
) 

XENIX System V Text Proce s s ing 

System Release Notes 

1.  Preface 1 

2. SoftwareNotes 1 

2.1 nroffDrivingTables 1 

2.2 style(CT) 2 

3. Installation Procedure 2 

3.1 Packages In This Set 3 

XG86/286-1-27-86-2.1 · •· The Santa Cruz Operation 





':. ------._\ \ ) SCO XENIX® System V 

Text Processing System 

Release Notes 
(':, Text Processing Guide 

The Santa Cruz Operation, Inc. 



Information in this document is subject to change without notice and does 
not represent a commitment on the part of The Santa Cruz Operation, Inc. 
nor Microsoft Corporation. The software descnOed in this document is 
furnished under a license agreement or nondisclosure agreement. The 
software may be used or copied only in accordance with the terms of the 
agreement. It is against the law to copy this software on magnetic tape, disk, 
or any other medium for any purpose other than the purchaser's personal 
use. 

Portions© 1980, 1981, 1982, 1983,1984, 1985Microsoft Corporation. 
All rights reserved. 
Portions© 1983, 1984,1985,1986The SantaCruz Operation, Inc. 
All rights reserved. 

This document was typeset with an IMAGEN® 8/300 Laser Printer. 
XENIXis a trademark of Microsoft Corporation. 
IMAGEN is a registered trademark of IMAGEN Corporation. 

DocumentNumber:XG-12-18-85-2.1/1.0 



() ) 

Release Notes 
Release 2.1 

XENIX®-86 System V for personalcomputers 
XENIX-286 System V for personal computers 

Text Processing System 
January 27, 1986 

1. Preface 

These notes pertain to the XENIX-86 and XENIX-286 System V 
Release 2.1 Text Processing System for personal computers. They 
contain notes on the software and documentation and the procedure 
for installing the software. 

We are always pleased to hear of user's experience with our product, 
and recommendations of how it canoe made even inore useful. A11 · 
written suggestions are given serious consideration. 

0 ) 2. Software Notes 

, , \ _} j v 

2.1 nrolf Driving Tables 

Under this release, you can create additional driving tables to use 
nrolf( CT) with additional devices (printers or terminals). Refer to 
the term(CT) and term(F) manual pages for information on nroff 
driving tables. You must have the XENIX Development System 
instaJJed to compile new driving tables. 

If you create a driving table for another printer, send it to us. User 
generated driving tables will be considered for inclusion in future 
releases. 

XG86/286-1-27-86-2.1 - 1 - The Santa Cruz Operation 





XENIX® System V 

Text Processing System 

r-, Text Processing Guide 
"-_) 

/ " 
\ ) '-- , SC0-516-210-Qll 



Information in this document is subject to change without notice and does not represent a 
commitment on the part of The Santa Cruz Operation, Inc. nor Microsoft Corporation. 
The software described in this document is furnished under a license agreement or ! 
nondisclosure agreement. The software may be used or copied only in accordance with \...... 
the terms of the agreement. It is against the law to copy this software on magnetic tape, 
disk, or any other medium for any purpose other than the purchaser's personal use. 

Portions © 1980, 1981, 1982, 1983, 1984, 1985 Microsoft Corporation. 
All rights reserved. 
Portions© 1983, 1984,1985,1986 The Santa Cruz Operation, Inc. 
All rights reserved. 

Thisdocumentwastypeset with aniMAGEN® 8/300LaserPrinter. 

Microsoft, MS-DOS, and XEN1X are registered trademarks of Microsoft Corporation . .  
IMAGEN is a registered trademark ofiMA GEN Corporation. 

SCO DoeumentNumber: XG-12-18-85-2.1/1.0 



( ) 
""-- -

0 

Contents 

1 Text Processing Overview 

1.1 Introduction 1-1 
1.2 BeforeYouBegin 1-2 
1.3 ReadingThisManual 1-3 
1.4 Basic Concepts 1-4 
1.5 Formatting Documents 1-7 
1.6 A SampleProject 1-9 
1.7 ManagingWritingProjects 1-11 
1.8 Summary 1-15 

2 ToolsForWritingandEditing 

Introduction 2-1 2.1 
2.2 
2.3 
2.4 
2.5 

XENIX Commands for Text Processing 2-2 
WritingTools 2-7 
Using Spell 2-8 
Using Style and Diction 2-9 

3 Using the MM Macros 

3.1 GettingStartedwithMM 3-1 
3.2 Basic Formatting Macros 3-3 
3.3 UsingNrofffrroffCommands 3-8 
3.4 CheckingMMinputwith mmcheck 3-8 

4 MM Reference 

4.1 Introduction 4-1 
4.2 InvokingtheMacros 4-3 
4.3 Formatting Concepts 4-7 
4.4 Paragraphs and Headings 4-10 
4.5 Lists 4-17 
4.6 Displays 4-25 
4. 7 Footnotes 4-31 
4.8 Page Headers and Footers 4-34 
4.9 Table of Contents 4-38 
4.10 References 4-39 

- i -



4.11 
4.12 
4.13 
4.14 

Miscellaneous Features 4-40 
Memorandum and Released Paper Sty les 4-45 
ReservedNames 4-53 
Errors, Strings, Macros, and Number Registers 4-55 

5 Using Nroff/Troff 

In traduction 5-1 
Inserting Commands 5-2 

5.1 
5.2 
5.3 
5.4 
5.5 
5.6 
5.7 
5.8 
5.9 
5.10 
5.11 
5.12 
5.13 
5.14 
5.15 

Point Sizes and Line Spacing 5-2 
Fonts and Special Characters 5-4 
Indents and Line Lengths 5-6 
Tabs 5-7 
Drawing Lines and Characters 5-8 
Strings 5-11 
Macros 5-11 
Titles, Pages and Numbering 5-13 
Number Registers and Arithmetic 5-15 
Macros withArguments 5-16 
Conditionals 5-18 
Environments 5-19 
Diversions 5-20 

6 Nroff/Troff Reference 

6.1 Introduction 6-1 
6.2 Basic Formatting Requests 6-4 
6.3 Character Translations, Overstrike, and Local Motions 6-13 
6.4 ProcessingControlFacilities 6-17 
6.5 Output and Error Messages 6-25 
6.6 Summary of Escape Sequences and Number Registers 6-25 

7 Fonnatting Tables 

7.1 Introduction 7-1 
7.2 Input Format 7-2 
7.3 InvokingTbl 7-9 
7.4 Examples 7-11 
7.5 SummaryoftblCommands 7-18 

-ii-

/ '"" 



I_ I I 

() 

(J 

8 Fonnatting Mathematics 

8.1 Introduction 8-1 
8.2 Displayed Equations 8-2 
8.3 Basic Mathematical Constructions 8-3 
8.4 Complex Mathematical Constructions 8-6 
8.5 Layout and Design of Mathematical Text 8-10 
8.6 In-line Equations 8-14 
8. 7 Definitions 8-15 
8.8 Jnvoking eqn 8-16 
8.9 Sample Equation 8-16 
8.10 Error Messages 8-17 
8.11 SummaryofKeywords audPrecedences 8-18 

AppendixA · Editing-With Sed and Awk-

A.1 Introduction A-1 
A.2 EditingWith sed A-1 
A.3 PattemMatchingWithawk 

AppendixB Error Messages 

B.1 Introduction B-1 

A-12 

AppendixC mm Macros, Strings, and Number Registers 

C.1 Introduction C-1 
C.2 SummaryofmmMacros C-1 

-iii-





() 

Chapter 1 
Text Proces sing Overview 

1.1 Introduction 1 

1.2 Before You Begin 2 

1.3 Reading This Manual 3 

1.4 Basic Concepts 4 
1.4.1 WritingTasks 4 
1.4.2 Anatomy ofaDocument 4 
1.4.3 Formatting Characteristics 5 
1:4.4 AninventmyofTools ·· 6 · 

1.5 Formatting Documents 7 
1.5.1 ThemmMacros 7 
1.5.2 SupportingTools 8 
1.5.3 OrderofinvokingPrograms 8 

1.6 A Sample Project 9 
1.6.1 Entering Text and Formatting Commands 9 
1.6.2 Formatting Text 10 
1.6.3 PrintingtheDocument 11 

1.7 Managing Writing Projects 11 
1.7.1 TheLifeCycle ofaDocnment 12 
1.7.2 OrganizingYourProject 12 
1. 7.3 Shortcuts: Boilerplates and Cut and Paste 14 

1.8 Summary 15 





c� 

C_j 

Text Processing Overview 

1.1 Introduction 

The XENIX Text Processing System is a collection of powerful tools for 
enhancing writing productivity and making the process of document 
preparation more efficient. To create documents with the XENIX system, 
you will be using special XENIX text processing programs, including text 
editors and text formatters. You will also be relying on XENIX.system 
features and utilities with which you may already be familiar. Whether you 
have used other text processing programs or not, this manual provides you 
with a practical orientation toward text processing and describes the XENIX 
tools in detail, along with examples that illustrate their applications to your 
writing tasks. Where possible, strategies are offered for using the XENIX 
system to best advantage in your own environment. 

This manual emphasizes the interrelationship of tools and techniques into a 
"text processing system". Understanding the relationship between these 
programs discussed here is as important as learning to use each individual 
program. Think oftheXENIX.system as a "writing environment". How you 
organize this environment is-up to you,_ Once you learn to use your XENIX­
tools selectively, and make the right decisions in planning your writing 
projects before you begin them, the XENJX system is ultimately more 
powerful and :flexible than any of the "word processing packages" with 
whichyoumaybe familiar. 

This introduction provides you with an overview of text processing with the 
xENIX.System, including: 

• The text processing concepts and terms you will need to 
understand 

• The editing and formatting tools you will be using 

• The steps in the process of creating a :finished document 

• The strategies for managing writing projects 

As you read the XENIX Text Processing Guide remember that the XENIX 
system has been evolving over a number of years and that it offers an 
enormous range of programs and utilities. Many of the tools introduced 
here were not originally designed for text processing-they are general­
purpose utilities upon which allXENIXusers depend heavily. Programmers, 
for example, use the same text editors and file comparison utilities discussed 
here to write and revise programs. Those programs intended solely for text 
processing applications, including the formatters and style analysis 
programs, have developed independently of each other. You will often find 
that their capabilities overlap. A large part of learning to use your XENIX 
system successfully is deciding how to make the various programs and 
utilities work together. 

Do not expect to sit down and learn the XENIX Text Processing System in a 
single afternoon. This manual is designed to help you approach a wide range 

1-1 



XENIX Text Processing 

of editing and formatting tools gradually. There are many programs 
descnbed here for which you may not have an immediate application, and 
some you may never need at all. You need not learn all the material 
introduced here to produce professional-quality manuscripts. Choose the 
tools that will work best for your projects. 

1.2 Before You Begiu 

Before you can begin to use your XENIX system effectively as a text 
processing environment, you should already be familiar with the material 
covered in theXENIX User's Guide, particularly: 

• The most common XENIX commands 

• The XENIX hierarchical file structure 

• The XENIX shell programming language 

• At least oneof theXENIX.texteditors 

Equally important, however, is making use of the power of XENIX as an 
operating system by using its features to your advantage. In particular, as 
you begin working with XENIX Text Processing, consider how your work 
can be made easier by utilizing the XENIX hierarchical file structure to 
organize files efficiently. Make use of theXENIX. shell to "pipe" one process ·.'-...... 
to another and run several processes concurrently. Use the XENIX shell 
programming language to create "scripts" for automating your text 
processing work. Develop strategies for managing your writing projects 
beyond merely learning a collection of commands. 

Most importantly, before you begin working with the XENIX Text 
Processing System, learn one of the XENIX text editors well enough to feel 
comfortable entering and revising document text. 

Because there is So much to learn about text processing with the XENIX 
system, the best approach is to read through this volume first and decide 
which editors, utilities, and formatters best suit your needs. Then learn 
selectively, but thoroughly, those tools which are most appropriate. As you 
becom.e more experienced, you will develop a feel for which functions work 
best in which situations, and you will find new ways to make the writing 
process more efficient. You will be continually amazed at how powerful the 
editors and related tools can be. 

1-2 



() 

r 
I 

Text Processing Overview 

1.3 Reading This Manual 

This manual contains the following chapters: 

1. Text Processing Overview 
The chapter you are now reading provides you with a general 
overview ofXENIX text processing: how it works and what kinds 
of tasks it can do. The XENIX tools and how they fit into each 
phase of document production are described. 

2. Writing and Editing Tools 
This chapter introduces several XENIX programs which can help 
you search for recurring patterns, compare files, and make 
global revisions to large files and groups of files. It also 
introduces three ::;pecial writing tools for leGating spelling errors 
and awkward diction, as well as assessing the readability of a 
document. 

3. Using themiDMacros 
This chapter introduces mm, a package of document formatting 
requests which simplifies the task of formatting 4ocuments. 

4. mm Reference 
This chapter is a comprehensive guide to mm. 

5. Using Nroff/Trolf 
This chapter introduces the two XENIX. text formatters, nroff 
and froff. 

6. NroffffroffReference 
This chapter is a comprehensive guide. to the nroff and troff 
formatting programs. 

7. Formatting Tables 
This chapter describes the specialized formatter, tbl, which 
produces effective tables in documents. 

8. Formatting Mathematical Equations 
This chapter describes the eqn program which formats 
mathematical symbols and equations. 

Appendix A: Editi!lg With sed and awk 
This appendix describes how to use the two batch editing 
programs sed and awk. 

AppendixB: Error Messages 
This appendix describes error messages for the mm macro set as 
well as nroff and troff in general. 

1-3 



XENIX Text Processing 

Appendix C: mm Macros, Strings, and Number Registers 
This appendix lists, briefly descnbes, and gives the usage for the 
predefined mm macros, strings and number registers. 

1.4 Basic C oncepts 

This section reviews some general text processing terms and concepts, 
including the: 

Types of writing tasks which can be done with XENIX text 
processing 

Parts of a document 

Design characteristics of a formatted document 

Types ofXENIX.tools which you will be using 

1.4.1 Writing Tasks 

You can write, edit, and typeset any manuscript on the XENIX system­
whether a memo, business letter, novel, academic dissertation, feature 
article or manual. In some respects this manual relies more heavily on 
examples relevant to technical documentation, because these projects 
require the application of the greatest number ofXENIX tools, and demand 
the most careful planning and strategy in their construction. 

1.4.2 Anatomy of a Document 

To fully determine the scope of your formatting needs, let's look at the parts 
of a typical document. Unless you are using your XENIX text processing 
system to write memos and letters, you may have some or all of the following 
in your documents: 

Front Matter 

Title page 

Copyright notice or document number 

Table of contents 

List of tables or illustrations 

Foreword 

14 



r' \__ i 

() 

Text Processing Ove"iew 

Preface 

Acknowledgements 

Body ofText 

Chapters or sections 

Figures and display 

Tables and equations 

Footnotes 

Running headers and footers 

Back Matter 

Appendices 

Notes 

Glossary 

Bibliography 

Index 

Your XENIX tools will help you automatically generate many parts of your 
document. For example, you will be able to create lists of figures and tables, 
and a table of contents as part of the formatting process. You can create and 
store in advance a standard copyright notice page (often called a 
"boilerplate") and change only that information specific to the document. 

Even in those sections of your document that must be written from scratch 
you can do much to standardize the "look" of a preface page, the pagination 
of an appendix, or the section numbering and format of a chapter. Once you 
have developed specifications, you can achieve consistency in the 
production of :;t long a_nd complex document, and even produce many 
documents with the same specifications, without going ·through the 
definition process again. A further advantage is that you can change your 
specifications at any time, often without re-editing the text and formatting 
commands themselves. Then, you need only reformat your document and 
print it. 

1�4.3 Formatting Characteristics 

There are many characteristics of your finished text that can be controlled 
with XENIX formatting tools. Keep in mind, however, that the appearance 
of your finished document depends largely on the capabilities of your output 

1-5 



XENIX Text Processing 

device. To determine the format of your text you will insert commands in 
your text file as you write and edit. These commands will be identical, 
whether you are planning to produce your document on a lineprinter using 
the XENIX formatter nroff', or whether you are sending your document 
directly to a phototypesetter using trotf. Because a lineprinter cannot do 
variable spacing, or change the point size or font of your text, nroJf will 
ignore commands to change point size, round the parameters of spacing 
commands to the nearest line unit, and replace italics with underlining. 

You will also notice qualitative differences in the output. For example, the 
justification of text-the spacing of text across the line to preserve a margin-is 
conside:fably less subtle in lineprinter output. Some of the characteristics 
you can control with the nroff/troffprograms are; 

Text :filling, centering, and justification 

Multicolumn output, margin, and gutter width 

Vertical spacing, line length, page length, and indentation 

Font type and point size 

Style of page headers and footers 

Page and section numbering 

Layout of mathematicalequati_ons and tables 

1.4.4 An Inventory of Tools 

When you approach any writing project, you should examine the whole 
range ofXENIX tools to find those that will work best, just as you might look 
inside a toolbox. Although you can often do a job in several ways, there is 
frequently a tool, or a combination of tools, designed especially for that job. 

Feel free to experiment in using the various editors, utilities, and formatters. 
If you are cautious about making copies of your files and backing up your 
XENIX system regularly, you can do little irreversible damage. As you work, 
you will gain more confidence and find new solutions. 

While it is a good idea to learn to use a few oftheXENIXtools skillfully, you 
should also work consciously to learn new tools and methods, rather than 
depending on a few procedures which you feel you know well. Some XENIX 
tools, like the screen editor vi, offer many more commands and functions 
than you can comfortably learn at one sitting. You may find yourself relying 

' 
\<:._ 

on a limited number of commands quite heavily. To prevent this, '"--. 
periodically review the documentation and force yourself to try new 
commands. 

1-6 



(\ . ) 

(\ 

CJ 

Text Processing Overview 

In this manual we will be looking atXENIX "tools" which fall into a few basic 
categories: 

System features 

Utilities 

Aspects of the XENJX operating system that can be used to 
enhance the text processing environment, such as multitasking 
and the hierarchical file structure. 

These include the XENIX text editors (such as vi) and other 
utilities that are used for both software development and text 
processing (such as sort, dlff, grep, or awk). 

Text Processing Tools 

These include specialized programs designed solely for text 
formatting tasks, including mm, eqn, and tbl and the formatters 
D.rOffarid-ttoff. Also-m.cluded are-the special writing tools; spell, 
style, and diction, which help you edit what you write. 

1.5 Formatting Documents 

In this section you will be introduced to nroff and troff, the two XENIX 
formatting programs. By inserting a series of commands in your text files you 
will be able to produce text with justified right margins, automatic page 
numbering and titling, automatic hyphenation, and many Other special 
features. Nroif (pronounced "en-roff") is designed to produce output on 
terminals and lineprinters. Trolf (pronounced "tee-roff") uses identical 
commands to drive a phototypesetter. The two programs are completely 
compatible, but because of the limitations of ordinary lineprinters, troff 
output can be made considerably more sophisticated. With troff, for 
example, you can specify italic font, variable spacing, and point size. If you 
format the text using the same macros with nroif, italicized text will be 
underlined, the spacing will be approximated, and the text will be printed in 
whatever size type the lineprinter offers. 

1.5.1 The mm Macros 

To use nroif and tJ::"Qfl', you must i.p.sert a fairly complicated series of 
commands directly into your text. These "formatting commands" specify in 
detail how the final output will look. Because nroif and troll' are relatively 
hard to learn to use effectively, XENIX also offers a package of canned 
formatting requests called the mm mac;:ros. With mm you can specify the 
style of paragraphs, titles, footnotes, multicolumn output, lists and so on, 
with less effort and without learning nrofl' and troff themselves. The mm 
program reads the commands from the text, and translates them into 

1-7 



XENIX Text Processing 

nrofUtroffspecifications. mm is described in detail in the next two chapters. 
It is recommended that you learn mm first, and use it for most of your 
formatting needs. If you need to fine.-tune your output, you can add 
nro:IUtroffrequests to the text as necessary. 

To produce a document with mm, use the command: 

nroff -mm filename 

to view the output on your terminal screen. To store the output of nroffin a 
file, use the command line: 

nroff -mm filename>outfile 

where outfile is the name of the file you wish to designate for the stored 
output. It is suggested that you give consistent extensions to your input and 
output filenames. You might use ".s" for "source" as the extension for all 
input filenames, and ".mm" as the extension for the names of files which are 
the output ofmm. For example, 

nroff -m.m l.intro.s>intro.mm& 

Note that the ampersand is used to process the file in the background. 

1.5.2 Supporting Tools 

In addition to the nroff and troff formatting programs, and the mm 
formatting package, there are also formatting programs to meet some 
specialized needs. The eqn program, for example, formats complicated 
mathematical symbols and equations. A version of eqn called neqn outputs 
the same mathematical text for the more limited capabilities of lineprinter. 
eqn is a preprocessor. That is, you run eqn first, before nroJI'/troff, to 
translate the commands of the eqn "language" into ordinary nroft'/troff 
requests. The eqn commands resemble English words (e.g., over, lineup, 
bold, union), and the format is specified much as you might try to descnl>e 
an equation in conversation. It is recommended that you delay learning 
about eqn in detail until you actually need to use it. 

· 

The tbl program is also a preprocessor: tbl commands are translated into 
nroffltrotf commands to prepare complex tables. Tbl gives a you a high 
degree of control over material which must appear in tabular form, by doing 
all the computations necessary to align complicated columns with elements 
of varying widths. Like eqn, it requires that you learn another group of 
commands, and process your files through another program before using 
nro:IUtrotr. 

1.5.3 Order of Invoking Programs 

After you have inserted all your formatting commands into the text, you are 
ready to process your files, using the XENIX formatting programs. Please 
note that it is extremely important to use the various macro packag� and 
formatters in the correct order. However, you may invoke all these 

1·8 



(i 

c\ 

Cl 

Text Processing Overview 

programs with a single command line, using the XENIX pipe facility. As 
noted above, you can invoke the mm macro package along with nrofUtroff 
using a command such as: 

nro:ff -mm intro.s>intro.mm 

However, if you are using several specialized formatters along with 
nrofl'/troff, the command becomes more complex. You must i nvoke eqn 
before-nroffltroff-and mm, in order to--tran!)late the-eqn commands--into 
nroffltroft'specifications before the :files are formatted, as in the following: 

neqn intro.s I nroff -mm>intro.mm 

If you are using both eqn and tbl, the tbl program should be called first: 

tbl intro.s I neqnlnroff -mm>intro.mm 

If you are formatting multicolumn material or tables with nroffyou must use 
the col (for ucolumn") program. Col processes your text into the necessary 
columns, after formatting, as in: 

nro:ff -rom intro.s I col>intro.mm 

1.6 A Sample Project 

The preparation of every document has several phases: entering and editing 
text, checking your draft for spelling errors and style quality, formatting the 
finished version, and printing it on a printer or typesetter. To illustrate the 
process of producing a finished document with the XENIX Text Processing 
System, let's look at the steps for creating a simple document one by one. 

1.6.1 Entering Text and Formatting Commands 

First you must write the text of the document. To do this, you will invoke 
one of the XENIXtext editors and enter the text on the screen. For example, 
to produce a memo informing the members of your department that you will 
be holding a seminar on theXENIXText Processing System, you might begin 
by entering the following command line: 

vi memo.s 

You will probably use your editor's special functions to correct errors and 
make revisions as you write, such as deleting words or lines, globally 
substituting one word for another, or movingwhole paragraphs and sections 
around in the document. 

If you have used a dedicated word processing system or a microcomputer 
word processing program before, note that the XENIX Text Processing 
System works somewhat differently. Formatting of text takes place in a 
"batch" rather than an "interactive" mode. That is, instead of using special 
function keys to format your text on the screen as you work, you will be 
interspersing commands with ordinary text in your file. Most of these are 
two-letter commands preceded by a dot(.), that appear at the beginning of 

1-9 



XENIX Text Processing 

text lines. These will be lowercase letters, if you are using either of the 
XENIXtext formatters, nroff, ortroff. 

In addition to these two programs, there is another program called mm 
which we recommend you use, especially if you are new to text processing. 
mm commands are called "macros". These macros, which are generally � 
two upper or lowercase letters preceded by a dot (.) , replace whole 
sequences ofnroifand troffcommands, and allow you to reduce the number 
and complexity of the commands necessary to format a document. You can 
use the mm macros wherever possible and add extra nroff or troff 
commands, as necessary, fortine-tuning the format of your document. 

Let's look at the beginning of a :file called memo.s: 

.ce 

.BMEMO 

.sp 2 

.P 
A seminar· has been scheduled for Thursday, September 15, 
to introduce users to the XENIX Text Processing System. 
It is is intended for all department members 
planning to use XENIX for writing or preparing documentation . 
. P 
The seminar will include the following topics: 
.AL 1 
.LI 
Reviewing the XENIX file structure and basic commands . 
. LI 
Using the vi text editor . 
. LI 
Formatting documents with mm . 
. LE 
.P 
The seminar will begin at 9 A.M. and will last approximately 
two hours ... 

In the input file above, each paragraph of text begins with the mm paragraph 
macro, .P. In the final document, the word "MEMO" will appear centered 
on the page and in boldface. The nroff/troff command .ce means "center" 
and the mm macro .B means "boldface". The nroff/troff command .sp 2 
below :MEMO means "2"spaces. 

Note the three mm macros .AL, .LI, and .LE. These will tum the text 
following the words "following topics" into an automatically numbered list. 

1.6.2 Formatting Text 

Now, let's format the finished memo into the file called memo.mm using the 
following command line: 

1-10 



1 
I 
I 

0 

Text Processing Overview 

nroff -rom memo.s>memo.mm& 

This command invokes the nroffformatter using the mm macro package to 
format the file memo.s. When formatted, the memo will be stored in an 
output file called memo.mm . If you do not specify an output file, the 
formatted text will simply roll across your screen and be lost. Note that the 
command line ends with an ampersand (&), an instruction to put the 
formatting of this file "in the background". It is generally a good idea to put 
formatting jobs in the background because they will often take several 
minutes, especiallyif thefile is long and the formatting relatively complex. If 
you put the formatting job in the background, your terminal will remain free 
for you to do other work on the system. 

1.6.3 Printing the Document 

When you arereadyto print the memo, use the command 

lp text.memo.mm 

The-fhiishe"d riieni01o6Ks-like this: 

MEMO 

A seminar has been scheduled for Thursday, September 15, 
to introduce users to the XENIX Text Processing System. 
It is intended for all department members planning 
to use XENIX for writing or preparing documentation. 

The seminar will include the following topics: 

1. Reviewing the XENIX file structure and basic commands. 

2. Using the vi text editor. 

3. Formatting documents with mm. 

The seminar will begin at 9 A.M and will last 
approximately two hours ... 

1. 7 Managing Writing Projects 

Once you have mastered one or more of your text editors, and are ready to 
do extensive writing, revision, and text processing with the XENIX system, it 
is time to consider the overall organization of your writing projects. This 
section offers some common�sense suggestions for managing and 

1-11 



XENIX Text Processing 

standardizing your text :files to make processing more efficient. Not all of the 
suggestions and writing aids discussed here will be equally appropriate in all 
situations. The larger and more complex the writing project, however, the 
more time and confusion can be saved by their implementation. 

I. 7.1 The Life Cycle of a Document 

Before you can begin to work successfully with XENIX text processing tools, 
you need to determine which tools are appropriate for each phase of a 
project. This section discusses the application of XENIX tools to each step 
in the life cycle of a document from the first notes you take and outlines you 
develop, to the archiving and management of multiple versions and 
updates. 

Every document goes through several phases before it is complete. First, 
you must enter the body of the text, using one of the XENIX text editors. As 
you write, you will insert formatting commands, or "macros," which specify 
in detail to the formatting programs how the final output should look. In 
addition to checking your work for mistakes and spelling errors, you may 
need to go through an extensive revision process-the global substitution of 
one name or term for another, for instance, or the reorganization of your 
manuscript using a "cut and paste" technique. 

Depending on the size and scope of your project, you may need to compare 
text variants and maintain several versions of your documents. Finally, you 
will be producing formatted output, whether it is a one-page business letter 
produced on an ordinary lineprinter or a book-length manuscript 
communicated directly to a phototypesetter. XENIX provides all the 
necessary tools for every phase of document preparation, and in many cases 
offers several approaches to each task. 

1.7.2 Organizing Your Project 

Organization is a key element of writing projects, especially if you are 
working on a large document, or attempting to control many short ones. 
Text processing can greatly simplify any writing project if you use common 
sense in adapting the wide range of XENIX. tools to your work. If you work 
with many short memos,letters, and documents that are similar in content 
but require constant revision, or if you are involved with the production of 
book-length manuscripts, you can easily find yourself swamped by huge :files 
containing innumerable text variations and fragments. These can become 
difficult to control and process. Time you spend defining the scope of your 
project in advance will be well rewarded. Decide which files and versions 
you need to maintain, and which formatting and error-checking programs 
you need to use. Determine in advance, if possible, the style and format of 
your text. 

Since most documents go through several revisions before they are finished, 
a few simple measures make the work of repeated revision considerably 

1-12 



i 
1. 

I 
-1 

Text Processing Overview 

easier. If you are like most people, you rewrite phrases and add, delete� or 
rearrange sentences. Subsequent editing of your text will be easier if every 
sentence starts on a new line, and if each line is short and breaks at a natural 
place� such as after a semicolon or comma. 

As you are editing, you can insert markers in your text, so that you can 
return to them later; use an unlikely string as a marker that you can search 
for easily using the grep command or your text editor to do a global searCh. 
If, for example, you are unsure of which term to use, or how you want the 
final text to look, use a given word� or text formatting macro provisionally, 
but consistently. In this way, a global substitution can be made easily. 
You may find that certain global definitions, like the choice of a font for a 
given header level� or a commonly used string, may be created at the last 
minute and placed at the beginning of your text file. When you are 
experienced in the use of macros, you may want to create "template" 
definitions which you use repeatedly. You can even place your definitions in 
a separate file to be called every time you invoke a script you have prewritten 
for processing your documents. This will facilitate_ consistency in y�ur 
documents and -3llow gre-ater flexibility if chariges are-required. In malijr 
cases, you will find that you can delay your formatting decisions until the 
document is to be printed or typeset. 

Long documents should be broken down into individual files of reasonable 
length, perhaps ten to fifteen thousand characters. Operations on larger 
files are considerably slower, and the accidental loss of a small file is less 
catastrophic. If possible, each file should represent a natural boundary in a 
document, such as a chapter or section. Develop naming conventions to 
make your filenames consistent and self-explanatory, such as: 

l.intro.s 2.basic.s 3.adv.s 

This allows files to be processed in groups with global commands, editing 
and shell scripts. You will also be able to see the contents of files and 
directories at a glance, and if someone else needs to access your files, they 
will not be confronted with files named "aardvark", "katmandu", or 
''fred". 

You should also use the XENIXhierarchical file structure to your advantage 
in organizing your work, by creating different directories for special 
purposes. For example, you may wish to have your source text files in a 
different directory from your formatted output files, or you may find it 
handy to have "rough" and "final" draft directories. If your projects grow 
and change over time, you may need to maintain several versions of a 
document at once. 

Unless your project is truly unwieldy, the creation of parallel directories 
should provide sufficient organization for storing multiple versions of a 
document: 

1-13 



XENIX Text Processing 

/usr/docwriter 
I 

I 
versionl version2 

I I 

rough 

version3 
I 

I 
final 

I 
l.intro.s 
2.basic.s 
3.adv.s 

nroff 
I 

l.intro.n 
2.basic.n 

3.adv.n 

If you haVe created definition files and scripts, such- as shell programs for 
processing text or sed scripts for making uniform changes (see Appendix 
A), place them in yet another directory. This might also be a good place to 
add some "help" files, which explain which versions of a document are 
contained in the directory or explain formatting procedures. 

There are no rules to apply in deciding which procedures will produce 
documentation with the least effort and the fewest errors. How elaborate 
you make your procedures depends on the quantity and complexity of the 
text you need to process and maintain. The essential point here is the theme 
of this entire volume: select the XENIX tools which seem most appropriate 

I 
"'-

and adapt them to your own specific needs. The more organized and '<..._ 
consistent your work is, tJ:te more powerful your use of these tools will 
become. 

1.7.3 Shortcuts: Boilerplates and Cut and Paste 

You will almost always find several approaches to any writing or revision you 
do with the XENIX system. Begin each writing project by reviewing these 
alternatives, and determine which solution requires the least repetitive 
human effort and leaves the least room for error. You can increase your 
productivity, whether you are writing technical papers, documentation, or 
many memos with similar content, by focusing on- writing clearly and 
concisely, rather than wasting time on needless duplication of effort. If you 
proceed in an organized, consistent way, as outlined in the previous section, 
you will quickly find that XENIX offers you many shortcuts. One of these is 
the concept of the "editing script". Either of the line editors, ed or ex, can 
be used to perform a complicated sequence of editing operations on a large 
group of files simultaneously. These can often be a substitute for the use of a 
batch editing facility like sed, or awk. 

For example, to change every "Xenix" to "XENIX" in all your files, create a \"'-
script file with the following lines: 

1-14 



}-

() 

Text Processing Overview 

g/JCenix/s//){El�l)(/g 
w 
q 

Now, you can use the command 

ed filename <script 

to m-ake this ·change· to· any given file; The editor will take its commands 
from the prepared script. You can further automate procedures by using the 
XENIX shell language to write a shell procedure. For example, you can write 
a script which asks XENIX to make the above changes, reformat the entire 
text, and print the results. It is even possible to put this procedure in a file to 
be read bytheat command to do your processing at some other time. 

If you must produce many similar documents, or long documents which 
contain repeated material, the concept of the "boilerplate" may already be 
familiar to you. Often, information which must be presented in a 
standardized way can be stored in a separate file which can be reused as 
necessary. Not only is this a valuable shortcut to rewriting, it may be the 

- preferred approach if a Coniplex display or an example of prOgnim text Inust 
be reproduced. Using boilerplates assures consistency -and makes 
subsequent changes to all recurrences of the copied material much simpler. 

1.8 Summary 

Here are some hints for making your XENIX Text Processing System work 
for you: 

Make your filenames easy to understand, and use a naming 
convention that allows you to take advantage of wildcard 
characters. 

Create text files of manageable length which represent chapters or 
logical divisions in the document; arrange files into directories 
which represent major documents or versions so that they can be 
easilyidentified. 

Create "help" or "README" files in each directory which explain 
your text-what version you are writing, what scripts, processors, 
and files are needed to successfully produce the document. Use 
comment lines in your text to explain organizational details of your 
project or anyspecial macrosyou have created. 

Control parallel versions and updates carefully, especially if you 
are working on a large project. Use conditional processing in your 
text files, copies of text in different directories, and file linking 
where appropriate. If you are in doubt about versions of text in 
different files use diffto compare text. 

1-15 



XENIX Text Processing 

1-16 

When using vi or another text editor to write text, start each 
sentence or clause on a new lin e. 

Identify text and formats which recur in a document or several 
documents, and createboilerplatesor templatesto save work. · · 

� 
Make full use of "cut and paste" techniques to rearrange material 
in a file, move text between files, or use the same text repeatedly in 
several places. 

Use batch processes like sed, awk, or an ed script to make 
consistent changes to a large number of files. 

Use spell, style, and diction regularly to reduce the number of 
editorial corrections. 

Try to define your production specifications and style conventions 
in advance; prepare editing scripts to reduce the number of 
changes you need to make individually. 

Always use the simplest possible technique to achieve your results. 
Use the mm macros where possible, reserving nro:lf/troff 
commands for "fine-tuning" or creating an effect impossible with 
mm. If you define a new macro, explain it in a comment line so it 
can be readily understood. 

Avoid running too many formatting processes simultaneously. If 
necessary, use the at command to process files at a time when the 
system is not busy. 

Protect yourself by backing up your system and user files regularly. 
Make copies of files if you are in doubt about whether your 
procedures will damage them. 



(! 

Chapter 2 
Tools For Writing and Editing 

2.1 Introduction 1 

2.2 XENIXCommands forText Processing 2 
2.2.1 Pattern Recognition: The Grep Commands 2 
2.2.2 File Comparison: diff, diff3, and comm 3 
2.2.3 OtherUsefulCommands 5 

2.3 WritingTools 7 

2.4 Using Spell 8 

2.5 Using Style and Diction 9 
2.5.1 Style 10 
2.5.2 Diction 16 





�, 

I 
-j 

c 

Tools For Writing and Editing 

2.1 Introduction 

This chapter introduces you to some XENIXsystem utilities that can simplify 
document editing and revision. It also discusses three specialXENIXwriting 
tools for improving writing style and locating typographical errors in 
documents. 

This chapter focuses on how the XENJX tools are used to accomplish some 
common text processing tasks. These tools are XENIX utilities which are 
also used by programmers for searching and editing data and program text. 
The emphasis here is on XENIX commands and utilities that can help you 
simplify complicated editing procedures, and allow you to work with many 
files at once. As you read, it will become apparent that several of the 
programs introduced here can be used interchangeably, and that many of 
these tasks can also be performed with your text editor. You may also find 
the two XENIXprograms, sed and awk, helpfulfor making complex changes 
to text files. (SeeAppendixA, "Editing With sed andawk''.) 

There are several revision tasks common to all text processing projects. The 
larger your project, the more complex these tasks become. For example, 
you may need to change a key term, name, or phrase everywhere it appears, 
or locate references to items you need to change or delete. You may need to 
compare and contrast multiple versions of your text in order to locate 
variations. You may also need to alter some aspect of the text format to suit 
production requirements. To do any of these tasks, yo11 must locate a 
string-a word, a phrase, a text formatting macro or any repeated set of 
characters-and, if necessary, change it everywhere it appears. Using the 
XENIX system tools discussed in this chapter, these changes can be made 
rapidly and consistently. 

The first half of this chapter discusses several easy ways to learn XENIX 
commands. If you have read the XENIX User's Guide, you may already be 
familiar with some of them. More detailed information about these 
commands is provided in the XENIX Reference Manual. The commands 
include: 

Grep commands print lines that match a single specified pattern. 
When combined with other commands in a shell procedure and 
used to process many files at 'Once, the grep commands become 
extremely powerful for locating teJ:t in large files. Two variants of 
grep are a] so introduced in this chapter: egrep and fgrep. 

The XENIX file comparison utilities, dlff, dlff3, and comm. These 
utilities compare two or more files and output those lines which do 
not.match. In text processing applications these programs can be 
extremely useful for quickly locating variations between several 
versions of documents. 

2-1 



XENIX Text Processing 

Additional XENIX commands, including sort, which alphabetizes 
lines in your text files; we, which counts lines, words, and 
characters in your text; and cut and paste, which duplicates "cut 
and paste" editing operations. 

2.2 XENIX C ommands for Text Processing 

2.2.1 Pattern Recognition: The Grep Commands 

Becauseof its·powerto search for patterns in many files at once, grep and its 
variants are atnong the most useful XENIXcommands. The members of the 
grep family, like the awk program and the batch editor, sed, h�ve as their 
basis the same principle of pattern recognition as the text editors, ed and vi. 
Each of these programs searches for the occurrence of a given pattern-a 
character or group of characters, a word or word string-and generates a list 
of those lines containing the pattern. Finding all occurrences of a word or 
pattern in a group of files is a common text processing task. You can easily 
write a shell script using the grep command or one of its variants, egrep and 
fgrep, and quickly search multiple files. Grep searches for the same regular 
expressions recognized byed. The word "grep" stands for 

g/re/p 

that is, "globally" locate a pattern and then print it. Grep searches every line 
in a set of files for all occurrences of the specified regular expression. Thus, 

grep thing filel file2 file3 

finds the pattern ''thing'' wherever it occurs in any of the files you name (e.g. 
filel ,file2 ,jile3). If you use the -n option with grep, itwillindicatenot only 
the file in which the line was found but also the line number, so that you can 
locate and edit it later. By combining the use of grep with other commands 
to generate a shell program that reads and transforms input, large quantities 
of text can be processed through multiple searching or editing procedures 
quickly. 

The commands grep, egrep, and fgrep all search files for a specified pattern. 
They appear on the cOD;J.mand line in the following form: 

grep [option] expression filename 

Commands of the grep family search the files you specify (or the standard 
input if you dQ not specify any files) for lines matching a pattern. Each line is 
copied to the standard output (your terminal screen), but if you are 
processing great quantities of text you should specify a filename in which to 
store the results ofthe grep search. ,,, 

For example, the command 

grep -n 'system utility' chap* .s>util 

2-2 



--1 I 

( 

c 

Tools For Writing and Editing 

requests that grep command search for the phrase "system utility" in every 
file that begins with "chap" and ends with ".s", and store the resulting list, 
with line numbers, in a file called util . Unless the -h option is used, the 
filename is given ifthereis more than one input file. 

The difference between the three grep variants is the type of expression you 
are allowed to search for. Grep searches for every regular expression and 
allows you to use the special characters to define special patterns. Egrep 
looks for the same regular expression as grep, but also has an extra set of 
characters that allows you to search for more than one occurrence of an 
expression, or more than one expression at a time. Fgrep can only look for 
strings; no special characters are allowed, and thus fgrep is faster than grep 
or egrep. For more information about grep, egrep, and fgrep, seegrep(C) 
in the XENIXReference Manual. 

2.2.2 FOe Comparison: diff, diffJ, and comm 

In addition to locating occurrences of -particular strings or -regular­
expressions in your text, you will find it useful to compare and. contrast two 
or more similar text files. 

The dUf command compares two files and outputs a list of differences. You 
can use dlff to store file versions more compactly. This is-accomplished by 
storing the output of dlff, which would b e  the differences in that file version, 
rather than the file itself. The -e option collects a script of those ed 
commands ( such as append, change, and delete) which would be necessary 
to recreate the revised file from the original. 

Diff3 is similar to diff, but is used to compare three files. 

Another comparison tool, comm, is discussed in this section. Comm is 
useful primarily for comparing the output of two sorted lists. 

Dlff To use the dlff command to compare two files, use the form: 

diff -option filei file2 

Diff reports which lines must be changed in two files to bring them into 
agreement. If you use a dash (-) instead of the first filename, dlft'will read 
from the "standard input". The normal output contains lines in this format, 
where n is the linenumber of the text file: 

17al8 
> line affected in file 2 
23,25d 26 
< line affected in file I 
< line affected in file I 
30c31 
< line from file I 

> line from file 2 

2-3 



XENIX Text Processing 

These lines resemble theed commands which would be necessary to convert 
jilel into file2. The letters a ,  d ,  and c are ed commands for appending, 
deleting, and changing, respectively. The line numbers after the letters refer 
to file2. Following each of these lines are printed all the lines that are 
affected in the first file, llagged by a less-than sign (<), then all the lines that 

"-. are affected in the second file, llagged by a greater-than sign (>). 

For example, you might want to compare two text tiles,.fruit and vegies. The 
contents of the file called fruit are the lines: 

apples 
bananas 
cherries 
tomatoes 

The contents ofthe file called vegies are the lines: 

asparagus 
beans 
cauliflower 
tomatoes 

The command line 

diff fruit vegies>diffile& 

produces the file diffile that contains a list of differences between fruit and 
vegieswhich are the output of the dllfprogram: 

1,3c1,3 
<apples 
<bananas 
<cherries 

>asparagus 
>beans 
>cauliflower 

In this case, lines 1 through 3 in the file vegies are different from lines 1 

through 3 in the file fruit . See diff( C) for options. 

Using Dlff3 Dlff3 works like dlfl', except that it compares three files. It has 
the form: 

diff3 -option filel file2 file3 

Dlft'3 reports disagreeing ranges of text flagged with the following codes: 

-----AU three files differ 

-----1 Filel is different 

-----2 File2 is different 

-----3 File3 is different 

2-4 



CJ 

() 

Tools For Writing and Edldng 

The change which has occurred in converting agiven.range of lines in a given 
file to some other is reported. 

For example, the message: 

file! : nl a 

means text is to b 6 appended after line number nl in file filel. The message: 

file! : nl , n2 c 

means that the text to be changed is in the range of lines nl to line n2. Ifnl = 
n2, the range maybe abbreviated to nl. 

The original contents of the range follow immediately after a "c" indication. 
When the contents of two files are identical, the contents of the lower­
numbered file is suppressed. 

As in the case of diff, diff3 used with the -e option prints a script for ed that 
will incorporate into filel all changes between file2 file3 . lxi other words, it 
records the changes that normally would b e  flagged the changes that 
normally would be flagged ---- and ----3. 

Comm The comm program selects or rejects lines common to two sorted 
files. Ithas theform: 

comm [-option] file! file2 

Comm reads filel and file2, and produces a three-column output: lines only 
infilel, lines onlyinfile2, and lines in both files. Ordinarily, both files should 
be sorted in ASCII collating sequence by using the sort program before 
using comm. As in dlff and its variants, if you enter a dash (-) instead of a 
filename, comm will read either filel orfile2 from the standard iBput. 

The possible options with comm are the flags 1, 2, or 3, which suppress 
printing of the corresponding column. Thus comm with -12 suppresses 
printing of the first two columns and prints only the lines common to thetwo 
files; comm -23 prints only lines in the first file but not in the second. The 
command comm with the options -123would print no lines. 

2.2.3 Other Useful Commands 

In this section a group of XEN1X commands that are helpful in text 
manipulations are summarized. In each case you may find it helpful to refer 
to the XENIXReference Manual for more information. 

Sort If you have been using your XENIX system for a while, you may have 
already learned the sort command. Because of its capacity to alphabetize a 
list of items, it can be extremely useful in a variety of text processing 
situations (e.g., alphabetizing the names on a mailing list or the entries in an 
index). To use sort, simply enter the command: 

sort filename> list. out 

The output :file list. out will contain the sorted list. 

2-5 



XENIX Text Processing 

Like some other XENIX commands, if you use "-" instead of a filename, 
sort will read from the standard input, and unless you direct the outpUt to 
another file, the sorted list will appear on your screen. Sort will, by default, 
sort an entire line in ascending ASCII collating sequence, including letters, 
numbers, and special characters. See sort(C) in the XENIX Reference \"" Manual for a list of available options. 

If you need to do repeated sorts by field, you may find it easier to prepare a 
simpleawkscript, as descnDed in "Appendix A". 

Note that if you invoke one or more of the sort options, or use position 
names, you must use the following syntax: 

sort [-options] [posl] [pos2] [ -o output] [filenames] 

We The XENIX command we counts wo_rds, characters, or lines in your 
files. If, for example, you are submitting a manuscript to a publisher, an 
exact word count may be necessary, oryoumaywant to estim�te-thenumber 
of lines in your file before you make some critical formatting decision. To 
use we, enter: 

we filename 

If you give no options, we automatically counts lines, words, and characters 
in the named files, or in the standard input if you do not specify any 
filenames. It keeps a total count for all named files, and the filenames will 
also be printed along with the counts. The option -1 for "lines," option -w 
for "words" and option -c for "characters" can be also be used in any 
combination, if you do not want all three statistics printed. Remember, 
when doing a word count, that we will automatically treat as a word any 
string of characters delimited by spaces, tabs, ornewlines. 

Cut and Paste If you work with large text files, you will find the two XENIX 
commands, cut and paste, extremely useful for rearranging text blocks 
within a document. 

Cut is a shortcut for extracting columns or fields of information from a file, 
or for rearranging columns in lines. To invoke cut in its simplest form, 
enter: 

cut [options] file 

The cut command will cut out columns from each line of a file. The columns 
can be specified as fields separated by a named delimiter or by character 
positions. The following options are available: 

-clist 

-flist 

A list of numbers following -c -specifies character positions or 
·ranges. 

A list of numbers following -r is a list of fields, delimited by a 
character specified after the -d option. 

-dchar A character following the -d option is read as the field delimiter. 
The default is the tab character. Spaces or other characters with 

2-6 



( , 

( 

() 

- ·  

Tools For Wrltlog and Editing 

special meanings must be surrounded with single quotation 
marks ('). 

This option suppresses lines which do not contain the delimiter 
character, if the -f option is invoked. 

Eit4erthe -c or_'":'"f 9ptio_� xn�.!?t 1>f?inyok�d �h.en_u�ing�u�. 

The paste command performs the reverse operation: it can b e  used to merge 
lines in one or severalfiles. To use paste in its simplest form, enter: 

paste filel file2 

Paste will concatenate jilel and file2, treating each file as a column or 
columns of a table and pasting them together horizontally. As with the cut 
command, you can also specify a delimiter character to replace the default 
tab. You can even use paste to merge material in columns into lines in a 
single file. 

The following options are available: 

-d The -d option suppresses the tab which automatically replaces 
the newline character in the old file. It can be followed by one or 
m9re characters which act as delimiters. 

list 

-· 

The list of characters which follow the -d option. 

The -s option merges subsequent lines,· rather than one from 
each input file. The tab is the default character, unless a list is 
specified with the -d option. 

The dash can be used in place of any filename, to read a line from 
the standard input. 

There are, of course, several other ways to approach "cut and paste" 
operations with the XENIX system. By now you should feel fairly confident 
using one of the XENIX text editors to move blocks of text, write parts of 
files to new files, and rearrange lines. Using sort to alphabetically sort fields 
within lines, or the awk program to change the order of fields in a text file, 
are two special case_s of cut and paste operations. 

2.3 Writing Tools 

In the previous sections you were introduced to some common XENIX 
utilities that are used both by programmers and text processing users: 
programs that can be used to search for patterns, do batch editing, or 
compare two or more :files. This section introduces three XENIX programs 
which have been designed solelyforwriting and editing documents: 

spell, a program that checks for spelling and typographical errors 
in your text files. 

2·7 



XENIX Text Processing 

style, a program that analyzes the readability of your writing style, 
based on statistical measures of sentence length and type. 

diction, a program that searches for awkward, ambiguous, and 
redundant phrases, and suggests alternatives. 

Think of these programs as "tools" in the same way as the system utilities 
discussed earlier in the chapter. The XENIX system will not do your writing 
for you, but it will help you rewrite and polish your work efficiently. As you 
read about these programs, keep in mind that they are not intended to 
substitute for careful reviewing, editing, and proofreading on your part. Use 
spell, style, and diction early in the editing process as a preliminary check 
on your work. You will get some interesting feedback on your writing and 
uncover recurrent patterns in your word usage and sentence construction. 
Your common spelling errors will be pointed out. As you are preparing your 
final draft, you may wish to use spell again to locate any last-minute 
typographical errors. 

2.4 Using Spell 

You can save a lot of time and grief in proofreading your documents by using 
spell. Although not totally Infallible, the spell program will find most of 
your spelling and typographical errors with a minimum of effort and 
processing time. Spell compares all the words in the text files you specify 
with the correctly spelled words in a pre-existing XENIX dictionary file. '""-
Words which neither appear in this dictionary, nor can be derived by the 
application of ordinary English prefixes, suffixes, or inflections are printed 
out as spelling errors. You can either specify an output file in which to store 
the list of misspelled words, or allow them to appear on your screen. For 
example, to find the spelling errors in afile named l.intro.s, enter: 

spell l.intro.s 

and a list of possible misspelled words will appear on your screen. You can 
also use a command line like 

spell * .s> errors& 

to check all your files with names ending in ".s" at once and output the 
possible misspellings into a single file named en-ors . 

Spell ignores the common formatting macros from nroff, troff, tbl, and eqn. 
It automatically invokes a program called deroff to remove all formatting 
commands from the text file being examined for spelling errors. 

Several options are available. With "spell -v", words not literally in the 
dictionary are also printed, along with plausible derivations from dictionary 
words. The - b  option checks British spelling. This option prefers British \� 
spelling variants such as: centre, colour, speciality, and travelled, and insists 
on the use of "-ise" in words like "standardise". 

The XENIX dictionary is derived from many sources, and while it recognizes 
many proper names and popular technical terms, it does not include an 

2-8 



C/: 

() 

Tools For Writing and Editing 

extensive specialized vocabulary in biology, medicine, or chemistry. The 
XENIX dictionary will not recognize your friends' names, your company's 
acronyms, and many esoteric words, and will list them as spelling "errors". 
It is difficult to predict in advance which technical terms, names, and 
acronyms spell will uncover in your documents. 

2.5 Using Style and Diction 

This section describes two programs, style and diction. Although these two 
programs attempt to critique your writing style, keep in mind that the 
qualities which distinguish good writing from bad are not entirely 
quantifiable. Taste in writing remains subjective, and different stylistic 
qualities may be appropriate to different writing situations. XENIXis neither 
a literary critic nor your sophomore English teacher. These tools are best 
used to eliminate errors and give you preliminary assessment of a 
document's readability. They are not intended to substitute for human 
editing. 

Both- Style and diction are based on statistiCal measures of Writing 
characteristics-characteristics that can be counted and summarized on your 
computer. With a large number of documents stored on computers, it has 
become feasible to study the recurrent features of writing style in a great 
many documents. The programs described here use the results of such 
studies to help you write in a more readable style. They produce a stylistic 
profile of writing, including: 

- -
A measurement of readability, determined on the basis of 
sentence and word length, sentence type, word usage, and 
sentence openers. 

A listing of awkward, ambiguous, redundant and ungrammatical 
phrases found in the document. 

This will help you evaluate overall document style, and correct or eliminate 
poor word choices or awkward sentences. As you work with these 
programs, you can accumulate data to provide you with a profile of your 
writing style based on all your documents. 

Because the style and diction programs can only produce a statistical 
evaluation of words and sentences, the term "style" is defined here in a 
rather narrow way: the results of a writer's particular word and sentence 
choices. Although many stylistic judgements are subjective, particularly 
those involving word choice, these programs make use of some relatively 
objective measures developed by experts. 

These programs have been written to measure some of the objectively 
definable characteristics of writing style and to identify some commonly 
misused or unnecessary phrases. Although a document that conforms to 
these stylistic rules is not guaranteed to be coherent and readable, one that 
violates all of the rules will almost certainly be difficult or tedious to read. 
These programs are: 

2-9 



XENIX Text Processing 

1. Style, which calculates readability, sentence length variability, 
sentence type, word usage and sentence openers. It assumes that 
the sentences are well formed, i.e., that each sentence has a verb 
and that the subject and verb agree in number. 

2. Diction, which identifies phrases that reflect dubious usage or seem 
unnecessarily awkward. 

These programs are descnbed in detail in the following sections. 

2.5.1 Style 

Style reads a document and prints a summary of sentence length and type, 
word usage, sentence openers and "readability indices." The readability 
indices are traditional school grade levels assigned to a document, based on 
four different studies of what makes one style more readable than another. 
You can also use the style program to locate all sentences in a document 
longer than a given length; those containing passive verb forms; those 
beginning with expletives; or those with readability indices higher than a 
specified number. 

Style is based on a system called "parts", which determines parts of speech 
in the English language. Parts is a set of programs which uses a small 
dictionary and experimentally derived rules of word order to assign word 
classes to all words in your text. It can be used for any text with an accuracy 
rate of approximately 95% . Style measures have been built into the output 
phase of the programs that makeup parts. 

The style program is invoked with the following syntax: 

Style [options] file 

What is a Sentenc'e? A human reader has little trouble deciding where a 
sentence begins and ends. Computers, however, are confused by different 
uses of the period character (.) in constructions like 1.25, A. J. Jones, 
Ph.d., i.e., or etc. Before attempting to count the words in a sentence, the 
text is stripped of potentially misleading formatting macros. Then style 
defines a sentence as a string of words ending in one of the punctuation 
marks: 

The end marker "/." may be used to indicate an imperative sentence. 
Imperative sentences not marked in this way are not identified. Style 
recognizes numbers with embedded decimal points and commas, strings of 
letters and numbers with embedded decimal points used in computer 
filenames, and a list of commonly used abbreviations. Numbers that end 
sentences cause a sentence break ifthenextword begins with a capital letter. 
Initials followed by periods are only assumed to be at the end of the sentence 
if the next word begins with a capital and is found in the dictionary of 
function words used by parts. As a result, the periods in the string 

J. D. Jones 

2-10 



( ': 

! c\  I .· 

I 

Tools For Writing and Editing 

are not read as the ends of sentences, but the period after the H in the 
following string is assumed to end a sentence: 

. . .  system H. The . . .  

Using these rules, most sentences are correctly identified, although 
occasionally two sentences are counted as one or a fragment is identified as a 
sentence. 

The results of running style are reported in five parts. A typical output might 
have values that look like this: 

readability grades 
(Kincaid) 12.3 (auto) 12.8 (Coleman-Liau) 11.8 (Flesch) 13.5 
(46.3) 

sentence info 
no. sent 335 no. wds 7419 av sentleng22.1 avword !eng 4.91 no. 
questions 0 no. imperatives 0 no. nonfunc wds 4362 58.8% av 
!eng 6.38 short sent (<17) 35% (118) long sent (>32) 16% (55) 
longestSent82wds at serif174; shortest sent 1 wds at sent117 

sentence types 

word usage 

simple 34% (114) complex 32% (108) compound 12% (41) 
compound-complex 21% (72) 

verb types as % of total verbs tobe 45% (373) aux 16% (133) inf 
14% (114) passives as % ofnon�infverbs 20% (144) types as % 
of total prep 10.8% (804) conj 3.5% (262) adv 4.8% (354) noun 
26.7% (1983) adj 18.7% (1388) pron 5.3% (393) nominalizations 
2 %  (155) 

sentence beginnings 
subject opener: noun (63) pron (43) pos (0) adj (58) art (62) tot 
67% prep 12% (39) adv 9% (31) verb 0% (1) sub_conj 6% (20) 
conj 1% (5) expletives 4% (13) 

Readability Grades The style program uses four separate readability 
indices. Generally, a readability index is used to estimate the grade level of 
the reading skills needed by the reader to understand a document. The 
readability indices reported by style are based on measures of sentence and 
word lengths. Although the indices themselves do not measure whether the 
document is coherent and well organized, high indices correlate with 
stylistic difficulty. Documents with short sentences and short words have 
low scores; those with long sentences and many polysyllabic words have 
high scores. Four sets of results computed by four commonly used 
readability formulae are reported: the Kincaid Formula, the Automated 
Readability Index, the Coleman-Liau Formula, and a version of the Fle·sch 
Reading Ease Score. Because each of these indices was experimentally 
derived from different text and subject results, the results may vary. They 
are summarized here. 

