XENIX System V Text Processing
System Release Notes |

1. Preface 1
2. Software Notes 1
2.1 nroff DrivingTables 1

2.2 style(CT) 2

3. InstallationProcedure 2

3.1 PackagesIn ThisSet 3

X(G86/286-1-27—-86-2.1 “+ The Santa Cruz Operation

»
.

\} SCOXENIX®System V

Text Processing System

Release Notes
L Text Processing Guide

The Santa Cruz Operation, Inc.

Information in this document is subject to change without notice and does
not represent a commitment on the part of The Santa Cruz O peration, Inc.
nor Microsoft Corporation. The software described in this document is
furnished under a license agreement or nondisclosure agreement. The
software may be used or copied only in accordance with the terms of the
agreement. Itisagainstthelawto copy this software on magnetictape, disk,
or any other medium for any purpose other than the purchaser’s personal

* use.

Portions © 1980, 1981, 1982, 1983, 1984, 1985 Microsoft Corporation.
Allrightsreserved.

Portions © 1983, 1984, 1985, 1986 The Santa Cruz Operation, Inc.
Allrightsreserved.

This document was typeset with an IMAGEN® 8/300Laser Printer.

XENIXisa trademark of Microsoft Corporation.
IMA GEN is aregistered trademark of IMA GEN Corporation.

Document Number: XG-12-18-85-2.1/1.0

—_

-

. \\.//I'

e

Release Notes
Release 2.1
XENIX®-86 System V for personalcomputers
XENIX-286 System V for personal computers
Text Processing System
January 27,1986

1. Preface

These notes pertain to the XENIX-86 and XENIX—286 System V
Release 2.1 Text Processing System for personal computers. They
contain notes on the software and documentation and the procedure
forinstalling the software.

We are alwayspleased to hear of user’s experience with our product,

" and recommendations of how it can be made even more useful Al

written suggestions are given serious consideration.
2. Software Notes

2.1 nroff Driving Tables

Under this release, you can create additional driving tables to use
nroff(CT) with additional devices (printers or terminals). Refer to
the term(CT) and term(F) manual pages for information on nroff
driving tables. You must have the XENIX Development System
installed to compilenew driving tables.

If you create a driving table for another printer, send it to us.. User
generated driving tables will be considered for inclusion in future
releases.

X(G86/286—1-27-86—-2.1 —-1- The Santa Cruz Operation

o,
/ "

XENIX"System V

Text Processing System

Text Processing Guide

$CO0-516-210-011

Information in this document is subject to change withoutnotice and doesnotrepresenta
commitment on the part of The Santa Cruz Operation, Inc. nor Microsoft Corporation. -
The software described in this document is furnished under a license agreement or !
nondisclosure agreement. The software may be used or copied only in accordance with N
the terms of the agreement. It is against the law to copy this software on magnetic tape,
disk, oranyothermedium for any purpose other than the purchaser’s personal use.

Portions © 19380, 1981, 1982, 1983, 1984, 1985 Microsoft Corporation.
Allrightsreserved.

Portions© 1983, 1984, 1985, 1986 The Santa Cruz Operation, Inc.
Allrights reserved.

.
ThisdocumentwastypesetwithanIMAGEN® 8/300 Laser Printer.
Microsoft, MS-DOS, and XENIX areregistered trademarks of Microsoft Corporation.
IMA GEN isaregistered trademark of TMAGEN Corporation.
\
.

SCO Document Number: XG—12-18-85-2.1/1.0

N

TN

N

K K
e

Contents

-

Text Processing Overview

Introduction 1-1

Before YouBegin 1-2
ReadingThisManual 13
BasicConcepts 14
Formatting Documents 1-7

A SampleProject 19
Managing Writing Projects 1-11
Summary 1-15

NN
CONONP~ LN =

2 . .ToolsForWl.'i.ting.andEdifin} T

2.1 Introduction 2-1 '

2.2 XENIX Commandsfor TextProcessing 2-2
23 WritingTools 2-7

2.4 UsingSpell 2-8

2.5 Using StyleandDiction 2-9

3 Using the MM Macros

3.1 GettingStartedwithMM 3-1

32 Basic FormattingMacros 3-3

33 Using Nroff/Troff Commands 3-8

34 Checking MM Inputwithmmcheck 3-8
4

MM Reference

4.1 Introduction 4-1

4.2 InvokingtheMacros 4-3

43 Formatting Concepts 4-7

4.4 Paragraphs and Headings 4-10
4.5 Lists 417

46 Displays 4-25

4,7 Footnotes 4-31

4.8 PageHeadersandFooters 4-34
49 Tableof Contents 4-38

4'.10 References 4-39

4.11

B
N

i b =m0 W=

QO & LuLLLLLLLLLLLLLLLILLL W
NPV RO

o ¢ ¢
abpioR

|

NN
hprLOR

Miscellaneous Features 4-40

Memorandum andReleased Paper Styles 4-45
Reserved Names 4-53

Errors, Strings, Macros, and NumberRegisters 4-55

Using Nroft/Troff

Introduction 5-1

Inserting Commands 5-2

Point Sizesand Line Spacing 52
Fonts and Special Characters 5-4
Indentsand Line Lengths 5-6
Tabs 5-7

DrawingLines and Characters 5-8
Strings 5-11

Macros 5-11

Titles, Pagesand Numbering 5-13
Number Registersand Arithmetic 5-15
Macroswith Arguments 5-16
Conditionals 5-18

Environments 5-19

Diversions 5-20

Nroff/Troff Reference

Introduction 6-1

Basic Formatting Requests 64

Character Translations, Overstrike, and LocalMotions 6-13
Processing Control Facilities 6-17

Outputand Error Messages 625

Summary of Escape Sequences and NumberRegisters 6-25

Formatting Tables

Introduction 7-1

InputFormat 7-2

Invoking Tbl 79

Examples 7-11

Summaryoftbl Commands 7-18

8 Formatting Mathematics

8.1 Introduction 8-1

8.2 Displayed Equations 8-2

8.3 Basic Mathematical Constroctions 8-3

8.4 Complex Mathematical Constructions 8-6
8.5 Layoutand Design of Mathematical Text 8-10
8.6 In-line Equations 8-14

8.7 Definitions 8-15

8.8 Invokingeqn 8-16

8.9 Sample Equation 8-16

8.10 ErrorMessages 8-17

8.11 Summaryof KeywordsandPrecedences 8-18

---AppendixA. - - Editing -With- Sed -and -Awk

Al Introduction A-1

A2 Editing Withsed A-1

A3 Pattern Matching Withawk A-12

AppendixB Error Messages

B.1 Introduction B-1

AppendixC mm Macros, Strings, and Number Registers

C1 Introduction C-1
C.2 Summaryof mm Macros C-1

=

Chapter 1
Text Processing Overview

1.1 Introduction 1
1.2 Before YouBegin 2
1.3 ReadingThisManual 3

1.4 Basic Concepts 4
1.4.1 Writing Tasks 4
1.4.2 Anatomyofa Document 4
1.4.3 Formatting Characteristics 5

1.5 FormattingDocuments 7
1.5.1 ThemmMacros 7
1.5.2 SupportingTools 8
1.5.3 Order of Invoking Programs 8

1.6 A SampleProject 9
1.6.1 Entering Text and Formatting Commands 9
1.6.2 Formatting Text 10
1.6.3 Printingthe Document 11

1.7 Managing Writing Projects 11
1.7.1 TheLife Cycle ofa Document 12
1.7.2 Organizing Your Project 12
1.7.3 Shortcuts: Boilerplatesand Cutand Paste 14

1.8 Summary 15

Text Processing Overview

1.1 Introduction

The XENIX Text Processing System is a collection of powerful tools for
enhancing writing productivity and making the process of document
preparation more efficient. To create documents with the XENIX system,
you will be using special XENIX text processing programs, including text
editors and text formatters. You will also be relying on XENIX .system
features and utilities with which you may already be familiar. Whether you
have used other text processing programs or not, this manual provides you
with apractical orientation toward text processing and describes the XENIX
tools in detail, along with examples that illustrate their applications to your
writing tasks. Where possible, strategies are offered for using the XENIX
system to bestadvantage in your own environment.

This manual emphasizes the interrelationship of tools and techniques into a
“text processing system’’. Understanding the relationship between these
programs discussed here is as important as learning to use each individual
program. Think ofthe XENIX system as a “writing environment”’. How you
organize this environment is-up-to you:- Once you learn to use your XENIX .
tools selectively, and make the right decisions in planning your writing
projects before you begin them, the XENIX system is ultimately more
powerful and flexible than any of the “word processing packages” with
whichyoumaybe familiar.

This introduction provides you with an overview of text processing with the
XENIX System, including:

e The text processing concepts and terms you will need to
understand

e Theeditingand formatting tools you will be using
e Thestepsin the processof creating a finished document

e Thestrategiesformanagingwriting projects

As you read the XENIX Text Processing Guide remember that the XENIX
system has been evolving over a number of years and that it offers an
enormous range of programs and utilities. Many of the tools introduced
here were not originally designed for text processing-they are general-
purposeutilities upon which all XENIX users depend heavily. Programmers,
forexample, use the same text editors and file comparison utilities discussed
here to write and revise programs. Those programs intended solely for text
processing applications, including the formatters and style analysis
programs, have developed independently of each other. You will often find
that their capabilities overlap. A large part of learning to use your XENIX
system successfully is deciding how to make the various programs and
utilities work together.

Do not expect to sit down and learn the XENIX Text Processing System in a
single afternoon. This manualis designed to help you approach a wide range

1-1

XENIX Text Processing

of editing and formatting tools gradually. There are many programs
described here for which you may not have an immediate application, and
some you may never need at all. You need not learn all the material
introduced here to produce professional-quality manuscripts. Choose the
tools that will work best for your projects.

1.2 Before You Begin

Before you can begin to use your XENIX system effectively as a text
processing environment, you should already be familiar with the material
covered in the XENIX User’s Guide, particularly:

e The most common XENIX commands
e TheXENIX hierarchical file structure
e TheXENIX shell programminglanguage

e Atleastoneofthe XENIX texteditors

Equally important, however, is making use of the power of XENIX as an
operating system by using its features to your advantage. In particular, as
you begin working with XENIX Text Processing, consider how your work
can be made easier by utilizing the XENIX hierarchical file structure to
organize files efficiently. Make use of the XENIX shell to ““pipe” one process
to another and run several processes concurrently. Use the XENIX shell
programming language to create ‘‘scripts’ for automating your text
processing work. Develop strategies for managing your writing projects
beyond merelylearning a collection of commands.

Most importantly, before you begin working with the XENIX Text
Processing System, learn one of the XENIX text editors well enough to feel
comfortable entering and revising document text.

Because there is so much to learn about text processing with the XENIX
system, the best approach is to read through this volume first and decide
which editors, utilities, and formatters best suit your needs. Then learn
selectively, but thoroughly, those tools which are most appropriate. As you
become more experienced, you will develop afeel for which functions work
best in which situations, and you will find new ways to make the writing
process more efficient. You will be continually amazed at how powerful the
editors and related tools can be.

1-2

.'/- . \‘.

Text Processing Overview

1.3 Reading This Manual

This manual contains thefollowing chapters:

1. Text Processing Overview
The chapter you are now reading provides you with a general
overview of XENIX text processing: how it works and whatkinds
of tasks it can do. The XENIX tools and how they fit into each
phase of document production are described.

2. Writing and Editing Tools _
This chapterintroducesseveral XENIX programs which can help
you search for recurring patterns, compare files, and make
global revisions to large files and groups of files. It also
introduces three special writing tools for locating spelling errors
and awkward diction, as well as assessing the readability of a
document.

"' 3. Usingthemm Macros

This chapter introduces mm, a package of document formatting
requests which simplifies the task of formatting documents.

4. mm Reference '

This chapterisa comprehensive gnide to mm.

5. Using Nroff/Troff
This chapter introduces the two XENIX text formatters, nroff
and troff.

6. Nroff/Troff Reference
This chapter is a comprehensive guide to the nroff and troff

formatting programs.

7. Formatting Tables
This chapter describes the specialized formatter, tbl, which
produces effective tables in documents.

8. Formatting Mathematical Equations
This chapter describes the eqn program which formats
mathematical symbols and equations.

Appendix A: Editing With sed and awk
This appendix describes how to use the two batch editing
programs sed and awk.

Appendix B: Error Messages
This appendix describes error messages for the mm macro set as
well as nroff and troffin general.

XENIX Text Processing

Appendix C: mm Macros, Strings, and Number Registers
This appendix lists, briefly describes, and gives the usage for the
predefined mm macros, strings and number registers.

1.4 Basic Concepts

This section reviews some general text processing terms and concepts,
including the:

— Types of writing tasks which can be done with XENIX text
processing

— Partsof adocument
— Design characteristics of a formatted document

— Types of XENIX tools which you will beusing
1.4.1 Writing Tasks

You can write, edit, and typeset any manuscript on the XENIX system—
whether a memo, business letter, novel, academic dissertation, feature
article or manual. In some respects this manual relies more heavily on
examples relevant to techmical documentation, because these projects
require the application of the greatest number of XENIX tools, and demand
the most careful planning and strategyin their construction.

1.4.2 Anatomy of a Document

To fully determine the scope of your formatting needs, let’slook at the parts
of a typical document. Unless you are using your XENIX text processing
system to write memos and letters, you may have some or all of the following
in yourdocuments:
Front Matter

— Titlepage

- Copyrightnotice ordocument number

— Table of contents

— Listof tables orillustrations

— Foreword

14

I/A\

- -~ -~

Text Processing Overview

— Preface

- Acknowledgements
Body of Text

—~ Chaptersorsections

~ Figures and display

— Tables and equations

— Footnotes

— Running headers and footers
Back Matter

= Appendices

- Notes

— Glossary

— Bibliography

— Index

Your XENIX tools will help you automatically generate many parts of your
document. Forexample, youwillbe able to createlists of figures and tables,
andatable of contents as partofthe formatting process. You can createand
store in advance a standard copyright notice page (often called a
“boilerplate”) and change only that information specific to the document.

Even in those sections of your document that must be written from scratch
you can do much to standardize the ‘look” of a prefacepage, the pagination
of an appendix, or the section numbering and format of a chapter. Onceyou
have developed specifications, you can achieve comnsistency in the
production of a long and complex document, and even produce many
documents with the same specifications, without going through the
definition process again. A further advantage is that you can change your
specifications at any time, often without re-editing the text and formatting
commands themselves. Then, youneed only reformat your document and
printit.

1.4.3 Formatting Characteristics

There are many characteristics of your finished text that can be controlled
with XENIX formatting tools. Keep in mind, however, that the appearance
of yourfinished documentdepends largely on the capabilities of youroutput

1-5

XENIX Text Processing

device. To determine the format of your text you will insert commands in
your text file as you write and edit. These commands will be identical,
whether you are planning to produce your document on a lineprinter using
the XENIX formatter nroff, or whether you are sending your document
directly to a phototypesetter using troff. Because a lineprinter cannot do
variable spacing, or change the point size or font of your text, nroff will
ignore commands to change point size, round the parameters of spacing
commands to the nearest line unit, and replace italics with underlining.

You will also notice qualitative differences in the output. For example, the
justification of text-the spacing of text across the line to preserve a margin—is
considerably less subtle in lineprinter output. Some of the characteristics
you can control with the nroff/troff programs are:

— Textfilling, centering, and justification

— Multicolumm output, margin, and gutter width

—. Vertical spacing, linelength, pagelength, and indentation
— Fonttypeand pointsize

— Style of page headers and footers

— Pageand section numbering

— Layoutof mathematicalequations and tables
1.4.4 An Inventory of Tools

When you approach any writing project, you should examine the whole
range of XENIXtools to find those that will work best, just as you might look
inside a toolbox. Although you can often do a job in several ways, there is
frequently a tool, or a combination of tools, designed especially for that job.

Feel free to experiment in using the various editors, utilities, and formatters.
If you are cautious about making copies of your files and backing up your
XENIX system regularly, you can do little irreversible damage. A syouwork,
you will gain more confidence and find new solutions.

While it is a good idea to learn to use a few of the XENIX tools skillfully, you
should also work consciously to learn new tools and methods, rather than
depending on a few procedures which you feel you know well. Some XENIX
tools, like the screen editor vi, offer many more commands and functions
than you can comfortablylearn at one sitting. You mayfind yourselfrelying
on a limited number of commands quite heavily. To prevent this,
periodically review the documentation and force yourself to try new
commands.

1-6

’a

Text Processing Overview

In this manual we will be looking at XENIX “tools” which fall into a few basic
categories:

System features
Aspects of the XENIX operating system that can be used to

enhance the text processing environment, such as multitasking
and thehierarchicalfile structure.

Utilities
These include the XENIX text editors (such as vi) and other
utilities that are used for both software development and text
processing (such assort, diff, grep, or awk).

Text Processing Tools

These include specialized programs designed solely for text
formatting tasks, including mm, eqn, and tbl and the formatters
‘nroffand troff. Alsoincluded arethe special writing tools; spell,
style, and diction, which help you edit what you write.

1.5 Formatting Documents

In this section you will be introduced to nroff aiid troff, the two XENIX
formatting programs. By inserting a series of commandsin yourtextfilesyou
will be able to produce text with justified right margins, automatic page
numbering and titling, automatic hyphenation, and many other special
features. Nroff (pronounced “en-roff”’) is designed to produce output on
terminals and lineprinters. Troff (pronounced “tee-roff”’) uses identical
commands to drive a phototypesetter. The two programs are completely
compatible, but because of the limitations of ordinary lineprinters, troff
output can be made considerably more sophisticated. With troff, for
example, you can specify italic font, variablespacing, and point size. If you
format the text using the same macros with nroff, italicized text will be
underlined, the spacing willbe approximated, and thetextwill be printed in
whatever size type the lineprinter offers.

1.5.1 The mm Macros

To use nroff and troff, you must insert a fairly complicated series of
commands directly into your text. These “formatting commands” specify in
detail how the final output will look. Because nroff and troff are relatively
hard to learn to use effectively, XENIX also offers a package of canned
formatting requests called the mm macros. With mm you can specify the
style of paragraphs, titles, footnotes, multicolumn output, lists and so on,
with less effort and without learning nroff and troff themselves. The mm
program reads the commands from the text, and translates them into

1-7

XENIX Text Processing

nroff/troff specifications. mm is described in detailin the nexttwo chapters.
It is recommended that you learn mm first, and use it for most of your
formatting needs. If you need to finetune your output, you can add
nrofi/troff requests to the text as necessary.

To produce a document with mm, use the command:
nroff -mm filename

to view the output on your terminal screen. To store the output of nroffin a
file, usethe command line:

nroff -mm filename>outfile

where outfile is the name of the file you wish to designate for the stored
output. Itis suggested that you give consistent extensions to your input and
output filenames. You might use ‘.s” for “source” as the extension for all
input filenames, and “.mm” as the extension for the names of files which are
the outputofmm. Forexample,

nroff -mm 1.intro.s>intro.mm&

Note that the ampersandis used to process the filein the background.
1.5.2 Supporting Tools

In addition to the nroff and troff formatting programs, and the mm
formatting package, there are also formatting programs to meet some
specialized needs. The eqn program, for example, formats complicated
mathematical symbols and equations. A version of eqn called negn outputs
the same mathematical text for the more limited capabilities of lineprinter.
eqn is a preprocessor. That is, you run eqn first, before nroff/troff, to
translate the commands of the eqn “language” into ordinary nroff/troff
requests. The eqn commands resemble English words (e.g., over, lineup,
bold, union), and the format is specified much as you might try to describe
an equation in conversation. It is recommended that you delay learning
abouteqn in detail until you actually need to useit. '

The tbl program is also a preprocessor: tbl commands are translated into
nroff/troff commands to prepare complex tables. Tbl gives a you a high
degree of control over material which must appear in tabular form, by doing
all the computations necessary to align complicated columns with elements
of varying widths. Like eqn, it requires that you learn another group of
commands, and process your files through another program before using
nroff/troff.

1.5.3 Order of Invoking Programs

After you have inserted all your formatting commands into the text, you are
ready to process your files, using the XENIX formatting programs. Please
note that it is extremely important to use the various macro packages and
formatters in the correct order. However, you may invoke these

1-8

=1

1.6 A Sample Project

Text Processing Overview

programs with a single command line, using the XENIX pipe facility. As
noted above, you can invoke the mm macro package along with nroff/ troff
using a command such as:

nroff -mm intro.s>intro.mm

However, if you are using several specialized formatters along with
nroff/troff, the command becomes more complex. You must invoke eqn
before nroff/troff and mm, in order to-translate the eqn commands-into
nroff/troff specifications before thefiles are formatted, as in the following:

neqn intro.s | nroff -mm>intro.mm
Ifyouareusingboth eqnand tbl, the tbl program should be called first:
tbl intro.s | negn|nroff -mm>intro.mm

If you are formatting multicolumn material or tables with nroff you mustuse
the col (for “column”) program. Col processes your text into the necessary
columns, after formatting, asin: ’

nroff -mm intro.s | col>intro.mm

The preparation of everydocument has several phases: entering and editing
text, checking your draft for spelling errors and style quality, formatting the
finished version, and printing it on a printer or typesetter. To illustrate the
process of producing a finished document with the XENIX Text Processing
System, let’s look at thesteps for creating a simple document one byone.

1.6.1 Entering Text and Formatting Commands

First you must write the text of the document. To do this, you will invoke
oneof the XENIX text editors andenterthe texton the screen. Forexample,
to produce a memo informing the members of your department that you will
beholdinga seminar on the XENIX Text Processing System, you mightbegin
byenteringthe following command line:

vi memo.s

You will probably use your editor’s special functions to correct errors and
make revisions as you write, such as deleting words or lines, globally
substituting one word for another, ormovingwholeparagraphsand sections
around in thedocument.

If you have used a dedicated word processing system or a microcomputer
word processing program before, note that the XENIX Text Processing
System works somewhat differently. Formatting of text takes place in a
“batch” rather than an “interactive” mode. That is, instead of using special
function keys to format your text on the screen as you work, you will be
interspersing commands with ordinary text in your file. Most of these are
two-letter commands preceded by a dot (.), that appear at the beginning of

19

XENIX Text Processing

text lines. These will be lowercase letters, if you are using either of the
XENIX text formatters, nroff, or troff.

In addition to these two programs, there is another program called mm
which we recommend you use, especially if you are new to text processing.
mm commands are called “macros”. These macros, which are generally
two upper or lowercase letters preceded by a dot (.), replace whole
sequences of nroff and troff commands, and allowyou to reduce the number
and complexity of the commands necessary to format a document. You can
use the mm macros wherever possible and add extra nroff or troff
commands, as necessary, for fine-tuning the format of your document.

Let’slook atthebeginning of a file called memo. s:

.ce
.B MEMO

.sp 2

.P

A seminar has been scheduled for Thursday, September 15,
to introduce users to the XENIX Text Processing System.

It is is intended for all department members

planning to use XENIX for writing or preparing documentation.
P

The seminar will include the following topics:

AL 1

.LI

Reviewing the XENIX file structure and basic commands.
LI

Using the vi text editor.

.LI

Formatting documents with mm.

.LE

.P

The seminar will begin at 9 A.M. and will last approximately
two hours...

Intheinput fileabove, each paragraph of text begins with the mm paragraph
macro, .P. In the final document, the word “MEMO?” will appear centered
on the page and in boldface. The nroff/troff command .ce means “center”

and the mm macro .B means “boldface”. The nroff/troff command .sp 2
below MEMO means *“2”’spaces.

Note the three mm macros .AL, .LI, and .LE. These will turn the text
following the words “following topics”into an automatically numbered list.

1.6.2 Formatting Text

Now, let’s format the finished memo into the file called memo.mm using the
following command line:

1-10

[PV §

2

Text Processing Overview

nroff -Inm memo.s>memo.mmé&

This command invokes the nroff formatter using the mm macro package to
format the file memo.s. When formatted, the memo will be stored in an
output file called memo.mm. If you do not specify an output file, the
formatted textwill simply roll across yourscreen and belost. Notethatthe
command line ends with an ampersand (&), an instruction to put the
formatting of thisfile “inthebackground”. Itis generally a good idea to put
formatting jobs in the background because they will often take several
minutes, especiallyif the fileis long and the formatting relatively complex. If
youputthe formatting job in thebackground, your terminal willremain free
foryou to do other work on the system.

1.6.3 Printing the Document

When you arereadyto print the memo, usethe command

Ip text.memo.mm

" Thefinished memo looks like this:

MEMO

A seminar has been scheduled for Thursday, September 15,
to introduce users to the XENIX Text Processing System.

It is intended for all department members planning

to use XENIX for writing or preparing documentation.

The seminar will include the following topics:
1. Reviewing the XENIX file structure and basic commands.
2. Using the vi text editor.

3. Formatting documents with mm.

The seminar will begin at 9 A.M and will last
approximately two hours...

1.7 Managing Writing Projects

Once you have mastered one or more of your text editors, and are ready to
do extensive writing, revision, and text processing with the XENIX system, it
is time to consider the overall organization of your writing projects. This
section offers some common-sense suggestions for managing and

1-11

XENIX Text Processing

standardizing your textfiles to make processing more efficient. Not all of the
suggestions and writing aids discussed here will be equally appropriate in all
situations. The larger and more complex the writing project, however, the
more time and confusion can be saved by theirimplementation.

1.7.1 The Life Cycle of a Document

Before you can begin to work successfullywith XENIX text processing tools,
you need to determine which tools are appropriate for each phase of a
project. This section discusses the application of XENIX tools to each step
in thelife cycle of a document from the first notes you take and outlines you
develop, to the archiving and management of multiple versions and
updates.

Every document goes through several phases before it is complete. First,
you must enter the body of the text, using one of the XENIX texteditors. As
you write, you will insert formattingcommands, or “macros,” which specify
in detail to the formatting programs how the final output should look. In
addition to checking your work for mistakes and spelling errors, you may
need to go through an extensive revision process-the global substitution of
one name or term for another, for instance, or the reorganization of your
manuscriptusing a “cutand paste” technique.

Depending on the size and scope of your project, you may need to compare
textvariants and maintain several versions of your documents. Finally, you
will be producing formatted output, whether it is a one-page business letter
produced on an ordinary lineprinter or a book-length manuscript
communicated directly to a phototypesetter. MENIX provides all the
necessary tools for every phase of document preparation, and in many cases
offers several approaches to each task.

1.7.2 Organizing Your Project

Organization is a key element of writing projects, especially if you are
working on a large document, or attempting to control many short ones.
Text processing can greatly simplify any writing project if you use common
sense in adapting the wide range of XENIX tools to your work. If you work
with many short memos, letters, and documents that are similar in content
but require constant revision, orif you are involved with the production of
book-length manuscripts, you can easily find yourself swamped by huge files
containing innumerable text variations and fragments. These can become
difficult to control and process. Time you spend defining thescope of your
project in advance will be well rewarded. Decide which files and versions
you need to maintain, and which formatting and error-checking programs
you need to use. Determine in advance, if possible, the style and format of
yourtext.

Since most documents go through severalrevisionsbefore they are finished,
a few simple measures make the work of repeated revision considerably

1-12

N

S,

Text Processing Overview

easier. If you are like most people, you rewrite phrases and add, delete, or
rearrange sentences. Subsequent editing of your text will be easier if every
sentence starts on anewline,andif each lineis shortandbreaks at a natural
place, such as after a semicolon orcomma.

As you are editing, you can insert markers in your text, so that you can
return to them later; use an unlikely string as a marker that you can search
for easily using the grep command or your text editor to do a global search.
If, for example, you are unsure of which term to use, or how you want the
final text to look, use a givenword, or text formatting macro provisionally,
butconsistently . In thisway, aglobalsubstitution can be made easily.

You may find that certain global definitions, like the choice of a font for a
given header level, or a commonly used string, may be created at the last
minute and placed at the beginning of your text file. When you are
experienced in the use of macros, you may want to create ‘“template™
definitions which you use repeatedly. You can even placeyour definitionsin
aseparate fileto be called every time you invoke a script you have prewritten

. for processing your documents. This will facilitate consistency in your

documents and allow greater flexibility if changes are required. In’ many
cases, you will find that you can delay your formatting decisions until the
document s to be printed or typeset.

Long documents should be broken down into individual files of reasonable
length, perhaps ten to fifteen thousand characters. Operations on larger
files are considerably slower, and the accidental loss of a small file is less
catastrophic. If possible, eachfileshould representanaturalboundaryin a
document, such as a chapter or section. Develop naming conventions to
makeyour filenames consistent and self-explanatory, such as:

l.intro.s 2.basic.s 3.adv.s

This allows files to be processed in groups with global commands, editing
and shell scripts. You will also be able to see the contents of files and
directories at a glance, and if someone else needs to access yourfiles, they
will not be confronted with files named ‘“aardvark’, “katmandu®, or
“fred”.

You should also use the XENIX hierarchical file structure to your advantage
in organizing your work, by creating different directories for special
purposes. For example, you may wish to have your source text files in a
different directory from your formatted output files, or you may find it
handy to have “rough’ and “final” draft directories. If your projects grow
and change over time, you may need to maintain several versions of a
documentat once.

Unless your project is truly unwieldy, the creation of parallel directories
should provide sufficient organization for storing multiple versions of a
document:

1-13

XENIX Text Processing

Jusr/docwriter

l I [

versionl version2 version3

rough final nroff

l.intro.s l.intro.n
2.basic.s 2.basic.n
3.advs 3.adv.n

If you have created definition files and scripts, such as shell programs for
processing text or sed scripts for making uniform changes (see Appendix
A), place them in yet another directory. This might also be a good place to
add some “help” files, which explain which versions of a document are
contained in the directory or explain formatting procedures.

There are no rules to apply in deciding which procedures will produce
documentation with the least effort and the fewest errors. How elaborate
you make your procedures depends on the quantity and complexity of the
text you need to process and maintain. The essential point here is the theme
of this entire volume: select the XENIX tools which seem most appropriate
and adapt them to your own specific needs. The more organized and
consistent your work is, the more powerful your use of these tools will
become.

1.7.3 Shortcuts: Boilerplates and Cut and Paste

You will almost always find several approaches to any writing or revision you
do with the XENIX system. Begin each writing project by reviewing these
alternatives, and determine which solution requires the least repetitive
human effort and leaves the least room for error. You can increase your
productivity, whether you are writing technical papers, documentation, or
many memos with similar content, by focusing on writing clearly and
concisely, rather than wasting time on needless duplication of effort. If you
proceed in an organized, consistent way, as outlined in the previous section,
you will quickly find that XENIX offers you many shortcuts. One of these is
the concept of the “editing script”. Either of the line editors, ed or ex, can
be used to perform a complicated sequence of editing operations on alarge
group of filessimultaneously. These can often bea substitute for theuseof a
batch editing facility like sed, or awk.

For example, to change every “Xenix” to “XENIX"in all your files, create a
script file with the following lines:

1-14

Text Processing Overview

g/Xenix/s//XENIX/g
w

q
Now, you can usethe command

ed filename <script

to make this change to any given file. The editor will take its commands
from the prepared script. You canfurther automate proceduresbyusing the
XENIX shell language to write a shell procedure. For example, you can write
a script which asks XENIX to make the above changes, reformat the entire
text, andprint theresults. It is even possible to putthis procedurein a file to
beread bythe atcommand to do your processing at some other time.

If you must produce many similar documents, or long documents which
contain repeated material, the concept of the “boilerplate” may already be
familiar to you. Often, information which must be presented in a
standardized way can be stored in a separate file which can be reused as
necessary. Not only is this a valuable shortcut to rewriting, it may be the

" preferred approach if a complexdisplay or an example of program text must "7

be reproduced. Using boilerplates assures consistency -and makes
subsequent changes to allrecurrences of the copied material much simpler.

1.8 Summary

Here are some hints for making your XENIX Text Processing System work
foryou:

— Make your filenames easy to understand, and use a naming
convention that allows you to take advantage of wildcard
characters.

— Createtext files of manageable length which represent chapters or
logical divisions in the document; arrange files into directories
which represent major documents or versions so that they can be
easilyidentified.

— Create‘help” or “README”files in each directory which explain
your text-what version you are writing, what scripts, processors,
and files are needed to successfully produce the document. Use
comment lines in your text to explain organizational details of your
projectoranyspecialmacrosyou have created.

— Control parallel versions and updates carefully, especially if you
are working on a large project. Use conditional processing in your
text files, copies of text in different directories, and file linking
where appropriate. If you are in doubt about versions of text in
different filesuse diff to compare text.

1-15

XENIX Text Processing

1-16

When using vi or another text editor to write text, start each
sentence or clause ona new line.

Identify text and formats which recur in a document or several
documents, and create boilerplatesortemplatesto save work.

Make full use of “cut and paste” techniques to rearrange material
in a file, move text between files, or use the same text repeatedlyin
several places.

Use batch processes like sed, awk, or an ed script to make
consistent changes to alarge number of files.

Use spell, style, and diction regularly to reduce the number of
editorial correc#ons.

Try to define your production specifications and style conventions
in advance; prepare editing scripts to reduce the number of
changes you need to makeindividually.

Always use the simplest possible technique to achieve your results.
Use the mm macros where possible, reserving nroff/troff
commands for “fine-tuning” or creating an effect impossible with
mm. If you define a new macro, explain it in a comment line so it
can bereadilyunderstood.

Avoid running too many formattng processes simultaneously. If
necessary, use the at command to process files at a time when the
system is not busy.

Protect yourself by backing up your system and user files regularly.
Make copies of files if you are in doubt about whether your
procedures will damage them.

Chapter 2
Tools For Writing and Editing

2.1 Introduction 1

; 2.2 XENIX Commands for Text Processing 2 _
2.2.1 Pattern Recognition: The Grep Commands 2
] 2.2.2 FileComparison: diff, diff3, andcomm 3
2.2.3 Other Useful Commands 5§

2.3 WritingTools 7
2.4 UsingSpell 8
2.5 Using Styleand Diction 9

2.5.1 Style 10
2.5.2 Diction 16

N\
3
]
i

N

Tools For Writing and Editing

2.1 Introduction

This chapter introduces you to some XENIX system utilities that can simplify
document editing and revision. It also discusses three special XENIX writing
tools for improving writing style and locating typographical errors in
documents.

This chapter focuses on how the XENIX tools are used to accomplish some
common text processing tasks. These tools are XENIX utilities which are
alsoused by programmers for searching and editing data and program text.
The emphasis here is on XENIX commands and utilities that can help you
simplify complicated editing procedures, and allowyou to work with many
files at once. As you read, it will become apparent that several of the
programs introduced here can be used interchangeably, and that many of
thesetasks can also be performed with your text editor. You may also find
the two XENIX programs, sed and awk, helpfulformaking complexchanges
to text files. (See Appendix A, “Editing With sed andawk”'.)

- There areseveralrevision tasks common to all text processing projects. The .

larger your project, the more complex these tasks become. For example,
you may need to change a key term, name, or phrase everywhere it appears,
or locate references to items you need to change ordelete. Youmayneed to
compare and contrast multiple versions of your text in order to locate
variadions. You may also need to alter some aspectof the text format to suit
production requirements. To do any of these tasks, you must locate a
string—a word, a phrase, a text formatting macro or any repeated set of
characters-and, if necessary, change it everywhere it appears. Using the
XENIX system tools discussed in this chapter, these changes can be made
rapidlyand consistently.

The first half of this chapter discusses several easy ways to learn XENIX
commands. If you have read the XENIX User’s Guide, you may already be
familiar with some of them. More detailed information about these
commands is provided in the XENIX Reference Manual. The commands
include:

— Grep commands print lines that match a single specified pattern.
When combined with other commands in a shell procedure and
used to process many files at once, the grep commands become
extremely powerful for locating text in large files. Two variants of
grep arealso introduced in this chapter: egrep and fgrep.

— TheXENIXfile comparison utilities, diff, d1f3, and comm. These

: utilities compare two ormorefiles and output those lineswhich do
not match. In text processing applications these programs can be
extremely useful for quickly locating variations between several
versionsof documents.

2-1

XENIX Text Processing

— Additional XENIX commands, including sort, which alphabetizes
lines in your text files; we, which counts lines, words, and
characters in your text; and cut and paste, which duplicates ‘“‘cut
and paste’’ editing operations.

2.2 XENIX Commands for Text Processing

2.2.1 Pattern Recognition: The Grep Commands

Becauseof its powerto search for patternsin many files atonce, grepandits
variants are among the most useful XENIXcommands. The members of the
grep family, like the awk program and the batch editor, sed, have as their
basis the same principle of pattern recognition as the text editors, ed and vi.
Each of these programs searches for the occurrence of a given pattern-a
character or group of characters, a word or word string-and generates a list
of those lines containing the pattern. Finding all occurrences of a word or
pattern in a group of files is a common text processing task. You can easily
write a shell script using the grep command or one of its variants, egrep and
fgrep, and quickly search multiple files. Grep searches for the same regular
expressionsrecognized by ed. The word “grep” stands for

g/relp

that is, “globally’’ locate a pattern and then printit. Grep searcheseveryline
in a set of files for all occurrences of thespecified regular expression. Thus,

grep thing filel file2 file3

finds the pattern “thing” wherever it occurs in any of the files you name (e.g.
filel ,file2, file3). If you use the —n option with grep, itwillindicatenot only
the filein which the line was found but also the line number, so that you can
locate and edit it later. By combining the use of grep with other commands
to generate a shell program thatreads and #ransforms input, large quantities
of text can be processed through multiple searching or editing procedures
quickly.

The commands grep, egrep, and fgrep all search files for a specified pattern.
Theyappear on the command linein the following form:
grep [option] expression filename

Commands of the grep family search the files you specify (or the standard
input if you do not specify any files) for lines matching a pattern. Each lineis
copied to the standard output (your terminal screemn), but if you are
processing great quaniities of text you should specify a filename in which to
store the results of the grep search.

For example, the command

grep —n ’system utility’ chap*.s>util

8

5

RS

Tools For Writing and Editing

requests that grep command search for the phrase ‘‘system utility’’ in every
file that begins with “chap’ and ends with *.s”, and store the resulting list,
with line numbers, in a file called wtil. Unless the =h option is used, the
filename is given ifthereis more than oneinputfile.

The difference between the three grep variants is the type of expression you
are allowed to search for. Grep searches for every regular expression and
allows you to use the special characters to define special patterns. Egrep
looks for the same regular expression as grep, but also has an extra set of
characters that allows you to search for more than one occurrence of an
expression, or more than one expression at a time. Fgrep can onlylook for
strings; no special characters are allowed, and thus fgrep is faster than grep
or egrep. Formore information about grep, egrep, and fgrep, see grep(C)
in the XENIX Reference Manual.

2.2.2 File Comparison: diff, diff3, and comm

In. .addition. to. locating occurrences of particular -strings.-or regular--

expressions in your text, you will find it useful to compare and contrast two
or more similar text files.)

The diff command compares two files and outputs alist of differences. You
can use dIff to store file versions more compactly. This isaccomplished by
storing the output of diff, which would b e the differences in that file version,
rather than the file itself. The —e option collects a script of those ed
commands (such as append, change, and delete) which would be necessary
to recreate therevisedfilefrom the original.

Diff3 is similar to diff, but is used to compare three files.

Another comparison tool, comm, is discussed in this section. Comm is
useful primarilyforcomparing the output of two sorted lists.

DIff To usethed!ff command to compare twofiles, use the form:
diff —option filel file2

Diff reports which lines must be changed in two files to bring them into

.agreement. If you use a dash (~) instead of the first filename, diff will read

from the “standard input”. Thenormal outputcontainslinesin thisformat,
wheren isthelinenumber of the text file:

17al18

> line affected in file 2
23,25d 26

< line affected in file 1
< line affected in file 1
30c31

< line from file 1

> line from file 2

23

XENIX Text Processing

Theselinesresemble theed commands which would be necessaryto convert
filel into flle2. The letters a, d, and c are ed commands for appending,
deleting, and changing, respectively. Theline numbers af ter the letters refer
to file2. Following each of these lines are printed all the lines that are
affected in the first file, flagged by a less-than sign (<), then all the lines that
areaffected in thesecond file, flagged by agreater-thansign (>).

Forexample, you might want to compare two text files, fruitand vegies. The
contents of the file called frruit are the lines:

apples
bananas
cherries
tomatoes

The contents of the file called vegies are the lines:

asparagus
beans
caulifiower
tomatoes

Thecommand line
diff fruit vegies>diffile&

produces the file diffile that contains a list of differences between fruit and
vegieswhich are the outputof the diffprogram:

1,3c1,3
<apples
<bananas
<cherries

>asparagus
>beans
>caulifiower

In this case, lines 1 through 3 in the file vegies are different from lines 1
through 3inthefile fruit. See diff(C)for options.

Using Diff3 DUff3 works like diff, except that it compares three files. It has
theform:

diff3 —op%ion file! file2 file3
DIff3 reports disagreeingranges of text flagged with the following codes:
=====All three flles differ

=====] Filel is different
==x===) File2 is different

=====3 Fijle3 is different

24

Tools For Writing and Edlting

The change which has occurred in convertingagivenrange of lines in a given
fileto some otheris reported.

For example, the message:
filel :nla

meanstextistobe appended after linenumbernlin filefile]. Themessage:
filel : n1,n2c "

means thatthetext to be changedisin the range of lines nl to linen2. Ifnl =
n2,therange maybe abbreviated to nl.

The original contents of the range follow immediately after a “c’’ indication.
When the contents of two files are identical, the contents of the lower-
numbered file is suppressed.

Asin the case of diff, diff3 used with the —e option prints a script for ed that
will incorporate into filel all changes between file2 file3. In other words, it
records the changes that normally would be ﬂagged the changes that
normally would be flagged ====and ====3. _ %

Comm The comm program selects or rejects lines common to two sorted
files. Ithas theform:

comm [-option] filel file2

Comm reads filel and file2, and produces a three-column output: lines only
infilel, lines onlyin file2, and lines in both files. Ordinarily, both files should
be sorted in ASCII collating sequence by using the sort program before
using comm. As in diff and its variants, if you enter a dash (=) instead of a
filename, comm willread either filel or file2 from the standard input.

The possible options with comm are the flags 1, 2, or 3, which suppress
printing of the corresponding column. Thus comm with —12 suppresses
printing of the first two columns and prints only thelines common tothetwo
files; comm -23 prints only linesin the first file but not in the second. The
command comm with the options ~123would printnolines.

2.2.3 Other Useful Commands

In this section a group of XENIX commands that are helpful in text
manipulations are summarized. In each case you may find it helpful to refer
to the XENIX Reference Manual for more information.

Sort If you have been using your XENIX system for a while, youmay have
already learned the sort command. Because of its capacity to alphabetize a
list of items, it can be extremely useful in a variety of text processing
situations (e.g., alphabetizing thenames on a mailing list or the entriesin an
index). Tousesort, simply enterthecommand:

sort filename>list.out

The output file list. out will contain the sorted list.

2-5

XENIX Text Processing

Like some other XENIX commands, if you use “—” instead of a filename,
sort will read from the standard input, and unless you direct the outpit to
another file, the sorted list will appear on your screen. Sort will, by default,
sort an entire line in ascending ASCII collating sequence, including letters,
numbers, and special characters. See sort(C) in the XENIX Reference
Manualfor alist of available options.

If you need to do repeated sorts by field, you may find it easier to prepare a
simpleawkscript, as described in “Appendix A”.

Note that if you invoke one or more of the sort options, or use position
names, you must use the following syntax:

sort [—options] (posI] [pos2] [—o output] [filenames]

Wec The XENIX command we counts words, characters, or lines in your
files. If, for example, you are submitting a manuscript to.a publisher, an
exact word count may benecessary, oryoumaywant to estimatethenumber
of lines in your file before you make some critical formatting decision. To
use wce, enter:

wc filename

If you give no options, wc automatically counts lines, words, and characters
in the named files, or in the standard input if you do not specify any
filenames. It keeps a total count for all named files, and the filenames will
also be printed along with the counts. The option -1for “lines,” option —w
for “words” and option —c for ‘“characters” can be also be used in any
combination, if you do not want all three statistics printed. Remember,
when doing a word count, that we will automatically treat as a word any
string of characters delimitedby spaces, tabs, ornewlines.

Cut and Paste If you work with large text files, you will find the two XENIX
commands, cut and paste, extremely useful for rearranging text blocks
within a document.

Cut is a shortcut for extracting columns or fields of information from a file,
or for rearranging columns in lines. To invoke cut in its simplest form,
enter:

cut [options] file

The cut command will cut out columns from each line of a file. The columns
can be specified as fields separated by a named delimiter or by character
positions. The following options are available:

=—clist A list of numbers following —c specifies character positions or
‘ranges.
—flist A list of numbers following —f{ is a list of fields, delimited by a

character specified after the ~d option.

~dchar A character following the —d option isread as thefield delimiter.
The default is the tab character. Spaces or other characters with

26

s

-

Tools For Wrltlng and Editing

special meanings must be surrounded with single quotation
marks ().

-5 This option suppresses lines which do not contain the delimiter
character, if the —f option is invoked.

Eitherthe —c or —foption mustbeinvoked when usingcut.

The paste command performs the reverse operation: it can be used to merge
linesin one or severalfiles. To use paste in its simplest form, enter:

paste filel file2

Paste will concatenate filel and file2, treating each file as a column or
columns of a table and pasting them together horizontally. As with the cut
command, you can also specify a delimiter character to replace the default
tab. You can even use paste to merge material in columns into lines in a
singlefile.

Thefollowmgoptlons are avallable

—-d The —d opuon suppresses the tab which automatlca]]y replaces
' thenewlinecharacterin the old file. It can be followed by one or
-more characters which act as delimiters.

list Thelistof characters which follow the -d option.

ot] The -s option merges subsequent lines, rather than one from
each input file. The tab is the default character, unless a list is
specified with the -d option.

- The dash can be used in place of any filename, toread a line from
thestandardinput.

There are, of course, several other ways to approach “cut and paste”
operations with the XENIX system. By now you shouldfeel fairly confident
using one of the XENIX text editors to move blocks of text, write parts of
files to new files, and rearrange lines. Using sort to alphabetically sort fields
within lines, or the awk program to change the order of fields in a textfile,
aretwospecial casesof cut and paste operations.

2.3 Writing Tools

In the previous sections you were introduced to some common XENIX
utilities that are used both by programmers and text processing users:
programs that can be used to search for patterns, do batch editing, or
compare two or more files. This section introduces three XENIX programs
which have been designed solelyforwriting and editingdocuments:

— sj)ell, a program that checks for spelling and typographical errors
in yourtextfiles.

27

XENIX Text Processing

— style, a program that analyzes the readability of your writing style,
based on statistical measures of sentence length and type.

— diction, a program that searches for awkward, ambiguous, and
redundant phrases, and suggests alternatives.

Think of these programs as “tools” in the sameway as the system utilities
discussed earlier in the chapter. The XENIX system will not do your writing
for you, butit will help you rewrite and polish your work efficiently. Asyou
read about these programs, keep in mind that they are not intended to
substitute for careful reviewing, editing, and proofreading on your part. Use
spell, style, and diction early in the editing process as a preliminary check
on your work. You will get some interesting feedback on your writing and
uncover recurrent patterns in your word usage and sentence construction.
Your common spelling errors will be pointed out. As you arepreparing your
final draft, you may wish to use spell again to locate any last-minute
typographical errors.

2.4 Using Spell |

Youcansavealotoftimeand grief in proofreading your documents by using
spell. Although not totally infallible, the spell program will find most of
your spelling and typographical errors with a minimum of effort and
processing time. Spell compares all the words in the text files you specify
with the correctly spelled words in a pre-existing XENIX dictionary file.
Words which neither appear in this dictionary, nor can be derived by the
application of ordinary English prefixes, suffixes, or inflections are printed
out as spelling errors. Youcan either specify an output file in which to store
the list of misspelled words, or allow them to appear on your screen. For
example, to find thespelling errors in afile named 1.intro.s, enter:

spell 1.intro.s

and a list of possible misspelled words will appear on your screen. You can
also use acommand line like

spell *.s>errors&

to check all your files with names ending in *.s” at once and output the
possiblemisspellings into asingle filenamed errors.

Spellignores the common formatting macros from nroff, troff, thl,and eqn.
It automatically invokes a program called deroff to remove all formatting
commands from the textfilebeing examined for spelling errors.

Several options are available. With “spell —v”’, words not literally in the
dictionary are also printed, along with plausible derivations from dictionary
words. The —b option checks British spelling. This option prefers British
spelling variants such as: centre, colour, speciality, and travelled, and insists
on the use of ““-ise’’ in words like ‘“‘standardise”.

The XENIX dictionary is derived from many sources, and while itrecognizes
many proper names and popular technical terms, it does not include an

2-8

N

Tools For Writing and Editing

extensive specialized vocabulary in biology, medicine, or chemistry. The
XENIX dictionary will not recognize your friends’ names, your company’s
acronyms, and many esoteric words, and will listthem as spelling “errors”.
It is difficult to predict in advance which technical terms, names, and
acronyms spell willuncover inyour documents.

2.5 Using Style and Diction

This section describes two programs, styleand diction. Although thesetwo
programs attempt to critique your writing style, keep in mind that the
qualities which distinguish good writing from bad are not entirely
quantifiable. Taste in writing remains subjective, and different stylistic
qualities may be appropriate to different writing situations. XENIXis neither
a literary critic nor your sophomore English teacher. These tools are best
used to eliminate errors and give you preliminary assessment of a
document’s readability. They are not intended to substitute for human
editing.

" Both™ style and diction are based on statistical measures of writing =~

characteristics—characteristics that can be counted and summarized on your
computer. With a large number of documents stored on computers, it has
become feasible to study the recurrent features of writing style in a great
many documents. The programs described here use the results of such
studies to help you write in a more readable style. They produce a stylistic
profile of writing, including:)

— A measurement of readability, determined on the basis of
sentence and word length, sentence type, word usage, and
sentence openers.

- Alisting of awkward, ambiguous, redundant and ungrammatical
phrases found in the document.

Thiswillhelp you evaluate overall document style, and correct or eliminate
poor word choices or awkward sentences. As you work with these
programs, you can accumulate data to provide you with a profile of your
writing style based on allyour documents.

Because the style and diction programs can only produce a statistical
evaluation of words and sentences, the term *‘style” is defined here in a
rather narrow way: the results of a writer’s particular word and sentence
choices. Although many stylistic judgements are subjective, particularly
those involving word choice, these programs make use of some relatively
objective measures developed by experts.

These programs have been written to measure some of the objectively
definable characteristics of writing style and to identify some commonly
misused or unnecessary phrases. Although a document that conforms to
these stylistic rules is not guaranteed to be coherent and readable, one that
violates all of the rules will almost certainly be difficult or tedious to read.
These programsare:

29

XENIX Text Processing

1. Style, which calculates readability, sentence length variability,
sentence type, word usage and sentence openers. It assumes that
the sentences are well formed, i.e., that each sentence has a verb
and thatthe subjectand verb agreein number.

2. Diction,whichidentifies phrasesthat refiect dubioususage or seem
unnecessarily awkward.

These programsare described in detailin the following sections.
2.5.1 Style

Style reads a document and prints a summary of sentence length and type,
word usage, sentence openers and “‘readability indices.”’ The readability
indices are traditional school gradelevels assigned to a document, based on
four different studies of what makes one style more readable than another.
You can also use the style program to locate all sentences in a document
longer than a given length; those containing passive verb forms; those
beginning with expletives; or those with readability indices higher than a
specifiednumber.

Style is based on a system called “parts’, which determines parts of speech
in the English language. Parts is a set of programs which uses a small
dictionary and experimentally derived rules of word order to assign word
classes to all words in your text. It can be used for any text with an accuracy
rate of approximately 95%. Style measures have been built into the output
phase of the programs that makeup parts.

The style program is invoked with thefollowing syntax:
Style [options] file

What is a Sentence? A human reader has little trouble deciding where a
sentence begins and ends. Computers, however, are confused by different
uses of the period character (.) in constructions like 1.25, A. I. Jones,
Ph.d,, i.e., or etc. Before attempting to countthe words in a sentence, the
text is stripped of potentially misleading formatting macros. Then style
defines a sentence as a string of words ending in one of the punctuation
marks:

The end marker “/.” may be used to indicate an imperative sentence.
Imperative sentences not marked in this way are not identified. Style
recognizes numbers with embedded decimal points and commas, strings of
letters and numbers with embedded decimal points used in computer
filenames, and a list of commonly used abbreviations. Numbers that end
sentences cause a sentence break ifthenextword begins with a capitalletter.
Initials followed by periods are onlyassumed to be at the end of thesentence
if the next word begins with a capital and is found in the dictionary of
function words used by parts. Asaresult, theperiodsin thestring

J. D. Jones

2-10

N

Tools For Writing and Editing

are not read as the ends of sentences, but the period after the H in the
following string is assumed to end a sentence:

...system H. The...

Using these rules, most sentences are correctly identified, although
occasionally two sentences are counted as one or a fragment is identified as a
sentence.

