquely identifies this
line. It is recommended that if ¢z is ttyxx that the id then be
((xxj’.

run-levels
A list of digits ranging from 0 to 6. This list specifies which zel-
init states are concerned with this line. If the run-levels list is
empty, then it is assumed to be “0123456™ (all states).

action
Whether or not logins are allowed on t#y:

o | off
Logins are not allowed in any of the listed run-levels.

respawn
Logins are allowed only in the listed run-levels.

ondemand
Identical to “respawn”.

tty The filename of a character device special file. Only the
filename is supplied; the path is assumed to be /dev.

mode
A single character supplied as an argument to the gesty (M) pro-
gram. It defines the line characteristics (such as the baud rate)
for the terminal, and must malch one of the names listed in
/etc/gettydefs.

; Exactly one space must separate fys from ...:/etc/getty and from
mode. No other spaces or tabs are allowed.

i Aprill, 1987 Page 1

INITTAB (F) INITTAB (F)

Files

/etc/inittab

See Also

disable(C), enable(C), init(M), getty(M), gettydefs(F), telinit(C),
ttys(M)

Notes

inittab is provided for users more familiar with the telinit approach
to terminal administration, as opposed to the standard XENIX
enable(C)/disable(C) approach. It is intended that a full integra-

tion of these two approaches will be provided in a future version of
XENIX.

April 1, 1987 Page 2

INODE (F) INODE (F)

Name

inode — Format of an inode.

(" Syntax

#include <sys/types.h>
#include <sys/ino.h> -

Description

An inode for a plain file or directory in a file system has the struc-
i ture defined by <sys/ino.h>. For the meaning of the defined
! types off..t and time_t see iypes(F).
Files

/usr/include/sys/ino.h

See Also

i K\ stat(S), filesystem(F), types(F)
\/

o

\/_...

April 1, 1987 Page 1

a
.

MAPCHAN (F) MAPCHAN (F)

Name

mapchan — Format of tty device mapping files.

Description

mapchan configures the mapping of information input and output
of XENIX. - o L o

Each unique channel map requires 1024 bytes (a 1K buffer) for
mapping the input and output of characters. No maps are required
if no channels are mapped.

A method of sharing maps is implemented for channels that have
the same map in place. Each additional, unique map allocates an
additional buffer. The maximum number of map buffers available
on a system is configured in the kernel, and is adjustable via the
link kit (see config(C) and configure(C)). Buffers of maps no
longer in use are returned for use by other maps.

Example of a Map File

The internal character set used by XENIX is defined by the right
column of the input map, and the first column of the output map
in place on that line. By default, this is the 8-bit ASCII character
set which is also known as the dpANS X3.4.2 and ISO/TC97/SC2
or ISO 8859 Level I character sets. It supports the Latin alphabet
and can represent most European languages.

Any character value not given is assumed to be a straight mapping,
only the differences are shown in the mapfile. The left hand
columns must be unique. More than one occurence of any entry is
an error. Right hand column characters can appear more than
once. This is “many to one” mapping, Nulls can be produced with
dead or compose sequences or as part of an output string.

It is recommended that no mapping be enabled on the channel used
to create or modify the mapping files. This prevents any confusion
of the actual values being entered due to mapping. It is also recom-
mended that numeric rather than character representations be used
in most cases, as these are not likely to be subject to mapping. Use
comments to identify the characters represented. Refer to the
ascii(M) manual page and the hardware reference manual for the
device being mapped for the values to assign.

April 1, 1987 Page 1

MAPCHAN (F) MAPCHAN (F)

#

sharp/pound/cross-hatch is the comment character
however, a quoted # ('#’) is 0x23, not a comment
#

beep, input, output, dead and compose are special
keywords and should appear as shown.

#

beep # sound the bell when errors occur
input
ab
cd
dead p
qr .. # pfollowed by q yields r.
st # p followed by s yields z.
dead u
vw # u followed by v yields iv.
compose X # x is the compose key (only one allowed).
yz A # x followed by y and z yields A.
BCD # x followed by B and Cyields D.
output
ef # e is mapped to f.
ghij # g is mapped to Xj - one to many.
klmno # k is mapped to Imno.

All of the single letters above can be in one of these formats:
56 # decimal
045 # octal
Oxfa # hexadecimal
b’ # quoted char
076’ # quoted octal
\x4a’ # quoted hex

All of the above formats are translated to single byte values.
Diagnostics
mapchan performs these error checks when processing the mapfile:

More than one compose key.

Characters mapped to more than one thing.

Syntax errors in the byte values.

Missing input or output keywords.

Dead or compose keys also occuring in the input section.
Extra information on a line.

Mapping a character to null,

April 1, 1987 Page 2

N

MAPCHAN (F) MAPCHAN (F)

Characters are displayed as the 7-bit value instead of the 8-bit
value. Use stty —a to verify that -istrip is set. Make sure input is
mapping to the 8859 character set, output is mapping from the 8859
to the device display character set. dead and compose sequences
are input mapping and should be going to 8859.

Files

/etc/default/mapchan
/usr/lib/mapchan/map.stdrom
/usr/lib/mapchan/map. *

See Also

asciiM), keyboard(HW), 1p(C), lpadmin(C), mapchan(M),
mapkey(M), paralleli(HW), screen(HW), serial(HW), setkey(M),
tty(M)

Notes

Some foreign keyboards and display devices do not contain charac-
ters commonly used by XENIX command shells and the C program-
ming language. Do not attempt to use such devices for system
administration tasks.

Not all terminals or printers can display all the characters that can
be represented using this utility. Refer to the device’s hardware
manual for information on the capabilities of the peripheral device.

WARNING: Use of mapping files that specify a different “inter-
nal” character set per-channel, or a set other than the 8-bit ASCII
set supplied by default can cause strange side effects. It is especially
important to retain the 7-bit ASCII portion of the character set
(see ascii(M)). XENIX utilities and applications assume these
values. Media transported between machines with different internal
code set mappings may not be portable as no mapping is performed
on block devices, such as tape and floppy drives. mapchan can be
used to “wranslate” from one internal character set to another.

Do not set ISTRIP (see stty(C)) on channels that havc mapping
that includes eight bit characters.

April 1, 1987 Page 3

MASTER (F) MASTER (F)

Name

master — Master device information table.

Description

master contains device information used by config(C) to generate
the configuration files. The file consists of 4. parts, each-separated
by a line with a dollar sign ($) in column 1.

— Part 1 contains device information.

— Part 2 contains the line discipline table.

— Part 3 contains names of devices that have aliases.
— Part 4 contains tunable parameter information.

Any line with an asterisk (*) in column 1 is treated as a comment.

Part 1

This part contains definitions for the system devices. Each line has
14 fields with the fields delimited by tabs and/or blanks:

Field 1: Device name (8 chars. maximum).

Field 2: Number of interrupt vectors.

Field 3: Device mask (octal). Each “on” bit indicates that
the driver has the corresponding handler or struc-
ture:

000400 tty structure.
000200 Not used.
000100 Imitialization handler.
000040 Clock time poll routine.
000020 Open handler.
000010 Close handler.
000004 Read handler.
000002 Write handler.
000001 Ioctl handler.
The clock #ime poll routine, if present in the driver, is called
every clock tick in which the clock interrupted task-time pro-
cessing.
Field 4: Device type indicator (octal):
000200 Not used
000100 No gswtch on interrupt.
000040 Not used.
000020 Required device.
000010 Block device.
000004 Character device.
000002 Not used.
000001 Not used.

April 1, 1987 Page 1

MASTER (F) MASTER (F)

Field 5: Handler prefix (4 chars. maximum). Usually same
as Field 1. The routines of dev.c should begin
dev... The tty structure of dev.c should be named

dev_tty.
Field 6: Not used.
Field 7: Major device number for block-type device.
Field 8: Major device number for character-type device.
Field 9: Maximum number of devices per controller.
Field 10: The spl level (1 - 7) at which the device’s inter-

rupt routine should be called.

Fields 11-14: Maximum of four interrupt vector addresses
(octal). Each address is followed by a unique
letter or a blank.

Devices that are not interrupt-driven have an interrupt vector size
of zero. Devices that generate interrupts but are not of the stan-
dard character or block device mold, should be specified with a
type (field 4) which has neither the block nor character bits set.

Part 2
This part contains definitions for the system line discipline. Each

line has 9 fields. Each field is a maximum of 8 characters delimited
by a blank if less than 8:

Field 1: Device associated with this line.

Field 2: Open routine.

Field 3: Close routine.

Field 4: Read routine.

Field 5: Write routine.

Field 6: Ioctl routine,

Field 7: Receiver interrupt routine.

Field 8: Transmitter interrupt routine.

Field 9: Modem control interrupt routine.
Part 3

This part contains definitions for device aliases. Each line has 2
fields:

Field 1: Alias name of device (8 chars. maximum).
Field 2: Reference name of device as given in part 1 (8
chars. maximum).

Aliases may be used in place of actual device names when creating
the config(C) description file.

April 1, 1987 Page 2

MASTER (F) MASTER (F)

Part 4

This part contains the names and default values for tunable parame-
i ters. Each line has 2 or 3 fields:

If a paramcter has no default value, an explicit specification for the
parameter must be given in the description file. See config(C) for a
list of the tunable parameters.

| (* Field 1: Parameter name to be used in the config(C)
N description file (20 chars. maAmum).

‘ Field 2: Parameter name as it will appear in the resulting
I “c.c file (20 chars. maximum).

‘ Field 3: Default parameter value (20 chars. maximum).

See Also
config(C), configure(C)

April 1, 1987 Page 3

(\

s

MNTTAB (F) MNTTAB (F)

Name

mntitab — Format of mounted file system table.

Syntax
#include <stdio.h>
#include <mnttab.h>
Description

The /etc/mnttab file contains a table of devices mounted by the
mount(C) command.

Each table entry contains the pathname of the directory on which
the device is mounted, the name of the device special file, the
read/write permissions of the special file, and the date on which
the device was mounted.

The maximum number of entries in mnttab is based on the system
parameter NMOUNT located in /usr/sys/conf/space.c, which
defines the number of allowable mounted special files.

See Also

mount(C)

April 1, 1987 Page 1

SCCSFILE (F) SCCSFILE (F)

Name

sccsfile — Format of an SCCS file.

C' . Description
An SCCS file is an ASCII file. It consists of six logical parts: the

()

checksum, the.delta table. (contains information about each delta),.
user names (contains login names and/or numerical group IDs of
users who may add deltas), flags (contains definitions of internal
keywords), comments (contains arbitrary descriptive information
about the file), and the body (contains the actual text lines inter-
mixed with control lines). Each logical part of an SCCS file is
described in detail below.

Throughout an SCCS file there are lines which begin with the ASCII
SOH (start of heading) character (octal 001). This character is
hereafter referred to as the control character and will be
represented graphically as @. Any line described below which is
not depicted as beginning with the control character is prevented
from beginning with the control character. Entries of the form
DDDDD represent a five digit string (a number between 00000 and
99999).

Checksum

The checksum is the first line of an SCCS file. The form of the
line is:

@hDDDDD
The value of the checksum is the sum of all characters, except
those of the first line. The @hR provides a magic number of
(octal) 064001.
Delta Table

The delta table consists of a variable number of entries of the form:
@s DDDDD/DDDDD/DDDDD

@d <type> <SCCS ID> yr/mo/da hr:miise <pgmr> DDDDD DD

@i DDDDD ...
@x DDDDD ...
@g DDDDD ...
@m <MR number>

@c <comments> ...

@e

April 1, 1987 Page 1

SCCSFILE (F) SCCSFILE (F)

The first line (@s) contains the number of lines
inserted/deleted/unchanged respectively. The second line (@d)
contains the type of the delta (currently, normal: D, and removed:
R), the SCCS ID of the delta, the date and time of creation of the
delta, the login name corresponding to the real user ID at the time
the delta was created, and the serial numbers of the delta and its
predecessor, respectively.

The @i, @x, and @g lines contain the serial numbers of deltas
included, excluded, and ignored, respectively. These lines are
optional.

The @m lines (optional) each contain one MR number associated
with the delta; the @c lines contain comments associated with the
delta.

The @e line ends the delta table entry.

User Names

The list of login names and/or numerical group IDs of users who
may add deltas to the file, separated by new-lines. The lines con-
taining these login names and/or numerical group IDs are sur-
rounded by the bracketing lines @u and @U. An empty list allows
anyone to make a delta.

Flags

Keywords used internally (see admin(CP) for more information on
their use). Each flag line takes the form:

@f <flag> <optional text>
The following flags are defined:

@ft <type of program>
@f v <program name>
@f i

@f b

@f m <module name>
@f f <floor>

@f ¢ <ceiling>

@fd <default-sid>
@f n

@f |

@f1 <lock-releases>
@f q <user defined>

The t flag defines the replacement for the identification keyword.
The v flag controls prompting for MR numbers in addition to

April 1, 1987 Page 2

()

SCCSFILE (F) SCCSFILE (F)

comments; if the optional text is present it defines an MR number
validity checking program. The i flag controls the warning/error
aspect of the “No id keywords” message. When the i flag is not
present, this message is only a warning; when the i flag is present,
this message will cause a “fatal’ error (the file will not be gotten, or
the delta will not be made). When the b flag is present the —b
option may be used with the get command to cause a branch in the
delta tree. The m flag defines the first choice for the replacement
text of the sccsfile.F identification keyword. The f flag defines-the
“floor” release; the release below which no deltas may be added.
The ¢ flag defines the “ceiling” release; the release above which no
deltas may be added. The d flag defines the default SID to be used
when none is specified on a get command. The n flag causes delta
to insert a “null” delta (a delta that applies 70 changes) in those
releases that are skipped when a delta is made in a new release
(e.g., when delta 5.1 is made after delta 2.7, releases 3 and 4 are
skipped). The absence of the n flag causes skipped releases to be
completely empty. The j flag causes get to allow concurrent edits
of the same base SID. The 1 flag defines a list of releases that are
locked against editing (get(CP) with the —e option). The g flag
defines the replacement for the identification keyword.

Comments

Arbitrary text surrounded by the bracketing lines @t and @T. The
comments section typically contains a description of the file’s pur-
pose.

Body
The body consists of text lines and control lines. Text lines don’t
begin with the control character, control lines do. There are three
kinds of control lines: insert, delete, and end, as follows:
@I DDDDD
@D DDDDD
@E DDDDD

The digit string (DDDDD) is the serial number corresponding to the
delta for the control line.

See Also
admin(CP), delta(CP), get(CP), prs(CP)
XENIXProgrammer’s Guide

April 1, 1987 Page 3

-

STAT (F) STAT (F)

Name

stat — Data returned by stat system call.

Syntax

#include <sys/stat.h>

Des cription
The sys/stat.h include file contains the definition for the structure
returned by the star and fstat functions. The structure is defined
as:

struct stat{

dev_1 st_dev; /*

ino_t st_ino; /* inode number */

ushort sh_mode; /* file mode */

short st_nlink; /* # of links */

ushort st_uid; /* owner uid */

ushort st_gid; /* owner gid */

dev_t st_rdev; /*

off_t st_size; /* file size in bytes */

time_t st_atime; /* time of last access */

time_t si_mtime; /* time of last data modification */
time_t st_ctime; /* time of last file status ’change’ */

¥

Note that the st_atime, st_mtime, and sf_ctime values are measured
in seconds since 00:00:00 (GMT) on January 1, 1970.

The st_mode value is actually a combination of one or more of the
following file mode values:

S_IFMT 0170000 /* type of file */

S_IFDIR 0040000 /* directory */

S_IFCHR 0020000 /* character special */

S_IFBLK 0060000 /* block special */

S_IFREG 0100000 /* regular */

S_IFIFO 0010000 /* fifo */

S_IFNAM 0050000 /* name special entry */

S_INSEM 01 /* semaphore */

S_INSHD 02 /* shared memory */

S_ISUID 04000 /* set user id on execution */
S_IGUID 02000 /* set group id on execution */
S_ISVTX 01000 /* save swapped text even after use */
S_IREAD 00400 /* read permission, owner */

April 1, 1987 Page 1

STAT (F)

S_IWRITE (00200
S_IEXEC 00100

Files

/usr/include/sys/stat.h

See Also
stat(S)

April 1, 1987

STAT (F)

/* write permission, owner */
/* execute/search permission, owner */

Page 2

N

TAR (F) TAR (F)

Name

tar — archive format

Description

The command far(C) dumps files to and extracts files from backup
‘media or the hard disk.

Each file is archived in contiguous blocks, the first block being
occupied by a header, whose format is given below, and the subse-
quent blocks of the files occupying the following blocks. All
headers and file data start on 512 byte block boundaries and any
spare unused space is padded with garbage. The format of a header
block is as follows:

#define TBLOCK 512
#define NBLOCK 20
#define NAMSIZ 100
union hblock {
char dummy[TBLOCK];
struct header {
char name[NAMSIZ];
char mode[8];
char uid[8];
char gid[§];
char size[12];
char mtime[12];
char chksum|§];
char linkflag;
char linkname[NAMSIZ];
char extno[4];
char extotal[4];
char efsize[12];
} dbuf;
} dblock;

The name entry is the path name of the file when archived. If the
pathname starts with a zero word, the entry is empty. It is at most
100 bytes long and ends in a null byte. Mode, uid, gid, size, and
time modified are the same as described under i-nodes (refer to
filespstem(F)). The checksum entry has a value such that the sum
of the words of the directory entry is zero.

If the entry corresponds to alink, then linkname contains the path-

name of the file to which this entry is linked and linkflag gives a
count of the links. No data is put in the archive file.

See Also
filesystem(F), tar(C)

April 1, 1987 Page 1

TERM (F) TERM (F)

|
! Name

term — Terminal driving tables for nroff.

e "‘] Description
:\\ ;

nroff(CT) uses driving tables to customize its output for various
types of output devices, such as-printing terminals, special word-
processing printers (such as Diablo, Qume, or NEC Spinwriter
mechanisms), or special output filter programs. These driving
tables are written as C programs, compiled, and installed in
/usr/lib/term/tabname, where name is the name for that terminal
type as shown in term(CT).

The structure of the tables is as follows. Sizes are in 240ths of an
inch.

#define INCH 240

struct termtable tlp ; { * Ip is the name of the rerm, *\
int bset; * modify with new name, such as mnew *\
int breset;
int Hor;
int Vert;

BN int Newline;
) int Char;
- int Em;

int Halfline;
int Adj;

char *twinit;
char *wrest;
char *twnl;
char *hlr;
char *hlf;
char *flIr;
char *bdon;
char *bdoff;
char *iton;
char *itoff;
char *ploton;
char *plotoff;
char *up;
char *down;
char *right;
char *left;
char *codetab[256-32];
char *zzz;

April 1, 1987 Page 1

TERM (F)

TERM (F)

The meanings of the various fields are as follows:

bset

breset
Hor
Vert

Newline

Char

Em

Halfline

Adj

twinit

twrest

twnl
hir
hif
fir
bdon

April 1, 1987

bits to set in terrnio.c_oflag see tty(M) and termio(M)).
after output.

bits to reset in termio.c_oflag before output.
horizontal resolution in fractions of an inch.
vertical resolution in fractions of an inch.

space moved by a newline (linefeed) character in frac-
tions of an inch.

quantum of character sizes, in fractions of an inch.
(i.e., characters are multiples of Char units wide. See
codetab below.)

size of an em in fractions of an inch.

space moved by a half-linefeed (or half-reverse-
linefeed) character in fractions of an inch.

quantum of white space for margin adjustment in the
abscence of the -e option, in fractions of an inch. (i.e.,
white spaces are a multiple of Adj units wide)

Note: if this is less than the size of the space character
(in units of Char; see below for how the sizes of charac-
ters are defined), nroff will output fractional spaces
using plot mode. Also, if the -e switch to nroff is used,
Adj is set equal to Hor by nroff.

set of characters used to initialize the terminal in a mode
suitable for nroff.

set of characters used to restore the terminal to normal
mode.

set of characters used to move down one line.

set of characters used to move up one-half line.

set of characters used to move down one-half line.

set of characters used to move up one line.

set of characters used to turm on hardware boldface
mode, if any. Nroff assumes that boldface mode is reset
automatically by the twnl string, because many letter-

quality printers reset the boldface mode when they
receive a carriage return; the twnl string should include

Page 2

TERM (F) TERM (F)

whatever characters are necessary to reset the boldface

mode.

bdoff set of characters used to turn off hardware boldface
mode, if any.

iton set of characters used to turn on hardware italics mode,
if any.

itoff set of characters used to turn off hardware italics mode,
if any.

ploton set of characters used to turn on hardware plot mode

(for Diablo-type mechanisms), if any.

plotoff set of characters used to turn off hardware plot mode
(for Diablo-type mechanisms), if any.

up set of characters used to move up one resolution unit
(Vert) in plot mode, if any.

down set of characters used to move down one resolution unit
(Vert) in plot mode, if any.

right set of characters used to move right one resolution unit
(Hor) in plot mode, if any.

left set of characters used to move left one resolution unit
(Hor) in plot mode, if any.

codetab Array of sequences to print individual characters. Order
is nroff's intermal ordering. See the file
/usr/lib/term/tabuser.c for the exact order.

y444 a zero terminator at the end.

The codetab sequences each begin with a flag byte. The top bit
indicates whether the sequence should be underlined in the .ul
font. The rest of the byte is the width of the sequence in units of
Char.

The remainder of each codetab sequence is a sequence of charac-
ters to be output. Characters with the top bit off are output as
given; characters with the top bit on indicate escape into plot
mode. When such an escape character is encountered, nroff shifts
into plot mode, emitting plofon, and skips to the next character if
the escape character was \200’.

When in plot mode, characters with the top bit off are output as
given. A character with the top bit on indicates a motion. The
next bit indicates coordinate, with 1 being vertical and 0 being hor-
izontal. The next bit indicates direction, with 1 meaning up or left.

April 1, 1987 Page 3

TERM (F) TERM (F)

The remaining five bits give the amount of the motion. An amount
of zero causes exit from plot mode.

When plot mode is exited, either at the end of the string or via the
amount-zero exit, plotoff is emitted followed by a blank.

All quantities which are in units of fractions of an inch should be
expressed as INCH*¥*num/denom, where num and denom are
respectively the numerator and denominator of the fraction; that is,
1/48 of an inch would be written as “INCH/48”.

If any sequence of characters does not pertain to the output device,
that sequence should be given as a null string.

The XENIX Development System must be installed on the com-
puter to creaté a new driving table. The source code for a generic
output device is in the file /usr/lib/term/tabuser.c Copy this file
and make the necessary modificaions, including the name of the
termtable struct. Refer to the hardware manual for the codes
needed for the output device (terminal, printer, etc.). Name the
file according to the convention explained in term(CT). The
makefile, /usr/lib/term/makefile, should be updated to include the
source file to the new driving table. When the files are prepared,
enter the command :

make cp
(See make(CP)). The source to the new driving table is linked with
the object file mkterm.o, and the new driving table is created and
installed in the proper directory.
FILES
/usr/lib/term/tabname driving tables
/usr/lib/term/tabuser.c generic source for driving tables
/usr/lib/term/makefile makefile for creating driving tables
/usr/lib/term/mkterms.olinkable object file for creating driving tables

SEE ALSO
nroff(CT), term(CT).

April 1, 1987 Page 4

TERM (F)

! Notes

TERM (F)

The XENIX Development System must be installed on the com-

puter to create new driving tables.

f ‘ Not all XENIX facilities support all of these options.

April 1, 1987

Page 5

TERMINFO(F) TERMINFO(F)

Name

terminfo — Format of compiled terminfo file.

{ Description

Compiled terminfo descriptions are placed under the directory
/usr/lib/terminfo. In order to avoid a linear search of a huge
XENIX system directory, a two-level scheme is used:
/usr/lib/terminfo/c/name where name is the name of the terminal,
and c is the first character of name. Thus, act4 can be found in
the file /usr/lib/terminfo/a/act4. Synonyms for the same terminal
are implemented by multiple links to the same compiled file.

The format has been chosen so that it will be the same on all
hardware. An 8- or more-bit byte is assumed, but no assumptions
about byte ordering or sign extension are made.

The compiled file is created with the #ic(C) program, and read by
the routine setupterm in terminfo(S). The file is divided into six
parts: the header, terminal names, boolean flags, numbers, strings,
and string table.

- The header section begins the file. This section contains six short
VN integers in the format described below. These integers are (1) the
' magic number (octal 0432); (2) the size, in bytes, of the names sec-
- tion; (3) the number of bytes in the boolean section; (4) the
number of short integers in the numbers section; (5) the number of
offsets (short integers) in the strings section; (6) the size, in bytes,

of the string table.

e

Short integers are stored in two 8-bit bytes. The first byte contains
the least significant 8 bits of the value, and the second byte con-
tains the most significant 8 bits. (Thus, the value represented is
256*second+first.) The value -1 is represented by 0377, 0377; other
negative values are illegal. The -1 generally means that a capability
is missing from this terminal. Note that this format corresponds to
the hardware of the VAX and PDP-11. Machines in which this does
not correspond to the hardware read the integers as two bytes and
compute the result.

The terminal names section comes next. It contains the first line of

the terminfo description, listing the various names for the terminal,

separated by the ‘F character. The section is terminated with an
o ASCII NUL character.

S The boolean flags have one byte for each flag. This byte is either 0
or 1, as the flag is present or absent. The capabilities are in the
same order as the file <terrmn.h>.

April 1, 1987 Page 1

TERMINFO(F) TERMINFO(F)

Between the boolean section and the number section, a null byte
will be inserted, if necessary, to ensure that the number section
begins on an even byte. All short integers are aligned on a short-
word boundary.

The numbers section is similar to the flags section. Each capability
takes up two bytes, and is stored as a short integer. If the value
represented is —1, the capability is taken to be missing.

The strings section is also similar. Each capability is stored as a
short integer, in the format above. A value of —1 means the capa-
bility is missing. Otherwise, the value is taken as an offset from the
beginning of the string table. Special characters in "X or \c nota-
tion are stored in their interpreted form, not the printing represen-
tation. Padding information $<nn> and parameter information % x
are stored intact in uninterpreted form.

The final section is the swring table. It contains all the values of
string capabilities referenced in the string section. Each string is
null-terminated.

Note that it is possible for setipterm to expect a different set of
capabilities than are actually present in the file. Either the database
may have been updated since setupterm was recompiled (resulting in
extra unrecognized entries in the file) or the program may have
been recompiled more recently than the database was updated
(resulting in missing entries). The routine setupterm must be
prepared for both possibilities; this is why the numbers and sizes
are included. Also, new capabilikes must always be added at the
end of the lists of boolean, number, and string capabilities.

