
intef

XENIX* 286

DEVICE DRIVER GUIDE

*XENIX is a trademark of Microsoft Corporation.

Copyright@ 1984, Intel Corporation Order N umber : 174393-001
Intel Corporatton, 3065 Bowers Avenue. Santa Clara. Cal,fornta 95051

XE N I X* 286

DEVICE DRIVE R G U I D E

Order Number: 174393-001

*XENIX is a trademark of Microsoft Corporation.

Copynght © 1984 Intel Corporation

l Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95051 I

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose. Intel Corporation assumes no responsibility for any errors
that may appear in this document. Intel Corporation makes no commitment to update or to keep current the information

contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No
other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property oflntel Corporation. Use, duplication or disclosure is

subject to restrictions stated in Intel's software license,or as defined in ASPR 7-104.9 (a) <9).

No part of this document may be copied or reproduced in any form or by any means without prior written consent of Intel

Corporation.

The following are trademarks of Intel Corporation and its affiliates and may be used only to identify Intel products:

BITBUS im iRMX OpenNET

COMMputer iMDDX iSBC Plug-A-Bubble

CREDIT iMMX iSBX PROMPT

Data Pipeline In site iSDM Prom ware

Genius in tel iSX M QUEST
A

intelBOS KEPROM Que X 1

i In television Library Manager Ripplemode

J2ICE inteligent Identifier MCS RMX/80

ICE inteligent Programming Megachassis RUPI

iCS Intellec MICROMAINFRAME Seamless

iDBP Intellink MULTIBUS SLD

iDIS iOSP MULTICHANNEL SYSTEM2000

iLBX iPDS MULTIMODULE UPI

XENIX is a trademark of Microsoft Corporation. Microsoft is a trademark of Microsoft Corporation. UNIX is a trademark of
Bell Laboratories.

REV. REVISION ffiSTORY DATE

-001 Original issue 11/84

ii 10/�-1

CO NTE NTS

CHAPTER 1
INTRODUCTION
Prerequisites
Manual Organization
Notation

CHAPTER 2
DRIVER FUNDAMENTALS
XENIX 1/0 Overview

Basic 1/0 Model
1/0 Levels
Device Types
Driver Overview

Kernel Review
What Is the K ernel?
Privilege Levels
Me mory Organization
Mult iple Processes
Process Control
Interrupt Handling
Locking Out Interrupts

Device Identification
Device Driver Interface
Driver Files
Driver Support Rout ines

Physical 1/0 Routines
Accessing User Memory

CHAPTER 3
SIMPLE CHARACTER DRIVERS
Character Buffering
Driver Files
Driver Constants
Data Structures
Driver Procedures

ixxxinit Procedure
ixxxopen Procedure
ixxxclose Procedure
ixxxread Procedure
ixxxwrite Procedure
ixxxioctl Procedure
ixxxenq Procedure
ixxxstart Procedure
ixxxintr Procedure

Output Sum mary

TAB LE O F CONTE NTS

PAGE

1-1
1-1
1-2

2-1
2-1
2-2
2-3
2-3
2-4
2-4
2-4
2-4
2-5
2-6
2-7
2-8
2-9

2-1 1
2-12
2-13
2-13
2-14

3-1
3-3
3-3
3-4
3-5
3-5
3-5
3-6
3-6
3-7
3-8
3-8
3-8
3-9

3-1 0

iii

Table of Contents

CONTENTS

CHAPTER 4
TERMINAL DRIVERS
tty Structure
Line Discipline Routines

ttinit
ttopen
ttclose
ttread
ttwrite
ttiocom
ttioctl
ttin
ttout
ttxput

Modem Control by Terminal Drivers
Driver Description

ixxxinit Procedure
ixxxparam Procedure
ixxxopen Procedure
ixxxclose Procedure
ixxxread Procedure
ixxxwrite Procedure
ixxxintr Procedure
ixxxproc Procedure
ixxxstart Procedure
ixxxioctl Procedure

iSBC 534 Driver
sys/h/i534.h Listing
sys/cfg/c534.c List ing
sys/io/i534.c Listing

CHAPTER 5
BLOCK DRIVERS
Block Buffering
Block Driver Overview
Driver Files
Driver Constants
Driver Data Structures

iv

ixxxinit Procedure
ixxxopen Procedure
ixxxclose Procedure
ixxxstrategy Procedure
ixxxstart Procedure
ixxxintr Procedure
ixxxread and ixxxwrite Procedures
ixxxioctl Procedure

XENIX 286 Device Drivers

PAGE

4-2
4-2
4-3
4-4
4-4
4-4
4-4
4-5
4-5
4-5
4-6
4-6
4-6
4-6
4-7
4-7
4-8
4-8
4-9
4-9
4-9

4-1 0
4-1 1
4-1 1
4-1 2
4-1 2
4-17
4-1 8

5-2
5-6
5-8
5-8

5-1 0
5- 1 1
5-1 2
5- 1 3
5-14
5-1 5
5- 16
5-17
5-1 8

XENIX 286 Device Drivers

CONTENTS

CHAPTER 6
ADDING DRIVERS TO THE CONFIGURATION
Edit ing the master file
Editing xenixconf
Editing the makefiles
Making a New Kernel
Making the Device Special File
Adding Terminal Information
Executing the New Kernel
Deleting a Device Driver

APPENDIX A
MEMORY-MAPPED 1/0 FOR DRIVERS
Small Model Kernel
Creating the Segment Descriptor
The Peek Routines
The Poke Routines

APPENDIX B
CONVERTING DRIVERS FROM
RELEASE 1 TO RELEASE 3 OF XENIX 286
Terminal Drivers

tty Structure
Changes to Routines

Line Discipline Routines
The tty .h File

Block Device Drivers
Buffer Changes
Addressing

APPENDIX C
tty.h INCLUDE FILE

APPENDIX D
termio.h INCLUDE FILE

APPENDIX E
buf.h INCLUDE FILE

APPENDIX F
iobuf.h INCLUDE FILE

APPENDIX G
master FILE

APPENDIX H
xenixconf FILE

APPENDIX I
c.c FILE

APPENDIX J
RELATED PUBLICATIONS

INDEX

Table of Contents

PAGE

6-2
6-6
6-7
6-7
6-8
6-8
6-9
6-9

A-1
A-1
A-2
A-3

B-1
B-1
B-4
B-6
B-6
B-9
B-9
B-9

v

Table of Contents XENIX 2 86 Device Drivers

TABLES

TABLE

2-1 XENIX I/0 Software
B-1 Changed tty Fields
B-2 New tty Fields
B-3 ixxxproc Com mands
B-4 Line Discipline Routines

TITLE

B-5 Input Modes Describing Basic Terminal Input Control
B-6 Output Modes Specifying Syste m Treatment of Output
B-7 Control Modes Describing Hardware Control of the Terminal
B-8 Line Discipline Modes Used to Control Terminal Function

FIG U RE S

FIGURE TITLE

6-1 Device Table from sys/conf/master

vi

PAGE

2-2
B-2
B-3
B-4
B-6
B-7
B-7
B-8
B-8

PAGE

6-2

CHAPTE R 1
I NTRO DUCTI O N

This manual describes how to write or modify device drivers for Intel's Release 3 of the
XENIX 286 Operating System. A device driver is a software module that controls an
input/output (1/0) device and provides a system-defined interface to the device.

Prerequisites

This manual assumes that you, the reader, understand the C program m ing language and
basic program ming concepts. This manual also assu mes some knowledge of XENIX or
UNIX. If you are writing or modifying a specific driver, you should also understand any
hardware controlled by the driver.

Ma nua l Organ ization

This manual contains these chapters:

1. Introduction: Prerequisites, manual organization, and notat ion.

2. Driver Fundamentals: XENIX 1/0 overview, device types, driver interface, driver
organization, kernel concepts, and kernel support routines.

3. Simple Character Drivers: Character buffering services and how to write a si mple
character driver.

4. Terminal Drivers: Terminal support services and how to write a terminal driver.

5. Block Drivers: Block buffering, caching, and sorting services and how to write a
block driver.

6. Adding Drivers to the Configuration: How to modify the XENIX 286 syste m to
include your driver.

This manual contains these appendixes:

A. Memory-Mapped VO for Drivers: Procedures used for reading and writing device
registers that are mapped into the iAPX 286 main m emory address space, rather
than the iAPX 2 86 1/0 port address space.

B. Converting Drivers from Release 1 to Release 3 of XENIX 286: Hints and
guidelines for converting drivers written for Release 1 of Intel's XENIX 2 8 6
Operating System t o Release 3 .

1-1

Introduction XENIX 286 Device Drivers

C. tty.h Include File: definitions used by terminal drivers and other character
drivers.

D. termio.h Include File: addit ional definitions used by terminal drivers.

E. buf.h Include File: definition of block buffer headers used for block 1/0.

F. iobuf.h Include File: definition of static headers (one per block device) that
reference lists of block buffer headers for block 1/0.

G. master File: configuration file to be edited when defining a new device driver.

H. xenixconf File: configuration file to be edited when adding or re moving devices in
a configuration.

I. c.c File: C program file that contains the interfaces to all device drivers in the
configuration.

J. Related Publications: Descriptions and ordering information for all XENIX 286
Release 3 manuals and any other publications referenced by this manual.

Notation

These notational conventions are used in this manual:

• Literal names are bolded where they occur in text, e.g., /sys/include, printf,
dev_tab, BOF.

• Syntactic categories are italicized where they occur and indicate that you must
substitute an instance of the category, e.g., filename.

• In examples of dialogue with the XENIX 286 system, characters entered by the
user are printed in bold type, e.g., cat myfile.

• In syntax descriptions, optional items are enclosed in brackets, e.g., [-n].

• Items that can be repeated one or more times are followed by an ellipsis (•••).

• Items that can be repeated zero or more times are enclosed in brackets and
followed by an ellipsis ([] •••).

• A choice between ite ms is indicated by separating the items with vertical bars
< I).

• Names of device driver routines and some data elements must use a device­
specific prefix two to four characters in length. This prefix is represented in this
manual as ixxx, the form of the prefix that Intel uses for its own devices. For
example, the driver for Intel's iSBC® 544 board uses the prefix i544. Users writing
drivers for Intel boards are encouraged to follow this convention.

1-2

CHAPTE R 2
DRIVER FU N DAMENTALS

This chapter presents background information about XENIX 1/0, the XENIX kernel, and
XENIX device drivers that should be understood before reading subsequent chapters that
cover the details of particular types of drivers. This chapter contains the following
sections:

• XENIX 1/0 Overview (including device types and an overview of drivers}

• Kernel Review (including me mory organization, process control, and interrupt
handling}

• Device Identification

• Device Driver Interface

• Driver Files

• Driver Support Routines

XENIX 1/0 Overview

This section provides an overview of XENIX 1/0:

• The basic model of 1/0 used by XENIX

• The four levels of software that handle 1/0 in XENIX

• Device types supported by XENIX

• An overview of device drivers

Basic 1/0 Mode l

Input/output i n XENIX i s part o f a more general model o f information transfer via
streams of bytes. Such a stream may not even involve 1/0 devices, but may simply
connect two user processes, one writing bytes to the stream and the other reading bytes
from the stream. A stream can connect a process to a file, to a device, or via a "pipe"
to another process. 1/0 is normally sequential, but for file 1/0, it is possible to seek to a
designated point in the file and then resu me stream access.

(Note: A stream in this sense is more general than the "streams" defined by the XENIX
standard 1/0 library, stdio.}

2-1

Driver Fundamentals XENIX 286 Device Drivers

Most 1/0 sources and destinations are accessed via the XENIX hierarchical file system.
Device interfaces are represented in the file system by special files that specify the
device driver that imple ments 1/0 to or fro m the device. Special files are described
later in this chapter in the section "Device Identification."

More information about the XENIX 1/0 model is contained in the Overview of the
XENIX 286 Operating System and the XENIX 286 C Library Guide.

1/0 Levels

Table 1-1 lists four types of software that provide 1/0 services in a XENIX system.
Applications software can invoke three of the four types; device drivers are invoked
only by the kernel and are never invoked directly by software outside of the kernel.

Name

Shell

Standard 1/0
Library
stdio.h

XENIX Kernel

Device Driver

Table 2-1. XENIX 1/0 Software

Description

Runs as a user process,
provides a XENIX com mand
language for use by users
and by other programs;
I/0 services imple mented with
calls to standard 1/0 library.

A library of C definitions
used by C programs as a
standard interface to 1/0;
implemented with calls to the
XENIX kernel.

The core of XENIX, the only
code that users cannot
replace as they choose;
provides basic system services
for memory management, t imer
manage ment, process control,
1/0, and system start/stop;
calls device drivers for
device-specific I/0 functions.

Provides a XENIX -defined
interface to a particular device.

I/0 Services

Com mand syntax for I/0:
redirection and pipes
that connect processes using
streams; also file syste m
services such as wildcards
in file names.

Open, read, write, close, seek
files or devices; formatted
1/0; stream 1/0 that interposes
additional buffering* between
program and file or device.

Implements file system; block
buffering* and caching;
character buffering*; terminal
line editing; vectoring of
device interrupts.

Device-dependent code for
initialization, startup,
shutdown, read or write,
interrupt handling, and
device control.

*Buffering in the standard 1/0 library and buffering in the kernel are separate facilities.

2-2

XENIX 286 Device Drivers Driver Fundamentals

Device Types

XENIX recognizes two types of device interfaces, character and block.

A character device reads or writes sequential streams of characters and is optimized for
the transfer of a few characters with each operation. A line printer or a terminal are
examples of character devices. Chapter 3 describes a si mple character driver.

A block device is presu med to contain storage, organized as a randomly addressable
array of blocks. Any block device can contain a XENIX file system. Disk drives, bubble
memories, and RAM disks are all block devices.

Any device that does not fit the model of a block device is imple mented as a character
device, e.g. , a driver for a local area network.

XENIX provides special support for terminal character devices. Much of the code
needed in a terminal device driver is already provided by XENIX as a set of special line
discipline routines. Chapter 4 describes terminal drivers.

The kernel provides extensive block buffering, caching, and sorting services to mini mize
and optimize 1/0 operations for block devices. For so me operations, such as a byte-by­
byte copy of a disk, this kernel support is inappropriate. To support such low-level
operations, most block devices support a character interface to the device, so meti mes
called the "raw" interface, in addition to the block interface. Chapter 5 describes both
interfaces to block devices.