2-11 



XEN'IX Text Processing 

Kincaid Formula 

The formula is: Reading Grade=11.8 * syllables per word + .39 * 
words per sentence -15.59 

The Kincaid formula is based on Navy training manuals ranging ,� 
in difficulty from 5.5 to 16.3in grade level. The score reported by 
this formula tends to be in the mid-range of the four scores. 
Because it is based on adult training manuals rather than 
schoolbook text, this formula is probably the best one to apply 
to technical documents. 

Automated Readability Index (ARI) 

The formula is: Reading Grade=4.71 *letters per word +.5 * 
words per sentence-21.43 

The Automated Readability Index is based on text from grades 0 
to 7, and intended for easy automation. ARI tends to produce 
scores that are higher than Kincaid and Coleman-Liau but are 
usually slightly lower than Flesch. 

If you invoke style with the -r option followed by a number, all 
sentences with an Automated Readability Index equal to or 
greater than the number specified will be printed. 

Coleman-Liau Formula 

The formula is: Reading Grade = 5.89 * letters per word - .3 * 
sentences per 100words -15.8 

This is based on text ranging in difficulty from .4 to 16.3. This 
formula usually yields the lowest grade when applied to technical 
documents. 

Flesch Reading Ease Score 

The formula is: Reading Score � 206.835 - 84.6 * syllables per 
word - 1.015 * words per sentence. 

This formula is based on grade school text covering grades 3 to 
12. The first number reported is the grade level of the document. 
The second number, in parentheses, is the difficulty score. It is 
usually reported in the range 0 (very difficult) to 100 (very easy). 

The score reported by style is scaled to be comparable to the other 
formulas, except that the maximum grade level reported is 17. On the 
whole, the Kincaid formula is thebes� predictor for technical documents. 
Both ARI and Flesch tend to overestimate text difficulty; Coleman-Liau 
tends to underestimate. On text in the range of grades 7 to 9 the four 
formulas tend to be about the same. For easy text, use the Coleman-Liau 
formula since it is reasonably accurate at the lower grades. 

2-12 



c 

c 

( : 

Tools For Writing and Editing 

It is generally safer to present text that is too easy than too hard. If a 
document has particularly difficult technical content, especially if it includes 
a lot of mathematics, it is probably best to make the text very easy to read. 
You can lower the readability index by shortening sentences and words, so 
that the reader can easily concentrate on the technical content. 

Remember that t�ese indices produce only_ rough estimate�;_ the resu�ts 
should not be taken as absolute. 

Sentence Length and Structure The output sections labeled "sentence 
info" and "sentence types" give both length and structure measures. Style 
reports on the number and average length of both sentences and words. It 
also reports the number of questions and imperative sentences. 
"Nonfunction words" refer to all the nouns, adjectives, adverbs, and 
nonauxiliary verbs. Function words are prepositions, conjunctions, 
articles, and auxiliary verbs. 

Since most function words are short, they tend to lower the average word 
length. The average length of nonfunction words, therefore, is a more 
useful measure for comparing word choice of different writers than the total 
average word length. The percentages of short and long sentences measure 
sentence length variability. Short sentences are those at least five words less 
than the average. Long sentences are those at least ten words longer than the 
average. Finally, the length and location of the longest and shortest 
sentences is reported in the "sentence information" section. If the flag 
-)number is used, style will print all sentences longer than the specified 
number. 

Style applies the following rules to the definition of sentence types: 

1 .  A simple sentence has one verb and no dependent clause. 

2. A complex sentence has one independent clause and one 
dependent clause, each with one verb. Complex sentences are 
found by identifying sentences that contain either a subordinate 
conjunction or a clause beginning with a word like "that" or­
"who". The preceding sentence has such a clause. 

3. A compound sentence has more than one verb and no dependent 
clause. Sentences joined by a semi�colon (;) are also counted as 
compound. 

4. A compound-complex sentence has either several dependent 
clauses or one dependent clause and a com pound verb in either the 
dependent or independent clause. 

Most authorities on· effective writing style emphasize variety in sentence 
length, as well as overall sentence structure. Three simple rules for writing 
sentences are: 

1. Avoid the overuse ofshortsimple sentences. 

2-13 



XENIX Text Processing 

2. Avoid the overuse oflong compound sentences. 

3. Use various sentence structures to avoid monotony and increase 
effectiveness. 

Word Usage The word usage measurements used by style attempt to \:.. 
identify other features of writing constructions. In English, there are many 
ways to say the same thing. For example, the following sentences all convey 
approximately the same meaning but differ in word usage: 

The cxio program is used to perform all communication between 
the systems. 

The cxio program performs all communications between the 
systems. 

The c:xio program is used to communicate between the systems. 

The cxio program communicates between the systems. 

All communication between the systems is performed-by the cxio 
program. 

The distribution of the parts of speech and verb constructions in a 
document helps the writer identify the overuse of particular construction. 
For each category, style reports a percentage and a raw count of the parts of \:._ 
speech used. Although these measures are somewhat crude, they 
demonstrate excessive repetition of sentence constructions. In addition to 
looking at percentages, it is useful to compare the raw count with the 
number of sentences. If, for example, the number of infinitives is almost 
equal to the number of sentences, then an unusual number of sentences in 
the document must contain infinitives, like the first and third sentences in 
the example above. You may want to change some of these sentences for 
greater variety. 

Verbs To· determine the predominant verb constructions in a document, 
Verb frequency is measured in several ways. Technical writing, for example, 
tends toward passive verb constructions and other usages of the verb "to 
be". The category of verbs labeled "tobe" measures both passives and 
sentences of the form: 

subj-ect to be predicate 

'Whole verb phrases are counted as a single verb. Verb phrases containing 
auxiliary verbs are counted in an "aux" category, including verb phrases 
whose tense is not simple present or simple past. Infinitives are listed as 
"inf." The percentages reported for these three categories are based on the 
total number of verb phrases found. These categories are not mutually 
exclusive; some constructions may be in more than one category. For 
example, "to be going" counts as both "to be" and "inf". Use of these three 
types of verb constructions varies significantly among different writers. 

2-14 



(� 
\, 

( 

C; 

ToolS For Writing and Editing 

Style reports passive verbs as a percentage of the finite verbs in the 
document. Because sentences with active verbs are easier to comprehend 
than those with passive verbs, you should avoid the overuse ofpassiveverbs. 
Although the inverted object-subject order of the passive voice seems to 
emphasize the object, studies show that comprehension is not significantly 
affected byword position. Furthermore, a reader will retain the direct object 
of an active verb better than the subject of a passive verb . The -p option 
causes style to print all sentences containing passive verbs; 

Conjunctions Conjunctions provide logical parallelism between ideas b y  
connecting two o r  more equal units. These units may b e  whole sentences, 
verb phrases, nouns, adjectives, or prepositional phrases. The compound 
and compound-complex sentences reported under sentence type are 
parallel structures. Other uses of parallel structures are indicated by the 
degree that the number of conjunctions reported under word usage exceeds 
the compound sentence measures. 

Adverbs Adverbs provide transitions between sentences and order in time 
and space. Like pronouns, adverbs provide connectivity and cohesiveness. 

Nouns and Adjectives Some writers qualify almost every noun with one or 
more adjectives. If the ratio of nouns to adjectives in your text approaches 
one, it is probablethatyou are using too many adjectives. Multiple qualifiers 
in phrases like usimple linear single-link network model" lend more 
obscurity than precision to a text. 

Pronouns Pronouns can add cohesiveness to a document by acting as a 
shorthand notation for something previously mentioned, Documents with 
no·pronouns tend to be verbose and to have little connectivity. 

Nomlnallzatlons Nominalizations are verbs transformed into nouns by the 
addition of a suffix like: "ment", ''ance", ''ence'', or ''ion". Examples are 
accomplishment, admittance, adherence, and abbreviation. When a writer 
transforms a nominalized sentence to a non-nominalized sentence, it 
becomes more effective. The noun becomes an active verb and frequently 
one complicated clause becomes two-shorter clauses. For example: 

Their inclusion of this provision is admission of the 
in:iportance of the system. 

could be changed to: 

When they included this provision, they admitted the . . .  

The transformed sentences are easier to comprehend, even if they are 
slightly longer, provided that the transformation breaks one clause into two. 
If your document contains many nominalizations, you may want to 
transform some ofthesentences to use active verbs. 

Sentence Openers Another principle of style is the desirability of varied 
sentence openers. Because style determines the type of sentence opener by 
looking at the part of speech of the first word in the sentence, the sentences 
counted under the heading "subject opener" may not all really begin with 
the subject. However, a large total percentage in this category suggests a 
lack of variety in sentence openers. Other sentence opener measurements 

2-15 



XENIX Text Processing 

help determine if there are transitions between sentences and where 
subordination occurs. Adverbs and conjunctions at the beginning of 
sentences are mechanisms for the transition between sentences. A pronoun 
at the beginning of a sentence shows a link to something previously 
mentioned and indicates connectivity. \.._ 
The location of sub ordination can be determined by comparing the number 
of sentences that begin with a subordinate conjunction with the number of 
sentences with complex clauses. If few sentences start with subordinate 
conjunctions then the subordination is embedded or at the end of the 
complex sentences. For greater variety, transform some sentences so that 
they have leading subordination. 

· 

The last category of openers, expletives, is commonly overworked in 
technical writing. Expletives are the wotds "it" and "there", generally used 
with the verb "to be" in constructions where the subject follows the verb. 
For example, 

There are three streets used by the traffic. 
There are too many users on this system. 

This construction tends to emphasize the object rather than the subject of 
the sentence. The -e option will cause style to print all sentences that begin 
with an expletive. 

2.5.2 Diction 

The diction program prints all sentences in a document containing phrases 
that are either frequently misused or indicate Wordiness. Diction uses fgrep 
to match a file of phrases or patterns to a file containing the text of the 
do.cument to be searched. A data base of about 450 phrases has been 
compiled as a default pattern file for diction. To facilitate the matching 
process. diction changes uppercase letters to lowercase and substitutes 
blanks for punctuation before beginning the search for matching patterns. 
Since sentence boundaries are less critical in diction than in style, 
abbreviations and other uses of the period character (.) are not treated 
specially. Diction marks all pattern matches io a sentence with brackets ([]). 
Although many of the phrases in the default data base may be correct in 
some contexts, they generally indicate an awkward or verbose construction. 
Some examples of the phrases and suggested alternatives are: 

2-16 



I 
-, 

c 
Phrase: 

a large number of 
arrive at a decision 
collect together 
for this reason 
pertaining to 
through the use of 
utilize 
with the exception of 

Alternative: 

many 
decide 
collect 
so 
about 
by or with 
use 
except 

Tools For Writing and Editing 

All of the following exam pies contain the repetitious ·and awkward phrase 
''the fact'': 

Phrase: 

accounted for by the fact that 
an example of this is the fact that 
based on the fact that 
despite the fact that 
due to the fact that 
in light of the fact that 
in view of the fact that 
notwithstanding the fact that 

Alternative: 

caused by 
thus 
beca:use 
although 
because 
because 
since 
although 

If you have some phrases that you particularly dislike, or feel you use too 
often, you may create your own file of patterns. Then, you can invoke the 
diction program with the -f option: 

diction -f pattern file 

The default pattern file for the diction program will be loaded first, followed 
by your pattern file. In this way, you can either suppress patterns contained 
in the default file or include your own favorites in addition to those in the 
default file. You can also use the -n option to exclude the default file 
altogether: 

diction -n patternfile 

In constructing a pattern file, spaces should be used before and after each 
phrase to avoid matching substrings in words. For example, to find all 
occurrences of the word "the", use leading and trailing spaces, so that only 
the word "the" is matched and not. the string "the" in words like there, 
other, and therefore. Note however, that one side effect of surrounding the 
words with spc:tces is that if. two instances occur without intervening words, 
e.g., "the the", only the first will be matched because the intervening space 
will be counted as part of the first pattern. 

2-17 





c �  

C ,  

() 

Chapter 3 
Using the mm Macros 

3.1 Getting Started with mm 1 
3.1.1 Insertingmm Macros 1 
3.1.2 Invokingmm 2 

3.2 Basic Formatting Macros 3 
3.2.1 Paragraphs and Headings 3 
3.2.2 Lists 4 
3.2.3 Font Changes and Underlining 5 
3.2.4 Footnotes 6 
3.2.5 Displays and Tables 6 
3.2.6 Menios 7 
3.2.7 MulticolumnFormats 7 

3.3 UsingNroff/TroffCommands 8 

3.4 Checkingmmlnputwith checkmm 8 





I 
I 
I 
I 

c�)  

Using the mm Macros 

3.1 Getting Started with mm 

This chapter provides a simple introduction to mm, the "Memorandum 
Macros", a macro package which you can use on your XENIX System with 
either of the two XENIX formatting programs, nroff or troff, to produce 
formatted text for the lineprinter or typesetter, respectively. The features of 
mm are described comprehensively in the next chapter, "rom Reference". 
You can learn tO use the inm nlacros quickljr and format text immediately, 
without learning the more complicated nroff or troffformatting commands. 

The mm program reads the commands you have inserted in your text and 
"translates" them into nroff or troff commands when your text file is 
processed. With mm you can specify the style of paragraphs, section 
headers, lists, page numbering, titles, and footnotes. You can also produce 
cover pages, abstracts, and tables of contents, as well as control font 
changes and multicolumn output. If you are using mm along with troff to 
output your text to a phototypesetter, you can specify variable spacing and 
the size ofyourtype. 

Although using nroff or troff directly offers you a much wider range of 
commands and options, we recommend that you use mm for most of your 
formatting needs. Use the nroff and troff requests discussed in Chapter 5, 
��The Nro:ff/Tro:ff Tutorial'' and Chapter 6, "Nroff!rroff Reference" only 
when necessary. 

3.1.1 Inserting mm Macros 

To use the mm macros to format a document, enter your text normally, 
interspersed With formatting commands. These commands are uppercase 
letters preceded by a dot (.) and appear atthe beginning of a line. Instead of 
indenting for paragraphs, for example, you can use the .P macro before each 
paragraph, to produce extra line space: 

.P 
To meet the objectives proposed at the meeting . . .  

The .P macro can also be used to indent paragraphs. For more information, 
see Section 4.4.1, "Paragraphs". 

A single mm macro can often perform a number of formatting functions at 
once. In a long document, you might have several sections, each beginning 
with a numbered heading, like this 

1.0 Saltwater Fishing In the Paclllc Northwest 

To create this header, you would enter: 

.H 1 "Saltwater Fishing in the Pacific Northwest" 

Not only will mm create a bold heading and leave a space between the 
heading and the text which follows, it will also automatically number all the 
headings in the document sequentially. Furthermore, if you use the table of 

3-1 



XENIX Text Processing 

To create this headingformat, you wouldinsertthefollowing in a text file: 

.H 2 "Paragraphs and Headings" 
This section descnbes the types of paragraphs and the 
kinds of headings that are available . 
. H 3 "Paragraphs" 
Paragraphs are specified with the .P macro. Usually, they 
are flush left . 
. H 3 "Headings" 
.HU "Numbered Headings'' 
There are seven levels of numbered headings. Level 1 is the 
highest; level 7, the lowest . 
. P 
�eadings are specified with the .H macro, w_ho_se first argument 
is the level of heading (1 through 7) . 
. HU "Unnumbered Headings" 
The macro .HU is a special case of .H which creates a heading 
with no heading number. 

mm produces these headings in default styles which can be redefined, if 
necessary. This is described in detail in Chapter 4, "mm Reference". The 
headings are automatically numbered and are used to print a table of 
contents if the table of contents (.TC) macro is used. The numbers maybe 
altered or reset with the number register (.nr) request. To restart the 
nu�bering of a second level heading at 1,  you would insert the following 
command: 

.nr H2 1 

3.2.2 Lists 

All list formats in mm have a list-begin macro, one or more list items, each 
consisting of a .LI macro followed by the list item text, and the list-end 
macro (.LE). In addition to the bullet list demonstrated at the beginning of 
this chapter, there is also the dash list, using the list begin macro ( .DL) to 
create a list format like the bullet list except marked with dashes rather than 
bullets. A mark list (.MI..) is also available, to mark list items with the 
character of your choice. 

The automatic list (.AL) macro automatically numbers list items in one of 
several ways. When specified alone, or followed by "1", the .AL macro 
numbers the list items with Arabic numbers. The macro .AL A specifies a 
list ordered A, B, C, etc. The macro .ALfollowedbyalowercasea (.ALa), 
specifies a, b, c, etc. The macro .AL I numbers list items with Roman 
numerals . .  AL i numbers a list with lowercase Roman numerals (i, ii, iii, 
etc.). 

3-4 

. '\ ) !  ""- " 



···� 

Using the mm Macros 

Numbered lists may be nested to produce outlines and other formats. For 
example: 

I. Incan Archaeological Sites 

A. Peru 

1. Macchu Picchu 

2. Pisac 

B. Ecuador 

This is produced with: 

.AL I 
Incan Archaeological Sites 
.AL A 
.LI 
Peru 
.AL l 
.LI 
Macchu Picchu 
.LI 
Pisac 
.LE · 
.LI 
Ecuador 
.LE 
.LE 

In addition to the numbered and m.ark�d lists, mm offers a variable list (. VL). 
macro, which is usefulforproducingtwo-column lists with indents. The .VL 
macro is described in detail in Chapter4, "mm Reference". 

3.2.3 Font Changes and Underlining 

To produce italics on the typesetter, precede the text to be italicized with the 
sequence\fland follow it with \fR. For example: 

\flas much text as you want 
can be typed here\fR 

Italics are represented on lineprinters and letter-quality printers by 

3-5 



XENIX Text Processing 

desirable on the typesetter. The command .lC stops two-column output 
and returns to one-column output. 

3.3 Using Nroff/Troff Commands 

If you want to format text using mm without learning the other formatting 
programs, you should become familiar with at least a few simple nroff/troff 
commands, which you will probably need to supplemen� the mm macros. 
These work with both typesetter and lineprinter or terminal output: 

.bp Begin newpage . 

. br ''Break", that is, stop runningtext from line to line . 

. sp n Insertnblank.lines. 

3.4 Checking mm Input with checkmm 

The program checkmm can be used to check the accuracy of your input to 
mm , without actually formatting a document. If you use checkmm 
regularly, you will save a great deal of processing time, because you will be 
able to "debug" your input file quickly, without running the nroff and troff 
programs. To invoke check:mm, usethe commandline: ""-

checkmm filename 

The output of checkmm goes to the standard output (the terminal screen) by 
default. checkmm checks for correct pairing of macros, including .DS/.DE, 
.TS/.TE, and .EQ/.EN. It also looks for list specification format, making 
sure that every list has a list begin macro (.AL, .DL, .BL, .ML, VL, etc.) 
and a list end macro (.LE). Normally, mmcheck prints a list of errors and 
the lines where they occurred. For example: 

chapl.s: 
Extra .DE at line 74 
539 lines done. 

Note, however, that the location of an error may occasionally be obscured. 
In the example above, the "extra" .DE could actually be caused by a missing 
.DS. 

3-8 



( 

Chapter 4 
mm Reference 

4.1 Introduction 1 
4.1.1 WhyUsemm? 1 
4.1.2 Organization and Conventions 1 
4.1.3 Structure of a Document 2 
4.1.4 Definitions 2 

4.2 Invoking the Macros 3 
4.2.1 ThemmCommand 3 
4.2.2 The-cm or-mmFlags 4 
4.2.3 TypicalCommandLines 4 
4.2.4 CommandLineParameters 4 
4.2.5 Omission of-cm or-mm 6 

4.3 Formatting Concepts 7 

( 4.3.1 Arguments and Quoting 7 

\ 4.3.2 Unpaddable Spaces 8 
4.3.3 Hyphenation 8 
4.3.4 Tabs 9 
4.3.5 Bullets 9 
4.3.6 Dashes, Minus Signs, and Hyphens 9 
4.3. 7 Trademark String 10 

4.4 Paragraphs and Headings 10 
4.4.1 Paragraphs 10 
4.4.2 NumberedHeadings 11 
4.4.3 Appearance of Headings 12 
4.4.4 Bold, Italic, and Underlined Headings 13 
4.4.5 Heading Point Sizes 13 
4.4.6 Marking Styles 14 
4.4.7 UnnumberedHeadings 15 
4.4.8 Headings and the Table of Contents 15 
4.4.9 First-Level Headings and the Page Numbering Style 16 
4.4.10 UserExitMacros 16 



4.5 Lists 17 
4.5.1 SampleNestedList 18 
4.5.2 Listltem 20 
4.5.3 ListEnd 21 � 
4.5.4 Initializing Automatically Numbered or Alphabetized Lists 21 
4.5.5 Bullet List 22 
4.5.6 Dash List 22 
4.5.7 Marked List 22 
4.5.8 ReferenceList 22 
4.5.9 Variable-ltemList 23 
4.5.10 List-Begiu Macro and Customized Lists 24 

4.6 Displays 25 
4.6.1 Static Displays 26 
4.6.2 HoatingDisplays 27 
4.6.3 Tables 28 
4.6.4 Equations 30 
4.6.5 Figure, Table, Equation, and Exhibit Captions 30 
4.6.6 List of Figures, Tables, Equations, and Exhibits 31 

4. 7 Footnotes 31 

4.8 

4.7.1 FormatofFootnoteText 32 

PageHeadersandFooters 34 
4.8.1 Default Headers and Footers 34 
4.8.2 PageHeader 34 
4.8.3 Even-PageHeader 35 
4.8.4 Odd-PageHeader 35 
4.8.5 Page Footer 35 
4.8.6 Even-PageFooter 35 
4.8.7 Odd-PageFooter 35 
4.8.8 Footer on theFrrstPage 36 
4.8.9 Default Header and Footer With Section-Page Numbering 36 
4 .8.10 Strings and Registers in Header and Footer Macros 36 
4.8.11 HeaderandFooterExample 36 
4.8.12 Generalized Top-of-Page Processing 37 
4.8.13 Generalized Bottom-of-Page Processing 37 
4.8.14 TopandBottomMargius 38 

4.9 Table of Contents 38 



( 

( 

4.10 References 39 
4.10.1 Automatic Numbering of References 39 
4.10.2 DelimitingReferenceText 40 
4.10.3 Subsequent References 40 
4.10.4 ReferencePage 40 

4.11 Miscellaneous Features 40 
4.11.1 Bold, Italic, and Roman Fonts 41 
4.11.2 Right Margin Justification 41 
4.11.3 SCCS Releaseldentification 42 
4.11.4 Two-Column Output 42 
4.11.5 Vertical Spacing 43 
4.11.6 Skipping Pages 44 
4.11.7 Forcing an OddPage 44 
4.11.8 Setting Point Size and Vertical Spacing 44 
4.11.9 InsertingTextlnteractively 45 

4.12 Memorandum and ReleasedPaper Styles 45 
4.12.1 Title 46 
4.12.2 Authors 46 
4.12.3 TechnicalMemorandumNumbers 47 
4,12.4 Abstract 47 
4.12.5 OtherKeywords 48 
4.12.6 Memorandum Types 48 
4.12.7 DateandFormatChanges 49 
4.12.8 AltemateFirst-PageFormat 49 
4.12.9 Released-Paper Style 49 
4.12.10 Order of Invocation of Beginning Macros 50 
4.12.11 Macros for the End of a Memorandum 50 
4.12.12 Copy to and Other Notations 51 
4.12.13 Approval Signature Line 52 
4.12.14 Forcinga One--PageLetter 52 
4.12.15 Cover Sheet 53 

4.13 Reserved Names 53 
4.13.1 NamesUsedbyFormatters 53 
4.13.2 NamesUsedbymm 54 
4.13.3 NamesUsedbyeqn/neqn andtbl 54 
4.13.4 User-Definable Names 54 
4.13.5 Sample Extension 55 





-i 
I 

( 

c 

mm Reference 

4.1 Introduction 

This chapter is the reference guide for the mm Memonindum Macros. mm 
provides a unified, consistent, and flexible tool for producing many 
common types of documents, often eliminating the need for working 
directly with nroffor troff commands. mm is the standard, general-purpose 
macro package for mos_t_ do_cuments. 

Using the mm macros, you can produce letters, reports, technical 
memoranda, papers, manuals, and books. Documents may range in length 
from single-page letters to documents that are hundreds of pages long. 

4.1.1 Why Use mm? 

There are several reasons why we recommend using mm instead of working 
with the formatting programs nroffand troff directly. These include: 

You need not be an expert to use mm successfully. If your input is 
incorrect, the macros attempt to interpret it, or a message 
describing the error is output. 

Reasonable default values are provided so that simple documents 
can be prepared without complex sequences of commands. 

Parameters are provided to allow for individual preferences and 
requirements in document styling. 

The capability exists for expert users to extend the mm macros by 
adding new macros or redefining existing ones. 

The output of mm is device independent, allowing the use of 
terminals, lineprinters, and phototypesetters with no change to the 
macros. 

The need for repetitious input is minimized by allowing the user to 
specifyparameters once at the beginning of a document. 

Output style can be modified without making changes to the 
document input. 

4.1.2 Organization and Conventions 

Each section of this chapter explains a feature of mm, with the more 
commonly used features explained first. You may find you have no need for 
the information in the later sections, or for some of the options and 
parameters which accompany even common features. This reference guide 
is organized so that you can skim a section to obtain formatting information 
you need, and skip features for which you have no use. 

4-1 



XENIX Text Processing 

4.1.3 Structure of a Document 

Input for a document to be formatted with mm contains four major parts, 
any of which is optional. If present, they must occur in the following order: 

1 .  Parameter-setting. This segment determines the general style and 
appearance of a document, including page width, margin 
justification, numbering styles for headings and lists, page headers 
and footers, and other properties. In this segment, macros can be 
added or redefined. If omitted, mm will produce output in a 
default format; this segment produces no actual output, but 
performs the setup for the rest of the document. 

2. Beginning. This segment includes those items that occur only 
once, at the beginning of a document (e.g., title, author's name, 
date). 

3 .  Body. This segment contains the actual text of the document. It 
may be as small as a single paragraph, or as large as hundreds of 
pages. It may include hierarchically-ordered headings of up to 
seven levels, which may b e  automatically numbered and saved to 
generate the table of contents. Also available are list formats with 
up to five levels of subordination, which may have automatic 
numbering, alphabetic sequencing, and marking. The body may 
contain various types of displays, tables, figures, references, and 
footnotes. 

4. Ending. This segment contains those items that occur only once at 
the end of a document. Included here are signature(s) and lists of 
notations (e.g., "copy to" lists). In this segment, macros may be 
invoked to print information that is wholly or partially derived 
from the rest of the document, such as the table of contents or the 
cover sheet. 

The size or existence of any of these segments depends on the type and 
length of the document. Although a specific_ item (such as date, title, 
author's name) may be printed in several different ways depending on the 
document type, it will always be entered in the same form. 

4.1.4 Definitions 

The following terms are used throughout this chapter: 

Formatter Refers to eitherofthe text-formatting programs nroft' or tro:lf. 

Requests 

4-2 

Built-in commands recognized by the formatters. Although it 
may not be necessary to use these requests directly, they are 
referred to in this chapter. 



c 

( !  

c) 

Macros 

Strings 

mm Reference 

Named collections of requests. Each macro is an abbreviation 
for a collection of requests that would otheJWise require 
repetition. mm supplies many predefined macros, and you 
may define additional macros as necessary. Macros and 
requests share the same set of names and are used in the same 
way. 

Provide character variables, each of which names a ·string of 
characters. Strings are often used in page headers, page 
footers, and lists. They use the same names as requests and 
macros. A string can be defined with the define string (.ds) 
request, and then referred to by its name, preceded by\* for a 
one-character name or\*( for a two-character name. 

Number registers 
Integer variables used for flags, arithmetic, and automatic 
numbering. A register can be given a value using a number 
register (.nr} request, and can be referenced by preceding its 
name by\n for one-character names_ or \n( for two-character 
names. 

4.2 Invoking the Macros 

This section describes the command lines necessary to mm, with different 
options on various output devices. 

4.2.1 The mm Command 

The mm command is used to print documents using nroff and the mm 
macros. This command is equivalent to invoking nroff with the -mm flag. 
Options are available to specify preprocessing by tbl and/or by eqn/neqn, 
and for postprocessing by various output :filters, such as col. Any arguments 
or flags not recognized by mm are passed to nroff. The following options 
can occur in any order before the filenames: 

-e 

-t 

"" 

-E 

-y 

-12 

lnvokesneqn. 

Invokes tbl. 

Invokes col. 

Invokes the "-e" option ofnroff. 

Invokes -mm (uncompacted macros) instead of -em (See 
Section 4.2.2 of this manual}. 

Invokes 12-pitch mode (The pitch switch on the terminal must 
be setto 12). 

4-3 



XENIX Text Processing 

4.2.2 The -em or -mm Flags 

The mm package can also be invoked by including the -em or -mm flag as an 
argument to the formatter, as in: 

nroff -mm file 

4.2.3 Typical Command Lines 

The prototype command lines are as follows: 

Text without tables or equations: 

mm [options] filename 
nroff [options] filename 
troff [options] filename 

Text with tables: 

mm -t [options] filename 
tbl filename I nroff [options] -mm 
tbl filename troff [options] -mm 

Text with equations: 

mm -e [options] filename 
neqn filename I nroff [options] -mm 
eqn filename I troff [options] -mm 

Text with both tables and equations: 

mm -t -e fol1tionsj filename 
tbl filenamelneqn nroff [options] -mm 
tbl filenameleqn I troff [options] -mm 

If two-column processing is used with nroff, either the ·-c option must be 
specified to mm or the nroff output must bepostprocessed by col. 

4.2.4 Command Line Parameters 

Number registers hold parameter values that control various aspects of 
output style. Many of these can be changed within the text files with number 
register (.nr) requests. In addition, some of these registers can be set from 
the command line itself, a useful feature for those parameters that should 
not be permanently embedded within the input text itself. If used, these 
registers must be set on the command line or before the mm macro 
definitions are processed. These are: 

-rAn For n = 1,  this has the effect of invoking the .AF macro without 
an argument. 

\"'--



c 

mm Reference 

-rCn n sets the 1ype of copy (e.g., DRAFf) to be printed at the 
bottom of each page: 

n - 1  For OFFICIALFILE COPY 

n - 2  ForDATEFILE COPY 

n - 3  For DRAFT with single-spaciog aod default 
paragraph style 

n - 4 For DRAFf with double-spaciog and 10-space 
paragraph indent 

�rDl Sets "debug mode". This flag requests the formatter to continue 
processing even if mm detects errors that would otherwise cause 
termination. It also includes some debugging information in the 
default page header. 

-rEn Controls the font of the Subject/Date/From fields. If n - Othese 
fields are bold (default for !rolf) and if n - 1  they are regular text 
(default for nroff). 

-rLk Sets the length of the physical page to k lines. For nroff, k is ao 
unsealed number representing lines or character positions; for 
troff, k must be scaled. The default value is 66 lines per page. 

-rNn Specifies the page numberiog style. When n -0 (default), all 
pages get the (prevailing) header. When n - 1 , the page header 
replaces the footer on page 1 only. When n = 2, the page header 
is omitted from page 1 .  When n = 3, section-page numbering 
occurs. When n = 4, the default page header is suppressed, but 
user-specified headers are not affected. When n = 5, section­
page and section-figure numbering occurs. 

-rOk 

The contents of the prevailing header and footer do not depend 
on the value of the number register N; N only controls whether 
and where the header (and, for N == 3 or 5, the footer) is printed, 
as well as the page numbering style. In particular, if the header 
and footer values are null, the value ofN is irrelevant. 

Offsets output k spaces to the right. For nroff, these values are 
unsealed numbers representing lines or character positions. For 
troff, these values must be scaled. This register is helpful for 
adjusting output positioning on some terminals. If this register is 
not set on the command line the default offset is .75 inches. 
NOTE: The register name is the capital letter (0), not the digit 
zero (0). 

4-5 



XENIX Text Processing 

-rPn Specifies that the pages of the document are to b e  numbered 
starting with n. This register may also be set via a .nr request in 
the input text. 

-rSn Sets the point size and vertical spacing. The default n is 10, i.e., 
10-point type on 12-point leading (vertical spacing), giving 61ines 
per inch. This parameter applies to troffonly. 

-rTn Provides register settings for certain devices. If n -1, then the 
line length and page offset are set to 80 and 3. respectively. 
Setting n to 2 changes the page length to 84 lines per page and 
inhibits underlining. The default value for n is 0. This parameter 
applies to nroff only. 

-rU1 Co-ntrols underlining of section headings . .  This flag causes only 
letters and digits to be underl.iD.ed. Otherwise, all characters 
(including spaces) are underlined. This parameter applies to 
nroffonly. 

-rWk Sets page width (i.e., line length and title length) to k. For nrolf, 
k is an unsealed number representing lines or character 
positions; fortrofl', k mustbe scaled. This register can be used to 
change the page width from the default value of 6.0 inches (60 
characters in 10pitch or72characters in 12 pitch). 

4.2.5 Omission of -em or -mm 

If many arguments are required on the command line, it may be convenient 
to setup thefirst(or only) inputfileofadocumentas follows: 

.ss 18 

.so /usr/Iib/tmac/tmac.m 

.ss 12 
remainder of text 

In this case, clo not use the-em or-mm flags (orthemm ormmt commands); 
the .so request has the equivalent effect. The registers must be initialized 
before the .so request, because their values are meaningful only if set before 
the macro definitions are processed. When using this method, it is best to 
put into the input file only those parameters that are seldom changed. For 
example: 

4-6 

.nr W 80 

.nr 0 10 

.nr N 3  

.so /usr/hb/tmac/tmac.m 

.H 1 " INTRODUCTION" 



mm Reference 

specifies, for nroff, a line length of 80, a page offset of 10, and section-page 
numbering. 

C 4.3 Formatting Concepts 

c 

The normal-a:ction: of th:eforinatters-is tO fill OUtpiit1ineS frOrii-o'nC or· m-ore 
input lines. The output lines maybe justified so that both the left and right 
margins are aligned. As the lines are being filled, words may also b e  
hyphenated as necessary. It is possible to turn any o f  these modes on and 
off. Turning off fill mode also turns off justification and hyphenation. 

Certain formatting commands (both requests and macros) cause the filling 
of the current output line to cease. Printing of a partially filled output line is 
known as a "break". A few formatter requests and most of the mm macros 
cause a break. 

While formatter requests can be used with mm, they occasionally have 
unpredicted consequences. There. should be little need to use formatter 
requests. The macros described in this section should be used in most cases 
because you will be able to control and change the overall style of the 
document easily and specify complex features, such as footnotes or tables 
of contents, without using intricate formatting requests. A good rule is to 
use directnroffand troffrequests onlywhen absolutely necessary. 

To make future revision easier, iii put lines should be kepfshort and should 
be broken at the end of clauses; each new full sentence should begin on a 
newline. 

4.3.1 Arguments and Quoting 

For any macro, a "null argument" is an argument whose width is zero. Such 
an argument often has a special meaning; the preferred form for a null 
argument is double quotation marks ("). Omitting an argument is not the 
same as supplying a null argument. Furthermore, omitted arguments can 
occur only at the end of an argument list, while null arguments can occur 
anywhere. 

Any macro argument containing ordinary (paddable) spaces must be 
enclosed in double quotation marks, (" "). Otherwise, it will be treated as 
several separate arguments. A double quotation mark (") is a single 
character that must not be confused with two apostrophes or acute accents 
("), or with two grave accents ("). 

Double quotation marks (") are not permitted as part of the value of a macro 
argument or of a string that is to be used as a macro argument. If you must, 
use two grave accents (""') and/or two acute accents (") instead. This 
restriction is necessary because many macro arguments are processed 
(interpreted) several times. For example, headings are first printed in the 
text and may be reprinted in the table of contents. 

4-7 



XENIX Text Processing 

4.3.2 Unpaddable Spaces 

When output lines are justified to give an even right margin, existing spaces 
in a line may have additional spaces appended to them. This may affect the 
desired alignment of text. To avoid this problem, it is necessary to be able to 
specify a space that cannot be expanded during justification, i.e., an 
"unpaddable space". There are several ways to do this. First, you may type 
a backslash (\) followed by a space. This pair of characters generates an 
unpaddable space. Second, you may sacrifice some seldom�used character 
to b e  translated into a space upon output. Because this translation occurs 
after justification ,  the chosen character may be used anywhere an 
unpaddable space is desired. The tilde C) is often used for this purpose. To 
use it in this way, insert the following line at the beginning of the document: 

.tr -

If a tilde must actually appear in the output, it can be temporarily recovered 
by inserting 

.tr --

before the place where it is needed. Its previous usage is restored by 
repeating the .tr-, but only after a break or after theline containing the tilde 
has been forced out. Use of the tilde in this way is not recommended for 
documents in which the tilde is used within equations. 

4.3.3 Hyphenation 

The formatters do not perform hyphenation unless the user requests it. 
Hyphenation can be turned on in thebodyofthe text by specifying 

.nr Hy 1 

at the beginning of the document. If hyphenation is requested, the 
formatters will automatically hyphenate words as needed. However, you 
may specify the hyphenation points for a specific occurrence of any word by 
using a special character known as a ''hyphenation indicator'' (initialy, the 
two�character sequence \%), or you may specify hyphenation points for a 
small list of words (about 128 characters). 

If the hyPhenation indicator (initially, the two-character sequenc-e \%) 
appears at the beginning of a word, the word is not hyphenated. It can also 
be used to indicate legal hyphenation point(s) inside a word. In any case, all 
occurrences of the hyphenation indicator disappear on output. 

The user may specify a different hyphenation indicator with the command: 

.HC [hyphenation-indicator] ' 

The caret 0 is often used for this purpose; this is done by inserting the 
following at the beginning of a document: 

.HC " 

4-8 



( 

mm Reference 

Note that any word containing hyphens or dashes-also known as em 
dashes-will be broken immediately after a hyphen or dash if it is necessary to 
hyphenate the word, even if the formatter hyphenation function is turned 
off. 

Using the .hw request, you may supply a small list of words with the proper 
hyphenation points indicated. For example, to indicate the proper 
hyph

.�
natio� of!heword "p�intout", _yo� may spec!fy: 

.hw print-out 

4.3.4 Tabs 

The macros .Mf, .TC, and .CSuse the .tarequestto set tab stops, and then 
restore the default values of tab settings. Setting tabs to other than the 
default values is the user's responsibility. 

Note that a tab character is always interpreted with respect to its position on 
the input line, rather than its position on the output line. In general, tab 
characters should appear- only on--lines -processed in no-fill mode. The -tbl 
program changes tab stops but does not restore the default tab settings. 

4.3.5 Bullets 

A bullet ( •) is often obtained on a typewriter terminal by using the letter o 
overstruck by a +. For compatibility with trofl', a bullet string is provided b y  
mm. Rather than overstrik.ing, use the sequence: 

\*(BU 

wherever a bullet is desired. Note that the bullet list (.BL) macro uses this 
string to automatically generate bullets forthelistitems. 

4.3.6 Dashes, Minus Signs, and Hyphens 

Troff has distinct graphics for a dash, a minus sign, and a hyphep., whil� 
nroff does not. If you intend tousenro:O' only, you can use the minus sign (-) 
for all three. 

If you plan to use both formatters, you must be careful in preparing text. 
Unfortunately, these characters cannot be represented in a way that is both 
compatible and convenient. Try the following: 

Dash Use \ *(EM for each text dash for both nroff and !rolf. This string 
generates an em dash (-) in troff and two dashes (--) in nrolf. 
Note that the dash list (.DL) macro automatically generates the 
em dashes for the list items. 

Hyphen Use the hyphen character (-) for both formatters. Nroff will 
printit as is, and troffwill print a true hyphen. 

4-9 



XENIX Text Processing 

Minus Use \- for a true minus sign, regardless of formatter. Nroffwill 
ignore the\. while troffwill print a true minus sign. 

4.3. 7 Trademark String 

The trademark string \*(Tm places the letters TM one half-line above the 
textthatitfollows. For example, the input: 

The XENIX\ *(Tm System Reference ManuaL 

yields: 

The XENIJ(TM System Reference ManuaL 

4.4 Paragraphs and Headings 

This section describes simple paragraphs and section headings. 

4.4.1 Paragraphs 

The paragraph macro is used to begin two kinds of paragraphs: 

.P [type] 
one or more lines of text. 

In a "left-justified" paragraph, the :first line begins at the leftmargin, while in 
an "indented" paragraph, it is indented five spaces. 

A document has a default paragraph style obtained by specifying .P before 
each paragraph that does not follow a heading. The default style is 
controlled by the number register Pt. The initial value of Pt is 0, which 
always provides left-justified paragraphs. All paragraphs can be forced to 
be indented by inserting the following at the b eginning of the document; 

.nr Pt 1 

All paragraphs will b e  indented except after headings, lists, and displays if 
the following: 

.nr Pt 2 

is inserted at the beginning of the document. 

The amount a paragraph 'is indented is contained in the register Pi, whose 
default value is 5. To indent paragraphs by lOspaces, for example, insert: 

.nr Pi 10 

at the beginning of the document. Both the Pi and Pt register values must be ,"-
greater than zero for anyparagraphs to be indented. 

The number register Ps controls the amount of spacing between paragraphs. 
By default, the Ps register is set to 1, yielding one blank space (112 vertical 
space). Values that specify indentation must be unscaled and are treated as 

4-10 



c 

( 

mm Reference 

"character" positions� i.e., as a number of ens. In troff, an en is the number 
of points (1 point � 1/72-inch) equal to half the current point size. In nroff, 
an en is equal to the width of a character. 

Regardless of the value of Pt, an individual paragraph can b e  forced to be 
left-justified or indented . .  P always forces left justification; .P 1 always 
c_crns�!!_iA_cl��4iti9!J __ Q_yJh.� .. �mQl!.:g,tspe:�Hi�_9J:)y .th�-r�gi�J:�r .fi� . .If .f oc_curs 
inside a list, the indent (if any) of the paragraph is added to the current list 
indent. 

Numbered paragraphs may be produced by setting the register Np to 1. This 
produces paragraphs numbered within first level headings, e.g., 1.01, 1 .02, 
1.03, 2.01. 

A different style of numbered paragraphs is obtained byusingthe 

.nP 

macro rather than the .P macro for paragraphs. This produces paragraphs 
that are numbered within second level headings and contain a dc:mble-line 

- indent in which the teXt of the second -line is indented to be aligned with the 
text of the first line so that the number stands out. For example: 

.H 1 "FIRST HEADING" 

.H 2 "Second Heading" 

.nP 
one or more lines of text 

4.4.2 Numbered Headings 

The heading macro has the form: 

.H level [heading-text] [heading-suffix] 
zero or more lines of text 

The .H macro provides seven levels of numbered headings. Level l is the 
highest; level 7 the lowest. The heading-suffix is appended to the heading­
text and may b e  used for footnote marks which should not appear with the 
heading text in the table of contents. You will not need to insert a .P macro 
after a .H or .HU macro, because the .H macro also performs the function 
of the .P macro. If a .Pfollows a .H, the .P is ignored. 

The effect of ,H varies according to the level argument. First-level headings 
are preceded by two blank lines (one vertical space); all others are preceded 
by one blank line . 

. H 1 heading-text 
Gives a bold heading followed by a single blank line. The 
following text begins on a new line and is indented according to 
the current paragraph type. Full capital letters should normally 
be used to make the heading stand out. 

4-11 



XENix Text Processing 

.H 2heading-text 
Yields a bold heading followed by a single blank line. The 
following text begins on a new line and is fu.dented according to 
the current paragraph type. Normally, initial capitals are used . 

. H nheading-text \. 
Where n is a number greater than 3 and less than 7, produces an 
underlined (italic) heading followed by two spaces. The 
following text appears on the same line. 

Appropriate numbering and spacing (horizontal and vertical) occur even if 
the heading text is omitted from an .H macro. 

4.4.3 Appearance of Headings 

You can modify the appearance of headings quite easily by setting certain 
registers and strings at the beginning of the document. In this way you can 
quickly alter a document's style because the style control information is 
concentrated in a few lines, rather than distributed throughout the 
document. 

A first-level heading normally has two blank lines (one vertical space) 
preceding it, and all others have one blank line. If a multiline heading splits 
across pages, it is automatically moved to the top of the next page. Every 
first-level heading may b e  forced to the top of a newpage by inserting ·, 

.nr Ej 1 

at the beginning of the document. Long documents may be made more 
manageable if each section starts on a newpage. Setting Ej to a higher value 
has the same effect for headings up to that level; i.e., a page eject occurs if 
the heading level is less than or equal to Ej. 

Three registers control the appearance of text immediately following an .H 
macro. They are heading break level (Hb), heading space level (Hs), and 
post-heading indent (Hi). 
If the heading level is less than or equal to Hb, a break occurs after the 
heading. If the heading level is less than or equal to Hs, a blank line is 
inserted after the heading. Defaults for Hb and Hs are 2. If a heading level is 
greater than Hb and also greater than Hs, then the heading (if any) is run 
into the following text. With these registers, you can separate headings from 
text consistently throughout the document, and allow for easy alteration of 
whitespace and header emphasis. 

For any stand-alone heading, i.e., a heading not run into the following text, 
the alignment of the next line of output is controlled by the register Hi. If Hi 
is 0, text is left-justified. If Hi is 1 (the default value), the text is indented 
according to the paragraph type as specified by the register Pt. Finally, if Hi 
is 2, text is indented to line up with the first word of the heading itself, so that 
the heading number stands out more clearly. 

4-12 



c 

c 

c 

mm Reference 

For example, to cause a blank line to appear after the first three heading 
levels, to have no run-in headings, and to force the text following all 
headings to be left-justified (regardless of the value ofPt) , the following lines 
should appear atthetop of the document: 

.nr Hs 3 
,IH H!> _7 . 
. nr Hi 0 

The register He can be used to obtain centered headings. A heading is 
centered if its level is less than or equal to He, and if it is stand-alone. He is 0 
bydefault(no centered headings). 

4.4.4 Bold, Italic, and Underlined Headings 

Any heading that is underlined bynroffis made italic bytroff. The string HF 
(heading font) contains seven codes that specify the fonts for heading levels 
1-7. 

Levels 1 and 2 are bold; levels 3 through 7 are underlined in nrofl'anditalic in 
troff. The user may reset HF as desired. Any value omitted from the right 
end of the list is taken to be 1. For example, the following would result in five 
bold levels and two nonunderlined (Roman) levels: 

.ds HF 3 3 3 3 3 

Nroff can underline in two ways. The underline ( .ul) request underlines only 
letters and digits. The continuous style (.cu) request underlines all 
characters, including spaces. By default, mm attempts to use the 
continuous style on any heading that is to be underlined and is short enough 
to fit on a single line. If a heading is too long, only letters and digits are 
underlined. 

Using the -rUl flag when invoking nroff forces the underlining of only 
letters and digits in all headings. 

4.4.5 Heading Point Sizes 

If you are using troH', you may specify the desired point size for each heading 
level with the HP string, as follows: 

.ds HP [ps1] [ps2] [ps3] [ps4] [psS] [ps6] [ps7] 

By default, the text of headings (.H and .HU) is printed in the same point 
size as the body except that bold stand-alone headings are printed in a size 
onepointsmallerthan the body. ThestringHP, similar to thestringHF, can 
be specified to contain up to seven values, corresponding to the seven levels 
ofheadings. For example: 

.ds HP 12 12 11 10 10 10 10 

4-13 



XENIX Text Processing 

prints the first two heading levels in 12-point type, the third heading level in 
11-point type, and the remainder in 10-point type. The specified values may 
also b e  relative point-size changes, e.g. : 

.ds HP +2 +2 -1 -1 

If absolute point sizes are specified, those sizes will b e  used regardless of the 
point size of the body of the document. If relative point sizes are specified, 
then the point sizes for the headings will be relative to the point size of the 
body, even if the point size of the body is changed. Omitted or' zero values 
imply that the default point size will be used for the corresponding heading 
level. 

Note 

When you change the point size of headings, vertical spacing 
remains unchanged. Therefore, if you specify a large point size 
for a heading, you must also increase vertical spacing (with .HX 
and/or .HZ) to prevent overprinting. 

4.4.6 Marking Styles 

The heading mark macro has the form: 

.HM [arg1] . . .  [arg7] 

to change the heading mark style of a heading. The registers named H1 
through H7 are used as counters for the seven levels of headings. Their 
values are normally printed using Arabic numerals. The heading mark style 
(.HM) macro allows this choice to be overridden. This macro can have up 
to seven arguments; each argument is a string indicating the type of marking 
to be used. Omitted values are interpreted as 1 ;  illegal values have no effect. 
The values available are: 

Value 

1 
0001 
A 
a 
I 

Interpretation 

Arabic (default for all levels) 
Arabic with enough leading zeroes to get specified digits 
Uppercase alphabetic 
Lowercase alphabetic 
Uppercase Roman 
Lowercase Roman 

By default, the complete heading mark for a given level is built by 
concatenating the mark for that level to the right of all marks for all levels of 
higher value. To inhibit the printing of successive heading level marks, i.e., 
to obtain just the current level mark followed by a period, set the heading­
mark type (Ht) register to 1 .  

4-14 

\" 



I 
I 

1 
c ·  

( 

c �  

For example, a commonly used outline style is obtained by: 

.HM I A l a i  

.nr Ht 1 

4.4. 7 Unnumbered Headings 

The unnumbered heading macro has the form: 

.HU heading-text 

mm Reference 

It produces unnumbered heads . .  HU is a special case of .H; it is handled in 
the same way as .H, except that no heading mark is printed. In order to 
preserve the hierarchical structure of headings when .Hand .HU macros are 
intermixed, each .HU heading is considered to exist at the level given by 
register Hu, whose initial value is 2. Thus, in the normal case, the only 
difference between: 

.HU heading�text 

and 

.H 2 heading-text 

is the printing of the heading mark for the latter. Both have the effect of 
incrementing the numbering counter for level 2, and resetting to zero the 
counters for levels 3 through 7. Typically, the value ofHu should be set to 
make unnumbered headings (if any) be the lowest-level headings in a 
document . .  HU can be especially helpful in setting up appendices and other 
sections that may not fit well into the numbering scheme of the main body of 
a document. 

4.4.8 Headings and the Table of Contents 

The text of headings and their corresponding page numbers can be 
automatically collected for a table of contents. This is accomplished by 
specifying in the register Cl what level headings are to be saved, then 
invoking the . TC macro at the end of the document. 

Any heading whose level is less than or equal to the value of the contents 
level (CL) register is saved and printed in thetable·ofcontents. The default 
valueforCiis2; i.e., the first two levels of headings are saved. 

Because of the way the headings are saved, it is possible to exceed the 
formatter's storage capacity, particularly when saving many levels of many 
headings while also processing displays and footnotes. H this happens, an 
"Out of temp file space" message will occur; the only remedy is to save fewer 
levels or to have fewer words in the heading text. 

4-15 



XENIX Text Processing 

4.4.9 First-Level Headings and the Page Numbering Style 

By default, pages are numbered sequentially at the top of the page. For large 
documents, it may be desirable to use section-page numbering where the 
section is the number of the current first-level heading. This page \..__ numbering style can be achieved by specifying the -rN3 or -rN5 flag on the 
command line. As a side effect, this also sets Ej to 1, so that each section 
begins on a newpage. The pagenumberis printed at the bottom of the page, 
so that the correct section number is printed. 

4.4.10 User Exit Macros 

This section is intended only for users who are accustomed to writing 
formatter macros. With .HX, .HY and .HZ you can obtain control over the 
previously described heading macros. You must define these macros 
yourself and use them in the form: 

.HX dlevel rlevel heading-text 

.HY dlevel rlevel heading-text 

.HZ dlevel rlevel heading-text 

The .H macro invokes .HXshortlybefore the actualheadingtextis printed; 
it calls .HZ as its last action. After .HX is invoked, the size of the heading is 
calculated. This processing causes certain features that may have been 
included in .HX, such as .ti for temporary indent, to be lost. After the size '"-._ 
calculation, .HY is invoked so that you may specify these features again. All 
the default actions occur if these macros are not defined. If you define .HX, 
.HY, or .HZ, your definition is interpreted at the appropriate point. These 
macros can therefore influence the handling of all headings, because the 
.HU macro is actually a special case of the .H macro. 

If the user originally invoked the .H macro, then the derived level dlevel and 
the real level rlevel are both equal to the level given in the .H invocation. If 
you originally invpked the .HU macro, dlevel is equal to the contents of 
register Hu , and rlevel is 0. In both cases, heading-text is the text of the 
original invocation. 

By the time .H calls .HX, it has already incremented the heading counter of 
the specified level, produced a blank line (vertical space) to precede the 
heading, and accumulated the heading mark, i.e., the string of digits, 
letters, and periods needed for a numbered heading. When .HX is called, 
all user-accessible registers and strings can be referenced as well as the 
following: 

string }0 

register ;0 

4-16 

If rle:vel is nonzero, this string contains the heading mark. If rlevel 
is 0, this string is null. 

This register indicates the type of spacing that is to follow the 



-1 c 

c 

c i  

string }2 

register ;3 

mm Reference 

heading. A value ofO means that the heading is run-in. A value of 
1 means a break (but no blank line) is to follow the heading. A 
value of2means that a blank line is to follow the heading. 

If register ;0 is 0� this string contains two unpaddable spaces that 
will -be-used--to separate-the heading-from the -following -text. If ­
register ;Ois nonzero , this string is null. 

This register contains an adjustment factor for an .ne request 
issued before the heading is actually printed. On entry to .HX, it 
has the value 3 if dlevel equals 1, and 1 otherwise. The .ne request 
is for the following number of lines: the contents of the register ;0 
taken asblanklines (halves ofverticalspace), plus the contents of 
register ;3 as blank lines (halves of vertical space) plus the number 
oflines ofthe heading. 

The-user may alter the values of}O, }2 , and ;3 within .HXas desired.- If you 
use temporary string or macro names within .HX, choose them carefully . 

. HY is called after the .ne is issued. Certain features requested in .HX must 
berepeated. For example: 

.de HY 

.if \\$1-3 .ti 5n 

.P 

.HZ is called at the end of .H to permit user-controlled actions after the 
heading is produced. For example, in a large document, sections may 
correspond to chapters of a book, and you may want to change a page 
header or footer. For example: 

.de HZ 

.if \\$1-1 .PF" "Section \\$2'"" 

.P 

4.5 Lists 

This section describes the kinds of lists which can be obtained with the mm 
macros, including automatically numbered and alphabetized lists, bullet 
lists, dash lists, lists with arbitrary marks, and lists starting with arbitrary 
strings (e.g., with tenns or phrases to be defined). 

In order to avoid repetitive entering of arguments to describe the 
appearance of items in a list, mm provides a conveniet;1tway to specify lists. 
All lists are com posed of the following parts: 

4-17 



XENIX Text Processing 

A "list-initialization" macro that controls the appearance of the list 
(e.g. line spacing, indentation, marking with special symbols, and 
numbering or alphabetizing) . 

One or more "list item" macros, each followed by the actual text of 
the corresponding list item. 

The "list end" macro that terminates the list and restores the 
previous indentation. 

Lists may be nested up to five levels. The list-item (.LI) macro saves the 
previous list status (e.g., indentation, marking style, etc.); the list-end (.LE) 
macro restores it. The format of a list is specified only once at the beginning 
of list. You may also create your own customized sets of list macros with 
relatively little effort. 

4.5.1 Sample Nested List 

The input for several lists and the corresponding output ate shown below. 
The .AL and .DL macros are examples of the "list-initialization" macros. 
Here is some sample input text: 

4-18 

.AL A 

.LI 
This is an alphabetized item. 
This text shows the alignmentofthe second line of the item. 
The quick brown fox jumped over the lazy dog's back . 
. AL 
.LI 
This is a numbered item. 
This text shows the alignment of the second line of the item. 
The quick brown fox jumped overthelazydog'sback . 
. DL 
.LI 
This is a dash item. 
This text shows the alignment of the second line of the item. 
The quick brown fox jumped over the lazy dog's back. 



( 

(� 

mm Reference 

.LI + l  
This is a dash item with a plus as prefix. 
This text shows the alignment of the second line of the item. 
The quick brown fox jumped over the lazy dog's back . 
. LE 
.LI 
Thisis·numbered-item-2:--··· 
.LE 
.LI 
This is another alphabetized item, B. 
This text shows the alignment of the second line of the item. 
The quick brown fox jumped overthelazy dog's back . 
. LE 
.P 
This paragraph appears at the left margin. 

The output looks like this: 

A. This is an alphabetized item. This text shows the alignment 
of the second line of the item. The quick brown fox jumped 
overthelazy dog's back. 

1. This is a numbered item. This text shows the 
alignment of the _second line of the it�m. The quick 
brown fox jumped over the lazy dog's back. 

This is a dash item. This text shows the 
alignment of the second line of the item. "The 
quick brown fox jumped over the lazy dog's 
back. 

+- This is a dash item with a plus as prefix. This text 
shows the alignment of the second line of the 
item. The quick brown fox jumped over the lazy 
dog's back. 

2. This is numbered item 2. one or more lines of 
text that makeup the list item. 

B .  This is another alphabetized item, B. This text shows the 
alignment of the second line of the item. The quick brown 
fox jumped over the lazy dog's back. 

This paragraph appears at the left margin. 