April 1, 1987 Page 2

o

TERMINFO(F) TERMINFO(F)

As an example, an octal dump of the description for the Microterm
ACT 4 is included:

mlcrotcrm Iact4 [rnlcroterm activ,
cr—M cudl= 1, deJ bel= G, am, cubl="H,
ed="_, el="", clear="L, cup-— T%pl% c%p2%c,
cols#SO hnes#24 cufl= X, cuul="Z, home="],

000032 001 \0025 \0 \b \0212 \0 " \0 m i c r

020 0t erm | actd4] micro

040 t e r m act i v \0\0001 \0 \0

060 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \0 \O

100 \0 \0 P \0377377 030 \0 377 377 377 377 377 377 377 377
120 377 377 377 377 \0 \0 002 \0 377 377 377 377 004 \0 006 \0
140 \b \0377377377377 \n \0 026 \0 030 \0 377377032 \0
160 377 377 377 377 034 \0 377 377 036 \0 377 377 377 377 377 377
200 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377 377
*

520 377 377 377 377 \0 377 377 377 377 377 377 377 377 377 377
540 377 377 377 377 377377007 \0 \r \0 M \0036 \0 037 \0
560024 % p 1 % ¢ % p 2 % c \0 \n \0035\0
600 \b \0030 \0032 \0 \n \0

Some limitations: the total size of a compiled description cannot
exceed 4096 bytes; the name field cannot exceed 128 bytes.

Files

/usr/lib/terminfo/*/* compiled terminal capability data base

See Also

terminfo(M), terminfo(S), tic(C)

April 1, 1987 Page 3

._.\\

I

O
|
%

()

TYPES (F) TYPES (F)

Name

types — Primitive system data types.

Syntax

#include <sys/types.h>

Description

The data types defined in the include file <sys/types.h> are used
in XENIX system code; some data of these types are accessible to
user code.

The form daddr_t is used for disk addresses except in an inode on
disk, see filesystem(F). Times are encoded in seconds since
00:00:00 GMT, January 1, 1970. The major and minor parts of a
device code specify kind and unit number of a device and are
installation-dependent. Offsets are measured in bytes from the
beginning of a file. The label_t variables are used to save the pro-
cessor state while another process is running.

See Also

filesystem(F)

April 1, 1987 Page 1

e e e e e e T TS T TR TLTALT AR TS SN VN0 e P 0 0 0. 0.9 2 0 0.0 0 0 69 00 S0 9 e

Replace this Page
with Tab Marked:
Permuted
Index

(D

C

Permuted Index

Commands, System Calls, Library Routines and File Formats

This permuted index is derived from the “Name” description lines found on each
reference manual page. Each index line shows the title of the entry to which the line
refers, followed by the reference manual section letter where the pageis {ound.

To use the permuted index search the middle column forakeyword or phrase. The right
hand column contains the name and section letter of the manual page that documents the
key word or phrase. The left column contains additional useful information about the
command. Commands or routines are also listed in the context of the indexline, followed
bya colon (:). This denotes the “beginning” of the sentence. Notice thatin many cases,
thelines wrap, starting in the middle column and endingin the left column. A slash (/)
indicates thatthe description line is truncated.

13to], 1tol3: Convertsbetween 3-byteintegersandlong/ 13tol(S)
acceptsanumberof 512-byteblocks. . . « . « login(M)
between Ionginteger and base 64 ASCII. a64],164a:Converts . . _ a641(S)

Object Modules. 86rel: Intel 8086 Relocatable Formatfor 86rel(F)
asx: XENIX 8086/186/286/386 Assembler. . . . asx(CP)
Format for Object Modules. 86rel Intel8086 Relocatable 86rel(F)
longintegerandbase64 ASCII. a64l,164a: Convertsbetween . . _ . a64l(S)
abort: GeneratesanIOT fault. . . . abort(S)

value. abs:Returnsanintegerabsolute . . abs(S)

abs:Retumnsaninteger absolutevalue. . . « « « . « . . . abs(S)
and/ /fabs, ceil,fmod: Performs absolute value, floor, ceiling floor(S)
integer. labs: Returnsthe absolute valueofalong labs(DOS)

blocks. acceptsanumberof512-byte . . . login(M)
files. settime: Changesthe access and modificationdatesof . . settime(C)

afile. touch: Updates access and modificationtimesof . ., touch(C)
utime: Setsfile access and modificationtimes. . . . utime(S)
of afile. access: Determinesaccessibility . . access(S)
dosls, dosrm, dosrmdir: AccessDOSfiles. dos(C)
directory. chmod: Changesthe access permissionsofafileor . . . chmod(C)
Synchronizesshared data access. sdgetv, sdwaitv: sdgetv(S)

a/ /nbwaitsem: Awaitsandchecks accesstoaresourcegovernedby . . waitsem(S)
sdenter, sdleave: Synchronizes accesstoashareddatasegment. . . sdenter(S)
sput], sgetl: Accesseslongintegerdataina/ . . . sputl(S)
endutent, utmpname: Accessesutmpfileentry. getut(S)
access: Determines accessibilityofafile. access(S)

csplit: Splitsfiles accordingtocontext. csplit(C)
rmuser: Removesauser accountfromthesystem. . - . . . rmuser(C)
accton: Turnson accounting. + « « + . « accton(C)
Enables or disablesprocess accounting. acct: « .« « « » « . . . acct(S)
acct: Formatof per-process accountingfile. . - - . - . . - . acct(F)
Searchesforandprintsprocess accountingfiles. acctcom: acctcom(C)
imacct: Generatean IMAGEN accountingreport. » imacct(C)
process accounting. acct: Enablesordisables acct(S)
accounting file. acct:Formatof per-process - . . - acct(F)

Permuted Index

processaccounting files.

sin, cos, tan, asin,
Printscurrent SCCS fileediting
debugger.

Copies bytes from a specific
mkuser:

nl:

lineprinters. lpinit:

swapadd:

swapctl:

putenv: Changes or
SCCSfiles.

admin: Creates and

netutil:

uuinstall:
pwadmin: Performs password aging’
sysadmsh: Menu driven system
uadmin:

pwadmin: Performs password
alann: Setsa process’

clock.

aliashash: Micnet
tablegenerator.

faliases: Micnet

brkctl:

malloc, free, realloc, calloc:
brk: Changesdata segment space
file. inittab:

terminals/ telinit, mKinittab:
Generates programs forlexical
document. style:

link editor output.

libraries.

dc:Invokesan

cpio: Format of cpio
thenames of fileson abackup
ar:

tar:

ar: Maintains

tar:

cpio:Copiesfile

ranlib: Converts

swapadd: Addsswap

swapctl: Addsswap

varargs: variable

output of avarargs

getopt: Getsoptionletterfrom
expr: Evaluates

echo: Echoes

between longintegerand base 64
ascii: Map of the

tzset: Converts date and timeto
character set.

I-2

acctcom: Searches for and prints . . acctcom(C)
accton: Tums on accounting. . . . accton(C)
acos, atan, atan2: Performs/ . . , . trig(S)
activity. sact: sact(CP)
adb:Invokes ageneral-purpose . . adb(CP)
address. movedata: . , movedata(DOS)
AddsaloginIDto thesystem. . , . mkuser(C)
Addslinenumberstoafile. nl(C)
Adds, reconfigures and maintains . lpinit(C)
Addsswaparea. swapadd(S)
Addsswaparea. « . swapctl(C)
addsvaluetoenvironment. putenv(S)
admin: Createsand administers . . admin(CP)
administersSCCSfiles. admin(CP)
Administersthe XENIXnetwork. . netutil(C)
AdministersUUCP controlfiles. . . uuinstal{C)
administration. pwadmin(C)
administration utility. sysadmsh(C)
administrativecontrol. uadmin(S)
agingadministration. pwadmin(C)
alarmclock. alarm(S)
alann: Setsaprocess’alarn . , , . alarm(S)
alias hash tablegenerator. aliashash(M)
aliashash: Micnetaliashash aliashash(M)
aliasingfiles. aliases(M)
Allocatesdatain afarsegment. . . . brkctl(S)
Allocatesmainmemory. . ., . . . malloc(S)
allocation. sbrk, sbrk(S)
Alternativeloginterminals inittab(F)

Alternativemethodof turming . . . telinit(C)
analysis.lex: lex(CP)
Analyzes characteristicsofa style(CT)
a.out: Format of assemblerand . . . a.out(F)
ar: Archivefileformat, ar(F)

ar: Maintainsarchivesand ar(CP)
arbitrary precision calculator. . . . dc(C)
archive. « « « .+ . cpio(F)
archive. dumpdir:Prints dumpdir(C)
Archivefileformat., . ar(F)
archiveformat. tar(F)
archivesandlibraries. , . ar(CP)
Archivesfiles. tar(C)
archivesinandout. cpio(C)
archivestorandom libraries. ranlib(CP)
T -+ + . swappadd(S)
ATEA, & v v o e o o o 0 0 a - .. swapctl(C)
argumentlist. varargs(S)
argument list. /Printsformatted . . vprintf(S)
argumentvector. - .« getopt(S)
argumentsasanexpression. expr(C)
arguments. .« « « .+ o o e v s echo(C)
ASCI. a64l,164a: Converts a64l(S)
ASCHcharacterset. . - « « + . . ascii(M)
ASCI. /gmtime, asctime, - ctime(S)
ascii:Mapofthe ASCII ascii(M)

atof, atoi, atol: Converts

and/ ctime, localtime, gmtime,
Performs/ sin, cos, tan,
commands. help:

time of day.

output. a.out: Formatof assemblerandlink editor

asx: XIENIX 8086/186/286/386
masm: Invokesthe XENIX
program.

deassigns devices.

assign, deassign:

setbuf, setvbuf:

setkey:

Assembler.

alatertime.

sin, cos, tan, asin, acos,

sin, cos, tan, asin, acos, atan,
tonumbers.
double-precision/ strtod,
numbers. atof,

integer. strtol, atol,

integer. strtol,

atof, atoi,

datasegment. sdget, sdfree:
the system.

autoboot:

resource/ waitsem, nbwaitsem:
processes. wait:

apatternina file.

wait: Awaits completion of background processes.

Printsthenames offileson a

Performsincremental filesystem backup. backup: + . .«

sddate: Printsand sets

Performsincremental filesystem backup. dump:

fonnat.
file system backup.

sysadmin: Performsfile system backupsand restores files.

fixeddiskfor flawsand creates bad track table. badtrk: Scans
flawsand creates bad track/ badtrk: Scans fixed disk for . . .

betweenlongintegerand base64 ASCII. /164a: Converts

and sets the configuration data base. cmos: Displays
andsets the configuration data base. cmos: Displays
Terminal capabilitydata base. termcap:
terminal capability data base. terminfo:

names from pathnames.
latertime. at,

fordiff.

cb:
j0,j1,jn, y0,y1,yn: Performs Bessel functions. bessel,

ASCHtonumbers. « . . atof(S)
asctime, tzset: Convertsdate ctime(S)
asin, acos, atan, atan2: trig(S)
AsksforhelpaboutSCCS help(CP)
asktime: Prompts forthecorrect . . asktime(C)
..... a.out(F)
Assembler. - .- asx(CP)
assembler. masm(CP)
assert: Helpsverifyvalidityof . . . assert(S)
assign, deassign: Assignsand . . . assign(C)
Assigns and deassigns devices. . . - assign(C)
Assigns bufferingto a stream. <+ setbuf(S)
Assigns thefunctionkeys. setkey(C)
asx: XENIX 8086/186/286/386 - . asx(CP)
at, batch: Executescommandsat . . at(C)
atan, atan2: Performs/ trig(S)
atan2: Performs trigonometric/ . . . trig(S)
atof, atoi, atol: Converts ASCII . , atof(S)
atof: Convertsastringtoa strtod(S)
atoi, atol: Converts ASCITto - . . atof(S)
atoi:Convertsstringto strtol(S)
ato), atoi: Convertsstringto strtol(S)
atol: Converts ASCIIto numbers. . atof(S)
Attachesand detachesashared . . sdget(S)
autoboot: Automaticallyboots . . . autoboot(M)
Automaticallybootsthesystem. . . autoboot(M)
Awaitsand checksaccesstoa . . . waitsem(S)
Awaits completion of background . wait(C)
awk: Searchesforandprocesses . . awk(C)
...... wait(C)
backup archive. dumpdir: « dumpdir(C)
. . backup(C)
backupdates. sddate(C)
/Default backup deviceinformation. archive(F)

e e oo+~ - dump(C)
backup: Incrementaldumptape . . backup(F)
backup: Performsincremental . . . backup(C)

..... sysadmin(C)
. . badtrk(M)
. badtrk(M)
banner: Prints large letters. banner(C)
. a641(S)
....... cmos(HW) -
....... cmos(HW-86)
........... termcap(M)
......... terminfo(M)
basename: Removes directory . . . basename(C)
batch: Executescommandsata . . at(C)
be: Invokesacalculator. + .+ bc(C)
bdiff: Compares filestoolarge . - bdiff(C)
bdos: Invokes a DOS systemcall. . . bdos(DOS)
BeautifiesCprograms. .+ - + « . . cb(CP)
..... bessel(S)

PerforinsBesselfunctions.

bessel, j0, j1,jn, y0, y1, yn:
bfs:Scansbigfiles, . . .

Permuted Index

. bessel(S)

bfs(C)

I-3

Permuted Index

fixhdr: Changes executable
selected parts of executable
fread, fwnte: Performsbuffered
bsearch: Performsa

tfind, tdelete, twalk: Manages
Createsan instanceofa
Removessymbolsand relocation
shutdn: Flushes

cmchk: Reports hard disk
df:Reportnumberoffreedisk
Calculates checksum and counts
acceptsanumber of 512—-byte
boot: XENIX

autoboot: Automatically
allocation. sbrk,
segment.

search.

acharacterto the console
output. fread, fwrite: Performs
stdio: Performs standard
setbuf, setvbuf: Assigns
flushall: Flushes all output
mknod:

inp: Returnsa

outp: Writesa

movedata: Copies

swab: Swaps

cc: Invokes the

cflow: Generates

cpp: The

lint: Checks

cxref: Generates

cb: Beautifies

stack requirements for
xref: Cross-references
xstr: Extracts strings from
anerror messagefilefrom
distance. hypot,

blocksinafile. sum:

bc: Invokesa

Invokesan arbitraryprecision
cal:Printsa

service.

bdos: Invokes aDOS system
intdos: InvokesaD OS system
intdosx:InvokesaDOS system
Datareturnedby stat system
exit: Terminatesthe

malloc, free, realloc,

cu:

lineprinter. lp, lpr,

termcap: Terminal

terminfo: terminal

1-4

binaryfileheaders. + .+ fixhdr(C)
binaryfiles. hdr:Displays hdr(CP)
binaryinputandoutput. fread(S)
binarysearch. - . . bsearch(S)
binary search trees. tsearch, tsearch(S)
binary semaphore. creatsem: . . . creatsem(S)
bits. Strip: « < ¢ ¢ 4 0 o4 v .. swip(CP)
block I/O and haltsthe CPU. - - - . shutdn(S)
blocksize. « « ¢« « o « 4 4 . « - . cmchk(C)
blocks. df(C)
blocksinafile. sum: sum(C)
blocks. « « .« .. 0oL .. login(M)
bootprogram. . . « + . + 4 .+ beet(HIW)
boot: XENIXbootprogram. boot(HW)
bootsthesystem. - . . . autoboot(M)
brk: Changesdata segment space . . sbrk(S)
brkctl: Allocatesdatainafar brkctl(S)
bsearch: Performsabinary bsearch(S)
buffer. ungetch: Returns ungetch(DOS)
buffered binary inputand fread(S)
bufferedinputandoutput. stdio(S)
bufferingtoastream. setbuf(S)
buffers. v+ v+« + . flushallDOS)
Builds specialfiles. mknod(C)
byte. . & vt inp(DOS)
bytetoanoutputport. . . . « . . . outp(DOS)
bytes from a specificaddress. . . . movedata(DOS)
bytes. . . . v « « » « swab(S)
Ccompiler. « « « « <« cc(CP)
Cflowgraph. cflow(CP)
Clanguage preprocessor. cpp(CP)
Clanguageusageand syntax. lint(CP)
Cprogramcross-reference. cxref(CP)
Cprograms. . . « . .« v s v v~ - cb(CP)
Cprograms. /Determines stackuse(CP)
Cprograms. « o « o o « « » + + .« xref(CP)
Cprograms. . « « « « o« « 4 - . xstr(CP)
Csource. mkst:Creates mkstr(CP)
cabs:DeterminesEuclidean hypot(S)
cal:Printsacalendar. cal(C)
Calculates checksum andcounts . . sum(C)
calculator. be(C)
calculator.de: « dc(C)
calendar.0 0. 0. cal(C)
calendar: Invokesareminder . . . calendar(C)
all. + e e e e bdos(DOS)
call. ¢ + « « . intdos(DOS)
call. .++ + . . intdosx(DOS)
call. stat: + « « . stat(F)
callingprocess. . - - - . - . . - exit(DOS)

calloc: Allocates mainmemory. -

. malloc(S)

CallsanotherXENIXsystem. . . . cu(C)
cancel: Send/cancelrequeststo . . Ip(C)
capabilitydatabase. termcap(M)
capabilitydatabase. . .. - - - - terminfo(M)

descriptions into terminfo/
files.

catimp: Convert
Generatetroff width files and
imPRESS format.

commentary of an SCCS delta.

value, floor,/ floor, fabs,
/Performs absolute value, floor,

delta:Makesa delta
clockrate:

allocation. sbrk, brk:
headers. fixhdr:

chgrp:

passwd:

chmod:

environment. putenv:
chown:

nice:

command. chroot:
modification dates of/ settime:
of afileordirectory. chmod:
an SCCS delta. cdc:

file. newforn:

file. chown:

chroot:

chsize:

chdir:

cd:

stream. ungetc: Pushes
eqnchar: Contains special
isatty: Checksfora

ioctl: Controls

fgetc, fgetchar: Getsa

getch: Getsa

getche: Getsand echoesa
getc, getchar, fgetc, getw: Gets
/putchar, fputc, putw: Putsa
ascii: Map ofthe ASCIT
fputc, fputchar: Wiitea
ungetch: Returns a

putch: Writes a
Displays/changes hard disk
style: Analyzes

tolower, toascii: Translates
toascii: Classifiesor converts
strrev: Reversesthe order of
charater, strset: Setsall
Itoa: Converts long integers to
strlwr: Converts uppercase
strupr: Converts lowercase

()

C

capinfo: convert termcap
cat: Concatenates and displays

C/AJT files toimPRESS format.
catabfile. charmap:

catimp: Convert C/A/Tfilesto . .
cb: Beautifies Cprograms.

cc:Invokesthe C compiler. . .

cd: Changesworking directory. . .

cdc: Changes the delta

ceil, fmod: Performs absolute . .

ceiling and remainder functions.
cflow: Generates Cflowgraph.
cgets: Gets a string,.
(change) toan SCCSfile.
Changesclockrate. . . .
Changesdatasegmentspace . .
Changes executable binary file
Changes group ID.
Changes login password.
Changesmodeofafile.
Changesoraddsvalueto
ChangesownerID. . .
Changes priority ofa process. .
Changesrootdirectoryfor . . .
Changestheaccessand
Changestheaccess permissions
Changesthe deltacommentary of
Changesthe formatofatext . .
Changesthe ownerandgroupofa
Changestheroot directory. . .
Changesthesizeofa file.
Changesthe working directory. .

P)

- .

a s o %

Changesworkingdirectory. . . .
characterbackintoinput . . , .

characterdefinitionsforeqn. .
characterdevice.
character devices.
characterfrom a stream.
character.
character.
character or word from a stream.
character orword on a stream.
character set.
character to a stream.
charactertothe consolebuffer. -
character to the console.
characteristics. dparam:

- e x4 oa

LR

characteristicsof adocument. . .
characters. conv, toupper,

characters. /tolower, toupper, .
charactersin a string. .
charactersinastringtoone . .
characters.

characterstolowercase. . . - . .

characterstouppercase.

.......

« e o & n

Permnuted Index

- capinfo(C)
. cat(C)

. catimp(CT)
. charmap(CT)
. catimp(CT)
. cb(CP)

. cc(CP)

. cd(C)

. cdc(CP)

. floor(S)

. floor(S)

. - cflow(CP)

- cgets(DOS)

. delta(CP)

. clockrate(HW)
. sbrk(S)

. fixhdr(C)

. chgrp(C)

. passwd(C)

. chmod(S)

. . putenv(S)

. chown(C)

- nice(S)

. chroot(C)

. settime(C)
. chmod(C)
- ¢cdc(CP)

. newform(C)
. chown(S)

« chroot(S)

. chsize(S)

. chdir(S)

. cd(C)

. ungetc(S)

. eqnchar(CT)
. isatty(DOS)
. ioctl(S)

. fgetc(DOS)
- getch(DOS)
. getche(DOS)
. getc(S)

. putc(S)

.. ascii(M)

. fputc(DOS)
. ungetch(DOS)
. putch(DOS)
. dparam(C)
- style(CT)
conv(S)

+ ctype(S)

. strirev(DOS)
. strset(DOS)
. 1toa(DOS)
. strlwr(DOS)
. strupr(DOS)

I-5

Permuted Index

tr: Translates
ultoa: Converts numbers to
wc: Countslines, words and
charactersin a stringto one
filesand catabfile.
directory.
fstab: File system mount and
constant-widthtextfor/ cw,
mathematical text/ eqn, neqn,

processed by fsck.

of MM macros.

waitsem, nbwaitsem: A waits and
fsck:

syntax. lint:

isatty:

grpcheck:

diction:

pwcheck:

keystroke. kbhit:
toberead. rdchk:
checkmm, mmcheck:
file. sum: Calculates

times: Getsprocessand
terminate. wait: Waitsfora

permissions of afile or/

group of a file.
forcommand.

directory.

file.

tolower, toupper, toascii:
directory. uuclean:

stream status. ferror,feof,

clear:

clri:

ashell command interpreter with
alarm: Sets a process’ alarm
system real-time (timeof day)
clockrate: Changes

system real-time (time of day)
(time of day) clock.

operations.

close:

fclose, fflush:

shutsdownthe/ haltsys, reboot:
fclose, fcloseall:

size.
configuration database.

I-6

characters.
characters.
characters.
charater. strset:Setsall .,
charmap: Generatetroffwidth . .
chdir: Changestheworking . . .
check commands.
checkcw, cwcheck:Prepares . . .
checkeq, eqncheck:Formats . .
checklist: Listof file systems . .

checkmm, mmcheck: Checks usage
checksaccesstoaresource/ . . .
Checks and repairs file systems. .
Checks Clanguageusageand . . .

Checks for a character device.

Checksgroupfile.
Checkslanguageusage.
Checkspasswordfile.

Checkstheconsolefora
Checksto seeifthereisdata . . .
Checksusage of MMmacros.
checksumand countsblocksina
chgrp: ChangesgroupID.
childprocesstimes. . . .
child processto stopor
chmod: Changesmodeofafile. .
chmod: Changestheaccess . . .
chown: ChangesownerID. . , .
chown: Changesthe ownerand . .
chroot: Changesrootdirectory . .
chroot: Changes theroot
chsize: Changesthe sizeofa ., . .
Classifiesor converts/ /isascii,
Clean-uptheuucpspool
clear: Clearsaterminalscreen. . .
clearerr, fileno: Determines . . .
Clears a terminal screen.
Clears inode.
C-like syntax. csh:Invokes . . .
clock.
clock. clock:The
clockrate.
clock: Reports CPU timeused. - .
clock. setclock: Setsthe

....... ¢ o om o

tr(C)
ultoa(DOS)
we(C)

. strset(DOS)
. charmap(CT)
. chdir(S)

fstab(F)
cw(CT)
eqn(CT)

. checklist(F)

checkmm(CT)
waitsem(S)
fsck(C)
lint(CP)
isatty(DOS)
grpcheck(C)
diction(CT)

. pwcheck(C)

kbhit(DOS)

. rdchk(S)

checkmm(CT)
sum(C)

. chgrp(C)

times(S)
wait(S)
chmod(S)
chmod(C)
chown(C)
chown(S)
chroot(C)
chroot(S)

. chsize(S)

clock: The systemreal-time

clockrate: Changesclock rate. . .

closedir: Performsdirectory . . .
Closesa filedescriptor. « + . . .
Closesorflushesastream. . . . -
Closesoutthe filesystemsand . .

Closes streams.
clri:Clearsinode.
cmchk:Reportsharddiskblock -
cmos: Displaysandsetsthe . . .
cmp: Comparestwofiles.

ctype(S)
uuclean(C)
clear(C)
ferror(S)
clear(C)
clri(C)

csh(C)
alarm(S)
clock(M)
clockrate(HW)
clock(S)
setclock(M)
clock(M)
clockiate(HW)

. directory(S)
. close(S)

fclose(S)
haltsys(C)
fclose(DOS)
clri(C)
cmchk(C)
cmos(HW)
cmp(C)

screen: tty[01-7],
setcolor: Set screen
Ic: Lists directory contents in

comb:
common to two sorted files.
nice: Runsa
Changes rootdirectoryfor
segread:
env: Sets environment for
quits. nohup: Runsa
rsh:Invokes arestricted shell
sh: Invokes the shell
shV: Invokes the shell
syntax. csh: Invokesa shell
uux: Executes
getopt: Parses
system: Executesa shell
time: Times a
at,batch: Executes
cron: Executes
micnet: TheMicnet default
Filesystem mountand check
help: Asksforhelp aboutSCCS
intro: Introduces XENIX
XENIXDevelopmentSystem
Introduces text processing
system. remote: Executes
xargs: Constructs and executes
cdc: Changesthedelta
comm: Selectsorrejectslines
/thestatus of inter-process
ftok: Standardinterprocess
dircmp:
sdiff:
diff. bdiff:
diskcp, diskcmp: Copiesor
diff3:
cmp:
diff:
file. sccsdiff:
regexp: Regularexpression
terminfo: Format of
cc: InvokestheC
tic: Terminfo
yacc:Invokesa
expressions. regex, regcmp:
regcmp:
erf, erfc: Errorfunctionand
processes. wait: Awaits
pack, pcat,unpack:
cat:

system.

