
--

Operating Systems and Languages Library

MS-MACRO ASSEMBLER
under XENIX V
User Guide and Reference Manual

olivetti
PERSONAL
COMPUTER

Llllllllll j
olivelli

RELATED PUBLICATIONS

MS-Macro Assembler Under XENIX V Reference Manual (Code 4033800 B)

XENIX V User Guide (Code 4022940 Y)

XENIX V User and System Administrator Reference Manual (Code 4022320 Y)

XENI X V Installation and System Administration User Guide
(Code 4022960 S)

XENIX V System and Application Software Development Tools User Guide
(Code 4022990 B)

XENIX V System and Application Software Development
Manual (Code 4031710 V)

Tools Reference

C-Language Under XENIX V User Guide (Code 4022970 T)

C-Language Under XENIX V Reference Manual (Code 4033810 Y)

X/OPEN Portability Guide (Code 4024080 B)

XENI X V Text Processing User Guide (Code 4022980 C)

XENI X V Text Processing Reference Manual (Code 4031720)

DISTRIBUTION: General (G)

FIRST EDITION : July 1986

SECOND EDITION: October 1986

Copyright © Microsoft Corporat ion
1980/1985 PUBLICATION ISSUED BY :

Ing. C. Olivetti & C. S.p.A.
Direzione Documentazione
77, Via Jervis - 10015 IVREA (Italy)

PREFACE

This manual describes how to create and debug assembly language programs
using the XENIX V Macro Assembler , MASM . It should be used in conjunction
with the "MS-Macro Assembler Under XENIX V Reference Manual". The "XENIX
V System and Application Software Development Tools Reference Manual"
contains formal definitions of MASM(CP) and LD (CP) , and the supporting
utilities such as CREF (CP).

MASM is a powerful two-pass assembler for the Intel
family of microprocessors , and the 8087 and 80287
coprocessors . Strong typing is available for memory
conditional directives allow the exclusion of parts of
from assembly. In addition , a range of error detection
provided.

The following syntax notations are used :

8086/80186/80286
floating point
operands , and

the source code
facilities is

[] Square brackets indicate that the enclosed entry is optional.

{ } Braces indicate that there is a choice between two or more entries.
At least one of the entries enclosed in the braces must be chosen,
unless the entries are also enclosed in square brackets.

A vertical stroke refers to the logical OR operation .

Ellipses indicate that an entry may be repeated as many times as
needed.

CAPS Capital letters indicate portions of statements or commands that
must be entered exactly as shown .

The underscore joins multiple-name parameters.

All other punctuation , such as commas , colons , slash marks and equals
signs , must be entered exactly as shown.

SUMMARY
This manual consists of three main sections. Chapter 1 is a brief
introduction to starting up MASM. Chapter 2 descibes how to invoke MASM ,
and how to read the assembly code listings generated by MASM. For a
complete description of the Macro Assembler elements, see "MS-Macro
Assembler Under XENIX V Reference Manual". Appendix A lists and explains
the error messages that may be encountered during use of MASM and the
XENIX linker , ld.

TRADEMARK NOTICE

OL IVET T I is a trademark of Ing . C . Olivetti & C . , S . p . A .
OL I TERM i s a trademark o f Ing . C. Olivetti & C . , S . p . A .
SORTP is a trademark o f Ing . C . Olivetti & C . , S . p . A .
ASM-86 i s a trademark of Digital Research
CB-86 is a trademark of Digital Research
CLEO is a trademark of Phone 1 Inc .
ETHERNET is a trademark o f Xeros Corp .
GW is a trademark of Microsoft Corp .
IBM is registered trademark of I nternat ional Business Machines Corp .
M ICROSOFT is a registered trademark of Microsoft Cor p .
M S i s a trademark of Microsoft Corp .
OMNINET is a trademark of Corvus System Inc .
p-System is a trademark of Softech Microsystems, I nc .
PC-DOS is a trademark of I nternational Business Machines Corp .
PEACHPACK is a trademark of Peachtree Software International Ltd .
SID-86 is a trademark of Digital Research
TerminALL is a trademark of TOP I C System , I nc .
TOP IC is a trademark of TOPIC System , Inc .
UN I X is a trademark of Bell Laboratories
XENIX V is a trademark of Microsoft Corporation
ZBO is a registered trademark of Z i log Inc .
ZBOOO is a registered trademark of Z ilog I nc .

CONTENTS

1 . INTRODUCTION 1-1

WHAT YOU NEED 1-1

HOW TO BEGIN 1-1

2 . MASM : A MACRO ASSEMBLER 2-1

INTRODUCT I ON 2-1

START ING AND USING MASM 2-1

ASSEMBL ING A SOURCE FILE 2-l

USI NG MASM OPTIONS 2-2

OUTPUTTING SEGMENTS I N ALPHABETICAL ORDER 2-2

SYMBOL DEF I N I T I ON 2-3

CREATING A PASS l L ISTING 2-3

CREATING CODE FOR A FLOATING POINT EMULATOR 2-4

INCLUDE F ILE PATHNAMES 2-4

PRODUCE L I ST I NG F I LE 2-4

PRESERVI NG LOWER CASE NAMES 2-5

CONVERTI NG NAMES TO UPPERCASE 2-5

PRESERVI NG LOWERCASE I N PUBLIC AND EXTERNAL NAMES 2-5

SUPPRESS SYMBOL TABLE I NFORMAT ION 2-6

OUTPUT OBJECT CODE 2-6

CHECKI NG FOR IMPURE MEMORY REFERENCES 2-7

CREATING CODE FOR A FLOATING POINT PROCESSOR 2-7

OUTPUT ASSEMBLER STAT IST I CS 2-8

L ISTING FALSE COND I T I ONALS 2-8

OUTPUT ERROR MESSAGES 2-8

READING THE ASSEMBLY LIST I NG 2-9

READING PROGRAM CODE 2-9

READING A MACRO TABLE 2-10

READI NG A STRUCTURE AND RECORD TABLE 2-11

READING A STRUCTURE AND RECORD TABLE

READING A SEGMENT AND GROUP TABLE

READING A SYMBOL TABLE

READING A PASS 1 L IST I NG

2-11

2-12

2-13

2-14

(

1. INTRODUCT I ON

ABOUT THIS CHAPTER

This chapter is a brief introduction on how to start up MASM , and what is
needed to create and debug programs .

CONTENTS

WHAT YOU NEED 1-1

HOW TO BEGIN 1-1

I NTRODUCT ION

This manual is an introduction to the MASM Macro Assembler . It descr ibes
how to create and debug an assembler program , and how to interpret the
messages returned by MASM and the XEN I X linker , ld .

WHAT YOU NEED

To make an assembly language program , you need a text editor and you need
to know the correct syntax and format of assembly language source files .
In addition , you need to be familiar with the function and operation of
the instruction sets for the 8086/80186 (186)/80286 (286) family of
microprocessors .

The MASM Macro Assembler supports these instruction sets and creates
programs that can be executed within the 8086/186/286 family . (This
family includes the 8086 , 8088 , 186 , and 286 microprocessors and the 8087
and 287 coprocessors .) MASM provides a log ical program syntax ideally
suited for the segmented architecture of the 8086. This syntax is fully
explained in the "MS-Macro Assembler Under XEN I X V Reference Manual" ,
which describes the assembly language directives , operands and
expressions .

HOW TO BEGIN

You begin by creating an assembly language source
editor . Any of the editors supported by XEN I X
assemble the source file using MASM .

file with a text
will work . Then you

Once you have tested the program , you can invoke it from the command l ine
at any t ime . The assembly programs that you create , l ike all other
programs , can accept command parameter s , be copied to other systems , and
be invoked with shell scripts . The techniques are fully described in
this manua l .

1-1

(

2 . MASM: A MACRO ASSEMBLER

ABOUT THIS CHAPTER

This chapter describes how to invoke MASM , and how to read the l istings
produced during the various assembly stages .

CONTENTS

INTRODUCTION 2-1

STARTING AND USI NG MASM 2-1

ASSEMBLING A SOURCE F ILE 2-1

US I NG MASM OPT I ONS 2-2

OUTPUTTING SEGMENTS IN ALPHABET ICAL ORDER 2-2

SYMBOL DEF I N I T ION 2-3

CREATING A PASS 1 L ISTING 2-3

CREATI NG CODE FOR A FLOATING POINT EMULATOR 2-4

INCLUDE F I LE PATHNAMES 2-4

PRODUCE L ISTING F ILE 2-4

PRESERVING LOWER CASE NAMES 2-5

CONVERTING NAMES TO UPPERCASE 2-5

PRESERVI NG LOWERCASE IN PUBL IC AND EXTERNAL NAMES 2-5

SUPPRESS SYMBOL TABLE I NFORMATION 2-6

OUTPUT OBJECT CODE 2-6

CHECKING FOR IMPURE MEMORY REFERENCES 2-7

CREAT I NG CODE FOR A FLOATING POINT PROCESSOR 2-7

OUTPUT ASSEMBLER STAT ISTICS 2-8

L ISTING FALSE COND I T IONALS 2-B

OUTPUT ERROR MESSAGES 2-8

READING THE ASSEMBLY L ISTING 2-9

READING PROGRAM CODE 2-9

READING A MACRO TABLE 2-10

READI NG A SEGMENT AND GROUP TABLE

READI NG A SYMBOL TABLE

READING A PASS 1 L IST I NG

A . INTRODUCT I ON

MACRO ASSEMBLER MESSAGES

L I NKER MESSAGES

2-12

2-13

2-14

A-1

A-1

A-7

MASM: A MACRO ASSEMBLER

INTROOUCTION

The XEN I X Macro Assembler , MASM , assembles 8086 , 186 , and 286 assembly
language source files and creates relocatable object files that can be
linked and executed under the XENIX operating system . This chapter
explains how to invoke MASM and descr ibes the format of assembly listings
generated by MASM . For a complete description of the syntax of assembly
language source files , see the "MS-Macro Assembler Under XEN I X V
Reference Manual" .

STARTING AND USING HASH

This section explains how to start and use MASM to assemble your program
source files .

Assembling a Source File

You can assemble a program source file by typing the MASM command name
and the names of the files you wish to process . The command l ine has the
form :

MASM (options) filename

The options given can be any combination of MASM options . These options
are described in the section entitled "Using MASM Options", below .
Options can be placed anywhere on the command line .

The filename given must be the name of the source file to be assembled .

Unless otherwise specified MASM uses a default filename for the
relocatable object code . The default filename is the same as the source
file , except that the filename extension is replaced with " . o" .

MASM also uses a default filename for the list ing file (if requested) .
The assembly listing lists the assembled code for each source statement
and the names and types of symbols defined in the program . I f you do not
request a listing by using the appropriate option , MASM does not create
an assembly listing . The default filename is the same as the source file ,
except that the filename extension is replaced by " . 1st" .

For a full speci ficat ion of the MASM options and command syntax , see
masm (C P) in the "XENI X V System and Application Software Development
Tools Reference Manual" .

2-1

USING MASM OPTIONS

The MASM options control the operation of the assembler and the format of
the output files it generates .

MASM has the following options :

-a Alphabetical ordering for segments

-Dsym Define symbol , "sym" .

-d Output a pass 1 l isting

-e Emulated floating point instructions

-Ipath Include file pathname , "path" .

- l [file] Output listing to "file" , not default

-Ml Preserve case sensitivity in names

-Mu Map all symbols to uppercase

-Mx Preserve case sensitivity in externals

-n Supress symbol table listing

-o[file] Output object code to "file" , not default

-p Check for impure memory references

-r Real floating point instructions

-v Output verbose assembler statistics

-X False conditional l isting toggle

-x L ist errors to standard error channel

You can place options anywhere on a MASM command l ine . An option affects
all relevant files in the command line even if the option appears at the
end of the l ine .

Outputting Segments in Alphabetical Order

The -a option directs MASM to place the assembled segments in
alphabetical order before copying them to the object file . I f this option
is not given , MASM copies the segments in the order encountered in the
source file .

2-2 MS-MACRO ASSEMBLER UNDER XENIX V USER GUIDE

(

MASH: A MACRO ASSEMBLER

Example

masm -a file . s

This example creates an object file , "file . o" , whose segments are
arranged in alphabetical order . Thus , if the source file "file . s"
contair.s definitions for the segments DATA , CODE and MEMORY , the
assembled segments in the object file have the order CODE , DATA , and
MEMORY .

Symbol Definition

The -D option directs MASM to define the symbol appended to the -D option
as a text macro with a null value . (See the EQU directive in the "MS­
Macro Assembler Under XEN I X V Reference Manual" for a discussion of text
macros .) The symbol will be defined with the case in effect at that
point in the command line . Any number of -D options can be used . The
defined symbol can be tested with the I FDEF and I FNDEF directives during
the assembly .

Example

masm -DSymbol file . s

This example directs MASM to define the symbol "Symbol" a s a null text
macro . The default conversion to uppercase will occur in this example .

Creating a Pass 1 L isting

The -d option directs MASM to add a pass 1 listing to the assembly
listing file , making the assembly listing show the results of both
assembler passes . A pass l listing is typically used to locate and
understand program phase error s . Phase errors occur when MASM makes
assumptions about the program in pass l that are not valid in pass 2 .

The -d option does not create a pass l listing unless you also direct
MASM to create an assembly listing . I t does direct MASM to display error
messages for both pass 1 and pass 2 of the assembly , even if no assembly
l isting is created .

Example

masm -d -1 file . s

This example directs MASM to create a pass l list ing for the source file
"file . s" . The l isting is placed in the file "file . lst" .

2-J

Creating Code For a Floating Point Emulator

The -e option directs MASM to generate floating point instruction codes
that can be fixed up at l ink time to software interrupts .

This is the default option under XENIX V . I f a 287 is present , the XENI X
V system change� the software interrupts into real 287 instructions . I f
the chip i s not present , a software emulator i n the XENIX V system is
used to process the software interrupts as if the 287 chip were actually
present . The emulator does not handle all valid 287 instructions .
Unemulated instructions will give a S IGILL signal .

Example

masm -e file . s

This example directs MASM t o create emulation code for any floating point
instructions it finds in the program .

Include File Pathnames

The - I option directs MASM to use the specified pathname as a prefix to
the filenames given in the INCLUDE directives in an assembly program . Up
to ten -I options can be specified on the command l ine . To force
searching of the current directory in a specific order , -I can be used .

Example

masm -I /usr/include - I . file . s

This example forces the INCLUDE directives to search /usr/include , then
the current directory , for the given filename .

Produce Listing File

The -1 option directs MASM to generate a listing file to the standard
output file , which is usually to the console dev ice . I f the -1 option has
a filename appended to it (of the form "-llist file") , then the listing is
written to the file "listfile" rather than the default listing file whose
name is the same as that of the first input file except that it has the
extension " . lst" .

Examples

masm -1 file . s

2-4 MS-MACRO ASSEMBLER UNDER XENIX V USER GUIDE

(

I \

MASH: A MACRO ASSEMBLER

This example directs MASM to generate a listing in the file "file . lst" .

masm -llist file . s

This example directs MASM to generate a listing in the file "list" .

Preserving Lowercase Names

The -Ml option directs MASM to preserve lowercase letters in label,
variable , and symbol names . This means names that have the same spelling
but use different case letters are considered unique . For example , with
the -Ml option, "DATA" and "data" are unique . Under XENIX V, this is the
default case mapping option .

THE -Ml option is typically used when a source file is to be linked with
object modules created by a case-sensitive compiler .

Example

masm -Ml file . s

This example directs MASM to preserve lowercase letters i n any names
defined in the source file "file . s" .

Converting Names T o Uppercase

The -Mu option directs MASM to convert all letters in all symbols to
uppercase .

Example

masm -Mu file . s

This example directs MASM to convert lowercase letters in any names
de fined in the source file "file . s" .

Preserving Lowercase in Public and External Names

The -Mx option directs MASM to preserve lowercase letters in public and
external names only when copying these names to the object file . For all
other purpose s , MASM converts the lowercase letters to uppercase .

Public and external names are any label , var iable , or symbol names that
have been defined using the EXTRN or PUBL IC d irectives . Since MASM
converts the letters to uppercase for assembly, these names must have
unique spellings . That is, the names "DATA" and "data" are not unique .

2-5

The -Mx option is used to ensure that the names of routines or variables
copied to the object module have the correct spelling . The option is used
with any source file that is to be linked with object modules created by
a case-sensitive compiler , and is part icularly useful for transporting
assembler files from MS-005 to XEN I X V when working with C .

Example

masm -Mx file . s

This example directs MASM to preserve lowercase letters in any public or
external names defined in the source file "file . s".

Suppress Symbol Table Information

The -n option directs MASM to suppress information about the symbols used
in the assembled program . For this option to take e ffect , the -1 option
must also be used .

Example

masm -1 -n file . s

This example directs MASM to generate a l isting file without any symbol
information in the file "file . lst" .

Output Object Code

The -o option directs MASM to generate an object code file . I f the -o
option has a filename appended to it (of the form "-oobjfile") , then the
object code is written to the file "obj file" rather than the default file
whose name is the same as that of the first input file except that it has
the extension " . o" .

The - o option without a filename suppresses the generation o f an object
file .

Example

masm -oObj file . s

This example directs MASM to generate object code in the file "Obj" .

2-6 MS-MACRO ASSEMBLER UNDER XENIX V USER GUIDE

(

\

HASH: A MACRO ASSEMBLER

Checking for Impure Memory References

The -p option directs MASM to check for impure memory references . This
option ensures that you don't do any expl icit stores into memory via the
CS : override . I f you want your code to run in protected mode 286 , you can
use the -p option to avoid errors due to impure memory references . For
example , a typical violation might look like this :

. 286p
code

codewrd dw

segment
assume

move

cs : code

?

cw : codewrd , <data>

I f the above example were assembled with -p , it would generate an error
message .

Example

masm -p file . s

This example directs MASM to check the source file , "file . s" , for any
impure memory references .

Creating Code For a floating Point Processor

The -r option directs MASM to generate floating point
that can be executed by an 8087 or 287 coprocessor .
using the -r option can only run on machines having
coprocessor .

Example

masm -r file . s

instruction code
Programs created

an 8087 or 287

This example directs MASM to assemble the source file ,
create actual 8087 or 287 instruction code for
instructions .

"file . s" , and
floating point

2-7

Output Assembler Statistics

The -v option directs MASM to print the number of source l ines , the
number of l ines assembled , the number of symbols in addition to the
standard statistics of bytes of symbol space availabl e , and the number of
warning and severe error s .

Example

masm -vfi le . s

This example directs MASM t o give additional assembly statistics .

Listing false Conditionals

The -X option directs MASM to copy to the assembly listing all statements
forming the body of an If directive whose expression (or condition)
evaluates t o false . I f you do not give the -X option in the command
l ine , MASM suppresses all such statements . The -X option lets you display
conditionals that do not generate code . This option applies to all I f
directives : I f , IfE , Ifl , I F 2 , I FDEF , I FNDEF , IFB , I FNB , I F ION , and
I FDI F .

The -X option behaves l ike an initial . TFCOND directive i n a source file .
The . SFCOND and . LFCOND directives supercede the -X opt ion and . TFCOND
directive . See the "MS-Macro Assembler Under XEN I X V Reference Manual"
for a complete discussion of the . T FCOND , . SFCOND , . LFCOND directives .

The -X option does not affect the assembly l isting unless you direct MASM
to create an assembly listing file .

Example

masm -X -1 file . s

I f the source file , "file . s' ' , does not contain a . TFCONO directive , this
example directs MASM to list all false conditionals it finds in the
source file .

Output Error Messages

The -x option directs MASM to print error messages on the standard error
channel , in addition to the messages generated in the listing file ,
without displaying the the source l ine in error . I f -1 is given , then the
-x option has no effect . By using this option the assembler will assemble
faster . Error messages can be completely suppressed by using the -x
option , which makes assemblies silent , i . e . sending no output to STDERR .

2-8 MS-MACRO ASSEMBLER UNDER XENIX V USER GUIDE

HASH: A MACRO ASSEMBLER

Example

masm -x fi le . s

This example directs MASM to print copies of error messages onl y , written
to the standard error file .

READING THE ASSEMBLY LISTING

MASM creates an assembly l isting of your source file whenever you give an
assembly listing filename on the MASM command l ine . The assembly listing
contains a list of the statements in your program and the object code
generated for each statement . The listing also lists the names and
values of all labels , var iables , and symbols in your source file . MASM
creates one or more tables for macros , struct ures , records , segments ,
groups , and other symbols and places these tables at the end of the
assembly listing .

MASM lists symbols only i f it encounters any in the program . I f there are
no symbols in your program for a particular table , the given table is
omitted . For example , if you use no macros in your program , you will not
see a macro section in the symbol table .

The assembly listing will also contain error messages if any errors occur
during assembly . MASM places the messages below the statements that
caused the errors . At the end of the listing , MASM displays the number
of error and warning messages it issued .

The following sections explain the format of the assembly listing and the
meaning of special symbols used in the listing .

Reading Program Code

MASM lists the program code generated from the statements of a source
file . Each l ine has the form :

[l ine-number] offset code statement

The "linenumber" is from the first statement in the assembly listing . The
line numbers are given only i f a cross reference file is also being
created . The "offset" is the offset from the beginning of the current
segment to the code . The "code" is the actual instruction code or data
generated by MASM for the statement . MASM 9ives the actual nume r ic value
of the code if possible . Otherwise , it ind1cates what action needs to be
taken to compute the value . The "statement" is the source statement shown
exactly ·as it appears in the source file , or after processing by a MACRO ,
IRP , or I RPC directive .

I f any errors occur during assembly , the error message will be printed
directly below the statement where the error occurred , displaying the

2-9

source file and l ine number in addition to the error number and error
message .

MASM uses the following special characters to indicate addresses that
need to be resolved by the l inker or values that were generated in a
special way :

Character

R
E
=

nn :
nn/
nn [xx]
+
c

Example

0000

0000 0002
0002

0000

0000

Meaning

Relocatable address ; l inker must resolve
External address ; l inker must resolve
Segment/group address ; l inker must resolve
EQU or = directive
Segment override in statement
REP or LOCK prefix instruction
DUP expression ; nn copies of the value xx
Macro expansion
Included l ine from INCLUDE file

extrn go : near

data segment public 'DATA'
assume es : data

s2 dw 2
data ends

code segment public ' CODE'
assume cs : code

start :
0000 EB 0000 E call go
0003 36 : Al 0000 R mov ax , s2
0007 84 4C mov ah , 4ch
0009 CD 2 1 int 2 lh
OOOB code ends

end

Reading a Macro Table

MASM l ists the names and sizes of all macros defined in a source file .
The list has two columns : Name and Length .

The Name column l ists the names of all macros . The names are listed in
alphabetical order and are spelled exactly as given in the source file .
Names longer than 31 characters are truncated .

The Length column lists the size of the macro in terms of non-blank
lines . This size is in hexadecimal .

2-10 MS-HACRO ASSEMBLER UNDER XENIX V USER GUIDE

MASH: A MACRO ASSEMBLER

Example

Name Length

B IOSCALL 0002
DISPLAY 0005
DOSCALL 0002
KEYBOARD 0003
LOCATE 0003
SCROLL 0004

Reading a Structure and Record Table

MASM lists the names and dimensions of all structures and records in a
source file . The table contains two sets of overlapping columns . The
Width and # F ields list informat ion about the structure or record . The
Shift , Width , Mask , and Initial columns l ist information about the
structure or record members .

The Name column l ists the names of all structures and records . The names
are listed in alphabetical order and are spelled exactly as given in the
source file . Names longer than 31 characters are truncated .

For a structure , the Width column lists the size (in bytes) of the
structure . The # F ields column lists the number of fields in the
structure . Both values are in hexadecimal .

For fields of structure s , the Shi ft column l ists the offset (in bytes)
from the beginning of the structure to the fiel d . This value is in
hexadecima l . The other columns are not used .

Example

Name

PARMLIST
BUFSIZE
NAMESIZE
NAMETEXT
TERMINATOR

Width # F ields
Shift Width Mask

OOlC
0000
0001
0002

0004

0018

Initial

For a record , the Width column l ists the size (in bits) of the recor d .
The # F ields column l ists the number of fields i n the recor d .

For fields in a record , the Shift count lists the offset (in bits) from
the lower order bit of the record to the first bit in the field. The
Width column lists the number of bits in the field . The Mask column
l ists the maximum value of the field , expressed in hexadecima l . The
Initial column l ists the initial value of the field , i f any . For each
field , the table shows the mask and initial values as if they were placed

2-11

in the record and all other fields were set to 0 .

Example

Name Width # Fields
Shift Width Mask Initial

RECO 0008 0003
FLO! 0006 0002 ooco 0040
FL02 0003 0003 0038 0000
FL03 0000 0003 0007 0003

RECl OOOB 0002
FLO! 0003 0008 07F8 0400
FL02 0000 0003 0007 0002

Reading a Seqment and Group Table

MASM lists the names , sizes, and attributes of all segments and groups in
a source file . The l ist has five columns : Name, Size , Align , Combine ,
and Class .

The Name column lists the names of all segments and groups . The names in
the list are given in alphabetical order, except that the names of
segments belonging to a group are placed under the group name . Names are
spelled exactly as given in the source file . Names longer than 31
characters are truncated .

The Size column l ists the size (in bytes) of each segment . Since a group
has no size , only the word GROUP is shown . The size , if given , is in
hexadecimal .

The Al ign column lists the al ignment type of the segment . The types can
be any of the following :

BYTE
WORD
PARA
PAGE

If the segment is defined with no explicit alignment type , MASM lists the
default al ignment for that segment .

The Combine column l ists the combine type o f the segment . The types can
be any one of the following :

NONE
PUBL I C
STACK
MEMORY
COMBINE

2-12 HS-MACRO ASSE ER lJN)[R XENIX V USER GUIDE

MASH: A MACRO ASSEMBLER

NONE is given if no explicit combine type is defined for the segment .
NONE represents the private combine type .

The Class column lists the class name of the segment . The name is spelled
exactly as given in the source file . I f no name is given , none is shown .

Example

Name Size Align Combine Class

AAAXQQ 0000 WORD NONE ' CODE '
DGROUP GROUP
DATA 0024 WORD PUBLIC ' DATA'
STACK 0014 WORD STACK ' STACK '
CONST 0000 WORD PUBLIC ' CONST '
HEAP 0000 WORD PUBLIC ' MEMORY '
MEMORY 0000 WORD PUBLIC 'MEMORY'
ENTXCM 0037 WORD NONE 'CODE '
MAIN_STARTUP 007E PARA NONE ' MEMORY '

Reading a Symbol Table

MASM lists the name s , types , values , and attributes of all symbols in the
source file . The table has four columns : Name , Type , Value , and Attr .

The Name column lists the names of all symbol s . The names i n the l ist
are given in alphabetical order and are spelled exactly as given in the
source file . Names longer than 31 characters are truncated .

The Type column l ists each symbol ' s type . A type is given as one of the
following :

L NEAR
L FAR
N PROC
F PROC
Number
Alias
Opcode
Text

A near label
A far label
A near procedure label
A far procedure label
An absolute label
An alias for another symbol
An instruction opcode
A memory operand , string , or other value

If Type is Number , Cpcode , Alias , or Text , the symbol is defined by an
EQU directive or an = directive . The Type column also l ists the symbol ' s
length i f it is known . A length is given as one of the following :

BYT E
WORD
DWORD
QWORD
TBYTE

One byte (8-bits)
One word (16-bits)
Doubleword (2 words)
Quadword (4 words)
Ten-bytes (5 words)

2-13

A length can also be given as a number . In this case , the symbol is a
structure , and the number defines the length (in bytes) of the structure .
For example , the type:

L 0031

identifies a label to a structure that is 31 bytes long.

The Value column shows the numeric value of the symbol . For absolute
symbols , the value represents an absolute number . For labels and variable
names , the value represents that item ' s offset from the beginning of the
segment in which it is defined . I f Type is Number , Opcode , Alias , or
Text , the Value column shows the symbol ' s value , even if the value is
simple text . Number shows a constant numeric value . Opcode shows a
blank (the symbol is an alias for an instruction mnemonic) . Alias shows
the name of another symbol . Text shows the text the symbol represents .
Text is any operand that does not fit one of the other three categories .

The Attr column lists the attributes of the symbo l . The attributes
include the name of the segment in which the symbol is defined, if any ,
the scope of the symbol , and the code length . A symbol ' s scope is given
only if the symbol is defined using the EXTRN or PUBLI C directives . The
scope can be External or Global . The code length is given only for
procedures .

Example

Symbols :

Name Type Value Attr

SYM Number 0005
SYMl Text l. 234
SYM2 Number 0008
SYM3 Alias SYM4
SYM4 Text S [BP) [DI)
SYMS Opcode
SYM6 L BYTE 0002 DATA
SYM7 L WORD 0012 DATA Global
SYMB L DWORD 0022 DATA
SYM9 L QWORD 0000 External
LABO L FAR 0000 External
LAB! L NEAR 0010 CODE

2-14 MS-HACRO ASSEMBLER UNDER XENIX V USER GUIDE

(

MASH: A MACRO ASSEMBLER

Reading a Pass 1 L isting

When you specify the -d option in the MASM command line , MASM adds a pass
1 listing to the assembly listing file , making the listing file show the
results of both assembler passes . The listing is intended to help locate
the source of phase errors .

The following examples illustrate the pass 1 listing for a source file
that assembled without error . Although an error was produced on pass 1 ,
MASM corrected the error on pass 2 and completed assembly correctly .

During pass l, a JLE instruction to a forward reference produces an error
message :

0017 7E 00
file (line) : error
0019 BB 1000

JLE SMLSTK
9 : Symbol not defined SMLSTK

MOV BX , 4096
OOlC SMLSTK :

MASM displays this error since it has not yet encountered the definition
for the symbol SMLSTK .

By pass 2 , SMLSTK has been defined and MASM can fix the instruction so no
error occurs :

0017
0019
OOlC

7E 03 JLE
BB 1000

SMLSTK :

SMLSTK
MOV BX , 4096

The JLE instruction ' s code now contains 03 instead of 00 . This is a jump
of 3 byte s .

Since MASM generated the same amount of code for both passes , there was
no phase error . I f a phase error had occurred , MASM would have displayed
an error message .