4-19 



XENIX Text Processing 

4.5.2 List Item 

The list item macro has the form: 

.LI [mark] [1] 

The .LI macro is used with all lists. It normally causes the output of a single 
blank line before its item, although this maybe suppressed. If no arguments 
are given, it labels its item with the "current mark" which is specified by the 
most recent list-initialization macro. If a single argument is given to .LI, that 
argument is output instead of the cUirentmark. If two arguments are given, 
the first argument becomes a prefix to the current mark, thus allowing you to 
emphasize one or more items in a list. One unpaddable space is inserted 
between the prefix and the mark. For example: 

.BL 

.LI 
This is a simple bullet item . 
. LI + 
This replaces the bullet with a plus . 
. LI + 1 
But this uses plus as prefix to the bullet . 
. LE 

This yields: 

• Thisis asimplebulletitem. 

+ This replaces the bullet with a plus. 

+•  Butthisusesplus as prefix to the bullet. 

Note that the mark must not contain ordinary (paddable) spaces, because 
alignment of items will be lost if the right margin is justified. If the "current 
mark" in the current list is a null string, and the first argument of .Ll is 
omitted or null, the resulting effect is that of a "hanging indent", i.e., the 
first line of the following-teXt is outdented, starting at the same place where 
the mark would have started. 

4-20 

, ,  
'" 



( 

( !  

mm Reference 

4.5.3 List End 

The list end macro has the form: 

.LE [1] 

The list end macro restores the state of the list to that existing just before the 
niost rece-ntliSt-iriitializatiOri macro-CalL If tile opt:ioriiil 3iglii:JieiifiS giVeii, 
the .LE outputs a blank line. You should use this option only when the .LE 
is followed by running text, but not when followed by a macro that produces 
blank lines of its own, such as .P, .H, or .LI . 
. H and .HU automatically clear all list information, so you may omit the 
.LE(s) that would normally occur just before either of these macros. This is 
not recommended, however, because errors will occur if the list text is 
separated from the heading atsomelatertime (e.g., by insertion of text). 

4.5.4 Initializing Automatically Numbered or Alphabetized Lists 

The list initialization macro for numbered lists has the form: 

.AL [type] [text-indent] [1] 

The .ALmacro is used to begin sequentially numbered or alphabetized lists. 
If there are no arguments, the list is numbered and text is indented by Li, 
initially 6 spaces from the indent in force when the .AL is called, thus 
leaving room for a space, two digits, a period, and two spaces before the 
text. Values that specify indentation must be unsealed and are treated as 
character positions, i.e., as the number of ens in troff. 

Spacing at the beginning of the list and between the items can be suppressed 
by setting the list space (Ls) register. Ls is set to the innermost list level for 
which spacing is done. For example: 

.nr Ls 0 

specifies that no spacing will occur around any list items. The default value 
for Ls is 6 (which is the maximum list nesting level). 

The type argument may be given to obtain a different type of sequencing, 
and its value should indicate the first element in the sequence desired, (i.e., 
it must be 1, A, a, I, or i). Note that the 0001 format is not permitted. If type 
is omitted or null, then 1 is assumed If text�indtmt is non�null, it is used as 
the number of spaces from the curre at indent to the text, it is used instead of 
Liforthis list only. Iftext·indentisnull, then thevalueofLiwillbeused. 

If the third argument is given, a blank line will not separate the items in the 
list. A blank linewilloccurbeforethe:firstitem, however. 

4-21 



XENIX Text Processing 

4.5.5 Bullet List 

The list-initialization macro for a bullet list has the form: 

.BL [text-indent] [1] 

.BL begins a bullet list, in which each item is marked by a bullet ( •) followed 
by one space. If text-indent is non-null, it overrides the default indentation­
amount of paragraph indentation as given in the register Pi. In the default 
case, the text of bullet and dash lists lines up with the first line of indented paragraphs. If a second argument is specified, no blank lines will separate 
.the items in the list. 

4.5.6 Dash List 

The list-initialization macro for dash lists has theform: 

.DL [text-indent] [1] 

.DL is identical to .BL, <mcept that a dash is used instead of a bullet. 

4.5.7 Marked List 

The form of the list-initialization macro for a marked list is: 

.ML mark [text-indent] [1] 
.ML is much like .BL and .DL, except that it requires an arbitrary mark, 
which may consist of more than a single character. Text is indented text­
indent spaces if the second argument is not null; otherwise, the text is 
indented one more space than the width of the mark. If the third argument 
is specified, no blank lines will separate the items in the list. Note that the 
mark must not contain ordinary (paddable) spaces, because alignment of 
items will be lost if the right margin is justified. 

4.5.8 Reference List 

The Iist.,initialization macro for a reference list has_ the form: 

.RL [text-indent] [1] 
A .RL macro begins an automatically numbered list in which the numbers 
are enclosed by square brackets ([]). The tat-indent may be supplied, as for 
.AL. If omitted or null, it is assumed to be 6, a convenient value for lists 
numbered up to 99. If the second argum�t is. specified, no blank lines will 
separate the items in the list. 

4-22 



( \ 

c �  

mm Reference 

4.5.9 V arlable-Item List 

The list-initialization macro for a variable-item list is: 

.VL text-indent [mark-indent] [1] 

When a -list begins with a -.VL, -there is effectively -no current -mark; -it is 
expected that each .LI provides its own mark. This form is typically used to 
display definitions of terms or phrases. Mark-indent gives the number of 
spaces from the current indent to the beginning of the mark� and it defaults 
to 0 if omitted or null. Text-indent gives the distance from the current indent 
to the beginning oftbe text. If the third argument is specified, no blank lines 
will separate the items in the list. Here is an exam pie of . VL usage: 

.tr ­

.VL 20 2  

.LI mark"l 
Here is a description of mark 1; 
mark 1 of the .LI line contains-a tilde translated 
to an unpaddable space in order to avoid extra spaces 
between the mark and 1. 
.LI second-mark 
This is the second mark, also using a tilde translated 
to an unpaddable space. 
.LI third-mark-longer-than-indent: 
This item shows the effect of a long mark; one space separates the mark 
from the text. 
.LI -
This item has no mark because the 
tilde following the .LI is translated into a space . 
. LE 

This yields: 

mark 1 

second mark 

Here is a description of mark 1; mark 1 of the .Liline 
contains a tilde translated to an unpaddable space in 
order to avoid extra spaces between the mark and 1. 

This is the second mark, also using a tilde translated 
to an unpaddable space. 

thirdmarklongerthanindentThis item shows the effect of a long mark; 
one space separates the mark from the text. 

This item has no mark because the tilde following the 
.LI is translated in to a sp ace. 

The tilde argument on the last .LI above is required; otherwise a hanging 
indent would have been produced. A hanging indent is produced by using 
. VL and calling .LI with no arguments or with a null first argument. For 
example: 

4-23 



XENIX Text Processing 

.VL lO 

.LI 
Here is some text to show a hanging indent. 
The first line of text is at the left margin. 
The second is indented 10 spaces . 
. LE 

yields: 

Here is some text to show a hanging indent. The first lineof textis at the left 
margin. The second is indented lOspaces. 

Note that the mark must not contain ordinary (paddable) spaces, because 
alignment of items will be lost if the right margin is justified. 

4.5.10 List-Begin Macro and Customized Lists 

The list-begin macro has the form: 

.LB text-Indent mark-indent pad type [mark] [LI-space] [LB-space] 

The list-initialization macros should be adequate for most cases. However, 
if necessary, you may obtain more control over list layouts by using the basic 
list-begin macro .LB. 

A text-indent argument gives the number of spaces that the text is to be '".... 
indented from the current indent. Normally, this value is taken from the 
register Li for automatic lists and from the register Pi for bullet and dash 
lists. The combination of mark-indent andpatj. determines the placement of 
the mark. The mark is placed within an area (called "mark area") that starts 
mark-indent spaces to the right of the current indent, and ends where the 
text begins text-indent spaces to the right of the current indent. The mark-
indent argument is typically 0. Within the mark area, the mark is left­
justified if pad is 0. If pad is greater than 0, then n blanks are appended to 
the mark; the mark-indent value is ignored. The resulting string immediately 
precedes the text. That is, the mark is effectively right-justified pad spaces 
immediately to the left ofthe text. 

Type and mark Interact to control the type of marking used. If type is 0, 
simple marking is performed using the mark character(s) found in the mark 
argument. If type is greater than 0, automatic numbering or alphabetizing is 
done, and mark is then interpreted as the first item in the sequence to be 
used for numbering or alphabetizing (i.e., it is chosen from the set 1, A, a, I, 
i). 

Each nonzero value of type from 1 to 6 selects a different way of displaying 
the items. The following table shows the output appearance for each value 
of type: 

4-24 



I ' 
- I  

c 

( 

Type 
1 
2 
3 
4 
5 
6 

Appearance 
X. 
x) 
(x) 
[x] 
<x> 
{x} 

mm Reference 

The mark must not contain ordinary (paddable) spaces, because alignment 
of items will be lost if the right margin is justified. 

LI-space gives the number of blank lines (halves of a vertical space) that 
should be output by each .LI macro in the list. If omitted, LI-space defaults 
to 1;  the value 0 can be used to obtain compact lists. If LI-space is greater 
than 0, the .LI macro issues a .ne request for two lines just before printing 
the mark. LB-space, the number of blank lines to be output by .LB itself, 
defaults to Oif omitted. 

There are three reasonable combinations of LI-space and LB-space. The 
normal case is to set LI-space to 1 and LB-space to 0, yielding one blank line 
before each item in the list; such a list is usually terminated with a .LE 1 to 
end the list with a blank. line. For a more compact list, setLI-space to Oand 
LB-space to 1, and, again, use .LE 1 at the end of the list. The result is a list 
with one blank line before and after it. If you set both LI-space and LB­
space to 0, and use .LE to end the list, a list without any blank lines will 
result. 

4.6 Displays 

Displays are blocks of text that are to be kept together rather than split 
across pages. mm provides two styles of displays: a "static" (.DS) style and a 
"fioating" ( .DF) style. In the static style, the display appears in the same 
relative position in the output text as it does in the input text. If the display 
will not fit in the space remaining on a page, it will be shifted to the top of the 
next page. This may result in extra whitespace at the bottom of some pages. 
In the floating style, the display ftoats through the input text to the top of the 
next page if there is not enough room for it on the current page; thus the 
input text that follows a floating display may precede it in the output text. A 
queue of floating displays is maintained so that their relative order is not 
disturbed. 

By default, a display is processed in no-fill mode, with singlespacing, and is 
not indented from the existing margins. You can specify indentation or 
centering, as well as fill-mode processing. 

Displays and footnotes can never be nested in any combination. Although 
lists and paragraphs are permitted, no headings (.H or .HU) can occur 
within displays or footnotes. 

4-25 



XENIX Text Processing 

4.6.1 Static Displays 

A static display macro has the form: 

.DS [format] [fill] [rindent] 
one or more lines of text 
.DE 

A static display is started by the .DS macro and terminated by the .DE 
macro. With no arguments, .DS will accept the lines of text exactly as they 
are entered (no-fill mode) and will not indent them from the prevailing left 
margin indentation or from the right margin. The rindent argument is the 
number of characters that the line length should be decreased, i.e., an 
indentation from the right margin. This number must be unSealed in nroff 
an d is treated as ens. It maybe scaled in trofforelseitdefaults to ems. 

The format argument to .DS is an integer or letter used to control the left 
margin indentation and centering. The format argument can have the 
following meanings: 

Code Meaning 
" "  No indent 
0 or L No indent 
1 or I Indent by standard amount 
2 or C Ceo ter each line 
3 or CB Center as a block 

The fill argument is also an integer or letter and can have the following 
meanings: 

Code 
" "  

O or N  
1 or F 

Meaning 
-fill mode 
No-fill mode 
Fill mode 

Omitted arguments are interpreted as zero. 

The standard indentation is taken from the Si register which is initially set at 
5. Thus, by default, the text of an indented display aligns with thefirstline of 
indented paragraphs, whose indent is contained in the Pi register. Even 
though their initial values are the same, these two registers are independent 
of one another. 

The display format value 3 (CB) centers the entire display as a block (as 
opposed to .DS 2 and .DF 2, which center each line individually). That is, 
all the collected lines are left-justified, and the display is centered based on 
the width of the longest line. This format must be used in order for the 
eqn/neqn mark and lineup feature to work with centered equations. 

By default, a blank line is placed before and after displays. The blank lines 
before and after static displays can be inhibited by setting the register Ds to 
0. 

4-26 



( 

c 

mm Reference 

4.6.2 Floating Displays 

The!loatingdisplaymacro has the form: 

.DF [format] [fill] [rindent] 
one or more lines of text 
.DE 

A floating display is started by the .DF macro and terminated by the .DE 
macro. The arguments have the same meanings as for .DS (see Section 
4.6.1, "Static Displays"), except that for floating displays, indent, no 
indent, and centering are always calculated with respect to the initial left 
margin, because the prevailing indent may change between the time when 
the formatter first reads the floating display and the time that the display is 
printed. One blank line always occurs both before and after a floating 
display. 

You may control output positioning of floating displays through two number 
registers, De and Df. When a floating display is encountered by nroff or 
troff, it is processed and placed into a queue of displays waiting to be output. 
Displays are removed from the queue and printed in the orderthattheywere 
entered in the queue, which is the orderthatthey appearin theinputfile. If a 
new floating display is encountered and the queue of displays is empty, the 
new display is a candidate for immediate output on the current page. 
Immediate output is governed by the size of the display and the setting of the 
Df register. ThC: De register coritrols whether or n-ot text will appear on the 
current page after a floating display has been produced. 

The settings for the De register areas follows: 

0 

1 

Default: No special action occurs. 

A page eject will always follow the output i;>f each floating 
display, so only one floating display will appear bn a page and no 
text will follow it. 

The settings for th e Df register are as follows: 

0 

1 

2 

3 

Floating displays will not be output until end of section (when 
using section-page numbering) or end of document. 

Outputs the new floating display on the current page if there is 
room, otherwise hold it until the end of the section or document. 

Outputs exactly one floating display from the queue at the top of 
a new page or column (when in two-column mode). 

Outputs one floating display on current page if there is room. 
Outputs exactly one floating display at the top of a new page or 
column. 

4-27 



XENIX Text Processing 

4 

5 

Outputs as many displays as will fit (at least one}, starting at the 
top of a new page or column. Note that if register De is set to 1, 
each display will be followed by a page eject, causing a new top of 
page to be reached, where at least one more display will be 
output. 

Default. Outputs a new floating display on the current page if 
there is room. Outputs as many displays as will fit starting at the 
top of a new page or column. Note that if register De is set to 1, 
each display will be followed by a page eject, causing a new top of 
page to be reached, where at least one more display will be 
output. 

Note: anyvaluegreaterthan Sis treated asthevalue5. 

The .WC macro may also be used to control handling of displays in doublew 
column mode and to control the break in thetextbeforefloating displays. 

As long as the queue contains one or more displays, new displays will be 
automatically added to the queue, rather than be output. When a new page 
is started (or when at the top of the second column in two-column mode}, 
the next display from the queue will be output if the Dfregisterhas specified 
top-of-page output. When a display is output it is removed from the queue. 

When the end of a section (when using section-page numbering) or the end 
of a document is reached, all displays are automatically output and removed 
from the queue. This will occur before an .SG, .CS, or .TC macro is 
processed. 

A display fits on the current page if there is enough room to contain the 
entire display on the page, or if the display is longer than one page in length 
and less than half of the current page has been used. Wide(full page width) 
display will never fit in the second column of a two-column document. 

4.6.3 Tables 

The table macro has the form: 

.TS [H] 
global options; 
column descriptors. 
title lines 
[.TH [N]] 
data within the table . 
• TE 

The table start (.TS) and table end (.TE) macros allow use of the tbl 
processor. They are used to delimit the text to be  examined by the tbl \"'-
program as well as to set proper spacing around the table. The display 
function and the tbl delimiting function are independent of one another, 
however. In order to keep together blocks that contain any mixture of 
tables, equations, filled and unfilled text, and caption lines, the .TS-.TE 

4-28 



- !  

I 
! -, 

( 

( 

l_ 

mm Reference 

block should be enclosed within a display (.DS-.DE), as each display is 
always treated as a unit. Floating tables may be enclosed inside floating 
displays (.DF-.DE) . (For more information on displays, see Section 4.6, 
"Displays".) 
The macros .TS and .TE also permit processing of tables that extend over 
several _pages. __ If_a_ table headingJs ne_ed_ed _for __ each_.p_age_of __ a_multipage 
table, use the argument H with the .TS macro (as above) . Following the 
options and format information, the table heading is typed on as many lines 
as required and followed by the .TH (table header) macro. The .TH macro 
must occur when .TS H is used. Note that this is not a feature of tbl, but 
rather of mm macro definitions. 

The table header macro .TH may take as an argument the letter N. This 
argument causes the table header to b e  printed only if it is the first table 
header on the page. This option is used when it is necessary to build long 
tables from smaller .TS H-. TE segments. For example: 

.TS H 
global options; 
column descriptors. 
Title lines 
.TH 
data 
.TE 
.TS H 
global options; 
column descriptors. 
Title lines 
.TH N 
data 
.TE 

This causes the table heading to appear at the top of the first table segment, 
and no heading to appear at the top of the second segment when both 
appear on the same page. However, the heading will still appear at the top of 
each page that the table continues onto. This feature is used when a single 
table must b e  broken into segments because of table complexity (for 
example, too many blocks of filled text) . If each segment had its own .TS 
H-TH sequence, each segment would have its own header. However, if 
each table segment after the first uses . TS H. TH N then the table header will 
only appear at the beginning of the table and the top of each new page or 
column that the table continues onto. 

4-29 



XENIX Text Processing 

4.6.4 Equations 

The equation macro has the form: 

.DS I 

.EQ [label] 
equation(s) 
.EN 
.DE 

The equation formatters eqn and neqn use the the equation start (.EQ) and 
equation end (.EN) macros as delimiters in the same way that tbl uses .TS 
and .TE; however� .EQ and .EN must occur inside a .DSH.DE pair. There is 
an exception to this rule: if .EQ and .EN are used only to specify the 
delimiters for in-line equations or to specify eqn/neqn "defines", .DS and 
.DEmustnotbeused; otherwise, extrablan.k. lineswillappearin the output. 

The .EQ macro takes an argument that will be used as a label for the 
equation. By default� the label appears at the right margin in the vertical 
center of the general equation. The Eq register may be set to 1 to set the 
label at the left margin. The equation is centered for centered displays; 
otherwise, the equation is adjusted to the opposite margin from the label. 

4.6.5 Figure, Table, Equation, and Exhibit Captions 

The macros for captions have the form: 

.FG [title] [override] [flag] 

.TB [title] [override] [flag] 

.EC [title] [override] [flag] 

.EX [title] [override] [flag] 

The figure title (.FG), table title (.TB), equation caption (.EC), and exhibit 
caption (.EX) macros are normally used inside .DS-.DE pairs to 
automatically number and title figures, tables, and equations. They use 
registers Fg, Tb, Ec, and Ex, respectively. As an example, the macro: 

.FG "This is an illustration" 

yields: 

Figure 1.  This is an illustration 

Instead of "Figure" TB prints "TABLE"; .EC prints "Equation", and .EX 
prints "Exhibit". Output is centered if it can fit on a single line; otherwise, 
all lines but the first are indented to line up with the first character of the 
table title. The format of the numbers may be changed using the .af request 
of the formatter. The format of the caption may be changed from "Figure 1. '"'-
Title" to "Figure 1- Title" by setting the Of register to 1. 

The override string is used to modify the normal numbering. If flag is 
omitted or 0, override is used as a prefix to the number; if flag is 1, override is 
used as a suffix; and ifjlag is2, override replaces the number. lfthe -rN5fiag 

4-30 



c 

( i  

(� \ 

mm Reference 

is given, section-figure numbering is set automatically and the override string 
is ignored. 

As a matter of style, table headings are usually placed ahead of the text of the 
tables, while figure, equation, and exhibit captions usually occur after the 
corresponding figures and equations. 

4�6.6 List o-f Flgures,-TabJes;-Eqti&tlO.Ds,-and- -Exhibits 

Lists of Figures, Tables, Equations, and Exhibits may be obtained. They 
will be printed after the Table of Contents is printed if the number registers 
Lf, Lt, Lx, and Le are set to 1. Lf, Lt, and Lx are 1 by default; Le is 0 by 
default. 

The titles of these lists may be changed by redefining the following strings 
which are shown herewith their default values: 

.ds Lf LIST OF FIGURES 

.ds Lt LIST OFT ABLES 

.ds Lx LIST OF EXHIBITS 

.ds Le LIST OF EQUATIONS 

4.7 Footnotes 

There are two macros that delimit the text of footnotes, a .string used to 
automatically number the footnotes, and a macro that specifies the style of 
the footnote text. Like displays, footnotes are processed differently from 
the bodyofthetext. 

Footnotes may be automatically numbered by entering the three characters 
"\ *F" immediately after the text to be foetnoted, without any intervening 
spaces. This will place the next sequential footnote number (in a smaller 
point size) a half -line above the text to be footnoted. 

There are two macros that delimit the text of each footnote: 

.FS [label] 
one or more lin"es of footnote text 
.FE 

The footnote start (.FS) macro marks the beginning of the text of the 
footnote, and the .footnote end (.FE) macro marks its end. The label on 
.FS, if present, will be used to mark the footnote text. Otherwise, the 
number retrieved from the \*F will be used. Automatically numbered and 
user-labeled footnotes may be intermixed. If a footnote is labeled .FS the 
text to be footnoted must be followed by "label," rather than by\*F. The 
text between .FS and .FE is processed in fill mode. Another .FS, a .DS, or a 
.DF are not permitted between the .FS and .FE macros. Automatically 
numbered footnotes may not be used for information, such as the title and 

4-31 



XENIX Text Processing 

abstract, to be placed on the cover sheet, but labeled footnotes are allowed. 
Similarly, only labeled footnotes may be used with tables. Here are two 
examples: 

1.  Automatically numbered footnote: 

This is the line containing the word \ *F 
.FS 
This is the text of the footnote . 
. FE 
to be footnoted. 

2. Labeled footnote: 

This is a labeled* 
.FS * 
The footnote is labeled with an asterisk . 
. FE 
footnote. 

The text of the footnote (enclosed within the .FS-.FE pair) should 
immediately follow the word to be footnoted in the input text, so that\ *F or 
label occurs at the end of a line of input and the next line is the .FS macro 
call. It is also good practice to append an unpaddable space to ''label" when 
it follows an end-of-sentence punctuation mark (i.e.� period , question 
mark, exclamation point). 

4w7.1 Format of Footnote Text 

The footnote format macro has the form: 

.FD [arg] [1] 

Within the footnote text, you can control the formatting style by specifying 
text hyphenation, right margin justification, and text indentation, as well as 
left- or right-justification of the label when text indenting is used. The .FD 
macro is invoked to select the appropriate style. The first argument should 
be a number from the left column of the following table. The formatting 
style for each number is given by the remaining four columns. For further 
explan�tion of the first two of these columns, see the definitions of the .ad, 
.hy, .na, and .nh requests. 

4-32 



- I  ' 

( 

c 

mm Reference 

ARGUMENT FORMATTING STYLE 
0 .nh .ad text indent lab el left-iustified 
1 .hy .ad text indent lab el left-iustified 
2 .nh .na text indent lab elleft-iustified 
3 .hv .na text indent lab el left-iustified 
4 .nh .ad no indent lab elleft-justified 
5 .hv .ad no indent lab el left-iustitied 
6 .nh .na no indent label left-justitied 
7 .hv .na no indent lab el left-iustified 
8 .nh .ad text indent label right-justified 
9 .hv .ad text indent label ri•h t -iustified 
10 .nh .na text indent label ri•ht-iustified 
11 .hv .na text indent label right-justified 

If the first argument to .FD is out of range, the effect is as if .FD 0 were 
specified. If the first argument is omitted or null, the effect is equivalent to 
.FD 10 in nroff an9 to .FD 0 in troff; these are also the respective initial 
defaults. 

If a second argument is specified, then whenever a first-level heading is 
encountered, automatically-numbered footnotes begin again with 1 .  This is 
most useful with the section-page page numbering scheme. As an example, 
the input line: 

.FD '"' 1 

maintains the default forn:latting style and causes footnotes to be numbered 
beginning with 1 after each first-level heading. 

\ 
For long footnotes that continue onto the following page, it is possible that, 
if hyphenation is permitted, the last line of the footnote on the current page 
will be hyphenated. Except for this case (which you can change by 
specifying an even�numbered argument to .FD), hyphenation across pages 
is inhibited bymm. 

Footnotes are separated from the body of the text by a short rule. Footnotes 
that continue to the next page are separated from the body of the text by a 
full�width rule. In troff, footnotes are set in type that is two points smaller 
than thepointsizeused in thebody ofthetext. 

Normally, one blank line (a three-point vertical space) separates the 
footnotes when in ore than one occurs on a page. To change this spacing, set 
the register Fs to the desired value. For example: 

.nr Fs 2 

will cause two blank lines (a six�point vertical space) to occur between 
footnotes. 

4-33 



XENIX Text Processing 

4.8 Page Headers and Footers 

Text that occurs at the top of each page is known as the "page header". Text 
printed at the bottom of each page is called the "page footer". There can be 
up to three lines of text associated with the header: every page, even page ".:... 
only, and odd page only. Thus the page header may have up to two lines of 
text: the line that occurs at the top of every page and the line for the even· or 
odd-numbered page. The same is true for the page footer. When not 
qualified by "even" or "odd", "header" and "footer" will mean those 
headers and footers that occur on every page. The default appearance of 
page headers and page footers is described here, followed by the methods 
for changing them. 

4.8.1 Default Headers and Footers 

By default, each page has a centered page number as the header. There is no 
default footer and no even/odd default headers or footers, except with 
section·pagenumbering. 

In a memorandum or a released paper, the page header on the first page is 
automatically suppressed, if a break does not occur before .MT is called. 
Since they do not cause a break, the header and footer macros are permitted 
before the .MT macro call. 

4.8.2 Page Header 

The page header macro has the form: 

· .PH [arg] 

For this and for the .EH, .OH, .PF, .EF, and .OF macros, the argument is 
of the form: 

n 'left-part'cenier-part'right-part'" 

If it is inconvenient to use the apostrophe (') as the delimiter (because it 
occurs within one of the parts), it may be replaced uniformly by any other 
character. On output, the parts are left·justified, centered, and right· 
justified, respectively. 

The .PH macro specifies the headerthatis to appear at the top of every page. 
The initial value is the default centered page number enclosed by hyphens. 
The page number contained in the P register is an Arabic number. The 
format of the number may be changed by the . af request. 

If "debug mode" is set using the flag ·rDl on the command line, additional 
information, printed at the top left of each page, is included in the default 
header. 

4-34 



I 
-1 ' 

c 

c 

mm Reference 

4.8.3 Even-Page Header 

The even-page header macro has the form: 

.EH [arg] 

J]:��- .. EH._m_{!��9: _ _  �u.ppH�f? -� .W!.�- _tg_ .R� . .  _m::iJ;�J�d J!t_ U!,� J9R q_f__�.=!�lt.J;:Y�p,� 
numbered page, immediately following the header. The initial value is a 
blank line. 

4.8.4 Odd-Page Header 

The odd-page header macro has the form: 

.OH [arg] 

This macro is the same as .EH, except that it applies to odd-numbered 
pages. 

4.8.5 Page Footer 

The form of the page footer macro is: 
.PF [arg] 

The .PFmacro specifies the line that is to appear at the bottom of each page. 
Its initial value is a blank line. If the -rCn fiag is specified on the command 
line, the type of copy follows the footer on a separate line. In "Particular, if 
-rC3 or -rC4 (DRAFT) is specified, then the footer is initialized to contain 
the date, instead of being a blank line. 

4.8.6 Even-Page Footer 

The even -page footer macro has the form: 

.EF [arg] 

The .EF macro supplies a line to be printed at the bottom of each even­
numbered page, im.mediately·preceding the footer. The initial value is a 
blank line. 

4.8.7 Odd-Page Footer 

(�-- The odd·page footer macro has the form: 

.OF [arg] 

This macro is the same as .EF (described in Section 4.8.6), except that it 
applies to odd-numbered pages. 

4-35 



XENIX Text Processing 

4.8.8 Footer on the First Page 

By default, the footer on the first page is a blank line. If, in the input text, 
you specify .PF and/or . OF before the end ofthe first page of the document, 
then these lines will appear at the bottom of the first page. The header .'-
(whatever its contents) replaces the footer on the first page only if the -rNl 
fiagis specified on the command line. 

4.8.9 Default Header and Footer With Section-Page Numbering 

Pages can be numbered sequentially within sections. To obtain this 
numbering style, specify-rN3 or-rNS on the command line. In this case, the 
default footer is a centered section-page number (e.g., 7-2) and the default 
pageheaderis blank. 

4.8.10 Strings and Registers In Header and Footer Macros 

String and register names may be placed in the arguments to the header and 
footer macros. If the value of the string or register is to be computed when 
the respective header or footer is printed, the invocation must be escaped by 
four backslashes. This is because the string or register invocation is actually 
processed three times: as the argument to the header or footer macro; in a 
formatting request within the header or footer macro; aild in a .tl request 
during header or footer processing. 

For example, the page number register P m.ust be escaped with four 
backslashes in order to specify a header in which the page number is to be 
printed at the right margin: 

.PH '""Page \\\ \nP'" 

This creates a right-justified header containing the word "Page'' followed by 
the page number. 

4.8.11 Header and Footer Example 

The following sequence specifies blank lines for the header and footer lines, 
page numbers on the outside edge of each page {i.e., top left margin of even 
pages and top right margin of odd pages), and "Revision 3" on the top inside 
margin of each page: 

.PH "" 

.PF '"' 

.EH "'\\\\nP"Revision 3'" 
.OH '"Revision 3''\\\\nP"' 

4-36 



( 

( \ 

(_ ! 

mm Reference 

4.8.12 Generallzed Top·of�Page Processing 

This section and the next are intended only for users accustomed to writing 
formatter macros. During header processing, rom invokes two user­
definable macros. One, the .TP macro, is invoked in the environment of the 

_header. The _.PX macro_may b.e used .to_provide.text that is-to appear_at.the 
top of each page afterthe normalheader and that may have tab stops to align 
it with columns of text in the body ofthe document. 

The effective initial definition of .TP (after the :first page of a document) is; 

.de TP 

.sp 3 

.tl \\*{*}t 

.if e 'tl \\*{}e 
.if o 'tl \\*{}o 
.sp 2 

The string }t contains the header, the string }e contains the even-page 
header, and the string }o contains the odd-page header, as defined by the 
.PH, . EH, and .OH macros, respectively. To obtain more specialized page 
titles, you may redefine the .TP macro to cause any desired header 
processing. Note that formatting done within the .TP macro is processed in 
an environmentdifferentfrom that of the body. 

For example, to obtain a page header that includes three centered lines of 
data, say, a document's number, issue date, and revision date, you could 
define .TPas follows: 

.de TP 

.sp 

.ce 3 
777-888-999 
Iss. 2, AUG 1977 
Rev. 7, SEP 1977 
.sp 

4.8.13 Generalized Bottom-of-Page Processing 

The bottom start macro has the form: 

.BS 
zero or more lines of text 
.BE 

Lines of text that are specified between the bottom-block start (.BS) and 
bottom-block end (.BE) macros will b e  printed at the bottom of each page 
after the footnotes {if any), but before the page footer. This block of text is 
removed byspecifying an empty block, i.e.: 

4-37 



XENIX Text Processing 

.BS 

.BE 

4.8.14 Top and Bottom Margins 

The vertical margin macro has the form: 

.VM (top] [bottom] 

The vertical margin (. VM) macro allows you to specify extra space at the top 
and bottom of the page. This space precedes the page header and followS 
the page footer. The . VM macro takes two unsealed arguments· that are 
treated asv's. For example: 

.VM 10 15 

adds 10 blank lines to the default top of page margin, and 15 blank lines to 
the default bottom of page margin. Both arguments must be positive 
(default spacing at the top of the page maybe decreased by redefining . TP). 

4.9 Table of C ontents 

The table of contents for a document is produced by invoking the table of 
contents (.TC) macro. The table of contents is produced at the end of the 
writing process because the entire document must be processed before the 
table of contents can be generated. The table of contents macro has the 
form: 

.TC [sieve!] [spacing] (tlevel] [tab] [headl] .. .  [head?] 

The .TC macro generates a table of contents containing the headings that 
were saved for the table of contents as determined by the value of the CI 
register. The arguments to .TC control the spacing before each entry, the 
placement of the associated page number, and additional text on the first 
page of the table of contents before the word "CONTENTS". 

Spacing before each entry is controlled by the first two arguments; headings 
whose level is less than or equal toslevelwill have spacing blank lines (halves 
of a vertical space) before them. �oth slevel and spacing default to 1. This 
means that fitst-level headings are preceded by one blank liae. Note that 
slevel does not control what levels of heading have been saved; that is 
controlled by the setting of the Clregister. 

The third and fourth arguments control the placement of the page number 
for each heading. The P'!lle numbers can be justified at the right margin with 
�ther blanks or leader dots separating the heading te)rt from the page 
number, or the page numbers can follow the heading text. For headings 

' 
"' 

whose level is less than or equal to tlevel (default 2), the page numbers are '" 
justified at the right margin. In this case, the value of tab determines the 
character used to separate the heading text from the page number. If tab is 0 
(the default value), dots (i.e., leaders) are used; if tab is greater than 0, 
spaces are used. For headings whose level is greater than tlevel, the page 

4-38 



c 

( ' 

1 (  
I 

mm Reference 

numbers are separated from the heading text by two spaces (i.e., they are 
ragged right). 

All additional arguments (e.g., headl, head2), if any, are horizontally 
centered on the page, and precede the actual table of contents itself. 

If the .TC macro is invoked with at most four arguments, then the user-exit 
mat:ro . TX iS inVOked (WithOut 3tgflffi6nts)Oefo-z·e tli8 \�iOTd-"CONTENTS" 
is printed; or the user-exit macro .TY is invoked and the word 
"CONTENTS" is not printed. By defining .TX or .TY and invoking .TC 
with at most four arguments, you can specify what needs to be done at the 
top ofthe (first) page of the table of contents. 

By default, the first level headings will appear in the table of contents at the 
left margin. Subsequent levels will be aligned with the text of headings at the 
preceding level. These indentations may be changed by defining the Ci 
string which takes a maximum of seven arguments corresponding to the 
heading levels. It must be given at least as many arguments as are set by the 
Clregister. The arguments mustbe scaled. For example, with C1=5, 

.ds Ci .25i .5i .75i 1i 1i 

or 

.ds Ci 0 2n 4n 6n 8n 

Two other registers _ are available to modify the format of the table of 
contents, Oc and Cp. By default, table of contents pages will have 
lowercase Roman numeral page numbering. If the Oc registeris set to 1, the 
.TC macro will not print any page number but will inst�ad reset the Pregister 
to 1. It is your responsibility to give an appropriate page footer to place the 
page number. Ordinarily the same .PF used in the body of the document 
and exhibits will be adequate. The List of Figures and List of Tables will be 
produced separately unless Cp is set to 1 which causes these lists to appear 
on the same page as the table ofcontents. 

4.10 References 

There are two macros that delimit the text of references, a string used to 
automatically number the references, and an optional macro that produces 
reference pages within the document. 

4.10.1 Automatic Numbering of References 

Automatically numbered references may be obtained by entering \*(Rf 
immediately after the text to be referenced. This places the next sequential 
reference number (in a smaller point size) enclosed in brackets a half-line 
ab ave the text to be referenced. 

4-39 



XENIX Text Processing 

4.10.2 Delimiting Reference Text 

The .RS and .RF macros are used to delimit text for each reference. They 
havethefollowingform: 

A line of text to be referenced.\*(Rf 
.RS [string-name] 
reference text 
.RF 

4.10.3 Subsequent References 

.RS takes one argument, a "string-name". For example: 

.RS AA 
reference text 
.RF 

The string AA is assigned the current reference number. It may b e  used 
later in the document, as the string call\ *(AA to reference text which must 
be labeled with a prior reference number. The reference is output enclosed 
in brackets a half-line above the text to be referenced. No .RS or RF is 
needed for subsequent references. 

4.10.4 Reference Page 

An automatically generated reference page is produced at the end of the 
document before the table of contents and the cover sheet are output. The 
reference page is entitled "References". This page contains the reference 
text (RS/RF). The user may change the reference page title by defining the 
Rp string. For example, 

.ds Rp "New Title" 

The optional reference page ( .RP) macro maybe used to produce reference 
pages anywhere within a document (i.e., within heading sections) . 

. RP [argl] [arg2] 

These arguments allow the user to control resetting of reference numbering 
and page skipping. The first argument with a value of 0 indicates that the 
reference counter is to b e  reset; this is the default. A value of 1 indicates that 
the counter will not be reset. In the second argument, a value of 0 causes a 
following .SK; a value of 1 does not cause an .SK . .  RP need not be used 
unless you want to produce reference pages elsewhere in the document. 

4.11 Miscellaneous Features 

In this section a number of mm features to control font, spacing, 
justification, multiple-column output and page skipping are discussed. 

4-40 



c 

( 

mm Reference 

4.11.1 Bold, ltallc, and Roman Fonts 

Font changes are obtained with the following macros: 

.B [bold-arg] [previous-font-arg] . .  . 

.I [italic-arg] [previous-fan t-arg] .. . 

. R 
When called without arguments, .B changes the font to bold and .I changes 
to italic (troff') or underlining (nrofl'). This condition continues until the 
occurrence of a .R, when the regular Roman font is restored. Thus, 

.I 
here is some text . 
. R 

yields: 

here is some text. 

If .B or .I is called with one argument, that argument is printed in the 
appropriate font (underlined in nrolf for .I). Then the previous font is 
restored (underlining is turned off in nrofl'). If two or more arguments 
(maximum 6) are given to a .B or .I, the second argument is then 
concatenated to the first with no intervening space (1/12-space if the first 
font is italic), but is printed in the previous font; and the remaining pairs of 
arguments are similarly alternated. For example: 

.I italic " text " right -justified 

produces: 

italic text right-justified 

These macros alternate with the prevailing font at the time they are invoked. 
To alternate specific pairs of fonts, the following macros are available: 

.IB 

.BI 

.IR 

.RI 

.RB 

.BR 

Each takes a maximum of 6 arguments and alternates the arguments 
between the specified fonts. Note that font changes in headings are handled 
separately. 

(, 4.11.2 Right Margin Justlllcation 

The justification macro has the form: 

.SA [arg] 

4-41 



XENIX Text Processing 

The .SA macro is used to set right-margin justification for the main body of 
text. Two justification flags are used: ''current" and "default" . .  SA 0 sets 
both flags to no justification (i.e., it acts like the .na request) . .  SA 1 is the 
inverse: it sets both flags to cause justification, just like the .ad request. 
However, calling .SA without an argument causes the current flag to be \.. 
copied from the default flag, thus performing either an .na or .ad, 
depending on what the default is. Initially, both flags are set for no 
justification in nroifand for justification in troff. 

In general, the request .na can be used to ensure that justification is turned 
off, but .SA should be used to restore justification, rather than the .ad 
request. In this way, justification or lack thereof for the remainder of the 
text is specified by inserting .SA 0 or .SA 1 once at the beginning of the 
document. 

4.11.3 SCCS Release Identification 

The string \ *(RE contains the SCCS Release and Level of the current 
version ofmm. For example, entering: 

This is version \ *(RE of the macros. 

produces: 

This is version 15.110 of the macros. 

This information is useful in analyzing suspected bugs in mm. The easiest 
way to have this number appear in your output is to specify -rDl on the 
command line, which causes the string RE to be output as part of the page 
header. 

4.11.4 Two-Column Output 

mm can print two columns on a page: 

.2C 
text and formatting requests (except another .2C) 
.lC 

The .2C macro begins two-column processing which continues until a .lC 
macro is encountered. In two-column processing, each physical page is 
thought of as containing two columnar pages of equal (but smaller) page 
width. Page headers and footers are not affected by two-column processing. 
The .2C macro does not balance two-column output. 

It is possible to have full page width footnotes and displays when in two 
column mode, although the default action is for footnotes and displays to be '""'" 
narrow in two column mode and wide in one column mode. Footnote and 
display width is controlled by the width control (.WC) macro, which takes 
the following arguments: 

4-42 



,' � -

N 

WF 

-WF 

FF 

-FF 

WD 

mm Reference 

Normal default mode 

Wide footnotes always (even in two-column mode) 

Default: turns off WF (footnotes follow column mode, wide in 
1Cmode, narrowin2Cmode, unlessFFis set) 

First footnote; all footnotes have the same width as the first 
footnote encountered for that page 

Default: turns offFF (footnote style follows the settings ofWF or 
-WF) 

Wide displays always (even in two column mode) 

-WD Default: Displays follow whichever column mode is in effect 
when the display is encountered 

- - For example: .WC WD FF will cause all -displays to be wide, -and -all 
footnotes on a page to be the same width, while .WC N will reinstate the 
default actions. If conflicting settings are given to . WC the last one is used. 
That is, .WCWF-WFhas the effect of .WC-WF. 

4.11.5 Vertical Spacing 

The vertical space macro has the form: 

.SP [lines] 

The .SP macro avoids the accumulation of vertical space by successive 
macro calls. Several .SP calls in a row produce not the sum of their 
arguments, but their maximum; i.e., the following produces only 3 blank 
lines: 

.SP 2 

.SP 3 

.SP 

There are several ways of obtaining vertical spacing, all with different 
effects. The .sp request spaces the number of lines specified, unless no� 
space (.ns) mode is on, in which casethe requestisignored. The .ns mode is 
typically set at the end of a page header in order to eliminate spacing by a .sp 
or .bp request that just happens to occur at the top of a page. The .ns mode 
can be turned off with the restore spacing ( .rs) request. 

Many mm macros utilize .SP for spacing. For example, .LE 1 immediately 
followed by .P produces only a single blank line between the end of the list 
and the following paragraph. An omitted argument defaults to one blank 
line (one vertical space). Negative arguments are not permitted. The 
argument must be unsealed but fractional amounts are permitted. Like .sp, 
.SPis also inhibited by the .ns request. 

4-43 



XENIX Text Processing 

4.11.6 Skipping Pages 

The skip page macro has the form: 

.SK [pages] 

The .SK macro skips pages, but retains the usual header and footer 
processing. If pages is omitted, null, or 0, . SK skips to the top of the next 
page unless it is currently at the top of a page, in which case it does nothing . 
. SK n skips n pages. That is, .SK always positions the text that follows it at 
the top of a page, while .SK 1 always leaves one page that is blank except for 
the header and footer. 

4.11.7 Forcing an Odd Page 

The odd page macro has the form: 

.OP 

This macro is used to ensure that the following text begins at the top of an 
odd-numbered page. If currently at the top of an odd page, no motion takes 
place. If currently on an even page, text resumes printing at the top of the 
next page. If currently on an odd page (but not at tbe top of tbe page) one 
blank page is produced, and printing resumes on the page after that. 

4.11.8 Setting Point Size and Vertical Spacing 

In troff, the default point size (obtained from the register S) is 10, with a 
vertical spacing of 12 points. The prevailing point size and vertical spacing 
maybe changed by invoking the .S macro: 

.S [point size] [vertical.spacing] 

The mnemonics, D for default value, C for current value, and P for previous 
value, maybe used for both point size and vertical spacing arguments. 

Arguments may be signed or unsigned. If an argument is negative, the 
current value is decremented by the specified amount. If the argument is 
positive, the current value is incremented by the specified amount. If an 
argument is unsigned, it is used as the new value . .  S without arguments 
defaults to previous (P). If the first argument is specified but the second 
argument (vertical spacing) is not then tbe default (D) value is used. The 
default value for vertical spacing is always 2 points greater than the current 
point size value selected. Footnotes are printed in a size 2 points smaller 
than the point size of the body, with an additional vertical spacing of3 points 
between footnotes. A null (" ") argument for either the first or second � 
argument defaults to the current (C) value. 

4-44 



( 

( 

mm Refere·nce 

4.11.9 Inserting Text Interactively 

The read insertion macro has the form: 

.RD [prompt] [diversion] [string] 

'J;'he rea� ���-�-�IJil. �-�C!I?_()�-1?) --��!Q�� YC?� _t()_��o_p.J4� s!�.A4.�_rQ _O.l!!puJ Qf a 
document and to read text from the standard input until two consecutive 
new lines are found. When the new lines are encountered, normal output is 
resumed . 

. RD follows the formatting conventions already in effect. Thus, the 
examples below assume that the .RD is invoked in no fill mode (.nf). The 
first argument is aprompt which will be printed at the terminal. If no prompt 
is given, .RD signals the user with a bell on terminal output. 

The second argument, a diversion name, allows the user to save all the 
entered text typed after the prompt. The third argument, a string name, 
allows the user to save for later reference the first line following the prompt. 
For example: 

.RD Name aa bb 

produces 

Name: C. R. Jones 
16 Densmore St, 
Kensington 

The diversion a a contains: 

C. R. Jones 
16 Densmore St, 
Kensington 

The string bb contains C.R. Jones. 

A newline followed by a Ctrl-D (ASCII end-of-file) also allows you to 
resume normal output. 

4.12 Memorandum and Released Paper Styles 

rom lets you specify a style for a memorandum or technical paper with a 
macro that controls the layout of heading information (e.g. title, author, 
date, etc.) on the :first page or cover sheet. The information is entered in the 
same way for both styles; an argument indicates which style is being used. 
The macros used to specify paper style are described in this section. 

Note that it is critical to enter the macros in the order prescribed here. If 
neither the memorandum nor released-paper style is desired, the macros 
described below should be omitted from the input text. If these macros are 
omitted, the first page will simply have the page header followed by the body 
of the document. 

4-45 



XENIX Text Processing 

4.12.1 Title 

The title macro has the form: 

.TL 
one or more lines of title text 

The title of the memorandum or paper follows the .TL macro and is 
processed in fill mode. On output, the title appears after the word �'subject" 
in the memorandum style. In the released-paper style, the title is centered 
and bold. 

4.12.2 Authors 

The author macro has the form: 

.AU name [initials] 

.AT [title] . . .  

A separate . AU macro is required for each author named. 

The .AT macro is used to specify the author's title. Up to nine arguments 
may be given. Each will appear in the Signature Block for memorandum 
style on a separate line following the signer's name. The .AT must 
immediately follow the .AUforthe givenauthor. For example: 

.AU "C. R. Jones" [initials] [Joe] [dept] [ext] [room] "-

.AT "Editor-in-chief' 

In the "from" portion for the memorandum style, the author's name is 
followed by location and department number on one line and by room 
number and extension number on the next. The x forthe extensionis added 
automatically. The printing of the location, department number, extension 
number, and room number may be suppressed on the first page of a 
memorandum by setting the register Au to 0; the default value for Au is 1. 
Arguments 7 through 9 of the .AU macro, if present, will follow this 
"normal" author information in the "from" portion, each on a separate 
line. If your organization has a numbering scheme for memoranda, 
engineer's notes, etc., these numbers are printed after the author's name. 
This can be done by providing extra arguments to the .AU macro. 

The name, initials, location, and department are also used in the Signature 
Block descnOed below. The author information in the from portion, as well 
as the names and initials in the Signature Block will appear in the same order 
as the .AU macros. 

The names of the authors in the released-paper style are centered below the 
�- � 

4-46 



( 

( 

() 

mm Reference 

4.12.3 Technical Memorandum Numbers 

The technical memorandum macro has the form: 

.TM [number] . . .  

If the memorandum is a Technical Memorandum, the TM numbers are 
Supplicif Via the -.TM macro.- up-to "iiirie DuniberS-jnay be-specified. --Fo-r­
example: 

. TM 7654321 77777777 

If present, this macro will be ignored in papers assigJied-the released-paper 
or external-letter styles. 

4.12.4 Abstract 

The abstract macro h8s the form: 

.AS [arg] [indent] 
text of the abstract 
.AE 

Three styles of cover sheet are available: T-echnical Memorandum, 
Memorandum for File, and released-paper. On the cover sheet, the text of 
the abstract follows the autho_r information a:i:td is preceded by the centered 
and underlined (italic) word " ABSTRACT". 

· 

The abstract start (.AS) and abstract end (.AE) macros bracket the 
abstract. The abstract is optional except that for the Memorandum for File 
style no cover sheet will be produced unless an abstract is given. 

A combination of the first argument to .AS and the use of the .CS macro 
(see Section 4.12.15) controls the production of the cover sh"eet. If the first 
argument is 2, a Memorandum for File Cover sheet is generated 
automatically. Any other value for the first argument causes the text of the 
abstract to be saved until the .CS macro is invoked, then the appropriate 
cover sheet (either Technical MemOrandum or released paper depending on 
the .MT type) is generated. Thus, .CS is not needed for Memorandum for 
File cover sh-eets. Notations, such as a copy to list, are allowed on 
Memorandum for File cover sheets. The .NS _and .NE macros are given 
following the .AS 2 and .AE. 

The abstract is printed with ordinary text margins. An indentation to be 
used for both margins can be specified as the second argument for .AS. 
Values that specify indentation must be unsealed and are treated as 
character positions, i.e., -as the number of ens. Headings and displays are 
not permitted within an abstract. 

447 



XENIX Text Processing 

4.12.5 Other Keywords 

The keyword macro has the form: 

.OK [keyword] . ..  

Topical keywords should be specified on a Technical Memorandum cover 
sheet. Up to nine such keywords or keyword phrases may be specified as 
argume11ts to the .OK macro; if any keyword contains spaces, it must be 
enclosed within double quotation marks. 

4.12.6 Memorandum Types 

The memorandum type macro has the form.: 

.MT [type] [addressee] 

The .MT macro controls the format of the top part of the first page of a 
memorandum or of a released paper, as well as the format of the cover 
sheets. Legal codes for type and the corresponding values are: 

Code Value 
.MT "" No memorandum type is printed 
.MT 0 No memorandum type is printed 
.MT MEMORANDUM FOR FILE 
.MT 1 MEMORANDUM FOR FILE 
.MT 2 PROGRAmmER'S NOTES "--

.MT 3 ENGINEER'S NOTES 

.MT 4 Released-paper style 

.MT 5 External-letter style 

.MT "string"" String 

If type indicates a memorandum style, then the value will be printed after the 
last line of author information. If type is longer than one character, then the 
string itself will be printed. For example: 

.MT "Techni�al Note #5" 

A simple letter is produced by calling .MT with a null (but not omitted!) or 
zero argument. 

The se·cond argument to .MT is used to give the name of the addressee of a 
letter. The name and page number will be used to replace the ordinary page 
header on the second and following pages of the letter. For example, 

.MT 1 " Charles Jones" 

produces 

Charles Jones - 2 

as the header on the second page. 

This second argument may not be used if the first argument is 4 (the 
released-paper style). 

4-48 



i ' 
I 
I 
I 
! 

( 

( 

mm Reference 

In the external-letter style (.MT 5), only the title (without the word 
"subject:") is printed in the upper left and right corners, respectively, on the 
first page. You would normally use this style with preprinted stationery that 
has the company name and address already printed on it. 

4._12.7 J?.at� and ¥orma�_C-!t�n_ge:s 

By default, the currentdate appearsin the datepart ofa memorandum. This 
can be overridden by using: 

.ND new-date 

The .ND macro alters the value of the string DT, which is initially set to the 
current date. 

4.12.8 Alternate First-Page Fonnat 

You can specify that the words "subject", "date", and "from" be omitted in 
the memorandum style by using the alternate format (.AF) macro. Unless 
you use the .AF macro, with your own companyname as an argument, "Bell 
Laboratories" will automatically be printed as the company name on any 
papers which begin with .MT macros. Therefore, you will always want to 
use: 

.AF [company-name] 

If an argument is given, it replaces "Bell Laboratories" without affecting the 
other headings. The .AF with no argument suppresses "Bell Laboratories" 
as well as the "subject", "date", and "from" headings. The use of .AFwith 
no arguments is equivalent to the use of -rAl on the command line, except 
that the latter must be used if it is necessary to change the line length and/or 
page offset (which default to 5 .8i and li, respectively, for preprinted forms). 
The command line options-rOk and -rWk are not effective with .AF. 

The only .AF option appropriat� for troff is to specify an argument to 
replace "Bell Laboratories" with another name. 

4.12.9 Released-Paper Style 

The released-paper style is obtained by specifying: 

.MT 4 [1] 

This results in a centered, bold title followed by centered names of authors. 
The location of the last author is used as the location following "Bell 
Laboratories" unless .AF is used to specify a different company. If the 
optional second argument to .MT 4 is given, Then the name of each author 
is followed by the respective company name and location. Information 
necessary for the memorandum style but not for the released-paper style is 
ignored. The Signature Block macros and their associated lines of input are 

4-49 



XENIX Text Processing 

also ignored when the released-paper style is specified. 

In addition to using the .AF macro to specify your company name, you can 
define a string with a two-characternameforyour address before each .AU. 
For example: 

.TL 
A Learned Treatise 
.AF "Getem, Inc." 
.ds XX "22 Maple Avenue, Sometown 09999" 
.AU "F. Swatter" "" XX 
.AF "Profit Associates" 
.AU "Sam P. Lename" "" CB 
.MT 4 1  

4.12.10 Order of Invocation of Beginning Macros 

The macros described in this section must be given in the following order if 
they are used to define document style: 

.ND new-date 

.TL 
one or more lines of text 
.AF [company-name] 
.AU name [initials] [Joe] [dept] [ext] [room] [arg] [arg] [arg] 
.AT [title] . . .  
. TM [number] . . .  
. A S  [ arg] [indent] 
one or more lines of text 
.AE 
.NS [arg] 
one or more lines of text 
.NE 
.OK [keyword] . . .  
. MT [type] [addressee] 

The only required macros for a memorandum or a released paper are . TL, 
.AU, and .MT; all the others (and their associated input lines) may be 
omitted if the features they provide are not needed. Once .Mf has been 
invoked, none of the above macros (except .NS and .NE) can be reinvoked 
because they are removed from the table of defined macros to save space. 

4.12.11 Macros for the End of a Memorandum 

At the end of a memorandum (butnotofareleased paper), the signatures of \ "-
the authors and a list of notations can be requested. The following macros 
and their input are ignored if the released-paper style is selected. A 
signature block macro is provided in the form: 

4-50 



( 
.FC [closing] 
.SG [arg] [1] 

mm Reference 

.FC prints "Yours very truly" as a formal closing. It must be given before the 
.SG which prints the signer's name. A different closing may be specified as 
an argument to .FC . .  SG prints the author name(s) after the formal closing 
(or thelastline oftext). Each name begins aUhe centerof.the-page.-Three 
blank lines are left above each name for the actual signature. If no argument 
is given, the line of reference data (e.g. , location code, department number, 
author's initials, and typist's initials) will not appear following the last line. 

A first argument is treated as the typist's initials, and is appended to the 
reference data. A null argument prints reference data with _neither the 
typist's initials nor the preceding hyphen. 

If there are several authors and if the second argument is given, then the 
reference data is placed on the same line as the name of the first author, 
rather than on the line that has the name ofthelastauthor. 

The reference data contains only the location and department number of 
the first author. Thus, if there are authors from different departments or 
from different locations, the reference data should be supplied manually 
aftertheinvocation (without arguments) oft:Q_e .SG macro. 

(-
4.12.12 Copy to and Other Notations 

\ 

c� � 

The notation macro bas the form: 

.NS [arg] 
zero or more lines of the notation 
.NE 

After the signature and reference data, many types of notations may follow, 
such as a list of attachments or copy to lists. The various notations are 
obtained through the .NS macro, which provides for the proper spacing and 
for breaking the notations across pages, if necessary. 

The codes forarg and the corresponding notations are: 

4-51 



XENIX Text Processing 

Code 
.NS H "  
.NS O 
.NS 
.NS 1 
.NS 2 
. NS 3 
.NS 4 
. NS S 
. NS 6 
.NS 7 
.NS B 
.NS 9 
.NS "string" 

Notations 
Copy to 
Copy to 
Copy to 
Copy (with alt.) to 
Copy (without att.) to 
Att . 
Atts . 
Enc . 
Encs. 
Under Separate Cover 
Letter to 
Memorandum to 
Copy (string) to 

If arg consists of more than one character,. it is placed within parentheses 
between the words ucopy" and "to". For example: 

.NS "with att. 1 only" 

generates "Copy (with att. 1 only) to" as the notation. More than one 
notation may b e  specified before the .NE occurs, because a .NS macro 
terminates the preceding notation, if any. 

The .NS and .NE macros may also be used at the beginning following .AS 
and .AE to place the notation list on the Memorandum for File cover sheet. 
If notations are given at the beginning without .AS 2, they will b e  saved and \.:...._ 
output at the end of the document. 

4.12.13 Approval Signature Llue 

The approval signature macro has the form: 

.AV "Jane Doe" 

It can b e  used to provide a space for an approval signature next to the 
printed name. 

4.12.14 Forcing a One-Page Letter 

At times it is useful to get a bit more space on the page, by forcing the 
signature or items within notations onto the bottom of the page, so that the 
letter or memo is just one page in length. This can be accomplished by 
increasing the page length through the ·rLn option, e.g. ·rL90. This has the 
effect of making the formatter believe that the page is 90 lines long and 
therefore giving it more room than usual to place the signature or the 
notations. ThiS will only work for a single-page letter or memo. 

4-52 



' 
- j  

I 
I 

( 

( 

c 

mm Reference 

4.12.15 Cover Sheet 

The cover sheet macro has the form: 

.CS [pages] [other] [total] [figs] [tbls] [refs] 

The .CS _ _  macro generates a cover _shee� irJ. either the __ Technical 
· -MemOrandum (TM) Or�reieased-paper st}'Ie: Alf6f the other inf01-D:l3tiOD. 

for the cover sheet is obtained from the data given before the .MT macro 
call. If a TM style is used, the .CS macro generates the "Cover Sheet for 
Technical Memorandum". The data that appears in the lower left comer of 
the TM cover sheet (the number of pages of text, thenumberofotherpages, 
the total number of pages, the number of figures, the number of tables, and 
the number of references) is generated automatically. These values may be 
changed by supplying the appropriate arguments to the .CS macro. Any 
values that are omitted will be calculated automatically (0 is used for other 
pages). Ifthe released-paperstyle is used, all arguments to .CSareignored. 