Driver Ove rview

A XENIX device driver is organized as a set of procedures to be called by the kernel.
The forms of the procedure names, the procedure parameters, the ti mes the procedures
are called, and the purposes of the procedures are all predetermined by the interface
between the driver and the rest of the kernel. Many of the procedures are optional;
some are required.

Within the driver procedures, the driver writer often relies on calls to kernel routines
that provide needed services, such as process control, interrupt lockout, buffer
manipulation, or 1/0 port operations. So me of these rout ines are described in
subsequent sections of this chapter; others are described in Chapters 3, 4, and 5, which
deal with specific types of drivers.

The driver writer must work with three constraints in writing the driver: the kernel
interface to the driver, the kernel support routines available to the driver, and the
characteristics of the hardware being controlled. A major purpose of this manual is to
completely describe the first two design constraints; hardware-specific information is
needed to describe the third design constraint.

2-3

Driver Fundamentals XENIX 286 Device Drivers

Kernel Review

This section describes features of the XENIX 286 kernel that should be understood
before writ ing device drivers. These features include memory organization, support for
multiple processes, interrupt handling, and the kernel interface to device drivers.

What Is the Kerne l?

The kernel is a small but central part of the total XENIX 286 Operating Syste m. The
purpose of the kernel is to provide a standard interface between other programs and
shared machine resources. These resources include me mory, processing time, and 1/0
devices. User programs and other parts of XENIX access the kernel through a set of
standard system calls, defined as C function calls. XENIX com mand programs, such as
the shell or the text editors, are outside the kernel and call on the kernel in the same
way as any other user program.

Driver procedures and data structures are actually linked into the kernel as part of
adding drivers to the configuration. Driver code executes in kernel mode, in the kernel
address space, and with kernel privileges. The term kernel is used in two senses: (1) the
device-independent kernel code that is linked with all the drivers; (2) all kernel-mode
code, including all the drivers and the device-independent code.

Privi lege Level s

Programs executing o n an iAPX 286 processor have an associated privilege level. The
privilege level ranges from 0 (most privileged/most trusted) to 3 (least privileged/least
trusted). All kernel code and device driver code executes at level 0 (most privileged),
allowing access to all of me mory and execution of any iAPX 286 instruction. All other
code in a XENIX 286 system executes at level 3 (least privileged), which restricts
me mory access and instruction execution to protect user processes fro m each other and
to protect the kernel from user processes. The system call mechanism makes the
transit ion between user code and privileged kernel code. A process is in user mode when
it executes outside the kernel; a process is in kernel mode when it executes within the
kernel (typically when it makes a syste m call).

Because device driver code is privileged, it must be carefully written and checked. Bad
device driver code can corrupt user code or data, crash the system, or subvert syste m
protection mechanisms.

Memory Org a n ization

Memory in an iAPX 286 syste m is organized as a collection of segments. A particular
process or program module may only be able to access certain segments; the segments
that a process or module can access are its address space. Each process executing in
user mode has a distinct address space, dist inct from all other user processes and also
dist inct from the kernel address space.

2-4

XENIX 286 Device Drivers Driver Fundamentals

Processes executing in kernel mode share a single kernel address space. However, at
most one process can execute kernel code at a part icular ti me. The kernel address
space is also used by all interrupt handlers. Kernel code can use privileged iAPX 286
instructions to access user process address spaces in addition to accessing the kernel
address space.

Mu ltiple Processes

XENIX supports concurrent execution of multiple processes. The kernel is responsible
for scheduling and coordinating processes. A process yields the CPU to another process
for one of two reasons, either because it must wait for some event, such as 1/0, before
continuing, or because its t ime slice expires.

All processes in a XENIX system are handled in the same way by the kernel. There is no
difference between "syste m" and "user" processes. Whenever any process executes a
system call, it executes kernel code in kernel mode but retains its separate process
identity.

Each process in a XENIX system is represented in the kernel address space by two data
structures. First is an entry in the kernel's proc table, which contains information about
all processes in the system. The second structure is a u structure that contains
information the kernel needs to maintain about the process. The u structure also
contains the kernel stack segment for the process, used for local variables, saved
registers, and return addresses. Because kernel stack segments have a li mited size,
driver routines should not declare arrays or structures as local variables. The file
sys/h/user.h defines the u structure.

Inactive processes may be swapped out to disk and their associated me mory freed. When
a process is swapped out, its kernel stack segment and u structure are swapped out with
it. When the kernel is ready to run the process, the process is swapped into memory
again, possibly in a different location than it used previously. The proc table entry is
not swapped out or in and exists as long as the process exists.

Some information in the u structure is used by device drivers. Driver routines such as
ixxxwrite, called by a process executing kernel code, can access the u structure. The
driver interrupt routine or routines that can be called at interrupt t ime cannot access
the u structure; at the time the interrupt executes for a particular process, that process
may be swapped out and another process and its u structure swapped in.

The time when interrupt handling code is being executed is called interrupt time. All
other execution time in a XENIX system is called task time. All interrupt t ime code is
kernel-mode code (kernel or driver code). Task time code can be user-mode code,
kernel code, or driver code. Task time code is executed on behalf of the currently
running process. Kernel- mode task time code can access the process's u structure.
Interrupt time code uses the kernel stack of whatever process was interrupted, but m ay
be executing on behalf of an entirely different process. Code that m ay be called at
interrupt time should never reference the u structure or process memory.

2-5

Driver Fundamentals XENIX 286 Device Drivers

Process Control

When a process is executing in the kernel, it will not be pre-empted by any other
process. Interrupts may be handled, but control returns to the interrupted process, even
if a higher priority process has been readied. Only when a process exits the kernel or
calls sleep can it be pre-e mpted, either by a higher priority process or by the expiration
of its t ime slice.

When a device driver routine detects a situation in which the executing process must
wait for some event, the routine must suspend process execution by calling a kernel
process control routine. For example, if a process is doing input and must wait for
additional characters to be sent from a terminal, then the driver routine should suspend
the process so that other processes can run while the first process is waiting for 1/0.
When the driver detects that the process should again be able to run {e.g. , a line has
been received from the terminal), then the driver must "wake up" the suspended process,
which will resume execution at the point in the driver where it was suspended.

These kernel process control routines are used in writing device drivers:

sl eep(id , pr i)
char * i d ; I* u n ique address that the process i s s leeping on;

norma l l y the add ress of a data structu re used on ly by
the process or routi ne that is sl eepi ng. *I

i nt pri ; I* process pri ority that the process wi l l have when it
wakes up and u nti l i t exits the kernel , when its normal
priority is restored . *I

wakeup(id)
char * i d ; I* u n ique add ress that processes s leep on *I
I*
Al l processes s leepi ng on the spec i fi ed address are awakened.
The sched u ler wi l l d ispatch them one at a ti me to resume executi ng
i n the kerne l , with the priority speci fi ed i n thei r ca l l to sleep.
The i nterrupt pr ior ity for an awakened process i s spiO (a l l i nterrupts
enab led) .
*I

The priority specified to sleep must be in the range 0-127. Numerically lower values in
this range indicate higher priority processes. If the priority specified in calling sleep is
greater than or equal to PZERO, then the sleeping process can also be awakened by
signals. PZERO is defined in sys/h/param.h.

Because a process can normally be awakened by signals or be awakened with another
process waiting on the same address, it is good practice to recheck the condition being
waited for after the process resu mes execution, e.g. :

whi l e (I* true i f need to s leep *I)
s leep(&my_var, MY _PRI) ;

The call to wakeup the sleeping process is often in the device interrupt routine, ixxxintr,
which detects the 1/0 event being waited for.

2-6

XENIX 286 Device Drivers Driver Fundamentals

Interrupt Ha ndl i ng

In interrupt-time execution, an interrupt is handled by the kernel, which calls an
interrupt handler. All interrupt handling is done in kernel mode. The kernel provides
the special code needed to save and restore registers of the interrupted process and also
provides the code to handle the 82 59A PICs (Programmable Interrupt Controllers). Each
device interrupt has two attributes: level and priority. The iAPX 286, PICs, and
MULTIBUS® system bus support up to 2 56 interrupt levels, from 0 to 2 5 5 . The two PICs
provided on the iSBC 286/1 0 processor board support up to 15 interrupt levels. Seven of
these interrupt levels can be used by device controllers on other M U LTIBUS boards.
Additional interrupt levels can be used by providing slave PICs on the other M ULTIBUS
boards, which send a level value to the 286/10 master PIC after signaling an interrupt.
The interrupt level (sometimes called "vector") identifies the source of an interrupt and
is passed as a parameter to the appropriate device interrupt routine. The level may only
identify the type of device and possibly the board that interrupted and the interrupt
routine may have to poll devices of the type or on the board to determine which devices
need servicing.

Interrupt configuration for the iSBC 286/10 single board computer is described in Guide
to Using the iSBC 286/10 Single Board Computer. The following information is taken
fro m that guide and does not apply to any other 286 processor board that you may be
using. As shipped by Intel, the 286/1 0 interrupts are configured as follows:

Level PIC Level Source

0 MASTER 0 Clock
1 MASTER 1 INT1 from MULTIBUS system bus
2 MASTER 2 INT2 from MULTIBUS system bus
3 MASTER 3 INT3 from MULTIBUS system bus
4 MASTER 4 INT4 from MULTIBUS system bus
5 MASTER 5 INT5 from MULTIBUS syste m bus
6 MASTER 6 827 4 serial controller (console) interrupt
7 MASTER 7 SLAVE PIC interrupt
8-63 -------- ---------
64 SLAVE 0 INT6 from MULTIBUS system bus
65 SLAVE 1 INT7 from MULTIBUS system bus
66 SLAVE 2 Ju mper E 145 in 286/10 interrupt matrix
67 SLAVE 3 MINTRO from iSBX bus connector J6
68 SLAVE 4 MINTR1 from iSBX bus connector J6
69 SLAVE 5 MINTRO from iSBX bus connector J5
70 SLAVE 6 MINTR1 from iSBX bus connector J5
7 1 SLAVE 7 Interrupt signal from the line printer interface

Note the ju mp in the interrupt level seen by the software ("Level" column above) when
going from the master to the slave PIC. Because potentially each master line could be
connected to a slave PIC, the level used by a slave PIC input line i is equal to i+8*{j+ 1),
where j is the number of the master PIC line to which the slave PIC is connected. For
example, if your device interrupts on M ULTIBUS line INT7, then it will use interrupt
level 65 and should specify that level in the master file, as described in Chapter 6 of
this manual.

INTO from the MULTIBUS syste m bus is not listed above; it is connected to the 8 0 2 86
Nonmaskable Interrupt (NMI) input.

2-7

Driver Fundamentals XENIX 286 Device Drivers

A transaction being handled by an interrupt routine may be on behalf of a totally
different process than the running process; the running process may not be involved in
1/0 to or from the interrupting device at all. Thus the interrupt routine and routines
that can be called by the interrupt routine should not reference the u structure or
reference process memory, as such references are erroneous and can corrupt other
processes in the system.

Routines that can be called at interrupt time should not suspend the current process by
calling sleep. Again, this prohibition is because the current process may not be the
process that is being served by the interrupt-time routines.

Lockin g Out Inte rrupts

XENIX uses an 8-level priority scheme for managing interrupts. The routines for
managing interrupt priorities and mutual exclusion and how they are implemented on
Intel's hardware are described in this section.

The kernel provides 1 1 routines for locking and unlocking interrupts: splO, spll, spl2,
spl3, spl4, spl5, spl6, spl7, splx, splcli, and splbuf.

A routine spin (n in the range 1-7) takes no arguments and locks out all interrupts of
priority n or lower, enabling interrupts of priority n+ 1 or higher. spin returns an int
value that is a mask to be used in restoring the previous interrupt priority. The returned
value should be saved in a local variable for use as a parameter in a matching call to
splx. The routine splO enables all interrrupts, including priority 0 interrupts.

The routine splx takes as its argument the int mask value returned by an spin call. splx
restores the priority to which interrupts were locked out before the matching spln call.
There is no return value from splx. The mask value used should not be tampered with by
the calling routine.

The routine splcli is a synonym for the routine spl5 and locks out interrupts for all
character devices and lower priorities. Character drivers should use this routine to lock
out interrupts. (Block devices that have character interfaces do not count as character
devices here.)

The routine splbuf is a synonym for spl6 and locks out interrupts for all block devices
and lower priorities. Block drivers should use this routine to lock out interrupts.

When the kernel services an interrupt, it locks out all interrupts at the same level or
higher levels. For example, an interrupt at level 6 locks out all interrupts from level 6
or higher. The spl priority sche me maps to levels as follows: spl7 locks out all
interrupts. splbuf (spl6) locks out all but level 0 (clock) interrupts. splcli (spl5) locks
out all but level 0 and level 1 interrupts. You should not be using spl4, spl3, spl2, or
spll, and their action is not defined in this manual. splO enables interrupts at all levels.

Note that only a block device should use interrupt level 1 . Also note that the priority
mechanism is implemented entirely with the PICs; the 80286 CPU distinguishes only
between all interrupts enabled and all interrupts (except NMI and RESET) disabled.

2-8

XENIX 286 Device Drivers Driver Fundamentals

It is a programming error for driver code to ever lower the interrupt priority below its
value when the driver code is called. Driver code should only use splcli or splbuf to
raise the interrupt priority and splx to restore the interrupt priority.

The only driver code that must lock out interrupts is code that requires exclusive access
to a data structure accessed at both task time and interrupt ti me. For example:

int msk;

msk = spl c l i () ; /* Lock out character i nterrupts and l ower. *I
I* Put code here to access shared data structure. *I
splx(msk) ; /* Restore the prev ious interrupt state. *I

Note that splx must be called on every path out of the code in which the interrupt
priority is raised. The following code illustrates a com mon mistake:

int msk;

msk = spl c l i () ;

if (/* error conditi on */) {
u . u error = E IO;
retu rn ;

}

splx(msk) ;

Note that if the error return is taken, the previous interrupt priority has not been
restored.

The duration that interrupts are locked out should always be mini mized.

Device Identification

Each distinct device in a XENIX system is identified by a node in the XENIX .file syste m
called a device special file. By convention, all device special files are contained i n the
/dev directory of the file system. Because devices are i mplemented as files, all the
XENIX file protection mechanis ms and file nam ing mechanisms can be used with
devices. The special file for a device has a name, specifies whether the device is a
block or character device, and specifies a major number and a minor number for the
device.