In the following program fragment , ·a
error . In pass l , the label "go"
creates a "Symbol not defined" error .
be defined later and generates three
for the symbol' s actual value .

mistyped label creates a phase
is used in a forward reference and
MASM assumes that the symbol will
bytes of code , reserving two bytes

0000 code segment
0000 E9 0000 u jmp go
file (line) : error 9 : Symbol not defined go
0003 go label byte
0003 BB 0001 mov ax , 1

0006 code ends

In pass 2 , the label "go" is known to be a label of BYTE type which is an
illegal type for the JMP instruction . As a resul t , MASM produces only two
bytes of code in pass 2 , one less than in pass 1 . The result is a phase
error .

2-15

0000
0003 R
file (line) : error 57 :
0003 go
file (line) : error 6 :
0003 B 8 0001
0006

code segment
jmp go

I llegal size for item
label byte

Phase error between passes
mov ax, 1
code ends

2-16 MS-MACRO ASSEMBLER UNDER XENIX Y USER GUIDE

A . INSTRUCT I ON SUMMARY

ABOUT THIS APPEND I X

This appendix lists all the microprocessor and coprocessor instruction
sets .

CONTENTS

INTRODUCTION A-1

8086 I NSTRUCT IONS A-1

8087 I NSTRUCTI ONS A-S

186 INSTRUCTIONS A-7

286 NON-PROTECTED I NSTRUCTIONS A-8

286 PROTECTED INSTRUCTIONS A-8

287 INSTRUCT IONS A-9

ERROR MESSAGES

INTRODUCTION

This appendix lists and explains the error messages that can be generated
by the Macro Assembler , MASM , and the Linker , LD .

MACRO ASSEMBLER MESSAGES

This sect ion lists and explains the messages displayed by the Macro
Assembler , MASM . MASM displays a message whenever it encounters an error
dur ing processing . I t displays a warning message whenever it encounters
questionable statement syntax .

An end-of-assembly message is displayed at the end of processing , even if
no errors occurred . The message contains a count of errors and warning
messages it displayed during the assembly . The message has the form :

n Bytes of symbol space free
n Warning Errors
n Severe Errors

This message is also copied to the source listing .

The Assembler Errors are as follows :

0 : Block nesting error
Nested procedures , segments , structures , macros , IRC , IRP , or REPT
are not properly terminated . An example o f this error is closing an
outer level of nesting with inner level (s) still open .

1 : Extra characters on l ine
This occurs when sufficient information to define the instruction
directive has been received on a line and superfluous characters
beyond are received .

2 : Register already defined
This will only occur if the assembler has internal logic error s .

3 : Unknown symbol type
Symbol statement has something in the type
unrecognizable .

4 : Redefinition of symbol

field that is

This error occurs on pass 2 and succeeding definitions of a symbol .

5 : Symbol is multi-defined
This error occurs on a symbol that is later redefined .

6 : Phase error between passes
The program has ambiguous instruction directives such that the
location of a label in the program changed in value between pass 1
and pass 2 of the assembler . An example of this 1s a forward
reference coded without a segment override where one is required .

A-1

• r .-It

<
•

'
I

• • • I
'* ' � • �4' '�:

' i r I 1 t �

�i;�:c''J,.:.< • • '"�" · � ,·� • · • ' - • ."'.-.d..co, • ��. �·,. ... ii:.::��':' ... ,� :.;, ; •i

There would be an additional byte (the code segment override)
generated in pass 2 causing the next label to change . You can use
thP. -D option to produce a l isting to aid in resolving phase errors
between passes . See Chapter 2 , "MASM : A Macro Assembler . "

7 : Already had ELSE clause
Attempt to define an ELSE clause within an existing ELSE clause (you
cannot nest ELSE without nesting IF . . . END I F) .

8 : Not in conditional block
An END I F or ELSE is specified without a previous conditional
assembly directive active .

9 : Symbol not defined
A symbol is used that has no definition .

10 : Syntax error
The syntax of the statement does not match any recognizable syntax .

1 1 : Type illegal in context
The type specified is of an unacceptable size .

12 : Should have been group name
Expecting a group name but something other than this was given .

1 3 : Must be declared in pass l
An item was referenced before it was defined in pass l . For
example , "IF DEBUG" is illegal if DEBUG is not previously defined .

14: Symbol type usage illegal
I llegal use of a PUBLIC symbo l .

1 5 : Symbol already different kind
Attempt to define a symbol differently from a previous definition .

16 : Symbol is reserved word
Attempt to use an assembler reserved word illegally .
to declare MDV as a variable .

17 : Forward reference is illegal

For example ,

Attempt to reference something before it is defined in pass 1 .

18 : Must be register
Register expected as operand but you furnished a symbol that was not
a register .

19 : Wrong type of register
Directive or instruction expected one type of register , but another
was specified . For example , I NC CS .

20 : Must be segment or group
Expecting segment or group and something else was specified .

2 1 : Symbol has no segment
Trying to use a variable with SEG , and the variable has no known

' • tr·- ...-:-�- �,
' • ' J

. .

. . .

ERROR MESSAGES

segment .

22 : Must be symbol type
Must be WORD , DW , QW , BYTE , or TB but received something else .

23 : Already defined locally
Tried to define a symbol as EXTERNAL that had already been defined
locally .

24 : Segment parameters are changed
List of arguments to SEGMENT were not identical to the first time
this segment was used .

2 5 : Not proper align/combine type
SEGMENT parameters are incorrect .

26 : Reference to mult defined
The instruction references something that has been multi-defined .

27 : Operand was expected
Assembler is expecting an operand but an operator was received .

28: Operator was expected
Assembler was expecting an operator but an operand was received .

29 : Division by 0 or overflow
An expression is given that results in a divide by 0 or a number
larger then can be represented .

30 : Shift count is negative
A shi ft expression is generated that results in a negative shift
count .

31 : Operand types must match
Assembler gets different kinds or sizes of arguments in a case where
they must match . For example , MDV .

32 : I l legal use of external
Use of an external in some illegal manner . For example , DB M DUP (?)
where M i s declared external .

33 : Must be record field name
Expecting a record field name but received something else .

34 : Must be record or field name
Expecting a record name or field name and received something else .

35 : Operand must have size
Expected operand to have a size , but it did not .

36 : Must be var , label or constant
Expecting a variable , labe l , or constant but received something
else .

A-3

37 : Must be structure field name
Expecting a structure field name but received something else .

38 : Left operand must have segment
Used something in right operand that required a segment in the left
operand . (For example , " : . ")

39 : One operand must be canst
This is an illegal use of the addition operator .

40 : Operands must be same or 1 abs
I llegal use of the subtraction operator .

41 : Normal type operand expected
Received STRUC , F I ELDS , NAMES , BYTE , WORD , or DW when expecting a
variable labe l .

42 : Constant was expected
Expecting a constant and received an item that does not evaluate to
a constant . For example , a variable name or external .

43 : Operand must have segment
I l legal use of SEG directive .

44 : Must be associated with data
Use of code related item where data related item was expected . For
example , MOV AX , <code-label> .

45 : Must be associated with code
Use of data related item where code item was expected .

46 : Already have base register
Trying to double base register .

47 : Already have index register
Trying to double index address .

48 : Must be index or base register
Instruction requires a base or index register and some other
register was specified in square brackets , [] .

49 : I llegal use of register
Use of a register with an instruction where there is no 8086 or 8088
instruction possible .

50 : Value is out of range
Value is too large for expected use . For example , MOV AL , 5000 .

51 : Operand not in I P segment
Access of operand is impossible because it is not· in the current I P
segment.

52 : Improper operand type
Use of an operand such that the opcode cannot be generated .

ERROR MESSAGES

53 : Relat ive jump out of range
Relative j umps must be within the range -128 to +127 of the current
instruction , and the spec ific jump is beyond this range .

54 : Index disp l . must be constant
Illegal use of index display .

55: I llegal register value
The register value spec ified does not fit into the "re�' field (the
value is greater than 7) .

56 : No immediate mode
Immediate mode specified or an opcode that cannot accept the
immediate . For example , PUSH .

57 : I llegal size for item
Size of referenced i tem is illega l . For example , shift of a double
word .

58 : Byte register is illegal
Use of one of the byte registers in context where it is illegal .
For example , "PUSH AL , " is illegal .

59 : CS register illegal usage
Trying to use the CS register illegally . For example , "XCHG CS , AX , "
is illegal .

60 : Must be AX or AL
Specification of some register other than AX or AL where only these
are acceptable . For example , the IN instruction .

61 : Improper use of segment reg
Speci fication of a segment register where this is illegal . For
example , an immediate move to a segment registe r .

62 : N o or unreachable CS
Trying to j ump to a label that is unreachable .

63 : Operand combination illegal
Specification of a two-operand instruction where the combination
speci fied is illegal .

64: Near JMP/CALL to different CS
Attempt to do a NEAR jump or call to a location in a different CS
ASSUME .

65 : Label can ' t have seg . override
I llegal use of segment overr ide .

66 : Must have opcode after prefix
Use of a REPE , REPNE , REPZ , or REPNZ instructions without specifying
any opcode after it .

67 : Can ' t override ES segment
Trying to override the ES segment in an instruction where this

A-5

override is not legal. For example , "STOS DS : TARGET" is illega l .

68 : Can ' t reach with segment reg
There is no ASSUME that makes the variable reachable .

69 : Must be in segment block
Attempt to generate code when not in a segment .

70 : Can ' t use EVEN on BYTE segment
Segment was declared to be byte segment and attempt to use EVEN was
made .

7 2 : I llegal value for DUP count
DUP counts must be a constant that is not 0 or negative .

7 3 : Symbol already external
Attempt to define a symbol as local that is already external .

74 : DUP is too large for l inker
Nesting of DUPs was such that too large a record was created for the
linke r .

7 5 : Usage o f ? (indeterminate) bad
Improper use of the "?" . For example , ?+5 .

76 : More values than defined with
Too many initial values given when defining a variable using a REC
or STRUC type .

77 : Only initialize list legal
Attempt to use STRUC name without angle brackets , < > .

78 : Directive illegal i n STRUC
All statements within STRUC blocks must either be comments preceded
by a semicolon (;) , or one of the Define directives .

7 9 : Override with DUP is illegal
In a STRUC initialization statement , you tried to use DUP in an
override .

80 : F ield cannot be overridden
In a STRUC initialization statement , you tried to give a value to a
field that cannot be overridden .

81 : Override is of wrong type
In a STRUC initialization statement , you tried to use the wrong size
on override . For example , ' HELLO' for DW field .

82 : Register can ' t be forward ref

83 : Circular chain of EQU aliases
An alias EQU eventually points to itself . (

84: 8087 opcode can ' t be emulated
Either the 8087 opcode or the operands you used with it produce an

MS-MACRO ASSDB..ER ltUR JENIX V USER WIDE

ERROR MESSAGES

instruction lhal the emulator cannot support .

85 : End o f f i le , no END directive
You forgot an end statement or there is a nesting error .

86 : Data omitled wilh no segment

98 : Overr ide value is wrong length
Ther is an improper sized value in a RECORD or STRUC field .

99 : Line too long expanding <symbol>
The line became too long for one of the assembler ' s internal
buffers .

100 : I mpure memory reference
You altempted to explicitly store into memory via the CS register .

Linker Messages

This sect ion lists the error messages that can occur when link ing
programs . The messages are in alphabetical order .

-A and -F are mutually exclusive
The -A and -F switches are mutually exclusive .

-u seen before -n <num>
An undefined symbol has been given before the maximum name-length
switch . Reverse the order of the two switches .

<switch> ignored
You have given an unrecognized switch .

Address missing
The -A switch is missing a following number .

Array element size mismatch
A far communal array has been declared with two or more different
array element sizes (e . g . , declared once as an array of characters
and once as an array of reels) . NOTE : At the present time , communal
arrays are not available in MASM .

Attempt to access data outside segment bounds
An LEDATA or an L IDATA record specifies bytes that occupy offsets
beyond the end of the segment as defined by the corresponding SEGDEF
recor d . It is hard for you to cause this message ; usually , it
indicates a bug in the compiler or assembler .

Attempt to put segment ' name ' in more than one group in file ' filename '
A segment was declared to be a member of two different groups .
Correct the source and recreate the object files .

Cannot create list file
The linker was unable to create the list (map) file .
do not have permission , or the disk is full .

Possibly you

A-7

Cannot find file
You are specifying an object module or l ibrary file which the l inker
cannot find or is not able to open for reading .

Cannot open run file
The directory or
permissions . Make
permissions .

disk is full , or you don ' t have the r ight
space on the disk or in the directory , or change

Cannot open temporary file
The directory or disk is full . Make space on the disk or in the
director y .

Common area longer than 65536 bytes

Data

Dup

Your program has more than 64K of communal variables . NOTE : At the
present time , only Microsoft C programs can possibly cause this
message to be displayed .

record too large
LEDATA record (in an object module) conta1ns more than 1024 bytes of
data . This is a translator error . Note the translator (compiler or
assembler) that produced the incorrect object module and the
circumstances under which it was produced , and report the
information to Microsoft .

record too large
L IDATA record (in an object module) contains more than 512 bytes of
data . Most likely , an assembly module contains a STRUC definition
that is very complex , or a series of deeply nested DUP statements
(e . g . ARRAY db 10 dup (ll dup (1 2 dup (13 dup (. . .))))) . Simplify
and reassemble .

Error accessing library
The linker was unable to open a specified library .
file exists and has the proper permissions .

Make sure the

F ixup overflow near ' num ' in segment ' name ' in ' filename (name) ' offset
' num '

Some possible causes are : 1) A group is larger than 64K bytes , 2)
your program contains an intersegment short jump or intersegment
short cal l , 3) your have a data item whose name conflicts with that
of a subroutine in a library included in the l ink , and 4) you have
an EXTRN declaration inside the body of a segment , for example :

CODE segment public ' code '
extrn main : far
start proc far

call main
ret

start endp
CODE ends

The following construction is preferred :

extrn main : far

A-8 MS-MACRO ASSEMBLER UNDER XENIX Y USER GUIDE

ERROR MESSAGES

CODE segment public ' code '
start proc far

call main
ret

start endp
CODE ends

Revise the source and recreate the object file .

Group <name> larger than 64Kbytes
A group has been defined that is larger than the maximum allowed for
a physical segment . Reduce the size of the group .

Invalid object module
One of the object modules is invalid .
error persists , contact Microsoft .

L ist file name missing

Try recompiling .

The -m switch is missing a following str ing .

Multiple code segments -- should be medium model

I f the

There is more than one code segment and the -Mm , -Ml or -Me switch
was not given . Make sure all modules have the same memory model or
l ink with the -Me switch . Not fatal .

Multiple data segments -- should be large model
There is more than one code segment and the -Mm , -Ml or -Me switch
was not given . Make sure all modules have the same memory model or
l ink with the -Me switch . Not fatal .

Name length missing
The -n switch is missing a following numbe r .

NEAR/HUGE confl ict
Conflicting near and huge definitions for a communal variable .
NOTE : At · the present time , communal variables are not available in
MASM .

No scratch file
Internal or system error . Do a file system check , and i f the error
persists notify Microsoft .

Number missing
The -5 switch is missing a following number .

Object not found
See "Cannot find file" .

Out of space on list file
Disk on which list file is being written is full . Free more space
on the disk and try again .

Out of space on run file
Disk on which executable file is being written is ful l .
space on the disk and try again .

Free more

A-9

Run file name missing
The -o switch is missing a following string .

Segment limit too high
There is insufficient memory for the linker to allocate tables to
descr ibe the number of segments requested (e ither the value
specified with /SEGMENTS or the default : 128) . Either try the link
again using /SEGMENTS to select a smaller number of segments (e . g .
64, i f the default were used previously) or free some memory .

Segment size exceeds 64K
You have a small model program with more than 64K bytes of code , or
you have a middle model program with more than 64K bytes of data .
Try compiling and l inking middle or large model .

Symbol already defined : <symbol>
A public symbol has been defined more than once .

Symbol missing
The -u switch is missing a following string .

Symbol table overflow
Your program has greater than 256K of symbol1c information (publ ics ,
extrns , segments , groups , classes , files , etc) . Combine modules
and/or segments and recreate the object files . Eliminate as many
public symbols as possible .

Terminated by user
You entered an interrupt .

Too many external symbols in one module
Your object module specified more than
external symbols . Break up the module .

the allowed number

Too many group- , segment- , and class-names in one module

of

Your program contains too many group , segment , and class names .
Reduce the number of groups , segments , or classes and recreate the
object files .

Too many groups
Your program defines more than nine groups . Reduce the number of
groups .

Too many GRPDEFs in one module
Ld encountered more than 9 GRPDEFs in a single module .
number of GRPDEFs or split up the module.

Too many l ibrar ies

Reduce the

You tried to link with more than 16 l ibrar ies . Combine l ibraries or
link modules that require fewer libraries .

Too many segments
Your program has too many segments . Relink using the -5 switch with
an appropriate number of segments specified .

A-10 MS-MACRO ASSEMBLER LNlER XENIX V USER GJIDE

(

(

(

ERROR MESSAGES

Too many segments in one module
Your object module has more than 255 segments . Split the modules or
combine segments .

Too many TYPDEFs
An object module contains to many TYPDEF records . These records are
emitted by a compiler to describe communal variables . NOTE : At the
present t ime , communal variables are not available in MASM .

Unexpected end-of-file on scratch file
The temporary scratch file has probably been removed .
linker .

Unknown model specifier <-M?>

Restart

The -M switch was given with a character following that was not
equal to s , m , 1 , or e .

Unrecognized XEN I X version number
The version number following the -v switch must currently be either
2 or 3 .

Use - i switch
There is more than one segment and the
impure , i . e . without the -i switch .
have one segment .

Version number missing

program is being linked
Impure executables can only

You gave the -v switch without a version number following .

Warning : _ . SYMDEF out of date in <library name>
A l ibrary archive (. a) file has been modi fied s ince the last t ime
its dictionary was updated with ranlib . Re-ranlib the file .

I f you install new librar ies with the cp command you may see this
error message when in fact the library is up-to-date . This is
because cp makes the modi :·_:at ion t ime of the new l ibrary equal to
the t ime the library was copied and the dictionary t ime is left
unchanged . To avoid this situation , always copy l ibraries with
"copy -m" or extract them from tar-format archive files .

Warning : Groups <namel> and <name2> overlap
Input to the linker has established a segment order ing such that the
first segment of one group is ordered before the last segment of the
previous group . Change the segment ordering or redefine appropriate
class names .

Warning : model mismatch
You are l inking object modules with di fferent memory models .
Recompile so all modules have the same mode l , or else use the -Me
switch .

Warning : too many public symbols
You have asked for a sorted list ing of public symbols in the list
file , but there are too many symbols to sort . The l inker will
produce an unsorted listing of the public symbols .

A-ll

(

(

(
Operat ing Systems and Languages Library

MS-MACRO ASSEMBLER
under XENIX V
Reference Manual

r olivetti
P E RSONAL
COMPUTE R

LII I I I I IJL
olivetti

RELATED PUBLICATIONS
MS-Macro Assembler Under XENIX V User Guide (Code 4022950 Z)

XENIX V User Guide (Code 4022940 Y)

XENIX V User and System Administrator Reference Manual (Code 4022320 Y)

XENIX V Installation and System Administration User Guide
(Code 4022960 S)

XENIX V System and Application Software Development Tools User Guide
(Code 4022990 B)

XENIX V System and Application Software Development
Manual (Code 4031710 VJ

Tools Reference

(-Language Under XENIX V User Guide (Code 4022970 T)

C-Language Under XENIX V Reference Manual (Code 4033810 Y)

X/OPEN Portability Guide (Code 4024080 B)

XENIX V Text Processing User Guide (Code 4022980 C)

XENIX V Text Processing Reference Manual (Code 4031720)

DISTRIBUTION : General (G)

FIRST EDITION : July 1986

SECOND EDITION: October 1986

Copyright © Microsoft Corporat ion
1980 / 1985 PUBLICATION ISSUED BY :

lng . C . Olivetti & C . S . p . A .
Direz ione Documentazione
7 7 , V ia Jervis - 10015 I VREA (I taly)

PREFACE

This manual is a technical reference to the XENIX Macro-Assembler , MASM ,
and is intended for experienced assembly language programmers . It should
be used in conjunction with the HS-Hacro Assembler Under XENIX V User
Guide .

MASM is a powerful two-pass assembler for the Intel 8086/80186/80286
family of microprocessors , and the 8087 and 80287 floating point
coprocessors . Strong typing is available for memory operands , and
conditional directives allow the exclusion of portions of the source file
from assembly . In addition , a range of error detection facilities is
provided . These features are all described .

The following syntax notations are used:

[] Square brackets indicate that the enclosed entry is optional .

{ } Braces indicate that there is a choice between two or more entries .
At least one of the entries enclosed in the braces must be chosen ,
unless the entries are also enclosed in square brackets .

A vertical stroke refers to the logical OR operation .

Ellipses indicate that an entry may be repeated as many times as
needed .

CAPS Capital letters indicate portions of statements or commands that
must be entered , exactly as shown .

The underscore joins multiple-name parameters .

All other punctuation , such as commas , colons , slash marks and equals
signs must be entered exactly as shown .

SUMMARY
This manual is divided into seven chapters and three appendices. Chapter
1 is an overview of the Macro Assembler and its features . Chapter 2
defines the MASM character set and describes the syntax of constants ,
identifiers , statements and comments . Chapter 3 describes the meaning and
syntax of the operands and expressions used in MASM statements and
directives . Chapter 4 describes the Instruction Set Directives and the
Memory Directives , and supplies an example of MASM source code . Chapter 5
describes the Conditional Assembly and Conditional Error Directives .
Chapter 6 is a full description of how MASM macros are defined and
called, and the functions of the Macro Directives . Chapter 7 describes
the l isting facilities supplied by MASM , and defines the File Control and
Listing Control Directives .

Appendix A is a summary of the various microprocessor and coprocessor
instruction sets . Appendix B lists the complete range of MASM directives
and operators . Appendix C describes the naming conventions used to form
assembly language source files compatible with the object modules
produced by high-level programming languages .

TRADEMARK NOTICE

OL I VE T T I is a trademark of I ng . C . Ol t ve t t i & C . , S . p . A .
OL J T ERM i s a t rademark of I ng . C . O l i ve t t i & C . , S . p . A .
SOR T P i s a trademark of lng . C . O l i ve l l i & C . , S . p . A .
ASM-66 i s a trademark o f Digital Research
CB-66 is a trademarK of Digital Research
CLEO i s a trademark of Phone 1 I nc .
ETHERNET i s a t r ademark o f Xeros Corp .
GW is a trademark of Microsoft Corp .
I BM is registered trademark o f I nternat iona l Business Machines Cor p .
M I CROSOFT is a registered trademark of Microsoft Corp .
MS is a trademark of Mic rosoft Corp .
OMN INET is a trademark of Corvus System Inc .
p-System is a t rademark of Softech Microsystems , Inc .
PC-DOS is a trademark of I nternat iona l Business Machines Corp .
PEACHPACK is a trademark of Peachtree Software International Ltd .
S ID-86 is a trademark of Digital Research
TerminALL is a trademar k of TOP I C System , Inc .
T OP I C i s a t rademark o f TOPIC System , Inc .
UNIX i s a trademark o f Bel l Laboratories
XENI X V i s a trademark o f M icrosoft Corporat ion
ZBO is a registered trademark of Z i log I nc .
ZBOOO is a registered trademark o f Z i log I nc .

CONTENTS

1 . I NTRODUCT I ON 1-1

OVERVI EW 1-1

THE MACRO ASSEMBLER 1-1

ASSEMBLER L ISTINGS 1-2

FEATURES OF THE MACRO ASSEMBLER 1-4

RELOCATABLE OBJECT CODE 1-4

PROGRAM MODULES 1-5

MACRO CALLS 1-6

I NSTRUCTIONS AND DIRECT IVES 1-7

I NSTRUCTIONS 1-9

SINGLE TYPE OPERAND INSTRUCTIONS 1-9

MULT IPLE TYPE OPERAND I NSTRUCTIONS 1-9

DIRECTI VES 1-10

2 . ELEMENTS OF THE ASSEMBLER 2-1

INTRODUCT ION 2-1

CHARACTER SET 2-1

CONSTANTS 2-1

INTEGERS 2-1

RANGE AND PRECISION OF INTEGERS 2-2

REAL NUMBERS 2-3

RANGE AND PRECISION OF REALS 2-4

IMPLEMENTAT ION OF FORMATS 2-5
ENCODED REAL NUMBERS 2-6

RULES FOR FORMAT ION 2-6

PACKED DECIMAL NUMBERS 2-7

CHARACTER AND STRING CONSTANTS 2-8

IDENT IF I ERS 2-8

NAMES 2-9

RESERVED NAMES 2-9

STATEMENTS AND COMMENTS 2-10
STATEMENTS 2-10

COMMENTS 2-11

COMMENT DIRECTIVE 2-12

3 . OPERANDS , OPERATORS AND EXPRESSIONS 3-1

INTRODUCTION 3-1

OPERANDS 3-1

CONSTANT OPERANDS 3-1

D IRECT MEMORY OPERANDS 3-2

RELOCATABLE OPERANDS 3-3

LOCATION COUNTER OPERAND 3-4

REGISTER OPERANDS 3-4

FLAG REGISTER 3-5

BASED OPERANDS 3-6

I NDEXED OPERANDS 3-7

BASED-INDEX OPERANDS 3-9

STRUCTURE OPERANDS 3-10

RECORD OPERANDS 3-11

RECORD-F IELD OPERANDS 3-12

OPERATORS AND EXPRESSIONS 3-13

ARI THMETIC OPERATORS 3-13

RELATIONAL OPERATORS 3-15

LOGICAL OPERATORS 3-16

EXPRESSION EVALUATION 3-17

PRECEDENCE OF OPERATORS 3-17

INDEXED MEMORY OPERANDS 3-18

ATTRIBUTE OPERATORS 3-19

CONTENTS

OVERRIDE OPERATORS 3-19

: (COLON) (SEGMENT OVERRIDE) 3-19

PTR (POINTER) 3-21

SHORT 3-23

THIS 3-23

H IGH , LOW 3-24

VALUE RETURNING OPERATORS 3-25

SEG 3-25

OFFSET 3-26

TYPE 3-27

. TYPE 3-27

LENGTH 3-28

SIZE 3-29

RECORD SPEC I F I C OPERATORS 3-30

SHI F T_COUNT 3-31

WIDTH 3-32

MASK 3-33

EXPRESSI ON EVALUATION AND PRECEDENCE 3-34

OPERATOR PRECEDENCE . 3-34

FORWARD REFERENCES 3-35

STRONG TYPING FOR MEMORY OPERANDS 3-37

4 . I NSTRUCTION SET AND MEMORY DIRECTI VES 4-1

SOURCE F ILES 4-1

I NSTRUCTI ON SET DIRECT IVES 4-2

. 8086 4-3

. 186 4-3

. 286 4-4

. 287 4-4

MEMORY DIRECT I VES 4-5

ASSUME 4-5

DB , OW , DO , DQ , DT (DEFINE) 4-6

DUP 4-8

END 4-9

EQU 4-10

EQUALS SIGN 4-11

EVEN 4-12

EXTRN 4-12

GROUP 4-14

LABEL 4-15

ORG 4-17

PROC AND ENDP 4-17

PUBL I C 4-19

RECORD 4-20

SEGMENT AND ENDS 4-22

STRUC 4-26

5 . COND I T I ONAL D I RECT IVES 5-1

I NTRODUC T I ON 5-1

I f 5-2

IFE 5-3

If! 5-4

I f2 5-5

I FDEF 5-6

I FNDEF 5-7

I FB 5-8
I FNB 5-9

I F I DN 5-10

CONTENTS

IFDIF 5-11

COND I T IONAL ERROR D I RECTI VES 5-12

. ERR , . ERR! AND . ERR2 5-13

. ERRE AND . ERRNZ 5-14

. ERRDEF AND . ERRNDEF 5-14

. ERRB AND . ERRNB 5-15

. ERRIDN AND . ERRDIF 5-16

6 . MACRO DIRECT I VES 6-l

INTRODUCTION 6-l

MACRO DEFI N I T ION 6-l

CALLING A MACRO 6-3

ENDM (END MACRO) 6-4

E X I TM (EX I T MACRO) 6-5

LOCAL 6-6

PURGE 6-7

REPEAT DIRECT I VES 6-8

REPEAT 6-8

IRP (INDEFINITE REPEAT) 6-9

IRPC (INDEF I N I TE REPEAT CHARACTER) 6-10

SPECIAL MACRO OPERATORS 6-11

& 6-11

<TEXT> 6-12

, , 6-13

6-13
,, 6-14 ,,

7 . L ISTING DIRECT I VES 7-l

INTRODUCT ION 7-l

INCLUDE 7-l

. RADI X 7-2

��OUT 7-3

NAME 7-3

T ITLE 7-4

SUBT ITLE 7-5

PAGE 7-6

. L IST AND . X L IST 7-7

. LFCOND 7-8

. SFCOND 7-8

. TFCOND 7-9

. LALL 7-9

. SALL 7-10

. XALL 7-10

. CREF AND . XCREF 7-11

A . I NSTRUCTION SUMMARY A-1

I NTRODUCTION A-1

8086 I NSTRUCTIONS A-1

8087 I NSTRUCTIONS A-5

186 I NSTRUCT I ONS A-7

286 NONPROTECTED I NSTRUCTIONS A-8

286 PROTECTED I NSTRUCTIONS A-8

287 I NSTRUCTIONS A-9

B . DIRECTI VE SUMMARY B-1

INTRODUCT I ON B-1

DIRECTI VES B-1

OPERATORS B-4

c . SEGMENT NAMES FOR H IGH-LEVEL LANGUAGES C-1

INTRODUCTION C-1

CONTENTS

TEXT SEGMENTS C-1

SMALL MODEL PROGRAMS C-2

MIDDLE AND LARGE MODEL PROGRAMS C-2

DATA SEGMENTS - NEAR C-3

DATA SEGMENTS - FAR C-4

BSS SEGMENTS C-5

CONSTANT SEGMENTS C-6

1 . I NTRODUCT I ON

ABOUT THIS CHAPTER

This chapter provides an overview of the Macro Assembler , its features
and functions . I t describes the assembly process , and the use of macro
instructions , normal instructions and directives . Figures are provided to
illustrate these descriptions .