Theresults of running stylearereported in five parts. A typical output might
have values thatlook likethis:

readability grades
(Kincaid) 12.3 (auto) 12.8 (Coleman-Liau) 11.8 (Flesch) 13.5
(46.3)

sentenceinfo
no. sent 335 no. wds 7419 avsentleng22.1 avword leng4.91 no.
questions O no. imperatives 0 no. nonfunc wds 4362 58.8% av

leng 6.38 short sent (<17) 35% (118) long sent (>32) 16% (55)

" longestsent 82wds at seit174; shortest sent 1 wds at sent117

sentencetypes
simple 34% (114) complex 32% (108) compound 12% (41)
compound-complex 21% (72)

word usage
verb types as % of total verbs tobe 45% (373) aux 16% (133) inf
14% (114) passives as % ofnon-infverbs 20% (144) types as %
of total prep 10.8% (804) conj 3.5% (262) adv 4.8% (354) noun
26.7% (1983) adj18.7% (1388) pron 5.3% (393) nominalizations
2 % (155)

sentence beginnings
subject opener: noun (63) pron (43) pos (0) adj (58) art (62) tot
67% prep 12% (39) adv 9% (31)verb 0% (1) sub_conj 6% (20)
conj 1% (5) expletives 4% (13)

Readability Grades The style program uses four separate readability
indices. Generally, a readability index is used to estimate the grade level of
the reading skills needed by the reader to understand a document.” The
readability indices reported by style are based on measures of sentence and
wordlengths. Although theindices themselves do notmeasurewhetherthe
document is coherent and well organized, high indices correlate with
stylistic difficulty. Documents with short sentences and short words have
low scores; those with long sentences and many polysyllabic words have
high scores. Four sets of results computed by four commonly used
readability formulae are reported: the Kincaid Formula, the Automated
Readability Index, the Coleman-Liau Formula, and a version of the Fle'sch
Reading Ease Score. Because each of these indices was experimentally
derived from different text and subject results, the results may vary. They
aresummarized here.

211

XENIX Text Processing

Kincaid Formula

The formula is: Reading Grade=11.8 * syllables per word + .39 *
words persentence-15.59

The Kincaid formula is based on Navy training manuals ranging
in difficulty from 5.5 to 16.3in grade level. The score reported by
this formula tends to be in the mid-range of the four scores.
Because it is based on adult training manuals rather than
schoolbook text, this formulais probably the best one to apply
to technical documents.

Automated Readability Index (ARI)

The formula is: Reading Grade=4.71 *letters per word +.5 *
words persentence-21.43

The Automated Readability Index is based on text from grades 0
to 7, and intended for easy automation. ARItendsto produce
scores that are higher than Kincaid and Coleman-Liau but are
usually slightlylower than Flesch.

If you invoke style with the —roption followed by a number, all
sentences with an Automated Readability Index equal to or
greaterthan thenumber specified will be printed.

Coleman-Liau Formula

The formula is: Reading Grade = 5.89 * letters per word - .3 *
sentences per 100words-15.8

This is based on text ranging in difficulty from .4 to 16.3. This
formula usually yields the lowest grade when applied to technical
documents.

Flesch Reading Ease Score

The formula is: Reading Score = 206.835 - 84.6 * syllables per
word-1.015 * words persentence.

This formula is based on grade school text covering grades 3 to
12. Thefirstnumberreported is the grade level of the document.
The second number, in parentheses, is the difficulty score. Itis
usually reported in the range 0 (very difficult) to 100 (very easy).

The score reported by style is scaled to be comparable to the other
formulas, except that the maximum grade level reported is 17. On the
whole, the Kincaid formula is the best predictor for technical documents.
Both ARI and Flesch tend to overestimate text difficulty; Coleman-Liau
tends to underestimate. On text in the range of grades 7 to 9 the four
formulas tend to be about the same. For easy text, use the Coleman-Liau
formulasinceitis reasonably accurate at the lower grades.

2-12

Tools For Writing and Editing

It is generally safer to present text that is too easy than too hard. If a
document has particularly difficult technical content, especiallyifitincludes
a lot of mathematics, it is probably best to make the text very easy to read.
You can lower the readability index by shortening sentences and words, so
that thereader can easily concentrate on thetechnical content.

Remember that these indices produce only rough estimates; the results
should not be taken as absolute.

Sentence Length and Structure The output sections labeled “sentence
info” and “sentence types” give both length and structure measures. Style
reports on the number and average length of both sentences and words. It
also reports the number of questions and imperative sentences.
“Nonfunction words” refer to all the nouns, adjectives, adverbs, and
nonauxiliary verbs. Function words are prepositions, conjunctions,
articles, and auxiliary verbs.

Since most function words are short, they tend to lower the average word
length. The average length of nonfunction words, therefore, is a more

useful measure for comparing word choice of different writersthan thetotal -~ -

average word length. The percentages of short and long sentences measure
sentence length variability. Shortsentences are those atleast five words less
than the average. L.ong sentences are those atleastten words longer than the
average. Finally, the length and location of the longest and shortest
sentences is reported in the “sentence information’ section. If the flag
~lnumber is used, style will print all sentences longer than the specified
number.

Style applies the following rules to the definition of sentence types:
1. Asimplesentencehas oneverb and no dependentclause.

2. A complex sentence has one independent clause and one
dependent clause, each with one verb. Complex sentences are
found by identifying sentences that contain either a subordinate
conjunction or a clause beginning with a word like “that” or-
“who”. The preceding sentence has such a clause.

3. A compound sentence has more than oneverb and no dependent
clause. Sentences joined by a semi-colon (;) are also counted as
compound.

4. A compound-complex sentence has either several dependent
clauses or one dependent clause and a compound verb in either the
dependent orindependentclause.

Most authorities on’ effective writing style emphasize variety in sentence
length, as well as overall sentence structure. Three simple rules for writing
sentences are:

1. Avoid theoveruse ofshortsimple sentences.

2-13

XENIX Text Processing

2. Avoidtheoveruseoflong compound sentences.

3. Use various sentence structures to avoid monotony and increase
effectiveness.

Word Usage The word usage measurements used by style attempt to
identify other features of writing constructions. In English, there are many
ways to say the same thing. Forexample, the following sentences all convey
approximately the same meaning butdiffer in word usage:

— The cxio program is used to perform all communication between
the systems.

— The cao program performs all communications between the
systems.

— Thecxio program isused to communicatebetween the systems.
- Thecxio program communicates between thesystems.

— All communication between the systems is performed-by the cxio
program.

The distribution of the parts of speech and verb constructions in a
document helps the writer identify the overuse of particular construction.
For each category, style reports a percentage and araw count of the parts of
speech used. Although these measures are somewhat crude, they
demonstrate excessive repetition of sentence constructions. In addition to
looking at percentages, it is useful to compare the raw count with the
number of sentences. If, for example, the number of infinitives is almost
equal to the number of sentences, then an unusual number of sentences in
the document must contain infinitives, like the first and third sentences in
the example above. You maywant to change some of these sentences for
greatervariety.

Verbs To determine the predominant verb constructions in a document,
Verb frequency is measured in several ways. Technical writing, forexample,
tends toward passive verb constructions and other usages of the verb “to
be”. The category of verbs labeled “tobe’ measures both passives and
sentences of the form:

subject tobe predicate

Whole verb phrases are counted as a single verb. Verb phrases containing
auxiliary verbs are counted in an ‘“‘aux” category, including verb phrases
whose tense is not simple present or simple past. Infinitives are listed as
“inf.” The percentagesreported forthese three categories are based on the
total number of verb phrases found. These categories are not mutually
exclusive; some constructions may be in more than one category. For
example, “to be going” counts asboth “tobe’’ and “inf”’. Use of these three
types of verb constructions varies significantly among different writers.

2-14

s ——‘\’

Tools For Writing and Editing

Style reports passive verbs as a percentage of the finite verbs in the
document. Because sentences with active verbs are easier to comprehend
than those with passive verbs, you should avoid the overuse of passiveverbs.
Although the inverted object-subject order of the passive voice seems to
emphasize the object, studies show that comprehension is not significantly
affected byword position. Furthermore, areader willretain the direct object
of an active verb better than the subject of a passive verb. The -p optlon
causes style to printall sentences containing passiveverbs:- - --- - -

Conjunctions Conjunctions provide logical parallelism between ideas by
connecting two or more equal units. These units may be whole sentences,
verb phrases, nouns, adjectives, or prepositional phrases. The compound
and compound-complex sentences reported under sentence type are
parallel structures. Other uses of parallel structures are indicated by the
degree that the number of conjunctions reported under word usage exceeds
the compound sentence measures.

Adverbs Adverbs provide transitions between sentences and order in time
and space. Like pronouns, adverbs provide connectivity and cohesiveness.

Nouns and Ad jectives Some writers qualify almost every noun with one or
more adjectives. If the ratio of nouns to adjectives in your text approaches
one, itis probablethatyou areusingtoo many adjectives. Multiple qualifiers
in phrases like ‘‘simple linear single-link network model” lend more
obscurity than precision to a text.

Pronouns Pronouns can add cohesiveness to a document by acting as a
shorthand notation for something previously mentioned: Documents with
nopronouns tend to be verbose and to have little connectivity.

Nomlnallzations Nominalizations are verbs transformed into nouns by the
addition of a suffix like: “ment”, “ance”, “ence”, or “ion”. Examples are
accomplishment, admittance, adherence, and abbreviation. When a writer
transforms a nominalized sentence to a non-nominalized sentence, it
becomes more effective. The noun becomes an active verb and frequently
one complicated clause becomes twoshorter clauses. For example:

Their inclusion of this provision is admission of the
importance of the system.

could be changed to:

When they included this provision, they admitted the ...

The transformed sentences are easier to comprehend, even if they are
slightly longer, provided that the transformation breaks one clauseinto two.
If your document contains many nominalizations, you may want to
transform some ofthe sentences to use active verbs.

Sentence Openers Another principle of style is the desirability of varied
sentence openers. Because style determines the type of sentence opener by
looking atthe part of speech of the first word in the sentence, the sentences
counted under the heading “subject opener’ may not all really begin with
the subject. However, a large total percentage in this category suggests a
lack of variety in sentence openers. Other sentence opener measurements

2-15

XENIX Text Processing

help determine if there are tramsitions between sentences and where
subordination occurs. Adverbs and conjunctions at the beginning of
sentences are mechanismsfor the transition between sentences. A pronoun
at the beginning of a sentence shows a link to something previously
mentioned and indicates connectivity.

The location of sub ordination can be determined by comparing thenumber
of sentences that begin with a subordinate conjunction with the number of
sentences with complex clauses. If few sentences start with subordinate
conjunctions then the subordination is embedded or at the end of the
complex sentences. For greater variety, transfprm some sentences so that
they have leading subordination.

The last category of openers, expleives, is commonly overworked in
technical writing. Expletives are the wotds ““it”” and “there”, generally used
with the verb “to be” in constructions where the subject follows the verb.
Forexample,

There are three streets used by the traffic.
There are too many users on this system.

This construction tends to emphasize the object rather than the subject of
the sentence. The —e option will causestyle to print allsentences that begin
with an expletive.

2.5.2 Diction

The diction program prints all sentences in a document containing phrases
that areeither frequently misused orindicatewordiness. Diction uses fgrep
to match a file of phrases or patterns to a file containing the text of the
document to be searched. A data base of about 450 phrases has been
compiled as a default pattern file for diction. To facilitate the matching
process, diction changes uppercase letters to lowercase and substitutes
blanks for punctuation before beginning the search for matching patterns.
Since sentence boundaries are less critical in diction than in style,
abbreviations and other uses of the period character (.) are not treated
specially. Diction marks all pattern matches in asentence withbrackets ([]).
Although many of the phrases in the default data base may be correct in
some contexts, they generally indicatean awkward or verbose construction.
Some examples of the phrases and suggested alternatives are:

2-16

-

Tools For Writing and Editing

Phrase: Alternative:
a large number of many

arrive at a decision- decide
collect together collect

for this reason so
pertaining to - about
through the use of by or with
utilize use

with the exception of __ except

All of the following examples contain the repetitious and awkward phrase
“the fact”:

Phrase: : Alternative:
accounted for by the fact that caused by
an example of this is the fact that thus

| based on the fact that o because
despite the fact that although
due to the fact that because
in light of the fact that because
in view of the fact that since
votwithsfanding the fact that although

If you have some phrases that you particularly dislike, or feel you use too
often, you may create your own file of patterns. Then, you can invoke the
diction programwith the —f option:

diction —f patternfile

The default pattern file for the diction program will beloaded first, followed
by your pattern file. In this way, you can either suppress patterns contained
in the default file or include your own favorites in addition to those in the
default file. You can also use the —n option to exclude the default file
altogether:

diction —n patternfile

In constructing a pattern file, spaces should be used before and after each
phrase to avoid matching substrings in words. For example, to find all
occurrences of the word “the”, use leading and trailing spaces, so that only
the word “the” is matched and not the string ‘‘the’ in words like there,
other, and therefore. Note however, that one side effect of surrounding the
words with spaces is that if two instances occur without intervening words,
e.g., “thethe”, onlythe first will be matched because the intervening space
willbe countedas partofthefirst pattern.

2-17

——
-

Chapter 3
Using the mm Macros

3.1 Getting Started withmm 1
3.1.1 Insertingmm Macros 1
3.1.2 Invokingmm 2

3.2 Basic Formatting Macros 3
3.2.1 Paragraphsand Headings 3
3.2.2Lists 4
3.2.3 Font Changesand Underlining 5
3.2.4 Footnotes 6
3.2.5 Displays and Tables 6
- 32.6Memos 7
3.2.7 Multicolumn Formats 7

3.3 Using Nroff/ Troff Commands 8

3.4 CheckingmmInputwithcheckmm 8

- ‘\

Using the mm Macros

3.1 Getting Started with mm

This chapter provides a simple introduction to mm, the “Memorandum
Macros”, a macro package which you can use on your XENIX System with
either of the two XENIX formatting programs, nroff or troff, to produce
formatted textforthelineprinteror typesetter, respectively. Thefeatures of
mm are described comprehensively in the next chapter, “mm Reference”.
You can learn to use the mm macros quickly and format text immediately,
without learning the more complicated nroff or troffformatting commands.

The mm program reads the commands you have inserted in your text and
“translates” them into nroff or troff commands when your text file is
processed. With mm you can specify the style of paragraphs, section
headers, lists, page numbering, titles, and footnotes. You can also produce
cover pages, abstracts, and tables of contents, as well as control font
changes and multicolumn output. If you are using mm along with troff to
output your text to a phototypesetter, you can specify variable spacing and
the size of yourtype.

Although using nroff or troff directly offers you a much wider range of
commands and options, we recommend that you use mm for most of your
formatting needs. Use the nroff and troff requests discussed in Chapter 5,
“The Nroff/Troff Tutorial” and Chapter 6, “Nroff/Troff Reference” only
when necessary.

3.1.1 Inserting mm Macros

To use the mm macros to format a document, enter your text normally,
interspersed with formatting commands. These commands are uppercase
letters preceded by a dot (.) andappearatthebeginningof a line. Instead of
indentingforparagraphs, forexample, you can use the .P macro beforeeach
paragraph, to produce extra line space:

P
To meet the objectives proposed at the meeting...

The .P macro can also beused to indent paragraphs. For more information,
see Section 4.4.1, “Paragraphs™.

A single mm macro can often perform a number of formatting functions at
once. In a long document, you might have several sections, each beginning
with a numbered heading, like this

1.0 Saltwater Fishing in the Paclfic Northwest
To create this header, youwould enter:
.H 1 "Saltwater Fishing in the Pacific Northwest"

Not only will mm create a bold heading and leave a space between the
heading and the text which follows, it will also automatically number all the
headings in the document sequentially. Furthermore, if you use the table of

3-1

XENIX Text Processing

To createthisheadingformat, you wouldinsert thefollowing in a textfile:

.H 2 "Paragraphs and Headings"

This section describes the types of paragraphs and the

kinds of headings that are available.

.H 3 "Paragraphs”

Paragraphs are specified with the .P macro. Usually, they

are flush left.

.H 3 "Headings"

.HU "Numbered Headings"

There are seven levels of numbered headings. Level 1 is the
highest; level 7, the lowest.

.p

Headings are specified with the .H macro, whose first argument
is the level of heading (1 through 7).

.HU "Unnumbered Headings"

The macro .HU is a special case of .H which creates a heading
with no heading number.

mm produces these headings in default styles which can be redefined, if
necessary. This is described in detail in Chapter 4, “mm Reference”. The
headings are automatically numbered and are used to print a table of
contents if the table of contents (.-TC) macro is used. The numbers maybe
altered or reset with the number register (.nr) request. To restart the
numbering of a second level heading at 1, you would insert the following
command:

arH21
3.2.2 Lists

All list formats in mm have a list-begin macro, one or more list items, each
consisting of a .LI macro followed by the list item text, and the list-end
macro (.LE). In addition to the bullet list demonstrated at the beginning of
this chapter, there is also the dash list, using the list begin macro (.DL) to
create a list format like the bullet list except marked with dashes rather than
bullets. A mark list ((ML) is also available, to mark list items with the
character of your choice.

The automatic list ((AL) macro automatically numbers list items in one of
several ways. When specified alone, or followed by “1”, the .AL macro
numbers the list items with Arabic numbers. The macro .AL A specifies a
listordered A, B, C, etc. The macro .ALfollowedbyalowercasea (.ALa),
specifies a, b, c, etc. The macro .AL I numbers list items with Roman
numerals. .AL i numbers a list with lowercase Roman numerals (i, ii, iii,
etc.).

T

S

B LI

Using the mm Macros

Numbered lists may be nested to produce outlines and otherformats. For
example:

b I. Incan Archaeological Sites

A. Peru
1. MacchuPicchu
2. Pisac

. B. . Ecuador

Thisis produced with:

.ALI
Incan Archaeological Sites
.AL A

Peru
AL1
.LI
Macchu Picchu
LI
Pisac
.LE -
.LI
Ecuador
.LE

.LE

In addition to thenumbered and marked lists, mm offers a variable list (. VL)
macro, which is usefulforproducingtwo-column lists with indents. The .VL
macro is described in detailin Chapter 4, “mm Reference”.

3.2.3 Font Changes and Underlining

To produceitalics on the typesetter, precede the text to beitalicized with the
sequence\fIand followit with \fR. For example:

\flas much text as you want
can be typed here\fR

Italics are represented on lineprinters and letter-quality printers by

3-5

XENIX Text Processing

desirable on the typesetter. The command .1C stops two-column output
and returns to one-column output.

3.3 Using Nroff/Troff Commands

If you want to format text using mm without learning the other formatting
programs, you should become familiar with at least a few simple nroff/troff
commands, which you will probably need to supplement the mm macros.
Thesework with both typesetter and lineprinter or terminal output:

.bp Beginnewpage.
.br . “Break”,thatis, stoprunningtext from linetoline.
.spn Insertnblanklines.

3.4 Checking mm Input with checkmm

The program checkmm can be used to check theaccuracy of your input to
mm , without actually formatting a document. If you use checkmm
regularly, you will save a great deal of processing time, because you will be
able to “debug” your input file quickly, without running the nroff and troff
programs. Toinvoke checkmm, usethe commandline:

checkmm filename

The output of checkmm goes to the standard output (the terminalscreen) by
default. checkmm checks for correct pairing of macros, including .DS/.DE,
.TS/.TE, and .EQ/.EN. Italso looks for list specification format, making
sure that every list has a list begin macro (.AL, .DL, .BL, .ML, VL, etc.)
and a list end macro ((LE). Normally, mmcheck prints a list of errors and
thelines where they occurred. For example:

chapls:
Extra .DE atline 74
539 lines done.

Note, however, thatthelocation of an error may occasionally be obscured.
In theexample above, the“‘extra” .DE could actually be caused by a missing
.DS.

38

Nk

N

Chapter 4
mm Reference

4.1

4.2

43

4.4

Introduction 1 :

4.1.1
4.1.2
41.3
4.14

WhyUsemm? 1

Organization and Conventions 1
Structure of a®ocument 2
Definitions 2

Invokingthe Macros 3

421
4.2.2
423

42.4

4.2.5

Themm Command 3
The-cmor-mmFlags 4

Typical CommandLines 4
CommandLineParameters 4
Omission of-cmor-mm 6

Formatting Concepts 7

43.1
43.2
4.33
4.3.4
43.5
4.3.6
4.3.7

Argumentsand Quoting 7
Unpaddable Spaces 8

Hyphenation 8

Tabs 9

Bullets 9

Dashes, Minus Signs, and Hyphens 9
Trademark String 10

Paragraphsand Headings 10

44.1
44.2
443
4.4.4
44.5
44.6
4.4.7
4.4.8
4.49
4.4.10

Paragraphs 10

NumberedHeadings 11

Appearance of Headings 12

Bold, Italic, and Underlined Headings 13
HeadingPoint Sizes 13

Marking Styles 14

UnnumberedHeadings 15

Headings and the Tableof Contents 15

First-Level Headings and the Page Numbering Style 16
UserExitMacros 16

4.5 Lists 17
4.5.1 SampleNestedList 18
4.5.2 ListItem 20
453 ListEnd 21
4.5.4 Initializing Automatically Numbered or Alphabetized Lists 21
4.5.5 BulletList 22
4.5.6 DashList 22
4.5.7 Marked List 22
4.5.8 Referencelist 22
4.59 Variable-ItemList 23
4.5.10 List-Begin Macroand Customized Lists 24

4.6 Displays 25
4.6.1 StaticDisplays 26
4.6.2 FloatingDisplays 27
4.6.3 Tables 28
4.6.4 Equations 30
4.6.5 Figure, Table, Equation, and Exhibit Captions 30
4.6.6 ListofFigures, Tables, Equations, and Exhibits 31

4.7 Footnotes 31 !\
4.7.1 Formatof Footnote Text 32

4.8 PageHeadersand Footers 34
4.8.1 Default Headersand Footers 34
4.8.2 PageHeader 34
4.8.3 Even-PageHeader 35
4.8.4 Odd-PageHeader 35
4.8.5 PageFooter 35
4.8.6 Even-PageFooter 35
4.8.7 (0Odd-PageFooter 35
4.8.8 FooterontheFirstPage 36
4.8.9 Default Header and Footer With Section-Page Numbering 36
4.8.10 Stringsand Registers in Header and Footer Macros 36
4.8.11 Headerand Footer Example 36
4.8.12 Generalized Top-of-PageProcessing 37
4.8.13 Generalized Bottom-of-Page Processing 37
4.8.14 TopandBottomMargins 38

4.9 Table of Contents 38

4.10 References 39

4.10.1
4.10.2
4.10.3
4.10.4

Automatic Numbering of References 39
Delimiting ReferenceText 40
Subsequent References 40
ReferencePage 40

4.11 Miscellaneous Features 40

411.1
4.11.2
4.11.3
4.11.4
4.11.5
4.11.6
4.11.7
4.11.8
4.11.9

Bold, Italic, and Roman Fonts 41
Right Margin Justification 41
SCCS Releaseldentification 42
Two-Column Output 42

Vertical Spacing 43

Skipping Pages 44

Forcingan OddPage 44

Setting Point Sizeand Vertical Spacing 44

Inserting Text Interactively 45

4.12 Memorandum and Released Paper Styles 45

412.1
4122
4123
412.4
412.5
4.12.6
4.12.7
4.12.8
4.12.9

Title 46

Authors 46
TechnicalMemorandum Numbers 47
Abstract 47

OtherKeywords 48

Memorandum Types 48

Date and Format Changes 49
Altemate First-Page Format 49
Released-Paper Style 49

4.12.10 Order of Invocation of BeginningMacros 50
4.12.11 Macros for the End of aMemorandum 50
4.12.12 Copy to and Other Notations 51

4.12.13 Approval Signature Line 52

4.12.14 Forcinga One-PageLetter 52

4.12.15 Cover Sheet 53

4.13 Reserved Names 53

4.13.1
4.13.2
4.13.3
4.13.4
4.13.5

NamesUsed by Formatters 53
Names Usedbymm 54
NamesUsedbyeqn/neqnandtbl 54
User-Definable Names 54

Sample Extension 55

=

mm Reference

4.1 Introduction

This chapter is the reference guide for the mm Memorandum Macros. mm
provides a unified, consistent, and flexible tool for producing many
common types of documents, often eliminating the need for working
directly with nroffor troff commands. mm is the standard, general-purpose
macro package formostdocuments. =

Using the mm macros, you can produce letters, reports, technical
memoranda, papers, manuals, and books. Documents may range in length
from single-page letters to documents that are hundreds of pageslong.

4.1.1 Why Use mm?

There are several reasons whywe recommend using mm instead of working
with theformatting programs nroff and troff directly. These include:

—. Youneednot be an expert to use mm successfully. If yourinputis
incorrect, the macros attempt to interpret it, or a message
describing the erroris output.

- Reasonable default values are provided so that simple documents
can be prepared without complexsequences of commands.

—~ Parameters are provided to allow for individual preferences and
requirements in document styling.

— The capability exists for expert users to extend the mm macros by
addingne wmacros orredefining existing ones.

— The output of mm is device independent, allowing the use of
terminals, lineprinters, andphototypesetters withno change to the
macros.

— Theneed for repetitious input is minimized by allowing the user to
specifyparameters once at the beginning of a document.

— Output style can be modified without making changes to the
documentinput.

4.1.2 Organijzation and Conventions

Each section of this chapter explains a feature of mm, with the more
commonlyused features explained first. You mayfindyou haveno need for
the information in the later sections, or for some of the options and
parameters which accompany even common features. This reference guide
is organized so that you can skim a section to obtain formattinginformation
youneed, andskip featuresforwhich youhave no use.

41

XENIX Text Processing

4.1.3 Structure of a Document

Input for a document to be formatted with mm contains four major parts,

any of whichis optional. If present, theymust occurin the following order:

1. Parameter-setting. This segment determines the general style and
appearance of a document, including page width, margin
justification, numbering styles for headings and lists, page headers
and footers, and other properties. In this segment, macros can be
added or redefined. If omitted, mm will produce output in a
default format; this segment produces no actual output, but
performs the setup for the rest of the document.

2. Beginning. This segment includes those items that occur only
once, at the beginning of a document (e.g., title, author’s name,
date).

3. Body. This segment contains the actual text of the document. It
may be as small as a single paragraph, or as large as hundreds of
pages. It may include hierarchically-ordered headings of up to
seven levels, which may be automatically numbered and saved to
generate the table of contents. Also available are list formats with
up to five levels of subordination, which may have automatic
numbering, alphabetic sequencing, and marking. The body may

contain various types of displays, tables, figures, references, and

footnotes.

4. Ending. Thissegment contains thoseitems that occur only onceat
the end of a document. Included here are signature(s) and lists of
notations (e.g., “copy to” lists). In this segment, macros may be
invoked to print information that is wholly or partially derived
from the rest of the document, such as the table of contents or the
coversheet.

The size or existence of any of these segments depends on the type and
length of the document. Although a specific. item (such as date, title,
author’s name) may be printed in several different ways depending on the
document type, it will always be enteredin the same form.

4.1.4 Definitions

The following terms are used throughout this chapter:

Formatter

Requests

4-2

Refers to eitherof the text-formatting programs nroff or troff. W
Built-in commands recognized by the formatters. Although it

may not be necessary to use these requests directly, they are
referred to in this chapter.

mm Reference

Macros Named collections of requests. Each macro is an abbreviation
for a collection of requests that would otherwise require
repetition. mm supplies many predefined macros, and you
may define additional macros as necessary. Macros and
requests share the same set of names and are used in the same
way.

Strings Provide character variables, each of which names a string of -
characters. Strings are often used in page headers, page
footers, and lists. They use the same names as requests and
macros. A string can be defined with thc dcfine string (.ds)
request, and then referred to byitsname, preceded by* fora
one-charactername or*(foratwo-charactername.

Numberregisters
Integer variables used for flags, arithmetic, and automatic
numbering. A register can be given a value using a number
register (.nr) request, and can be referenced by preceding its
name by \n for onecharacter names or \n(for two-character..
names.

4.2 Invoking the Macros

This section describes the command lines necessary to mm, with different
options on various outputdevices.

4.2.1 The mm Command

The mm command is used to print documents using nroff and the mm
macros. This command is equivalent to invoking nroff with the -mm flag.
Options are available to specil’y preprocessing by tbl and/or by eqn/neqn,
andforpostprocessing by various outputfilters, such as col. Anyarguments
or flags not recognized by mm are passed to nroff. The following options
can occurin anyorderbeforethefilenames:

- Invokesneqn.

-t Invokes tbl.

- Invokescol.

-E Invokes the “-e” option of nroff.

-y Invokes -mm (uncompacted macros) instead of -cm (See

Section4.2.2 of thismanual).

-12 Invokes 12-pitch mode (The pitch switch on the terminal must
besetto 12).

43

XENIX Text Processing

4.2.2 The -cm or -mm Flags

Themm package canalsobe invoked by including the -cm or -mm fiagas an
argumentto theformatter, asin:

onroff -mm file
4.2.3 Typical Command Lines

Theprototype command lines areas follows:

Textwithouttables or equations:

mm [options] filename
nroff [options] filename
troff [options] filename

Textwith tables:

mm -t [options] filename
tbl filename | nroff [options] -mm
tbl filename | troff [options] -mm

Textwith equations:

mm -e [options] filename
neqn filename| nroff [options] -mm
eqn filename | troff [options] -mm

Text with both tables and equations:

mm -t-e [o tionsf filename
tbl filename|neqn | nroff [options] -mm
tbl filenameleqn | troff [options] -mm

If two-column processing is used with nroff, either the -c option must be
specified to mm or the nroff output must bepostprocessed by col.

4.2.4 Command Line Parameters

Number registers hold parameter values that control various aspects of
outputstyle. Many of these can be changed within the text files with number
register (.nr) requests. In addition, some of these registers can be set from
the command line itself, a useful feature for those parameters that should
not be permanently embedded within the input text itself. If used, these
registers must be set on the command line or before the mm macro
definitions are processed. These are:

-TAn For n =1, this has the effect of invoking the .AF macro without
an argument.

. }/_\'

-rD1

Lk

-tNn

-rOk

mm Reference

n sets the type of copy (e.g., DRAFT) to be printed at the
bottom of each page:

n=1 For OFFICIAL FILE COPY
n=2 ForDATEFILE COPY

n=3 For DRAFT with single-spacing and default
paragraph style

n=4 For DRAFT with double-spacing and 10-space
paragraph indent

Sets “debug mode”’. This flag requests the formatter to continue
processing even if mm detectserrors that would otherwise cause
termination. It also includes some debugging information in the
default page header.

' Controls the font of the Sub-jeét/Daté/Frdiu fields. Ifn =Othese

fields are bold (default for troff) and if #» = 1 they are regular text
(default for nroff).

Sets the length of the physical page to k lines. For nroff, k is an
unscaled number representing lines or character positions; for
troff, k must be scaled. The default valueis 66 lines per page.

Specifies the page numbering style. When n =0 (default), all
pages get the (prevailing) header. When n=1, the'page header
replaces the footer on page 1 only. When n =2, the page header
is omitted from page 1. When n =3, section-page numbering
occurs. When n =4, the default page header is suppressed, but
user-specified headers are not affected. When n=35, section-
pageand section-figure numberingoccurs.

The contents of the prevailing header and footer do not depend
on the value of the number register N; N only controls whether
and where the header (and, for N =3 or 5, the footer) is printed,
as well as the page numbering stylé. In particular, if the header
and footer values are null, the value of N isirrelevant.

Offsets output k spaces to the right. For nroff, these values are
unscaled numbers representing lines or character positions. For
troff, these values must be scaled. This register is helpful for
adjusting output positioning on some terminals. If thisregisteris
not set on the command line the default offset is .75 inches.
NOTE: The register name is the capital letter (O), not the digit
zero (0).

4-5

XENIX Text Processing

-IPn Specifies that the pages of the document are to be numbered
starting with n. This register may also be set via a .nr request in
theinput text.

-ISn Sets the point size and vertical spacing. The defaultn is 10, i.e.,

10-point type on 12-point leading (vertical spacing), giving 6lines
perinch. This parameter applies to troffonly.

Tn Provides register settings for certain devices. If n =1, then the
line length and page offset are set to 80 and 3, respectively.
Setting n to 2 changes the page length to 84 lines per page and
inhibits underlining. The defaultvaluefor nis0. This parameter
applies to nroff only.

-rU1 Controls underlining of section headings. This flag causes only
letters and digits to be underlined. Otherwise, all characters
(including spaces) are underlined. This parameter applies to
nroffonly.

-rWk Sets page width (i.e., line length and title length) to k. For nroff,
k is an unscaled number representing lines or character
positions;fortroff, k mustbescaled. Thisregister can be used to
change the page width from the default value of 6.0 inches (60
charactersin 10pitch or72characters in 12 pitch).

4.2.5 Omission of -cm or -mm

If many arguments are required on the command line, itmay be convenient
to setup thefirst(or only) inputfileof adocumentas follows:

.ss 18

.so /usr/lib/tmac/tmac.m
.ss 12

remainder of text

In this case, do not use the-cm or-mm flags (orthemm ormmt commands);
the .so request has the equivalent effect. The registers must be initialized
before the .so request, because their values are meaningful only if set before
the macro definitions are processed. When using this method, it is best to
putinto the input file only those parameters that are seldom changed. For
example:

.nr W 80

.ar O 10

.arN3

.so /usr/lib/tmac/tmac.m
.H 1 "INTRODUCTION"

-

4-6

/‘\\

mm Reference

specifies, for nroff, a line length of 80, a page offset of 10, and section-page
numbering.

4.3 Formatting Concepts

The norimal action of theformattérsis to fill outputlines from oné or more
input lines. The output lines may be justified so that both the left and right
margins are aligned. As the lines are being filled, words may also be
hyphenated as necessary. Itis possible to turn any of these modes on and
off. Turningoff’ fillmodealso turns off justification and hyphenation.

Certain formatting commands (both requests and macros) cause the filling
of the current outputline to cease. Printing of a partially filled output line is
known asa “break”. A few formatter requests andmostof the mm macros
causeabreak.

While formatter requests can be used with mm, they occasionally have
unpredicted consequences. There should be little need to use formatter
requests. The macros described in this section should be used in most cases
because you will be able to control and change the overall style of the
document easily and specify complex features, such as footnotes or tables
of contents, without using intricate formatting requests. A good rule is to
usedirectnroffand troff requests onlywhen absolutely necessary.

To make future revision easier, input lines should be kept short and should
be broken at the end of clauses; each new full sentence should begin on a
newline.

4.3.1 Arguments and Quoting

Forany macro, a“nullargument” is an argument whose width is zero. Such
an argument often has a special meaning; the preferred form for a null
argument is double quotation marks ("). Omitting an argument is not the
same as supplying a null argument. Furthermore, omitted arguments can
occur only at the end of an argument list, while null arguments can occur
anywhere.

Any macro argument containing ordinary (paddable) spaces must be
enclosed in double quotation marks, (""). Otherwise, it will be treated as
several separate arguments. A double quotation mark (") is a single
character that must not be confused with two apostrophes or acute accents
(”), orwith two grave accents (**).

Double quotation marks (") are not permitted as part of the value of a macro
argument or of a string that is to be used as a macro argument. If you must,
use two grave accents (*°) and/or two acute accents (*°) instead. This
restriction is necessary because many macro arguments are processed
(interpreted) several times. For example, headings are first printed in the
textand may be reprinted in thetable of contents.

XENIX Text Processing

4.3.2 Unpaddable Spaces

When output lines are justified to give an even right margin, existing spaces
in a line may have additional spaces appended to them. This may affectthe
desired alignment of text. To avoid this problem, itis necessaryto be ableto
specify a space that cannot be expanded during justification, i.e., an
“unpaddable space”. There are several ways to do this. First, you may type
a backslash (\) followed by a space. This pair of characters generates an
unpaddable space. Second, you may sacrifice some seldom-used character
to be translated into a space upon output. Because this translation occurs
after justification, the chosen character may be used anywhere an
unpaddable space is desired. The tilde (7) is often used for this purpose. To
use it in this way, insert the following line at the beginning of the document:

Ar”
If a tilde must actuallyappearin the output, itcan be temporarily recovered
byinserting

Ar

before the place where it is needed. Its previous usage is restored by
repeating the .tr”, but only after a break or after theline containing the tilde
has been forced out. Use of the tilde in this way is not recommended for
documents in which the tilde is used within equations.

4.3.3 Hyphenation

The formatters do not perform hyphenation unless the user requests it.
Hyphenation can be turned on in thebodyofthe textby specifying

.ar Hy 1

at the beginning of the document. If hyphenation is requested, the
formatters will automatically hyphenate words as needed. However, you
may specify the hyphenation points for a specific occurrence of any word by
using a special character known as a “hyphenation indicator” (initialy, the
two-character sequence \ %), or you may specify hyphenation points for a
smalllistof words(about 128 characters).

If the hyphenationi indicator (initially, the two-character sequence \%)
appears at the beginning of a word, the word is not hyphenated. It can also
beused to indicate legal hyphenation point(s) inside aword. In any case, all
occurrences of the hyphenation indicator disappear on output.

Theuser mayspecify a different hyphenation indicator with the command:
.HC [hyphenation-indicator]

The caret () is often used for this purpose; this is done by inserting the
following at the beginning of a document:

HC*

4-8

mm Reference

Note that any word containing hyphens or dashes—also known as em
dashes-willbe broken immediately after a hyphen or dash if it is necessary to
hyphenate the word, even if the formatter hyphenation function is turned
off.

Using the .hw request, you may sui)ply a small list of words with the proper

hyphenation points indicated. For example, to indicate the proper
hyphenation of theword “printout”, you mayspecify:

.hw print-out
4.3.4 Tabs

Themacros .MT, .TC, and .CSuse the .tarequestto settab stops, and then
restore the default values of tab settings. Setting tabs to other than the
defaultvaluesis the user’s responsibility.

Note that a tab character is always interpreted with respect to its position on
the input line, rather than its position on the output line. In general, tab

- characters should -appear-only on-lines processed in no-fill mode. The tbl- --

program changes tab stops but does not restore the default tab settings.
4.3.5 Bullets

A bullet (o) is often obtained on a typewriter terminal by using the letter o
overstruck by a +. For compatibility with troff, a bullet stringis providedby
mm. Rather than overstriking, use the sequence:

*BU

wherever a bullet is desired. Note that the bullet list (.BL) macro uses this
string to automatically generate bullets forthelistitems.

4.3.6 Dashes, Minus Signs, and Hyphens

Troff has distinct graphics for a dash, a minus sign, and a hyphen, while
nroff does not. If you intend tousenroff only, you can use the minus sign (-)
forallthree.

If you plan to use both formatters, you must be careful in preparing text.
Unfortunately, these characters cannot be represented in a way that is both
compatibleand convenient. Try the following:

Dash Use *(EM for each textdash for both nroff and troff. Thisstring
generates an em dash (-) in troff and two dashes (——) in nroff.
Note that the dash list (DL) macro automatically generates the
em dashes for thelistitems.

Hyphen Use the hyphen character () for both formatters. Nroff will
printitasis, and troffwill print a truehyphen.

XENIX Text Processing

Minus Use \- for a true minus sign, regardless of formatter. Nroff will
ignorethe\, while troff will print a trueminussign.

4.3.7 Trademark String

The trademark string *(Tm places the letters TM one half-line above the
textthatitfollows. For example, the input:

The XENIX*(Tm System Reference Manual.
yields:
The XENIX™ System Reference Manual.

4.4 Paragraphs and Headings
This section describessimple paragraphs and section headings.
4.4.1 Paragraphs

The paragraph macro is used to begin two kinds of paragraphs:

P [type]

one or more lines of text.

In a “left-justified” paragraph, the first line begins at the left margin, while in
an “indented” paragraph, itis indented five spaces.

A document has a default paragraph style obtained by specifying .P before
each paragraph that does not follow a heading. The default style is
controlled by the number register Pt. The initial value of Pt is 0, which
always provides left-justified paragraphs. All paragraphs can be forced to
beindented byinsertingthefollowing at theb eginning of the document:

arPtl

All paragraphs will b e indented except after headings, lists, and displays if
thefollowing:

.ar Pt2
isinserted atthebeginningofthedocument.

The amount a paragraph is indented is contained in the register Pi, whose
defaultvalueis 5. Toindent paragraphs by 10spaces, for example, insert:

.ar Pi 10

at the beginning of the document. Both the Pi and Ptregistervalues mustbe
greater than zero for anyparagraphsto be indented.

Thenumberregister Ps controls the amount of spacing between paragraphs.
By default, the Ps register is set to 1, yielding one blank space (1/2 vertical
space). Values that specify indentation must be unscaled and are treated as

4-10

=4

N

mm Reference

“character” positions, i.e., as anumberof ens. In troff, an en is thenumber
of points (1 point = 1/72-inch) equal to half the current point size. In nroff,
an enis equal to the width of a character.

Regardless of the value of Pt, an individual paragraph can be forced to be
left-justified or indented. .P always forces left justification; .P 1 always
causes indentation by the amount specified by the register Pi. If .P occurs
inside a list, the indent (if any) of the paragraph is added to the current list
indent.

Numbered paragraphs may be produced bysetting theregister Np to 1. This
produces paragraphs numbered within firstlevel headings, e.g., 1.01, 1.02,
1.03, 2.01.

A different style of numbered paragraphsisobtained byusingthe
.nP

macro rather thanthe .P macro for paragraphs. This produces paragraphs
that are numbered within second level headings and contain a double-line

-indent in which the text 6f the second line is indernted to be aligned with the

text of thefirstlineso thatthenumber stands out. Forexample:

.H 1 "FIRST HEADING"
.H 2 "Second Heading"
.nP

one or more lines of text
4.4.2 Numbered Headings

Theheading macro hastheform:

.H level [heading-text] [heading-suffix]
zero or more lines of text

The .H macro provides seven levels of numbered headings. Level 1 is the
highest; level 7 the lowest. The heading-suffix is appended to the heading-
text and may b e used for footnote marks which should not appear with the
heading text in the table of contents. You will not need to insert a .P macro
after a .H or .HU macro, because the .H macro also performs the function
of the .P macro. Ifa.Pfollowsa .H, the .Pisignored.

The effect of .H varies accordingto the level argument. First-level headings
arepreceded by two blank lines (one vertical space); all others are preceded
byone blank line.

H1heading-text
Gives a bold heading followed by a single blank line. The
following text begins on a new line and is indented according to
the current paragraph type. Full capital letters should normally
beused to make the heading stand out.

4-11

XENIiX Text Processing

.H2heading-text
Yields a bold heading followed by a single blank line. The
following textbegins on a newline and is indented according to
the currentparagraph type. Normally, initial capitals areused.

Hnheading-text
Where n is anumber greater than 3 and less than 7, produces an
underlined (italic) heading followed by two spaces. The
following text appears on the sameline.

Appropriate numbering and spacing (horizontal and vertical) occur even if
theheadingtextis omitted from an .H macro.

4.4.3 Appearance of Headingé

You can modify the appearance of headings quite easily by setting certain
registers and strings at the beginning of the document. In this way you can
quickly alter a document’s style because the style control information is
concentrated in a few lines, rather than distributed throughout the
document. ‘

A first-level heading normally has two blank lines (one vertical space)
precedingit, and all others have oneblank line. If a multiline heading splits
across pages, it is automatically moved to the top of the next page. Every
first-levelheading may beforced to the top of anewpage by inserting

.arEjl

at the beginning of the document. Long documents may be made more
manageable if each section starts on anewpage. Setting Ej to a highervalue
has the same effect for headings up to thatlevel;i.e., a page eject occurs if
theheadinglevelisless than or equalto Ej.

Three registers control the appearance of text immediately following an .H
macro. They are heading break level (Hb), heading space level (Hs), and
post-headingindent (Hi).

If the heading level is less than or equal to Hb, a break occurs after the
heading. If the heading level is less than or equal to Hs, a blank line is
inserted after theheading. Defaults for Hb and Hs are2. Ifaheadinglevelis
greater than Hb and also greater than Hs, then the heading (if any) is run
into the following text. With these registers, you can separate headings from
text consistently throughout the document, and allow for easy alteration of
whitespace and header emphasis.

For any stand-alone heading, i.e., aheading not run into the following text,
the alignment of the next line of outputis controlled by the register Hi. If Hi
is 0, text is left-justified. If Hiis 1 (the default value), the text is indented
according to the paragraph type as specified by the register Pt. Finally, if Hi
is 2, textisindented to line up with the first word of the headingitself, so that
theheading number stands out more clearly.

4-12

™

mm Reference

For example, to cause a blank line to appear after the first three heading
levels, to have no run-in headings, and to force the text following all
headings to be left-justified (regardless of the value of Pt), the following lines
should appear atthe top of thedocument:

.arHs 3
.arHi O

The register Hc can be used to obtain centered headings. A heading is
centered ifits level is less than or equalto Hc, and if itis stand-alone. HcisQ
by default (no centered headings).

4.4.4 Bold, Italic, and Underlined Headings

Anyheadingthatis underlined bynroffis made italic bytroff. Thestring HF
(heading font) contains seven codes thatspecify the fonts for heading levels
1-7.

Levels 1and 2 are bold; levels 3 through 7 are underlined in nroffanditalicin
troff. Theuser may reset HF as desired. Any value omitted from the right
end of thelististaken tobe 1. For example, the following would resultin five
bold levels and two nonunderlined (Roman) levels:

.dsHF 33333

Nroff canunderline in two ways. Theunderline(.ul) requestunderlinesonly
letters and digits. The continuous style (.cu) request underlines all
characters, including spaces. By default, mm attempts to use the
continuous style on any heading that is to be underlined and is short enough
to fit on a single line. If a heading is too long, only letters and digits are
underlined.

Using the —rU1 flag when invoking nroff forces the underlining of only
letters and digits in allheadings.

4.4.5 Heading Point Sizes

If you are using troff, you may specify the desired pointsize for each heading
level with the HP string, as follows:

.ds HP [ps1] [ps2] [ps3] [ps4] [psS] [ps6] [ps7]

By default, the text of headings (.H and .HU) is printed in the same point
size as the body except that bold stand-alone headings are printed in a size
onepointsmallerthan the body. ThestringHP, similarto thestringHF, can
be specified to contain up to seven values, corresponding to the seven levels
ofheadings. For example:

.ds HP12121110101010

4-13

XENIX Text Processing

prints the first two heading levels in 12-point type, the third heading level in
11-point type, and the remainder in 10-point type. The specified values may
also berelative point-size changes, e.g.:

ds HP +2+2-1-1

If absolute point sizes are specified, thosesizes will beused regardless of the
point size of the body of the document. If relative point sizes are specified,
then the point sizes for the headings will be relative to the point size of the
body, even if the pointsize of the body is changed. Omitted or zero values
imply that the default point size will be used for the corresponding heading
level.

Note

When you change the point size of headings, vertical spacing
remains unchanged. Therefore, if you specify a large point size
for a heading, you must also increase vertical spacing (with .HX
and/or .HZ) to prevent overprinting.

4.4.6 Marking Styles

Theheadingmark macro has the form:
HM [argl] ...[Jarg7]

to change the heading mark style of a heading. The registers named H1
through H7 are used as counters for the seven levels of headings. Their
values are normally printed using Arabic numerals. The heading mark style
(.HM) macro allows this choice to be overridden. This macro can have up
to seven arguments; each argument is a string indicating the type of marking
to be used. Omitted values areinterpreted as 1; illegal values have no effect.
The values available are:

Value Interpretation

1 Arabic (default for all levels)

0001 Arabic with enough leading zeroes to get specified digits
A Uppercase alphabetic

a Lowercase alphabetic

I Uppercase Roman

i Lowercase Roman

By default, the complete heading mark for a given level is built by
concatenating the mark for thatlevel to the right of all marks for all leveis of
higher value. To inhibit the printing of successive heading level marks, i.e.,
to obtain just the current level mark followed by a period, set the heading-
mark type (Ht) registerto 1.

4-14

mm Reference

Forexample, acommonly used outline style is obtained by:

HMIA1lai
.ar Ht 1

4.4.7 Unnumbered Headings
Theunnumbered heading macrohasthe form:

.HU heading-text

It producesunnumbered heads. .HU is a special case of .H;; it is handled in
the same way as .H, except that no heading mark is printed. In order to
preserve the hierarchical structure of headingswhen .Hand .HU macros are
intermixed, each .HU heading is considered to exist at the level given by
register Hu, whose initial value is 2. Thus, in the normal case, the only
differencebetween:

.. -HU heading-text
and
.H 2 heading-text

is the printing of the heading mark for the latter. Both have the effect of
incrementing the numbering counter for level 2, and resetting to zero the
counters for levels 3 through 7. Typically, the value of Hu should be set to
make unnumbered headings (if any) be the lowest-level headings in a
document. .HU can be especially helpful in settingup appendices and other
sections thatmay notfitwellintothe numbering scheme of the main body of
a document. :

4.4.8 Headings and the Table of Contents

The text of headings and their corresponding page numbers can be
automatically collected for a table of contents. This is accomplished by
specifying in the register C1 what level headings are to be saved, then
invokingthe . TCmacro attheend of thedocument.

Any heading whose level is less than or equal to the value of the contents
level (CL) register is saved and printed in thetable of contents. The default
valuefor Clis2;1i.e., thefirsttwo levels of headings are saved.

Because of the way the headings are saved, it is possible to exceed the
formatter’s storage capacity, particularly when saving many levels of many
headings while also processing displays and footnotes. If this happens, an
“Out of temp filespace” message will occur; the onlyremedy is tosave fewer
levels or to have fewer words in the heading text.

4-15

XENIX Text Processing

4.4.9 First-Level Headings and the Page Numbering Style

By default, pages are numbered sequentially at the top of the page. Forlarge
documents, it may be desirable to use section-page numbering where the
section is the number of the current first-level heading. This page
numbering style can be achieved by specifying the -rN3 or -rN5 flag on the
command line. As a side effect, thisalso sets Ej to 1, so that each section
begins on anewpage. The pagenumberis printed atthebottom of the page,
so thatthe correct section number is printed.

4.4.10 User Exit Macros

This section is intended only for users who are accustomed to writing
formatter macros. With .HX, .HY and .HZ you can obtain control over the
previously described heading macros. You must define these macros
yourself and usethem in the form:

.HX dlevel rlevel heading-text
.HY dlevel rlevel heading-text
.HZ dlevel rlevel heading-text

The .H macro invokes .HXshortly before the actual heading textis printed;
it calls .HZ asits last action. After HXisinvoked, thesize of the headingis
calculated. This processing causes certain features that may have been
included in .HX, such as .4 for temporary indent, to be lost. After the size
calculation, .HY is invoked so that you may specify these features again. All
the default actions occur if these macros are not defined. If you define .HX,
.HY, or .HZ, your definition is interpreted at theappropriate point. These
macros can therefore influence the handling of all headings, because the
.HU macro is actually a special case of the .H macro.

If theuser originally invoked the .H macro, then the derived level dlevel and
the real level rlevel are both equal to the level given in the .H invocation. If
you originally invoked the .HU macro, dlevel is equal to the contents of
register Hu , and rlevel is 0. In both cases, heading-text is the text of the
original invocation.

Bythe time .H calls .HX, ithas already incremented the heading counter of
the specified level, produced a blank line (vertical space) to precede the
heading, and accumulated the heading mark, i.e., the string of digits,
letters, and periods needed for a numbered heading. When .HX is called,
all user-accessible registers and strings can be referenced as well as the
following:

swing }0
If rlevel is nonzero, this string contains the heading mark. If rlevel
is 0, this stringis null.

register ;0
This register indicates the type of spacing that is to follow the

4-16

N

mm Reference

heading. A valueofOmeansthatthe headingis run-in. A value of
1 means a break (but no blank line) is to follow the heading. A
valueof2meansthatablank lineis to follow theheading,.

string }2
If register ;0 is 0, this string contains two unpaddable spaces that
- will-be-used-to separate the heading-from. the following text. .If .
register ;0is nonzero, this string isnull.

register ;3

This register contains an adjustment factor for an .ne request
issued before the heading is actually printed. On entry to .HX, it
has the value 3 if dlevel equals 1, and 1 otherwise. The .nerequest
is for the following number of lines: the contents of theregister ;0
taken asblanklines (halves of vertical space), plus the contents of
register ;3 asblank lines (halves of vertical space) plus thenumber
oflinesofthe heading.

The user may alter thevalues of}0, }2, and ;3 within .HXasdesired. If you
use temporary string or macro names within .HX, choose them carefully.

-HY is called after the .ne isissued. Certain featuresrequested in . HX must
berepeated. For example:

.de HY
Af \\$1=3 .ti 5n
P

.HZ is called at the end of .H to permit user-controlled actions after the
heading is produced. For example, in a large document, sections may
correspond to chapters of a book, and you may want to change a page
headerorfooter. Forexample:

.de HZ
Af \\$1=1 .PF" “Section \\$2""
.P

4.5 Lists

This section describes thekinds of lists which can be obtained with themm
macros, including automatically numbered and alphabetized lists, bullet
lists, dash lists, lists with arbitrary marks, and lists starting with arbitrary
strings (e.g., with terms or phrasesto be defined).

In order to avoid repetitive entering of arguments to describe the
appearance of items in a list, mm provides a convenientway to specifylists.
Alllists are composed of the following parts:

4-17

XENIX Text Processing

A “list-initialization’’ macro that controls the appearance of the list
(e.g. line spacing, indentation, marking with special symbols, and
numbering or alphabetizing).

One or more “listitem” macros, each followed by theactual text of
the correspondinglistitem.

The “list end” macro that terminates the list and restores the
previous indentation.

Lists may be nested up to five levels. The list-item (_LI) macro saves the
previous list status (e.g., indentation, marking style, etc.); thelist-end (LE)
macro restores it. The format of a list is specified only once at the beginning
of list. You may also create your own customized sets of list macros with
relativelylittleeffort.

4.5.1 Sample Nested List

The input for several lists and the corresponding outputafe shown below.
The .AL and .DL macros are examples of the “list-initialization” macros.
Hereis some sampleinputtext:

4-18

.ALA

.LI

Thisis an alphabetized item.

Thistext shows the alignmentofthe second line of the item.
Thequick brown fox jumped over thelazy dog’s back.

AL

.LI

Thisis anumbereditem.

This text shows the alignment of the second line of theitem.
The quick brown fox jumped over thelazydog’sback.

.DL

LI

Thisisa dash item.

Thistextshowsthe alignment of the second line of the item.
The quick brown fox jumped overthelazy dog’s back.

—

mm Reference

LI+1
This is a dash item with a plus as prefix.

This text shows the alignment of the second line of the item.

The quick brown fox jumped overthelazydog’s back.
.LE
LI

.LE
LI
Thisis another alphabetized item, B.

This text shows the alignmentofthe second line of the item.