2-9

Driver Fundamentals XENIX 286 Device Drivers

The major nu mber is eight bits and specifies a particular device driver. For example,
the system console and the line printer are both character devices but have different
major numbers and different drivers. The m inor nu mber designates a specific device
within the class of devices handled by a driver. For example, if a syste m supports four
line printers, they would use the same driver and major nu mber, but use four different
minor numbers, such as 0 , 1 , 2, and 3 . The minor nu mber is not interpreted by the
kernel, only by the driver. The driver can use the minor number to encode information.
For example, terminal drivers use bit 6 of the minor nu mber to indicate whether modem
control is enabled for a line. Hard disk drivers typically reserve some bits of the m inor
nu mber to specify disk partitions (described in Chapter 5, "Block Drivers"). In contrast,
the major nu mber is normally ignored by a driver, and a driver should be written to be
independent of whatever major nu mber it is assigned.

The kernel combines the major and minor numbers into a 16-bit device number. The
high byte of the device number is the major number; the low byte of the device nu m ber
is the minor number. The macros major and minor, defined in sys/h/types.h, are used to
extract the major and minor nu mber from a device nu mber. Each macro takes a device
number as its single argu ment. For example:

#include " . ./h/types.h "

bozo{dev)

I* code fi l e must be i n a si b ling d i rectory
of sys/h *I

dev t dev; /* device number, major/minor *I
{ -

int maj = major{dev);
i nt m i n = m i nor{dev) ;

}

The device number type dev t is also defined in sys/h/types.h. Also defined in the file is
the macro makedev(x,y), which returns the device number formed fro m the major
number x and the minor number y.

A different special device file is specified for each major/minor co mbination. For
example, a system with four line printers would have four corresponding special files in
the /dev directory: lpO, lpl, lp2, and lp3. If a device supports both block and character
interfaces, then different special files denote the two different interfaces, though the
major and minor nu mbers are the same.

When a program opens a device and establishes an 1/0 channel to or from the device, it
specifies the name of the device special file. The kernel then determines the device
nu mber to be used for all calls to the device driver and also whether to use the table of
character device drivers or block device drivers in making driver calls.

Chapter 6, "Adding Drivers to the Configuration," describes how to create the special
files needed by your driver.

2-1 0

XENIX 286 Device Drivers Driver Fundamentals

Device Driver Interface

The kernel interface to device drivers is a set of tables containing the addresses of
device-specific routines. These tables are called device switches. The tables are

• dinitsw Routines to be called at system init ialization to initialize devices.

• vecintsw Device interrupt routines; the table is indexed by hardware interrupt
level (from the PIC).

• cdevsw Device routines (e.g., ixxxwrite) called in response to syste m calls for
character device interfaces. cdevsw is indexed by m ajor device
nu mber.

• bdevsw Device routines (e.g., ixxxstrategy) called in response to syste m calls
for block device interfaces. bdevsw is indexed by m ajor device
nu mber.

Note that example driver routine names and data names in this manual are of the form
ixxx • • • in accordance with Intel's naming of its own drivers (e.g. , i534 for the prefix of
names associated with the iSBC 534 board).

The driver routines called through dinitsw have no parameters and have names of the
form ixxxinit. The dinitsw routines are called at system init ialization t i me. At syste m
initialization, interrupts have not yet been enabled, so the ixxxinit routines must not
rely on interrupts occurring (i.e., don't use sleep, timeout, or any driver interrupt
routines).

When an interrupt occurs, vecintsw is indexed with the MULTIBUS interrupt level and
the corresponding routine is called. These routines have the form

ixxxi ntr(l evel)
i nt l eve l ; /* M U L T IBUS i nterrupt l evel , i n range 0-255 *I

cdevsw and bdevsw are each indexed by major device nu mber and contain rout ines called
in response to various system calls. cdevsw is used for character device interfaces;
bdevsw is used for block device interfaces. The routines addressed by cdevsw are

i xxxopen(dev, ofl ag);
Called each time a device handled by the driver is opened. Does error
checking to validate the open; should enable interrupts and assign a device
status variable to indicate that the device is open.

i xxxclose(dev, oflag) ;
Called for the last close o f a device handled by the driver. Should wait for
all pending I/0 for the device to complete, disable interrupts, and assign a
device status variable to indicate that the device is closed.

i xxxread(dev) ;
Called to read a nu mber of bytes fro m a device handled by the driver into an
area in user memory. The u structure specifies the number of bytes and the
transfer address.

2-1 1

Driver Fundamentals XENIX 286 Device Drivers

i xxxwrite(dev) ;
Called to write a nu mber of bytes from an area in user memory to a device
handled by the driver. The u structure specifies the number of bytes and the
transfer address.

i xxxioctl (dev, cmd, arg, mode) ;
Called to execute some special function of a device handled by the driver,
such as formatting a disk or changing the baud rate of a terminal.

bdevsw includes the same ixxxopen and ixxxclose routines as cdevsw, and one other
routine:

i xxxstrategy(bp) ;
Called with a pointer to a buffer with data to be read or written. Checks the
request for validity, queues it, and starts the device if it is idle.

ixxxstrategy is used for both reading and writing blocks.

bdevsw also includes one data structure reference, to ixxxtab, the first static buffer
header for the block device.

More information about all these routines and their parameters is in Chapters 3, 4, and 5
for character interfaces and Chapter 5 for block interfaces.

Driver Files

Code for a device driver is typically contained in three files:

• sys/h/ixxx.h is an include file that defines constants and someti mes structure
declarations used by the driver.

• sys/cfg/cxxx.c is a C program file that defines data structures used by the driver,
especially configuration-dependent data structures.

• sys/io/ixxx.c is a C program file that defines driver routines required by the kernel
interface and any internal driver routines called by the required routines. This file
references the data structures defined in sys/cfg/cxxx.c as externals.

The file sys/h/i:xxx.h is normally included by the other two files:

#i nclude " . ./h/i xxx. h "

Depending o n the type o f driver, sys/io/cxxx.c and sys/io/ixxx.c must include other .h
files, as described in Chapters 3, 4, and 5, which describe different types of drivers.

The sys directory is normally contained in the root directory and has an absolute path
name of /sys. However, if your system has the XENIX 286 source product, then the sys
directory is contained in the /usr directory and has an absolute path name of /usr/sys.

To add a driver to your system, you must modify several other files, as described in
Chapter 6, "Adding Drivers to the Configuration."

2-1 2

XENIX 286 Device Drivers Driver Fundamentals

Driver Support Routi nes

This section describes several kernel routines frequently used by device drivers. Kernel
routines used only by character device drivers are described in Chapters 3 and 4. Kernel
routines used only by block device drivers are described in Chapter 5. Process control
routines are described in the section "Process Control" earlier in this chapter. Interrupt
control routines are described in the section "Locking Out Interrupts" earlier in this
chapter.

Physical I/O Routines

The kernel provides four functions that allow drivers to directly address iAPX 286 1/0
ports:

i nt i n(port)
unsi gned port; I* port address, in range 0-65535 *I
I*
Return a 1 6-bit word read from 1/0 addresses port and port + 1 .
*I

char i nb(port)
unsigned port; I* port address, in range 0-65535 *I
I*
Return the byte read from the 110 port.
*I

out(port, va lue)
unsi gned port;
i nt value;
I*

I* port add ress, i n range 0-65535 *I
I* 1 6-bit va lue to be written *I

Write the 1 6-bit value to 110 add resses port (low byte) and
port + 1 (h igh byte) .
*I

outb(port, value)
unsi gned port;
char va lue;
I*

I* port add ress, i n range 0-65535 *I
I* byte to be written *I

Write the byte va lue to the 110 port.
*I

These routines use privileged iAPX 286 instructions and can be called only from kernel
or device driver code. If reading or writing a nonexistent port, these routines st ill
function and do not hang or fault. Writing a nonexistent port has no effect. Reading a
nonexistent port returns an indeterminate value, typically all ones (Oxff or Oxffff) or all
zeros (0).

2-13

Driver Fundamentals XENIX 286 Device Drivers

Some device drivers may use memory-mapped 1/0, in which device registers are m apped
into the main memory address space of the iAPX 286, instead of being assigned
addresses in the 1/0 port address space of the iAPX 286. For example, this technique is
used by Intel's 188/48 device driver, which is supplied with XENIX 2 86. Memory- m apped
1/0 is described in Appendix A, "Memory-Mapped 1/0 for Drivers." The example code in
Chapters 3, 4, and 5 all assumes that 1/0 ports are used for device registers.

Accessing User Memory

The kernel provides the routines copyin and copyout to move blocks of data from or to
user memory:

copyi n(src, dst, cnt)
fadd r t src;
cadd r-t dst;
unsi gned cnt;
I*

I* far poi nter i nto user data segment *I
I* near poi nter i nto kernel data segment *I
I* nonzero number of bytes to transfer *I

Cop ies cnt bytes from the user data area referenced by src to
the kernel data area referenced by dst. cnt cannot be 0 (or 64K
bytes would be copied) .
*I

copyout(src, dst, cnt)
caddr t src;
fadd r -t dst;
unsigned cnt;
I*

I* near poi nter i nto kernel data segment *I
I* far poi nter i nto user data segment *I
I* nonzero number of bytes to transfer *I

Cop ies cnt bytes from the kernel data area referenced by src to the
user data area referenced by dst. cnt cannot be 0 (or 64K bytes
wou ld be copied) .

Near pointers are used for references within the kernel because the kernel (including all
driver code) is compiled using small model, which uses a single data segment. The type
faddr _ t is defined in user.h and contains a segment selector in the high word and an
offset in the low word. The type caddr _ t is defined in types.h and is an unsigned short
16-bit value, the offset into the kernel data segment.

In a process's u structure, u.u base has the type faddr t, references a buffer in user
memory (during a read or write system call), and can be used with copyin or copyout.
For example:

char * my_ buffer;

I* Copy bytes to be written from user memory to kernel memory *I
copy in (u .u _base, my_ buffer, u .u count) ;

The u structure is defined in the file sys/h/user.h.

2-14

CHAPTE R 3
SIMPLE CHARACTE R DRIVE RS

This chapter describes the elements o f a simple character device driver. This driver is
for an output-only device such as a line printer. This chapter first describes character
buffering services provided by the kernel and used by the driver. It then describes the
files, constants, data structures, and procedures that make up the driver. Some example
code is included in this chapter; this code is for a hypothetical device and not for any
real device supported by XENIX.

Cha racter Buffer i n g

Character device drivers queue character streams for input or output using the clist
data structure declared in the file sys/h/tty.h:

struct cl i st {

};

i nt c cc;
struct cblock
struct cblock

!* character count */
!* poi nter to fi rst *I
!* poi nter to l ast */

The queued characters are contained in one or more blocks of type cblock (also declared
in tty.h). The clist structure references a linked list of these blocks that contain the
characters in the queue. The clist structure references the first and last blocks in the
list and contains a count of the total number of characters queued in all the blocks.

Each block contains a link to the next block in the list (NULL if no next block), an area
that can contain up to 24 queued characters, and indices to the first and last queued
characters in that area.

Driver code need not access the cblock and clist structures, except for the field c_cc
which gives the count of queued characters. The kernel routines getc and putc perform
all needed operations on these structures. The tty.h file that declares these structures
is listed in Appendix C of this manual.

The kernel maintains a single free list of blocks available for character buffering. This
free list is shared by all character drivers. When a character is added to a queue and a
new block is needed, one is obtained from the free list. When the last character is
removed from a block, that block is returned to the free list. The getc and putc
routines handle all the details of allocating and returning free blocks.

3-1

Si mple Character Drivers XENIX 286 Device Drivers

The nu mber of characters in a single driver queue should be li mited by a "high-water
mark" to keep any single device from exhausting the space available for character
buffering. A task trying to write to the device is suspended if the high-water m ark is
reached, to be awakened when the number of characters queued for output drops to a
"low-water mark." The goal is to keep both the task and the driver active, while
limiting use of character buffering space. The example driver in this chapter uses fixed
marks declared in the driver. Terminal drivers typically use arrays of marks, tthiwat
and ttlowat in tty.h, indexed by terminal baud rate.

The kernel routine putc adds a character to a queue:

i nt putc(c, q)
i nt c;
struct c l i st *q;

putc tries to add character cat the end of the queue referenced by q. putc returns 0 if
the character is successfully enqueued. If there is no space in the queue and no more
cblocks on the free list, the character is not enqueued and putc returns -1 .

If - 1 is returned, the recom mended action is for the calling routine to call sleep,
specifying q as the address to sleep on. (This is only recom mended in routines that are
never called at interrupt t ime; sleep should never be called at interrupt time.) When the
interrupt routine drains the queue to the low-water mark, it can call wakeup, specifying
q as the wakeup address.

The kernel routine getc re moves a character from a queue:

i nt getc(q)
struct c l i st *q;

If the queue referenced by q is e mpty, getc returns -1; otherwise it re moves and returns
the next character in the queue.

If my_ q is a queue header declared with

struct c l i st my_ q;

then the nu mber of characters in the queue can be referenced as my_q.c_cc and the
queue can be initialized with this assignment:

my_q.c_cc = 0;

Note that it is not necessary to initialize the queue character pointers, which are not
used when the queue is empty.

The clist data structure is accessed at both task-time and interrupt-time. The getc and
putc routines handle all needed mutual exclusion, ·ensuring that character device
interrupts are locked out when queues are manipulated.

3-2

XENIX 286 Device Drivers Si mple Character Drivers

Driver Fi les

The driver code is contained in three files:

• sys/h/ixxx.h defines constants and possibly structure declarations used by the
driver.

• sys/cfg/cxxx.c defines data structures used by the driver, including configuration
structures that may be modified as part of system configuration.

• sys/io/ixxx.c defines the driver routines.

The file sys/h/ixxx.h is included by the other two files:

#include II • ./hli xxx .h l l

The main driver file /sys/io/ixxx.c should also include these files:

#include
#i nclude
#i nclude
#i nclude
#i nclude

I I • ./hlparam. h I I
I I • ./hld i r .h I I
I I • ./hltypes. h"
I I • ./hltty. h I I
" . ./hluser.h"

I* for system parameters
I* needed by other . h f i l es used
I* for system data types
I* for cl i st structure
I* u structure and error codes

*I
*I
*I
*I
*I

Adding the device to the configuration also requires editing the files sys/conf/master
and sys/conf/xenixconf, as described in Chapter 6, "Adding D r i v ers t o the
Configuration."