CONTENTS

OVERVI EW 1-1

THE MACRO ASSEMBLER 1-1

ASSEMBLER L I ST I NGS 1-2

FEATURES OF THE MACRO ASSEMBLER 1-4

RELOCATABLE OBJECT CODE 1-4

PROGRAM MODULES 1-5

MACRO CALLS 1-6

INSTRUCTIONS AND DIRECTIVES 1-7

INSTRUCTIONS 1-9

S I NGLE TYPE OPERAND I NSTRUCTIONS 1-9

MULT I PLE TYPE OPERAND I NSTRUCTIONS 1-9

DIRECTIVES 1-10

INTRODUCT ION

OVERVIEW

This reference manual describes the syntax and structure of the XENIX
Macro Assembler , MASM . MASM 1s an assembler for the Intel
8086/80186/80286 family of microprocessor s . I t can assemble instructions
for the 8086 , 8088 , 80186 , and 80286 microprocessors , and the 8087 and
80287 floating-point coprocessors . I t has a power ful set of assembly­
language directives that gives you complete control of the segmented
architecture of the 8086 , 80186 and 80286 microprocessor s . MASM
instruction syntax allows a wide variety of operand data types , including
integers , strings , packed decimals , floating-point numbers , structures ,
and records .

The assembler produces 8086 , 8088 , 80186 or 80286 relocatable object
modules from assembly-language source files . The relocatable object
modules can be l inked , using ld , the XEN I X V l ink editor , to create
executable programs for the XENIX V operat ing system . Details of ld and
other XENIX utilities can be found in the XENIX V Reference Manuals .

MASM is a macro assembler . It has a full set of macro directives that
let a programmer create and use macros in a source file . The directives
instruct MASM to repeat common blocks of statements , or replace macro
names with the block of statements they represent . MASM also has
conditional directives that let the programmer exclude portions of a
source file from assembly , or include additional program statements by
simply defining a symbol .

MASM carries out strict syntax checking of all instruction statements ,
including strong typing for memory operands and detects questionable
operand usage that can lead to errors or unwanted results .

MASM produces object modules that are compat ible with object modules
created by high-level language compilers . Thus , you can make complete
programs by combining MASM object modules with object modules created by
cc , the XEN I X C language compiler , or other language compilers .

THE MACRO ASSEMBLER

The Macro Assembler is a two-pass assembler . This means that the source
file is assembled twice , but slightly different actions occur dur ing
each pass . See the figure entitled "Pass l and Pass 2", which
illustrates the following description .

During the first pass , the assembler :

evaluates the statements and expands macro call statements

calculates the amount of code it will generate

builds a symbol table where all symbols , variables , labels , and
macros are assigned values

During the second pass, the assembler :

1-1

fills in the symbol , variable , label , and expression values from the
symbol table

expands macro call statements

emits the relocatable object code into a file with the default
filename extension . o .

Assembler L istings

MASM creates , on optional command , two types of l isting file :

A normal l isting file

A cross-reference fil e .

See the figure entitled "Files That The Macro Assembler Produces" , which
illustrates the following description .

The normal l isting file contains the beginning relative addresses
(offsets from segment base) assigned to each instruction , the machine
code translation of each statement (in hexadecimal values) , and the
statement itse l f . The l isting also contains a symbol table which shows
the values of all symbols , labels , and var iables , plus the names of all
macros . The l isting file receives the default filename extension . !st .

1-2 MS-MACRO ASSEMBLER lNlER XENIX V REFERENCE MAN.IAL

(

I NTRODUCTION

PASS 1

source
. asm

l Statement
Statement

macro cal l

MASM ... ---

1 ---
Statement

Symbol--def

Symbol --def
variable--def
var iable--def

label--def
macro name

PASS 2

source symbol
. asm

table

J � MASM

1
object

. o

F�g . 1-1 Pass 1 and Pass 2

.. I
exact
of cod
genera

I

amount
e to be
ted

1-3

The cross-reference file is generated using the MASM -c option , and
contains a compact representation of variables , labels and symbols . The
cross-reference file receives the default filename extension . cr f . When
this cross-reference file is processed by cre f , the XENIX cross reference
utility , the file is expanded into an expanded symbol table that lists
all the variables , labels , and symbols in alphabetical order ; followed by
the l ine number in the source program where each is defined ; followed by
the line numbers where each is used in the program .

source
. asm

MASM
l i sting

(norma l) �
. 1st �

l i sting (cross-ref)
�

.crf

obj ect l isting
. o . ref

Fig . 1-2 Files That The Macro Assembler Produces

FEATURES OF THE MACRO ASSEMBLER

CREF

The XENIX Macro Assembler is a very power ful assembler and incorporates
many features usually found only in large computer assemblers . Macro
assembly , conditional assembly , and a variety of assembler directives
provide all the tools necessary to der ive full use and full power from
the microprocessor .

RELOCATABLE OBJECT CODE
The Macro Assembler produces relocatable object code . Each instruction
and directive statement is given a relative offset from its segment base .
The assembled code can then be linked using the ld utility to produce
relocatable , executable object code . Relocatable code can be loaded
anywhere in memory . Thus , the program can execute where it is most
e fficient , instead of in some fixed range of memory addresses .

1-4 MS-HACRO ASSEMBLER UNDER XENIX V REfERENCE MANUAL

INTROOUCT ION

PROGRAM MODULES

In addition , relocatable code means that programs can be created in
modules , each of which can be assembled , tested , and perfected
individual l y . This saves recoding t ime because testing and assembly are
performed on smaller pieces of program code . Also , all modules can be
error-free before being l inked together into larger modules or into the
whole program .

See the figure entitled "The Assembly Process" , which i llustrates the
above descr iption .

+ +
MOD 1 MOD 2

I + ,.
MASM

NO Does module assemble
correctly?

LD

full or part
program f i l e

Fig . 1-3 The Assembly Process

+
MOD 3

I
Individual m
can be edited

odules

and
il they
y

assembled unt
work correctl

check

When the i nd i

modules a r e r
they can be 1
singly or int
more larger m

vidual

ead y ,
inked
o one or
odules

1-5

MACRO CALLS

The Macro Assembler permits the wr iting of blocks of code for a set of
frequently used instructions . The need for receding these instructions
each t ime they are required in the program is thus eliminated .

Such blocks of code are called macros . The instructions are the macro
definition . Each time the set of instructions is needed , only a simple
"call" to a macro is placed in the source file . The Macro Assembler
expands the macro call by assembling the block of instructions into the
program automatically . The macro call also passes parameters to the
assembler for use during macro expansion . The use of macros reduces the
size of a source module because the macro definitions are given only
once ; other occurrences are one-line calls .

Macros can be "nested , " that i s , a macro can be called from inside
another macro block . Nesting of macros is limited only by memory .

See the figure entitled "Assembler Macros" , which illustrates the above
description .

Statenoent
Statement
Statenoent
""'cro call
Statement r--

+
nanoe HACRO X

>-
ENDH

nanoe HACRO X

riame 1 , 2

ENDH

Fig . 1-4 Assembler Macros

When the assembler
encounters a .aero
cal l , it finds the HACRO
block and replaces the
call �ith the block of
statements that define
the ���aero

Nestect HACRO cal l :
name defined e lse�here
as a macro, is "expanded"

during asse.bly, as
sho�n above

The macro facility includes repeat , indefinite repeat , and indefinite
repeat character directives for programming repeat block operations . The
MACRO directive can also be used to alter the action of any instruction

1-6 MS-MACRO ASSEMBLER UNDER XEN I X V REFERENCE MANUAL

INTRODUCTION

or directive by using its name as the macro name . When any instruction
or directive statement is placed in the program , MASM first checks the
symbol table it created to see if the instruction or directive is a macro
name . I f it is , MASM "expands" the macro call statement by replacing it
with the body of instruct ions in the macro ' s definition . I f the name is
not defined as a macro , MASM tries to match the name with an instruction
or directive . The MACRO directive also supports local symbols and
conditional exit ing from the block if further expansion is unnecessary .

INSTRUCTIONS AND DIRECTIVES

Instructions and Direct ives are Macro Assembler statements . A statement
is a specification to MASM as to what action to per form statements may be
divided into three types :

Macro calls : these are translated by MASM to become Instructions or
Statements

Instructions : these are translated by MASM to become machine
instruction code , which the micro-processor obeys

Directives : these define , give information and direct MASM . They
are not translated into machine instruction code .

The Macro Assembler also supports an expanded set of conditional
directives which are often used within macro definitions . Directives for
evaluating a variety of assembly conditions can test assembly results and
branch where required . Unneeded or unwanted portions of code will be
left unassembled . The Macro Assembler can test for blank or nonblank
arguments , for defined or undefined symbols , for equivalence , for first
assembly pass or second , and can compare strings for identity or
difference . Conditional error directives test for a specified condition
and generate an error message , if the condition is true . Both kinds of
conditional directives only test assembly time conditions .

The Macro Assembler ' s conditional assembly facility also supports the
nesting of conditionals . Conditional assembly blocks can be nested up to
255 levels . See the figure entitled "Conditional Statements" , which
illustrates the implementation of conditional assembly blocks .

1-7

If the condition in the ------.
expression (shown by
< exp true >) is true.
the IF block i s
assembled u p t o
ELSE, then skips to
ENDIF. If no ELSE,
the I F block simply
assembles the whole
conditional block.

IF

I F

statement
statement
statement t---
IF < exp true > I +--

ELSE

END IF
statement
statement

+-

]

I I the condition in the
expression is false.
Macro Assem b l e r
skips t o ELSE, then
resumes assembly at
the next statement.
If ELSE is not used,
the IF block skips to
ENDIF and resumes
assembly with next
statement.

I :NOW I
Nesting of conditionals
is al lowed up to 255
levels.

ELSE

ENDIF

ENDIF

Fig . 1-5 Conditional Statements

1-8 MS-MACRO ASSEMBLER UNDER XEN I X V REfERENCE MANUAL

I NTRODUCT ION

INSTRUCTIONS

I nstructions tell the command processor to perform some action . An
1nstruct1on may have the data and/or addresses it needs built into it , or
data and/or addresses may be found in the expression part of an
instruction . For example :

01'(00[II:: II DATA II :l 01'(01)[

i t
SLPPLIED Sl.f"PLlED CHI: FOUNJ

supplied

found

part of the instruction

data and/or
information
statements.
action of an

address inserted
provided by

(Opcode equates
instruction)

by the assembler from the
expressions in instruction

to the binary code for the

Note that this manual does not contain detailed descr iptions of
instruction mnemonics and their characteristics . For this , you will need
to consult other manuals , either the 8086 Assembler Reference Manual or
the 80286 Assembly Language Reference Manual .

Note that the instruction set directives enable the instruction for the
given microprocessor (see Chapter 4 for more details) .

Appendix A contains an alphabetical listing of the instruction mnemonics .

The actual machine instruction code generated can depend on the type of
its operands . Some instructions take only one type of operand . Other
instructions can take several types of operands .

Single Type Operand Instructions

I f you enter a typeless operand such as :

push [bx]

[bx] has no size , but PUSH only takes a word . The correct machine
instruction code is generated , but a warning error message is given .

Multiple Type Operand Instructions

When the wrong type choice is given , the MASM displays an error message
but generates the "correct" code . That is , it always outputs
instructions , not j ust NOP instructions . For example , if you enter :

mov al , wordlbl

1-9

you may have meant one of the following three instructions :

1 . mov ax , wordlbl

2 . mov al , byte ptr wordlbl

3 . mov al , <other>

MASM generates instruction (2) because it assumes that when you specify a
register , you mean that register and that size ; therefore , the other
operand is the "wrong size" . MASM accordingly modifies the "wrong"
operand to fit the register size (in this case) or the size of whatever
is the most likely "correct" operand in an expression . This el iminates
some mundane debugging chores . An error message is still returned ,
however , because you may have mis-stated the operand MASM assumes is
"correct" .

DIRECTIVES

Directives give the assembler directions and information about input and
output , memory organization , conditional assembly , l isting and cross­
reference contro l , and definitions .

The directives have been divided into groups by the function they
perform . Within each group , the directives are described alphabetically .

The groups are as shown below :

GROUP

Instruction Set
Directives

Memory Directives

Conditional Directives

MEANING

Directives in this group enable the instruction
sets for the given microprocessor s . See
Chapter 4 for details .

Directives in this group are used to define the
organization that a program ' s code and data
will have when loaded into memory . See Chapter
4 for details .

Directives in this group are used to test
conditions of assembly before proceeding with
assembly of a block of statements . This group
contains all' of the I F (and related)
directives . See Chapter 5 for details .

1-10 MS-MACRO ASSEHBL.ER LHlER XENIX Y REfERENCE MANUAL

I NTRODUCT ION

Macro Direct ives

File Control and
Listing Control
Directives

Directives in this group are used to create
blocks of code called macros . This group also
includes some special operators and directives
that are used only inside macro blocks . The
repeat directives also are considered macro
directives for descriptive purposes . See
Chapter 6 for details .

Directives in this group
the format and , to some
source and object files ,
assembler produces .
details .

are used to control
extent , the content of
and l istings that the
See Chapter 7 for

Appendix B contains a summary of all the directives .

1-11

2 . ELEMENTS OF THE ASSEMBLER

ABOUT THIS CHAPTER

The first part of this chapter describes the set of legal characters
available for the writing of MASM source code . The syntax of constants
and identifiers are described in the following part . The final section
of the chapter describes the syntax of statements and comment s . These are
the elements of the assembler source code .

CONTENTS

INTRODUCTION 2-1

CHARACTER SET 2-1
CONSTANTS 2 - 1
INTEGERS 2-1
RANGE AND PRECISION OF INTEGERS 2-2
REAL NUMBERS 2-3
RANGE AND PRECISION OF REALS 2-4

IMPLEMENTATION OF FORMATS 2-5
ENCODED REAL NUMBERS 2-6
RULES FOR FORMATION 2-6
PACKED DECIMAL NUMBERS 2-7

CHARACTER AND STRING CONSTANTS 2-8

IDENTIFIERS 2-8
NAMES 2-9
RESERVED NAMES 2-9
STATEMENTS AND COMMENTS 2-10
STATEMENTS 2_.10
COMMENTS 2-11
COMMENT DIRECTIVE 2-12

ELEMENTS Of THE ASSEMBLER

INTROOUCTION

All assembly language programs consist of one or more statements and
comments . A statement or comment is a combination of character s , numbers ,
and names . Names and numbers are used to identify values 1n instruction
statements . Characters are used to form the names or numbers , or to form
character constants .

CHARACTER SET

MASM recognizes the following character set :

A B C 0 E f G H I J K L M N 0 P Q R S T U V W X Y Z
a b c d e f g h i j k 1 m n o p q r s t u v w x y z
0 1 2 3 4 5 6 7 8 9
? @ $: . [] () < > { } + - / if & �i ! · � I e = # "' ; ,

CONSTANTS

A constant is an invariable value . The usage of constants as operands
depends on the operator context . Check the particular instruction or
directive in Appendix A, "Instruction Summary" , or Appendix B, "Directive
Summary".

INTEGERS

An integer is a whole number . The maximum size of an integer depends on
its storage bit size .

Syntax

digits
digitsB
digitsQ
digit sO
digitsD
digitsH

An integer is a combination of binary , octa l , decimal or hexadecimal
digits and an optional radix . The digits are a combination of one or more
digits of the specified radi x , B, Q , 0 , 0 or H . I f no radix is given ,
MASM uses the current default radix ; see "Note" , below . The following
table defines which number base relates to each radix .

2-1

CONSTANT TYPE

Decimal
(Base 10)

Binary
(Base 2)

Octal
(Base 8)

Hexadecimal
(Base 16)

Note

RULES FOR FORMATION

A sequence of digits 0 through 9 , optionally
followed by the letter D

A sequence of Os and ls followed by the letter B .

A sequence o f digits 0 through 7 followed by
e ither the letter 0 or the letter Q .

A sequence o f digits 0 through 9 and/or letters A
through F followed by the letter H . (Sequence
must begin with 0 through 9 to distinguish
hexadecimal numbers from symbols) .

The default radix can be changed by the RADIX directive . I f the radix is
changed Decimal digits must be followed by the letter D , while the new
default radix digits do not need to be followed by a letter .

Examples

OlOllOlOB
132Q
SAH
90D
OllllB
170
OFH
lSD

Range and Precision of Integers

The 8086/8088/80286 can operate on signed and unsigned integers in a byte
(8-bits) and in a word (16-bits) .

The 8087/80287 can operate on signed integers in a word (16-bits) , in a
double-word (32 bits) and in a quad-word (64 bits) . The following table
shows the range and precision of integers for different word lengths and
formats :

2-2 HS-MACRO ASSEMBLER UNDER XENIX V REfERENCE MANUAL

(

(

(

ELEMENTS Of THE ASSEMBLER

FORMAT WORD APPROXIMATE SIGNIF ICANT
LENGTH RANGE DIGITS (DECIMAL)

UNSIGNED 8 0 through 255 2 to 3

SIGNED 8 -128 through 127 2 to 3

UNSIGNED 16 0 through 65535 4 to 5

S IGNED 16 -32768 through 32767 4 to 5
(WORD I NTEGER)

UNSIGNED 32 0 through 4, 294 , 967 , 295 9 to 10

S IGNED 32 -2 E9 through 2 E9 9
(SHORT INTEGER)

UNSIGNED 64 0 through 1 . 84El9 (approx .) 19 to 20

SIGNED 64 -9 El8 through 9 E l8 18

Note

Unsigned 8 and 16 bit unsigned integers can be signed extended . Place
the 8 bit unsigned integer in AL and the Sign in AH (FFH is equivalent to
negative , and OOH is equivalent to positive) . Or place the unsigned 16
bit integer in AX and the sign in OX (FFFFH is equivalent to negative and
OOOOH is equivalent to positive) . You can then use the signed integer
multiplication or division instruction IMUL or IDIV . See Appendix A
"Instruct ion Summary" for operand details . This e ffectively doubles the
range of these numbers .

REAL NUMBERS

Real numbers have non-ordinal values of a given range and precision .

A real number constant can be set using the following exponential
notation .

Syntax

[+/-] digits . digits [E [+/ -] digits]

2-J

Where

digits Can be any combination of decimal digits

The digits before the decimal point are the integer part . The digits
after the decimal point are the decimal fraction part . The digits after
the E are the exponent . I f the real number has an exponent , there is no
need to have a decimal point and a decimal fraction .

Note

The constant will be stored in the old Microsoft format for reals , unless
the code is assembled with the -R or -E options . When the -R or -E option
has been used all real numbers arestored using I EEE formats . The range
depends on the word length of the real .

Range and Precision of Reals

Real constants can be allocated by DD or DQ directives :

DD allocates 32 bits (two words) for a single precision real

DQ allocates 64 bits (four words) for a double precision real

The following table shows the range and precision of reals for different
word lengths and formats :

FORMAT

Microsoft
Single Precision

Microsoft
Double Precision

IEEE
Singe Precision
-short real

I EEE
Double Precision
-long r·eal

WORD
LENGTH

32 bits

64 bits

32 bits

64 bits

APPROXI MATE
RANGE FOR
POSIT IVE NUMBER.S

3 . 0E-39 to 1 . 7E38

3 . 0E-39 to 1 . 7E38

l . l75E-38 to 3 . 40E38

2 . 23E-308 to 1 . 80E308

(DECIMAL DIGITS)

6 to 7

16 to 17

7 to 8

15 to 16

2-4 MS-MACRO ASSEMBLER U R XENIX Y REFERENCE MANUAL

ELEMENTS Of THE ASSEMBLER

Note

Negative numbers have the same range , but with the s igns reversed . For
example for the IEEE long real the negative numbers can range from
approximately -1 . 80E308 to approximately -2 . 23E-308 .

Examples

25 . 23
2 . 523El
2523 . 0E-2

Implementation of Formats

HIGH ADDRESS

EXPONENT (BIAS OF 1 29)

32 25

LOW ADDRESS

SIGN BIT
0 = +ve NORMALIZED SIGNIFICANO
1 = -ve (MANTISSA)

24 23
F i g . 2-1 Microsoft Single Precision Format

HIGH ADDRESS LOW ADDRESS

SIGN BIT

EXPONENT (BIAS OF 1 29� 0 = +Ve NORMALIZED SIGNIFICANO
1 = -ve (MANTISSA)

64 57 56 55

F i g . 2 - 2 Microsoft Double Precision Format

Hit:H ADDRESS

SIGNIFICANO SIGNIFICAND (MANTISSA)

SIGN BIT EXPONENT (SIAS OF 1 27) NORMALIZED WITH IMPLICIT

0 = +ve INTEGER BIT (ALWAYS 1 AND
1 = -ve DE�IMAL POINT FOLlOWING)

32 31 24 23

F i g . 2-3 I EEE Short Real (Single Precision) Format

LOW ADDRESS

2-5

Note that zero is represented by all the exponent and significant bits
being set to zer o .

HIGH ADDRESS

SIGNIF�CAHD ! SIGNIFIC�ND (KANTISSA)

LOW ADDRESS

S l GN BIT !EXPONENT 0 = +ve
1 = -ve

(BIAS OF 1023) NORMALIZED WITH IMPLICIT INTEGER
BIT (ALWAYS 1 AND DECIMAL POINT
t'OLLOWING) ·

64 63 53 52

Fig . 2-4 I EEE Long Real (Double Precision) Format

Note that zero is represented by all the exponent and significant bits
being set to zero .

ENCODED REAL NUMBERS

An encoded real is a hexadecimal real number of 8 , 16 or 20 digits , which
represents a real number in encoded form .

Rules for formation

A sequence of digits 0 through 9 and/or letters A through F followed by
the letter R . The sequence must begin with 0-9 . Total number o f digits
must be 8, 16 or 20 digits except if a leading zero is supplied then the
total number of digits must be 9, 17 or 21 digits .

Note

An encoded real number has a sign , a biased exponent , and a mantissa .
These values are encoded as bit fields within the number . The exact size
and meaning of each bit field depends on the number of bits in the
number .

Encoded real numbers can only be used with the following directives :

DIRECTIVE HEXADECI MAL DIGITS

DD 8 (9 , with leading 0)
DQ 16 (17 , with leading 0)
DT 20 (2 1 , with leading 0)

2-6 MS-MACRO ASSEHBLER IJN)[R XENIX Y REFERENCE MAtt.JAL

....._ __ �E!...!lE..uH!h!EN.l..!.T.::t....S Of THE ASSEMBLER

Examples

DIRECT IVE

DD
DQ

ENCODED REAL NUMBERS

3FBOOOOO
3FFOOOOOOOOOOOOO

PACKED DECIMAL NUMBERS

DECIMAL EQUIVALENT

1 . 0
1 . 0

A packed decimal number to be stored using Binary Coded Decimal
conventions in ten bytes .

Syntax

[+ i -] digits

Where

digits

Note

Can be any combination of decimal digits . There is a
maximum of 18 digits .

The leading byte is the sign byte , the high order bit is 0 for positive
values and 1 for negative values .

Packed decimals can only be used with the DT directive

Examples

DIRECTIVE

DT
DT

PACKED DECIMAL

1234567890
-1234567890

BCD

00000000001234567890
80000000001234567890

2-7

CHARACTER AND STRING CONSTANTS

A character constant consists of a single ASC I I character .

A string constant consists of one or more ASCI I characters :

Syntax

{ ' I " } character [character . . .] { ' I "}

Where

character This is any ASC I I character

Note

Opening and closing quotes must match .

String constants are case sensitive

To use quotations marks l iterally escape them by using quotation marks
twice .

Examples

' a '
' ab '
"a"
"This is a message"
"specified '"'value"" not found"
' Can' ' t find the file '

IDENTIFIERS

An identi fier name is used to identi fy :

a segment

a group

a variable

a label

a constant defined with an EQU directive or equal s ign (=) operator .

2-8 MS-MACRO ASSEMBLER UNDER XEN I X V REFERENCE MANUAL

(

ELEMENTS OF THE ASSEMBLER

NAMES

An identifier is a combination of letter s , digits and special characters .

Syntax

. l letter l _ l ? l $ l @ [letter l digit l _ l ? l $ l @) . . .

Note

Only 31 characters are significant , the maximum number of characters are
255 . A name must begin with a letter , an underscore (_) , a question mark
(?) , a dollar sign ($) , or an "at" s1gn (@) . All lowercase letters are
converted to uppercase by MASM unless the -Ml option is used dur ing
assembly or unless the name is declared with a PUBL I C or EXTRN directive
and the -Mx option is used during assembly .

Examples

subrout3
Array
_main

RESERVED NAMES

A reserved name is any name that has a special , predefined meaning to the
assembler . Reserved names include instruction and directive mnemonics ,
register names , operator names and special characters . These names can
be used only as defined and must not be redefined .

All upper- and lowercase combinations of these names are treated as the
same name . For example , the names Length and LENGTH are the same name for
the LENGTH operator .

The following l ists all reserved names except instruction mnemonics . For
a complete list of instruction mnemonics , see Appendix A, "Instruction
Summary" .

2-9

Reserved Names

��OUT DQ
. 286c DT
. 287 DWORD
. 8087 ELSE
AH ENDIF
AND ENDP
AX EQ
BL ES
BX E X I TM
CH FAR
COMMENT GROUP
CS H IGH
DB IF!
DH IFB
DL I FDIF

IF IDN QWORD
IFNDEF RECORD
IRP . SALL
LABEL SEGMENT
LE SHL
. LFCOND SHR
LOCAL S I Z E
L T 55
MASK SUBTTL
NAME . TFCOND
NEAR T I TLE
OFFSET . TYPE
ORG WORD
PROC . XCREF
PUBL IC XOR

STATEMENTS AND COMMENTS

. 186

. 286p

. 8086

AL
ASSUME
BH
BP
BYTE
CL
. CREF
ex
DO
DI
IFE

OS
ow
ox
END
ENDM
ENDS
EQU
EVEN
EXTRN
GE
GT
IF
IF2
I FDEF
PURGE

IFNB . RADIX
INCLUDE REPT
IRPC SEG
. LALL . SFCOND
LENGTH SHORT
. L I ST SI
LOW SP
MACRO STRUC
MOD TBYTE
NE THIS
NOT TYPE
OR WIDTH
PAGE . XALL
PTR . X L I ST

The syntax for Statements and Comments are described in the following
sections .

STATEMENTS

A statement represents an action to be taken by the assembler , such as
generating a machine instruction or generating one or more bytes of data .

Syntax

[name] mnemonic [operand] . . .] [; comment]

Where

name This is an identi fier name

mnemonic This is a directive or an instruction

operand This is a variables or constants . The exact syntax
depends on the directive or instruction .

comment This is a combination of characters terminated by <CR>
<LF> .

2-10 MS-MACRO ASSEMBLER UNDER XENIX V REFERENCE MANUAL

ELEMENTS Of THE ASSEMBLER

Note

Statements have the following formatting rules :

A statement can begin in any column .

A statement must not be more than 126 characters in length and must
not contain an embedded newline character . This means continuing a
statement on multiple l ines is not allowed .

A statement must be terminated by a <CR> <LF> .
last statement in the source file .

Examples

count db 0
mov ax , bx
assume cs :_tex t , ds : DGROUP

_main proc far

COMMENTS

This includes the

Comments descr ibe the act ion of a program at the given point , but are
otherwise ignored by the assembler and have no effect on assembly .

Syntax

text

Where

text

Note

can be any combination of characters preceded by a
semicolon (;) and terminated by an embedded carriage­
return/line-feed combinat ion .

Comments can be placed anywhere in a program , even on the same l ine as a
statement . However , if the comment shares the l ine with a statement , it
must be to the r ight of all names , mnemonics , and operands . A comment
following a semicolon must not continue past the end of the l ine on which
it begins ; that i s , it must not contain any embedded <CR> <LF>
combination characters . For very long comments , the COMMENT directive
can be used .

Examples

This comment is alone on a line
mov ax , bx ; This comment follows a statement

Comments can contain reserved words like PUBLIC

COMMENT DIRECTIVE

Causes MASM to treat all text between delimiter and delimiter as a
comment . Usually used for multiple-line comments .

Syntax

COMMENT delimiter text delimiter

Where

delimiter Any legal character

text

Note

Any legal characters not containing delimiter ,
can be one or more lines .

Text is treated as comment and are ignored by MASH

Examples

comment *

*

This comment continues until the
next asterisk .

The preceding and following examples illustrate how blocks of text can be
designated as comments .

comment +
The assembler ignores the
following MOV statement

+ mov ax , 1

2-12 MS-MACRO ASSEMBLER UNDER XENIX V REFERENCE MANUAL

3 . OPERANDS , OPERATORS AND EXPRESSIONS

(

ABOUT THIS CHAPTER

The first part of this chapter describes the syntax and meaning of MASM
operands . The next section is a systematic description of the eleven
types of MASM operator . F inally expression evaluation and precedence ,
forward ;reference and strong typing are described .

CONTENTS

I NTROOUCT ION 3-1

OPERANDS 3-1

CONSTANT OPERANDS 3-1

DIRECT MEMORY OPERANDS 3-2

RELOCATABLE OPERANDS 3-3

LOCAT ION COUNTER OPERANDS 3-4

REGI STER OPERANDS 3-4

FLAG REGISTER 3-5

BASED OPERANDS 3-6

INDEXED OPERANDS 3-7

BASED- I NDEXED OPERANDS 3-9

STRUCTURE OPERANDS 3-10

RECORD OPERANDS 3-11

RECORD-FIELD OPERANDS 3-12

OPERATORS AND EXPRESSI ONS 3-13

ARITHMET IC OPERATORS 3-13

RELAT IONAL OPERATORS 3-15
LOGICAL OPERATORS 3-16

EXPRESSI ON EVALUATION 3-17

PRECEDENCE OF OPERATORS 3-17

I NDEXED MEMORY OPERANDS 3-lB

ATTRIBUTE OPERATORS 3-19

OVERRIDE OPERATORS 3-19

: (COLON) (SEGMENT OVERRIDE) 3-19

PTR (POINTER) 3-21

SHORT 3-23

THIS 3-23

H IGH , LOW 3-24

VALUE RETURNING OPERATORS 3-25

SEG 3-15

OFFSET 3-26

TYPE 3-27

. TYPE 3-27

LENGTH 3-28

S I ZE 3-29

RECORD SPEC I F I C OPERATORS 3-30

SHI FT_COUNT 3-31

W IDTH 3-32

MASK 3-32

EXPRESSION EVALUATION AND PRECEDENCE 3-34

OPERATOR PRECEDENCE 3-34

FORWARD REFERENCES 3-35

STRONG TYPING FOR MEMORY OPERANDS 3-37

OPERANDS , OPERATORS AND EXPRESSIONS

INTRODUCTION

This chapter descr ibes the syntax and meaning of operands and expressions
used in assembly language statements and directives . Operands represent
values , registers , or memory locations to be acted on by instruct ions or
directives . Expressions combine operands with arithmetic , logical ,
bitwise , and attribute operators to calculate a value or memory location
that can be acted on by an instruction or directive. Operators indicate
what operations will be performed on one or more values in an expression
to calculate the value of the expression .