The quick brown foxjumped overthelazy dog’s back.
.LE
P

:I‘his paragraph appearsattheleft margin.

The outputlookslike this:

A. Thisis an alphab etized item. This text shows the a]ignment '

of the second line of theitem. The quick brown fox jumped
overthelazydog’sback.

1. This is a numbered item. This text shows the
alignment of the second line of the item. The quick
brown fox jumped over thelazy dog’s back.

— This is a dash item. This text shows the
alignment of the second line of the item. "The
quick brown fox jumped over the lazy dog’s
back.

+— Thisis a dashitem with a plusas prefix. This text
shows the alignment of the second line of the
item. Thequick brown fox jumped over the lazy
dog’sback.

2. This is numbered item 2. one or more lines of
textthat make up thelist item.

R 'ThiSiS‘numbered'item‘z;""' e e mme s e an e e e e e em e eem e e s

B. This is another alphabetized item, B. This text shows the
alignment of the second line of the item. The quick brown

foxjumped overthelazy dog’s back.

This paragraph appears atthe left margin.

4-19

XENIX Text Processing

4.5.2 List Item

The list item macro has theform:)
.LI [mark] [1] |

The .LImacro is used with all lists. It normally causes the output of asingle
blank line before its item, although this may be suppressed. If no arguments
are given, it labels its item with the “current mark’’ which is specified by the
most recentlist-iniWalization macro. If a single argument is given to .L.I, that
argument is outputinstead of the current mark. If two arguments are given,
thefirstargument becomes a prefix to the current mark, thus allowing you to
emphasize one or more items in a list. One unpaddable space is inserted
between the prefix and the mark. For example:

.BL

.LI

This is a simple bullet item.

LI+

This replaces the bullet with a plus.
LI+1

But this uses plus as prefix to the bullet.
.LE

Thisyields:
e Thisis asimplebulletitem. e
+ Thisreplacesthebulletwith a plus.

+e Butthis usesplus as prefix to the bullet.

Note that the mark must not contain ordinary (paddable) spaces, because
alignment of items will be lost if therightmargin is justified. If the “current
mark” in the current list is a null string, and the first argument of .LI is
omitted or null, the resuluing effect is that of a “hanging indent”, i.e., the
first line of the followingtext is outdented, starting at the same place where
the mark would have started.

4-20

-~

-,

mm Reference

4.5.3 List End

Thelist end macro has the form:
.LE [1]

The list end macro restores the state of the list to that existing justbeforethe

" most Tecent list-initialization macro call.” If the optional argumentis given,

the .LE outputs a blank line. You should use this option only when the .LE
is followed by running text, butnot when followed by amacro that produces
blank lines of its own, such as .P, .H, or .L1.

.H and .HU automatically clear all list information, so you may omit the
.LE(s) thatwould normally occur just before either of these macros. This is
not recommended, however, because errors will occur if the list text is
separated from the heading atsomelatertime (e.g., by insertion of text).

4.5.4 Initializing Automatically Numbered or Alphabetized Lists

The list initialization macro for numbered lists has the form:
.AL [type] [text-indent] [1]

The .ALmacroisused to begin sequentiallynumbered or alphabetized lists.
If there are no arguments, the list is numbered and text is indented by Li,
initially 6 spaces from the indent in force when the .AL is called, thus
leaving room for a space, two digits, a period, and two spaces before the
text. Values that specify indentation must be unscaled and are treated as
character positions, i.e., as the number of ensin troff.

Spacing at the beginning of the list and between the items can be suppressed
by setting the list space (Ls) register. Ls is set to the innermost list level for
which spacing is done. For example:

arlLs O

specifies that no spacing will occur around any listitems. The default value
for Ls is 6 (which is the maximum listnesting level).

The type argument may be given to obtain a different type of sequencing,
and its value should indicate the first element in the sequence desired, (i.e.,
itmustbel, A, a, I, ori). Note that the 0001 formatis not permitted. Ifzype
is omitted or null, then 1 is assumed If text-indent is non-null, it is used as
the number of spaces from the curreat indent to the text, itisused instead of
Liforthislist only. Iftext-indentisnull, then thevalue of Liwillbeused.

If the third argumentis given, a blank line willnot separate the items in the
list. A blank linewilloccurbefore thefirstitem, however.

4-21

XENIX Text Processing

4.5.5 Bullet List

Thelist-initialization macro forabullet listhas the form:
.BL [text-indent] [1]

.BL begins a bullet list, in which each item is marked by a bullet (®) followed
by one space. If text-indent is non-null, it overrides the defaultindentation~
amount of paragraph indentation as given in the register Pi. In the default
case, the text of bullet and dash lists lires up with the first line of indented
paragraphs. If a second argument is specified, no blank lines will separate
theitemsin thelist.

4.5.6 Dash List

Thelist-initialization macro fordashlists has theform:
.DL [text-indent] [1]
.DLisidenticalto .BL, exceptthat a dashisusedinstead of abullet.

4.5.7 Marked List

The form of thelist-initialization macro for amarkedlistis:
.ML mark [text-indent] [1]

.ML is much like .BL and .DL, except that it requires an arbitrary mark,
which may consist of more than a single character. Text is indented zexz-
indent spaces if the second argument is not null; otherwise, the text is
indented one more space than the width of the mark. If the third argument
is specified, no blank lines will separate the items in the list. Note that the
mark must not contain ordinary (paddable) spaces, because alignmeént of
items will be lostif theright margin is justified.

4.5.8 Reference List

Thelist-initialization macrofor areferencelist has the form:
.RL [text-indent] [1]

A .RL macro begins an automatically numbered list in which the numbers
are enclosed by square brackets ([]). Thetext-indent may be supplied, as for
\AL. If omitted or null, it is assumed to be 6, a convenient value for lists
numbered up to 99. If the second argument is-specified, no blank lines will
separatetheitemsinthelist.

422

N

mm Reference

4.5.9 Varlable-Item List

The list-initialization macro for avariable-item list is:
.VL text-indent [mark-indent] [1]

When a list begins with a-.VL, there is effectively no current -mark;-it is
expected that each .LI providesits own mark. This form is typicallyused to
display definitions of terms or phrases. Mark-indent gives the number of
spaces from the current indent to the beginning of the mark, and it defaults
to 0if omitted ornull. Text-indentgivesthe distance from the current indent
to thebeginning of the text. If thethird argument is specified, no blank lines
willseparatethe items in the list. Hereis an example of .VL usage:

Ar”

.VL 202

.LI mark~1

Here is a description of mark 1;

- mark 1 of the .LIline contains-a tilde translated- - --
to an unpaddable space in order to avoid extra spaces
between the mark and 1.

.LI second"mark

This is the second mark, also using a tilde translated

to an unpaddable space.

.LI third"mark-longer~than~indent: :

This item shows the effect of a long mark; one space separates the marlc
from the text.

LI~

This item has no mark because the

tilde following the .LI is translated into a space

.LE
Thisyields:
mark 1 Here is a description of mark 1; mark 1 of the .LIline
contains a tilde translated to an unpaddable spacein
orderto avoid extraspacesbetween themark and 1.
second mark This is the second mark, also using a tilde translated

to an unpaddable space.

thirdmark longerthanindentThis item shows the effect of a long mark;
onespaceseparates the mark from the text. '

This item has no mark because the tilde followingthe
.LIistranslated into a space.

The tilde argument on the last .LI above is required; otherwise a hanging
indent would have been produced. A hangingindent is produced by using
.VL and calling .LI with no arguments or with a null first argument. For
example:

4-23

XENIX Text Processing

.VL 10

.LI

Here is some text to show a hanging indent.
The first line of text is at the left margin.

The second is indented 10 spaces.
.LE

yields:

Hereis some text to show a hanging indent. The firstlineof textis at the left
margin. Thesecond isindented 10spaces.

Note that the mark must not contain ordinary (paddable) spaces, because
alignment of items willbe lostif theright margin is justified.

4.5.10 List-Begin Macro and Customized Lists

Thelist-beginmacro has theform:
.LB text-indent mark-indent pad type [mark] [LI-space] [LB-space]

The list-initialization macros should be adequate for most cases. However,
if necessary, you may obtain more control over list layouts by using the basic
list-begin macro .LB.

A text-indent argument gives the number of spaces that the text is to be
indented from the current indent. Normally, this value is taken from the
register Li for automatic lists and from the register Pi for bullet and dash
lists. The combination of mark-indent andpad determines the placement of
themark. Themark is placed within an area(called “mark area*’) that starts
mark-indent spaces to the right of the current indent, and ends where the
text begins text-indent spaces to the right of the current indent. The mark-
indent argument is typically 0. Within the mark area, the mark is left-
justified if pad is 0. If pad is greater than O, then n blanks are appended to
the mark; the mark-indent valueisignored. Theresulting string immediately
precedes the text. That is, the mark is effectively right-justified pad spaces
immediately to the left of the text.

Type and mark interact to control the type of marking used. If type is O,
simple marking is performed using the mark character(s) found in the mark
argument. If zype is greater than 0, automatic numbering or alphabetizing is
done, and mark is then interpreted as the first item in the sequence to be
used for numbering oralphabetizing (i.e., it ischosen from the set1, A, a, I,
i).

Each nonzero value of type from 1 to 6 selects a different way of displaying
the items. The following table shows the output appearance for each value
of type:

424

./F-\ ‘\\n

N

>

mm Reference

Type Appearance

1 x.

2 x)

3 ®)

4 [x]

5 <x>

6 {x} : R

The mark must not contain ordinary (paddable) spaces, because alignment
of items will be lost if the right margin is justified.

LI-space gives the number of blank lines (halves of a vertical space) that
should be output by each .LI macroin the list. If omitted, LI-space defaults
to 1; the value O can be used to obtain compact lists. If LI-space is greater
than O, the .LI macro issues a .ne request for two lines just before printing
the mark. LB-space, the number of blank lines to be output by .LB itself,
defaults to Oif omitted.

There are three reasonable combinations of LI-space and LB-space. The

- normal case is to set LI-space to 1 and LB-space to 0, yielding one blank line

before each item in the list; such a listis usually terminated with a .LE 1 to
end thelist with ablank line. For a more compactlist, setLI-space to 0and
LB-spaceto 1, and, again,use .LE 1 at the end of the list. Theresultis alist
with one blank line before and after it. If you set both LI-space and LB-
space to 0, and use .LE to end the list, a list without any blank lines will
result.

4.6 Displays

Displays are blocks of text that are to be kept together rather than split
across pages. mm provides two styles of displays: a “‘static’’ (.DS)styleand a
“Hoating” (.DF) style. In the static style, the display appears in the same
relative position in the output text as it does in the input text. If the display
willnotfitin thespace remaining on a page, itwill be shifted to the top of the
next page. Thismayresultin extrawhitespace at the bottom of some pages.
In thefloating style, the display floats through theinputtextto the top of the
next page if there is not enough room for it on the current page; thus the
input text thatfollows a floating display may precede it in the outputtext. A
queue of floating displays is maintained so that their relative order is not
disturbed.

By default, a display is processed in no-fill mode, with singlespacing, and is
not indented from the existing margins. You can specify indentation or
centering, as wellas fill-mode processing.

Displays and footnotes can never be nested in any combination. Although
lists and paragraphs are permitted, no headings (.H or .HU) can occur
within displays or footnotes.

4-25

XENIX Text Processing

4.6.1 Static Displays

A static display macro hastheform:

.DS [format] [fill] [rindent]
one or more lines of text
.DE

A static display is started by the .DS macro and terminated by the .DE
macro. With no arguments, .DS will accept the lines of text exactly as they
are entered (no-fill mode) and will not indent them from the prevailing left
margin indentation or from the right margin. The rindent argument is the
number of characters that the line length should be decreased, i.e., an
indentation from the right margin. This number must be unscaled in nroff
and is wreated as ens. Itmaybe scaled in trofforelseitdefaults to ems.

The format argument to .DS is an integer or letter used to control the left
margin indentation and centering. The format argument can have the
following meanings:

Code Meaning

«» No indent

OQorL No indent

lorl Indent by standard amount
2orC Center each line

3or CB Center as a block

The fill argument is also an integer or letter and can have the following
meanings:

Code Meaning
«r -fill mode
O or N Nofill mode
lorF Fill mode

Omitted arguments areinterpreted as zero.

The standard indentation is taken from the Siregister which is initially setat
5. Thus, by default, thetext of an indented display aligns with thefirstline of
indented paragraphs, whose indent is contained in the Pi register. Even
though their initial values are the same, these two registers are independent
of oneanother.

The display format value 3 (CB) centers the entire display as a block (as
opposed to .DS 2 and .DF 2, which center each line individually). Thatis,
all the collected lines are left-justified, and the display is centered based on
the width of the longest line. This format must be used in order for the
eqn/neqn mark and lineup feature to work with centered equations.

By default, ablank line is placed before and after displays. The blank lines
before and after static displays can be inhibited by setting the register Ds to
0.

4-26

mm Reference

4.6.2 Floating Displays

Thefloatingdisplaymacro has theform:

.DF [format] [fill] [rindent]
one or more lines of text
.DE :

A floating display is started by the .DF macro and terminated by the .DE
macro. The arguments have the same meanings as for .DS (see Section
4.6.1, “Static Displays”), except that for floating displays, indent, no
indent, and centering are always calculated with respect to the initial left
margin, because the prevailing indent may change between the time when
the formatter first reads the floating display and the time that the display is
printed. One blank line always occurs both before and after a floating
display.

Youmay control output positioning of floating displays through twonumber
registers, De and Df. When a floating display is encountered by nroff or

" troff, itis processed and placed into a queue of displays waitingto be output. =~

Displays are removed from the queue and printed in the orderthattheywere
entered in the queue, which is the orderthatthey appearin theinputfile. Ifa
new floating display is encountered and the queue of displays is empty, the
new display is a candidate for immediate output on the current page.
Immediate output is governed by the size of the displayand the setting of the
Df register. The De register controls whether or not text willappear on the
current page after afloating display has been produced.

ThessettingsfortheDe register areas follows:

0 Default: No special action occurs.

1 A page eject will always follow the output of each floating
display, so only one floating display will appear on a page and no
text willfollow it.

The settings for the Df register areas follows:

0 Floating displays will not be output until end of section (when
using section-page numbering) or end of document.

1 Outputs the new floating display on the current page if there is
room, otherwise hold ituntilthe end of the section or document.

2 Outputs exactly one floating display from the queue at the top of
anew pageor column (when in two-column mode).

3 Outputs one floating display on current page if there is room.

Outputs exactly one floating display at the top of a newpage or
column.

4-27

XENIX Text Processing

4 Outputs as many displays as will fit (atleast one), starting at the
top of anew page or column. Note that if regjster Deis setto 1,
each display will be followed by a page eject, causinganew top of
page to be reached, where at least one more display will be
output.

5 Default. Outputs a new floading display on the current page if
there is room. Outputs as many displays as will fit starting at the
top of anew page or column. Note that if register Deissetto 1,
each display will be followed by a page eject, causing anew top of
page to be reached, where at least one more display will be
output.

Note: anyvaluegreaterthan Sis treated asthe value 5.

The .WC macro may also be used to control handling of displays in double-
column mode and to con#rol the break in the textbeforefloating displays.

As long as the queue contains one or more displays, new displays will be
automatically added to the queue, rather than be output. When a new page
is started (or when at the top of the second column in two-column mode),
the next display from the queue will be outputif the Df register has specified
top-of-page output. When a displayis outputitis removed from the queue.

When the end of a section (when using section-page numbering) or the end
of a documentisreached, all displays are automatically output and removed
from the queue. This will occur before an .SG, .CS, or .TC macro is
processed.

A display fits on the current page if there is enough room to contain the
entire display on the page, or if the display islongerthan one page in length
and less than half of the current page has been used. Wide (full page width)
display will never fit in the second column of a two-column document.

4.6.3 Tables

The tablemacro has theform:

.TS [H]

global options;
column descriptors.
utle lines

[.TH [N]]

data within the table.
.TE

The table start (.TS) and table end (-TE) macros allow use of the tbl
processor. They are used to delimit the text to be examined by the tbl
program as well as to set proper spacing around the table. The display
function and the tbl delimiting function are independent of one another,
however. In order to keep together blocks that contain any mixture of
tables, equations, filled and unfilled text, and caption lines, the .TS-.TE

4-28

mm Reference

block should be enclosed within a display (.DS-.DE), as each display is
always treated as a unit. Floating tables may be enclosed inside fioating
displays (.DF-DE). (For more information on displays, see Section 4.6,
“Displays”.)

The macros .TS and .TE also permit processing of tables that extend over

. several pages.. If a table heading is ne.eded for each page of a multipage

table, use the argument H with the .TS macro (as above). Following the
options and format information, thetableheadingis typed on as many lines
as required and followed by the .TH (table header) macro. The .TH macro
must occur when .TS H is used. Note that this is not a feature of tbl, but
rather of mm macro definitions.

The table header macro .TH may take as an argument the letter N. This
argument causes the table header to be printed only if it is the first table
header on the page. This option is used when it is necessary to build long
tables from smaller . TSH-.TE segments. For example:

TS H

global options;

column descriptors.

Title lines

.TH

data

.TE

.TSH

global options;

column descriptors.
- Title lines

THN

data

.TE

This causes the table heading to appear at the top of thefirst table segment,
and no heading to appear at the top of the second segment when both
appear on the same page. However, the headingwill stillappear at the top of
each page that the table continues onto. This feature is used when a single
table must be broken into segments because of table complexity (for
example, too many blocks of filled text). If each segment had its own .TS
H-TH sequence, each segment would have its own header. However, if
each table segment after the firstuses . TS H.TH N then thetable headerwill
only appear at the beginning of the table and the top of each new page or
column that the table continues onto.

4-29

XENIX Text Processing

4.6.4 Equations

Theequation macro hastheform:

DS 1

.EQ [label]
equation(s)
.EN

.DE

The equation formatters eqn and neqn use the the equation start ((EQ) and
equation end (.EN) macros as delimiters in the same way that tbl uses .T'S
and.TE;however, . EQand.EN mustoccurinside a .DS-.DE pair. Thereis
an exception to this rule: if .EQ and .EN are used only to specify the
delimiters for in-line equations or to specify eqn/neqn “defines”, .DS and
.DEmustnotbeused; otherwise, extrablank lineswillappearin theoutput.

The .EQ macro takes an argument that will be used as a label for the
equation. By default, the label appears at the right margin in the vertical
center of the general equation. The Eq register may be set to 1 to set the
label at the left margin. The equation is centered for centered displays;
otherwise, the equation is adjusted to the opposite margin from thelabel.

4.6.5 Figure, Table, Equation, and Exhibit Captions

Themacros forcaptions have the form:

FG [title] [override] [flag]
TB [title] [override] [flag]
EC [title] [override] [flag]
EX [title] [override] [flag]

The figure title (.FG), table title (.TB), equation caption (.EC), and exhibit
caption (.EX) macros are normally used inside .DS-DE pairs to
automatically number and title figures, tables, and equations. They use
registersFg, Tb, Ec,andEXx, respectively. As an example, themacro:

.FG "This is an illustration”
yields:
Figurel. This is an illustration

Instead of “Figure’” TB prints “TABLE"”; .EC prints “Equation”, and .EX
prints “Exhibit”. Output is centered if it can fit on a single line; otherwise,
all lines but the first are indented to line up with the first character of the
tabletitle. The format of the numbers may be changed using the .af request
of the formatter. The format of the caption may be changed from “Figure 1.
Title” to “Figure 1- Title” bysetting the Of registerto 1.

The override string is used to modify the normal numbering. If flag is
omitted or 0, overrideis used as a prefix tothenumber; if flagis 1, overrideis
used as a suffix; and if flag is2, override replaces thenumber. Ifthe-IN5flag

4-30

mm Reference

is given, section-figure numberingisset automaticallyand the override string
isignored.

As amatter of style, tableheadingsare usually placed ahead of the text of the
tables, while figure, equation, and exhibit captions usually occur after the
corresponding figures and equations.

4.6.6 List of Figires, Tables, Equations, and Exhibits

Lists of Figures, Tables, Equations, and Exhibits may be obtained. They
will be printed after the Table of Contents is printed if the number registers
Lf, Lt, Lx, and Le areset to 1. Lf, Lt, and Lx are 1 by default; LeisOby
default.

The titles of these lists may be changed by redefining the following strings
which areshown herewith their default values: :

ds Lf LIST OF FIGURES

.ds Lt LIST OF TABLES

.ds Lx LIST OF EXHIBITS
.ds Le LIST OF EQUATIONS

4.7 Footnotes

There are two macros that delimit the text of footnotes, a string used to
automatically number the footnotes, and a macro that specifies the style of
the footnote text. Like displays, footnotes are processed differently from
thebody ofthe text.

Footnotes may be automatically numbered by entering the three characters
“*F” immediately after the text to be foetnoted, without any intervening
spaces. This will place the next sequential footnote number (in a smaller
pointsize) a half-lineabove thetext to be footnoted.

Thereare two macros that delimit the text of each footnote:

.FS [label]
one or more lines of footnote text
.FE

The footnote start (.FS) macro marks the beginning of the text of the
footnote, and the footnote end ((FE) macro marks its end. The label on
.FS, if present, will be used to mark the footnote text. Otherwise, the
number retrieved from the *F will be used. Automatically numbered and
user-labeled footnotes may be intermixed. If a footnote is labeled .FS the
text to be footnoted must be followed by “label,” rather than by *F. The
textbetween .FS and .FEisprocessed in fillmode. Another.FS,a.DS,ora
.DF are not permitted between the .FS and .FE macros. Automatically
numbered footnotes may not be used for information, such as the title and

431

XENIX Text Processing

abstract, to be placed on the cover sheet, butlabeled footnotes are allowed.
Similarly, only labeled foomotes may be used with tables. Here are two
examples:

1. Automatically numbered footnote:

This is the line containing the word *F
.FS

This is the text of the footnote.

.FE

to be footnoted.

2. Labeled footnote:

This is a labeled*

FS *

The footnote is labeled with an asterisk.
.FE

footnote.

The text of the footnote (enclosed within the .FS-.FE pair) should
immediately follow the word to be footnoted in theinputtext, so that*F or
label occurs atthe end of a line of input and the nextline is the .FS macro
call. Itis also good practice to append an unpaddable space to “label’’ when
it follows an end-of-sentence punctuation mark (i.e., period, question
mark, exclamation point).

4.7.1 Format of Footnote Text

The footnote format macro has the form:
.FD [arg] [1]

Within the footnote text, you can control the formatting style by specifying
texthyphenation, right margin justification, and textindentation, as well as
left- or right-justification of the label when text indenting isused. The .FD
macro is invoked to select the appropriate style. The first argument should
be a number from the left column of the following table. The formatting
style for each number is given by the remaining four columns. For further
explanation of the first two of these columns, see the definitions of the .ad,
.hy, .na,and .nhrequests.

4-32

mm Reference

ARGUMENT | FORMATTINGSTYLE
0 .nh | .ad | textindent | labelleft-justified
1 .hy | .ad | textindent | labelleft-iustified
2 .nh | .na | textindent | labelleft-iustified
3 .hy | .na | textindent | labelleft-justified
14 .nh | .ad | noindent label teft-justified
5 .hy | .ad | noindent label left-justified
6 .nh | .na | noindent Iahel left-justified
7 by | .na [_noindent label lefi-justificd
8 .nh | .ad | textindent | labelright-justified
9 .hy | .ad | textindent | labelright-justified
10 .nh | .na | textindent | labelright-justified
11 .hy | .na | textindent | labelright-justified

If the first argument to .FD is out of range, the effect is as if .FD 0 were
specified. If the first argument is omitted or null, the effect is equivalent to
.FD 10 in nroff and to .FD O in troff; these are also the respective initial
defaults.

If a second argument is specified, then whenever a first-level heading is
encountered, automatically-numbered footnotes begin again with 1. Thisis
mostusefulwith the section-page page numbering scheme. Asanexample,
theinputline:

-FD L1 1

maintains the default formatting style and causesfootnotes to be numbered
beginning with 1 after each first-level heading.

Forlong footnotes that continue onto the following page, it is possible that,
if hyphenation is permitted, thelastline of thefootnote on the current page
will be hyphenated. Except for this case (which you can change by
specifying an even-numbered argument to .FD), hyphenation across pages
isinhibited bymm.

Footnotesareseparated from thebodyofthetextbyashortrule. Footnotes
that continue to the next page are separated from the body of the text by a
full-width rule. In troff, footnotes areset in type that is two points smaller
than thepointsizeusedin thebody of the text.

Normally, one blank line (a three-point vertical space) separates the
footnotes when more than one occurs on apage. To changethisspacing, set
theregister Fsto the desired value. Forexample:

.ar Fs 2

will cause two blank lines (a six-point vertical space) to occur between
footnotes.

4-33

XENIX Text Processing

4.8 Page Headers and Footers

Text that occurs atthetop of each page isknown as the “page header”. Text
printed at the bottom of each page is called the ““page footer”. There can be
up to three lines of text associated with the header: every page, even page
only, and odd page only. Thus the page header may have up to two lines of
text: the line that occurs at the top of every page and the line for the even- or
odd-numbered page. The same is true for the page footer. When not
qualified by “even’ or “odd”, “header” and “footer’” will mean those
headers and footers that occur on every page. The default appearance of
page headers and page footers is described here, followed by the methods
for changing them.

4.8.1 Default Headers and Footers

By default, each page has a centered page number as theheader. There is no
default footer and no even/odd default headers or footers, except with
section-page numbering.

In a memorandum or a released paper, the page header on the first page is
automatically suppressed, if a break does not occur before .MT is called.
Since they do not cause a break, the header and footer macros are permitted
before the .MT macro call.

4.8.2 Page Header

Thepageheadermacrohasthe form:
“.PH [arg]

For this and for the .EH, .OH, .PF, .EF, and .OF macros, the argument is
of theform:

"’left-part’center-part’right-part”™

If it is inconvenient to use the apostrophe (°) as the delimiter (because it
occurs within one of the parts), it may be replaced uniformly by any other
character. On output, the parts are left-justified, centered, and right-
justified, respectively.

The .PH macro specifies the header thatis to appearatthe top of every page.
The initial value is the default centered page number enclosed by hyphens.
The page number contained in the P register is an Arabic number. The
formatof the numbermaybe changed by the .afrequest.

If “debug mode” is set using the flag -rD1 on the command line, additional
information, printed at the top left of each page, is included in the default
header.

4-34

mm Reference

4.8.3 Even-Page Header

Theeven-page header macrohastheform:
.EH [arg]

The .EH macro_supplies a line to be printed at the top of each even-
numbered page, immediately following the header. The initial value is a
blank line.

4.8.4 Odd-Page Header

The odd-page header macro has theform:
.OH [arg]

This macro is the same as .EH, except that it applies to odd-numbered
pages.

4.8.5 Page Footer

The form of the page footer macro is:
.PF [arg]

The .PFmacro specifies the line that is to appear at the bottom of each page.
Its initial value is a blank line. If the -rCn flag is specified on the command
line, the type of copy follows the footer on a separate line. In-particular, if
-rC3 or -rC4 (DRAFT) is specified, then the footer is initialized to contain
the date, instead of being ablankline.

4.8.6 Even-Page Footer

Theeven-page footermacrohasthe form:
.EF [arg]

The .EF macro supplies a line to be printed at the bottom of each even-
numbered page, immediately-preceding the footer. The initial value is a
blank line.

4.8.7 Odd-Page Footer

The odd-page footer macro has the form:
.OF [arg]

This macro is the same as .EF (described in Section 4.8.6), except that it
applies to odd-numbered pages.

4-35

XENIX Text Processing

4.8.8 Footer on the First Page

By default, the footer on the first page is a blank line. If, in theinput text,
you specify .PF and/or . OF before the end of the first page of the document,
then these lines will appear at the bottom of the first page. The header
(whatever its contents) replaces the footer on the first page only if the -rN1
flagis specified on the command line.

4.8.9 Default Header and Footer With Section-Page Numbering

Pages can be numbered sequentially within sections. To obtain this
numbering style, specify -rN3 or-rN5 on the command line. Inthiscase, the
default footer is a centered section-page number (e.g-, 7-2) and the default
pageheaderisblank.

4.8.10 Strings and Registers in Header and Footer Macros

String and register names may be placed in the arguments to the header and
footer macros. If the value of the string or register is to be computed when
therespectiveheader orfooteris printed, theinvocation must be escaped by
fourbackslashes. Thisis because the string or register invocation is actually
processed three times: as the argument to the header or footer macro; in a
formatting request within the header or footer macro; and in a .tl request
during header or footer processing.

For example, the page number register P must be escaped with four
backslashes in order to specify a header in which the page number is to be
printed attheright margin:

.PH "*’Page \\\\nP™

This creates a right-justified header containing the word “Page” followed by
the pagenumber.

4.8.11 Header and Footer Example

The following sequence specifies blank lines for the header and footerlines,
page numbers on the outside edge of each page (i.e., top left margin of even
pages and top right margin of odd pages), and “‘Revision 3” on the top inside
margin of each page:

PH """
'PF "y
.EH "\\\\nP”Revision 3™
.OH ""Revision 3’A\\\\nP""

4-36

mm Reference

4.8.12 Generalized Top-of-Page Processing

This section and the next areintended only forusers accustomed to writing
formatter macros. During header processing, mm invokes two user-
definable macros. One, the .TP macro, isinvoked in the environment of the

. header. The .PX macromay be used.to_provide.textthatis.to appearat.the

top of eachpage afterthe normal header and thatmayhavetab stops to align
itwith columns of text in the body of the document.

The cffcctive initial definition of ‘TP (after the first page of a document) is:

.de TP

sp3
A\

if e’ *(}e
Af o 1 *(Jo
sp 2

The string }t contains the header, the string }e contains the even-page
header, and the string }o contains the odd-page header, as defined by the
.PH, .EH, and .OH macros, respectively. To obtain more specialized page
titles, you may redefine the .TP macro to cause any desired header
processing. Note that formatting done within the .TP macro is processed in
an environmentdifferentfrom thatof the body.

For example, to obtain a page header that includes three centered lines of
data, say, a document’s number, issue date, and revision date, you could
define .TPasfollows:

.de TP

.Sp
ce3

777-888-999

Iss. 2, AUG 1977
Rev. 7, SEP 1977

.Sp
4.8.13 Generalized Bottom-of-Page Processing

Thebottom startmacro hastheform:

.BS
zero or more lines of text
.BE

Lines of text that are specified between the bottom-block start (.BS) and
bottom-block end (.BE) macroswill be printed at the bottom of each page
after the footnotes (if any), but before the pagefooter. This block of text is
removed byspecifying an emptyblock,i.e.:

4-37

XENIX Text Processing

.BS
.BE

4.8.14 Top and Bottom Margins

Thevertical margin macro has theform:
.VM [top] [bottom]

The vertical margin (. VM) macro allowsyou to specify extra space at the top
and bottom of the page. This space precedes the page header and follows
the page footer. The .VM macro takes two unscaled arguments that are
treated asv’s. For example:

.VM 1015

adds 10 blank lines to the default top of page margin, and 15 blank lines to
the default bottom of page margin. Both arguments must be positive
(defaultspacing at the top of the page maybe decreased by redefining . TP).

4.9 Table of Contents

The table of contents for a document is produced by invoking the table of
contents (.TC) macro. The table of contents is produced at the end of the
writing process because the entire document must be processed before the
table of contents can be generated. The table of contents macro has the
form:

.TC [slevel] [spacing] [tlevel] [tab] [headl] ... [head7]

The .TC macro generates a table of contents containing the headings that
were saved for the table of contents as determined by the value of the Cl
register. The arguments to .TC control the spacing before each entry, the
placement of the associated page number, and additional text on the first
page of the table of contents before the word “CONTENTS”.

Spacingbefore each entry is controlled by the first two arguments; headings
whoselevel is less than or equal to slevel will have spacing blank lines (halves
of a vertical space) before them. Both slevel and spacing default to 1. This
means that first-level headings are preceded by one blank line. Note that
slevel does not control what levels of heading have been saved; that is
controlled by the setting of the Clregister.

The third and fourth arguments control the placement of the page number
for each heading. The page numbers can be justified at theright margin with
either blanks or leader dots separating the heading text from the page
number, or the page numbers can follow the heading text. For headings
whose level is less than or equal to tlevel (default 2), the page numbers are
justified at the right margin. In this case, the value of tab determines the
characterused to separate theheading textfrom the page number. If tab is 0
(the default value), dots (i.e., leaders) are used; if tab is greater than 0,
spaces are used. For headings whose level is greater than tlevel, the page

4-38

mm Reference

numbers are separated from the heading text by two spaces (i.e., they are
ragged right).

All additional arguments (e.g., headl, head2), if any, are horizontally
centered on the page, and precede the actualtable of contents itself.

If the .TC macro is invoked with at most four arguments, then the user-exit

macro .TXis invoked (Withoutargumeits) beforethe word “CONTENTS”

is printed; or the user-exit macro .TY is invoked and the word
“CONTENTS?" is not printed. By defining .TX or .TY and invoking .TC
with at most four arguments, you can specify what needs to be done at the
top of the (first) page of the table of contents.

By default, the first level headings will appear in the table of contents at the
leftmargin. Subsequent levels will be aligned with thetextof headings at the
preceding level. These indentations may be changed by defining the Ci
string which takes a maximum of seven. arguments corresponding to the
heading levels. It mustbe given at least as many arguments as areset by the

Clregister. The arguments mustbe scaled. For example, with C1=5,

ds Ci .251 .51 .75i1i 1i
or
.dsCi02n 4n 6n 8n

Two other registers are available to modify the format of the table of
contents, Oc and Cp. By default, table of contents pages will have
lowercase Roman numeral page numbering. If the Oc registeris set to 1, the
.TCmacrowillnot printanypage number but willinstead reset the Pregister
to 1. It is your responsibility to give an appropriate page footer to place the
page number. Ordinarily the same .PF used in the body of the document
and exhibits will be adequate. The List of Figures and Listof Tableswillbe
produced separately unless Cp is set to 1 which causes these lists to appear
on the same page as the table of contents.

4.10 References _

There are two macros that delimit the text of references, a string used to
automatically number the references, and an optional macro that produces
reference pages within thedocument. -

4.10.1 Automatic Numbering of References

Automatically numbered references may be obtained by entering *(Rf
immediately after the text to be referenced. This places the next sequential
reference number (in a smaller point size) enclosed in brackets a half-line
above thetextto bereferenced.

4-39

XENIX Text Processing

4.10.2 Delimiting Reference Text

The .RS and .RF macros are used to delimit text for each reference. They
havethefollowingform:

A line of text to be referenced.*(Rf
.RS [string-name]

reference text

.RF

4.10.3 Subsequent References

.RS takes one argument, a “‘string-name’. Forexample:

RS AA
reference text
.RF

The string AA is assigned the current reference number. It may be used
later in the document, as the string call *(A A to reference text which must
be labeled with a prior reference number. Thereference is output enclosed
in brackets a half-line above the text to be referenced. No .RS or RF is
needed for subsequent references.

4.10.4 Reference Page

An automatically generated reference page is produced at the end of the
document before the table of contents and the cover sheetare output. The
reference page is entitled “References”. This page contains the reference
text (RS/RF). Theuser may change the reference page title by defining the
Rpstring. Forexample,

.ds Rp "New Title"

The optional reference page (.RP) macro may be used to producereference
pages anywherewithin a document (i.e., within heading sections).

.RP [argl] [arg2]

These arguments allow the user to control resetting of reference numbering
and page skipping. The first argument with a value of Oindicates that the
reference counteris to bereset; thisis the default. A value of 1indicatesthat
the counter will not be reset. In the second argument, a value of O causes a
following .SK; a value of 1 does not cause an .SK. .RP need not be used
unlessyouwantto producereference pages elsewherein the document.

4.11 Miscellaneous Features

In this section a number of mm features to control font, spacing,
justification, multiple-column outputand pageskippingarediscussed.

440

mm Reference

4.11.1 Bold, Itallc, and Roman Fonts

Fontchangesare obtained with the following macros:

.B [bold-arg] [previous-font-arg] ...
I [italic-arg] [previous-font-arg] ...
When called without arguments, .B changesthe font to bold and .I changes

to italic (troff) or underlining (nroff). This condition continues un#l the
occurrenceof a .R, when theregular Roman fontis restored. Thus,

I
here is some text.
.R
yields:
here is some text.

If .B or I is called with one argument, that argument is printed in the
appropriate font (underlined in nroff for .I). Then the previous font is
restored (underlining is turned off in nroff). If two or more arguments
(maximum 6) are given to a .B or .I, the second argument is then
concatenated to the first with no intervening space (1/12- -space if the first
font is italic), but is printed in the previous font; and the remalmng palrs of
arguments are similarlyalternated. For example:

Jitalic " text " right ~justified
produces:
italic text right-justified

These macros alternate with the prevailing font at the time they are invoked.
To alternate specific pairs of fonts, the following macros are available:

Each takes a maximum of 6 arguments and alternates the arguments
between the specified fonts. Note that font changes in headings are handled
separately.

4.11.2 Right Margin Justification

Thejustification macro has the form:
SA [arg]

XENIX Text Processing

The .S A macro is used to setright-margin justification for the main body of
text. Two justification flags are used: “current’” and “default”. .SA O sets
both flags to no justification (i.e., it acts like the .na request). .SA 1 is the
inverse: it sets both flags to cause justification, just like the .ad request.
However, calling .SA without an argument causes the current flag to be
copied from the default flag, thus performing either an .na or .ad,
depending on what the default is. Initially, both flags are set for no
justification innreffand for justification in troff.

In general, the request .na can be used to ensure that justification is turned
off, but .SA should be used to restore justification, rather than the .ad
request. In this way, justification or lack thereof for the remainder of the
text is specified by inserting .SA 0 or .SA 1 once at the beginning of the
document.

4.11.3 SCCS Release Identification

The string *(RE contains the SCCS Release and Level of the current
version of mm. For example, entering:

This is version *(RE of the macros.
produces:
This is version 15.110 of the macros.

This information is useful in analyzing suspected bugs in mm. The easiest
way to have this number appear in your output is to specify -rD1 on the
command line, which causes the string RE to be output as part of the page
header.

4.11.4 Two-Column Output

mm can print two columns on a page:

2C
text and formatting requests (except another .2C)
1C

The .2C macro begins two-column processing which continues until a .1C
macro is encountered. In two-column processing, each physical page is
thought of as containing two columnar pages of equal (but smaller) page
width. Page headers and footers are not affected by two-column processing.
The .2C macro does not balance two-column output.

It is possible to have full page width footnotes and displays when in two
column mode, although the default action is for footnotes and displays to be
narrow in two column mode and wide in one column mode. Footnote and
display width is controlled by the width control (. WC) macro, which takes
the following arguments:

Ve

//“ ‘

——

mm Reference

N Normal default mode
WF Wide footnotes always (even in two-column mode)
-WF Default: turns off WF (footnotes follow column mode, wide in

1Cmode, narrowin2Cmode, unlessFFis set)

FF First footnote; all footnotes have the same width as the first
footnote encountered for that page

-FF Default: turns off FF (footnote stylefollows the settings of WF or
-WF)

WD Wide displays always (even in two column mode)

-WD Default: Displays follow whichever column mode is in effect

when the display is encountered

-~ For example: .WC WD FF will cause all displays to be wide, -and -all -

footnotes on a page to be the same width, while .WC N will reinstate the
default actions. If conflicting settings are given to .WC the last one is used.
Thatis, WCWF-WFhas the effect of . WC-WF.

4.11.5 Vertical Spacing

The vertical space macro has the form:
.SP [lines]

The .SP macro avoids the accumulation of vertical space by successive
macro calls. Several .SP calls in a row produce not the sum of their
arguments, but their maximum; i.e., the following produces only 3 blank
lines:

SP2
SP3
SP

There are several ways of obtaining vertical spacing, all with different
effects. The .sp request spaces the number of lines specified, unless no-
space(.ns) modeis on, in which casetherequestisignored. The.nsmodeis
typically set at the end of a page header in order to eliminate spacingby a .sp
or .bp request that justhappensto occur at the top of a page. The .ns mode
can be turned off with the restore spacing (.rs) request.

Many mm macros utilize .SP for spacing. For example, .LE 1 immediately
followed by .P produces only a single blank line between the end of the list
and the following paragraph. An omitted argument defaults to one blank
line (one vertical space). Negative arguments are not permitted. The
argument must be unscaled but fractional amounts are permitted. Like .sp,
.SPis also inhibited by the .nsrequest.

4-43

XENIX Text Processing

4.11.6 Skipping Pages

The skip pagemacro has theform:
.SK [pages]

The .SK macro skips pages, but retains the usual header and footer
processing. If pages is omitted, null, or 0, . SK skips to the top of the next
pageunlessitis currently at the top of a page, in which caseitdoesnothing.
.SK n skipsn pages. That is, .SK always positions the text that follows it at
the top of a page, while .SK 1 always leaves one page thatis blank except for
the header and footer.

4.11.7 Forcing an Odd Page

Theoddpagemacrohas the form:
.OP

This macro is used to ensure that the following text begins at the top of an
odd-numbered page. If currently atthe top of an odd page, no motion takes
place. If currently on an even page, text resumes printing at the top of the
next page. If currently on an odd page (but not at the top of the page) one
blank pageis produced, and printing resumes on the page after that.

4.11.8 Setting Point Size and Vertical Spacing

In troff, the default point size (obtained from the register S) is 10, with a
vertical spacing of 12 points. The prevailing point size and vertical spacing
maybe changed by invoking the .S macro:

.S [point size] [vertical spacing]

The mnemonics, D for default value, C for current value, and P for previous
value, maybeused forboth pointsize and vertical spacing arguments.

Arguments may be signed or unsigned. If an argument is negative, the
current value is decremented by the specified amount. If the argument is
positive, the current value is incremented by the specified amount. If an
argument is unsigned, it is used as the new value. .S without arguments
defaults to previous (P). If the first argument is specified but the second
argument (vertical spacing) is not then the default (D) value is used. The
default value for vertical spacing is always 2 points greater than the current
point size value selected. Footnotes are printed in a size 2 points smaller
than the pointsize of the body, with an additionalvertical spacing of 3 points
between footnotes. A null ("") argument for either the first or second
argument defaults to the current (C) value.

4-44

mm Reference

4.11.9 Inserting Text Interactively

The read insertion macro has the form:
.RD [prompt] [diversion] [string]

The read insertion macro (.RD) allows you to stop the standard output of a
document and to read text from the standard input until two consecutive
newlines are found. When the newlines are encountered, normal output is
resumed.

.RD follows the formatting conventons already in effect. Thus, the
examples below assume thatthe .RD is invoked in no fill mode (.nf). The
first argument isa prompt which willbe printed atthe terminal. If no prompt
is given, .RD signals the userwith a bellon terminal output.

The second argument, a diversion name, allows the user to save all the
entered text typed after the prompt. The third argument, a string name,
allows theuser to saveforlater reference the first line following the prompt.
For example:

.RD Name aa bb
produces

Name: C. R. Jones
16 Densmore St,
Kensington

Thediversion aa contains:

C. R. Jones
16 Densmore St,
Kensington

Thestringbb containsC.R. Jones.

A newline followed by a Ctrl-D (ASCII end-of-file) also allows you to
resume normal output.

4.12 Memorandum and Released Paper Styles

mm lets you specify a style for a memorandum or technical paper with a
macro that controls the layout of heading information (e.g. title, author,
date, etc.) on the first page or cover sheet. The information is entered in the
same way for both styles; an argument indicates which style is being used.
Themacrosused to specify paperstyle are described in thissection.

Note that it is critical to enter the macros in the order prescribed here. If
neither the memorandum nor released-paper style is desired, the macros
described below should be omitted from the input text. If these macros are
omitted, the first pagewill simply have the page headerfollowed by the body
ofthedocument.

XENIX Text Processing

4.12.1 Title

The title macro has the form:

.TL
one or more lines of title text

The title of the memorandum or paper follows the .TL macro and is
processedin fill mode. On output, thetitleappears after theword “subject”
in the memorandum style. In the released-paper style, the title is centered
and bold.

4.12.2 Authors

The author macro hastheform:

.AU name [initials]
AT [title] ...

A separate. AUmacro isrequired for each author named.

The .AT macro is used to specify the author’s title. Up to nine arguments
may be given. Each will appear in the Signature Block for memorandum
style on a separate line following the signer’s name. The .AT must
immediately follow the . AU for the givenauthor. Forexample:

AU "C. R. Jones" [initials] [loc] [dept] [ext] [room]
.AT "Editor-in-chief"

In the *““from” portion for the memorandum style, the author’s name is
followed by location and department number on one line and by room
number and extensionnumberonthenext. The x forthe extensionis added
automatically. The printing of thelocation, department number, extension
number, and room number may be suppressed on the first page of a
memorandum by setting the register Auto 0; the default value for Auis 1.
Arguments 7 through 9 of the .AU macro, if present, will follow this
“normal” author information in the “from” portion, each on a separate
line. If your organization has a numbering scheme for memoranda,
engineer’s notes, etc., these numbers are printed after the author’s name.
This can be donebyproviding extra argumentsto the.A U macro.

The name, initials, location, and department are also used in the Signature
Block described below. The author information in the from portion, as well
as the names and initials in the Signature Block will appear in the same order
as the .AU macros.

The names of theauthors in the released-paper style are centered below the
title.

mm Reference

.4.12.3 Technical Memorandum Numbers

‘Thetechnical memorandum macro has the form:

.TM [number] ...

If the memorandum is a Technical Memorandum, the TM numbers are

supplied via the .TM macro. Upto nine numbers may be specified. For
example:

.TM 7654321 77777777

If present, this macro will be ignored in papers assigned the released-paper
or external-letter styles.

4.12.4 Abstract

The abstract macro has the form:

.AS [arg] [indent]
text of the abstract
.AE

Three styles of cover sheet are available: Technical Memorandum,
Memorandum for File, and released-paper. On the cover sheet, the text of

theabstract follows the author information andis preceded by the centered

and underlined (italic) word “ABSTRACT".

© The abstract start (.AS) and abstract end (.AE) macros bracket the

abstract. The abstract is optional except that for the Memorandum for File
styleno cover sheet will be produced unless an abstract is given.

A combination of the first argument to .AS and the use of the .CS macro .
(see Section 4.12.15) controls the production of the cover sheet. If the first
argument is 2, a Memorandum for File cover sheet is generated
automatically. Any other value for the first argument causes the text of the
abstract to be saved until the .CS macro is invoked, then the appropriate
cover sheet (elther Technical Memorandum orreleased paper depending on
the .MT type) is generated. Thus, .CS is not needed for Memorandum for
File cover sheets. Notations, such as a copy to list, are allowed on
Memorandum for File cover sheets. The .NS and .NE macros are given
following the AS2and .AE.

The abstract is printed with ordinary text margins. An indentation to be
used for both margins can be specified as the second argument for .AS.
Values that specify indentation must be unscaled and are treated as
character positions, i.e., as the number of ens. Headings and displays are
not permitted within an abstract.

XENIX Text Processing

4.12.5 Other Keywords

Thekeyword macro has the form:
.OK [keyword] ...

Topical keywords should be specified on a Technical Memorandum cover
sheet. Up to nine such keywords or keyword phrases may be specified as
arguments to the .OK macro; if any keyword contains spaces, it must be
enclosed within double quotation marks.

4.12.6 Memorandum Types

The memorandum typemacro has the form:
MT [type] [addressee]

The .MT macro controls the format of the top part of the first page of a
memorandum or of a released paper, as well as the format of the cover
sheets. Legalcodes for type and the corresponding valuesare:

Code Value

MT ™ No memorandum type is printed
MT O No memorandum type is printed
MT MEMORANDUM FOR FILE
MT 1 MEMORANDUM FOR FILE
MT 2 PROGRAmmER’S NOTES
.MT 3 ENGINEER’S NOTES

.MT 4 Released-paper style

MT 5 Extemal-letter style

.MT "string” String
If type indicates a memorandum style, then the value will be printed after the

last line of author information. If type is longer than one character, then the
string itself willbe printed. For example:

MT "Techni_c:al Note #5"

A simple letter is produced by calling .MT with a null (but not omitted!) or
zero argument.

The second argument to .MT is used to give the name of the addressee of a
letter. Thename and page number will beused to replace the ordinary page
header on the second and following pages of the letter. For example,

.MT 1 "Charles Jones"
produces

Charles Jones - 2
as the header on thesecond page.

This second argument may not be used if the first argument is 4 (the
released-paper style).

448

-

N

mm Reference

In the external-letter style (MT 5), only the title (without the word
“subject:”) is printed in theupperleft and right corners, respectively, on the
first page. Youwould normally use this style with preprinted stationery that
has the company nameand address already printed on it.

4.12.7 Date and Format Changes

Bydefault, the currentdate appearsin the datepart of amemorandum. This
can be overridden by using:

.ND new-date

The .ND macro alters the value of the string DT, which is initially set to the
current date.

4.12.8 Alternate First-Page Format

You can specify that the words “subject”, ““date”, and “from’’ be omittedin
the memorandum style by using the alternate format (.AF) macro. Unless
you use the .AF macro, with your own companyname as an argument, ‘“Bell
Laboratories” will automatically be printed as the company name on any
papers which begin with .MT macros. Therefore, you will always want to
use:

.AF [company-name]

If an argument is given, it replaces ‘“Bell Laboratories” without affecting the
other headings. The .AF with no argument suppresses ‘‘Bell Laboratories”
aswellas the ““subject”, ‘“date”, and “from” headings. The use of .AF with
no arguments is equivalent to the use of -rAl on the command line, except
that the latter must be used if it is necessary to change the line length and/or
page offset (which defaultto 5.8iand 1i, respectively, for preprinted forms).
Thecommand lineoptions-rOk and -rWk are not effective with .AF.

The only .AF option appropriate for troff is to specify an argument to
replace “Bell Laboratories” with anothername.

4.12.9 Released-Paper Style

Thereleased-paper styleis obtained by specifying:
MT 4[1]

This results in a centered, bold title followed by centered names of authors.
The location of the last author is used as the location following ‘“Bell
Laboratories” unless .AF is used to specify a different company. If the
optional second argument to .MT 4 is given, Then the name of each author
is followed by the respective company name and location. Information
necessary for the memorandum style but not for the released-paper styleis
ignored. The Signature Block macros and their associated lines of input are

449

XENIX Text Processing

also ignored when thereleased-paper style is specified.

In addition to using the .AF macro tospecify your company name, you can
define a string with a two-characternameforyour address before each .AU.
Forexample:

.TL

A Learned Treatise

.AF "Getem, Inc."

.ds XX "22 Maple Avenue, Sometown 09999"
AU "F. Swatter" "" XX

.AF "Profit Associates"

AU "Sam P. Lename" "" CB

MT 41

4.12.10 Order of Invocation of Beginning Macros

Themacros described in this section must be given in the following order if
theyareusedto definedocumentstyle:

ND new-date

.TL

one or more lines of text
.AF [company-name]
.AU name [initials] [loc] [dept] [ext] [room] [arg] [arg] [arg]
AT [title] ...

.TM [number] ...

.A S [arg] [indent]

one or more lines of text
.AE

.NS [arg]

one or more lines of text
.NE

.OK [keyword] ...

MT [type] [addressee]

The only required macros for amemorandum or a released paper are .TL,
.AU, and .MT; all the others (and their associated input lines) may be
omitted if the features they provide are not needed. Once MT has been
invoked, none of the above macros (except .NS and .NE) can be reinvoked
because they are removed from the table of defined macros to save space.

4.12.11 Macros for the End of a Memorandum

Atthe end of amemorandum (butnotofareleased paper), the signatures of
the authors and a list of notations can be requested. The following macros
and their input are ignored if the released-paper style is selected. A
signature block macro is provided in the form:

4-50

mm Reference

FC [closing]
.SG [arg] [1]

FCprints‘“Yoursverywuly” as aformalclosing. It must be given before the
.SG which prints thesigner’sname. A differentclosing may be specified as
an argument to .FC. .SG prints the author name(s) after the formal closing

(or the lastline of text). Each name begins at the centerof the page.-Three

blank linesareleftabove each name for the actual signature. If no argument
is given, theline of reference data(e.g. , location code, department number,
author’sinitials, and typist’sinitials) willnot appear followingthe last line.

A first argument is treated as the typist’s initials, and is appended to the
reference data. A null argument prints reference data with neither the
typist’sinitials nor the preceding hyphen.

If there are several authors and if the second argument is given, then the
reference data is placed on the same line as the name of the first author,
ratherthan on theline thathasthename of thelastauthor.

The reference data contains only the location and department number of -
the first author. Thus, if there are authors from different departments or

from different locations, the reference data should be supplied manually

aftertheinvocation (without arguments) ofthe .SG macro.

4.12.12 Copy to and Other Notations

The notationmacro hasthe form:

NS [arg]
zero or more lines of the notation
NE

After thesignature and reference data, many types of notations may follow,
such as a list of attachments or copy to lists. The various notations are
obtained through the .NSmacro, which provides for the proper spacingand
forbreaking the notations across pages, if necessary.

Thecodes forarg and the corresponding notations are:

4-51

XENIX Text Processing

Code Notations

NS" ™ Copy to

.NS O Copy to

.NS Copy to

.NS1 Copy (with att.) to
.NS2 Copy (without att.) to
NS 3 Att.

.NS 4 Atts.

NS5 Enc.

.NS s Encs.

.NS7 Under Separate Cover
.NS 8 Letter to

.NS9 Memorandum to

.NS “string" Copy (string) to

If arg consists of more than one character, it is placed within parentheses
between the words ““Copy” and “to”. Forexample:

.NS "with att. 1 only"

generates “Copy (with att. 1 only) to” as the notation. More than one
notation may be specified before the .NE occurs, because a .NS macro
terminates the preceding notation, if any.

The .NS and .NE macros may also be used at the beginning following .AS
and .AE to place the notation list on the Memorandum for File cover sheet.
If notations are given at the beginning without .AS 2, theywillbe saved and
outputattheend of the document.