Driver Con sta nts

Driver constants typically defined in sys/h/ixxx.h include

1 . The nu mber of boards (ixxx BRD) and the nu mber of devices (ixxx NUM)
supported by the driver. The range of minor device numbers allowed is then 0 -
(ixxx _ NUM - 1).

#defi ne
#defi ne

ixxx BRD 2 I* num ber of boards *I
ixxx -N U M 2* i xxx BRD I* number of dev i ces (2 per board) *I

2. The interrupt level used by the driver, e.g., ixxx _LEV.

3. Offsets from the base port address for a particular device to the individual port
addresses used by the device controller. For example:

#defi ne
#defi ne

ixxx DAT 0
ixxx -STS 1

I* offset to data port *I
I* offset to status port *I

3-3

Simple Character Drivers XENlX 2 86 Device Drivers

4. Constants that define possible state values for the device. For example:

#defi ne
#defi ne
#defi ne
#defi ne

ixxx ABS 0
i xxx-PRE
ixxx-OPN 2
ixxx-ERR 3

I* dev ice absent status *I
I* devi ce present status *I
I* device open status *I
I* devi ce error status; device must be cl osed

and reopened *I

5. Constants that define bit patterns used in accessing the device (hardware
dependent):

#defi ne ixxx ONL 000 1 I* onl i ne bit i n status port *I
-#defi ne ixxx BSY 0002 I* devi ce busy; c leared when

i nterrupt acknowledged *I
#defi ne ixxx H ER 0004 I* devi ce hard error *I

-#defi ne lXXX I N E 0 1 00 I* device i nterrupts enabled *I

6. A constant that defines the task priority to be used when returning fro m a call to
sleep:

#defi ne ixxx PRI TTOPRI I* task pr iority used on return from sl eep
(defi ned i n tty.h) *I

7. High- and low-water marks for the device (if arrays declared in tty.h are not
used):

#defi ne
#defi ne

ixxx LOW
ixxx-H IW

Data Structu res

48
96

I* low-water mark
I* h igh-water mark

Data structures typically defined in sys/cfg/cxxx.c include

1. An array of base port addresses for the devices, e.g.:

*I
*I

unsi gned i xxx_adr[ixxx_N U M] = { 0 1 40, 0 1 50, 0 1 60, 0 1 70 };

The initialization clause can be edited to change the port addresses used. The
nu mber of port addresses listed must be greater than or equal to ixx:x_NUM.

2. An array to record device status (e.g., absent, present, open, error):

i nt i xxx sts[i xxx N U M] ; I* C i n i ti a l i zes to zeros = a l l absent *I

3. An array of character queue headers for the devices:

3-4

struct c l i st i xxx _ q [i xxx _ N U M] ; I* i xxxi n it must i n it count fie lds *I

XENIX 286 Device Drivers Simple Character Drivers

When configuring a syste m and assigning port addresses, a syste m administrator would
edit the sys/cfg/cxxx.c file to define the port addresses assigned to ixxx_adr. The
syste m ad ministrator may also edit the sys/h/ixx:x.h file to change the number of boards.
Note that the kernel does not access any of the data structures defined in
sys/cfg/cm.c. These structures are used only by the driver. They are provided in a
separate file only so that the system administrator can change the configuration
expected by the driver.

Driver Procedures

This section describes the routines in a simple character driver; most are called by the
XENIX kernel; two are called by other driver routines. Aside from these routines, the
file sys/io/ixx:x.c must include the driver constants file sys/h/ixx:x.h and also declare the
data structures listed above as extern (external). For example, ixxx.c must reference
the ixxx_adr array defined in cm.c and would declare it as follows:

extern unsigned i xxx _adr[] ; /* array of port addresses */

ixxxinit Proced u re

i xxxi nit();

This procedure is optional but is normally provided for physical devices. It is called via
the switch dinitsw during system initialization. ixx:xinit should check each possible
device handled by the driver to determine whether it is present in the syste m. For
example, a driver that can handle up to four printers mapped to a range of 1/0 ports
should check for the presence or absence of each printer. The checks can typically be
done by writing a test pattern to a device register and then reading the device register
for a response (if any). ixx:xinit should write a line to the standard output for each
device checked, indicating if it was found or not found. ixx:xinit should initialize the
static data structures for devices that are found, such as the output queue headers and
the device status variables. ixx:xinit should also initialize hardware to a known state,
for devices that are found.

ixxxopen Proced u re

i xxxopen(dev, oflag)
dev t dev; /* device number, major/m i nor */
i nt ofl ag; /* f lags specifi ed to open system ca l l , NOT USED */

ixx:xopen is called by the kernel via cdevsw each time a device with the major nu mber
managed by the driver is opened. dev is the 16-bit device number. ofiag contains the
flags specified to the corresponding open system call (see open in "Syste m Functions" in
the XENIX 286 C Library Guide). These flags are typically not used by the driver
ixx:xopen routine.

3-5

Simple Character Drivers XENIX 286 Device Drivers

ixxxopen should first validate its parameters. If the minor device number is out of the
valid range, an error should be indicated. If the minor device number corresponds to a
device not physically present, an error should be indicated. If the · minor device nu mber
corresponds to a device that is already open and concurrent access is not allowed, an
error should be indicated.

Errors can be indicated by assigning a nonzero error code to the kernel variable
u.u error. The kernel checks this variable when control returns to it from the device
driver. The file sys/h/user.h predefines many error codes. These predefined error codes
are described in the introduction to Appendix C, "Syste m Functions," in the X EN IX 286
C Library Guide. For example, to indicate a bad minor device nu mber or one that refers
to a device not physically present, use EINV AL. To indicate that a device is already
open and cannot be concurrently opened again, use EBUSY.

If its parameters are valid, ixxxopen should enable device interrupts. (Device interrupts
should be kept disabled when a device is not being used, to prevent device state changes
from generating interrupts that the kernel and driver would have to handle.) ixxxopen
should also assign the device status variable to indicate that the device is now open. In
the case of a printer, ixxxopen may also write an initial character sequence to reset it
and place the printer in a known state. The simplest such sequence is simply a
formfeed, to place the printer at the top of form.

ixxxcl ose Procedu re

i xxxcl ose(dev, ofl ag)
dev t dev; /* devi ce number, major/m i nor */
int ofl ag; /* fl ags speci fied to open system ca l l , NOT USED */

ixxxclose is called by the kernel via cdevsw only for the last close of the device denoted
by the device number dev. The kernel keeps track of the number of opens for each
device without a matching close. It calls ixxxclose only for the last close that ends all
activity on the device. · For devices that do not permit concurrent access, this is the
same as calling ixxxclose for every close operation.

ofiag contains the flags specified to the open syste m call that created the file
descriptor that was closed by the close syste m call that triggered the call to ixxxclose.
These flags are typically not used by the driver ixxxclose routine.

ixxxclose should wait until all output in the queue is transferred to the device, assign
the device status variable to indicate that the device is closed, and then disable device
interrupts before returning.

ixxxread Proced u re

i xxxread(dev)
dev t dev; I* devi ce number, major/m i nor */

ixxxread is not provided for write-only devices such as printers. In the cdevsw switch,
the kernel procedure nodev takes the place of ixxxread. nodev assigns the value
ENODEV to u.u error if it is called. Chapter 4, "Terminal Drivers," includes a version
of ixxxread for an example terminal driver.

3-6

XENIX 286 Device Drivers Simple Character Drivers

ixxxwrite Procedu re

i xxxwrite(dev)
dev t dev; I* device number, major/m i nor */

ixxxwrite is called by the kernel via cdevsw when the user task makes the write system
call. The nu mber of characters to be written is specified by the u structure field
u.u count. The kernel routine cpass is called to transfer each character from the user
task's address space. cpass also decrements u.u_count.

ixxxwrite is responsible for doing any conversion and checking required in the character
stream. For example, ixxxwrite might expand tabs, replace illegal characters with a
co mbination of printable characters, and translate end-of-line characters (linefeeds) to
a carriage return/linefeed pair. The complexities of enqueuing a character (checking
water marks, putting the task to sleep, etc.) should be isolated in a separate routine,
ixxxenq(unit, c).

ixxxwrite can also check to see if an 1/0 error has been signaled by the interrupt
handler; this is done by checking to see if the handler has set the device status to
indicate an error. If this occurs, an error code should be assigned to u.u_error and no
other action taken. ixxxwrite must do this on behalf of the interrupt routine because
the interrupt routine cannot access the u structure.

Typical code for ixxxwrite is

{
i nt un ;
i nt c ;

I* un it (m i nor number) */
!* char bei ng transferred */

}

if ((un = m i nor(dev)) > = i xxx N U M)
u . u error = ENODEV; -

else if (i xxx sts[un] = = i xxx ERR)
u .u error = E IO;

el se
whi l e (u . u count) {

c = (pass() ;

}

!* Here is where possi b ly complex l og i c for convers ion
goes, with mu lti p le ca l l s to i xxxenq to queue the
character(s) for output. *I

3-7

Simple Character Drivers XENIX 286 Device Drivers

ixxxioctl Proced u re

One other driver routine, ixxxioctl, is called via cdevsw. This routine is not present in
the example simple character driver and is replaced in cdevsw by the kernel routine
nodev. nodev assigns the value ENODEV to u.u _error if it is called. Chapters 4 and 5
contain more information about the ixxxioctl routine.

ixxxenq Proced u re

i xxxenq(un it, c)
i nt unit; /* un it num ber = mi nor devi ce num ber that's

been va l idated */
i nt c; I* char to be enqueued */

ixxxenq is called by ixxxwrite to enqueue a character on a device's output queue. It
handles putting the task to sleep if the queue's high-water mark is reached and starting
output by calling ixxxstart if the queue was e mpty. Typical code for ixxxenq is

{

}

if (putc(c, i xxx q [un it]) = = - 1 II i xxx q [u ni t] .c cc > = i xxx H IW)
sl eep(i xxx q [un it] , i xxx _PRI) ; - - -

if ((i xxx q[un it] .c cc = = 1) &&
--(i nb(i xxx adr[un it] + i xxx STS) & i xxx BSY))
i xxxstart(un it) ; -

ixxxstart Proced u re

i xxxstart(un it)
i nt unit; /* u n it num ber = mi nor num ber that's been va l idated */

ixxxstart is called by either ixxxintr or ixxxenq to output a character from the output
queue to the device. If the nu mber of characters in the queue falls to the low-water
mark, ixxxstart calls wakeup on the queue. ixxxstart does nothing if called for a device
with an empty queue (getc returns -1). Typical code for ixxxstart is

{
i nt c;

}

3-8

i f ((c = getc(i xxx q [un it]) > = 0)
outb(i xxx adr[u nit] + i xxx DAT, c);

i f (i xxx q [u n it] . c cc = = i xxx LOW)
wakeup(i xxx _ q[un it]) ; -

XENIX 286 Device Drivers Simple Character Drivers

ixxxintr Proced u re

i xxxi ntr(l evel)
i nt level ; /* M U LT IBUS i nterrupt l eve l , in range 0-255 *I

ixxxintr is called by the kernel for each interrupt that occurs for a device managed by
the driver. The kernel fields all interrupts, determines the MULTIBUS interrupt level,
and calls the ixxxintr procedure referenced by vecintsw[level].

ixxxintr should ignore extraneous interrupts from devices absent or not open; such
interrupts may occur due to hardware proble ms. However, ixxxintr should acknowledge
all interrupts as may be required by the device hardware.

ixxxintr should also check for errors. Errors should be indicated in the device status
maintained by the driver. Note that ixxxintr cannot write to the variable u.u_error to
indicate an error, as there is no guarantee that the associated task and its u structure
will be swapped into memory when ixxxintr is called. Reporting errors via the device
status requires cooperation with ixxxwrite, which must check the status and write the
error code to the u structure if needed. In the example code, the hardware is presu med
to give a simple indication of an unrecoverable "hard" error. Real drivers may have to
handle and recover from various types of "soft" errors using a retry strategy.

Finally, if the unit is open, and the unit interrupted because a previous output has
completed, and the unit did not encounter an error, ixxxintr should call ixxxstart to get
the next character (if any) from the queue and write it to the device. Typical code for
ixxxintr is

{
char sts;
i nt un it;

}

I* loop through devi ces and hand le those with i nterru pts to
be acknowledged (ixxx BSY set i n status read from device) */

for (un it = 0; un it < i xxx N U M ; unit + +) {

}

I* Read i ng status port acknowledges i nterrupt
and cl ears i xxx BSY for subsequent reads. */

sts = i nb(i xxx ad r[unit] + i xxx STS) ;

if ((i xxx sts[un it] = = i xxx OPN) &&
/*Ignore i nterrupt ifunit not open . */
(sts & i xxx BSY)) {

}

if (sts & (i xxx BSY I i xxx H ER))
i xxx sts[un it] = i xxx E RR;

el se
i xxxstart(un it) ;

3-9

Simple Character Drivers XENIX 286 Device Drivers

Output S u m ma ry

Output of data using the driver begins with a kernel call to ixxxwrite, which checks for
any 1/0 error reported by the interrupt routine, gets characters fro m the user task
address space, does any needed conversions, and calls ixxxenq with the bytes to be
output.

ixxxenq queues the characters in the clist structure and calls sleep if the queue fills to
the high-water mark. ixxxenq also calls ixxxstart if the queue was empty before the
current call to ixxxenq; this is to prime the interrupt-driven output cycle.

ixxxintr polls the devices handled by the driver, acknowledges interrupts, checks for 1/0
errors, and calls ixxxstart to output the next character from the queue for each active
device. So long as a queue does not empty, each character output triggers a completion
interrupt that causes the next character to be output, a self-sustaining cycle.

ixxxstart gets a character (if any) from a queue and calls the kernel routine outb to
write the character to the device port. ixxxstart also wakes up any tasks waiting on the
output queue if the queue reaches its low-water mark.

3-1 0

CHAPTE R 4
TE RMI NAL DRIVE RS

This chapter provides information about terminal drivers, a type of character device
driver that handles interactive terminals or serial com munications lines.

XENIX provides more supporting routines and data structures for . terminals than for
other character device drivers. Associated with each terminal is a tty structure defined
by XENIX. Many terminal functions are handled by XENIX "line discipline" routines
that handle device-independent input, output, and control functions in standard ways.