OPERANDS

An operand is a constant , labe l , variable , or other symbol that is used
in an instruction or directive to represent a value , register , or memory
location to be acted on .

These are the available operand types :

l . Constant

2 . Direct Memory

3 . Relocatable

4 . Location Counter

5 . Register

6 . Based

7 . I ndexed

8 . Based-Indexed

9 . Structure

10 . Record

1 1 . Record-Field

CONSTANT OPERANDS

This operand is or evaluates to a fixed value .

Syntax

number l string l constant_identi fier l expression

3-1

Where

number

string

constant
identi fier

expression

Remarks

An invariable value , as described in
"Constants" in Chapter 2 .

the section

Consists of one or more ASC I I characters enclosed in
quotes , as described in the section "Character and String
Constants" in Chapter 2 .

A constant defined with an EQU directive or equal-sign
(=) operator .

A legal expression that evaluates to a number or string
constant .

Constant operands , unlike other operands , represent values to be acted
on , rather than memory addresses .

Examples

mov ax , 9 9 is an integer constant

mov a l , ' C ' c is a character or string constant

mov bx , 65535/3 65535/3 is an expression

mov ex , count count is a constant-identifier , previously
defined as count = 10

DIRECT MEMORY OPERANDS

This operand represents the absolute memory address of one or more bytes
of memory .

segment : offset

Where

segment

offset

Can be a segment register (CS, DS , ss· or ES) , a segment
name or a group name .

Must be an integer , a constant-identifier , expression , or
a symbol that is or evaluates to a value from 0 through

OPERANDS , OPERATORS AND EXPRESSI ONS

6553 5 .

Examples

mov dx , ss : 0031H 0031H is an integer constant

mov bx , data : O data i s a segment name

mov ex , DGROUP: block DGROUP is a group name block is a constant­
identifier or a symbol .

RELOCATABLE OPERANDS

This operand is any symbol that represents the memory address (segment
and offset) of an instruction or of data to be acted upon .

Syntax

symbol

Where

symbol Can be a labe l , variable name , segment or group name .

Remarks

Relocatable operands , unlike direct-memory operands , are relative to the
start of the segment or group in which the symbol is defined and have no
explicit absolute address , until the program has been l inked .

Examples

call main main is a relocatable operand

mov bx , local value is a relocatable operand

mov bx , offset DGROUP : table returns the offset value within DGROUP .
This is a relocatable operand

mov ex , count count has been previously defined with
the OW directive ; it is therefore a
relocatable operand

3-3

LOCATION COUNTER OPERANDS

This is a special operand that during assembly , represents the current
location within the current segment .

Syntax

$

Remarks

The location counter has the same attributes as a near labe l . I t
represents an instruction address that i s relative t o the current
segment . I ts offset is equal to the number of bytes generated for that
segment to that point . After each statement in the segment has been
assembled the assembler increments the location counter by the number of
bytes generated .

Example

target equ $
mov ax , l

jmp target

REGISTER OPERANDS

This is the reserved name of a CPU register .

Syntax

registername

Where

3-4 MS-MACRO ASSEMBLER UNDER XENIX V REFERENCE MANUAL

OPERANDS , OPERATORS AND EXPRESSI ONS �----------------

registername

AX
BX
e x
o x
AH
BH
CH
OH

AL
BL
CL
OL

cs
OS
55
ES

BX
BP
SI
o r

SP

Flag Register

TYPE

16-bit general purpose register . They can be
used for any data or numeric manipulation .

8-bit high registers of the preceding general
purpose registers .

8-bit low registers of the preceding general
purpose registers .

16-bit segment registers . They contain the
current segment address of the code data , stack
and extra segment , respectivel y . A l l instruction
and data addresses are relatable to the segment
address in one of these register s .

16-bit base and index registers . These are
general-purpose registers typically used for
programs to program data . By default in address
expressions : BP is relative to 55 ; BX , SI and OI
are relative to OS ; except OI is relative to ES
for string expressions

16-bit stack pointer register , it contains the
current top-of-stack address . This address is
relative to 55 and is automatically modified by
instructions that modify the stac k .

This register i s unnamed . I t i s a 16-bit register containing nine 1-bit
flags as defined in the following table :

3-5

FLAG BIT

0
2
4
5
6
7
9

10
1 1

MEANI NG

Carry flag
Parity flag
Auxiliary flag
Trap flag
Zero flag
Sign flag
Interrupt-enable flag
Direction flag
Overflow flag

Although this register has no name , the contents of the register can be
accessed using the LAHF , SAHF , PUSHF and POPF instructions . See Appendix
A for more details .

BASED OPERANDS

This operand represents a memory address relative to one of the base
registers . All the following syntaxes are equivalent :

Syntax

[displacement) indirect-baseregister

or

opening-bracket baseregister + displacement closing bracket

or

indirect-baseregister . displacement

or

indirect-baseregister + displacement

Where

displacement Any immediate or direct-memory operand . In
Syntax 1 , if no displacement is given , its
value is assumed to be 0 .

indirect-baseregister opening-bracket baseregister closing-bracket

3-6 MS-MACRO ASSEMBLER UNDER XENIX V REFERENCE MANUAL

(

OPERANDS , OPERATORS AND EXPRESSIONS

opening-bracket The actual bracket ' ['

clos1.ng-bracket The actual bracket ') '

baseregister Can be :

BP The operand ' s address is relative to the
segment pointed to by the 55 register .

BX The operand ' s address is relative to the
segment pointed to by the OS register .

Remarks

The operand evaluates to a memory address which is the sum of the
displacement and the contents of the given baseregister .

Examples

mov ax , [bp)

mov ax , [b x]

mov ax , 1 2 [bx)

mov ax , fred [bp)

INDEXED OPERAI'llS

The contents of the stack pointed to by SS : BP are
moved into ax

The contents of the address pointed to by DS : BX
are moved into ax

The contents of the address pointed to by
DS (BX+l2) are moved into ax

The contents of the address pointed to by
SS : (BP+fred) are moved into ax . Fred must have
an integer value

This operand represents a memory address relative to one of the index
registers .

Syntax

[displacement) indirect-indexregister

or

opening-bracket indexregister+displacement closing-bracket

or

3-7

indirect-indexregister . displacement

or

indirect-indexregister+displacement

Where

displarement Any immediate or direct-memory operands . In
Syntax 1 , if no displacement is given , its value
is assumed to be 0 .

indirect-indexregister opening-bracket indexregister closing-bracket

opening-bracket

closing-bracket

index register

Remarks

The actual bracket ' ['

The actual bracket '] '

Can be :

S I The operand ' s address is relative to the segment
pointed to by the OS register .

O I The operand ' s address is relative to the segment
pointed to by the OS register , except where the
operand is used in string manipulating
expressions , string . When the operand is used in
string the operand is used in string expressions
the operand ' s address is relative to the segment
pointed to by the ES register .

The operand evaluates to a memory address which is the sum of the
displacement and the contents of the given index register .

Examples

mov ax , [s i] The contents of the address pointed to by OS : S I
are moved into ax

mov ax , [di] The contents of the address pointed to by OS : O I
are moved into ax

mov ax , 1 2 [d i] The contents o f the address pointed to by
OS : (OI+l2) are moved into ax

mov ax , fred [s i] The contents o f the address pointed to by

3-8 M5-MACRO ASSEMBLER R XENIX V REfERENCE MANUAL

(

OPERANDS , OPERATORS AND EXPRESS IONS

BASED-INDEXED OPERANDS

DI : (Sl+fred) are moved into ax . Fred must have
an integer value

This operand represents a memory address relat ive to any combination of
base and index registers .

Syntax

[displacement] indirect_basepointer indirect_indexregister

or

opening-bracket basepointer+indexregister+displacement closing-bracket

or

opening bracket basepointer+indexregister closing_bracket . displacement

or

indirect_basepointer+indirect_indexregister+displacement

Note

See the previous sections "Based Operands" and "Indexed Operands" for an
explanation of the syntax .

Remarks

The effective address is the sum of the contents of the given registers
and the displacement .

Warning

Either base register can be combined with either index register , but
combining two base or two index registers is not allowed .

Examples

mov ax , [bp] [s i]

mov ax , [bx+d i]

The contents of the stack pointed t o by
SS : (BP+Sl) are moved into ax

The content s of the address pointed to by

J-9

I

�

DS : (BX+DI) are moved into ax

mov ax , 12 [bp+di] The contents of the address pointed
DS : (BP+Dl+l2) are moved into ax

tC' by

mov ax , fred [bx] [si] The contents of the address pointed to by
DS : (BX+SI+fred) are moved into ax

mov ax , fred [bx] [bp] Error - base registers combined

mov ax , fred [di] [si] Error - index registers combined

STRUCTURE OPERANDS

This operand represents the memory address of one member of a structure .

Syntax

variable . field

Where

variable

field

Remarks

The name of a structure or a memory operand ,
which resolves to the address of a structure .

The name of a field within that structure .

This is the "Structure Field Operator" . See the
relevant section in "Operators and Expressions"
for more details .

The effective address is the sum of the offsets of variable and field .
The address is relative to the sPgment or group in which the variable is
defined .

See the STRUC directive in Chapter 4 for an example .

Examples

In this example , "current_date" is assumed to be the structure defined in
the following :

date struc

OPERANDS , OPERATORS AND EXPRESSIONS

month dw ?
day dw ?
year dw ?

date ends
current_date date < ' ja ' , ' 01 ' , ' 85 ' >

This structure is used in the following example :

mov ax , current_date . day
mov current_date . year , ' 86 '

The next example shows how structure operands can b e used t o access
values on the stack :

stframe
retadr
dest
source
nbytes

stframe

copy

copy

struc
dw ?
dw ?
dw ?
dw ?
ends

proc
mov
mov
mov
mov
mov
mov
rep
ret
endp

near
bx , sp
ax , ds
e s , ax
di , ss �bx l . dest
si , ss bx . source
cx , ss bx . nbytes
movsb

stack frame
from lowest

. . . to highest address

push nbytes , source , dest before
load stack into base register

(es) data segment
(d i) destination
(s i) source
(e x) nbytes
move bytes from ds : s i to es : di

calling

RECORD OPERANDS

This operand refers to the value of a record type . Operands can be in
expressions .

Syntax

recordname < [value] [, [value]] . . . >

Where

recordname

value

As previously defined in a RECORD directive

The value to be placed into a field of the record .
I f more than one value is given , they must be separated
by commas . Note that the enclosing angle brackets (< >)

3-11

are required even if no value is given . I f no value is
given for a field , the default value for that field
is used .

See the RECORD directive in Chapter 4 for more details .

Examples

mov ax , encode < 1 , 3 , 2>
mov ex , key <1 , 7>

RECORD-FIELD OPERANDS

This operand represents the location of a field in its corresponding
record .

Syntax

record- fieldname

Where

record-fieldname The name of a previously defined record field .

Remarks

The operand evaluates to the bit position of the low-order-bit in the
field and can be used as a constant operand .

See the RECORD directive in Chapter 4 for an example of this operand .

Examples

These examples assume that the record "reel" has been defined as follows :

rtype record fieldl : 3 , field2 : 6 , field3 : 7
reel rtype<>

The following example copies 1 3 , the shift conunt for field! , to ax :

mov ax , fieldl

The next example copies 7 , the shift count for field2 , to cl , then uses
the address of "reel" , copied to dx , in a shift operation . Ths operation

OPERANDS , OPERATORS AND EXPRESSIONS

adjusts "reel" so that field2 is at the lowest bit :

mov dx , recl
mov c l , field2
shr dx , cl

OPERATORS AND EXPRESSIONS

An expression is a combination of operands and operators that evaluates
to a single value . Operands in expressions can include any of the
operands described in the previous section . The result of an expression
can be a value or a memory location , depending on the types of operands
and operators used .

Operators manipulate and compare operands .

ARITHME T IC OPERATORS

Eight arithmetic operators
(add , subtract , divide ,
operators . The arithmetic
an expression that results

provide
multiply ,
operators
in a data

the common mathemat ical functions
modulo , negation) , plus two shift

are used to combine operands to form
item or an address .

Except for + and - (binary) , operands must be constants.

For plus (+) , one operand must be a constant .

For minus (-) , the first (left) operand may be a nonconstant , or both
operands may be nonconstants . The r ight must be a constant i f the left
is a constant .

OPERATOR

*

I

MOD

MEANI NG

Multiply

I nteger Division

Modulo . Divide the left operand by the r ight operand
and return the value of the remainder (modulo) . Both
operands must be absolute .

Example :

mov ax , lOO mod 17

The value moved into ax will be OFH (decimal 15) .

3-13

SHR

SHL

- (Unary M inus)

+

Examples

14 * 4
14 I 4
14 MOD 4
14 + 4
14 - 4
14 - +4
14 - -4
alpha + 5
alpha - 5
alpha - beta

Shift Right . SHR is followed by an integer which
specifies the number of bit positions the value is to
be shifted right .

Example :

mov ax , llOOOOOB shr 5

The value moved into ax will be llB (03) .

Shift Left . SHL is followed by an integer which
specifies the number of bit positions the value is to
be shifted left .

Example :

mov ax , OllOB shl 5

The value moved into ax will be 01100 OOOOB (OCOlH)
0110 01100

Indicates that the following value is negative , as in a
negative integer .

Add . One operand must be a constant ; one may be a non­
constant .

Subtract the right operand from the left operand .
The first (left) operand may be a nonconstant , or both
operands may be nonconstants . But the right may be a
nonconstant only if the left is also a nonconstant
and in the same segment .

equals 56
equals 3
equals 2
equals 18
equals 10
equals 10
equals 18
adds 5 to alpha ' s offset
subtracts 5 from alpha ' s offset
subtracts beta ' s offset from alpha ' s

- - �:"::�1l";T .-::��'f:'J;:"-'

0 ! ·�-�� -�:··--·<.f:JJ..<·�-�<

OPERANDS , OPERATORS AND EXPRESSI ONS

RELATIONAL OPERATORS

Relat ional operators compare two constant operands .

I f the relationship between the two operands matches the operator , FFFFH
is returned .

I f the relationship between the two operands does not match the operator ,
zero is returned .

Relational operators are most often used with condi tional directives and
condit ional instructions to direct program control .

OPERATOR

EQ

NE

LT

LE

GT

GE

Examples

1 EO 0
1 NE 0
1 LT 0
1 LE 0
1 GT 0
1 GE 0

MEANI NG

Equal . Returns true if the operands equal each other .

Not Equal . Returns true i f the operands are not equal to
each other .

Less Than . Ret urns true if the left operand is less than
the r ight operand .

Less than or Equal . Returns true i f the left operand is
less than or equal to the • lght operand .

Greater Than . Returns true if the left operand is greater
than the right operand .

Greater than or Equal . Returns true if the left operand is
greater than or equal to the r ight operand .

false
true
false
false
true
true

3-15

LOGICAL OPERATORS

Logical operators compare two constant operands bitwise .

Logical operators compare the binary values of corresponding bit
positions of each operand to evaluate the logical relationship defined by
the logical operator .

Logical operators can be used two ways :

l . To combine operands in a logical relationship . In this case , all
bits in the operands will have the same value (either 0000 or FFFFH) .
In fac t , it is best to use these values for true (FFFFH) and false
(0000) for the symbols you will use as operands , because in
conditionals anything nonzero is true .

2 . I n bitwise operations the operation is performed on each bit in an
expression rather than on the expression as a whole . The expressions
must resolve to absolute values . In this case the logical operators
act the same as the instructions of the same name .

OPERATOR

NOT

AND

OR

XOR

MEANI NG

Logical NOT . This is a unary operator . Returns true if
right operand is false . Returns false i f right operand
is true . Bitwise it inverts the bits , and can be used
to form the l ' s complement .

Logical AND . Returns true if both operators are true .
Returns false if either operator is false or if both
are false . Both operands must be absolute values .
Bitwise it carries out a Boolean AND on the parallel
bit s .

Logical OR . Returns true if either operator i s true or
if both are true . Returns false if both operators are
false . Both operands must be absolute values . Bitwise
it carries out a Boolean inclusive OR on the parallel
bits .

Exclusive OR . Returns true i f either operator is true
and the other is false . Returns false if both
operators are true or if both operators are false .
Both operands must be absolute values . Bitwise it
carr ies out a Boolean XOR on the parallel bit s .

OPERANDS , OPERATORS AND EXPRESS IONS

Examples

NOT 1 1 1100008
0101010 18 AND 111100008
010101018 OR 111100008
010101018 XOR 111100008

Expression Evaluation

equals 00001 1118
equals 010100008
equals 111101018
equals 101001018

Expressions are evaluated higher precedence operators firs t , then left to
right for equal precedence operator s .

Parentheses can b e used t o alter precedence .

For example :

mov ax , l018 shl 2*2 mov ax , 001010008

mov ax , l018 shl (2*2) mov ax ,Ol0100008

SHL and * are equal precedence . Therefore , their functions are performed
in the order the operators are encountered (left to right) .

Precedence of Operators

All operators in a single item have the same precedence, regardless of
the order l isted within the item . Spacing and line breaks are used for
visual clarity , not to indicate functional relations .

LENGTH , S I Z E , WIDTH , MASK
Entr ies inside : parentheses ()

square brackets []
Structure variable operand : variable . field

Segment override operator : colon (:)

PTR , OFFSET , SEG , TYPE , THIS

H IGH , LOW

* , ! , MOD , SHL , SHR

+ , - (both unary and binary)

E Q , NE , LT , LE , GT , GE

Logical NOT

Logical AND

Logical OR, XOR

3-17

SHORT , . TYPE

INDEXED MEMORY OPERANDS

I ndexed memory operands use base and index registers , constants ,
displacement values , and variables , often in combination . When you
combine indexed operands , you create an address expression .

Indexed memory operands use square brackets to indicate indexing (by a
register or by registers) or subscripting (for example , FOO [S]) . The
square brackets are treated like plus signs (+) . Therefore :

arg [S] is equivalent to arg+5

S [arg] is equivalent to 5+arg

The only difference between square brackets and plus signs occurs when a
register name appears inside the square brackets . Then, the operand is
indexed .

The types of indexed memory operands are :

Base registers : [B X] [BP]

(BP has 55 as its default segment register ;
all others have DS as default .)

I ndex registers : [D I) [S I)

[constant] : Immediate in square brackets [8] , [ARG]

+1- Displacement : 8-bit or 16-bit value .

(Used only with another indexed operand .)

These elements may be combined in any order . The only restriction is
that two base registers and two indexed registers cannot be combined :

[BX+BP j [SI+DI
illegal
illegal

Some examples of indexed memory operand combinations :

(BP+8]
[5 I+BX] [4]
16 [DI+BP+3]
8 [ARG] -8

More examples of equivalent forms :

S [BX] IS I] tBX+5 [S I)
BX+51+5]
BX] S (S I

OPERANDS , OPERATORS AND EXPRESSIONS

ATTRIBUTE OPERATORS

Attribute operators used as operands perform one of three functions :

Override an operand ' s attributes

Return the values of operand attributes

I solate record fields (record specific operators)

The following list shows all the attribute operators by type :

Override operators
PTR
colon (:) (segment override)
SHORT
THIS
HIGH
LOW

Value returning operators
SEG
OFFSET
TYPE
. TYPE
LENGTH
S IZE

Record specific operators
Shift count (F ield name)
WIDTH
MASK

OVERRIDE OPERATORS

These operators are used to overr ide the segment , offset , type , or
distance of variables and labels .

: (colon) (Segment Override)

The segment overr ide operator (:) overrides the assumed segment of an
address expression (which may be a label , a var iable , or other memory
operand) .

=·

J-19 1

Syntax

segment_register address_ expression

or

segment_name address_expression

or

group_name address_ expression

Where

segment-register is one of the four segment register names : CS ,
DS , SS, ES .

segment-name

group-name

Remarks

is a name defined by the SEGMENT directive .

is a name defined by the GROUP directive .

The colon operator helps with forward references by telling the assembler
to what a reference is relative (segment , group , or segment registe r) .

MASM assumes that labels are addressable through the current CS register .
MASM also assumes that var iables are addressable through the current DS
register , or possibly the ES register , by default . I f the operand is in
another segment and you have not alerted MASM through the ASSUME
directive , you will need to use a segment override operato r . Also , if you
want to use a nondefault relative base (that is , not the default segment
register) , you will need to use the segment override operator for forward
references . Note that if MASM can reach an operand through a nondefault
segment register , it will use it , but the reference cannot be forward in
this case .

The following table gives the default and alternati ve segment registers ,
and offset , for memory reference :

OPERANDS , OPERATORS AND EXPRESS IONS

TYPE OF MEMORY DEFAULT ALTERNATE OFFSET
REFERENCE SEGMENT SEGMENT

REGISTER REGISTER

I nstruction Fetch cs I P
Stack Operation 55 SP
Variable (except OS CS , ES , SS Effective

following Address
String Source OS CS , E S , SS S I
String Destination ES DI
BP Used as Base 55 CS , DS , ES Effective

Register Address

Warning

Trying to override the default segment where no alternate segment
register is shown in the above table will result in an error message .

Examples

mov ax , e s : [bx] [s i]
mov _TEXT : far_labe l , ax
mov ax , DGROUP : variable
mov al , cs : OOOlH

PTR (Pointer)

The PTR operator assigns or overrides the type of a memory-variable or
the distance of label .

Syntax

type PTR expression

3-21

Where :

type must be one of the following names or values :

BYTE
WORD
DWORD
QWORD
TBYTE
NEAR
FAR

1
2
4
8
10
FFFFH
FFFEH

expression can be any of the following :

memory-expression

label-expression

register-expression

constant-expression

Remarks

A legal expression (which could be a s imple
variable) which evaluates to a memory address .

A legal expression (which could be a simple
labe l) which evaluates t o a location which could
be jumped to or called .

A legal expression
reference , such as
resolved at runt ime .

incorporating a register
[B X] , which can only be

A legal expression which evaluates to an integer
constant offset to a segment register .

The most important and frequent use for PTR is to assur.e that Macro
Assembler understands what attribute the expression is supposed to have .
This is especially true for the type attr ibute . Whenever you place
forward references in your program , PTR will make clear the distance or
type of the expression . This way you can avoid phase errors .

The second use of PTR is to access data by type other than the type in
the variable definition . Most often this occurs in structures . I f the
structure is defined as WORD but you want to access an item as a byte ,
PTR is the operator for this . However , a much easier method is to enter
a second statement that defines the structure in bytes , too . This
el iminates the need to use PTR for every reference to the structure .
Refer to the LABEL directive in the section on "Memory Directives" in
Chapter 4 .

Examples

call far ptr subrout3
mov byte ptr [array] , !
add al , byte ptr [full_word]

3-22

OPERANDS , OPERATORS AND EXPRESSIONS

SHORT

SHORT overrides NEAR distance attributes of labels used as targets for
the JMP instruct ion . SHORT tells MASM that the distance between the JMP
statement and the "label'' specified as its operand is not more than 127
bytes in either direction .

Syntax

SHORT label

The major advantage of using the SHORT operator is to save a byte .
Normally , the "label" carries a 2-byte pointer to its offset in its
segment . Because a range of 256 bytes can be handled in a s ingle byte ,
the SHORT operator eliminates the need for the extra byte (which would
carry 00 or FF anyway) . However , you must be sure that the target is
within +/-127 bytes of the JMP instruction before using SHORT .

Example

jmp short do_again jump less than 128 bytes

THIS

The THIS operator creates an operanp of a particular distance or type .

Syntax

THIS distance

or

THIS type

The argument to THIS may be :

A distance (NEAR or FAR)

3-23

A type (BYTE , WORD , DWORD , QWORD , or TBYTE)

Where

THIS distance

THIS type

Examples

creates an operand with the distance attribute rou specify , an offset equal to the current
ocation counter .

creates an operand with the type attr ibute you
specify , an offset equal to the current location
counter .

tag equ THIS BYTE same as TAG LABEL BYTE
check= THIS NEAR same as SPDT_CHECK LABEL NEAR

HIGH , LOW

HIGH and LOW are byte isolation operators .

Syntax

HIGH expression

or

LOW expression

Where

H I GH isolates the high 8 bits of an absolute 16-bit value or address
expression .

LOW isolates the low 8 bits of an absolute 16-bit value or address
expression .

OPERANDS , OPERATORS AND EXPRESSI ONS

Examples

mov ah , high word_value
mov al , low OABCDH

VALUE RETURNING OPERATORS

; move high byte of word_value
; move OCDH

These operators return the attribute values of the operands that follow
them but do not overr ide the attr ibute s .

The value returning operators take labels and var iables a s their
arguments .

Because variables in Macro Assembler have three attribute s , you need to
use value returning operators to isolate single attributes , as follows :

SEG
OFFSET
TYPE
LENGTH and SIZE

isolates the segment base address
isolates the offset value
isolat es either type or distance
isolate the memory allocation

SEG

SEG returns the segment value (segment base address) of the segment
enclosing the label or variable .

Syntax

SEG label

or

SEG variable

Example

mov ax , seg variable_name
mov seg label_name

3-25

OFFSET

OFFSET returns the offset value of the variable or label within its
segment (the number of bytes between the segment base address and the
address where th� label or variable is defined) .

Syntax

OFFSET expression

Where :

expression can be any label , variable , segment name or other symbol .

Remarks

OFFSET is chiefly used to tell the assembler that the operand is an
immediate operand .

OFFSET does not make the value a constant .
editor can resolve the final value .

Only ld , the XENIX l ink

OFFSET is not required with uses of the DW or DD directives . The
assembler applies an implicit OFFSET to variables in address expressions
following DW and DD .

The segment overr ide operator (:) can be used to force OFFSET to return
the number of bytes between the item in the expression and the beginning
of a named segment or group . This is the method used to generate valid
offsets for items in a group . See the second example , below .

Examples

mov bx , offset subrout3
mov bx ,offset DGROUP : array

OPERANDS , OPERATORS AND EXPRESSIONS

TYPE

The TYPE Operator returns the number of bytes of the variable type , if
the operand is a variable ; if the operand is a label , the TYPE operator
returns NEAR (FFFFH) or FAR (FFFEH) .

Syntax

TYPE label

or

TYPE variable

I f the operand is a variable , the following values are returned :

BYTE
WORD
DWORD
QWORD
TBYTE
STRUC

Examples

1
2
4
8
10
the number of bytes declared by STRUC

mov ax , type array
jmp (type get_loc) ptr destiny

. TYPE

The . TYPE operator returns a byte that descr ibes two characteristics of
the "variable : " the mode , and whether it is External or not . The
argument to . TYPE may be any expression (string , numeric , logical) . I f
the expression is invalid , . TYPE returns zer o .

3-27

Syntax

. TYPE variable

The byte that is returned contains attr ibutes in bits 1 , 2 , 6 and 8 .

the lower two bits (1 and 2) are the mode . I f the lower two bits
have the value :

0 the mode is Absolute
1 the mode is Program Related
2 the mode is Data Related

(bit 8) is the External bit .
contains an External . I f
local or public scope .

I f the h igh bit is on , the expression
the high bit is off, the expression is

The Defined bit is bit 6 .
locally defined , and it
external .

This bit is on if the expression is
is off if the expression is undefined or

I f bits 6 and 8 are zero the expression is invalid .

. TYPE is usually used inside macros , where an argument type may need to
be tested to make a decision regarding program flow ; for example , when
conditional assembly is involved .

Example

X db 12
z equ . type x

This example sets z to 22H (001000108) . Bit 0 is not set in z because x
is not program-related . Bit 6 is set because x is defined . Bit B is not
set because x is local . The remaining bits are never set .

LENGTH

LENGTH returns the number of type units (BYTE , WORD , DWORD , QWORD , TBYTE)
allocated for the variable that constitutes its argument .

3-28 MS-MACRO ASSEMBLER UNlER XENIX Y REFERENCE MAKJAL.

OPERANDS , OPERATORS AND EXPRESSI ONS �------------- ---------------------------�

Syntax

LENGTH variable

Remarks

I f the "variable" is de fined by a DUP expression , LENGTH returns the
number of type units dupl icated ; that is , the number that precedes the
first DUP in the expression .

I f the variable is not defined by a DUP expression , LENGTH returns l .

Examples

These examples assume the following definit ions :

array dw 100 dup (l)
table dw 100 dup (l , 10 dup (?))

I n the first of the following examples , LENGTH returns 100 :

mov cx , length array
In the next example , LENGTH also returns 100 , but the returned value does
not depend on any nested DUP operators :

mov cx , length table

SIZE

syntax

SIZE variable

Where

S I Z E returns the total number of bytes allocated for a var iable . S IZE is
the product of the value of LEi<GTH times the value of TYPE .

3-29

Example

The following is assumed :

array dw 100 dup (l)

In the following example , SIZE returns 200 :

mov bx , size array

RECORD SPECIFIC OPERATORS

Record specific operators are used to isolate fields in a record .

Records are �efined by the RECORD directive (see Section "Memory
Directives" 1n Chapter 4) . A record may be up to 16 bits long . The
record is defined by fields , which may be from one to 16 bits long . To
isolate one of the three characterist ics of a record field , you use one
of the record specific operators , as fol lows :

OPERATOR MEANING

Shift count Number of bits from low end of record to low end of field
(number of bits to r ight shift the record to lowest bits
of record)

W IDTH

MASK

The number of bits wide the field or record is (number of
bits the field or record contains)

Value of record if field contains its maximum value and
all other fields are zero (all bits in field contain 1 ;
all other bits contain 0)

In the following discussions of the record specific operators , these
symbols are used :

SYMBOL

ARG

BAN

F I ELDl ,
F IELD2 ,
F IELD3

3-JO

MEANING

a record defined by the RECORD directive ARG RECORD
F IELD1 : 3 , F I ELD2 : 6 , F IELD3 : 7

a variable used to alloeate ARG BAN ARG .

are the fields of the record ARG .