4.13 Reserved Names 

If you are extending, changing, or redefining existing mm macros, use the 
legal names listed in this section. The following conventions are used in this 
section to describe legal names: 

n 
a 
A 
X 
s 

Digit 
Lowercase letter 
Uppercase letter 
Any letter or digit (any alphanumeric characfer) 
Special character (any nonalphanumeric character) 

All other characters are literals (i.e., stand for themselves). 

Note that "request", "macro" ,  and "string" names are kept by the 
formatters in a single internal table, so that there must be no duplication 
among such names. ''Number register'' names arekeptin a separate table. 

4.13.1 Names Used by Formatters 

These are the names of the registers and requests used bynroffand troff. 

Requests 

Registers 

aa (most common) 
an (only one, currently: .c2) 

aa (normal) 
.x (normal) 
.s (only one, currently: .$) 
% (pagenumber) 

4-53 



XENIX Text Processing 

4.13.2 Names Used by mm 

These are the names ofthemacros, strings, and registers used bymm. 

Macros 

Strings 

AA (most commOn, accessible to User) 
A (less common, accessible to user) 
)x (internal, constant) 
>x (internal, dynamic) 

AA (most common, accessible to user) 
A (less common, accessible·to User) 
]x (internal, usually allocated to specific functions throughout) 
}x (internal, more dynamic usage) 

Registers Aa (mostcommon, accessible to users) 
An (common, accessible to user) 
A (accessible, set on command line) 
:x(mostlyinternal, rarely accessible, usually dedicated) 
;x(intemal, dyn�ic, temporaries) 

4;13.3 Names Used by eqn/neqn and tbl 

The equcition preprocessors, eqn and neqn, use registers and string names 
oftheform nn. The table preprocessor, tbl, uses the following names: 

a- a+ a I nn #a #1/ #- #" ·a T& TW 

4.13.4 User-Dellnable Names 

None·of the aboVe may be used to define your own extensions. To avoid 
problems, use-names that consist either of a single-lowercase letter, or of a 
lowercase letter followed by anything other than a lowercase letter. The 
following is a sample naming convention, where a can be any letter: 

For macros 

For strings 

For registers 

4-54 

use a lowercase letter, followed by an uppercase letter 
(aA), or an uppercase letter followed by a lowercase letter 
(Aa). 

use a, ·followed by a parenthesis Q), a bracket 0), or a 
brace (}). 

use a lowercase letter followed by an uppercase letter ( aA ). 



( 
' 

( 

c 

mm Reference 

4.13.5 Sample Extension 

The following is an example of how mm macro definitions may be extended. 
This sequence generates and numbers the pages of appendices: 

.nr Hu 1 
:iir--a-·o 
.de aH 
.nr a +1 
.nr P O  
.PH ""' Appendix \\na - \\\\\\\\nP"' 

.SK 

.HU "\\$1" 

After the above initialization and definition, each call of the form .aH 
"title" begins a new page (with the page header changed to "Appendix a �n 
") and generates an unnumbered heading of "title," which, if desired, can 
be saved for the table of contents. Those who wish Appendix titles to be 
centered must, in addition, set the register He to 1. 

4.14 Errors, Strings, Macros and Number Registers 

Refer to Appendix B "Error Messages" for an explanation of error 
messages. 

Refer to Appendix C "mm Macros, Strings, and Number Registers" for a 
list of the macros, strings, and number registers used by mm. There is also 
usage information and a brief description of each. 

4-55 





Chapter 5 
Using Nroff/Troff 

5.1 Introduction 1 

5.2 Inserting Commands 2 

5.3 Point Sizes and Line Spacing 2 

5.4 Fonts and Special Characters 4 

5.5 Indents and Line Lengths 6 

5.6 Tabs 7 

5. 7 Drawing Lines and Characters 8 

( 5.8 Strings 11 

5.9 Macros 11 

5.10 Titles, Pages and Numbering 13 

5.11 NumberRegistersand Arithmetic 15 

5.12 Macros with Arguments 16 

5.13 Conditionals 18 

5.14 Environments 19 

5.15 Diversions 20 





I 
'"-

( 

Using Nro!f/Tro!f 

5.1 Introduction 

Nroff and troff are the XENIX text formatting programs for producing high­
quality printed output on the lineprinter and phototypesetter, respectively. 
Commands in the two formatting programs nroff and troff are identical, 
aJtJIOugll_ t}!g�� _ spe.c;ifjc:;_a:ti�HJ,S �)J.jqh --�r� iJJJ,pg_ss�Ple;_ tq _ _  aq];Jj!'!V� _Pil _�_ 
lineprinter-like changes in point size, font, or variable spacing-are either 
approximated or ignored by nroff. The output of nroff and troff may look 
dramatically different, but this is largely the result of the limitations of 
conventional lineprinters. In this chapter, the two programs will be treated 
together; the names nroff and trofl' are used synonymously. Commands not 
recognized by nrOff or which result in significantly different output will be 
noted. 

Wherever possible, you should avoid using nroff or troff directly. In many 
ways, nroff and troff resemble computer assembly languages: they are 
powerful and flexible, but they require that many operations must be 
specified at a level of detail and complexity too difficult for most people to 
use effectively. That is why it is suggested that you use the mm macro 
package instead. If you must deal with specialized text, you can use the eqn 
macros for typesetting mathematics and the tbl program for producing 
complex tables. Eqn and tbl are discussed in Chapters 10 and 11 of this 
manual. 

For producing running text, whether or not it contains mathematics or 
tables, you will ordinarily want to use the mm macro package, described in 
Chapter 3, "Using the mm Macros" and Chapter4, "mm Reference". 

All these macro packages offer the capability of meeting most formatting 
requirements. You may find you have little or no need to use nro:ff/troff 
directly. The macros define formatting rules and operations for specific 
styles of documents. The definitions are concise: in most cases two-letter 
commands. In those cases where an existing macro will not do the job, the 
solution is not to write an entirely new set of nroffltroff instructions from 
scratch, but to make small adaptations to macros you are already using. 

This chapter is meant to introduce you to the formatting possibilities of 
nroff/troff. It does not discuss every command or operation in detail. The 
emphasis is on demonstrating simple and commonly used specifications, 
with examples ofsome ofthevariations you may need to create. 

5-1 



XENIX Text Processing 

The following topics are in traduced in this tutorial: 

Specifying point size, fonts, and special characters 

Determining line spacing, line lengths, indents, and tabs 

Using string definitions and macros 

Specifying title and pagination styles 

Specifying conditionals, environments, and diversions 

5.2 Inserting Commands 

To use nroff or troff you intersperse formatting commands with the actual 
text you want printed, just as you did with MM commands descnbed in the 
last chapter. You will notice that nroffand troff commands are in lowercase, 
so you will not confuse them with the M:M: macros. Most nroff and troff 
commands are placed on a line separate from the textitself, beginning with a 
period, one command per line. For example, if you had a file that contained 
the following lines: 

Some text . 
. ps 14 
Some more text. 

the . ps command would instruct troll' to change the point size, that is, the 
size of the letters being printed, to 14 point (one point is 1/72-inch). Your 
output would look like this: 

Some text. Some more text. 
If you were to use nroffto output this same file to the lineprinter, nroffwould 
ignore the .ps command and you would see no difference in the size of your 
letters. 

Some nroff/troff commands do occur in the middle of aline. To produce 

This line contains font and point size changes. 

you have to enter: 

This \ffiline\fR contains \flfont and \s+2point size\s-2 changes. 

The backslash character "\" is used to introduce nroffltroff commands and 
special characters within a line of text. 

5.3 Point Sizes and Line Spacing 

As we just saw, point size and vertical spacing are not normally controllable 
in nroff (lineprinter) output. In troff, the command . ps sets the point size. 
One point is 1172-inch, so 6-point characters are at most 1/12-inch high, and 

5-2 



c 

(_ 

Using Nroff!Troff 

36-point characters are 1/2-inch. There are 14 point sizes available, as 
illustrated: 

6 point: In Xanadu did Kublai Khan ... 
7 point: In Xanadu did Kublai Khan ...  
8 point: In Xanadu did Kub1ai Khan ... 

-�- pg_iAt: _ _ln ��.!Ht9.1l __ 4icl __IQJ]ll�j_ K4_�n ... _· _ 
10 point: In Xanadu did Kublai Khan . . .  
11 point: In Xanadu did Kublai Khan . . .  
12 point : In Xanadu did Kublai Khan . . .  

14 point: In Xanadu did Kublai Khan . . .  

16 point 1 8  point 20 point 

24 28 36 
If the number after .ps is not one of these legal sizes, it is rounded up to the 
next valid value, to a maximum of36. If no number follows .ps, trofl'reverts 
to its previous size. Troffbeginswith a defaultpointsize oflO. 

Point size can also be changed in the middle of a line or even a word with the 
in�line command "\s". To produce 

The XENIX system is derived from the UNIX system. 

enter: 

The \s12XENIX\s8 system is derived from the \s12UNIX\s8 system. 

The \s should be followed by a legal point size. An \sO causes the size to 
revert to its previous value. An \slOll means "size 10, followed by an 11". 

Relative size changes are possible. The following 

The \s+ZXENIX\s-2 system 

increases the point size by two points, then restores it. The amount of the 
relative change is limited to a single digit. 

Another feature to consider is the spacing between lines, which is set 
independently of the point size. Vertical spacing is measured from the 
bottom of one line to the bottom of the next. The command to control 
vertical spacing is .vs. For running text, it is usually best to set the vertical 
spacing about20% bigger than the point size. 

For example, to use what typesetters call "9 on 11", that is, a point size of9  
with a vertical spacing of 11, you would insert the following commands: 

.ps 9 

.vs llp 

If you do not specify a point size or vertical spacing, troffautoniaticallyuses 
10on 12. 

5-3 



XENIX Text Processing 

Point size and vertical spacing make a substantial 
difference in the amount of text per square inch. (This is 
12on 14.) 
Point sizeandverticalspaclngmake asubstantialdifferenceintheamounto[te:rctpersquareinch. Forexample, 10 \...._ 
on 12 uses about twice as much space as 7 on 8. Thisis6 on7, which is even smaller, and packsa lot more words per 

line. 

When you use the commands .ps and .vs without numbers, troff reverts to 
the previous size and vertical spacing. 

The .sp command can be used to get vertical space. Without a number, it 
givys you one blank line (one unit of whatever .vs has been set to). The .sp 
can be followed by a unit specification: 

.sp 2i 
means "two inches of vertical space". The command: 

.sp 2p 

means "two points of vertical space". The command: 

.sp 2 

means "two vertical spaces" of whatever size . vs is set to. Be careful to 
specify the correct unit of space. 

Troffalso understands decimal fractions in most commands, so 

.sp l.Si 

is a space of 1.5 inches. Scaling (designating a unit of measure such as 
inches, points, or picas) can also be used after .vs to define line spacing, and 
in fact after most commands that deal with physical dimensions. 

5.4 Fonts and Special Characters 

The phototypesetter is limited to four different fonts at any one time. 
Normally three fon-ts (Roman_, italic and bold) and one collection of special 
characters are permanently mounted. What these fonts will actually look 
like depends on your own_ typesetting equipment. Here are the Roman, 
italic, and bold character sets: 

abcdefghijklmnopqrstuvwxyz 0123456789 
ABCDEFGIDJKLMNOPQRSTUVWXYZ 
abcdefghijklmnopqrstuvwxyz 0123456789 
ABCDEFGHllKLMNOPQRSTUVWXYZ 
abcdefghljklmnopqrstuvwxyz 0123456789 
ABCDEFGHUKLMNOPQRSTUVWXYZ 

Troff prints in Roman by default, unless instructed otherwise. To switch 
into bold, use the .ft (font) command 

.ft B 

5-4 



c \  

( 

C .. 

and for italics, 

.ft I 

Using Nrolf/Trolf 

To return to roman, use .ftR; to return to the previous font, whatever it was, 
use either .ft P or just .ft. The underline command .ul causes the next input 
line to print in italics. The .ul can be followed by a count to indicate that 
Jll9r�Jh�n_p:qeJiil�_i$J_p_b_�jt�li-���--
Fonts can also be changed within a line or word with the in-line command 
"\r'. The words 

boldface text 

are produced with 

\fBb old\flface\fR text 

There are other fonts available besides the standard set, although only four 
can be mounted at any given time. The ·command .fp tells troff what fonts 
are physically mounted on the typesetter: 

.fp 3 H  

says that the Helvetica font is mounted on position 3. Appropriate .fp 
commands should appear at the beginning of your· document if you do not 
use the standard fonts. 

It is possible to print a document by using font numbers instead of names. 
For example, \f3 and .ft 3 mean "whatever font is mounted at position 3". 
Normal settings are Roman font on 1, italic on 2, bold on 3, andspecialon4. 
An approximation of bold font can also be created by overstriking letters 
with a slight offset. This is done with the command .b d. 

Special characters have four-character names beginning with "\(", and they 
may be inserted anywhere. In particular, Greek letters are all of the form 
'\(*-", where "-" is an uppercase or lowercase Roman letter similar to the 
Greek. To get 

B(a X/3) ..., oo 

in troftwe have to enter: 

\(*S(\(*a\(mu\(*b) \(\(-> \(if 

which is a series of special characters: 

\(*S B 
( ( 
\(*a a 
\(mu X 
\(*b f3 ) ) 
\(-> .... 
\(if 00 

You could also use the mathematical typesetting program eqn to achieve the 
same effect: 

5-5 



XENIX Text Processing 

SIGMA ( alpha times beta ) -> inf 

Whether you choose to use eqn or the troft' special character set should 
depend on how often you use Greek or other special characters. 

Nroff and troff treat each four-character name as a single character. Some 
characters are automatically translated into others: grave and acute accents 
(apostrophes) become open and close single quotation marks ("); the 
combination of single quOtation marks is generally preferable to the double 
quotation mark character. ("). A typed minus sign becomes a hyphen -. To 
print an explicit minus sign, use "\-". To print a backslash, use "\e". 

5.5 Indents and Line Lengths 

Troff starts with a default line length of 6.5 inches. To reset the line length, 
use the .II (line length) command, as in 

.II 6i 

to indicate a line length of 6 inches. The length can be specified in the same 
ways as the space ( .sp) command, in inches, fractions of inches, or points. 

The maximum line length provided by the typesetter is 7.5inches. To use the 
full width, however, you will have to reset the default physical left margin, 
which is normally slightly less than one inch from the left edge of the paper. 
This is done with the pageoffset(.po) command: 

.po 0 

This sets the offset as far to the left as it will go. 

The indent (.in) command causes the left -margin to be indented by a 
specified amount from the page offset. If we use .in to move the left margin 
in, and .11 to move the right margin to the left, we can make offset blocks of 
text. Forexample, 

.in 0.6i 

.ll -0.6i 
text to be set into a block 
.II ->{).6i 
.in -0.6i 

will create a block that looks like this: 

Pater noster qui est in caelis sanctificetur nomen tuum; 
adveniat regnum tuum; fiatvoluntas tua, sicut in caelo, etin 
terra . . .  Amen. 

Notice the use of+ and -to specify the amount of change. These change the 
previous setting by the specified amount, rather than just overriding it. The 
distinction is quite important: .ll + 1i makes lines one inch longer than 
current setting; .ll li makes them one inch long. If no argument is specified 
with .in, .11, and . po, troffreverts to the previous value. 

5-6 

'"'-

\c )  



- i  
I I 

c 

( 

Using Nroff/Troff 

To indent a single line, use the temporary indent (.ti) command. The 
default unit for . ti, as for most horizontally oriented commands such as .ll, 
.in, . po, is an em. An em is roughly the width of the letter m in the current 
point size. Although inches may seem a more intuitive measure to 
non typesetters, ems are a measure of size that is proportional to the current 
point size. If you want to make text that keeps its proportions regardless of 
point size;--you-should-use-ems for all-dimensions.- -Ems can-be specified -in 
the same way as points or inches: 

.ti 2.5m 

Lines can also be indented negatively if the indent is already positive: 

ti -0.3i 

causes the next line to be moved back three tenths of an inch. You can make 
a decorative initial capital, indent a whole paragraph, and move the initial 
letter back with a .ticommand: 

Pater noster qui est in caelis sanctificetur 
nomen tuum; adveniat regnum tuum; 

fiat voluntas tua, sicut in caelo, et in terra. 
Amen. 

This is achieved with the following: 

.II -0.3i 

.fi 

.in +3i 

.ti -0.3i 

The P is  made bigger with a �'\s36P\s0". It also has been moved down from 
its normal position with a local motion, as described in Section 5. 7, 
"Drawing Lines and Characters". 

5.6 Tabs 

Tabs can be used to produce output in columns, or to set the horizontal 
position of output. Typically, tabs are used only in unfilled text. Tab stops 
are set by default every 1/2-inch from the current indent, but can be changed 
with the .tacommand. To set stops every inch, for example, use: 

.ta li 2i 3i 4i Si 6i 

The stops are left-justified, as they are on a typewriter, so lining up columns 
of right-justified numbers can be painful. If you have many numbers, or if 
you need more complicated table layout, do not attempt to use nroff or trotf 
commands. Use the tbl program instead. (See Chapter 7, "Formatting 
Tables".) 

For a handful of numeric columns, you can precede every number by 
enough blanks to makeitlineupwhen entered: 

5-7 



XENIX Text Processing 

.nf 

.ta 1i 2i 3i 
1 tab 2 tab 3 

40 tab 50 tab 60 
700 tab 800 tab 900 
.fi 

Then change each leading blank into the string "\0". This is a character that 
does not print, but that has the same width as a digit. When printed, this will 
produce 

1 
40 

700 

2 
50 

800 

3 
60 

900 
It is also possible to fill up tabbed-over space with a character other than a 
space by setting the ''tab replacement character'' with the tab character (.tc) 
command: 

. ta LSi 2.5i 

.tc \(ru 
Name tab Age tab 

produces 

Name ________ Age ____ _ 

To reset the tab replacement character to a blank, use .tc with no argument. 
Lines can also be drawn with the \I command, described below. \,....._ 

5. 7 Drawing Lines and Characters 

Trofl' provides a way,�o place characters of any size at any place, as in the 
examples Area = u- and the big P in the Paternoster (See Section 5.5). 
Commands can be used to draw special characters or to give your output a 
particular appearance. Most of these commands are reasonably 
straightforward, bUt look rather complicated. 

For example, without eqn, subscripts and superscripts are most easily done 
with the half-line local motions \u and \d, To go back up the page half a 
point�size, insert a \u at the desired place; to go down, insert a \d. Thus 

Area � \(*pr\u2\d 

produces 

Area = n2 

To mak.e the2smaller, bracket it with 

\s-2 . . .  \sO 

Since \u and \d are relative to the current point size, be sure to put them 
either both inside or both outside the size changes, or the results will be 
unbalanced. 

5-8 



( 

(� 
\ 

c 

Using Nroff/Troff 

If the space given by \u and \d does not look right, the \v command can be 
used to request an arbitrary amount of vertical motion. The in-line 
command 

\v'(amount)' 

causes motion up or down the page by the specified amount. For example, 
-to-move-the P-in-Pater,-t-he following-is-required: 

.ta 1i 

.in +0.6i \"move paragraph in 

.II -0.3i \"shorten lines 

.ti -0.3i \"move P back 
\v'l'\s36P\s0\v'\-l'ater noster qui est 
in caelis . . .  

The backslash \" is a troff command that causes the rest of the line to be 
ignored. It is useful for adding comments to the macro definition. 

A minus sign, after "\v'" causes upward motion, while no sign or a plus sign 
causes downward motion. Thus "\V-1"' causes an upward vertical motion 
of one line space. 

There are many other ways to specify the amount of motion: 

\v'O.li' 
\v'3p' 
\v'-0.5m' 

and so on are all legal. Notice that the specifiers, i forinches, p for points or 
m for ems, go inside the quotation marks. Any character can be used in 
place of the quotation marks, as well as in any troff commands described in 
this section. 

Since troff does not take within-the-line vertical motions into account when 
figuring out where it is on the page, output lines can have unexpected 
positions if the left and right ends are not at the same vertical position. Thus 
\v, like \u and \d, should always balance upward vertical motion in a line 
with the same amount in the downward direction. 

Arbitrary horizontal motions are also available: \h is quite analogous to \v, 
except that its default scale is ems instead of line spaces. The specification 
\h '-O.li' causes a backwards motion of a 1/10-inch. 

Frequently \h is used with the width function \w to generate motions equal 
to the width of some character string. The construction 

\w'thing' 

is a number equal to the width of thing in machine units (1/432-inch). All 
trofl' computations are actually done in these units. To ;move horizontally 
the width of an x, you can use: 

\h'\w'x'u' 

5-9 



XENIX Text Processing 

As we mentioned above, the default scale factor for all horizontal 
dimensions is m for ems, so here u for machine units must be specified, or 
the motion produced will be far too large. Nested quotation marks are 
acceptable to trofl'; be careful to supplytherightnumber. 

There are also severalspecial-purposetrofl'commands for local motion. We 
have already seen \0, which is an unpaddable whitespace of the same width 
as a digit. Unpaddable means that it will never be widened or split across a 
line by line justification and filling. There is also \(space), which is an 
unpaddable character tbe width of a space, \I, which is half that width, \·, 
which is one quarter of the width of a space, and \&, which has zero width. 
This last one is useful, for example, when entering a text line which would 
otherwise begin with a dot (.). 

The command "\o", used like 

\o'set of characters' 

causes up to 9 characters to be overstruck, centered on the widest. This can 
be used for accents, as in: 

syst\o" e\(ga"me t\o" e\(aa"l\o" e\(aa"phonique 

which makes: 

systeme telephonique 

The accents are treated bytroff as single characters. 

You can make your own overstrikes with another special convention, \z, the 
zero-motion command, which suppresses the normal horizontal motion 
after printing the single characterx, so another character can be laid on top 
of it. Although sizes can be changed within \o, it centers the characters on 
the widest, and there can be no horizontal or vertical motions, so \z may be 
the only way to get what you want. 

You can create rather ornate overstrikes with the bracketing function \b, 
which piles up characters vertically, centered on the current baseline. Thus 
you can get big brackets by constructing them with piled-up smaller pieces: 

byenteringtbis: 

\b '\(It\(lk\(lb '\b'\(lc\(lf x \b'\(rc\( rf\b '\(rt\(rk\(rb' 

Trolf also provides a convenient facility for drawing horizontal and vertical 
lines of arbitrary length with arbitrary characters. \l'li' draws a line one inch 

' 
" 

\ ) � 

long, like this: . The length can be followed by the "-
character to use if the _ is not appropriate. For example, \l'O.Si.' draws a 
half-inch line Of dots: . . . . . . . . . . . . .  The construction \L is entirely analogous, 
except that it draws a vertical line instead of horizontal. 

5-10 



( 
" -

c 

Using Nroff/Troff 

5.8 Strings 

Obviously, if a paper contains a large number of occurrences of an acute 
accent over a letter e� entering\o"eV" for each occurrence would be a great 
nuisance. Fortunately, nroffand troffprovidea facilityforstoring any string 
of text in a string definition. Strings are among the nroff and troff 
mechanisms that allow you to-type-a document-with-Iess··eff ort-and -organize-- ­
it so that extensive format changes can be made with few editing changes. 
Strings are defined with the define (.ds) command. Thereafter, whenever 
you need to use the string, you can replace it with the shorthand you have 
defined. For example, the line: 

.ds e \o"e\'" 

defines the string e to have the value e. 
String names may be either one or two characters long. To distinguish them 
from normal text, single--character strings must be preceded by "\*" and 
double-character strings by "\*(". Thus, to use the definition of the string e 
as above, we can say t\ *el\ *ephone. If a string must begin with blanks, 
define it by using a double quotation mark to signal the beginning of the 
definition. For example, 

.ds xx "  text 

defines the string "xx" as the word 11text" preceded by several blanks. There 
is no trailing quote; the end of the line terminates the string. 

A string may actually be several lines long; iftroff encounters a \  at the end of 
any line, it is thrown away and the next line added to the current one. So you 
can make a long string simply by ending each line but the last with a 
back slash: 

.ds xx this is a very long string\ 
continuing on the next line\ 
and on to the next 

Strings may be defined in terms of other strings, or even in terms of 
themselves. 

5.9 Macros 

In its simplest form, a macro is just a shorthand notation-somewhat like a 
string. For example, suppose we want every paragraph in a document to 
start with a space and a temporary indent of two ems: 

.sp 

.ti +2m 

To save typing, we could translate these commands into one macro: 

.P 

which troffwould interpret exactly as 

5-11 



XENIX Text Processing 

.sp 

.ti +2m 

If you first define it with the .de command, the macro .P can replace the 
longer specification: 

.de P 

.sp 

.ti +2m 

The first line names the macro, in this case .P for paragraph; it is in 
uppercase to avoid conflict with any existing nrotr or trotr command. The 
last line marks the end of the definition. In between is the text, which is 
simply inserted whenever troll' sees the Command or macro call .P. A macro 
can contain any mixture of text and formatting cominands. The definition 
of .P naturally has to precede its first use. Names are restricted to one or two 
characters. 

Using macros for commonly occurring sequences of commands not only 
saves typ,ing, but it makes later changes mtich easier. Suppose we decide 
that the paragraph indentistoo small, the vertical space is much too big, and 
roman font should be forced. Instead of Changing the whole document, we 
need only change the definition of .P to something like 

.de P \" paragraph macro 

.sp 2p 
� �  � 
.ft R 

.and the change takes effect everywhere the .Pmacro is invoked. 

As another example of a macro definition, consider these two which start 
and end a block of offset, unlilled text: 

.de BS \� start indented block 

.sp 

.nf 
.in -KJ.3i 
.de BE 
.sp 
.fi 
.in \(mi0.3i 

\" end indented block 

Now we can surround text with the commands .BS and .BE to create 
indented blocks. Uses of .BS and .BE can be nested to get blocks within 
blocks. To change the indent, it is only necessary to change the definitions 
of .BS.and .BE, not every occurrence of the indent in the entire document. 

The macro package MM, as well as the two specialized macro packages, tbl '� 
and e-qn, are simplyvery large collections of.macro definitions which replace 
more cumbersome arrays of nrofl' and troff commands. One thing to keep in 
mind when you consider defining a new macro, is that unless you are doing 
something quite unusual, an MM macro probably already exists for that 

5-12 



c 

( 

Using Nrolf/Trolf 

purpose. So check your documentation carefully before reinventing the 
wheel. 

5.10 Titles, Pages and Numbering 

N o_ne_.of the fe_atures_�d_esc_nb_e_d __ in this_se_ctio_n.are_ automatic_. _You_may_wish 
to copy these specifications literally until you feel more comfortable with 
these commands. For example, suppose you· want to have a title at the top of 
each page. You have to give the actual title, along with instructions about 
when to print it, and directions for its appearance. First, a new page (.NP) 
macro can be created to process titles and the like at the end of orie page and 
the beginning of the next: 

.de NP 
'bp 
'sp 0.5i 
.tl 'left top'center top'right top' 
'sp 0.3i 

To start at the top of a page, a begin page (.bp) command should be 
included, which causes a skip to the top of the next page. Then we space 
down half an inch, use the title {.tl) command to print the title and space 
another 0.3 inches. 

To ask for .NP at the bottom of each page, we need to specify that the 
processing for a new page should start when the text is within an inch of the 
bottomof the page. Thisis done with a when (.wh) command: 

.wh -li NP 

(Note that no dot is used before NP; this is simply the name of a macro, not a 
macro call.) The minus sign means "measure up from the bottom of the 
page," so -li means one inch from the bottom. 

The . wh command appears in the input outside the definition of .NP; 
typically the input would be 

.de NP 
macro defined here 

.wh -li NP 

As text is actually being output, nroff/troff keeps track of its vertical 
position on the page, and after a line is printed within one inch of the 
bottom, the .NP macro is activated. The .NP macro causes a skip to the top 
of the next page, then prints the title with the appropriate margins. All the 
input text collected but not yet printed is flushed out as soon as possible, and 
the next input line is guaranteed to start a new line of output; a break is 
caused in the middle of the current output line when a new page is started. 
The leftover part of that lineis printed at the top of the page, followed by the 
nextinputlineon a new outputlirie. Using ' instead of dot(.) for a co;mmand 
tells nroB' and troff that no break is to take place; the output line currently 

5-13 



XENIX Text Processing 

being filled should not be forced out before the space or new page. For 
example, 1bp and 'sp areusedhereinsteadof .bp and .sp. 

The list of commands that cause a break is short: 

.bp .br .ce .fi .nf .sp .in .ti 

All others cause no break, regardless of whether you use a period ( . ) or a '. 
If you really need a break, add a . br command at the appropriate place. 

If you change fonts or point sizes frequently , you may find that if you cross a 
page boundary in an unexpected font or size, your titles come out in that size 
and font instead of what you intended. Furthermore, the length of a title is 
independent of the current line length, so titles will come out at the default 
length of 6.5 inches unless you change it, which is done with the .It 
command. There are several ways to correct point sizes and fonts in titles. 
The simplest way is to change .NPto setthepropersizeand fontforthetitle, 
then restorethepreviousvalues, like this: 

.ta .8i 

.de NP 
, bp 
'sp O.Si 
.ft R \" set title font to Roman 
.ps 10 \" and size to 10 point 
.It 6i \" and length to 6 inches 
:tl 'left'center'right' 
.ps 
.ft p 
'sp 0.3i 

\" revert to previous size 
\" and to previous font 

This version of .NP does not work if the fields in the . tl command contain 
size or font changes. 

To get a footer at the bottom of a page, you can modify .NP so it does s-ome 
processing before the 'bp command, or split the job into a footer macro 
invoked at the bottom margin and a header macro invoked at the top of the 
page. 

Output page numbers are computed automatically starting at 1, but no 
numbers are printed unless you ask for them. To get page numbers printed, 
include the character "%" in the .ti line at the position where you want the 
numberto appear. Forexample 

.tl "- o/o -" 

\.;__ ) 

centers the page number inside hyphens. You can set the page number at 
any time with either .bp n,  which immediately starts anew page numbered n, 
or with .pn n, which sets the page number for the next page but does not 
causeaskipto thenewpage. � 

5-14 



( 

c 

Using Nroff/Troff 

5.11 Number Registers and Arithmetic 

Troff uses number registers for doing arithmetic and defining and using 
variables. Number registers, like strings and macros, are useful for setting 
up a document so it is easy to change later, as well as for doing any sort of 
arithmetic computation. Like strings, number registers have one- or two­
character names:-Tlley ·are-set-oy the .nr-comma-nd-;-an-a -are re:feren:cea-oy­
\nx (one-character name) or\n(xy (two-character name). 

There are quite a few pre-defined number registers maintained by troff, 
among them % for the current page number, .nl for the current vertical 
position on the page; .dy, .mo and .yr for the current day, month and year; 
and .s and .fforthe current point size and font. Any of these can be used in 
computations like any other register, but some, like .s and .f, cannot be 
arbitrarily changed with an .nr command. 

In :MM, most significant parameters are defined in terms of the values of a 
handful of number registers. These include the point size for text, the 
vertical spacing, and the line and title lengths. To set the point size and 
vertical spacingforthefollowingparagraphs, for example, you could say 

.nr PS 9 

.nr VS 11 

This would set the point size to 9 and the vertical spacing to 11 points. 

The paragraph macro .Pis defined as follows: 

.ta 1i 

.de.P 

.ps \\n(PS 

.vs \\n(VSp 

.ft R 

.sp 0.5v 

.ti +3m 

\" reset size 
\" spacing 
\" font 
\" half a line 

This sets the font to Roman and the point size and line spacing to whatever 
values are stored in the number registers PS and VS. 

Two backslashes are required to quote a quote. That is, when nroff or troff 
originally read the macro definition, they peel off one back slash to see what 
is coming next. To ensure that another is left in the definition when the 
macro is actually used, we have to put two backslashes in the definition. If 
only one backslash is used, point size and vertical spacing will be frozen at 
the time the macro is defined, not when it is used. 

Protection with extra backslashes is only needed for \n, \ *, \$, and \ itself. 
Commands like \s, \f, \h, \v, and so on do not need an extra backslash, 
since they are converted by nroff and troff to an internal code when they are 
read. 

Arithmetic expressions can appear anywhere that a number is expected. 
For example, 

5-15 



XENIX Text Processing 

.nr PS \\n(PS-2 

decrements PS by2. Expressions can use the arithmetic operators +, -, *, I, 
% (mod), the relational operators >, >=, <, <=, =, and !=(not equal), and 
parentheses. 

There are a few things to consider in usingnumberregisterarithmetic. First, 
number registers hold only integers. Nroff/troff arithmetic uses truncating 
integer division. Second, in the absence of parentheses, evaluation is done 
left-to-right without any operator precedence, including relational 
operators. Thus 

7*-4+3/13 

becomes "-1". Number registers can occur anywhere in an expression, and 
so can scale indicators like p, i, m ,  and so on. Although integer division 
causes truncation, each number and its scale indicator is converted to 
machine units (1/432-inch) before any arithmetic is done, so li/2u evaluates 
to O.Sicorrectly. 

The scale indicator u (for "units") often has to appear when you would not 
expect it-in particular, when arithmetic is being done in a context that 
implies horizontal or vertical dimensions. For example, 

.u 7i/2u 

A safe rule is to attach a scale indicator to every number, even constants. 

For arithmetic done within a .nr command, there is no implication of \-......_ 
horizontal or vertical dimension, so the default units are units, and 7i/2 and 
7i/2u mean the same thing. Thus 

.nr ll ?i/2 

.ll Ou 
is sufficiently explicit as long as you useu with the .11 command. 

5.12 Macros with Arguments 

You can define macros that can change from one use to the next according 
to parameters supplied as arguments. To make this work, you need two 
things: first, when you define the macro, you must indicate that some parts 
of it will be provided as arguments when the macro is called. Second, when 
the macro is called you must provide actual arguments to be plugged into the 
definition. 

To illustrate, let's define a macro . SM that will print its argument two points 
smaller than the surrounding text. The definition of .SMis 

.de SM 
\s-2\\$1\s+2 

Within a macro definition, the symbol \\$n refers to the nth argument that 
the macro was called with. Thus \ \$1 is the string to be placed in a smaller 
point size when . SM is called. 

5-16 



- I  

( 

c 

Using Nroffrfroff 

The following definition of . SM permits optional second and third 
arguments that will beprintedin the normal size: 

.de SM 
\\$3\s-2\\$1\s+2\\$2 

Arguments not provided when the macro is called are treated as empty. It is 
convenient to reverse the order of arguments because trailing punctuation is 
much -rnore-common-tliaineaaing.--The-numoer ·or ar-gumenrs-·thaf cimacro 
was called with is available in number register $. 

For example, let's define a macro .BD to create a bold Roman for troff 
command names in text. It combines horizontal motions, width 
computations, and argument rearrangement . 

. de BD 
\&\\$3\fl \\$1 \h '\-\ w'\ \$1 'u + 1u '\\$1 \fl'\ \$2 

The \h and \w commands need no extra backslash, as we discussed earlier in 
_ this section. The\&is therein casetheargumentbeginswith a period. 

Two backslashes are needed with the \\$n commands to protect one of them 
when the macro is being defined . Consider a macro called .SH which 
produces section headings rather like those in this paper, with the sections 
numbered automatically, and the title in bold in a smaller size. You would 
useitin this form: 

.SH "Section title . . .  " 

If the argument to a macro is to contain spaces, then it must be surrounded 
by double quotation marks. 

Here is the definition of the .SHmacro: 

.ta .75i 1 .15i 

.nr SH 0 
.de SH 
.sp 0.3i 
.ft B 
.nr SH \\n(SH+1 
.ps \\n(PS-1 
\\n(SH. \\$1 
.ps \\n(PS 
.sp 0.3i 
.ft R 

\" initialize section number 

\" increment number 
\" decrease PS 
\" n urn b er. title 
\" restore PS 

The section number is kept in number register SH, which is incremented 
each time just before it is used. Note that a number register may have the 
same name as a macro without conflict, but a string may not. 

We used \\n(SH instead of \n(SH and \\n(PS instead of \n(PS. If we had 
used \n(SH, we would get the value of the register at the time the macro was 
defined, not at the time it was used. Similarly, by using \\n(PS, we get the 
point size at the time the macro is called. 

5-17 



XENIX Text Processing 

As an example that does not involve numbers, recall the .NP macro which 
had a 

.tl 'left'center'right' 

We could make these in to parameters by using instead 

.tl '\\*(LT'\\*(CT'\\*(RT' 

so the title comes from three strings called LT, CT and RT. If these are 
empty, then the title will be a blank line. Normally CT would be set with 
something like 

.ds CT - % -

but you can also supply private definitions for any of the strings. 

5.13 C onditionals 

To cause the .SH macro to leave two extra inches of space just before 
section 1, but nowhere else, you can put a test inside the .SH macro to 
determine whether the section number is 1, and add some space if it is. The 
.if command provides a conditional test just before the heading line is 
output: 

.if \\n(SH-1 .sp 2i \" first section only 

The condition after the .if can be any arithmetic or logical expression. If the \...... 
condition is logically true, or arithmetically greater than zero, the rest of the 
line is treated as if it were text. If the coildition is false, or zero or negative, 
the rest of the line is skipped. It is possible to do more than one command if 
a condition is true. Suppose several operations are to be done before 
section 1. One possibility is to define a macro .Sl and invoke it if we are 
about to do section 1, as determined by an .if: . 

. de S1 
- processing for section 1 -

.de SH 

.if \\n(SH-1 .S1 

An alternate way is to use the extended form of the .if, like this: 

.if \\n(SH-1 \{- processing 
for section 1 -\} 

The braces \{ and \} must occur in the positions shown or you will get \'--
unexpected extra lines in your output. 

Nroff and troff also provide an if-else construction. A condition can be 
negated by preceding it with ! ; we get the same �ffect as above by using: 

5-18 



-- � - c 

Using Nroff/Troff 

.if !\\n(SH>l .Sl 

There are a handful of other conditions that can be tested with .if. For 
example, you may need to determine if the current page is even or odd. The 
following conditionals give facing pages different titles when used inside an 
appropriate new page macro. 

;if e ;-tl-.,'even-page -title"­
.if o .tl "odd page title" 

Two other conditions, which you will find useful when you need to process 
text for both lineprinter and typesetter, are n and t. These can be used to 
indicate conditions dependent on whethertroff ornroff are b einginvoked . 

.if t troff input .. . 

.if n nroff input .. . 

Finally, string comparisons maybe made in an .if statement. The following 
comparison does "input" if string 1 is the same as string 2: 

.if 'stringl'string2' input 

The character separating the strings can be anything reasonable that is not 
contained in either string. The strings themselves can reference strings with 
\ *, arguments with\$, and so on. 

( 5.14 Environments 
\ 

..----( 

In an earlier section, the potential problem of going across a page boundary 
was mentioned: parameters like size and font for a page title may be different 
from those in effect in the text when the page boundary occurs. Nroff/troff 
provides a way to deal with this and similar situations. There are three 
environments that have independently controllable versions of many of the 
parameters associated with processing, including size, font, line and title 
lengths, fill or no-fill mode, tab stops, and even partially collected lines. 
Thus the titling problem may be solved by processing the main text in one 
environment and titles in a separate environment with its own suitable 
parameters. 

The environment command .ev n shifts to environmentn; n must beO, 1 or 
2. The command .ev with no argument returns to the previous environment. 
Environment names are maintained in a stack, so calls for different 
environments maybe nested and called in order. If, for example, the main 
text is processed in environment 0, which is where tro:lfbegins by default, we 
can modify the new page macro .NP to process titles in environment l like 
this: 

5-19 



XENIX Text Processing 

.de NP 

.ev 1 

.It 6i 

.ft R 

.ps 10 

. . .  any other processing . . .  

.ev 

\" shift to new environment 
\" set parameters here 

\'' return to previous environment 

It is also possible to initialize the parameters for an environment outside the 
.NP macro, but the version shown keeps all the processing in one place to 
make it easier to understand and change. 

5.15 Diversions 

In page layout there are numerous occasions when it is necessary to store 
some text for a period of time without actually printing it. Footnotes are the 
most obvious example: the text of the footnote usually appears in the input 
long before the place on the pagewhere itisto beprinted is reached. In fact, 
the place where it is output normally depends on how big it is. The footnote 
text must be preprocessed at least to-the extent that its size is determined. 

Nrolf and troff provide a mechanism called a diversion for doing this 
processing. Any part of the output may be diverted into a macro instead of 
being printed, and then at some convenient time the macro maybe put back 
into the input. The command .di xy begins a diversion. All subsequent 
output is collected into the macro xy until the command .di with no 
arguments is encountered. This terminates the diversion. The processed 
text is available at any time thereafter; simply by giving the command: 

.xy 

The vertical size of the last finished diversion is contained in the built-in 
number register dn. 

For example, suppose,we want to implement a keep-release operation, so 
that text (such as a figure or table) between the commands .KS and .KE will 
not be split across a page boundaxy. Clearly, when a .KS is encountered, we 
have to begin diverting the_ ·output so we can find out how big it is. Then 
when a .KEis seen, wedecidewhetherthediverted textwillfiton the current 
page, and print it either there if it fits, or at-the top of the next page if it does 
not. We could use the following to define .KS and .KE: 

5-20 



c 

c 

(; 

.de KS 

.br 

.ev 1 

.fi 

.di XX 

.dd0 3 

.br 

.di 

.if \\n(dn>-\\n(.t .bp 

.nf 

.XX 

.ev 

Using Nrolf/Troff 

\" start keep 
\" start fresh line 
\" collect in new environment 
\" make it filled text 
\" collect in XX 

\" eJ!JLkeep 
\" get last partial line 
\" end diversion 
\" bp if doesn't fit 
\" bring it back io no-fill 
\" text 
\" return to normal environment 

Recall that number register nl is the current position on the output page. 
Since output was being diverted, this remains at its value when the diversion 
started. The amount of text in the diversion is stored in dn. Another built-in 
register, .tis the distance to the next trap, which we assume is at the bottom 
margin of the page. If the diversion is large enough to go past the trap, the .if 
is satisfied, and a .bp is issued automatically. In either case, the diverted 
output is then brought back with .XX. It is essential to bring it back in no-fill 
mode so nroffltroft'will do no further processing on it. 

The definition of .KS and .KE is only intended as an example to 
demonstrate the power of diversions. You will find the .KS and .KE macros 
alreadydefinedin themm macro package. 

5-21 



,...__ 



( 

( '-- / 

Chapter 6 
Nroff/Troff Reference 

_ 6.1 Introduction 1 _ _  

6.1.1 Invoking nroffand troff 1 
6.1.2 Technical Information 2 

6.2 Basic Formatting Requests 4 
6.2.1 Font and Character Size Control 4 
6.2.2 Page Control 6 
6.2.3 Text Filling, Adjusting, and Centering 7 
6.2.4 Vertical Spacing 9 
6.2.5 Line Length and Indenting 10 
6.2.6 Tabs, Leaders, and Fields 11 
6.2.7 Hyphenation 12 
6.2.8 Three Part Titles 12 
6.2.9 Output Line Numbering 13 

6.3 Character Translations, Overstrike, and Local Motions 13 
6.3.1 Input/Output Conventions and Character Translations 14 
6.3.2 Local Motions and the Width Function 15 
6.3.3 Overstrike, Bracket, Line-drawing, and Zero-width Functions 16 

6.4 Processing Control Facilities 17 
· 6.4.1 Macros, Strings, Diversions, and Position Traps 17 

6.4.2 Number Registers 21 
6.4.3 Conditional Acceptanceofinput 22 
6.4.4 Environment Switching 23 
6.4.5 Insertions From the Standard Input 23 
6.4.6 Input/Output File Switching 24 
6.4.7 Miscellaneous Requests 24 

6.5 Output and Error Messages 25 

6.6 SummaryofEscape Sequences and NumberRegisters 25 
6.6.1 Escape Sequences for Characters, Indicators, and Functions 25 
6.6.2 Predefined General Number Registers 27 
6.6.3 Predefined Read-Only Number Registers 27 



\z.._ 



c 

c 

Nrofl'rfroff Reference 

6.1 Introduction 

Nroff and troff are the XENIX text processing formatting programs. Nroff 
can be used to output text to terminals, lineprinters, and letter-quality 
printers. Troff can be used to output text to a number of phototypesetters 
and laser printers. Both programs use identical commands, which are 
-mterspersea Witliliiies-Oftext�-Th_e_ CODiiriiliid!fusoo·b-yOoth progranis--auow- ­
you to control the style of headers and footers, footnotes, paragraphs, and 
sections. You may specify font and point size, spacing, multiple column 
output, and local motions to create overstrikingand line drawing effects. 

Because nroff and troff are compatible with each other, it is almost always 
possible to prepare input acceptable to both. By using conditional input, 
you may add commands which are specific to either program. 

6.1.1 Invoking nroff and troll 

The general form of invoking the formatters on the command line is: 

nroff options files 
or 

troff options files 
where options represents any of a number of option arguments and files 
represents a list of files containing the document to be formatted. An 
argument consisting of a single minus sign (-) is taken to be a filename 
corresponding to the standard input. If no filenames are given, input is 
taken from the standard input. The options may appear in any order so long 
as they appear before the filenames. They are: 

-olist Prints only pages whose page numbers appear in list, which 
consists of comma-separated numbers and number ranges. A 
number range has the form N-M and means pages N through M; 
an initial -N means from the beginning to page N, and a final N­
means from Nto the end. 

-nN Numbers first generated pageN. 

-sN Stops every N pages. Nroff will halt prior to every N pages 
(default N-1) to allow paper loading or changing, and resume 
upon receipt of a newline. Troff will stop the phototypesetter 
every N pages, produce a trailer to allow changing cassettes, and 
will resume after the phototypesetter "start" button is pressed. 

-mname Prepends the macro filelusrllib/tmac.name to the input files. 

-en a me Same as -mna1rn!, but uses a compacted form of 
/usr/Ubltmac.name for efficiency. 

6-1 



XENIX Text Processing Guide 

-raN Register a is set to N. 

-i Reads the standard input aftertheinput files are exhausted. 

-q Invokes the simultaneous input-output mode of the rd request. 

The following options are recognized bynroff only: 

-Tname Specifies the name of the output terminal type. 

-e Produces equally-spaced words in adjusted lines, using full 
terminal resolution. 

The following options are recognized bytroff only: 

-t Directs output to the standard output instead of the 
phototypesetter. 

-f Refrains from feeding out paper aud stopping phototypesetter at 
the end oftherun. 

-w Waits until phototypesetteris available, if currently busy. 

-b Reports whether the phototypesetter is busy or available. No 
text_ processing is done. 

-a Sends a printable ASCII appro�ation of the results to the 
staudard output. 

-pN Prints all characters in point size N while retaining all prescn"bed 
spacings and motions, to reduce phototypesetter elapsed time. 

Note that each option must be invoked as a separate argument. 

6.1.2 Technical Infonnatlon 

The input to the formatters consists of text lines interspersed with control 
lines that set parameters or otherwise controllaterprocessing. Control lines 
begin with a "control character'', usually a period (.) or a single quotation 
mark ('),  followed by a one- or two-character name that specifies a basic 
"request" or the substitution of a user-defined "macro" in Place of the 
control line. The single quotation mark control character (') suppresses the 
"break function," which is the forced output of a partially filled line caused 
by certain requests. The control character may be separated from the 
request or macro name by whitespace (spaces and/or tabs) for aesthetic 
reasons. Names must be followed by either a space or a newline. Control 
lines with unrecognized names are ignored. 

Various special functions may be introduced anywhere in the input by 
means of an "escape" character, normally the backslash (\). For example, 
the function "\nR" causes the interpolation of the contents of the number 

6-2 



( 

( 

c �  

Nroffffroff Reference 

register R in place of the function; here R is either a single character name as 
in \nx, or a left-parenthesis-introduced, two-character name as in \n(xx. 

Troff' uses 432 units to the inch, corresponding to the Wang Laboratories 
phototypesetter which has a horizontal resolution of 1/432-inch and a 
vertical resolution of 11144-inch. Nroffuses 240units to the inch internally, 
corresponding to the least common multiple of the horizontal and vertical 

_re_solutions __ of _ _  various ____ typew.riter.Jik.e _ _  outpuL_devices . .  --Troff _.rounds -
horizontal and vertical numerical parameter input to the actual horizontal 
and vertical resolution of the typesetter. Nroff similarly rounds numerical 
input to the actual resolution of the output device indicated by the -T option. 

Both Nroff and troff accept numerical input with the appended scale 
indicators shown in the following table, where S is the current type size in 
points, V is the current vertical line spacing in basic units, and Cis a nominal 
character width in basic units, as shown below: 

Scale Number of basic units 
Indicator Meaning Troff Nroff 

i Inch 432 240 
c Centimeter 432x50/127 240x50/127 
p Pica - 116 inch 72 240/6 
m Em = Spoints 6xS c 
n En�Em/2 3xS C, same as Em 
p Point - 1172inch 6 240/72 
u Basic unit 1 1 
v Verticallinespace v v 

none Default 

In nroff, both the em and the en are taken to be equal to the C, which is 
output-device dependent; common values are 1/1� and 1/12-inch. Actual 
character widths in nroff need not be all the same and constructed 
characters such as -> (-+) are often extra wide. The default scaling is ems 
for the horizontally-oriented requests and functions, including: 

.II .in . ti . ta .It . po .me \h \1; 

Vs is the scaling for the vertically-oriented requests and the following 
functions: 

.pi .wh .ch .dt .sp .sv .ne .rt .ev \v \x \L 

p is the scale for the .vs request; and u is the scale for the requests .nr • .  if, 
and .ie. All other requests ignore any scale indicators. When a number 
register containing an already appropriately scaled number is interpolated to 
provide numerical input, the unit scale indicator u may need to be appended 
to prevent an additional inappropriate default scaling. The number N may 
be specified in decimal-fraction form but the parameter finally stored is 
rounded to an integernumberofbasicunits. 

The "absolute"position indicator (I) may be prepended to a number N to 
generate the distance to the vertical or horizontal place N. For vertically 
oriented requests and functions, IN becomes the distance in basic units 

6-3 



XENIX Text Processing Guide 

from the current vertical place on the page or in a "diversion" to the vertical 
place N. For all other requests and functions, \Nbecomes the distance from 
the current horizontal place on the input line to the horizontal pl�ce N. 
For example, 

.sp j3.2c 
will space in the required direction to 3.2 centimet�s from the top of the 
page. Wherever numerical input is expected, an expression involving 
parentheses, the arithmetic operators (+, -, I, *, Ofo) and the logical 
operators (<, > , <-, >-, -, --, & (and), : (or)) may be used. Except 
where controlled by parentheses, evaluation of expressions is left-to-right; 
there is no operator precedence. In the case of certain requests, an initial + 
or - is stripped and interpreted as an increment or decrement indicator 
respectively. 
For example, if the number register x contains 2 and the current point size is 
10, then: 
.11 ( 4.25i-I{)P+3)/2u 
sets the line length to 1/2thesum of4.25inches +2picas + 30points. 
Note: numerical parameters are indicated here in two ways. ±N means that 
the argument may take the forms N, +N, or -Nand that the corresponding 
effect is to set the affected parameter to N, to increment it by N, or to 
decrement it by N respectively. Plain N means that an initial algebraic sign is 
not an increment indicator, but merely the sign of N. Generally, 
unreasonable numerical input is either ignored or truncated to a reasonable 
value. For example, most requests expect to set parameters to non-negative 
values; exceptions are .sp, .wh, .ch, .nr, and .if. The requests .ps, .ft, .po, 
.vs, .Is, .11, .in and .It reStore the previous parameter value in the absence of 
an argument. 
Single-character arguments are indicated by single lowercase letters, and 
one- or two-character arguments are indicated by a pair oflowercase letters. 
Character string arguments are indicated bymulticharactermnemonics. 

6.2 Basic Formatting Requests 

The following sections descnbe the commonly used nroff and troft' 
formatting requests. 

6.2.1 Font and Character Size Control 

' 
\._:._. 

The trotf character set includes a regular character set plus a Special 
Mathemafical Font character set-each having 102 characters. All ASCII \'-
characters are included, with some on the Special Font. With three 
exceptions, the ASCII characters are input as themselves, and non-ASCII 
characters are input in the form \(xx wherexx is a two-character name. The 
three ASCII exceptions are mapped as follows: 



c 

( 

c 

ASCII Input 
Character Name 

acute accent 
grave accent 
minus 

Nroff/Troff Reference 

Printed bytrolf 
Character Name 

close quote 
open quote 
hvvhen 

The characters ', ', and --m:aybeinput as\',\', and \-·respedivelyorbytheir 
names. TheASCII characters @,#, ",  ', ', <, >, \, {, }, , "', and_exist only 
on the Special Font and are printed as a 1-em space if that font is not 
mounted. Nroffunderstands the entire trofr character set, but can in general 
print only ASCII characters, such characters as can be constructed by 
overstrik:ing or other combinations, and those that can reasonably be 
mapped into other characters. The exact behavior is determined by a 
driving table prepared for each device. The·characters ', ', and _print as 
themselves. The default mounted fonts are Roman (R), italic (I), bold (B), 
and the Special Mathematical Font (S) on physical typesetter positions 1, 2, 
3, and 4respectively. 

The current font, initially Roman, may be changed (among the mounted 
fonts) by use of the .ft request, or by imbedding at any desired point either 
\fx,\f(xx, or\fN wherex and xx are the name of a mounted font and Nis a 
numerical font position. It is not necessary to change to the Special font; 
characters on that fOnt are handled automatically. A request for a named 
but unmounted font is ignored. Troft' can be informed that any particular 
font is mounted by use of the .fp request. The list of known fonts is 
installation-dependent. Nrotf understands font control and normally 
underlines characters that are italicized. 

Character point sizes are typically in the range 6-36 (1112 to 1/2-inch). The 
. ps request is used to change or restore the point size. Alternatively the 
point size may be changed between any two characters by imbedding a \sN at 
the desired point to set the size to N, or a \s±N (1 �N� 9) to 
incremenVdecrement the size by N; \sO restores the previous size. 
Requested point size values that are between two valid sizes yield the larger 
of the two. The current size is available in the .s register. NroH'ignores type 
size control. 

A list of font and size control commands follows: 

.ps 

.ss N 

Has an initial value of 10. Point size set to ±N. Alternatively 
imbed \sN or \s±N. Any positive size value may be 
requested; if invalid, the next larger valid size will result, 
with a maximum of 36. A paired sequence +N, -N will work 
because the previous requested value is also remembered. 
Ignored in nrotf. If no argument is given, .ps has the 
previous value. 

Has an initial value of 12/36 em. Space-character size is set 
to N/36 ems. This size is the minimum word spacing in 
adjusted text. Ignored in nrotf. If no argument is specified, 
the request is ignored. 

6-5 



XENIX Text Processing Guide 

.cs F NM 

.bd F N 

. bd S F  N 

.ft F 

. fp N F  

Initially off. Constant character space (width) mode is set on 
for font F (if mounted) ; the width of every character will be 
taken to be N/36 ems. If M is absent, the em is that of the 
character's point size; if Mis given, the em is M points. All 
affected characters are centered in this space, including 
those with an actual width larger than this space. Special 
Font characters occurring while the current font is F are also 
so treated. If Nis absent, the mode is turned off. The mode 
must be in effect when the characters are physically printed. 
Ignored in nrofl'. 

Initially off. The characters in font F will be artificially 
emboldened by printing each one twice, separated by N-1 
basic units. A reasonable value for N is 3when the character 
size is in the vicinity of 10 points. If N is missing the 
embolden mode is turned off. The mode must be in effect 
when the characters are physicallyprinted. Ignored in nroff • 

Initially off. The characters in the Special Font will be 
emboldened whenever the current font is F. The mode must 
be in effect when the characters are physically printed. 

Initially Roman. Font changed to F. Alternatively, imbed 
\fF. The fontname P is reserved to mean the previous font. 
If no argument is specified, previous font is assumed . 

Initially R, I, B, S. Font position. This is a statement that a 
font named F is mounted on position N (1-4). It is a fatal 
error if F is not known. The phototypesetter has four fonts 
physically mounted. Each font consists of a film strip which 
can b e  mounted on a numbered quadrant of a wheel. This 
request is ignored if no arguments are given. 

6.2.2 Page Control 

Top and bottom margins are not automatically provided. It is standard 
procedure to define two macros and set traps for them at vertical positions 0 
(top) and -N (Nfrom the bottom). A pseudo-page transition onto the first 
page occurs either when the first break occurs or when the first nondiverted 
text processing occurs. Arrangements for a trap to occur at the top of the 
first page must b e  completed before this transition . 

. pl±N 

6-6 

Page length set to ±N, initially 11 inches. The internal 
limitation is about 75 inches in troff and about 136 inches in 
nroff. The current page length is available in the .p register. 
The default scale indicator is v. If no argument is given, 11 
inches is assumed. 



�---

( 

( l  

.bp±N 

.pn±N 

. po±N 

.ne N 

.mk R 

.rt±N 

Nrotrrrroft' Reference 

Begin page, initially N=l. The-current page is ejected and a 
new page is begun. If±Nis given, thenewpage numberwill b e  
±N. The default scale indicator is v. 

Page number, initially N-1. The next page (when it occurs) 
will have the page number ±N. A .pn must occur before the 
initial pseudo_-page transiti(:m to -�!f��t ��e_p�g�_J;�.MJ;D.bt!:r_gf th� 
firSt p-age: The cUrreiit page number is in the % register. 

Page offset, initially 0. The current left margin is set to ±N . 
The troff initial value provides about 1 inch of paper margin 
including the physical typesetter margin of 1/27-inch. In trolf 
the maximum line-length + page-offset is about 7.54 inches. 
The current page offset is available in the .o register. 