Permuted Index

col: Filtersreverselinefeeds. col(CT)
color, monochrome,ega,. screen(-IW)
color. setcolor(C)
columns. Ie(C)
comb: Combines SCCSdeltas, . . . comb(CP)
CombinesSCCSdeltas., . comb(CP)
comm: Selectsorrejectslines . . . comm(C)
commandatadlfferentpnonty . » nice(C)
‘command. chroot:” . . '\, , , . chroot(C)
command description. " segread(DOS)
commandexecution. env(C)
commandimmuneto hangupsand . nohup(C)
(command interpreter). rsh(C)
commandinterpreter. sh(C)
command interpreter. shV(C)
command interpreter with C-like . . csh(C)
commandonremote XENIX. . . . uux(C)
commandoptions.« getopt(C)
command. « « « . . system(S)
command. time(CP)
commands atalatertime. at(C)
commandsatspecifiedtimes. . . . cron(C)
commandsfile. micnet(M)
commands. fstab: fstab(F)
commands. . . .« 4 4 os . 4. .. help(CP)
commands. . + .+ s s - 4 o4 0. . Intro(C)
commands. intro: Introduces . . . Intro(CP)
commands. intro: Intro(CT)
commandsonaremoteXENIX . . remote(C)
commands. + « xargs(C)
commentary ofan SCCS delta . - . cdc(CP)
common to twosortedfiles. comm(C)
communication facilities. ipes(C)
communication package. stdipc(S)
Comparesdirectories. - dircmp(C)
Compares files side-by-side. sdiff(C)
Comparesfilestoolargefor bdiff(C)
comparesfioppydisks. diskcp(C)
Compares threefiles. diff3(C)
Comparestwofiles. . . . - cmp(C)
Comparestwotextfiles. diff(C)

Comparestwoversionsofan SCCS

. sccsdiff(CP)

compile and matchroutines. regexp(S)
compiledterminfofile. terminfo(F)
compiler. cc(CP)
compiler. tic(C)
compiler-compiler. yacc(CP)
Compiles and executesregular . . . regex(S)
Compilesregular expressions. . . . regcmp(CP)
complementaryerrorfunction. . . . erf(S)
completionofbackground-. wait(C)
Compresses and expandsfiles. . . . pack(C)
Concatenitesanddisplays files. . . cat(C)
conditions.test:Tests test(C)
config: Configuresa XENIX config(C)

Permuted Index

cmos: Displaysand sets the
/mapscm, mapstr, convkey:
mapchan:

config:

spooling system. !padmin:
anout-goingterminalline
Returns a character to the
cputs: Putsa stringto the
console: System

kbhit: Checksthe

cscanf: Convertsandformats
messages: Descrip#ion of system
putch: Writes acharacter tothe

cw, checkcw, cwcheck: Prepares
mkfs:
commands. xargs:
nroff/troff, tbl, andeqn
definitionsforeqn. eqnchar:
Ic: Lists directory
Is: Givesinformation about

1: Listsinformation about
Splitsfiles accordingto
uuCe
init, inir: Process
msgctl: Providesmessage
uadmin: administrative
uucp status inquiryandjob
ioctl:

fentl:

semctl:

operations. shmctl:
Translatescharacters.

term:
fevt, gevt: Performs output

andhuman-readable/ deco,enco:
format. catimp:

format. dviimp:

into terminfo/ capinfo:
double-precision/ strtod, atof:
dd:

input. cscanf:
scanf, fscanf, sscanf:
libraries. ranlib:
atof, atoi, atol:
andlong/ 13tol, 1tol3:
and base 64 ASCII. a64l,164a:
toupper, toascii: Classifies or
/gmtime, asctime, tzset:
characters. 1toa:

uppercase. strupr:

ultoa:

itoa:

standard FORTRAN. ratfor:
strtol, atol, atoi:

i1-8

configuration database. cmos(HW)
Configuremonitorscreen/ mapkey(M)
Configure ttydevicemapping. . . . mapchan(M)
Configures aXENDXsystem. config(C)
Configuresthelineprinter lpadmin(C)
connection. dial: Establishes . . . dial(S)
consolebuffer. ungetch: ungetch(DOS)
console. e e e s cputs(DOS)
consoledevice. console(M)
consoleforakeystroke. kbhit(DOS)
consoleinput. cscanf(DOS)
consolemessages. . - - . . . - . messages(M)
console. .+ . . - - .4 oo - putch(DOS)
console: System console device. . . console(M)
constant-width textfortroff. c¢w(CT)
Constructsafilesystem.- mkfs(C)
Constructsandexecutes xargs(C)
constructs. deroff: Removes deroff(CT)
Contains special character eqnchar(CT)
contentsincolumns. I¢(C)
contentsof directories. 1s(C)
contentsof directory. 1(C)

context. csplit: « « csplit(C)
controlfiles. uuinstall: Admlrusters uuinstall(C)
controlinitialization. init(M)
controloperations. msgctl(S)
conwrol., uadmin(S)
control. uustat: uustat(C)
Controls characterdevices. ioctl(S)
Controlsopenfiles. fentl(S)
Controls semaphore operations. . . semctl(S)
Controlssharedmemory shmctl(S)
conv, toupper, tolower, toascii: . . conv(S)
Conventionalnames. term(CT)

conversions. ecvt,
Convertbetween imPRESS foxmat

Convert C/A/T filestoimPRESS . .

ConvertD VIfilestoimPRESS . .
converttermcap descriptions . .
Convertsastringtoa . . . « . .
Convertsandcopiesafile.
Convertsandfoimatsconsole . .
Convertsand formatsinput. . . .
Convertsarchivestorandom . . .

ConvertsASCItonumbers.
. 13tol(S)
Convertsbetweenlonginteger . . -

Convertsbetween3-byteintegers -

converts characters. /tolower, . .
Convertsdateandtimeto ASCI. .
Convertslongintegersto . - . .
Converts lowercase charactersto -
Converts numbers to characters.
Convertsnumbers tointegers.

ConvertsRational FORTRAN into
Convertsstringtointeger.

.....

ecvt(S)
deco(CT)
catimp(CT)

- dviimp(CT)
. capinfo(C)
. strtod(S)

dd(C)

. cscanf(DOS)

scanf(S)
ranlib(CP)
atof(S)

a641(S)
ctype(S)

. ctime(S)

1toa(DOS)
strupr(DOS)
ultoa(DOS)

. itoa(DOS)

ratfor(CP)
strtol(S)

format. iprint:
units:

lowercase. strlwr:
screen/ mapkey, mapscrn, mapstr,
dd: Convertsand
address. movedata:
cpio:

systems. rcp:

: cp:
copy:

diskcp, diskcmp:

//__

Public XENIX-to-XENIXfile

core: Format of

asktime: Prompts forthe
explain:

atan2: Performs/ sin,
functions. sinh,

sum: Calculates checksnmand
characters. wc:

cpio: Format of
andout.

preprocessor.

.f\ \‘ Flushesblock I/Oand halts the
K L clock:Reports
console.

rewrites an existing one.
file. tmpnam, tempnam:
mkdir:

anexistingone. creat:
fork:

spawnl, spawnvp:

ctags:

tee:

tmpfile:

from Csource. mkstr:
profile. profil:

semaphore. creatsem:
pipe:

files. admin:

/Scans fixed disk for flawsand
umask: Sets and getsfile

a binary semaphore.

listing.

specified times.

intro: Introduction toDOS
dosld: XENIX toMS-DOS
cxref: Generates C program
cref: Makesa

xref:

consoleinput.

!
/
C"

Convertstext filesstoDVI . . .

Permuted Index

Convertsunits. « « « o o + « + . «

Converts uppercasecharactersto
convkey: Configure monitor . .
copiesa file.
Copies bytes from a specific . .
Copiesfile archivesinand out. .
Copies files across XENIX
Copies files.
Copiesgroupsoffiles.
Copies or compares floppy disks.

copy:Copiesgroupsoffiles. . .

.........

e s e o o s e .

core: Format of coreimage file. ,
coreimagefile. PN
correcttimeofday.
Corrects languageusage. . . .
cos, tan, asin, acos, atan,
cosh, tanh: Performs hyperbolic

countsblocksinafile.
Countslines,wordsand

cp: Copiesfiles.
cpioarchive.
cpio: Copiesfilearchivesin . .

cpio: Formatofcpioarchive.

cpp: TheClanguage . .
cprintf: Formats output.
CPU. shutdn:
CPUtimeused.
cputs: Puts a stringtothe
creat: Creates anewfileor
Createsanameforatemporary .
Creates a newdirectory.
Creates anewfileorrewrites . .
Createsanewprocess.
Creates anew process.
Creates a tags file.

P I

P

Createsateeinapipe. « . - - . . .
Creates atemporaryfile.

Creates an error message file
Creates an execution time

Createsaninstanceofabinary . .

Creates aninterprocesspipe. . .
Createsand administers SCCS .
createsbad track table.
creation mask.
creatsem: Creates an instance of
cref:Makesacross-reference
cron; Executes commandsat . .
crossdevelopment functions.
crosslinker.
cross-reference.
cross-referencelisting.
Cross-references C programs.
cscan{: Convertsand{ormats

L T T

[T

iprint(C)
units(C)
strlwr(DOS)
mapkey(M)
dd(C)
movedata(DOS)
cpio(C)
rcp(C)
cp(C)
copy(C)
diskcp(C)
copy(C)
uuto(C)
core(F)
core(F)
asktime(C)
explain(CT)
trig(S)
sinh(S)
sum(C)
wc(C)

cp(C)
cpio(F)
cpio(C)
cpio(F)
cpp(CP)
cprintf(DOS)
shutdn(S)
clock(S)
cputs(DOS)
creat(S)
tmpnam(S)
mkdir(DOS)
creat(S)
fork(S)
spawn(DOS)
ctags(CP)
tee(C)
tmpfile(S)
mkstr(CP)
profil(S)
creatsem(S)
pipe(S)
admin(CP)
badtrk(M)
umask(S)
creatsem(S)
cref(CP)
cron(C)
intro(DOS)
dosld(CP)
cxref(CP)
cref(CP)
xref(CP)
cscanf(DOS)

19

Permuted Index

interpreterwith C-like syntax. csh:Invokesashellcommand . . . csh(C)
tocontext. csplit: Splitsfilesaccording . . , . csplit(C)
ctags: Createsatagsfile. ctags(CP)
foraterminal. ctermid: Generatesa filename . . . ctermid(S)
asctime, tzset: Converts date/ ctime, localtime, gmtime, ctime(S)
islower, isdigit, isxdigit,/ ctype,isalpha,isupper, ctype(S)
cu: Calls another XENEX system. . . cu(C)
pointer. tell: Getsthe current positionofthefile tell(DOS)
activity. sact: Prints current SCCSfileediting sact(CP)
the slotin theutmpfile ofthe currentuser. ttyslot:Fmds ttyslot(S)
getcwd: Getthe pathnameof currentworlingdirectory. getcwd(S)
uname: Prints thename of the current XENEX system. . , uname(C)
uname:Getsnameof current XENIXsystem. uname(S)
cursor functions. curses: Performsscreenand curses(S)
curses: Performs screen and cursorfunctions. curses(S)
spline: Interpolatessmooth curve. + -« - spline(CP)
theuser. cuserid: Getstheloginnameof . . . cuserid(S)
eachline ofafile. cut: Cutsoutselected fields of . cut(CT)
lineof afile. cut: Cuts out selected fieldsofeach . . . cut(CT)
constant-widthtextfortroff. cw, checkcw, cwcheck: Prepares . . cw(CT)
textfortroff. cw, checkcw, cwcheck: Prepares constant-width . cw(CT)
cross-reference. cxref:GeneratesCprogram cxref(CP)
daemon.mn: Micnetmailer daemon. e 6 o e aanae e daemon.mn(M)
daemon.mn:Micnetmailerdaemon. daemon.mn(M)
sdwaitv: Synchronizes shared dataaccess. sdgetv, sdgetv(S)
and sets the configuration database. cmos: Displays cmos(HW)
termcap: Terminal capability database. termcap(M)
terminfo: terminal capability database. terminfo(M)
brkctl: Allocates datainafarsegment. brkctl(S)
/sgetl: Accesseslonginteger datainamachine-independent. . . sputl(S)
plock: Lock process, text, or datainmemory. « + . plock(S)
prof:Displaysprofile data, prof(CP)
execseg: makesa dataregionexecutable., . execseg(S)
call. stat: Datareturnedbystatsystem stat(F)
Synchronizes accesstoa shared datasegment. sdenter, sdleave: . . sdenter(S)
Attaches and detachesa shared datasegment. sdget, sdfree: sdget(S)
sbrk, brk: Changes datasegmentspaceallocation. . . . sbrk(S)
rdchk: Checks toseeifthereis datatoberead. rdchk(S)
types: Primitive system datatypes, « types(F)
firstkey,nextkey: Performs database functions. /delete, dbm(S)
terminfo: terminal description database. + + « = » - terminfo(S)
tput: Queriestheterminfo database. tput(C)
/gmtime, asctime, tzset: Converts dateandtimeto ASCIT. ctime(S)
date: Prints and setsthe date. date(C)
date: Printsand setsthedate. date(C)
time, ftime: Getstimeand date. . . « + .« ¢« . . 4 . 4 . . . time(S)
theaccess and modification datesoffiles./Changes settime(C)
sddate: Prints and setsbackup dates. e e e et e e . sddate(C)
Promptsforthe correcttimeof day. asktime: + « - « . asktime(C)
Thesystemreal-time (timeof day)clock.clock: clock(M)
the systemreal-time (time of day)clock. setclock:Sets setclock(M)
firstkey, nextkey: Performs/ dbminit,fetch, store,delete, dbm(S)
precisioncalculator. dc:Invokesanarbitrary dc(C)
dd: Converts and copiesafile. . . . dd(C)
devices. assign, deassign: Assignsand deassigns . - assign(C)

-

assign, deassign: Assignsand
adb: Invokes a general-purpose
sdb: Invokes symbolic
imPRESS formatand/

micnet: The Micnet
informationdirectory.
defopen, defread: Reads
directory. default:

Contains special character
entries.

defopen,

Performs/ dbminit, fetch, store,
rmdir:

pathname. dimame:

file. tail:

the deltacommentaryof an SCCS
delta: Makesa

delta. cdc: Changesthe

nndel: Removesa

an SCCSfile.

. comb: Combines SCCS
terminal. mesg: Permits or

tbl, and eqn constnicts.
ternmninfo: terminal

Machine:

messages. messages:

segread: command
descriptionsinto terminfo
capinfo: converttermcap

Permuted Index

deassignsdevices.
debugger.
debugger.
deco, enco: Convert between . . .
defaultcommands file.

default: Default program
defaultentries.
Default program information . . .

defopen, defread: Reads default . .
defread: Reads default entries. . . .
delete, firstkey, nextkey:
Deletes a directory.
Delivers directorypartof
Delivers thelast partofa
delta. cdc: Changes
delta (change) toan SCCS file. . . .
deltacommentaryofan SCCS . . .
deltafrom an SCCS file.
delta: Makesadelta(change)to . .
deltas.
denies messagessentto a
deroff: Removes nroff/trof,
description database.
Description of host machine. . . .
Description of systemconsole . . .
description.
descriptions. /convert terincap . .
descriptionsinto terminfo/ . . .

assign(C)
adb(CP)
sdb(CP)
deco(CT)
micnet(M)
default(M)
defopen(S)
default(M)
eqnchar(CT) -
defopen(S)
defopen(S)
dbm(S)
rmdir(DOS)
dimame(C)
tail(C)
cdc(CP)
delta(CP)
cdc(CP)
rmdel(CP)
delia(CP)
comb(CP)
mesg(C) -
derofI(CT)
terminfo(S)
machine(HW)
messages(M)
segread(DOS)
capinfo(C)

. capinfo(C)

close: Closesafile descriptor. « . close(S)
dup2: Duplicatesan openfile descriptor.dup, dup(S)
sdget, sdfree: Attachesand detachesashared datasegment. . . sdget(S)
file. access: Determinesaccessibilityofa access(S)
dtype: Determinesdisktype. dtype(C)
eof: Determinesend-of-file. eof (DOS)
hypot, cabs: Determines Euclidean distance. . . hypot(S)
file: Determinesfiletype. file(C)
forCprograms. stackuse: Determinesstack requirements . . stackuse(CP)
ferror,feof, clearerr, fileno: Determinesstreamstatus. ferror(S)
whodo: Determineswhoisdoingwhat. . . . whodo(C)
console: Sysitemconsole device. 0. .. console(M)
error: Kernel erroroutput device. v . o . . error(M)
/Defaultbackup deviceinformation. . . . « « + « . archive(F)
master: Master device informationtable. master(F)
Ip, 1p0, Ip1, Ip2: Line printer deviceinterfaces. . . - « - Ip(HW)
isatty: Checks foracharacter device. e e e isatty(DOS)
mapchan: Format of tty device mappingfiles. « . mapchan(F)
mapchan: Configuretty device mapping. - + « +» « mapchan(M)
devnm: Identifies devicename. devnm(C)
systty: Systemmaintenance device. e e e e e s systty(M)
deassign: Assigns and deassigns devices. assign, assign(C)
ioctl: Controlscharacter devices. . . . + . - s e e e s ioctl(S)
devnm: Identifiesdevicename. . . . devnm(C)
blocks. df: Reportnumber offreedisk . . . df(C)
dial:Dialsamodem. dial(M)

Permuted Index

terminal line connection. dial: Establishes anout-going . .
dial: Dialsamodem.

diction: Checks language usage.

diff: Comparestwotextfiles.

diff3: Compares threefiles. ., . . .

diffmk:Marks differencesbetweenfiles.

between files. diffmk:Marksdifferences

dir: Formatof adirectory.

dircmp: Compares directories. . . .

dircmp: Compares directories. . +. « «, .
information about contents of directories. Is: Gives
mv: Moves orrenames filesand directories.
rm, rmdir: Removes filesor directories. - - - - .
rmdir: Removes directories. P

cd: Changesworking directory., « . « . .

chdir: Changestheworking directory.
accesspermissionsofafileor directory. chmod:Changesthe - .
chroot: Changestheroot directory.

. dial(S)

dial(M)

. dicMon(CT)

diff(C)
diff3(C)
diffrk(CT)
diffmk(CT)
dir(F)
dircmp(C)
dircmp(C)
1s(C)
mv(C)
mn(C)
rmdir(C)
cd(C)
chdir(S)

- chmod(C)
. chroot(S)

Ic: Lists directorycontentsin columns. . . . 1c(C)
Defaultprograminformation directory. default: . ., default(M)
dir: Formatofa directory. dir(F)
unlink: Removes directoryentry. unlink(S)
chroot: Changesroot directoryforcommand. . . . - . . chroot(C)
uucico: Scanthe spool directoryforwork. « - uucico(C)
the pathname of current working directory. getcwd:Get getcwd(S)
information about contents of directory. i:Lists 1(C)
mkdir: Makesa directory. . - + « - . mkdir(C)
mkdir: Createsanew directory. , . . . mkdir(DOS)
mvdir:Movesa directory. . . .« . . L. .. . mvdir(C)
pwd: Prints working directoryname. pwd(C)

basename: Removes directorynamesfrom pathnames.

. basename(C)

closedir: Performs directory operations. directory(S)
ordinary file. mknod:Makesa directory,oraspecialor mknod(S)
dirame: Delivers directorypartofpathname. dimame(C)
rename: renamesa fileor directory. . . - rename(DOS)
imdir: Deletesa directory.« . 1mdir(DOS)
uuclean: Clean-uptheuucp spool directory. uuclean(C)
of pathname. dirname: Deliversdirectorypart . . dirname(C)
printers. disable: Tunsoffterminalsand - . disable(C)
acct: Enables or disablesprocessaccounting. . . - . acct(S)
type, modes, speed, andline discipline. /Setsterminal . ., . . . getty(M)
cmchk: Reportshard diskblocksize. cmchk(C)
df:Reportnumberof free diskblocks. - df(C)
dparam: Displays/changeshard disk characteristics. dparam(C)
hd:Intemalhard diskdrive., hd(HW)
track/ badtrk: Scansfixed disk forflaws and createsbad badtrk(M)
fdisk: Maintain diskpartitions. fdisk(C)
dtype: Determines disktype. dtype(C)
du:Summarizes diskusage.- .. duC)
floppy disks. diskcp, diskcmp:Copiesorcompares . . . diskcp(C)
compares floppy disks. diskcp,diskcmp: Copiesor . . - . diskcp(C)
Copiesorcomparesfloppy disks. diskcp, diskcmp: . . - . . . diskcp(C)
format: format floppy disks.« format(C)
umount: Dismounts afile structure. . . - . . umount(C)
vedit: Invokes a screen-oriented displayeditor. vi, view, vi(C)

I-12

configuration database. cmos: Displays and setsthe
cat: Concatenates and displaysfiles. . .

Permuted Index

format. hd: Displaysfilesinhexadecimal
od: Displaysfilesin octalformat.

prof: Displaysprofile data.

executablebinaryfiles. hdr: Displaysselected partsof

characteristics. dparam: Displays/changesharddisk

.. mail: Sends, readsor disposesofmail. .
cabs:Deterinines Euclidean distance. hypot, .
lcong48: Generatesuniformly distributed. srand48,

divwy -b block_device —c ¢/ . .

Analyzes characteristicsofa document. style: .

mmmacros. mm: Prints documentsformatted withthe . .

mmt: Typesets documents.
whodo: Determineswhois doingwhat.
intro:Introduction to DOScrossdevelopm
dosexterr: Gets DOS error messages.
dosls, dosnm, dosrindir: Access DOSfiles.
bdos: Invokesa DOSsystem call. .
intdos: Invokesa DOSsystem call. .
intdosx: Invokesa DOS system call. -
messages. dosexterr:Gets DOS
linker. dosld: XENIXtoMS

seed48,

ent functions. .

error

-DOScross . .

DOS files. dosls, dosrm, dosrmdir: Access . .

files. dosls, dosrm,dosrndir: AccessDOS . .

dosls, dosnm, dosrmdir: AccessDOSfiles.
/atof: Convertsa stringtoa double-precisionnumber.

disk characteristics. dparam: Displays/changes hard

hd: Internal hard disk drive.

utility. sysadmsh: Menu driven system administration . . .

sxt: Pseudo-device driver.

term: Terminal drivingtablesfornroff., . .

dtype: Determinesdisk type. . . .

du: Summarizes disk usage. .

format. dump:Incrementaldumptape . .
systembackup. dump: Performsincrementalfile

backup: Incremental dump tape format.
dump: Incremental dump tape format.

L

filesonabackup archive. dumpdir: Printsthenamesof

filedescriptor. dup,dup?2: Duplicate:

sanopen . . -

descriptor. dup, dup2: Duplicatesanopenfile

descriptor. dup,dup2: Duplicatesan open file
dviimp: Convert DVIfilestoimPRESS format.

iprint: Convertstextfilesto DVIformat.

imPRESS format. dviimp: Convert DVI filesto .
echo: Echoesarguments.

getche:Getsand echoesa character.
echo: Echoes arguments.

e e & % 4 & = s

outputconversions. ecvt, fcvt,gcvt:Performs - + . . .
ed:Invokesthetexteditor. - . . . «

program. end, etext, edaw: Lastlocationsin

sact: Prints current SCCS file editingactivity. . -

ed: Invokesthetext editor.
ex: Invokesatext editor.
1d:Invokes thelink editor. . « « -

P Y

dparam(C)
mail(C)
hypot(S)

. drand48(S)
. divwy(C)

style(CT)

. mm(CT)

mmt(CT)
whodo(C)
intro(DOS)
dosexter(DOS)
dos(C)
bdos(DOS)
intdos(DOS)
intdosx(DOS)
dosexter(DOS)
dosld(CP)
dos(C)

. dos(C)

dos(C)
strtod(S)

. dparam(C)

hd(HW)

. sysadmsh(C)

sxt(M)
term(F)

. dtype(C)

du(C)

. dump(F)
. dump(C)

backup(F)
dump(F)
dumpdir(C)
dup(S)
dup(S)
dup(S)

. dviimp(CT)

iprint(C)

. dviimp(CT)

echo(C)
getche(DOS)
echo(C)
ecvt(S)
ed(C)

end(S)

. sact(CP)

ed(C)
ex(C)
1d(CP)

1-13

Permuted Index

1d: Invokes the link

Format of assembler and link
thestream

a screen-orienteddisplay
effective user, real group, and
/getgid, getegid: Getsrealuser,
color, monochrome,
forapattern. grep,

input. soelim:

lineprinters.

accounting. acct:

formatand human-readable/ deco,
makekey: Generates an
locationsin program.