This chapter describes the tty structure, the line discipline routines provided, and then
the components of a character driver. The final part of this chapter, "iSBC 534 Driver,"
is a listing of a terminal driver supplied as an example. This list ing is only an example
and is not the same as the iSBC 534 driver supplied with your XENIX 286 syste m.

The following material may be useful in conjunction with this chapter:

• Appendix B of this manual, "Converting Drivers from Release 1 to Release 3 of
XENIX 286," includes tables that describe the tty fields and the input modes,
output modes, control modes, and line discipline modes used with the tty
structure.

• Appendix C of this manual, "tty.h Include File,'' lists the tty.h file that defines the
tty structure and other information used by terminal drivers.

• Appendix D of this manual, "termio.h Include File,'' lists the termio.h file that
defines the control characters, input modes, output modes, control modes, and line
discipline modes used with terminal drivers.

• The entry tty in "Devices" in the XENIX 286 Reference Manual describes the
general terminal interface and should be read in conjunction with this chapter.

• The entry termcap in "Files" in the XENIX 286 Reference Manual describes the
terminal capabilit ies file /etc/termcap and should be read if you are adding a new
kind of terminal to your XENIX 286 system. (Note that a new term inal device
driver inay be used with an exist ing type of term inal and not require any
modification of the termcap file.)

• The entry ttys in "Files" in the XENIX 286 Reference Manual describes how a new
terminal device can be added to the list of devices through which users can log in
to the XENIX 286 system.

• The include file sys/h/ttold.h provides definitions used for backward compatibility
with UNIX V7 terminal handling.

• The include file sys/h/ioctl.h defines identifiers for ioctl command codes.

4-1

Terminal Drivers XENIX 286 Device Drivers

tty Structure

A tty structure is defined for each term inal or com munication line. The structure is
defined in tty.h, which is listed in Appendix C of this manual. Each tty structure
references three character queues. These queues are implemented using the clist
structure, as described in Chapter 3, "Simple Character Drivers." The queues are the
output queue, the raw input queue, and the canonical ("cooked") input queue. Character
input is placed first in the raw input queue. The canonical input is what is normally seen
by programs reading a terminal. It contains input after processing. For example, line
editing functions such as backspace and kill-line have been handled before input is
placed in the canonical queue. Character mapping (e.g., carriage return to linefeed) and
character expansion (e.g., tab to blanks) m ay also occur between the two queues.
Echoing of input characters is handled from the raw input queue. Characters written by
the program are placed in the output queue. Any needed transformations (e.g. , map tabs
to blanks, linefeed to carriage return, linefeed) are done before characters are placed in
the output queue. Input characters are copied to the output queue at interrupt t ime
immediately after being read, to provide echoing of input.

The t_proc field references the driver-specific ixxxproc routine, which is called to
perform device-dependent functions.

The t_line field is a small integer (in the range 0-127) that indexes the kernel's line
discipline table, linesw, to select the line discipline routines used by the driver.

Other fields in the tty structure contain state information and other miscellaneous
information used internally by the line discipline routines.

More information about the tty structure is contained in Appendix B, "Converting
Device Drivers fro m Release 1 to Release 3 of XENIX 286," Appendix C, "tty.h Include
File," and the entry tty in "Devices" in the XENIX 286 Reference Manual.

Li n e D isci pl i ne Routi n es

XENIX 286 handles most of the work of a terminal driver in a device-independent set of
"line discipline" routines. These routines are accessed indirectly, via a switch table
containing pointers to the routines. Use of the switch table enables a developer to add
routines for a different line discipline if desired.

XENIX 286 Release 3 supports one set of line discipline routines, with index 0 in the
linesw table in c.c. These routines are accessed via the t_line field in the driver's tty
structure. Consider the following example:

4-2

struct tty i xxx _ tty[ixxx _ N U M] ; I* dec lare tty structures for dr iver *I

i nt un i t = m i nor(dev) ; I* dev i s device number of type dev t *I
struct tty *tp = &ixxx _ tty[un it] ;

I* Ca l l the l i ne d isci pl i ne open routi ne. *!
(* l i nesw[tp- >t_l i ne] . l_ open)(tp) ;

XENIX 2 86 Device Drivers Terminal Drivers

The following identifiers are used for offsets into a row of the linesw table:

I_ open
1 close
1 read
1-write
1 ioctl
1 input
1-output

the open routine
the close routine
the input routine
the output routine
the control function routine
the input routine
the output routine

Note that the final entry in the linesw table in c.c and in the corresponding line of the
master file is nulldev, a null "do-nothing" routine. This entry is for compatibility with
older drivers that may still use that entry in the switch table. c.c and master are
described in greater detail in Chapter 6, "Adding Devices to the Configuration."

A new set of line discipline routines can be added to XENIX 286 by inserting a line in
the appropriate section (which is clearly labeled) of the master file. To access the new
routines, a driver must modify the t line field in its tty structure so that it indexes the
row of linesw that specifies the new routines. The first entry in the line in master must
name a character device that is also specified in the master file. For the standard line
discipline, the device specified is tty, the general terminal interface. The next seven
entries (separated by spaces) are the names of the routines for each of the functions
listed above, open, close, etc. The final entry on the line is nulldev. For example, the
line in master for the existing line discipline routines is

tty ttopen ttclose ttread ttwrite ttioctl tti n ttout nu l ldev

The routines in this set are ttopen, ttclose, ttread, ttwrite, ttioctl, ttin, and ttout.
These routines and other line discipline routines are described in the following sect ions.
Som e of the other line discipline routines are called directly by driver routines without
going through the line discipline switch linesw; this is reasonable for routines that are
unlikely to change from one line discipline to another. One of the routines described,
ttxput, is internal to the line discipline and never called by the driver, but is described
to clarify how output is handled by the line discipline routines.

tti n i t

tti n it(tp)
struct tty *tp; I* tty structu re for device */

ttinit is called directly (not via linesw) by the driver ixxxopen routine to initialize the
tty structure for the device. ttinit is only called by ixxxopen if the device was not
already open. ttinit is called before ttopen, as described below in the section
"ixxxopen".

4-3

Terminal Drivers

ttopen

ttopen(dev, tp)
dev t dev;
struct tty *tp;

I* dev ice number, major/m i nor */
I* tty structure for device */

XENIX 286 Device Drivers

ttopen is called by the driver's ixxxopen routine. ttopen initializes the three queues and
other fields in the tty structure. ttopen is only called by ixxxopen if the device was not
already open. ttopen is called after ttinit, as described below in the section "ixxxopen".

ttclose

ttc lose(tp)
struct tty *tp; I* tty structu re for devi ce *I

ttclose is called by the driver's ixxxclose routine. ttclose flushes the input queues in the
tty structure, waits for any output to complete, and then assigns relevant fields in the
structure to indicate that the device is closed.

ttread

ttread (tp)
struct tty *tp; I* tty structure for device *I

ttread is called by the driver's ixxxread routine and handles all aspects of the ixxxread
call (and of the read syste m call that triggered the call to ixxxread). ttread gets its
data from the canonical input queue (unless the terminal is in a special "raw" input
mode) and waits for more input if necessary. ttread transfers data to the calling
process using the address and count found in the process's u structure. While the calling
process can request any nu mber of characters, at most one line is returned. If a
complete line is returned, then the last character read by the request is the newline
(ASCII linefeed).

ttwrite

ttwrite(tp)
struct tty *tp; I* tty structure for device *I

ttwrite is called by the driver's ixxxwrite routine and handles all aspects of the
ixxxwrite call (and of the write system call that triggered the call to ixxxwrite). ttwrite
transfers data from the calling process using the address and count found in the
process's u structure. ttwrite calls the internal line discipline routine ttxput to place a
character in the output queue and perform any needed character expansion (e.g. , add
delay characters, expand tabs). ttwrite guards the high-water mark for the output
queue and suspends the calling process by calling sleep if the mark is reached.

4-4

XENIX 286 Device Drivers Terminal Drivers

ttiocom

tti ocom(tp, cmd, add r, dev)
struct tty *tp; /* tty structu re for device */
i nt cmd ; I* command code *I
fadd r t addr; I* poi nter to structure with command arguments */
dev t dev; /* devi ce number, major/m i nor */

ttiocom is called directly (not via linesw) by ixxxioctl, which is called when an ioctl
syste m call is made for the device. ttiocom handles various device control functions.
ttiocom returns zero if no further driver action is required and nonzero if the driver
must reconfigure the device by calling ixxxparam. An example of a control function
that requires device reconfigurat ion is a change in baud rate, which normally requires
that the new rate be com municated to the device hardware. ttiocom calls the line
discipline routine ttioctl (if line discipline 0 is used) to handle line-discipline-dependent
parts of the device control functions.

The different ioctl com mands and the format of the com mand arguments for terminals
are described in the entry tty in "Devices" in the XENIX 286 Reference Manual. The
include file sys/h/ioctl.h defines the identifiers used for ioctl com mand codes.

ttioctl

tti octl (cmd, tp, add r, dev)
i nt cmd ; I* command code *I
struct tty *tp; I* tty structu re for device */
cadd r t add r; I* poi nter to structu re with

command arguments */
dev t dev; /* device number, major/m inor */

ttioctl is called (via linesw) by the ttiocom routine to handle line-discipline-dependent
parts of the 1/0 control functions. ttioctl is not directly called by driver routines even
though it is one of the routines listed in linesw.

ttin

tti n(c, tp)
char c ;
struct tty *tp;

I* character to be i nput
I* tty structure for device

*I
*I

ttin is called by the driver interrupt routine when the driver receives a character from
the device. ttin places the character in the raw input queue and calls ttxput to echo
each character (if echo is enabled) by placing it in the output queue.

4-5

Terminal Drivers

ttout

ttout(tp)
struct tty *tp;

XENIX 286 Device Drivers

I* tty structure for devi ce *I

ttout is called to start output when characters are on the output queue. ttout is called
from the driver interrupt routine when handling a transmitter ready interrupt. ttout
calls ixxxproc to actually output characters.

ttxput

ttxput(c, tp)
char
struct tty

c ;
*tp;

I* character to be output
I* tty structure for devi ce

*I
*I

ttxput is not called directly by the driver but is a routine internal to the line discipline.
ttxput is called by ttwrite and also by ttin (for echoing) to place a character in the
output queue. ttxput handles any needed character expansion (e.g., expanding tabs to
spaces, inserting delay characters).

Modem Control by Terminal Drivers

Dial-in mode m lines are among the devices controlled with terminal drivers. If bit 6 of
a terminal device minor nu mber is 1, then the device is being used as a dial-in line and
the driver should provide modem control. Bits 0-5 of the minor nu mber should contain
the normal minor number of the device. Bit 7 should be 0 and never used by the driver;
bit 7 of terminal device minor numbers is reserved for future use by Intel. For example,
consider a line that is used sometimes as a dial-out line and someti mes as a dial-in line.
The line would be accessed via one device special file as a dial-out line, with a minor
number with bit 6 clear, e.g., 1 7. The line would be accessed via a second device special
file as a dial-in line, with a minor nu mber with bit 6 set, e.g. , 8 1 = 17 + 64.

Driver Descr iptio n

This section describes terminal driver routines. I t does not repeat information on driver
organization or declarations covered in Chapter 3, "Si mple Character Drivers." You will
want to consult the driver example, in the section "iSBC 5 34 driver" at the end of this
chapter, while reading this section. Each of the steps described is actually implemented
by the corresponding iSBC 534 driver routine. For example, code for the steps given for
the ixxxopen routine can be found in the i534open routine. With the help of the
descriptions in this section, you should be able to distinguish the general-purpose code in
the iSBC 534 driver from device-specific code. Of course, much of the code in the
driver example is device-specific, simply because the kernel line discipline routines do
much of the device-independent work of terminal handling.

4-6

XENIX 286 Device Drivers Terminal Drivers

Your reading of the example code should focus on the last file, sys/io/i534.c. The
include file, sys/h/i534.h, is almost entirely device-specific definitions, except for SPL
and MINORMSK. The configuration and data structures file, sys/cfg/c534.c should be
understood; it is only a single page and easily grasped. The configuration param eters
are the nu mber of boards allowed and an array of base port addresses for the boards.
Each board contains four lines (four devices). Data structures include an array of tty
structures (one per device), an array of base port addresses for each device, an array
indicating which boards are present, and an array that records the current baud rate for
each device.

ixxxin it Proced u re

i xxxi n it();

This procedure is optional but is normally provided for physical devices. It is called via
the switch dinitsw during syste m initialization. ixxxinit checks each possible board
handled by the driver to determine if it is present or absent. ixxxinit writes a message
to the system console for each board saying whether the board was found or not. (The
kernel's version of printf writes directly to the syste m console.) ixxxinit init ializes a
board status variable that indicates whether the board is present or absent. For boards
that are present, ixxxinit initializes device hardware. Note that in the iSBC 534 driver,
the responsibilities of the i534init routine are partly handled by the i534check routine,
called by i534init.

ixxxpa ram Proced u re

i xxxparam(dev)
dev t dev; I* devi ce number, major/m i nor */

ixxxparam is called whenever the device hardware must be configured or reconfigured
to adapt to requested line options. ixxxparam is called from ixxxopen to configure the
line when it is opened and is called from ixxxioctl for reconfiguration. The tty structure
must be initialized (by ttinit) and have the fields t_proc, t_ofiag, t_iflag, t_lflag, and
t_cflag assigned to their desired values before ixxxparam is called. An example of what
ixxxparam does is communicating the requested baud rate to the hardware.

The code in i534param is almost entirely device-specific but some parts are of general
interest. If a baud rate is requested that is not valid for the device, then u.u error is
assigned the error code EINVAL and i534param returns. If a baud rate of 0 is specified
and the device is a dial-out line (bit 6 set in the minor number), then i534param turns
off Data Terminal Ready, causing the modem to hang up.

4-7

Terminal Drivers XENIX 286 Device Drivers

ixxxopen Procedu re

i xxxopen(dev, oflag)
dev t dev;
int ofl ag;

I* device number, major/m i nor *I
!* flags speci fied to open system cal l , NOT USED *I

ixxxopen is called each time a device managed by the driver is opened. ixxxopen first
checks that the unit can be opened--the minor nu mber is valid and the device is present.
Otherwise an error code is assigned to u.u _error and ixxxopen returns. If no error was
detected:

1. If this is the first open of this device (the ISOPEN bit in the tty structure is zero)
then do the following:

a. Initialize the tty structure. Fill in the t_proc field with the address of the
ixxxproc routine. Then call ttinit with the address of the tty structure to be
initialized. Then initialize the mode flags in the structure: output modes,
input modes, line discipline modes, and control modes.

b. Call the ixxxparam routine for the device to make any necessary changes to
the device control registers as specified in the mode flags in the tty
structure.

c. If modem control is enabled for the device (bit 6 in the minor nu mber is set),
then set up the device hardware for an incoming call and call sleep, waiting
to be awakened when the device has received a call and has Carrier Detect.