4.12.13 Approval Signature Llne

The approvalsignaturemacro has the form:
.AV "Jane Doe"

It can be used to provide a space for an approval signature next to the
printed name.

4.12.14 Forcing a One-Page Letter

At times it is useful to get a bit more space on the page, by forcing the
signature or items within notations onto the bottom of the page, so that the
letter or memo is just one page in length. This can be accomplished by
increasing the page length through the -rLn option, e.g. -rL.90. This has the
effect of making the formatter believe that the page is 90 lines long and
therefore giving it more room than usual to place the signature or the
notations. Thiswill only work for a single-pageletter ormemo.

4-52

mm Reference

4.12.15 Cover Sheet

The coversheet macro has the form:
.CS [pages] [other] [total] [figs] [tbls] [refs]

The .CS macro generates a cover sheet in either the Technical

" "Memorandum (TM) or released-paper style. All of the other information

for the cover sheet is obtained from the data given before the .MT macro
call. If a TM style is used, the .CS macro generates the “Cover Sheet for
Technical Memorandum®. Thedatathatappearsin thelower left corner of
the TM coversheet(the number of pages of text,thenumberofotherpages,
the total number of pages, the number of figures, thenumber of tables, and
the number of references) is generated automatically. These values maybe
changed by supplying the appropriate arguments to the .CS macro. Any
values that are omitted will be calculated automatically (0 is used for other
pages). Ifthereleased-paperstyleis used, all arguments to .CSareignored.

4.13 Reserved Names

If you are extending, changing, or redefining existing mm macros, use the
legalnames listed in this section. Thefollowing conventions areused in this
section to describe legalnames:

Digit

Lowercase letter

Uppercase letter

Any letter or digit (any alphanumeric characfer)

Special character (any nonalphanumeric character)

V'N}D’l:!

All othercharacters areliterals (i.e., stand for themselves).

Note that ‘“request”, “macro”, and “string”’ names are kept by the
formatters in a single internal table, so that there must be no duplication
among such names. “Numberregister” names arekeptin aseparatetable.

4.13.1 Names Used by Formatters

These arethe names of the registers and requestsused bynroffand troff.

Requests
aa (most common)
an(onlyone, currently: .c2)

Registers
aa (normal)
.X (normal)
.s(only one, currently: .$)
% (pagenumber)

4-53

XENIX Text Processing

4.13.2 Names Used by mm

Theseare thenamesofthemacros, strings, andregistersused bymm.

Macros
AA (mostcommon, accessible to user)
A (lesscommon, accessible to user)
)x (internal, constant)
>x (internal, dynamic)
Strings

AA (most common, accessible touser)
A (less common, accessibleto user)

-]x(internal, usuallyallocated to specific functions throughout)
}x (internal, more dynamic usage)

Registers Aa(mostcommon, accessibleto users)
An (common, accessibleto user)
A (accessible, set on commandline)
:x (mostlyinternal, rarely accessible, usuallydedicated)
;X (internal, dynamic, temporaries)

4.13.3 Names Used by eqn/neqn and tbl

The equation preprocessors, eqn and neqn, use registers and sﬁing names
oftheform nn. The table preprocessor, tbl, uses the following names:

"a- a+ a | nn #a ## #- # "a T& TW
4.13.4 User-Definable Names

Noneof the above may be used to define your own extensions. To avoid
problems, use-names that consist either of a singlelowercase letter, or of a
lowercase letter followed by anything other than a lowercase letter. The
followingis a sample naming convention, where a can be any letter:

For macros use a lowercase letter, followed by an uppercase letter
(aA), or an uppercase letter followed by a lowercase letter
Aa).
For strings use a, followed by a parenthesis ()), a bracket (]), or a
brace (}).

Forregisters usealowercase letter followed byanuppercaseletter (aA).

454

-

N

mm Reference

4.13.5 Sample Extension

Thefollowingis an example of how mm macro definitions may be extended.
This sequence generatesand numbers the pages of appendices:

arHul
nra0
.de aH
nra+1
arP O

é’IP{I "** Appendix \\na - \\\\\\\\nP""
HU"\$1"

After the above initialization and definition; each call of the form .aH
“title” begins a new page (with the page header changed to “Appendix a -n
”") and generates an unnumbered heading of “title,” which, if desired, can
be saved for the table of contents. Those who wish Appendix titles to be
centered must, in addition, set the register Hc to 1.

4.14 Errors, Strings, Macros and Number Registers

Refer to Appendix B “Error Messages™ for an explana'tioﬁ of error
messages.

Refer to Appendix C “mm Macros, Strings, and Number Registers” for a
list of the macros, strings, and number registers used by mm. There is also
usage information and a brief description of each.

4-55

I/. -
;

N

:./.\‘i

Chapter 5
Using Nroff/Troff

5.1

52

53

5.4

5.5

5.6

5.7

5.8

59

Introduction 1

Inserting Commands 2

Point Sizesand Line Spacing 2
Fonts and Special Characters 4
Indentsand Line Lengths 6
Tabs 7

Drawing Linesand Characters 8
Strings 11

Macros 11

5.10 Titles, Pagesand Numbering 13

5.11 Number Registersand Arithmetic 15

5.12 Macros with Arguments 16

5.13 Conditionals 18

5.14 Environments 19

5.15 Diversions 20

Py

Using Nroff/Troff

5.1 Introduction

Nroff and troff are the XENIX text formatting programs for producing high-
quality printed output on the lineprinter and phototypesetter, respectively.
Commands in the two formatting programs nroff and troff are identical,

although those specifications which are impossible to achieve on_a

lineprinter-like changes in point size, font, or variable spacing-are either
approximated or ignored by nroff. The output of nroff and troff may look
dramatically different, but this is largely the result of the limitations of
conventional lineprinters. In this chapter, thetwo programs will be treated
together; the names nroff and troff are used synonymously. Commands not
recognized by nroff or which result in significantly different output will be
noted.

Wherever possible, you should avoid using nroff or troff directly. In many
ways, nroff and troff resemble computer assembly languages: they are
powerful and flexible, but they require that many operations must be
specified at a level of detail and complexity too difficult for most people to
use effectively. That is why it is suggested that you use the mm macro
package instead. If you must deal with specialized text, you can use the eqn
macros for typesetting mathematics and the tbl program for producing
complex tables. Eqn and tbl are discussed in Chapters 10 and 11 of this
manual.

For producing running text, whether or not it contains mathematics or
tables, you will ordinarily want to use the mm macro package, described in
Chapter 3, “Using the mm Macros” and Chapter4, “‘mm Reference”.

All these macro packages offer the capability of meeting most formatting
requirements. You may find you have little or no need to use nroff/troff
directly. The macros define formatting rules and operations for specific
styles of documents. The definitions are concise: in most cases two-letter
commands. In those cases where an existing macro will not do the job, the
solution is not to write an entirely new set of nroff/troff instructions from
scratch, but to make small adaptations to macrosyou are already using,

This chapter is meant to introduce you to the formatting possibilities of
nroff/troff. It does not discuss every command or operation in detail. The
emphasis is on demonstrating simple and commonly used specifications,
with examples of some ofthe variations you mayneed to create.

5-1

XENIX Text Processing

Thefollowing topics areintroduced in thistutorial:

Specifying pointsize, fonts, and special characters
Determining line spacing, linelengths, indents, and tabs
Using swring definitions and macros

Specifying title and pagination styles

Specifying conditionals, environments, and diversions

5.2 Inserting Commands

To usenroff or troff you intersperse formatting commands with the actual
text you want printed, just as you did with MM commands described in the
last chapter. Youwillnotice that nroff and troff commandsarein lowercase,
so you will not confuse them with the MM macros. Most nroff and troff
commands are placed on a lineseparatefrom the textitself, beginning with a
period, onecommand perline. Forexample, if youhad afile that contained
thefollowing lines:

Some text.

.ps 14

Some more text. N

the .ps command would instruct troff to change the point size, that is, the
size of the letters being printed, to 14 point (one point is 1/72-inch). Your
output would look like this:

Some text. SOME MOre text.

Ifyouwereto usenroff to output this samefileto thelineprinter, nroff would
ignore the .ps command and you would see no difference in the size of your

letters.

Some nroff/troff commands do occur in the middle of aline. To produce

This line contains font and point size changes.

you have to enter:
This \fBline\fR contains \flfont and \s+2point size\s-2 changes.

The backslash character “\”’ isused to introduce nroff/troff commands and
special characters within aline of text.

5.3 Point Sizes and Line Spacing

As we justsaw, point size and vertical spacing are not normally controllable
in nroff (lineprinter) output. In troff, the command .ps sets the point size.
One point is 1/72-inch, so 6-point characters are at most 1/12-inch high, and

52

Using Nroff/Troff

36-point characters are 1/2-inch. There are 14 point sizes available, as
illustrated:

6 point: In Xanadu did Kublai Xhan...

7 point: In Xanadu did Kublai Khan...

8 point: In Xanadu did Kublai Hhan..

9 point: In Xanadu did Kublai Khan _

10 point: In Xanadu did Kublai Khan

11 point: In Xanadu did Kublai Kha...

12 point: In Xanadu did Kublai Khan...
14 point: In Xanadu did Kublai Khan...

16 point 18 point 20 point

24 28 36

If the number after .ps is not one of these legal sizes, it is rounded up to the
next valid value, to amaximum of36. If no number follows .ps, troff reverts
to its previous size. Troffbeginswith a defaultpointsize of10.

Point size can also be changed in the middle of aline or evena word with the
in-line command *\s”. To produce

The XENIX system is derived from the UNIX system
enter:

The \s12XENIX\s8 system is derived from the \s12ZUNIX\s8 system.

The \s should be followed by a legal point size. An \sO causes the size to
revert to its previous value. An\s1011 means ‘“‘size 10, followed byan11”.

Relative size changes are possible. The following
The \s+2XENIX\s-2 system

increases the point size by two points, then restores it. The amount of the
relative changeis limited to a single digit.

Another feature to consider is the spacing between lines, which is set
independently of the point size. Vertical spacing is measured from the
bottom of one line to the bottom of the next. The command to control
vertical spacing is .vs. For running text, it is usually best to set the vertical
spacingabout20% bigger than the point size.

For example, to use what typesetters call ‘9 on 11%, that is, a pointsize 0f 9
with avertical spacing of 11, you would insert the following commands:

.ps 9
.vs 11p

If you do not specify a point size or vertical spacing, troff automatically uses
10on12.

53

XENIX Text Processing

Point size and vertical spacing make a substantial

difference in the amount of text per square inch. (This is
2on14.)

Point sizeand verticalspacingmake a substantial differenceintheamountoftextpersquareinch. Forexample, 10
on12usesabout twice asmuch spaceas7on8. Thisis6on7, whichiseven amaller, and packsa lot morewords per

line.
When you use the commands .ps and .vs without numbers, troff reverts to
the previous size and vertical spacing.

The .sp command can be used to get vertical space. Without a number, it
gives you one blank line (one unit of whatever .vs has been set to). The .sp
can befollowed by a unitspecification:

.sp 21

means ‘“twoinches of vertical space”. Thecommand:
.Sp 2p

means “two points of verticalspace”. The command:
.sp 2

means “two vertical spaces” of whatever size .vs is set to. Be careful to
specify the correct unit of space.

Troffalsounderstands decimal fractionsin most commands, so
.sp 1.5i

is a space of 1.5 inches. Scaling (designating a unit of measure such as

inches, points, or picas) can also beused after .vsto definelinespacing, and

in factaftermost commands thatdeal with physical dimensions.
5.4 Fonts and Special Characters

The phototypesetter is limited to four different fonts at any one time.
Normally three fon'ts (Roman, italic and bold) and one collection of special
characters are permanently mounted. What these fonts will actually look
like depends on your own. typesetting equipment. Here are the Roman,
italic, and bold character sets:

abcdefghijklmnopqrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ
abcdefghijklmnopgrstuvwxyz 0123456789
ABCDEFGHIKLMNOPQRSTUVWXYZ
abcdefghljklmnopqrstuvwxyz 0123456789
ABCDEFGHIJKLMNOPQRSTUVWXYZ

Troff prints in Roman by default, unless instructed otherwise. To switch
into bold, use the .ft (font) command

ftB

“

Using Nroff/Troff

andforitalics,
ftI

To return to roman, use .ftR; to return to the previous font, whatever it was,
use either .ftP orjust.ft. The underlinecommand .ul causes thenextinput
line to print in italics. The .ul can be followed by a count to indicate that
morethan onelineistobeitalicized.

Fonts can also be changed within aline or word with the in-line command
“\f”. Thewords '

boldface text
are produced with
\fBbold\fIface\fR text

There are other fonts available besides the standard set, although only four
can be mounted at any given time. The command .fp tells troff what fonts
arephysically mounted on the typesetter:

fp3H
says that the Helvetica font is mounted on position 3. Appropriate .fp

commands should appear at the beginning of your document ifyou do not -
usethe standard fonts. '

It is possible to print a document by using font numbers instead of names.
For example, \f3 and .ft 3 mean “whatever fontis mounted at position 3”.
Normalsettings are Roman font on 1, italicon 2,bold on 3, andspecial on4.
An approximation of bold font can also be created by overstriking letters
with aslight offset. This is done with the command .bd.

Special characters have four-character names beginning with “\(”’, and they
may be inserted anywhere. In particular, Greek letters are all of the form
“\(*-"’, where “-"’ is an uppercase or lowercase Roman letter similar to the
Greek. Toget

Z(aXp) —=+ o0
in troffwe have to enter:
\(*S(\(*a\(mu\(*b) \(\(-> \(if

which is a series of special characters:

\(*S =
((

\(*a o
\(mu X
\(*b 6
))

\(~—> —
\Gf 00

You could also use the mathematical typesetting program eqn to achieve the
sameeffect:

XENIX Text Processing

SIGMA (alpha times beta) —> inf

Whether you choose to use eqn or the troff special character set should
depend on how often you use Greek or other special characters.

Nroff and troff treat each four-character name as a single character. Some
characters are automatically translated into others: grave and acute accents
(apostrophes) become open and close single quotation marks (°); the
combination of single quotation marks is generally preferable to the double
quotation mark character. (). A typed minussign becomes a hyphen -. To
print an explicitminus sign, use *“)\-”’. To print a backslash, use “\e”.

5.5 Indents and Line Lengths

Troff starts with a defaultline length of 6.5 inches. To reset thelinelength,
usethe.ll (linelength) command, asin

A1 6i

to indicate a line length of 6 inches. Thelength can be specifiedin the same
ways as the space (.sp) command, in inches, fractions of inches, or points.

Themaximum linelength provided by thetypesetteris 7.5inches. Touse the
full width, however, you will have to reset the default physical left margin,
which is normally slightly less than one inch from the leftedge of the paper.
This is done with the pageoffset(.po) command:

.po 0
Thissetstheoffsetasfarto theleftasitwillgo.

The indent (.in) command causes the left margin to be indented by a
specifiedamount from the page offset. If weuse .in to move theleft margin
in, and .1l to move the right margin to the left, we can make offset blocks of
text. Forexample,

.in 0.6i
11-0.6i
text to be setinto a block
A1 40.6i1
.in -0.61

will createa block thatlooks like this:

Pater noster qui est in caelis sanctificetur nomen tuum;
adveniat regnum tuum; fiat voluntas tua, sicut in caelo, etin
terra... Amen.

Noticethe use of + and —to specify theamountof change. These change the
previous setting by the specified amount, rather than just overridingit. The
distinction is quite important: .11 +1i makes lines one inch longer than
current setting; .11 1i makes them one inch long. If no argument is specified
with .in, .II, and .po, troffreverts to the previousvalue.

5-6

Using Nroff/Troff

To indent a single line, use the temporary indent (.ti) command. The
default unit for .ti, as for most horizontally oriented commands such as .11,
.n, .po, is an em. An em is roughly the width of the letter m in the current
point size. Although inches may seem a more intuitive measure to
nontypesetters, ems are a measure of size that is proportional to the current
point size. If you want to make text that keeps its proportions regardless of
point size; you-should-use-ems for all dimensions. -Ems can-be specified in
the same way as points or inches:

ti2.5m
Lines can also beindented negatively if the indent is already positive:
ti -0.3i
causes the nextline to be moved back three tenths of an inch. You can make

a decorative initial capital, indent a whole paragraph, and move the initial
letterback with a .ti command:

Pater noster qui est in caelis sanctificetur
nomen tuum; adveniat regnum tuum;
fiat voluntas tua, sicut in caelo, et in terra. ...
Amen.

Thisis achieved with the following:

A1-0.3i
A

.in +3i
i 0.3i

TheP is made bigger with a “\s36P\s0"". It also has been moved down from
its normal position with a local motion, as described in Section 5.7,
“Drawing Lines and Characters”.

5.6 Tabs

Tabs can be used to produce output in columns, or to set the horizontal
position of output. Typically, tabs are used only in unfilled text. Tab stops
aresetby default every 1/2-inch from the current indent, butcanbechanged
withthe .tacommand. To setstops everyinch, for example, use:

.ta 1i 2i 3i 4i 51 6i
The stops are left-justified, as theyareon a typewriter, so lining up columns
of right-justified numbers can be painful. If you have many numbers, or if
youneed more complicated table layout, do not attempt to use nroff or troff

commands. Use the tbl program instead. (See Chapter 7, “Formatting
Tables”.)

For a handful of numeric columns, you can precede every number by
enoughblanksto makeitlineup when entered:

XENIX Text Processing

.nf
.ta 1i 2i 3i

1tab 2tab 3
40 tab 50 tab 60
700 tab 800 tab 9500
A

Then change each leading blank into the string ‘“‘\0”. Thisis a character that
does not print, but that has the same width as a digit. When printed, this will
produce

1 2 3
40 50 60
700 800 900

It is also possible to fill up tabbed-over space with a character other than a
spaceby setting the “tab replacement character’” with the tab character (.tc)
command:

.ta 1.5 2.5i
.tc \(ru
Name tab Age tab

produces

Name Age

Toresetthetabreplacement character to ablank, use .tc with no argument.
Lines can also be drawn with the \l command, described below.

5.7 Drawing Lines and Characters

Troff provides a way,to place characters of any size at any place, as in the
examples Area = m‘z and the big P in the Paternoster (See Section 5.5).
Commands can be used to draw special characters or to give your output a
particular appearance. Most of these commands are reasonably
swraightforward, butlook rather complicated.

. For example, without eqn, subscripts and superscripts are most easily done
with the half-line local motions \u and \d: To go back up the page half a
point-size, inserta\u atthe desired place;togo down, inserta\d. Thus

Area = \(*pr\u2\d
produces
Area = 1rr2
Tomakethe2smaller, bracketitwith
\s-2...\sO

Since \u and \d are relative to the current point size, be sure to put them
either both inside or both outside the size changes, or the results will be
unbalanced.

5-8

4

Using Nroff/Troff

If the space given by \u and \d does not look right, the \v command can bte
used to request an arbitrary amount of vertical motion. The in-line
command

\v'(amount)’

causes motion up or down the page by the speaﬁed amount. For example,

- -tomovethe Pin-Pater; thefollowingisrequired:

.tali

An 40.6i \"move paragraph in
A -0.3i \"shorten lines

i —0.3i \"move P back
\v’1’\s36P\sO\v’\-1'ater noster qui est

in caelis ...

The backslash \" is a troff command that causes the rest of the line to be
ignored. Itisuseful for adding comments to the macro definition.

A minus sign, after “\v’”’ causes upward motion, while no sign or a plus sign
causes downward motion. Thus “\v'—1"” causes an upward vertical motion
of oneline space.

Thereare many otherways to specify the amount of motion:

\v’0.17’

\v’3p’

\v'-0.5m’
andsoonarealllegal. Noticethatthe specifiers, i forinches, p for points or
m for ems, go inside the quotation marks. Any character can be used in
place of the quotation marks, as well asin any troff commandsdescribedin
this section.

Since troff does not take within-the-line vertical motions into account when
figuring out where it is on the page, output lines can have unexpected
positions if theleft and right ends are not at the same vertical position. Thus
\v, like \u and \d, should always balance upward vertical motion in a line
with thesameamountin the downward direction.

Arbitrary horizontal motions are also available: \h is quiteanalogous to \v,
except that its default scale is ems instead of line spaces. The specification
\b’-0.1i’ causes aback wards motion of a1/10-inch.

Frequently \h is used with the width function \w to generate motions equal
to the width of some character string. The construction

\w’thing’
is a number equal to the width of thing in machine units (1/432-inch). All

troff computations are actually done in these units. To move horizontally
thewidth of an x, you can use:

\’'\w’x'v’

5-9

XENIX Text Processing

As we mentioned above, the default scale factor for all horizontal
dimensions is m for ems, so hereu for machine units must be specified, or
the motion produced will be far too large. Nested quotation marks are
acceptable to troff; be careful to supplytherightnumber.

There are also severalspecial-purposetroffcommands forlocal motion. We
have already seen \0, which is an unpaddable whitespace of the same width
as a digit. Unpaddable means that it will never be widened or split across a
line by line justification and filling. There is also \(space), which is an
unpaddable character the width of a space, \|, which is half that width, \",
which is one quarter of the width of a space, and \&, which has zero width.
This last one is useful, for example, when entering a text line which would
otherwise begin with a dot (.).

Thecommand “\o0”,usedlike
\o’set of characters’

causes up to 9 characters to be overstruck, centered on thewidest. This can
beused foraccents, as in:

syst\o"e\(ga"me t\o"e\(aa"l\o"e\(aa"phonique
which makes:

systéme téléphonique
The accents aretreated bytroff as single characters.

You can make your own overstrikes with another special convention, \z, the
zero-motion command, which suppresses the normal horizontal motion
after printing the single character x, so another character can be laid on top
of it. Although sizes can be changed within \o, it centers the characters on
the widest, and there can be no horizontal or vertical motions, so \z may be
the only way to get what you want.

You can create rather ornate overstrikes with the bracketing function \b,
which piles up characters vertically, centered on the current baseline. Thus
you can get big brackets by constructing them with piled-up smaller pieces:

=)
by entering this:

Ao\ I\ \(e\(IE x \b"\(re\(rf\b \(rt\(rk\(rb’

Troff also provides a convenient facility for drawing horizontal and vertical
lines of arbitrary length with arbitrary characters. \I'li’ draws aline one inch

long, like this: . The length can be followed by the
character to use if the _is not appropriate. For example, \I'0.5i." draws a
half-inch line of dots: The construction \L is entirely analogous,

except thatitdrawsa vertical line instead of horizontal.

510

Using Nroff/Troff

5.8 Strings

Obviously, if a paper contains a large number of occurrences of an acute
accentover a letter e, entering\o"e\" for each occurrence would be a great
nuisance. Fortunately, nroffand troffprovidea facility forstoring any string
of text in a string definition. Strings are among the nroff and troff
mechanisms that allow you totype'a document with-lesseffortand-organize
it so that extensive format changes can be made with few editing changes.
Strings are defined with the define (.ds) command. Thereafter, whenever
you need to use the string, you can replace it with the shorthand you have
defined. Forexample, theline:

.ds e \o"e\"
defines the string e to have the value é.

String names may be either one or two characters long. To distinguish them
from normal text, single-character strings must be preceded by “*’ and
double-character strings by “*(”. Thus, to use the definition of the string e
as above, we can say t*el*ephone. If a swing must begin with blanks,
define it by using a double quotation mark to signal the beginning of the
definition. Forexample,

ds xx " text

defines the string “xx’’ as the word “text”’ preceded byseveralblanks. There
is no trailing quote; the end of theline terminates the string.

A string may actually be severallines long; iftroff encounters a \ at the end of
anyline, itis thrown awayand the nextlineadded to the currentone. So you
can make a long string simply by ending each line but the last with a
backslash:

.ds xx this is a very long string\
continuing on the next line\
and on to the next

Strings may be defined in terms of other strings, or even in terms of
themselves.

5.9 Macros

In its simplest form, a macro is just a shorthand notation-somewhat like a
string. For example, suppose we want every paragraph in a document to
startwith a space and a temporaryindent of two ems:

Sp
.ti +2m

To savetyping, we could translate these commands into onemacro:
P

which troff would interpret exactly as

5-11

XENIX Text Processing

.Sp

.ti +2m
If you first define it with the .de command, the macro .P can replace the
longer specification:

.deP

.Sp
At +2m

The first line names the macro, in this case .P for paragraph; it is in
uppercase to avoid conflict with any existing nroff or troff command. The
last line marks the end of the definition. In between is the text, which is
simplyinserted whenever troff sees the command ormacro call .P. A macro
can contain any mixture of text and formatting commands. The definition
of P naturally has to precedeits first use. Names are restricted to one or two
characters.

Using macros for commonly occurring sequences of commands not only
saves typing, but it makes later changes much easier. Suppose we decide
that the paragraph indentistoo small, the vertical space is much too big, and
roman font should be forced. Instead of changing the whole document, we
need onlychange the definition of .P to something like

.deP ' \" paragraph macro
Sp 2p '

.ti +3m

St R

andthechange takes effect everywherethe.P macro is invoked.

As another example of a macro definition, consider these two which start
and end a block of offset, unfilled text:

.de BS \" start indented block

.Sp

.of

dn +0.3i

.de BE \" end indented block

.Sp

A

.in \(mi0.3i
Now we can surround text with the commands .BS and .BE to create
indented blocks. Uses of .BS and .BE can be nested to get blocks within

blocks. To change the indent, it is only necessary to change the definitions
of .BS and .BE, not every occurrence of theindent in the entire document.

The macro package MM, as well as the two specialized macro packages, tb}
and eqn, are simplyvery large collections of macro definitions which replace
more cumbersome arrays of nroff and troff commands. One thingto keep in
mindwhen you consider defining a new macro, is that unless you are doing
something quite umusual, an MM macro probably already exists for that

512

N

Using Nroff/Troff

purpose. So check your documentation carefully before reinventing the
wheel.

5.10 Titles, Pages and Numbering

None of the features described in this sectio n are automatic. You may_wish
to copy these specifications literally until you feel more comfortable with
these commands. For example, supposeyou want to have a title at the top of
each page. You have to give the actual #itle, along with instructions about
when to print it, and directions for its appearance. First, a new page (.NP)
macrocan be created to processtitles and the like at theend ofonepage and
thebeginning of thenext:

.de NP

,bp

’sp 0.5i

.t] ’left top’center top’right top’
’sp 0.3i

To start at the top of a page, a begin page (.bp) command should be
included, which causes a skip to the top of the next page. Then we space
down half an inch, use the title(.t]) command to print the title and space
another0.3inches.

To ask for .NP at the bottom of each page, we need to specify that the
processing for a new page should start when the text is within an inch of the
bottomof the page. Thisis done with awhen (.wh) command:

.wh -1i NP

(Note thatno dotisused before NP; this is simply thename of a macro, not a
macro call.) The minus sign means “measure up from the bottom of the
page,”’so~limeans oneinch from the bottom.

The .wh command appears in the input outside the definition of .NP;
typically theinput wouldbe

.de NP
macro defined here

.wh -1i NP
As text is actually being output, nroff/troff keeps track of its vertical
position on the page, and after a line is printed within one inch of the
bottom, the .NP macro is activated. The .NP macro causes a skip to the top
of the next page, then prints the title with the appropriate margins. All the
input textcollected but not yet printed is flushed out as soon as possible, and
the next input line is guaranteed to start a new line of output; a break is
caused in the middle of the current output line when a new page is started.
Theleftover part of that lineis printed at the top of the page, followed by the
nextinputlineon a new outputline. Using’instead of dot(.) fora command
tells nroff and troff that no break is to take place; the output line currently

5-13

XENIX Text Processing

being filled should not be forced out before the space or new page. For
example, ’bp and ’sp areused hereinstead of .bp and .sp.

Thelist of commands that cause abreak isshort:
.bp .br .ce fi .nf sp .in .t

All others cause no break, regardless of whether you use a period (.) ora’.
Ifyoureallyneed a break,add a .brcommand at the appropriate place.

If you changefonts or point sizes frequently , you may find that ifyoucross a
pageboundaryin an unexpected font or size, your titles come outin thatsize
and font instead of what you intended. Furthermore, the length of a title is
independent of the current line length, so titles will come out at the default
length of 6.5 inches unless you change it, which is done with the .1t
command. There are several ways to correct point sizes and fonts in titles.
The simplest wayis to change. NP to setthepropersizeand fontforthetitle,
then restore the previousvalues, like this:

.ta .8i

.de NP

) bp

’sp 0.5i

ftR \" set title font to Roman
.ps 10 \" and size to 10 point

Jt6i \" and length to 6 inches

:tl Yleft’center’right’

.ps \" revert to previous size
ftP \" and to previous font
sp 0.3i

This version of .NP does not work if the fields in the .tl command contain
size or font changes.

To geta footer at the bottom of a page, you can modify .NP so it does some
processing before the ’bp command, or split the job into a footer macro
invoked at the bottom margin and a header macro invoked at the top of the
page.

Output page numbers are computed automatically starting at 1, but no
numbers are printed unless you askforthem. Togetpage numbers printed,

include the character “%? in the .tlline at the position where you want the
numberto appear For example

A17- % -
centers the page number inside hyphens. You can set the page number at
any time with either .bpn, which immediately starts a new page numbered n,

or with .pnn, which sets the page number for the next page but does not
causeaskiptothenewpage.

5-14

Using Nroff/Troff

5.11 Number Registers and Arithmetic

Troff uses number registers for doing arithmetic and defining and using
variables. Number registers, like strings and macros, are useful for setting
up a document so it is easy to change later, as well as for doing any sort of
arithmetic computation. Like strings, number registers have one- or two-
character names." They are’setby the .nrcommand, and are referenced by
\nx (one-character name) or\n(xy (two-character name).

There are quite a few pre-defined number registers maintained by troff,
among them % for the current page number, .nl for the current vertical
position on the page; .dy, .mo and .yr for the current day, month and year;
and.s and .fforthe current point size and font. Any of these can be used in
computations like any other register, but some, like .s and .f, cannot be
arbitrarily changed with an .nr command.

In MM, most significant parameters are defined in terms of the values of a
handful of number registers. These include the point size for text, the
vertical spacing, and the line and title lengths. To set the point size and
vertical spacingforthefollowingparagraphs, for example, you could say

.arPS 9
.ar VS 11

Thiswould setthepointsizeto 9and theverticalspacingto 11 points.

The paragraph macro .Pis defined asfollows:

.ta 1i

.de.P _
.ps \\n(PS \" reset size
s \n(VSp \" spacing
ftR \" font

.sp 0.5v \" half a line
.ti +3m

This sets the font to Roman and the point size and line spacing to whatever
values are stored in the number registersPS and VS.

Two backslashes are required to quote a quote. That is, when nroff or troff
originally read the macro definition, they peel off one backslash to see what
is coming next. To ensure that another is left in the definition when the
macro is actually used, we have to put two backslashes in the definition. If
only one backslash is used, point size and vertical spacing will be frozen at
thetime the macro is defined, notwhenitisused.

Protection with extra backslashes is only needed for \n, *, \§$, and \ itself.
Commands like \s, \f, \h, \v, and so on do not need an extra backslash,
sincetheyare converted by nroff and troff to an internal code when they are
read.

Arithmetic expressions can appear anywhere that a number is expected.
Forexample,

5-15

XENIX Text Processing

.ar PS \\n(PS-2

decrements PSby2. Expressions canusethe arithmetic operators +, —, *, /,
% (mod), the relational operators >, >=, <, <=,=, and !=(not equal), and
parentheses.

Therearea few things to consider in usingnumberregisterarithmetic. First,
number registers hold only integers. Nroff/troff arithmetic uses truncating
integer division. Second, in the absence of parentheses, evaluation is done
left-to-right without any operator precedence, including relational
operators. Thus

7*-4+43/13

becomes “—1”. Numberregisters can occur anywherein an expression, and
so can scale indicators like p, i, m, and so on. Although integer division
causes truncation, each number and its scale indicator is converted to
machine units (1/432-inch) before any arithmetic is done, so 1i/2u evaluates
to 0.5icorrectly.

The scale indicator u (for "units") often has to appear when you would not
expect it—in particular, when arithmetic is being done in a context that
implies horizontal or vertical dimensions. Forexample,

A1 7i/2u
A saferuleisto attach a scaleindicator to everynumber, even constants.

For arithmetic done within a .nr command, there is no implication of
horizontal or vertical dimension, so the default units are units, and 7i/2 and
7i/2u mean the same thing. Thus

or 1 7i/2
A 0u

issufficiently explicitaslongas you useu with the.ll command.
5.12 Macros with Arguments

You can definemacrosthat can change from one use to the next according
to parameters supplied as arguments. To make this work, you need two
things: first, when you define the macro, you must indicate that some parts
of it willbe provided as arguments when the macro is called. Second, when
the macro is called you must provide actual arguments to be plugged into the
definition.

Toillustrate, let’s define a macro . SM that will print its argument two points
smaller than the surrounding text. The definition of . SMis

.de SM

\s-2\\$1\s+2
Within a macro definition, the symbol \\$n refers to the nth argument that

the macro was called with. Thus \\$1 is the string to be placed in a smaller
pointsize when . SM is called.

5-16

N

~ Using Nroff/Troff

The following definition of .SM permits optional second and third
arguments that willbe printedin the normalsize:

.de SM

\\$3\s-2\\$1\s+2\\$2

Arguments not provided when the macro is called are treated as empty. Itis
convenient to reverse the order of arguments because traxhng punctuation is

" much more ¢ommon than léading. Thenumber of arguments that amacro =~

was called with is available in numberregister $.

For example, let’s define a macro .BD to create a bold Roman for troff
command names in text. It combines horizontal motions, width
computations, and argument rearrangement.

.de BD

AGA\SI\EIN\$1\R\-\w\\§ 1 u-+1u’\\ $1\fP\\$2

The\h and \w commandsneed no extra backslash, as we discussed earlierin

thissection. The\&is therein casethe argumentbegins with a period.

Twobackslashes areneeded with the \\$n commands to protectone of them
when the macro is being defined. Consider a macro called .SH which
produces section headings rather like those in this paper, with the sections
numbered automatically, and the title in bold in a smaller size. You would
useitin this form:

SH "Section title ..."

If the argument to a macrois to contain spaces, then it must be surrounded
by double quotation marks.

Hereis the definition of the .SH macro:

.ta .75i 1.15i

.ar SH O \" initialize section number

.de SH

.sp 0.3i

ftB

.nr SH \\n(SH+1 \" increment number
ps \\n(PS-1 \" decrease PS

\\n(SH \\$1 \" number. title

.ps \\n(PS \" restore PS

.sp 0.3i

ftR

The section number is kept in number register SH, which is incremented
each time just before it is used. Note that a number register may have the
samename as amacrowithoutconflict,but a stringmaynot.

We used \\n(SH instead of \n(SH and \\n(PS instead of \n(PS. If we had
used \n(SH, we would get the value of the register atthe time the macro was
defined, not at the time it was used. Similarly, by using \\n(PS, we get the
pointsizeatthe time themacrois called.

5-17

XENIX Text Processing

As an example that does not involve numbers, recall the .NP macro which
hada

.tl ’left’center’right’
We could make these into parameters by using instead
AAVFLTWHCT\\RT

so the title comes from three strings called LT, CT and RT. If these are
empty, then the title will be a blank line. Normally CT would be set with
somethinglike

ds CT - % -

butyou can also supply private definitions for any of the strings.
5.13 Conditionals

To cause the .SH macro to leave two extra inches of space just before
section 1, but nowhere else, you can put a test inside the .SH macro to
determine whether the section number is 1, and add some spaceifitis. The
.if command provides a conditional test just before the heading line is
output:

4f \\n(SH=1 .sp 2i \" first section only

The condition after the .if can be any arithmetic or logical expression. If the
condition is logically true, or arithmetically greater than zero, therest of the
line is treated as if it were text. If the condition is false, or zero or negative,
therest of thelineis skipped. Itis possible to do more than one command if
a condition is true. Suppose several operations are to be done before
section 1. One possibility is to define a macro .S1 and invoke it if we are
aboutto do section 1, as determined by an .if:.

.de S1
— processing for section 1 —
.de SH

if \\a(SH-1 .S1

An alternate wayis to use the extended form of the .if, lik e this:

if \\n(SH=1 \{~— processing
for section 1 —\}

The braces \{ and \} must occur in the positions shown or you will get
unexpected extralines in youroutput.

Nroff and troff also provide an if-else construction. A condition can be
negated by precedingitwith !; weget the same effect asabovebyusing:

5-18

[

Using Nroff/Troff

Af \\n(SH>1 .S1

There are a handful of other conditions that can be tested with .if. For
example, you may need to determine if the current pageis even or odd. The
following conditionals give facing pages different titles when used inside an
appropriate new page macro.

.if e .tl),eveu,page titlel,, been e e P e e e
.if o .tl ”odd page title”

Two other conditions, which you will find useful when you need to process
text for both lineprinter and typesetter, are n and t. These can be used to
indicate conditionsdependent on whethertroff ornroffarebeinginvoked.

Jif t troff input ...
.if n nroff input ...

Finally, string comparisons maybe made in an .if statement. The following
comparison does ‘“input” if string 1is the same as string 2:

JAf ’stringl’string2’ input

The character separating the strings can be anything reasonable that is not
contained in either string. The strings themselves can reference strings with
*, arguments with \$, and soon.

5.14 Environments

In an earlier section, the potential problem of going across a page boundary
was mentioned: parameters like size and font for a page title may be different
from those in effect in the text when the page boundary occurs. Nroff/troff
provides a way to deal with this and similar situations. There are three
environments that have independently controllable versions of many of the
parameters associated with processing, including size, font, line and title
lengths, fill or no-fill mode, tab stops, and even partially collected lines.
Thus the titling problem may be solved by processing the main text in one
environment and titles in a separate environment with its own suitable
parameters.

The environment command .ev nshiftsto environmentrs; n must be0, 1 or
2. The command .evwithno argumentreturns tothe previous environment.
Environment names are maintained in a stack, so calls for different
environments may be nested and called in order. If, for example, the main
textis processed in environment0, which is where troffbegins by default, we
can modify the new page macro NP to process titles in environment 1 like
this:

5-19

XENIX Text Processing

.de NP

.evl \" shift to new environment

It 6i \" set parameters here

ftR

.ps 10

... any other processing ...

.ev \" return to previous environment

Itis also possible to initialize the parameters for an environment outside the
NP macro, but the version shown keeps all the processing in one place to
make it easier to understand and change.

5.15 Diversions

In page layout there are numerous occasions when it is necessary to store
some text for a period of time without actually printing it. Footnotes are the
most obvious example: the text of the footnote usually appears in the input
long before the place on the pagewhere itisto beprinted isreached. In fact,
the place where it is output normally depends on how big it is. The footnote
textmust be preprocessed atleastto the extent thatitssizeis determined.

Nroff and troff provide a mechanism called a diversion for doing this
processing. Any part of the output may be diverted into a macro instead of
being printed, and then at some convenient time the macro maybe putback
into the input. The command .di xy begins a diversion. All subsequent
output is collected into the macro xy until the command .di with no
arguments is encountered. This terminates the diversion. The processed
textisavailableat any time thereafter, simply by giving the command:

Xy
The vertical size of the last finished diversion is contained in the built-in
number register dn.

For example, suppose we want to implement a keep-release operation, so
that text (such as a figure or table) between the commands .KS and .KE will
notbe split across a pageboundary. Clearly, when a.KSis encountered, we
have to begin diverting the output so we can find out how big it is. Then
when a .KEisseen, wedecidewhetherthediverted textwillfi ton the current
page, and printit either there if it fits, or atthe top of the next pageif it does
not. We could use the followingto define .KS and .KE:

520

Using Nroff /Troff

.de KS \" start keep

.br \" start fresh line

.evl \" collect in new environment
B \" make it filled text

.di XX \" collect in XX

.deKE . \"endkeep . .

.br \" get last partial line

.di \" end diversion

Af \\n(dn>=\\n(.t .bp \" bp if doesn’t fit

.nf \" bring it back in no-fill

XX \" text

.ev \" return to normal environment

Recall that number register nl is the current position on the output page.
Since output was being diverted, this remains at its value when the diversion
started. The amount of textin the diversion is stored in dn. Another built-in
register, .tis the distance to the next trap, which we assume is at the bottom
margin of the page. Ifthe diversion islarge enough to go pastthetrap, the .if
is satisfied, and a .bp is issued automatically. In either case, the diverted
output is then brought back with .XX. Itis essentialto bringitback in no-fill
mode so nroff/troff will do no further processingon it.

The definition of .KS and .KE is only intended as an example to
demonstrate the power of diversions. You will find the .KS and .KE macros
alreadydefinedin themm macro package.

521

Chapter 6
Nroff/Troff Reference

6.1 Introduction . 1._.
6.1.1 Invoking nroffand troff 1
' 6.1.2 Technical Information 2

- 6.2 Basic Formatting Requests 4
6.2.1 Font and Character Size Control 4
6.2.2 Page Control 6
6.2.3 Text Filling, Adjusting, and Centering 7
6.2.4 Vertical Spacing 9
6.2.5 Line Lengthand Indenting 10
6.2.6 Tabs, Leaders, and Fields 11
6.2.7 Hyphenation 12
6.2.8 Three Part Titles 12
6.2.9 OutputLine Numbering 13

i 6.3 Character Translations, Overstrike, and LocalMotions = 13
6.3.1 Input/Output Conventions and Character Translations 14
6.3.2 Local Motions and the Width Function 15
6.3.3 Overstrike, Bracket, Line-drawing, and Zero-width Functions 16

6.4 Processing Control Facilities 17
* 6.4.1 Macros, Strings, Diversions, and Position Traps 17
6.4.2 Number Registers 21
6.4.3 Conditional Acceptanceof Input 22
6.4.4 Environment Switching 23
6.4.5 Insertions From the Standard Input 23
6.4.6 Input/OutputFile Switching 24
6.4.7 Miscellaneous Requests 24

6.5 Output and Error Messages 25

| (- ", 6.6 SummaryofEscape Sequencesand NumberRegjsters 25

6.6.1 Escape Sequences for Characters, Indicators, and Functions 25
6.6.2 Predefined General Number Registers 27
6.6.3 Predefined Read-Only Number Registers 27

.

Nroff /Troff Reference

6.1 Introduction

Nroff and troff are the XENIX text processing formatting programs. Nroff
can be used to output text to terminals, lineprinters, and letter-quality
printers. Troff can be used to output text to a number of phototypesetters

and laser printers. Both programs use identical commands, which are =~
‘interspersed with lines oftext. The commandsused by both programs allow

you to control the style of headers and footers, footnotes, paragraphs, and
sections. You may specify font and point size, spacing, multiple column
output, and local motions to create overstrikingand line drawing effects.

Because nroff and troff are compatible with each other, it is almost always
possible to prepare input acceptable to both. By using conditional input,
youmay add commandswhich arespecific to either program.

6.1.1 Invoking nroff and troff

The general form of invoking the formatters on the command line is:
nroff options files

or
woff options files

where options represents any of a number of option arguments and files
represents a list of files containing the document to be formatted. An
argument consisting of a single minus sign (-) is taken to be a filename
corresponding to the standard input. If no filenames are given, input is
taken from the standard input. The op¥ions mayappearinanyorderso long
as they appear beforethefilenames. Theyare:

-olist Prints only pages whose page numbers appear in list, which
consists of comma-separated numbers and number ranges. A
numberrangehas the form N-M and means pagesN through M;
an initial -N means from the beginning to page N, and a final N-
means from Ntotheend.

-nN Numbers first generated pageN.

-sN Stops every N pages. Nroff will halt prior to every N pages
(default N=1) to allow paper loading or changing, and resume
upon receipt of a newline. Troff will stop the phototypesetter
every N pages, produce a trailer to allow changing cassettes, and
will resume after the phototypesetter ‘‘start’’ button is pressed.

-mname Prependsthemacro file /usr/lib/tmac.name to the input files.

-cname Same as -mname, but uses a compacted form of
lusr/lib/tmac.namefor efficiency.

6-1

XENIX Text Processing Guide

-raN Register ais set to N.
-i Reads the standard input aftertheinput files are exhausted.
-q Invokes thesimultaneous input-output mode of therd request.

The following options are recognized bynroff only:
-Tname Specifiesthename oftheoutput terminal type.

- Produces equally-spaced words in adjusted lines, using full
terminalresolution.

Thefollowingoptions arerecognized by troff only:

-t Directs output to the standard output instead of the
phototypesetter.

-f Refrains from feeding out paper and stopping phototypesetter at
theend oftherun.

-w Waits until phototypesetter is available, if currently busy.

b Reports whether the phototypesetter is busy or available. No
text processingis done.

-a Sends a printable ASCII approximation of the results to the
standard output.

-pN Prints all characters in point size N while retaining all prescribed

spacings and motions, to reduce phototypesetter elapsed time.

Notethateach option must be invoked as aseparate argument.
6.1.2 Technical Information

The input to the formatters consists of text lines interspersed with control
lines that set parameters or otherwise confrollaterprocessing. Control lines
begin with a “control character”, usually a period (.) or a single quotation
mark (), followed by a one- or two-character name that specifies a basic
“request” or the substitution of a user-defined “macro” in place of the
controlline. The single quotation mark control character (*) suppresses the
“break function,” which is the forced output of a partially filled line caused
by certain requests. The control character may be separated from the
request or macro name by whitespace (spaces and/or tabs) for aesthetic
reasons. Names must be followed by either a space or a newline. Control
lines with unrecognized names areignored.

Various special functions may be introduced anywhere in the input by
means of an “escape’’ character, normally the backslash (\). For example,
the function “\nR” causes the interpolation of the contents of the number

62

i
|
i
t
|
|

()

Nroff/Troff Reference

register Rin place of the function; here R s either a single character name as
in \nx, or a left-parenthesis-introduced, two-characternameasin \n(xx.

Troff uses 432 units to the inch, corresponding to the Wang Laboratories
phototypesetter which has a horizontal resolution of 1/432-inch and a
vertical resolution of 1/144~inch. Nroffuses 240units to theinch internally,
corresponding to the least common multiple of the horizontal and vertical

resolutions of various _typewriter-like ..output_.devices.._.Troff .rounds -

horizontal and vertical numerical parameter input to the actual horizontal
and vertical resolution of the typesetter. Nroff similarly rounds numerical
input to the actual resolution of the output deviceindicated by the -T option.

Both Nroff and troff accept numerical input with the appended scale
indicators shown in the following table, where S is the current type size in
points, V is the current vertical line spacing in basic units, and Cis anominal
character width in basic units, as shown below:

Scale Number of basic units
Indicator Meaning Troff Nroff
i Inch 432 240
c Centimeter 432x50/127 | 240x50/127
P Pica=1/6inch 72 240/6
m Em = S points 6xS C
n En=Em/2 3xS C,sameas Em
P Point=1/72inch 6 240/72
u Basicunit 1 1
v Verticallinespace | V v
none Default '

In nroff, both the em and the en are taken to be equal to the C, which is
output-device dependent; common values are 1/10- and 1/12-inch. Actual
character widths in nroff need not be all the same and constructed
characters such as —> (-+) are often extra wide. The default scaling is ems
forthe horizontally-oriented requests and functions, including:

Al in .ti.ta]t .po .mc\h\L;

Vs is the scaling for the vertically-oriented requests and the following
functions:

.pl.wh .ch .dt .sp .sv.ne.rt .ev\v\x \L

p is the scale for the .vs request; and u is the scale for the requests .nr, _if,
and .ie. All other requests ignore any scale indicators. When a number
register containing an already appropriately scaled numberis interpolated to
provide numerical input, the unit scale indicator u may need tobe appended
to prevent an additional inappropriate default scaling. The number N may
be specified in decimal-fraction form but the parameter finally stored is
rounded to anintegernumber of basicunits.

The ““absolute”’position indicator ()] may be prepended to a number N to
generate the distance to the vertical or horizontal place N. For vertically
oriented requests and functions, |N becomes the distance in basic units

6-3

XENIX Text Processing Guide

from the currentverticalplace on the page or in a ““diversion” to the vertical
place N. Forall other requests and functions, | Nbecomes the distance from
the current horizontalplace on the inputline to the horizontal place N.

Forexample,
sp 13.2¢

will space in the required direction to 3.2 centimeters from the top of the
page. Wherever numerical input is expected, an expression involving
parentheses, the arithmetic operators (+, —, /, *, %) and the logical
operators (<, >, <=, >=, =, ==, & (and), : (or)) may be used. Except
where controlled by parentheses, evaluation of expressions is left-to-right;
there is no operator precedence. In the case of certain requests, an initial +
or — is stripped and interpreted as an increment or decrement indicator
respectively.

Forexample, if the numberregister x contains 2 and the current pointsize is
10, then:

11 (4.25i+0P+3)/2u
sets the line length to 1/2thesum of4.25inches +2 picas + 30points.

Note: numerical parameters areindicated herein two ways. +N means that
the argument may take the forms N, +N, or —Nand that the corresponding
effect is to set the affected parameter to N, to increment it by N, or to
decrementit by N respectively. Plain Nmeans thatan initial algebraic sign is
not an increment indicator, but merely the sign of N. Generally,
unreasonable numerical input is either ignored or truncated to a reasonable
value. For example, most requests expect to set parameters to non-negative
values; exceptions are .sp, .wh, .ch, .nr, and .if. The requests .ps, .ft, .po,
.vs, .Is, .1, .in and .1t restore the previous parameter valuein the absence of
an argument.

Single-character arguments are indicated by single lowercase letters, and
one- or two-character arguments areindicated by a pair of lowercaseletters.
Character string arguments areindicated bymulticharactermnemonics.

6.2 Basic Formatting Requests

The following sections describe the commonly used nroff and troff
formatting requests.

6.2.1 Font and Character Size Control

The troff character set includes a regular character set plus a Special
Mathematical Font character set-each having 102 characters. All ASCII
characters are included, with some on the Special Font. With three
exceptions, the ASCII characters are input as themselves, and non-ASCII
characters are input in the form \(xx where xx is a two-character name. The
three ASCII exceptions aremapped asfollows:

64

Nroff/Troff Reference

ASCIIInput Printed bytroff
Character Name Character Name
. acuteaccent ’ close quote
I,f"’ : graveaccent ° open quote
: - minus - hyphen

The characters ’, *, and -miay be input as\’,\‘, and \-respectivelyorby their
names. The ASCII characters @,#,",°, %, <, >,\, {, }, , ", and_exist only
on the Special Font and are printed as a 1-em space if that font is not
mounted. Nroffunderstands theentire troff characterset,butcanin general
print only ASCII characters, such characters as can be constructed by
.overstriking or other combinations, and those that can reasonably be
mapped into other characters. The exact behavior is determined by a
driving table prepared for each device. The characters ’, ¢, and _print as
themselves. The default mounted fonts are Roman (R), italic (I), bold (B),
and the Special Mathematical Font (S) on physical typesetter positions 1, 2,
3, and 4 respectively.

The current font, initially Roman, may be changed (among the mounted
fonts) by use of the .ft request, or by imbedding at any desired point either
\fx,\f(xx, or\fN where x and xx are the name of a mounted font and Nis a
numerical font position. It is not necessary to change to the Special font;
characters on that font are handled automatically. A request for a named

;o but unmounted font is ignored. Troff can be informed that any particular

\ '" font is mounted by use of the .fp request. The list of known fonts is

N installation-dependent. Nroff understands font control and normally
underlines characters thatareitalicized.

Character point sizes are typically in the range 6-36 (1/12 to 1/2-inch). The
.ps request is used to change or restore the point size. Alternatively the
pointsizemay be changed between any two characters by imbedding a\sNat
the desired point to set the size to N, or a \sxtN (1<N<9) to
increment/decrement the size by N; \sO restores the previous size.
Requested point size values that are between two valid sizes yield the larger
of the two. The currentsize is available in the .s register. Nroffignores type
size control.

A listof font and size control commands follows:

.ps Has an initial value of 10. Point size setto £ N. Alternatively
imbed \sN or \siN. Any positive size value may be
requested; if invalid, the next larger valid size will result,
with a maximum of 36. A paired sequence +N, -N will work
because the previous requested value is also remembered.
Ignored in mroff. If no argument is given, .ps has the
previous value.

@

ssN Has an initial value of 12/36 em. Space-character sizeis set
to N/36 ems. This size is the minimum word spacing in
adjusted text. Ignored in nroff. If no argument is specified,

therequestisignored.

6-5

XENIX Text Processing Guide

csFNM

.bd F N

bd SFN

ftF

fpNF

Initially off. Constantcharacterspace (width) modeis seton
for font F (if mounted); the width of every character will be
taken to be N/36 ems. If M is absent, the em is that of the
character’s point size; if Mis given, the em is M points. All
affected characters are centered in this space, including
those with an actual width laiger than this space. Special
Font characters occurring while the current fontis F are also
so treated. If Nis absent, the modeis turned off. The mode
must bein effect when the characters are physically printed.
Ignoredin nroff.

Initially off. The characters in font F will be artificially
emboldened by printing each one twice, separated by N-1
basic units. A reasonable value for Nis 3when the character
size is in the vicinity of 10 points. If N is missing the
embolden mode is turned off. The mode must be in effect
when the characters are physically printed. Ignored in nroff.

Initially off. The characters in the Special Font will be
emboldened whenever the currentfontis F. The mode must
bein effectwhen thecharacters are physically printed.

Initially Roman. Font changed to F. Alternatively, imbed
\fF. The fontname P is reserved to mean the previous font.
If no argument is specified, previousfontis assumed.

Initially R, I, B, S. Fontposition. This is a statement that a
font named F is mounted on position N (1-4). It is a fatal
error if F is notknown. The phototypesetter has four fonts
physically mounted. Each font consists of a film strip which
can be mounted on a numbered quadrant of a wheel. This
requestis ignored if no arguments are given.