/getgrgid, getgmam, setgrent,
eof: Determines

/getpwuid, getpwnam, setpwent,
utmp fileentry.

defopen, defread: Reads default
xlist, fxlist: Getsname list

nlist: Gets

wtmp: Formats ofutmpandwtmp
endgrent: Get group file
endpwent: Gets password file
utmipname: Accesses utmp file
putpwent: Writes a password file
unlink: Removesdirectory
command execution.

profile: Setsup an

environ: The user

executon. env: Sets

getenv: Getsvaluefor

putenv: Changesoraddsvalueto
TZ: Timezone

Removes nroftf/troff, tbl, and
character definitionsfor
Formats mathematical text for/
characterdefinitionsforeqn.
textfor/ eqn, neqn, checkeq,
complementaryerror function.
complementaryerror/ erf,
perror, sys_errlist, sys_nerr,
error function. erf, erfc:

Error function and complementary
device.

source. mkstr: Creates an
dosexterr: Gets DOS

sys._nerr, errno: Sends system
services, library routines and
error: Kernel

matherr:

hashcheck: Findsspelling
terminalline connection. dial:

editor.2u.n . 1d(M)
editoroutput. a.out: . .., . . . a.out(F)
editor.sed:Invokes sed(C)
editor. /view, vedit: Invokes vi(C)
effectivegroup IDs. /realuser, - . . getuid(S)
effective user, realgroup, and/ . . . getuid(S)
ega, /tty[01-n], screen(EFIW)
egrep, fgrep: Searchesafile grep(C)
Eliminates .so’sfromnroff . . . - . soelim(CT)
enable: Turnson terminalsand . . . enable(C)
Enables ordisables process acct(S)
enco: ConvertbetweenimPRESS . deco(CT)
encryptionkey. makekey(M)
end, etext,edata: Last end(S)
endgrent: Getgroup fileentry. . . . getgrent(S)
end-of-file. eof(DOS)
endpwent: Getspasswordfile/ . . . getpwent(S)
endutent, utmpname: Accesses - . getut(S)
entries. e e e e defopen(S)
entries fromfiles. « =+ xlist(S)
entries fromnamelist. nlist(S)
entries. utmp, -« - « s utmp(M)
entry. /getgrnam, setgrent, - . getgrent(S)
entry. /getpwnam, setpwent, . . . getpwent(S)
entry. endutent, getut(S)
ENIY. & ¢ v v v 4 4t o n e s putpwent(S)
ENHY. « v v ¢ 4 4 e e 4. e e - unlink(S)
env: Setsenvironmentfor env(C)
environ:Theuserenvironment: . environ(M)
environmentatlogintime. profile(M)
environment. « . . environ(M)
environment forcommand env(C)
environmentname. - - . getenv(S)
environment. 4. o4 o4 . putenv(S)
environmentvariable. tz(M)

eof: Determinesend-of-file. eof(DOS)
eqnconstructs. deroff: deroff(CT)
eqn. eqnchar: Containsspecial - - - eqnchar(CT)
eqn, neqn, checkeq, eqncheck: . . eqn(CT)
eqnchar: Containsspecial eqnchar(CT)
eqncheck:Formatsmathematical . eqn(CT)
erf, erfc: Errorfunctionand erf(S)

erfc: Errorfunctionand - - erf(S)

errno: Sends systemerror/ perror(S)
Error function and complementary . erf(S)
errorfunction. erf,erfc: « . erf(S)
error: Kernel erroroutput . - . . . error(M)
errormessagefilefromC mkstr(CP)
€ITOrmessages. « « + » = + « « » dosexter(DOS)
errormessages. /sys._errlist, perror(S)
errornumbers. /system - - - - . . Intro(S)
erroroutputdevice. - . - error(M)
Error-handlingfunction. matherr(S)
errors. /hashmake, spellin, . - . . spell(CT)
Establishes anout-going dial(S)

setmnt:

setmnt: Establishes

program. end,

hypot, cabs: Determines

- expression. expr:

execlp, execvp: Executesa/
Executes a file. execl, execv,

- execl, execv, execle, execve,
exccutable.

fixhdr: Changes

hdr: Displaysselected parts of
execseg: makesadataregion
execle, execve, execlp, execvp:
system:

int86:

int86x:

XENIX. nux:

time. at,batch:

times. cron:

XENIX system. remote:

xargs: Constructs and

regex, regcmp: Compilesand
Sets environmentforcommand
nap: Suspends

sleep: Suspends

sleep: Suspends

monitor: Prepares

profil: Creates an

execvp: Executesa file. execl,
afile. execl, execv, execle,
execv, execle, execve, execlp,
link: Linksa new filename to an
anewfileorrewrites an
process.

exit,

process.

false: Returns with a nonzero
true: Returnswitha zero
Performs exponential,/
pcat,unpack: Compressesand
usage.

number into amantissa and an
/log, pow, sqrt, 1og10: Perforns
expression.

routines. regexp: Regular

expr: Evaluatesargumentsasan
regcmp: Compiles regular
Compilesand executesregular
programs. Xstr:

absolute value, floor,/ floor,
ofinter-process communication
factor:

)

PermutedIndex

Establishes /etc/mnttab table. . . . setmnt(C)
/etc/mnttabtable. setmnt(C)
etext, edata: Lastlocationsin . . . end(S)
Euclideandistance. - . hypot(S)
Evaluatesargunentsasan expr(C)
ex: Invokesatexteditor. ex(C)
execl,execv, execle, execve, exec(S)
execle, execve, execlp, execvp: . . . exec(S)
execlp, execvp:Executesafile.. exec(S)
execseg: makesadataregion execseg(S)
executablebinaryfileheaders. . . . fixhdr(C)
executablebinaryfiles. hdr(CP)
executable., execseg(S)
Executesafile. execl,execv, - . . . exec(S)
Executesashellcommand. system(S)
Executesaninterrupt. . . . « . - - int86(DOS)
Executesaninterrupt. . . . - . . . int86x(DOS)
Executescommand onremote . . . uux(C)
Executes commandsat alater . . at(C)
Executes commands at specified . cron(C)
Executescommandsonaremote . . remote(C)
executescommands. xargs(C)
executesregular expressions. regex(S)
execution.env: . ., env(C)
executionforashortinterval. . . . nap(S)
execution foraninterval. sleep(C)
executionforaninterval. sleep(S)
executionprofile. monitor(S)
executiontimeprofile. profil(S)
execy, execle,execve, execlp, . . . exec(S)
execve, execlp, execvp: Executes . . exec(S)
execvp: Executesafile. execl, . . . exec(S)
existingfile. « « + . link(S)
existing one. creat: Creates creat(S)
exit,_exit: Terminatesa exit(S)
_exit Terminates aprocess. exit(S)
exit: Terminatesthecalling exit(DOS)
exitvalue, & - false(C)
exitvalue.0 s ... true(C)
exp,log,pow, sqrt, logi0: exp(S)
expandsfiles. pack, . . - pack(C)
explain: Correctslanguage - - . . - explain(CT)
exponent. /Splits floating-point . . frexp(S)
exponential, logarithm, power,/ . - exp(S)
expr:Evaluatesargumentsasan . . expr(C)
expressioncompileandmatch . . . regexp(S)
expression. expr(C)
CXPIeSSiONS. « & o o o o o » + u - regcmp(CP)
expressions. regex,regcmp: - - - - regex(S)
ExtractsstringsfromC xstr(CP)
fabs, ceil, fmod: Performs . - . . . floor(S)
facilities. /Reportsthestatus - . - . ipcs(C)
Factoranumber. factor(C)
factor: Factoranumber. . . - . - - factor(C)
faliases: Micnet aliasing files. - . - - aliases(M)

Permuted Index

exitvalue. false: Returnswithanonzero false(C)
abort: GeneratesanIOT fault. abort(S)
streams. fclose,fcloseall:Closes fclose(DOS)
flushesa stream. fclose, fflush: Closesor fclose(S)
fclose, fcloseall: Closessweams. ., fclose(DOS)
fentl: Controlsopenfiles. . - . . . fentl(S)
conversions. ecvt, fcvt,gcvt: Perfformsoutput ecvt(S)
fdisk: Maintain disk partitions. . . . fdisk(C)
fopen, freopen, fdopen: Opensastream. fopen(S)
/tomachinerelated miscellaneous featuresandfiles. Intro(HW)
Introduction to miscellaneous featuresandfiles. intro: Intro(M)
Determines stream/ ferror, feof, clearerr, fileno: ferror(S)
Determinesstrcamstatus. fervor, feof, clearerr, fileno: ferror(S)
nextkey: Performs/ dbminit, fetch, store, delete, firstkey, dbm(S)
stream. fclose, fflush: Closesorflushesa fclose(S)
characterfromastream. fgetc, fgetchar:Getsa fgetc(DOS)
wordfroma/ getc, getchar, fgetc,getw: Getscharacteror . . getc(S)
astream. fgetc, fgetchar: Getsacharacterfrom . . . fgetc(DOS)
stream. gets, fgets: Getsastringfroma gets(S)
pattern. grep, egrep, fgrep: Searchesafilefora grep(C)
Comparesfilestoolargefor diff. bdiff: bdiff(C)
cut: Cuts out selected fieldsofeachlineofafile. cut(CT)
offile systemsprocessedby fsck. checklist:List checklist(F)
ungetty: Suspends/restartsa gettyprocess. - - . . ungetty(M)
times. utime: Sets fileaccessand modification utime(S)
Determines accessibility ofa file. access: e e e e+ s, access(S)
Formatof per-processaccounting file. acct: + « « acct(F)
cpio: Copies filearchivesinandout. cpio(C)
forand processesa patternina file. awk:Searches . . - awk(C)
troffwidth filesand catab file. charmap: Generate charmap(CT)
chmod: Changesmodeofa file. ¢« st e+ . chmod(S)
Changestheownerand groupofa file.chown: chown(S)
chsize: Changes thesizeofa file. chsize(S)
uupick:Public XENIX-to-XENIX filecopy.unto, - . - « + . + » « . uuto(C)
core:Formatofcoreimage file. e e e s core(F)
umask: Setsandgets filecreationmask. umask(S)
ctags:Createsatags file. ctags(CP)
fieldsof eachlineofa file. cut: Cutsoutselected . - . . . cut(CT)
dd: Convertsand copiesa file. e e . dd(C)
adelta (change) toanSCCS file. delta:Makes . - delta(CP)
close: Closesa filedescriptor. close(S)
dup, dup2: Duplicatesanopen filedescriptor. . . . - . . . - . . dup(S)
file: Determinesfiletype. file(C)
sact: Printscurrent SCCS file editingactivity. sact(CP)
setgrent, endgrent: Getgroup fileentry. /getgrgid, getgmam, . . . getgrent(S)
endpwent: Getspassword file entry. /getpwnam, sctpwent, . . getpwent(S)
utmpname:Accessesutmp fileentry. endutent, - - - getut(S)
putpwent: Writes apassword fileentry.« « .. putpwent(S)
execlp, execvp: Executesa file. /execv, execle, execve, exec(S)
filelength: Gets thelengthofa file.« . .. fileleng(DOS)
grep,egrep, fgrep: Searchesa fileforapattem. . . - . . . - - . grep(C)
open: Opens fileforreadingorwriting. open(S)
writing, sopen: Opensa fileforsharedreadingand sopen(DOS)
ar: Archive filefortmat. - - - . - - - . . . - ar(F)
intro: Introductionto fileformats. - « .. Intro(F)

I-16

Permuted Index

mkstr: Creates an error message filefromCsource. mkstr(CP)
group: Formatofthegroup file. group(M)
grpcheck: Checksgroup file. grpcheck(C)
Changesexecutablebinary fileheaders. fixhdr:, . fixhdr(C)
o Alternativeloginterminals file. inittab: inittab(F)
: K split: Splitsa fileintopieces. split(C)
A anewfilenameto an existing file. link:Links link(S)
In:Makesalinktoa file., In(C)
mem, kmem:Memoryimagc file. e E e e e e e mem(M)
TheMicnet defaultcommands file. micnet: micnet(M)
oraspecial orordinary file. mknod: Makesadirectory, . . mknod(S)
Changesthe formatofatext file. newform: . . « + « « « . . . newform(C)
nl: Addslinenumberstoa file. nl(C)
null: Thenull file, null(M)
/Findstheslotintheutmp fileofthecurrentuser. ttyslot(S)
the access permissionsofa file ordirectory, /Changes chmod(C)
rename:renamesa fileordirectory. rename(DOS)
one. creat: Creates anew file orrewritesanexisting creat(S)
passwd:Thepassword file. passwd(M)
/ftel], rewind: Repositionsa filepointerina stream. fseek(S)
Iseek: Movesread/write filepointer. - Iseek(S)
Gets thecurrent position of the file pointer. tell: . ., tell(DOS)
prs: PrintsanSCCS file. , . - « . . v . o o o o ... prs(CP)
pwcheck: Checkspassword file., ... pwcheck(C)
read: Readsfroma file. , read(S)
locking: Locksorunlocksa fileregionforreadingor/ locking(S)
~ Removesa delta froman SCCS file.nndel: rmdel(CP)
{ % ComparestwoversionsofanSCCS file. scesdiffs . . « « . o v« . - . sccsdif f(CP)
o /.f’ sccsfile: FormatofanSCCS file. . . « « v v v v 0 v = - ¢ a sccsfile(F)
Printsthe size ofan object file. size: . . . « . . + . « . . . size(CP)
stat, fstat: Gets filestatus. v o« . . . stat(S)
printable stringsin an object file. strings: Findsthe strings(CP)
mount:Mountsa filestructure. mount(C)
umount: Dismountsa filestructure. + umount(C)
checksumand countsblocksina file. sum:Calculates sum(C)
backup: Performsincremental file systembackup., backup(C)
dump: Performsincremental filesystembackup. . . . - dump(C)
files. sysadmin: Performs file systembackupsandrestores . . sysadmin(C)
volume. filesystem:Formatofasystem . . . filesystem(F)
mkfs: Constructsa filesystem. mk{s(C)
commands. fstab: Filesystemmountandcheck - . . . fstab(F)
mount: Mountsa filesystem. « . . . mount(S)
quot: Summarizes file system ownership. . - quot(C)
restore, restor: Invokesincremental file systemrestorer, . . - - restore(C)
ustat: Gets filesystemstatistics. . . « ustat(S)
mnttab: Formatofmounted filesystemtable. mnttab(F)
umount: Unmountsa filesystem. « « « « « » umount(S)
TheMicnetsystemidentification file. systemid: systemid(M)
— haltsys, reboot: Closes out the file systemsand shutsdownthe/ . . haltsys(C)
(. fsck: Checksandrepairs filesystems. . . . « o =« = = . . . fsck(C)
\a o fsck. checklist: Listof filesystemsprocessedby .« checklist(F)
i Deliversthelastpartofa file. tail: . ., - - . - « . « . .. tail(C)
Format of compiledterminfo file. terminfo: « - « « « + - « - - termin{o(F)
tmpfile: Createsatemporary file. « « + + + » « .+ . tmpfile(S)

Createsanameforatemporary file. tmpnam, tempnam:

. tmpnam(S)

I-17

Permuted Index

tsort: Sortsa file topologically. tsort(CP)
andmodification timesofa file. touch: Updatesaccess touch(C)
ftw: Walksa filetree. « . ftw(S)
ttys:Loginterminals file. o o= .. ttys(M)
file: Determines filetype. S e file(C)
Undoesa previousgetofan SCCS file.unget: unget(CP)
Reportsrepeatedlinesina file.uniq: . . . - uniq(C)
val: ValidatesanSCCS file. . . . - val(CP)
write: Writestoa file. e e e e o o« - write(S)
umask: Sets file-creationmodemask. umask(C)
file. filelength: Getsthelengthofa . . . fileleng(DOS)
ctermid: Generatesa filenameforaterminal. ctermid(S)
mktemp: Makes aunique filename. - mktemp(S)
link: Links a new filenameto anexistingfile. link(S)
status. ferror, feof, clearerr, fileno: Determinesstream ferror(S)
csplit: Splits filesaccordingto context. csplit(C)
and prints process accounting files. acctcom: Searchesfor acctcom(C)

rcp: Copies filesacross XENIX systems. : . . . rcp(C)
Creates andadministers SCCS files. admin: + « « . admin(CP)
faliases: Micnet aliasing files. e e aliases(M)
chaninap: Generate troffwidth filesandcatabfile. charmap(CT)
mv:Movesorrenames filesanddirectories. mv(C)
bfs:Scansbig files., bfs(C)
cat: Concatenatesand displays files. cat(C)
cmp: Comparestwo files. + .+ . cmp(C)
linescommonto two sorted files. comm: Selectsor rejects - - comm(C)
copy: Copiesgroupsof files. copy(C)
cp:Copies files. « . « v 4 4 s 4 e i wa .. cp(C)
diff3: Comparesthree files. e e diff3(C)
diff: Comparestwo text files. . . . + . « - - . . .« . - diff(C)
Marksdifferencesbetween files. diffmk: diffmk(CT)
dosrm, dosnindir: Access DOS files. dosls, ¢ =+ ., dos(C)
fentl:Controlsopen files. . . « . . . e e e e e . fentl(S)
find: Finds files. . . & 4 v v o v ¢ v o u . find(C)
partsofexecutable binary files. hdr Dlsplays selected hdr(CP)
hd: Displays filesin hexadecimalformat. hd(C)
od: Displays filesinoctalformat. od(C)
miscellaneousfeaturesand files. /tomachinerelated Intro(HHW)
tomiscellaneous featuresand files. intro: Introduction Intro(M)
semaphores and record lockingon files. lockf: Provide lock£(S)
Fornatofttydevicemapping files. mapchan: e e e e e e mapchan(F)
mknod: Builds special files. e e e e e e e e . mknod(C)
dumpdir: Prints the namesof filesona backup archive. dumpdir(C)
imprint: Printstext filesonanIMAGENprinter. imprint(C)
imprint: printtext fileson anIMAGEN printer. imprint(CT)
pr: Prints files on the standard output, pr(C)
queue. ipr, oldipr:Put filesonto theIMAGENprinter . . . ipr(C)
rm, rmdir: Removes filesordirectories. - . . . « . . . rm(C)
unpack: Compresses and expands files. pack,pcat, « + « . . pack(C)
paste: Mergeslinesof files.« ¢« . . o - - - .. paste(CT)
accessand modification datesof files. settime: Changesthe settime(C)
sdiff: Compares files side-by-side. . - + « - . . .« sdiff(C)
sort: Sortsandmerges files.- .. sort(C)
filesystembackupsandrestores files. sysadmin: Performs sysadmin(C)
tar: Archives files. tar(C)

1-18

~

iprint: Convertstext filestoIDVIformat.

catimp: Convert C/A/T filestoimPRESS format.
dviimp: Convert DVI filesto imPRESS format.

for printing. 1pr: Sends filesto thelineprinter queue . ., .

bdiff: Compares filestoo large for diff.

top.next: TheMicnet topology files. top,
control files. uuinstall: Admmxsters uoce

what: Identifies files.

Getsnamelist entriesfrom files. xlist, fxlist:
/Defaultinformation formounting filesystems.
col: Filtersreverse linefeeds.

documentsformatted with the mmmaeros. mm: Prints
find: Findsfiles.

hyphen: Findshyphenated words.

finger: Findsinformationaboutusers. . .

look: Findslines ina sorted list.

logname: Findslogin name of user.

objectlibrary. lorder: Findsorderingrelationforan . .
hashmake, spellin, hashcheck: Findsspellingerrors. spell, . . .
ttyname, isatty: Findsthenameofaterminal. . . .

anobjectfile. strings: Findsthe printablestringsin . . .
ofthecurrentuser. ttyslot: Findstheslotintheutmpfile . . .
users. finger: Findsinformationabout .

dbminit, fetch, store, delete, firstkey, nextkey: Performs/

/Prints formatted outputofa varargs argument list.
badtrack table. badtrk: Scans fixeddiskforflawsand creates . .
binary fileheaders. fixhdr: Changes executable . . .
badtrk: Scans fixed disk for flawsand createsbad track/ . . .
frexp, ldexp, modf: Splits floating-pointnumberintoa/ . .
/fmod: Performs absolutevalue, floor,ceiling and remainder/ . . .
Performs absolute value, floor,/ floor, fabs, ceil, fmod:
diskcmp: Copiesor compares floppy disks. diskcp,
format:format floppydisks.
cflow: Generates C flowgraph.
buffers. flushall: Flushes all output
fclose, fflush: Closesor flushes a stream.
flushall: Flushes alloutputbuffers.
CPU. shutdn: FlushesblockIl/Oandhaltsthe . .
floor,/ floor, fabs, ceil, fmod: Performs absolute value,
stream. fopen, freopen, fdopen: Opensa
fork: Createsa new process. . . .

L L T T T

enco: Convert between imPRESS format and human-readable/ deco, .

ar: Archivefile format.
backup: Incremental dump tape format.
ConvertC/A/T filesto inPRESS format. catimp:
formatandhuman-readable format. /ConvertbetweenimPRESS

dump: Incremental dump tape format.
Convert DVIfilesto imPRESS format. dviimp:
format: formatfloppydisks.
86rel: Intel 8086 Relocatable Formatfor ObjectModules. . . .
format: format floppydisks. . . -

Displays filesin hexadecimal formnat. hd:

Converts textfilestoDVI format. iprint:
od Displaysfilesin octal format.
dir: Formatofadirectory. - . - . . .

.......... .o

Permuted Index

. iprint(C)

. catimp(CT)
. dviimp(CT)
. 1pr(C)

. bdift(C)

- top(M)

. uuinstall(C)
. what(C)

- xlist(S)

« filesys(F)

. col(CT)

. mm(CT)

. find(C)

. hyphen(CT)
. finger(C)

. 1look(CT)

. logname(S)
. lorder(CP)
spell(CT)

. ttyname(S)
- strings(CP)
- ttyslot(S)

. finger(C)
dbm(S)

. vprintf(S)
- badtrk(M)
. fixhdr(C)

. badtrk(M)
- frexp(S)

. floor(S)

- floor(S)

- diskcp(C)
. format(C)
. cflow(CP)
. flushall(DOS)
. fclose(S)

. flushall(DOS)
- shutdn(S)

.. - floor(S)
. . fopen(S)

. fork(S)
deco(CT)
. ar(F)

. backup(F)
- catimp(CT)
deco(CT)

. dump(F)

. dviimp(CT)
. format(C)-
. 86rel(F)

. format(C)
. hd(C)

. iprint(C)

. od(C)

I-19

Permuted Index

file system:

newform: Changesthe
inode:

sccsfile:

editor output. a.out:

file. terminfo:

core:

cpio:

table. mnttab:

file. acct:

group:

files. mapchan:

tar: archive

cscanf: Converts and
fscanf, sscanf: Convertsand
intro: Introduction tofile
eqn, neqn, checkeq, eqncheck:
neqn:

entries. utmp, wtmp:
cprintf:

printf, fprintf, sprintf:

troff. tbl:

viprintf, vsprintf: Prints
macros. mm: Printsdocuments
nroff: A text

Format of asystemvolume. filesystem(F)
formatofatextfile. newform(C)
Formatofaninode. - . . inode(F)
FormatofanSCCSfile. sccsfile(F)
Formatofassemblerandlink . . . a.out(F)
Format of compiledterminfo . . terminfo(F)
Formatofcoreimagefile. . . - . . core(F)
Format of cpioarchive. cpio(F)
Formatof mountedfile system . . . mnttab(F)
Formatof per-processaccounting . acct(F)
Format ofthegroupfile. group(M)
Formatofttydevice mapping . . . mapchan(F)
format.« v« « . . tar(F)
formatsconsoleinput. , cscanf(DOS)
formatsinput. scanf, scanf(S)
formats. Intro(F)
Formats mathematical text for/ . . . eqn(CT)
Foimatsmathematics. neqn(CT)
Formatsofutmpandwtmp utmp(M)
Formatsoutput. - cprintf(DOS)
Formatsoutput., printf(S)
Formatstablesfornroffor tbi(CT)
formatted output ofa/ vprintf, . . . vprintf(S)
formattedwiththemm . _ mm(CT)
formatter. « o o « « = « o « = - . oroff(CT)

ratfor: Converts Rational FORTR AN into standard FORTRAN. ratfor(CP)

Rational FORTRAN into standard
and segment.

output. printf,

segment. fp_off,
charactertoastream.

word on a/ putc, putchar,
stream. fputc,

stream. puts,

binary input and output.

main memory. malloc,
fopen,

floating-point number into a/
formatsinput. scanf,
systems.

Repositions a file pointer in a/
checkcommands.

stat,

file pointerina/ fseek,

time,

communication package.

function. erf, erfc: Error function and complementaryerror
function and complementary error function. erf, erfc: Error

gamma: Performsloggamma
setkey:Assignsthe

matherr: Error-handling

jn, y0, y1, yn: Performs Bessel

Performsscreen and cursor functions. curses:

nextkey: Performs database

1-20

FORTRAN. ratfor: Converts
fp_off, fp_seg: Return offset . .

< « . ratfor(CP)

fp_seg(DOS)

fprintf, sprintf:Formats printf(S)
fp_seg: Return offsetand fp_seg(DOS)
fputc, fputchar: Wiitea fputc(DOS)
fputc, putw: Putsa characteror . . . putc(S)
fputchar: Write acharactertoa . . . fputc(DOS)
fputs:Putsastringona puts(S)
fread, fwrite: Performs buffered - fread(S)
free, realloc, calloc: Allocates . malloc(S)
freopen, fdopen: Opensa stream. . fopen(S)
frexp, Idexp, modf: Splits frexp(S)
fscanf, sscanf: Convertsand . . scanf(S)
fsck: Checksandrepairsfile - - fsck(C)
fseek, ftell,rewind: fseek(S)
fstab:Filesystemmountand fstab(F)
fstat: Gets filestatus, stat(S)
ftell, rewind:Repositionsa . - - . fseek(S)
ftime: Getstimeand date. time(S)
fiok: Standardinterprocess . . - . stdipc(S)
ftw: Walksafiletree. . . . » + « . ftw(S)
. erf(S)
----- erf(S)
function. - - - . . . <. .- -, gamma(S)
functionkeys. + - + + 4« = . . s setkey(C)
function. =« + « 4 4 4 o v 2 s a . matherr(S)
functions. bessel, j0,j1, - . - . . . bessel(S)
........ curses(S)
functions. /delete, firstkey, . . - . dbm(S)

Permuted Index

logarithm, power, squareroot functions. /exponential,
floor, ceilingand remainder functions. /absolutevalue,
to DOS cross development functions. intro: Introduction . . .

cosh, tanh: Performshyperbolic functions. sinh,

tgoto, tputs: Performsterminal functions. /tgetflag, tgetstr, . . .

atan2: Performs trigonometric functions. /asin, acos, atan,

inputand output. fread, fwrite: Perforins buffered binary . .
from files. xlist, fxlist: Getsnamelistentries . . .
gamma: Performslog gammafunction.
function. gamma: Performsloggamma

conversions. ecvt, fcvt, gevt:Performsoutput
adb:Invokesa general-purposedebugger.

report. imacct: Generatean IMAGENaccounting .
catabfile. charmap: Generatetroffwidthfilesand , . . .
terminal. ctermid: Generatesa filenamefora
ptx: Generatesapermutedindex.

random: Generatesarandomnumber. . . .

rand, srand: Generatesarandomnumber. . . .

makekey: Generatesan encryptionkey. . .

abort: GeneratesanIOTfault.

cflow: GeneratesCflowgraph.

cross-reference. cxref: GeneratesCprogram
numbers. ncheck: Generatesnamesfrominode . .
analysis. lex: Generates programs forlexical .

srand48, seed48, Icong48: Generatesuniforinlydistributed.

exp(S)
floor(S)
intro(DOS)
sinh(S)

. termcap(S)

trig(S)
fread(S)

. xlist(S)

gamma(S)
gamma(S)
ecvt(S)
adb(CP)
imacct(C)
charmap(CT)

. ctermid(S)

ptx(CT)
random(C)
rand(S)

. makekey(M)

abort(S)
cflow(CP)

. cxref(CP)
. ncheck(C)
. lex(CP)

. drand48(S)

Micnet aliashashtable generator. aliashash: aliashash(M)
characterorwordfroma/ getc,getchar,fgetc, getw:Gets . . . getc(S)
getch: Getsacharacter. getch(DOS)
characterorwordfroma/ getc, getchar,fgetc,getw: Gets getc(S)
character. getche:Getsandechoesa, getche(DOS)
currentworking directory. getcwd:Getthepathnameof getcwd(S)
getuid, geteuid, getgid, getegid: Getsrealuser,/ getuid(S)
environment name. getenv: Getsvaluefor getenv(S)

real user, effective/ getuid, geteuid, getgid, getegid: Gets . . .

effective/ getuid, geteuid, getgid, getegid: Getsrealuser, . .

setgrent, endgrent: Getgroup/ getgrent, getgrgid, getgrnam, . . .

endgrent: Getgroup/ getgrent, getgrgid, getgrnam, setgrent,

Getgroup/ getgrent, getgrgid, getgmam, setgrent, endgrent: . .

getlogin: Getsloginname.

argument vector. getopt: Getsoptionletterfrom . . .

getopt: Parses command options. .

getpass: Readsapassword. . . .

processgroup, and/ getpid, getpgrp, getppid: Getsprocess, . . .

process, process group, and/ getpid, getpgrp, getppid: Gets . . .

group, and/ getpid, getpgip, getppid: Gets process, process . .
user]ID. getpw: Getspassword foragiven .

setpwent, endpwent: Gets/ getpwent,getpwuid, getpwnam, . .
Gets/ getpwent, getpwuid, getpwnam, setpwent, endpwent: .
endpwent: Gets/ getpwent, getpwuid, getpwnam, setpwent, .

fgetc, fgetchar: Getsacharacterfromastream. . .

getch: Getsacharacter.

shmget: Getsashared memorysegment.

cgets: Getsastring. . . .« « ¢ ¢« . .« ..

gets, fgets: Getsastringfromastream. . . .

input. gets: Getsastring fromthestandard . .