HS-MACRO ASSEMBLER UNDER XENIX V REfERENCE MANUAL

OPERANDS , OPERATORS AND EXPRESSIONS

SHIFT COUNT

The shift count is derived from the record fieldname to be isolated .

Syntax

(record_fieldname

The shift count is the number of bits the field must be shifted right to
place the lowest bit of the field in the lowest bit of the record byte or
word .

I f a 16-bit record (FOO) contains three fields (F I ELD! , F IELD2 , and
F IELD3) , the record can be diagrammed as follows : ! " 1 1 5 1 141 1 3 1 1 2 1 1 1 1 1 0 1 ' l ' ! ' l • l s l • l ' l ' l ' I

�
FIELD 1 FIELD 2

In the above diagram ,

F IELD! has a shift count of 13 .
F IELD2 has a shi ft count of 7 .
F I ELD3 has a shift count o f 0 .

FIELD 3
When you want to isolate the value in one of these fields , you enter its
name as an operand .

Example

mov dx , ban
mov ... 1 , F I ELD2
shr dx , cl

F IELD2 is now r ight-shifted , ready for access .

3-Jl

When a record_fieldname is given as the argument , WIDTH returns the width
of a record field as the number of bits in the record field .

When a record is given as the argument , WIDTH returns the width of a
record as the number of bits in the record .

Syntax

WIDTH record_fieldname

or

WIDTH record

Using the diagram under shift count , WIDTH can be diagrammed as :

WIDTH = 6

I n the above diagram ,

The WIDTH of F IELD! equals 3 .
The WIDTH of F IELD2 equals 6 .
The W IDTH o f F IELD3 equals 7 .

Examples

The above record configuration is given by :

rtype RECORD fieldl : 3 , field2 : 6 , field3 : 7
reel rtype <>

This configuration is assumed in the following example :

WIDTH field!
WIDTH field2
WIDTH field3
WIDTH rtype

equals 3
equals 6
, quals 7
equals 16

OPERANDS , OPERATORS AND EXPRESSI ONS

In the next example , the number o f bits in field2 is placed in the Count
Register :

mov cl , width field2

MASK

MASK accepts a field name as its only argument .

MASK returns a bit-mask defined by 1 for bit positions included by the
field and 0 for bit positions not included . The value returned represents
the maximum value for the record when the field is masked .

Syntax

MASK record_fieldname

Where

MASK accepts a field name as its only argument .

Using the diagram used for shift count , MASK can be diagrammed as :

.__ MASK

The MASK of F I ELD2 equals lFBOH .

Example

Note that the above configurat ion assumes the following defini t ion :

rtype RECORD fieldl : 3 , field2 : 6 , field3 : 7
reel rtype <>

This record definition gives the following values :

MASK fieldl ; equals EOOOH

3-33

MASK field2
MASK field3
MASK rtype

equals 1F80H
equals 003FH
equals OFFFFH

EXPRESSION EVALUATION AND PRECEDENCE

Expressions are evaluated according to the rules of operator precedence
and orde r . Operations of highest precedence are per formed first .
Operations of equal precedence are performed from left to r ight . This
default order of evaluation can be overridden using enclosing
parentheses . Operations in parentheses are always performed before any
adjacent operations.

Operator Precedence

The following table l ists the precedence of all operators . Operators on
the same line have equal precedence .

PRECEDENCE

Highest
1
2
3
4
5
6
7
8
9

10
11
12
13
Lowest

Examples

8 I 4 * 2
8 I (4 * 2)
8 + 4 * 2
(8 + 4) * 2

OPERATORS

LENGTH , S I Z E , WIDTH , MASK

H
PTR , OFFSET , SEG , TYPE , THIS
HIGH, LOW
* • I , MOD , SHL , SHR
+ , - (binar y)
EQ , NE , L T , LE , GT , G E
NOT
AND
OR , XOR
SHORT , . TYPE

equals 4
equals 1
equals 16
equals 24

8 EQ 4 AND 2 LT 3
8 EQ 4 OR 2 LT 3

equals OOOOH . (false)
equals OFFFFH (true)

(

OPERANDS , OPERATORS AND EXPRESS IONS

fORWARD REfERENCES

Although MASM permits forward references to labels , variable names ,
segment names , and other symbols , such references can lead to assembly
errors if not used properly . A forward reference is any use of a name
before it has been formally declared . For example , in the JMP
instruction below , the label "target" is a forward reference .

jmp
mov

target :

target
ax , 0

Whenever MASM encounters an undefined name in pass 1 , it assumes that the
name is a forward reference . I f only a name 1s g1ven , MASM makes
assumptions about that name ' s type and segment register , and uses these
assumptions to generate code or data for the statement . For example , in
the JMP instruction above , MASM assumes that "target" is an instruction
label having NEAR type . I t generates three bytes of instruction code for
the instruction .

MASM bases its assumptions on the statement containing the forward
reference . Errors can occur when these assumptions are incorrect . For
example , if "target" were really a FAR label and not a NEAR label , the
assumption made by MASM in pass l would cause a phase error . In other
words , MASM would generate three bytes of instruction code for the JMP
instruction in pass l, if the distance of target only was resolved to FAR
in pass 2 , this would be after the incorrect number of bytes was
generated , because jumps to FAR labels requires 5 bytes . To solve this
problem the label should be declared : target PROC FAR .

To avoid errors with forward references , the segment override (:) , PTR ,
and SHORT operators should be used to override the assumptions made by
MASM whenever necessary . The following guidelines list when these
operators should be used .

I f a forward reference is a variable that is relative to the E S , 55 , or
CS register , then use the segment override operator (:) to specify the
variable ' s segment register , segment , or group .

Examples

mov ax , ss : stacktop
inc data : time [l]
add ax , DGROUP : _ I

I f the segment override operator i s not used , MASM assumes that the
variable is OS relative .

I f a forward reference is an instruction label in a JMP instruction , then
use the SHORT operator if the instruction is less than 128 bytes from the
point of reference .

3-35

Example

jmp short target

I f SHORT is not used , MASM assumes that the instruction is greater than
128 bytes away . This does not cause an error , but it does cause MASM to
generate an extra NOP instruction that is not needed .

I f a forward reference is an instruction label in a CALL or JMP
instruction , then use the PTR operator to specify the label ' s type .

Examples

call far ptr print
jmp near ptr exit

MASM assumes that the label has NEAR type , so PTR need not be used for
NEAR labels . I f the label has FAR type , however , and PTR is not used , a
phase error will result .

I f the forward reference is a segment name w ith a segment override
operator , use the GROUP statement to associate the segment name with a
group name , then use the ASSUME statement to associate the group name
with a segment register .

Example

DGROUP segment stack
assume ss : DGROUP

code segment

mov ax , stack : stacktop

If you do not associate a group with the segment name , MASM may ignore
the segment overr ide and use the default segment register for the
variable . This usually results in a phase error in pass 2 .

3-36 HS-HACRO ASSEMBLER UNDER XENI X Y REfERENCE MANUAL

OPERANDS , OPERATORS AND EXPRESSI ONS

STRONG TYPING FOR MEMORY OPERANDS

MASM carries out strict syntax checks for all instruction statements ,
including strong typing for operands that refer to memory locations .
This means that any relocat able operand used in an instruction that
operates on an implied data type must either have that type , or have an
explicit type overr ide (PTR operator) .

For example , in the following program segment , the variable "str ing" is
incorrectly used in a move instruction .

string db
mov

"A message . "
ax , string[!]

This statement will create an "Operand types must match" error since
"str ing" has BYTE type and the instruct ion expects a variable having WORD
type .

To avoid this error , the PTR operator must be used to override the
variable ' s type . The statement

mov ax , word ptr string [l]

will assemble correctly and execute a s expected .

3-37

4 . INSTRUCTI ON SET AND MEMORY D I RECT I VES

(

ABOUT THIS CHAPTER

The first part of this chapter gives a fully annotated example of a Macro
Assembler· source file , exemplifying MASM ' s major features . The next
sect ion describes the I nstruction Set Directives , which enable the
instruction set for the given microprocessor . The major part of the
chapter describes the Memory Directives , which define the organization 0 1
a program ' s code and data .

CONTENTS

SOURCE F I LES

I NSTRUCTION SET D I REC T I VES

. 8086

. 186

. 286

. 287

MEMORY DIRECTI VES

ASSUME

DB , DW , DO, DQ , DT (DEFINE)

DUP

END

EQU

EQUALS SIGN

EVEN

EXTRN

GROUP

LABEL

ORG

PROC AND ENDP

PUBLIC

RECORD

SEGMENT AND ENDS

STRUC

4-1

4-2

4-3

4-3

4-4

4-4

4-5

4-5

4-6

4-8

4-9

4-10

4-11

4-12

4-12

4-14

4-15

4-17

4-17

4-19

4-20

4-22

4-26

SOURCE FILES

Every assembly language program consists of one or more "source" files :
text files that contain statements that define the program ' s data and
instructions . MASM reads source files and assembles the statements to
create object modules . Ld , the XENIX V l ink editor , can be used to
prepare these object modules for execution .

Source files must be in standard ASC I I format : they must not contain
control codes , and each line must be separated by a carriage­
return/line-feed combination . Statements can be entered in upper- or
lowercase . Sample code in this manual uses uppercase letters for MASM
reserved words and for class types , but this is a convention , not a
requirement .

All source files have the same form : zero or more program segments
followed by an END directive (a source file containing only macros ,
structures , or records might have zero segments) . The END directive ,
required in every source file , signals the end of the source file . The
END directive also provides a way to define the program entry point or
starting address (i f any) .

The following example illustrates the source file format . I t is a
complete assembly language program that uses XEN I X V functions (or system
calls) to print the message "Hello world" on the screen .

Example

data
hello
tty
fd
_data

extrn
extrn
extrn
extrn

segment
db "Hello . " , lO
db "/dev/tty" , O
dw 0
ends

_open : near
close : near

-wr ite : near
=:exit : near

Program Data Segment

External entry points

text segment ; Program Code Segment
assume cs : text , ds : DGROUP , ss : DGROUP , es : DGROUP

_main : Program Entry Point

push 2 fd = open ("/dev/tty" , 2)
push offset DGROUP : tty
call _open
add sp , 4
mov fd , ax

push 7 write (fd , &hello , 7)
push offset DGROUP : hello
push fd

4-1

call write
add sp , 6

push fd close (fd)
call close
add sp , 2

push 0 exit
call exit -

text ends

end

The following main features of this source file should be noted :

1 . The SEGMENT and ENDS statements , which define segments named "_data" ,
and "_text".

2 . The group statement defining a group "DGROUP" which contains the data
segment "_data" .

3 . The variables "hello" and "tty" in the "_data" segment , defining the
string to be displayed and the name of the file which is opened to do
this .

4 . The instruction label "_main" in the "_text" segment and its "public"
declaration , which prov ides the necessary entry point for the runtime
library to cal l .

5 . The "assume" statements i n the "_data" and "_text" segments , defining
which segment registers will be associated with the labels ,
variables , and symbols defined within the segments .

I NSTRUCTION SET DIRECTI VES

I f the -r or -e options to MASM (see "XENI X V System and Application
Software Development Tools Reference Manual" , Section CP) are used , real
numbers use 8087 or 80287 coprocessor format . I f -e is used , the
assembled object code must be linked with the ap,propriate maths librar y .
See "MS-Macro Assembler Under X EN I X V User Guide ' for further details .

The instruction-set directives enable the instruction sets for the given
microprocessors . When a directive is given , MASM will recognize and
assemble any subsequent instructions belonging to that microprocessor .

The instruction-set directive s , if used , must be placed at the beginning
of the program source file to ensure that all instructions in the file
are assembled using the same instruction set .

4-2 MS-MACRO ASSEMBLER R XENIX Y REFERENCE MANUAL

I NSTRUCT I ON SET AND MEMORY DI RECTIVES

8086

Syntax

. 8086

Remarks

The . 8086 directive enables assembly of instructions for the 8086 and
8088 microprocessor s . I t also disables assembly of the instructions
unique to the 80186 and 80286 processors . Similarly , the . 8087 directive
enables assembly of instructions for the 8087 floating-point coprocessor
and disables assembly of instructions unique to the 80287 coprocessor .

Since MASM assembles 8086 instructions by default , the . 8086 and . 8087
directives are not required if the source files contain 8086 and 8087
instructions only . Using the default instruction sets ensures that your
programs will be usable on all processors in the 8086/80186/80286 family .
However , they will not take advantage of the more powerful · instructions
available on the 80186 , 80286 , and 80287 processors .

186

Syntax

. 186

Remarks

The . 186 directive enables assembly of the 8086 instructions plus the
additional instructions for the 80186 microprocessor . This directive
should be used for programs that will be executed by an 80186
microprocessor .

4-3

� 286

Syntax

. 286{ C I P }

Remarks

The . 286C directive enables assembly of 8086 instructions and non­
protected 80286 instructions (identical to the 80186 instructions) . The
. 286P directive enables assembly of the protected instructions of the
80286 in addition to the 8086 and nonprotected 80286 instructions . The
. 286C directive should be used with programs that will be executed only
by an 80286 microprocessor , but do not use the protected instructions of
the 80286 . The . 286P directive can be used with programs that will be
executed only by an 80286 processor using both protected and nonprotected
instructions .

287

Syntax

. 287

Remarks

The . 287 directive enables assembly of instructions for the 80287
floating-point coprocessor . This directive should be used with programs
that have floating-point instructions and are intended for execution only
by an 80286 microprocessor .

Even though a source file may contain the . 8087 or . 287 directive , MASM
also requires the -r or -e options in the MASM command l ine to define how
to assemble floating point instructions . The -r option directs the
assembler to generate the actual instruction code for the floating-point
instruction . The -e option enables the assembler to generate code that
can be used by a floating-point-emulator routine .

1 I' ' '�' ".•." r -t,����>��_l . . . ' -, . , .
•

_ , _ • �� ',�' _ L- � ... 1 1_��)

MEMORY DIRECTIVES

rhe following directives are used to structure and organize memory :

ASSUME

ASSUME tells the assembler that the symbols in the segment or group can
be accessed using this segment register .

Syntax

ASSUME segment_register segment_register [, . . .)
or

ASSUME NOTHI NG

Remarks

When the assembler encounters a variable , it automatically assembles the
variable reference under the proper segment register . You may enter from
1 to 4 arguments to ASSUME .

The valid "segment_register" entries are :

CS , OS , ES , and 55 .

The possible entr ies for "seg_name" are :

The name o f a segment declared with the SEGMENT directive

The name of a group declared with the GROUP directive

An expression : either "SEG variable_name" or "SEG label_name"

The key word NOTHING . ASSUME NOTHING cancels all register assignments
made by a previous ASSUME statement

I f ASSUME is not used or if NOTHI NG is typed for "seg_name" , each
reference to variables , symbol s , labels , and so forth in a particular
segment must be prefixed by a segment register . For example , type DS : FOO
instead of simply roo .

Examples

assuroie c s : code

assume cs : cgroup , d s : dgoup , ss : nothing , es : nothing

assume nothing

DB ,DW ,DO ,DQ ,DT , (Define)

The DEF I NE directives are used to define variables or to initialize
portions of memory .

[name) DB initial_ value , , ,

[name) DW initial_ value , , ,

[name) DD initial_value , , ,

[name) DQ initial_ value , , ,

[name) DT initial_ value , , ,

Remarks

I f the optional "name" is entered , the DEF I NE directives define the name
as a variable . The argument "initial_value" can be any of the following :

Directive initial_value

DB integer ; character string constant ; DUP operator ;
constant expression ; question mark (?) .

DW integer ; string constant ; DUP operator ; constant
expression ; address expression ; question mark (?) .

DD integer ; real number ; 1- or 2-character string
constant ; encoded real number ; DUP operator ;
constant expression ; address expression ; question
mark (?) .

4-6 HS-MACRO ASSEMBLER UNDER XENIX V REFERENCE MANUAL

DQ integer ; real number ; 1- or 2-character string
constant ; encoded real number ; DUP operator ;
constant expression ; question mark (?) .

DT integer expression ; packed decimal , 1- or 2-character
string constant ; encoded real number ; DUP operator ;
question mark (?) .

Notes

A question mark (?) represents an undefined initial value . I f two or more
expressions are given , they must be separated by commas (,) .

The DEFINE directives allocate memory in units specified by the second
letter of the directive (each DEFI NE directive may allocate one or more
of its units at a time) :

DB allocates one byte (8 bits)
DW allocates one word (2 bytes)
DD allocates two words (4 bytes)
DQ allocates four words (8 bytes)
DT allocates ten bytes

Examples

Define Byte (DB) :

integer db 16
string db ' ab '
message db "Enter Your Name :
constantexp db 4*3
empty db ?
multiple db 1 ' 2 ' 3 ' ' $ '
duplicate db 10 dup (?)
high_byte db 255

Define Word (DW) :

integer dw 16728
character dw ' a '
string dw ' be '
constantexp dw 4*3
addressexp dw string
empty dw ?
multiple dw 1 , 2 ' 3 . ' $ '
duplicate dw 10 dup (?)
high_word dw 65535
arrayptr dw array

"

arrayptr2 dw offset DGROUP : array

·�i..)·--· �.,r· •. � - - , .
• • ' ' 1 • • • •

" . . ' ' - - . ' l

Define Doubleword (DO) :

integer
character
string

dd 16728
dd ' a '
dd ' ab '
d d 1 . 5
dd 3fOOOOOOR
dd 4*3
dd real
dd ?

real
encodedreal
constantexp
addsegexp
empty
multiple
duplicate
high_ double

dd 1 , 2 , 3 , ' $ '
dd 10 dup (?)
d d 4294967295

Define Quadword (OQ) :

integer dq 16728
character dq ' a '
string dq ' ab '
real dq 1 . 5
encodedreal dq 3fOOOOOOOOOOOOOOR
constantexp dq 4*3
empty dq ?
multiple dq 1 , 2 ' 3 ' ' $ '
duplicate dq 10 dup (?)
high_quad dq 18446744073709551615

Define Tenbytes (DT) :

packeddecimal dt 1234567890
integer dt 167280
character dt ' a '
string dt ' ab '
real dt 1 . 5
encodedreal dt 3fOOOOOOOOOOOOOOOOOOR
empty dt ?
multiple dt 1 , 2 , 3 , ' $ '
duplicate dt 10 dup (?)
high_byte dt 12089258196146291747061750

The DUP statement specifies multiple occurences of one or more initial
values .

4-8 MS-HACRO ASSEMBLER UNDER XENIX V REFERENCE MANUAL

Syntax

count DUP (initial_value , , ,)

Remarks

The argument "count" specifies the number of times to repeat
"initial_value". An initial value can be any exprssion that evaluates to
an integer value , a character constant , or another DUP operator . If more
than one initial value is given , they must be separated by commas (,) .
DUP operators may be nested to 17 levels .

Examples

The first example generates 00 bytes with value 1 :

db 100 dup (l)

The second example generates 80 words o f data . the first four words have
the values 1 , 2 , 3 , and 4 respectively . This pattern is repeated for the
remaining words :

db 20 dup (l , 2 , 3 , 4)

The third example generates 1 2 5 bytes o f data , each byte having the value
1 :

db 5 dup (5 dup (5 dup (l)))

The last example generates 14 doublewords of uninitialised dat a :

d d 1 4 dup (?)

END

The END statement specifies the end of the program .

Syntax

END [exp]

Remarks

I f "exp" is present , it is the start address of the program . If several
. modules are to be linked , onl y one module may specify the start of the

program with the "END exp" statement .

I f "exp" is not present , then no start address is passed to l d , the XENIX
V l ink editor , for that program or module .

Statements occur ing after an END statement are ignored .

Warning

I f you fail to define an entry point for the main module , your program
may not be able to in1tial1ze correctly . The program w1ll assemble and
link without error messages (but it may crash when you attempt to run i t .
Remember , one (and only one J module must define an entry point .

Example

end
end start

EQU

EQU assigns the value of "exp" to "name" .

Syntax

<name> EQU <exp>

Remarks

I f "exp" is an external symbol , an error is generated . I f "name" already
has a value , an error is generated . If you want to be able to redefine a
"name" in your progcam , use the equal sign (=) directive instead .

In many cases , EQU is used as a primitive text substitution , l ike a
macro .

The argument "exp" may be any one of the following :

4-10 MS-MACRO ASSEMBLER UN>ER XENIX V REfERENCE MANJAL

INSTRIETIIIt SET Atl) MDilRY Dl

A symbol . "Name" becomes an alias for the symbol in "exp" . "Name" is
shown as an Alias in the symbol table .

An instruction name . Shown as an Opcode in the symbol table .

A valid expression . Expressions that evaluate to a value in the range
0 to 65535 create values . (Shown as a Number or L (labe l) in the
symbol table . Any number outside this range becomes text (shown as
text in the symbol table) .

Any other entry , i ncluding text , index references , segment prefix and
operands . Shown as Text in the symbol table .

Examples

integer equ
real equ
constantexp equ
memoryop equ
mnemonic equ
addressexp equ
string equ

16728
3 . 14159
3*4
[bp]
mov
real
' Type Enter '

EQUALS SIGN

The equals sign (=) allows the user to set and to redefine symbols .

Syntax

name exp

Where

exp must be a valid expression that evaluates to a value in the range 0
to 6553 5 . I t i s shown a s a Number o r L (labe l) in the symbol table

The equal sign is like the EQU directive , except the user can redefine
the symbol without generating an error . Redefinition may take place more
than once , and redefinition may refer to a previous definition .

Examples

integer
string
constantexp
addressexp

16728
' ab '
3*4
string

The EVEN directive causes the program counter to go to an even boundary ;
that i s , to an address that begins a word .

EVEN

Remarks

I f the program counter is not already at an even boundary , EVEN causes
the assembler to add a NOP instruction so that the counter will reach an
even boundary .

An error results i f EVEN is used with a byte-aligned segment .

Example

In the following example , EVEN increments the location counter and
generates a NOP instruction (90H) . This means that the offset of "test2"
is 2 , not 1 .

org 0
test! db 1

even
test2 dw 513

The EXTRN directive identifies a procedure or function that resides in
another loaded module .

4-12 MS-MACRO ASSEMBLER UNlER XENIX V REfERENCE MANUAL

Syntax

EXTRN name : type [, name : type) . . .

Where

name is a symbol that is defined in another module . "Name" must have
been declared PUBL IC in the module where "name" is defined .

type may be any one of the following , must be a valid type for "name : "

BYT E , WORD , DWORD , QWORD , TBYTE ,

NEAR or FAR for labels or procedures (defined under a PROC
directive)

ABS for pure numbers (implicit size is WORD , but includes BYTE)

I f the directive is given with a segment , the assembler assumes that the
symbol is located within that segment . I f the segment is not known , place
the directive outside all segments , then use either

ASSUME seg-reg : SEG name

or an explicit segment prefix .

Remarks

I f a mistake is made and the symbol is not in the segment , ld will take
the offset relative to the given segment , if possible . If the real
segment is less than 64K bytes away from the reference , ld may find the
definition . I f the real segment is more than 64K bytes away , ld will
fail to make the link between the reference and the definition and will
return an error message .

Example

extrn tagn : near
extrn var l : word , var2 : dword

_
GROUP

The GROUP directive collects the segments named after "GROUP (segment
name) " under one name .

Syntax

name GROUP segment_name [, segment_name) . . .

Remarks

The GROUP directive collects the segments named after "GROUP
(segment_names) " under one name . The GROUP is used by ld so that it
knows which segments should be loaded together (the order the segments
are named here does not influence the order in which the segments are
loaded . The order in which the segments are loaded is determined by the
CLASS designation of the SEGMENT directive , or by the order you name
object modules in response to the ld Object Module : prompt) .

All segments in a GROUP must fit into 64K bytes of memory . The assembler
does not check this at all , but leaves the checking to ld .

The argument "segment_name" may be one of the following :

A segment name , assigned by a SEGMENT directive . The name may be a
forward reference .

An expression : either "SEG var" or "SEG label" . Both of these
entries resolve themselves to a segment name (see SEG operator) .

Once you have defined a group name , you can use the name :

As an immediate value :

mov ax , DGROUP
mov ds , ax

DGROUP is the paragraph address of the base of DGROUP .

In ASSUME statements :

assume ds : DGROUP

The OS register c8n now be used to reach any symbol in any segment of
the group .

4-14 MS-MACRO ASSEMBLER UNDER XENIX V REFERENCE MANUAL

As an operand prefix (for segment override) :

mov bx , offset DGROUP : foo
dw DGROUP : foo
dd DGROUP : foo

DGROUP : forces the offset to be relative to DGROUP , instead of to the
segment in which roo is defined .

Warning

A group name must not be used in more than one GROUP directive in any
source file . I f several segments within the source file belong to the
same group all segment names must be given in the same GROUP directive .

Example

DGROUP group _data , BSS
assume ds : DGROUP

_data segment word public ' data '

_data ends

_BSS segment word public ' bss '

BSS ends
end

LABEL

By using LABEL to define a "name" , you cause the assembler to associate
the current segment offset with <name > .

Syntax

name LABEL type

Where

type varies depending on the use of "name" ; "name" may be used for code
or for data .

Example

For code :

For code (for example , as a JMP or CALL operand) :

"Type" may be either NEAR or FAR . "Name" cannot be used in data
manipulat ion instructions without using a type override .

I f you wish , you can define a NEAR label using the "name : " form
(the LABEL directive is not used in this case) . If you are
defining a BYTE or WORD NEAR labe l , you can place the "name : "
i n front o f a Define directive .

When using a LABEL for code (NEAR or FAR) , the segment must be
addressable through the CS register .

For data :

"Type" may be
"structure_name" ,
is used , "name" is
record .

BYT E , WORD , DWORD , QWORD , TWORD ,
or "record name" . When STRUC or RECORD name

assigned -the size of the structure or

subroutine label far
subroutine : (first instruction) colon near label

Example

For Data :

barray
array

label byte
dw 100 dup (O)

add
add

al , barray [99]
ax , array [98]

add lOOth byte to al
add 50th word to ax

By defining the array two ways , you can access entries either by byte or
by word . Also , you can use this method for STRUC . It allows you to place
your data in memory as a table , and to access it without the offset of
the STRUC .

Definin9 the array two ways also permits you to avoid using the PTR
operator . The double defining method is especially effective if you
access the data different ways . It is easier to give the array a second
name than to remember to use PTR .

4-16 MS-MACRO ASSEMBLER UNDER XENIX V REFERENCE MANUAL

The location counter is set to the value of "exp" , and the assembler
assigns generated code starting with that value .

Syntax

ORG exp

Remarks

All names used in "exp" must be known on pass 1 . The value of "exp" must
either evaluate to an absolute or must be in the same segment as the
location counter .

Example

org 120H
org $+2

2-byte absolute value maximum=OFFFFH
skip 2 bytes

Example - ORG to a boundary (conditional) :

cseg �
-
egment page

begin $
if ($-begin) mod 256 if not already on a 2 56-byte boundary

org ($-begin) + 256 ' - (($-begin)mod 256)
end if

See Chapter 5 "Conditional Directives , " for an explanation of conditional
assembly .

The PROC and ENDP directives mark the beginning and end

Syntax

.procname PROC { [NEAR J I [FAR] }

RET
name ENDP

Remarks

The default , if no operand is specified , is NEAR . Use FAR i f :

The procedure name i s a n operating system entry point

The procedure will be called from code which has another ASSUME CS
value

Each PROC block usually contains a RET statement .

The PROC directive , through the NEAR I FAR option , informs CALLs to the
procedure to generate a NEAR or a FAR CAL L , and RETs to generate a NEAR
or a FAR RET . PROC is used , therefore , for coding simplification so that
the user does not have to worry about NEAR or FAR for CALLs and RETs .

A NEAR CALL or RETURN changes the IP but not the CS registe r . A FAR CALL
or RETURN changes both the I P and the CS registers .

Procedures are executed either in l ine , from a JMP , or from a CAL L .

PROCs may b e nested , which means that they are put i n l ine .

Combining the PUBLIC directive with a PROC statement (both NEAR and FAR) ,
permits you to make external CALLs to the procedure or to make other
external references to the procedure .

Example

-main proc near
push bp
mov bp , sp
push si
push di
mov ax , offset DGROUP : string
push ax
call _printf
add sp , 2
pop di
pop si

4-18 MS-MACRO ASSEI&..ER Utt>ER XENIX V REFERENCE MANUAL

I NSTRUCTION SET AN> MEt«JRY DIRECTI VES

mov
pop
ret

_main endp

sp , bp
bp

PUBLIC

Place a PUBLIC directive statement in any module that contains symbols
you want to use in other modules without defining the symbol again .
PUBLIC means the listed symbol(s) , which are defined in the module where
the PUBLIC statement appears , available for use by other modules to be
linked with the module that defines the symbo l (s) . This information is
passed to ld .

Syntax

PUBLIC symbol [, symbo l] . . .

Where

symbol may be a number , a variable , a label (including PROC labels) . I t
may not b e a register name o r a symbol defined (with EQU) by
floating point numbers or by integers larger than two bytes .

Examples

publ ic
true

true , test , start
OFFFFH

test db
start label

1
far

The following example is illega l :

public
pie_bald equ
high_value equ

pie_bald , high_value
3 . 1416
999999999

RECORD

A record is a bit pattern you define to format bytes and words for bit­
packing .

Syntax

recordname RECORD fieldname : width [
�

exp] [, fieldname : width[=exp]] . . .