2. Otherwise (if this is not the first open), check the XCLUDE bit in the t_lflag field
of the tty structure. If this bit is set, concurrent access to the device is not
allowed except by the super-user (u.u_uid = = 0). If the bit is set and the caller is
not the super-user, assign the error code EBUSY to u.u_error and return.

3. Set the CARR_ON bit in the t_state field of the tty structure (even if the device
is not using modem control).

4. Call the line discipline open routine to do device-independent open processing.

All of these steps are illustrated by the i534open routine.

ixxxclose Proced u re

i xxxcl ose(dev, oflag)
dev t dev;
int oflag ;

I* device number, maj or/m i nor */
I* flags specified to open system cal l , NOT USED */

ixxxclose is called on the last close of a device. ix:xxclose calls the line discipline close
routine to do device-independent close processing, which includes discarding any
unconsumed input and waiting for any unwritten output to the device to complete.
ixxxclose then turns off Data Terminal Ready on the device (for mode m control, if
modem control is supported) and may perform other device-dependent functions, such as
clearing the transmitter and receiver registers of the device. These steps are
illustrated by the i534close routine.

4-8

XENIX 286 Device Drivers

ixxxread Proced u re

ixxxread(dev)
dev t dev; !* device number, major/m i nor */

Terminal Drivers

This procedure is called to handle the read syste m call and si mply calls the read routine
in the line discipline. An example is the i534read routine.

ixxxwrite Proced u re

i xxxwri te{ d ev)
dev t dev; !* device number, major/m i nor */

This procedure is called to handle the write syste m call and simply calls the write
routine in the line discipline. · An example is the i534write routine.

ixxxintr Proced u re

ixxxi ntr{ level)
i nt level ; !* i nterrupt l evel , from PIC, i n range 0-7 1 */

ixxxintr is called by the kernel for each interrupt from a device managed by the driver.
For the iSBC 534, the boards share a single interrupt level, requiring that the boards be
polled for their interrupt status. However, each board serializes interrupts from that
board, and the status read from the board indicates which device is associated with the
particular interrupt. i534intr polls all the boards repeatedly until a pass is made with no
interrupts found. i534intr handles three kinds of interrupts: receiver interrupts (a
character has been received), transmitter interrupts (a transmitter is ready for another
character), and modem interrupts (a dial-in line connected or was hung up).

For a receiver interrupt, i534intr reads the character received. If the device is not
open, the character is ignored and discarded. Otherwise, the device status is checked
for read errors; any read error sets one or more indicator bits in the upper bits of the
16-bit value that holds the received character. The line discipline input routine is then
called to handle enqueuing the character.

For a transmitter ready interrupt, i534intr first clears the BUSY flag in the t state field
of the device's tty structure. i534start is then called to send the next character. (Note:
Normally ixxxintr should call ixxxproc to send the next character. i534intr calls
i534start directly as an opt imization.) On returning from i534start, i534intr checks to
see if any processes are waiting on the device output queue (OASLP set in the t state
field) and if the number of characters in the output queue is less than or equal to the
low-water mark for the baud rate being used. If both conditions are satisfied, the
OASLP bit is cleared in t_state and wakeup is called to rouse the sleeping process(es).

For a mode m interrupt, i534intr checks a different device register. A hangup interrupt
is ignored unless the t_state field indicates that the device was open and that the
carrier was on. For a valid hangup, the SIGHUP signal is sent to all processes in the
process group associated with the device. Data Terminal Ready is then turned off to
cause the mode m to hang up at its end of the line. Carrier Detect is then also turned
off. If a ring interrupt occurs, then the process sleeping (in i534open) wait ing for
Carrier Detect is awakened.

4-9

Terminal Drivers XENIX 286 Device Drivers

ixxxproc Proced u re

ixxxproc(tp, cmd)
struct tty *tp; I* tty structu re for devi ce

I* command code
*I
*I int cmd ;

ixxxproc is called whenever a change must be made in the device's output. The
com mand codes that ixxxproc must handle are defined in tty.h. The follow ing list gives
all the com mands along with their meaning and how they are handled:

T OUTPUT

T TIME

T SUSPEND

T RESUME

T BLOCK

T UNBLOCK

T RFLUSH

T WFLUSH

T BREAK

4-1 0

Start output; si mply call ixxxstart.

Time delay has finished; clear the TIMEOUT bit in the t_state field of
the tty structure and call ixxxstart.

Suspend output on this line (e.g. , CONTROL-S received); set the
TTSTOP bit and clear the BUSY bit in the t_state field of the tty
structure. Note that the suspension takes effect i m mediately and
applies to characters that are already in the output queue.

Resume output on the line (e.g. , CONTROL-Q received); clear the
TTSTOP bit in the t_state field of the tty structure and call ixxxstart.

Send a stop character, which should block future input (perhaps after a
lag); if the stop character is successfully queued, set the TBLOCK bit
in the t_ state field of the tty structure and call ixxxstart.

Send a start character, which should resu me input (perhaps after a lag);
if the start character is successfully queued, clear the TBLOCK bit in
the t state field and call ixxxstart.

Com mand to flush the input queue; this com mand is handled by other
line discipline routines before calling ixxxproc, so do nothing and
return.

Com mand to flush the output queue; handle like T_RESUME, ensuring
that TTSTOP is clear and that output is started; control returns
without waiting for the queue to be e mptied.

Send a "break", a sequence of zero bits lasting approximately 1/4 of a
second of real t ime.

XENIX 286 Device Drivers Term inal Drivers

ixxxsta rt Procedu re

i xxxstart(tp)
struct tty *tp; I* tty structu re for device *I

ixxxstart is called by ixxxproc to start output for a device. i534start locks out
character interrupts until it has set the BUSY flag that guarantees that the re maining
code in the routine will not be re-entered. While interrupts are locked out, i534start
checks the BUSY, TIMEOUT, and 'ITSTOP flags in the t_state field of the tty structure.
If any of the three flags is set, i534start restores the previous interrupt priority and
returns. Otherwise, i534start sets the BUSY flag itself, restores the previous interrupt
priority, and starts output. Note the dist inct ion bet ween "raw" output (no
postprocessing) and cooked output (postprocessing to insert t imeouts in i534start and
other processing in previous routines). The final code in i534start awakens (first) any
processes wait ing for the output queue to drain and (second) any processes waiting for
the low-water mark on the output queue.

ixxxioctl Proced u re

i xxxi octl (dev, cmd, add r, oflag)
dev t dev; /* device number, major/m inor */
int cmd ; I* command code */
faddr t add r; /* poi nter to structu re with command arguments */
int oflag; /* f lags specifi ed to open system cal l , NOT USED */

ixxxioctl is called when an ioctl system call is made for the device. The different ioctl
com mands and the format of the com mand argu ments for terminals are described in the
entry tty in "Devices" in the XENIX 286 Reference Manual. The i nclude file
sys/h/ioctl.h defines the identifiers used for ioctl com mand codes.

i534ioctl simply calls the line discipline routine ttiocom directly (not via linesw) to
handle all the ioctl com mands. ttiocom returns zero if no further driver action is
required and nonzero if the driver must reconfigure the device. If a nonzero value is
returned by ttiocom, i534ioctl calls i534param to reconfigure the device.

4- 1 1

Terminal Drivers XENIX 286 Device Drivers

iSBC® 534 D river

This section lists source code for Intel's XENIX 286 terminal driver for the iSBC 534
Four Channel Com municat ions Expansion Board. This code may not correspond to the
latest version of this driver supplied with your XENIX 286 system; this code is included
here only as an example of a terminal driver. There are three source files in the driver:
sys/h/i534.h (include file), sys/cfg/c534.c (data structures), and sys/io/i534.c (routines).

sys/h/i 534. h Listi ng

#defi ne

#defi ne
#defi ne
#defi ne
#defi ne

I*

SPL

ISPEED
M I NORMSK
MODEMMSK
DTRON

spi S

* Structu res for the iSBC534
*
*

1 3
Ox 1 F
Ox CO
Ox80

I* keep i nterrupts away *I

I* i n it ia l baud rate of 9600 = = (1 3) ; 300 = = (7)*1
I* reserve bit 7 ; bit 6 for modem *I
I* b it 6 of the m i nor number sets modem op *I
I* b it 8 of usart status byte; 1 i f present *I

* Com mands used for operati on and i n itia l i zation of
* p ic 's,pit's, usarts and the ppi
*
*
*
* Written by J . Chorn Decem ber 7th 1 98 1
*
* MODIF ICAT ION H ISTORY
* 100 1 I l k 1125184
* Ported to system 3 U N IX.
*
*
*
* Refer to i SBC534 Hardware Reference Manual Chapter Three 1/0 Address
* Assignments for further i nformation.
*
* Device PHYS ICAL port layout
* Based on Data B lock Select
*
*
* U sart 1/0 functions:
*
*
*

4-1 2

Write : 1/0
Read : 1/0

XENIX 286 Device Drivers Term inal Drivers

*
* P IC status port functions:
*
* Write :
* Read :
*

ICW 1 ,0CW2, and OCW3
Status and Pol l

* P IC mask port functions:
*
*
*
*
*

Write :
Read :

ICW2 and OCW1 (mask)
OCW 1

* structu re d b534:
*
*
*
*

825 1 U sa rts [4]
8259 P IC's [2]
Board command port's

{2 bytes wide each}
{2 bytes wide each}
{4 bytes}

*
*I

struct db534{

};

I*

struct {
char
char

} USART[4] ;
struct {

char
char

} P IC[2] ;
char selcntr;
char seldata ;
char stestmd ;
char reset;

data;
cntrl ;

csr;
msr;

I* seria l I/O data port *I
I* seria l control port *I

I* PIC status port *I
!* PIC mask port *I

I* Select control b lock */
I* Select data block */
I* Select/desel ect test mode *I
I* Board "Reset port *I

* Refer to i SBC534 Hardware Reference Manua l Chapter Three 1/0 Add ress
* Assi gnments for fu rther i nformation.
*
* Device Phys ica l Port Layout
* Based on Control B l ock Select
*
*
* 8253 PIT Functions:
*
* Load/Read count
*
* 8255 PPI Fu nctions:
*
* Write :
* Port A None
* Port B None
* Port C Data out
* Port (Control) Control commands

4-1 3

Terminal Drivers

*
* Read :
*
*
*
*
*
*
*

Port A Data i n
Port B Data i n
Port C Data status
Port (Contro l) None

* structu re cd 534 :
*
*
*
*
*
*I

8253 PIT's [2]
8255 PPI Para l l e l port
Board command port's

struct cb534{
struct {

char
char

} PIT[2] ;
char porta ;
char portb;
char porte;
char ppi per;
char selcntr;
char se ldata ;
char stestmd ;
char reset;

};

!*

ti mer[3] ;
per;

{ 4 byte wide each}
{4 bytes}
{4 bytes}

XENIX 286 Device Drivers

I* read/load BOG [?] & BOG [? + 3] */
!* PIT control register *I

I* read port a data i n *I
!* read port b data i n *I
!* read/write port c */
!* PPI control register *I
!* select control b lock */
I* select data block */
!* select/deselect test mode *I
!* board reset *I

* Structu re for base assignments of boards i n the configu ration
* This i s used to associate the board with the base address
*I
struct i 534cfg{

int
};

I*
*

c base;

* 8253 PIT commands
*
*
*
*
*
*
*
*
*
*I

4- 14

RATEMDO :

U534SPEED :

NOTE :

read/l oad ti merO(or 4) for mode 3 (baud rate generator)

int constant of 1 600 pit count in hex.

mode zero can only be used on ti mers 4 or 5 ! ! (accord i ng to
the manua l) and this is garf. Program for mode 3 for two
second c lock signa l .

XENIX 286 Device Drivers Term inal Drivers

#defi ne
#defi ne

I*
* 825 1
*
*I

#defi ne
#defi ne
#defi ne
#defi ne
#defi ne
#defi ne
#defi ne

#defi ne
#defi ne
#defi ne
#defi ne
#defi ne

I*
* 825 1
*
*I

#defi ne
#defi ne
#defi ne
#defi ne
#defi ne
#defi ne
#defi ne
#defi ne
#defi ne

I*
* 8259
*
* ICW'5
*
* P IC ICW 1 :
* P IC ICW2 :
*

RATEMDO
U 5345PEED

Ox36
Ox0640

U5ART command i nstructions
100 1 spl it i nstructi ons i nto separate bits

5 TXEN
5-DTR
5-RXE N
5-5B RK
S-E R
S-RTS
S-I R

Ox0 1
Ox02
Ox04
Ox08
Ox 1 0
Ox20
Ox40

S RXRDY
S-TXRDY
S-PERROR
S-FRERROR
S-OVERRU N

USART mode i nstructi ons

Ox02
Ox0 1
Ox08
Ox20
Ox 1 0

I* transmitter enabl e *I
I* data term i na l ready *I
I* receiver enabl e *I
I* send break char * I
I* error reset *I
I* request to send *I
I* i nterna l reset *I

I* rece iver has data */
I* transm itter empty *I
I* parity error *I
I* fram ing error *I
I* overrun *I

100 1 spl it i nstructi ons i nto separate bits

S BAU DF
S-5BPC
S-6BPC
S-7BPC
S-8BPC
S-PARE N
S-PAREVEN
5-1 STOP
S-2STOP

Ox02
OxOO
Ox04
Ox08
OxOC
Ox 1 0
Ox20
Ox40
Ox CO

I* baud rate factor = 1 6x *I
I* 5 bits per char *I
I* 6 bits per char *I
I* 7 bits per char *I
I* 8 bits per char *I
I* parity enable *I
I* even parity *I
I* 1 stop bit *I
I* 2 stop bits *I

PI C commands

Format = 4,si ng le pi c,edge triggered .
In i ti a l i zation add ress.
Pi c icw3 and p ic icw4 not needed .