. getuid(S)
. getuid(S)
. getgrent(S)

getgrent(S)

. getgrent(S)

getlogin(S)
getopt(S)

. getopt(C)
. getpass(S)

getpid(S)
getpid(S)

. getpid(S)
. getpw(S)

getpwent(S)
getpwent(S)
getpwent(S)

. fgetc(DOS)

getch(DOS)

. shmget(S)

cgets(DOS)

- gets(S)

gets(CP)

I-21

Permuted Index

getche: Getsandechoesacharacter. getche(DOS)
ulimit: Getsandsetsuserlimits. ulimit(S)
getc,getchar, fgetc, getw: Getscharacterorwordfroma/ . . . getc(S)
dosexterr: GetsDOSerrormessages. . , , . . dosexter(DOS)
nlist: Getsentriesfromnamelist. . . olist(S)
astream. gets,fgets: Getsastringfrom , . . . gets(S)
umask: Setsand getsfilecreationmask. . ., . . ., . umask(S)
stat, fstat: Getsfilestatus., ., ., . stayS)
ustat: Getsfile system statistics. ustat(S)
standard input. gets: Getsastringfromthe gets(CP)
getlogin: Getsloginname. getlogin(S)
logname: Getsloginname. « + « - logname(C)
msgget: Getsmessagequeue. . . . , , . . msgget(S)
files. xlist, fxlist: Getsnamelistentriesfrom xlist(S)
system. uname: GetsnameofcurrentXENIX . . . uname(S)
.) vector. getopt: Getsoption letter from argument . ., getopt(S)
/getpwnam, setpwent, endpwent: Getspassword fileentry. getpwent(S)
ID. getpw: Gets password for agivenuser . getpw(S)
times. times: Getsprocessand child process . times(S)
getpid, getpgip, getppid: Getsprocess, processgroup, and/ . getpid(S)
real/ /geteuid, getgid, getegid: Getsrealuser, effectiveuser, getuid(S)
semget: Getssetofsemaphores. , . semget(S)
filepointer. tell: Getsthecurrentpositionofthe . ., . tell(DOS)
filelength: Getsthelengthofafile. fileleng(DOS)
cuserid: Getstheloginname oftheuser. . . . cuserid(S)
tty: Getstheterminal’sname., . tty(C)
time, ftime: Getstimeanddate. time(S)
getenv: Getsvalueforenvironmentname. . getenv(S)
and terminal settingsusedby getty. gettydefs:Speed gettydefs(F)
modes, speed, and line/ getty: Setsterminaltype, getty(M)
settings used by getty. gettydefs: Speed and terminal . . gettydefs(F)
getegid: Getsrealuser,/ getuid, geteuid, getgid, getuid(S)
froma/ getc, getchar, fgetc, getw: Getscharacterorword getc(S)
of directories. Is: Givesinformation aboutcontents . 1s(C)
dateand time/ ctime, localtime, gmtime,asctime,tzset: Converts . . ctime(S)
longjmp: Performs anonlocal “goto”. setjmp, setjmp(S)
and checksaccessto aresource governed byasemaphore. /Awaits . waitsem(S)
cflow: GeneratesCflow graph. + « cflow(CP)
file for a pattern. grep, egrep, {grep: Searchesa . . grep(C)
/real user, effective user, real group, and effectivegroup IDs. . getuid(S)
/getppid: Getsprocess, process group, and parentprocessIDs. . . . getpid(S)
newgip:Logsuserintoanew group. « « + . . o - . . newgrp(C)
copy:Copies groupsoffiles. copy(C)
updates, and regenerates groupsofprograms. /Maintains, . . make(CP)
grpcheck: Checksgroupfile. grpcheck(C)
signals. ssignal, gsignal: Implementssoftware . . . ssignal(S)
shutdn: Flushesblock I/O and haltstheCPU. - . » shutdn(S)
filesystemsand shutsdownthe/ haltsys, reboot: Closesoutthe . . . haltsys(C)
serial sequence packet protocol handler. ips:Imagen ips(C)
ips, isbs, ipbs: IMAGENprotocol handlers. « + ips(M)
nohup: Runsacommandimmuneto hangupsandquits. nohup(C)
cmchk:Reports harddiskblocksize. cmchk(C)
dparam: Displays/changes harddisk characteristics. - dparam(C)
hd:Internal harddiskdrive. hd(HW)

hcreate, hdestroy: Manages hash search tables. hsearch,

1-22

. hsearch(S)

aliashash: Micnet alias
spell, hashmake, spellin,
Finds spelling errors. spell,
search tables. hsearch,
hexadecimalfortnat.

tables. hsearch,hcreate,

. executablebinary files.
Changes executablebinaryfile
program. assert:

hd: Displaysfilesin

Machine: Description of
Manages hash searchtables.
betweenimPRESS formatand
sinh, cosh, tanh: Performs

hyphen: Finds

Euclidean distance.

chgip: Changesgroup

chown: Changes owner
Getspasswordforagiven user
and names.

setpgrp: Sets process group
mkuser: Adds alogin
systemid: The Micnet system
devnm:

what:

id: Prints user and group
group, and parentprocess
realgroup, and effective group
setgid: Setsuserand group
accounting report.

core: Format of core

mem, kmem: Memory
imacct: Generate an

imprint: Printstextfileson an
imprint: print text files on an
/imagen.spp, imagen.remote:
itroff: Troff to an

ipr, oldipr:Putfilesontothe
ips, isbs, ipbs:
protocolhandler. ips:
imagen.remote:/ imagen.sbs,
/imagen.pbs, imagen.spp,
imagen.spp, imagen.remote:/
IMAGEN/ imagen.sbs, imagen.pbs,
nohup:Runsa command
ssignal, gsignal:

deco, enco: Convert between
catimp: Convert C/A/Tfilesto
dviimp: ConvertD VIfiles to
IMAGEN printer.

IMAGEN printer.

backup:

dunp:

Permuted Index

hash table generator.
hashcheck: Finds spelling/
hashmake, spellin, hashcheck: , .
hcreate, hdestroy: Manageshash .

aliashash(M)
spell(CT)

. spell(CT)
. hsearch(S)

hd: Displaysfilesin hd(C)

hd: Internalharddiskdrive. hd(HW)
hdestroy:Manages hashsearch . . . hsearch(S)
hdr: Displays selected partsof . . . hdr(CP)
headers. fixhdr: fixhdr(C)
Helpsverifyvalidityof assert(S)
hexadecimal format., . hd(C)
host machine. « » machine(HW)
hsearch, hcreate, hdestroy: hsearch(S)
human-readable format. /Convert . deco(CT)
hyperbolic functions. sinh(S)
hyphen: Findshyphenatedwords. . hyphen(CT)
hyphenatedwords. hyphen(CT)
hypot, cabs: Determines hypot(S)
ID. & ittt i e e e chgip(C)
ID. . . it it e i e chown(C)
ID.getpw:o v o v v getpw(S)
id: PrintsuserandgroupIDs id(C)

ID. ¢« ¢ ¢ 0 0t i v v ii v v setpgrp(S)
IDtothesystem. . . . + « « « 2 « mkuser(C)
identificationfile. systemid(M)
Identifiesdevicename. devnm(C)
Identifiesfiles. what(C)
IDsandnames. . « « « « » « « id(C)

IDs. /Getsprocess, process getpid(S)
IDs. /realuser, effectiveuser, . . . getuid(S)
IDs.setuid, setuid(S)
imacct: GenerateanIMAGEN . . . imacct(C)
imagefile. + « » + core(F)
imagefile. mem(M)
IMAGEN accountingreport. . . . imacct(C)

IMAGEN printer.
IMAGEN printer.
IMAGEN printerinterface/ . . .
IMAGEN printer.
IMAGEN printer queue.
IMAGEN protocolhandlers. . . .
Imagen serial sequence packet . . .
imagen.pbs, imagen.spp,
imagen.remote:IMAGENprinter/ .
imagen.sbs, imagen.pbs, . .
imagen.spp,imagen.remote: . . .
immune to hangupsand quits. . . .
Implements softwaresignals.
imPRESS formatand/
imPRESS format.
imPRESS format.
imprint: printtextfilesonan . . .
imprint: Prints text filesonan . .+ .
Incrementaldumptapeformat. . .
Incrementaldumptapeformat. . .

4 e s o koa

P Y

L

. imprint(C)
. imprint(CT)
. imagen(M)

itroff(CT)
ipr(C)
ips(M)
ips(C)
imagen(M)
imagen(M)

. imagen(M)

imagen(M)
nohup(C)
ssignal(S)
deco(CT)
catimp(CT)
dviimp(CT)

. imprint(CT)

imprint(C)

backup(F)
dump(F)

I-23

PermutedIndex

backup: Performs incremental filesystembackup. . . backup(C)
dump: Performs incremental file systembackup. . . dump(C)
restore, restor: Invokes incrementalfilesystem/ restore(C)
ptx: Generatesapermuted index. - ... ptx(CT)
/Defaultbackupdevice information. archive(F)
printslineprinterstatus information. lpstat: Ipstat(C)
pstat: Reportssystem information. v .« -4 . . pstat(C)
initialization. init, inir: Processcontrol init(M)
initializaton. init, inir: Processcontrol init(M)
Init, inir: Process control inifialization. init(M)
process. popen, pclose: InitiatessT/Otoorfroma popen(S)
terminals file. inittab: Alternativelogin inittab(F)
clri: Clears inode. v « » « + 2 chi(C)
inode:Fonnatofaninode. inode(F)
inode:Formatofan inode. inode(F)
ncheck: Generatesnames from inodenumbers. ncheck(C)
inp:Returnsabyte. . ., inp(DOS)
fwrite: Performsbufferedbinary inputand output. fread, fread(S)
Performs standard buffered input and output. stdio: stdio(S)
Convertsandformatsconsole input. cscanf: - . .. cscanf(DOS)
Getsastring from the standard input. gets: gets(CP)
sscanf: Convertsand formats input. scanf,fscanf, scanf(S)
Eliminates .so’sfromnroff input. soelim: soelim(CT)
Pushescharacterbackinto inputstream. ungetc: ungetc(S)
uustat:uucpstatus inquiryandjobcontrol. uustat(C)
script. install: Installationshell install(M)
install: Installationshellscript. install(M)
creatsem: Createsan instance of abinary semaphore. . creatsem(S)

int86: Executesan interrupt. . . .

. int86(DOS)

int86x: Executesaninterrupt. . . . int86x(DOS)
call. intdos: InvokesaDOS system . . . intdos(DOS)
call. intdosx:InvokesaDOSsystem . . . intdosx(DOS)
abs:Returnsan integerabsolutevalue. . . . - .. abs(S)
/164a: Convertsbetween long integerand base64 ASCI. . . . , . a641(S)
sputl, sgetl: Accesseslong integerdataina/ sputi(S)
theabsolutevalueofalong integer. labs:Returns labs(DOS)
atol, atoi: Convertsstringto integer. strtol, - - . . sirtol(S)
/1tol: Convertsbetween 3-byte integersand longintegers. I3tol(S)
itoa: Convertsnumbersto integers. e+ =« . . itoa(DOS)
between 3-byte integers and long integers. /ltol3: Converts 13tol(S)
Itoa: Convertslong integersto characters. Itoa(DOS)
forObject Modules. 86rel: Intel 3086 RelocatableFormat - . . 86rel(F)
imagen.remote: IMAGEN printer interfacescripts. /imagen.spp, - . . imagen(M)
termio: General terminal interface.« .. . termio(M)
/,tty2[a-h}, tty2[A -H]: Interfacetoserialports. serial HW)
tty: Special terminal interface. 4 4 -« . . . tty(M)
1p1,1p2: Lineprinterdevice interfaces.1p,lp0, - . . . - - - . Ip(HW)
hd: Internalhard disk drive. hd(HW)
spline: Interpolatessmoothcurve. spline(CP)
arestrictedshell (command interpreter). rsh:Invokes . » . . . rsh(C)
sh:Invokes the shell command interpreter. - - . sh(C)
shV:Invokestheshellcommand interpreter. « « « . . shV(C)
csh:Invokesashellcommand interpreter with C-likesyntax. . . . csh(C)
ipcs: Reports the statusof inter-processcommunication/ . . . ipcs(C)
package. ftok: Standard interprocesscommunication . . . - stdipc(S)

I-24

pipe:Creates an

int86: Executes an

int86x: Executes an

Suspends execution for a short
sleep: Suspends executionforan
sleep: Suspends executionforan
services, library routines and/
processing commands.
commands.

Development System commands.
development functions.
fonnats.

related miscellaneous features/
miscellaneous features and/
library routines and/ intro:
commands. intro:

intro:

System commands. intro:
development functions. intro:
intro:

miscellaneous features/ intro:
featuresandfiles. intro:

be:

yacc:

bdos:

intdos:

intdosx:

debugger. adb:

m4:

calendar:

(command interpreter). rsh:
red:

display/ vi, view, vedit:
interpreter with C-like/ csh:
ex:

calculator. dc:

restore, restor:

sdb:

cc:

1d:

1d:

interpreter. sh:

interpreter. shV:

sed:

ed:

masm:

shutdn: Flushes block

popen, pclose: Initiates
devices.

abort: Generates an

ips, isbs,

semaphore set or shared memory.
inter-process communication/
IMAGEN printerqueue.
DVIformat.

interprocess pipe.
interrupt.
interrupt.
interval. nap:

intro:Introduces system
intro: Introducestext
intro:Introduces XENIX
intro: Introduces XENIX
intro: Introduction to DOS cross
intro: Introductionto file
intro: Introduction to machine .
intro: Introductionto
Introduces systemservices, . .
Introduces text processing
Introduces XENIX commands.
Introduces XENIX Development
Introduction to DOS cross
Introduction to fileformats. . .
Introduction to machine related
Introduction to miscellaneous .
Invokes a calculator.
Invokesa compiler-compiler. .
InvokesaDOSsystemcall. . .
InvokesaDOSsystemcall. . .
Invokesa DOS system call.

PR

Invokes a general-purpose - . . .

Invokes a macro processor. ., .

Invokes areminderservice. . . .

Invokes arestricted shell
Invokes a restricted version of .
Invokes a screen-oriented
Invokes a shellcommand

Invokes a text editor.
Invokes an arbitrary precision .
Invokesincremental file system/

Invokessymbolicdebugger. . . .

Invokes the C compiler.

Invokes thelink editor.
Invokesthelink editor.
. - sh(C)
Invokestheshellcommand . . .

Invokestheshell command

Invokes the stream editor.
Invokes thetexteditor.

Invokesthe XENIXassembler. . .

1/0 and halts the CPU.

I/Oto orfromaprocess.
ioctl: Controls character
IOT fault.

R

ipbs:IMAGEN protocol handlers.

ipcrm: Removes a message queue,
ipcs: Reportsthe statusof
ipr, oldipr; Putfiles ontothe

interval. o .
interval. . . . - . -

Permuted I'ndex

- pipe(S)

. int86(DOS)
. int86x(DOS)
. nap(S)

- sleep(C)

. sleep(S)

- Intro(S)

. Intro(CT)
. Intro(C)

. Intro(CP)
. intro(DOS)
. Intro(F)

- Intro(HW)
. Intro(M)

- Intro(S)

. Intro(CT)
. Intro(C)

- Intro(CP)
. intro(DOS)
. Intro(F)

- Intro(HW)
» Intro(M)

. be(O)

- yacc(CP)

. bdos(DOS)
intdos(DOS)
. intdosx(DOS)
. adb(CP)

. m4(CP)

. calendar(C)
. 1sh(C)

. red(C)

. vi(C)

. csh(C)

- ex(C)

. dc(C)

. restore(C)
. sdb(CP)

. cc(CP)

. 1d(CP)

. 1dM)

- shV(C)

. sed(C)

. ed(C)

. masm(CP)
- shutdn(S)
. popen(S)
. ioctl(S)

. abort(S)
. ips(M)

. iperm(C)
. ipes(C)

. . ipr(C)
iprint: Convertstextfilesto . . .

. iprint(C)

I-25

Permuted Index

packet protocol handler.
handlers.

/islower, isdigit, isxdigit,
isdigit, isxdigit,/ ctype,
/isprint, isgraph, iscatrl,
device.

terminal. ttyname,
handlers. ips,

/ispunct, isprint, isgraph,
/isalpha, isupper, islower,
/isspace, ispunct, isprint,
ctype, isalpha, isupper,
/isalnum, isspace, ispunct,
/isxdigit, isalnum, isspace,
/isdigit, isxdigit, isalnum,
isxdigit,/ ctype, isalpha,
/isupper, islower, isdigit,
news:Printnews

integers.

printer.

Besselfunctions. bessel,
Besselfunctions. bessel, jO,
functions. bessel, jO, j1,

join:

keystroke.

error:

makekey: Generatesan encryption
keyboard: The PC

setkey: Assignsthe function
kbhit: Checkstheconsolefora
processoragroup of/

mem,
contents of directory.
3-byteintegersandlong/
integer and base 64/ a64l,
ofalong integer.

cpp: TheC

lint: ChecksC

diction: Checks

explain: Corrects

shl: Shell

columns.

distributed. srand48, seed4s,

floating-point number/ frexp,

filelength: Gets the length of afile.

getopt: Getsoption

banner:Printslarge letters.

lexical analysis.

ips: Imagen serial sequence
ips, isbs, ipbs:IMAGENprotocol .
isalnum, isspace, ispunct,/
isalpha, isupper, islower,
isascii, tolower, toupper,/
isatty: Checksfor acharacter . . .

ips(C)
ips(M)
ctype(S)
ctype(S)
ctype(S)

. isatty(DOS)

isatty: Findsthenameofa ttyname(S)
isbs, ipbs: IMAGEN protocol . . . ips(M)
iscntrl, isascii, tolower,/ ctype(S)
isdigit, isxdigit, isaloum,/ ctype(S)
isgraph, iscntr], isascii,/ . - ctype(S)
islower, isdigit, isxdigit,/ ctype(S)
isprint, isgraph, iscntrl,/ ctype(S)
ispunct, isprint,isgraph,/ ctype(S)
isspace, ispunct, isprint,/ ctype(S)
isupper, islower, isdigit, ctype(S)
isxdigit, isaloum, isspace,/ ctype(S)
items. 0. « « . news(C)
itoa: Convertsnumbersto itoa(DOS)
itroff: TrofftoanIMAGEN itroff(CT)
jO,j1, jn,y0,Y1, yn: Performs bessel(S)
j1,jn,y0,y1, yn: Performs bessel(S)
jn,y0,y1, yn: PerformsBessel . . . bessel(S)
join: Joins tworelations. . - . . . join(C)
Joinstworelations. join(C)
kbhit: Checksthe consolefora . . . kbhit(DOS)
Kernelerroroutputdevice. error(M)
key. e e e makekey(M)
keyboard. keyboard HW)
keyboard: The PCkeyboard. - . . . keyboard(HW)
keys. + 4 0. oo . « « « . setkey(C)
keystroke. kbhit(DOS)
kill: Sendsasignaltoa kill(S)

kill: Terminatesaprocess. . - . . . kill(C)
kmem: Memoryimagefile. mem(M)

I: Listsinformationabout, . I(C)
13tol,Itol3:Convertsbeiween . . . 13tol(S)
164a: Convertsbetweenlong a6dI(S)

labs: Returns the absolute value . labs(DOS)
language preprocessor. cpp(CP)
language usage and syntax. lint(CP)
languageusage. diction(CT)
languageusage. . - - explain(CT)
layermanager. - - . . - shi(C)
Ic: Lists directory contentsin Ic(C)
Icong48: Generatesuniformly . . . drand4§(S)
1d: Invokesthelink editor. 1d(CP)
1d: Invokesthelink editor. . - . . . 1d(M)
Idexp, modf: Splits frexp(S)
.......... fileleng(DOS)
strlen: Returnsthe lengthofastring. + « + . . strlen(DOS)
letterfromargumentvector . « » . getopt(S)
e e e e e e e e e banner(C)
lex: Generatesprogramsfor lex(CP)
......... lex(CP)

lex: Generates programs for lexical analysis.

I-26

Permuted Index

and update. Isearch, Ifind: Performslinearsearch lsearch(S)
ar: Maintains archivesand libraries. ar(CP)
Convertsarchivestorandom libraries. ranlib: ranlib(CP)
ordering relation foranobject libraty. lorder:Finds lorder(CP)
/Introduces system services, libraryroutinesanderror/ Intro(S)
ulimit: Getsandsetsuser limits. . . . « . . ¢« v & o . . . ulimit(S)
line:Readsone line.+ ¢ o o v 4 v 4 . line(C)
Isearch, Ifind: Performs linearsearchand update. lsearch(S)
col: Filtersreverse linefeeds. col(CT)
cancel: Send/cancelrequeststo lineprinter. Ip,lpr, 1Ip(C)
1pr: Sendsfiles to the lineprinter queueforprinting. . . . 1pr(C)
1pshut, lpmove: Starts/stopsthe lineprinterrequest. lpsched, lpsched(C)

Ipadmin: Configuresthe lineprinterspooling system. . . .
Ipstat: prints lineprinter status information. . .

. 1padmin(C)
. Ipstat(C)

Adds, reconfiguresand maintains lineprinters. Ipinit: Ipinit(C)
files. comm: Selectsorrejects linescommontotwosorted comm(C)
uniq: Reportsrepeated linesinafile. <. .. unig(C)
look: Finds linesinasortedlist. 1ook(CT)
head: Prints thefirstfew linesofastream. head(C)
paste: Merges linesoffiles. paste(CT)
wc: Counts lines,wordsandcharacters. wc(C)
1d: Invokesthe linkeditor. 1d(CP)
1d: Invokesthe linkeditor. 1d(M)
a.out: Formatofassemblerand linkeditoroutput. a.out(F)
existingfile. link:Linksanew filenametoan . . link(S)
In: Makesa linktoafile. In(C)
dosld: XENIXtoMS-DOScross linker. . .« . « . ¢ ¢ o ¢« v« . . dosld(CP)
existingfile. link: Linksanewfilenametoan link(S)
andsyntax. lint:ChecksClanguageusage . . . lint(CP)
xlist, fxlist: Getsname listentriesfromfiles. xlist(S)
look:Findslinesinasorted list. « « « v « & @ v & & v o & o s look(CT)
nlist: Getsentriesfromname list. . « « « « o ¢ ¢ & ¢ 0 o 0 o nlist(S)
nm:Printsname Jist. « . .« . 0000 . 0w ... nm(CP)
byfsck. checklist: Listoffile systems processed checklist(F)
terminals: Listofsupportedterminals. terminals(M)
varargs:variableargument list. varargs(S)
ofavarargsargument list. /Prints formatted output vprint{(S)
cref: Makesacross-reference listing. <. cref(CP)
columns.lc: Listsdirectorycontentsin 1c(C)
ofdirectory. 1: Listsinformation about contents . . 1(C)
who: Listswhoisonthesystem. who(C)
In:Makesalinktoafile. - . In(C)
tzset:Convertsdateand/ ctime, localtime, gmtime, asctime, ctime(S)
end, etext, edata:Last locationsin program. end(S)
memory. lock: Locksaprocessin primary . . lock(S)
) memory. plock: Lock process, text, ordatain plock(S)
record locking onfiles. lockf: Provide semaphoresand . . . locki(S)

region for reading or writing. locking: Locksorunlocksafile . .

. locking(S)

Provide semaphoresandrecord lockingonfiles. lockf: lock{(S)
memory. lock: Locksaprocessinprimary lock(S)
forreadingor/ locking: Locksorunlocksafileregion . . . locking(S)
gamma: Performs loggamma function. « . . gamma(S)
exponential, logarithm,/ exp, log, pow, sqrt,log10: Performs . . . exp(S)
logarithm,/ exp, log, pow, sqrt, log10: Performsexponential, exp(S)
/og10: Performis exponential, logarithm, power, squareroot/ . . . exp(S)

1-27

Permuted Index

mkuser: Addsa loginIDtothesystem. mkuser(C)
getlogin: Gets loginname. getlogin(S)
logname: Gets loginname., logname(C)
cuserid: Getsthe loginnameoftheuser. cuserid(S)
logname: Finds loginnameofuser. logname(S)
passwd: Changes loginpassword. - passwd(C)
terminal: Loginterminal. ., terminal(HW)
inittab: Alternative loginterminalsfile. inittab(F)
ttys: Loginterminalsfile. ttys(M)
Setsup an environment at logintime. profile: profile(M)
user. logname: Findsloginnameof . . . logname(S)
logname: Getsloginname. logname(C)
newgrp: Logsuserinio anewgroup. .+ newgrp(C)
“goto”. setjmp, longjmp: Performsanonlocal . . setjmp(S)
foranobjectlibrary. lorder: Finds orderingrelation . . . lorder(CP)
uppercase. strupr: Converts lowercase charactersto . - strupr(DOS)
Converts uppercase charactersto lowercase. strlwr: ., strlwr(DOS)
deviceinterfaces. Ip, 1p0, Ipl, Ip2: Line printer Ip(HW)
requests tolineprinter. Ip, Ipr, cancel: Send/cancel 1p(C)
device interfaces. lp, 1p0,1pl,1p2: Lineprinter Ip(HW)
interfaces. 1p, 1p0, 1p1,1p2:Lineprinterdevice . . . , Ip(HW)
interfaces. Ip, Ip0, 1p1, 1p2: Lineprinterdevice 1p(HW)
lineprinter spooling system. Ipadmin: Configuresthe lpadmin(C)
maintains lineprinters. lpinit: Adds,reconfiguresand . . . Ipinit(C)
lineprinter/ 1psched, lpshut, lpmove: Starts/stopsthe Ipsched(C)
requests to lineprinter. 1p, Ipr, cancel: Send/cancel 1p(C)
lineprinter queue for printing. Ipr:Sendsfilestothe 1pr(C)
Starts/stopsthelineprinter/ lpsched, Ipshut,lpmove: Ipsched(C)
lineprinter request. Ipsched, 1pshut,lpmove: Starts/stopsthe . . lpsched(C)
statusinformation. lpstat:printslineprinter Ipstat(C)
contents of directories. ls: Givesinformationabout 1s(C)
searchand update. Isearch, Ifind: Performslinear . . . Isearch(S)
pointer. Iseek: Movesread/writefile lIseek(S)
characters. Itoa: Convertslongintegersto ., . . ltoa(DOS)
integers and long/ 13tol, 1tol3: Convertsbetween 3-byte . . . 13tol(S)
m4: Invokes a macro processor. . m4(CP)
machine. Machine: Descriptionofhost . . . machine(HW)
Machine: Description of host machine. machine(HW)
features/ intro: Introduction to machmerelatedmlscellaueous . Intro(HW)
Accesseslonginteger data ina machine-independent. /sgetl: . sputl(S)
m4: Invokesa macroprocessor. . . . « m4(CP)
mmcheck: Checks usage of MM macros. checkmm, checkmm(CT)
formatted with themm macros. mm: Printsdocuments . . mm(CT)
program, tape: Magnetictape maintenance . . . - tape(C)
Sends, readsordisposesof mail. mail: mail(C)
ofmail. mail: Sends, reads ordisposes . . . mail(C)
daemon.mn:Micnet mailerdaemon. « + . daemon.mn(M)
free, realloc, calloc: Allocates main memory. malloc, . . « . . . malloc(S)
fdisk: Maintaindisk partitions. fdisk(C)
libraries. ar: Maintainsarchivesand . - - . . . ar(CP)
Ipinit: Adds, reconfiguresand maintainslineprinters. 1pinit(C)
regeneratesgroups of/ make: Maintains, updates,and . - make(CP)
systty: System maintenancedevice. - - systty(M)
tape: Magnetic tape maintenance program. . - - - - - tape(C)
key. makekey: Generates an encryption . makekey(M)

1-28

cref:

execseg;

SCCSfile. delta:

mkdir:

orordinaryfile. mknod:

In:

mktemp:

anotheruser. su:
"'Allocatesmainmemory.
shl: Shelllayer

tsearch, tfind, tdelete, twalk:
hsearch, hcreate, hdestroy:
/floating-pointnumberinto a
ascii:

mapping.

mapping files.

convkey: Configure monitor/
mapchan: Format of ttydevice
mapchan: Configure tty device
Configure monitor screen
Configure monitor/ mapkey,

monitor screen/ mapkey, mapscm,

diffmk:

umask: Sets file-creation mode
Setsandgetsfile creation
assembler.

master:

informationtable.