Need N vertical space. If the distance D to the next trap 
position is less than N, a forward vertical space of size D 
occurs, which will spring the trap. If there are no remaining 
traps on the page, Dis the distance to the bottom of the page. 
If D<V, another line could still be output and spring the trap. 
In a diversion, Dis the distance to the diversion trap, if any, or 
is very large. If no argument is specified, N=l V. 

Marks the current vertical place in an internal register (both 
associated with the current diversion level) , or in register R, if 
given. 

Returns upward only to a marked vertical place in the current 
diversion. If ±N is given, the place is ±N from the top of the 
page or diversion or, if N is absent, to a place marked by a 
previous .mk. Note that the .sp request may be used in all cases 
instead of .rt by spacing to the absolute place stored in an 
explicit register. 

6.2.3 Text Filling, Adjusting, and Centering 

Normally, words are collected from input text lines and assembled into an 
output text line until some word does not fit. An attempt is then made to 
hyphenate the word in an effort to pJace a part of it onto the output line. The 
spaces between the words on the output line are then increased to spread out 
the line to the current line length minus any current indent. A word is any 
string of characters delimited by the space character or the beginning or end 
of the input line. Any adjacent pair of words that must be kept together 
(neither split across output lines nor spread apart in the adjustment process) 
can be tied together using the unpaddable space character (backslash­
space). The adjusted word spacings are uniform in troff and the minimum 
interword spacing can be controlled with the .ss request. In nroff, word 
spacings are normally nonuniform because of quantization to character-size 
spaces; the command line option -e causes uniform spacing with full output 

6-7 



XENIX Text Processing Guide 

device resolution. Filling, adjustment, and hyphenation can all be 
prevented or controlled. The text length on thelastlineoutput is available in 
the .n register, and text baseline position on the page for this line is in the .nl 
register. The text baseline high-water mark (lowest place) on the current 
page is in the .h register. \,.,_ 
An input text line ending with .,  '! , or !  is taken to be the end of a sentence, 
and an additional space character is automatically provided during filling. 
Multiple interword space characters found in the input are retained, except 
for trailing spaces; initial spaces also cause a break. When filling is in effect a 
\P may be embedded or attached to a word to cause a break at the end of the 
word and have the resulting output line spread out to fill the current line 
length. 

A text input line that happens to begin with a control character can be 
printed as a text line by prefacing it with the nonprinting, zero-width filler 
character \&. Another method is to specify output translation of some 
convenient character into the control character using . tr. 

The copying of an input line in no-fill mode can be interrupted by 
terminating the partial line with a \c. The next encountered input text line 
will be considered to be a continuation of the same line of input text. 
Similarly, a word within filled text may be interrupted by terminating the 
word and line with \c; the next encountered text will be taken as a 
continuation of the interrupted word. If the intervening control lines cause a 
break, anypartiallinewill be forced out along with any partial word. 

.br 

.fi 

.nf 

.ad c 

.na 

6-8 

Break. The filling of !he line currently being collected is 
stopped, and the line is output without adjustment. Text lines 
beginning wi!h space characters and empty text lines (blank 
lines) also cause a break. 

Fill subsequent output lines. Initially fill is on. The register .uis 
1 in fill mode and Oin nofillmode. 

Nofill. Initially, fill is on. Subsequent output lines are neither 
filled nor adjusted. Input text lines are copied directly to 
output lines without regard for the current line length. 

Line adjustment is begun. If fill mode is not on, adjustment 
will b e  deferred until fill mode is back on. If the type indicator 
c is present, the adjustment type is changed in the following 
ways: 1 to adjustleft-margin only, rto adjust right margin only, 
cto center, b orn to adjust both margins. If cis absent, the line 
remains unchanged. 

No-adjust. Initially, set to adjust. Adjustment is turned off; 
!he right matgin will be ragged. The adjustment type for .ad is 
unchanged. Output line filling still occurs if fill mode is on. 



c 
.ce N 

Nrofi'/Troff Reference 

Initially, off. Center the next N input text lines within the 
current line-length minus indent. If N=O, any residual count is 
cleared. A break occurs after each of the N input lines. If the 
input line is too long, it will be left-adjusted. 

6.2.4 V ortlcal Spacing 

The vertical spacing (V) between the baselines of successive output lines can 
be set using the .vs request with a resolution of 1/144-inch = 1/2 point in 
troff, and to the output device resolution in nroff. V must be large enough to 
accommodate the character sizes on the affected output lines. For the 
common type sizes (9-12 points), usual typesetting practice is to set V to 2 
paints greater than the point size; troff default is 10-point type on a 12-point 
spacing. The current V is available in the .v register. Multiple-V line 
separation (e.g. double spacing) maybe requested with .Is. 
If a word contains a vertically tall construct that requires the output line 
containing it to have extra vertical space before and or after it, the extra line 
space function \x'N' can be imbedded in or attached to that word. In this 
and other functions having a pair of delimiters around their parameter, the 
delimiter choice is arbitrary, except that it cannot look like the continuation 
of a number expression for N. If N is negative, the output line containingthe 
word will be preceded by N extra vertical space; if N is positive, the output 
line containing the word will be followed by N extra vertical space. If 
successive requests for extra space apply to the same line, the maximum 
values are used. The most recently utilized post-line extra line space is 
available in the .a register. 

A block of vertical space is ordinarily requested using .sp, which honors the 
no-space mode and which does not space past a trap. A contiguous block of 
vertical space may be reserved using .sv. The following requests control 
vertical spacing: 

.vs N 

.Is N 

.sp N 

Initially, 116-inch or 12 points. Set-vertical baseline spacing size 
V. Transient extra vertical space available with \x' N'. 

Initially, N�l. Line spacing set to ±N. Vs {blank lines) are 
appended to each output text line. Appended blank lines are 
omitted if the text or previous appended blank line reached a 
trap position. Space vertically in either direction. If N is 
negative, the motion is backward (upward) and is limited to the 
distance to the top of the page. Forward (downward) motion is 
truncated to the distance to the nearest trap. 

Space vertically in either direction. If N is negative, the motion is 
backward (upward) and is limited to the distance to the top of 
the page. Forward (downward) motion is truncated to the 
distance to the nearest trap. If no-space mode is on, no spacing 
occurs. 

6-9 



XENIX Text Processing Guide 

.sv N Save a contiguous vertical block of size N. If the distance to the 
next trap is greater than N, N vertical space is output. No-space 
mode has no effect. If this distance is less than N, no vertical 
space is immediately output, but N is remembered for later 
output. Subsequent .sv requests will overwrite any still 
remembered N . 

. os Output saved vertical space. No-space mode has no effect. Used 
to finally output a block of vertical space requested by an earlier 
.svrequest . 

. ns No-space mode turned on. When on, the no-space mode 
inhibits .sp requests and .bp requests without a next page 
number. The no-space mode is turned off when a line of output 
occurs, or with .rs . 

. rs Restore spacing. The no-space mode is turned off. 

blank line Causes a break and output of a blank line exactly like .sp 1. 

6.2.5 Line Length and Indenting 

The maximum line length for fill mode may be set with .ll. The indent may 
be set with .in; an indent applicable to only the next output line maybe set 
with the temporary indent reqUest . ti. The line length includes indent space 
but not page offset space, The line length minus the indent is the basis for 
centering with .ce. The effect of .ll, .in, or .ti is delayed if a partially 
collected line exists until after that line is oUtput. In fill mode the length of 
text on an output line is less than or equal to the line length minus the indent. 
The current line length and indent are available in registers .1 and .i 
respectively. The length of three-part titles produced by .tl is Independently 
set by .it. 

.ll±N 

.in±N 

.ti±N 

6-10 

Initially, 6.5 Inches. Line length is set to ±N. In troff the 
maximum line-length +page-offset is about 7.54 inches. Without 
an argument, this means the previous line length. 

Initially, N-0. Indent is set to ±N. The indent is prepended to 
each output line. Without an argument, this means the previous 
indent. 

Temporary indent. The next output text line will be indented a 
distance ±N with respect to the current indent. The resulting 
total indent may not be negative. The current indent is not 
changed. Without an argument, therequestis ignored. 

'"" 



c 
-i 

( : 

Nroffrfroff Reference 

6.2.6 Tabs, Leaders, and Fields 

Both the ASCII horizontal tab character and the ASCII SOH (leader) 
character can be used to generate either horizontal motion or a string of 
repeated characters. The length of the generated entity is governed by 

_ m_ternal tab _stops sp_ecifiab]e_ with .ta. The_ default-difference is that tabs 
generate motion and leaders generate a string of periods; . tc and .lc offer the 
choice of repeated character or motion. There are three types of internal 
tab stops: left adjusting, right adjusting, and centering. In the following 
table D is the distance from the current position on the input line (where a 
tab or leader was found) to the next tab stop; the next string consists of the 
input characters following the tab (or leader) up to the next tab (or leader) or 
end ofline;and W is the width of next-string. 

Tab Length of motion or Location of 
type repeated characters next string 

Left D FollowingD 
Right D-W Right adjusted within D 

Centered D-W/2 Centered on rie:htend ofD 

The length of generated motion can be negative, but the length of a repeated 
character string cannot be. Repeated character strings contain an integer 
number of characters, and any residual distance is prepended as motion. 
Tabs or leaders found after the last tab stop are ignored, but maybe used as 
next-string terminators. 

Tabs and leaders are not interpreted in copy mode. \t and \a always generate 
a noninterpreted tab and leader respectively, and are equivalent to actual 
tabs and leaders incopymode. 

A field is contained between a pair of field delimiter characters, and consists 
of substrings separated by padding indicator characters. The field length is 
the distance on the input line from the position where the field begins to the 
next tab stop. The difference between the total length of all the substrings 
and the field length is incorporated as horizontal padding space that is 
divided among the indicated padding places. The incorporated padding is 
allowed to be negative. For example, if the field delimiter is # and the 
padding indicatoris "', #"'xxx"'right# specifies a right-adjusted string with the 
string xxx centered in the remaining space. The following requests are 
recognized: 

.ta Nt . . .  Sets tab stops and types. t=R, right adjusting; t=C, centering; t 
absent is left-adjusting. Troff tab stops are preset every 0.5 
inches, nroff every 0.8 inches. The stop values are separated by 
spaces, and a value preceded by + is treated as an increment to 
the previous stop value . 

. tc c The tab repetition character becomes c, or is removed specifying 
motion. 

6-11 



XENIX Text Processing Guide 

.lc c The leader repetition character becomes c, or is removed 
specifying motion. 

.fc a b The field delimiter is set to a; the padding indicator is set to the 
space character or to b, if given. In the absence of arguments the 
field mechanism is turned off. 

6.2. 7 Hyphenation 

Automatic hyphenation can be switched off and on. 'When switched on with 
.hy, several variants may be set. A hyphenation indicator character may be 
imbedded in a word to specify desired hyphenation points, or may be 
prepended to suppress hyphenation. In addition, the user may specify a 
small exception word list. 

Only words that consist of a central alphabetic string surrounded by (usually 
null) nonalphabetic strings are considered candidates for automatic 
hyphenation. Words that were input containing hyphens (minus), em­
dashes (\(em), or hyphenation indicator characters-such as mother-in­
law-are always subject to splitting after those characters, whether automatic 
hyphenation is on or off. 

.nh 

. hyN 

.be e 

Initially, hyphenation is on. Automatic hyphenation is 
turned off. 

Automatic hyphenation is turned on for N"?:_ 1, orofffor N=O . 
If N-2, last lines (ones that will cause a trap) are not 
hyphenated. For N-4 and 8, the last and first two characters, 
respectively, of a word are not split off. These values are 
additive; i.e., N=14 will invoke all three restrictions. 

Hyphenation indicator character is set to c or to the default 
\&. The indicator does not appear in the output . 

. hwwordl.. . 
Specify hyphenation points in words with imbedded minus 
signs. Versions of a word with various endings are implied. 

6.2.8 Three Part Titles 

The titling function .tl provides for automatic placement of three fields at 
the left, center, and right of a line with a title-length specifiable with .lt. . tl 
may be used anywhere, and is independent of the normal text collecting 
process. A common use is in header and footer macros . 

. tl'left' center'righ t' 

6-12 

The strings left, center, and right, respectively, are left-adjusted, 
centered, and right-adjusted in the current title length. Any of 

I 
'·"'-. 



c 

c \  

.pe e 

.lt±N 

Nroff/Troff Reference 

the strings may be empty, and overlapping is permitted. If the 
page-number character (initially %) is found within any of the 
fields, it is replaced by the current page number having the 
format assigned to the register %. Any character may be used as 
the string delimiter. 

The page number character is set to c,- or removed.--The page­
number register remains % .  

Initially 6.5 inches. Length o f  title set to ±N. The line length and 
the title length are independent. Indents do not apply to titles; 
page offsets do. 

6.2.9 Output Line Numbering 

Automatic sequence numbering of output lines may be requested with .nm. 
When in effect, a three-digit Arabic number plus a digit-space is prepended 
to output text lines. The text lines are thus offset by four digit-spaces, and 
otherwise retain their line length; a reduction in line length may b e  desired to 
keep the right margin aligned with an earlier margin. Blank lines, other 
vertical spaces, and lines generated by .tl are not numbered. Numbering can 
be temporarily suspended with .nn, or with an .nm followed by a later 
.nm+O. In addition, a line number indent I and the number-text separation 
S may be specified in digit-spaces. Further, it can be specified that only 
those line numbers that are multiples of some number M are to b e  printed. 
(The others will appear as blank number fields.) 

.nm±N Line number mode. If ±N is given, line numbering is turned on, 
and the next output line numbered is numbered ±N. Default 
values are M=l, S=R, and 1=0. Parameters corresponding to 
missing arguments are unaffected; a non-numeric argument is 
considered missing. In the absence of all arguments, numbering 
is turned off; the next line number is -preserved for possible 
further use in number register ln . 

. nnN ThenextNtextoutput linesarenotnumbered. 

6.3 Character Translations, Overstrike, and Local 
Motions 

The trotf functions described in the following sections apply to the 
processing of specialized text, including special characters and lines of 
variable length. Also descnbed are methods for producing special effects in 
text, by changing the position of text relative to lines and using offsets to 
create bold effects. 

6-13 



XENIX Text Processing Guide 

6.3.1 Input/Output Conventions and Character Translations 

The newline delimits input lines. In addition, the ASCII characters STX, 
ETX, ENQ, ACK, and BEL are accepted, and may be used as delimiters or 
translatedinto agraphicwith .tr. Allothers areignored. \._ 
The troff escape character backslash (\) introduces escape sequences which 
causes the character that follows to have another meaning, or to indicate 
some function. The backslash (\) should not be confused with the ASCII 
control character ESC of the same name. The escape character \ can be 
input with the sequence \\· The escape character can be changed with .ec, 
and all that has been said about the default \ becomes true for the new 
escape character. The sequence \e can be used to print whatever the current 
escape character is. If necessary or convenient, the escape mechanism may 
be turned off with .eo, and restored with .ec . 

. ecc Sets escape character to\, or to c, if given . 

. eo Turnstheescapemechanism off. 

Five ligatures are available in the current troff character set: fi, :H., ff, Fi, and 
ill. They may be input in lirolfwith \(fi, \(fi, \(If, \(Fi, and \(Flrespectively. 

The ligature mode is normally on in troJf, and automatically invokes 
ligatures during input. The ligature request is: 

.lg N Ligature mode is turned on if N is absent or nonzero, and 
turned off if N..O. If N-2, only the two-character 
ligatures are automatically invoked. Ligature mode is 
inhibited for request, macro, string, register, or filenames, 
an din copymode. No effectinnroff. 

Unless in copy mode, the ASCII backspace character is replaced by a 
backward horizontal motion having the width of the space character. Nroff 
automatically underlines characters in the underline font, specifiable with 
uf, normally on font position 2. In addition to .ft and \fF, the underline font 
may be selected by .ul and .cu. Underlining is restricted to an output­
device-dependent subset of reasonable characters. 

.u!N 

.cu N 

6-14 

Initially, off. Underlines in nroft' (italicizes in trofl') the next N 
input text lines. Actually, switches to underline font, saving 
the current font for later restoration; other font changes 
within the span of a .ul will take effect, but the restoration will 
undo the last change. Output generated by .tl is affected by the 
font change, but does not decrement N. If N> 1, there is the 
risk that a trap interpolated macro may provide text lines 
within the span; environment switching can prevent this. 

Initially, off. A variant of . ul that causes every character to be 
underlined in nroff. Identical to .ulin troll'. 



( 1  

c 

Nroffrrroff Reference 

.uf F Initially, italic. Underline font set to F. In nroff, F may not be 
on position 1. 

Both the control character dot (.) and the no.,.break control character (') 
may be changed, if desired. Such a change must be compatible with the 
design of any macros used in the span of the change, and particularly of any 
trap_-invoke� macro.s . 

. cc c The basic control character is set to c, or reset to dot (.) . 

. c2 c The no break control character is set to c, or reset to single 
quotation mark ('). 

One character can be made to stand in for another character using .tr. All 
text processing (e.g., character comparisons) takes place with the input 
(stand-in) character, which appears to have the width of the final character. 
The graphic translation occurs at the moment of output (including 
diversion). 

.tr abed ..  Translates a to b, c to d, etc. lf an odd number of characters is: 
given, the last one will be mapped into the space character. To 
be consistent, a particular translation must stay in effect from 
input to output time. 

An input line beginning with a \! is read in copy mode and transparently 
output (without the initial \!); the text processor is otherwise unaware of the 
line's presence. This mechanism maybe used to pass control information to 
a post-processor or to imbed control lines in a macro created by a diversion. 

Comments and concealed newlines may appear in text. An uncomfortably 
long input line that must stay one line (e.g., a string definition, or no filled 
text) can b e  split into many physical lines by ending all but the last one with 
the escape \· The sequence \(newline) is always ignored-except in a 
comment. Comments may be imbedded at the end of any line by prefacing 
them with \". The newline at the end of a comment Cannot be concealed . A 
line beginning with \" will appear as a blank line and behave like .sp 1; a 
comment can be on alinebyitselfiftheline begins with .\" . 

6.3.2 Local Motions and the Width Function 

The functions \v'N' and \h'N' can be used for local vertical and horizontal 
motion, respectively. The distance N may b e  negative; the positive 
directions are rightward and downward. A local motion is one contained 
within a line and, otherwise, within a line balance to zero. The vertical 
motions are: 

\v'N' Move distanceN 

1/2-em up in trolf; 1/2-lineup innrolf 

6-15 



XENIX Text Processing Guide 

\d 

\r 
1/2-em down in troff; 1/2-line down in nroH' 

1 em up in troft'; 1 lineup innroft' 

The horizontal motions are: 

\h'N' 

\0 

\I 

\' 

Move distance N 

Un paddable space-size space 

Digit-sized space 

1/6-em. space in troff; ignored in nroff 

1112-em space in troff; ignored in nroff 

The width function \w'string' generates the numerical width of string (in 
basic units) . Size and font changes may be safely imbedded in string, and 
will not affect the current environment. For example, .ti-\w'l.'u could be 
used to temporarily indent leftward a distance equal to the size of the string 
"1." 

The width function also sets three number registers. The registers st and sb 
are set to the highest and lowest extent of string relative to the baseline; 
then, for example, the total height of string is \n(stu-\n(sbu. In trolf, the 
number register ctis set to a value between Oand3. Zero (0) means that all of 
the characters in string were short lowercase characters without descenders 
(e.g., c); 1 means that at least one character has a descender (e.g. , y ); 2 
means that at least one character is tall (e.g., H); and 3 means that both tall 
characters and characters with descenders are present. The escape 
sequence \kxwill cause the current horizontal position in the input line to be 
stored in register x. 

6.3.3 Overstrike, Bracket, Line-drawing, and Zero-width Functions 

Automatically centered overstrik.ing of up to nine characters is provided by 
the overstrike function \o'string'. The characters in string are overprinted 
with centers aligned; the total width is that of the widest character. String 
should not contain local vertical motion. The function \zc will output c 
without spacing over it, and can be used to produce left-aligned overstruck 
combinations. 
The Special Mathematical Font contains a number of bracket construction 
pieces ( 1 1 1 1 � f I L J r 1 ) that can be combined into various bracket styles. 
The function \b'string' may be used to pile the characters in string vertically 
(the first character on top and the last at the bottom); the characters are 
vertically separated by 1 em and the total pile is centered 1/2-em above the 
current baseline. 
The function \1' Nc' will draw a string of repeated c's tow�d the right for a 
distance N. (\l is \(lowercase L). If c looks like a continuation of an 

6-16 



( 

( 

c �  

Nroffifroff Reference 

expression for N, it may insulated from N with a \&. If c is  not specified, the 
_ (baseline rule) is used (underline character in nroff). If N is negative, a 
backward horizontal motion of size N is made before drawing the string. 
Any space resulting from N/(size of c) having a remainder is put at the 
beginning (left end) of the string. In the case of characters that are designed 
to be connected such as baseline-rule(__), underrule (_), and root-en (), the 
remaining-space is covered-by-overlapping.- If-N-is-Iess "than·thewidth of·c, a 
single c is centered on a distance N. 

The function \L'Nc' will draw a vertical line consisting of the (optional) 
character c stacked vertically apart 1 em (1 line in nroft') with the first two 
characters overlapped, if necessary, to form a continuous line. The default 
character is the box rule (\(br); the other suitable character is the bold 
vertical (\(bv) . The line is begun without any initial motion relative to the 
current base line. A positive N specifies a line drawn downward and a 
negative N specifies a line drawn upward. After the line is drawn, no 
compensating motions are made; the instantaneous baseline is at the end of 
the line. The horizontal and vertical line drawing functions may be used in 
combination to produce large boxes. The zero-width box-rule and the 1/2-
em wide underrule were designed to form comers when using 1 em vertical 
spacings. 

6.4 Processing Control Facilities  

The following sections describe nroff and troJf requests and facilities for 
controlling the processing of text. 

6.4.1 Macros, Strings, Diversions, and Position Traps 

A "macro" is a named set of arbitrary lines that may be invoked by name or 
with a trap. A "string" is a named string of characters, not including a 
newline character, that may be interpolated by name at any point. Request, 
macro , and string names share the same name list. Macro and string names 
may be one or two characters_ long and may usurp previously defined 
request, macro, or string names. Any of these may be renamed with ·Ill or 
removed with .rm. Macros are created by .de and .di, and appended to by 
.am and .da; .di and .da cause normal output to be stored in a macro. 
Strings are created by .ds and appended to by .as. A macro is invoked in the 
same way as a request. A control line beginning with .xx will interpolate the 
contents of macro xx. The remainder of the line may contain up to nine 
arguments. The stringsx andxx are interpolated at any desired point with \ *x 
and \*(xx, respectively. String references and macro invocations may be 
nested. 

During the definition and extension of strings and macros (not by diversion) 
the input is read in copy mode. The input is copied without interpretation 
except that: 

6-17 



XENIX Text Processing Guide 

The contents ofnumberregistersindicated by\n are interpolated. 

Strings indicated by\* are interpolated. 

Arguments indicated by\$ are interpolated. 

Concealed newlines indicated. hy\newline are eliminated. 

Comments indicated by\" are eliminated. 

\t and \a are interpreted as ASCII horizontal tab and SOH, 
respectively. 

\\is interpreted as\. 

\ . is interpreted as dot(.). 

These interpretations can be suppressed by prepending a \ . For example, 
since \\ maps into a \ ,  \\n will copy as \n. This will be interpreted as a 
number register indicator when the macro or string is reread. 

-When a macro is invoked by name, the remainder of the line is taken to 
contain up to nine arguments. The argument separator is the space 
character, and arguments maybe surrounded by quotation marks to permit 
imbedded space characters. Pairs of double quotation marks may be 
imbedded in double-quoted arguments to represent a single quotation 
mark. If the desired arguments will not fit on a line, a concealed newline 
maybe used to continue on the next line. 

When a macro is invoked the input level is pushed down and any arguments 
available at the previous level become unavailable until the macro is 
completely read and the previous level is restored. A macro's own 
arguments can be interpolated at any point within the macro with \$N, which 
interpolates the Nth argument (1$N$9). If an invoked argument does not 
exist, anullstringresults. For example, the macroxxmightbe de:fined as: 

.de xx \"begin definition 
Today is \\$1 the \\$2. 

\"end definition 

and called with: 

.xx Monday 14th 

to produce the text: 

Today is Monday the 14th. 

Note that the \$was concealed in the definition with a prepended \· The 
number of currently available arguments is in the .$register. 

No arguments are available at the top (nonmacro) level in this 
implementation. Because string referencing is implemented as an input� 
level push down, no arguments are available from within a string. No 
arguments are available within a trap�invoked macro. 

6-18 

' 
"--



i - t  I 

( ' 

c 

c 

Nroff/TroJf Reference 

Arguments are copied in copy mode onto a stack where they are available 
for reference. The mechanism does not allow an argument to contain a 
direct reference to a long string (interpolated at copy time) , and it is 
advisable to conceal string references (with an extra\) to delay interpolation 
until argument reference time. 

Processed output may be diverted into a macro for purposes such as 
J9QJnCJtc:: _pr_o_c_e�sing .or_ determining the horizontal and .vertical size of some 
text for conditional changing of pages or columns. A single diversion trap 
may be set at a specified vertical position. The number registers .dn and .dl, 
respectively, contain the vertical and horizontal size of the most recently 
ended diversion. Processed text that is diverted into a macro retains the 
vertical size of each of its lines when reread in no-fill mode, regardless of the 
current value of V. Constant-spaced (.cs} or emboldened (.bd} text that is 
diverted can be reread correctly only if these modes are again, or still, in 
effect at reread time. 

Diversions may be nested and certain parameters and registers are 
associated with the current diversion level (the top nondiversion level may 
be thought of as the Oth diversion level} . These are the diversion trap and 
associated macro, the no�space mode, the internally saved marked place 
(see .mk and .rt), the current vertical place (.d register}, the current high­
water text baseline ( .h register}, and the current diversion name (.z register). 

Three types of trap mechanisms are available-page traps, a diversion trap, 
and an input line count trap. Macro invocation traps may be planted using 
.wh at any page position including the top. This trap position may be 
changed using .ch. Trap positions at, or below, the bottom of the page only 
have an effect if moved to within the page or rendered effective by an 
increase in page length. Two traps may be planted at the same position only 
by first planting them at different positions and then moving one of the 
traps; the first planted trap will conceal the second unless and until the first 
one is moved. H the first one is moved back, it again conceals the second 
trap. The macro associated with a page trap is automatically invoked when a 
line of text is output whose vertical size reaches or sweeps past the trap 
position. Reaching the bottom of a page springs the top-of-page trap, if any, 
provided there is a next page. The distance to the next trap position is 
available in the .t register; if there are no traps between the current position 
and the bottom of the page, the distance returned is the distance to the page 
bottom. 

A macro-invocation trap effective in the current diversion may b e  planted 
using .dt. The .t register works in a diversion; if there is no subsequent trap, 
a large distance is returned. For a description of input line count traps, see 
.itin the following list. 

.dexxyy Define or redefine the macro xx. The contents of the macro 
begin on the next input line. Input lines are copied in copy 
mode until the definition is terminated by a line beginning 
with .yy, at which point the macro yy is called. In the absence 
ofyy, the definition is terminated by a line beginning with two 
dots ( . .  ).  A macro may contain .de requests provided the 

6-19 



XENIX Text Processing Guide 

. amxxyy 

. dsxx string 

terminating macros differ or the contained definition 
terminator is concealed. The dots can be concealed as \\ .. 
which will copy as\.. and be reread as dots ( .. ) .  

Append to macro . 

Define a string :rx containing string. Any initial double 
quotation mark in string is stripped off to permit initial 
blanks . 

. asxxstring Append string to stringxx . 

. nn xx Remove request, macro, or string. The name xx is removed 
from 'the name list and any related storage space is freed. 
Subsequent references will have no effect . 

. m xx yy Rename request� macro� or string xx to yy. If yy exists, it is 
first removed . 

. di xx Divert output to macro xx. Normal text processing occurs 
during diversion except that page offsetting is not done. The 
diversion ends when the request .di or .da is encountered 
without an argument; extraneous requests of this type should 
not appear when nested diversions are being used . 

. daxx 

.wh Nxr 

.chxr N  

.dt Nxx 

.it Nxx 

.emxx 

6-20 

Divert, appendingtoxx. 

Install a trap to invoke xx at page position N; a negative N will 
be interpreted with respect to the page bottoin. Any macro 
previously planted at N is replaced by xx. A zero N refers to 
the top of a page. In the absence of xx, the first found trap at 
N, if any, is removed. 

Change the trap position for macro xx to N. In the absence of 
N, the trap is removed. 

Install a diversion trap at position N in the current diversion 
to invoke macro xx. Another .dt will redefine the diversion 
trap. H no arguments are given, the diversion trap is 
removed. 

Set an input line count trap to invoke the macro xx after N 
lines of text input have been read (control or request lines do 
not count). The text may be in-line text or text interpolated 
byin�line ortrap�invoked macros. 

The macro xx will be invoked when all input has ended. The 
e:lfect is the same as if the contents of xx had been at the end 
of the last file processed. 



c 
- !  
I 

( 

( 

NroffrJ'roff Reference 

6.4.2 Number Registers 

A variety of parameters are available to the user as predefined, named 
number registers. In addition, the user may define his own named registers. 
Register names are one or two characters long and do not conflict with 
request,---macro;-or·string -names. ---Except for certain ·predefined-read-only-­
registers, a number register can be read, written, automatically incremented 
or decremented , and interpolated into the input in a varietyofformats. One 
common use of user-defined registers is to automatically number sections, 
paragraphs, lines, etc. A number register may be used any time numerical 
input is expected or desired and maybe used in numerical expressions. 

Number registers are created and modified using .nr, which specifies the 
name, numerical value, and the auto-increment size. Registers are also 
modified, if accessed with an auto-incrementing sequence. If the registers x 
and xx both contain N and have the auto-increment size M, the following 
access sequences have the effect shown: 

Effect on Value 
Sequence Register Interpolated 

\nx none N 
\n(xx none N 
\n+x x incremented by M N+M 
\n-x x decremented by M N-M 
\n+{xx xx incremented by M N+M 
\n-{xx xx decremented by M N-M 

When interpolated, a number register is converted to decimal (default) , 
decimal with leading zeros, lowercase Roman, uppercase Roman, 
lowercase sequential alphabetic, or uppercase sequential alphabetic 
according to the format specified by .af . 

. nr R±NM Thenumber register R is assigned the value ±Nwith respect to 
the previous value, if any. The increment for auto­
incrementingis set toM . 

. afRc Assign format c to register R. The available formats are: 

Numbering 
Format Sequence 

1 0,1,2,3,4,5, . . .  
001 ()(X), CX>l, 002, 003,004, 005, . . .  

I O,i,ii,iii,iv, v, . . .  
I O,I,II,III,IV, V, . . .  
a O,a, b ,c, . . .  ,z,aa,ab, . . .  ,zz,aaa, . ..  
A O,A,B,C, . . .  ,z,AA,AB, . . .  ,zz,AAA, . . .  

6-21 



XENIX Text Processing Guide 

.rr R 

An Arabic format having N digits specifies a field width of N 
digits. The read-only registers and the width function are 
always Arabic. 

Remove register R. If many registers are being created 
dynamically, it may become necessary to remove unused 
registers to recapture internal storage space for newer 
registers. 

6.4.3 Condidonal Acceptance of Input 

In the following, c is a one-character, built-in condition name, ! signifies 
not, N is a numerical expression, stringl and string2 are strings delimited by 
any nonblank, non-numeric character not in the strings, and text represents 
what is conditionally accepted . 

.if c text 

. if !c text 

. ifNtext 

. if!Ntext 

If condition c is true, process text as input; in multiline case, use 
\{text\} . 

If condition cis false, process text . 

If expression N>O, process text . 

If expression N <0, process text . 

. if 'stringl 'string2' text 
If string! identical to string2, process text . 

. if! 'stringl 'string2' text 
If string 1 not ideu tical to string2, process text . 

.iectext 
"If" portion of if-else; all above forms (like if) . 

. eltext 
uEise" portion of if-else. 

There are several built-in condition names: 

0 Currentpagenumberis odd 

e Currentpage number is even 

t Formatteristroff 

6-22 



I c 
- I 
I I 

( 

c �  

Nrofl'n'roff Reference 

n Form.a tterisnroff 

If condition c is true, or if the number Nis greater than zero, or if the strings 
compare identically (including motions and character size and font}, text is 
accepted as input. If a ! precedes the condition, number, or string 
comparison, the sense of the acceptance is reversed. 

- Any--spaces-between the condition--and-the beginning·· of-text ·are--skipped 
over. The text can be either a single inputline (text, macro, orwhatever) or a 
number of input lines. In the multiline case, the first line must begin with a 
leftdelimiter\{ and thelastline mustend with a right delimiter\}. 

The request .ie (if-else) is identical to .if except that the acceptance state is 
remembered. A subsequent and matching .el (else) request then uses the 
reverse sense of that state . .  ie-.el pairs maybe nested. 

6.4.4 Environment Switching 

A number of the parameters that control text processing are gathered 
together into an environment, which can be switched by the user. Partially 
collected lines and words are in the environment. Everything else is global; 
examples are page-oriented parameters, diversion-oriented parameters, 
number registers, and macro and string definitions. All environments are 
initialized with default parameter values. 

.evN Initially, N=O. Environment switched to environment where N is 
in the range 0-2. Switching is done in push down fashion so that 
restoring a previous environment must be done with .ev with no 
parameters rather than a specific numeric reference. 

6.4.5 Insertions From the Standard Input 

The in put can be temporarily switched to the system standard input with .rd, 
which will switch back when two newlines in a row are found. (The extra 
blank line is not used.) This mechanism is intended for insertions in 
documentation containing standard formats. The standard input can be the 
terminal, a pipe, or a file . 

. rd prompt Reads insertion from the standard input until two new lines in a 
row are found. If the standard input is the user's keyboard, a 
prompt (or a BEL) is written onto the terminal. The .rd request 
behaves like a macro, and arguments may be placed after the 
prompt. 

.ex Exit from either nroff or troff. Text processing is terminated 
exactlyasifallinputhad ended. 

6-23 



XENIX Text Processing Guide 

H insertions are to be taken from the terminal keyboard while output is 
being printed on the terminal, the command line option -q will turn off the 
echoing of keyboard input and prompt only with BEL. The regnlar input 
and insertion input cannot simultaneously come from the standard input. 

6.4.6 Input/Output File Switching 

The following requests control the switching of input and output files: 

.so filename 
Switch source file. The top input (file reading) level is switched to 
filename. The effect of a .so encountered in 3. macro is not felt 
until the input level returns to the file level. When the new file 
ends, input is again taken from the original file . .  so's may be 
nested . 

. ox filename 
Next file is filename. The current file is considered ended, and 
the input is immediately switched to filename . 

. pi program 
Pipe output to program in nrofl' only. This request must occur 
before any printing occurs. No arguments are transmitted to 
program. 

6.4. 7 Miscellaneous Requests 

.me c N Specifies that a margin character c appears a distance N to the 
right of the right margin after each J!,Onempty text line (except 
those produced by .tl). If the output line is too long, the 
character will be appended to the line. If N is not given, the 
previous Nisused; the initial Nis0.2inches in nroJf, and 1 em in 
trotf . 

. tm string After skipping initial blanks, string (rest of line) is read in copy 
mode and written on the user's terminal. 

.ig yy 

.pm t 

6-24 

Ignores input lines. The .ig request behaves exactly like .de 
except that the input is discarded. The input is read in copy 
mode, and any auto-incremented registers will be affected. 

Prints macros. The names and sizes of all of the defined macros 
and strings are printed on the user's terminal; if t is given, only 
the total of the sizes is printed. The sizes are given in blocks of 
128 characters. 



- I  
I 

( l  

( ) 

(\ l 

Nroff/Troff Reference 

.fi Flushes output buffer. Used in interactive debugging to force 
output. 

6.5 Output and Error Messages 

The output from . tm, .pm-, and the prompt from .rd,-as wen aS"\r3rioUs erior 
messages are written onto the standard message output. The latter is 
different from the standard output, where nrofffonnatted output goes. By 
default, b oth are written onto the user's terminal, but they can be 
independently redirected. 

Various error conditions may occur during the operation of nroff and troff. 
Certain less serious errors having only local impact do not cause processing 
to terminate. Two examples are word overflow, caused by a word that is too 
large to fit into the word buffer (in fill mode), and line overflow, caused by an 
output line that grew too large to fit in the line buffer. In b oth cases, a 
message is printed, the offending excess is discarded, and the affected word 
or line is marked at the point of truncation with a *  in nroff and a "Ql in troft'. 
The program continues processing, if possible, on the grounds that output 
useful for debugging may be produced. If a serious error occurs, processing 
terminates, and an appropriate message is printed. Examples are the 
inability to create, read, or write files, and the exceeding of certain internal 
limits thatmake futureoutputunlikely to be useful. 

6.6 Summary of Escape Sequences and Number Registers 

6-25 





(_··· · 
f 

/ 

Chapter 7 
Formatting Tables 

. 7.1 Introduction 1· 
7.2 Input Format 2 

7 .2.1 Options 2 
7.2.2 Format 3 
7 .2.3 Additional Features 5 
7.2.4 Data 7 
7 .2.5 Additional Command Lines 9 

7.3 InvokingTbl 9 

7.4 Examples 11 

7.5 Summaryof tb!Commands 18 





( 

( ) 

Fonnatting Tables 

7.1 Introduction 

By now, you have a firm grasp of most of the principles and techniques of 
using XENIX text processing successfully. By using the mm macro package, 
along with nroffltrofl' commands, you should be able to achieve precise 
control of almost any formatting task. However, there are two formatting 
needs _.which may be --best -met. w-ith--two specialized-- XENIX -formatting 
programs: 

• Formatting tables or other complicated multicolumn material 

• Setting mathematical equations 

In this chapter, the program tbl, the table formatting program, is 
introduced. Eqn, the mathematics formatting program, is discussed in 
Chapter 8. Unless you anticipate using tables or equations fairly extensively 
in your work, you may wish to postpone or skip reading about tbl and eqn. 
Although both programs use commands which are easy to learn and use, 
you should expect to spend several hours on each program-reading these 
instructions, learning the commands, and testing them out with your output 
device. If you need to create tables or equations in your documents, the 
effort oflearningtbl and eqn will be well rewarded. You will soon be able to 
produce high-quality, consistent output with relatively little work. 

Both tbl and eqn are "preprocessors"-that is, you insert commands into 
your text as you are preparing it, just as you would if you were using mm. 
These commands are translated by the tbl and eqn programs into sequences 
of nrofUtroff commands, without altering either the body of your text or 
other formatting commands. Your file is then processed through the nroff 
or troffprograms themselves. 

You will :find tbl especially useful in preparing charts, multicolumn list 
summaries, and other tabular material. It will give you a high degree of 
control over complicated column alignment, and it will calculate the 
necessary widths of columns, when the elements are of varying lengths. Tbl 
also allows you to draw horizontal lines, vertical lines and boxes in order to 
highlight your material. Although the effects will be somewhat limited if you 
are working with an ordinary lineprinter or similar device, you will obtain 
extremely high quality results when outputting tables to phototypesetter. 

Because the tbl program works by isolating the tabular material from the rest 
of the file, and then creating the necessary nrofl' or troll' commands, the rest 
of the file is left intact for other programs to format. Thus you can use tbl 
along with the equation formatting program eqn or various layout macro 
packages like mm, without duplicating their functions. You must be careful 
to invoke the various programs in the correct order. 

The latter part of this chapter is devoted to some examples-in each case, the 
text input is paired with the resulting output. You may find that, at first, you 
learn the features oftbl best by examining these examples and copying those 
formatting instructions for examples which resemble your own tables. 
However, first read the rules for preparing tbl input, so you have a general 

7-1 



XENIX Text Processing 

idea of how to invoke the tbl program, and have an overview of the possible 
options and formats. 

7.2 Input Format 

The input to tblis text for a document, with tables preceded by a .TS (table 
start) command and followed by a .  TE (table end) command. Tbl processes 
the_ text and formatting commands within these two commands, generating 
nroff/troff formatting commands. The . TS and .TE lines are also copied so 
that nroff and troff page layout macros can use these lines to delimit and 
place tables as necessary. In particular, any arguments on the .TS or .TE 
lines are copied but otherwise ignored, and maybe used by document layout 
macro commands. 

The format of the input is: 

text 
.TS 
table 
.TE 
text 
.TS 
table 
.TE 
text 

Each table will contain text, options, and formatting specifications: 

.TS 
options; 
format. 
data 
.TE 

Each table is independent, and must contain formatting information 
followed by the data to be entered in the table. The formatting information, 
which descn"bes the individual columns and rows of the table, may be 
preceded by options that affect the entire table. 

Each table may contain global options, a format section descnbing the 
layout of individual table entries, and then the text to be printed. The format 
and data are always required, but not the options. The various parts of a 
table are described in the following sections. 

7.2.1 Options 

There may be a single line of options which affects the whole table. If 
present, this line must immediately follow the .TS line and must contain a 
list of option names separated by spaces, tabs, or commas, and must be 
terminated by a semicolon. The allowable options are: 

7-2 



c 

Formatting Tables 

center Centers the table (default is left-adjust) 

expand Makes the table as wide as the current line length 

box Encloses the table in a box 

- - allbox - Encloses·eachitem·inthe tablein abox 

doublebox Encloses the table in two boxes 

tab (x) Usesx instead of tab to separate data items 

linesize (n) Sets lines or rules inn point type 

delim (xy) Recognizesxandy as the eqn delimiters. 

The tbl program tries to keep b axed tables on one page by 
issuing appropriate .ne commands. These requests are 
calculated from the number of lines in the tables, and if there 
are spacing commands embedded in the input, these requests 
may be inaccurate. To ensure the correct format on one page, 
you can surround the table with the display macros .DS and 
.DE. 

7 .2.2 Format 

The format section of the table specifies the layout of the columns. Each 
line in this section corresponds to one line of the table. The last format line 
applies to all the remaining lines in the table. Each line contains a keyletter 
for each column of the table. It is good practice to separate the key letters 
for each column by spaces or tabs. The keyletters, which may be either 
uppercase or lowercase, are: 

Lor I Indicates a left-adjusted column entry 

R orr Indicates a right-adjusted column entry 

Core Indicates a centered column entry 

N orn numerical entries so that the units of numbers lineup 

A or a all corresponding entries are aligned on the left, and positioned so 
that the widest is centered within the column 

Sors entry from the previous column continues across this column 

7-3 



XENIX Text Processing 

Indicates a vertically spanned heading, i.e., the entry from the 
previous row continues down through this row. (Not allowed for 
the first row of the table.) 

When you are aligning numerical information, a location for the decimal 
point is sought. The rightmost dot adjacent to a digit is used as a decimal \.. 
point; if there is no dot adjoining a digit, the rightmost digit is used for the 
units; if no alignment is indicated, the item is centered in the column. 
However, the special nonprinting character str:i.ilg ''\&" may be used to 
override dots and digits, or to align alphabetic data; this string lines up where a dot normally would, and th¥n disappears from the final output. In 
the example below, the items shown at the left will be aligned (in a numerical 
column) as shown on the right: 

lnp1lt thlformat 

13 p 
4.2 4.2 
26.12 26.12 
abc abc 
abc\& abc 
43\&3.22 433.22 
749.12 749.12 

Note that if numerical text is used in the same column with wider left� 
adjusted (L) or right-adjusted (R) type table entries, the widest number is 
centered relative to the wider left�adjusted or right-adjusted items (Lis used 
instead of 1 for readability; ·they have the same meaning as keyletters). 
Alignment within the numerical items is preserved in the satne way as using 
the A format. However, alphabetic subcolumns requested by the keyletter 
are always slightly indented relative to L items; if necessary, the column 
width is increased to force this. This is not true for N type entries. Do not 
put N and A type entries in the same column. 

To make your table formatting infonnati.on more readable, you should 
separate the keyletters descnbi.ng each column with spaces. The layout of 
the keyletters in th_e format section resembles the layout of the actual data in 
the table. The end of the format section of the table specification is 
indicated by a period. For example, a simpleformatmightlook like this: 

c s s 
1 n n .  

This specifies a table of_three columns. The first line of the table contains a 
heading centered across all three columns; each remaining line contains a 
left-adjusted item in the first column followed by two columns of numerical 
data. 

7-4 



c 

( 

( : 

Formatting Tables 

Here is a sampletableinthisformat: 

Item-a 
Item-b 

Overall title 
34.22 
12.65 
23 
69.87 

Items: c,d,e 
Total 

9.1 
.02 

5.8 
14.92 

Note that instead of listing the format of successive lines of a table on 
consecutive lines of the format section, successive line formats maybe given 
on the same line, separated by commas. In the example above, the format 
might have been written: 

c s s, l n n. 

7.2.3 Additional Features 

There are some additional features ofthekeyletter system: 

Horizontal Lines 

A keyletter may be replaced by an underscore (_) to indicate a 
horizontal line in place of the corresponding column entry, or by 
an equal sign (-) to indicate a double horizoD.tal line. If an 
adjacent column contains a horizontal line, or if there are 
vertical lines adjoining this column, this horizontal line is 
extended to meet the nearby lines. If any data entry is provided 
for this column, it is ignored and a warningmessageis printed. 

Vertical Lines 

A vertical bar (I) maybe placed between columnk eyletters. This 
will cause a vertical line between the corresponding columns of 
the table. A vertical bar to the left of the first keyletter or to the 
right of the last one produces a line at the edge of the table. If two 
vertical bars appear between keyletters, a double vertical line is 
drawn. 

Space Between Columns 

A number may follow the keyletter. This indicates the amount 
of separation between this column and the next column. The 
number normally specifies the separation in ens (one en is about 
the width ofthe letter n), or more precisely, an en is a number of 
points (1 point � 1/72-incb) equal to half the current type size. If 
the "expand" option is used, then these numbers are multiplied 
by a constant so that the table is as wide as the current line length. 
The default column separation number is 3. If the separation is 
changed, the largest space requested prevails. 

7-5 



XENIX Text Processing 

Vertical Spanning 

Normally, vertically spanned items extending over several rows 
of the table are centered in their vertical range. If a keyletter is 
followed by t or T, any corresponding vertically spanned item · ,  
will begin at the top line of its range. 

,
'-

Font Changes 

A keyletter may be followed by a string containing a font name or 
number preceded by the letter f or F. This indicates that the 
corresponding column should be in a different font from the 
default font (usually Roman). All font names are one or two 
letters; a one-letter font name should be separated from 
whatever follows by a space or tab . Font change commands 
given with the table entries will override these specifications. 

Point Size Changes 

A keyletter maybe followed by the letter p or P and a number to 
indicate the point size of the corresponding table entries. The 
number Iilay be a signed digit, in which case it is taken as an 
increment or decrement from the current point size. If both a 
point size and a column separation value are given, one or more 
blanksmustseparatethem. 

Vertical Spacing Changes 

A keyletter may be followed by theletterv or V and a number to 
indicate the vertical line spacing to be used within a multiline 
corresponding table entry. The number may be a signed digit, in 
which case it is taken as an increment or decrement from the 
current vertical spacing. A column separation value must be 
separated by blanks or some other specification from a vertical 
spacing request. This request has no effect unless the 
corresponding table entry iS a text block. 

Column Width Indication 

7-6 

A keyletter may be followed by the letter w or W and a width 
value in parentheses. This width is used as a minimum column 
width. If the largest element in the column is not as wide as the 
width value given, the largest element is assumed-to be the same 
as the width value in the parentheses. If the largest element in the 
column is wider than the specified value, its width is used. The 
width is also used as a default line length for included text blocks. 
Normal troff units can be used to scale the width value; the 
default is ens. If the width specification is a unitless integer, the 
parentheses may be omitted. If the width value is changed in a 
column, the last value given controls. 



( 

c 

c 

Formatting Tables 

Equal Width Columns 

A keyletter maybe followed by the letter e orE to indicate equal 
width columns. All columns whose keyletters are followed by e 
or E are made the same width. This allows you to get a group of 
regularly spaced columns. 

The ord& ottlie·ahOVe fMtiireS IS iniiDateriai.; theY:-nee;in0-1: b-� s.;parated b-y 
spaces, except as indicated above to avoid point size and font change 
ambiguities. Thus a numerical column entry in italic font and 12-point type 
with a minimum width of 2.5 inches and separated by 6 ens from the next 
column could be specified as: 

np12w(2.5i)f l 6 

Note the following format defaults: Column descriptors missing from the 
end of a format line are assumed to be L. The longest line in the format 
section, however, defines the number of columns in the table; extra 
columns in the data are ignored silently. 

7.2.4 Data 

The text for the table is entered after the format specification. Normally, 
each table line is entered as one line of data. Very long input lines can be 
broken: any line whose last character is a backslash (\) is  combined with the 
following line (and the backslash vanishes). The data for different columns 
(the table entries) are separated by tabs� or by whatever character has been 
specified in the tabs option. There are a few special cases: 

Troff commands within tables 

An input line beginning with a dot (.) followed by anything but a 
number is assumed to be a command to troff and is passed 
through unchanged, retaining its position in the table. For 
example, space within a table may be produced by .sp 
commands in the data. 

Full Width Horizontal Lines 

An input line containing only the underscore (_) or equal sign ( =) 
is taken to be a single or double line, respectively, extending the 
full width of the table. 

Single Column Horizontal Lines 

An input table entry containing only the underscore or equal sign 
character is taken to be a single or double line extending the full 
width of the column. Such lines are extended to meet horizontal 
or vertical lines adjoining this column. To obtain these 

7-7 



XENIX Text Processing 

characters explicitly in a column, either precede them by "\&" or 
follow them by a spacebefore theusual tab or newline. 

ShortHorizontalLines 

An input table entry containing onlythestring ''\-" is taken to be \..._ 
a single line as wide as the contents of the column. It is not 
extended to meet adjoining lines. 

Vertically Spanned Items 

An input table entry containing only the character string ''\"'" 
indicates that the table entry immediately above spans 
downward over this row. It is equivalent to the table format 
keyletter. 

Text blocks 

In order to include a block of tex;t as a table entry, precede it by 
T{ and followitbyT}. Thus the sequence 

. . .  T{ 
block of 
text 
T} . . .  

is the way to enter, as a single entry in the table, something that 
cannot conveniently be entered as a simple string between tabs. 
Note that the T} end delimiter must begin a line; additional 
columns of data may follow after a tab on the same line. If more 
than twenty text blocks are used in a table, various limits in the 
troff program are likely to be exceeded, producing diagnostics 
such as "too many string/macro names" or "too many number 

Text blocks are pulled out from the table, processed separately 
by troft', and replaced in the table as a solid block. If no line 
length is specified in the block of text itself, or in the table 
format, the default is to use L X  C/(N+ 1) where Lis the current 
line length, C is the number of table columns spanned by the 
text, and Nis thetotalnumber ofcolumns in the table. The other 
parameters used in setting the block of text are those in effect at 
the beginning of the table. These include the effect of the .TS 
macro and any table format specifications of size, spacing and 
font, using the p, v and f modifiers to the column keyletters. 
Commands within the text block itself are also recognized. 
However, troff commands within the table data but not within 
the text block do not affect that block. 

Note the following limitations. Although any number of lines may be 
present in a table, only the first 200 lines are used in calculating the widths of 
the various columns. A multipage table may be arranged as several single­
page tables if this proves to be a problem. Other difficulties with formatting 

7-8 



c 

Formatting Tables 

may arise because in the calculation of column widths all table entries are 
assumed to be in the font and size being used when the . TS command was 
encountered. Not included in the calculation are font and size changes 
indicated in the table format section and within the table data. Therefore, 
although arbitrary troff requests may be sprinkled in a table, care must be 
taken to avoid confusing the width calculations; use requests such as .ps 
with-care;- - · ·  ·"- � - · - �---·-.. ··- ----

7.2.5 Additional Command Lines 

If the format of a table must be changed after many similar lines, as with 
sub-headings or summarizations, the .T& (table continue) command can be 
used to change column parameters. The outline of such a tableinputis: 

.TS 
options ; 
format . 
data 

.T& 
format . 
data 
.T& 
format . 
data 
.TE 

Using this procedure, each table line can be close to its corresponding 
format line. It is not possible to change the number of columns, the space 
between columns, the global options such as box, or the selection of 

7.3 Invoking Tbl 

You can run tbl on asimpletablewith the command 

tbl input-file I troff 

but for more complicated use, where there are several input files, and they 
contain equations and mm commands as well as tables, the normal 
command woUld be 

tblfile-1 file-2 . . .  I eqn I troff -mm 

The usual options may be used on the troff and eqn commands. The usage 
for nrotfis similar to that fortrotl'. 

For the convenience of users employing line printers without adequate 
driving tables or post-filters, there is a special -TX command line option to 

7-9 



XENIX Text Processing 

tbl which produces output that does not have fractional line motions in it. 
The only other command line option recognized by tbl is Mmm which fetches 
the mm macro packages. 

When you are using both eqn and tbl on the same file, tbl should be used 
first. If there are no equations within tables either order works, but it is ·� 
usually faster to run tbl first, since eqn normally produces a larger expansion 
of the input than thl. However, if there are equations within tables (e.g. 
when you are using the eqn delim command}, tbl must be first or the output 
will be scrambled. (See Chapter 8, ''Formatting Mathematics.") You must 
also be cautious of using equations in n-style columns; this is nearly always 
wrong, since tbl attempts to split numerical format items into two parts and 
this is not possible with equations. Give the delim(xx) tbl option instead; 
this prevents splitting of numerical columns within the delimiters. For 
example, if the eqn delimiters are $$, a numerical column such as "1245 $+-
16$" will be divided after 1245, not after 16. 

Tbl limits tables to twenty columns; however, use of more than 16 numerical 
columns may fail because of limits in troff, producing the "too many number 
registers" message. Tro:ff number registers used by tbl must be avoided by 
the user within tables; these include two-digit names from 31 to 99, and 
names of the forms #x, x+, xl, Ax, and x-, where x is any lowercase letter. 
The names ##, #-, and #A are also used in certain circumstances. To 
conserve number register names, the n and a formats share a register; hence 
the restriction that they may not be used in the same column. 

For aid in writing macros, tbl defines a number register TW which is the 
table width; it is defined by the time that the . TE macro is invoked and may 
be used in the expansion of that macro. To assist in laying out multipage 
boxed tables the macro T# is defined to produce the bottom lines and side 
lines of a boxed table, and then invoked at the foot of the table. By using this 
macro in the page footer a multipage table can be boxed. In particular, the 
mm macros can be used to print a multipage boxed table with a repeated 
heading by giving the argument H to the . TS macro. If the table start macro 
is written 

.TS H 

aline oftheform 

.TH 

must be given in the table after any table heading (or at the start if none). 
Material up to the . Til is placed at the top of each page of the table; the 
remaining lines in the table are placed on several pages as required. 

7-10 



( 

( 
" 

c ! 

Formatting Tables 

7.4 Examples 

Here are some examples illustrating features of tbl. The symb ol G) in the 
input represents a tab character. 

Input: 

.TS 
box; 
C C C  
I l l. 
Command@ Reference SectioneD Action 

ccC'D CPC'D Compiles C programs 
cpC'D C(j} Copies files 
diskcpG} CG} Copies archive media 
IcC'D CC'D Lists files 
loginC'D MC'D Access to the system 
troffC'D CTC'D Typesets text 
.TE 

Output: 

Command Reference Section 

cc 
cp 
diskcp 
lc 
login 
troff 

CP 
c 
c 
c 
M 
CT 

Action 

Com piles C programs 
Copies files 
Copies archive media 
Lists files 
Access to the system 
Typesets text 

7-11 



XENIX Text Processing 

Input: 

.TS 
allbox; 
c s s 
C C C  
n n n. 
ACM&E Common Stock 
YearGl Price@ Dividend 
1985@ 41-54@ $2.60 
2@ 41-54@ 2.70 
3@ 46-55@ 2.87 
4@ 4(}-53@ 3.24 
5@ 45-52@ 3.40 
6Gl 51-59Gl .95* 
.TE 
* (first quarter only) 

Output: 

ACM&E Common Stock 
Year Price Dividend 
1985 41-54 $2.60 

2 41-54 2. 70 
3 46-55 2.87 
4 4(}-53 3.24 
5 45-52 3.40 
6 51-59 .95* 

* (first quarter only) 

7-12 



c 

c 

c ,  

Input: 

.TS 
box; 
c s s  
c I c I c 
I I I  I n. 
Major New York Bridges 

BridgeGl DesignerGl Length 

BrooklynGl J A RoeblingGl 1595 
Manhattan G) G Lindentha!Gl 1470 
WilliamsburgGl L L BuckGl 1600 

QueensboroughGl Pahner &Gl 1182 
Gl Hornbostel 

?D Gl 1380 
Trib oroughGl 0 H Ammann G) _  
Gl @  383 

Bronx WhitestoneGl 0 H Ammann Gl 2300 
Throgs NeckGl 0 H AmmannGl 1800 

George Washington Gl 0 H Ammann Gl 3500 
.TE 

Output: 

Maior Nc w York 

Formatting Tables 

Bridee Designer Leneth 
Brooklyn J. A. Roebling 1595 
Manhattan G. Lindenthal 1470 
Williamsburj(__ L. L. Buck 1600 
Queensborough Pahner & 1182 

Hornbostel 
1380 

Triborough 0. H. Ammann 
383 

Bronx Whitestone 0. H. Ammann 2300 
Throes Neck 0. H. Ammann 1800 
Geome Washine:ton 0. H. Ammann 3500 

7-13 



XENIX Text Processing 

Input: 
.TS 
c c  
np-2 l n l .  
G:> Stack 
@ _ 
1@ 46 
@ _ 
2@ 23 
@ _  
3@ 15 
@ _  
4@ 65 
@ _  
5@ 21 
@ _  
.TE 

Output: 
Stack 

1 46 
2 23 
3 15 
4 6.5 
5 2.1 

7-14 



( 
Input: 

.TS 
box· 
L L

'
L 

L L _  
LJ. LLB 
L L _  
L L L. 
january@ february@ Il)arch 
apriiGl Il)ay 
june@ luly@ Months 
august CD september 
october@ november@ december 
.TE 

Output: 

january 
april 
june 
august 
october 

february march 
Il)ay I july Months 
september 
november december 

Formatting Tables 

7-15 



XENIX Text Processing 

Input: 

.TS 
box; 
cfB s s s. 
Composition of Foods 

.T& 
c I c s s 
c 1 c s s 
c I c I c I c. 
Food@ Percent by Weight 
\"G":> -
\"G":> Protein@ FatG'l Carbo· 
\"G":> \"G":> \"G":> hydrate 

.T& 
I I n I n  I n .  
Apples@ .4G'l .5G":> 13.0 
HahbutG":> 18.4@ 5.2G'l . . .  
Lima beans@ 7.5G":> .8@ 22.0 
MilkG":> 3.3@ 4.0G":> 5.0 
Mushrooms@ 3.5@ .4G":> 6.0 
Rye bread@ 9.oG":> .6G":> 52.7 
.TE 

Output: 

Com osition of Foods 
Percent bv Wei•ht 

Food 
Protein Fat Carbo-

bvdrate 
Apples .4 .5 13.0 
Hahbut 18.4 5.2 . . . 
Lima beans 7.5 .8 22.0 
Milk 3.3 4.0 5.0 
Mushrooms 3.5 .4 6.0 
Rve bread 9.0 . 6  52.7 

7-16 



c 

c �  

Input: 

.TS 
allbox; 
cfl s s 
c cw(li) cw(li) 
Jp9 lp9 lp9. 
NeW YOl-k Afeil-Rocks-
Era<D Formation@ Age (years) 
Precambrian@ Reading Prong@ > 1 billion 
Paleozoic@ Manhattan Prong(] 400 million 
Mesozoic@ T { 
.na 
Newark Basin, incl. 
Stockton, Lockatong, and 
Brunswick formations; also 
Watchungs and Palisades. 
T}<D 200 million 
Cenozoic@ Coastal Plain@ T{ 
On Long Island 30,000 years; 
Cretaceous sediments 
redeposited by recent 
glaciation . 
. ad 
T} 
.TE 

Output: 

Formatting Tables 

New York Area Rocks 
Era Formation A�e (years) 

Precambrian Readin• Pron• > 1 billion 
Paleozoic Manhattan Prong 400 million 
Mesozoic Newark Basin, incl. 200 million 

Stockton, Lockatong, and 
Brunswick formations; also 
Watchune:s and Palisades. 