4-1 5

Terminal Drivers

* OCW's
*
* MASK INT :
*
* G ETI NT :
*
* G OODI NT:
*
*
* T IMERGO:
*
*I

#defi ne
#defi ne
#defi ne
#defi ne
#defi ne
#defi ne

4-1 6

PIC ICW 1
P IC ICW2
MASKI NT
G ETI NT
GOOD INT
TIM ERG O

XENIX 2 8 6 Device Drivers

Set 8259 to mask a l l i nterrupt l evels.

Set 8259 for pol l ed mode
read request ing device on next rd pu lse.
Mask to check bit 7 ; prod uce from the 'geti nt' command.
B i t 7 set = = val i d i nterru pt at th i s pic .

Pic mask which a l l ows bdg 5 ti mer i nterrupts

Ox 1 6
0
OxF F
OxOC
Ox80
OxFD

XENIX 286 Device Drivers

sys/cfg/c534.c Listi ng

I*
* c534.c
* iSBC 534 Spec ifi c Configu rati on fi le .
*
* This spl it out from c .c to avoid name-clash ing with other devi ce­
* spec ifi c configuration fi l es.
*I

#i ncl ude I I • ./hlparam . h 11
#i ncl ude II • ./hltty.h 11
#i ncl ude I I • ./hli 534. h "

I*

I* this i ncl ude types. h *I

* N 534 m ust be mod i fied i f the configuration
* changes the number of isbc534 boards in the system.
* 100 1 moved thi s here from i 534. h to consol idate configu ration
* options to the appropr iate p lace.
*I
#defi ne N U M 534 2 !* Number of isbc534's i n configuration *I
int N 534 = N U M 534;

!*
* 100 1 moved these declarations to here from i 534.c
*I
struct tty i 534tty[NU M 534*4] ;
short i 534addr[N U M 534*4] ;
i nt i 534a l i ve[N U M 534] ;
i nt i 534speed [N U M 534*4] ;

I*

I* 4 USARTs per 534 *I
I* para l l el to tty struct *I
I* does it l i ve ?? *I
I* cu rrent speed of tty *I

* This table g ives the i nterrupt l evel and board-base 1/0 address
* for each possi b le iSBC 534 control l er . The d river procedu re entry­
* poi nts are configured i n c .c
* To reconfi gure for a d i fferent number of 534's, you must add or
* de lete the appropriate add resses in the structure below.
*I

struct i 534cfg i 534cfg [N U M 534] = {

};

Ox30, !* fi rst board base add r = Ox30 *I
Ox40

Term inal Drivers

4- 1 7

Terminal Drivers XENIX 286 Device Drivers

sys/io/i 534.c Listing

I*
* i sbc534 device d river.
*
* Th is is the set of procedu res that make up the i sbc534 device driver.
* The proced ures provid ed i ncl ude i 534open, i 534c lose, i 534i ntr, i 534proc,
* i 534ioctl , i 534read, and i 534write which are the i nterfaces between
* xen ix and the hardware. The subrouti nes used are i 534i n it, i 534param,
* i 534start, which are used to program the hardware. The i sbc534 hardware
* consists of 4 usarts, 2 pi c's, 2 pit's and a ppi .
* The ppi is not supported by th i s driver.
*
* M u lti p le i sbc534 m i nor number structure :
* bits 0-4:
* Mi nor # :
* 0-3 usarts
* 4-7 usarts
*

Board :
1 st Board l owest i ntr l evel
2nd Board next lowest i ntr l evel

* 1 2- 1 5 usarts 4th Board l ast i ntr level
*
* NOTES :
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

The base add ress of the board M U ST be non-zero ! ! !
The i sbc86/ 1 2 board m ust have the fa i l safe ti mer
i nsta l l ed . (defau lt)

The i sbc534 REQU I RES a HARDWARE MODI F ICATION for MODEM SU PPORT
The i sbc534 requ i res a defau l t j u m per removed from

pi n 1 05- 1 06
and add a j u m per from

pi n 1 05- 1 04
Thi s mod i fi cation cascades timer bdg4 to bdg5 to a l l ow a
2 second ti mer used i n detecti ng carrier from a modem.
The carrier l oss s ignal i s generated via a separate
i nterrupt .

The above mod i fi cation i s ONLY N E EDED FOR MODEM SU PPORT but shou ld
be done for consistency.

Debug switches are : DEBUG for i sbc534 support.
i 534debug : output control

0 = = synchronous routi ne trac ing
1 = = i nterrupt traci ng
2 = = al l output

* Written by J im Chorn
* on 1 2/29/81
*

4-1 8

XENIX 286 Device Drivers Term inal Drivers

* H i story :
*
*
*
*
*
*
*
*
*
*
*
*
*

mod i fi ed 1 1 1 5182 for mu lti pi e board support.
mod i fi ed 1 129182 for consol e support.
mod i fied 3129182 for add ition of modem support

mods affect i 534open, i 534close, i 534i ntr.
mod i fi ed 4122182 moved console support out to support i sbx35 1
mod i fied 6122182 added OR tie'ng o f 534's on the same i nterrupt

leve l .
Changed the modem support b it to OxCO mean ing confi gure
the l i ne for detect ion of aqu i sit ion AN D loss of carr ier
detect si gnal . B i t Ox40 means detecti on of aqu i sit ion and
bit Ox80 means detection of loss of carri er detect signa l .
The detection of aqu i sit ion of carri er without detect ion of
loss of carrier is mean i ng less and is not mentioned i n the
manua l entry.

* 6128183 pl b 1000
* added fi x to race cond it ion
* 1127184 I l k 100 1
* ported to system 3 un i x
* 216184 I l k 1002
* attem pt to set I i ne speed to 0 vi a stty now retu rns error
*
*I

I* system confi gu ration *I
I* system d i rectory structu res *I
!* needed for user. h *I
I* user structu res (system) *I
!* device structu res (system) *I
I* i octl commands */
I* some pic commands from system *I
I* baud rates *I

#i ncl ude 11 • ./hlparam .h l l
#i ncl ude I I • ./hlconf.h 11
#i nc l ude 11 • ./hld i r. h ll
#i nc l ude I I • ./hla .out. h 11
inc l ude I I • ./hluser. h 11
#i nc l ude 11 • ./hltty. h ll
#i ncl ude I I • ./hlioctl . h ll
#i ncl ude 11 • ./hli8259 .h 11
#i ncl ude 11 • ./hlusart. h ll
#i ncl ude I I • ./hli 534. h ll I* hardware structu re and local commands *I

#ifdef DEBUG
i nt i 534debug = 0; !* debug output control *I
#end i f

extern
extern
extern
extern
extern
i nt

i nt N534;
struct tty i 534tty[] ;
short i 534addr[] ;
struct i 534cfg i 534cfg [] ;
i nt i 534a l i ve[] ;

i 534wakeup;

I* number of boards confi gu red in *I
I* 4 USARTs per 534 *I

I* device add rs for each tty struct *I
I* board software add resses von conf*l

I* does it l i ve ?? *I
I* wakeup variab le for modems *I

4-19

Terminal Drivers

I*
* Thi s procedu re verif ies that a isbc534 board i s presently
* conf igured by putti ng the board i nto test mode and
* then checki ng i f the board actua l l y i s in test mode.
* This test mode check i s a one bit test. I f the board configured i s not
* present an array var iable for each board ca l l ed i 534a l i ve i s set to

XENIX 286 Device ,Drivers

* fal se.
* 100 1
*

changed the name of this routi ne from i 534probe to i 534check
to avoid confl i ct with i 534proc

*
* TITLE : i 534check
*
* CALL: i 534check() ;
*
* I NTERFACES : i 534i n it
*
* CALLS : none
*
* H i story :
*
*I

i 534check()
{

regi ster
regi ster struct
struct db534
i nt

board ;
i 534cfg *d;
DBbase; / set up the i /o boards base address */
al i ve;

for {board = 0; board < N 534; board + +){
cf = &i 534cfg [board] ;

}
}

4-20

i f{d- > c base ! = 0) {

}

al i ve = 1 ; I* assume it l i ves */
DBbase = {struct db534 *) cf- >c base;
outb{&DBbase- >stestmd, 1) ; /*select test mode *I
if{(inb{&DBbase- >stestmd) & 1) = = 0)
I* is test mode selected? *I

al i ve = 0; I* trash base add r for i ntr() */
outb{&DBbase- >stestmd, Oxff) ;
if{{i nb{&DBbase- >stestmd) & 1) = = 0)

al i ve = 0;
outb{&DBbase- >stestmd, 0) ; /* deselect test mode *I
pri ntf{ " iSBC 534 Based % x board % d % s.\n " ,

cf- >c base, board ,
al i ve ?"found " : " NOT fou nd ") ;

i 534a l i ve[board] = a l i ve;

XENIX 286 Device Drivers

I*
* Thi s procedu re i n itia l i zes the i sbc534 when the cal l to d i n it i s
* made. Th i s procedure i s done ONCE ONLY i n the fol l owi ng sequence :
* i n iti a l i ze the isbc534 structures to poi nt at the board,
* reset the board,
* i nitia l i ze and mask the on-board pi c's.
* After th i s has been accompl ished there is no reason to rei n itia l i ze these
* functions on the i sbc534 except when hardware fa i l u re occurs.
* NOTE : The baud rate clocks are not programmed here; th i s
* is done on device open and i octl i n the ca l l to i 534param .
* Same i s true for the usart i n iti a l i zation .
*
* TITLE : i 534i n it
*
* CALL: i 534i n it() ;
*
* I NTERFACES : d i n it
*
* CALLS :
*
* H i story :
*
*
*
*
*I

i 534i n it()
{

i 534check, outb

1 / 1 1 182 Shortened the delay ti me from 1 00 to 1 0 to speed th i ngs
up a bit.

1 / 1 5/82 Added probi ng for boards.
100 1 moved in it of PIT's and usa rts to open routi ne

register stru ct db534 * DBbase; /* set up i/o boards base addr *I
register i nt board ;
i nt i ;

#ifdef DEBU G

#end i f

i f(i 534debug = = 0 I I i 534debug = = 2)
pri ntf(" i 534i n it, ") ;

i 534check() ;
for(board = 0; board < N534; board + +) {

if(i 534al i ve[board] = = 0)
conti nue; /* Board not there ! *I

DBbase = (struct db534 *) i 534cfg [board] .c base;
outb(&DBbase- > reset, 0); -

outb(&DBbase- >se ldata, 0);

Terminal Drivers

4-2 1

Terminal Drivers

for (i = O; i < 4; i + +) {
I* do the mystical hlw reset Ox80,0 *I
outb(&DBbase- > USART[i] .cntri ,Ox80) ;
ddelay(1 0) ;
outb(&DBbase- > USART[i] .cntri ,O) ;
ddel ay(1 0) ;

XENIX 286 Device Drivers

I* 100 1 : now do the reset mentioned on the 825 1

}
}

I*

data sheet *I
outb(&DBbase- > USART[i] .cntri ,O) ;
ddelay(1 0) ;
outb(&DBbase- > USART[i] . cntri , O) ;
ddelay(1 0) ;
outb(&DBbase- > USART[i] .cntri ,O) ;

}
outb(&DBbase- > PIC[O] .csr,
outb(&DBbase- > PIC[O] . msr,
outb(&DBbase- > PIC[1] .csr,
outb(&DBbase- > PIC[1] .msr,
outb(&DBbase- > PIC[O] .msr,
outb(&DBbase- > PIC[1] .msr,

PICICW 1) ;
PICICW2) ;
PICICW 1) ;
P ICICW2);
MASK I NT) ;
MASK I NT) ;

* This procedure sets u p a usart ti mer for a l oad operation and

I* mask a l l i ntrs *I

* programs the parameters of the l i ne . The code depends on havi ng the
* tty structure fi l l ed out before a ca l l i s made
* to i 534param . Th i s i s the sequence of events;
* check for va l i d speed
* program timer (usi ng i 53tprog)
* program for the desi red paramters
* Thi s procedu re wi l l program bdgO to bdg4 as a baud rate generator.
*
*
* TITLE : i 534param
*
* CALL: i 534param(dev) ;
*
* I NTERFACES : i 534open
*
* CALLS :
*
* H i story :
*
*
*
*
*
* 100 1
*
*

4-22

i 53tprog

1 /20/82

1 /29/82
417182
4/22/82

I l k 1/27184

removed bdg4, bdgS program ing options.
These ti mers aren't used .
added consol e progra m m i ng
added i 53tprog to hand l e pit programm ing
removed console progra m m i ng

added support for parameter change

XENIX 286 Device Drivers Terminal Drivers

*I

#defi ne MAXBAU DS 1 5
i nt i 534baud [] = {

I* maxi mum i ndexes i nto i 534baud [] */

};

US BO ,
US-8 1 50,
0,
0

US B 50,
US-8200,
US-82400,

us B75 I
US-8300,
US-84800,

us 8 1 1 0,
US-8600,
US-89600,

extern i nt i 534speed [] ; I* track record of baud rate *I

i 534param(dev)
i nt dev;
{

struct cb534 *CBbase;
struct db534 *DBbase;
register struct tty *tp;
regi ster s;
i nt port;
i nt p icport;
int mask;
i nt f;
mode;
i nt un it, speed ;
short taddr;

I* set up the i/o boards base add ress */
I* set up the i/o boards base add ress *I

I* speed, m utex, etc */
I* usart and pit control ports */
I* p ic control port *I
I* i ntr mask for pic */
I* control mode flag from tty struct */
I* mode to program 825 1 ,8253 i nto */

unit = dev & M I NORMSK; /* un it = board number */
#ifdef DEBUG

if(i 534debug = = 0 I I i 534debug = = 2)
pri ntf(" i 534param un it = % d, " ,u n it) ;

#end i f
tp = (struct tty *) & i 534tty[un it] ;
taddr = i 534addr[un it] ;
DB base = (struct db534 *) (i 534cfg [u n it > > 2] .c base) ;

I* beg i nn i ng of block */ -

CBbase = (struct cb534 *) (i 534cfg[un it > > 2] . c base);
I* beg i nn i ng of block */ -

0,
us 8 1 200,

0,

4-2 3

Terminal Drivers XENIX 286 Device Drivers

4-24

s = (i nt)tp- >t cflag & CBAU D; I* s < - new requested speed *I
if(s = = 0) {- I* hang u p si gna l via stty *I