Regular expression compile and

/neqgn, checkeq, eqncheck: Formats

neqn: Formats
function.

mem, kmem:

queue, semaphore setor shared

lock: Locks a processin primary
realloc, calloc: Allocatesmain

shmctl: Controlsshared
shmop: Performs shared

Lock process, text, or datain
shmget: Getsa shared

Reportsvirtual

administration/ sysadmsh:
sort: Sortsand

paste:

sentto aternninal.

msgctl: Provides

‘mkstr: Createsan error

msgop:

msgget: Gets

shared memory. ipcrm: Removes a
console messages.

dosexterr: Gets DOSerror

Description of system console

ermo: Sends system error

Permuted Index

Makes a cross-reference listing.
makes a dataregion executable. .
Makesadelta(change)toan
Makes adirectory.
Makes adirectory, ora special . . .
Makesalink toafile.
Makes a unique filename.
Makes the usera super-useror

malloc, free, realloc, calloc:
manager.
Manages binarysearchtrees.
Manages hash search tables.
mantissaandanexponent.
Mapofthe ASCIIcharacterset. . .
mapchan: Configurettydevice . . .
mapchan: Formatofttydevice . .
mapkey, mapscrn, mapstr, . . .

1
3

cref(CP)
execseg(S)
delta(CP)
mkdir(C)
mknod(S)
In(C)
mktemp(S)

shl(C)
tsearch(S)
hsearch(S)
frexp(S)
ascii(M)
mapchan(M)

. mapchan(F)
. mapkey(M)

mappingfiles. mapchan(F)
mapping e e <+ e ees .. mapchan(M)
mapping. /mapstr, convkey: mapkey(M)
mapscrn, mapstr, convkey: mapkey(M)
mapstr, convkey: Configure mapkey(M)
Marks differencesbetweenfiles. . . diffmk(CT)
mask. « v e o+ s . . umask(C)
mask. umask: umask(S)
masm: Invokesthe XENIX ., . . . masm(CP)
Master deviceinformationtable. . . master(F)
master:Masterdevice master(F)
matchroutines. regexp: regexp(S)
mathematicaltextfornroff,/ . eqn(CT)
mathematics. 'negn(CT)
matherr: Error-handling matherr(S)
mem, kmem: Memoryimage file. . . mem(M)
Memoryimagefile. mem(M)
memory. /Removesamessage . . . ipcrin(C)
MEMOTY. « « o « o o + « o o+ « « lock(S)
memory. malloc, free, malloc(S)
memoryoperations. .« . - . - - - shmctl(S)
memoryoperations. shmop(S)
memory. plock: plock(S)
memorysegment. . .« 2. shmget(S)
memory statistics. vmstat: . , . . . vmstat(C)
Menudrivensystem - . sysadmsh(C)
mergesfiles. v v o+« sort(C)
Merges linesoffiles., . . paste(CT)
mesg: Permits or deniesmessages . . mesg(C)
message control operations. msgctl(S)
messagefilefromCsource. mkstr(CP)
Messageoperations. msgop(S)
messagequeue. - . - msgget(S)
message queue, semaphoresetor . . ipern(C)

messages: Descriptionofsystem .
messages.
messages. Messages: = » « » .«
messages. /sys_nerr,

. messages(M)

dosexter(DOS)

. messages(M)

perror(S)

1-29

Permuted Index

mesg: Permits or denies
telinit, mkinittab: Alternative
generator. aliashash:
faliases:

micnet: The

daemon.mn:

file. systemid: The
commands file.

top, top.next: The
/Introduction to machinerelated
files. intro: Introduction to

turningterminalson/ telinit,

special orordinaryfile.
filefrom C source.

system.

mmcheck: Checksusage of
with thermm macros.
macros. checkmm,

systemtable.

umask: Setsfile-creation
chmod: Changes

setmode: Sets translation

dial: Dialsa

getty: Sets terminal type,

tset: Sets terminal
numberintoa/ frexp, ldexp,
settime: Changestheaccess and
touch: Updatesaccessand
utime: Setsfileaccessand
Relocatable FormatforObject
profile.

/mapstr, convkey: Configure
Setsthe options forthevideo
uusub:

tty[01-n], color,

fstab: Filesystem

mnttab: Format of
/Defaultinformationfor
mount:

mount:

specific address.

mvdir:

directories. mv:

Iseek:

dosld: XENIX to
operations.

1-30

messages sent to aterminal. , . ,
method of turning terminals on/
Micnet aliashash table
Micnet aliasing files.
Micnet default commands file. . . .
Micnetmailerdaemon.
Micnet systemidentification
micnet: The Micnetdefault . . .
Micnet topologyfiles.

mesg(C)

. telinit(C)

aliashash(M)
aliases(M)
micnet(M)
daemon.mn(M)
systemid(M)

. micnet(M)
. top(M)

miscellaneous featuresand/ Intro(HW)
miscellanéous featuresand Intro(M)
mkdir: Createsanewdirectory. . . . mkdir(DOS)
mkdir: Makesadirectory. mkdir(C)
mkfs: Constructsafilesystem. . . . mkfs(C)
mkinittab: Alternativemethodof . . telinit(C)
mknod: Builds specialfiles. mknod(C)
mknod:Makesadirectory,ora . . . mknod(S)
mkstr: Createsan error message . mkstr(CP)
mktemp:Makesauniquefilenaine. . mktemp(S)
mkuser: Adds aloginIDtothe . . . mkuser(C)
MMmacros. checkmm, checkmm(CT)
mm: Printsdocuments formatted . . mm(CT)
mmcheck: Checks usage of MM . checkmm(CT)
mmt: Typesetsdocuments. mmt(CT)
mnttab: Formatof mountedfile . . mnttab(F)
modemask. . + + & o 4 40 4. s umask(C)
modeofafile. + + « . chmod(S)
mode, setmode(DOS)
modem. . + v & 4w = 4 44w - dial(M)
modes, speed, andline/ getty(M)
modes. . . .+« o v tset(C)
modf: Splitsfloating-point frexp(S)
modificationdatesoffiles. . . - . . settime(C)
modificationtimesofafile. touch(C)
modificationtimes. utime(S)
Modules. 86rel: Intel8086 86rel(F)
monitor: Prepares execution . monitor(S)
monitor screen mapping. . .+ - . « mapkey(M)
monitor. stty: + « . . stty(HW)
Monitoruucp network. uusub(C)
monochrome, ega,. screen: . screen(HW)
mount and check commands. . . . fstab(F)
mount: Mountsa filestructure. . - . mount(C)
mount: Mounts a file system. . mount(S)
mountedfilesystemtable. mnttab(F)
mountingfilesystems. . - . . - - . filesys(F)
Mountsafilestructure. mount(C)
Mountsafilesystem.« . . . mount(S)
movedata: Copiesbytesfroma . . . movedata(DOS)
Movesadirectory. - - . mvdir(C)
Movesorrenamesfilesand - - . . mv(C)
Movesread/writefilepointer. . . . lseek(S)
MS-DOScrosslinker. . . « « . . dosld(CP)
msgctl: Provides message control . . msgctl(S)
msgget: Getsmessagequeue, . . - - msgget(S)

directories.

devnm: Identifies device
Getsvalueforenvironment
getlogin: Getslogin

- logname: Getslogin
: pwd: Prints working directory
i © 7 " tty:Getsthe terminal’s
ncheck: Generates
basename:Removesdirectory
Printsuserand group IDsand
archive. dumpdir: Prints the

' term: Conventional
shortinterval.

access to a resource/ waitsem,
inode numbers.

mathematical text for/ eqn,

i network.
netutil: Administers theXENIX
uusub: Monitoruucp

textfile.

group.

news: Print

p /fetch, store, delete, firstkey,
! process.
' different priority.

list.

hangupsandquits.
setjmp, longjmp: Performs a
false: Returns with a

soelim:Eliminates.so’s from
tbl: Formats tablesfor
Terminaldrivingtablesfor
Formatsmathematical text for
: : : constructs. deroff: Removes
' null: The

factor:Factora

random: Generatesarandom
rand, srand: Generatesarandom
astringto adouble-precision
atoi, atol: Converts ASCIIto
library routinesand error

i P Generatesnamesfrominode
S nl: Addsline
ultoa: Converts

itoa: Converts

size: Printsthe size of an

the printable stringsinan

‘name.

Permuted Index

msgop: Message operations.
mv: Movesorrenamesfilesand . . .
mvdir: Movesa directory.
name. . .
name. gctenv:
name. . .
name.
name.

namesfrom inodenumbers.

msgop(S)
mv(C)
mvdir(C)
devnm(C)
getenv(S)
getlogin(S)
logname(C)
pwd(C)
tty(C) -

. ncheck(C)

names frompathnames. basename(C)
names. id: 0. id(C)
namesoffilesonabackup dumpdir(C)
NAMES. « « « « o« o o o « v s &« term(CT)
nap: Suspends executionfora - . nap(S)

nbwaitsem: Awaitsandchecks . .
ncheck: Generatesnamesfrom . .

. waitsem(S)
. ncheck(C)

negn, checkeq, eqncheck:Formats . eqn(CT)
neqn: Formats mathematics. neqn(CT)
netutil: Administersthe XENIX . . netutil(C)
network. . « « s 4 4 2. .. oo, netutil(C)
network. . . .« ... o0 o 0. uusub(C)
newform: Changestheformatofa . newform(C)
newgrp: Logsuserintoanew newgrp(C)
newsitems. ¢ . 4 2o+ . news(C)
news: Print newsitems. news(C)
nextkey: Performsdatabase/ dbm(S)
nice: Changespriorityofa nice(S)
nice:Runsacommandata nice(C)

nl: Addslinenumberstoafile. . . . nl(C)
nlist: Getsentriesfromname nlist(S)
nm: Printsnamelist. nm(CP)
nohup: Runsacommandimmuneto nohup(C)
nonlocal “‘goto”, setjmp(S) -
nonzeroexitvalue. false(C)
nroff: A text formatter. nroff(CT)
nroffinput., soelim(CT)
nroffortroff. tbI(CT)
nroff. term: . . - term(F)
nroff, troff. /eqncheck: eqn(CT)
nroff/troff, tbl,andegn deroff(CT)
nullfile.« v v oo . null(M)
null:Thenullfile. « « « null(M)
number. . . - . . . - + « - - . factor(C)
number., random(C)
number. s 0 ... rand(S)
number. strtod, atof: Converts . . . strtod(S)
numbers. atof, ato{(S)
numbers. /system services, Intro(S)
numbers. ncheck: ncheck(C)
numberstoafile. nl(C)
numbers to characters. . + ultoa(DOS)
numberstointegers. itoa(DOS)
objectfile. size(CP)

objectfile. strings: Finds

. strings(CP)

1-31

Permuted Index

Finds orderingrelationforan
8086 Relocatable Format for
a process until a signal

od: Displaysfilesin

format.
Invokesarestrictedversion
oftuming terminals onand
fp_off, fp_seg: Return
IMAGEN printerqueue. ipr,
new file orrewrites an existing
ipr, oldipr:Putfiles

and writing. sopen:

opensem:

fopen, freopen, fdopen:
writing. open:

objectlibrary. lorder:, .
Object Modules. 86rel:Intel ., . , .,
occurs. pause: Suspends
octal format. S e e .
od: Displaysfilesinoctal . _ . . .
ofred:,
off. /Alternativemethod . . , . .
offsetandsegment. . . .,
oldipr:Put filesontothe . . _ . . .,
one. creat: Createsa
ontotheIMAGEN printer queue.
Opensafileforsharedreading . . .
Opensasemaphore.
Opensastream. . . . « «
Opensfileforreadingor
opensem: Opens asemaphore. . . .

closedir: Performsdirectory operations.

msgctl: Provides message control

msgop: Message

semctl: Controls semaphore
semop: Performs semaphore

shmctl: Controlsshared memory

shmop: Performs shared memory

strdup: Performs string

vector. getopt: Gets

stty: Sets the

stty: Sets the

getopt: Parsescommand

library. lorder: Finds

a directory, ora special or
Copiesfilearchivesin and

dial:Establishesan

port.

of assembler and link editor

flushali: Flushes all

ecvt, fcvt, gevt: Performs
cprintf:Formats

error: Kernel error

buffered binaryinputand
/vsprintf: Prints formatted

outp: Writesa byte to an

pr: Prints filesonthestandard
fprintf, sprintf: Formats
standard buffered input and
chown: Changes the

chown: Changes

quot: Summarizes file system

and expandsfiles.

interprocess communication

ips: Imagenserial sequence

Gets process, process group, and
getopt:

fdisk: Maintain disk

files. hdr: Displays selected

1-32

operations.
operations. - ...
operations,
operations. . .+ . . 4 4 x - 4 . .
operations.
operations. e e ..
operations.
option letter from argwment . . , .
optionsforaterminal., .
optionsforthevideo monitor.
options.
ordering relationforanobject ., ., .
ordinary file. mknod:Makes . . ., .
out. cpio: . . +
out-goingterminalline/
outp: Writesabytetoanoutput . , .
output. a.out: Format . . ,
outputbuffers.
outputconversions.
output.,
outputdevice.
output. fread, fwrite: Performs . . .
outputofavarargs/

lorder(CP)
86rel(F)
pause(S)
od(C)

0d(C)

red(C)
telinit(C)
fp_seg(DOS)
ipr(C)

. creat(S)

ipr(C)
sopen(DOS)
opensem(S)
fopen(S)
open(S)
opensem(S)
directory(S)
msgctl(S)
msgop(S)
semctl(S)
semop(S)
shmctl(S)
shmop(S)
string(S)
getopt(S)
stty(C)

. stty(HW)

getopt(C)
lorder(CP)
mknod(S)
cpio(C)
dial(S)
outp(DOS)
a.out(F)
flushall(DOS)
ecvt(S)
cprintf(DOS)
error(M)
fread(S)

. vprintf(S)

outputport. . « . ¢ o 4 4 s 0. - - outp(DOS)
output. . . 4 . . . o 4 ..., pr(C)
output. printf, - printf(S)
output. stdio: Perfforms stdio(S)
ownerandgroupofafile. . ., . . . chown(S)
ownerID. 4 ¢ w4, . chown(C)
ownership. . e me e quot(C)
pack, pcat, unpack Compresses . . pack(C)
package. ftok:Standard stdipc(S)
packet protocol handler. ips(C)
parentprocess IDs. /getppid: . . . getpid(S)
Parsescommandoptions. - . - . . getopt(C)
partitions. fdisk(C)
partsofexecutablebmaxy « « » - . hdr(CP)
passwd: Changes loginpassword. . . passwd(C)

Permuted Index

passwd: The passwordfile.
pwadmin: Performs password aging administration. . -
1 setpwent, endpwent: Gets password fileentry. /getpwnam, .

passwd(M)
- pwadmin(C)
. getpwent(S)

putpwent: Writesa passwordfileentry. putpwent(S)
! passwd: The passwordfile.- ... passwd(M)
4 pwcheck: Checks passwordfile. pwcheck(C)
N getpw: Gets password foragivenuserID. getpw(S)
- getpass: Readsa password. + . « = « « ¢ 4 4 4 o 4 getpass(S)
- passwd: Changeslogin password.- passwd(C)
paste: Mergeslinesoffiles. paste(CT)
Deliversdirectorypartof pathname. dimame: dimame(C)

directory. getcwd: Getthe

pathname of current working . . .

. getcwd(S)

Removesdirectorynamesfrom pathnames. basename: basename(C)
fgrep: Searches a filefora pattern. grep,egrep, - - - - - - - grep(C)
Searchésforandprocessesa patteninafile. awk: awk(C)
asignaloccurs. pause: Suspends a processuntil . . . pause(S)
keyboard: The PCkeyboard. keyboard(HW)
expandsfiles. pack, pcat,unpack:Compressesand . . . pack(C)
aprocess. popen, pclose: InitiatesI/Otoorfrom . . . popen(S)
bsearch: Performsabinarysearch. bsearch(S)
setjmp, longimp: Performsanonlocal “goto”. setjmp(S)
gsort: Performsadquickersort. qsort(S)
floor, fabs, ceil,fmod: Performs absolutevalue, floor,/ . . fioor(S)
bessel, 0, j1, jn,y0,y1,yn: PerformsBessel functions. bessel(S)
and output. fread, fwrite: Performs buffered binaryinput . fread(S)
/delete, firstkey, nextkey: Performs database functions. . dbm(S)
P closedir: Performs directory operations. . - directory(S)
¢ '} exp,log,pow,sgrt, logl0: Performsexponential,logarithm,/ - exp(S)
N restores files. sysadmin: Performsfilesystem backupsand . . sysadmin(C)
o sinh, cosh,tanh: Performshyperbolic functions. . . . sinh(S)
backup. backup: Performsincremental filesystem . . backup(C)
backup. dump: Performsincremental filesystem . . dump(C)
update. Isearch, Ifind: Performslinearsearchand lIsearch(S)
gamma: Performsloggamma function. . . . gamma(S)
ecvt,fcvt,gevt: Performs output conversions. . ecvi(S)
administration. pwadmin: Performspasswordaging pwadmin(C)
functions. curses: Performsscreenandcursor curses(S)
semop: Performs semaphore operations. . . semop(S)
operations. shmop: Performs shared memory shmop(S)
andoutput. stdio: Performs standard bufferedinput . . stdio(S)
strdup: Performs string operations. string(S)
/tgetflag, tgetstr, tgoto, tputs: Performs terminal functions. . . . - termcap(S)
tan,asin,acos,atan, atan2: Performs trigonometric/ /cos, . - . trig(S)
chmod: Changes theaccess permissionsofafileor/ chmod(C)
toaterminal. mesg: Permitsor deniesmessagessent . . mesg(C)
ptx: Generatesa permutedindex. « « . ptx(CT)
acct: Format of per-processaccountingfile. acct(F)
! ermo: Sendssystem error/ perror, sys_errlist, sys_nerr, perror(S)
! split: Splitsa fileinto pieces. « « « « < ¢ < o o v .. split(C)
| /-\ . pipe. pipe:Createsan interprocess - + » - pipegsg
' ipe: Creates an interprocess pipe. « « « « « s « « « o + « + = pipe(S
N PP tee: CreatesaP:eeina PIPE. ¢ o v et h e e e e e tee(C)
datain memory. plock:Lock process, text,or . . - - plock(S)
rewind: Repositionsafile pointerinastream. /ftell, fseek(S)
Iseek: Movesread/writefile pointer. « lseek(S)
I-33

Permuted Index

the current position of thefile pointer. tell: Gets tell(DOS)
orfroma process. popen,pclose:InitiatesI/Oto . » . popen(S)
outp: Writesabytetoanoutput port. . . . « « o . o o outp(DOS)
, tty2[A-H]J: Interface to serial ports. /, ttyl[A-H] tty2[a-h] . . . serial(HW)
exponential,/ exp, log, pow,sqrt,logl0:Performs exp(S)
/Performs exponential, logarithm, power, squarerootfunctions. . . . exp(S)
output. pr: Printsfilesonthestandard . . . pr(C)
dc:Invokesanarbitrary precisioncalculator. de(C)
statistical processing. prep:Preparestextfor . - - . _ _ . prep(CT)
troff. cw,checkcw,cwcheck: Preparesconstant-widthtextfor . . cw(CT)
monitor: Preparesexecutionprofile. monitor(S)
processing. prep: Preparestextforstatistical - . . , ., prep(CT)
cpp:TheClanguage preprocessor. . . « « « « cpp(CP)
unget:Undoesa previousgetofan SCCSfile. unget(CP)
lock: Locksaprocessin primarymemory. « v o . . lock(S)
types: Primitive systemdatatypes. types(F)
news: Printnewsitems. news(C)

printer. imprint: prmttextﬁlesonan]MAGEN .

: imprint(CT)

file. strings: Finds the printable stringsinanobject strings(CP)
1p,1p0,1p1,1p2:Line printer deviceinterfaces. Ip(HW)
Printstext filesonanIMAGEN printer. imprint: imprint(C)
printtextfilesonan IMAGEN printer. imprint: imprint(CT)
/imagen.remote: IMAGEN printerinterface scripts [imagen(M)
itroff: Troffto an IMAGEN printer. et e e e itroff(CT)
Putfilesonto theIMAGEN printer queue. 1pr oldipr: ipr(C)
disable: Tumsofftenninalsand printers. disable(C)
Turnsonterminalsandline printers. enable: enable(C)
Formats output. printf, fprintf, sprintf: . . . , . . printf(S)
to the lineprinter queue for printing. lpr: Sendsfiles 1pr(C)
cal: Printsacalendar. calC)
prs: Printsan SCCSfile. . . - . . . « .« prs(CP)
sddate: Printsand setsbackupdates. . . . , sddate(C)
date: Printsand setsthedate. date(C)
achivity. sact: Printscurrent SCCSfile editing . . . sact(CP)
themmmacros. mm: Printsdocumentsformatted with . ., mm(CT)
output. pr: Printsfilesonthestandard pr(C)
vprintf, vfprintf, vsprintf: Printsformattedoutputofa/ vprintf(S)
banner: Printslargeletters. banner(C)
information. lpstat: printslineprinterstatus Ipstat(C)
nm: Printsnamelist. nm(CP)
acctcom: Searchesforand printsprocessaccounting files. . . . acctcom(C)
yes: Printsstringrepeatedly. yes(C)

printer. imprint:

Printstext filesonanIMAGEN . .

. imprint(C)

stream. head: Printsthefirstfewlinesofa head(C)
XENIX system. uname: Printsthenameofthecurrent . . ., uname(C)
backup archive. dumpdir: Printsthenamesoffilesona dumpdir(C)
file. size: Printsthesizeofanobject size(CP)
names. id: PrintsuserandgroupIDsand . . . id(C)
pwd: Printsworkingdirectoryname. . . . pwd(C)
Runsa command atadifferent priority. nicez + .+ « . . . nice(C)
nice: Changes priorityofaprocess. . - nice(S)
acct: Enables ordisables processaccounting. . . - . - - . acct(S)
acctcom: Searches forand prints processaccountingfiles. acctcom(C)
alarm: Setsa process’alarinclock. alarm(S)
times: Gets processand child process times. . times(S)

1-34

Permuted Index

init,inir: Process controlinitialization. . . . init(M)
exit: Terminates the calling process. ‘e e e e exit(DOS)
exit, _exit: Terminatesa process. . « « « « « « « exit(S)
fork: Createsanew process. « « « « « « « « « o« « « fork(S)
/getpgip, getppid: Gets process, processgroup,andparent/ getpid(S)
setpgrp: Sets processgroupID., . . . setpgrp(S)
process group, and parent processIDs. /Getsprocess, getpid(S)
lock:Locksa processin primarymemory. lock(S)
kill: Terminatesa process. . « « « « ¢« o o o + =« & » kill(C)
nice: Changes priorityofa process. + - - .« nice(S)
kill: Sends asignaltoa process oragroup of processes. . . kill(S)
TnitiatesT/Oto arfroma process. popen, pclose: popen(S)
getpid, getpgrp, getppid: Gets process, processgroup,and/ getpid(S)
ptrace: Tracesa process. « « « « = + « « « » « « = ptrace(S)
spawnl, spawnvp: Createsanew process. « « « « « « « + + » « « » spawn(DOS)
ps:Reports processstatus, + + ps(C)
memory. plock:Lock process, text,ordatain plock(S)
times: Gets processand child processtimes. times(S)
wait: Waitsforachild processtostoporterminate. wait(S)
Suspends/restartsagetty process. ungetty: « « ungetty(M)
pause: Suspendsa processuntil asignaloccurs. pause(S)
sigsem: Signals a processwaitingon asemaphore. , . sigsem(S)
checklist: List of filesystems processedbyfsck. checklist(F)
awk: Searchesforand processesapatterninafile. awk(C)
to aprocessoragroup of processes. kill: Sendsasignal . . . kill(S)
Awaitscompletionof background processes. wait: « + wait(C)
intro:Introducestext processingcommands. , . Intro(CT)
Preparestextforstatistical processing. prep: prep(CT)
shutdown: Terminatesall processing. shutdown(C)
m4: Invokesamacro processor. « « « o « o-2 & + .+ m4(CP)
prof: Dlsp]aysproﬁledata + = «+ . prof(CP)
time profile. profil: Createsanexecution profil(S)
prof: Displays profiledata. prof(CP)
monitor: Preparesexecution profile. « « « =« « . » monitor(S)
Createsan executiontime profile. profil: profil(S)
atlogintime. profile: Setsupan environment . . . profile(M)
assert: Helpsverifyvalidityof program. assert(S)
boot: XENIXboot program. . . . 4+ - . « « « » « . boot(HW)
etext, edata:Lastlocationsin program.end, end(S)
tape: Magnetic tape maintenance program. v+ 2« . . tape(C)
cb: BeautifiesC programs. . . . « « + « « 4 - . - cb(CP)
lex:Generates programsforlexical analysis. lex(CP)
andregeneratesgroupsof programs. /Maintains, updates, . . make(CP)
stack requirements for C programs. stackuse: Determines . . stackuse(CP)
xref: Cross-referencesC programs. . . . « = « o o o = = = xref(CP)
xstr: Extracts stringsfromC programs. . . « - - « « « « « - . xstr(CP)
day. asktime: Promptsforthecorrecttimeof . . . asktime(C)
Imagen serial sequence packet protocolhandler.ips: ips(C)
ips, isbs, ipbs: IMAGEN protocolhandlers. ips(M)
locking on files. lockf: Provide semaphoresandrecord . . lockf(S)
operations. msgctl: Providesmessagecontrol msgctl(S)
prs: PrintsanSCCSfile. prs(CP)
ps: Reportsprocessstatus, . . - - . ps(C)
sxt: Pseudo-devicedriver. sxt(M)
information. pstat:Reportssystem pstat(C)

I-35

Permuted Index

stream. ungetc:
acharacterorword ona/
console.

character orword ona/ putc,
environment.

entry.

putc, putchar, fputc, putw:
puts, fputs:

cputs:

stream.

ona/ putc, putchar, fputc,
administration.

name.

tput:

Sends files to the lineprinter

files onto the IMAGEN printer
msgget: Gets message

ipcrm: Removes a message

gsort: Performsa
acommandimmuneto hangups and
ownership.

number.

number.

ranlib; Converts archives to
random: Generatesa

rand, srand: Generatesa

random libraries.

clockrate: Changes clock
FORTRANIintostandard FORTRAN.
FORTRAN. ratfor: Converts
systems.

datatoberead.

toseeifthereis datatobe

sopen: Opensa file for shared
orunlocksafileregionfor
open: Opensfilefor

getpass:

defopen, defread:

read:

line:

mail: Sends,

Iseek: Moves

memory. malloc, free,

clock: The system

setclock: Sets the system
systemsand shuts down/ haltsys,
Specifieswhat to doupon
lineprinters. lpinit: Adds,
lockf: Provide semaphores and
version of.