Cenozoic Coastal Plain On Long Island 30,000 years; 
Cretaceous sediments 
redeposited by recent 
!!laciation. 

7-17 

I 



XENIX Text Processing 

7.5 Summary of tbl Commands 

Here is a table summarizing the thl formatting commands and options: 

\'<... 

Command Meaning 

a A Alphabetic sub column 

allbox Draws box around all items 

b B  Boldface item 

box Draws box around table 

c C  Centered column 

center Centers table in page 

doublebox Doubled box around table 

e E  Equalwidthcolumns 

expand Makes tablefulllinewidth 

fF Font change 

II Italic item 

IL Left adiusted column 

nN Numerical column 

nnn Column separation 

_pP Point size chanJJ;e 

rR Ri�ht ad jus ted column 

s S  Spanned item 

tT Vertical spanning at top 

tab (x) Chan�e data separator character 

T{ T} Text block 

vV Vertical spacin� change 

w W  Minimum width value 

.xx Included troff command 

I Vertical line 

I I Double verticalline 
� Vertical span 

,� Vertical span 

= Double horizontal line 

Horizontal line 

\ Short horizon tal line 

7-18 



I I  

C n  

Chapter 8 
Formatting Mathematic s  

8.1 Introduction 1 

8.2 Displayed Equations 2 

8.3 Basic Mathematical Constructions 3 
8.3.1 Subscripts and Superscripts 3 
8.3.2 Braces for Grouping 4 
8.3.3 Fractions 5 
8.3.4 Square Roots 5 
8.3.5 Summation and Integrals 6 

8.4 Complex Mathematical Constructions 6 
8.4.1 Big Brackets, Parentheses, and Bars 7 
8.4.2 Piles 8 

( 8.4.3 Matrices 8 
\__ Jl 8.4.4 Lining Up Equations 9 

c �� 

8.5 LayoutandDesignofMathematicalText 10 
8.5.1 Input Spaces 10 

8.6 

8.7 

8.8 

8.9 

8.5.2 Output Spaces 10 
8.5.3 SpacesBetween Special Sequences 10 
8.5 .4 Symbols, Special Names, and Greek Characters 11 
8.5.5 Size and FontChanges 11 
8.5.6 Diacritical Marks 12 
8.5. 7 Quoted Text 13 
8.5.8 Local Motions 14 

In-line Equations 14 

Definitions 15 

Invoking eqn 16 

Sample Equation 16 

I 



XENIX Text Processing 

The same commands may also be used with the XENIX formatter nrolf to 
format mathematical expressions for lineprinters. To do this� invoke the 
program neqn instead of eqn. The same limitations (inability to change font 
and point size� and do variable spacing� etc.) apply to any text output to a (_. lineprinter. _The resulting output from neqn� however, is usually adequate � 
for proofreading. 

As you work with eqn,_ remember that the eqn program itself knows 
relatively little about mathematics. In particular, mathematical symbols like 
+, -, X ,  and parentheses have no special meanings. eqn will set anything 
that looks like an equation, regardless of whether it makes sense 
mathematically. 

Touse eqnonyourXENIXsystem, enter: 

eqn file I troll' -mm 

This command line processes file with eqn, then pipes th6 resulting output 
file to the trolfprograni. 

8.2 Displayed Equations 

To tell eqn where a mathematical expression begins and ends, surround it 
with the commands .EQ and .EN. Thus, if you type the lines: 

.EQ 
x=y+z 
.EN 

your output will look like: 

x=y+z 

The .EQ and .EN are not processed by eqn. If you want to specify 
centering, numbering, or other formatting features for your mathematical 
text, you will need to enter the appropriate formatting commands in your 
text. Hyou want, you can add nroft'/troff commands, but it is far simpler to 
use mm. mm provides commands which allow you to ·center, indent, left­
justify and number equations. 

You can give the .EQ command an argument that is treated as an arbitrary 
equation number which will be placed in the right margin. For example, the 
input: 

.EQ 7 
X - f(y/2) + y/2 
.EN 

produces the output: 

x=f(y/2)+y/2 

Note that .EQ is an mm macro. In other computer systems' macro packages 
it may have a different meaning. 

8-2 

.) "-. 



Formatting Mathematics 

8.3 Basic Mathematical Constructions 

This section describes how eqn can be used to handle the following 
· frequentlyused matheinatical constructions: 

grouping 

fractions 

square roots 

summation and integrals 

8.3.1 Subscripts and Superscripts 

To get subscripts and superscripts into mathematical text� use sub and s.iJ,. 
For example, the following: 

x sup 2 + y sub k 

(-- produces 

\. x2+Yk 

c 

eqn supplies all the commands for size changes and vertical motions to 
make the output look right. The words sub and sup must be surrounded by 
spaces. For example: 

x sub2 

Will give you xsub2 instead of X2. Furthermore, do not forget to leave a 
space ora tilde to mark the end of a subscript or superscript. Nate that if you 
use an expression like: 

y - (x sup 2)+1 

you willget 

y=(x2l+I 

instead of 

y=(r)+l 
Subscripted subscripts and superscripted superscripts can also be created. 
The following: 

x sub i sub l 

produces 

Xjl 

8-3 



XENIX Text Processing 

A subscript and superscript on the same object are printed one above the 
other if the subscript comes first. For example: 

x sub i sup 2 

produces 

Xi2 

Other than in this special case, 
x sup ysub z meansXYz, notxYz· 

8.3.2 Braces for Grouping 

sub and sup group to the right, so 

Normally, the end of a subscript or superscript is marked simply by a blank, 
tab, or tilde. If you need to produce a subscript or superscript with blanks in 
it, you can use braces ({}) to mark the beginning and end of the subscript or 
superscript. For example: 

e sup {i omega t} 

produces 
eiwt 

Braces can always be used to force eqn to treat an expression as a unit, or 
just to make your intention perfectly clear. When you use braces: -"-;_ 

x sub {i sub 1} sup 2 

produces 
2 Xi1 

Thesame textwithoutbraces: 

x sub i sub 1 sup 2 

produces 

x . •  
. , 

Braces can occur within braces if necessary. For example: 

e sup {i pi sup {rho +1}} 

results in 
ei,p1+1 

The general rule is that anywhere you could use a single item like x, you could 
also use any complicated expression, if you enclose it in braces. Positioning 
and size will be taken care ofbyeqn. 

You will need to make sure you have the right number of braces. If, for 
some reason, you need to print braces, enclose them in double quotations 
('') , like "{". 

8-4 



( 

c 

Formatting Mathematics 

8.3.3 Fractions 

To make a fraction, use the word "over." For example: 

a + b over 2c = l  

_pr_o.duces 

a+_!:_�l 2c 
The line is made the right length and positioned automatically. You can use 
braces to make clear what goes over what. For example: 

is 

{alpha + beta} over {sin(x)} 

a+(3 sin(x) 
If you have both an over and a sup in the same expression, eqn does the sup 
before the over, so 

-b sup 2 over pi 

is 

.. 

instead of 
2 -b' 

The rules of precedence that control which operation will be done first are 
summarized at the end of this chapter. If you are in doubt, however, use 
braces to make clear what you mean. 

8.3.4 Square Roots 

To draw a square root, use "sqrt". For example: 

sqrt a+b + 1 over sqrt {ax sup 2 +bx+c} 

produces 

Va+b+ 1 

v'IIX2+bx+c 
You should note, however, that the square roots of tall quantities often do 
no.t look good. A square root big enough to cover the quantity is too dark 
and heavy. For example: 

sqrt {a sup 2 over b sub 2} 

produces 

8-5 



XENIX Text Processing 

� 
You are better off writing big square roots as the power 112. For example, 
you could use 

(a sup 2 /b sub 2 )  sup half 

to produce 

(a2/b2)'h 

8.3.5 Summation and Integrals 

Summations, integrals, and similar constructions can be produced with 
eqn. For�xample: 

sum from i=O to {i= inf} x sup i 

produces i=oo I; xi 
i..O 

Braces are used here to indicate where the upper part $i= inf$ begins and 
ends. No braces were necessary for the lower part $i=O$, because it 
contained no blanks. Braces never hurt, andifthefrom and to parts contain 
any blanks, you must use braces around them. The from and to parts are '-... 
optional, butifboth are used, they have to occur in that order. 

Other useful characters can replace the sum, including: 

int prod union inter 

These become, respectively, 

I rr u n 
The expression before the "from" can be anything, inclUding an expression 
in braces. The from-to expression can often be used in unexpected ways. 
For example: 

lim from {n -> inf} x sub n �o 
produces 

Iimx,�o 
D-tOO 

8.4 Complex Mathematical Constructions 

This section descdbes how to use eqn to produce more complicated 
mathematical constructions, including piles and matrices, often 
surrounded by brackets, parentheses or bars. 

s-6 



( 

( 

( 1  

Formatting Mathematics 

8.4.1 Big Brackets, Parentheses, and Bars 

To get big brackets ([]), braces ( { }), parentheses (()), and bars (II) around 
things, usetheleftand right commands. For example: 

left { a over b + 1 right } 
-;. • left T c over d · riiiht l · 
+ left [ e right ] 

produces 

The resulting brackets are big enough to cover whatever they enclose. Other 
characters can b8 used besides theSe, but they probably will not look very 
good. One exception is the floor and ceiling characters. For example: 

left floor x over y right floor 
< = left ceiling a over b right ceiling 

produces 

l; J� r= 1 
Please note that braces are typically bigger than brackets and parentheses, 
becausethenumberofpiecesis incremented by two (three, five, seven, etc.) 
while the number Of pieces in a bracket is incremented by one (two, three, 
etc.). Also, big left and right parentheses often look poor, because of 
character set limitations. 

The right part may be omitted: a left expression need not have a 
corresponding right expression. If the right part is omitted, put braces 
around the item you want the left bracket to encompass. Otherwise, the 
resulting brackets may be too large. If you want to omit the left part, things 
are more complicated, because technically you can not have a right without 
a corresponding left. Instead you have to say: 

left '"' . . . . .  right ) 

The left ""  means a "left nothing". This satisfies the rules without affecting 
your output. 

&-7 



XENIX Text Processing 

8.4.2 Plles 

There is a facility for making vertical piles of elements with several variants. 
For example: 

A ·-- left [ 
pile { a above b above c } 
- pile { x above y above z }  

right I 

will produce 

A- � �] 

You can have as many elements in a pile as you want. They will be centered 
one above another, at the right height for most purposes. The keyword 
above is used to separate the pieces; braces are used around the entire list. 
The elements of a pile can be as complicated as needed, and may even 
contain more piles. 

Three other forms of piles exist: ''lpile" makes a pile with the elements left­
justified; "rpile" makes a right-justified pile; and "cpile" makes a centered 
pile, just like pile. The vertical spacing between the pieces is somewhat 
larger for 1-, r-and cpiles than it is for ordinary piles. For example: 

roman sign (xr-· 
left { 

!pile {1 above 0 above -1} 
- !pile 
{ilx>O above ilx-0 above ilx<O} 

creates the pile 

ll ifx>O 

sign(x) - 0 ifx-o 

-1 ifx<O 

Note that the left brace has no matching right one. 

8.4.3 Matrices 

It is also possible to make matrices. For example, to make a neat array like 

xi x2 

S.8 



c 

( 

( ' 

use 

matrix { 

} 

ceo! { x sub i above y sub i } 
ceo! { x sup 2 above y sup 2 } 

Formatting Mathematics 

J'bj� p_rQdu_ces_ .a_matrix_with_tw_o _ _  centered _columns. The--elements--of-the­
columns are then listed just as for a pile, each element separated bytheword 
above. You can also use leal or real to left or right adjust columns. Each 
column can be separately adjusted, and there can be as many columns as 
you like. 

The reason for using a matrix instead of two adjacent piles is that if the 
elements of the piles do not all have the same height, they will not line up 
properly. A matrix forces them to line up, because it looks at the entire 
structure before deciding what spacing to use. A word of warning about 
matrices: each column must have the same number of elements in it. 

8.4.4 Lining Up Equations 

Sometimes it is necessary to line up a series of equations at some horizontal 
position, such as at an equal sign. This is done with two operations called 
"mark"and "lineup." The word mark may appear once at any place in an 
equation. It remembers the horizontal position where it appeared. 
Successive equations can contain one occurrence of the word lineup. The 
place where lineup appears is made to line up with the place previously 
marked, if at all possible. Thus, for example, you can say: 

.EQ 
x+y mark = z 
.EN 
.EQ 
x lineup = 1 
.EN 

to produce 

x+y=z 
x=l 

Notethatmark doesnot look ahead, so 

x mark =1 

x+y lineup =z i 
will not work, because there is not room for the x+y part after the mark 
remembers where the xis. 

8-9 



XENIX Text Processing 

8.5 Layout and Design of Mathematical Text 

The following sections describe the format and layout control features of 
eqn. 

8.5.1 Input Spaces 

eqn ignores spaces and new lines within an expression. If you have any of the 
following equations between .EQ and .EN commands, 

or 

or 

x-y+z 

x = y + z  

X = y 
+ z  

they will all produce the same output: 

x=y+z 

Therefore, use spaces and newlines freely to make your input equations 
readable and easy to edit. 

8.5.2 Output Spaces 

To get extra spaces into your output, use a tilde (-) for each space you want: 

x-=-y-+-z 

This prodp.ces 

x=y+z 

You can also use a caret("'), which produces a space half the width o f  a tilde. 
Tabs maybe used to position pieces of an expression, but the tab stops must 
be setwith thetrolftab (.ta) command. 

8.5.3 Spaces Between Special Sequences 

If you need to separate a special sequence of characters, you will have to 
make this clear to eqn. You can either surround a special sequence with 
ordinary spaces, tabs, or newlines, or make special words stand out by 
surrounding them with tildes or carets, as in the following: 

x-=-TpnnesinTomegaT)-dt 

The tildes not only separate the words sin, omega, etc., but also add extra 
spaces, one space per tilde: 

IHO 

I 
""' 



c 

c 

c 

Formatting Mathematics 

x�2 rr f sin (wt) dt 
Special words can also be separated by braces ({ }) and double quotation 
marks ("). 

eqn knows some mathematical symbols, some mathematical names, and 
the Greek alphabet. For example: 

x-2 pi int sin ( omega t)dt 

produces 

x�2rr J sin(wt)dt 
Here you need input spaces to tell eqn that int, pi, sin and omega are 
separate entities that should get special treatment. The sin , digit 2, and 
parentheses are set in Ro�an type instead of italic; pi and omega are 
translated into Greek; int becomes the integral sign. 

When in doubt, leave spaces around separate parts of the input. A common 
error iS to type f(pi) without leaving spaces on both sides of the pi. If you do 
this; eqn does not recognize pi as a special word, and it appears as f(pi) 
instead of f(rr). A complete list of eqn names appears at the end of this 
chapter. You can also use 1ro:lf names for anything eqn does not know 
about. 

8.5.5 Size and Font Changes 

By default, equations are set in 10-point type; standard mathematical 
conventions determine which characters are in Roman and which are in 
italic. If you are dissatisfied with the default sizes and fonts, you can chai:tge 
them using the commap.ds size n and roman, italic, bold ·and fat. Like sub 
and sup, size and font changes affect only what follows immediately �nd 
then revert to the default. Thus: 

bold x y 

is 

xy 
and 

size 14 bold x - y + 
size 14 {alpha + beta} 

gives 

X=y+a+(3 

8-11 



XENIX Text Processing 

You can use braces if you want to apply a change to something more 
complicated than a single letter. For example, you can change the size of an 
en tire equation with 

size 12 { . . .  } 

Legal sizes are: 6, 7, 8, 9, 10, 11, 12, 14, 16, 18, 20, 22, 24, 28, and 36. You 
can also change the size by a given amount. For example, you can say 

size+2 

to make the size two points bigger, or 

size-3 

to make it three points smaller. The advantage of this method is that you do 
not need to know what the current size is. 

If you are using fonts other than Roman, italic and bold, you can say font X 
where X is a singleRcharacter troff name or number for the font. However, 
since eqn is designed for Roman, italic and bold, other fonts may not give 
quite as good an appearance. 

The fat operation takes the current font and widens it by overstriking: fat 
grad is 'II andfat{x sub i} is X;. 
If an entire document is to be in a nonstandard size or font, you need not 
write out a size and font change for each equation. Instead, you can set a 
"global" siie or font which thereafter affects all equations. At the beginning 
of any equation, you might say, for instance, 

.EQ 
gsize 16 
gfont R 

.EN 

to set the size to 16points and the font to Roman. In place ofR, you can use 
anytrofffontname. The size aftergsizecan b e a relativechangewith +or-. 

Generally, gsize and gfont will appear at the beginning of a document, but 
they can also appear throughout a document: the global font and size can be 
changed as often as needed. For example, in a footnote you will typically 
want the size of equations to match the size of the footnote text, which is two 
points smaller than the main text. Do not forget to resettheglobalsize atthe 
end of the footnote. 

8.5.6 Dlacrltlcal Marks 

There are several words that produce diacritical marks on top of letters: 

8-12 



( 

( 

Formatting Mathematics 

x dot x 
x dotdot X 
x hat x 
x tilde ii' 
x: vee lt 
x dyad lt 
X--bar-- - -X 
x: under ll 

The diacritical mark is automatically placed at the correct height. The "bar" 
and "under" are made the right length for the entire construct� as in x+y+z; 
other marks are centered. 

8.5.7 Quoted Text 

Any input entirely within quotes ( "  . . .  " ) is not subject to any of the font 
changes and spacing adjustments normally done by the equation setter. 
This provides a way to do your own spacing and adjusting� if needed. For 
example: 

italic "sio(x)"' + sio (x) 

produces 

sin(x) +sin(x) 

Quotation marks are also used to get braces and other eqn keywords 
printed . For example: 

''{ size alpha }" 

produces 

{ size alpha} 

Similarly: 

roman "{ size alpha }" 

produces 

{ size alpha} 

The construction "" can be used as a place-holder when eqn syntax requires 
something, but you do not actually want anything in your output. For 
example, to make 

2He 

you cannot just enter: 

sup 2 roman He 

because a sup has to be a superscript on something. Thus you must say 

'"' sup 2 roman He 

8-13 



XENJX Text Processing 

To get a literal quotation mark, use the sequence\" . 

8.5.8 Local Motions 

Although eqn tries to get most items at the right place on the paper, it is not 
perfect, and occasionally you will need to tune the output to make it just 
right. Small extra horizontal spaces can be obtained with tildes C) and 
carets ("') . You can also say ''back n" and "fwd n" to move small distances 
horizontally. The n is the distance to be moved in 1/lOOem units. (An em is 
about the width of the letter m.) Thus "back 50" moves back about half the 
width of an m.  Similarly, you can move items up or down with "up n" and 
"down n." As with sub or sup, the local motions affect the next item in the 
input. This can be a complex expression, as longas itis enclosed in braces. 

8.6 In-line Eqnations 

In a mathematical document it is often necessary to follow mathematical 
conventions in the body of the text, as well as in display equations. For 
example, you may need to make variable names like X italic. Although this 
could be done by surrounding the appropriate parts with .EQ and .EN, the 
con,tinual repetition of .EQ and .EN is a nuisance. Furthermore, this 
implies a displayed equation. 

eqn provides a shorthand for short in-line expressions. You can define two 
characters to mark the left and right ends of an in-line equation, and then 
type expressions right in the middle of text lines. To set both the left and 
right characters to percent signs, for example, add to the beginning of your 
document the three lines 

.EQ 
delim % %  
.EN 

Having done this, you create text like 

Let %alpha sub i% be the primary variable, and let %beta% be 
zero. Then we can show that %x sub 1% is %>=0%. 

This produces: 

Let ai be the primary variable, and let (3 be zero. Then we can 
show that x1 is 2:0. 

This works as you might expect: spaces, newlines, and so on are significant 
in the text, but not in the equation part itself. Multiple equations can occur 
in a single input line. 

Enough room is left before and after a line that contains in-line expressions 
n 

so that something like Exi does not interfere with the lines surrounding it. 
i=l 

&-14 



c 

c 

Formatting Mathematics 

To tum off the delimiters, use: 

.EQ 
delim off 
.EN 

Do not use braces, tildes, carets, or double quotation marks as delimiters; 
these-have-specialmeanings; "--

8. 7 Definitions 

eqn allows you to give a frequently used string of characters a name, and 
after that to enter just the name instead of the whole string. For example, if 
the sequence 

x sub i sub 1 + y sub i sub 1 

appears repeatedly throughout a paper, you can save entering it each time by 
defining it !il<e this: 

.EQ 
define xy 'x sub i sub 1 + y sub i sub 1' 
.EN 

This makes xy a shorthand for whatever characters occur beiween the single 
quotation marks in the definition. You can use any character instead of 
quotation marks to indicate the ends of the definition, as long as that 
character does not appear inside the definition. 

You can usexylikethis: 

.EQ 
f(x) - xy . . .  
. EN 

Each occurrence ofxy will expand into the string of characters you defined. 
Be careful to leave spaces or their equivalent around the name when you 
actually use it, so eqn will be able to identify it as special. 

There are severalthings to watch out for. First, although definitions can use 
previous definitions, as in: 

.EQ 
define xi ' x sub i ' 
define xil ' xi sub 1 ' 
.EN 

Do not define something in terms of itself. For example, you cannot use 

define X ' roman X ' 

because this defines X in terms of itself. If you say 

define X ' roman "X" ' 
however, the quotation marks protect the second X. 

8-15 



XENIX Text Processbtg 

eqn keywords can be also be redefined. You can make I mean over by saying 

define I ' over ' 

or redefine over as I with 

define over ' I ' 
If you need to print a symbol one way on a terminal and another way on the 
typesetter, it is sometimes worth defining a symbol differently for neqn and 
eqn. This can be done with "ndefine" and "tde:fine." A definition made 
with ndefine only takes effect if you arerunning neqn. If you usetdefine, the 
definition only applies for eqn. Names defined with "define" apply to both 
eqn and neqn. 

8.8 Invoking eqn 

To print a document that contains mathematics on the typesetter, use: 

eqn files I troll' 

If there are anytroJf options, place them after the troffpart of the command. 
For example: 

eqn files I troll' -mm files 

To print equations on a lineprinter or similar device, use: 

neqn files I nroff -mm files 

The language for equations recognized by neqn is identical to that of eqn, 
although, of course, the output is more restricted. 

eqn and neqn can be used with the tbl program for setting tables that contain 
mathematics. Use tbl before eqn like this: 

tbl files I eqn I troll' -mm 
tbl files I neqn I nroff -mm 

8.9 Sample Equation 

Now that you are familiar with the features of eqn, here is the complete input 
text for the three display equations at the beginning of this chapter: 

S-16 



( 

c 

Formatting Mathematics 

.EQ 
G(zrmark �- e sup { In - G(z) } 
--- exp left ( 
sum from k>-1 {S sub k z sup k} over k right ) 
--- prod from k>-1 e sup {S sub k z sup k /k} 
.EN 
.EQ 
lineup - left ( 1 + S sub 1 z + 
{ S sub 1 sup 2 z sup 2 } over 2! + . . .  right ) 
left ( 1 + { S sub 2 z sup 2 } over 2 
+ { S sub 2 sup 2 z sup 4 }  over { 2 sup 2 cdot 2! } 
+ . . . right ) . . .  
. EN 
.EQ 
lineup = sum from m>=O left ( 
sum from 
pile { k sub 1 ,k sub 2 , . . .  , k sub m >-0 
above 
k sub 1 +2k sub 2 + . . .  +mk sub m -m} 
{ S sub 1 sup {k sub 1} } over {1 sup k sub 1 k sub 1 ! } -
{ S sub 2 sup {k sub 2} } over {2 sup k sub 2 k sub 2 ! } -
{ S sub m sup {k sub m} } over { m sup k sub m k sub m ! } 
right ) z sup m 
.EN 

8.10 Error Messages 

If you make a mistake in an equation, such as leaving out a brace or having 
one too many braces or having a sup with nothingbeforeit, eqn will respond 
with the message: 

syntax error between lines x and y, file 

where x and y are the lines between which the trouble occurred, and file is 
the name of the file in question. The line numbers are only approximate, so 
check nearby lines as well. You will receive self-explanatory messages if you 
leaveouta quotation mark or try to run eqn on a nonexistent file. 

If you want to check a document before actuallyprintingit, try: 

eqn files >/dev/null 

This will throw away the output but print the error messages. 

If you use something like dollar signs as delimiters, it is easy to leave one out. 
The program eqncheck checks for misplaced or missing dollar signs and 
similar errors. 

In�line equations are limited in size because of an internal buffer in troff. If 
you get the message "word overflow", you have exceeded this limit. If you 
print the equation as a display, this message will usually go away. The 

1>-17 



XENIX Text Processing 

message ''line"overfiow indicates you have exceeded an even bigger buffer. 
The onlycure�orthis is to b reak the equation into two separate ones. 

Also, eqn does not break equations by itself; you must split long equations 
up across multiple lines by yourself, marking each by a separate .EQ . ... EN 
sequence. eqn warns about equations that are too long to fit on -one line. 

8.11 Summary of Keywords and Precedences 

If you do not use braces around expressions, eqn will do operations in the 
order shown in this list. 

dyad vee under bar 
fwd back down. up 
fat roman italiC bold 
sub sup sqrt over 
from to 

These qperations group to the left: 

over sqrt left right 

All others group to the right . .  

tilde 

size 

hat dot dotdot 

Digits, parentheses, . brackets, punctuation marks, and the following 
mathematical words are converted to-Roman font when encountered: 

sin 
max 
Re 

cos 
min 
Im 

tan 
)jm 
and 

sinh 
log 
if 

cosh 
In 
for 

tanh 
exp 
det 

arc 

These character sequences are recogn_lzed and translated as shown: 

>- > 
<- < 

-
!= rf 'I- ± 
.->- --+ 
<- +-
<< << 
>> >> 
inf 00 
partial a 
half 1/z 
prime ' 
appro� ""' 
nothing 
cdot 
times X 
del \1 

8-18 

\ 
. .._ 

, ,  



Formatting Mathematics 

grad \7 

- , ... , I;" " '  ' sum \ int J 
� prod � II 

union H inter 

To obtain Greek letters, simply spell them outin whatever case you want: 

DELTA t;. iota ' 
GAMMA r kappa " 
LAMBDA A lambda >-
OMEGA n mu p. 
PID if> nu v 
PI II omega w 
PSI ITt omicron 0 
SIGMA E phi "' 
THETA e pi 11: 
UPSILON T psi t/1 

c XI E rho p 
alpha 0/ sigma u 
beta f3 tau T 
chi X theta 0 
delta 8 upsilon v 
epsilon f xi e 
eta 1J zeta ' 
gamma 1 

These are all the wqrds known to. eqn except fo:r the following _character 
names: 

above dotdot italic rcol to 
back down !col right under 
bar dyad left roman up 
bold fat lineup rpile vee 
ccol font . !pile size , 
col from mark sqrt { }  
cpile fwd matiix sub \" .. .\" 

c 
define gfont ndefine sup 
delim gsize over tdefine 
dot hat pile tilde 

8-19 





( 

c 

Appendix A 

Editing with sed and awk 

A;-1 Introduction ��� � 1 � · 
A.2 Editing With sed 1 

A.2.1 Overall Operation 2 
A.2.2 Addresses 3 
A.2.3 Functions 5 

A.3 PattemMatchingWith awk 12 
A.3.1 Invokingawk 12 
A.3.2 Program Structure 12 
A.3.3 Records and Fields 13 
A.3.4 Printing 13 
A.3.5 Patterns 14 
A.3.6 Actions 16 



' 
"' 



( 

( 
\. 

Editing with sed and awk 

A.l Introduction 

This appendix describes two XENIX utilities that allow you to perform large­
scale, noninteractive editing tasks: 

-sed,-a noninteractive, or !'batch '',-editorwhich is usefulifyoumust­
work with large files or run a complicated sequence of editing 
commands on a file or group of files. 

awk, which searches numerics, logical relations, variables, and 
particular fields within lines of text. 

Although you can perform many of the same tasks with grep, sort, and the 
variants of dlff, you will find that these two programs offer an added facility 
for the processing of complicated changes to large files, or many files at 
once. sed is very handy for large batch editing jobs, but if you choose not to 
learn it, many of the same tasks can be performed with ed scripts. The awk 
program offers several features not available with the other tools described 
in this chapter, butitis somewhatmore complicated to learn and use. 

A.2 Editing With sed 

The sed program is a noninteractive editor which is especially useful when 
the files to be edited are either too large, or the sequence of editing 
commands too complex, to be executed interactively. sed works on only a 
few lines of input at a time and does not use temporary files, so the only limit 
on the size of the files you can process is that both the input and output must 
be able to fit simultaneously on your disk. You can apply multiple " global" 
editing functions to your text in one pass. Since you can create complicated 
editing scripts and submit them to sed as a command file, you can save 
yourself considerable retyping and the possibility of making errors. You can 
also save and reuse sed command files which perform editing operations 
you need to repeat frequently. 

Processing files with sed command files is more efficient than using ed, even 
if you prepare a prewritten script. Note, however, that sed lacks relative 
addressing becauses it processes a file one line at a time. Also , sed gives you 
no immediate verification that a command has altered your text in the way 
you actually intended. Check your output carefully. 

The sed program is derived from ed, although there are considerable 
differences between the two, resulting from the different characteristics of 
interactive and batch operation. You will notice a striking resemblance in 
the class of regular expressions they recognize. The code for matching 
patterns is nearly identical for ed and sed. 

A·l 



XENIX Text Processing Guide 

A.2.1 Overall Operation 

By default, sed copies the standard input to the standard output, 
performing one or more editing commands on each line before writing it to 
the output. Typically, you will need to specify the file or files you are "-
processing, along with the name of the command file which contains your 
editing script, as in the following: 

sed -f script filename 

The flags are optional. The -n flag tells sed to copy only those lines specified 
by -p functions or -p flags after -s functions. The -e flag tells sed to take the 
next argument as an editing command, and the -f flag tells sed to take the 
next argument as a filename. (This file must contain editing commands, one 
to a line.) 

The general format of a sed editing command is: 

addressl,address2 function arguments 

In any command, one or both addresses may be omitted. A function is 
always required, but an argument is optional for some functions. Any 
number of blanks or tabs may separate the addresses from the function, and 

' tab characters and spaces at the beginning of lines are ignored. 

Three flags are recognized on the command line: 

-n Directs sed to copy only those lines specified by p functions or p 
flags after s functions. 

·e Indicates that then ext argument is an editing command. 

·f Indicates that the next argument is the name of the file which 
contains editing commands, typed one to aline. 

sed commands are applied one at a time, generally in the order they are 
encountered, unless you change this order with one of the "flow-of-control" 
functions discussed below. sed works in two phases, compiling the editing 

· commands in the order they are given, then executing the commands one by 
one to each line of the input file. 

The input to each command is the output of all preceding commands. Even 
if you change this default order of applying commands with one of the two 
:How-of-control commands, t and b, the input line to any command is still 
the output of any previously applied command. 

You should also note that the range of pattern match is normally one line of 
input text. This range is called the "pattern space." More than one line can 
be read into the pattern space by using the N command descnbed below in 
"Multiple Input-Line Functions''. 

The rest of this section discusses the principles of sed addressing, followed 
by a description of sed functions. All the examples here are based on the 
following lines from Samuel Taylor Coleridge's poem, ''Kubla Khan" : 

A-2 



In Xanadu did Kubla Khan 
A stately pleasure dome decree: 
Where Alph, the sacred river, ran 
Through caverns measureless to man 
Down to a sunless sea. 

For example, the command: 

2q 
- - -- -- -- --

Editing with sed and awk 

will quit after copying the first two lines of the input. Using the sample text, 
the result will be: 

In Xanadu did Kubla Khan 
A stately pleasure dome decree: 

A.2.2 Addresses 

The following rules apply to addressing in sed. There are two ways to select 
the lines in the input file to which editing commands are to be applied: with 
line numbers or with "context addresses". Context addresses correspond 
to regular expressions. The application of a group of commands can be 
controlled by one address or an address pair, by grouping the commands 
with curly braces ({ }). There may be 0, 1, or 2 addresses specified, 

( depending on the command. The maximum number of addresses possible 

\_ for each command is indicated. 

c 

A line number is a decimal integer. As each line is read from the input file, a 
line number counter is incremented. A line number address matches the 
input line, causing the internal counter to equal the address line number. 
The counter runs cumulatively through multiple input files. It is not reset 
when a new input file is opened. A special case is the dollar sign character 
($) which matches the lastline of the last input file. 

Context addresses are enclosed in slashes (/). They include all the regular 
expressions common to both ed and sed: 

1. 

2. 

3. 

4. 

5. 

An ordinary character is a regular expression and matches itself. 

A caret (") at the beginning of a regular expression matches the null 
character at the beginning of aline. 

A dollar sign ($) at the end of a regular expression matches the null 
character at the end of a line. 

The characters \n match an embedded newline character, but not 
the J].ewline at the end of a pattern space. 

A period (.) matches any character except the terminal newline of 
the pattern space. 

A-3 



XENIX Text Processing Guide 

6. A regular expression followed by a star (*) matches any number, 
includingO, of adjacent occurrences of regular expressions. 

7. A string of characters in square brackets ([ ]) matches any 
character in the st.ri:D.g, and no others. If, however, the first 
character of the string is a caret ("), the regular expression matches 
any character except the characters in the string and the terminal 
newline of the pattern space. 

8. A concatenation of regular expressions is one that matches a 
particular concatenation of strings. 

9. A regular expression between the sequences "\(" and "\)" is 
identical in effect to itself, but has side-effects With the s coiii.mand. 
(Note the following specification.) 

10. The expression \d means the same string of characters match� by 
an expression enclosed in \( and \) earlier in the same pattern. 
Here "d" is a single digit; the string specified is that beginning with 
the "dth" occurrence of \( counting from the left. For example, 
the expression \(. "\)\1 matches aline beginning with two repeated 
occurrences of the same string. 

11. The null regular expression standing alone is equivalent to the last 
regular expression compiled. 

For a context address to "match" the input, the whole pattern within the 
address must match some portion of the pattern space. If you want to use 
one of the special characters literally, that is7 to inatch an occurrence of 
itself in the input file, precede the character with a backslash (\) in the 
command. 

Each sed command can haveO, 17 or2addresses. The maximum number of 
allowed addresses is included. A command with no addresses specified is 
applied to every line in the input. If a command has one address, it is 
applied to all lines which match that address. On the other hand, if two 
addresses are specified, the command is appljed to the first line which 
matches the first address, and to all subsequent lines until and including the 
first subsequent line which matches the second address. An attempt is 
made-on subsequent lines to again match the first address, and the process is 
.repeated. Two addresses are separated by a comma. Here are some 
examples: 

/an/ 
/an.*an/ 
ran1 
1./ 
/r*an/ 

A-4 

Matches lines 1, 3, 4 in our sample text 
Matches line 1 

Matches no lin-es 
Matches all lines 
Matches lines 1,3, 4 (number = zero!) 



( 

( 

c 

Edldng with sed and awk 

A.2.3 Functions 

All sed functions are named by a single character. They are of the following 
types: 

Whole-line oriented functions which add, delete, and change 
- whole-text lines; -

Substitute functions which search and substitute regular 
expressions within a line. 

Input-output functions which read and write lines and/or files. 

Multiple input-line functions which match patterns that extend 
across line boundaries. 

Hold and get functions which save and retrieve input text for later 
use. 

Flow-of-control functions which control the order of application 
of functions. 

Miscellaneous functions. 

Whole-Line Oriented Funcdons 

d 

n 

a 

Deletes from the file all lines matched by its addresses. No 
further commands will be executed on a deleted line. As soon as 
the d function is executed� a newline is read from the input, and 
the list of editing commands is restarted from the beginning on 
the newline. The maximum number of addresses is two. 

Reads and replaces the current line from the input, writing the 
current line to the output if specified. The list of editing 
commands is continued following the n command. The 
maximum number of addresses is two. 

Causes the text to be written to the output after the line matched 
by its address. The a command is inherently multiline; The a 
command must appear at the end of a line. The text may contain 
any number of lines. The interior new lines must be hidden by a 
backslash character (\) immediately preceding each newline. 
The text argument is terminated by the first unbidden newline, 
the first one not immediately preceded by backslash. Once an a 
function is successfully executed, the text will be written to the 
output regardless of what later commands do to the line which 
triggered it, even if the line is subsequently deleted. The text is 
not scanned for address matches, and no editing commands are 
attempted on it, nor does it cause any change in the line number 
counter. Only one address is possible. 

A-5 



XENIX Text Processing Guide 

c 

When followed by a text argument it is the same as the a 
function, except that the text is written to the output before the 
matched line. It has only one possible address. 

The c function deletes the lines selected by its addresses, and 
replaces them with the lines in the text. Like the a and I 
commands, c must be followed by a newline hidden with a 
backslash; interior newlines in the text must be hidden by 
backslashes. The c command may have two addresses, and 
therefore select a range of lines. If it does, all the lines in the 
range are deleted, but only one copy of the text is written to the 
output, not one copy per line deleted. As in the case of a and i, 
the text is not scanned for address matches, and no editing 
commands are attempted on it. It does not change the line 
number counter. After a line has been deleted by a c function, 
no further commands are attempted on it. If text is appended 
after a line by a or r functions, and the line is subsequently 
changed, the text inserted by the c function will be placed before 
the text of the a or rfunctions. 

Note that when you insert text in the output with these functions, leading 
blanks and tabs will disappear in all sed commands. To get leading blanks 
and tabs into the output, precede the first desired blank or tab by a 
back slash; the backslash will not appear in the output. 

For example, the list of editing commands: 

n 
a\ 
xxxx 
d 

applied to our standard input, produces: 

In Xanadu did Kubla Khan 
xxxx 
Where Alph, the sacred river, ran 
xxxx 
Down to a sunless sea. 

In this particular case, the same effect would be produced by either of the 
two following command lists: 

or: 

n 
i\ 
xxxx 
d 

n 
c\ 
xxxx 

A-6 

, ,  
"· 

I 



( 

( 

( 

Editing with sed and awk 

Substitute Functions The substitute function(s) changes parts of lines 
selected by a context search within the line, as in: 

(2)s pattern replacement flags substitute 

The s function replaces part of a line selected by the designated pattern with 
the replacement pattern. The pattern argument contains a pattern, exactly 

_ _  !ik-�Jb_�_J?_a!t�rp_� .itl __ �d_<:lr�s.ses_, _The only differen_c_e_between a _pattern and .. a 
context address is that a pattern argument may be delimited by any character 
other than space or newline. By default, only the first string matched by the 
pattern is replaced, except when the -g option is used. 

The replacement argument begins immediately after the second delimiting 
character of the pattern, and must be followed immediately by another 
instance of the delimiting character. The replacement is not a pattern, and 
the characters which are special in patterns do not have special meaning in 
replacement. Instead, thefollowingcharacters are special: 

Is replaced by the string matched by the pattern. 

\d d is a single digit which is replaced by the dth substring matched 
by parts of the pattern enclosed in \( and \). If nested substrings 
occur in the pattern, the dth substring is determined by counting 
opening delimiters . 

As in patterns, special characters may be made literal by preceding them 
with a backslash (\). 

A flag argumentmay contain the following: 

g Substitutes the replacement for all non overlapping instances of 
the pattern in the line. After a successful substitution, the scan 
for the next instance of the pattern begins just afterthe end of the 
inserted characters; characters put into the line from the 
replacement are not rescanned. 

p Prints the line if a successful replacement was done. The p flag 
causes the line to be written to the output only if a substitution 
was actually made by the s function. Notice that if several s 
functions, each followed by a p flag, successfully substitute in 
the same input line, multiple copies of the line will be written to 
the output: one for each successful substitution. 

wfile Writes the line to a tile if a successful replacement was done. The 
-w option causes lines which are actually substituted by the s 
function to be written to the named file. If the filename existed 
before sed is run, it is overwritten; if not, the file is created. A 
single space must separate -w and the filename. The 
possibilities of multiple, somewhat different copies of one input 
line being written are the same as for the -p option. A 
combined maximum of ten different filenames may be 
mentioned afterw flags and w functions. 

A-7 



XENIX Text Processing Guide 

Here are some examples. When applied to our standard input, the following 
command: 

s/to/by/w changes 

produces, on the standard output: 

In Xanadu did Kubla Khan 
A stately pleasure dome decree: 
Where Alph, the sacred river, ran 
Through caverns measureless by man 
Down by a sunless sea. 

and on the file changes: 

Through caverns measureless by man 
Down by a sunless sea. 

The command: 

s/[. ,;?:]/*P&*/gp 

produces: 

A stately pleasure dome decree*P: * 
Where Alph *P, * the sacred river*P, * ran 
Down to a sunless sea *P. * 

With the g flag, the command: 

/X/s/an/AN/p 

produces: 

In XANadu did Kubla Khan 

and the command: 

/X/s/an/AN/gp 

produces: 

In XANadu did Kubla KhAN 

Input.QutputFunctions 

p The print function writes the addressed lines to the standard 
output file at the time the p function is encountered, regardless 
of what succeeding editing commands may do to the lines. The 
maximum number of possible addresses is two. 

w The write function writes the addressed lines to filename. If the 
file previously existed, it is overwritten; if not, it is created. The 
lines are written exactly as they exist when the write function is 
encountered for each line, regardless of what subsequent editing 
commandsmay d o to them. Exactlyone spacemust separatethe 
w command and the filename. The combined number of write 
functions and wflags maynot exceed 10. 

A-8 



( 

( 

c 

r 

Editing with sed and awk 

The read function reads the contents of the named file, and 
appends them after the line matched by the address. The file is 
read and appended regardless of what subsequent editing 
commands do to the line which matched its address. If r and a 
functions are executed on the same line, the text from the a 
functions and the r functions is written to the output in the order 

- that-the functions-are executed .--Exactly-one-space-must-separate- -
the r and the filename. One address is possible. If a file 
mentioned by an r function cannot be opened, it is considered a 
null file rather than an error. and no diagnostic is given. 

Note that since there is a limit to the number of files that can be opened 
simultane ously, be sure that no more than ten files are mentioned in 
functions or flags; that number is reduced by one if any r functions are 
present. Only one read file is open at one time. 

Here are some examples. Assume that the file note] has the following 
contents: 

Note: Kubla Khan (more properly Kublai Khan; 
1216-1294) was the grandson and most eminent 
successor of Genghiz (Chingiz) Khan, and 
founder of the Mongol dynasty in China. 

The command: 

/Kubla/r note1 

produces: 

In Xanadu did Kubla Khan 
Note: Kubla Khan (more properly Kublai Khan; 
1216-1294) was the grandson and most eminent 
successor of Genghiz (Chingiz) Khan, and 
founder of the Mongol dynasty in China. 

A stately pleasure dome decree: 
Where Alph, the sacred river, ran 
Through caverns measureless to man 
Down to a sunless sea. 

Multiple Input-Line Functions Three functions� all spelled with upper-case 
letters, deal specially with pattern spaces containing embedded newlines. 
They are intended principally to provide pattern matches across lines in the 
input. 

N Appends the next input line to the current line in the pattern 
space; the two input lines are separated by an embedded 
newline. Pattern matches may extend across the embedded 
newline( s). There is a maximum of two addresses. 

A-9 



XENIX Text Processlpg Guide 

D 

p 

Deletes up to and including the first newline character in the 
current pattern space. If the pattern space becomes empty (the 
only newline was the term.inalnewline), another line is read from 
the input. In any case, begin the list of editing commands over 
again. The maximum numberofaddressesis two. 

Prints up to and including the first newline in the pattern space. 
The maximum number of addresses is two. 

The P and D functions: these functions are equivalent to their lowercase 
counterparts ifthere are no embeddednewlines in the pattern space. 

Hold and Get Functions These functions save and retrieve part of the input 
for possiblelateruse: 

h The h function copies the contents of the pattern space into a 
holding area, destroying any previous contents of the holding 
area. Themaximumnumberofaddresses istwo. 

H The H function appends the contents of the pattern space to the 
contents of the holding area. The former and new contents are 
separated by a newline. 

g The g function copies the contents of the holding area into the 
pattern space, destroying the previous contents of the pattern 
space. 

G The G function appends the contents of the holding area to the 
contents of the pattern space. The former and new contents are 
separated by a newline. The maximum number of addresses is 
two. 

x The exchange command interchanges the contents of the 
pattern space and the holding area. The maximum number of 
addresses is two. 

For example, the commands: 

lh 
ls/ did.*// 
lx 
G 
sf\n/ :/ 

applied to our standard example, produce: 

In Xanadu did Kubla Khan :In Xanadu 
A stately pleasure dome decree: :In Xanadu 
Where Alph, the sacred river, ran :In Xanadu 
Through caverns measureless to man :In Xanadu 
Down to a sunless sea. :In Xanadu 

A-10 



( 

( 

( 

Editing with sed and awk 

Flow�of-Control Functions These functions do no editing on the input 
lines, but control the application of functions to the lines selected by the 
address part. 

This command causes the next command written on the same 
line to be applied to only those input lines not selected by the 

-�-·----- · - - -·- - -aoaresii""fHirt:-There ·are-tw<:fpossiDie-adoresses:·-·· · · - - - ·  ··· ----

{ 

:label 

blabel 

This command causes the next set of commands to be applied or 
not applied as a block to the input lines selected by the addresses 
of the grouping command. The first of the commands under 
control of the grouping command may appear on the same line 
as the { or on the next line. The group of commands is 
terminated by a matching } on a line by itself. Groups can be 
nested and may have two addresses. 

The label function marks a place in the list of editing commands 
which maybe referred to byb and t functions. The label maybe 
any sequence of eight or fewer characters; if two different colon 
functions have identical labels, an error message will be 
generated, and no execution attempted. 

The branch function causes the sequence of editing commands 
being applied to the current input line to be restarted 
immediately after encountering a colon function with the same 
label. If no colon function with the same label can be found after 
all the editing commands have been compiled, an error message 
is produced, and no execution is attempted. A b function with 
no label is interpreted as a branch to the end of the list of editing 
commands. Whatever should be done with the current input line 
is done, and another input line is read; the list of editing 
commands is restarted from the beginning on the new line. Two 
addresses are possible. 

tlabelfR The t function tests whether any successful substitutions have 
been made on the current input line. If so, it branches to the 
label; if not, it does nothing. The flag which indicates that a 
successful substitution has been executed is reset either by 
reading anewinputline, or executing a tfunction. 

Miscellaneous Functions There are two other functions of sed not 
discussed above. 

= The = function writes to the standard output the number of the 
line matched by its address. One address is possible. 

q The q function causes the current line to be written to the output 
(if it should be}, any appended or read text to be written, and 
execution to be terminated. One address is possible. 

A-11 



XENIX Text Processing Guide 

A.3 Pattern Matching With awk 

By now you have been introduced to several tools for locating patterns and 
strings in one or more text files� including grep and its variants. You should 
also be familiar with using the various text editors to do global searching. 
awk offers another approach to many of these same tasks. awk is actually a 
programming language designed to make many common search and text 
manipulation tasks easy to state and to perform. It .offers several key 
features not available with grep or sed: numeric processing, the handling of 
variables, general selection, and flow-of-control in commands. awk is also 
uniquely suited to operations on fields within lines. 

In practice, awk is used in two ways for report generation, processing input 
to extract counts, sums, subtotals, etc.; and to transform data from the form 
produced by one program into that expected by another. awk searches 
input lines consecutively for a match of patterns which you designate. For 
each pattern, an action can be specified; this action will be performed on 
each line that matches the pattern. awk allows you to perform more 
complex actions than merely printing a matching line. For example, the awk 
program: 

{print $3, $2} 

prints the third and second columns of a table in that order. The program: 

$2 /AIBIC/ 

prints all input lines with an A, B, orCin the second field, where the second 
field is text separated bywhitespace. The program: 

$1 !� prev { print; prev � $1 } 

prints all lines in which the first field is different from what was previously the 
first field. 

A.3.1 Invoking awk 

The command in the following form: 

awk program filename 

executes the awk commands written into the named program on the set of 
named files� or on the standard input if no files are named. The statements 
can also be placed in afilepfile and executed by the command: 

awk -f pfile filename 

A.3.2 Program Structure 

An awkprogram is a sequence of statements, each in the form: 

pattern { action } 

A-12 



( 

( 

c 

Editing with sed and awk 

Each line of input is matched in tum against each of the specified patterns. 
For each pattern matched, the associated action is executed. When all the 
patterns have been tested, the next line is read and the matching process 
repeated. Either the pattern or the action may be omitted, but not both. If 
there is no action for a pattern, the matching line is simply copied to the 
output. Thus a line which matches several patterns can be printed several 
times.---If-there is-no pattern for-an action,-then--the action is performed fm;- ­
every input line. A line which matches no pattern is ignored. Since patterns 
and actions are both optional, actions must be enclosed in braces to 
distinguish them from patterns. 

A.3.3 Records and Fields 

awk input is divided into "records" which are terminated by a record 
separator. Because the default record separator is a newline, awkprocesses 
its input one line at a time. The number of the current record is available in a 
predefined variable named NR, for "number register". 

Each input record is divided into "fields". Fields are normally separated by 
whitespace, either blanks or tabs, but the input field separator can be 
changed. Fields are referred to as $1, .$2, and .so forth, where $1 is the first 
field, and $0 is the whole input record itself. Assignments may be made to 
fields. The number of fields in the current record is available in another 
predefined variable named NF, for"numberfields". 

The variables FS and RS refer to the input field and record separators; they 
may be changed at anytime to any single character. The optional command 
line argument -Fe may also be used to set FS to the character "c". If the 
record separator is empty, an empty input line is taken as the record 
separator, and blanks, tabs and newlines are treated as field separators. The 
variable FILENAME contains the name of the current input file. 

A.3.4 Printing 

If an action has no pattern, the action is executed for all lines. The simplest 
action is to print some or all of a record, using the awk command print. This 
command prints each record, copying the input to the output intact. A field 
or group offieldsmaybeprintedfrom each record. For example: 

print $2, $1 

prints the first two fields in reverse order. Items separated by a comma in the 
print statement will be separated by;the current output field separator when 
output. Itemsnotseparatedbycommaswill be concatenated, so: 

print $1 $2 

runs the first and second fields together. 

The predefined variables NF and NR can be used. For exam pie: 

A-13 



XENIX Text Processing Guide 

{ print NR, NF, $0 }  

prints each record preceded bytherecord number and the number of :fields. 
Also , output may b e  diverted to multiple files. For example, the program: 

{ print $1 >"iistl" ; print $2 >"iist2" } \._ 
writes the first field, $1, on the file listl, and the second field on file list2. 
The ">>" notation can also be used. For example: 

print $1 >>"list" 

appends the output to the file list. In each case, the output files are created if 
necessary. The filename can be a variable or afield aswellasa constant. For 
example: 

print $1 >$2 

uses the contents of field 2 as a filename. There is a limit of ten possible 
output files. Output can also be piped into another process. For example: 

print I "mail fredm" 

mails the output to fredm's mailbox. 

The variables OFS and ORS may be used to change the current output field 
separator and output record separator. The output record separator is 
appended to the output of the print statement. awk also provides the prlntf 
statementforoutput formatting. 

printf format, expr, expr, . . . \-......_ 
formats the expressions in the list according to the specification in the file 
format and prints them. For example: 

printf " % 8.2f %10ld\n", $1, $2 

prints $1 as a :Hoatingpointnumber eightdigits wide, with two digits after the 
decimal point, and $2 as a ten-digit decimal number, followed by a newline. 
No output separators are produced automatically; they must be added, as in 
the above example. 

A.3.5 Patterns 

You may specify a pattern before an action to act as a selector for 
determining whether the action is to be executed. A variety of expressions 
may be used as patterns: regular expressions, arithmetic relational 
expressions, string·valued expressions, and arbitrary Boolean 
combinations of these. 

The special pattern BEOIN matches the beginning of the input, before the 
first record is read. The pattern END matches the end of the input, after the · 0... 
last record'has been processed. BEGIN and END thus provide a way to gain 
control before and after processing, so you can initialize and terminate the 
program normally. 

A-14 



( 

( 

c 

Editing with sed and awk 

For example, the field separator can be set to a colon with: 

BEGIN { FS � " :" } 

Or the input lines maybe counted by: 

END { print NR } 

- If BEGIN iS pres-ent, itniUSt be the-firstpa:uern; END niliSfb-e thehiSt: -

Regular Expressions The simplest regular expression is a literal string of 
characters enclosed in slashes, for example: 

/smith/ 

This is actually a complete awk program which prints all lines containing any 
occurrence of the name "smith". If a line contains "smith" as part of a 
larger word, it will also be printed, as in: 

blacksmithing 

The list of regular expressions recognized by awk includes the regular 
expressions recognized by ed, sed, and the grep command. In addition,  
awk allows parentheses for grouping, the pipe (I) for alternatives, the plus 
(+) for "one or more", and the question mark (?) for "zero or one". 
Character classes may be abbreviated:  [a-zA-zo.-9] is the set of all letters 
and digits. For example, theawkprogram: 

/[A a ]pplesl [Bb ]ananasl [Cc ]herries/ 

prints all lines which contain any of the words "apples", "bananas", or 
"cherries," whether they begin with an uppercase letter or not. 

Regular expressions must be enclosed in slashes, just as in ed and sed. 
Within a regular expression, blanks and the regular expression 
metacharacters are significant. To tum off the special meaning of one of the 
regular expression metacharacters, precede it with a backslash. 

For example, the pattern: 

f\1-*VI 
matches any string of characters enclosed in slashes. You can also specify 
that any field or variable matches a regular expression (or does not match it) 
with the operators tilden and exclamation pointtilde <n. The program: 

$1 - /[jJ]ohn/ 

prints all lines where the first field matches "john" or "John". Notice that 
this will also match "Johnson", "St. Johnsbury", and so on. To restrictthe 
match to exactly"John" or"john", use: 

$1 - /'"[jJ]ohn$/ 

The caret n refers to the beginning of a line or field; the dollar sign ($) refers 
to the end. 

Relational Expressions An awk pattern can be a relational expression 
involving the operators <, <=, ==, !=, >=, and >. 

A-15 



XENIX Text Processing Guide 

For example: 

$2 > $1 + 100 

selects lines where the second field is at least 100 greater than the first field. 
For example: 

NF %  2 -- o  

prints all lines with an even number of :fields. 

In relational tests, if neither operand is numeric, a string comparison is 
made; otherwise, it is numeric. Thus: 

$1 >= "s" 

selects lines that begin with "s", "t", "u", etc. In the absence of other 
information, fields are treated as strings, so the program: 

$1 > $2 

will perform a string comparison. 

Combinations of Patterns A ,Pattern can be any Boolean combination of 
patterns, using the operators I I  (or), &&(and), and ! (not). For example: 

$1 >= "s" "& $1 < "t'' && $1 != "smith" 

selects lines where the first field begins with "s", but is not "smith". The 
operators && and I I  guarantee that their operands will be evaluated from 
left to right; evaluation stops as soon as their truth or falsehood is 
determined. 

The pattern that selects an action may also consist of two patterns separated 
by a comma, as in: 

patl, pat2 { . . . } 
In this case, the action is performed for each line between an occurrence of 
patl and the next occurrence of pat2 (inclusive). For exam pie: 

/start/, /stop/ 

prints alllinesbetween "start" and "stop", while: 

NR == 100, NR =- 200 { .. .  } 

does the action for lines 100through 200oftheinput. 