6.2.2 Page Control

Top and bottom margins are not automatically provided. It is standard
procedure to define two macros and set traps for them at vertical positions 0
(top) and -N (N from the bottom). A pseudo-page transition onto the first
page occurs either when the first break occurs or when the first nondiverted
text processing occurs. Arrangements for a trap to occur at the top of the
firstpagemustbe completedbefore this transition.

.pl:N

6-6

Page length set to +N, initially 11 inches. The internal
limitation is about 75 inches in troff and about 136 inches in
nroff. The current page length is available in the .p register.
The default scale indicator is v. If no argument is given, 11
inchesisassumed.

e

Nroff/Troff Reference

.bp:N Begin page, initially N=1. The-current page is ejected and a
new pageisbegun. If+ Nis given, thenewpagenumberwillbe
+N. The default scale indicatorisv.

.pnxN Page number, initially N=1. The next page (when it occurs)
will have the page number +N. A .pn must occur before the
initial pseudo-page transition to effect the page number of the.
first page. The current page number is in the % register.

.poxN Page offset, initially 0. The current left margin is set to +N.
The troff initial value provides about 1 inch of paper margin
including the physical typesetter margin of 1/27-inch. In troff
the maximum line-length + page-offset is about 7.54 inches.
Thecurrent page offsetis availablein the .o register.

.ne N Need N vertical space. If the distance D to the next trap
position is less than N, a forward vertical space of size D
occurs, which will spring the trap. If there are no remaining
traps on thepage, Dis the distance to the bottom of the page.
If D<V, anotherlinecould still be output and springthe trap.
In a diversion, Dis the distance to thediversion trap, ifany, or
isverylarge. Ifno argumentis specified, N=1V. '

.mk R Marks the current vertical place in an internal register (both
associated with the current diversion level), or inregister R, if
given.

TtEN Returns upward only to a marked vertical place in the current -

diversion. If +N is given, the place is =N from the top of the
page or diversion or, if N is absent, to a place marked by a
previous .mk. Notethatthe .sp request may be used in allcases
instead of .rt by spacing to the absolute place stored in an
explicit register.

6.2.3 Text Filling, Adjusting, and Centering

Normally, words are collected from input text lines and assembled into an
output text line until some word does not fit. An attempt is then made to
hyphenate the word in an effortto place a part of it onto the output line. The
spaces between the words on the outputline are then increased to spread out
the line to the current line length minus any current indent. A word is any
string of characters delimited by the space character or the beginning or end
of the input line. Any adjacent pair of words that must be kept together
(neithersplitacross output lines nor spread apart in the adjustment process)
can be tied together using the unpaddable space character (backslash-
space). The adjusted word spacings are uniform in troff and the minimum
interword spacing can be controlled with the .ss request. In nroff, word
spacings are normally nonuniform because of quantization to character-size
spaces; the command line option -e causes uniform spacing with full output

6-7

XENIX Text Processing Guide

device resolution. Filling, adjustment, and hyphenation can all be
prevented or controlled. Thetextlength on thelastline output is available in
the . register, and text baseline position on the page for thislineisin the .nl
register. The text baseline high-water mark (lowest place) on the current
pageisin the .h register.

Aninputtextline ending with ., ?, or | is taken to be theend of a sentence,
and an additional space character is automatically provided during filling.
Multiple interword space characters found in the input are retained, except
fortrailing spaces; initial spaces also cause a break. Whenfillingis in effecta
\p may beembedded or attached to a word to cause abreak attheend of the
word and have the resulting output line spread out to fill the current line
length.

A text input line that happens to begin with a control character can be
printed as a textline by prefacing it with the nonprinting, zero-width filler
character \&. Another method is to specify output translation of some
convenientcharacterinto the control characterusing .tr.

The copying of an input line in no-fill mode can be interrupted by
terminating the partial line with a \c. The next encountered input text line
will be considered to be a continuation of the same line of input text.
Similarly, a word within filled text may be interrupted by terminating the
word and line with \c; the next encountered text will be taken as a
continuation of theinterrupted word. If theintervening controllines causea
break, any partialline willbe forced out along with any partialword.

.br Break. The filling of the line currently being collected is
stopped, and thelineis output without adjustment. Text lines
beginning with space characters and empty text lines (blank
lines) also cause abreak.

A Fill subsequent output lines. Initially fill is on. The register .uis
lin filmodeandOin nofillmode.

.nf Nofill. Initially, fillis on. Subsequent output lines are neither
filled nor adjusted. Input text lines are copied directly to
output lines without regard for the currentlinelength.

.adc Line adjustment is begun. If fill modeis not on, adjustment
will b e deferred until fill mode is back on. If the type indicator
c is present, the adjustment type is changed in the following
ways: 1to adjustleft-margin only, rto adjustrightmargin only,
cto center,b ornto adjustboth margins. If cis absent, theline
remainsunchanged.

.na No-adjust. Initially, set to adjust. Adjustment is turned off;

the right margin will be ragged. The adjustment type for .ad is
unchanged. Outputlinefillingstill occurs if fillmodeison.

6-8

Nroff /Troff Reference

.ce N Initially, off. Center the next N input text lines within the
current line-length minus indent. If N=0, any residual count is
cleared. A break occurs after each of the N input lines. If the
inputlineistoolong,itwill beleft-adjusted.

6.2.4 Yertlcal Spacing. . ..

The vertical spacing (V) between the baselines of successive output lines can
be set using thc .vs request with a resolution of 1/144-inch = 1/2 point in
troff, and to the output device resolution in nroff. Vmust belargeenoughto
accommodate the character sizes on the affected output lines. For the
common type sizes (9-12 points), usual typesetting practice is to set V to 2
points greater than the pointsize; troff default is 10-point type on a 12-point
spacing. The current V is available in the .v register. Multiple-V line
separation (e.g. double spacing) mayberequested with.ls.

If a word contains a vertically tall construct that requires the output line
containing itto have extra vertical space before and or afterit, the extra line
space function \x’N’ can be imbedded in or attached to that word. In this
and other functions having a pair of delimiters around their parameter, the
delimiter choice is arbitrary, except thatitcannotlook like thecontinuation
of anumberexpressionfor N. If Nis negative, the outputline containingthe
word will be preceded by N extra vertical space; if N is positive, the output
line containing the word will be followed by N extra vertical space. If
successive requests for extra space apply to the same line, the maximum
values are used. The most recently utilized post-line extra line space is
available in the .aregister.

A block of vertical space is ordinarily requested using .sp, which honors the
no-space mode and which doesnotspace pastatrap. A contiguousblock of
vertical space may be reserved using .sv. The following requests control
vertical spacing:

.vs N Initially, 1/6-inch or 12 points. Setvertical baseline spacing size
V. Transient extra vertical space available with \x’N".

s N Initially, N=1. Line spacing set to +N. Vs (blank lines) are
appended to each output text line. Appended blank lines are
omitted if the text or previous appended blank line reached a
trap position. Space vertically in either direction. If N is
negative, the motion is backward (upward) and islimited to the
distance to thetop of the page. Forward (downward) motion is
truncated tothedistancetothenearesttrap.

SspN Space vertically in either direction. If N is negative, the motion is
backward (upward) and is limited to the distance to the top of
the page. Forward (downward) motion is truncated to the
distance to the nearest trap. If no-spacemodeis on, no spacing
occurs.

6-9

XENIX Text Processing Guide

.SsVN Save a contiguous verticalblock of size N. If the distance to the
next trap is greater than N, N vertical space is output. No-space
mode has no effect. If this distance is less than N, no vertical
space is immediately output, but N is remembered for later
output. Subsequent .sv requests will overwrite any still

remembered N.

.os Output saved vertical space. No-space mode has no effect. Used
to finally output a block of vertical space requested by an earlier
.svrequest. .

.ns No-space mode turned on. When on, the no-space mode

inhibits .sp requests and .bp requests without a next page
number. The no-space mode is turned off when a line of output
occurs, orwith .rs.

IS Restore spacing. The no-space modeis turned off.

blank line Causesabreak and output of a blank line exactlylike .sp 1.
6.2.5 Line Length and Indenting

The maximum line length for fill mode may be setwith .}l. The indent may
be setwith .in; an indent applicable to only the next output line maybe set
with the temporary indent request .ti. The linelengthincludes indent space
but not page offset space. The line length minus the indent is the basis for
centering with .ce. The effect of .1, .in, or .ti is delayed if a partially
collected line exists until after that line is output. In fill mode the length of
texton an output line isless than or equal to theline length minus theindent.
The current line length and indent are available in registers .1 and .i
respectively. The length of three-part titles producedby .tlis independently
set by .1t.

1IN Initially, 6.5 inches. Line length is set to £N. In troff the
maximum line-length + page-offset is about 7.54 inches. Without
an argument, this means the previous line length.

in+N Initially, N=0. Indent is set to £N. The indent is prepended to
each output line. Without an argument, this means the previous
indent.

tixN Temporary indent. The next output text line will be indented a
distance +N with respect to the current indent. The resulting
total indent may not be negative. The current indent is not
changed. Without an argument, therequestis ignored.

610

C.

Nroff/Troff Reference

6.2.6 Tabs, Leaders, and Fields

Both the ASCII horizontal tab character and the ASCII SOH (leader)
character can be used to generate either horizontal motion or a string of
repeated characters. The length of the generated entity is governed by

_internal tab stops specifiable with .ta. The defaultdifference.is that tabs

generate motion and leaders generate a string of periods; .tcand .Ic offer the -
choice of repeated character or motion. There are three types of internal
tab stops: left adjusting, right adjusting, and centering. In the following
table D is the distance from the current position on the input line (where a
tab or leader was found) to the nexttab stop; the next string consists of the
input characters following the tab (orleader) up to the next tab (or leader) or
end ofline;and Wisthewidth of next-string.

Tab Length of motion or Location of
type repeated characters next string
Left D FollowingD
Right D-W Right adjusted within D
Centered . D-W/2 Centered cnrightend of D

Thelength of generated motion can be negative, but thelength of a repeated
character string cannot be. Repeated character strings contain an integer
number of characters, and any residual distance is prepended as motion.
Tabs orleaders found after the last tab stop are ignored, but maybe used as
next-string terminators.

Tabs and leaders are notinterpreted in copy mode. \tand\aalwaysgenerate
a noninterpreted tab and leader respectively, and are equivalent to actual
tabs and leadersincopymode.

A fieldis contained between a pair of field delimiter characters, and consists
of substrings separated by padding indicator characters. The field length is
the distance on the inputline from the position where the field begins to the
next tab stop. The difference between the total length of all the substrings
and the field length is incorporated as horizontal padding space that is
divided among the indicated padding places. The incorporated padding is
allowed to be negative. For example, if the field delimiter is # and the
paddingindicatoris *, # xxx"right# specifies a right-adjusted string with the
string xxx centered in the remaining space. The following requests are
recognized:

taNt... Sets tab stops and types. t=R, right adjusting; t=C, centering; t
absent is left-adjusting. Troff tab stops are preset every 0.5
inches, nroff every 0.8inches. The stop values are separated by
spaces, and a value preceded by +is treated as an increment to
the previous stop value.

.tcc Thetab repetition character becomes c, oris removed specifying
motion.

611

XENIX Text Processing Guide

e ¢ The leader repetition character becomes c, or is removed
specifyingmotion.

fcad The field delimiter is set to a; thepaddingindicator is set to the
space character or to b, if given. In the absence of arguments the
field mechanism is turned off.

6.2.7 Hyphenation

Automatic hyphenation can be switched off and on. When switched on with
.hy, several variants maybeset. A hyphenation indicator character maybe
imbedded in a word to specify desired hyphenation points, or may be
prepended to suppress hyphenation. In addition, the user may specify a
small exception word list.

Only words that consist of a central alphabeticstring surrounded by (usually
null) nonalphabetic strings are considered candidates for automatic
hyphenation. Words that were input containing hyphens (minus), em-
dashes (\(em), or hyphenation indicator characters—such as mother-in-
law-are always subject to splitting after those characters, whether automatic
hyphenation is on or off.

.nh Initially, hyphenation is on. Automatic hyphenation is
turned off.
.hyN Automatic hyphenation isturned on for N> 1, oroff for N=0.

If N=2, last lines (ones that will cause a trap) are not
hyphenated. For N=4 and 8, thelast and firsttwo characters,
respectively, of a word are not split off. These values are
additive; i.e., N=14will invoke all three restrictions.

hece Hyphenation indicator characteris set to ¢ or to the default
\&. Theindicator does notappearin the output.

.hwwordl...
Specify hyphenation points in words with imbedded minus
signs. Versions of a word with various endings areimplied.

6.2.8 Three Part Titles

The titling function .tl provides for automatic placement of three fields at
the left, center, and right of a line with a title-length specifiable with .1t. .tl
may be used anywhere, and is independent of the normal text collecting
process. A common useisin header and footer macros.

.tl'left’center’right’

Thestringsleft, center, and right, respectively, are left-adjusted,
centered, and right-adjusted in the current title length. Any of

6-12

Nroff /Troff Reference

the strings may be empty, and overlapping is permitted. If the
page-number character (initially %) is found within any of the
fields, it is replaced by the current page number having the
format assigned to theregister %. Any character may be used as
the string delimiter.

.pc.c . ..The page number character is set to ¢, or.removed..-The page-
number register remaizs %.

It+N Initially 6.5 inches. Length of title set to +N. The line length and
the title length are independent. Indents do not apply to titles;
page offsetsdo.

6.2.9 Output Line Numbering

Automatic sequence numbering of output lines may be requested with .nm.
When in effect, a three-digit Arabic number plus a digit-space is prepended
to output text lines. The text lines are thus offset by four digit-spaces, and
otherwise retain theirlinelength; areduction in linelength maybe desired to
keep the right margin aligned with an earlier margin. Blank lines, other
verticalspaces, and lines generated by .tlare notnumbered. Numberingcan
be temporarily suspended with .nn, or with an .nm followed by a later
.nm+0. In addition, a line number indentI and the numb er-text separation
S may be specified in digit-spaces. Further, it can be specified that only
those line numbers that are multiples of some number M are to be printed.
(Theothers will appear as blank numberfields.)

.nm+N Linenumber mode. If +N is given, linenumberingis turned on,
and the next output line numbered is numbered £N. Default
values are M=1, S=R, and I=0. Parameters corresponding to
missing arguments are unaffected; a non-numeric argument is
considered missing. In the absence of all arguments, numbering
is tumed off; the next line number is .preserved for possible
further usein number register in.

.nnN ThenextNtextoutput linesarenotnumbered.

6.3 Character Translations, Overstrike, and Local
Motions

The troff functions described in the following sections apply to the
processing of specialized text, including special characters and lines of
variablelength. Also described are methods for producingspecial effects in
text, by changing the position of text relative to lines and using offsets to
create bold effects.

6-13

XENIX Text Processing Guide

6.3.1 Input/Output Conventions and Character Translations

The newline delimits input lines. In addition, the ASCII characters STX,
ETX, ENQ, ACK, and BEL are accepted, and may be used as delimiters or
translated into a graphicwith .tr. Allothersareignored.

The troff escape character backslash (\) introduces escape sequences which
causes the character that follows to have another meaning, or to indicate
some function. The backslash (\) should not be confused with the ASCII
control character ESC of the same name. The escape character \ can be
input with the sequence \\. The escape character can be changed with .ec,
and all that has been said about the default \ becomes true for the new
escape character. The sequence\e can be used to printwhatever the current
escape character is. If necessary or convenient, the escape mechanism may
be turned off with .eo, and restored with .ec.

.ecc Sets escapecharacter to\, or to c, if given.

.e0 Turns the escape mechanism off.

Five ligatures are availablein the current troff character set: fi, fl, ff, Fi, and
fi. They maybe inputin nreffwith\(fi, \(fl, \(ff, \(Fi, and \(Flrespectively.

The ligature mode is normally on in troff, and automatically invokes
ligaturesduring input. Theligaturerequestis:

g N Ligature mode is turned on if N is absent or nonzero, and
turned off if N=0. If N=2, only the two-character
ligatures are automatically invoked. Ligature mode is
inhibited for request, macro, string, register, or filenames,
andin copymode. No effectinnroff.

Unless in copy mode, the ASCII backspace character is replaced by a
backward horizontal motion having the width of the space character. Nroff
automatically underlines characters in the underline font, specifiable with
uf, normally on font position 2. In addition to .ft and \fF, theunderlinefont
may be selected by .ul and .cu. Underlining is restricted to an output-
device-dependentsubset of reasonable characters.

ulN Initially, off. Underlines in nroff (italicizes in troff) thenextN
input text lines. Actually, switches to underline font, saving
the current font for later restoration; other font changes
within the span of a .ul will take effect, but the restoration will
undothelastchange. Output generated by .tlis affected by the
font change, but does not decrement N. If N>1, there is the
risk that a trap interpolated macro may provide text lines
within the span; environmentswitching can prevent this.

cuN Initially, off. A variant of .ul that causes every character to be
underlined in nroff. Identicalto .ulin troff.

6-14

N

Nroff/Troff Reference

af F Initially, italic. Underline font setto F. In nroff, F may not be
on position 1.

Both the control character dot (.) and the no-break control character (*)
may be changed, if desired. Such a change must be compatible with the
design of any macros used in the span of the change, and particularly of any
trap-invoked macros.

.ccc Thebasic control characterissetto c, orresettodot ().

c2¢c The nobreak control character is set to ¢, or reset to single
quotation mark (*).

One character can be made to stand in for another character using .tr. All
text processing (e.g., character comparisons) takes place with the input
(stand-in) character, which appears to have the width of the final character.
The graphic translation occurs at the moment of output (including
diversion).

.trabced.. Translates atob, cto d, etc. If an odd number of characters is
given, thelast one will be mapped into the space character. To
be consistent, a particular translation must stay in effect from
1nput tooutputtime.

An input line beglnnlng with a \! is read in copy mode and transparently
output (without the initial \!); the text processor is otherwise unaware of the
line’s presence. This mechanism maybe used to pass controlinformation to
a post-processor or to imbed control lines in a macro created by a diversion.

Comments and concealed newlines may appear in text. An uncomfortably
long input line that must stay one line (e.g., a string definition, or nofilled
text) can be splitinto many physical lines by ending all but the last one with
the escape \. The sequence \(newline) is always ignored-except in a
comment. Comments may beimbedded at the end of anyline by prefacing
them with \". The newline attheend of acomment cannot be concealed. A
line beginning with \"” will appear as a blank line and behave like .sp 1; a
commentcan be on alinebyitselfif theline begins with .\".

6.3.2 Local Motions and thé Width Function

The functions \V’'N’ and \l’N’ can be used forlocal vertical and horizontal
motion, respectively. The distance N may be negative; the positive
directions are rightward and downward. A local motion is one contained
within a line and, otherwise, within a line balance to zero. The vertical
motions are:

\v’'N’ Movedistance N

\u 1/2-emupin troff; 1/2-lineup in nroff

6-15

XENIX Text Processing Guide

\d 1/2-em down in troff; 1/2-line down in nroff

\r 1 em up in troff; 1lineup in nroff

Thehorizontal motions are:

\h’N’ Movedistance N

\space Unpaddablespace-sizespace

\0 Digit-sized space

\l 1/6-em spacein troff; ignored in nroff
\ 1/12-em spacein troff; ignored in nroff

The width function \w’string’ generates the numerical width of string (in
basic units). Size and font changes may be safely imbedded in string, and
will not affect the current environment. For example, .ti-\w’1.’u could be
used to temporarily indent leftward a distance equal to the size of the string
l‘l-”

The width function also sets three number registers. The registers st and sb
are set to the highest and lowest extent of string relative to the baseline;
then, for example, the total height of string is \n(stu—\n(sbu. In troff, the
number register ctis setto avaluebetween 0and3. Zero (0) means that all of
the characters in string were short lowercase characters without descenders
(e.g., ¢); 1 means that at least one character has a descender (e.g., y); 2
means that atleast one character is tall (e.g., H); and 3 means that both tall
characters and characters with descenders are present. The escape
sequence \kxwill cause the current horizontal position in theinputlinetobe
storedinregisterx.

6.3.3 Opverstrike, Bracket, Line-drawing, and Zero-width Functions

Automatically centered overstriking of up to nine characters is provided by
the overstrike function \o’string’. The characters in st g are overprinted
with centers aligned; the total width is that of the widest character. String
should not contain local vertical motion. The function \zc will output ¢
without spacing overit, and can be used to produce left-aligned overstruck
combinations.

The Special Mathematical Font contains a number of bracket construction
pieces (¢ (1 { } 1L 1T1) that can be combined into various bracket styles.
The function \b’string’ may be used to pile the characters in string vertically
(the first character on top and the last at the bottom); the characters are
vertically separated by 1 em and the total pile is centered 1/2-em above the
current baseline.

The function \I'N¢’ will draw a string of repeated c’s toward theright for a
distance N. (\l is \(lowercase L). If ¢ looks like a continuation of an

6-16

Nroff /Troff Reference

expression for N, it may insulated from N with a\&. If c is notspecified, the
_ (baseline rule) is used (underline character in nroff). If N is negative, a
backward horizontal motion of size N is made before drawing the string.
Any space resulting from N/(size of ¢) having a remainder is put at the
beginning (left end) of the string. In the case of characters that are designed
to be connected such as baseline-rule(_), underrule (_), and root-en (), the

.. remaining-space is-coveredby-overlapping.- If Nisless thanthewidthofc,a"

single c is centered on a distance N.

The function \L'Nc’ will draw a vertical line consisting of the (optional)
character c stacked vertically apart 1 em (1 line in nroff) with the first two
characters overlapped, if necessary, to form a continuous line. The default
character is the box rule (\(br); the other suitable character is the bold
vertical (\(bv). The line is begun without any initial motion relative to the
current base line. A positive N specifies a line drawn downward and a
negative N specifies a line drawn upward. After the line is drawn, no
compensating motions are made; the instantaneous baselineisatthe end of
the line. The horizontal and vertical line drawing functions may beusedin
combination to produce large boxes. The zero-width box-rule and the 1/2-
em wide underrule were designed to form corners when using 1 em vertical
spacings.

6.4 Processing Control Facilities

The following sections describe nroff and troff requests and facilities for
controlling the processing of text.

6.4.1 Macros, Strings, Diversions, and Position Traps

A “macro” is anamed set of arbitrary lines that may be invoked byname or
with a trap. A “string” is a named string of characters, not including a
newline character, that may be interpolated by name at any point. Request,
macro, and string names sharethe same name list. Macro and stringnames
may be one or two characters long and may usurp previously defined
request, macro, or string names. Any of these may be renamed with .rm or
removed with .rm. Macros are created by .de and .di, and appended to by
.am and .da; .di and .da cause normal output to be stored in a macro.
Strings are created by .ds and appended to by .as. A macro is invoked in the
sameway as a request. A control linebeginning with xx will interpolate the
contents of macro xx. The remainder of the line may contain up to nine
arguments. The stringsx andxxareinterpolated at any desired point with *x
and *(xx, respectively. String references and macro invocations may be
nested.

During the definition and extension of strings and macros (not by diversion)
the input is read in copy mode. The input is copied without interpretation
exceptthat:

6-17

XENIX Text Processing Guide

— Thecontents ofnumberregistersindicated by\n are interpolated.
— Strings indicated by* are interpolated.

—~ Argumentsindicated by\$ areinterpolated.

— Concealed newlinesindicated by \newline are eliminated.

— Commentsindicated by\" are eliminated.

- -\t and \a are interpreted as ASCII horizontal tab and SOH,
respectively.

= \\is interpreted as\.

— \.isinterpretedasdot(.).

These interpretations can be suppressed by prepending a \ . For example,
since \\ maps into a \, \\n will copy as \n. This will be interpreted as a
number register indicator when the macro or string isreread.

‘When a macro is invoked by name, the remainder of the line is taken to

contain up to nine arguments. The argument separator is the space
character, and arguments may be surrounded by quotation marks to permit
imbedded space characters. Pairs of double quotation marks may be
imbedded in double-quoted arguments to represent a single quotation
mark. If the desired arguments will not fit on aline, a concealed newline
maybeused to continue on the next line.

When amacrois invoked the input level is pushed down and any arguments
available at the previous level become unavailable until the macro is
completely read and the previous level is restored. A macro’s own
arguments can beinterpolated at any point within the macro with \$N, which
interpolates the Nth argument (1< N<9). If an invoked argument does not
exist, anullstringresults. For example, the macroxx might be defined as:

.de n\ "begin definition

Today is \\$1 the \\$2.
\"end definition

and called with:
.xx Monday 14th
to producethe text:
Today is Monday the 14th.

Note that the \$was concealed in the definition with a prepended \. The
numb er of currently available arguments is in the .$ register.

No arguments are available at the top (nonmacro) level in this
implementation. Because string referencing is implemented as an input-
level push down, no arguments are available from within a string. No
arguments are available within a trap-invoked macro.

6-18

TN

Nrofi/Troff Reference

Arguments are copied in copy mode onto a stack where they are available
for reference. The mechanism does not allow an argument to contain a
direct reference to a long string (interpolated at copy time), and it is
advisable to conceal string references (with an extra\) to delay interpolation
untilargument reference time.

Processed output may be diverted into a macro for purposes such as

footnote processing or_determining the horizontal and vertical size of some -

text for conditional changing of pages or columns. A single diversion trap
may be set at a specified vertical position. The numberregisters .dnand .dl,
respectively, contain the vertical and horizontal size of the most recently
ended diversion. Processed text that is diverted into a macro retains the
vertical size of each of itslines when reread in no-fillmode, regardless of the
current value of V. Constant-spaced (.cs) or emboldened (.bd) text that is
diverted can be reread correctly only if these modes are again, or still, in
effectatreread time.

Diversions may be nested and certain parameters and registers are
associated with the current diversion level (the top nondiversion level may
be thought of as the Oth diversion level). These are the diversion trap and
associated macro, the no-space mode, the internally saved marked place
(see .mk and .rt), the current vertical place (.d register), the current high-
watertextbaseline (.h register), and the current diversion name (.z register).

Three types of trap mechanisms are available-page traps, a diversion trap,
and an inputline count trap. Macro invocation traps may be planted using
.wh at any page position including the top. This trap position may be
changed using .ch. Trap positions at, orbelow, thebottom of the page only
have an effect if moved to within the page or rendered effective by an
increase in pagelength. Two traps may be planted at the same position only
by first planting them at different positions and then moving one of the
traps; the first planted trap will conceal the second unless and until the first
one is moved. If the first one is moved back, it again conceals the second
trap. Themacro associated with a page trap is automaticallyinvokedwhen a
line of text is output whose vertical size reaches or sweeps past the trap
position. Reaching the bottom of a page springs the top-of-page trap, if any,
provided there is a next page. The distance to the next trap position is
available in the .t register; if there are no traps between the current position
and thebottom of the page, the distance returned is the distance to the page
bottom.

A macro-invocation trap effective in the current diversion may be planted
using .dt. The .t register works in a diversion; if there is no subsequent trap,
alargedistance is returned. For a description of input line count traps, see
.itin the following list.

C- N .dexx yy Define or redefine themacro xx. The contents of the macro

begin on the nextinput line. Input lines are copied in copy
mode until the definition is terminated by a line beginning
with .yy, atwhich point the macro yy is called. In the absence
of yy, the definition is terminated by alinebeginning with two
dots (..). A macro may contain .de requests provided the

6-19

XENIX Text Processing Guide

.amxxyy

.dsxxstring

.asxxstring

JI XX

.0 XX yy

.di xx

daxx

-wh Nxx

.chxxN

.dt Nxx

At N xx

-emxx

6-20

terminating macros differ or the contained definition
terminator is concealed. The dots can be concealed as \\..
which willcopy as\.. and be reread as dots (..).

Append tomacro.

Define a string xx containing string. Any initial double
quotation mark in string is stripped off to permit initial
blanks.

Append string to string xx.

Remove request, macro, or string. The name xx is removed
from ‘the name list and any related storage space is freed.
Subsequentreferences will haveno effect.

Rename request, macro, or string xx to yy. If yy exists, it is
firstremoved.

Divert output to macro xx. Normal text processing occurs
during diversion except that page offsetting is not done. The
diversion ends when the request .di or .da is encountered
without an argument; extraneous requests of this type should
not appear when nested diversions are being used.

Divert, appendingtoxx.

Installa trap to invoke xx atpageposition N; a negative N will
be interpreted with respect to the page bottom. Any macro
previously planted at N is replaced by xx. A zero N refers to
the top of a page. In the absence of xx, the first found trap at
N, if any, isremoved.

Change the trap position for macro xx to N. In the absence of
N, thetrapisremoved.

Install a diversion trap at position N in the current diversion
to invoke macro xx. Another .dt will redefine the diversion
trap. If no arguments are given, the diversion trap is
removed.

Set an input line count trap to invoke the macro xx after N
lines of text input havebeen read (control or request lines do
not count). The text may be in-line text or text interpolated
byin-line or trap-invoked macros.

The macro xx will be invoked when allinput has ended. The
effectis the same as if the contents of xx had been at the end
of thelastfile processed.

Nroff/Troff Reference

6.4.2 Number Registers

A variety of parameters are available to the user as predefined, named
number registers. In addition, the user may define his own named registers.
Register names are one or two characters long and do not confiict with

request,-macro,-orstring-names. -Except for certain predefined read-only~ -

registers, anumber register can be read, written, automatically incremented
ordecremented, and interpolated into the input in a variety of formats. One
common use of user-defined registers is to automatically number sections,
paragraphs, lines, etc. A number register may be used any time numerical
inputis expected or desired and maybe used in numerical expressions.

Number registers are created and modified using .nr, which specifies the
name, numerical value, and the auto-increment size. Registers are also
modified, if accessedwith an auto-incrementing sequence. If the registers x
and xx both contain N and have the auto-increment size M, the following
access sequences have the effect shown:

Effecton Value
Sequence Register Interpolated
\nx none N
\n(xx none N
\n+x x incremented by M N+M
\n-x x decremented by M N-M
\n+(xx xx incremented by M N+M
\n-(xx xx decremented byM N-M

When interpolated, a number register is converted to decimal (default),
decimal with leading zeros, lowercase Roman, uppercase Roman,
lowercase sequential alphabetic, or uppercase sequential alphabetic
according to theformatspecified by .af.

.anr RENM Thenumberregister R is assigned the value tNwith respectto
the previous value, if any. The increment for auto-
incrementingisset toM.

.afRe Assign format ctoregister R. Theavailableformatsare:
Numbering
Format Sequence

1 |0,1,2,3,4,5,...
001 | 000,001,002,003,004,005,...

i 0,1,11,1ii,iv,v,...

I O,LILIILIV,V,...

a 0,a,b,c,...,z,aa,ab,...,zz,aaa,...

A 0,A,B,C,...,Z,AA,AB,...,ZZ ,AAA,...

6-21

XENIX Text Processing Guide

An Arabic format having N digits specifies a field width of N
digits. The read-only registers and the width function are
always Arabic.

or R Remove register R. If many registers are being created
dynamically, it may become necessary to remove unused
registers to recapture internal storage space for newer
registers.

6.4.3 Conditional Acceptance of Input

In the following, c is a one-character, built-in condition name, ! signifies
not, N is a numerical expression, stringl and string2 arestrings delimited by
any nonblank, non-numeric character not in the strings, and text represents
whatis conditionally accepted.

if ctext
If condition c is true, process text as input; in multiline case, use
\{text\}.
if lctext
If condition cis false, process text.
[ifNtext
If expression N>0, processtext.
AfINtext

Ifexpression N <0, process text.

.if ’string1’string2’ text
If stringl identical to string2, process text.

.if!’string]’string2’ text
If string 1 not iden tical to string2, process text.

Jdectext
“If” portion of if-else; allabove forms (like if).

.eltext
“Else’’ portion of if-else.

There are several built-in condition names:

o Currentpagenumberis odd
e Currentpage numberiseven
t Formatteristroff

6-22

Nroff/Troff Reference

n Formatterisnroff

If condition cis true, or if the number Nis greater than zero, or if the strings
compare identically (including motions and character size and font), zext is
accepted as input. If a ! precedes the condition, number, or string
comparison, the sense of the acceptance is reversed.

~Amny-spaces-between the condition-andthe beginning of text are skipped

over. Thetext can be either a single inputline (text, macro, orwhatever) ora
number of input lines. In the multiline case, the firstline must begin with a
leftdelimiter\{and thelastline mustend with aright delimiter\}.

The request .ie (if-else) is identical to .if except that the acceptance state is
remembered. A subsequent and matching .el (else) request then uses the
reverse sense of thatstate. .je-.el pairsmaybenested.

6.4.4 Environment Switching

A number of the parameters that control text processing are gathered
together into an environment, which can be switched by the user. Partially
collected lines and words are in the environment. Everything else is global;
examples are page-oriented parameters, diversion-oriented parameters,
number registers, and macro and string definitions. All environments are
initialized with default parameter values.

.evN Initially, N=0. Environment switched to environment where N is
in the range 0-2. Switching is done in push down fashion so that
restoring a previous environment must be done with .ev with no
parameters rather than aspecificnumeric reference.

6.4.5 Insertions From the Standard Input

Theinput can be temporarily switched to the system standard input with .rd,
which will switch back when two newlines in a row are found. (The extra
blank line is not used.) This mechanism is intended for insertions in
documentation containing standard formats. The standard input can be the
terminal, a pipe, or afile.

.rd promptReads insertion from the standard input until two newlines in a
row are found. If the standard input is the user’s keyboard, a
prompt (or a BEL) is written onto the terminal. The .rd request
behaves like a macro, and arguments may be placed after the

C prompt.
!
.ex Exit from either nroff or troff. Text processing is terminated

exactlyasif allinputhad ended.

6-23

XENIX Text Processing Guide

If insertions are to be taken from the terminal keyboard while output is
being printed on the terminal, the command line option -q will turn off the
echoing of keyboard input and prompt only with BEL. The regular input
and insertion input cannot simultaneously come from the standard input.

6.4.6 Input/Output File Switching

Thefollowingrequests control the switching of input and output files:

.so filename

Switch source file. The top input(filereading) level is switched to

filename. The effect of a .so encountered in a macro is not felt
until the input level returns to the file level. When the new file
ends, input is again taken from the original file. .so’s may be
nested.

.nx filename

Next file is filename. The current file is considered ended, and
theinputisimmediately switched to filename.

.piprogram

Pipe output to program in nroff only. This request must occur
before any printing occurs. No arguments are transmitted to
program.

6.4.7 Miscellaneous Requests

.mcc¢ N

.tm string

ig yy

.pmt

624

Specifies that a margin character ¢ appears a distance N to the
right of the right margin after each nonempty text line (except
those produced by .t1). If the output line is too long, the
character will be appended to the line. If N is not given, the
previous Nisused; the initial Nis0.2inches in nroff, and 1 em in
troff.

After skipping initial blanks, string (rest of line) is read in copy
modeand written on theuser’s terminal.

Ignores input lines. The .ig request behaves exactly like .de
except that the input is discarded. The input is read in copy
mode, and any auto-incremented registers willbe affected.

Prints macros. The names and sizes of all of the defined macros
and strings are printed on the user’s terminal; if ¢ is given, only
the total of the sizes is printed. The sizes are given in blocks of
128 characters.

Nroff /Troff Reference

il Flushes output buff'er. Used in interactive debugging to force
output.

6.5 Output and Error Messages

“Theoutputfrom .tm, .pm, and thepromptfrom .rd, as well asvarious error =~

messages are written onto the standard message output. The latter is
different from the standard output, where nroff forinatted output goes. By
default, both are writtecn onto the user’s terminal, but they can be
independentlyredirected.

Various error conditions may occur during the operation of nroff and troff.
Certain less serious errors having only local impact do not cause processing
to terminate. Two examples areword overflow, caused by aword thatis too
large to fitinto thewordbuffer (in fill mode), and line overflow, caused by an
output line that grew too large to fit in the line buffer. In both cases, a
message is printed, the offending excessis discarded, and the affected word
or line is marked at the point of truncation with a * in nroff and a < in troff.
The program continues processing, if possible, on the grounds that output
useful for debugging may be produced. If a serious error occurs, processing
terminates, and an appropriate message is printed. Examples are the
inability to create, read, or write files, and the exceeding of certain internal
limits thatmake futureoutputunlikely to be useful.

6.6 Summary of Escape Sequences and Number Registers

6-25

s

Chapter 7
Formatting Tables

-7.1 Introduetion 1-

7.2 InputFormat 2
7.2.1 Options 2
7.2.2 Format 3
7.2.3 Additional Features 5
7.2.4Data 7
7.2.5 Additional Command Lines

7.3 InvokingTbl 9
7.4 Examples 11

7.5 Summaryof tbl Commands 18

9

Formatting Tables

7.1 Introduction

By now, you have a firm grasp of most of the principles and techniques of
using XENIX text processing successfully. Byusingthe mm macro package,
along with nroff/troff commands, you should be able to achieve precise
control of almost any formatting task. However, there are two formatting

needs .which may .be -best met with--two specialized-XENIX formatting- -~

programs:
e Formattingtables or other complicated multicolumn material

e Setting mathematical equations

In this chapter, the program tbl, the table formatting program, is
introduced. Eqn, the mathematics formatting program, is discussed in
Chapter 8. Unless you anticipate using tables or equations fairly extensively
in your work, you may wish to postpone or skip reading about tbl and eqn.
Although both programs use commands which are easy to learn and use,
you should expect to spend several hours on each program-reading these
instructions, learning the commands, and testing them out with your output
device. If you need to create tables or equations in your documents, the
effort oflearningtbl and eqn will be well rewarded. You will soon be able to
produce high-quality, consistent output with relatively littlework.

Both tbl and eqn are “preprocessors”—that is, you insert commands into
your text as you are preparing it, just as you would if you were using mm.
These commands are translated by the tbland eqn programs into sequences
of nroff/troff commands, without altering either the body of your text or
other formatting commands. Your file is then processed through the nroff
or troff programs themselves.

You will find tbl especially useful in preparing charts, multicolumn list
summaries, and other tabular material. It will give you a high degree of
control over complicated column alignment, and it will calculate the
necessary widths of columns, when the elements are of varying lengths. Tbl
also allows you to draw horizontal lines, vertical lines and boxes in order to
highlight your material. Although the effects will be somewhat limited if you
are working with an ordinary lineprinter or similar device, you will obtain
extremely high quality results when outputting tables to phototypesetter.

Because the tbl program works by isolating the tabular material from the rest
of thefile, and then creating the necessary nroff or troff commands, the rest
of the file is left intact for other programs to format. Thus you can use tbl
along with the equation formatting program eqn or various layout macro
packages like mm, without duplicating their functions. You must be careful
to invoke the various programs in the correct order.

The latter part of thischapteris devoted to some examples—in each case, the
textinputis paired with the resulting output. You may find that, atfirst, you
learn the features of tbl best by examining these examples and copying those
formatting instructions for examples which resemble your own tables.
However, first read the rules for preparing tbl input, so you have a general

7-1

XENIX Text Processing

idea of how to invoke the tbl program, and have an overview of the possible
options and formats.

7.2 Input Format

The input to tblis textfor a document, with tables preceded by a. TS (table
start) command and followed by a . TE (table end) command. Tblprocesses
the text and formatting commands within these two commands, generating
nroff/troff formatting commands. The .TS and .TE lines are also copied so
that nroff and troff page layout macros can use these lines to delimit and
place tables as necessary. In particular, any arguments on the .TS or .TE
lines are copied but otherwiseignored, and maybeused by document layout
macro commands.

Theformatoftheinputis:

text
.TS
table
.TE
text
TS
table
.TE
text

Each tablewill contain text, options, and formatting specifications:

.TS
options;
format.
data
.TE

Each table is independent, and must contain formatting information
followed by the data to be entered in the table. The formatting information,
which describes the individual columns and rows of the table, may be
preceded by optionsthataffect the entire table.

Each table may contain global options, a format section describing the
layout of individual table entries, and then the textto be printed. Theformat
and data are always required, but not the options. The various parts of a
tablearedescribed in thefollowing sections.

7.2.1 Options

There may be a single line of options which affects the whole table. If
present, this line must immediately follow the . TS line and must contain a
list of option names separated by spaces, tabs, or commas, and must be
terminated by a semicolon. The allowableoptionsare:

7-2

center
expand

box

-allbox - -

Formatting Tables

Centers the table (default is left-adjust)
Makes the table as wide as the current linelength
Enclosesthe tablein abox

Encloseseachiteminthetableinabox-— - =~

doublebox Enclosesthetableintwoboxes

tab (x)

Usesx instead of tab to separate data items

linesize (n) Setslines or rulesinnpointtype

delim (xy) Recognizesxandy asthe eqn delimiters.

The tbl program tries to keep boxed tables on one page by
issuing appropriate .ne commands. These requests are
calculated from the number of lines in the tables, and if there
are spacing commands embedded in the input, these requests
may beinaccurate. To ensure the correct format on one page,
you can surround the table with the display macros .DS and
.DE.

7.2.2 Format

The format section of the table specifies the layout of the columns. Each
linein this section corresponds to one line of the table. The last format line
applies to all the remaining lines in the table. Each line contains a keyletter
for each column of the table. Itis good practice to separate the key letters
for each column by spaces or tabs. The keyletters, which may be either
uppercase or lowercase, are;

Lorl

Rorr
Corc
Norn

Aora

Sors

Indicates aleft-adjusted column entry

Indicates aright-adjusted column entry

Indicates a centered column entry

numerical entriesso thattheunits of numberslineup

all corresponding entries are aligned on the left, and positioned so
that thewidestis centered within the column

entry from the previous column continues across this column

7-3

XENIX Text Processing

Indicates a vertically spanned heading, i.e., the entry from the
previous row continues down through this row. (Not allowed for
the first row of thetable.)

When you are aligning numerical information, a location for the decimal
point is sought. The rightmost dot adjacent'to a digit is used as a decimal
point; if thereis no dot adjoining a digit, the rightmost digitisused for the
units; if no alignment is indicated, the item is centered in the column.
However, the special nonprinting character string “\&” may be used to
override dots and digits, or to align alphabetic data; this string lines up
where a dot normally would, and then disappears from the final output. In
the example below, theitems shown at the left will be aligned (in a numerical
column) as shown on the right:

Input tblformat
13 13
4.2) 4.2
26.12 26.12
abc abc
abc\& abc
43\&3.22 433.22
749.12 749.12

Note that if numerical text is used in the same column with wider left-
adjusted (L) or right-adjusted (R) type table entries, the widest number is
centered relative to the wider left-adjusted or right-adjusted items (Lis used
instead of 1 for readability; they have the same meaning as keyletters).
Alignment within the numerical items is preserved in the same way as using
the A format. However, alphabetic subcolumns requested by the keyletter
are always slightly indented relative to L items; if necessary, the column
width is increased to force this. This is not true for N type entries. Do not
putN and A type entriesin the same column.

To make your table formatting information more readable, you should
separate the keyletters describing each column with spaces. The layout of
the keyletters in th e format section resembles the layout of the actual data in
the table. The end of the format section of the table specification is
indicated by a period. Forexample, a simpleformatmightlook like this:

cCSss
lnn.

This specifies a table of three columns. The firstline of the table contains a
heading centered across all three columns; each remaining line contains a
left-adjusted item in the first column followed by two columns of numerical
data.

7-4

C

Formatting Tables

Hereis asampletableinthisformat:

Overall title

Item-a 34.22 9.1

Item-b 12.65 .02

Items: c,d,e 23 5.8
.....Total 69.87 14.92

Note that instead of listing the format of successive lines of a table on
consecutivelines of the format section, successive lineformatsmaybegiven
on the same line, separated by commas. In the example above, the format
mighthavebeen written:

css,lnn.

7.2.3 Additional Features

There are some additional features of thekeyletter system:

Horizontal Lines

A keyletter may be replaced by an underscore (_) to indicate a
horizontalline in placeof the corresponding column entry, or by
an equal sign (=) to indicate a double horizontal line. If an .
adjacent column contains a horizontal line, or if there are
vertical lines adjoining this column, this horizontal line is
extended to meet the nearby lines. If any data entry is provided
forthis column, itisignored and a warningmessageis printed.

Vertical Lines

A verticalbar (]) maybe placed between columnk eyletters. This
will cause a vertical line between the corresponding columns of
the table. A verticalbar to the left of the first keyletter or to the
right of thelast one produces aline at the edge of the table. If two
vertical bars appear between keyletters, a double vertical line is
drawn.

Space Between Columns

A number may follow the keyletter. This indicates the amount
of separation between this column and the next column. The
number normally specifies the separation in ens (one en is about
the width of the letter n), or more precisely, an en is anumber of
points (1 point = 1/72-inch) equal to half the currenttype size. If
the “expand” option is used, then these numbers are multiplied
by a constant so thatthetableis as wide as the currentlinelength.
The default column separation number is 3. If the separation is
changed, thelargest spacerequested prevails.

7-5

XENIX Text Processing

Vertical Spanning

Normally, vertically spanned items extending over several rows
of the table are centered in their vertical range. If a keyletter is
followed by t or T, any corresponding vertically spanned item
will begin at the top line of its range.

FontChanges

A keyletter may befollowed by a string containinga font name or
number preceded by the letter f or F. This indicates that the
corresponding column should be in a different font from the
default font (usually Roman). All font names are one or two
letters; a one-letter font name should be separated from
whatever follows by a space or tab. Font change commands
given with the table entries will override these specifications.

PointSize Changes

A keyletter maybe followed by the letter p or P and anumber to
indicate the point size of the corresponding table entries. The
number may be a signed digit, in which case it is taken as an
increment or decrement from the current point size. If both a
point size and a column separation value are given, one or more
blanksmustseparatethem.

Vertical Spacing Changes

A keyletter may be followed by theletter vor V and a number to
indicate the vertical line spacing to be used within a multiline
corresponding tableentry. The number may be a signed digit, in
which case it is taken as an increment or decrement from the
current vertical spacing. A column separation value must be
separated by blanks or some other specification from a vertical
spacing request. This request has no effect unless the
corresponding table entryis a textblock.

Column Width Indication

7-6

A keyletter may be followed by the letter w or W and a width
value in parentheses. This width is used as a minimum column
width. If the largest element in the column is not as wide as the
width value given, the largest element is assumed to be the same
as the width valuein the parentheses. If the largest elementin the
column is wider than the specified value, its width is used. The
width is also used as a default line length for included text blocks.
Normal troff units can be used to scale the width value; the
default is ens. If the width specification is a unitless integer, the
parentheses may be omitted. If the width value is changed in a
column, thelast value given controls.

—~

Formatting Tables

EqualWidth Columns

A keyletter may befollowed by the letter e or E to indicate equal
width columns. All columns whose keyletters are followed bye
or E are made the same width. This allows you to get a group of
regularly spaced columns.
The order of the above features is immaterial; they need notbe se parated by
spaces, except as indicated above to avoid point size and font change
ambiguities. Thus a numerical column entry in italic font and 12-point type
with a minimum width of 2.5 inches and separated by 6 ens from the next
column could be specified as:

npl2w(2.5i))f1 6 -

Note the following format defaults: Column descriptors missing from the
end of a format line are assumed to be L. The longest line in the format
section, however, defines the number of columns in the table; extra
columnsin the data areignored silently.

7.2.4 Data

The text for the table is entered after the format specification. Normally,
each tableline is entered as one line of data. Verylong input lines can be
broken: any line whose last character is a backslash (\) is combined with the
following line (and the backslash vanishes). The data for different columns
(thetable entries) are separated by tabs, or by whatever character has been
specified in thetabs option. There are afew special cases:

Troff commandswithfn tables

An input linebeginningwith a dot (.) followed by anything but a
number is assumed to be a command to troff and is passed
through unchanged, retaining its position in the table. For
example, space within a table may be produced by .sp
commands in the data.

FullWidth Horizontal Lines
An inputline containing only theunderscore (_) or equal sign (=)
is taken to be a single or double line, respectively, extending the
full width of the table.

Single Column Horizontal Lines
Aninputtableentrycontaining only theunderscore or equalsign
character is taken to be asingle or double line extending the full

width of the column. Such lines are extended to meet horizontal
or vertical lines adjoining this column. To obtain these

7-7

XENIX Text Processing

characters explicitlyina column, either precede them by “\&” or
follow them by aspacebefore theusual tab or newline.

ShortHorizontalLines

An input table entry containing only thestring *_" is taken to be
a single line as wide as the contents of the column. It is not
extended to meetadjoininglines.

Vertically Spanned Items

An input table entry containing only the character string “\™’
indicates that the table entry immediately above spans
downward over this row. It is equivalent to the table format
keyletter.

Textblocks

In order to include a block of text as a table entry, precedeit by
T{andfollowitbyT}. Thusthesequence

T
block of
text

T} ...

is the way to enter, as a single entry in the table, something that
cannot conveniently be entered as a simple string between tabs.
Note that the T} end delimiter must begin a line; additional
columns of data may follow after atab on the same line. If more
than twenty text blocks are used in a table, various limits in the
troff program are likely to be exceeded, producing diagnostics
such as “too many string/macro names” or “too many number

Text blocks are pulled out from the table, processed separately
by troff, and replaced in the table as a solid block. If no line
length is specified in the block of text itself, or in the table
format, the default is to use L X C/(N+1) where Lis the current
line length, C is the number of table columns spanned by the
text, and Nis the totalnumber of columns in the table. The other
parameters used in setting the block of text are those in effect at
the beginning of the table. These include the effect of the .TS
macro and any table format specifications of size, spacing and
font, using the p, v and f modifiers to the column keyletters.
Commands within the text block itself are also recognized.
However, troff commands within the table data but not within
the text block do not affect that block.

Note the following limitations. Although any number of lines may be
presentin a table, onlythefirst200linesare used in calculating the widths of
the various columns. A multipage table may be arranged as several single-
page tables if this proves to be a problem. Other difficulties with formatting

7-8

Formatting Tables

may arise because in the calculation of column widths all table entries are
assumed to be in the font and size being used when the . TS command was
encountered. Not included in the calculation are font and size changes
indicated in the table format section and within the table data. Therefore,
although arbitrary troff requests may be sprinkled in a table, care must be
taken to avoid confusing the width calculations; use requests such as .ps

withcare: e m———— . P . PR F e P e

7.2.5 Additional Command Lines

If the format of a table must be changed after many similar lines, as with
sub-headings or summarizations, the .T& (table continue) command can be
used to change column parameters. The outline of such a tableinputis:

TS
options ;
format .
data
T&
format .
data
T&
format .
data
.TE

Using this procedure, each table line can be close to its corresponding
format line. Itis not possible to change the number of columns, the space
between columns, the global options such as box, or the selection of

7.3 Invoking Tbl

Youcanruntblon asimpletable with thecommand
tbl input-file | troff

but for more complicated use, wherethere are several input files, and they
contain equations and mm commands as well as tables, the normal
command wouldbe

tbl file-1 file-2 . . . | eqn | troff -mm

The usual options may be used on the troff and eqn commands. The usage
fornroffis similar to thatfortroff.

For the convenience of users employing line printers without adequate
driving tables or post-filters, thereis a special -TX command line option to

XENIX Text Processing

tblwhich produces output that does not have fractional line motions in it.
The only other command line option recognized by tblis -mm which fetches
the mm macro packages.

When you are using both eqn and tbl on the same file, tbl should be used
first. If there are no equations within tables either order works, but it is
usually faster to run tbl first, since eqn normallyproduces alargerexpansion
of the input than tbl. Howeuver, if there are equations within tables (e.g.
whenyou areusing the eqn delim command), thl must be first or the output
will be scrambled. (See Chapter 8, “Formatting Mathematics.””) You must
also be cautious of using equations in n-style columns; this is nearly always
wrong, since tbl attempts to split numerical format items into two parts and
this is not possible with equations. Give the delim(xx) tbl option instead;
this prevents splitting of numerical columns within the delimiters. For
example, if the eqn delimiters are $$, a numerical column such as “1245 $+-
16$” willbe divided after 1245, not after 16.

Tbl limits tables to twenty columns; however, use of more than 16 numerical
columns may fail because of limits in troff, producing the “‘too many number
registers” message. Troff number registers used by tbl must be avoided by
the user within tables; these include two-digit names from 31 to 99, and
names of the forms #x, x+, x|, "x, and x—, where x is any lowercase letter.
The names ##, #—, and #" are also used in certain circumstances. To
conserve number register names, the n and a formats share aregister; hence
therestriction that theymaynotbe used in the same column.

For aid in writing macros, tbl defines a number register TW which is the
table width; it is defined by the time that the .TE macro is invoked and may
be used in the expansion of that macro. To assist in laying out multipage
boxed tables the macro T# is defined to produce the bottom lines and side
lines of aboxed table, and then invoked at the foot of the table. By using this
macro in the page footer a multipage table can be boxed. In particular, the
mm macros can be used to print a multipage boxed table with a repeated
heading by giving the argument H to the . TS macro. If the table start macro
is written

.TSH
alineoftheform

.TH

must be given in the table after any table heading (or at the start if none).
Material up to the .TH is placed at the top of each page of the table; the
remaininglines in the table are placed on several pages as required.

7-10

Formatting Tables

7.4 Examples

Hereare some examples illustrating features of tbl. The symbol @ in the
inputrepresents atab character.

" Itiput:

.TS

box;

ccc

111

Command® Reference Section(® Action

cc@® CP® Compiles C programs
cp@ C® Copies files

diskcp® C® Copies archive media
1c® C@ Lists files

login@® M@ Access to the system
trof® CT@ Typesets text

.TE
Output:
Command Reference Section Action
cc : CP ' Compiles C programs
cp C Copies files
diskcp C Copiesarchivemedia
lc C Lists files
login M Accesstothesystem
troff CT Typesets text

7-11

XENIX Text Processing

Input:

.TS

allbox;

css

ccc

nnn.