1-36

pwace: Tracesaprocess.
ptx: Generates apermuted index. . .
Pushes characterback intoinput ., .
putc, putchar, fputc, putw:Puts . .
putch: Writes a charactertothe . . .
putchar, fputc,putw: Putsa . , , .
putenv: Changesoraddsvalueto .
putpwent: Writesa passwordfile . .

Putsacharacterorwordona/ . . .
Putsastringonastream.
Putsastringtotheconsole. . . ., .
puts, fputs: Putsastringona
putw: Putsa characterorword . . .
pwadmin: Performs password aging

pwcheck: Checks passwordfile. . .
pwd: Prints working directory
qsort: Performs a quickersort. . . .
Queries the texminfo database. . . .
queueforprinting. Ipr: .,
queue. jpr,oldipr:Put
queue.
queue, semaphoreset orshared/ .
quickersort. 0. .,
quits. nohup: Runs
quot: Summarizes file system . . .
rand, srand: Generatesarandom . .
random: Generatesarandom . . .
random libraries.
randomnumber.
randomnumber. -
ranlib: Convertsarchivesto . . .
FAE. o 4 o e e o e e e e e om s
ratfor: Converts Rational
Rational FORTRAN intostandard .
rcp: Copies files across XENIX . .
rdchk: Checkstoseeifthereis . .
read. rdchk: Checks
read: Readsfromafile. .., .. .
readingand writing. . .
readingor writing. /Locks
reading or writing.
Readsapassword.
Readsdefaultentries.
Readsfromafile. “ e
Readsoneline.
readsor disposesof mail.
read/writefile pointer.

realloc, calloc: Allocatesmain .+
real-time(time of day) clock. . .
real-time(timeof day)clock. . . .
reboot: Closes out the file
receipt of asignal. signal:
reconfigures and maintains . - -
record locking on files.
red: Invokes arestricted

L TR

R

* 44 e oa

-+ e

ptrace(S)
px(CT)
ungetc(S)
putc(S)
putch(DOS)
putc(S)

. putenv(S)

putpwent(S)
putc(S)
puts(S)
cputs(DOS)
puts(S)
putc(S)

. pwadmin(C)

pwcheck(C)
de(C)
gsort(S)
tput(C)
1pr(C)
ipr(C)
msgget(S)

. ipcrn(C)

gsort(S)
nohup(C)

. quot(C)

rand(S)
random(C)
ranlib(CP)
random(C)
rand(S)

. ranlib(CP)

clockrate(HW)
ratfor(CP)
ratfor(CP)

. rcp(C)
. rdchk(S)

rdchk(S)
read(S)
sopen(DOS)
locking(S)
open(S)

. getpass(S)

defopen(S)
read(S)
line(C)
mail(C)
Iseek(S)

. malloc(S)
. clock(M)

setclock(M)
haltsys(C)

. signal(S)
. 1pinit(C)

lockf(S)

regular expressions. regex,
expressions.

make: Maintains, updates, and
executes regular expressions.
compileand match routines.
execseg: makes a data

locking: Locks orunlocksa file
match routines. regexp:
regcmp: Compiles

regcmp: Compilesand executes
sorted files. comm: Selects or
intro: Introduction to machine
lorder: Finds ordering

join: Joins two

Modules. 86rel: Intel 8086
strip: Removes symbols and
value, fioor, ceilingand
calendar: Invokesa

remote XENIX system.
remote: Executes commands on a
uux: Executes command on
file. imdel:

semaphoreset or shared/ ipcim:
system. imuser:

rmdir:

unlink:

pathnames. basename:

rm, nndir:

eqn constructs. deroff:

bits. strip:

directory.

rename:

mv: Moves or

fsck: Checksand

uniq: Reports

yes: Prints string
GenerateanIMAGENaccounting
blocks. df:

clock:

cmchk:

ps:

file. uniq:

pstat:

inter-process/ ipcs:

vmstat:

stream. fseek, ftell, rewind:
Starts/stopsthelinepiinter

1p, Ipr, cancel: Send/cancel
stackuse: Determines stack
/Awaitsand checksaccesstoa
incrementalfile/ restore,
Invokes incremental file system/
Invokesincrementalfile system
Performs file system backups and
interpreter). rsh: Invokesa

e

(.

regcmp: Compilesand executes .
regcmp: Compilesregular
regenerates groups of programs.
regex, regcmp: Compilesand , .
regexp: Regularexpression . . .
regionexecutable. . , ., , . ., .
region forreading orwriting.
Regularexpressioncompileand .
regularexpressions. . . .
regular expressions. regex, . . .
rejects lines common totwo . . .
related miscellaneous features/ . .
relation for an object library. . . .
relations.
RelocatableFormat forObject . .
relocation bits. . . .
remainder functions. /absolute .
reminder service.
remote: Executes commandsona
remote XENIXsystem.
remote XENIX.
Removesadeltafroman SCCS . .
Removes a message queue,
Removes auseraccount fromthe .

LI

e e e o o s o e o =

e s o o e o & »

+ e

Removesdirectories.

P

Removes directory entry.

Removes directory namesfrom , . .

Removes files ordirectories. . . .

Removes nroff/troff, tbl,and . . .
Removes symbolsandrelocation . .

rename: renames afile or
renames a fileor directory. . , . .
renamesfilesanddirectories. . ,
repairs file systems.
repeatedlinesinafile.
repeatedly.
report. imacct:

D L

Reportnumberoffreedisk . . .
ReportsCPUtimeused.
Reportshard disk block size. . . -
Reportsprocessstatus.
Reportsrepeatedlinesina

Reports systeminformation. . . .
Reports the status of
Reports virtual memorystatistics. .
Repositions afile pointerina . . .
request. /lpshut, lpmove:
requeststolineprinter.

R

- ..

LI R

requirements forCprograms. . . .

resourcegovernedbya/
restor:Invokes4 .
restore, restor:

restorer. /restor:
restoresfiles. sysadmin: . - . . .

restricted shell (command

e« o o

Pennuted Index

.

regex(S)
regcmp(CP)
make(CP)
regex(S)
regexp(S)
execseg(S)
locking(S)
. regexp(S)

- regemp(CP)
- regex(S)

. comm(C)

. Tntro(HW)
. lorder(CP)
. join(C)

. 86rel(F)

. stiip(CP)

. floor(S)

. calendar(C)
. remote(C)
- remote(C)
- nux(C)

. nindel(CP)
. ipcrn(C)

. mnuser(C)
rindir(C)

. unlink(S)
basename(C)
. m(C)
deroff(CT)
strip(CP)

. rename(DOS)
. rename(DOS)
. mv(C)

. fsck(C)

. uniq(C)

. yes(C)

. imacct(C)
. df(C)

. clock(S)

. cmchk(C)
- ps(C)

. unig(C)

. pstat(C)

. ipes(C)

. vmstat(C)
. fseek(S)

+ lpsched(C)
- 1p(C)
stackuse(CP)
. waitsem(S)
. restore(C)
. restore(C)
. restore(C)
. sysadmin(C)
. rsh(C) -

.

*

+

1-37

Permuted Index

red: Invokesa restrictedversionof.

ip_off, fp_seg: Returnoffsetandsegment. . . .

stat: Data returnedbystatsystemcall.

inp: Returnsabyte. . . -

consolebuffer. ungetch: Returnsacharactertothe
value. abs: Returnsanintegerabsolute . . .

long integer. labs: Returnstheabsolutevalueofa . .

strlen: Returnsthelength of astring. .

value. false: Returnswith anonzeroeait . . .

true: Returnswithazeroexitvalue. . .

col: Filters reverselinefeeds.

inastring. strtev: Reverses the order of characters
pointerina/ fseek, ftell, rewind: Repositionsafile
creat: Createsanew file or rewritesan existingone.
directories. rm, rmdir: Removesfilesor

SCCSfile. imdel:Removesadeltafroman . .

rmdir: Deletesadirectory.

rmdir: Removes directories.

directories. rm, rmdir:Removesfilesor
from the system. nnuser: Removesauseraccount . .

chroot: Changes the rootdirectory.
chroot: Changes root directoryforcommand.
logarithm, power, square root functions. /exponential, . . .
/system services, library routinesand errornumbers.
expression compileandmatch routines. regexp:Regular
(command interpreter). rsh: Invokes a restricted shell
priority. nice: Runsacommand at adifferent . . .

and quits. nohup: Runs a command immune to hangups

editing activity. sact:Prints current SCCSfile
spaceallocation. sbrk,brk: Changesdatasegment .

work. uucico: Scanthespooldirectoryfor . . .

and formatsinput. scanf, fscanf, sscanf: Converts . . .

bfs: Scansbigfiles. o v vas

createsbad track/ badtrk: Scansfixeddisk forflawsand
help: Asks for helpabout SCCS commands.
the deltacommentaryofan SCCSdelta. cdc: Changes
comb: Combines SCCSdeltas.

Makes adelta(change)toan SCCSfile. delta:
sact: Prints current SCCSfile editingactivity.

prs: Printsan SCCSfile.
rmdel:Removesadeltafroman SCCSfile.
Comparestwoversionsofan SCCSfile. scesdiff: - - . - . . . -
sccsfile:Formatofan SCCSfile. . . o « v 4 2 4 « o o &
Undoesapreviousgetofan SCCSfile.unget:
val:Validatesan SCCSfile. -

admin: Creates and administers SCCSfiles. + + « « « + + « + «
ofanSCCSfile. sccsdiff: Comparestwo versions . .

file. sccsfile: FormatofanSCCS

curses: Performs screen and cursor functions.
clear:Clearsaterminal screen. . . . « ¢« « ¢ o v « = +
setcolor: Set screencolor. « et r e

convkey: Configure monitor screen mapping. /mapstr, - . . . -
color, monochrome, ega,. screen:tty[01-n], - - . . -
vi, view, vedit: Invokesa screen-oriented displayeditor. . . .
install: Installation shell script.

1-38

red(C)

. fp_seg(DOS)

stat(F)
inp(DOS)
ungetch(DOS)

. abs(S)

. labs(DOS)
. strlen(DOS)
. false(C)

. true(C)

col(CT)

. swrev(DOS)

fseek(S)
creat(S)
rm(C)
nindel(CP)
rmdir(DOS)
nindir(C)
rm(C)
rmuser(C)
chroot(S)
chroot(C)
exp(S)
Intro(S)
regexp(S)
rsh(C)
nice(C)
nohup(C)
sact(CP)
sbrk(S)
uucico(C)
scanf(S)
bfs(C)
badtrk(M)
help(CP)
cdc(CP)
comb(CP)
delta(CP)
sact(CP)

. prs(CP)

rmdel(CP)
scesdiff(CP)
sccsfile(F)
unget(CP)
val(CP)
admin(CF)
scesdiff(CP)
sccsfile(F)
curses(S)
clear(C)
setcolor(C)
mapkey(M)
screen(HW)
vi(C)
install(M)

Permuted Index

IMAGENprinterinterface scripts. /imagen.remote: imagen(M)
sdb: Invokes symbolic debugger. . . sdb(CP)
dates. sddate:Printsandsetsbackup . . ., sddate(C)

access to ashared data/ sdenter, sdleave: Synchronizes . . . sdenter(S)
. shared datasegment. sdget, sdfree: Attachesanddetachesa . . sdget(S)
i detaches ashareddatasegment. sdget, sdfree: Attachesand sdget(S)
o shared dataaccess. sdgetv, sdwaitv: Synchronizes . . . sdgetv(S)
side-by-side. sdiff: Comparesfiles sdiff(C)
“ashared data segment. sdenter, sdleave: Synchronizes accessto "~ . . sdenter(S)
dataaccess. sdgetv, sdwaitv: Synchronizesshared . . . sdgetv(S)
Isearch, Ifind: Performslinear searchandupdate. Isearch(S)
bsearch: Performsabinary search. bsearch(S)
hcreate, hdestroy: Manages hash search tables. hsearch, . .-. . . . hsearch(S)
tdelete, twalk: Managesbinary search trees. tsearch, tfind, tsearch(S)
grep, egrep, fgrep: Searchesafileforapattern. grep(C)
accountingfiles. acctcom: Searchesforand prints process . . . acctcom(C)
patternin afile. awk: Searchesforand processesa awk(C)
sed:Invokesthestreameditor. ., . . sed(C)
uniformly distributed. srand48, seed48,lcong48: Generates drand48(S)
brkctl: Allocatesdatainafar segment., . brkectl(S)
fp_seg:Return offsetand segment. fp_off, fp_seg(DOS)
accessto ashared data segment. /sdleave: Synchronizes . . sdenter(S)
and detaches ashareddata segment. /sdfree: Attaches sdget(S)
shmget: Gets asharedmemory segment. e« « « . . shmget(S)
sbrk, brk: Changesdata segmentspaceallocation. . . . , . sbrk(S)
segread: command description. . . segread(DOS)
C_ afile. cut: Cutsout selected fieldsofeachlineof cut(CT)
|

.

binary files. hdr: Displays selected parts of executable ., . . . hdr(CP)
to two sorted files. comm: Selectsorrejectslinescommon . . comm(C)
Creates an instance of abinary semaphore. creatsem: creatsem(S)
opensem: Opensa semaphore. « « « « « - Opensem(S)
semctl: Controls semaphoreoperations. . . ., . . . semctl(S)
semop: Performs semaphoreoperations. semop(S)
ipcrm: Removes a message queue, semaphoresetorsharedmemory. . ipcrm(C)
Signals a process waitingona semaphore. sigsem: sigsem(S)
to aresourcegovermedbya semaphore. /and checksaccess . , waitsem(S)
files. lockf:Provide semaphoresandrecordlockingon . lockf(S)
semget:Getssetof semaphores.« semget(S)
operations. semctl: Controlssemaphore semctl(S)
semget: Getssetof semaphores. . . semget(S)
operations. semop: Performssemaphore semop(S)
lineprinter. Ip, Ipr, cancel: Send/cancelrequeststo 1p(C)
group of processes. kill: Sendsa signaltoaprocessora . . . kill(S)
queue for prinking. lpr: Sends filestothelineprinter 1pr(C)
mail. mail: Sends, readsordisposesof mail{C)
Isys_errlist, sys_nerr, errmo: Sendssystem error messages. . . . perror(S)
mesg: Permits or denies messages senttoaterminal. mesg(C)
handler. ips: Imagen serial sequence packetprotocol ips(C)

,tty2[A-H]: Interfaceto serialports. /,tty2[a-h] serial(HW)
(_\ j handler. ips: Imagen serial sequence packet protocol . . ips(C)
N calendar: Invokesareminder service. ¢ o ¢ . . . calendar(C)

error/ intro: Introduces system services, libraryroutinesand Intro(S)

Mapofthe ASClIcharacter set.ascii: . . . « « . = = = + » o ascii(M)

bufferingto a stream. setbuf, setvbuf: Assigns setbuf(S)
real-time (time ofday) clock. setclock: Setsthesystem setclock(M)

1-39

Permuted Index

setuid,

getgrent, gewgrgid, getgrnam,
nonlocal “goto™.

keys.

table.

getpwent, getpwuid, getpwnam,
alarm:

to one charater. strset:

mask. umask:

sddate: Prints and

execution. env:

modification times. utime:
umask:

setpgip:

tset:

speed, andline/ getty:

base. cmos: Displaysand
date: Printsand

stty:

monitor. stty:

ofday) clock. setclock:
stime:

setmode:

time. profile:

setuid, setgid:

ulimit: Getsand

modification dates of files.
gettydefs: Speed and terminal
group IDs.

stream. setbuf,

dataina/ sputl,

interpreter.

sdgetv, sdwaitv: Synchronizes
Synchronizesaccesstoa
sdfree: Attachesand detachesa
message queue, semaphore set or
shmctl: Controls

shmop: Performs
shmget:Getsa

sopen: Opens afile for

rsh: Invokesarestricted

sh: Invokesthe
shV:Invokesthe
C-likesyntax. csh: Invokesa
system: Executesa

shl:

install: Installation

operations.

segment.

operations.

nap: Suspends executionfora

1-40

setcolor: Set screencolor. setcolor(C)
setgid: SetsuserandgroupIDs. . . . setuid(S)
setgrent, endgrent-Getgroup/ . . . getgrent(S)
setjmp, longjmp: Performsa setjmp(S)
setkey: Assignsthefunction setkey(C)
setmnt: Establishes /etc/mnttab . . setmnt(C)
setmode: Setstranslationmode. . . setmode(DOS)
setpgrp: SetsprocessgroupID. . . . setpgrp(S)
setpwent, endpwent: Gets/ - - - getpwent(S)
Setsa process’ alarmclock. alarm(S)
Setsallcharactersinastiing strset(DOS)
Setsandgetsfilecreation umask(S)
setsbackupdates. sddate(C)
Setsenvironmentforcommand - env(C)
Setsfileaccessand utime(S)
Setsfile-creationmodemask. . . . umask(C)
SetsprocessgroupID: setpgrp(S)
Setsterminalmodes. tset(C)
Setsterminal type, modes, . . - .« . getty(M)
sets the configurationdata cmos(HW)
setsthedate. « + . date(C)
Setstheoptionsforaterminal. . . . stty(C)
Setstheoptionsforthevideo stty(HW)
Setsthe systemreal-time (time . . . setclock(M)
Setsthetime. . - - « . - - ... stime(S)
Setstranslationmode. setmode(DOS)
Setsupanenvironmentatlogin . . . profile(M)
SetsuserandgroupIDs. setuid(S)
setsuserlimits. ulimit(S)
settime: Changes the accessand . settime(C)
settingsused bygetty. gettydefs(F)
setuid, setgid: Setsuserand setuid(S)
setvbuf: Assignsbufferingtoa . . . setbuf(S)
sgetl: Accesseslonginteger sputl(S)
sh:Invokesthe shellcommand . . . sh(C)
shareddataaccess. - . . sdgetv(S)
shared data segment. /sdleave: . . . sdenter(S)
shared data segment. sdget, - . . . sdget(S)
shared memory. ipcrm: Removesa . ipcrm(C)
shared memory operations. - - . . shmctl(S)
shared memoryoperations. . . . - shmop(S)
sharedmemorysegment. shmget(S)
shared readingand writing. . . - . sopen(DOS)
shell(command interpreter). . . . rsh(C)
shellcommandinterpreter. sh(C)
shellcommand interpreter. shV(C)
shell commandinterpreterwith . . . csh(C)
shellcommand. . - - system(S)
Shelllayermanager. . . . - - . . shl(C)
shell script. . « . . . e e s install(M)
shl: Shelllayermanager, shl(C)
shmctl: Controlssharedmemory . - shmctl(S)
shmget: Gets ashared memory . shmget(S)
shmop: Performs sharedmemory . . shmop(S)
shortinterval. nap(S)

4 '—‘\\

haltsthe CPU.

processing.
Closesoutthefilesystemsand
interpreter.

sdiff: Compares files
Suspends a process until a
whatto douponreceiptofa
upon receipt of a signal.

of processes. kill: Sendsa
semaphore. sigsem:

gsignal: Implements software
waiting on a semaphore.
atan?2: Performs trigonometric/
hyperbolicfunctions.

cmchk: Reports hard disk block
chsize:Changesthe

size: Prints the

object file.

interval.

interval.

current/ ttyslot: Finds the
spline: Interpolates
nroffinput.

ssignal, gsignal: Implements
readingand writing.

gsort: Performs a quicker

orrejectslines common to two
look: Findslinesina

tsort:

sort:

soelim: Eliminates

an error message file from C
sbrk, brk: Changes data segment
process.

spawnl,

movedata: Copies bytesfrom a
cron: Executescommands at
receipt of a signal. signal:
/Sets terminal type, modes,

by getty. gettydefs:
hashcheck: Finds spelling/
spelling/ spell, hashmake,
spellin, hashcheck: Finds
curve.

pieces.

split:

context. csplit:

into a/ frexp, ldexp, modf:
uucico: Scanthe

uuclean: Clean-up theuucp
Configures the lineprinter
puintf, fprintf,

integerdatain a/
exponential,/ exp, log, pow,

Permuted Index

shutdn: Flushesblockl/Oand . . . shutdn(S)
shutdown: Terminatesall shutdown(C)
shuts downthesystem. /reboot: . . haltsys(C)
shV: Invokes the shellcommand . . shV(C)
side-by-side. . + sdiff(C)
signal occurs. pause: . . , pause(S)
signal. signal: Specifies signal(S)
signal: Specifieswhattodo signal(S)
signal toa processoragroup kill(S)
Signalsa process waitingona sigsem(S)
signals. ssignal, - . ssignal(S)
sigsem: Signalsaprocess sigscm(S)
sin, cos, tan, asin, acos, atan, . . . trig(S)
sinh, cosh, tanh: Performs sinh(S)
size. « « « » » cmchk(C)
sizeofafile. chsize(S)
sizeofanobjectfile. size(CP)
size:Printsthesizeofan size(CP)
sleep: Suspends executionforan . . sleep(C)
sleep: Suspends executionforan . . sleep(S)
slotin theutmpfileofthe ttyslot(S)
smoothcurve. spline(CP)
soelim: Eliminates .so’sfrom . . . soelim(CT)
software signals. ssignal(S)
sopen: Opensa fileforshared . . . sopen(DOS)

SOTE. & v 4 v o v e o e e = v s
sort: Sortsand mergesfiles.

sorted files. comm: Selects
sortedlist. t e e
Sortsa filetopologically.
Sortsand mergesfiles. - . - . . .
so’sfromnroffinput. “a .
source. mkstr: Creates , .
spaceallocation.
spawnl, spawnvp: Createsanew . .

spawnvp: Createsanew process. .
specific address.
specified times.
Specifieswhatto do upon
speed, and line discipline.
Speed and terminalsettingsused . .
spell, hashmake, spellin,
spellin, hashcheck:Finds
spellingerrors. /hashmake,
spline: Interpolatessmooth . . .
split: Splitsafileinto
Splits a fileinto pieces.
Splits files according to
Splitsfloating-pointnumber
spool directoryforwork.
spooldirectory.
spoolingsystem. lpadmin:
sprintf: Formatsoutput. . «
sput], sgetl: Accesseslong
sqrt,log10: Performs

I R R R

gsort(S)
sort(C)
comm(C)
look(CT)
tsort(CP)
sort(C)
soelim(CT)
mkstr(CP)
sbrk(S)
spawn(DOS)

. spawn(DOS)

movedata(DOS)
cron(C)
signal(S)
getty(M)
gettydefs(F)
spell(CT)
spell(CT)
spell(CT)

. spline(CP)

split(C)
split(C)
csplit(C)
frexp(S)
uucico(C)
uuclean(C)
Ipadmin(C)
printf(S)
sputl(S)

1-41

Permuted Index

exponential, logarithm, power,
number. rand,

Generates uniformly/

input. scanf, fscanf,

software signals.

programs. stackuse: Determines
requirements for C programs.
output. stdio: Performs
Converts Rational FORTRAN into
gets: Getsa string firom the
communication package. ftok:
pr:Printsfilesonthe

Ipsched, 1pshut, lpmove:

system call.

stat: Data returned by
prep: Prepares textfor
ustat: Getsfile system
virtual memory

fileno: Determines stream
Ipstat: prints lineprinter
uustat: uucp
communication/ ipcs: Reportsthe
ps: Reportsprocess

stat, fstat: Getsfile
buffered inputand output.

Waits forachild processto
nextkey:/ dbminit, fetch,
operations.

Invokes the

fflush: Closes or flushesa
Gersacharacterfroma

fopen, freopen, fdopen: Opens a
fputchar: Write acharactertoa
Repositionsa file pointerina
Gets character or word from a
fgets: Getsa stringfroma
Printsthefirstfewlinesofa
Putsa characterorwordona
puts,fputs: Putsastringona
setvbuf: Assignsbufferingtoa
clearerr, fileno: Determines
Pushescharacter backintoinput
fclose, fcloseall: Closes

cgets: Getsa

gets, fgets: Getsa

gets: Getsa

puts, fputs:Putsa

strdup: Performs

yes: Prints

strlen: Returnsthelength of a
theorder of charactersina
strtod, atof: Converts a

strtol, atol, atoi: Converts

1-42

square rootfunctions. /Performs .
srand: Generatesarandom . . .
srand48, seed48, lcong48:
sscanf:Convertsand formats ., ., .
ssignal, gsignal: Implements
stackrequirementsforC
stackuse: Determines stack . . .
standard buffered inputand . . .

. exp(S)
. rand(S)
. drand48(S)

scanf(S)

ssignal(S)
stackuse(CP)

. stackuse(CP)
. stdio(S)

standard FORTRAN. ratfor: . . . ratfor(CP)
standardinput. gets(CP)
Standard interprocess stdipc(S)
standardoutput. pr(C)
Starts/stops the lineprinter/ Ipsched(C)
stat: Datareturned bystat stat(F)
stat, fstat: Getsfilestatus. stat(S)
statsystemcall. stat(F)
statistical processing. prep(CT)
statistics. 0 0 ustat(S)
statistics.vmstat: Reports . ., . . . vmstat(C)
status. ferror,feof,clearerr, ferror(S)
statusinformation. Ipstat(C)

statusinquiryandjobcontrol. . . .
statusof inter-process
status.
status. . o o e 6 e e . .4
stdio: Performsstandard
stime:Setsthetime., ..
stop or terminate. wait:
store, delete, firstkey,
strdup: Performs string
stream editor. sed:
stream. fclose,
stream. fgetc, fgetchar:
stream. . . .
stream. fputc,
stream. fseek, ftell, rewind:
stream. /getchar, fgetc, getw: . . .
stream. gets,
stream. head:
stream. /putchar, fputc, putw: . . .
stream. . . . ¢ ¢ ¢ 0 e v - 4 ..
stream. setbuf,
stream status. ferror, feof,
stream. ungetc:
streams.
string.
string from a stream,
string from the standard input. . . .
stringona stream.
stringoperations. . . - -
stringrepeatedly. . - -
string.
string. strrev: Reverses
stringtoadouble-precision/
string to integer.

uustat(C)
ipcs(C)
ps(C)
stat(S)
stdio(S)
stime(S)
wait(S)
dbm(S)
string(S)
sed(C)
fclose(S)
fgetc(DOS)
fopen(S)
fputc(DOS)
fseek(S)
getc(S)
gets(S)
head(C)
putc(S)
puts(S)
setbuf(S)
ferror(S)
ungetc(S)
fclose(DOS)
cgets(DOS)
gets(S)
gets(CP)
puts(S)
string(S)
yes(C)
strlen(DOS)
strrev(DOS)
strtod(S)
strtol(S)

strset: Setsallcharactersina
cputs:Putsa

stringsin an object file.
xstr: Extracts

strings: Finds the printable
relocation bits.

e string.
characterstolowercase.

" charactersin astring.
string to one charater.

to a double-precision number.
stringto integer.

mount; Mountsa file
umount: Dismounts a file
characters to uppercase.
terminal.

video monitor.

of adocument.
oranotheruser.
countsblocksinafile.

du:

ownership. quot:

sync: Updates the

sync: Updates the

su: Makestheusera
terminals: List of

signal occurs. pause:
interval. nap:

interval. sleep:

interval. sleep:

process. ungetty:

T

swapadd: Adds
swapctl: Adds

swab:

sdb: Invokes
strip: Removes

datasegment. sdenter, sdleave:
sdgetv, sdwaitv:

command interpreter with C-like
Check sClanguageusageand
backupsandrestores files.
administration utility.