A.3.6 Actions 

In addition to the patterns descnbed above, the awk program offers a set of 
possible actions. An awk action is a sequence of action statements 
terminated by newlines or semicolons. These action statements can do a 
variety of bookkeeping and string manipulating tasks. The possible actions 
are: built-in functions, the assignment of variables and strings, the use of 
field variables, string concatenation statements, arrays, and flOw-of-control 
statements. 

A-16 



( \ 

( 

c 

Editing with sed and awk 

Built-In Functions awk provides a "length" function to compute the length 
of a string of characters. This program prints each record, preceded by its 
length: 

{print length, $0} 

The length by itself is a "pseudo-variable" which yields the length of the 
current-record ;--Iength(argument}-is -a -function-which -yields the -Iength-of"its·­
argument, as in the equivalent: 

{print length($0), $0} 

The argument may be any expression. 

awk also provides the arithmetic functions sqrt, Jog, exp, and int, for square 
root, logarithm, exponential, and integer parts of their respective 
arguments. The name of one of these built-in functions, without argument 
or parentheses, stands for the value of the function on the whole record. 
The program: 

length < 10 II length > 20 

prints lines whose length is less than 10orgreater than 20. 
The function substr(s,m,n) produces the substring of s that begins at 
position m (origin 1) and is at most n characters long. If n is omitted, the 
substring goes to the end of s. The function lndex(sl, s2) returns the 
position where the strings2 occurs in sl, or zero if it does not. 

The function sprlntf(f, e1, e2, . . .  ) produces the value of the expressions e1, 
e2, etc., in the prlntfformat specified by f. For example: 

x - sprintf(" %8.2f %10ld" , $1, $2) 
setsxto the string produced by formatting the values of $1 and $2. 

Variables, Expressions, and Assignments awk variables take on numeric 
(floating-point) or string values according to context. For exam pie: 

x - 1  

x is  clearly a number, while in: 

x = "smith" 

it is clearly a string. Strings are converted to numbers and vice versa 
whenever context demands it. For example: 

x = "3" + "4" 

assigns 7 to x. Strings which cannot be interpreted as numbers in a 
numerical context will generally have the numeric value zero. 

By default, variables (other than built-in functions) are initialized to a null 
string, which has numerical value zero. This eliminates the need for most 
BEGIN sections. For example, the sums of the first two fields can be 
computed with: 

A-17 



XENIX Text Processing Guide 

{ s1 +� $1; s2 +� $2 } 
END { print s1, s2 } 

Arithmetic is done internally in floating-point. The arithmetic operators 
are: +, -, *, I, and % .  The C increment++ and decrement - - operators are 
also available, as well as the assignment operators +=, -=, *=, /=, and %=. 
These operators may all be used in expressions. 

Field Variables Fields in awk share essentially all of the properties of 
variables. They may be used in arithmetic or string operations, and may be 
assigned. Thus, you can replace the first :field with a sequence number: 

{ $1 � NR; print } 
or accumulate two fields into a third: 

{ $1 � $2 + $3; print $0 }  
or assign a string to a field: 

{ if ($3 > 1000) 
$3 = "too big" 

print 
} 

which replaces the third field by "too big" when it is too big, and prints the 
record in either case. 

Field references maybenumerical exJ?ressions, as in the following: 
{ print $i, $(i+l), $(i+n) } 

Whether a field is deemed numeric or string depends on context; in 
ambiguous cases like: 

if ($1 �� $2) ... 
fields are treated as strings. 

Each input line is automatically split into fields as necessary. It is also 
possible to split any variable or string into fields. For example: 

n � split( s, array, sep) 

splits the the string s into array{lj, array[nj. The number of elements 
found is returned. If the sep argument is provided, it is used as the field 
separator. Otherwise, FS is used as the separator. 
String Concatenation Strings maybe concatenated. For example: 

length($! $2 $3) 
returns the length of the first three fields. In a print statement: 

print $1 " is " $2 
prints the two fields separated by " is ". Variables and numeric expressions 
may also appear in concatenations. 

A-18 



( 

( 

Editing with sed and awk 

Arrays Array elements are not declared; they spring into existence when 
mentioned in a program. Subscripts may have any non-null value, including 
non-numeric strings. For example, in a conventional numeric subscript, the 
statement: 

x[NR] - $0 

�sig��- !�� _<:_!_n:�e_!lt_ iP.Rll! !��Q!�L��-- th-� __ NB-JA __ t;?lem_�!! LQ.Lth_�- _itrr.�y_x_. _ In 
principle it is possible to process the entire input in a random order with the 
awkprogram: 

{ x[NRJ - $0 }  
END { . . .  program . . .  } 

The first action merely records each input line in the arrayx. 

Array elements may be named by non-numeric values. Suppose the input 
contains fields with values like apple , orange , etc. The program: 

/apple/ { x["apple"]++ } 
/orange/ { x[" orange"]++ } 
END { print x["apple"], x["orange"] } 

increments counts for the named array elements, and prints them at the end 
of the input. Any expression can be used as a subscript in an array 
reference. For example: 

x[$1] - $2 
uses the first :field of a record as a string to index the array x .  

Suppose each line of input contains two fields, a name and a nonzero value. 
Names maybe repeated. To print a list of each unique name followed by the 
sum of all thevaluesforthatname, use the program: 

{ amount[$1] +- $2 } 
END { for (name in amount) 

print name, amount[ name] } 

To sort the output, replace the last line with: 

print name, amount[name] I "sort" 
Flow�of�Control Statements Like any programming language, awk 
provides flow-of-control statements. These are: lf�else, while, for, and 
statement groupings with braces. When using the If statement the condition 
in parentheses is evaluated. If it is true� the statement following the If is 
done. The else part is optional. 

A while statement is also available. For example, to printallinputfields one 
per line, use: 

i - 1  
while (i <- NF) { 

print $i 
++i 

} 

A-19 



XENIX Text Processing Guide 

The for statement: 

for (i - 1 ;  i <- NF; i++) 
print $i 

does the same job as the while statement above. 

An alternate form of the for statement is usefulfor accessing the elements of 
an associative array. For example: 

for (i iu array) 
statement 

performs statement with i seCin turn to each element of the array. The 
elements are accessed in an apparently random order. Chaos will ensue if i 
is altered, or if any new elements are accessed during the loop. 

The expression in the condition part of an if, while or for statement can 
include relational operators like <, <=, > , >=, == ("is equal to"), and != 
("not equal to"); regular expression matches with the match operators r 
aud !\-;the logical operators I I ,&&, aud !, and parentheses for grouping. 

The break statement causes an immediate exit from an enclosing while or 
for statement. The continue statement causes the next iteration to begin. 
The next statement causes awk to skip immediately to the next record and 
begin scanning the patterns from the top. The exit statement causes the 
program to behave as if the end oftheinputhad occurred. 

One final note: comments may be placed in awk programs. If you are going 
to store complex awk programs for future use, it is a good idea to use 
comment lines generously, as a reminder of what your program does. For 
example: 

print x, y # this is a comment 

Comments begin with the character "#" and end with the end of the line. 

A-20 



( 

c 

( 
,_ 

Appendix B 
Error Mes sages 

_ B.l Jntro_duction _L 
B.1.1 Disappearance of Output 1 
B.1.2 nun Error Messages 1 
B.1.3 Formatter Error Messages 4 





( _  

( 

( 

Error Messages 

B.l Introduction 

When a macro discovers an error, a break occurs in processing. To avoid 
confusion regarding the location of the error, the formatter output buffer 
(which may contain some text) is printed and a short message is printed 
giving the name of the macro that found the error, the type of error, and the 

- - app-rOXiriiafe- liiie-nUmber· (m--tne curre-nT ii::ip-uCfileJ-Orllie -las-:c·pr-<:;-cessecr 
input line. Processing terminates, unless the register D has a positive value. 
In the latter case, processing continues even though the output is guaranteed 
to be deranged from thatpointon. 

Note that the error message is printed by writing it directly to the user's 
terminaL If either tbl or eqn/neqn, or both are being used, and if the -olist 
option of the formatter causes the last page of the document not to be 
printed, a harmless ''broken pipe'' message results. 

B.l.l Disappearance of Output 

This usually occurs because of an unclosed diversion (e.g., a missing .FE or 
.DE). Fortunately, the macros that use diversions are careful about it, and 
they check to make sure that illegal nestings do not occur. If any message is 
issued about a missing .DE or .FE, the appropriate action is to search 
backwards from the termination point looking for the corresponding .DS, 
.DF, or.FS. 

The following command: 

grep -n "\.[EDFT][EFNQS]" files . . .  

prints all the .DS, .DF, .DE, .FS, .FE, .TS, .TE, .EQ, and .EN macros 
found in the files, each preceded by its filename and line number in that file. 
This listing can be used to check for illegal nesting and/or omission of these 
macros. 

B.1.2 mm Error Messages 

Each mm error message consists of a standard part followed by a variable 
part. The standard part is of the form: 

ERROR:input line n 

The variable part consists of a descriptive message, usually beginning with a 
macro name. The variable parts are listed below in alphabetical order by 
macro name, each with a more complete explanation: 

Check TL,AU,AS,AE, MTsequence 

These macros for the beginning of a memorandum are out of 
sequence. 

B-1 



XENIX Text Processing Guide 

AL:bad arg:value 

The argument to the .AL macro is not one of 1, A, a, I, or i. The 
incorrect argument is shown as value. 

CS:cover sheet too long 

The text of the cover sheet is too long to fit on one page. The abstract 
should be reduced ortheindentofthe abstract should be decreased. 

DS:too many displays 

More than 26 :H.oating displays are active at once, i.e., have been 
accumulated butnotyetoutput. 

DS:missing FE 

A display starts inside a footnote. The likely cause is the omission (or 
misspelling) of a .FE to end a previous footnote. 

DS:missing DE 

.DS or .DF occurs within a display, i.e., a .DE has been omitted or 
entered incorrectly. 

DE:no DS or DF active 

.DE has been encountered but there has not been a previous .DS or 

.DF to match it. 

FE:noFS 

.FE has been encountered with no previous .FS to match it. 

FS:missing FE 

A previous .FS was not matched by a closing .FE, i.e., an attempt is 
being made to begin a footnote inside another one. 

FS:missing DE 

B-2 

A footnote starts inside a display, i.e., a .DS or .DF occurs without a 
matching .DE. 



( 
\ 

I 
\ 

( 

Error Messages 

H:bad arg:value 

The first argument to .H must b e a  single digit from 1 to 7, but value has 
been supplied instead. 

H:missing FE 

A heading macro (.H or .HU) occurs inside a footnote. 

H:missing DE 

A heading macro (.H or .HU) occurs inside a display. 

H:missing arg 

.Hneeds at least 1 argument. 

HU.·missing arg 

.HU needs 1 argument. 

LB:missing arg(s) 

.LB requires at least 4 arguments. 

LB:too many nested lists 

Another list was started when there were already 6 active lists. 

LE:mismatched 

.LE has occurred without a previous .LB or other list-initialization 
macro. Although this is nota fatal error, the message is issued because 
there almost certainly exists some problem in the preceding text. 

LI:no lists active 

.LI occurs without a preceding list-initialization macro. The latter has 
probably been omitted, or has been separated from the .LI by an 
intervening .H or .HU. 

ML:missing arg 

.ML requires at least 1 argument. 

ND:missing arg 

.ND requires 1 argument. 

B-3 



XENIX Text Processing Guide 

SA:bad arg;value 

The argument to .SA (if any) must be either 0 or 1. The incorrect 
argument is shown as value. 

SG:missing DE 

. SG occurs inside a display. 

SG:missing FE 

.SG occurs inside a footnote. 

SG:no authors 

.SG occurs withoutanyprevious .AUmacro(s). 

VL:missing arg 

. VL requires at least 1 argument. 

B.l.3 Formatter Error Messages 

Most messages issued by the formatter are self-explanatory. Those error 
messages over which the user has some control are listed below. 

Cannot doev 

Caused by setting a page width that is negative or extremely short, 
setting a page length that is negative or extremely short� reprocessing a 
macro package (e.g. performing a .so to a macro package that was 
requested from the command line), or requesting the -sl option to 
troff on a document that is longer than ten pages. 

Cannot execute filename 

Given by the . !  request if it cannot find the filename. 

Cannot open filename 

Issued if one of the files in the list of files to be processed cannot be 
opened. 

Exception word list full 

B-4 

Too many words have been specified in the hyphenation exception list 
(via .hwrequests). 



( 

( 

( 

Error Messages 

Line overflow 

The output line being generated was too long for the formatter's line 
buffer. Jbe excess was discarded. See the "Word overflow" message 
below. 

- Nonexistentfonttype --

A request has been made to mount an unknown font. 

Nonexistent macro file 

The requested macro package does not exist. 

Nonexistent terminal type 

The terminal options refers to an unknown terminal type. 

Out of temp file space 

Additional temporary space for macro definitions, diversions, etc. 
cannot b e  allocated. This message often occurs because of unclosed 
diversions (missing .FE or .DE), unclosed macro definitions (e.g., 
missing " .. "), or a huge table of contents. 

Too many page numbers 

The list of pages specified to the formatter-a option is too long. 

Too many stting/macro names 

The pool of string and macro names is full. Unneeded strings and 
macros can be deleted using the .rm request. 

Too many number registers 

The pool of number register names is full. Unneeded registers can be 
deleted by using the .rrrequest. 

Word overflow 

A word being generated exceeded the formatter's word buffer. The 
excess characters were discarded. A likely cause for this and for the 
"Line overflow" message above are very long lines or words generated 
through the misuse of \c or of the .cu request, or very long equations 
produced by eqn orneqn. 

B-5 





( 

c 

( '-

Appendix C 

mm Macro s, Strings ,  

and Number Registers 

C.1 Introduction 1 

C.2 SummaryofmmMacros 1 
C.2.1 Strings 6 
C.2.2 Number Registers 7 





( 

( 

c 

mm Macros, Strings, and Number Registers 

C.l Introduction 

This appendix summarizes the macros, strings, and number registers used 
by the mm macro set. It is particularly useful as a quick reference to the user 
familiar with mm. Those who write their own macros can use this appendix 

_ t? __ �':'?_ic:J ?np!i�-�-t�ngt�� _1?:1_�����-�!��_gs _�I.l�_!�_gis�-�-�� �� ��·-

C.2 Summary of mm Macros 

The following is an alphabetical list of macro names used by rom. The first 
line of each item gives the name of the macro and a brief description. The 
second line shows the form in which the macro is called. Macros marked 
with an asterisk are not, in general, invoked directly by the user. They are 
"user exits" called from inside header, footer, or other macros. 

lC One-column processing 
.1C 

2C Two·column processing 
.2C 

AE Abstract end 
.AE 

AF Alternate format of "Subject/Date/From" block 
.AF [company-name] 

AL Automatically-incremented list start 
.AL [type] [text-indent] [1] 

AS Abstract start 
.AS [arg] [indent] 

AT Author's title 
.AT [title] . . .  

AU Authorinformation 
.AU name [initials] [Joe] [dept] [ext] [room] [arg] [arg] [arg] 

A V Approval signature 
.AV [name] 

B Bold 
.B [bold-arg] [previous-font-arg] [bold] [prev] [bold] [prev] 

BE Bottom end 
.BE 

C-1 



XENIX Text Processing Guide 

BI Bold/Italic 
.BI [bold-arg] [italic-arg] [bold] [italic] [bold] [italic] 

BL Bullet list start 
.BL [text-indeot] [1] 

BR Bold/Roman 
.BR [bold-arg] [Roman-arg] [bold] [Roman] [bold] [Roman] 

BS Bottom start 
.BS 

CS Cover sheet 
.CS [pages] [otber] [total] [figs] [tbls] [refs] 

DE Display end 
.DE 

DF Display floating start 
.DF [format] [fill] [right-indent] 

DL Dash list start 
.DL [text-indent] [I] 

DS Display static start 
.DS [format] [fill] [right-indent] 

EC Equation caption 
.EC [title] [override] [flag] 

EF Even-page footer 
.EF [arg] 

EH Even-pageheader 
.EH [arg] 

EN End equation display 
.EN 

EQ Equation display start 
.EQ [label] 

EX Exhibit caption 
.EX[title] [override] [flag] 

FC Formal closing 
.FC [closing] 

FD Footnotedefaultformat 
.FD [arg] [1] 

C-2 



( 

( 

\ 

mm Macros, Strings, and Number Registers 

FE Footnote end 
.FE 

FG Figure title 
.FG [title J [override] [flag] 

FS Footnote start 
.FS[label] 

H Heading-numbered 
.H level [heading-text] [heading-suffix] 

HC Hyphenation character 
.HC [hyphenation-indicator] 

HM Heading mark style (Arabic or Roman numerals, or letters) 
.HM[argl] . . .  [arg7] 

HU Heading-unnumbered 
.HUheading-text 

HX Heading user exit X(before printing heading) 
.HX dlevel rlevel heading-text 

HY Heading user exit Y (before printing heading) 
.HY dlevel rlevel heading-text 

HZ Heading user exit Z (afterprintingheading) 
.HZ dlevelrlevelheading-text 

I Italic (underline in nrolf) 
.I [italic-arg] [previous-fan t-arg] [italic] [prev] [italic J [prev] 

IB Italic/Bold 
.IB [italic-arg] [bold-arg] [italic] [bold] [italic] [bold] 

IR Italic/Roman 
.!R [italic-arg] [Roman-arg] [italic] [Roman] [italic] [Roman J 

LB Listbegin 
.LB text-indentmark-indentpad type [mark] [LI-space] [LB-space] 

LC List-status clear 
.LC [list-level] 

LE List end 
.LE [l] 

LI List item 
.LI [mark] [l] 

C-3 



XENIX Text Processing Guide 

ML Marked list start 
.MLmark [text-indent] [1] 

MT Memorandum type 
.MT [type] [addressee] 
or .MT [4] [1] 

ND New date 
.ND new-date 

NE Notation end 
.NE 

NS Notation start 
.NS [arg] 

nP Double-line indented paragraphs 
.nP 

OF Odd-page footer 
.OF [arg] 

OH Odd-page header 
.OH [arg] 

OK Other keywords for TM cover sheet 
. OK [keyword] . . .  

OP Odd page 
.OP 

P Paragraph 
.P [type] 

PF Pagefooter 
.PF [arg] 

PH Pageheader 
.PH [arg] 

PX Page-headeruserexit 
.PX 

R Return to regular(Roman) font(endunderliningin nroff) 
.R 

RB Romanffiold 
.RB [Roman-arg] [bold-arg] [Roman] [bold] [Roman] [bold] 

C-4 



( 

( 

mm Macros, Strings, and Number Registers 

RD Read insertion from terminal 
.RD [prompt] (diversion] (string] 

RF Reference end 
.RF 

RI Ro�man!llalic� . � � � ��- � _ � 
.RI (Roman-arg] (italic-arg] [Roman] (italic] (Roman] (italic] 

RL Reference list start 
.RL (text-indent] (1] 

RP Producereferencepage 
.RP (arg] (arg] 

RS Reference start 
.RS (string-name] 

S Set troJfpoint size and vertical spacing 
.S (size] (spacing] 

SA Set adjustment(rightmarginjustification) default 
.SA [arg] 

SG Signature line 
.SG (arg] (l] 

SK Skip pages 
.SK (pages] 

SP Space-vertically 
.SP (lines] 

TB Table title 
.TB (title] [override] [Hag] 

TC Table of contents 
.TC (sieve!] (spacing] (!level] (tab] (headl] (head2] (head3] (head4] 
[headS] 

TE Tableend 
.TE 

TH Tableheader 
.TH (N] 

TL Title of memorandum 
.TL [charging-case] [filing-case] 

C-5 



XENIX Text Processing Guide 

TM Technical Memorandum number(s) 
.TM[number] . . .  

TP Top-of-pagemacro 
.TP 

TS Tablestart 
.TS [H] 

TX Table-of-contentsuserexit 
.TX 

TY Table-of-contents user exit (suppresses "CONTENTS") 
.TY 

VL Variable-item list start 
. VL text-indent [mark-indent] [1] 

VM Verticalmargins 
.VM[top] [bottom] 

' we Width control 
. we [format] 

C.2.1 Strings 

The following is an alphabetic list of string names used by mm, .giving for 
each a brief description and an initial default value. 

Ci Contents indent up to seven arguments for heading levels. 

F Footnotenumberer. 
In nrolf: \u\\n+( :p\d 
Introlf: \v'-.4m '\s-3\\n+9:p\s0\v' .4m' 

DT Date. The current date, unless overridden. 

EM Em dash string. Used by both urolf and trolf 

HF Heading font list, up to seven codes for heading levels 1 through 
7. 3 322222(1evels 1 and 2bold, 3-7underlinedinnrolf,italic 
in trolf) 

HP Heading point size list, up to seven codes for heading levels 1 
through? 

Le TitleforLISTOFEQUATIONS 

C-6 



( ' ' 

( 

c 

mm Macros, Strings, and Number Registers 

Lf 

Lt 

Lx 

. . . · RE 

Rf 

Rp 

Title for LIST 0 F FIGURES 

Title for LIST OF TABLES 

Title for LIST OF EXHIBITS 

-SCGS-Release-and-mm---­
Release Level 

Reference numberer 

Title for References 

Tm Trademark string places the letters "TM" half a line above the 
text that it follows 

C.2.2 Number Registers 

This section provides an alphabetical list of register names, giving for each a 
brief description, initial (default) value, and the legal range of values (where 
[m:n] means values from m ton inclusive). 

Any register having a single-character name can be set from the command 
line. An asterisk attached to a register name indicates that that register can 
be set only from the command line or before the mm macro definitions are 
read by the formatter. 

A Handles preprinted forms 
0, [0:2] 

Au Inhibits printing of author's location,  department, room, and 
extension in the from portion of a memorandum 
1, [O:i] 

C Copy type (Original, DRAFT, etc.) 
O(Original), [0:4] 

Cl 

Cp 

D 

De 

Contents level (i.e., level ofheadings saved for table of contents) 
2, [0:7] 

Placement of List of Figures, etc. 
1 (on separate pages), [0:1] 

Debug !lag 
0, [0:1] 

Display eject register for floating displays 
0, [0:1] 

C-7 



XENIX Text Processing Guide 

Df Display format register for floating displays 
5, [0:5] 

Ds Static display pre- and post-space 
1,  [0:1] 

Be Equation counter, used by .EC macro 
0, [0:?], incremented by 1 for each .EC call. 

Ej Page-ejection tlagfor headings 
O (no eject), [0:7] 

Eq Equation label placement 
0 (right-adjusted), [0:1] 

Ex Exhibit counter, used by .EX macro 
0, [0:?], incremented by 1 for each .EX call. 

Fg Figure counter, used by .FG macro 
0, [0:?], incrementedbyl for each .FG call. 

Fs Footnote space (i.e. , spacing between footnotes) 
1 , [0:?] 

Hl-H7 Headingcountersfor levels 1-7 "-
0, [0:?], incremented by .H of corresponding level or .HU if at level 
given by register Hu. H2-H7 are reset to 0 by any heading at a lower­
numbered level. 

Hb Headingbreak level(after .Hand .HU) 
2, [0:7] 

He Heading centering level (for .Hand .HU) 
O (no centered headings), [0:7] 

Hi Heading temporaryindent (after .H and .HU) 
1 (indent as paragraph), [0:2] 

Hs Headingspacelevel(after .Hand .HU) 
2(space only after .H 1 and .HZ), [0:7] 

Ht Heading type (for .H: single or concatenated numbers) 
O (concatenated numb ers: 1.1.1, etc.), [0:1] 

Hu Heading level (for unnumbered heading .HU) 
2 ( .HU at the same level as .H 2), [0:7] 

Hy Hyphenation control for body of document 
O(automatic hyphenation off), [0:1] 

C-8 



( 

( 
\ 

mm Macros, Strings, and Number Registers 

L Length of page 
66, [20: ?] (lli, [2i: ?] in trolfthesevalues must be scaled. 

Le List ofEquations 
0 (list not produced) [0:1] 

Lf ListofFignres 
t(list produ<:�ed)[0:1J ·� 

Li Listindent 
6, [0:?] 

Ls List spacing between items by level 
5 (spacing between all levels) 

Lt List ofTables 
1 (list produced) [0:1] 

Lx ListofExbibits 
1 (list produced) [0:1] 

N Numberingstyle 
0, [0:5] 

Np Numbering style for paragraphs 
O(unnumbered) [0:1] 

0 Olfsetofpage 
. 75i, [0: ?] (0.5i, [Oi: ?] in trolf 

Oc Table of Contents page numbering style 
O (IowercaseRoman), [0:1] 

Of Figure caption style 
O(period separator), [0:1] 

P Pagenumber, managed bymm. 
0, [0:?] 

Pi Paragraph indent 
5, [0:?] 

Ps Paragraph spacing 
1 (one blank space between paragraphs), [0: ?] 

Pt Paragraph type 
O(paragraphs always left-justified), [0:2] 

S Point size 
10, [6:36] 

C-9 



�ENIX Text Processing Guide 

Si Standard indentfor displays 
5, [0:?] 

T Type ofnroff output device 
0, [0:2] 

Tb Table counter 
0, [0:?], incremented byl foreach .TB call. 

U Underlining style for .H and .HU 
0 (continuous underline when possible), [0: 1] 

W Widthofpage(iine and title length) 
6i, [10:1365] (6i, [2i:7 .54i] in troff 

C-10 



Index 

A 

.AL, list begin macro 1-10 
abstracts 3-1, 4-47 
acknowledgements 1-5 
adjective usage 2-15 
alphabetizing lines in files 2-5 
appendices 1-5 
archiving 1-12 
awk 1-7, 1-14, A-1 

actions A-16 
arrays A-19 
assignments A-17 
BEGIN A-14 
break A-20 
built-in functions A-17 

exp A-17 
int A-17 
length A-17 
log A-17 
sprintf A-17 
sqrt A-17 
substr A-17 

combination of patterns A-16 
comments A-20 
continue A-20 
END A-14 
exit A-20 
expressions A-17 
field variables A-18 
fields A-13 
flow-of-control A-19 

for A-19 
if-else A-19 
statement grouping A-19 
while A-19 

next A-20 
number registrer A-13 
output field separator A-14 
output record separator A-14 
pattems A-14 
printf statement A-14 
printing A-13 
records A-13 
regular expression A-15 
relational expressions A-15 
special characters A-15 
string concatenation A-18 
variables A-13, A-17 

B 

back matter 1-5 
background processes 1-16 
background processing 1-11 
batch 1-9, 1-14, A-1 
batch editing 1-16 
bibliography 1-5 
body of text 1-5 
boilerplate 1-5 
boilerplates 1-15, 1-16 
boldface 1-10, 3-6 
brackets 6-16 
bullet list 4-22 

c 

captions 4-30 
centering 1-6, 1-10, 6-7 
chapters 1-5 
character sets 54 
checkmm 3-8 
column alignment 7-1 
column width 7-1 
comm 2-1, 2-3, 2-5 

sorting before using 2-5 
complex sentences 2-13 
compound sentences 2-13 
conditional processing 1-15 6-.22 
connectivity 2-15 

' 
copyright notice 1-4-
cover pages 3-1 
cover sheet 4-38, 4-53 
cut 2-2, 2-6 
cut and paste 1-9, 1-12, 1-16 2-2 2-7 

-clist 2-6 
' ' 

-debar 2-6 
-fiist 2-6 
-s 2-7 

D 

dash list 4-22 
deleting text 2-1 
deletions 1-9 
deroff 2-8 
diacritical marks 8-12 
diction 1-7, 2-8 

-f option 2-17 
-n option 2-17 

I-1 



Index 

diff 1-7, 2-1, 2-3 
diff3 2-1, 2-3, 2-4 

-e 2-5 
-e 2-3 
producing ed scripts with 2-4 

displays 1-5, 3-6, 4-25 
floating 4-25, 4-27 
static 4-25, 4-26 

document life cycle 1-12 
document number 1-4 
document specifications 1-5, 1-16 
document standardization 1-5 
documentation projects 14 
drawing lines 6-16 
drawing lines and characters 5-8 

E 

ed 2-2 
ed scripts A-1 
editing techniques 1-16 

boilerplates 1-15 
consistency 1-13 
editing scripts 1-14 
markers in text 1-13 
shell scripts 1-15 
short lines 1-13 
templates 1-13 
using writing tools 1-16 

egrep 2-1 
entering text 1-9 
eqn 

eqn 1-7, 1-8 
braces 8-4, 8-12 
brackets 8-7 
ceiling 8-7 
centering 8-2 
command language 8-1 
commands 8-1 
diacritical marks 8-12 
error checking with eqncheck 8-17 
error messages 8-17 
floor 8-7 
fonts 8-11, 8-12 
Greek alphabet 8-19 
grouping 8-4 
in-line equations g_.14 
input spaces 8-10 
integrals 8-6 
invoking 8-2, 8-16 
keywords 8-18, 8-19 
line motions with 8-1 
line spacing 8-1 
lining up equations 8-9 
local motions 8-14 
matrices 8-8 
numbering 8-2 

1-2 

XENIX Text Processing Guide 

eqn (continued) 
order of precedence 8-18 
output spaces 8-10 
overstriking &-12 
piles 8-8 
point sizes 8-11 
printing documents 

lineprinter 8-16 
phototypesetter 8-16 

quoted text 8-13 
reserved names 4-54 
special characters 8-18 
special sequences with 8-10 
square roots 8-5 
string definitions 8-15 
subscripts 8-3 
summation 8-6 
superscripts 8-3 
using caret 8-10 
using tildes 8-10, 8-10 
with mm 

centering 8-2 
numbering 8-2 

with nroff 8-2 
with nroff/troff 8-1 

eqncheck 8-17 
equations 1-5 
extracting columns 2-6 
extracting fields 2-6 

F 

fgrep 2-1 
fields 6-11 
figures 1-5 
file comparison 1-12, 1-15, 2-1, 2-1, 2-3 
files 

backup copies 1-6 
backups 1-16 
file length 1-15 
help files 1-14, 1-15 
hierarchical file structure 1-15 
managing long documents 1-13 
naming conventions 1-13 
README files 1-15 
updates 1-12 
using comment lines 1-15 
versions 1-12 

filling 1-6, 6-7 
font changes 3-1 
fonts 1-6, 1-7, 4-41 

typesetting 5-4 
footers 1-6 
footnotes 1-5, 1-7, 3-1, 3-6, 4-31 
foreword 1-4 
formatter 4-2 
formatting commands 1-7, 1-9 



XENIX Text Processing Guide 

formatting documents 1-7 
formatting tables 1-8, 7-1 
front matter 1-4 

G 

global substitution_1-9, 1�12, 2:1, A-:1 
glossary 1-5 
Greek alphabet 5-5, &-1, S.-11, 8-19 
grep 1-7, 2-1, 2-2 

-h 2-3 
-n 2-2 
combined with other commands 2-2 

gutter width 1-6 

H 

horizontal motions 5-9 
hyphenation 1-7, 4-8, 6-12 

I 

illustrations 1-4 
indentation 1...(i, 5-7 
index 1-5 
inserting text interactively 4-45 
interactive 1-9 
invoking programs 

eqn 1-9 
mm 1-9 
nroff/troff 1-9 
order 1-8 
using col 1-9 

italics 3...(i 

J 
justification 1-6, 1-6, 1-7, 4-41, 6-7 

K 

keep-release 5-21 

Index 

L 

.LE, list end macro 1-10 
.. LI, line item macro 1-10 
leaders 6-11 
letters 1-4 
line length 1-6, 5...(i 
list of figures, tables, etc. 4-31 
lists 3-1, 4-17 
local motions 5-8, 6-15 
locating awkward phrases 2-16, 2-16 
locating long sentences 2-13 

M 

macro definition 1-16, 4-53, 6-17 
macro definition files 1-13 
macros 1-8, 1-8, 3-1, 4-3, 7-1, 8-1 

definition 1-10 
margins 1-6 
marked list ( .. ML) macro 4-22 
mathematical equations 1--6, 4-30, 7-1 

formatting 8-1 
printing 8-1 

memorandum styles 4-45 
memos 1-4 
merging columns 2-7 
mm 

mm 1-3, 1-7, 1-7, 1-16 
abstract ( .. AS) macro 4-47 
abstracts 3-1 
alternate format ( .. AF) 3-7, 4-49 
author ( .. AU) macro 4-46 
automatic list (.AL) 3-4, 4-21 
beginning segment 4-2 
body 4-2 
bold (.B) macro 4-41 
bullet list 4-22 
bullets 4-9 
caption macro ( .FG) 4-30 
closing (.FC) macro 4-51 
command line 4-4 
command line parameters 4-4 
cover pages 3-1 
cover sheet ( .. CS) macro 4-53 
da'h li't (.DL) 3-4, 4-22 
dashes, minuses, and hyphens 4-9 
disappearance of output B-1 
display ( .DS I) macro 4-26 
display macro(.DS-.. DE) 3...(i 
displays 4-25 

indentation 3-7 
ending 4-2 

I-3 



Index 

m m  (continued) 
equation ( .EQ) macro 4-30 
error checking with checkmm 3-8 
error messages B-1, B-1, B-2, B-3, B-3 
even page footer ( .EF) macro 4-35 
even page header ( .EH) macro 4-35 
exit macros (.HX, .HY and .HZ) 4-16 
floating display (.DF) macro 4-27 
font changes 3-1, 3-5 

boldface 3-6 
italics 3-6 

fonts in heacUngs 4-13 
footnote ( .FS) macro 4-31 
footnotes 3-1, 3-6 
formatting with 4-7 
heading (.H) macros 4-11 
headings 4-10 
headings, modifying 4-U 

unnumbered 4-15 
hypenation 4-8 
inserting commands 3-1 
invoking 3-2, 4-3 
invoking as a flag 44 
invoking checkmm 3-8 
italic (.I) macro 4-41 
keyword (.OK) macro 4-48 
list end ( .LE) macro 4-18, 4-21 
list item macro 3-4, 4-18, 4-20 
list of figures 4-31 
list-initialization macro 4-18 
lists 3-1, 3-4, 4-17 
macro definition 4-53 
mark list (.ML) 3-4 
marking macro ( .HM) 4-14 
memorandum type (.MT) 3-7, 4-48 
multicoluinn output 3-1 
nested lists 3-5, 4-18 
new date (.ND) macro 4-49 
notation (.NS) macro 4-51 
null arguments 4-7 
numbered headings 3-3 
odd page (.OP) macro 4-44 
odd page header (.OH) macro 4-35 
odd-page footer macro 4-35 
options 

-e 4-3 
-12 4-3 
-c 4-3 
-E4-3 
-t 4-3 
-y4-3 

order of beginning macros 4-50 
page footer (.PF) macro 4-35 
page header (.PH) macro 4-34 
page numbering 3-1, 4-16 
paragraph (.P) macro 3-3, 4-10 
paragraph style 3-1 
paragraphs 4-10 
paragraphs and headings 3-3 

1-4 

XENIX Text Processing Guide 

mm (continued) 
parameter setting 4-2 
point size ( .S) macro 4-44 
point size in headings 4-13 
read insertion {.RD) macro 4-45 
reasons to use 4-1 
redefining heading styles 34 
reference (.RS) macro 4-40 
reference list (.RL) macro 4-22 
reference page ( .RP) macro 4-40 
Roman (.R) macro 4-41 
section headers 3-1 
set right justification (.SA) macro 4-41 
signature (.SG) macro 4-51 
skip page (.SK) macro 4-44 
space ( .SP) macro 4-43 
strings C-6 
summary of macros C1 
summary of number registers C 7 
table macro (.TS-.TE) 3-6, 4-28 
table of contents (.TC) 3-4, 4-15, 4-38 
tables of contents 3-1 
tabs 4-9 
technical memorandum (.TM) macro 4-47 

title (.TL) macro 4-46 
titles 3-1 
top of page processing 4-37 
trademark string 4-10 
two column (.2C) macro 3-7, 4-42 
unnumbered headings 3-3 
unpaddable spaces 4-8 
using tilde t) 4-8 
variable lists (.VL) 3-5, 4-23 
vertical margin (.VM) macro 4-38 
with nroff/troff 3-1, 3-8 
with col 3-3 

multicolumn output 1-6, 1-7, 3-1. 3-7, 4-42 

N 

naming conventions 1-13 
nested lists 4-18 
nomlnalizations 2-15 
notes 1-5 
noun usage 2-15 
nroff 1-7, 1-7 
nro:ff/tro:ff 

relative point size changes 5-3 
absolute position 6-3 
adjust (.ad) command 6--8 
append string (.as) command 6-20 
append to macro (.am) command 6-20 
assign format to register (.af) 6-21 
begin page (.bp) command 5-13, 6-7 
blank lines 6-10 
brackets 6-16 



( 

c )  

XENIX Text Processing Guide 

nroff!troff (continued) 
break (.br) command 6-8 
break function 6--2 
breaks in 5-14 
center (.ce) command 6--9 
centering 6-7 
change trap position (.ch) 6-20 
character translations 6-14 
conditional processing 5-18, 6-22 

even and odd 5-19 
if-else 5-18 
lineprinter and typesetter 5-19 
string comparison 5-19 

control lines 6-2 
copy mode 6-15 
define macro (.de) command 6-19 
define string (.ds)'command 6-20 
difference between 5-1, 6-1 

printing 6-5 
difference in output 5-1 
differences 1-6 

changing point sizes 1-6 
ignoring-commands 1-6 
replacing italics with underlining 1-6 
rounding parameters 1-6 
underlining 1-7 

diversions 6-1-9 
diversions ( .di) 5-20 

ne&tin_g 6-19 
traps 6-19 

divert ( .di) command 6-20 
divert-append {.da) command 6-20 
-drawing lines 6-16 
drawing lines and characters >8 
end macro (.em) command 6-20 
environments 6-23 
environments (.ev) 5-19 
error messages 6-25, B-4-, B-4-, B-5 
escape character 6-2. 0.14 
escape sequences 6-25 
even page (e) condition 6-22 
exit (.ex) command 6-23 
field delimiter {.fc) command 6-12 
fields 6-11 
fill (.fi) command 6-7, 6-8 
flush output buffer ( .fl) 6-25 
fonts 5-5 
fonnatter-nroff (n) condition 6-23 
fQnnatter troff (t) condition 6-22 
horizontal_motions 5-9, 6-16 
hyphenation 6-12 
hyphenation on (.hy) command 6-12 
if (.if) command 6-22 
ignore ( .ig) command 6-24 
indent (.in) 5-6, 6-10 
inline commands 5-2 
input-output conventions 0-14 
inserting cOmmands 5�2 
install dive�sion trap (.dt) command 6-20 

Index 

nroff/troff (continued) 

install trap (.wh) command 6-20 
invoking 6-1 
justification 6-7 
leader repetition character (.Jc) 6-12 
leaders 6-11 
ligature mode on (.lg) command 6-14 
ligatures 6-14 
line length ( .11) 5c6, 6-10 
line length and indenting 6-10 
line number mode (.nm) 6-13 
line space (.Is) command 6-9 
local motions 5-8, 5-10, 6-15 
macro definitions 5-11 

arguments 6-18 
input 6-17 

macros 6-2, 6-17 
arguments 5-16 

margin character (.me) command 6-24 
mark current vertical place (.mk R) 6-7 

needs (.ne) command 6-7 
new page (.NP) macro 5-13 
next filename ( .n:x) command 6-24 
no adjust (.na) command 6-8 
no fill ( .nf) command 6-8 
no hyphenation (.nh) command 6-12 
no number (.nn) command 6-13 
no space (.ns) command 6-10 
number register assign (.nr) command 6-21 

number registers 5-15, 5-16. 6-21 
predefined 6-27 
read-only 6-27 

numerical input 6-4-
odd page ( o) condition 6-22 
�tions 

-cname 6-1 
-olist 6-1 
-i 6-2 
-mname 6-1 
-nN 6-1 
-q 6-2 
-raN 6-2 
-sN 6-1 

output line numbering 6-13 
ouq>ut save (.os) command &:10 
overstrikin_g 5-10, 6-16 
page control 6-6 
page length (.pi command) &6 
page number (.pn) command 6-7 
page number character (.pc) 6-13 
page offset (.po) 5-6, 6-7 
pipe output (.pi) command 6-24 
point size(.ps) 5-2 
pre-defmed number registers 5-15 
print macro (.pm) command 6-24 
quoting quotes 5-15 

l-5 



Index 

nroff/troff (continued) 
read standard input ( .rd) command 6-23 

read string in copy mode (.tm) 6-24 
remove ( .rm) command 6-20 
remove register (.rr) command 6-22 
rename (.m) command 6-20 
requests 6-2 
reserved register names 4-53 
reserved request names 4-53 
restore spacing (.rs) command 6-10 
return upward (.rt) command 6-7 
save (.sv) command 6-10 
scale indicators 6-3 
seclion titles 5-17 
set control character (.cc) command 6-15 

set environment (.ev) commands 6-23 
set escape character (.ec) command 6-14 

set hyphenation indicator (.he) 6-12 
set input-line-count trap (.it) 6-20 
set no break ( .c2) command 6-15 
set tabs (.ta) command 6-11 
space ( .sp) command 6-9 
spacing units 54 
special characters 5-5 
specify hyphenation points (.hw)·command 

6-12 
standard input 6-1 
string define (.ds) 5-11 
string definition 5-11, 6-17 
switch source file {.so) command 6-24 
tab repetition character (.tc) 5·8, 6-11 
tabs (.ta) 5-7, 6-11 
temporary indent (.ti) 5-7 
temporary indent (.ti) command 6-10 
title (.tl) command 5-13, 6-12 
title length (.It) command 6-13 
titles 5-13, 6-12 

fonts and point sizes 5-14 
translate (.tr) command 6-15 
turn escape off (.eo) command 6-14 
underline {.ul) command 6-14 
underline font (.uf) command 6-15 
using backslash (\) 5-15, 6-2, 6-14 
vertical motions 6-15 
vertical space (.vs) command 6-9, 6-9 
vertical spacing (.vs) 5-3 
width function 6-15, 6-16 
with mm 4-1 
zero-width function 6-16 
internal units 6-3 
options 

-e 6-2 
-Tname 6-2 

underlin e  (.cu) command 6-14 
number registers 4-3 
numbered lists 1-10 

I.Q 

XENIX Text Processing Guide 

0 

organizing writing projects 1-12 
overstrike 6-16 

p 

.P, paragraph macro 1-10 
page footers 4-34, 4-35 
page headers 1-6, 4-34 
page length 1-6 
page numbering 1-6, 1-7, 3-l, 4-16 
paper styles 4-45 
paragraph style 1-7, 3-1 
parallel sentence structures 2-15 
parts 2-10 
parts of document 1-4 

back matter 1-5 
appendices 1-5 
bibliography 1-5 
glossary 1-5 
index 1-5 
notes 1-5 

body of text 1-5 
front matter 1-4 

acknowledgements 1-5 
copyright notice 14 
document number 1-4 
foreword 14 
illustrations 1-4 
preface 1-5 
table of contents 1-4 
tables 1-4 
title page 14 

parts of speech 2-14 
paste 2-2, 2-7 

-d 2-7 
-s 2-7 
list 2-7 

pattern matching A-1, A-12, A-13 
pattern recognition 2-2 
point size 1-6, 1-7, 444 
preface 1-5 
preparing charts 7-1 
preprocessor 1-8 
preprocessors 1-8, 7-1 
printing documents 1-11 

lineprinter 1-7, 1-8, 1-8 
phototypesetters 1-7 

printing lists 7-1 
printing multi-column maierial 7-1 
production consistency 1-5 



( 
\ __ 

C ·  

XENIX TeAi Processing Guide 

Q 
quoting quotes 4�7 

R 

readability 2-10, 2-13 
readability indices 2-10, 2-11 
readability of documents 2-8 
rearranging columns 2-6 
reference page 4-40 
references 4-39 
regular expression 2-2, A-1, A-15 
relative addressing A-1 
requests 4-2 
reversing columns of output A-12 
revisions 1-9, 1-12, 1-12 
running footers 1-5 
running headers 1-5 
running heads, see Page Headers 1-6 

s 

.sp command 1-10 
searching 2-1, A-12 
searching within fields A-12 

fields A-1 
line numbers 2-2 
numerics A-1 
pattern recognition 2-2 
strings 2-3 
variables A-1 

section headers 3-1 
section-page numbering 1-6 
sections 1-5 
sed 1-14, A-1 

-e A-2, A-2 
-f A-2, A-2 
-n A-2 
: label function A-11 
= function A-11 
a function A-5 
addressing A-3 
b label function A-ll 
B!function A-ll 
c function A-6 
d function A-5 
D function A-10 
flow-of-control A-2 
flow-of-control functions A-11 
functions A-5 
g function A-7, A-10 
G function A-10 

Index 

sed 1-14, A-1 (continued) 
H function A-10 
h function A-10 -.. 
hold and get functions A-10 
i function A-6 
input/output functions A-8 
miscellaneous functions A-11 
multiple input-line functions A-9 
n function A-5 
-N function-A-9 
p function A-7, A-8 
P function A-10 
q function A-11 
r function A-9 
s function A-7 
substitution functions A-7 
t label function A-11 
w function A-7, A-8 
x function A-10 
-n A-2 
{ function A-11 

sentence length 2-9, 2-10 
sentence openers 2-15 
sentence type 2-9, 2-10, 2-10 
simple sentences 2-13 
skipping pages 4-44 
sort 1-7, 2-2, 2-5 
special characters 5-5 

in eqn 8-18 
special symbols 8-1 
spe11 1-7, 2-8, 2-7 

-b 2-8 
-v 2-8 
British spelling 2-8 
dictionary 2-8 

square roots 8-5 
standard output 

formatting to 1-11 
standardization 1-12 
Starting paragraphs 1-10 
strategies for managing writing projects 1-2 
string definition 6-17 
strings 4-3 
style 1-7, 2-8, 2-10 

-1 option 2-13 
elements of writing style 2-9 
percentage of verbs 2-15 
readability 2-9, 2-9 
readability grades 2-11 
readability indices 2-11 

automated readability index 2-12 
Coleman-Liau Formula 2-12 
Flesch Reading Ease Schore 2-12 
Kincaid Formula 2-12 

sentence determination 2-10 
sentence length 2-11, 2-11, 2-13 
sentence openers 2-11 
sentence type 2-11, 2-13, 2-13 
word length 2-11 

1-7 



Index 

style 1-7, 2-8, 2-10 (continued) 
word usage 2-11 

subscripts 8-3 
superscripts 8-3 
symbols, mathematical 8-11 
system features 1-7 

hierarchical file structure 1-2, 1-7, 1-13 
multitasking 1-7 
pipes 1-2, 1-9 
shell 1-2 
shell scripts 1-2 

system utilities 1-7, 2-1, 2-7 

T 

table of contents 1-4, 4-15, 4-38 
tables 1-4, 1-5, 1-6, 3-6, 4-28 
tables of cOntents 3-1 
tabs 6-11 
tb1 1-7, 1-8, 7-1 

additional command lines 7-9 
centering in columns 7-4 
columri alignment 7-1 
column width 7-1, 7-6 
data 7-7 
decimal point alignment 7-4 
defaults 7-7 
drawing boxes 7-1 
drawing horizontal lines 7-1 
drawingvertical lines 7-1 
equal width columns 7-7 
error messages 7-8, 7-10 
font changes 7-6 
format section 7-3 

A or a option 7-3 
C or c option 7-3 
L or 1 option 7-3 
N or n option 7-3 
R or r option 7-3 
S or s option 7-3 
A option 7-4 

formatting section 7-2 
full width horizontal lines 7-7 
horizontal lines 7-5 
input to 7-2 
invoking 7-9 

with other formatters 7-9 
keyletters 7-5 
need (.ne) commands 7-3 
options 7-2 
options section 7-2 

1-8 

allbox 7-3 
box 7-3 
center 7-3 
delim 7-3 
doublebox 7-3 
expand 7-3 

XENIX Text Processing Guide 

tbl l-7, 1-8, 7-1 (continued) 
options section 7-2 (continued) 

linesize 7-3 
tab 7-3 

point sizes 7-6 
preparing charts with 7-1 
printing lists 7-1 
printing multi-column material 7-1 
printing with phototypesetter 7-1 
reserved names 4-54 
short horizontal lines 7-8 
single-column horizontal lines 7-7 
space between columns 7-5 
table end (.TE) 7-2 
table start (.TS) 7-2 
text blocks 7-8 
vertical lines 7-5 
vertical spacing 7-6 
vertical spanning 7-6 
vertically spanned items 7-8 
with nroffltroff 7-1, 7-1 
with eqn 7-1 
with mm 7-1 
troff commands in 7-7 

technical papers 1-4 
techniques, text processing 1-6 
templates 1-16 
title page 1-4 
titles 1-7, 3-1, 4-46, 6-12 
tools 2-8 
tools, text processing 1-6, 1-7 
top and bottom margins 4-38 
troff 1-7, 1-7 

point size (.ps) command 6-5 
change font (.ft) command 6-6 
character set 6-4 
constant character space (.cs) 6-6 
embolden (.bd) commands 6-6, 6-6 
font position ( .fp) command 6-6 
internal units 6-3 
mathematical font set 6-4 
mounted fonts 6-5 
options 

-a 6-2 
-b 6-2 
-f 6-2 
-pN 6-2 
-t 6-2 
-w 6-2 

space-character size (.ss) command 6-5 
using ASCII characters with 64 

typesetting mathematical equations 1-8 



( 

c 

c� � 

XENIX Text Processing Guide 

u 

updates 1�12, 1-15 
use of expletives 2-16 

v 

variable spacing 1-7 
versions of documents 1-12, 1-13, 1-15 
vertical spacing 1.-6, 1-10 
vi 1-6, 1-7, 2-2 

w 

we 2-2, 2-6 
width function 6-15 
word length 2-9 
word usage 2-9, 2-10, 2-10, 2-14 
writing tools 1-7 

X 

XX 4-42 

z 

zero-width function 6-16 

Index 

I-9 





Contents 

( ', Text Processing Commands (CT) 

intro 
checkmm, 
mmclteck 
col 
cut 
cw,cwcheck 
de rolf 
diction 
dilfmk 
eqn,neqn, 
eqncheck 
eqnchar 
explain 
hyphen 
look 
man 
mm ( , mmt 

\__'" neqn 
nroff 
paste 
prep 
ptx 
soelim 
style 
thl 
term 
trolf 
Index (CT) 

c 

Introduces te>...i.processingcommands. 

Checks usage of MMmacros. 
Filters reverse linefeeds. 
Cuts out selected fields of each line of a file. 
Prepares constant-width teA1: for troff. 
Removes nroff/troff, tbl, and eqn constructs. 
Checks language usage. 
Marks differences between files. 

Formats matheniatical text fornroff ortroff. 
eqn character definitions. 
Corrects language usage. 
Finds hyphenated words. 
Find lines in a sorted list. 
Print entries in this guide. 
Prints documents formatted with the rom macros. 
Typesets documents. 
Formats mathematics. 
A text formatter. 
Merges lines of files. 
Prepares text for statistical processing. 
Generates a permuted index. 
Eliminates . so's from nroff input. 
Analyzes characteristics of a document. 
Formats tables for nroff or troff. 
TerminalP..:anes. 
Typesets tel>i. 





c 

INTRO (CT) INTRO (CT) 

Name 

intro - Introduces text processing commands. 

Description 

This section describes use of the individual commands available in 
the XENIX Text I'rocessing System . .  Each individuaLcommand is 
labeled with the letters CT to distinguish it from commands avail­
able in the XENIX Operating and Development Systems. These 
letters are used for easy reference from other documentation. For 
example, the reference mm (CT) indicates a reference to a discus­
sion of the mm command in this section, where the letter "C" 
stands for ('command" and the letter "T" stands for "Text Process­
ing". 

Syntax 

Unless otherwise noted, commands described in this sectio� accept 
options and other arguments according to the following syntax: 

name [option . . .  ] [cmdarg . . .  ] 

This syntax is detailed below: 

name 

option 

cmdarg 

See Also 

The filename or pathname of an executable file 

A single letter representing a command option. By 
convention, most options are preceded with a dash. 
Option letters can sometimes be grouped together as 
in -abed or they are specified individually as in -a 
-b -c -d . The method o f  specifying options 
depends on the syntax of the individual command. 
In the latter method of specifying options, argnments 
can be given to the options. For example, the -f 
option for many commands often takes a following 
filename argument. 

A pathname or other command argument not begin­
ning with a dash or a period (.). It may also be a 
dash by itself indicating the standard input. 

getopt(C), getopt(S) 

A ugnst 26, 1985 Page 1 



INTRO (CT) INTRO (CT) 

Diagnostics 

Upon termination, each command returns 2 bytes of status, one 
supplied by the system and giving the cause for termination, and (in 
the case of "normal" termination) one supplied by the program. 
(See wait(S) and exit(S).) The former byte is 0 for normal termina­
tion; the latter is customarily 0 for successful execution and 
nonzero to indicate troubles such as erroneous parameters, bad or 
inaccessible data, or other inability to cope with the task at hand. 
It is called variously "exit code " "exit status " or "return code " 
and is described only where spe�ial convention� are involved. 

' 

Notes 

Many commands do not adhere to the given syntax. 

August 26, 1985 Page 2 

\� 



CHECKMM ( CT} CHECKMM (CT} 

Name 

checkmm, mmcheck - Checks usage of MM macros. 

( Syntax 

c 

checkmm [ files ] 
mmcheck [ files ] 

Description 

Checkmm and mmcheck check files for usage of the MM formatting 
macros. Checkmm and mmcheck also check for usage of sorpe 
eqn (CT) constructions. Appropriate messages are produced. The 
program skips all directories, and if no filename is given the stan­
dard input is read. 

See Also 

col(CT}, env(C}, eqn(CT), mm(CT}, mmt(CT}, nroff(CT), 
tbl(CT), profile(M) 

Diagnostics 

If checkmm and mmcheck encounter unreadable files they display 
the message "Cannot open filename". The remaining output of the 
program is diagnostic of the source file. 

August 26, 1985 Page 1 





c 

c 

c/ 

COL (CT) COL (CT) 

Name 

col - Filters reverse linefeeds. 

Syntax 

col [ -bfxp ]  

Description 

Col prepares output from processes, such as the text formatter 
nroff(CT), for output on devices that limit or do not allow reverse 
or half-1ine motions. Col is typically used to process nroff output 
text that contains tables generated by the tbl program. A typical 
command line might be: 

tbl file I nroff I col I lpr 

Col takes the following options: 

-b 
Assumes the output device in use is not capable of backspacing. 
If two or more characters appear in the same place, col outputs 
the last character read. 

-f Allows forward half linefeeds. If not given, col accepts half line 
motions in its input, but text that would appear between lines is 
moved down to the next full line. Reverse full and half linefeeds 
are never allowed with this option. 

-x 

-p 

Prevents conversion of whitespace to tabs on output. Col nor­
mally converts whitespace to tabs wherever possible to shorten 
printing time. 

Causes col to ignore unknown escape sequences found in its 
input and pass them to the output as regular characters. 
Because these characters are subject to overprinting from 
reverse line motions, the use of this option is discouraged unless 
the user is fully aware of the position of the escape sequences. 

Col assumes that the ASCII control characters SO (octal 016) and 
SI (octal 017) start and end text in an alternate character set. If 
you have a reverse linefeed (ESC 7), reverse half linefeed (ESC 8), 
or forward half linefeed (ESC 9), within an SI-SO sequence, the 
ESC 7, 8 and 9 are still recognized as line motions. 

Augnst 26, 1985 Page 1 



COL (CT) COL (CT) 

On input, the only control characters col accepts are space, back­
space, tab, return, newline, reverse linefeed (ESC 7), reverse half 
linefeed (ESC 8), forward half linefeed (ESC 9), alternate character 
start(SI), alternate character end (SO), and vertical tag (VT). (The 
VT character is an alternate form of full reverse linefeed, included 
for compatibility with some earlier programs of this type.) All other 
nonprinting characters are ignored. \"-

See Also 

nroff(CT), tbl(CT) 

Notes 

Col cannot back up more than 128 lines. 

Col allows at most 800 characters, including backspaces, on a line. 

Vertical motions that would back up over the first line of the docu­
ment are ignored. Therefore, the first line must not contain any 
superscripts. 

August 26, 1985 Page 2 



c 

CUT (CT) CUT (CT) 

Name 

cut - Cuts out selected fields of each line of a file. 

Syntax 

cut -clist [filel file2 .. . ] 
.cut -flist [-dchar] [-s] [fijel file2 . . .  ] 

Description 

Use cut to cut out columns from a table or fields from each line o f  
a file. The fields as specified b y  list can b e  fixed length, i.e., char­
acter positions as on a punched card ( -c option), or the length can 
vary from line to line and be marked with a field delimiter charac­
ter like tab (-f option). Cut can be used as a filter. If no files are 
given, the standard input is used. 

The meanings of the options are: 

list A comma-separated list of integer field numbers (in 
increasing order}, with an optional dash (-), indicates 
ranges, as in the -o option of nroff/troff for page ranges; 
e.g., 1,4,7; 1-3,8; -5,10 (short for 1-5,10); or 3- (short 
for third through last field). 

-clist The list following -c (no space) specifies character posi­
tions (e.g., -c1-72 would pass the first 72 characters of 
each line). 

-flist The list following -f is a list of fields assumed to b e  
separated i n  the file b y  a delimiter character (see -d ) ; 
e.g., -f1,7 copies the first and seventh field only. Lines 
with no field delimiters will be passed through intact (use­
ful for table subheadings), unless - s is specified. 

-dchar The character following -d is the field delimiter (-f 
option only). Default is tab .  Space or other characters 
with special meaning to the shell must be quoted. 

- s The -s option suppresses lines with no delimiter charac­
ters in case of -f options. Unless specified, lines with no 
delimiters will be passed through untouched. 

c- Either the -c or -f option must be specified. 