Where

fieldname is the name of the field . "Width" specifies the number of bits
in the field defined by "fieldname". "Exp" contains the
initial (or default) value for the field . Forward references
are not allowed in a RECORD statement .

width

exp

Remarks

"Fieldname" becomes a value that can be used in expressions .
When you use "fieldname" in an expression , its value is the
shift count to move the field to the far r ight . Using the
MASK operator with the "fieldname" returns a bit mask for that
field .

is a constant in the range 1 to 16 that specifies the number
of bits contained in the field defined by "fieldname" . The
WIDTH operator returns this value . If the total width of all
declared fields is larger than 8 bits , then the assembler uses
two bytes . Otherwise , only one byte is used .

contains the initial value for the field . I f the field is at
least 7 bits wide , you can use an ASC I I character as the "exp"

The first field you declare goes into the most significant bits of the
recor d . Successively declared fields are placed in the succeeding bits to
the r ight . I f the fields you declare do not total exactly 8 bits or
exactly 16 bit s , the entire record is shi fted r ight so that the last bit
of the last field is the lowest bit of the recor d . Unused bits will be in
the high end of the record .

4-20 MS-MACRO ASSEMBlER UNlER XENIX V REFEREt«:E MANJAl.

Example 1

faa record high : 4 ,mid : 3 , low : 3

Initially , the bit map would be :

8

In this example the total bits are greater than 8 , so the field requires
two bytes ; however , the total bits are less than 16 , so the data is right
shifted and all unused bits are at the left .

+--- MASK

!o-- WIDTH --- SHIFT COUNT ____.!

Example 2

item record char : 7= ' Q '

To initialize records , use the same method used for DB . The format is :

[<name>] <recordname> < [exp] [, . . .] >

or

[<name >] <recordname> [<exp> DUP (< [exp] [, . . .] >)

The name i s optional . When given , name i s a label for the first byte or
word of the record storage area .

The recordname is the name used as a label for the RECORD direct ive .

The [exp] (both forms) contains the values you want placed into the
fields of the record . In the latter case , the parentheses and angle
brackets are required only around the second [exp] (following DUP) . I f
[exp] i s left blank , either the default value applies (the value given in
the original record definition) , or the value is indeterminate (when not
initialized in the or iginal record definition) . For fields that are
already initialized to values you want , place consecutive commas to skip
over (use the default values of) those fields .

For example :

foo , , 7

From the previous example , the 7 would be placed into the LOW field of
the record FOO . The fields H I GH and MID would be left as declared (in
this case , uninitialized) .

A record may be used in an expression (as an operand) in the form :

recordname< [value [, . . .)) >

The value entry is optional . The angle brackets must be coded as shown ,
even i f the optional values are not given . A value entry is the value to
be placed into a field of the record . For fields that are already
initialized to values you want , place consecutive commas to skip over
(use the default values of) those fields , as shown above .

Example 3

foo record high : S , mid : 3 , low : 3

bax foo
jane foo 10 dup (< l 6 , 8 >)

mov dx , offset jane [2)
and dx , mask mid
mov cl , mid
shr dx , cl
mov c l , width mid

SEGMENT AND ENDS

leave undetermined here
high=l6 , mid=B , low:?

get beginning record address

These directives mark the beginning and end of a program segment . At
runtime , all instruct1ons that generate code and data are in (separate)
segments . Your program may be a segment , part of a segment , several
segments , parts of several segments , or a combination of these . If a
program has no SEGMENT statement , an ld error (invalid object) will
result at l ink time .

A program segment is a collection of instructions and/or data whose
addresses are all relative to the same segment register .

4-22 MS-HACRO ASSEMBLER uti)[R XENIX V REfERENCE MANUAL

Syntax

segname SEGMENT [al ign] [combine] [' class ']

segname ENDS

Where

segment name must be a unique , legal name . The segment name must not
be a reserved word .

align

combine

class

may be PARA (paragraph - default) , BYTE , WORD , or PAGE .

may be PUBLI C , COMMON , AT , exp , STACK , MEMORY , or no
entry (which defaults to not combinable , called Private in
the L INK section of the manual) .

name is used to group segments at l ink time .

A l l three operands are passed to ld .

The alignment type tells the Linker on what kind of boundary you want the
segment to begin . The first address of the segment will be , for each
alignment type :

PAGE address is xxxOOH (low byte is 0)

PARA address is xxxxOH (low nibble is 0)

bit map - l x l x l x l x l o l o l o l o l
WORD - address is xxxxeH (e=even number ; low bit is 0)

bit map - l x l x l x l x l x l x l x i O I
BYTE - address is xxxxxH (place anywhere)

The combine type tells ld how to arrange the segments of a particular
class name . The segments are mapped as follows for each combine type :

1 . None (not combinable o r Pr ivate)

Private segments are loaded separately
and remain separate . They may be
physically contiguous but not logically ,
even if the segments have the same name .
Each pr ivate segment has its own base

address .

2 . PUBLIC AND STACK

3 .

4 .

COMMON

0
LJ

MEMORY

Er

Public segments of the same name and
class name are loaded contiguously .
Offset is from beginning of first
segment loaded through last segment
loaded . There is only one base address
for all public segments of the same
name and class name . Combine type
stack is treated the same as public .
However the Stack Pointer is set to
the first address of the first stack
segment . Ld requires at least one
stack segment. I f you create a stack
segment without using the STACK
combine type , you must give instruct­
ions to load the segment address
into 55 .

Common segments of the same name and
class name are loaded overlapping one
another . There is only one base
address for all common segments of
the same name . The length of the
common area is the length of the
longest segment .

The memory combine type causes the segment (s) to be placed as the
highest segments in memory . The first memory combinable segment
encounter is placed as the - highest segment in memory . Subsequent
segments are treated the same as Common segments .

Note that this feature is not supported by ld .
segments the same as Public segments .

Ld treats Memory

5 . AT exp

The segment is placed at the PARAGRAPH address specified in "exp".
The expression may not be a forward reference . Also , the AT type may
not be used to force loading at fixed addresse s . Rather , the AT
combine type permits labels and variables to be defined at fixed
offsets within fixed areas of storage , such as ROM or the vector
space in low memory .

Note that this restriction is imposed by MS-LINK and XENIX .

Class names must be enclosed in quotation marks . Class names may be
any legal name .

4-24 MS-MACRO ASSEMBLER UNDER XENIX V REFERENCE MANUAL

Segment definitions may be nested . When segments are nested , the
assembler acts as if they are not and handles them sequentially by
appending the second part of the split segment to the first . At ENDS
for the split segment , the assembler takes up the nested segment as
the next segment , completes it , and goes on to subsequent
segments . Overlapping segments are not permitted .

Example 1

A SEGMENT

B SEGMENT

B ENDS

A ENDS

A SEGMENT

A ENDS
B SEGMENT

B ENDS
A SEGMENT

A ENDS

The following arrangement is not allowed :

A SEGMENT

B SEGMENT

A ENDS this is i llegal !

B ENDS

Example 2
In module A :

SEGA SEGMENT
ASSUME

SEGA ENDS
END

PUBL IC ' CODE '
CS : SEGA

. . .� . . .-· ... -�-- -.- - . -- ------ �-- ��-;· -<-T�-�··�.�-.:-'/i�f.� ·;.:-:·,.'?:
1 I. • ir \ ;I I, '; • 1

' - ' -) ' l -··-"J''"'. ; J.i tQ_."-a.-.r-1! ·

=

In module B :

SEGA
ASSUME

SEGA
END

Warning

SEGMENT PUBL IC ' CODE '
CS : SEGA

ENDS

Ld adds this segment to same
named segment in module A (and others)
if class name is the same .

Normally for a . out files you should provide at least one stack segment in
a program . I f no stack segment is declared , ld will display a warning
message . However this message can be ignored if you are going to convert
your a . out file to a . com file , or have another reason for not declaring
a stack segment .

STRUC

The STRUC directive is very much liKe RECORD , except STRUC has a multiple
byte capability .

structure_name STRUC

structure_name ENDS

Remarks

The allocation and initializat ion of a STRUC block are the same as for
RECORDs .

I nside the STRUC/ENDS bloc k , the Define directives (DB , OW , DO , DQ , DT)
may be used to allocate space . The Define directives and Comm·ents set
off by semicolons (;) are the only statement entries allowed inside a
STRUC bloc k .

Any label o n a Define directive inside a , STRUC/ENDS block becomes a
"fieldname" of the structure . (This is how structure fieldnames are
defined .) Initial values given to fieldnames in the STRUC/ENDS block are
default values for the various fields . These field values are of two
types : . overridable or not overridable . A simple field , a field with only
one entry (but not a DUP expression) , is overridable . A mult iple field , a
field with more than one entry , is not overridable .

4-26 MS-MACRO ASSEMBLER UNDER XENIX Y REFERENCE MANUAL

For example :

foo
baz
zoo

db
db
db

1 , 2
10 dup (?)
5

s not overridable
s not overridable
s overridable

If the "exp" following the Define directive contains a string , it may be
overridden by another string . However , if the overriding string is
shorter than the initial str ing , the assembler will pad with spaces . I f
the overriding string i s longer , the assembler will truncate the extra
characters .

Usually , structure fields are used as operands i n some expression . The
format for a reference to a structure field is :

variable . field

Where

variable represents an anonymous variable , usually set up when the
structure is allocated . To allocate a structure , use the
structure name as a directive with a label (the anonymous
var i able of a structure referenc�) and ef"y C"'o r r i rlc \,� , • •oc: i n
angle brackets :

. field

Example

foo structure

foo ends
goo foo , 7 , , ' joe '

represents a label g1ven to a DEFINE directive inside a
STRUC/ENDS block (the period must be coded as shown) . The value
of "field" will be the offset within the addressed structure .

To define a structure :

s
field!
field2
field3
field4

struc
db 1 , 2
db 10 dup (?)
db 5
db ' dobosky '

s ends

not overr idable
not overr idable
overridable
overr idable

The Define directives in this example define the fields of the structure ,
and the order corresponds to the order values are given in the

initialization l ist when the structure is allocated . Every Define
directive statement line inside a STRUC block defines a field , whether or
not the field is named .

To allocate the structure :

dbarea s , , 7 , ' andy '

To refer to a structure :

mov al , [bx] . field3
mov a l , dbarea . field3

overrides 3rd and 4th fields only

4- 28 MS-MACRO ASSEMBLER UNDER XENIX Y REfERENCE MANUAL

5 . CONDITIONAL DIRECTVES

ABOUT THIS CHAPTER

This chapter begins by descr ibeing the MASM Conditional Assembly
Directives . The final part of the chapter describes the Conditional
Error Directives , which help debug programs by check ing for assembly-time
errors .

CONTENTS

INTRODUCT I ON 5-l

I F 5-2

I F E 5-3

I F l 5-4

I F 2 5-5

I FDEF 5-6

I FNDEF 5-7

I FB 5-8

I FNB 5-9

I F I DN 5-10

I FD I F 5-ll

CONDIT IONAL ERROR D IRECT I VES 5-12

. ERR , . ERR1 AND . ERR2 5-13

. ERRE AND . ERRNZ 5-14

. ERRDEF AND . ERRNDEF 5-14

. ERRB AND . ERRNB 5-15

. ERRIDN AND . ERRD I F 5-16

I I II ,:-" 0 - ' I

I - _, -

INTROOUCTION

The Conditional Assembly directives provide conditional assembly of
blocks of statements within a source file . There are the following
conditional directives :

D IRECTI VE

I F
IFE
I Fl
I F 2
I FDEF
IFNDEF
IFB
I FNB
I F ION
IFDIF
ELSE
END I F

MEANING

Test the value of an expression for truth
Test the value of an express1on for false-hood
Tests for pass one of the current assembly
Tests for pass two of the current assembly
Test to see whether the given name has been defined
Test to see whether the given name has not been defined
Grants assembly if its argument is blank
Grants assembly if its argument exists
Compares the two arguments of the directive for identity
Compares the two arguments of the directive for non- identity
An optional compliment to any of the IF directives
Must be used to mark the end of any conditional-assembly block

The I F directives and the END I F directive are used to enclose the
statements to be considered for conditional assembly :

I F
statements

ELSE
statements

END I F

Each I F must have a matching END I F t o terminate the conditional .
Otherwise , an ' Unterminated Condit ional ' message is generated at the end
of each pass . An ENDIF without a matching I F causes a Code 8 , "Not in
conditional bloc�' error .

Each conditional block may include the optional ELSE directive , which
allows alternate code to be generated when the opposite condition exists .
Only one ELSE is permitted for a given I F . An ELSE is always bound to the
most recent , open I F . A conditional with more than one ELSE or an ELSE
without a condit ional will cause a Code 7 , "Already · had ELSE clause"
error .

Conditionals may be nested up to 255 levels . Any argument to a
conditional must be known on pass 1 to avoid Phase errors and incorrect
evaluation . For IF and I F E the expression must involve values which were
previously de fined , and the expression must be absolute . I f the name is

defined after an I FDEF or I FNDEF , pass 1 considers the name to be
undefined, but it will be defined on pass 2 .

The assembler evaluates the conditional statement to TRUE (which equals
any nonzero value) , or to FALSE (wh ich equals OOOOH) . If the evaluation
matches the condition defined in the conditional statement , the assembler
either assembles the whole conditional block or , if the conditional block
contains the optional ELSE directive , assembles from IF to ELSE ; the ELSE
to ENDIF portion of the block is ignored . I f the evaluation does not
match , the assembler either ignores the conditional block completely o r ,
if the conditional block contains the optional ELSE directive , assembles
only the ELSE to ENDIF portion ; the IF to ELSE portion is ignored .

IF

This directive causes the statements i n the conditional block to be
assembled if the condition is true .

Syntax

IF expression
[tstatement]

[. ELSE]
tstatement]

END I F

Where

expression A combination of operands and operators that evaluates to
a single value , which is e ither zero (FALSE) or non-zero
(TRUE) .

tstatement (s) When expression TRUE , tstatement (s) are assembled .

fstatement(s) When expression FALSE , fstatement (s) are assembled .

5-2 MS-MACRO ASSEMBLER UNDER XENIX Y REfERENCE MANUAL
....

Warning

The expression must resolve to an absolute value and must not contain
forwarrl references

Example

if debug
extrn dump : far
extrn trace : far
extrn breakpoint : far

endif

IFE

This directive causes the statements in the conditional block to be
assembled if the condition is false .

Syntax

I F E expression
[fstatement]

[. ELSE]
tstatement]

END I F

Where

expression

fstatement (s)
tstatement (s)

A combination of operands and operators that evaluates to
a single value which is either zero (FALSE) or non-zero
(TRUE) .

When expression

When expression

FALSE , fstatement (s) are assembled .

TRU E , tstatement (s) are assembled .

PJ'\f-��P�·:=:-:;'!6" ; ·'· . �; . . .
'

.� ... ��� � .. \1 (, , -. I
I ,

..l • - I L � � . ' � . T £ 1._ •
•

• --

Warning

The expression must resolve to an absolute value and must not contain
forward references .

Example

ife debug

endif

IFl

extrn dump : far
extrn trace : far
extrn breakpoint : far

This directive tests the current assembly pass , and grants assembly on
pass 1 only . The directive takes no arguments .

Syntax

IF!
[plstatement)

(ELSE)
[p2statement)

END I F

Where

plstatement (s)

p2statement (s)

On the
on the

On the
on the

first pass pl statement (s) are assembled but not
second assembly pass .

second pass p2statement (s) are assembled but not
first assembly pass .

5-4 MS-MACRO ASSEMBLER UNDER XENIX V REFERENCE MANUAL

Example

ifl
��out Pass 1 Starting

endif

IF2

This directive tests the current assembly pass and grants assembly on
pass 2 . The directives take no arguments .

Syntax

I F2
[p2statement]

(EL SE] [plstatement]

END I F

Where

p2statement (s) On the second pass p2statement (s) are assembled , but not
on the first assembly pass .

plstatement (s) On the first pass plstatement (s) are assembled but not on
the second assembly pass .

Example

if2
%out Pass 2 Starting

endif

IFDEF

This directive tests whether or not the given "name" has been defined . I t
grants assembly i f "name" is a label , variable , or symbol .

The "name" can b e any valid name . Note that if "name" i s a forward
reference , it is considered undefined on pass 1 , but defined on pass 2 .
This is a frequent cause o f phase errors .

Syntax

IFDEF name
[dstatement]

[ELSE]
[ustatement]

END I F

Where

dstatement(s) When name has been defined as a label var iable or symbol
dstatement (s) are assembled .

ustatement (s) When name has not been defined ustatement (s) are
assembled .

Example

5-6

ifdef
buffer
endif

buffer
db 10 dup (?)

MS-HACRO ASSEMBLER UNDER XENIX V REFERENCE MANUAL

This directive tests whether or not the given "name" has been defined . I t
grants assembly if "name" has not yet been defined .

The "name" can be any valid name . Note that if "name" is a forward
reference , it is considered undefined on pass 1 , but defined on pass 2 .
This is a frequent cause of phase errors .

Syntax

IFNDEF name
[ustatement]

(ELSE]
[dstatement]

END I F

Where

ustatement (s) When name has not been defined
assembled .

ustatement (s) are

dstatement(s) When name has been defined a s a label , variable o r symbol
dstatement (s) are assembled .

Example

i fndef
bur r er
end if

buffer
db 10 dup (?)

•: �-.:;�.(:a 0 ;.: •• ;;; ... ;• -r;o.
-T f • > 0 ,.-

> 9 ' •

J �. '

IFB

This directive tests the given "argument" . I t grants assembly i f
"argument" is blank . Arguments can b e any name , number , o r expression .
The angle brackets (< >) are required .

The I FB and I FNB direct ives are intended to be used in macro definitions .
They can be used to control conditional assembly o f statements in the
macro based on the parameters passed in the macro call . I n such cases ,
"arg" should be one of the dummy parameters lic;ted by the MACRO
directive .

Syntax

I F B <argument> [bastatement]

(ELSE) [astatement)

END I F

Where

<argument> This can be a name or a number or an expression .

bastatement(s) When argument is blank , bastatement (s) are assembled .

astatement (s) When argument is non-blank astatement (s) are assembled .

Example

i fb <x>

This example tests the argument "<x>" . If this is in a macro definition ,
and no parameter was passed for x , the directive would grant assembly .

5-8 MS-MACRO ASSEMBLER lHlER XENIX Y REfERENCE MANJAL

COND I T IONAL D I RECT I VES

IFNB

This directive tests the given "argument" . I t grants assembly i f
"argument" is not blank . The "arg" can b e any name , number , or
expression . The angle brackets (< >) are required .

The IFB and I FNB directives are intended to be used in macro definitions .
They can be used to control conditional assembly of statements in the
macro based on the parameters passed in the macro call . In such cases ,
"arg" should be one of the dummy parameters l isted by the MACRO
directive .

Syntax

I FNB <argument>
[astatement]

(ELSE]
[bastatement]

END IF

Where

<argl.lllent> This can be a name or a number or an expression .
angle brackets (< >) are required .

The

astatement (s) When argument i s non-blank , astatement (s) are assembled .

bastatement (s) When argument is blank , bastatement (s) are assembled .

Examples

i fnb <&exit>

This example tests the argument "<&exit>" . This is assumed to be in a
macro definition . I f no parameter is passed for exit , the directive does
not grant assembly .

5-9

IfiDN

This directive tests to see if the two arguments are identical . I t
grants assembly i f the arguments are identical .

Syntax

IfiDN <argument!> , <argument2>
[istatement]

(ELSE] [dstatement]

END I f

Where

<argument!>
<argument2>

These arguments can be any name , number or expression .
The angle brackets (<>) are required .

istatement (s) When argument! is identical with argument2 istatement (s)
are assembled .

dstatement(s) When argument! is not identical with argument2
dstatement (s) are assembled .

The arguments can be any names , numbers , or expressions . To be
identical , each character in "argl" must match the corresponding
character in ·�rg2" . The angle brackets (< >) are required .

The I F IDN and I fDif directives are intended to be used in macro
definitions . They can be used to control conditional assembly of
statements in the macro based on the parameters passed in the macro call .
In such cases , the arguments should be dummy parameters l isted by the
MACRO directive .

5-10 MS-MACRO ASSEMBLER UNDER XENIX V REFERENCE MANUAL

CONDITIONAL DI RECTIVES

Example

ifidn <x> , <y>

This example tests the arguments "<x>" and "<y>" . I f this is in a macro
definit ion and the parameters passed for x and y are identical , the
directive grants assembly .

IFDIF

This directive tests to see whether the two arguments are not identical .
It grants assembly i f the arguments are different .

Syntax

IFDIF <argumentl> , <argument2>
[dstatement]

[
.
ELSE]
istatement]

END I F

Where

<argument!>
<argument2>

dstatement(s)

These arguments can be any name , number or expression .
The angle brackets (< >) are required .

When argumentl ' s not identical with argument2
dstatement (s) are assembled .

istatement(s) When argument l ' s identical with argument2 istatement (s)
are assembled .

The arguments can be any names , numbers , or expressions . To be
identical , each character 1n "argl" must match the corresponding
character in "arg2" . The angle brackets (< >) are required.

The I F IDN and IFDIF directives
definitions . They can be used

are intended to be used in macro
to control conditional assembly of

5-11

statements in the macro based on the parameters passed in the macro call .
In such cases , the arguments should be dummy parameters listed by the
MACRO directive .

Example

i fdif <&exit> <case>

This example tests the arguments "<&exit>" and "<case>". This is assumed
to be 1n a macro definit ion . I f the parameters passed for "ex it" and
"case" are ident ical , the directive does not grant assembly .

CONDITIONAL ERROR DIRECTIVES

Conditional error directives can be used to debug programs and check for
assembly-time errors . By inserting a conditional error direct ive at a
key point in your code , you can test assembly-time conditions at that
point . You can also use conditional error directives to test for
boundary conditions in macros .

The conditional error directives , and the errors they produce , are listed
in the following table :

DIRECT IVE NUMBER MESSAGE

. ERR! 87 Forced error - passl

. ERR2 88 Forced error - pass2

. ERR 89 Forced error

. ERRE 90 Forced error - expression equals 0

. ERRNZ 91 Forced error - expression not equal 0

. ERRNDEF 92 Forced error - symbol not defined

. ERRDEF 93 Forced error - symbol defined

. ERRB 94 Forced error - string blank

. ERRNB 95 Forced error - string not blank

. ERR ION 96 Forced error - strings identical

. ERRDIF 97 Forced error - strings different

L ike other fatal assembler errors , those generated by conditional error
directives cause the assembler to return exit code 7 . I f a fatal error
is encountered during assembly , MASH will delete the object module . All
conditional error directives except ERR! generate fatal errors .

5-12 MS-MACRO ASSEMBLER I.HlER XENIX V REFERENCE HANJAL

COND I T IONAL DI RECTIVES

Syntax

. ERR

. ERRl

. ERR2

. ERR , . ERR! , and . ERR2
'

The . ERR , . ERRl , and . ERR2 directives force an error at the points at
which they occur in the source file . The . ERR directive forces an error
regardless of the pass , while the . ERRl and . ERR2 directives force the
error only on their respective passes . The . ERRl directive only appears
on the screen or in the listing file if you use the /0 option to request
a Pass 1 listing . Unlike other conditional error directives , it is not a
fatal error .

You can place these directives within conditional-assembly blocks or
macros to see which blocks are being expanded .

Example

ifdef des

else
ifdef

else
. err
end if

endif

xenix

This example makes sure that either the symbol des or the symbol xenix is
defined . If neither is de fined , the nested ELSE condition is assembled
and an error message is generated . Since the . ERR directive is used , an
error would be generated on each pass . You could use the . ERR2 directive
if you wanted only a fatal error , or you could use the . ERRl directive if
you wanted only a warning error .

5-13

. ERRE and . ERRNZ

Syntax

. ERRE expression

. ERRNZ expression

The . ERRE and . ERRNZ directives test the value of an expression . The
. ERRE directive generates an error if the expression is false (0) . The
. ERRNZ directive generates an error if the expression is true (nonzero) .
The expression must resolve to an absolute value and must not contain
forward references .

Example

buffer macro
. erre
bname
endm

buffer 128 , bufl
buffer 129 , buf2

count , bname
count le 128
db count dup (O)

Allocate memory , but
no more than 128 bytes

Data al!ocated - no error
Error generated

In this example , the . ERRE directive is used to check the boundaries of a
parameter passed to the macro buffer . I f count is less than or equal to
128 , the expression being tested by the error directive will be true
(nonzero) and no error w1ll be generated . If count is greater than 128,
the expression will be false (0) and the error will be generated .

. ERRDEF and . ERRNDEF

Syntax

. ERRDEF name

. ERRNDEF name

The . ERRDEF and . ERRNDEF directives test whether or not name has been
defined . The . ERRDEF directive produces an error if name is defined as a

5-14 MS-MACRO ASSEtB...ER lHlER XENIX Y REFERENCE MANUAL

COND I T I ONAL D IRECTIVES

labe l , variable , or symbol . The . ERRNDEF directive produces an error i f
name has not yet been defined . I f name i s a forward reference , it is
considered undefined on Pass 1 , but defined on Pass 2 .

Example

. errdef symbol
i fdef configl

symbol EQU 0

endif
ifdef config2

symbol EQU 1

end if
. errndef symbol

In this example , the . ERRDEF directive at the beginning of the
conditional blocks makes sure that symbol has not been defined before

J
entering the blocks . The . ERRNDEF directive at the end ensures that
symbol was defined somewhere within the blocks .

. ERRB and . ERRNB

Syntax

. ERRB <string>

. ERRNB <string>

The . ERRB and . ERRNB directives test the given string . The . ERRB
directive generates an error if string is blank . The . ERRNB directive
generates an error if string is not blank . The str ing can be any name ,
number , or expression . The angle brackets (<>) are required .

5-lS

�

These conditional error directives can be used within macros to test for
the existence of parameters .

Example

work macro realarg , testarg
. errb <realarg>
. errnb <testarg>

endm

Error if no parameters
Error if more than one parameter

In this example , error directives are used to make sure that one , and
only one , argument is passed to the macro . The . ERRB directive generates
an error if no argument is passed to the macro . The . ERRNB directive
generates an error if more than one argument is passed to the macro .

. ERRIDN and . ERRDIF

Syntax

. ERRIDN <stringl> , <string2>

. ERRDIF <stringl> , <string2>

The . ERRIDN and . ERRDI F directives test whether two str1ngs are
identical . The . ERRIDN directive generates an error if the strings are
identical . The . ERRDIF generates an error if the strings are different .
The strings can be names , numbers , or expressions . To be identical , each
character in stringl must match the corresponding character in string2 .
String checks are case-sensitive . The angle brackets (<>) are required .

Example

addem macro adl , ad2 , sum
. erridn <ax> , <ad2>
. err idn <AX> , <ad2>
mov ax , adl
add ax , ad2
mov
endm

sum , ax

Error if ad2 is ' ax '
Error if ad2 i s ' A X '
Would overwrite if ad2 were ' ax '

Sum must be register or memory

5-16 MS-MACRO ASSEMBlER lN)[R XENIX V REfERENCE MAMJAL.

COND I T I ONAL DIRECT I VES

In this example , the . ERRIDN directive is used to protect against passing
the AX register as the second parameter , because the macro won ' t work if
the AX register is passed as the second parameter . Note that the
directive is used twice to protect against the two most l ikely spellings .

5-17

6 . MACRO DIRECTIVES I

ABOUT THIS CHAPTER

The first part of this chapter describes how macros
second part goes on to describe how they are called .
allow macro handling are described , followed by a
special control operation macros .

CONTENTS

INTRODUCT ION

MACRO DEF I N I T ION

CALLING A MACRO

ENDM (END MACRO)

EXITM (EX I T MACRO)

LOCAL

PURGE

REPEAT DIRECTIVES

REPEAT

IRP (INDEF INATE REPEAT)

IRPC (INDEF I NATE REPEAT CHARACTER)

SPECIAL MACRO OPERATORS

&

<TEXT>

' '

"
"

6-l

6-1

6-3

6-4

6-5

6-6

6-7

6-8

6-8

6-9

6-10

6-11

6-11

6-12

6-13

6-13

6-14

are defined . The
The directives that

description of the

MACRO D I RECT I VES

INTRODUCTION

The macro directives allow you to write blocks of code which can be
repeated without receding . The blocks of code begin with either the macro
definition direct ive or one of the repetition directives , and end with
the ENDM directive . All of the macro directives may be used inside a
macro block . In fact , nesting of macros is limited only by memory .

The macro directives of the Macro Assembler include :

Macro Definition :

MACRO

Termination :

ENDM
EXITM

Unique symbols within macro blocks :

LOCAL

Undefine a macro :

PURGE

Repetitions :

REPT (repeat)
IRP (indefinite repeat)
IRPC (indefinite repeat character)

The macro directives also include some special macro operators :

lx
' '
!
%

(ampersand)
(double semicolon)
(exc1amation mar k)
(percent sign)

MACRO DEFINITION

The block of statements from the MACRO statement l ine to the ENDM
statement l ine comprises the body of the macro , or the macro ' s
definit ion .

6-1

Syntax

name MACRO [dummy [, dummy) . . .)

ENDM

Where

name

dummy

Remar ks

is like a label and conforms to the rules for forming
symbols . After the macro has been defined , name is used
to invoke the macro .

is formed as any other name is formed . A "dummy" is a
place holder that is replaced by a parameter in a one­
for-one text substitution when the macro block is used .
You should include all "dummys" used inside the macro
block on this line . The number of "dummys" is l imited only
by the length of a l ine . If you specify more than one
"dummy" , they must be separated by commas . Macro Assembler
interprets a series of "dummys" in the same way as any
list of symbol names .

A "dummy" is always recognized exclusively
register name (such as AX or BH) is
replaced by a parameter during expansion .

as a "dummy" . Even if a
used as a "dummy" , it will be

One alternative is to list no "dummys" :

name MACRO
MACRO

This type of macro block allows you to call the block repeatedly , even if
you do not want or need to pass parameters to the block . In this case ,
the block will not contain any "dummys" .

A macro block is not assembled when it is encountered . Rather , when you
call a macro , the assembler "expands" the macro call statement by
bringing in and assembling the appropriate macro block .

MACRO is an extremely powerful directive-. With it , you can change the
value and effect of any instruction mnemonic , directive , labe l , variable ,
or symbol . When Macro Assembler evaluates a statement , it first looks at
the macro table it builds dur ing pass 1 . I f it sees a name there that
matches an entry in a statement , it acts accordingly . (Remember : Macro
Assembler evaluates macros , then instruction mnemonics/directives .)