ACM&E Common Stock
Year® Price® Dividend
1985® 41-54® $2.60

2@ 41-54® 2.70

3@ 46-55@ 2.87

4® 40-53@ 3.24

5@ 45-52@ 3.40

6@ 51-59@ .95*

.TE

* (first quarter only)

Output:

ACM&E Common Stock

Year | Price | Dividend

1985 | 41-54 $2.60

2 141-54 270

3 | 46-55 2.87

4 | 40-53 324

5 | 45-52 3.40

6 | 51-59 .95*

* (first quarter only)

712

N

Formatting Tables

Input:

.TS

box;

css

clele

1/1]n.

Major New York-Bridges

Bridge® Designer® Length
Brooklyn® J A Roebling® 1595
Manhattan® G Lindenthal® 1470
Williamsburg® L L Buck® 1600

Queensborough® Palmer &® 1182
Hornbostel

@ @ 1380
Triborough® O H Ammann(® _
@ @383

Bronx Whitestone® O H Ammann @ 2300
Throgs Neck® O H Ammann® 1800

-George Washington® O H Ammann® 3500

.TE
Output:
Major New York Bridees
Bridge Designer Length
Brooklyn J. A. Roebling 1595
Manhattan G. Lindenthal 1470
Williamsburg L. L. Buck 1600
Queensborough Palmer & 1182
Hornbostel
1380
Triborough O. H. Ammann
383
Bronx Whitestone O. H. Ammann 2300
Throps Neck O. H. Ammann 1800
George Washington | O. H. Ammann 3500

7-13

XENIX Text Processing

Input:
.TS
ccC
np-2| n |.

Stack

@_
1@ 46
@_
2023
@_
3®@15
@_
4® 65
@_
5@21
@_
.TE

Output:

Stack
46
23
15

6.5
2.1

wm oW N -

7-14

Formatting Tables

LLL.

january® february® march
april® may

june® july(® Months

august(l) september

october® november® december

.TE
Output:
january february march
apri may ’:
june july Months
august september
october november december

7-15

XENIX Text Processing

Input:

.TS

box;

cfB sss.
Composition of Foods

T&

clcss

clcss

c |lc]ecle

Food® Percent by Weight
\"® Protein® Fat® Carbo-
\"@\"®@ \"@ hydrate

T&

1|n |n |n.

Apples® .4® .5@ 13.0
Halbut®18.4@ 5.2@. . .
Lima beans® 7.5®@ .8@ 22.0
Mik® 3.3®4.0® 5.0
Mushrooms@ 3.5@ .4@ 6.0
Rye bread® 9.0® .6® 52.7

.TE
Output:
Comunosition of Foods
Percept by Weight
Food . Carbo-
Protein | Fat hydrate
Apples 4 .5 13.0
Hahbut 18.4 52
Lima beans 7.5 .8 220
Milk 33 4.0 5.0
Mushrooms 35 4 6.0
Rye bread 9.0 .6 52.7

7-16

N

Formatting Tables

Input:

.TS
allbox;
cfl s s
¢ cw(li) cw(li)
1p9 1p9 1p9.
" New York Area Rocks
Era® Formation® Age (years)
Precambrian® Reading Prong® >1 billion
Paleozoic® Manhattan Prong@® 400 million
Mesozoic® T{
.na
Newark Basin, incl.
Stockton, Lockatong, and
Brunswick formations; also
Watchungs and Palisades.
T}@ 200 million
Cenozoic® Coastal Plain® T{
On Long Island 30,000 years;
Cretaceous sediments
redeposited by recent

glaciation.

.ad

T}

.TE

Output:
New York Area Rocks
Era Formation Ape (vears)

Precambrian | Reading Prong >1 billion
Paleozoic Manhattan Prong 400 million
Mesozoic Newark Basin, incl. 200 million

Stockton, Lockatong, and
Brunswick formations; also
Waichungs and Palisades.

Cenozoic Coastal Plain On Long Island 30,000 years;
Cretaceous sediments
redeposited by recent
rlaciation.

7-17

XENIX Text Processing

7.5 Summary of tbl Commands

Here is atable summarizing the tbl formatting commandsand options:

Command Meaning

| aA Alphabetic subcolumn

| allbox Drawsbox around allitems

| bB Boldfaceitem

| box Draws box around table
cC Centered column
center Centerstablein page
doublebox Doubled box around table
eE Equalwidth columns

| expand Makes tablefulllinewidth
fF Fontchange
11 Italic item
1L Left adjusted column
nN Numerical column o
nnn Column separation

_pP Pointsize change

rR Right adjusted column
sS Spanned item
tT Vertical spanning attop |
tab (x) | Change data separator character]
T{ T} Textblock
vV Vertical spacing change
wW Minimum width value
XX Included troff command
| | Vertical line
[| Doubleverticalline
~ | Vertical span
W | Vertical span
= | Doublehorizontalline
_ | Horizontalline -
_ | Shorthorizontal line

7-18

N

Chapter 8
Formatting Mathematics

8.1 Introduction 1
8.2 Displayed Equations 2

8.3 Basic Mathematical Constructions 3
8.3.1 Subscriptsand Superscripts 3
83.2 BracesforGrouping 4
8.33 Fractions 5
8.3.4 SquareRoots 5
8.3.5 Summation and Integrals 6

8.4 Complex Mathematical Constructions 6
8.4.1 BigBrackets, Parentheses, and Bars 7
84.2 Piles 8
8.4.3 Matrices 8
8.4.4 Lining Up Equations 9

8.5 LayoutandDesignof MathematicalText 10
8.5.1 InputSpaces 10
8.5.2 Output Spaces 10
8.5.3 SpacesBetween Special Sequences 10
8.5.4 Symbols, Special Names, and Greek Characters 11
8.5.5 Sizeand Font Changes 11
8.5.6 DiacriticalMarks 12
8.5.7 Quoted Text 13
8.5.8 LocalMotions 14

8.6 In-lineEquations 14
8.7 Definitions 15
8.8 Invokingeqn 16

8.9 Sample Equation 16

XENIX Text Processing

The same commands may also be used with the XENIX formatter nroff to
format mathematical expressions for lineprinters. To do this, invoke the
program neqn instead of eqn. The samelimitations (inability to change font
and point size, and do variable spacing, etc.) apply to any text output to a
lineprinter. The resulting output from neqn, however, is usually adequate
for proofreading.

As you work with eqn, remember that the eqn program itself knows
relativelylittle about mathematics. In particular, mathematical symbolslike
+, —, X, and parentheses have no special meanings. eqn will set anything
that looks like an equation, regardless of whether it makes sense
mathematically.

Touse eqnon yourXENIX system, enter:
eqn file | troff -mm

This command line processes file with eqn, then pipes the resulting output
file to thetroff program.

8.2 Displayed Equations

To tell eqn where a mathematical expression begins and ends, surround it
with the commands .EQ and .EN. Thus, if you type the lines:

.EQ
x=y+z
.EN

your output will look like:
X=y+z

The .EQ and .EN are not processed by eqn. If you want to specify
centering, numbering, or other formatting features for your mathematical
text, you will need to enter the appropriate formatting commands in your
text. Ifyou want, you can add nroff/troff commands, but it is far simpler to
use mm. mm provides commands which allow you to center, indent, left-
justify and numberequations.

You can give the .EQ command an argument thatis treated as an arbitrary
equation number which will be placed in the right margin. For example, the
input:

.EQ7
x =f(y/2) +y/2
.EN

producesthe output:
x=f(y/2)+y/2

Notethat .EQ is an mm macro. In other computer systems’ macro packages
itmayhave a different meaning.

82

VN

Formatting Mathematics

8.3 Basic Mathematical Constructions

This section describes how eqm can be used to handle the following

" frequentlyused mathematical constructions:

subscriptsand superseripts
grouping

fractions

squareroots

summation and integrals
8.3.1 Subscripts and Superscripts

To get subscripts and superscripts into mathematical text, use sub and sup
For example, the following:

xsup2+ysubk -
produces
X24+Yy
eqn supplies all the commands for size changes and vertical motions to

make the output look right. The words sub and sup must be surrounded by
spaces. Forexample:

x sub2

will give you xsub2 instead of X,. Furthermore, do not forget to leave a
spaceoratildeto mark theend of asubscript or superscript. Notethatif you

usean expression like:
y = (x sup 2)+1
you willget
y=(x2)+l
instead of
y=(x»)+1

Subscripted subscripts and superscripted superscripts can also be created.
Thefollowing:

_xsubisubl
produces

Xil

83

XENIX Text Processing

A subscript and superscript on the same object are printed one above the
other if the subscriptcomesfirst. For example:

x sub i sup 2
produces
Xi2

Other than in this special case, sub and sup group to the right, so
x sup ysub zmeans X%, notx?,.

8.3.2 Braces for Grouping

Normally, the end of a subscript or superscript is marked simply by a blank,
tab, ortilde. If you need to producea subscript or superscript with blanksin
it, you can usebraces ({}) to mark thebeginning and end of the subscript or
superscript. Forexample:

e sup {i omega t}
produces

elml

Braces can always be used to force eqn to treat an expression as a unit, or
justtomakeyourintention perfectly clear. Whenyouusebraces:

x sub {isub 1} sup 2
produces
X
Thesame textwithoutbraces:
x subisub 1sup2
produces
xilz
Braces can occur within braces if necessary. For example:
e sup {i pisup {rho +1}}

resultsin
eir*
The generalruleisthatanywhere you could use a singleitem likex, you could

also use any complicated expression, if you enclose itin braces. Positioning
andsize willbe taken care of byeqn.

You will need to make sure you have the right number of braces. If, for

some reason, you need to print braces, enclose them in double quotations
(II) ,]ike ll{'l.

84

(ﬂ

Formatting Mathematics

8.3.3 Fractions

Tomake a fraction, use the word “‘over.” For example:

a+bover2c=1

_produces . . e e e e e

b
at——=1
2c :
The line is made theright length and positioned automatically. Youcanuse
bracestomake clear what goes over what. For example:

{alpha + beta} over {sin(x)}

a+f
sin(x)
If you have both an over and asup in the same expression, eqn does the sup
before the over, so

-b sup 2 over pi

is
_bz
T
instead of
2
-b*

The rules of precedence that control which operation will be done first are
summarized at the end of this chapter. If you are in doubt, however, use
braces tomake clear what you mean.

8.3.4 Square Roots

To draw a squareroot,use “‘sqrt”. For example:
sqrta+b + 1 over sqrt {ax sup 2 +bx+c}

produces

1
Varbé——
v ax>+bx+c

You should note, however, that the square roots of tall quantities of ten do
nat look good. A square root big enough to cover the quantity is too dark
and heavy. For example:

sqrt {a sup 2 over b sub 2}

produces

85

XENIX Text Processing

aZ

b,

You are better off writing big square roots as the power 1/2. For example,
you could use

(a sup 2 /b sub 2) sup half

to produce

(a%/by)*
8.3.5 Summation and Integrals

Summations, integrals, and similar constructions can be produced with
eqn. Forexample:

sum from i=0 to {i= inf} x sup i

produces
i=o00

IS
i=0

Braces are used here to indicate where the upper part $i= inf$ begins and
ends. No braces were necessary for the lower part $i=0$, because it
contained no blanks. Bracesneverhurt, andifthe from and to parts contain
any blanks, you must use braces around them. The from and to parts are
optional, butif both areused, they havetooccurin that order.

Other useful characters can replace the sum, including:
int prod union inter
These become, respectively,

J II U N

The expression before the “from” can be anything, including an expression
in braces. The from-to expression can often be used in unexpected ways.
Forexample: :

lim from {n —> inf} x sub n =0
produces

lim x,=0

n—o0

8.4 Complex Mathematical Constructions

This section describes how to use eqn to produce more complicated
mathematical constructions, including piles and matrices, often
surrounded by brackets, parentheses orbars.

86

Formatting Mathematics
8.4.1 Big Brackets, Parentheses, and Bars

To get big brackets ([]), braces ({ }), parentheses (()), and bars (||) around
things, usethe leftand right commands. For example:

left{ aoverb + 1right } .
“="left (c over d right)
+ left [e right]

produces

2 i1l= [°]+ {3]
b))
The resulting brackets are big enough to coverwhatevertheyenclose. Other

characters can be used besides these, but they probably will not look very
good. One exception is the floor and ceiling characters. For example:

left floor x over y right floor
<= left ceiling a over b right ceiling

produces

K[

Please note that braces are typically bigger than brackets and parentheses,
because thenumberofpiecesis incremented by two (three, five, seven, etc.)
while the number of pieces in a bracket is incremented by one (two, three,
etc.). Also, big left and right parentheses often look poor, because of
characterset limitations.

The right part may be omitted: a left expression need not have a
corresponding right expression. If the right part is omitted, put braces
around the item you want the left bracket to encompass. Otherwise, the
resulting brackets may be too large. If you want to omit the left part, things
aremore complicated, because technically you can not have a right without
acorresponding left. Insteadyouhave to say:

left "" ... right)

Theleft "" meansa “left nothing”. This satisfies the rules without affecting
your output.

817

XENIX Text Processing

8.4.2 Piles

There is a facility for making vertical piles of elements with several variants.
For example:

A =" left [
pile { a aboveb above c }
~ pile { x above y above z }
right]

willproduce
a X
A=pby
cZz

You can have as many elements in a pile as you want. They will be centered
one above another, at the right height for most purposes. The keyword
above is used to separate the pieces; braces are used around the entire list.
The elements of a pile can be as complicated as needed, and may even
contain more piles.

Three other forms of piles exist: “Ipile” makes a pile with the elements left-
justified; “rpile’’ makes a right-justified pile; and “cpile” makes a centered
pile, just like pile. The vertical spacing between the pieces is somewhat
largerforl-, r-and cpiles than it is for ordinary piles. For example:

roman sign (x)™="
left {
Ipile {1 above O above -1}
~ lpile
{if"x>0 above if"x=0 above if"x<0}

creates the pile

1 ifx>0
sign(x) =¢0 ifx=0
-1ifx<0

Note thattheleft bracehasno matchingrightone.
8.4.3 Matrices

Itis also possible to make matrices. Forexample, to make a neatarraylike
2
X; X

%Y

88

Formatting Mathematics

use

matrix {
ccol{ x sub i abovey subi}
ccol { x sup 2 abovey sup 2 }

_This produces. .a matrix with two centered columns. The elements-of-the---

columns are then listed just asfor apile, eachelementseparated bythe word
above. You can also use lcol or rcol to left or right adjust columns. Each
column can be separately adjusted, and there can be as many columns as
you like.

The reason for using a matrix instead of two adjacent piles is that if the
elements of the piles do not all have the same height, they will not line up
properly. A matrix forces them to line up, because it looks at the entire
structure before deciding what spacing to use. A word of warning about
matrices: each column must havethe same number of elementsin it.

8.4.4 Lining Up Equations

Sometimes it is necessary to lineup a series of equations at some horizontal
position, such as at an equal sign. This is done with two operations called
“mark”and “lineup.” The word mark may appear once at any place in an
equation. It remembers the horizontal position where it appeared.
Successive equations can contain one occurrence of the word lineup. The
place where lineup appears is made to line up with the place previously
marked, if at all possible. Thus, forexample, you cansay:

.EQ

x+y mark =z
EN

-EQ

X lineup =1
.EN

to produce

X+y=z
x=1

Notethatmark doesnotlook ahead, so
x mark =1
x+y lineup =z
b
will not work, because there is not room for the x+y part after the mark
remembers where thex is.

89

XENIX Text Processing

8.5 Layout and Design of Mathematical Text

The following sections describe the format and layout control features of
eqn.

8.5.1 Input Spaces

eqnignoresspaces and newlines within an expression. If youhaveanyofthe
following equations between .EQ and .EN commands,

x=y+z
or

X=y+z
or

X =y
+z

theywill all produce the same output:
=y+z

Therefore, use spaces and newlines freely to make your input equations
readable and easy to edit.

8.5.2 Output Spaces

To get extraspaces into your output, use a tilde (") foreach space you want:
X=y+7z

This produces
X=y+z

You can also use a caret("), which produces a space half the width o fa tilde.
Tabs may beused to position pieces of an expression, but the tab stops must
besetwith thetrofftab (.ta) command.

8.5.3 Spaces Between Special Sequences

If you need to separate a special sequence of characters, you will have to

make this clear to eqn. You can either surround a special sequence with

ordinary spaces, tabs, or newlines, or make special words stand out by

surrounding them with tildes or carets, asin thefollowing:
x"="2"pi"int"sin"("omegat~)"dt

The tildes not only separate the words sin, omega, etc., but also add extra

spaces, one space per tilde:

810

Formatting Mathematics

x=2r [sin(wt)dt

Special words can also be separated by braces ({ }) and double quotation
marks (").

8.5.4 Symbals; Special Names, znd Greek Characters

eqn knows some mathematical symbols, some mathematical names, and
the Greek alphabet. Forexample: _ :

x=2 pi int sin (‘omega t)dt
produces

x=2r [sin(wt)dt

Here you need input spaces to tell eqn that int, pi, sin and omega are
separate entities that should get special treatment. The sin, digit 2, and
parentheses are set in Roman type instead of italic; pi and omega are
translated into Greek ; int becomes theintegralsign.

When in doubt, leave spaces around separateparts of theinput. A common
error is to type f(pi) without leaving spaces on both sides of the pi. If you do
this, eqn does not recognize pi as a special word, and it appears as f(pi)

- instead of f(7). A complete list of eqn names appears at the end of this

chapter. You can also use troff names for anything eqn does not know
about.

8.5.5 Size and Font Changes

By default, equations are set in 10-point type; standard mathematical
conventions determine which characters are in Roman and which are in
italic. If you are dissatisfied with the defaultsizesand fonts, you can change
them using the commands size » and roman, italic, bold and fat. Like sub
and sup, size and font changes affect only what follows immediately and
then revert to thedefault. Thus: :

bold x y
is
. Xy
and

sizel4boldx =y +
size 14 {alpha + beta}

gives

X=y+a+ﬁ

811

XENIX Text Processing

You can use braces if you want to apply a change to something more
complicated than a single letter. For example, you can changethesize of an
entire equation with

size 12 { ... }

Legal sizes are: 6,7, 8, 9, 10, 11, 12, 14, 16, 18, 20, 22,24, 28, and 36. You
can also change the size by a given amount. For example, you cansay

size+2
to make the size two points bigger, or
size~3

to makeit three points smaller. The advantage of this method is thatyou do
not need to know what the current sizeis.

If you are using fonts other than Roman, italic and bold, you can sayfontX
where X is a single-character troff name or number forthefont. However,
since eqn is designed for Roman, italic and bold, other fonts may not give
quite as good an appearance.

The fat operation takes the current font and widens it by overstriking: fat
grad is\y andfat{xsubi}isX;.

If an entire document is to be in a nonstandard size or font, you need not
write out a size and font change for each equation. Instead, you can set a
“global”size or fontwhich thereafter affectsall equations. Atthebeginning
of anyequation, youmightsay, forinstance,

EQ
gsize 16
gfont R

.EN

to set the size to 16 points and the font to Roman. InplaceofR, you can use
anytrofffontname. Thesize aftergsizecan bearelativechange with +or-.

Generally, gsize and gfont will appear at the beginning of a document, but
they can also appear throughout a document: the global font and size can be
changed as often as needed. For example, in a footnote you will typically
want the size of equations to match the size of the footnote text, which is two
points smaller than the main text. Do notforgetto resettheglobalsizeatthe
end of thefootnote.

8.5.6 Dlacritical Marks

There areseveralwords that produce diacritical marks on top of letters:

8-12

Formatting Mathematics

x dot
x dotdot
x hat
x tilde
X vec
x dyad
. x.bar.
x under

P DL D 0 Mipes

The diacritical mark is automatically placed at the correct height. The ‘‘bar”
and ““under” are made the right length for the entire construct, as in X+¥Fz;
other marks are centered. :

8.5.7 Quoted Text

Any input entirely within quotes ("...") is not subject to any of the font
changes and spacing adjustment normally done by the equation setter.
This provides a way to do your own spacing and adjusting, if needed. For
example:

italic "sin(x)" + sin (x)
produces
sin(x) +sin(x)

Quotation marks are also used to get braces and other eqn keywords
printed. For example: .

"{ size alpha }"
produces

{ sizealpha}
Similarly:

roman "{ size alpha }" -
produces

{ sizealpha}

The construction " canbeused as a place-holderwhen eqn syntax requires
something, but you do not actunally want anything in your output. For
example, to make

’He
you cannotjust enter:
sup 2 roman He
because a sup has to be a superscript on something. Thusyou mustsay

sup 2 roman He

813

XENIX Text Processing

Togeta literal quotation mark, usethesequence\".
8.5.8 Local Motions

Although eqn tries to get most items at the right place on the paper, itisnot
perfect, and occasionally you will need to tune the output to make it just
right. Small extra horizontal spaces can be obtained with tildes (*) and
carets (*). You can also say “back n” and “fwd n” to move small distances
horizontally. Then is the distance to be moved in 1/100em units. (An em is
aboutthe width of the letter m.) Thus “back 50" moves back about half the
width of an m. Similarly, you can move items up or down with “up n”” and
“down n.” As with sub or sup, the local motions affect the next item in the
input. Thiscanbeacomplex expression, aslongasitisenclosed in braces.

8.6 In-line Equations

In a mathematical document it is often necessary to follow mathematical
conventions in the body of the text, as well as in display equations. For
example, you may need to make variable names like X italic. Although this
could be done by surrounding the appropriate parts with .EQ and .EN, the
continual repetition of .EQ and .EN is a nuisance. Furthermore, this
implies a displayed equation.

eqn provides a shorthand for short in-line expressions. Youcan define two
characters to mark the left and right ends of an in-line equation, and then
type expressions right in the middle of text lines. To set both the left and
right characters to percent signs, for example, add to the beginning of your
documentthethreelines

EQ
delim % %
.EN
Having done this, you createtextlike

Let %alpha sub i% be the primary variable, and let %beta% be
zero. Then we can show that %x sub 1% is %>=0%.

This produces:

Let «j be the primary variable, and let 8 be zero. Then we can
show thatx; is >0.

This works as you might expect: spaces, newlines, and so on are significant
in the text, but not in the equation part itself. Multiple equations can occur
in asingleinputline.

Enough room islef tbeflore and after a line that contains in-line expressions

so thatsomething like in does not interfere with the lines surrounding it.
i-1

814

Formatting Mathematics

Totum off the delimiters, use:

.EQ
delim off
.EN

Do notusebraces, tildes, carets, or double quotatlon marks as dellmlters,
thesehavespecialmeanings: -~ = = o — B

8.7 Definitions

eqn allows you to give a frequently used string of characters a name, and
after that to enter just the name instead of the whole string. For example, if
thesequence

xsubisubl+ysubisubl
appears repeatedly throughout a paper, you can saveentering it each timeby
definingitlik e this:

EQ
define xy xsubisub1 +ysubisubl’
.EN

This makesxya shorthand for whatever characters occurbetween the single
quotation marks in the definition. You can use any character instead of
quotation marks to indicate the ends of the definition, as long as that
character does not appearinside the definition.

You canusexylikethis:

.EQ
f(x) = xy ...
.EN

Each occurrence of xy will expand into the string of characters you defined.
Be careful to leave spaces or their equivalent around the name when you
actuallyuseit, so eqn willbe able to identify itas special.

There are severalthings to watch out for. First, although definitionscan use
previous definitions, asin:

.EQ

define xi *xsubi?
define xil ’xisub 1°’
.EN

Donot define somethingin terms of itself. Forexample, you cannotuse
define X ’roman X'’

because this defines Xin terms of itself. If you say
define X ’roman X"’

however, the quotation marks protect the second X.

815

XENIX Text Processing

eqnkeywordscanbe also be redefined. You can make/mean overbysaying
define / ’ over’

orredefine over as / with
define over ’/’

If youneed to printasymbol oneway on a terminal and another way on the
typesetter, it is sometimes worth defining a symbol differently for neqn and
eqn. This can be done with “ndefine” and “tdefine.”” A definition made
withndefine only takes effectif you are running neqn. If you usetdefine, the
definition only applies for eqn. Names defined with ‘‘define’” applyto both
eqn andneqn.

8.8 Invoking eqn

Toprintadocument thatcontains mathematics on the typesetter, use:
eqn files | troff

If thereare any troff options, place them after the troff part of the command.
For example:

eqn files | troff -mm files
To print equations on alineprinter or similar device, use:
neqn files | nroff -mm files

The language for equations recognized by neqn is identical to that of eqn,
although, of course, the outputismorerestricted.

eqnand neqn can be used with thetbl program for setting tables that contain
mathematics. Usetblbefore eqn like this:

tbl files | eqn | troff -mm
tbl files | neqn | nroff -mm

8.9 Sample Equation

Now thatyou are familiar with the features of eqn, here is the complete input
textfor the three display equations at the beginning of this chapter:

816

Formatting Mathematics

.EQ
G(z) mark =" esup { In ~ G(z) }
~="exp left (
sum from k>=1 {S sub k z sup k} over k right)
“=" prod from k>=1 e sup {S sub k zsup k /k}
.EN
lineup = left (1 +Ssub1lz+
{ Ssub 1sup2zsup 2} over 2!+ ... right)
left (1+ { Ssub2zsup 2} over 2
+ { Ssub 2sup 2zsup 4} over { 2sup 2cdot 2! }
+ ... right) ...
.EN
.EQ
lineup = sum from m>=0Q left (
sum from
pile{k sub 1 ,ksub2,...,ksubm >=0
above
k sub 1 +2k sub 2 + ... +mk sub m =m}
{Ssublsup{ksubl} }over{lsupksublksub1!}"
{ Ssub2sup {k sub 2} } over {2supk sub2k sub 2!}~
{ S subm sup {k sub m} } over {m sup k submk subm !}
right) zsup m
.EN

8.10 Error Messages

If you make a mistakein an equation, such as leaving out a brace or having
one too many braces or having a sup with nothing beforeit, eqn willrespond
with themessage:

syntax error between lines x and y, file

where x and y are the lines between which the trouble occurred, and file is
thename of thefilein question. Thelinenumbersare only approximate, so
check nearby lines as well. You will receive self-explanatory messages if you
leave outa quotationmark or try to run eqn on anonexistentfile.

Ifyouwantto check a documentbefore actuallyprintingit, try:
eqn files >/dev/null
Thiswillthrowawaythe outputbut print the error messages.

If you use somethinglikedollarsigns as delimiters, itis easyto leave one out.
The program eqncheck checks for misplaced or missing dollar signs and
similar errors.

In-line equations are limited in size because of an internal buffer in troff. If
you get the message “word overflow’’, you have exceeded this limit. If you
print the equation as a display, this message will usually go away. The

817

XENIX Text Processing

message “line”’overflow indicates you have exceeded an even bigger buffer.
The onlycureforthisis tobreak theequationinto two separateones.

Also, eqn does not break equations byitself; you must splitlong equations
up across multiple lines by yourself, marking each by a separate .EQEN
sequence. eqnwarns about equations thatare too long to fit on-oneline.

8.11 Summary of Keywords and Precedences

If you do not use braces around expressions, eqn will do operations in the
order shown in thislist.

dyad vec under bar tilde hat dot dotdot
fwd back down. up

fat roman italic bold size

sub sup sqrt over

from to

These operations group to theleft:
over sqrt left right
All others group to the right.)
Digits, parentheses,.brackets, punctuation marks, and the following
mathematical words are converted to Roman fontwhen encountered:

sin cos tan sinh cosh tamh arc
max min lim. log In exp
Re Im and if = for det

These character sequences are recognijzed and translated as shown:

T
t LAY

<<
>>

inf .
partial
half
prime
approx
nothing
cdot
times
del

7,

R S

X

Formatting Mathematics
grad
LRtk]
sum -
int

~ prod -

union
inter

oCH—M: i d

To obtain Greek letters, simplyspellthem outin whatever caseyou want:

DELTA A iota

t

GAMMA T kappa K
LAMBDA A lambda A
OMEGA mu I
PHI] nu v
PI I omega w
PSI v omicron o
SIGMA I phi)
THETA © pi T
UPSILON T psi 1Y)
X1 B rho p
alpha & sigma o’
beta B tau T
chi X theta [/
delta 6 upsilon v
epsilon € xi 3
eta /] zeta ¢
gamma 0t

These are all the words known to eqn except for the following character
names:

above dotdot italic rcol to
back down 1col right under
bar dyad left roman up
bold fat lineup rpile vec
ccol font - 1pile size o
col from mark sqrt

cpile fwd matrix sub e\
define gfont ndefine sup

delim gsize over tdefine

dot - hat pile tilde

819

Appendix A
Editing with sed and awk

A.2 EditingWithsed 1
A.2.1 Overall Operation 2
A.2.2 Addresses 3
A.2.3 Functions 5

A.3 Pattern MatchingWithawk 12
A.3.1 Invokingawk 12
A.3.2 Program Structure 12
A.3.3RecordsandFields 13
A.3.4 Printing 13
A.3.5 Patterns 14
A.3.6 Actions 16

N

N

N

Editing with sed and awk

A.1 Introduction

Thisappendix describes two XENIX utilities thatallowyou to perform large-
scale, noninteractive editing tasks:

--—-- -sed,-anoninteractive; or “batch”;-editorwhich is usefulif youmust--— -

work with large files or run a complicated sequence of editing
commands on a file or group of files.

— awk, which searches numerics, logical relations, variables, and
particular fields within lines of text.

Although you can perform many of the same tasks with grep, sort, and the
variants of diff, you will find that these two programs offer an added facility
for the processing of complicated changes to large files, or many files at
once. sed isvery handy for large batch editing jobs, butif you choose not to
learn it, many of the same tasks can be performed with ed scripts. The awk
program offers several features not available with the other tools described
inthis chapter, butitissomewhatmore complicated tolearn and use.

A.2 Editing With sed

The sed program is a noninteractive €ditorwhich is especially useful when
the files to be edited are either too large, or the sequence of editing
commands too complex, to be executed interactively. sed works on only a
few lines of input atatimeand does not use temporary files, so the onlylimit
on the size of the files you can process is that both theinputand output must
be able to fit simultaneously on your disk. You can apply multiple "global"
editing functions to yourtext in one pass. Since you can createcomplicated
editing scripts and submit them to sed as a command file, you can save
yourself considerableretyping and the possibility of makingerrors. You can
also save and reuse sed command files which perform editing operations
you need to repeat frequently.

Processing files with sed command files is more efficient than using ed, even
if you prepare a prewritten script. Note, however, that sed lacks relative
addressing becauses it processes a file one line ata time. Also, sed gives you
no immediate verification that a command has altered your text in the way
you actually intended. Check youroutput carefully.

The sed program is derived from ed, although there are considerable
differences between the two, resulting from the different characteristics of
interactive and batch operation. You will notice a striking resemblance in
the class of regular expressions they recognize. The code for matching
patternsis nearlyidenticalfor ed and sed.

A-1

XENIX Text Processing Guide

A.2.1 Overall Operation

By default, sed copies the standard input to the standard output,
performing one or more editing commands on each line before writing it to
the output. Typically, you will need to specify the file or files you are
processing, along with the name of the command file which contains your
editing script, as in the following:

sed —f script filename

The flags are optional. The -n flag tells sed to copyonly those lines specified
by —p functions or -p flags after -s functions. The -e flagtells sed to take the
next argument as an editing command, and the -f flag tells sed to take the
nextargument as a filename. (This file must contain editing commands, one
toaline.)

Thegeneralformatof a sed editing commandis:
addressl,address2 function arguments

In any command, one or both addresses may be omitted. A function is
always required, but an argument is optional for some functions. Any
number of blanks or tabs may separate the addresses from the function, and
"tab characters and spaces at the beginning of lines are ignored.

Three flags arerecognized on the commandline:

-n Directs sed to copy only those lines specified by p functions or p
flags after s functions.

-e Indicates thatthenextargumentisan editing command.

-f Indicates that the next argument is the name of the file which
contains editing commands, typed one to aline.

sed commands are applied one at a time, generally in the order they are
encountered, unless you change this order with one of the “fow-of-control”
functions discussed below. sed works in two phases, compiling the editing

" commandsin the order they are given, then executing the commands one by
oneto each line of the inputfile.

Theinput to each command is the output of all preceding commands. Even
if you change this default order of applying commands with one of the two
flow-of-control commands, t and b, the input line to any command is still
the output of any previously applied command.

You should also note that therange of pattern match is normally one line of
input text. This range is called the “pattern space.’”’ More than one line can
be read into the pattern space by using the N command described below in
“Multiple Input-Line Functions®.

The rest of this section discusses the principles of sed addressing, followed
by a description of sed functions. All the examples here are based on the
followinglines from Samuel Taylor Coleridge’s poem, “Kubla Khan”:

A-2

N

Editing with sed and awk

In Xanadu did Kubla Khan

A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless to man
Down to a sunless sea.

Forexample, the command:

2q
will quit after copying the first two lines of the input. Using the sample text,
theresultwill be:

In Xanadu did Kubla Khan
A stately pleasure dome decree:

A.2.2 Addresses

The following rules apply to addressing in sed. There are two ways to select
the lines in the input file to which editing commands are to be applied: with
line numbers or with “context addresses’. Context addresses correspond
to regular expressions. The application of a group of commands can be
controlled by one address or an address pair, by grouping the commands
with curly braces ({ }). There may be 0, 1, or 2 addresses specified,
depending on the command. The maximum number of addresses possible
foreachcommand is indicated.

Alinenumberis a decimal integer. Aseachlineisread from the inputfile, a
line number counter is incremented. A line number address matches the
input line, causing the internal counter to equal the address line number.
The counter runs cumulatively through multiple input files. It is not reset
when a new inputfileis opened. A special case is the dollar sign character
($) which matches the lastline of thelast input file.

Context addresses are enclosed in slashes (/). They include all the regular
expressions common to both ed and sed:

1. Anordinary characteris aregular expression and matchesitself.

2. A caret (") at the beginning of a regular expression matches the null
character at the beginning of a line.

3. Adollarsign ($) at the end of a regular expression matches the null
character atthe end of a line.

4. The characters \n match an embedded newline character, but not
the newlineattheend of a pattern space.

5. A period(.) matches any character except the terminalnewline of
thepattern space.

XENIX Text Processing Guide

6. A repular expression followed by a star (*) matches any number,
including0, of adjacent occurrences of regular expressions.

7. A string of characters in square brackets ([]) matches any
character in the string, and no others. If, however, the first
character of the string is a caret (*), the regular expression matches
any character except the characters in the string and the terminal
newline of the pattern space.

8. A concatenation of regular expressions is one that matches a
particular concatenation of strings.

9. A regular expression between the sequences “\(” and “\)” is
identicalin effect to itself, buthasside-effectswiththes comimand.
(Wotethefollowing specification.)

10. Theexpression \d means the same string of characters matched by
an expression enclosed in \(and '\) earlier in the same pattern.
Here “d” is a single digit; the string specified is thatbeginning with
the “dth”’ occurrence of \(counting from the left. For example,
the expression "\(.*\)\1 matches aline beginning with two repeated
occurrences of the same string.

11. The null regular expression standing alone is equivalent to the last
regular expression compiled.

For a context address to “match” the input, the whole pattern within the
address must match some portion of the pattern space. If you want to use
one of the special characters literally, that is, to match an occurrence of
itself in the input file, precede the character with a backslash (\) in the
command.

Each sed command canhave0, 1, or2addresses. The maximum number of
allowed addresses is included. A command with no addresses specified is
applied to every line in the input. If a command has one address, it is
applied to all lines which match that address. On the other hand, if two
‘addresses are specified, the command is applied to the first line which
matches the first address, and to all subsequent lines until and including the
first subsequent line which matches the second address. An attempt is
made-on subsequentlines to again match the firstaddress, and the processis
repeated. Two addresses are separated by a comma. Here are some
examples:

/an/ Matches lines 1, 3, 4 in our sample text
/an.*an/ Matches line 1

[an/ Matches no lines

/.1 Matches all lines

/r*an/ Matches lines 1,3, 4 (number = zero!)

A4

Editing with sed and awk

A.2.3 Functions

Allsed functions are named by asingle character. They are of the following

types:

Whole-line oriented functions which add, delete, and change

--wholetextlines: -~~~ - :

Substitute functions which search and substitute regular
expressions within aline.

Input-output functions which read and writelines and/or files.

Multiple input-line functions which match patterns that extend
across line boundaries.

Hold and get functions which save and retrieve input text for later
use.

Flow-of-control functions which control the order of application
of functions.

Miscellaneous functions.

Whole-Line Oriented Functions

d

Deletes from the file all lines matched by its addresses. No
further commands will be executed on a deleted line. Assoon as
the d function is executed, a newline is read from the input, and
the list of editing commands is restarted from the beginning on
thenewline. Themaximum number of addresses is two.

Reads and replaces the current line from the input, writing the
current line to the output if specified. The list of editing
commands is continued following the m command. The
maximum number of addressesis two.

Causes the text to be written to the output after the line matched
by its address. The a command is inherently multiline; The a
command mustappearattheend of a line. The text may contain
anynumber of lines. Theinterior newlines must be hidden by a
backslash character (\) immediately preceding each newline.
The text argument is terminated by the first unhidden newline,
the first one not immediately preceded by backslash. Once an a
function is successfully executed, the text will be written to the
output regardless of what later commands do to the line which
triggered it, even if the line is subsequently deleted. The text is
notscanned for addressmatches, and no editing commands are
attempted on it, nor does it cause any change in the line number
counter. Onlyone addressis possible.

XENIX Text Processing Guide

When followed by a text argument it is the same as the a
function, except thatthe textis written to the output before the
matchedline. Ithas onlyone possibleaddress.

The c function deletes the lines selected by its addresses, and
replaces them with the lines in the text. Like the a and i
commands, ¢ must be followed by a newline hidden with a
backslash; interior newlines in the text must be hidden by
backslashes. The ¢ command may have two addresses, and
therefore select a range of lines. If it does, all the lines in the
range are deleted, but only one copy of thetext is written to the
output, not one copy perlinedeleted. As in the case of aand |,
the text is not scanned for address matches, and no editing
commands are attempted on it. It does not change the line
number counter. After a line has been deleted by a c function,
no further commands are attempted on it. If text is appended
after a line by a or r functions, and the line is subsequently
changed, the textinserted by the ¢ function will be placed before
the text of the a or rfunctions.

Note that when you insert text in the output with these functions, leading
blanks and tabs will disappear in all sed commands. To get leading blanks
and tabs into the output, precede the first desired blank or tab by a
backslash; the backslashwillnot appearin the output.

For example, thelist of editingcommands:

n

a\
XXXX
d

applied to our standard input, produces:
In Xanadu did Kubla Khan

XXXX

Where Alph, the sacred river, ran

XXXX

Down to a sunless sea.

In this particular case, the same effect would be produced by either of the
two following command lists:

n
i\
XXXX
d

Oor:

Editing with sed and awk

Substitute Functions The substitute function(s) changes parts of lines
selected by a contextsearch within the line, asin:

(2)s pattern replacement flags substitute

The s function replaces part of a line selected by the designated pattern with
the replacement pattern. The pattern argument contains a pattern, exactly

_like the patterns in addresses. The only difference between a pattern and.a

contextaddressis that a pattern argument may be delimited by any character
other than space ornewline. By default, only thefirststring matched by the
patternis replaced, except when the —g option isused.

Thereplacement argument begins immediately after the second delimiting
character of the pattern, and must be followed immediately by another
instance of the delimiting character. Thereplacement is not a pattern, and
the characters which arespecial in patterns do not have special meaning in
replacement. Instead, thefollowingcharactersarespecial:

Isreplaced by the string matched by the pattern.

\d d is a single digit which is replaced by the dth substring matched
by parts of the pattern enclosed in \(and \). If nested substrings
occur in the pattern, the dth substring is determined by counting
openingdelimiters .

As in patterns, special characters may be made literal by preceding them
with a backslash ().

A flagargumentmay contain the following:

g Substitutes the replacement for all nonoverlapping instances of
the pattern in the line. After a successful substitution, the scan
forthe nextinstance of the pattern begins just afterthe end of the
inserted characters; characters put into the line from the
replacement arenot rescanned.

P Prints the line if a successful replacement was done. The p flag
causes the line to be written to the outputonlyif a substitution
was actually made by the s function. Notice that if several s
functions, each followed by a p flag, successfully substitute in
the sameinputline, multiple copies of the line will be written to
the output: one for each successful substitution.

wfile Writes the line to afile if a successfulreplacement was done. The
—w option causes lines which are actually substituted by the s
function to be written to the named file. If the filename existed
before sed is run, it is overwritten; if not, the file is created. A
single space must separate —w and the filename. The
possibilities of multiple, somewhat different copies of one input
line being written are the same as for the ~p option. A
combined maximum of ten different filenames may be
mentioned afterw flags and w functions.

A7

XENIX Text Processing Guide

Herearesome examples. When applied to ourstandard input, the following
command:

s/to/by/w changes
produces, on the standard output:

In Xanadu did Kubla Khan

A stately pleasure dome decree:
Where Alph, the sacred river, ran
Through caverns measureless by man
Down by a sunless sea.

and on thefilechanges:

Through caverns measureless by man
Down by a sunless sea.

The command:
s/[.,;7:)/*P&*/gp
produces:

A stately pleasure dome decree*P:*
Where Alph*P,* the sacred river*P,* ran
Down to a sunless sea*P.*

With theg flag, thecommand:
/X/s/an/AN/p
produces:
In XANadu did Kubla Khan
and the command:
/X/s/an/AN/gp
produces:
In XANadu did Kubla KhAN
Input-OutputFunctions

p The print funceion writes the addressed lines to the standard
output file at the time the p function is encountered, regardless
of what succeeding editing commands may do to the lines. The
maximum number of possible addressesis two.

w The write function writes the addressed lines to filename. If the
file previously eaisted, it is overwritten; if not, itis created. The
lines are written exactly as they exist when the write function is
encountered for each line, regardless of what subsequent editing
commandsmaydotothem. Exactlyone spacemustseparatethe
w command and the filename. The combined number of write
functions and wflags maynot exceed 10.

A-8

Editing with sed and awk

r The read function reads the contents of the named file, and
appends them after the line matched by the address. The file is
_ read and appended regardless of what subsequent editing
P commands do to the line which matched its address. If r and a
N functions are executed on the same line, the text from the a
A functions and the r functions is written to the outputin the order
-- thatthe functionsare executed.-Exactly onespace-must separate- --
the r and the filename. One address is possible. If a file
mentioned by an r function cannot be opened, itis considered a

nullfile rather than an error, and no diagnosticis given.

Note that since there is a limit to the number of files that can be opened
simultaneously, be sure that no more than ten files are mentioned in
functions or flags; that number is reduced by one if any r functions are
present. Onlyonereadfileisopen atone time.

Here are some examples. Assume that the file notel has the following
contents:

Note: Kubla Khan (more properly Kublai Khan;
1216-1294) was the grandson and most eminent
successor of Genghiz (Chingiz) Khan, and
founder of the Mongol dynasty in China.

The command:
<) /Kubla/r notel
o produces:

In Xanadu did Kubla Khan
Note: Kubla Khan (more properly Kublai Khan;
1216-1294) was the grandson and most eminent
successor of Genghiz (Chingiz) Khan, and
founder of the Mongol dynasty in China.

A stately pleasure dome decree:

Where Alph, the sacred river, ran

Through caverns measureless to man

Down to a sunless sea.

Multiple Input-Line Functions Three functions, all spelled with upper-case
letters, deal specially with pattern spaces containing embedded newlines.
They are intended principally to provide pattern matches acrosslines in the
input.

(I N Appends the next input line to the current line in the pattern
- space; the two input lines are separated by an embedded
newline. Pattern matches may extend across the embedded

newline(s). Thereis amaximum of two addresses.

XENIX Text Processlpg Guide

D

P

Deletes up to and including the first newline character in the
current pattern space. If the pattern space becomes empty (the
only newline was the terminalnewline), another line is read from
the input. In any case, begin the list of editing commands over
again. The maximum numberof addressesis two.

Prints up to and including the first newline in the pattern space.
The maximum number of addresses is two.

The P and D functions: these functions are equivalent to their lowercase
counterparts ifthere areno embeddednewlines in the pattern space.

Hold and Get Functions These functionssave and retrieve part of the input
for possiblelateruse:

h

The h function copies the contents of the pattern space into a
holding area, destroying any previous contents of the holding
area. Themaximumnumberof addressesistwo.

The H function appends the contents of the pattern space to the
contents of the holding area. The former and new contents are
separated by anewline.

The g function copies the contents of the holding area into the
pattern space, destroying the previous contents of the pattern
space.

The G function appends the contents of the holding area to the
contents of the pattern space. The former and new contents are
separated by a newline. The maximum number of addresses is
two.

The exchange command interchanges the contents of the
pattern space and the holding area. The maximum number of
addressesistwo.

Forexample, the commands:

1h

1s/ did.*//
1x

G

sN\n/ :/

applied to ourstandard example, produce:

In Xanadu did Kubla Khan :In Xanadu

A stately pleasure dome decree: :In Xanadu
Where Alph, the sacred river, ran :In Xanadu
Through caverns measureless to man :In Xanadu
Down to a sunless sea. :In Xanadu

A-10

Editing with sed and awk

Flow-of-Control Functions These functions do no editing on the input
lines, but control the application of functions to the lines selected by the
addresspart.

:label

blabel

tlabelfR

This command causes the next command written on the same

line to be applied to only those input lines not selected by the
""addresspart. There aretwo possibleaddresses.” T T

This command causesthe nextset of commands to be applied or
not applied as ablock lo theinputlines selected by the addresses
of the grouping command. The first of the commands under
control of the grouping command may appear on the same line
as the { or on the next line. The group of commands is
terminated by a matching } on a line by itself. Groups can be
nested and may have two addresses.

The label function marks a place in thelist of editingcommands
which maybe referred to byb and t functions. The label maybe
any sequence of eight or fewer characters; if two different colon
functions have identical labels, an error message will be
generated, andno execution attempted.

The branch function causes the sequence of editing commands
being applied to the current input line to be restarted
immediately after encountering a colon function with the same
label. If no colon function with the same label can be found after
all the editing commands have been compiled, an error message
is produced, and no execution is attempted. A b function with
no label is interpreted as a branch to the end of the list of editing
commands. Whatevershould be donewith thecurrentinputline
is done, and another input line is read; the list of editing
commands is restarted from the beginning on the new line. Two
addresses are possible.

The t function tests whether any successful substitutions have
been made on the current input line. If so, it branches to the
label; if not, it does nothing. The flag which indicates that a
successful substitution has been executed is reset either by
reading anewinputline, or executing a tfunction.

Miscellaneous Functions There are two other functions of sed not
discussed above.

The = function writes to the standard output the number of the
linematched byitsaddress. One address is possible.

The q function causes the cuirent line to be written to the output

(if it should be), any appended or read text to be written, and
execution to be terminated. One address is possible.

A-11

XENIX Text Processing Guide

A.3 Pattern Matching With awk

By now you have been introduced to several tools for locating patterns and
strings in one or more text files, including grep and its variants. You should
also be familiar with using the various text editors to do global searching.
awk offers another approach to many of these same tasks. awk is actually a
programming language designed to make many common search and text
manipulation tasks easy to state and to perform. It offers several key
features not available with grep or sed: numeric processing, the handling of
variables, general selection, and fiow-of-control in commands. awk is also
uniquely suited to operations on fields within lines.

In practice, awk is used in two ways for report generation, processing input
" to extract counts, sums, subtotals, etc.; and to transform data from the form
produced by one program into that expected by another. awk searches
input lines consecutively for a match of patterns which you designate. For
each pattern, an action can be specified; this action willbe performed on
each line that matches the pattern. awk allows you to perform more
complex actions than merely printing amatchingline. For example, the awk
program:

{print $3, $2}
prints the third and second columns of a table in that order. The program:
$2 /AlB|C/

printsallinputlines withan A, B, orCin the second field, where the second
field is text separated by whitespace. The program:

$1 \= prev { print; prev = $1 }

prints alllines in which thefirstfield is different from what was previously the
firstfield.

A.3.1 Invoking awk

The command in the following form:
awk program filename

executes the awk commands written into the named program on the set of
named files, or on the standard input if no files are named. The statements
can also be placed in afilepfile and executed by the command:

awk -f pfile filename

A.3.2 Program Structure

An awk program is a sequence of statements, each in the form:

pattern { action }

A-12

Editing with sed and awk

Each line of input is matched in turn against each of the specified patterns.
For each pattern matched, the associated action is executed. When all the
patterns have been tested, the next line is read and the matching process
repeated. Either the pattern or the action may be omitted, but not both. If
there is no action for a pattern, the matching line is simply copied to the
output. Thus a line which matches several patterns can be printed several

times.-If-there is-no pattern for-an action, then-the action is performed for--

everyinputline. A line which matches no pattern is ignored. Since patterns
and actions are both optional, actions must be enclosed in braces to
distinguish them from patterns.

A.3.3 Records and Fields

awk input is divided into ‘‘records” which are terminated by a record
separator. Because the defaultrecord separator is a newline, awkprocesses
itsinputonelineatatime. Thenumber of the currentrecordis availablein a
predefined variable named NR, for “number register”’.

Each input record is divided into “fields”. Fields are normally separated by
whitespace, either blanks or tabs, but the input field separator can be
changed. Fields are referred to as $1, $2, and so forth, where $1is thefirst
field, and $0 is the whole input record itself. Assignments may be made to
fields. The number of fields in the current record is available in another
predefined variable named NF, for“numberfields”.

Thevariables FS and RS refer to theinputfield and record separators; they
may be changed at anytime to anysingle character. The optional command
line argument -Fc may also be used to set FS to the character “c”. If the
record separator is empty, an empty input line is taken as the record
separator, and blanks, tabs and newlines are treated as field separators. The
variable FILEN AME contains the name of the currentinput file.

A.3.4 Printing

If an action has no pattern, the action is executed for alllines. The simplest
actionis to print some or all of arecord, using the awkcommand print. This
command prints each record, copying the input to the outputintact. A field
orgroup of fieldsmaybe printedfrom each record. For example:

print $2, $1

prints the firsttwo fields in reverse order. Items separated by a comma in the
printstatement will be separated by, the current outputfield separator when
output. Items notseparatedby commaswill be concatenated, so:

print $1 $2
runs the first and second fields together.
The predefined variables NF and NR can be used. For example:

A-13

XENIX Text Processing Guide

{ print NR, NF, $0 }

prints each record preceded bytherecord number and the number of fields.
Also, output maybediverted to multiplefiles. Forexample, theprogram:

{ print $1 >"list1"; print $2 >"list2" }

writes the first field, $1, on the file list1, and the second field on file list2.
The ““>>’’notation can also beused. Forexample:

print $1 >>"list"

appends the output to thefilelist. In each case, theoutputfiles arecreated if
necessary. Thefilename can be a variableor afield aswellasaconstant. For
example:

print $1 >$2

uses the contents of field 2 as a filename. There is a limit of ten possible
outputfiles. Outputcan also be pipedintoanotherprocess. Forexample:

print | "mail fredm"
mails the outputto fredm’s mailbox.

Thevariables OFS and ORS may be used to change the current output field
separator and output record separator. The output record separator is
appended to the output of the print statement. awk also provides the printf
statementforoutput formatting.

printf format, expr, expr, ...

formats the expressions in the list according to the specification in the file
format and prints them. Forexample:

printf "%8.2f %10ld\n", $1, $2

prints $1 as afloatingpointnumber eight digits wide, with two digits after the
decimal point, and $2 as a ten-digit decimal number, followed by a newline.
No outputseparators are produced automatically; theymust be added, asin
theabove example.

A.3.5 Patterns

You may specify a pattern before an action to act as a selector for
determining whether the action is to be executed. A variety of expressions
may be used as patterms: regular expressions, arithmetic relational
expressions, string-valued expressions, and arbitrary Boolean
combinations of these.

The special pattern BEGIN matches thebeginning of the input, before the
firstrecordis read. Thepattern END matches the end of theinput, afterthe
last recordhas been processed. BEGIN and END thus provideawayto gain
control before and after processing, so you can initialize and terminate the
program normally.

A-14

£

TN,

Editing with sed and awk

Forexample, thefieldseparator can be setto a colon with:
BEGIN { FS=":"}

Ortheinputlinesmaybe counted by:
END { printNR }

"IfBEGINis présent, it mustbe the firstpattern; END mustb e the last. -

Regular Expressions The simplest regular expression is a literal string of
characters enclosedin slashes, for example:

/smith/

This is actually a complete awk program which prints all lines containing any
occurrence of the name “smith”. If a line contains “smith” as part of a
larger word, it will also be printed, as in:

blacksmithing

The list of regular expressions recognized by awk includes the regular
expressions recognized by ed, sed, and the grep command. In addition,
awk allows parentheses for grouping, the pipe {|) for alternatives, the plus
(+) for “one or more”, and the question mark (?) for “zero or one’.
Character classes may be abbreviated: [a—zA-Z0-9] is the set of all letters
and digits. For example, theawkprogram:

/[Aa]pples|[BbJananas|[Cc]herries/

prints all lines which contain any of the words “‘apples”, “bananas”, or
“cherries,” whether theybegin with an uppercase letter ornot.

Regular expressions must be enclosed in slashes, just as in ed and sed.
Within a regular expression, blanks and the regular expression
metacharacters are significant. To turn off the special meaning of one of the
regular expression metacharacters, precede it with a backslash.

Forexample, the pattern:

A4V
matches any string of characters enclosed in slashes. You can also specify
that any field or variable matches a regular expression (or does not match it)
with the operators tilde (") and exclamation point tilde (!7). The program:

$1 ~ /[j7]ohn/

prints all lines where the first field matches ““‘john” or “John”. Notice that
this will also match “Johnson”, “St. Johnsbury”, and so on. To restrictthe
match to exactly “John” or “john”, use:

$1 " /7[j7]ohn$/

The caret (") refers to the beginning of a line or field; the dollar sign ($) refers
to theend.

Relational Expressions An awk pattern can be a relational expression
involvingthe operators <, <=, ==, !=, >=,and >.