August 26, 1985 Page 1 



CUT (CT) CUT (CT) 

Hints 

Use grep(C) to make horizontal "cuts" (by context) through a file, 
or paste(CT) to put files together horizontally. To reorder columns 
in a table, use cut and paste. 

Examples 

cut -d: -f1,5 /etc/passwd Maps user ID' s to names. 

name="who am i J cut -fl -d" ", 
Sets name to current login name. 

See Also 

grep(C), paste(CT) 

Diagnostics 

line too long A line can have no more than 511 characters or 
fields. 

bad list for c If option 
Missing -c or -f option or incorrectly specified 
list. No error occurs if a line has fewer fields than 
the list calls for. 

no fields The list is empty. 

August 26, 1985 Page 2 



( 

( 
"---· 



This page intentionally left blank. 



( 

c 

CW (CT) CW (CT) 

Name 

cw, checkcw, cwcheck - Prepares constant-width text for troff. 

Syntax 

cw [ -Ixx ] [ -rxx ] [ -fn ]  [ -t ] [ +t ] [ -d ] [ file .. . ] 

che-ckcw [ -!XX l r :;.:rXi ] fiie �:. -- -

cwcheck [ -Ixx ] [ -rxx ] file . . .  

Description 

C\v prepares troff(CT) input files that contain text in the constant­
width (CW) font for typesetting. 

Because the CW font contains a nonstandard set of characters and 
requires different character and interword spacing from standard 
fonts, documents that use the CW font must be preprocessed by 
cw. Typical usage is: 

cw file I troff .. .  

The checkcw and cwcheck programs check to see that the left and 
right delimiters, as well as the .CW /.CN pairs, are properly bal­
anced. It prints out all incorrect lines. 

The options for cw, checkcw, cwcheck are: 

-lxx Designates the one- or two�haracter string xx as the left 
delimiter. If xx is omitted, the left delimiter is undefined, 
which is the default setting. 

-rxx Designates the one- or two-character string xx as the right 
delimiter. The left and right delimiters may be different. 

-fn Mounts the CW font in font position n ;  acceptable values 
for n are 1, 2, and 3. The default is 3, replacing the bold 
font. This option is only useful at the beginning of a docu­
ment, -and can only be used with cw. 

-t 

+t 

Turns transparent mode off. This option can only be used 
with cw. 

Turns transparent mode on. (Tllis is the default.) This 
option can only be used with cw. 

August 26, 1985 Page 1 



CW (CT) CW (CT) 

-d Prints current option settings on the standard error, in the 
form of troff(CT) comment lines. This option is meant 
for debugging, and can only be used with cw. 

The left and right delimiters perform the same function as the 
.CW /.CN requests; they are meant, however, to enclose CW words 
or phrases in running text. CW treats text enclosed by delimiters 
exactly like text bracketed by .CW /.CN pairs. For aesthetic reasons, 
spaces in text bracketed by .CW /.CN pairs have the same width as 
any other CW character. However, spaces between delimiters are 
half as wide, so that they are the same width as spacing in the rest 
of the text, though not adjustable. 

Delimiters have no special meaning inside .CW /.CN pairs. 

Cw recognizes five requests. The requests look like troff(CT) mac­
ros (see EXAMPLES below), and are copied by cw onto its output. 
Thus, they can be defined by the user as troff(CT) macros. 

The five requests are: 

.CW Marks the start of text to be set in the CW font. .CW takes 
the same options, in the same format, that are available on 
the cw command line . 

. CN Marks the end of text to be set in the CW font; .CN takes 
the same options that are available on the cw command 
line . 

. CD option(s) 
Changes delimiters and/or settings of other options; takes 
the same options as the cw command line . 

. CP argl arg2 arg3 ... 
Sets the odd-numbered arguments in the CW font and the 
even-numbered arguments in the prevailing font. The argu­
ments are delimited like troff(CT) macro arguments . 

. PC argl arg2 arg3 . . .  
Same as .CP, except that the even-numbered (rather than 
odd-numbered) arguments are set in the CW font, and the 
odd-numbered arguments are set in the prevailing font. 

Except for the .CD request and the nine spec_ial four-character 
names listed in the table below, every character between the .CW 
and .CN requests is taken literally and output as is. The -t option 
turns off this feature (called transparent mode), and applies normal 
troff(CT) rules to the CW text. 

Text typeset with the CW font resembles the output of terminals 
and lineprinters. This font is often used to typeset examples of 
programs and computer output in documents such as user manuals 

August 26, 1985 Page 2 



( 

c 

c 

CW(CT) CW ( CT) 

and programming texts. The CW font contains the 94 printing 
ASCII characters: 

abcdefghijklmnopqrstuvwxyz 
ABCDEFGHIJKLMNOPQRSTUVWXYZ 
0123456789 
!$%&(t*+@.,I: ;�?[ JI-_,_, <>{}#\ 

It also .contains eight non-AS.CII characters .r.epr.esented by_fourc 
character troff(CT) names 

Character Svmbol Troff Name 
"Cents" sign ¢ \(ct 

EBCDIC "not" sign , \(no 
Left arrow <-- \( <-

Right arrow -+ \(-> 
Down arrow j \(da 

Vertical single quote ' \(fm 
Control-shift indicator t \(dg 

Visible space indicator 
D \(�1,__1q_. Hvohen \{hv 

The hyphen is a synonym for the minus sign (-). 

Examples 

The following are cypical definitions of the .CW and .CN macros. 
They are meant to tie used with the MM(CT) macro package: 
.de CW Begins definition 
.DS I Displal' start, indented 
.ps 9 9 pob type 
.vs 10.51' Vertical spacing 10.5 points 
.ta 16m73u 32m/3u 48m/3u 64m/3u 80m/3u 9om/3u Sets tabs 

Ends definition 
.de CN Begins definition 
.ta 0.5i 1i 1.5i 2i 2.5i 3i 3.51 4i 4.5i 5i 5.5i 6i Resets tabs 
.vs Resets vertical spacing 
.Qs Resets point size 
.DE Ends d1splay 

Ends definifion 

When set in running text, the CW font is, by default, set in the 
same point size as the rest of the text. In displayed matter, it can 
often be set one point smaller than the prevailing point size. (The 
displayed definitions of .CW and .CN above are one point smaller 
than the running text on this page.) When the .CW font is set in 9-
point type, there are 12 characters per inch. 

If a document that contains CW text also contains tables and equa­
tions, the order of preprocessing should be cw, tbl, and eqn . U su­
ally, the tables contained in such documents will not contain any 
CW text, althougl1 it is possible to have elements of the table set in 

August 26, 1985 Page 3 



CW (CT) CW (CT) 

the CW font; care must be taken that tbl(CT) format information is 
not modified by cw. Attempts to set equations in the CW font are 
not likely to be either pleasing or successful. 

In the CW font, overstriking is most easily accomplished with back­
spaces. ( +- represents a backspace.) Because spaces (and, there­
fore backspaces) are half as wide between delimiters as inside 
.CW I .CN pairs (see above), two backspaces are required for each 
overstrike between delimiters. 

Files 

/usr/lib!font/ftCW CW font-width table 

See Also 

eqn(CT), mmt(CT), tbl(CT), troff(CT) 

Warning 

Text preprocessed by cw must be set on a typesetter equipped with 
the CW font. 

Notes 

Do not use periods (.) or backslashes (\) as delimiters. 

Certain CW characters do not fit well with certain Times Roman 
characters, such as a CW ampersand (&) followed by a Times 
Roman comma(,); in such cases, use troff(CT) half- and quarter­
spaces. See also Notes under troff(CT). 

August 26, 1985 Page 4 



c 

c 

DEROFF (CT) DEROFF (CT) 

Name 

deroff - Removes nroff!troff, tbl, and eqn constructs. 

Syntax 

deroff [ -w ] [ -mx ] [files ] 

Description 

Deroff reads each of the files in sequence and removes all troff(CT) 
requests, macro calls, backslash constructs, eqn(CT) constructs 
(between .EQ and .EN lines, and between delimiters), and tbl(CT) 
descriptions. It writes the remainder of the file on the standard 
output. Deroff follows chains of included files (.so and .nx troff 
commands). If a file has already been included, a .so naming that 
file is ignored and a .nx naming that file terminates execution. If 
no input file is given, deroff reads the standard input. 

The -m option may be followed by an m, s, or l. The resulting 
-mm or -ms option causes the MM or MS macros to be inter­
preted so that only running text is output (i.e., no text from macro 
lines). The -ml option forces the -mm option and also causes 
deletion of lists associated with the MM macros. Tills option is 
used by the diction (CT) command. 

The -w option outputs a word list, one "word" per line, with all 
other characters deleted. Otherwise, the output follows the origi­
nal, with the deletions mentioned above. In text, a "word" is any 
string that contains at least two letters and is composed of letters, 
digits, ampersands (&), and apostrophes ( ' ). In a macro call, how­
ever, a "word" is a string that begins with at least two letters and 
contains a total of at least three letters. Delimiters are any charac­
ters other than letters, digits, apostrophes, and ampersands. Trail­
ing apostrophes and ampersands are removed from "words." 

See Also 

diction(CT), eqn(CT), style(CT), tbl(CT), troff(CT) 

Notes 

Since Deroff is not a complete troff interpreter, it can result in too 
much output. 

The -ml option does not handle nested lists correctly. 

Deroff also removes words of two or fewer letters in lines that begin 
with macro calls or troff requests. 

August 26, 1985 Page 1 





( 

c 

DICTION (CT) DICTION (CT) 

Name 

diction - Checks language usage. 

Syntax 

diction [ -ml ] [ -mm ] [ [ -n ] ]  [ -f patternfile ] file ... 

Description 

Diction finds all sentences in a document that contain phrases from 
a data base of bad or wordy diction. On output, each phrase is 
enclosed within brackets. Because diction runs deroff before look­
ing at the text, formatting header files should be included as part of 
the input. The options are: 

-ms. 
Overrides the default macro package, MM. 

-ml 
Causes deroff to skip lists. Should be used if the document con­
tains many lists of nonsentences. 

-fpatternfile 
Employs a useNupplied patternfile of words and phrases in 
addition to the default file. 

-n 
Suppresses the default file. 

Credit 

This utility was developed at the University of California at Berke­
ley and is used with permission. 

See Also 

deroff(CT), explain(CT) 
Notes 

Use of nonstandard formatting macros may cause incorrect sen­
tence breaks. 

The -n option cannot be specified by itself. 

August 26, 1985 Page 1 



\""'-



( 

c 

DIFFMK (CT) DIFFMK (CT) 

Name 

diffmk - Marks differences between files. 

Syntax 

diffmk namel name2 name3 

Description 

Diffmk compares two versions of a file and creates a third file that 
includes "change mark" commands for nroff(CT) or troff(CT). 
Namel and name2 are the old and new versions of the file. Dijfmk 
generates name3, which contains the lines of name2 plus inserted 
formatter "change mark" (.me) requests. When name3 is format­
ted, changed or inserted text is shown by "I" at the right margin of 
each line. The position of deleted text is shown by a single "*". 

The diffmk command will produce listings of C (or other) programs 
with changes marked. A typical command line for such use is: 

diffmk old.c new.c tmp; nroff macs tmp I pr 

where the file macs contains: 

.pl 1 

.11 77 

.nf 

.eo 

.nc ' 

The .11 request might specify a different line length, depending on 
the nature of the program being printed. The .eo and .nc requests 
are probably needed only for C programs. 

If the characters "I" and "*" are inappropriate, a copy of diffmk 
can be edited to change them (diffmk is a shell procedure). 

See Also 

diff(C), nroff(CT) 

Notes 

Aesthetic considerations may dictate manual adjustment of some 
output. File differences involving only formatting requests may pro­
duce undesirable output. For example, replacing .sp by .sp 2 will 
produce a "change mark" on the preceding or following line of out­
put. 

August 26, 1985 Page 1 





EQN (CT) EQN ( CT) 

Name 

eqn, neqn, checkeq, eqncheck - Formats mathematical text for 
nroff, troff. 

( Syntax 

c 

eqn [ -d>.:v_l L-:Jln J [ -:snJ [-f[ont ] [file ·:.] 

neqn [ -d.'}' ] [ -pn ] [ -sn ] [ -fjont ] [file .. . ] 

checkeq [ files ] 

eqncheck [ files ] 

Description 

eqn is a trojj(CT) preprocessor for typesetting mathematical text on 
a phototypesetter. neqn is used with nroff(CT) for setting 
mathematical text on typewriter-like terminals. Usage is normally 
one of the following or its equivalent: 

eqn files I troff 
neqn files I nroff 

If no files are specified, these programs read from the standard 
input. 

The options are: 

-sn Reduces subscripts and superscripts n points from the pre­
vious size; the default reduction is 3 points. 

-d.>y Sets eqn delimiters to characters x and y. 

-pn Changes the point size within eqn delimiters to n .  

-fjont Changes the font within eqn delimiters to font. 

A line beginning with .EQ marks the start of an equation; the end 
of an equation is marked by a line beginning with .EN. Neither of 
these lines is altered, so they may b e  defined in macro packages for 
centering, numbering, etc. It is also possible to designate two char­
acters as delimiters ; subsequent text between delimiters is then 
treated as eqn input. Delimiters may be set to characters x and y 
with the command-line argnment -d.'}' or {more commonly) with 
delim xy between .EQ and .EN. The left and right delimiters may 
be the same character; the dollar sign is often used as such a delim­
iter. Delimiters are turned off by delim off. All text that is neither 

October 14, 1985 Page 1 



l:!.fdlV \. L- l J  f£(2N ( CT) 

between delimiters nor between .EQ and .EN is passed through 
untouched. 

The programs checkeq and eqncheck report missing or unbalanced 
delimiters and .EQ/.EN pairs. 

Tokens within eqn are separated by spaces, tabs, newlines, braces, 
double quotation marks, tildes, and carets. Braces { }  are used for 
grouping; generally speaking, anywhere a single character such as x 
could appear, a complicated construction enclosed in braces may 
be used instead. A tilde (-) represents a full space in the output; a 
caret () represents half as much. 

Subscripts and superscripts are produced with the keywords sub 
and sup. Thus x sub j makes: 

X; 

a sub k sup 2 produces: 

while 

is made with e sup {x sup 2 + y sup 2}. Fractions are made with 
over: a over b yields: 

a 
b 

sqrt makes square roots: 1 over sqrt {ax sup 2+bx+c} results in: 

1 

The keywords from and to introduce lower and upper limits: 

is made with lim from {n • > inf } sum from 0 to n x sub i. Left 
and right brackets, braces, etc., of the right height are made with 
left and right: left [ x sup 2 + y sup 2 over alpha right ] -=- 1 
produces: 

October 14, 1985 Page 2 

\'-.__ 



i 
\. 

( 

c 

EQN (CT) EQN (CT) 

Legal characters after left and right are braces, brackets, bars, c 
and f for ceiling and floor, and "" for nothing at all (useful for a 
right-side-only bracket). A left need not have a matching right. 

Vertical piles are made with pile, lpile, cpile, and rpile: 
pile {a above b above c} produces: 

a 
b 
c 

Piles may have arbitrary numbers of elements; lpile left-justifies, 
pile and cpile center (but with different vertical spacing), and rpile 
right justifies. Matrices are made with matrix: matrix { Icol { x sub 
i above y sub 2 }  ccol { 1 above 2 }  } produces 

X; 1 

y, 2 

There is also rcol for a right-justified column. 

Diacritical marks are made with dot, dotdot, hat, tilde, bar, vee, 
dyad, and under: x dot = f(t) bar is x-f(t) 
y dotdot bar -=- n under is y - n and x vee -=- y dyad is x - Y  

Point sizes and fonts can b e  changed with size n o r  size ±n, 
roman, italic, bold, and font n .  Point sizes and fonts can b e  
changed globally i n  a document b y  gsize n and gfont n, o r  b y  the 
command-line arguments -sn and -fn. 

Normally, subscripts and superscripts are reduced by 3 points from 
the previous size; this may be changed by the command-line argu­
ment -pn. 

Successive display arguments can be lined up. Place mark before 
the desired lineup point in the first equation; place lineup at the 
place that is to line up vertically in subsequent equations. 

Shorthands may be defined or existing keywords redefined with 
define. For example, 

define thing % replacement % 

defines a new token called thing that will be replaced by replace­
ment whenever it appears thereafter. The % may b e  any character 
that does not occur in replacement .  

Keywords such as sum (I;), int (J), inf (oo), and shorthands such as 
>- (;8, !- (;<), and -> (-) are recognized by eqn. Greek letters are 
spelled out in the desired case, as in alpha (a), or GAMMA (r). 
Mathematical words such as sin, cos, and log are made Roman 
automatically. troff(CT) four-character escapes such as \(dd (t) 

October 14, 1985 Page 3 



EQN (CT) EQN (CT) 

and \(bs (0) may be used anywhere. Strings enclosed in double 
quotation marks (" . . . ") are passed through untouched; tbis permits 
keywords to b e  entered as text, and can be used to communicate 
with troff(CT) when all else fails. 

See Also 

mm(CT), mmt(CT), tbl(CT), troff(CT) 

Notes 

To embolden digits, parentheses, etc., it is necessary to surround 
them with double quotation marks. See also Notes under 
troff(CT). 

October 14, 1985 Page 4 



EQNCHAR (CT) EQNCHAR (CT) 

Name 

eqnchar - Contains special character definitions for eqn and neqn. 

( Syntax 
' \ 

eqn /usr/pub/eqnchar [ file ... J [  troff [ option . . .  ] 
. neqn/usrtl'�btecincli3i' [ tile .. .  J I ilrotr ! option . . .  J 

eqn -Taps /usr/pub/apseqnchar [ file ... J l  troff [ option ... J 
eqn -Teat /usr/pub/cateqnchar [ file .. . J l  otroff [ option ... J 

Description 

Eqnchar contains troff(CT) and nroff(CT) character definitions for 
constructing characters that are not available on a phototypesetter. 
These definitions are primarily intended for use with eqn(C) and 
neqn; eqnchar contains definitions for the following characters: 

ciplus ciplus II II square square 

( citimes citimes /angle Jangle circle circle 

wig wig rangle rangle blot blot 

-win -win hbar hbar bullet bullet 

>wig >wig ppd ppd prop prop 

<wig <wig <·> < empty empty 

=wig =wig <=> <> member member 

star star I < I < nomem nomem 

bigstar bigstar I> I> cup cup 

�dot =dot ang ang cap cap 

orsign .orsign ran.g rang incl incl 

c andsign an.dsign 3dot 3dot subset subset 

�del �del thf thf sup set supset 

oppA oppA quarter quarter !subset !subset 

oppE oppE 3quarter 3quarter !supset !supset 

August 26, 1985 Page 1 



EQNCHAR (CT) EQNCHAR (CT) 

angstrom angstrom degree degree scrL scrL 

==< = = <  = = >  ==> 

Apseqnchar is a version of eqnchar tailored for the Autologic APS-5 
phototypesetter. This will not look optimal on other photo- ('-typesetters. Similarly, cateqnchar is the old eqnchar tailored for the 
Wang CAT and the old otroff. Until a phototypesetter­
independent version of eqnchar is available eqnchar should be a 
link to the default version on each system. The standard default is 
apseqnchar. 

Files 

/usr/pub/eqnchar 
/usr/pub/apseqnchar 
/usrlpub/cateqnchar 

See Also 

eqn(CT), nroff(CT), troff(CT) 

August 26, 1985 Page 2 



c 

EXPLAIN (CT) EXPLAIN (CT) 

Name 

explain - Corrects language usage. 

Syntax 

explain 

Description 

Explain interactively reports on language usage. It suggests alterna­
tives to phrases found with the diction command. 

Credit 

This utility was developed at the University of California at 
Berkeley and__is used with permission. 

See Also 

deroff(CT), diction(CT) 

August 26, 1985 Page 1 



\ .  � 



( 

c 

( 

HYPHEN (CT) HYPHEN (CT) 

Name 

hyphen - Finds hyphenated words. 

Syntax 

hyphen file . . .  

Description 

Hyphen finds all the hyphenated words in files and prints them on 
the standard output. If no arguments are given, the standard input 
is used. Thus hyphen may be used as a filter. 

Notes 

Hyphen doesn't properly deal with hyphenated italic (i.e., under­
lined) words; it will often miss them completely. 

Hyphen occasionally gets confused, but with no ill effects other 
than extra output. 

August 26, 1985 Page 1 





( 

LOOK (CT) LOOK (CT) 

Name 

look - Finds lines in a sorted list. 

Syntax 

look [ -df J string [ file J 

Description 

Look consults a sorted file and prints all lines that begin with 
string. It uses binary search. 

The options d and f affect comparisons as in sort( C): 

-d Dictionary order: only letters, digits, tabs and blanks partici­
pate in comparisons. 

-f Fold. Uppercase letters compare equal to lowercase. 

If no file is specified, /usr/dictlwords is assumed with collating 
sequence -df. 

(_ Files 

/usr/dict/words 

See Also 

sort(C), grep(C) 

c 

August 26, 1985 Page 1 





( 

c 

c 

MAN (CT) MAN (CT) 

Name 

man, manprog - Print entries in this manual. 

Syntax 

man [ options ] [ section ] titles 

/usr/lib/manprog file 

Description 

Man locates and prints the entry named title in the section named 
section from the XENIX Reference Manual. (For historical reasons, 
the word "page" is often used as a synonym for "entry" in this con­
text.) The title is entered in lower case. The section number may 
not have a letter suffix. If no section is specified, the whole manual 
is searched for title and all occurrences of it are printed. Options 
and their meanings are: 

-t 
-s 
-Tterm 

-w 

-d 

-12 

-c 

-y 

Typeset the entry in the default format (8.5"X 11"). 
Typeset the entry in the small format (6"X9"). 
Format the entry using nroff and print it on the stan­
dard output (usually, the terminal); term is the terminal 
type (see term(M) and the explanation below); for a list 
of recognized values of term, type help term2. The 
default value of term is 450. 
Print on the standard output only the path names of the 
entries, relative to /usr/man, or to the current direc­
tory for -d option. 
Search the current directory rather than /usr/man; 
requires the full file name (e.g., cu.C, rather than just 
en). 
Indicates that the manual entry is to be produced in 
12-pitch. May be used when $TERM (see below) is set 
to one of 300, 300s, 450, and 1620. (The pitch switch 
on the DASI 300 and 300s terminals must be manually 
set to 12 if this option is used.) 
Causes man to invoke col(CT); note that col(CT) is 
invoked automatically by man unless term is one of 
300, 300s, 450, 37, 4000a, 382, 4014, tek, 1620, and X. 
Causes man to use the non-compacted version of the 
macros. 

The above options other than �d, -c, and �y are mutually exclusive, 
except that the �s option may be used in conjunction with the first 
four -T options above. Any other options are passed to troff, 
nroff, or the man (CT) macro package. 

A ugnst 26, 1985 Page 1 



MAN (CT) MAN (CT) 

When using nroff, man examines the environment variable $TERM 
(see environ(M)) and attempts to select options to nroff, as well as 
filters, that adapt the output to the terminal being used. The -
Tterm option overrides the value of $TERM; in particular, one 
should use -Tip when sending the output of man to a line printer. 

Section may b e  changed before each title. 

As an example: 

man man 

would reproduce on the terminal this entry, as well as any other 
entries named man that may exist in other sections of the manual. 

If the first line of the input for an entry consists solely of the string: 

'\' X 
where x is any combination of the three characters c, e, and t, and 
where there is exactly one blank between the double quote (") and 
x ,  then man will preprocess its input through the appropriate com­
bination of cw(CT), eqn(CT) (neqn for nroff) and tbl(CT), respec­
tively. If eqn or neqn are invoked, they will automatically read the 
file /usr/pub/eqnchar (see eqnchar(CT )). 

The man command executes manprog that takes a file name as its 
argument. Manprog calculates and returns a string of three register 
definitions used by the formatters identifying the date the file was 
last modified. The returned string has the form: 

-rdday -rmmonth -ryyear 

and is passed to nroff which sets this string as variables for the man 
macro package. Months are given from 0 to 11, therefore month is 
always 1 less than the actual month. The man macros calCulate the 
correct month. If the man macro package is invoked as an option 
to nroff/troff (i.e., nroff -man file), then the current 
day/month/year is used as the printed date. 

See Also 

checkcw(CT), checkeqn(CT), eqnchar(CT), nroff(CT), tbl(CT), 
troff(CT), environ(M), term(CT). 

Notes 

All entries are supposed to be reproducible either on a typesetter 
or on a terminal. However, on a terminal some information is 
necessarily lost. 

Augnst 26, 1985 Page 2 

··� 



( 
\ 

( 

MM (CT) 

Name 

mm - Prints documents formatted with the mm macros. 

Syntax 

mm [ options ] [ files ] 

mmcheck [files] 

Description 

MM (CT) 

Mm can be used to type out documents using nroff(CT) and the 
mm text-formatting macro package. It has options to specify 
preprocessing by tbl(CT) and/or neqn(CT) and postprocessing by 
various terminal-oriented output filters. The proper pipelines and 
the required arguments and flags for nroff(CT) and mm are gen­
erated, depending on the options selected. 

The options for rom are given below. Any other arguments or flags 
(for example, -rC3) are passed to nroff(CT) or to =, as 
appropriate. Such options can occur in any order, but they must 
appear before the files arguments. If no arguments are given, mm 
prints a list of its options. 

-c 
Causes mm to invoke col ( CT). 

-e 
Causes mm to invoke neqn(CT). 

-t Causes mm to invoke tbl(CT). 

-E 
Invokes the -e option of nroff(CT). 

-y 
Causes mm to use the noncompacted version of the macros (see 
mm (M)) . 

Mm reads the standard input when a dash is is specified instead of 
any filenames. (Mentioning other files together with the dash can 
lead to disaster.) This option allows mm to be used as a filter; for 
example: 

cat dws I mm -

August 26, 1985 Page 1 



MM (CT) MM (CT) 

Hints 

1. Mm invokes nroff(CT) with the -h flag. With this flag, 
nroff( CT) assumes that the terminal has tabs set every 8 charac­
ter positions. 

2. Use the -olist option of nroff(CT) to specify ranges of pages to ', 
be output. Note, however, that mm, if invoked with one or 
more of the -e, -t, and - options, together with the -olist 
option of nroff(CT) may cause a harmless "broken pipe" diag-
nostic if the last page of the document is not specified in list. 

3. If you use the -s option of nroff(C) (to stop between pages of 
output), use linefeed (rather than return or newline) to restart 
the output. The -s option of nroff(C) does not work with the 
-c option of mm ,  or if mm automatically invokes coi(C) (see 
-c option above). 

Use the mmcheck program to check the contents of mm source 
files for errors in usage of the macros. 

See Also 

col(CT), env(C), eqn(CT), mmt(CT), mmcheck(CT), nroff(CT), 
tbl(CT), profile(F) 

Xenix Text Processing Guide 

Diagnostics 

mm: no input file 

Augnst 26, 1985 

None of the arguments is a readable file and 
mm has not been used as a filter 

Page 2 



MMT (CT) MMT (CT) 

Name 

mmt - Typesets documents. 

( Syntax 
\ 

( 

mmt [ options ] [file ] 

Description 

Mmt uses the MM macro package. It has options to specify 
preprocessing by tbl(CT) and eqn(CT). The proper pipelines and 
the required arguments and flags for troff(CT) and for the macro 
packages are generated, depending on the options selected. 

Options are given below. - Any other arguments or flags (e.g., 
-rC3) are passed to troff(CT) or to the macro package, as 
appropriate. Such options can occur in any order, but they must 
appear before the files arguments. If no arguments are given, these 
commands print a list of their options. 

-e Causes these commands to invoke eqn(CT). 

-t Causes these commands to invoke tbl(CT). 

-a Invokes the -a option of troff(CT). 

-y Causes mmt to use the noncompacted version of the 
macros (see mm(CT)). 

When a dash (-) is specified, mmt reads the standard input instead 
of any filenames. 

Hints 

Use the -olist option of troff(CT) to specify ranges of pages to be 
output. Note, however, that these commands, if invoked with one 
or more of the -e, -t, and - options, together with the -olist 
option of troff(CT) may cause a harmless "broken pipe" diagnostic 
if the last page of the document is not specified in list. 

See Also 

env(C), eqn(CT), mm(CT), tbl(CT), troff(CT), profile(M), 
environ(M) 

August 26, 1985 Page 1 



MMT (CT) 

Diagnostics 

mmt: no input file 

typesetter busy 

August 26, 1985 

MMT (CT) 

None of the arguments is a readable file 
and the command is not used as a filter. 

Either the typesetter is already being 
used, or it is not attached to the system 
as /dev/cat. In the latter case, you 
must use the -t option of the troft com­
mand to direct output to the standard 
output. See troft(CT). 

Page 2 



( 

( 
\. 

c 

NEQN (CT) 

Name 

neqn - Formats mathematics. 

Syntax 

ncqn [ -dxy ] [ -fn ] [ file ] . . .  
clleck�q [file ] . . .  

Description 

NEQN (CT) 

Neqn is an nroff(CT) preprocessor for formatting mathematics on 
terminals and for printers; eqn(CT) is its counterpart for typesetting 
with troff(CT). Usage is almost always: 

neqn file . . .  I nroff 

If no files are specified, these programs read from the standard 
input. A line beginning with .EQ marks the start of an equation; 
the end of an equation is marked by a line beginning with .EN. 
Neither of these lines is altered, so they may be defined in macro 
packages to get centering, numbering, etc. It is also possible to set 
two characters as "delimiters" ;  subsequent text between delimiters 
is also treated as neqn input. Delimiters may be set to characters x 
and y with the command-line argument -d.xy or (more commonly) 
with "delim xy" between .EQ and .EN. The left and right delim­
iters may be identical. Delimiters are turned off by 'delim off'. AU 
text that is neither between delimiters nor between .EQ and .EN is 
passed through untouched. Fonts can be changed globally in a 
document with gfont n, or with the command-line argument -fn. 

The program checkeq reports missing or unb ala need delimiters and 
.EQ/.EN pairs. 

Tokens within neqn are separated by spaces, tabs, newlines, braces, 
double quotation marks, tildes or carets. Braces {} are used for 
grouping; generally speaking, anywhere a single character like x 
could appear, a complicated construction enclosed in braces may 
be used instead. Tilde n represents a full space in the output, 
caret n half as much. 

See Also 

eqn(CT), checkeq(CT), troff(CT), tbl(CT) 

August 26, 1985 Page 1 



NEQN (CT) NEQN (CT) 

Notes 

To embolden digits, parentheses, etc., it is necessary to quote _ 
them, as in 'bold "12.3"'. 

August 26, 1985 Page 2 



( 

NROFF (CT) NROFF (CT) 

Name 

nroff - A text formatter. 

Syntax 

nroff [ option . . .  ] [ file . . .  ] 

Description 

Nroff formats text in the named files. Nroff is part of the nroffltroff 
family of text formatters. Nroff is used to format .files for output to 
a lineprinter or �aisy wheel printer; troff to a phototypesetter. 

If no file argument is present, the standard input is read. A n  argu­
ment consisting of a single dash (-) is taken to be a filename 
corresponding to the standard input. The options, which may 
appear in any order so long as they appear before the files, are: 

-olist 

-nN 

Prints only pages whose page numbers appear in the 
comma-separated list of numbers and ranges. A range 
N-M means pages N through M; an initial -N means 
from the beginning to page N; and a final N- means from 
N to the end. 

Numbers first generated page N. 

-sN Stops every N pages. Nroff will halt prior to every N 
pages (default N�1) to allow paper loading or changing, 
and will resume upon receipt of a newline. 

-mname Prepends the macro file /usrllib/tmac/tmac.name to the 
input files. 

-cname Prepends to the input files the compacted macro files 
/usr/lib/macros/cmp.[nt].[dt].name and 
/usr/lib/macros/ucmp. [ nt].name. 

-raN Sets register a (one-<:haracter) to N. 

-i Reads standard input after the input files are exhausted. 

-q 

-· 

Invokes the simultaneous input-<Jutput mode of the .rd 
request. 

Produces equally spaced words in adjusted lines, using 
full terminal resolution. 

August 26, 1985 Page 1 



NROFF (CT) NROFF (CT) 

-h Uses output tabs during horizontal spacing to speed out­
put and reduce output character count. Tab settings are 
assumed to be every 8 nominal character widths. 

-Tdevice Specifies the output device. The default device is "lp", 
the lineprinter. 

Other supported devices include: 

-T300 
DASI (DTC, GSI) 300. 

-T300s 
DASI 300s. 

-T450 
DASI 450 (same as Diablo 1620). 

-T300-12 
DASI 300 at 12-pitch. 

-T300s-12 
DASI 300s at 12-pitch. 

-T450-12 
DASI 450 at 12-pitch. 

-T33 
TTY 33. Invokes col automatically. 

-Tdumb 
Terminal types with no special features. 
cally. 

Invokes col automati-

-T37 
TTY 37. 

-T735 
TI 735. Invokes col automatically. 

-T745 
TI 745. Invokes col automatically. 

-T43 
TTY 43. Invokes col automatically. 

-T40/2. 
Teletype model 40/2 Invokes col automatically. 

-T40/4 
Teletype mode 40/4. Invokes col automatically. 

August 26, 1985 Page 2 



( 

c 

c 

NROFF (CT) NROFF (CT) 

-T2631 
HP 2631 series lineprinter. lnvokes col automatically. 

-T2631-e 
HP 2631 series lineprinter, expanded mode. Invokes col 
automatically. 

-T2631-c 
-HP-- 2631---series lineprinter, _compressed mode. _ Invokes __ col 
automatically. 

-T42 
ADM 42. Invokes col automatically. 

-T31 
TTY 31. Invokes col automatically. 

-T35 
TTY 35. Invokes col automatically. 

-T1620 
Diablo 1620 (same as DASI 450). 

-T1620-12 
Diablo 1620 at 12-pitch. 

Files 

/usr/lib/suftab 

/tmp/ta* 

Suffix hyphenation tables 

Temporary file 

/usr/lib/tmac/tmac. * Standard macro files 

/usr/Iib/term/* Terminal driving tables 

See Also 

col(CT), eqn(CT), tbl(CT), troff(CT) 

August 26, 1985 Page 3 





( 

c 

l 

PASTE (CT) PASTE (CT) 

Name 

paste - Merges lines of files. 

Syntax 

paste filel file2 . . .  

paste -dlist filel file2 . . .  

paste -s  [-d list] filel file2 . . .  

Description 

In the first two forms, paste concatenates corresponding lines of 
the given input files ftlel, file2, etc. It treats each file as a column 
or columns of a table and pastes them together horizontally (paral­
lel merging). It is the counterpart of cat(C) which concatenates 
vertically, i.e., one file after the other. In the last form above, 
paste subsumes the function of an older command with the same 
name by combining subsequent lines of the input file (serial merg­
ing). In all cases, lines are glued together with the tab character, or 
with characters from an optionally specified list. Output is to the 
standard output, so it can be used as the start of a pipe, or as a 
filter, if - is used in place of a filename. 

The meanings of the options are: 

-d 

list 

-s 

Without this option, the newline characters of each but the last 
file (or last line in case of the - s  option) are replaced by a tab 
character. This option allows replacing the tab character by one 
or more alternate characters (see below). 

One or more characters immediately following -d replace the 
default tab as the line concatenation character. The list is used 
circularly, i. e. when exhausted, it is reused. In parallel merging 
(i. e. no - s  option), the lines from the last file are always ter­
minated with a newline character, not from the list. The list 
may contain the special escape sequences: � (newline), \t (tab), 
\\ (backslash), and \0 (empty string, not a null character). 
Quoting may be necessary, if characters have special meaning to 
the shell (e.g. to get one backslash, use -d"\\\\" ). 

Merges subsequent lines rather than one from each input file. 
Use tab for concatenation, unless a list is specified with -d 
option. Regardless of the list, the very last character of the file 
is forced to be a newline. 

August 26, 1985 Page 1 



PASTE (CT) PASTE (CT) 

May be used in place of any filename to read a line from the 
standard input. (There is no prompting.) 

Examples 

Is paste -d" " - lists directory in one column 

Is paste - - - ­

paste -s -d"\t\n" file 

Lists directory in four columns 

Combines pairs of lines into lines 

See Also 

cut(CT), grep(C), pr(C) 

Diagnostics 

line too long 

too many files 

August 26, 1985 

Output lines are restricted to 511 characters. 

Except for -s option, no more than 12 input 
files may be specified. 

Page 2 



( 

( 
\_ 

/ 

"'-· 

\ 

PREP (CT) PREP (CT) 

Name 

prep - Prepares text for statistical processing. 

Syntax 

prep [ -diop ] file . . .  

Descrjption 

Prep reads each file in sequence and writes it on the standard out­
put, one "word" to a line. A word is a string of alphabetic charac­
ters and imbedded apostrophes, delimited by space or punctuation. 
Hyphenated words are broken apart; hyphens at the end of lines 
are removed and the hyphenated parts are joined. Strings of digits 
are discarded. 

The following option letters may appear in any order: 

-d 
Prints the word number (in the input stream) with each word. 

-i Takes the next file as an "ignore" file. These words will not 
appear in the output. (They will be counted, for purposes of 
the -d count.) 

-o 

-p 

Takes the next file as an "only" file. Only these words will 
appear in the output. (All other words will also be counted for 
the -d count.) 

Includes punctuation marks (single nonalphanumeric characters) 
as separate output lines. The punctuation marks are not 
counted for the -d count. 

The ignore and only files contain words, one per line. 

See Also 

deroff(CT) 

Notes 

Prep ignores any nroff/troff commands it may find in a file. In 
some cases, it may mistake sentences that begin with a period or a 
quote as nroff/troff commands and ignore the:m. 

August 26, 1985 Page 1 





( 

c 

PTX (CT) PTX (CT) 

Name 

ptx - Generates a permuted index. 

Syntax 

ptx [ options J [ input [ output ] ]  

Description 

Ptx generates a permuted index to file input on file output (stan­
dard input and output default). It has three phases: the first does 
the permutation, generating one line for each keyword in an input 
line. The keyword is rotated to the front. The permuted file is 
then sorted. Finally, the sorted lines are rotated so the keyword 
comes at the middle of each line. Ptx produces output in the form: 

.xx "tail" "before keyword" "keyword and after" '"head" 

where .xx is assumed to be an nroff or troff(CT) macro provided by 
the user. The "before keyword" and "keyword and after" fields 
incorporate as much of the line as will fit around the keyword when 
it is printed. Tail and head, at least one of which is always the 
empty string, are wrapped-around pieces small enough to fit in the 
unused space at the opposite end of the line. 

The following options can be applied: 

-f 

-t 

-w n 

-g n 

-o only 

Folds uppercase and lowercase letters for sorting. 

Prepares the output for the phototypesetter. 

Uses the next argument, n,  as the length of the output 
line. The default line length is 72 characters for nroff 
and 100 for troff. 

Uses the next argument, n ,  as the gap size in charac­
ters. The gap size determines the number of characters 
to be output for the "before keyword" and "keyword 
and after" fields of the output line. The total number 
of characters in these fields is no more than the max­
imum line length less the total size of all gaps less what­
ever characters are in the "tail" and "head" fields. Ptx 
does not copy the gaps to the output lines. It is the 
responsibility of the user to provide the gaps when 
printing the lines. The default gap is 3 characters. 

Uses as keywords only the words given in the only file. 

August 26, 1985 Page 1 



PTX (CT) PTX (CT) 

-i ignore Does not use as keywords any words given in the ignore 
file. If the -i and -o options are missing, use 
/usr/ho/eign as the ignore file. 

-b break Uses the characters in the break file to separate words. 
Tab, newline, and space characters are always used as 
break characters. 

-r Takes any leading nonblank characters of each input 
line to be a reference identifier (as to a page or 
chapter), separate from the text of the line. Attaches 
that identifier as a fifth field on each output line. 

Files 

/bin/sort 

/usr/lib/eign 

Notes 

Line length counts do not account for overstriking or proportional 
spacing. 

Lines that cmitain tildes n are not handled correctly, because ptx 
uses that character internally. 

Augnst 26, 1985 Page 2 



SOELIM (CT) SOELIM (CT) 

Name 

soelim - Eliminates .so's from nroff input. 

( Syntax 

c 

s oelim [file . . .  

Description 

Soelim reads the specified files or the standard input and performs 
the textual inclusion implied by the nroff directives of the form 

.so somefile 

when they appear at the beginning of input lines. This is useful 
since programs such as tbl do not normally do this; it allows the 
placement of individual tables in separate files to be run as a part 
of a large docu.ment. 

Note that inclusion can be suppressed by using a single quotation 
mark (') instead of a dot (.), e.g. 

'so /usr/lib/tmac.s 

Example 

A sample usage of soelim would be 

soelim exum?.n I tbl l nroff -mm I col l lpr 

See Also 

nroff(CT), troff(CT) 

· Credit 

This utility was developed at the University of California at 
Berkeley and is used with permission. 

August 26, 1985 Page 1 



SOELIM (CT) SOELIM (CT) 

Notes 

Exactly one blank must precede and no blanks may follow the 
filename. Lines of the form 

.if t .so /usr/Iib/macros. t 

mean that ".so" statements embedded in the text are expanded. 

August 26, 1985 Page 2 



( 

( 

SPELL (CT) SPELL (CT) 

Name 

spell, hashmake, spellin, hashcheck - Finds spelling errors. 

Syntax 

spell [ -v ] [ -b ]  [ -x ]  [ -I ]  [ -i ] [ +Iocai_file ] [ files ] 

/usr/lib/spell/hashmake 

/usr/lib/spell/spellin n 

/usr/lib/speiUhashcheck spelling_list 

Description 

Spell collects words from the named files and looks them up in a 
spelling list. Words that neither occur among nor are derivable (by 
applying certain inflections, prefixes, and/or suffixes) from words in 
the spelling list are printed on the standard output. If no files are 
named, words are collected from the standard input. 

Spell ignores most troff(CT), tbl(CT), and eqn(CT) constructions. 

Under the -v option, all words not literally in the spelling list are 
printed, and plausible derivations from the words in the spelling list 
are indicated. 

Under the -b option, British spelling is checked. Besides prefer­
ring centre, colour, programme, speciality, travelled, etc., this 
option insists upon -ise in words like standardise . 

Under the -x option, every plausible stem is printed with = for 
each word. 

By default, spell (like deroff(CT)) follows chains of included files 
(.so and .nx troff(CT) requests), unless the names of such included 
files begin with /usr/lib. Under the -I option, spell will follow the 
chains of all included files. Under the -i option, spell will ignore 
all chains of included files. 

Under the +lncalJile option, words found in localJile are removed 
from spell's output. LocalJile is the name of a user-provided file 
that contains a sorted list of words, one per line. With this option, 
the user can specify a set of words that are correct spellings (in 
addition to spell's own spelling list) for each job. 

The spelling list is based on many sources, and while more hapha­
zard than an ordinary dictionary, it is also more effective with 
respect to proper names and popular technical words. Coverage of 

A ugnst 26, 1985 Page 1 



SPELL (CT) SPELL (CT) 

the specialized vocabularies of biology, medicine, and chemistry is 
light. 

Pertinent auxiliary files may be �pecified by name arguments, indi­
cated below with their default settings (see FILES). Copies of all 
output are accumulated in the history file. The stop list filters out 
misspellings (e.g., thier=tlly-y+ier) that would otherwise pass. 

Three routines help maintain and check the hash lists used by spell: 

hashmake Reads a list of words from the standard input and 
writes the corresponding nine-digit hash code on the 
standard output. 

spellin n Reads n hash codes from the standard input and 
writes a compressed spelling list on the standard out­
put. Information about the hash coding is printed on 
standard error. 

hashcheck Reads a compressed spelling_list and recreates the 
nine-digit hash codes for all the words in it; it writes 
these codes on the standard output. 

Examples 

The following example creates the hashed spell list hlist and checks 
the result by comparing the two temporary files; they should be 
equal. 

cat goodwds l !usrllib/spell/hashmake I sort -u >tmpl 
cat tmpl l /usrllib/spell/spellin 'cat tmpl l we -1' >hlist 
cat hlist l tusr!Iib/spell/hashcheck >tmp2 
diff tmpl tmp2 

Files 

D_SPELL�/usr/lib/spell/hlist[ ab] 

S_SPELL�/usr/lib/spell/hstop 
JLSPELL�/usr/lib/spell/spellhist 
/usr/lib/spell/spellprog 

hashed spelling lists, American 
& British 
hashed stop list 
history file 
program 

See Also 

deroff(CT), eqn(CT), sed(CT), sort(CT), tbl(CT), tee(C), 
troff(CT) 

August 26, 1985 Page 2 



( 

c 

( 

SPELL (CT) SPELL (CT) 

Notes 

The spelling list's coverage is uneven; new installations will prob­
ably wish to monitor the output for several months to gather local 
additions; typically, these are kept in a separate local file that is 
added to the hashed spelling _list via spellin. 

By default, logging of errors to /usr/lib/spell/spelli•ist is turned off. 

D_SPELL and S_SPELL can be overridden by placing alternate 
definitions in your environment. 

August 26, 1985 Page 3 





( 

( 
\. 

STYLE (CT) STYLE (CT) 

Name 

style - Analyzes characteristics of a document. 

Syntax 

style [ -ml ]  [ -mm ] [ -a ] [ -e ] [ -I num ] [ -r num ] 
[-p ][-I' ]file . . . . 

Description 

Style analyzes the characteristics of the writing style of a document. 
It_ reports on readability, sentence length and structure, word length 
and usage,· verb type; and sentence openers. Because style runs 
deroff before looking at the text, forniatting header files should be 
included as part of the input. The default macro package -ms may 
be overridden with the flag -mm. 'fhe flag -ml, Which causes der­
off to skip lists, should be used if the document cont.ains many lists 
9f nonsentences. The other options are used to .locate sentences 
with certain characteristics. 

-a Prints all sentences with their length and readability index. 

-e Prints all sentences that begin with an expletive. 

-p Prints .all sentences that contain a passive verb. 

-Inurn Prints all sentences longer than num. 

-rnum Prints all sentences whose .readability index is grea�er than 
num. 

-P Prints parts of' speech of the words in the document. 

Credit 

This utility was developed at the University of California at 
Berkeley and is used with permission. 

s,e Also 

deroff(CT), diction(CT) 

( Notes 

Use of nonstandard formritting macros may cause incorrect sen­
tence breaks. 

August 26, 1985 Page 1 





( 

( 

TBL (CT) TBL (CT) 

Name 

tbl - Formats tables for nroff or troff. 

Syntax 

fbl [ -TX ] [ files ] 

Description 

Tbl is a preprocessor that formats tables for nroff(CT) or 
troff(CT). The input files are copied to the standard output, 
except for lines between .TS and .TE command lines, which are 
assumed to describe tables and are reformatted by tbl. (The .TS 
and .TE command lines are not altered by tbl) . 

. TS is followed by global options. The available global options are: 

center Centers the table (default is left-adjust) 
expand Makes the table as wide as the current line length 
box Encloses the table in a box 
doublebox 

Encloses the table in a double box 
Encloses each item of the table in a box; allbox 

tab (x) Uses the character X instead of a tab to separate 
items in a line of input data. 

The global options, if any, are terminated with a semicolon (;). 
Next come lines describing the format of each line of the table. 
Each such format line describes one line of the actual table, except 
that the last format line (which must end with a period) describes 
all remaining lines of the actual table. Each column of each line of 
the table is described by a single keyletter, optionally followed by 
specifiers that determine the font and point size of the correspond­
ing item, indicate where vertical bars are to appear between 
columns, and determine parameters such as column width and 
intercolumn spacing. The available keyletters are: 

c Centers item within the column 
r Right-adjusts item within the column 
I Left-adjusts item within the column 
n Numerically adjusts item in the column: unit positions of 

numbers are aligned vertically; 
s Spans previous item on the left into this column 
a Centers longest line in this column and then left-adjusts all 

other lines in this column with respect to that centered line "' Spans down previous entry in this column 

August 26, 1985 Page 1 



l !JL ( CTJ TBL (CTJ 

_ Replaces this entry with a horizontal line 
= Replaces this entry with a double horizontal liue 

The characters B and I stand for the bold and italic fonts, respec­
tively; the character I indicates a vertical line between columns. 

The format liues are followed by liues containing the actual data for 
the table, followed finally by .TE. Within such data liues, data 
items are normally separated by tab characters. 

If a data line consists of only an underscore (_) or an equals sign 
occurs, then a single or double line, respectively, is drawn across 
the table at that point. If a single item in a data line consists of 
only an underscore or equals sign then that item is replaced by a 
single or double line. 

Full details of all these and other features of tbl are given in the 
XENIX Text Processing Guide. 

The -TX option forces tbl to use only full vertical liue motions, 
making the output more suitable for devices that cannot generate 
partial vertical line motions, such as lineprinters. 

If no filenames are given as arguments, tbl reads the standard 
input, so it may be used as a filter. When it is used with eqn (CT) 
or neqn(CT), tbl should come first to minimize the volume of data 
passed through pipes. 

Example 

If we let Gl represent a tab (which should be typed as a genuine 
tab), then the input: 

.TS 
center box ; 
cB s s 
ci I cl s 

I c c 
I I n n . 
Household Population 

TownGl Households 
Gl Number(j) Size 
= 
BedminsterGl 789GJ 3.26 
Bernards Twp. Gl 3087GJ3.74 
BemardsvilleGl 2018GJ 3.30 
Bound Brook Gl 3425 Gl 3.04 
BridgewaterGl7897 G) 3.81 
Far HillsGl240Gl3.19 
.TE 

August 26, 1985 Page 2 



( 

c 

TBL (CT) 

yields: 

Household Population 

Town 

Bedminster 
Bernards Twp. 
Bernardsville 
Bound Brook -
Bridgewater 
Far Hills 

See Also 

Xenix Text Processing Guide 

H��:ehol�fze. Nnm >er 
· 

789 3.26 
3087 3.74 
2018 3.30 
3425 3.04 
7897 - 3.81 

240 3.19 

eqn(CT), mm(CT), mmt(CT), troff(CT) 

Notes 

See also Notes under troff(CT). 

August 26; 1985 

TBL (CT) 

Page 3 





( 

( 

( 

1/iRM (CT) TERM (CT) 

Name 

term - Conventional names. 

Description 

These names are used by certain commands (e.g., nroff(CT), 
mm(CT), man(CT)) and are maintained as part of the shell 
environment· (see sh(C), profile(M), and environ(M)) ·in the· vari­
able $TERM: 

Code 
a1 

2631 
2631-c 
2631-e 
300 
300-12 
300s 
300s-12 
300S 
300S-12 
37 
382 
4000A 
450 
45D-12 
lp 
tn300 
X 

Printer Name 
DASI 450 (slightly different than other 450 table) 
(same as Diablo 1620) 
Hewlett-Packard 2631 line printer 
Hewlett-Packard 2631 line printer - compressed mode 
Hewlett-Packard 2631 line printer - expanded mode 
DASI/DTC/GSI 300 and others using the HyType I printer 
same, in 12-pitch mode 
DASI/DTC/GSI 300s 
same, in 12-pitch mode 
DASI/DTC/GSI 300s 
same, in 12-pitch mode 
TELETYPE Model 37 KSR 
DTC 382 
Trendata 4000A 
DASI 450 (same as Diablo 1620) 
same, in 12-pitch mode 
generic name for a line printer 
General Electric TermiNe! 300 
TX Train Printer 

Up to 8 characters,. chosen from [a-z0-9], make up a basic termi­
nal name. Terminal sub-models and operational modes are dis­
tinguished by suffixes beginning with a -. Names should generally 
be based on original vendors, rather than local distributors. A ter­
minal acquired from one vendor should not have more than one 
distinct basic name. 

Commands whose behavior depends on the type of terminal should 
accept arguments of the form -Ttenn where term is one of the 
names given above; if no such argument is present, such commands 
should obtain the terminal type from the environment variable 
$TERM, which, in turn, should contain term. 

SEE ALSO 

environ(M), mm(CT), nroff(CT), profile(M), sh(C), stty(C), 
term(F). 

December 18, 1985 Page 1 



TERM (CT) TERM (CT) 

Notes 

The XENIX Development System must be installed on the com­
puter to create new driving tables (see term(F)). 

Not all XENIX facilities support all of these options. · 

The use of these terminal types is unrelated to the use of the 
termcap(M) facility. 

December 18, 1985 Page 2 



i 
\ 

( 
"-·· 

TROFF (CT) TROFF (CT) 

Name 

troff - Typesets text. 

Syntax 

troff [ options ] [files ] 

Description 

Troff formats text contained in files (standard input by default) for 
printing on a phototypesetter. 

An argument consisting of a lone dash (-) is taken to be a filename 
corresponding to the standard input. The options, which may 
appear in any order, but must appear before the files, are: 

-olist 

-nN 
-sN 

-raN 

-i 

-q 

- z  

Prints only pages whose page numbers appear in the list 
of numbers and ranges, separated by commas. A range 
N-M means pages N through M; an initial -N means 
from the beginning to page N; and a final N- means 
from N to the end. (See NOTES below.) 

Numbers first generated page N. 
Stops every N pages. Nroff will halt after every N pages 
(default N�l) to allow paper loading or changing, and 
will resume upon receipt of a linefeed or newline (new­
lines do not work in pipelines, e.g., with mm(CT)). This 
option does not work if the output of nroff is piped 
through coi(CT). Troff will stop the phototypesetter 
every N pages, produce a trailer to allow changing 
cassettes, and resume when the typesetter's start button 
is pressed. When nroff (troff) halts between pages, an 
ASCII BEL (in trof

f
, the message page stop) is sent to 

the terminal. 

Sets register a (which must have a one-character name) 
to N. 

Reads standard input after files are exhausted. 

Invokes the simultaneous input�utput mode of the .rd 
request. 

Prints only messages generated by . tm (terminal message) 
requests. 

August 26, 1985 Page 1 



TROFF (CT) TROFF (CT) 

-mname Prepends to the input files the noncompacted (ASCII 
text) macro file /usrllib/tmac/tmac.name. 

-cname Prepends to the input files the compacted macro files 
/usrllib/macros/cmp.[ nt]. [ dt].name and 
/usrllib/macros/ucmp.[ nt].name. 

-kname Compacts the macros used in this invocation of 
nroff/trojf, placing the output in files [dt].name in the 
current directory. 

-e Produces equally-spaced words in adjusted lines, using 
the full resolution of the particular terminal. 

-h Uses output tabs during horizontal spacing to speed out­
put and reduce output character count. Tab settings are 
assumed to be every 8 nominal character widths. 

-un .Sets the emboldening factor (number of character over­
strikes) for the third font position (bold) to n, or to zero 
if n is missing. 

Troff only: 

-t Directs output to the standard output instead of the pho­
totypesetter. 

-f Refrains from feeding out paper and stopping photo­
typesetter at the end of the ruu. 

-w Waits until phototypesetter is available, if it is currently 
busy. 

-b Reports whether the phototypesetter is busy or available. 
No text processing is done. 

-a Sends a printable ASCII approximation of the results to 
the standard output. 

-pN Prints all characters in point size N while retaining all 
prescribed spacings and motions, to reduce photo­
typesetter elapsed time. 

-Tname Uses font-width tables for device name 
are found in /usrllib/font/name/*). 
names are supported. 

August 26, 1985 

(the font tables 
Currently, no 

Page 2 



( 
\ 

( 
\ 

l 

TROFF (CT) TROFF (CT) 

Files 

· /usr/lib/suftab 

/tmp/ta# 

Suffix hyphenation tables 

Temporary file 

/usr/lib/tmac/tmac Standard macro files and pointers 

/usr/Jib/macros/* _ 

/usr/Jib/term/* 

/usr/lib/font/* 

See Also 

eqn(CT), tbl(CT) 

Standard_ ma_cm files. 

Terminal driving tables for nroff 

Font width tables for trojf 

(nroff only) col(CT), mm(CT) 

(troff only) mmt(CT) 

Notes 

Nroffltroff uses Eastern Standard Time; as a result, depending on 
the time of the year and on your local time zone, the date that 
nrojfltrojf generates may be off by one day. 

When nroff/troff is used with the -olist option inside a pipeline 
(e.g., with one or more of cw(CT), eqn(CT), and tbi(CT)), it may 
cause a harmless "broken pipe" diagnostic if the last page of the 
document is not specified in list. 

Troff normally sends output directly to the typesetter. If you do 
not have a typesetter attached to your system as /dev/cat , troffwill 
display the message �'typesetter busy". If this is the case, you must 
use the -t option and the shell's redirection symbol to direct the 
output to the standard output and into a file. 

August 26, 1985 Page 3 





Alphabetized Index 

Text Processing Commands (CT) 

! 
Constant width text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  cw 
cwcheck command--. . . . . . . . . . . .  n • . . . ... · · - · · · -·· •• ·-· •-u····· . . . • . . . .  cw_ 
Document characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  style 
eqJtcheck command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  eqn 
eqn character definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  eqnchar 
File, differences . . . . . . . . . .  , . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  diffntk 
Files, merging lines . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  paste 
Files, selecting fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  cut 
Find lines in a sorted list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  look 
Hyphenation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  hyphen 
Language usage, correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  explain 
Language usage, description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  diction 
Macros, checking (see checkmm(CT)) . . . . . . . . . . . . . . . . . . . . .  mmcheck 
Macros, checking usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  checkmm 
Macros, memorandum for line printer . . . . . . . . . . . . . . . . . . . . . .  ntm 
Macros, memorandum for typesetting . . . . . . . . . . . . . . . . . . .  , .. mmt 
Macros, removal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  deroff 

c 
Macros, .so elimination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  soelim 
Manual pages, printing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  man 
Mathematical text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  neqn 
Permuted index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  p tx 
Reverse linefeed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  col 
Spelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  spell 
Statistical processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  prep 
Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  tbl 
Terminal names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ternt 
Te1.-t formatter for line printer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  nroff 
Text formatter for typesetter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  troff 

c 

I-1 



I 
"-