6-2 MS-HACRO ASSEMBLER UNDER XENIX V REFERENCE MANUAL

MACRO DI RECTIVES

I f you want to use the T ITLE , SUBTTL , or NAME directives for the port ion
of your program where a macro block appears , you should be careful about
the form of the statement . I f , for example , you enter SUBTTL MACRO
DEF INIT IONS , Macro Assembler will assemble the statement as a macro
definition with SUBTTL as the macro name and DEF INITIONS as the dummy .
To avoid this problem , alter the word MACRO in some way ; e . g . , - MACRO ,
MACROS , and so on .

Example

add up macro
mov
add
mov
endm

xx , yy , zz
ax , xx
ax , yy
ax , z z

First parameter in ax
Add next two parameters and

leave the result in ax

CALLING A MACRO

To use a macro , enter a macro call statement with the following format .

Syntax

name [<parameter , [, parameter] . . . >]

Where

n�e

parameter

is the name of the macro block .

replaces a dummy on a one-for-one basis . The number of
parameters is l imited only by the length of a l ine . If you
enter more than one parameter , they must be separated by
commas , spaces , or tabs . I f you place angle brackets
around parameters separated by commas , the assembler will
pass all the items inside the angle brackets as a single
parameter .

For example :

a11ocblock 1 , 2 , 3 , 4 , 5

passes five parameters t o the macro , but

a1locblock <1 , 2 , 3 , 4 , 5>

6-3

passes only one . The number of parameters in the macro
call statement need not be the same as the number of
"dummys" in the MACRO definition . I f there are more
parameters than "dummys" , the extras are ignored . I f there
are fewer , the extra "dummys" will be made null . The
assembled code will include the macro block after each
macro call statement .

Examples

ailocblock 1 , 2 , 3 , 4 , 5

This example passes five numeric parameters t o the macro called
"allocblock" .

The second example passes a single parameter to "allocblock" . The
parameter is a list of five numbers :

allocblock <1 , 2 , 3 , 4 , 5>

The third example passes three parameters to the macro called "addup" .

addup bx , 2 , count

Assuming that "addup" is defined :

addup macro adl , ad2 , ad3
mov ax , adl
mov ax , ad2
mov ax , ad3
endm

F irst parameter in ax
Add next two parameters and

leave the result in ax

the assembler will expand the macro to give :

mov ax , bx
mov ax , 2
mov ax , count

ENDM (End Macro)

ENDM tells the assembler that the MACRO or Repeat block is ended .

Syntax

ENDM

6-4 MS-MACRO ASSEMBLER XENIX V REfERENCE MANUAL

MACRO DI RECTIVES

Remarks

Every MACRO ,
directive .
generated at
error .

REPT , IRP , and I RPC must be terminated with the ENDM
Otherwise , the "Unterminated REPT/IRP/IRPC/MACRO" message is
the end of each pass . An unmatched ENDM also causes an

If you wish to be able to exit from a MACRO or repeat block before
expansion is completed , use EXITM .

Example

addup macro xx , yy , zz
mov ax , xx
mov ax , yy
mov ax , zz
endm

EXITM (Exit Macro)

The EX I TM directive is used inside a MACRO or Repeat block to terminate
an expansion when some condition makes the remaining expansion
unnecessary or undesirable . Usually EXITM is used in conjunction with a
conditional directive .

Syntax

EXITM

Remarks

When an EX ITM is assembled , the expansion is exited immediately .
remaining expansion or repetition is not generated . I f the
containing the EX I TM is nested witnin another block , the outer
continues to be expanded .

Example

alloc macro t imes
X
rept t imes

i fe x-OFFH
Repeat upto 256 t imes
Does x = 256 yet ?

Any
block
level

6-5

LOCAL

X
endm
endm

exitm
else
db X
end if

X + 1

I f so, quit

Else allocate x

Increment x

The LOCAL directive is allowed only inside a macro definition block . A
LOCAL statement must precede all other types of statements in the macro
definition .

Syntax

LOCAL dummy [, dummy] . . .

Remarks

When LOCAL is executed , the assembler creates a unique symbol for each
"dummy" and substitutes that symbol for each occurrence of the "dummy" in
the expansion . These unique symbols are usually used to define a label
within a macro , thus el iminating multiple-defined labels on successive
expansions of the macro . The symbols created by the assembler range from
??0000 to ??FFFF . Users should avoid the form ??nnnn for their own
symbols .

Example

loop

a :

macro
local
mov
mov

count , y
a
ax , y
cx , count

inc ax
jnz a
endm

6-6 MS-MACRO ASSDR..ER Ufti)[R XENIX V REfERENCE �

MACRO DIRECT I VES

PURGE

PURGE deletes the definition of the macro (s) listed after i t .

Syntax

PURGE macro_name [, macro-name] . . .

Remarks

PURGE provides three benefits :

It frees text space of the macro body .

I t returns any instruction mnemonics or directives that were
redefined by macros to their original function .

I t allows you to "edit out" macros from a macro l ibrary file . You
may find it useful to create a file that contains only macro
definitions . This method allows you to use macros repeatedly with
easy access to their definitions . Typically , you would then place an
INCLUDE statement in your program file . Following the I NCLUDE
statement , you could place a PURGE statement to delete any macros you
will not use in this program .

I t is not necessary to PURGE a macro before redefining it . Simply
place another MACRO statement in your program , reusing the macro
name .

Examples

The first example deletes the macro called "add" from the assembler ' s
memory :

purge add

The second example deletes three macros called "macl" , "mac2" and "mac9" :

purge macl , mac2 , mac9

6-7

Repeat Directives

The directives in this group allow the operations in a block of code to
be repeated for the number of times you specify . The major differences
between the Repeat directives and MACRO directive are :

MACRO gives the block a name by which to call in the code wherever
and whenever needed ; the macro block can be used in many different
programs by s imply entering a macro call statement .

MACRO allows parameters to be passed to the macro block when a MACRO
is called ; hence , parameters can be changed .

Repeat directive parameters must be assigned as a part of the code block .
I f the parameters are known in advance and will not change , and if the
repetition is to be performed for every pro9ram execution , then Repeat
directives are convenient . With the MACRO d�rective , you must call in the
MACRO each t ime it is needed .

Note that each Repeat directive must be matched with the ENDM directive
to terminate the repeat block .

REPEAT

Repeats block of statements between REPT and ENDM <exp> t imes .

Syntax

REPT exp

ENDM

Where

exp is evaluated as a 16-bit unsigned number . If "exp"
contains an External symbol or undefined operands , an
error is generated.

6-8 MS-MACRO ASSEMBL ER UNDER XENIX V REFERENCE MANUAL

MACRO DI RECT IVES

Example

X 0
rept 10

X X + 1
db X
endm

This example repeats the equals sign (=) and DB directives ten times .
The resulting statements create ten bytes of data whose values range from
1 to 10 .

IRP (Indefinite Repeat)

Syntax

IRP dummy , <parameters>

ENDM

Remarks

Parameters must be enclosed in angle brackets . Parameters may be any
legal symbol , string , numer1c , or character constant . The block of
statements is repeat�d for each parameter . Each repetition substitutes
the next parameter for every occurrence of "dummy" in the block . If a
parameter is null (i . e . , <>) , the block is processed once with a null
parameter .

Example

irp x , <O , l , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9>
db 10 dup (x)

endm

This example generates the same bytes (DB 1 to DB 10) as the REPT
example .

When IRP is used inside a MACRO definition block , angle brackets around
parameters in the macro call statement are removed before the parameters
are passed to the macro block . An example , which generates the same code

6-9

as above , illustrates the removal of one level of brackets from the
parameters :

alloc macro
irp
db
endm
endm

X
y , <x>
y

When the macro call statement

alloc <0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9>

is assembled , the macro expansion becomes :

irp y , <O , l , 2 , 3 ,4 , 5 , 6 , 7 , 8 , 9>
db y
endm

The angle brackets around the parameters will be removed , and all items
are passed as a single parameter .

I RPC (Indefinite Repeat Character)

Syntax

IRPC dummy , str ing

ENDM

Remarks

The statements in the block are repeated once for each character in the
string . Each repetition substitutes the next character in the string for
every occurrence of "dummy" in the block .

Example

irpc x , Ol23456789
db X + 1

endm

6-10 MS-HACRO ASSEMBLER UNDER XENIX V REFERENCE MANUAL

MACRO D I RECT I VES

This example generates the same effect as the previous two examples ,
repeating the db directive ten times , once for each character in the
'�123456789" string . The resulting statements produce ten bytes of data ,
having the values 1 to 10 .

Special Macro Operators

Several special operators can be used in a macro block to select
additional assembly functions .

&

Syntax

&

The ampersand concatenates text or symbols . (The ampersand may not be
used in a macro call statement .) A dummy parameter in a quoted string
will not be substituted in expansion unless preceded immediately by an
ampersand . To form a symbol from text and a dummy , put an ampersand
between them .

For example :

errgen
error&x

macro
db
endm

y , x
' Error &y - &x'

In this example , MASM replaces "&x" with the value of the actual
parameter passed to errgen . If the macro is called with the statement

errgen ! , wait

the macro is expanded to

errorwait db ' Error 1 - Wait '

In Macro Assembler , the ampersand will not appear in the expansion . One
ampersand is removed each time a dummy& or &dummy is found . For complex
macros , where nesting is involved , extra ampersands may be needed . You
need to supply as many ampersands as there are levels of nesting .

In the following macro definition the substitute operator is used twice
with "z" to ensure that its replacement occurs while the IRP directive is
being processed :

alloc macro X

6-11

x&&z
endm

irp
db

z , <l , 2 , 3>
z

The dummy parameter "x" is here replaced immediately the macro is called .
The dummy parameter "z" , however , is not replaced until the I RP directive
is processed . This means that the parameter is replaced once for each
number in the I RP parameter list . If the macro is called with

alloc var

the expanded macro will be

varl
var2
var3

>

Syntax

<text>

db
db
db

1
2
3

Angle brackets cause MASM to treat the text between the angle brackets as
a single l iteral . Placing parameters to a macro call inside angle
brackets ; or placing the list of parameters following the I RP directive
inside angle brackets causes two results :

A l l text within the angle brackets is seen as a single parameter ,
even if commas are used .

Characters that have special functions are taken as literal
characters . For example , the semicolon inside angle brackets < ; >
becomes a character , not the indicator that a comment follows .

One set of angle brackets is removed each time the parameter is used in a
macro . When using nested macros , you will need to supply as many sets of
angle brackets around parameters as there are levels of nesting .

6-12 MS-MACRO ASSEMBLER UNDER XENIX V REFERENCE MANUAL

MACRO DI RECTIVES

, ,

Syntax

; ; text

In a macro or repeat block , a comment preceded by two semicolons is not
saved as a par t of the expansion .

The default llsting condition for macros is . XALL (see Chapter 7 , "File
and L isting Control Dlrectives") . Under the influence of . XALL , comments
in macro blocks are not listed because they do not generate code .

I f you decide to place the . LALL listing directive in your program , then
comments inside macro and repeat blocks are saved and listed . This can
be the cause of an "out of memory error . " To avoid this error , place
double semicolons before comments inside macro and repeat blocks , unless
you specifically want a comment to be retained .

Syntax

! character

An exclamation point may be entered in an argument to indicate that the
next character is to be taken l iterally . Therefore , ' ; is equivalent to
< ; > .

6-lJ

"' ID

Syntax

��text

The percent sign is used only in a macro argument to convert the
expression that follows it (usually a symbol) to a number in the current
radix . During macro expansion , the number derived from converting the
expression is substituted for the dummy . Using the % special operator
allows a macro call by value . (Usually , a macro call is a call by
reference , with the text of the macro argument substituting exactly for
the dummy .)

The expression following the �� must evaluate to an absolute (non­
relocatable) constant .

Example

printe

syml
sym2

macro
��out
endm

equ
equ
pr inte

100
200
<syml + sym2 = > , % (syml + sym2)

In this example , the macro call

printe <syml + sym2 = > , % (syml + sym2)

passes the text literal "syml + sym2" to the dummy p,arameter "msg" . It
passes the value 300 (the result of the expression 'syml + sym2") to the
dummy "n" .

6-14 HS-MACRO ASSEMBLER UNDER XENIX V REFERENCE MANUAL

7 . L IST ING DIRECTI VES

ABOUT THIS CHAPTER

This chapter descr ibes the F ile Control and Listing Control Directives,
which are used to control the format and contents of source and object
files , and listings that the assembler produces .

CONTENTS

INTRODUCTION 7-1

INCLUDE 7-1

. RADIX 7-2

%OUT 7-3

NAME 7-3

T I TLE 7-4

SUBTITLE 7-5

PAGE 7-6

. L IST AND . XLIST 7-7

. LFCOND 7-8

. SFCOND 7-8

. TFCOND 7-9

. LALL 7-9

. SALL 7-10

. XALL 7-10

. CREF AND . XCREF 7-11

L ISTING DI RECTIVES

INTRODUCTION

These are the directives described in this chapter :

DIRECTIVE

INCLUDE
. RADI X
��OUT
NAME
T I TLE
SUB TTL
PAGE
. L IST
. X L IST
. LFCOND
. SFCOND
. TFCOND
. LALL
. SALL
. XALL
. CREF
. XCREF

MEANING

I nclude a source file
Change default input radix
Display message on console
Copy name to object file
Set program-listing title
Set program-listing subtitle
Set program-listing page size and line width
List statements in program listing
Suppress l isting of statements
List false conditional in program listing
Suppress false-conditional list ing
Toggle false-conditional listing
I nclude macro expansions in program listing
Suppress l isting of macro expansions
Exclude comments from macro l isting
L ist symbols in cross-reference file
Suppress symbol listing

Directives in this group are used to control the format and , to some
extent , the content of source and object files , and listings that the
assembler produces . Format control directives : allow the use of a
different default input radix for numbers ; and allow the programmer to
insert page breaks and direct page headings . Content control directives
allow inclusion or suppression of various content types , such as macro
expansions , from files and listings . Listing directives turn on and off
the listing of all or part of the assembled file .

INCLUDE

The I NCLUDE directive inserts source code from an alternate assembly
language source file into the current source file during assembly .

Syntax

I NCLUDE filename

Use of the I NCLUDE directive eliminates the need to repeat an often-used
sequence of statements in the current source file .

7-1

The "filename" is any valid file specification for the operating
If the device designation is other than the default , the source
speci fication must include it . The default device designation
currently logged drive or device .

system .
filename

is the

The included file is opened and assembled into the current source file
immediately following the INCLUDE directive statement . When enrl-of-file
is reached , assembly resumes with the next statement follGwing the
INCLUDE directive .

Nested I NCLUDES are allowed (the file inserted with an INCLUDE statement
may contain an INCLUDE directive) . However , this is not a recommended
practice with small systems because of the amount of memory that may be
required .

The file specified must exist . I f the file is not found , an error is
displayed , and the assembly aborts .

On a Macro Assembler listing , the letter C is printed between the
assembled code and the source line on each line assembled from an
included file . See Section "Formats of List ings and Symbol Tables , " for
a description of l isting file formats .

Example

include entry
include include/record
include /usr/include/as/stdio

. RADI X

The RADIX directive permits you t o change the input radix t o any base in
the range 2 to 1 6 .

Syntax

. RADI X exp

The default input base (or radix) for all constants is decimal .

"Exp" is always in decimal radix , regardless of the current input radix .

7-2 MS-MACRO ASSEMBLER UNDER XENIX V RErERENCE MANUAL

L I STING DI RECT IVES

Examples

. radix 16

. radix 2

%OUT

The text is listed on the terminal during assembly . %OUT is useful for
displaying progress through a long assembly or for displaying the value
of conditional assembly switches .

Syntax

�oOUT text

Remarks

%OUT will output on both passes . I f only one printout is desired , use
the I F ! or IF2 directive , depending on which pass you want displayed .
See Section "Conditional Directives , " for descriptions o f the I F ! and IF2
directives .

Example

ifl
%out first pass -- okay

end if

Declares the name of a module

NAME •

7-3

Syntax

NAME module_name

Where

module-name

Remarks

must not be a reserved word . The module name may be any
length , but Macro Assembler uses only the first s ix
characters and truncates the rest .

The module name is passed to ld , the XENIX link editor , but otherwise has
no significance for the assembler . MASM does check to see if more than
one module name has been declared .

Every module has a name . MASM derives the module name from :

A valid NAME directive statement

If the module does not contain a NAME statement , MASM uses the first
six characters of a T ITLE directive statement . The first six
characters must be legal as a name . If no T ITLE directive is found ,
the default name "A" is used .

Example

name main

T ITLE specifies a title to be listed on the first line of each page .

Syntax

T I TLE text

7-4 MS-MACRO ASSEMBLER UNDER XENIX V REfERENCE MANUAL

L IST ING DI RECT IVES

\'!here

text may be up to 60 characters long . I f more than one T I TLE is given ,
an error results . The first six characters of the title , i f legal ,
are used as the module name , unless a NAME directive is used .

Example

title progl -- lst program

I f the NAME directive is not used , the module name is now "progl lst
progra�' . This title text will appear at the top of every page of the
l isting .

SUBTITLE

SUBTTL specifies a subtitle to be listed in each page heading on the l ine
after the title .

Syntax

SUBTTL text

text is truncated after 60 character s .

Remarks

Any number of SUBTTLs may be given in a program . Each t ime the assembler
encounters SUBTTL , it replaces the "text" from the previous SUBTTL with
the "text" from the most recently encountered SUBTTL . To turn off SUBTTL
for part of the output , enter a SUBTTL with a null string for "text" .

Example

subttll SPECIAL I/0 ROUTINE

This example creates a subtitle "SPECI AL I /0 ROUTINE" . The next example
creates a blank subtitle :

sub ttl

7-5

PAGE

This directive can be used to designate the l ine length and width for the
program l isting , . to increment the section and adjust the section number
accordin9ly , or to generate a page break by putting a form-feed character
in the l1sting file at the end of the page .

Syntax

PAGE [length] [, width]

or

PAGE (+]

Remarks

The PAGE directive with either the length or width argument does not
start a new listing page .

The value of "length" , if included , becomes the new page length (measured
in l ines per page) and must be in the range 10 to 255 . The· default page
length is 50 lines per page .

The value of "width" , if included , becomes the new page width (measured
in characters) and must be in the range 60 to 132 . The default page
width is 80 characters .

The plus sign (+) increments the major page number and resets the minor
page number to one . Page numbers are in the form major-minor . The PAGE
directive without the + increments only the minor portion of the page
number .

Examples

page

This example creates a page-break . The next example ,

page 58 , 60

sets the maximum page length to 58 lines , and the maximum width to 60
characters . The third example :

page , 132

7-6 MS-MACRO ASSEI&.ER R XENIX Y RErERENCE MANUAL

L I ST I NG DI RECTI VES

sets the maximum width to 132 characters . The curent page length remains
unaltered . The fourth example :

page +

increments the current section number and sets the page number to 1 .

. LIST and . XLIST

The . LI ST directive lists all lines with their code (the default
condition) . . X L IST suppresses all l isting .

Syntax

. L IST

and

. XL IST

Remarks

If you specify a listing file following the Listing : prompt , a l isting
file with all the source statements included will be printed .

When . XL IST is encountered in the source file , source and object code
will not be listed . . XLIST remains in effect unti l a . L IST is
encountered .

The . XLIST directive overrides all other l isting directives . Nothing
will be l isted , even if another l isting directive (other than . LIST) is
encountered .

Example

. xl ist l isting suspended here

. l ist l isting resumed here

7-7

=

. LFCOND

Syntax

. LFCOND

Remarks

The . LFCOND directive assures the listing of conditional expressions that
evaluate false . This is the default condition .

. SFCOND

Syntax

. SFCOND

Remarks

The . SFCOND directive suppresses portions of the l isting that contain
conditional false expressions .

Example

. sfcond
if O

end if
. l fcond
if 0

end if

This block will not be listed

This block will be listed

7-8 MS-MACRO ASSEMBLER lNlER XENIX V REFERDI:E MAMJAl.

L I ST I NG DI RECTI VES

. TFCOND

Syntax

. TFCOND

Remarks

The . TFCOND directive toggles the current setting . . TFCOND operates
independently from . LFCOND and . SFCOND . . TFCOND toggles the default
setting , which is set by the presence or absence of the - X option when
the assembler is running . When -X is used , . TFCOND will cause false
conditionals to list . When -X is not used , . TFCOND will suppress false
conditionals .

. LALL

Syntax

. LALL

Remarks

The . LALL directive lists the complete macro text for all expansions ,
including lines that do not generate code . Comments preceded by two
semicolons " ; ; " will not be listed .

Examples

. sal! No macros l isted here

. !all Macros listed in full

7-9

=

. SALL

Syntax

. SALL

Remarks

The . SALL directive suppresses l isting of all text and object code
produced by macros .

. XALL

Syntax

. XALL

Remarks

The . XALL directive lists source code and object code produced by a
macro, but source l ines which do not generate code are not l isted . . XALL
is the default .

Example

. xall Macros listed by generated code or data only

7-10 MS-MACRO ASSEMBLER UNDER XENIX V REFERENCE MANUAL

L I ST I NG DIRECT IVES

. CREF and . XCREF

Syntax

. CREF

and

. XCREF [variable l ist]

Characteristir�

The . CREF directive is the default condition . . CREF remains in effect
until Macro Assembler encounters . XCRE F .

The . XCREF directive without arguments turns off the . CREF (default)
directive . . XCREF remains in effect until Macro Assembler encounters
. CREF . Use . XCREF to suppress the creation of cross-references in
selected portions of the file . Use . CREF to restart the creation of a
cross-reference file after using the . XCREF directive .

I f you include one or more variables following . XCRE F ,
will not be placed i n the l isting o r cross-reference
cross-referencing , however , is not affected by an . XCREF
arguments . Separate the var iables with commas .

these variables
file . All other

directive with

Neither . CREF nor . XCREF without arguments takes effect unless you
specify a cross-reference file when running the assembler . " . XCREF
variable list" suppresses the variables from the symbol table list ing
regardless of the creation of a cross-reference fil e .

Example

. xcref one , two , three

7-11

A . I NTRODUCTION

ABOUT THIS APPENDI X

This appendix i s a l ist o f the error messages returned by the MASM Macro
Assembler and the ld link editor .

CONTENTS

MACRO ASSEMBLER MESSAGES A-1

L I NKER MESSAGES A-7

INSTRUCTION SUMMARY

INTRODUCTION

MASM is an assembler for the 8086/186/286 family of microprocessors ,
capable of assembling instructions for the 8086, 186 , and 286
microprocessors and the 8087 and 287 floating point coprocessors . MASM
will assemble any program written for an 8086 , 186 , or 286 microprocessor
environment as long as the program uses the instruction synlax described
in this chapter . ·

By default , MASM recognizes 8086 and 8087 instructions onl y . I f a source
program contains 186 , 286 , or 287 instructions , one or more I nstruction
Set directives must be used in the source file to �nablP. assembly of the
instructions . The following sections l ist the syntax of all instructions
recognized by MASM and the I nstruction Set directives .

Abbreviations used in the syntax descriptions are :

SYMBOL

accum
reg

segreg
r/m

immed
mem
label

MEANING

accumulator : AX or AL
byte or word register

byte : AL , AH , BL , BH , C L , CH, DL , DH
word : AX , BX , CX , OX , SI , D I , BP , SP

segment register : CS , OS , SS , ES
general operand : register , memory address , indexed
operand , based operand , or based indexed operand
8- or 16-bit immediate value : constant or symbol
memory operand : label , variable , or symbol
instruction label

8086 INSTRUCTIONS

The following is a complete list of the 8086 instructions . MASM
assembles all 8086 instructions by default .

SYMBOL

AAA
AAD
AAM
AAS
ADC accum , immed
ADC r/m , immed
ADC r/m , reg
ADC reg , r/m
ADD accum , immed
ADD r/m , immed
ADD r/m , reg
ADD reg , r/m
AND accum , immed
AND r/m , immed
AND r/m , reg
AND reg , r/m
CALL label

ACTION

ASC I I adjust for addition
ASCI I adjust for division
ASC I I adjust for multiplication
ASCI I adjust for subtraction
Add immediate with carry to accumulator
Add immediate with carry to operand
Add register with carry to operand
Add operand with carry to register
Add immediate to accumulator
Add immediate to operand
Add register to operand
Add operand to tegister
Bitwise AND immediate with accumulator
Bitwise AND immediate with operand
Bitwise AND register with operand
Bitwise AND operand with register
Call instruction at label

A-1

CALL r/m
CBW
CLC
CLD
CLI
CMC
CMP accum , immed
CMP r/m , immed
CMP r/m , reg
CMP reg , r/m
CMPS src , dest
CMPSB
CMPSW
CWO
DAA
DAS
DEC r/m
DEC reg
DIV r/m
ESC immed , r/m
HLT
IDIV r/m
I MUL r/m
IN accum , immed
IN accum , OX
I NC r/m
INC reg
!NT 3
INT immed
INTO
I RET
JA label
JAE label
JB label
JBE label
JC label
JCXZ label
JE label
JG label
JGE label
JL label
JLE label
JMP label
JMP r/m
JNA label
JNAE label
JNB label
JNBE label
JNC label
JNE label
JNG label
JNGE label
JNL label
JNLE label
JNO label

Call instruction indirect
Convert byte to word
Clear carry flag
Clear direction flag
Clear interrupt flag
Complement carry flag
Compare immediate with accumulator
Compare immediate with operand
Compare register with operand
Compare operand with register
Compare strings
Compare strings byte for byte
Compare strings word for word
Convert word to double word
Decimal adjust for addition
Decimal adjust for subtraction
Decrement operand
Decrement 16-bit register
Divide accumulator by operand
Escape with 6-bit immediate and operand
Halt
I nteger divide accumulator by operand
I nteger multiply accumulator by operand
I nput from port (8-bit immediate)
I nput from port given by OX
I ncrement operand
I ncrement 16-bit register
Software interrupt 3 (encoded as one byte)
Software Interrupt 0 through 255
Interrupt on overflow
Return from interrupt
Jump on above
Jump on above or equal
Jump on below
Jump on below or equal
Jump on carry
Jump on ex zero
Jump on equal
Jump on greater
Jump on greater or equal
Jump on less than
Jump on less than or equal
Jump to instruction at label
Jump to instruction indirect
Jump on not above
Jump on not above or equal
Jump on not below
Jump on not below or equal
Jump on no carry
Jump on not equal
Jump on not greater
Jump on not greater or equal
Jump on not less than
Jump on not less than or equal
Jump on not overflow

A-2 MS-HACRO ASSEMBLER UNDER XENIX V REfERENCE MANUAL

INSTRUCTION SUMMARY

JNP label
JNS label
JNZ label
JO label
JP label
JPE label
JPO label
JS label
JZ label
LAHF
LOS r/m
LEA r/m
LES r/m
LOCK
LOOS src
LOOSB
LOOSW
LOOP label
LOOPE label
LOOPNE label
LOOPNZ label
LOOPZ label
MDV accum , mem
MDV mem , accum
MDV r/m , immed
MDV r/m , reg
MDV r/m , segreg
MDV reg , immed
MDV reg , r/m
MDV segreg , r/m
MOVS des t , src
MOVSB
MOVSW
MUL r/m
NEG r/m
NOP
NOT r/m
OR accum , immed
OR r/m , immed
OR r/m , reg
OR reg , r/m
OUT OX , accum
OUT immed , accum
POP r/m
POP reg
POP segreg
POPF
PUSH r/m
PUSH reg
PUSH segreg
PUSHF
RCL r/m , 1
RCL r/m , CL
RCR r/m , 1
RCR r/m , CL

Jump on not parity
Jump on not sign
Jump on not zero
Jump on overflow
Jump on parity
Jump on parity even
Jump on parity odd
Jump on sign
Jump on zero
Load AH with flags
Load operand into OS
Load effective address of operand
Load operand into ES
Lock bus
Load string
Load byte from string into AL
Load word from string into AX
Loop
Loop while equal
Loop while not equal
Loop while not zero
Loop while zero
Move memory to accumulator
Move accumulator to memory
Move immediate to operand
Move register to operand
Move segment register to operand
Move immediate to register
Move operand to register
Move operand to segment register
Move string
Move string byte by byte
Move string word by word
Multiply accumulator by operand
Negate operand
No operation
I nvert operand bits
Bitwise OR immediate with accumulator
Bitwise OR immediate with operand
Bitwise OR register with operand
Bitwise OR operand with register
Output to port g iven by OX
Output to port (8-bit immediate)
Pop 16-bit operand
Pop 16-bit register from stack
Pop segment register
Pop flags
Push 16-bit operand
Push 16-bit register onto stack
Push segment register
Push flags
Rotate left through carry by 1 bit
Rotate left through carry by CL
Rotate r ight through carry by 1 bit
Rotate r ight through carry by CL

A-J

REPE
REPNE
REPNZ
REPZ
RET [immed]
ROL r/m , 1
ROL r/m , CL
ROR r/m , 1
ROR r/m , CL
SAHF
SAL r/m , 1
SAL r/m , CL
SAR r/m , 1
SAR r/m , CL
SBB accum , immed
SBB r/m , immed
SBB r/m , reg
SBB reg , r/m
SCAS dest
SCASB
SCASW
SHL r/m , 1
SHL r/m , CL
SHR r/m , 1
SHR r/m , CL
STC
STO
STI
STOS dest
STOSB
STOSW
SUB accum , immed
SUB r/m , immed
SUB r/m , reg
SUB reg , r/m
TEST accum , immed
TEST r/m , immed
TEST r/m , reg
TEST reg , r/m
WAI T
XCHG accum , reg
XCHG r/m , reg
XCHG reg , accum
XCHG reg , r/m
XLAT mem
XOR accum , immed
XOR r/m , immed
XOR r/m , reg
XOR reg , r/m

Repeat if equal
Repeat if not equal
Repeat if not zero
Repeat if zero
Return after popping bytes from stack
Rotate left by 1 bit
Rotate left by CL
Rotate r ight by 1 bit
Rotate right by CL
Store AH into flags
Shift ar ithmetic left by 1 bit
Shift arithmetic left by CL
Shift arithmetic r ight by 1 bit
Shift arithmetic r ight by CL
Subtract immediate and carry flag
Subtract immediate and carry flag
Subtract register and carry flag
Subtract operand and carry flag
Scan string
Scan string for byte in AL
Scan string for word in AX
Shift left by 1 bit
Shi ft left by CL
Shift right by 1 bit
Shi ft r ight by CL
Set carry flag
Set direction flag
Set interrupt flag
Store string
Store byte in AL at string
Store word in AX at string
Subtract immediate from accumulator
Subtract immediate from operand
Subtract register from operand
Subtract operand from register
Compare immediate bits with accumulator
Compare immediate bits with operand
Compare register bits with operand
Compare operand bits with register
Wait
Exchange accumulator with register
Exchange operand with register
Exchange register with accumulator
Exchange register with operand
Translate
Bitwise XOR immediate with accumulator
Bitwise XOR immediate with operand
Bitwise XOR register with operand
Bitwise XOR operand with register

The String instructions (CMPS , LODS , MOVS , SCAS , and STOS) use the OS ,
SI , E� , and DI registers to compute operand locations . Source OQ erands
are assumed to be at DS : [SI] ; destination operands at ES : [DI J . The
operand type (BYTE or WORD) is defined by the instruction mnemonic . For
example , CMPSB specifies BYTE operands and CMPSW speci fies WORD operands .