XENIX Text Processing Guide

For example:
$2> $1 + 100

selects lines where the second field is atleast 100 greater than the first field.
For example:

NF % 2==0
prints alllines with an even number of fields.

In relational tests, if neither operand is numeric, a string comparison is
made; otherwise, itis numeric. Thus:

$1>="s"

selects lines that begin with “s”, “t”, “u”, etc. In the absence of other
information, fields aretreated as strings, so the program:

$1> %2
will perform astring comparison.
Combinations of Patterns A pattern can be any Boolean combination of
patterns, using the operators | lp(or), &&(and), and! (not). Forexample:
$1 >="s" "& $1 < "t" && $1 !="smith"
selects lines where the first field begins with “s”, but is not “smith”. The
operators && and || guarantee that their operands will be evaluated from

left to right; evaluation stops as soon as their truth or falsehood is
determined.

The pattern that selects an actionmay also consist of two patterns separated
byacomma, asin:

patl, pat2 {..}

In this case, the action is performed for each line between an occurrence of
patl and the next occurrence of pat2(inclusive). Forexample:

/start/, /stop/

prints all lines between “‘start” and “stop”, while:
NR == 100, NR==200{ ... }

doestheaction forlines 100 through 200 of theinput.

A.3.6 Actions

In addition to the patterns described above, the awk program offers a set of
possible actions. An awk action is a sequence of action statements
terminated by newlines or semicolons. These action statemen® can do a
variety of bookkeeping and string manipulating tasks. The possible actions
are: built-in functions, the assignment of variables and strings, the use of
field variables, string concatenation statements, arrays, and fiow-of-control
statements.

A-16

:\‘_\\‘

T

~

P

Editing with sed and awk

Built-in Functions awk provides a “length” function to compute thelength
of a string of characters. This program prints each record, preceded by its
length:

{print length, $0}
The length by itself is a ‘“pseudo-variable” which yields the length of the

current record;length(argument)is-a-function-which yields thelength-of its~ — -

argument, asin the equivalent:
{print length($0), $0}
The argument may be any expression.

awk also provides the arithmetic functions sqrt, log, exp, and int, for square
root, logarithm, exponential, and integer parts of their respective
arguments. The name of one of these built-in functions, without argument
or parentheses, stands for the value of the function on the whole record.
The program:

length < 10 || length > 20
printslines whose length is less than 100r greater than 20.

The function substr(s,m,n) produces the substring of s that begins at
position m (origin 1) and is at most n characters long. If n is omitted, the
substring goes to the end of s. The function index(sl,s2) returns the
position where the strings2 occursin s, or zero ifitdoes not.

The function sprintf(f, el,e2, ...) produces the value of the expressions el,
e2, etc.,in the printfformat specified by f. Forexample:

x = sprintf(" %8.2f %101d", $1, $2)
setsxto the string produced by formatting the values of $1 and $2.

Variables, Expressions, and Assignments awk variables take on numeric
(floating-point) or stringvalues accordingto context. Forexample:

x=1
xis clearly anumber, whilein:
x = "smith"

it is clearly a string. Strings are converted to numbers and vice versa
whenever context demands it. Forexample:
X = I'3Il + "4”

assigns 7 to x. Strings which cannot be interpreted as numbers in a
numerical context will generallyhave the numeric value zero.

By default, variables (other than built-in functions) are initialized to a null
string, which has numerical value zero. This eliminates the need for most
BEGIN sections. For example, the sums of the first two fields can be
computed with:

A-17

XENIX Text Processing Guide

{sl+=81;s2+= %2}
END { printsl, s2}

Arithmetic is done internally in fioating-point. The arithmetic operators
are: +,—, *, /,and %. The Cincrement++ and decrement — — operators are
also available, as well as the assignment operators +=, —=, *= /=, and %-~=.
These operators may all be used in expressions.

Field Variables Fields in awk share essentially all of the properties of
variables. They may be used in arithmetic or string operations, and may be
assigned. Thus, you canreplace the first field with a sequence number:

{ $1 = NR; print }
or accumulate two fieldsinto a third:
{ $1 = $2 + $3; print 30 }
orassign astringto a field:

{ if ($3 > 1000)
$3 = "too big"
print

which replaces the third field by “too big” when it is too big, and prints the
recordin either case.

Field references maybe numerical expressions, asinthe following:
{ print $i, ¥(i+1), $(i+n) }

Whether a field is deemed numeric or string depends on context; in
ambiguous cases like:

if ($1==$2) ...
fields are treated as strings.

Each input line is automatically split into fields as necessary. It is also
possible to split any variable orstringinto fields. For example:

n = split(s, array, sep)

splits the the string s into array(1], array[n]. The number of elements
found is returned. If the sep argument is provided, it is used as the field
separator. Otherwise, FSis used as the separator.

String Concatenation Swings maybeconcatenated. For example:
length($1 32 $3)

returns thelength of the first three fields. In a print statement:
print $1 " is " $2

prints the two fields separated by “ is ”’. Variables and numeric expressions
may also appearin concatenations.

A-18

AN

Editing with sed and awk

Arrays Array elements are not declared; they spring into existence when
mentioned in a program. Subscripts mayhaveanynon-null value, including
non-numeric strings. For example, in a conventional numeric subscript, the
statement:

x[NR] = $0

_ assigns the current input record to the NRth element of the array x. In .._...
principle it is possible to process the entire input in a random order with the

awk program:

{ x[NR] = 30 }
END { ... program ... }

Thefirstaction merelyrecordseachinputlinein the arrayx.

Array elements may be named by non-numeric values. Suppose the input
containsfieldswithvalueslike apple, orange, etc. The program:

/apple/ {.x["apple"]++}
/orange/ { x["orange"]++ }
END { print x["apple"], x["orange"] }
increments countsfor the named array elements, and printsthem at theend

of the input. Any expression can be used as a subscript in an array
reference. For example:

x[$1] =
usesthefirstfield of arecord as astring toindexthearrayx.

Suppose each line of input contains two fields, aname and a nonzero value.
Names maybe repeated. To printalistof each unique name followed by the
sum of allthevalues for that name, use the program:

{ amount[$1] += $2 }
END ({ for (name in amount)
print name, amount[name] }

Tosortthe output, replace the last line with:
print name, amount[name] | "sort"

Flow-of-Control Statements Like any programming language, awk
provides flow-of-control statements. These are: if-else, while, for, and
statement groupings with braces. When using the if statement the condition
in parentheses is evaluated. If it is true, the statement following the if is
done. The elsepartis optional.

A whilestatementis also available. For example, to printallinputfields one
perline, use:

=1
while (i <= NF) {
print $i
++i

A-19

XENIX Text Processing Guide

Thefor statement:
for (i = 1; i <= NF; i++)
print $i

does the same job as the while statement above.

An alternate form of the forstatementis usefulfor accessing the elements of
an associativearray. Forexample:

for (i in array)
statement

performs statement with i set’in turn to each element of the array. The
elements are accessed in an apparently random order. Chaos will ensue if i
is altered, orif anynew elements are accessed duringtheloop.

The expression in the condition part of an if, while or for statement can
include relational operators like <, <=, >, >=, == (*is equal to”), and !=
(*“‘not equal to”"); regular expression matches with the match operators \~
and!\";thelogical operators | |, &&,and!, and parentheses for grouping.

The break statement causes an immediate exit from an enclosing while or
for statement. The continue statement causes the next iteration to begin.
The next statement causes awk to skip immediately to the next record and
begin scanning the patterns from the top. The exit statement causes the
program to behave as if theend of theinputhad occurred.

One final note: comments may be placed in awk programs. If you are going
to store complex awk programs for future use, it is a good idea to use
comment lines generously, as a reminder of what your program does. For
example:

print x, y # this is a comment

Comments begin with the character “#” and end withthe end of theline.

s

Appendix B
Error Messages

B.1 Introduction _1.

B.1.1 Disappearance of 01_1tput 1 o

B.1.2 mm Error Messages 1
B.1.3 Formatter Error Messages 4

/—\\

Error Messages

B.1 Introduction

When a macro discovers an error, a break occurs in processing. To avoid
confusion regarding the location of the error, the formatter output buffer
(which may contain some text) is printed and a short message is printed
giving the name of the macro that found the error, the type of error, and the

" “approximate line number (in the current input file) of thelast processed

input line. Processing terminates, unless the register D has a positive value.
In thelatter case, processing continues eventhough the output is guaranteed
to be deranged from thatpointon.

Note that the error message is printed by writing it directly to the user’s
terminal. If either tbl or eqn/neqn, or both arebeing used, and if the -olist
option of the formatter causes the last page of the document not to be
printed, a harmless “broken pipe” message results.

B.1.1 Disappearance of Output

This usually occurs because of an unclosed diversion (e.g., a missing .FE or
.DE). Fortunately, the macros that use diversions are careful about it, and
they check to make sure that illegal nestings do not occur. If any message is
issued about a missing .DE or .FE, the appropriate action is to search
backwards from the termination point looking for the corresponding .DS,

.DF, or.FS.
The followingcommand:
grep -n "\[EDFT][EFNQS]" files ...

prints all the .DS, .DF, .DE, .FS, .FE, .TS, .TE, .EQ, and .EN macros
foundin thefiles, each preceded by its filename and linenumberin that file.
This listing can be used to check for illegal nesting and/or omission of these
macros.

B.1.2 mm Error Messages

Each mm error message consists of a standard part followed by a variable
part. Thestandard part is of the form:

ERROR:input line n
The variable part consists of a descriptive message, usually beginning with a
macro name. The variable parts are listed below in alphabetical order by
macro name, each with a more complete explanation:

Check TL,AU, AS, AE, MT sequence

These macros for the beginning of a memorandum are out of
sequence.

B-1

XENIX Text Processing Guide

AL:bad arg:value

The argument to the .AL macro is not one of 1, A, a, I, ori. The
incorrectargumentis shown as value.

CS:coversheettoo long

The text of the cover sheet is too long to fit on one page. The abstract
should bereduced ortheindentof the abstractshould be decreased.

DS:toomany displays

More than 26 floating displays are active at once, i.e., have been
accumulated butnotyetoutput.

DS:missing FE

A display starts inside a footnote. The likely cause is the omission (or
misspelling) of a .FE to end a previous footnote.

DS:missing DE

.DS or .DF occurs within a display, i.e., a .DE has been omitted or
enteredincorrectly.

DE:no DS or DF active

.DE has been encountered but there has not been a previous .DS or
.DF to matchit.

FE:noFS
.FE has been encountered with no previous .F'S to match it.
FS:missing FE

A previous .FS was not matched by a closing .FE, i.e., an attempt is
being madeto begin afootnoteinside another one.

FS:missing DE

A footnote starts inside a display, i.e., a .DS or .DF occurs withouta
matching .DE.

Error Messages

H:bad arg:value

Thefirstargument to .H must beasingledigitfrom 1 to 7, but value has
been supplied instead.

H:missing FE
| A heading ﬁlacro (H or HU) éccurs i;lsidé af botll-ote. |
H:missing DE
A heading macro (.H or .HU) occursinside a display.
H:missing arg
.Hneeds atleast1argument.
HU:missing arg
.HU needs 1 argument.
LB:missing arg(s)
.LB requires at least 4 arguments.
LB:too manynested lists
Anotherlist was started when there were already 6 active lists.
LE:mismatched
.LE has occurred without a previous .LB or other list-initialization
macro. Although thisisnotafatal error, the messageis issued because
there almost certainly exists some problem in the preceding text.
LI:nolists active
.LI occurs without a preceding list-initialization macro. The latter has
probably been omitted, or has been separated from the .LI by an
intervening .H or HU.
ML:missing arg
.ML requires at least 1 argument.
ND:missing arg

.ND requires 1 argument.

B-3

XENIX Text Processing Guide

SA:bad arg:value

The argument to .SA (if any) must be either 0 or 1. The incorrect
argument is shown as value.

SG:missing DE
.SG occurs inside a display.
SG:missing FE
-SG occurs inside afootnote.
SG:noauthors
.SG occurs withoutanyprevious .AUmacro(s).
VL:missing arg

.VL requires atleast 1 argument.
B.1.3 Formatter Error Messages

Most messages issued by the formatter are self-explanatory. Those error
messages over which theuser has some control arelisted below.

Cannot doev
Caused by setting a page width that is negative or extremely short,
setting a page length that is negative or extremely short, reprocessing a
macro package (e.g. performing a .so to a macro package that was
requested from the command line), or requesting the -s1 option to
troff on adocument thatislonger than ten pages.
Cannotexecutefilename
Given by the.! requestif it cannot find the filename.

Cannot open filename

Issued if one of the files in the list of files to be processed cannot be
opened.

Exceptionword list full

Too many words have been specified in the hyphenation exception list
(via.hwrequests).

- Nonexistentfonttype T

Error Messages

Line overflow
The output line being generated was too long for the formatter’s line

buffer. The excess was discarded. See the “Word overflow” message
below.

A request has been made to mountan unknown font.

Nonexistent macro file
The requested macro package doesnotexist.

Nonexistent terminal ty pe
The terminal options refers to an unknown terminal type.

Out oftemp file space
Additional temporary space for macro definitions, diversions, etc.
cannot be allocated. This message often occurs because of unclosed
diversions (missing .FE or .DE), unclosed macro definitions (e.g.,
missing ““..”’), orahuge table of contents.

Too many page numbers
Thelist of pages specified to the formatter -o option is too long.

T oo many stiing/macro names

The pool of string and macro names is full. Unneeded strings and
macros can be deleted using the .rm request.

Too many number registers

The pool of number register names is full. Unneeded registers can be
deleted by using the .rrrequest.

Word overfiow

A word being generated exceeded the formatter’s word buffer. The
excess characters were discarded. A likely cause for this and for the
‘“Lineoverflow’ messageaboveareverylong lines or words generated
through the misuse of \c or of the .cu request, or very long equations
produced by eqn orneqn.

B-5

Appendix C
mm Macros, Strings,
and Number Registers

C.1Introduction 1

C.2 Summaryofmm Macros 1
C.2.1 Strings 6
C.2.2 NumberRegisters 7

mm Macros, Strings, and Number Registers

C.1 Introduction

This appendix summarizes the macros, strings, and number registers used
bythe mm macro set. Itis particularlyusefulas a quick reference to theuser
familiar with mm. Those who write their own macros can use this appendix
~ to avoid duplicatingthe macros strings and registers of mm.

C.2 Summary of mm Macros

The following is an alphabetical list of macronamesused by mm. The first
line of each item gives the name of the macro and a brief description. The
second line shows the form in which the macro is called. Macros marked
with an asterisk are not, in general, invoked directly by the user. They are
‘““user exits’ called from inside header, footer, or other macros.

1C

2C

AE

AF

AL

AS

AT

AU

AV

BE

One-column processin
1C :

Two-column processing
2C

Abstractend
AE

Alternate formatof “Subject/Date/From” block
.AF [company-name]

Automatically-incremented list start
AL [type] [text-indent][1]

Abstract start
.AS[arg][indent]

Author’s title
AT [title] ...

Authorinformation
.AU name [initials] [loc] [dept] [ext] [room][arg][arg] [arg]

Approvalsignature
.AV[name]

Bold
.B[bold-arg] [previous-font-arg][bold][prev] [bold] [prev]

Bottom end
.BE

C1

XENIX Text Processing Guide

BI Bold/Italic
.BI [bold-arg][italic-arg] [bold] [italic]] bold] [italic]

BL Bulletliststart
.BL [text-indent][1]

BR Bold/Roman
.BR [bold-arg] [Roman-arg] [bold][Roman][bold][Roman]

BS Bottom start
BS

CS Coversheet
.CS [pages][other] [total] [figs] [tbls] [refs]

DE Display end
.DE

DF Display fioating start
.DF [format][fill] [right-indent]

DL Dashliststart
.DL [text-indent] [1]

DS Display static start
.DS [format] [fill] [right-indent]

EC Equation caption
.ECtitle] [override] [fiag]

EF Even-pagefooter
.EF [arg]

EH Even-pageheader
.EH [arg]

EN End equation display
.EN

EQ Equationdisplaystart
.EQ [label]

EX Exhibit caption
.EX{[title][override][flag]

FC Formalclosing
.FC|closing]

FD Footnote default format
FD [arg] [1]

C-2

FE

FG

FS

HC

HM

HZ

LB

LC

LE

LI

mm Macros, Strings, and Number Registers

Footnoteend
.FE

Figuretitle
FQG [title] [override] [flag)

Footnotestart
FSTlabel]”

Heading-numbered
.H level [heading-text] [heading-suffix]

Hyphenation character
.HC [hyphenation-indicator]

Heading mark style (Arabic or Roman numerals, or letters)
.HM[argl]... [arg7]

Heading—unnumbered
.HUheading-text

Heading user exit X(before printing heading)
.HX dlevelrlevel heading-text

Heading userexit Y (before printing heading)
.HY dlevelrlevel heading-text

Heading user exit Z (afterprintingheading)
.HZ dlevelrlevel heading-text

Italic (underline in nroff)
.Ifitalic-arg] [previous-font-arg] [italic] [prev] [italic] [prev]

Italic/Bold
JIB [italic-arg] [bold-arg] [italic] [bold] [italic] [bold]

Italic/Roman
IR [italic-arg) [Roman-arg] [italic] [Roman] [italic] [Roman]

Listbegin
.LB text-indent mark-indentpad type[mark][LI-space][LB-space]

List-status clear
.LC [list-level]

Listend
.LE[1]

Listitem
.LI[mark][1]

XENIX Text Processing Guide

ML

NS

nP

OF

OH

OK

OP

PF

PH

PX

C4

Marked list start
.ML mark [text-indent] [1]

Memorandum type
.MT [type] [addressee]
or MT [4][1]

Newdate
.ND new-date

Notationend
.NE

Notation start
.NS|[arg]

Double-lineindented paragraphs
.nP

Odd-pagefooter
.OF [arg]

Odd-pageheader
.OH [arg]

Other keywords for TM cover sheet
.OK [keyword] ...

Odd page
.OP
Paragraph
-P[type]

Pagefooter
.PF [arg]

Pageheader
.PH [arg]

Page-headeruser exit
PX

Return to regular(Roman) font(endunderliningin nroff)

Roman/Bold
.RB[Roman-arg] [bold-arg] [Roman][bold][Roman][bold]

RD

. RL.

RL

RS

SA

SG

SK

SP

TB

TC

TH

mm Macros, Strings, and Number Registers
Read insertion from terminal
RD [prompt][diversion] [string]

Reference end

.RF

Roman/Italic.... ... e

.RI[Roman-arg] [ité-l.i(.::alzé]. [Rc;mal;] [1tallc][Roman] [1t_a_hc] B
Reference list start

.RL [text-indent][1]

Producereferencepage
.RP [arg][arg]

Reference start
RS [string-name]

Set troffpoint size and vertical spacing
.S [size] [spacing]

Set adjustment (right margin justification) default
.SA[arg]

Signatureline
.SG/arg][1]

Skip pages
.SK [pages]

Space-vertically
.SP[lines]

Table title
.TB [title] [override] [flag]

Table of contents
.TC [slevel] [spacing] [tlevel] [tab] [headl] [head2] [head3] [head4]
[heads]

Tableend
.TE

Tableheader
.TH[N]

Title of memorandum
.TL [charging-case] [filing-case]

XENIX Text Processing Guide

TM TechnicalMemorandum number(s)

TP

TS

VL

.TM[number]...
Top-of-pagemacro

Tablestart

TS[H]

Table-of-contentsuser exit
TX

Table-of-contents user exit (suppresses “CONTENTS”)
TY

Variable-item liststart
.VL text-indent[mark-indent][1]

VM Vertical margins

.VM[top] [bottom]
'WC Width control
.WC|[format]
C.2.1 Strings

The following is amn alphabetic list of string names used by mm, giving for
each a brief description and an initial default value.

Ci

F

DT

Contentsindent up to seven arguments for headinglevels.
Footnote numberer.

In nroff: \u\\n+(:p\d

Introff: \v’-.4m*\s-3\\n+9:p\sO\v’.4m’

Date. The current date, unless overridden.

Em dash string. Used byboth aroff and troff

Heading font list, up to seven codes for heading levels 1 through
7. 3322222(levels1 and 2bold, 3-7 underlinedin nroff, italic
in troff)

Heading point size list, up to seven codes for heading levels 1
through7

Titlefor LIST OF EQUATIONS

Lf
Lt

Lx

Rf

Rp

mm Macros, Strings, and Number Registers

TitleforLISTOF FIGURES
Titlefor LIST OF TABLES
Titlefor LIST OF EXHIBITS

SCCS-Release-and-mmm-—- - -« = -rmmt e mmssmims i e s

Release Level
Reference numberer
Title for References

Trademark string places the letters “TM’ half a line above the
textthat it follows

C.2.2 Number Registers

This section provides an alphabetical list of register names, giving foreacha
brief description, initial (default) value, and the legal range of values (where
[m:n] means valuesfrom mton inclusive).

Any register having a single-character name can be set from the command
line. An asterisk attached to a register name indicates thatthatregister can
beset only from the command line or before the mm macro definitions are

read by the formatter.
A Handles preprinted forms
0,[02]
Au Inhibits printing of author’s location, department, room, and
extension inthefrom portion of amemorandum
1, [0:1]
C Copytype (Original, DRAFT,etc.)
0(Original), [0:4]
Cl Contentslevel (i.e., level of headingssavedfortableof contents)
2,[07]
Cp Placement of List of Figures, etc.
1(on separate pages), [0:1]
D Debugflag
0,[0:1]
De Displayejectregister for floating displays

0,[0:1]

C7

XENIX Text Processing Guide

Df

Ds

Ec

Ej

Eq

Ex

Fg

Fs

Display formatregisterfor floating displays
5, [0:5]

Static display pre- and post-space
1,[0:1]

Equation counter, used by .EC macro
0, [0:?], incremented by 1 for each .EC call.

Page-ejection flagforheadings
0(no eject), [0:7]

Equation label placement
0 (right-adjusted), [0:1]

Exhibit counter,usedby .EX macro
0, [0:?], incremented by 1 foreach .EX call.

Figure counter, used by .FG macro
0,[0:?], incrementedby1for each .FG call.

Footnotespace (i.e., spacing between footnotes)
1,[0:?7]

H1-H7 Headingcountersfor levels 1-7

0, [0:?], incremented by .H of corresponding level or .HU if at level
given by register Hu. H2-H7 are reset to 0 by any heading at a lower-
numbered level

Headingbreak level(after .Hand .HU)
2,[0:7]

Heading centeringlevel (for . Hand .HU)
0 (no centered headings), [0:7]

Heading temporaryindent (after.H and .HU)
1(indent as paragraph), [0:2]

Headingspacelevel(after . Hand .HU)
2(space onlyafter . H1and .H?2), [0:7]

Heading type (for .H: single or concatenated numbers)
0(concatenated numbers: 1.1.1, etc.), [0:1]

Heading level (for unnumbered heading .HU)
2(.HU at thesamelevelaas .H 2), [0:7]

Hyphenation control forbody of document
O(automatic hyphenation off), [0:1]

T

Ls

Lt

Of

Ps

Pt

mm Macros, Strings, and Number Registers
Length of page
66, [20: 7] (111, [2i:?] in troffthesevalues mustbescaled.

Listof Equations
0(listnot produced) [0:1]

Listof Figures
1(list produced) [0:1] -

Listindent
6,[0:7]

List spacing between items by level
5 (spacing between all levels)

List of Tables
1(listproduced) [0:1]

Listof Exbibits
1 (list produced) [0:1]

Numberingstyle
0,[0:5]

Numbering style for paragraphs
0 (unnumbered) [0:1]

Offsetofpage
.751,[0:?](0.5i,[0i:?])in troff

Table of Contents page numb eringstyle
0 (lowercaseRoman), [0:1]

Figurecaption style
0(period separator), [0:1]

Pagenumber, managed bymm.

0,[0:7]

Paragraph indent
5,[0:7]

Paragraph spacing
1 (oneblank space between paragraphs), [0:?]

Paragraph type
O(paragraphsalways left-justified), [0:2]

Pointsize
10, [6:36]

C-9

XENIX Text Processing Guide

Si Standard indentfor displays
5,[0:7]

T Typeofnroffoutputdevice
0, [0:2]

Tb Tablecounter
0, [0:?], incremented by1 for each .TB call.

U Underliningstylefor .Hand .HU
0(continuous underline when possible), [0:1]

W Widthofpage (line and title length)
6i,[10:1365] (6i, [2i:7.54i]in troff

C-10

Index

A

.AL, list begin macro 1-10
abstracts 3-1, 447
acknowledgements 1-5
adjective usage 2-15

alphabetizing lines in files 2-5 -

appendices 1-5
archiving 1-12
awk 1-7, 1-14, A-1
actions A-16
arrays A-19
assignments A-17
BEGIN A-14
break A-20
built-in functions A-17
exp A-17
int A-17
length A-17
log A-17
sprintf A-17
sqrt A-17
substr A-17
combination of patterns A-16
comments A-20
continue A-20
END A-14
exit A-20
expressions A-17
field variables A-18
fields A-13
fiow-of-control A-19
for A-19
if-else A-19
statement grouping A-19
while A-19
next A-20
number registrer A-13
output field separator A-14
output record separator A-14
patterns A-14
printf statement A-14
printing A-13
records A-13
regular expression A-15
relational expressions A-15
special characters A-15
string concatenation A-18
variables A-13, A-17

B

back matter 1-5
background processes 1-16
background processing 1-11
batch 1-9, 1-14, A-1 -
batch editing 1-16
bibliography 1-5

body of text 1-5
builerplate 1-5
boilerplates 1-15, 1-16
boldface 1-10, 3-6
brackets 6-16

bullet list 4-22

C

captions 4-30

centering 1-6, 1-10, 6-7

chapters 1-5

character sets 54

checkmm 3-8

column alignment 7-1

column width 7-1

comm 2-1, 2-3, 2-5
sorting before using 2-5

complex sentences 2-13

compound sentences 2-13

conditional processing 1-15, 622

connectivity 2-15

copyright notice 1-4

cover pages 3-1

cover sheet 4-38, 4-53

cut 2-2, 2-6

cut and paste 19, 1-12, 1-16, 2-2, 2-7

—clist 2-6
—dchar 2-6
—{list 2-6
-s 2-7

D

dash list 4-22
deleting text 2-1
deletions 1-9
deroff 2-8
diacritical marks 8-12
diction 1-7, 2-8

-f option 2-17

-n option 2-17

Index

diff 1-7, 2-1, 2-3
diff3 2-1, 2-3, 24

-e 25

-e2-3

producing ed scripts with 24
displays 1-5, 3-6, 4-25

floating 4-25, 4-27

static 4-25, 4-26
document life cycle 1-12
document number 1-4
document specifications 1-5, 1-16
document standardization 1-5
documentation projects 14
drawing lines 6-16
drawing lines and characters 5-8

E

ed 2-2

ed scripts A-1

editing techniques 1-16
boilerplates 1-15
comnsistency 1-13
editing scripts 1-14
markers in text 1-13
shell scripts 1-15
short lines 1-13
templates 1-13
using writing tools 1-16

egrep 2-1

entering text 1-9

eqn
eqn 1-7, 1-8
braces 8-4, 8-12
brackets 8-7
ceiling 8-7
centering 8-2
command language 8-1
commands 8-1
diacritical marks 8-12
error checking with eqncheck 8-17
error messages 8-17
floor 8-7
fonts 8-11, 8-12
Greek alphabet 8-19
grouping 84
in-line equations 8-14
input spaces 8-10
integrals 8-6
invoking 8-2, 8-16
keywords 8-18, 8-19
line motions with 8-1
line spacing 8-1
lining up equations 8-9
local motions 814
matrices 8-8
numbering 8-2

12

XENIX Text Processing Guide

eqn (continued)
order of precedence 8-18
output spaces 8-10
overstriking 8-12
piles 8-8
point sizes 8-11
printing documents
lineprinter 8-16
phototypesetter 8-16
quoted text 8-13
reserved names 4-54
special characters 8-18
special sequences with 810
square roots &5
string definitions &-15
subscripts 8-3
summation 8-6
superscripts 8-3
using caret 8-10
using tildes 8-10, 8-10
with mm
centering 8-2
numbering 82
with nroff 8-2
with nroff/troff 8-1
eqncheck 8-17
equations 1-5
extracting columns 2-6
extracting fields 2-6

F

fgrep 2-1
fields 6-11
figures 1-5
file comparison 1-12, 1-15, 2-1, 2-1, 2-3
files
backup copies 1-6
backups 1-16
file length 1-15
help files 1-14, 1-15
hierarchical file siructure 1-15
managing long documents 1-13
naming conventions 1-13
README files 1-15
updates 1-12
using comment lines 1-15
versions 1-12
filling 1-6, 6-7
font changes 3-1
fonts 1-6, 1-7, 4-41
typesetting 5-4
footers 1-6
footnotes 1-5, 1-7, 3-1, 3-6, 4-31
foreword 1-4
formatter 4-2
formatting commands 1-7, 1-9

/’"“\

XENIX Text Processing Guide

formatting documents 1-7
formatting tables 1-8, 7-1
front matter 1-4

G

global substitution 1-9, 1-12, 2-1, A-1.
glossary 1-5
Greek alphabet 5-5, 81, 8-11, 8-19
grep 1-7, 2-1, 2-2

-h 2-3

-n 2-2

combined with other commands 2-2
gutter width 1-6

H

horizontal motions 5-9
hyphenation 1-7, 4-8, 6-12

I

illustrations 1-4
indentation 1.6, 5-7
index 1-5
inserting text interactively 4-45
interactive 1-9
invoking programs
eqn 19
mm 1-9
nrofl/troff 1-9
order 1-8
using col 1-9
italics 36

J .

justification 1-6, 1-6, 1-7, 4-41, 6-7

K

keep-release 5-21

Index

L

.LE, list end macro 1-10
.L1I, line item macro 1-10
leaders 6-11

letters 1-4

line length 1-6, 56

list of figures, tables, etc. 4-31

lists 3-1, 4-17

local motons 5-8, 6-15

locating awkward phrases 2-16, 2-16
locating long sentences 2-13

M

macro definition 1-16, 4-53, 6-17
macro definition files 1-13
macros 1-8, 1-8, 3-1, 4-3, 7-1, 81
definition 1-10 :
margins 1-6
marked list (.\ML) macro 4-22
mathematical equations 1-6, 4-30, 7-1
formatting 8-1
printing 81
memorandum styles 4-45
memos 1-4
merging columns 2-7
mm
mm 1-3, 1-7, 1-7, 1-16
abstract (.AS) macro 4-47
abstracts 3-1
alternate format (.AF) 3-7, 449
author (.AU) macro 4-46
automatic list (AL) 3-4, 4-21
beginning segment 4-2
body 4-2
bold (.B) macro 4-41
bullet list 4-22
bullets 4-9
caption macro (.FG) 4-30
closing (.FC) macro 4-51
command line 4.4
command line parameters 4-4
cover pages 3-1
cover sheet (.CS) macro 4-53
dash list (DL) 3-4, 4-22
dashes, minuses, and hyphens 4-9
disappearance of output B-1
display (.DSI) macro 4-26
display macro(.DS-.DE) 3-6
displays 4-25
indentation 3-7
ending 4-2

I3

Index XENIX Text Processing Guide

mm (continued) mm (confinued)

equation (.EQ) macro 4-30 parameter setting 4-2

error checking with checkmm 3-8 point size (.S) macro 444

error messages B-1, B-1, B-2, B-3, B3 point size in headings 4-13

even page footer (.EF) macro 4-35 read insertion (.RD) macro 4-45

even page header (.EH) macro 4-35 reasons to use 4-1

exit macros ((HX, .HY and .HZ) 4-16 redefining heading styles 34

floating display (.DF) macro 4-27 reference (.RS) macro 4-40

font changes 3-1, 3-5 reference list ((RL) macro 4-22
boldface 3-6 reference page (RP) macro 4-40
italics 3-6 Roman (.R) macro 4-41

fonts in headings 4-13 section headers 3-1

footnote (.FS) macro 4-31 set right justificaion (.SA) macro 4-41

footaotes 3-1, 36 signature (.SG) macro 4-51

formatting with 4-7 skip page (.SK) macro 4-44

heading (.H) macros 4-11 space (.SP) macro 443

headings 4-10 strings C-6

headings, modifying 4-12 summary of macros C-1
unnumbered 4-15 summary of number registers C-7

hypenation 4-8 table macro (.TS-.TE) 3-6, 4-28

inserting commands 3-1 table of contents (.TC) 3-4, 4-15, 4-38

invoking 3-2, 4-3 tables of contents 3-1

invoking as a flag 44 tabs 4-9

invoking checkmm 3-8 technical memorandum (.TM) macro 4-47

italic (.I) macro 4-41

keyword (.OK) macro 4-48 title (.-TL) macro 4-46

list end (.LE) macro 4-18, 4-21 titles 3-1

list item macro 34, 4-18, 4-20 top of page processing 4-37

list of figures 4-31 trademark string 4-10

list-inittalization macro 4-18 two column (.2C) macro 3-7, 4-42

lists 3-1, 3-4, 4-17 unnumbered headings 3-3

macro definition 4-53 unpaddable spaces 4-8

mark list (ML) 34 using tilde (*) 4-8

marking macro (.HM) 4-14 variable lists (.VL) 3-5, 4-23

memorandum type (.MT) 3-7, 4-48 vertical margin (.VM) macro 4-38

multicolumn output 3-1 with nroff/troff 3-1, 3-8

nested lists 3-5, 4-18 with col 3-3

new date (.ND) macro 4-49 multicolumn output 1-6, 1-7, 3-1, 3-7, 4-42

notation (.NS) macro 4-51

null arguments 4-7

numbered headings 3-3 N
odd page (.OP) macro 4-44

odd page header ((OH) macro 4-35

odd-page footer macro 435 naming conventions 1-13

0pt10;1f3 nested lists 4-18
:;’2 43 nominalizations 2-15
—c 4 é notes 1-5

E4—3 noun usage 2-15
) aroff 1-7, 1-7
-y43 oroff/troff

relative point size changes 5-3
absolute position 6-3
adjust (.ad) command 68
3 append string (.as) command 6-20
page n“nlllbeIng 3-1, 451:65 410 append to macro (.am) command 6-20
Pmﬁmph (- % rgfilcro =95 4- assign format to register (.af) 6-21
gaa::g:ghsszyleo Il:?gi?(Il)_age (G-blpt,)) command 5-13, 6-7

- . ank lines
paragraphs and headings 3-3 brackets 6-16

order of beginning macros 4-50
page footer (.PF) macro 4-35
page header (.PH) macro 4-34

14

XENIX Text Processing Guide

nroff/troff (continued)
break (.br) command 6-8
break function 6-2
breaks in 5-14
center (.ce) command 6-9
centering 6-7
change trap position (.ch) 6-20
character translations 6-14
conditional processing 5-18, 6-22
even and odd 5-19 .
if-else 5-18
lineprinter and typesetter 5-19
string comparison 5-19
control lines 6-2
copy mode 6-15
define macro (.de) command 6-19
define string (.ds) command 6-20
difference between 5-1, 6-1
printing 6-5
difference in output 5-1
differences 1-6
changing point sizes 1-6
ignoring commands 1-6
replacing italics with underlining 1-6
rounding parameters 1-6
underlining 1-7
diversions 6-19
diversions (.di) 5-20
nesting 6-19
traps 6-19
divert (.di) command 6-20
divert-append (.da) command 6-20
-drawing lines 6-16
drawing lines and characters 58
end macro (.em) command 6-20
environments 6-23
environments (.ev) 5-19
error messages 6-25, B-4, B4, B-5
escape character 6-2, 6-14
escape sequences 6-25
even page (e) condition 6-22
exit (.ex) command 6-23
field delimiter {.fc) command 6-12
fields 6-11
fill (.fi) command 6-7, 6-8
flush output buffer (.fl) 6-25
fonts 5-5
formnatter-nroff (n) condition 6-23
formatter troff (t) condition 6-22
horizontal motions 5-9, 6-16
hyphenation 6-12
hyphenation on (.hy) command 6-12
if (.if) command 6-22
ignore (.ig) command 6-24
indent (.in) 5-6, 6-10
inline commands 5-2
input-output conventions 6-14
inserting commands 5-2

install diversion trap (.dt) command 6-20

Index

nroff/troff (continued)

install trap (.wh) command 6-20
invoking 6-1
justification 6-7
leader repetition character (.Jc) 6-12
leaders 6-11
ligature mode on (.Ig) command 6-14
ligatures 6-14
Jine length (.11).5.6, 6-10
line length and indenting 6-10
line number mode (.nm) 6-13
line space (.Is) command 6-9
local motions 5-8, 5-10, 6-15
macro definitions 5-11
arguments 6-18
input 6-17
macros 6-2, 6-17
arguments 5-16
margin character (.mc) command 6-24
mark current vertical place (.mk R) 6-7

needs (.nez command 6-7

new page (.NP) macro 5-13

next filename (.nx) command 6-24

no adjust (.na) command 6-8

no fill (.nf) command 6-8

no hyphenation (.nh) command 6-12

no number (.nn) command 6-13

no space (.ns) command 6-10

number register assign (.nr) command 6-21

number registers 5-15, 5-16, 6-21

predefined 6-27

read-only 6-27
numerical input 64
odd page (o) condition 6-22
options

-cname 6-1

-olist 6-1

-i62

—mname 6-1

-nN 6-1

-q 62

—raN 62

—sN 6-1
output line numbering 6-13
output save (.os) command 6:10
overstriking 5-10, 6-16
page control 66
page length (.pl command) &6
page number F pn) command 6-7
page number character (.pc) 6-13
page offset (.po) 5-6, 6-7
pipe output (.pi) command 6-24
point size(.ps) 5-2
pre-defined number registers 5-15
print macro (.pm) command 6-24
quoting quotes 5-15

I-5

Index

nroff/troff (continued)

read standard input (.rd) command 6-23

read string in copy mode (.tm) 6-24
remove (.rm) command 6-20
remove register (.rr) command 6-22
rename (.rn) command 6-20
requests 6-2

reserved register names 4-53
reserved request names 4-53
restore spacing (.rs) command 6-10
return upward (.rt) command 6-7
save (.sv) command 6-10

scale indicators 6-3

section titles 5-17

set control character (.cc) command 6-15

set environment (.ev) commands 6-23

set escape character (.ec) command 6-14

set hyphenation indicator (.hc) 6-12
set input-line-count trap (.it) 6-20
set nobreak (.c2) command 6-15
set tabs (.ta) command 6-11

space (.sp) command 6-9

spacing units 54

special characters 5-5

specisfy hyphenation points (.hw) -command
-12

standard input 6-1
string define (.ds) 5-11
string definition 5-11, 6-17
switch source file (.so) command 6-24
tab repetition character (.tc) 5-8, 6-11
tabs (.ta) 5-7, 6-11
temporary indent (.ti) 5-7
temporary indent (.ti) command 6-10
title (.t1) command 5-13, 6-12
title length (.It) command 6-13
titles 5-13, 6-12
fonts and point sizes 5-14
wanslate (tr) command 6-15
twrn escape off (.eo) command 6-14
underline (.ul) command 6-14
underline font (.uf) command 6-15
using backslash (\) 5-15, 6-2, 6-14
vertical motions 6-15
vertical space (.vs) command 6-9, 69
vertical spacing (.vs) 5-3
width function 6-15, 6-16
with mm 4-1
zero-width function 6-16
internal units 6-3
options
—-e 6-2
—Tname 6-2
underline (.cu) command 6-14
number registers 4-3
numbered lists 1-10

16

XENIX Text Processing Guide

0]

organizing writing projects 1-12
overstiike 6-16

|

.P, paragraph macro 1-10
page footers 4-34, 4-35
page headers 1-6, 4-34
page length 1-6
page numbering 1-6, 1-7, 3-1, 4-16
paper styles 4-45
paragraph style 1-7, 3-1
parallel sentence structures 2-15
parts 2-10
parts of document 1-4
back matter 1-5
appendices 1-5
bibliography 1-5
glossary 1-5
index 1-5
notes 1-5
body of text 1-5
front matter 1-4
acknowledgements 1-5
copyright notice 14
document number 1-4
foreword 14
illustrations 1-4
preface 1-5
table of contents 1-4
tables 1-4
title page 14
parts of speech 2-14
paste 2-2, 2-7
-d 2-7
-s 27
list 2-7
pattern matching A-1, A-12, A-13
pattern recognition 2-2
point size 1-6, 1-7, 4-44
preface 1-5
preparing charts 7-1
preprocessor 1-8
preprocessors 1-8, 7-1
printing documents 1-11
lineprinter 1-7, 1-8, 1-8
phototypesetters 1-7
printing lists 7-1)
printing multi-column material 7-1
production consistency 1-5

o

T

XENIX Text Processing Guide

Q

quoting quotes 4-7

R

readability 2-10, 2-13

readability indices 2-10, 2-11
readability of documents 2-8
rearranging columns 2-6
reference page 4-40

references 4-39

regular expression 2-2, A-1, A-15
relative addressing A-1

requests 4-2

reversing columns of output A-12
revisions 1-9, 1-12, 1-12

running footers 1-5

running headers 1-5

running heads, see Page Headers 1-6

S

.sp command 1-10
searching 2-1, A-12
searching within fields A-12 .
fields A-1
line numbers 2-2
numerics A-1
pattern recognition 2-2
strings 2-3
variables A-1
section headers 3-1
section-page numbering 1-6
sections 1-5
sed 1-14, A-1
-e A-2, A2
-f A2, A2
-n A-2
: label function A-11
= function A-11
a function A-5
addressing A-3
b label function A-11
Bl!function A-11
c function A-6
d function A-5
D function A-10
flow-of-control A-2
flow-of-control functions A-11
functions A-5
g function A-7, A-10
G function A-10

Index

sed 1-14, A-1 (continued)
H function A-10
h function A-10 -
hold and get functions A-10
i function A-6
input/output functions A-8
miscellaneous functions A-11
multiple input-line functions A-9
n function A-5
‘N function- A-9
p function A-7, A-8
P function A-10
q function A-11
r function A-9
s function A-7
substitution functions A-7
t label function A-11
w function A-7, A-8
x function A-10
-n A2
{ function A-11
sentence length 2-9, 2-10
sentence openers 2-15
sentence type 2-9, 2-10, 2-10
simple sentences 2-13
skipping pages 4-44
sort 1-7, 2-2, 2-5
special characters 5-5
in egn 818
special symbols 8-1
spell 1-7, 2-8, 2-7
-b2-8
-v2-8
British spelling 2-8
dictionary 2-8
square roots 8-5
standard output
formatting to 1-11
standardization 1-12
Starting paragraphs 1-10

strategies for managing writing projects 1-2

string definition 6-17
strings 4-3
style 1-7, 2-8, 2-10
-1 option 2-13
elements of writing style 2-9
percentage of verbs 2-15
readability 2-9, 2-9
readability grades 2-11
readability indices 2-11
automated readability index 2-12
Coleman-Liau Formula 2-12
Flesch Reading Ease Schore 2-12
Kincaid Formula 2-12
sentence determination 2-10
sentence length 2-11, 2-11, 2-13
sentence openers 2-11
sentence type 2-11, 2-13, 2-13
word length 2-11

Index

style 1-7, 2-8, 2-10 (continued)

word usage 2-11
subscripts 8-3
superscripts 8-3
symbols, mathematical 8-11
system features 1-7

hierarchical file structure 1-2, 1-7, 1-13

multitasking 1-7
pipes 1-2, 1-9
shell 1-2
shell scripts 1-2
system utilities 1-7, 2-1, 2-7

T

table of contents 14, 4-15, 4-38

tables 14, 1-5, 1-6, 3-6, 4-28
tables of contents 3-1

tabs 6-11

tbl 1-7, 1-8, 7-1

additional command lines 7-9

centering in columns 7-4
column alignment 7-1
column width 7-1, 7-6
data 7-7
decimal point alignment 7-4
defaults 7-7
drawing boxes 7-1
drawing horizontal lines 7-1
drawingvertical lines 7-1
equal width columns 7-7
error messages 7-8, 7-10
font changes 7-6
format section 7-3

A or a option 7-3

C or c option 7-3

L or 1 option 7-3

N or n option 7-3

R or r option 7-3

S or s option 7-3

“ option 7-4
formatting section 7-2

full width horizontal lines 7-7

horizontal lines 7-5
input to 7-2
invoking 7-9
with other formatters 7-9
keyletters 7-5
need (.ne) commands 7-3
options 7-2
options section 7-2
allbox 7-3
box 7-3
center 7-3
delim 7-3
doublebox 7-3
expand 7-3

18

XENIX Text Processing Guide

tbl 1-7, 1-8, 7-1 (continued)
options section 7-2 (continued)
linesize 7-3
tab 7-3
point sizes 7-6
preparing charts with 7-1
printing lists 7-1
printing multi-column material 7-1
prin¥ng with phototypesetter 7-1
reserved names 4-54
short horizontal lines 7-8
single-column horizontal lines 7-7
space between columns 7-5
table end (.TE) 7-2
table start (.TS) 7-2
text blocks 7-8
vertical lines 7-5
vertical spacing 7-6
vertical spanning 7-6
vertically spanned items 7-8
with nroff/troff 7-1, 7-1
with eqn 7-1
with mm 7-1
troff commands in 7-7
technical papers 1-4
techniques, text processing 1-6
templates 1-16
title page 1-4
titles 1-7, 3-1, 4-46, 6-12
tools 2-8
tools, text processing 1-6, 1-7
top and bottom margins 4-38
troff 1-7, 1-7
point size (.ps) command 6-5
change font (ft) command 66
character set 64
constant character space (.cs) 66
embolden (.bd) commands 6-6, 6-6
font position (.fp) command 6-6
internal units 6-3
mathematical font set 64
mounted fonts 6-5
options
-a 62
-b 62
-f6-2
—-pN 6-2
-t62
-w6-2 -

space-character size (.ss) command 6-5

using ASCII characters with 64
typesetting mathematical equations 1-8

XENIX Text Processing Guide Index

U

updates 1-12, 1-15
use of expletives 2-16

i o V

variable spacing 1-7

versions of documents 1-12, 1-13, 1-15
vertical spacing 1-6, 1-10

vi 1-6, 1-7, 22

\"

we 2-2, 26

width function 6-15

word length 2-9

word usage 2-9, 2-10, 2-10, 2-14
wriking tools 1-7

X

<__ S XX 42

Z

zero-width function 6-16

19

Contents

(. Text Processing Commands (CT)

()

intro....
checkmm,
mmcheck
col

cut
cw,cwcheck
deroff
diction
diffmk
eqn,neqn,
eqncheck
eqnchar
explain
hyphen
look

man

mm

“ mmt
. neqn

nroff
paste

prep

ptx

soelim
style

tbl

term

troff

Index (CT)

Introduces textprocessingcommands.

Checks usage of MMmacros.

Filters reverse linefeeds.

Cutsoutselected fields of each line of a file.
Prepares constant—width text for troff.
Removes nroff/troff, tbl, and eqn constructs.
Checkslanguage usage.

Marks differences between files.

Formats mathematical text fornroff ortroff.
eqn character definitions.

Corrects languageusage.

Finds hyphenated words.

Findlinesin a sortedlist.

Print entries in this guide.
Printsdocumentsformattedwith the mm macros.
Typesetsdocuments.

Formats mathematics.

A textformatter.

Merges lines of files.

Prepares text for statistical processing.
Generates a permuted index.

Eliminates .so’s from nroff input.

Analyzes characteristics of adocument.
Formats tables for nroff or troff.
Terminalnznes.

Typesets text.

INTRO (CT)

Name

INTRO (CT)

intro — Introduces text processing commands.

', Description

This section describes use of the individual commands available in
..the XENIX Text.Processing System... Each individual command is . ..

labeled with the letters CT to distinguish it from commands avail-
able in the XENIX Operating and Development Systems. These
letters are used for easy reference from other documentation. For
example, the reference mm(CT) indicates a reference to a discus-
sion of the mm command in this section, where the letter “C”
stands for “command” and the letter “T” stands for ‘“Text Process-

ing”.

Syntax

Unless otherwise noted, commands described in this section accept
options and other arguments according to the following syntax:

name

option

cmdarg

C . See Also

name [option...] [cmdarg...]

(This syntax is detailed below:

The filename or pathname of an executable file

A single letter representing a command option. By
convention, most options are preceded with a dash.
Option letters can sometimes be grouped together as
in —abed or they are specified individually as in —a
=b —c —d . The method of specifying options
depends on the syntax of the individual command.
In the latter method of specifying options, arguments
can be given to the options. For example, the =—f
option for many commands often takes a following
filename argument.

A pathname or other command argument not begin-
ning with a dash or a period (.). It may also be a
dash by itself indicating the standard input.

getopt(C), getopt(S)

August 26, 1985

Page 1

INTRO (CT) INTRO (CT)

Diagnostics

Upon termination, each command returns 2 bytes of status, one
supplied by the system and giving the cause for termination, and (in
the case of “normal” termination) one supplied by the program.
(See wait(S) and exit(S).) The former byte is O for normal termina-
tion; the latter is customarily O for successful execution and
nonzero to indicate troubles such as erroneous parameters, bad or
inaccessible data, or other inability to cope with the task at hand.
It is called variously “exit code,” “exit status,” or “return code,”
and is described only where special conventions are involved.

Notes

Many commands do not adhere to the given syntax.

August 26, 1985 Page 2

-

CHECKMM (CT) CHECKMM (CT)

Name

checkmm, mmcheck — Checks usage of MM macros.

Syntax
checkmm [files]
mmcheck [files]

Description
Chéckmm and mmcheck check files for usage of the MM formatting
macros. Checkmm and mmcheck also check for usage of some
egn(CT) constructions. Appropriate messages are produced. The
program skips all directories, and if no filename is given the stan-
dard input is read.

See Also
col(CT), env(C), eqn(CT), mm(CT), mmt(CT), nroff(CT),
tbl(CT), profile(M)

Diagnostics
If checkmm and mmcheck encounter unreadable files they display

the message “Cannot open filename”. The remaining output of the
program is diagnostic of the source file.

August 26, 1985 Page 1

COL (CT) COL (CT)

Name

col — Filters reverse linefeeds.

Syntax

col [—bfxp]

Description

Col prepares output from processes, such as the text formatter
nrof f(CT), for output on devices that limit or do not allow reverse
or half-line motions. Col is typically used to process nroff output
text that contains tables generated by the tbl program. A typical
command line might be:

tbl file | nroff | col | lpr
Col takes the following options:

-b
Assumes the output device in use is not capable of backspacing.
If two or more characters appear in the same place, col outputs
the last character read.

—f Allows forward half linefeeds. If not given, col accepts half line
motions in its input, but text that would appear belween lines is
moved down to the next full line. Reverse full and half linefeeds
are never allowed with this option.

—x
Prevents conversion of whitespace to tabs on output. Col nor-
mally converts whitespace to tabs wherever possible to shorten
printing time.

-p
Causes col to ignore unknown escape sequences found in its
input and pass them to the output as regular characters.
Because these characters are subject to overprinting from
reverse line motions, the use of this option is discouraged unless
the user is fully aware of the position of the escape sequences.

Col assumes that the ASCII control characters SO (octal 016) and
SI (octal 017) start and end text in an alternate character set. If
you have a reverse linefeed (ESC 7), reverse half linefeed (ESC 8),
or forward half linefeed (ESC 9), within an SI-SO sequence, the
ESC 7, 8 and 9 are still recognized as line motions.

August 26, 1985 Page 1

COL (CT) COL (CT)

On input, the only control characters col accepts are space, back-
space, tab, return, newline, reverse linefeed (ESC 7), reverse half
linefeed (ESC 8), forward half linefeed (ESC 9), alternate character
start(SI), alternate character end (SO), and vertical tag (VT). (The
VT character is an alternate form of full reverse linefeed, included
for compatibility with some earlier programs of this type.) All other
nonprinting characters are ignored.

See Also
nroff (CT), tbl(CT)

Notes
Col cannot back up more than 128 lines,
Col allows at most 800 characters, including backspaces, on a line.
Vertical motions that would back up over the first line of the docu-

ment are ignored. Therefore, the first line must not contain any
superscripts.

August 26, 1985 Page 2

CUT (CT)

Name

CUT (CT)

cut — Cuts out selected fields of each line of a file.

Syntax

cut —clist [filel file2 ...]
cut =flist [=dchar] [=s] [filel file2 ...]

Description

Use cut to cut out columns from a table or fields from each line of
a file. The fields as specified by list can be fixed length, i.e., char-
acter positions as on a punched card (—c option), or the length can
vary from line to line and be marked with a field delimiter charac-
ter like tab (—f option). Cut can be used as a filter. If no files are
given, the standard input is used.

The meanings of the options are:

list

-clist

—~flist

—~dchar

A comma-separated list of integer field numbers (in
increasing order), with an optional dash (-), indicates
ranges, as in the —o option of nroff/troff for page ranges;
e.g., 1,4,7; 1-3,8; =5,10 (short for 1-5,10); or 3— (short
for third through last field).

The list following —c¢ (no space) specifies character posi-
tions (e.g., —e1=72 would pass the first 72 characters of
each line).

The list following —f is a list of fields assumed to be
separated in the file by a delimiter character (see —d);
e.g., —f1,7 copies the first and seventh field only. Lines
with no field delimiters will be passed through intact (use-
ful for table subheadings), unless —s is specified.

The character following =—d is the field delimiter (—~f
option only). Default is tab. Space or other characters
with special meaning to the shell must be quoted.

The —s option suppresses lines with no delimiter charac-
ters in case of —f options. Unless specified, lines with no
delimiters will be passed through untouched.

Either the —c or —f option must be specified.

August 26, 1985 Page 1

CUT (CT) CUT (CT)

Hints
Use grep(C) to make horizontal “cuts” (by context) through a file,
or paste(CT) to put files together horizontally. To reorder columns
in a table, use cut and paste.

Examples
cut —d: —f1,5 fetc/passwd Maps user ID’s to names.