Sends system error/ perror,
error/ perror, sys_errlist,
Automatically boots the

Permuted Index

config: Configuresa XENIX system. . .
cu: Calls another XENIX system.

file systemsandshutsdown the system
the lineprinter spooling system.

stringto onecharater. strset(DOS)
stringto theconsole. cputs(DOS)
strings: Findsthe printable , strings(CP)
stringsfromC programs. xstr(CP)
stringsin anobjectfile. , strings(CP)
strip:Removessymbolsand strip(CP)
strlen: Returnsthelengthofa . . . strlen(DOS)
strlwr: Convertsuppercase strlwr(DOS)
‘strreviReversestheorderof strrev(DOS)’
strset: Setsall charactersina strset(DOS)
strtod, atof: Convertsastring . . . strtod(S)
striol, atol, atoi: Converts _ strtol(S)
structure.- ., mount(C)
structure., . . e e umount(C)
strupr: Convertslowercase strupr(DOS)
stty: Setstheoptionsfora stty(C)
stty: Setstheoptionsforthe stty(HW)
style: Analyzes characteristics . . . style(CT)
su: Makes theusera super-user . - . su(C)
sum: Calculateschecksumand . . . sum(C)
Summarizesdiskusage. du(C)
Summarizesfilesystem quot(C)
super-block. .+ sync(C)
super-block., sync(S)
super-useror anotheruser. su(C)
supported terminals. terminals(M)
Suspendsaprocessuntila , . ., . . pause(S)
Suspends executionforashort . . . nap(S)
Suspendsexecutionforan sleep(C)
Suspendsexecutionforan sleep(S)
Suspends/restartsagerty ungetty(M)
swab: Swapsbytes. swab(S)
SWAPAr€a « « « 4 ¢ o v v o . . » swapadd(S)
SWAPATEA « « + + o o & 4 o v 4 . swapctl(C)
swapadd: Addsswaparea swapadd(S)
swapctl: Addsswaparea swapctl(C)
Swapsbytes. o . 4 .. swab(S)
sxt: Pseudo-devicedriver. - sxt(M)
symbolicdebugger. sdb(CP)
symbols and relocationbits. strip(CP)
sync: Updates the super-block. . . sync(C) -
sync: Updates the super-block. . . sync(S)
Synchronizesaccesstoashared . . sdenter(S)
Synchronizes shared dataaccess. . . sdgetv(S)
syntax. csh:Invokesashell csh(C)
syntax. lint: e e e e e e e lint(CP)
sysadmin: Performsfilesystem . . . sysadmin(C)
sysadmsh: Menudrivensystem . . . sysadmsh(C)
sys_errlist,sys_nerr,ermo: perror(S)
sys_nerr, ermo: Sends system . . . perror(S)
system. autoboot:, autoboot(M)
e e e e e e config(C)
e e e e e e e e e cu(C)
. /reboot: Closesoutthe . . . haltsys(C)
. Ipadmin: Configures . - - . lpadmin(C)

1-43

Permuted Index

mkfs: Constructsa file

mkuser: Adds aloginIDto the
mount: Mounts afile
commandson aremote XENIX
Removes a user account from the
umount:Unmountsafile
thename of the current XENIX
Getsname of current XENIX
who: Lists who is on the
identification file.

/reboot: Closes out the file
fsck: Checks andrepairsfile
checklist: Listof file

rcp: Copiesfiles across XENIX
device.

forflaws and creates bad track
aliashash: Micnet aliashash
Masterdevice information
Format of mountedfile system
setmnt: Establishes/etc/mnttab
tbl: Formats

term: Terminaldriving tablesfornroff.

hdestroy: Manages hash search
ctags: Createsa

afile.

Performs/ sin, cos,

functions. sinh, cosh,
backup: Incrementaldump
dump: Incremental dump
program.

tape: Magnetic

deroff: Removes nroff/troff,
troff.
search trees. tsearch, tfind,

tee: Createsa

method of turing terminalson/
temporary file. tmpnam,
tmpfile: Createsa

tempnam: Creates anamefora

fornroff.

terminfo/ capinfo:convert
data base.

termncap:

terminfo:
Generatesafilenamefora
terminfo:

nroff. term:

tgetstr, tgoto, tputs: Performs
termio: General

tty: Special

dial: Establishes an out-going

I-44

system. , .
system. remote: Executes
system. rmuser:
system.
system. uname: Prints
system. uname:
system.
systemid: TheMicnet system . .
systems and shutsdownthe/ . .
systems. .
systemsprocessed by fsck.
systems. .

=4 e e ot s e

systty: System maintenance . . .
table. badtrk: Scansfixed disk . .

tablegenerator. . .
table. master:
table. mnttab:
table.
tables fornroffortroff.

tables. hsearch,hcreate, . . , .

tags file.
tail: Deliversthelastpartof . .
tan,asin, acos, atan, atan2: . .
tanh: Performshyperbolic . . .
tapeformat.
tapeformat.
tape: Magnetic tapemaintenance
tapemaintenanceprogram. . .
tar:archiveformat. .
tar: Archivesfiles.
tbl,andeqnconstructs.
tbl: Formatstables fornroffor .
tdelete, twalk: Managesbinary

tee: Creates ateein apipe.
teeinapipe.
telinit, mkinittab: Altermative .
tempnam: Createsa name fora .
temporaryfile.
temporaryfile. tmpnam,
term: Conventionalnames. . .
terin: Terminal drivingtables . .

4 = o=

termcapdescriptionsinto

termcap: Terminal capability .

Temminal capabilitydatabase. . .
. . terminfo(M)

terminal capability database.
terminal. ctermid:
terminal description database. .
Terminaldriving tablesfor . . .

terminal functions. /tgetflag, . . .

terminalinterface.
terminalinterface.
terminal line connection.

e o o o o o o 4 x &

e e o o 8 o = - =

. . mkfs(C)

. mkuser(C)

. mount(S)
- remote(C)
. rmuser(C)

. umount(S)
. uname(C)

. - uname(S)

- who(C)

. . systemid(M)
. haltsys(C)

. fsck(C)
. checklist(F)

. . rcp(C)
- systty(M)
. badtrk(M)

. aliashash(M)
. master(F)

. mnttab(F)

. setmnt(C)
. tbi(CT)

. term(F)

. hsearch(S)
. ctags(CP)

. . tail(C)

. trig(S)

. sinh(S)

. backup(F)
- dump(F)

. . tape(C)

. tape(C)

. tar(F)

- tar(C)

. deroff(CT)
. tbl(CT)

. . tsearch(S)

. tee(C)
. tee(C)
. telinit(C)

. . tmpnam(S)

- tmpfile(S)
. tmpnam(S)
. term(CT)

. term(F)

. capinfo(C)
. termcap(M)
. termcap(M)

. ctermid(S)
. terminfo(S)
. term(F)

- termcap(S)
. termio(M)
. tty(M)

. dial(S)

7

or deniesmessagessenttoa
tset: Sets

clear: Clearsa

gettydefs: Speed and

sity: Setsthe options fora
terminal: Login

isatty: Findsthenameofa
line discipline. getty: Sets
enable: Turnson

disable: Turns off

inittab: Alternativelogin
ttys: Login

terminals.

tty: Getsthe

/Alternative method of turning
terminals: List of supported
for achild process to stopor
exit, _exit:

kill:

shutdown:

exit:

tic:

tput: Queriesthe

termcap descriptionsinto
tenminfo: Formatof compiled
terminfo file.

data base.

database.

interface.

test:

ed: Invokes the

ex: Invokes a

newform: Changestheformatofa
diff: Comparestwo

imprint: Prints

imprint: print

iprint: Converts

eqncheck: Formats mathematical
prep: Prepares

cwcheck: Preparesconstant-width
nroff: A

plock: Lock process,

intro: Tntroduces

troff: Typesets

binary searchtrees. tsearch,
tgetstr, tgoto, tputs: Performs/
Performs/ tgetent, tgetnum,
tgoto, tputs: Performs/ tgetent,
tgetent, tgetnum, tgetflag,
/tgetnum, tgetilag, tgetstr,

Executescommands at alater time. at, batch:

terminal: Login terminal. . , .
terminal. mesg:Permits . . ., .
terminalmodes.
terminal screen.
terminal settingsused by gelty .
terminal.
terminal.
terminal. ttyname,
terniinal type, modes, speed, and

. oo L

terminalsand lineprinters. . . .

terminalsand printers.
termninals file.
terminals file.
terminals:Listof supported . .

tenmninal’sname. - .

terminalsonandoff.
terminals.
terminate. wait: Waits . , . .

Terminatesaprocess.
Terminatesaprocess. « «

Terminates all processing.

terminfo descriptions. /convert
terminfofile.
terminfo: Format of complled

L L L N

e e o o o 4 =

Terminatesthecallingprocess. , .
Terminfocompiler.
terminfodatabase.

Permuted Index

. terminal(HW)

mesg(C)

. tset(C)
. clear(C)
. gettydefs(F)

stty(C)
terminal(HW)
ttyname(S)
getty(M)
enable(C)
disable(C)
inittab(F)
tiys(M)
terininals(M)
tty(C)
telinit(C)
terminals(M)
wait(S)
exit(S)
kill(C)
shutdown(C)
exit(DOS)
tic(C)
tput(C)

. capinfo(C)

+

terminf{o(F)

. terminfo(F)

terminfo: terminal capability

terminfo: terminal description . .
termnio: Generalterminal . , . .
test: Tests conditions.

Testsconditions. . « «
texteditor. N
texteditor. ,

text file.
text files.
text fileson an IMAGEN printer.
text filesonan IMAGEN printer.
textfilestoDVIformat.
text fornroff, troff. /checkeq, .

text{or statistical processing, . . .

textfor troff. cw, checkcw, . .
text{onnatter.

e e o o e & 4 »

text,ordatainmemory.

text processingcommands. . .
text.

DR

terminfo(M)
termin{o(S)
termio(M)
test(C)
test(C)

. ed(C)
. ex(C)

newf{orm(C)
diff(C)

. imprint(C)

imprint(CT)
iprint(C)

. eqn(CT)

prep(CT)
cw(CT)
nroff(CT)
plock(S)
Intro(CT)

. troff(CT)

tfind, tdelete, twalk: Manages , . .
. tenincap(S)

tgetent, tgetnum, tgetflag, . . .
tgetflag, tgetstr, tgoto, tputs: . .

tgetnum, tgetflag, tgetstr, ., . . .
tgetstr, tgoto, tputs: Performs/ . .

tgoto, tputs: Performs terminal/
tic: Terininfo compiler.

time, {time: Getstimeand date.

tsearch(S)

terimcap(S)
terincap(S)
termcap(S)
termcap(S)
tic(C)
at(C)

. time(S)

I-45

Permuted Index

clock: The system real-time
Setsthe system real-time
Setsup an environment atlogin
stime: Sets the
Executescommands at specified
Getsprocess and childprocess
fileaccessand modification
file.

foratemporaryfile.

/isascii, tolower, toupper,
conv, toupper, tolower,
characters. conv, toupper,
/isgraph, iscntr], isascii,
topology files.

files. top,

tsort: Sortsafile

top, top.next: TheMicnet
modificationtimes of afile.
/iscntrl, isascii, tolower,
Translates characters. conv,
database.

/tgetflag, tgetstr, tgoto,

ptrace:

disk for lawsand createsbad
conv, toupper, tolower, toascii:
tr:

setmode: Sets

ftw: Walks a file

twalk: Manages binary search
acos, atan, atan2: Performs
Preparesconstant-widthtextfor
mathematicaltextfornroff,

tbl: Formats tablesfornroffor
itroff:

file. channap: Generate
Manages binary search trees.

topologically.
mapchan: Format of
mapchan: Configure

monochrome, ega,. screen:
tty2[{a-h], tty2[A-H]/
tty2[A-H]: Interface/ ttyl[a-h]
tty2[A-H]/ ttyl[a-h],
Interface/ ttyl[a-h], ttyl[A-H]
to/ ttyl[a-h], ttyl[A-H],
ports. /, ttyl[A-H] , tty2[a-h]
/, ttyl[A-H], tty2[a-h],

of a terminal.

utmp file of the current user.

I-46

(timeofday)clock. clock(M)
(timeofday) clock. setclock: . . . setclock(M)
time. profile: profile(M)
time. . . .« v v s v v v o= - stime(S)
times.crom: . . . - . - cron(C)
times. times:, tlmes(S)
times. utime:Sets, . . utime(S)
wnpfile: Createsatemporary tmpfile(S)
tmpnam, tempnam: Createsaname . tmpnam(S)
toascii: Classifiesorconverts/ . , . ctype(S)
toascii: Translates characters. . . . conv(S)
tolower, toascii: Translates conv(S)
tolower, toupper, toascii:/ ctype(S)
top, top.next: TheMicnet top(M)
top.next: TheMicnettopology . . . top(M)
topologically, + « . . tsort(CP)
topologyfiles. top(M)
touch: Updatesaccessand touch(C)
toupper, toascii: Classifiesor/ . . . ctype(S)
toupper, tolower, toascii: conv(S)
tput: Queriestheterminfo tput(C)
tputs: Perfonnsterminal/ termcap(S)
tr: Translates characters. tr(C)
Tracesaprocess. . « « + « « « « » ptrace(S)
track table. /Scansfixed badtrk(M)
Translatescharacters. conv(S)
Translatescharacters. tr(C)
translaWonmode. setmode(DOS)
tree. . . o v v v o v e .. ftw(S)
trees. tsearch, tfind, tdelete, tsearch(S)
trigonometric functions. /asin, . . . trig(S)
troff. cw,checkcw,cwcheck: . . . cw(CT)
troff. /eqncheck: Formats eqn(CT)
troff. e e tbl(CT)
Trofftoan IMAGEN printer. . . . itroff(CT)
troff: Typesetstext. troff(CT)
troffwidthfilesandcatab . , ., . . charmap(CT)
tsearch, tfind, tdelete; twalk: tsearch(S)
tset: Setsterminalmodes. tset(C)
tsort: Sortsafile tsort(CP)
tty device mappingfiles. mapchan(F)
ttydevicemapping.« mapchan(M)
tty: Getsthe terminal’sname. . . . tty(C)

tty: Special terminal interface. . . . tty(M)
tty[01-n],color, + + « & =+ 4+ . . screen(HW)
ttyl[a-h], ttyl[A-II], . -« .« . . serial(HW)
ttyl[A-H], tty2la-h], serial(HW)
ttyl[A-H], tty2[a-h], . . - serial(HW)
tty2[a-h], tty2[A-H]: serial(HW)
tty2[a-h], tty2[A-H]: Interface . . . serial(HW)
tty2[A-H]: Interfaceto serial serial(HW)
tty2[A-H]: Interfacetoserial/ . . . setal(HW)
ttyname, isatty: Finds thename . . . ttyname(S)
ttys: Login terminalsfile. ttys(M)
ttyslot: Findstheslotinthe ttyslot(S)

/mkinittab: Alternative method of tumingterminals on and off.

printers. disable:

accton:

printers. enable:

trees. tsearch, tfind, tdelete,
dtype: Determines disk

file: Determinesfile

getty: Setsternninal

o types.
types: Primitive system data
mmt:

troff:

variable.

/localime, gmtime, asctime,

limits.
characters.
creation mask.
mask.
structure.

XENIXsystem.

current XENIX system.
file. unget:

an SCCSfile.
intoinputstream.

the consolebuffer.

getty process.

seed48, lcong48: Generates
a file.

mktemp: Makes a

units: Converts

reading or/ locking: Locks or
umount:

files. pack, pcat,
Performslinearsearchand
times of a file. touch:

of programs. make: Maintains,
S sync:
sync:

lowercase. strlwr: Converts
Convertslowercase charactersto
lint: ChecksClanguage
diction: Checkslanguage

du: Summarizes disk

explain: Correctslanguage
checkmm, mmcheck: Checks
clock: Reports CPU time

user. su: Makesthe

rmuser: Removes a

id: Prints

setuid, setgid: Sets
Getstheloginnameofthe

Turns offterminals and

Turnsonterminalsandline . .
twalk: Manages binary search

type.
type.

type, modes, speed, and line/ . .

types: Primitive systemdata . .
types.
Typesets documents.
Typesets text.
TZ: Time zone environment

tzset: Converts date and time to/
uadmin: administrative control.
ulimit: Gets and setsuser
ultoa:Convertsnumbersto . .
umask: Setsand getsfile
umask: Setsfile-creation mode -
umount: Dismounts a file
umount: Unmounts a file system.

uname:Getsnameofcurrent . . .
uname:Printsthename ofthe . .

Undoesa previousget ofan SCCS

unget: Undoes a previousgetof . .

ungetc: Pushescharacterback

ungetch: Returnsa characterto . .
ungetty: Suspends/restartsa . . .

uniformly distributed. srand48,

uniq: Reportsrepeatedlinesin . .

unique filename.

units.
unlink: Removes directory entry.
unlocks a file region for
Unmounts a file system.
unpack: Compresses and expands
update. Isearch, Hind:
Updatesaccessand modification
updates, and regenerates groups

Updatesthe super-block.

o o o

Updatesthesuper-block. . . - -

uppercase characters to
uppercase. strupr:
usage and syntax.

usage.

USAGE. + v v x ok s e oe e e
USAGE. 4 v = 4 4 4 e s oa e a

usage ofMMmacros.
used.

userasuper-user oranother
. rmuser(C)
. id(C)

user accountfromthe system. .
user and group IDsand names. .
userandgroupIDs.
user. cuserid:

------- e o o = 4+ r

units: Convertsunits.

Permuted Index

. telinit(C)
. disable(C)
Turns on accounting. , . .
. enable(C)
. tsearch(S)
. dtype(C)

- file(C)

. getty(M)

- types(F)

. types(F)

. mmt(CT})
. troff(CT)

. tz(M)

. ctime(S)

- uadmin(S)
- ulimit(S)

. ultoa(DOS)

accton(C)

umask(S)

- umask(C)

umount(C)

- umount(S)
. uname(S)

uname(C)
unget(CP)
unget(CP)
ungetc(S)

. ungetch(DOS)
- ungetty(M)

. . drand48(S)

. uniq(C)

mktemp(S)

- units(C)

units(C)

. unlink(S)

. locking(S)
. . umount(S)
. pack(C)

« Isearch(S)

. . touch(C)

. . make(CP)

. sync(C)

. sync(S)

- strlwr(DOS)
. strupr(DOS)
. 1int(CP)

- diction(CT)
+ du(C)

. explain(CT)

checkmm(CT)

. clock(S)

su(C)

setuid(S)

. cuserid(S)

1-47

Permuted Index

/getgid, getegid: Getsreal
environ: The
getpw: Gets password foragiven
newgrp: Logs
ulimit: Getsand sets
logname: Findsloginname of
group/ /Getsreal user, effective
the user a super-useroranother
in the utmp file of the current
write: Writes to another
finger: Findsinformation about
wall: Writestoall
statistics.
driven system administration
modification times.
utmp, wtmp: Formats of
endutent,utmpname: Accesses
ttyslot: Findstheslotin the
wtmp entries.
entry. endutent,
forwork.
directory.
Administers
uusub: Monitor
uuclean: Clean-up the
control. uustat:
files.
file copy. uuto,
job control.

XENIX-to- XENIXfilecopy.
XENIX.

val:

assert: Helps verify

abs: Returns an integer absolute
Returmnswith a nonzero exit
ceil, fmod: Performs absolute
getenv: Gets

labs: Returnsthe absolute
putenv: Changes or adds

true: Returnswith a zero exit

varargs:
TZ:Timezoneenvironment
Gets option letterfrom argument
displayeditor. vi, view,

assert: Helps

red: Invokesarestricted

scesdiff: Compares two
formatted output of a/ vprintf,
screen-oriented display editor.
stty: Setsthe optionsforthe
screen-oriented display/ vi,
vmstat. Reports

1-48

user, effectiveuser,real/
userenvironment.
userID. PR T
userintoanewgroup. . - . 4 . . .
userlimits.
USET. o o o o s o o v n n = ..
user, realgroup, andeffective . . .
user. suz:Makes . . . -
user. ttyslot: Findstheslot
USEI. 2 o = o = o o « o = & ..
USEIS. o o o o o o o o = 4 & + 4 -
USEIS. o o o o o & &« e i e e
ustat: Getsfilesystem, .
utility. sysadmsh:Menu
utime: Sets fileaccessand
utmpand wtmpentries.
utmpfileentry.
utmpfileofthecurrentuser. . : . .
utmp, wtmp: Formatsofutmp and -
utmpname:Accessesutmpfile . .
uucico:Scanthespool directory

unclean: Clean-uptheuucp spool

UUCPconfcolfiles. uuinstall: , .

getuid(S)

. environ(M)

getpw(S)
newgrp(C)
ulimit(S)
logname(S)
getuid(S)
su(C)
ttyslot(S)

. write(C)

finger(C)
wall(C)
ustat(S)
sysadmsh(C)
utime(S)
utmp(M)
getut(S)
ttyslot(S)
utmp(M)

. getut(S)

. uucico(C)
. uuclean(C)
. uuinstall(C)

uucpnetwork. - uusub(C)
uucpspooldirectory., - uuclean(C)
uucp status inquiryandjob uustat(C)
uuinstall: AdministersUUCPcontrol uuinstall(C)
uupick: PublicXENIX-to-XENIX . uuto(C)
uustat:uucpstatusinquiryand . . - uustat(C)
uusub: Monitoruucpnetwork. . . . uusub(C)
uuto,uupick:Public uuto(C)
uux: Executescommandonremote . uux(C)
val: Validatesan SCCSfile. val(CP)
ValidatesanSCCSfile. val(CP)
validityof program. . . ., assert(S)
value. e e e e e e e abs(S)
value. false:+« ., .. . false(C)
value, floor, ceilingand/ /fabs, . . . floor(S)
valueforenvironmentname. . . - . getenv(S)
valueofalonginteger. labs(DOS)
valuetoenvironment. putenv(S)
value. e e true(C)
varargs: variableargument list. . . . varargs(S)
variable argumentlist. varargs(S)
variable. tz(M)
vector. getopt: - . . getopt(S)
vedit: Invokes a screen-oriented . vi(C)
verifyvalidityofprogram. . . . - . assert(S)
versionof. «- .. 4. red(C)
versionsofanSCCSfile. scesdiff(CP)
vfprintf, vsprintf: Prints . - - - . . vprintf(S)
vi, view, vedit: Invokesa Vi(C)
videomonitor. - - stty(HW)
view, vedit: Invokesa . « « « + . . vi(C)
virtual memory statistics. + « 4+ + . vmstat(C)

statistics.

file system: Forinat of a system
Prints formatted output of a/
output of a/ vprint{, viprintf{,
background processes.

to stop orterminate.

sigsem: Signals aprocess

stop orterminate. wait:
checksaccessto aresource/
ftw:

characters.

whodo: Determineswho is doing
what.

charnnap: Generate troff
hyphen: Finds hyphenated
Scanthe spool directoryfor
cd: Changes

chdir: Changesthe
Getthepathname of current
pwd: Prints

fputc, fputchar:

outp:

console. putch:

putpwent:

write:

wall:

write:

a fileregion forreadingor
open: Opensfileforreadingor
afilefor shared readingand
utmp, wtmp: Fonnats ofutmp and
entries. utmp,

commands.

Assembler. asx:

masm: Invokes the

boot:

intro: Introduces

commands. intro: Introduces
netutil: Administers the
config: Configuresa

cu: Callsanother

Executes commands on a remote
Printsthe name of the current
uname: Getsname of current
rcp: Copies files across

dosld:

uux: Executescommand onremote
uuto, uupick: Public
entriesfromfiles.

programs.

programs.

functions. bessel, j0, j1, jn,

vmstat: R eportsvirtual memory

Permuted Index

. vmstat(C)

volume. filesystem(F)
vprintf, viprintf, vsprintf: vprint{(S)
vsprintf: Printsformatted vprint{(S)
wait: Awaits completion of . . wait(C)

wait: Waits fora child process

- . . wait(S)

waitingonasemaphore. sigsem(S)
Waitsforachildprocessto wait(S)
waitsem, nbwaitsem: Awaitsand . . waitsem(S)
Walks afiletree. Ttw(S)
wall: Writesto allusers. wall(C)

wec: Countslines, wordsand ., . . . we(C)
what. . & . v v v v 0 i a e whodo(C)
whodo: Determineswho isdoing . . whodo(C)
widthfilesand catabfile. charinap(CT)
words.x s + « . - hyphen(CT)
WOrk. UUCICO: =« v 4 o & w4 o . uucico(C)
workingdirectory. cd(C)
workingdirectory, chdir(S)
workingdirectory. getcwd: getcwd(S)
workingdirectoryname. pwd(C)
Writea charactertoastream. . . . fputc(DOS)
write: Writestoafile. write(S)
write: Writesto anotheruser. write(C)
Writesabyteto an outputport. . . . outp(DOS)
Writesacharactertothe putch(DOS)
Writes apassword fileentry. pulpwent(S)
Writestoafile. write(S)
Writesto allusers. . = » + « « « =« wall(C)
Writes to anotheruser. write(C)
writing. /Locks orunlocks locking(S)
writing. 0. . 0. . open(S)
writing. sopen:Opens sopen(DOS)
wtmpentries. v . . 0. . s utmp(M)
wtmp: Formats ofutmp andwtmp . utmp(M)
xargs: Constructs and executes . . . xargs(C)
XENIX8086/186/286/386 asx(CP)
XENIXassembler. . « + « v « » masm(CP)
XENIXbootprogram. . . . « . boot(HW)
XENIXcommands. .+ .+ » » + » . Intro(C)
XENIXDevelopmentSystem . . . Intro(CP)
XENIXnetwork. + « v v » = « » 4 netutil(C)
XENIXSyStem. « = = v = » = » & config(C)
XENIXsystem. + « » « + « « « - cu(C)
XENIX system. remote: . - . - - remote(C)
XENIX system. uname: « . « = « uname(C)
XENIXsystem. . + = « = + « = -« uname(S)
XENIXsystems. + » +« « + « «» « . rcp(C)
XENIXto MS-DOS crosslinker. . dosld(CP)
XENIX. e e e o« uux(C)
XENIX-to-XENIXfilecopy. . . uuto(C)
xlist, fxlist: Getsnamelist - xlist(S)

xref: Cross-referencesC xref(CP)
xstr: Extracts strings fromC xstr(CP)
¥0, y1, yn: PerformsBessel bessel(S)

1-49

Permuted Index

bessel, jO, j1, jn, y0, y1,yn:PerformsBessel/ bessel(S)
compiler-compiler. yacc:Invokesa yacc(CP)
yes: Prints stringrepeatedly. yes(C)
bessel, j0, j1, jn, y0,y1, yn: PerformsBesselfuncions. . . . bessel(S)
true: Returnswitha zeroexitvalue. true(C)
TZ:Time zoneenvironmentvariable. tz(M)

1-50

()

04-01-87
SCO-512-210-034