A-4 MS-MACRO ASSOmLER uti)[R XENIX V REFERENCE MANUAL

I NSTRUCT I ON SUMMARY

For the eMPS , LDDS , MOVS , seAS , and STOS instructions , the "src" and
"dest" operands are dummy operands that define the operand type only .
The offsets associated with these operands are not used . The "src"
operand can also be used to specify a segment override . The ES �egister
for the destination operand cannot be overridden .

Examples

cmps word ptr string , word ptr es : O
lads byte ptr string
mov byte ptr es : O , byte ptr string

The REP , REPE , REPNE , REPNZ , or REPZ instructions provide a way to
repeatedly execute a String instruction for a given count or while a
given condition is true . I f a Repeat instruction immediately precedes a
String instruction (both instructions must be on the same line) , the
instructions are repeated until the specified repeat condition is false ,
or the ex register is equal to zero . The Repeat instruction decrements
ex by one for each execution .

Example

mov ex , 10
rep scasb

In this example , SCASB is repeated ten time s .

8087 INSTRUCTIONS

The following is a list of the 8087 instructions .
8087 instructions by default .

MASM assembles all

SYMBOL

F2XM1
FABS
F"ADD
FADD mem
FADD S T , ST (i)
FADD ST (i) ST
FADDP ST (i l , ST
FBLD mem
FBSTP mem
FCHS
FCLEX
FCOM
FCOM ST
FCOM ST (i)
FCOMP
FCOMP ST

ACT ION

Calculate 2uxd-l
Take absolute value of top of stack
Add real
Add real from memory
Add real from stack
Add real to stack
Add real and pop stack
Load 10-byte packed decimal on stack
Store 10-byte packed decimal and pop
Change sign on the top stack element
Clear exceptions after WAI T
Compare real
Compare real with top of stack
Compare real with stack
Compare real and pop stack
Compare real with top of stack and pop

A-5

FCOMP ST (i)
FCOMPP
FDECSTP
FDISI
FDIV
FDI V mem
FDI V ST , ST (i)
FDI V ST (i) ST
FDIVP ST (i) , ST
FDIVR
FDIVR mem
FDIVR ST , ST (i)
FDIVR ST (i) ST
FDI VRP ST (i) , ST
FENI
FFREE
FFREE ST
FFREE ST (i)
F IADD mem
F I CDM mem
F ICOMP mem
FIDIV mem
F ID I VR mem
F I LD mem
F IMUL mem
F I NCSTP
F I N I T
F IST mem
F ISTP mem
F I SUB mem
F I SUBR mem
FLO mem
FLO!
FLDCW mem
FLDENV mem
FLDL2E
FLDL2T
FLDLG2
FLDLN2
FLOP I
FLDZ
FMUL
MUL mem
FMUL ST , ST (i)
FMUL ST (i) ST
FMULP ST (i) , ST
FNCLEX
FNDISI
FNENI
FNINIT
FNOP
FNSAVE mem
FNSTCW mem
FNSTENV mem
FNSTSW mem

Compare real with stack and pop stack
Compare real and pop stack twice
Decrement stack pointer
Disable interrupts after WAIT
Divide real
Divide real from memory
Divide real from stack
Divide real in stack
Divide real and pop stack
Reversed real divide
Reverse real divide from memory
Reverse real divide from stack
Reverse real divide in stack
Reversed real divide and pop stack twice
Enable interrupts after WAI T
Free stack element
Free top of stack element
Free ith stack element
Add 2 or 4-byte integer
2 or 4-byte integer compare
2 or 4-byte integer compare and pop stack
2 or 4-byte integer divide
Reversed 2 or 4-byte integer divide
Load 2 , 4, or 8-byte integer on stack
2 or 4-byte integer multiply
I ncrement stack pointer
Initialize processor after WAI T
Store 2 o r 4-byte integer
Store 2 , 4, or 8-byte integer and pop stack
2 or 4-byte integer subtract
Reversed 2 or 4-byte integer ·subtract
Load 4, 8, or 10-byte real on stack
Load +1 . 0 onto top of stack
Load control word
Load 8087 environment (14-bytes)
Load logd2ue onto top of stack
Load logd2ul0 onto top of stack
Load logdl0u2 onto top of stack
Load logdeu2 onto top of stack
Load pi onto top of stack
Load +0 . 0 onto top of stack
Multiply real
Multiply real from memory
Multiply real from stack
Mult iply real to stack
Multiply real and pop stack
Clear exceptions with no WAI T
Disable interrupts with n o WAI T
Enable interrupts with n o WAIT
Initialize processor , with no WAI T
No operation
Save 8087 state (94 bytes) with no WAIT
Store control word with no WAIT
Store 8087 environment with no WAI T
Store 8087 status word with n o WAI T

A-6 MS-MACRO ASSEMBLER UNDER XEN I X Y REFERENCE MANUAL

I NSTRUCTION SUMMARY

FPATAN
FPREM
FPTAN
FRNDINT
FRSTOR mem
FSAVE mem
FSCALE
FSQRT
FST
FST ST
FST ST (i)
FSTCW mem
FSTENV mem
FSTP mem
FSTSW mem
FSUB
FSUB mem
FSUB ST , ST (i)
FSUB ST(i) ST
FSUBP ST (i l , ST
FSUBR
FSUBR mem
FSUBR ST , ST (i)
FSUBR ST (i) ST
FSUBRP ST (i) , ST
FTST
FWAIT
FXAM
FXCH
FFREE ST
FFREE ST (i)
FXTRACT
FYL2X
FYL2PI

186 INSTRUCTIONS

Partial arctangent function
Partial remainder
Partial tangent function
Round to integer
Restore 8087 state (94 bytes)
Save 8087 state (94 bytes) after WAI T
Scale
Square root
Store real
Store real from top of stack
Store real from stack
Store control word with WAI T
Store 8087 environment after WAI T
Store 4 , 8 , o r 10-byte real and pop stack
Store 8087 status word after WAI T
Subtract real
Subtract real from memory
Subtract real from stack
Subtract real to stack
Subtract real and pop stack
Reversed real subtract
Reversed real subtract from memory
Reversed real subtract from stack
Reversed real subtract in stack
Reversed real subtract and pop stack
Test top of stack
Wait for last 8087 operation to complete
Examine top of stack element
Exchange contents of stack elements
Exchange top of stack element
Exchange top of stack and ith element
Extract exponent and significand
Calculate Y logd2ux
Calculate Y logd2u (x+l)

The 186 instruction set consists of all 8086 instructions plus the
followin9 instructions . The . 186 directive can be used to enable these
instructlons for assembly .

SYMBOL

BOUND reg , mem
ENTER immedl6 , immed8
IMUL immed , reg
IMUL r/m , immed
INS mem , OX
I NSB mem , OX
I NSW mem , OX
LEAVE
OUTS OX , mem
OUTSB OX , mem
OUTSW OX , mem

ACTION

Detect value out of range
Enter procedure
Integer multiply immediate byte into word register
Integer multiply operand by immediate wird/byte
I nput string from port OX
I nput byte string from port OX
I nput word string from port OX
Leave procedure
Output byte/word/string to port OX
Output byte string to port OX
Output word string to port OX

A-7

POPA
PUSH immed
PUSHA
RCL r/m , immed
RCR r/m , immed
RDL r/m , immed
RDR r/m , immed
SAL r/m , immed
SAR r/m , immed
SHL r/m , immed
SHR r/m , immed

Pop all registers
Push all immediate word/byte
Push all registers
Rotate left through carry immediate
Rotate right through carry immediate
Rotate left immediate
Rotate right immediate
Shift arithmetic left immediate
Shift arithmetic right immediate
Shift left immediate
Shift right immediate

286 NON-PROTECTED INSTRUCTIONS

The 286 non-protected instruction set consists of all 8086 instructions
plus the following instructions . The . 286c directive can be used to
enable these instructions for assembly .

SYMBOL

BOUND reg , mem
ENTER immedl6 , immed8
IMUL immed, reg
IMUL r/m , immed
INS mem , OX
INSB mem , OX
INSW mem , OX
LEAVE
OUTS OX , mem
OUTSB DX , mem
OUTSW DX , mem
POPA
PUSH immed
PUSH A
RCL r/m , immed -
RCR r/m , immed
ROL r/m , immed
ROR r/m , immed
SAL r/m , immed
SAR r/m , immed
SHL r/m , immed
SHR r/m , immed

ACT ION

Detect value out of range
Enter procedure
Integer multiply immediate byte into word register
Integer multiply operand by immediate word/byte
Input string from port DX
Input byte string from port OX
Input word string from port OX
Leave procedure
Output byte/word/string to port OX
Output byte string to port OX
Output word string to port OX
Pop all registers
Push immediate word/byte
Push all registers
Rotate left through carry immediate
Rotate right through carry immediate
Rotate left immediate
Rotate r ight immediate
Shift arithmetic left immediate
Shift arithmetic r ight immediate
Shift left immediate
Shift right immediate

286 PROTECTED INSTRUCTIONS

The 286 protected instruction set consists of all 8086 and 286 non­
protected instructions plus the following instructions . The . 286p
directive can be used to enable these instructions for assembly .

SYMBOL

ARPL mem , reg
CLTS

ACTION

Adjust requested privilege level
Clear task switched flag

A-8 MS-HACRO ASSEMBLER UNDER XENIX Y REFERENCE MANUAL

I NSTRUCTI ON SUMMARY

LAR reg , mem
LGDT mem
LIDT mem
LLDT mem
LMSW mem
LSL reg , mem
LTR mem
SGDT mem
SlOT mem
SLOT mem
SMSW mem
STR mem
VERR mem
VERW mem

287 INSTRUCTIONS

Load access r ights
Load global descriptor table (8 bytes)
Load interrupt descr iptor table (8 bytes)
Load local descriptor table
Load machine status word
Load segment limit
Load task register
Store global descr iptor table (8 bytes)
Store interrupt descriptor table (8 bytes)
Store local descr iptor table
Store machine status word
Store task register
Verify read access
Verify write access

The 287 instruction set consists of all 8087 instructions plus the
following additional instructions . The . 287 directive can be used to
enable these instructions for assembly .

SYMBOL

FSETPM
FSTSW AX
FNSTSW AX

ACT ION

Set Protected Mode
Store Status Word in AX (wai t)
Store Status Word i n A X (no-wait }

A-9

B . DI RECTI VE AND OPERATOR SUMMARY

ABOUT THIS APPENDI X

This appendix lists all the MASM directives and all the MASM Operators .

CONTENTS

INTRODUCT ION

DIRECT I VES

OPERATORS

B-1

B-1

B-4

D I RECT IVE AND OPERATOR SUMMARY

INTRODUCTION

Directives give the assembler directions and information about input and
output , memory organization , conditional assembly , l isting and cross­
reference control , and definit ions . There are the following directives :

. 186 ELSE IFDIF PROC

. 286c END IFE PUBLI C

. 286p END I F I F ION . RADI X

. 287 ENDP I FNB RECORD

. 8086 ENDS IFNDEF . SALL

. 8087 EQU I NCLUDE SEGMENT
EVEN LABEL . SFCOND

ASSUME EXTRN . LALL STRUC
COMMENT GROUP . LFCOND SUB TTL
. CREF IF . L IST . TFCOND
DB I F l NAME T I TLE
DO I F2 ORG . XALL
DQ IFB ��OUT . XCREF
OT IFDEF PAGE . X L IST
ow

Any combination of upper and lowercase letters can be used when giving
directive names in a source file .

DIRECTIVES

The following is a complete list of directive syntax and function :

. 186

. 286c

. 286p

. 287

. 8086

. 8087

name = expression

ASSUME seg-reg seg-name

Enables assembly of 186 instructions .

Enables assembly of 286 unprotected
instructions .

Enables assembly of 286 protected
instructions .

Enables assembly of 287 instructions .

Enables assembly of 8086 instructions
while disabling assembly of 186 and 286
instructions .

Enables assembly of 8087 instructions
while disabling assembly of 287
instructions .

Assigns the numeric value of "expression"
to "name" .

, , , Selects the given segment register
"seg-reg" to be the default segment
register for all symbols in the named
segment or group . I f "seg-name" is

8-1

COMMENT del im text delim

. CREF

[name] DB initial-value

[name] OW initial-value ' ' '

[name] DO initial-value , , ,

[name] DQ initial-value , , ,

[name] DT initial-value , , ,

ELSE

END [expression]

END I F

name EQU expression

name ENDP

name ENDS

EVEN

EXTRN name type , , ,

name GROUP seg-name , , ,

B-2

NOTHI NG , no register is selected .

Treats all "text" between the given pair
of delimiters , "delim" , as a comment .

Restores l isting of symbols in the
cross-reference listing file .

Allocates and initializes a byte (8 bits)
of storage for each "initial-value".

Allocates and initializes
bytes) of storage for
"initial-value".

a word (2
each given

Allocates and initializes a doubleword (4
bytes) of storage for each given
"initial-value".

Allocates and · initializes a
bytes) of storage for
"initial-value" .

quadword (8
each given

Allocates and initializes 10 bytes of
storage for each given "initial-value" .

Marks the beginning of an alternate block
within a conditional block .

Marks the end of the module and
optionally sets the program entry point
to "expression" .

Terminates a conditional block .

Assigns the "expression" to the given
"name" .

Marks the end of a procedure definition .

Marks the end of a segment or structure
type definition .

I f necessary , increments the location
counter to an even value and generates
one NOP instruction (90h)

Defines an external var iable , labe l , or
symbol named "name" and whose type is
"type" .

Associates a group name . "name" , with one
or more segments .

MS-MACRO ASSEMBI...ER REfERENCE MAMJAl

DIRECT IVE AND OPERATOR SUMMARY

IF expression

IH

IF2

IFB < arg >

IFDEF name

IFDIF < argl > , < arg2 >

IFE expression

IFIDN < argl > , < arg2 >

IFNB < arg >

I FNDEF name

INCLUDE filename

name LABEL type

. LALL

. LFCOND

. LIST

NAME module-name

ORG expression

%OUT text

name PROC type

Grants assembly i f the "expression"
non-zero (true J .
Grants assembly on pass 1 only .

Grants assembly on pass 2 only .

is

Grants assembly i f the "arg" is blank .

Grants assembly if "name" is a previously
defined label , variable , or symbol .

Grants assembly if the arguments are
different .

Grants assembly i f the "expression" is 0
(false) .

Grants assembly i f the arguments are
identical .

Grants assembly i f the "arg" is not
blank .

Grants assembly i f "name" has not yet
been defined .

I nserts source code from the source file
given by "filename" into the current
source file during assembly .

Creates a new variable or label by
assigning the current location counter
value and the given "type" to "name" .

Lists all statements in a macro .

Restores the listing of conditional
blocks .

Restores listing of statements in the
program l isting .

Sets the name of the current module to
"module-name" .

Sets the
"expression" .

location counter to

Displays "text" at the user ' s terminal .

Marks the beginning of a procedure
definition .

B-3

PUBLIC name , , ,

. RADIX expression

Makes the variable , label , or absolute
symbol given by "name" available to all
other modules in the program .

Sets the input radix for numbers in the
source file to "expression".

recordname RECORD fieldname width [= exp]

. SALL

name SEGMENT align combine

. SFCOND

name STRUC

PAGE length , width

PAGE +

PAGE

SUB TTL text

. TFCOND

TITLE text

. XALL

. XCREF name , , ,

. XLIST

B-4

Defines an record type for a 8- or 16-bit
record that contains one or more fields .

Suppresses l isting o f
expansions .

all macro

Marks the beginning of a program segment
named "name" and having segment
attributes "align" , "combine", and
"class".

Suppresses list ing of any subsequent
conditional blocks whose I F condition is
false .

Marks the beginning of a type definition
for a structure .

Sets the l ine length and character width
of the program listing .

Increments section page numbering .

Generates a page break in the listing .

Defines the listing subtitle .

Sets the default mode for l isting of
conditional blocks.

Defines the program l isting title .

Lists only those macro statements that
generate code or data .

Suppresses the l isting o� symbols in the
cross-reference l isting file .

Suppresses listing of subsequent source
l ines to the program listing .

MS-MACRO ASSDa.ER REFERENCE MAtiJAl.

DI RECT IVE AND OPERATOR SUMMARY

OPERATORS

The operators recognized by MASM are listed by precedence in the
following table . Operations of highest precedence are performed firs t .
Operations of equal precedence are performed from left to right . This
default order can be overridden using enclosing parentheses .
PRECEDENCE OPERATORS

(Highest)
1
2
3
4
5
6
7
8
9
10
11
12
13
(Lowest)

LENGTH , S I Z E , WIDT H , MASK

H
PTR , OFFSET , SET , TYPE , THIS
H I GH , LOW
* • / , MOD , SHL , SHR
+ , - (binar y)
EQ , NE , L T , L E , GT , GE
NOT
AND
OR , XOR
SHORT , . TYPE

The syntax of each operator is shown in the following list :

expression! * expression 2 Multiply expression! by expression2 .

Divide expression! by expression2 . expressionl/expression2

expression! + expression2

expression! - expression2

+expression

-expression

segmentregister : expression

segmentname : expression

groupname : expression

Add expression! to expression2 .

Subtract expression2 from expression! .

Retain the current s ign of expression .

Reverse the sign of expression .

Override the default segment
expression with segmentregister .

Override the default segment
expression with segmentname .

Override the default segment
expression with groupname .

of

of

of

variable . field Add the offset to field to the offset of
variable .

expressionl [expression2]

&dulllllyparameter

Add the value of expression! to the value
of expression2 .

Replace dummyparameter with its actual
parameter value .

B-5

dUIIIIlyparameter&

<text>

! character

%text

; ; test

expression! AND expression2

count DUP (initialvalue)

expression! EQ expression2

expression! GE expression2

expression! GT expression2

HIGH expression

expression! LE expression2

LENGTH variable

LOW expression

expression! LT expression2

MASK recordfieldname

MASK record

Replace dummyparameter with its actual
parameter value .

Treat text as a single literal element .

Treat character as a literal character
rather than as an operator or symbol .

Treat text as an expr�ssion and compute
its value rath�r t�an treating it as a
string .

Make text into a comment that will not be
listed in expanded macros .

Do a bitwise Boolean AND on expression!
and expression2 .

Specify count number of declarations of
initial value·.

Return true (OFFFFh) i f expression!
equals expression2 , or return false (0)
if it does not .

Return true (OFFFFh) if expression! is
greater than or equal to expression2 , or
return false (0) if it is not .

Return true (OFFFFh) i f expression! is
greater than expression2 , or return false
(0) if it is not .

Return the high byte of expression .

Return true (OFFFFh) i f expression! is
less than or equal to expression2 , or
return false (0) if it is not .

Return the length of variable in the
size in which the variable was declared .

Return the low byte of expression .

Return true (OFFFFh) if expression! is
less than expression2 , or return false
(0) if it is not .

Return' a bit mask in which the bits for
recordfieldname ar� set and all other
bits are not set .

Return a bit mask in which the bits used
in record are set and all other bits are
not set .

MS-MACRO ASSEMBLER REFERENCE MANJAL

D I RECT I VE AND OPERATOR SUMMARY

expression! MOD expressionZ Return the remainder of dividing

expression! NE expressionZ

NOT expression

OFFSET expression

expression! OR expressionZ

type PTR expression

SEG expression

expression SHL count

SHORT label

expression SHR count

SIZE variable

THIS type

TYPE expression

. TYPE expression

WIDTH recordfieldname

WIDTH record

expression! XOR expressionZ

expression! by expressionZ .

Return true (OFFFFh) if expression! does
not equal expression2 , or return false
(0) if it does .

Reverse all bits of expression .

Return the offset of expression .

Do a bitwise Boolean DR on expression!
and expressionZ .

Force the expression to be treated as
havig the specified type .

Return the segment of expression .

Shift the bits of expression left count
number of bits .

Set type of label to short (having a
distance less than 128 bytes from the
current location-counter value) .

Shift the bits of expression r ight count
number of bits .

Return the total number of bytes
allocated for variable .

Create an operand of spelcified type
whose offset and segment values are equal
to the current location-counter value .

Return the type of expression .

Return a byte defining the mode and scope
of expression .

Return the width in bits of the current
recordfieldname .

Return the width in bits of the current
record .

Do a bitwise Boolean XOR on expression!
and expression2 .

B-7

C . SEGMENT NAMES FOR H IGH-LEVEL LANGUAGES

ABOUT THIS CHAPTER

This appendix describes the naming conventions used to form assembly
language source files that are compatible with object modules produced by
the cc G language compiler and other high-level language compilers .

CONTENTS

I NTRODUCT ION C-1

TEXT SEGMENTS C-1

SMALL MODEL PROGRAMS C-2

MIDDLE AND LARGE MODEL PROGRAMS C-2

DATA SEGMENTS - NEAR C-3

DATA SEGMENTS - FAR C-4

BSS SEGMENTS C-5

CONSTANT SEGMENTS C-6

SEGMENT NAMES FOR HIGH-LEVEL LANGUAGES

INTROOUCTION

This appendix describes the naming conventions used to form assembly
language source files that are compatible with object modules produced by
the cc C language compiler and otherhigh-level language compilers .

High-level language modules have the following four predefined segment
types :

TEXT
DATA
BSS
CONST

for program code
for program data
for uninitialized space
for constant data

Any assembly language source file that is to be assembled and l inked to a
high- level language module must use these segments as described in the
following sections .

High-level language modules also have three different memory models:

Small
Middle
Large

for single code and data segments
for multiple code segment but a single data segment
for multiple code and data segments

Assembly language source files to be assembled for a given memory model
must use the naming conventions given in the following sections .

TEXT SEGMENTS

Syntax

name_text seg�ent byte public ' CODE '
statements

name_text ends

A text segment defines a module ' s program code . It contains "statements"
that define instructions and data within the segment . A text segment
must have the name "name text" where "name" can be any valid name . For
middle and large module programs , the' module ' s own name is recommended .
For small model programs , only TEXT is allowed .

A segment can contain any combination of instructions and data
statements . These statements must appear in an order that creates a valid
program . All instructions and data addresses in a text segment are
relative to the CS segment register . Therefore , the statement

assume cs : name_text

C-1

must appear at the beginning of the segment . This statement ensures that
each label and variable declared in the segment will be associated with
the CS segment register (see the section , ASSUME Directive in Chapter 4) .

Text segments should have BYTE alignment and PUBLI C combination type , and
must have the class name CODE . These define loading instructions that
are passed to the l inker . Although other segment attributes are
available , they should not be used . For a complete description of the
attributes , see the section , "SEGMENT AND ENDS" in Chapter 4 .

Small Model Programs

Only one text segment is allowed . The segment must not exceed 64 Kbytes .

Example

text segment byte public ' CODE '
assume cs :_text

_main proc near

main endp
=text ends

Middle and Large Model Programs

Multiple text segments are allowed , howeve r , no segment can be greater
than 64 Kbytes . To distinguish one segment from anothe r , each should
have its own name . Since most modules contain only one text segment , the
module ' s name is often used as part of the text segment ' s name . All
procedure and statement labels should have the FAR type , unless they will
only be accessed from within the same segment .

Example

sample_text
assume

_main proc

_main endp
sample_text

segment byte public ' CODE '
cs : sample_text
far

ends

C-2 MS-MACRO ASSEMBLER UNDER XENIX V REFERENCE MANUAL

SEGMENT NAMES fOR HIGH-LEVEL LANGUAGES

DATA SEGMENTS - NEAR

Syntax

DATA SEGMENT WORD PUBL IC ' DATA '
statements

_DATA ENOS

A near data segment defines initialized data that is in the segment
pointed to by the OS segment register when the program starts execut ion .
The segment is NEAR because all data in the segment is accessible without
giving an explicit segment value . All programs have exactly one near
data segment . Only large model programs can have additional data
segments .

A near data segment ' s name must be " DATA" . The segment can contain any
combination of data statements defining variables to be used by the
program . The segment must not exceed 64 Kbytes of data . All data
addresses in the segment are relative to the predefined group DGROUP
Therefore , the statements

DGROUP group _data
assume ds : DGROUP

must appear at the beginning of the segment . These statements ensure that
each variable declared in the data segment will be associated with the OS
segment register and OGROUP (see the sections , "ASSUME" and "GROUP" in
Chapter 4) .

Near data segments must be WORD aligned , must have PUBL IC combination
type , and must have the class name DATA . These define loading
instructions that are passed to the l inker . Although other segment
attributes are available , they must not be used . For a comp,lete
description of the attribute s , see the section "SEGMENT and ENDS ' in
Chapter 4 .

Example

DGROUP group data
assume ds : DGROUP

data
count
array
string

data

segment
dw
dw
db
ends

word public ' DATA '
0
10 dup (l)
"Type CANCEL then press RETURN" , Oah , 0

C-J

DATA SEGMENTS - FAR

Syntax

name DATA SEGMENT WORD PUBLIC ' FAR_DATA'
statements

name_DATA ENDS

A far data segment defines data or data space that can be accessed only
by specify ing an explicit segment value . Only large model programs can
have far data segments .

A far data segment ' s name must be "name_DATA" where "name" can be any
valid name . The name of the first variable declared in the segment is
recommended . The segment can contain any combination of data statements
defining variables to be used by the program . The segment must not
exceed 64 Kbytes of data . All data addresses in the segment are relative
to the ES segment register . When accessing a variable in a far data
segment , the ES register must be set to the appropriate segment value .
Also , the segment override operator must be used w ith the variable ' s
name .

Far data segments must be WORD aligned , must have PUBLIC combination
type , and should have the class name FAR_DATA . These define loading
instructions that are passed to the l inker . Although other segment
attributes are available , they must not be used . For a comp,lete
descr iption of the attr ibutes , see the sect ion "SEGMENT AND ENDS ' in
Chapter 4 .

Example

array_data
array dw

dw
dw
dw

table dw
array_data

segment word public ' FAR_DATA'
0
1
2
4
1600 dup (?)
ends

C-4 MS-MACRO ASSEMBLER UNDER XENIX V REFERENCE MANUAL

SEGMENT NAMES FOR HIGH-LEVEL LANGUAGES

BSS SEGMENTS

Syntax

BSS SEGMENT WORD PUBLI C ' BSS '
statements

_BSS ENDS

A BSS segment defines uninitialized data space . A BSS segment ' s name
must be _BSS . The segment can contain any combination of data statements
defining variables to be used by the program . The segment must not
exceed 64 Kbytes . All data addresses in the segment are relative to the
predefined group DGROUP . Therefore , the statements

DGROUP group _BSS
assume ds : DGROUP

must appear at the beginning of the segment . These statements ensure that
each variable declared in the bss segment will be associated with the DS
segment register and DGROUP (see the sections , ASSUME Directive and GROUP
Directive in Chapter 3) .

The group name DGROUP must not be defined in more than one GROUP
directive in a source file . I f a source file contains both a DATA and
BSS segment , the directive

DGROUP group _data , _BSS

should be used.

A bss segment must be WORD aligned , must have PUBLIC combination type ,
and must have the class name BSS . These define loading instructions that
are passed to the linker . Although other segment attributes are
available , they must not be used . For a complete description of the
attributes , see the sect ion , SEGMENT and ENDS Directives , in Chapter 3 .

Example

DGROUP group BSS
assume ds : DGROUP

BSS
count
array
string
_BSS

segment
dw
dw
db
ends

word public
?
10 dup (?)
3 0 dup (?)

' BSS '

C-5

CONSTANT SEGMENTS

Syntax

CONST SEGMENT WORD PUBLIC ' CONST '
statements

CONST ENDS

A constant segment defines constant data that will not change during
program execution . Constant segments are typically used in large model
programs to hold the segment values of far data segments .

The constant segment ' s name must be CONST . The segment can contain
combination of data statements defining constants to be used by
program . The segment must not exceed 64 Kbytes. All data addresses
the segment are relative to the predefined group DGROUP . Therefore ,
statements

DGROUP group canst
assume ds : DGROUP

any
the

in
the

must appear at the beginning of the segment . These statements ensure that
each variable declared in the constant segment will be associated with
the OS segment register and DGROUP (see the sections , ASSUME Directive
and GROUP Directive in Chapter 3) .

The group name DGROUP must not be defined in more than one GROUP
directive in a source file . I f a source file contains a DATA , BSS , and
CONST segment , the directive

DGROUP group _data , _BSS , canst

should be used .

A constant segment must be WORD aligned , must have PUBL IC combination
type , and must have the class name CONST . These define loading
instructions that are passed to the linker . Although other segment
attributes are available , they must not be used . For a complete
descript ion of the attributes , see the section "SEGMENT AND ENDS" in
Chapter 4 .

Example

DGROUP group canst
assume ds : DGROUP

C-6 MS-MACRO ASSEMBLER lNlER XENIX Y REfERENCE MAttJAL

SEGMENT NAMES fOR H I GH-LEVEL LANGUAGES

canst
segl
seg2
canst

segment word public ' CONST '
dw array_data
dw message_data
ends

In this example , the constant segment receives the segment values of two
far data segments : ARRAY_DATA and MESSAGE_DATA. These data segments must
be defined elsewhere in the module .

C-7

(

NOT ICE

Ing . C. Olivetti & C . , S . p . A . reserves the r i9ht to make any changes in
the product described in this manual at any t1me and without notice .

This manua l is l icensed to the Customer under the conditions contained in
the User L icense enclosed with the Program to which the manual refers .

Code 4022950 Z (1)
Printed in Italy

olivetti

(

(

(

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246