"o

name=>who am i | cut —f1 —d
Sets name to current login name.

See Also

grep(C), paste(CT)

Diagnostics

line too long A line can have no more than 511 characters or
fields.

bad list for c / f option
Missing —c¢ or —f option or incorrectly specified
list. No error occurs if a line has fewer fields than
the list calls for.

no fields The list is empty.

Anugust 26, 1985 Page 2

7

Thispage intentionally left blank.

u/’

CW (CT) CW (CT)

Name

cw, checkcw, cwcheck — Prepares constant-width text for troff.

Syntax
ew [=hxx] [=mxx] [=fn][—t][+t][=d][file...]

checkew [=Dox J[=rxx | file ...~

cwcheck [=Ixx] [=rxx] file ...

Description

Cw prepares troff(CT) input files that contain text in the constant-
width (CW) font for typesetting.

Because the CW font contains a nonstandard set of characters and
requires different character and interword spacing from standard
fonts, documents that use the CW font must be preprocessed by
cw. Typical usage is:

cw file | troff ...

The checkcw and cwcheck programs check to see that the left and
right delimiters, as well as the .CW/.CN pairs, are properly bal-
anced. It prints out all incorrect lines.

The op#ions for cw, checkew, cwcheck are:

~lxx Designates the one- or two-character string xx as the left
delimiter. If xx is omitted, the left delimiter is undefined,
which is the default setting.

=rxx Designates the one- or two-character string xx as the right
delimiter. The left and right delimiters may be different.

—fn Mounts the CW font in font position n; acceptable values
for n are 1, 2, and 3. The default is 3, replacing the bold
font. This option is only useful at the beginning of a docu-
ment, and can only be used with cw.

-t Turns transparent mode off. This option can only be used
with cw.
+t Turns transparent mode on. (This is the default.-) This

option can only be used with cw.

August 26, 1985 Page 1

CW(CT) CW (CT)

-d Prints current option settings on the standard error, in the
form of troff(CT) comment lines. This option is meant
for debugging, and can only be used with cw.

The left and right delimiters perform the same function as the
.CW/.CN requests; they are meant, however, to enclose CW words
or phrases in running text. Cw treats text enclosed by delimiters
exactly like text bracketed by .CW /.CN pairs. For aesthetic reasons,
spaces in text bracketed by .CW/.CN pairs have the same width as
any other CW character. However, spaces between delimiters are
half as wide, so that they are the same width as spacing in the rest
of the text, though not adjustable.

Delimiters have no special meaning inside .CW /.CN pairs.

Cw recognizes five requests. The requests look like troff(CT) mac-
ros (see EXAMPLES below), and are copied by c¢w onto its output.
Thus, they can be defined by the user as troff(CT) macros.

The five requests are:

.CW Marks the start of text to be set in the CW font. .CW takes
the same options, in the same format, that are available on
the cw command line.

.CN Marks the end of text to be set in the CW font; .CN takes
the same options that are available on the ¢w command
line.

.CD option(s)
Changes delimiters and/or settings of other options; takes
the same options as the cw command line.

.CP argl arg2 arg3 ...
Sets the odd-numbered arguments in the CW font and the
even-numbered arguments in the prevailing font. The argu-
ments are delimited like troff(CT) macro arguments.

.PC argl arg2 arg3 ...
Same as .CP, except that the even-numbered (rather than
odd-numbered) arguments are set in the CW font, and the
odd-numbered arguments are set in the prevailing font.

Except for the .CD request and the nine special four-character
names listed in the table below, every character between the .CW
and .CN requests is taken literally and output as is. The —t option
turns off this feature (called transparent mode), and applies normal
troff (CT) rules to the CW text.

Text typeset with the CW font resembles the output of terminals

and lineprinters. This font is often used to typeset examples of
programs and computer output in documents such as user manuals

August 26, 1985 Page 2

CW(CT) CW (CT)

and programming texts. The CW font contains the 94 printing
ASCII characters:

abcdefghijklmnopqrstuvwxyz
ABCDEFGHIJKLMNOPORSTUVWXYZ
0123456789

1$%&()*+@.,/ ;=]|-_""<>{}#\

.. It.also. contains. eight non-ASCII characters represented by._four- .
character #roff(CT) names

Character Symbel Troff Name
“Cents” sign ¢ \et
EBCDIC “not”sign - \{mo
Left arrow + \{<-
Right arrow — \(->
Down arrow | \da
¢ Vertical single quote ! \(fm
¢ Control-shift indicator ¢ \(dg
: Visible space indicator [] \{sq
.5 Hyphen - \hy

The hyphen is a synonym for the minus sign (—).

Examples

The following are typical definitions of the .CW and .CN macros.
They are meant to be used with the MM (CT) macro package:

.de CW Begins definition

.DS1I Display start, indented

ps 9 9 point type | .

Vs 10.5}) Vertical spacing 10.56pomts

ta 16m/3u 32m/3u 48m/3u 64m/3u 80m/3u $6m/31: Sets tabs

LEnds definition

deCN ~~ Begins definition

ta 0.51 1i 1,51 21 2.51 31 3.51 41 4.51 51 5.51 61 Resets tabs
Vs Resets vertical spacing

_.Bs ; Resets point size

.DE Lads displa

. Ends definifion

When set in running text, the CW font is, by default, set in the
same point size as the rest of the text. In displayed matter, it can
often be set one point smaller than the prevailing point size. (The
displayed definitions of .CW and .CN above are one point smaller
than the running text on this page.) When the .CW font is set in 9-
point type, there are 12 characters per inch.

If a document that contains CW text also contains tables and equa-
tions, the order of preprocessing should be cw, tbl, and egn. Usu-
ally, the tables contained in such documents will not contain any
CW text, although it is possible to have elements of the table set in

August 26, 1985 Page 3

CW (CT) CW (CT)

the CW font; care must be taken that tbl(CT) format information is
not modified by cw. Attempts to set equations in the CW font are
not likely to be either pleasing or successful.

In the CW font, overstriking is most easily accomplished with back-
spaces. (« represents a backspace.) Because spaces (and, there-
fore backspaces) are half as wide between delimiters as inside
.CW/.CN pairs (see above), two backspaces are required for each
overstrike between delimiters.

Files

fusr/lib/font/ftCW CW font-width table

See Also
eqn(CT), mmt(CT), tbl(CT), troff(CT)

Warning
Text preprocessed by cw must be set on a typesetter equipped with
the CW font.

Notes
Do not use periods (.) or backslashes () as delimiters.
Certain CW characters do not fit well with certain Times Roman
characters, such as a CW ampersand (&) followed by a Times

Roman comma(,); in such cases, use #off(CT) half- and quarter-
spaces. See also Notes under troff (CT).

August 26, 1985 Page 4

DEROFF (CT) DEROFF (CT)

Name

deroff — Removes nroff/troff, tbl, and eqn constructs.

Syntax
deroff [=w] [—mx] (files]

Description

Deroff reads each of the files in sequence and removes all troff(CT)
requests, macro calls, backslash constructs, egn(CT) constructs
(between .EQ and .EN lines, and between delimiters), and zbl(CT)
descriptions. It writes the remainder of the file on the standard
output. Deroff follows chains of included files (.so and .nx troff
commands). If a file has already been included, a .so naming that
file is ignored and a .nx naming that file terminates execution. If
no input file is given, deroff reads the standard input.

The —m option may be followed by an m, s, or 1. The resulting
—mm or —ms option causes the MM or MS macros to be inter-
preted so that only running text is output (i.e., no text from macro
lines). The —ml option forces the —mm option and also causes
deletion of lists associated with the MM macros. This option is
used by the diction (CT) command.

The —w option outputs a word list, one “word” per line, with all
other characters deleted. Otherwise, the output follows the origi-
nal, with the deletions mentioned above. In text, a “word” is any
string that contains at least two letters and is composed of letters,
digits, ampersands (&), and apostrophes (‘). In a macro call, how-
ever, a “word” is a string that begins with at least two letters and
contains a total of at least three letters. Delimiters are any charac-
ters other than letters, digits, apostrophes, and ampersands. Trail-
ing apostrophes and ampersands are removed from “words.”

See Also
diction(CT), eqn(CT), style(CT), tbl(CT), troff(CT)

Notes

Since Deroff is not a complete troff interpreter, it can result in too
much output.

The —ml option does not handle nested lists correctly.

Deroff also removes words of two or fewer letters in lines that begin
with macro calls or troff requests.

August 26, 1985 Page 1

7N

DICTION (CT) DICTION (CT)

Name

diction — Checks language usage.

Syntax

diction [=ml1] [=mm] [[=n]] [=f parternfile] file ...

Description
Dicrion finds all sentences in a document that contain phrases from
a data base of bad or wordy diction. On output, each phrase is
enclosed within brackets. Because diction runs deroff before look-
ing at the text, formatting header files should be included as part of
the input. The options are:

—ms.
Overrides the default macro package, MM.

—ml
Causes deroff to skip lists. Should be used if the document con-
tains many lists of nonsentences.
~fpatternfile
Employs a user-supplied patternfile of words and phrases in
addition to the default file.
-n
Suppresses the default file.
Credit
This utility was developed at the University of California at Berke-
ley and is used with permission.
See Also
deroff(CT), explain(CT)
Notes

Use of nonstandard formatting macros may cause incorrect sen-
tence breaks.

The —n option cannot be specified by itself.

August 26, 1985 Page 1

o

DIFFMK (CT) DIFFMK (CT)

Name

diffmk — Marks differences between files.

Syntax

diffmk namel name2 name3

Description

Diffink compares two versions of a file and creates a third file that
includes “change mark” commands for nroff(CT) or troff(CT).
Namel and name?2 are the old and new versions of the file. Diffmk
generates name3, which contains the lines of name2 plus inserted
formatter “change mark” (.mc) requests. When name3 is format-
ted, changed or inserted text is shown by “|”” at the right margin of
each line. The position of deleted text is shown by a single ““*?*.

The diffmk command will produce listings of C (or other) programs
with changes marked. A typical command line for such use is:

diffmk old.c new.c tmp; nroff macs tmp | pr
where the file macs contains:

pll
77
.of
.e0
.anc

The .1 request might specify a different line length, depending on
the nature of the program being printed. The .eo and .nc requests
are probably needed only for C programs.

If the characters “|” and ¢*'* are inappropriate, a copy of diffink
can be edited to change them (diffmk is a shell procedure).

See Also
diff(C), nroff(CT)

Notes
Aesthetic considerations may dictate manual adjustment of some
output. File differences mvolving only formatting requests may pro--
duce undesirable output. For example, replacing .sp by .sp 2 will

produce a “change mark” on the preceding or following line of out-
put.

August 26, 1985 Page 1

EQON (CT) EQN (CT)
Name

eqn, neqn, checkeq, eqncheck — Formats mathematical text for
nroff, troff.

Syntax
_eqn [~dxy |[-pn][-sn][—ffont][file ...]
neqn [—dxy | [-pn][-sn][ffont][file ...]
checkeq [files]

eqncheck [files)

Description

eqn is a troff(CT) preprocessor for typesetting mathematical text on
a phototypesetter. negn is used with nroff(CT) for setting
mathematical text on typewriter-like terminals. Usage is normally
one of the following or its equivalent:

eqn files | troff
neqn files | nroff

If no files are specified, these programs read from the standard
input.

The options are:

—-sn Reduces subscripts and superscripts n points from the pre—
vious size; the default reduction is 3 points.

—dxy Sets egqn delimiters to characters x and y.
-pn Changes the point size within eqgn delimiters to ».
—ffont Changes the font within egn delimiters to font.

A line beginning with .EQ marks the start of an equation; the end
of an equation is marked by a line beginning with .EN. Neither of
these lines is altered, so they may be defined in macro packages for
centering, numbering, etc. It is also possible to designate two char—
acters as delimiters; subsequent text between delimiters is then
treated as eqgn input. Delimiters may be set to characters x and y
with the command-line argument —dxy or (more commonly) with
delim xy between .EQ and .EN. The left and right delimiters may
be the same character; the dollar sign is often used as such a delim-
iter. Delimiters are turned off by delim off. All text that is neither

October 14, 1985 Page 1

L£LIN

L) LN (L)

between delimiters nor between .EQ and .EN is passed through
untouched.

The programs checkeq and egncheck report missing or unbalanced
delimiters and .EQ/.EN pairs.

Tokens within egn are separated by spaces, tabs, newlines, braces,
double quotation marks, tildes, and carets. Braces { } are used for
grouping; generally speaking, anywhere a single character such as x
could appear, a complicated construction enclosed in braces may
be used instead. A tilde (=) represents a full space in the output; a
caret (*) represents half as much,

Subscripts and superscripts are produced with the keywords sub
and sup. Thus x sub j makes:

X

a sub k sup 2 produces:

is made with e sup {x sup 2 + y sup 2}. Fractions are made with
over: a over b yields:

a2
b
sqrt makes square roots: 7 over sqrt {ax sup 2+bx+c} results in:

1
Vatbxic

The keywords from and to introduce lower and upper limits:
lim i}ci

is made with lim firom {n - > inf } sum from 0 to n x sub i. Left

and right brackets, braces, etc., of the right height are made with
left and right: left [x sup 2 + y sup 2 over alpha right | ~=~ 1
produces:

2, ¥

P R Ay i
a

October 14, 1985 Page 2

;

EQON (CT) ~ EQN(CT)

Legal characters after left and right are braces, brackets, bars, ¢
and f for ceiling and floor, and "™ for nothing at all (useful for a
right—side—only bracket). A left need not have a matching right.

Vertical piles are made with pile, Ipile, cpile, and rpile:
/o pile {a above b above c} produces:

a
b
c

Piles may have arbitrary numbers of elements; Ipile left—justifies,
pile and cpile center (but with different vertical spacing), and rpile
right justifies. Matrices are made with matrix: matrix { Icol { x sub
i above y sub 2 } ccol { 1 above 2 } } produces

x5 1
y2 2

There is also rcol for a right—justified column.

Diacritical marks are made with dot, dotdot, hat, tilde, bar, vec,
dyad, and under: x dot = f{(t) bar is *=1(t)
y dotdot bar ~=~ n under isj=n and x vec ~=~ y dyad isX =Yy

Point sizes and fonts can be changed with size n or size +n,
roman, italic, bold, and font n. Point sizes and fonts can be
changed globally in a document by gsize n and gfont n, or by the
command-line arguments —sn and —fn.

/Y

Normally, subscripts and superscripts are reduced by 3 points from
the previous size; this may be changed by the command-line argu—
ment —pn.

Successive display arguments can be lined up. Place mark before
the desired lineup point in the first equation; place lineup at the
place that is to line up vertically in subsequent equations.

Shorthands may be defined or exsisting keywords redefined with
define. For example, .

define thing % replacement %

defines a new token called thing that will be replaced by replace-
ment whenever it appears thereafter. The % may be any character
< that does not occur in replacement.

Keywords such as sum (3)), int ([), inf (c0), and shorthands such as
>= (>), != (%), and —> (—) are recognized by eqn. Greek letters are
spelled out in the desired case, as in alpha (z), or GAMMA (I).
Mathematical words such as sin, cos, and log are made Roman
automatically. troff(CT) four—character escapes such as \(dd (%)

October 14, 1985 _ Page 3

EQON (CT) EQON (CT)

and \(bs () may be used anywhere. Swrings enclosed in double
quotation marks (“...") are passed through untouched; tbis permits
keywords to be entered as text, and can be used to communicate
with troff (CT) when all else fails.

See Also .

mm(CT), mmt(CT), tbl(CT), troff(CT)

Notes
To embolden digits, parentheses, etc., it is necessary to surround

them with double quotation marks. See also Notes under

troff (CT).

October 14, 1985 Page 4

TN

EQNCHAR (CT) EQNCHAR (CT)

Name

eqnchar — Contains special character definitions for eqn and neqn.

Syntax

eqn /usr/pub/eqnchar [file ...] | troff [option ...]
" ‘neqn /usr/pub/eqnehar [file ...] | nroff [option ... | 7T
eqn -Taps /usr/pub/apseqnchar [file ...] | troff [option ...]

eqn -Tcat /usr/pub/categnchar [file ...]| otroff [option ...]

Description

Egnchar contains troff (CT) and nroff(CT) character definitions for
conswrucling characters that are not available on a phototypesetter.
These definitions are primarily intended for use with egn(C) and
neqn; eqnchar contains definitions for the following characters:

ciplus ciplus I I square square
citimes citimes langle langle circle circle
wig wig rangle | rangle blot blot
—win ~win hbar hbar bullet bullet
>wig Swig ppd ppd prop - prop
<wig <wig <-> < empty empty
=wig =wig <=> <> member member
star star < |< nomem nomem
bigstar bigstar |>) |> cup cup
=dot =dot ang ang cap cap
orsign orsign . rang rang incl incl
andsign andsign 3dot 3dot subset subset
=del =del = thf thf supset supset
oppA oppA quarter quarter Isubset Isubset
oppE oppE 3guarter 3quarter Isupset Isupset

August 26, 1985 Page 1

EQNCHAR (CT) EQNCHAR (CT)

angstrom angstrom degree degree serL scrL

== == == ==>

Apsegnchar is a version of egnchar tailored for the Autologic APS-5
phototypesetter. This will not look optimal on other photo-]
typesetters. Similarly, categnchar is the old egnchar tailored for the ~
Wang CAT and the old otroff. Until a phototypesetter-
independent version of egnchar is available egnchar should be a

link to the default version on each system. The standard default is
apseqnchar.

Files

/usr/pub/eqnchar
/usr/pub/apseqnchar
/usr/pub/cateqnchar

See Also

eqn(CT), nroff(CT), troff(CT)

August 26, 1985 Page 2

SR

PN

EXPLAIN (CT) EXPLAIN (CT)

Name

explain — Corrects language usage.

Syntax
explain

Description
Explain interactively rcports on language usage. It suggests alterna-
tives to phrases found with the diction command.

Credit
This utility was developed at the University of California at
Berkeley and.is used with permission.

See Also
deroff(CT), diction(CT)

2
August 26, 1985 Page 1

HYPHEN (CT) HYPHEN (CT)

Name

hyphen - Finds hyphenated words.

Syntax

hyphen file ...

Description
Hyphen finds all the hyphenated words in files and prints them on
the standard output. If no arguments are given, the standard input
is used. Thus hyphen may be used as a filter.

Notes

Hyphen doesn’t properly deal with hyphenated italic (i.e., under-
lined) words; it will often miss them completely.

Hyphen occasionally gets confused, but with no ill effects other
than extra output.

August 26, 1985 Page 1

—

LOOK (CT) LOOK (CT)

Name

look — Finds lines in a sorted list.

Syntax

look [-df] string [file]

Description

Look consults a sorted file and prints all lines that begin with
string. It uses binary search.

The options d and f affect comparisons as in sort(C):

-d D1ct10nary order: only letters, dlglts, tabs and blanks partici-
pate in comparisons.

-f Fold. Uppercase letters compare equal to lowercase.

If no file is specified, /usr/dict/words is assumed with collating
sequence -df.

Files

/usr/dict/words

See Also

sort(C), grep(C)

August 26, 1985 Page 1

MAN (CT) MAN (CT)

Name

man, manprog - Print entries in this manual.

Syntax
man [options] [section] titles
~ fusr/lib/manprog file
Description

Man locates and prints the entry named fitle in the section named
section from the XENIX Reference Manual. (For historical reasons,
the word “page” is often used as a synonym for “entry” in this con-
text.) The title is entered in lower case. The section number may
not have a letter suffix. If no section is specified, the whole manual
is searched for title and all occurrences of it are printed. Options
and their meanings are:

-t Typeset the entry in the default format (8.5 11").
-s Typeset the entry in the small format (6”X9").
-Tterm Format the entry using nroff and print it on the stan-

dard output (usually, the terminal); term is the terminal
type (see term(M) and the explanation below); for a list
of recognized values of term, type help term2. The
default value of term is 450.

-w Print on the standard output only the path names of the
entries, relative to /usr/man, or to the current direc-
tory for -d option.

-d Search the current directory rather than /usr/man;
requires the full file name (e.g., cu.C, rather than just
cu).

-12 Indicates that the manual entry is to be produced in

12-pitch. May be used when $TERM (see below) is set
to one of 300, 300s, 450, and 1620. (The pitch switch
on the DASI 300 and 300s terminals must be manually
set to 12 if this option is used.)

-c Causes man to invoke col(CT); note that col(CT) is
invoked automatically by man unless term is one of
300, 300s, 450, 37, 4000a, 382, 4014, tek, 1620, and X.

-y Causes man to use the non-compacted version of the
macros.

The above options other than -d, -¢, and -y are mutually exclusive,
except that the -s option may be used in conjunction with the first
four -T options above. Any other options are passed to troff,
nroff, or the man (CT) macro package.

August 26, 1985 Page 1

MAN (CT) MAN (CT)

When using nroff, man examines the environment variable $TERM
(see environ(M)) and attempts to select optons to nroff, as well as
filters, that adapt the output to the terminal being used. The -
Tterm option overrides the value of $TERM; in particular, one
should use -Tlp when sending the output of man to aline printer.

Section may be changed before each title.
As an example:
man man

would reproduce on the terminal this entry, as well as any other
entries named man that may exist in other sections of the manual.

If the first line of the input for an entry consists solely of the string:
A" x

where x is any combination of the three characters ¢, e, and t, and
where there is exactly one blank between the double quote (") and
x, then man will preprocess its input through the appropriate com-
bination of cw(CT), eqn(CT) (negn for nroff) and tbl(CT), respec-
tively. If egn or negn are invoked, they will automatically read the
file /usr/pub/eqnchar (see egnchar(CT)).

The man command executes manprog that takes a file name as its
argament. Manprog calculates and returns a string of three register
definitions used by the formatters identifying the date the file was
last modified. The returned string has the form:

-rdday -rovnonth -ryyear

and is passed to nroff which sets this string as variables for the man
macro package. Months are given from O to 11, therefore month is
always 1 less than the actual month. The man macros calculate the
correct month. If the man macro package is invoked as an op#on
to nroff/troff (i.e., nroff -man file), then the current
day/month/year is used as the printed date.

See Also
checkcw(CT), checkeqn(CT), eqnchar(CT), nroff(CT), tbl(CT),
troff(CT), environ(M), term(CT).

Notes
All entries are supposed to be reproducible either on a typesetter

or on a terminal. However, on a terminal some informason is
necessarily lost.

August 26, 1985 Page 2

-,

MM (CT) - MM (CT)

Name

mm — Prints documents formatted with the mm macros.

Syntax
mm [options] [files]

mmcheck [files]

Description

Mm can be used to type out documents using nroff(CT) and the
mm text-formatting macro package. It has options to specify
preprocessing by tbl(CT) and/or neqn(CT) and postprocessing by
various terminal-oriented output filters. The proper pipelines and
the required arguments and flags for nroff(CT) and mm are gen-
erated, depending on the options selected.

The options for mm are given below. Any other arguments or flags
(for example, —rC3) are passed to nroff(CT) or to mm, as
appropriate. Such options can occur in any order, but they must
appear before the files arguments. If no arguments are given, mm
prints a list of its options.

-c
Causes mm to invoke col(CT).

—-e
Causes mm to invoke neqgn(CT).

—t Causes mm to invoke tbl(CT).

-E
Invokes the —e option of nroff (CT).

-y
Causes mm to use the noncompacted version of the macros (see
mm(M)).
Mm reads the standard input when a dash is is specified instead of
any filenames. (Mentioning other files together with the dash can
lead to disaster.) This option allows mm to be used as a filter; for
example:

cat dws | mm -

August 26, 1985 Page 1

MM (CT) MM (CT)

Hints

Mm invokes nroff(CT) with the ~h flag. With this flag,
nroff(CT) assumes that the terminal has tabs set every 8 charac-
ter positions.

Use the —olist option of nroff(CT) to specify ranges of pages to
be output. Note, however, that mm, if invoked with one or
more of the —e, —t, and — options, together with the =—olist
option of nroff(CT) may cause a harmless “broken pipe” diag-
nostic if the last page of the document is not specified in lisz.

If you use the ~s option of nroff(C) (to stop between pages of
output), use linefeed (rather than return or newline) to restart
the output. The —s option of nroff(C) does not work with the
—c option of mm, or if mm automamically invokes col(C) (see
—c option above).

Use the mmcheck program to check the contents of mm source
files for errors in usage of the macros.

See Also

col(CT), env(C), eqn(CT), mmt(CT), mmcheck(CT), nroff(CT),
tbl(CT), profile(F)

Xenix Text Processing Guide

Diagnostics

mm: no input file None of the arguments is a readable file and

mm has not been used as a filter

August 26, 1985 Page 2

N

L

MMT (CT) MMT (CT)

Name

mmt — Typesets documents.

Syntax

mmt [options] [file]

Description

Mmt uses the MM macro package. It has options to specify
preprocessing by tbl(CT) and eqn(CT). The proper pipelines and
the required arguments and flags for #roff(CT) and for the macro
packages are generated, depending on the options selected.

Options are given below. -Any other arguments or flags (e.g.,
=rC3) are passed to #off(CT) or to the macro package, as
appropriate. Such options can occur in any order, but they must
appear before the files arguments. If no arguments are given, these
commands print a list of their options.

—-e Causes these commands to invoke eqn(CT).

-t Causes these commands to invoke tbl(CT).

—a Invokes the —a option of troff (CT).

-y Causes mmt to use the noncompacted version of the

macros (see mm(CT)).
When a dash (-) is specified, mm¢ reads the standard input instead
of any filenames.
Hints

Use the —olist option of 7off(CT) to specify ranges of pages to be
output. Note, however, that these commands, if invoked with one
or more of the —e, —t, and = options, together with the —olist
option of troff(CT) may cause a harmless “broken pipe” diagnostic
if the last page of the document is not specified in list.

See Also

env(C), eqn(CT), mm(CT), tbl(CT), troff(CT), profile(M),
environ(M '

August 26, 1985 Page 1

MMT (CT) MMT (CT)

Diagnostics
mmt: no input file None of the arguments is a readable file
and the command is not used as a filter.
typesetter busy Either the typesetter is already being

used, orit is not attached to the system
as /dev/cat. In the latter case, you
must use the —t option of the zroff com-
mand to direct output to the standard
output. See #roff (CT).

August 26, 1985 Page 2

T

~

NEQN (CT) NEQN (CT)

Name

neqn — Formats mathematics.

Syntax

neqn [—dxy] [—fn] [flle]
_.checkeqg [file] ..

Description

Negn is an nroff(CT) preprocessor for formatting mathematics on
terminals and for printers; eqn(CT) is its counterpart for typesetting
with troff (CT). Usage is almost always:

neqn file ... | nroff

If no files are specified, these programs read from the standard
input. A line beginning with .EQ marks the start of an equation;
the end of an equation is marked by a line beginning with .EN.
Neither of these lines is altered, so they may be defined in macro
packages to get centering, numbering, etc. It is also possible to set
two characters as ‘“delimiters”; subsequent text between delimiters
is also treated as negn input. Delimiters may be set to characters x
and y with the command-line argument —dxy or (more commonly)
with “delim xy” between .EQ and .EN. The left and right delim-
iters may be identical. Delimiters are turned off by ‘delim off’. All
text that is neither between delimiters nor between .EQ and .EN is
passed through untouched. Fonts can be changed globally in a
document with gfont n, or with the command-line argument —fn.

The program checkeq reports missing or unbalanced delimiters and
.EQ/.EN pairs.

Tokens within negn are separated by spaces, tabs, newlines, braces,
double quotation marks, tildes or carets. Braces {} are used for
grouping; generally speaking, anywhere a single character like x
could appear, a complicated construction enclosed in braces may
be used instead. Tilde (7) represents a full space in the output,
caret (*) half as much.

See Also
eqn(CT), checkeq(CT), troff(CT), tbl(CT)

August 26, 1985 Page 1

NEON (CT) NEQN (CT)

Notes

To embolden digits, parentheses, etc., it is necessary to quote .

them, as in ‘bold “12.3°”.

August 26, 1985 Page 2

NROFF (CT) NROFF (CT)

Name

nroff — A text formatter.

v _ Syntax
nroff [option ...][file ...]

Description

Nroff formats text in the namcd files. Nroff is part of thc nroff/troff
family of text formatters. Nroff is used to format files for output to
a lineprinter or daisy wheel printer; troff to a phototypesetter.

If no file argument is present, the standard input is read. An argu-
ment consisting of a single dash (=) is taken to be a filename
corresponding to the standard input. The options, which may
appear in any order so long as they appear before the files, are:

—olist Prints only pages whose page numbers appear in the
comma-separated list of numbers and ranges. A range
N—-M means pages N through M; an initial ~N means
from the beginning to page N; and a final N— means from
- N to the end.

hN . -nN Numbers first generated page N.
-sN Stops every N pages. Nroff will halt prior to every N
pages (default N=1) to allow paper loading or changing,

and will resume upon receipt of a newline.

—mname Prepends the macro file /usr/lib/tmac/tmac.name to the
input files.

—cname Prepends to the input files the compacted macro files
fusr/lib/macros/cmp.[nt).[dt).name and
/usr/lib/macros/ucmp.[nt].name.

=raN Sets register a (one—character) to N.

—i Reads standard input after the input files are exhausted.
—-q Invokes the simultaneous input-output mode of the .rd
request.
(\w, —e Produces equally spaced words in adjusted lines, using

full terminal resolution.

August 26, 1985 Page 1

NROFF (CT) NROFF (CT)

=h Uses output tabs during horizontal spacing to speed out-
put and reduce output character count. Tab settings are
assumed to be every 8 nominal character widths.

—Tdevice Specifies the output device. The default device is “lp”,
the lineprinter.

Other supported devices include:

-T300
DASI (DTC, GSI) 300.

=T300s
DASI 300s.

=T450 o
DASI 450 (same as Diablo 1620).

=T300-12
DASI 300 at 12-pitch.

—T300s-12
DASI 300s at 12-pitch.

—T450-12
DAST 450 at 12-pitch.

=T33
TTY 33. Invokes col automatically.

—=Tdumb
Terminal types with no special features. Invokes col automati-
cally.

-T37
TTY 37.

=T735
TI 735. Invokes col automatically.

=T745
TI 745. Invokes col automatically.

=T43
TTY 43. Invokes col automatically.

=T40/2.
Teletype model 40/2 Invokes col automatically.

=T40/4
Teletype mode 40/4. Invokes col automawcally.

August 26, 1985 Page 2

NROFF (CT) NROFF (CT)

-T2631 _
HP 2631 series lineprinter. Invokes col automatically.

; =12631-e
F . HP 2631 series lineprinter, expanded mode. Invokes col
’ I automatically. '

-T2631-c
_HP. 2631 _series lineprinter, .compressed mode. . Invokes ..col
automatically.

~T42
ADM 42. Invokes col automatically.

-T31
TTY 31. Invokes col automatically.

=T35
TTY 35. Invokes col automatically.

=T1620
Diablo 1620 (same as D ASI 450).

-T1620-12
Diablo 1620 at 12-pitch.

2

Files
/usr/lib/suftab Suffix hyphenation tables
tmp/ta* Temporary file

/usr/lib/tmac/tmac.* Standard macro files

/usr/lib/term/* Terminal driving tables

See Also
col(CT), eqn(CT), tbl(CT), troff(CT)

N

August 26, 1985 Page 3

PASTE (CT) PASTE (CT)

Name

paste — Merges lines of files.

Syntax
paste filel file2 . ..
paste —d list filel -ﬁl'eZI.
paste —s [—d list] filel file2 ...

Description

In the first two forms, paste concatenates corresponding lines of
the given input files filel, file2, etc. It treats each file as a column
or columns of a table and pastes them together horizontally (paral-
lel merging). It is the counterpart of car(C) which concatenates
vertically, i.e., one file after the other. In the last form above,
paste subsumes the function of an older command with the same
name by combining subsequent lines of the input file (serial merg-
ing). In all cases, lines are glued together with the tab character, or
with characters from an optionally specified list. Output is to the
standard output, so it can be used as the start of a pipe, or as a
filter, if = is used in place of a filename.

The meanings of the options are:

—d
Without this option, the newline characters of each but the last
file (or last line in case of the —s option) are replaced by a tab
character. This option allows replacing the tab character by one
or more alternate characters (see below).

list

One or more characters immediately following —d replace the
default tab as the line concatenation character. The list is used
circularly, i. e. when exhausted, it is reused. In parallel merging
(i. e. no =—s option), the lines from the last file are always ter-
minated with a newline character, not from the list. The list
may contain the special escape sequences: \n (newline), \¢ (tab),
\\ (backslash), and \0 (empty string, not a null character).
Quoting may be necessary, if characters have special meaning to
the shell (e.g. to get one backslash, use —d"\\\\"").

-s
Merges subsequent lines rather than one from each input file.
Use tab for concatenation, unless a lisz is specified with —d
option. Regardless of the list, the very last character of the file
is forced to be a newline.

August 26, 1985 Page 1

PASTE (CT) PASTE (CT)

— May be used in place of any filename to read a line from the
standard input. (There is no prompting.)

Examples
Is | paste —d" " Lists directory in one column
Is | paste - - — — Lists directory in four columns
paste —s —d"\t\n" file Combines pairs of lines into lines
See Also

cut(CT), grep(C), pr(C)

Diagnostics
line too long Output lines are restricted to 511 characters.
too many files Except for —s option, no more than 12 input

files may be specified.

August 26, 1985 Page 2

N

PREP (CT) PREP (CT)

Name

prep — Prepares text for statistical processing.

Syntax

prep [—diop] file ...

Description

Prep rcads cach file in scquence and writes it on the standard out-
put, one “word” to a line. A word is a string of alphabetic charac-
ters and imbedded apostrophes, delimited by space or punctuation.
Hyphenated words are broken apart; hyphens at the end of lines
are removed and the hyphenated parts are joined. Strings of digits
are discarded.

The following option letters may appear in any order:

—d
Prints the word number (in the input stream) with each word.

—i Takes the next jfile as an “ignore” file. These words will not
appear in the output. (They will be counted, for purposes of
the —d count.)

-0
Takes the next file as an “only” file. Only these words will
appear in the output. (All other words will also be counted for
the —d count.)

Includes punctuation marks (single nonalphanumeric characters)
as separate output lines. The punctuation marks are not
counted for the —d count.

The ignore and only files contain words, one per line.

See Also
deroff(CT)

Notes
Prep ignores any nroff/troff commands it may find in a file. In

some cases, it may mistake sentences that begin with a period or a
quote as nroff/troff commands and ignore thern.

August 26, 1985 Page 1

f/-_h\‘._

PTX (CT) PTX (CT)

Name

ptx — Generates a permuted index.

' Syntax

ptx [options] [input [output]]

Description

Pix generates a permuted index to file input on file output (stan-
dard input and output default). It has three phases: the first does
the permutation, generating one line for each keyword in an input
line. The keyword is rotated to the front. The permuted file is
then sorted. Finally, the sorted lines are rotated so the keyword
comes at the middle of each line. Prx produces output in the form:

.xx "tail" "before keyword" "keyword and after” "head"

where .xx is assumed to be an nroff or troff (CT) macro provided by
the user. The “before keyword” and ‘“keyword and after” fields
incorporate as much of the line as will fit around the keyword when
it is printed. Tail and head, at least one of which is always the
empty string, are wrapped-around pieces small enough to fit in the
unused space at the opposite end of the line.

The following options can be applied:

-f Folds uppercase and lowercase letters for sorting.
-t Prepares the output for the phototypesetter.
-wn Uses the next argument, n, as the length of the output

line. The default line length is 72 characters for nroff
and 100 for troff. '

-gn Uses the next argument, n, as the gap size in charac-
ters. The gap size determines the number of characters
to be output for the “before keyword" and “keyword
and after” fields of the output line. The total number
of characters in these fields is no more than the max-
imum line length less the total size of all gaps less what-
ever characters are in the "tail" and "head” fields. Prx
does not copy the gaps to the output lines. It is the
responsibility of the user to provide the gaps when
printing the lines. The default gap is 3 characters.

—o only Uses as keywords only the words given in the only file.

August".’ﬁ, 1985 Page 1

PTX (CT)

PTX (CT)

—i ignore Does not use as keywords any words given in the ignore
fle. If the =i and =—o options are missing, use
/usr/lib/eign as the ignore file.

=b break Uses the characters in the break file to separate words.
Tab, newline, and space characters are always used as
break characters.

-r Takes any leading nonblank characters of each input
line to be a reference identifier (as to a page or
chapter), separate from the text of the line. Attaches
that identifier as a fifth field on each output line.

Files
/bin/sort
/usr/lib/eign
Notes

Line length counts do not account for overstriking or proportional

spacing.

Lines that contain tildes (*) are not handled correctly, because ptx
uses that character internally.

August 26, 1985 Page 2

SOELIM (CT) SOELIM (CT)

Name

soelim — Eliminates .so’s from nroff input.

Syntax
soelim [file ...]

Description

Soelim reads the specified files or the standard input and performs
the textual inclusion implied by the nroff directives of the form

.so somefile
when they appear at the beginning of input lines. This is useful
since programs such as tbl do not normally do this; it allows the
placement of individual tables in separate files to be run as a part
of a large document.

Note that inclusion can be suppressed by using a single quotation
mark (°) instead of a dot (.), e.g.

’so /usr/lib/tmac.s
Example
A sample usage of soelim would be

soelim exum?.n | tbl | nroff -mm | col | Ipr

See Also
nroff(CT), troff(CT)

- Credit

This utility was developed at the University of California at
Berkeley and is used with permission.

August 26, 1985 Page 1

SOELIM (CT) SOELIM (CT)

Notes

Exactly one blank must precede and no blanks may follow the
filename. Lines of the form

if t .so /usr/lib/macros.t

mean that “.so” statements embedded in the text are expanded.

August 26, 1985 Page 2

SPELL (CT) SPELL (CT)

Name

spell, hashmake, spellin, hashcheck — Finds spelling errors.

Syntax

spelI[—v][-b][-—x][l][—l][+Iocal_flle][flles]

Iusrl llblspelll hashmake
Jusr/lib/spell/spellin n

/usr/lib/spell/hashcheck spelling_list

Description

Spell collects words from the named files and looks them up in a
spelling list. Words that neither occur among nor are derivable (by
applying certain inflections, prefixes, and/or suffixes) from words in
the spelling list are printed on the standard output. If no files are
named, words are collected from the standard input.

Spell ignores most troff (CT), tbl(CT), and eqn(CT) constructions.

Under the —v option, all words not literally in the spelling list are
printed, and plausible derivations from the words in the spe]lmg list
are indicated.

Under the —b option, Briksh spelling is checked. Besides' prefer-
ring centre, colour, programme, speciality, travelled, etc., this
option insists upon -ise in words like standardise .

Under the =x option, every plausible stem is printed with = for
each word.

By default, spell (like derojf(CT)) follows chains of included files
(.so and .nx troff(CT) requests), unless the names of such included
files begin with /usr/lib. Under the =1 option, spell will follow the
chains of all included files. Under the —i option, spell will ignore
all chains of included files.

Under the +ocal_file option, words found in local_file are removed
from spell’s output. Local_file is the name of a user-provided file
that contains a sorted list of words, one per line. With this option,
the user can specify a set of words that are correct spellings (in
addition to spell’s own spelling list) for each job.

The spelling list is based on many sources, and while more hapha-

zard than an ordinary dictionary, it is also more effective with
respect to proper names and popular technical words. Coverage of

August 26, _1985 ' Page 1

SPELL (CT) SPELL (CT)

the specialized vocabularies of biology, medicine, and chemisty is
light.

Pertinent auxiliary files may be specified by name arguments, indi-
cated below with their default settings (see FILES). Copies of all
output are accumulated in the history file. The stop list filters out
misspellings (e.g., thier=thy-y+ier) that would otherwise pass.

Three routines help maintain and check the hash lists used by spell:

hashmake Reads a list of words from the standard input and
writes the corresponding nine-digit hash code on the
standard output.

spellin n Reads n hash codes from the standard input and
writes a compressed spelling list on the standard out-
put. Information about the hash coding is printed on
standard error.

hashcheck Reads a compressed spelling_list and recreates the
nine-digit hash codes for all the words in it; it writes
these codes on the standard output.

Examples

The following example creates the hashed spell list hlist and checks
the result by comparing the two temporary files; they should be
equal.

cat goodwds | /usr/lib/spell/hashmake | sort —u >tmp1
cat tmpl | /usr/lib/spell/spellin ‘cat tmpl | wc ~1¢ >hlist
cat hlist | /usr/lib/spell/hashcheck >tmp?2

diff tmpl tmp2

Files
D_SPELL=/usr/lib/spell/hlistfab] hashed spelling lists, American
& British
S_SPELL=/usr/lib/spell/hstop hashed stop list
H_SPELL=/usr/lib/spell/spellhist history file
/usr/lib/spell/spellprog program
See Also

deroff(CT), eqn(CT), sed(CT), sort(CT), tbl(CT), tee(C),
troff(CT)

August 26, 1985 Page 2

SPELL (CT) SPELL (CT)

Notes

The spelling list’s coverage is uneven; new installations will prob-
ably wish to monitor the output for several months to gather local
additions; typically, these are kept in a separate local file that is
added to the hashed spelling list via spellin.

By default, loggmg of errors to /usr/lib/spel)/spellhist is turned off.

D_ SP]:LL and S SPELL can be overndden by placmg alternate

definitions in your environment.

August 26, 1985 ' Page 3

—

VR

STYLE (CT) STYLE (CT)

Name

style — Analyzes characteristics of a document.

Syntax
style [=ml][—mm][=a][—e][=l num] [=r num]
v L I =R] file .. . e
Description .

Style analyzes the characteristics of the writing style of a document.
It reports on readability, sentence length and structure, word length
and usage, verb type, and sentence openers. Because style runs
deroff before looking at the text, formatting header files should be
included as part of the input. The default macro package —ms may
be overridden with the flag =mm. The flag —m), which causes der-
off to skip lists, should be used if the document contains many lists
of nonsentences. The other options are used to locate sentences
with certain characteristics.

—a Prints all sentences with their length and readability index.
—e Prints all sentences that begin with an expletive.

-p Prints all sentences that contain a passive verb.

=lnum Prints all sentences longer than num.

—rnum Prints all sentences whose readability index is greater than
num.

=P Prints pafts of speech of the words in the document.

Credit
This utility was developed at the Umver31ty of California at
Berkeley and is used with permission.

See Also

deroff(CT), diction(CT)

_ Notes

Use of nonstandard formatting macros may cause incorrect sen-
tence breaks.

August 26, 1985 Page 1

TBL (CT) TBL (CT)

Name

ibl — Formats tables for nroff or troff.

Syntax

thl [=TX] [files]

Description

Thl is a preprocessor that formats tables for nroff(CT) or
troff(CT). The input files are copied to the standard output,
except for lines between .TS and .TE command lines, which are
assumed to describe tables and are reformatted by tbl. (The .TS
and .TE command lines are not altered by tbl).

.TS is followed by global options. The available global options are:

center Centers the table (default is left-adjust)
expand Makes the table as wide as the current line length

box Encloses the table in a box
doublebox

Encloses the table in a double box
allbox Encloses each item of the table in a box;

tab (x) Uses the character x instead of a tab to separate
items in a line of input data.

The global options, if any, are terminated with a semicolon (3).

Next come lines describing the format of each line of the table.
Each such format Jine describes one line of the actual table, except
that the last format line (which must end with a period) describes
all remaining lines of the actual table. Each column of each line of
the table is described by a single keyletter, optionally followed by
specifiers that determine the font and point size of the correspond-
ing item, indicate where vertical bars are to appear belween
columns, and determine parameters such as column width and
intercolumn spacing. The available keyletters are:

Centers item within the column

Right-adjusts item within the column

Left-adjusts item within the column

Numerically adjusts item in the column: unit positions of
numbers are aligned vertically;

Spans previous item on the left into this column

Centers longest line in this column and then left-adjusts all
other lines in this column with respect to that centered line
Spans down previous entry in this column

=l BN

N »n

August 26, 1985 Page 1

1010 1) 16L (LU'1)

_ Replaces this entry with a horizontal line
= Replaces this entry with a double horizontal liue

The characters B and I stand for the bold and italic fonts, respec-
tively; the character | indicates a vertical line between columns.

The format lines are followed by liues containing the actual data for
the table, followed finally by .TE. Within such data lines, data
items are normally separated by tab characters.

If a data line consists of only an underscore (_) or an equals sign
occurs, then a single or double line, respectively, is drawn across
the table at that point. If a single item in a data line consists of
only an underscore or equals sign then that item is replaced by a
single or double line.

Full details of all these and other features of ¢bl are given in the
XENIX Text Processing Guide.

The -TX option forces tbl to use only full vertical line motions,
making the output more suitable for devices that cannot generate
partial vertical line motions, such as lineprinters.

If no filenames are given as arguments, tbl reads the standard
input, so it may be used as a filter. When it is used with egn(CT)
or neqn(CT), tbl should come first to minimize the volume of data
passed through pipes.

Ezample

If we let ® represent a tab (which should be typed as a genuine
tab), then the input:

.TS
center box ;
cB s s
cl|cls
cc
I|nn.
Household Population

Town® Households
® Number® Size

Bedminster® 789® 3.26
Bernards Twp.® 3087®3.74
Bemnardsville® 2018® 3.30
Bound Brook®3425®3.04
Bridgewater®7897® 3.81
Far Hills®240®3.19

.TE

August 26, 1985 Page 2

TBL (CT)

_yields:

See Also

Household FPopulation

Town Households

Number __Size
Bedminster 789 3.26
Bernards Twp. 3087 3.74
Bernardsville 2018 3.30
Bound Brook 3425 3.04
Bridgewater 7897 3.81
Far Hills 240 3.19

Xenix Text Processing Guide
eqn(CT), mm(CT), mmt(CT), troff(CT)

Notes

See also Notes under troff(CT).

August 26, 1985

TBL (CT)

Page 3

TERM (CT)
Name

term — Conventional names.

Description

These names are used by certain commands (e.g., nroff(CT),
mm(CT), man(CT)) and are maintained as part of the shell
environment (see sh(C), profile(M), and environ(M)) ‘in the vari—
able $TERM:

Code Printer Name

al DASI 450 (slightly different than other 450 table)
(same as Diablo 1620)

2631 Hewlett—Packard 2631 line printer

2631-c Hewlett-Packard 2631 line printer — compressed mode

2631-e Hewlett—Packard 2631 line printer — expanded mode

300 DASI/DTC/GSI 300 and others using the HyType I printer

300-12 same, in 12—pitch mode

300s DASI/DTC/GSI 300s

300s—12 same, in 12—pitch mode

300S DASI/DTC/GSI 300s

300S-12 same, in 12—pitch mode

37 TELETYPE Model 37 KSR

382 DTC 382

4000A Trendata 4000A

450 DASI 450 (same as Diablo 1620)
450-12 same, in 12-pitch mode

Ip generic name for a line printer
tn300 General Electric TermiNet 300
X TX Train Printer

Up to 8 characters, chosen from [a-20-9], make up a basic termi—
nal name. Terminal sub-models and operational modes are dis—
tinguished by suffixes beginning with a —. Names should generally
be based on original vendors, rather than local distributors. A ter—
minal acquired from one vendor should not have more than one
distinct basic name.

Commands whose behavior depends on the {ype of terminal should
accept arguments of the form —Tterm where term is one of the
names given above; if no such argument is present, such commands
should obtain the terminal type from the environment variable
$TERM, which, in turn, should contain term.

SEE ALSO

environ(M), mm(CT), nroff(CT), profile(M), sh(C), stty(C),
term(F).

December 18, 1985 Page 1

TERM (CT) TERM (CT)

Notes

The XENIX Development System must be installed on the com-—
puter to create new driving tables (see term(F)).

Not all XENIX facilities support all of these options.’

The use of these terminal types is unrelated to the use of the
termcap(M) facility.

December 18, 1985 Page 2

77N

TROFF (CT)

Name

TROFF (CT)

troff — Typesets text.

Syntax

troff [options]| files]

Description

Troff formats text contained in files (standard input by default) for
printing on a phototypesetter.

An argument consisting of a lone dash (-) is taken to be a filename
corresponding to the standard input. The options, which may
appear in any order, but must appear before the files, are:

—olist

-nN
-sN

~raN

=i

—q

-z

Prints only pages whose page numbers appear in the list
of numbers and ranges, separated by commas. A range
N—M means pages N through M; an initial =N means
from the beginning to page N; and a final N— means
from N to the end. (See NOTES below.)

Numbers first generated page N.

Stops every N pages. Nroff will halt after every N pages
(default N=1) to allow paper loading or changing, and
will resume upon receipt of a linefeed or newline (new-
lines do not work in pipelines, e.g., with mm(CT)). This
option does not work if the output of nroff is piped
through col(CT). Troff will stop the phototypesetter
every N pages, produce a trailer to allow changing
cassettes, and resume when the typesetter’s start button
is pressed. When nroff (troff) halts between pages, an
ASCII BEL (in troff, the message page stop) is sent to
the terminal.

Sets register 2 (which must have a one-character name)
to N.

Reads standard input after files are exhausted.

Invokes the simultaneous input-output mode of the .rd
request.

Prints only messages generated by .tm (terminal message)
requests.

August 26, 1985 Page 1

TROFF (CT)

TROFF (CT)

—mname Prepends to the input files the noncompacted (ASCI

=—cname

—kname

text) macro file /usr/lib/tmac/tmac.name.

Prepends to the input files the compacted macro files
/usr/lib/macros/cmp. nt].]dt].name and
/usr/lib/macros/ucmp.[nt].name.

Compacts the macros used in this invocation of
nroff/troff, placing the output in files [dt].name in the
current directory.

—e Produces equally-spaced words in adjusted lines, using
the full rcsolution of the particular terminal.

—h Uses output tabs during horizontal spacing to speed out-
put and reduce output character count. Tab settings are
assumed to be every 8 nominal character widths.

—un Sets the emboldening factor (number of character over-
strikes) for the third font position (bold) to #, or to zero
if # is missing,

Troff only:

-t Directs output to the standard output instead of the pho-
totypesetter.

o § Refrains from feeding out paper and stopping photo-
typesetter at the end of the run.

-w Waits until phototypesetter is available, if it is currently
busy.

-b Reports whether the phototypesetter is busy or available.
No text processing is done.

—a Sends a printable ASCII approximation of the results to
the standard output.

-pN Prints all characters in point size N while retaining all
prescribed spacings and motions, to reduce photo-
typesetter elapsed Wme.

—Tname Uses font-width tables for device name (the font tables

are found in /usr/lib/font/name/*). Currently, no
names are supported.

August 26, 1985 Page 2

PN

TROFF (CT) TROFF (CT)

Files
- usr/lib/suftab Suffix hyphenation tables
/tmp/ta# Temporary file

/usr/lib/tmac/tmac Standard macro files and pointers

Jusr/lib/macros/* . _Standard macro files

/usr/lib/term/* Terminal driving tables for nroff
/usr/lib/font/* Font width tables for troff
See Also

eqn(CT), tbl(CT)
(nroff only) col(CT), mm(CT)
(troff only) mmt(CT)

Notes

Nroff/troff uses Eastern Standard Time; as a result, depending on
the time of the year and on your local time zone, the date that
nroff/troff generates may be off by one day.

When nroff/troff is used with the —olist option inside a pipeline
(e.g., with one or more of cw(CT), egn(CT), and tbI(CT)), it may
cause a harmless “broken pipe” diagnostic if the last page of the
document is not specified in Zist.

Troff normally sends output directly to the typesetter. If you do
not have a typesetter attached to your system as /dev/cat , troff will
display the message “typesetter busy”. If this is the case, you must
use the —t option and the shell’s redirection symbol to direct the
output to the standard output and into a file.

August 26, 1985 Page 3

Alphabetized Index

Text Processing Commands (CT)

Constantwidthtext .ooeeivinieienriiniiiiiirceeeeeeeeannnes cw
~cwcheck COMMAaNndcvvvveiiineernimiirns s sreamreaaaeaeaes W Ll L
Document characteriStiCS vuveeneeineereeeiienereenseeneenennens style
eqncheck command .e.eeeeeiieiiiiiniiiiinieceeee, eqn

eqn character defInitionsoveveeereiiieneneneneenineneieenne eqnchar
File, differences ettt iteeeeteetttetanaraneanaanas diffmk
Files, Merginglinescceeeeieeriieeieiiiecenieneneenensnnn paste
Files, selecting fieldsocceeeeeeieriiiiieinnenieneiieaeanens cut
Findlinesinasorted listcveveiiieiennieiiiiniinienennnnes look
Hyphenationcoiiiiiiiiieniien e eaenes hyphen
Language usage, COrrectionceeveeeeerenrinneneeenenennnes explain
Language usage, desCription ..uveceeeeereeeeiiierenrenennns diction
Macros, checking (see checkmm(CT))cooveennrennnnnes mmcheck
Macros, checkingusage .v..oeueiiereeriieneniiiieeenenenannes checkmm
Macros, memorandum forlineprinter..........ceeeeunenes nmm
Macros, memorandum for typesetting mmt
Macros, removal ..o.c.eeiiiiiieiieieii e deroff
Macros, .S0 eliminationcvceveeiieeeeeiieneneeenienennns soelim
Manualpages, printingcceeeeeieenieeeiiiireceeinenennnnne. man
Mathematical teXt .vvuvuiriieeeiieiieieeeienen e e eaeneanns neqn
Permuted IndeX covuvvieneei i e e e ptx
Reverselinefeedcvoviieieiiiiiiiniiiieiiinnrie e col
SPCIINE - ettt e spell
Statistical ProCESSING .uvcvuierurreirereeieenrenereneenenes prep
Tables voirieeeiiieii e e tbl
Terminal Names «vee..eieeeieiereereiaeerieieneriecanaasasensnns term

Text formatter forlineprinter.......coveeeeieneniinienienn.e. nroff
Text formatter fortypesetterooeevieveiieiiieninienenne. troff