}

if (m inor(dev) & MODEMMSK) {

}

I*
* fl i ck dtr off to cause hardware
* hang up on modem
*I

whi l e ((i nb(&DBbase- > USART[tadd r&03] . cntrl) &
S TXRDY) = = 0)

; I* wait for txrdy *I
outb(&DBbase- > USART[tadd r&03] .cntrl , S E R);

I* dtr off *I -

else { I* not a modem--i l l egal speed *I

}

u . u error = E I NVAL; I* 1002 *I
return;

if(s ! = i 534speed [un it]) { /* change speed? *I

}

i534speed [un it] = s;
speed = i 534baud [s] ;
if ((s > MAXBAU DS) II ((s ! = 0) && (speed = = 0))) {

}

u . u error = E I NVAL; /* i nva l i d baud rate */
return ;

unit % = 4; I* which usart? *I
if (un it = = 3){

}else{

}

port = (i nt) &CBbase- > PIT[1] .ti mer[O] ;
mode = RATEM DO;

port = (i nt) &CBbase- > PIT[O] .ti mer[unit] ;
mode = RATEM DO I (un it < < 6) ;

s = SPL() ;
outb(&CBbase- >selcntr, 1) ;
i53tprog(port, (portl0x03) ,mode,speed) ;
outb(&CB base- > seldata , 1) ;
spl x(s) ;

XENIX 286 Device Drivers Terminal Drivers

else
unit % = 4; I* un it = = port num of board *I

I*
* 100 1
* set parameters of l i ne
* fi rst, set up the mode variab le from the tty structure i nfo.
* then reset the usart and program the new mode.
*I
f = tp- > t cflag;
mode = S BAU DF I ((f&CSTOPB)? S 2STOP : S 1 STOP) ;
if (f & PARENB) - -

mode I = (S _PAR E N I ((f&PARODD)? 0 : S _PAREVE N)) ;

switch((f> >4) & Ox03)
{
case 0 : break ;
case 1 : mode I = S 6BPC;

break ; -

case 2 : mode I = S 7BPC;
break ; -

case 3 : mode I = S 8BPC;
break ; -

}

I*
* i n itia l i ze the usart
*I

I* bits per c har *I

I* 5 bpc *I
I* 6 bpc *I

I* 7 bpc *I

I* 8 bpc *I

port = (i nt) &DBbase- > USART[unit] .cntrl ;
picport = (i nt) &DBbase- > PIC[O] . msr; I* p ic port for OCW1 *I
s = SPL() ;
I* d i sable PIC i nterrupts *I

I* usart port *I

mask = i nb(p icport) I (3 < < (unit * 2)) ;
outb(pi cport, mask) ;
outb(port, S I R) ;

I* RxRDY, TxRDY off *I
I* software reset *,1

outb(port, mode);
I*
* turn usart (dtr) on
* do not enab le receiver i f not CREAD
*I
outb(port, S RTSIS ERIS DTRIS TXE NI

I* seri a l mode cmd to usa rt *I

- ((tp- >t_ cfl ag &CREAD)? S _ RXEN : 0)) ;

I* now enable P IC i nterrupts *I
mask & = (-(3 < < unit * 2)) ;
outb(pi cport, mask) ;
spl x(s) ;

#ifdef DEBUG
if(i 534debug = = 0 I I i 534debug = = 2)

#end i f
}

pri ntf(" P : mode = % x,mask = % x\n " ,mode,mask) ;

4-2 5

Terminal Drivers

I*
* This procedure programs an 8253 PIT for operation as a baud rate
* generator.
*
* TITLE : i53tprog
*

XENIX 2 86 Device Drivers

* CALL: i53tprog(ti mer
_

port, ti mer
_

control
_

port,mod e,speed) ;
*
* CALLS : outb
*
*I

i 53tprog(ti mer,pcr,mode,speed)
register i nt speed, ti mer;
i nt mode,pcr;

{

}

I*

outb(pcr,mode);
outb(ti mer, speed) ;
outb(ti mer, (speed > >8));

I* prog mode *I
I* prog speed *I

* This procedure opens one of the 4 1 i nes on the i sbc534 board for
* exc lus ive use by a user. The fi l e structu re is i n iti a l i zed
* and control is passed to the tty l i ne d i sci pl i ne read routi ne,
* which does the actua l open .
* Not supported i s the fi fth device wh ich i s the para l l el port.
*
*
* TITLE :
*
* CALL:
*
* I NTERFACES :
*
* CALLS :

*
* History: 1 1 1 5182 :
*
*
*I

4-26

i 534open

i 534open(dev, flag) ;

xen ix
•

i 534param , tti n it, tty open through
l i neswitch, i nb,outb,sleep

Mod ifed code for m u lti p le i 534's to : i ndex a
configuration tab le to get the board base add ress.

XENIX 286 Device Drivers Terminal Drivers

i nt i 534proc();

i 534open(dev)
i nt dev;
{

struct d b534 * DB base; /* set u p the i/o boards base address *I
reg ister struct tty *tp;
reg ister i nt un it;

unit = dev & M I NORMSK;
if (unit > = (N534*4)) {

u .u error = E NXIO;
retu rn;

}
if (i 534al ive[un it/4] = = 0) {

u .u error = E NXIO;
retu rn ;

}

I* un it < - board num */
I* i l l egal devi ce *I

I* Board not there ! *I

DBbase = (struct db534 *) i 534cfg[un it> > 2] . c base ;
tp = (struct tty *) &i 534tty[un it] ; -

#ifdef DEBUG
if(i 534debug = = 0 I I i 534debug = = 2)

pri ntf(" i 534open un it = % d,state = % x\n " ,un it,tp- >t_state) ;
#end i f

i 534add r[unit] = un it; I* board and un it number *I
tp- >t proc = i 534proc;
unit % = 4; I* u n it < - port num */
if ((tp- >t state & ISOPEN) = = 0) {

}

I* 100 1 : next few I i nes conform to new tty stuff *I
tti n it(tp) ;
tp- >t oflag = OPOSTIONLCR;
tp- >t-i flag = ICRNLI ISTR IPI IXON;
tp- >t-l fl ag = ECHO! ICANONI IS IG ;
tp- >t=cflag = B9600ICS8ICREAD;

i 534param(dev) ;

I* output modes *I
I* i nput modes *I

I* l oad parameters *I

if(dev & MODEMMSK) {
whi l e((i nb(&DBbase- > USART[un it] .cntrl) & DTRON) = = 0)

sleep((caddr t)& i 534wakeup,TT IPR I) ;
outb(&DBbase- > PIC[1] .msr ,((i nb(&DBbase- >

P IC[1] . msr)) &(-(Ox 1 0 < < unit)) &TI M E RGO)) ;
/*u nmask carri er/detect *I

}

if ((tp- >t I f lag & XCLU DE) && (u . u u id ! = 0)) {
u . u- error = EBUSY;
return;

}
tp- >t state I = CARR ON ;
(* l i nesw[tp- >t_l i ne] . l_ open)(tp) ;

4-27

Terminal Drivers

#ifdef DEBUG

#end i f
}

I*

i f (i 534debug = = 0 II i 534debug = = 2)
pri ntf(" O : usart %d status = % x\n " , un it,

i nb(&DBbase- > USART[un it] .cntrl)) ;

XENIX 286 Device Drivers

* This procedure performs the cl ose operation on one of the devices of the
* i sbc534. A c lose masks the device on board ; rei nsta l l s the fl ags that
* state the device is c losed ; ca l l s ttyclose to do the operation .
* Not i m plemented yet i s devi ce 4 which i s the paral l el port; i t i s
* unknown device at th i s m i nute.
*
* TITLE : i 534close
*
* CALL: i 534close(dev, fl ag);
*
* I NTERFACES: xen i x
*
* CALLS : tty c lose thru l i ne d i sci pl i ne
*
* H istory:
*
*I

i 534close(dev)
int dev;
{

struct db534 * DBbase; /* set up the i/o boards base add ress */
reg ister struct tty *tp;
reg i ster i nt u ni t;
i nt mask;
i nt s;

unit = dev & M I NO RMSK;
#ifdef DEBUG

if(i 534debug = = 0 I I i 534debug = = 2)
pri ntf(" i 534close unit = % d, " ,un it) ;

#end i f
tp = (struct tty *) &i 534tty[un it] ;
DBbase = (struct d b534 *) i 534cfg [unit > > 2] . c_ base;

4-28

XENIX 286 Device Drivers Term inal Drivers

}

I*

if (un it < N 534*4) {
unit % = 4;

}

i f(tp- >t cflag & H UPCL) {
/*Turn off dtr

}

* carrier wi l l be tu rned off when i ntr
* from dsr comes i n
*I
whi l e ((i nb(&DBbase- > U SART[unit] . cntrl) &

S TXRDY) = = 0)
J* wait for txrdy *I

outb(&DBbase- > USART[unit] .cntrl , S E R) ;/* dtr off *I

(* l i nesw[tp- >t l i ne] . l c l ose)(tp) ;
s = SPL() ; - -

mask = i nb(&DBbase- > PIC[O] . msr) I (3 < < (un it * 2));
outb(&DBbase- > PIC[O] . msr, mask); /* RxRDY, TxRDY off */
splx(s) ;

i 534add r[dev&M INORMSK] = (short) 0;

* This procedure i nterfaces the read request with the system read operati on
* to obtai n a byte from the usart. The usart's character is read after an
* i nterrupt so th i s procedu re ca l l s the system to wait for the i nterrupt
* procedure to pass the character on to the i nput character queue.
*
* TITLE : i 534read
*
* CALL: i 534read (d ev)
*
* I NTERFACES : xeni x
*
* CALLS : ttread
*
* H istory:
*
*I

i 534read(dev)
int dev;
{

register struct tty *tp;
register i nt u nit;

unit = dev & M I NORMSK;
#ifdef DEBUG

#end i f

}

i f(i 534debug = = 0 II i 534debug = = 2)
pri ntf(" i 534read un it = % d , " , unit%4) ;

tp = (struct tty *) &i 534tty[unit] ;
(* l i nesw[tp- >t_l i ne] . l_read)(tp) ;

4-2 9

Terminal Drivers

I*
* This procedure is the complement of the i 534read rout i ne. A cal l i s
* made to the l i ne d i sci p l i ne write routi ne, wh ich watches the output
* queue for characters and passes
* the characters from the output queue to the device.
*
* TITLE : i 534write
*
* CALL: i 534write(dev) ;
*
* I NTERFACES: xen ix
*
* CALLS : ttwrite
*
* Hi story:
*
*I

i 534write(dev)
i nt dev;
{

reg ister struct tty *tp;
reg ister i nt un it;

un it = dev & M I NORMSK;
#ifdef DEBUG

#end i f

}

I*

i f(i 534debug = = 0 II i 534debug = = 2)
pri ntf(" i 534write un i t = % d, " ,un it% 4) ;

tp = (struct tty *) &i 534tty[unit] ;
(* l i nesw[tp- >t_l i ne] . l_ write)(tp);

* This procedu re is ca l l ed by xen i x with i nterrupts off (SPL) when the

XENIX 286 Device Drivers

* isbc534 i nterrupts. The i nterrupt process pol ls the 8259's on the isbc534
* to fi nd out which device interrupted . I f the device i s a usart receiv i ng
* it gets the character, then sends the character to the tty l i ne
* d isci pl i ne i nput routi ne, or restarts output by
* cal l i ng i 534start depend i ng on which i nterrupt was set off. The carri er
* detect, r ing i nd i cator, present next d ig i t and pit i nterrupt signa ls a re
* not i m plemented yet. The present next d ig it s ignal comes from the
* external source on l i ne 4.
*

4-30

XENIX 286 Device Drivers Terminal Drivers

* NOTE
*
*
*
*
*
*
*
* TITLE :
*
* CALL:
*

: al l carri er detect signa ls both i nterrupt and latch on the 8255
ppi . Refer to the H/W manual for possi ble uses of these signa ls
(i e ACU I pri nter appl i cations) .
The rxrdy/txrdy l i nes from the o lder usarts (825 1 A/s2657 & o lder)
cause g i l tches on the p ic i nterrupt l i nes. Th i s i s a problem with
the usa rt. I f poss ib le replace usart with a newer vers ion.

i 534i ntr

i 534i ntr(l eve I) ;

* I NTERFACES : xeni x
*
* CALLS :
*
* H istory :
*
*
*
*
*
*I

l . d . i nput routi ne, i 534start

1 / 1 3/82 :

1 1 1 5/82 :

Condensed the usart Rxrdy/txrdy i ntr switch to
run more effi c iently usi ng an if .. ; Added the
unset of busy flag which gets set in i 534start.
changed variab le type to level which was i ncorrect.
added m u lti p le isbc534 support.

i nt wakeup() ;

i 534i ntr(l eve I)
i nt level ;

{
struct d b534 * DBbase; /* set up the i/o boards base address */
register struct tty *tp;
char c;
register i nt status;
int mask; /* mask from PIC *I
int gotone,board ;
short taddr;

#ifdef DEBUG

#end i f

if(i 534d ebug > = 1)
pri ntf(" i 534i ntr, ") ;

4-3 1

Terminal Drivers XENIX 286 Device Drivers

do {
gotone = 0 ;
for(board = O; board < N534; board + +) {

i f(i 534a l i ve [board]) {
DBbase = (struct db534 *) i 534cfg [boa rd] . c base;
outb(&DBbase- > PIC[O] .csr, G ETI NT) ; -

status = i nb(&DBbase- > P IC[O] .csr) ;
i f ((status & GOODI NT) = = G OODI NT){I* check bit 7 for i ntr *I

gotone + + ;
outb(&DBbase- > PIC[O] .csr, P IC EOI) ;
status & = Ox07; !* status < - port numlrx tx *I

#i fdef DEBU G
i f(i 534debug > = 1)

pri ntf(" lstatus = % x, " ,status) ;
#end i f

tp = (struct tty *) (& i 534tty[board*4] + (status > > 1)) ;
i f ((status & OxO 1) = = 0){ /* Rxrdy i ntr *I

c = i nb(&DBbase- > USART[status > > 1] .data) ;

!* check for error *I
status = i nb(&DBbase- > USART[status > > l] .cntrl) ;

#ifdef DEBUG
if(i 534debug > = 1)

pri ntf(" lc = % c status = %x, " ,c,status) ;
#end i f

#ifdef DEBUG

if (status & S PERROR)
c I = PERROR;

i f (status & S FRERROR)
c I = FRERROR;

i f (status & S OVE RRU N)
c I = OVE RRU N ;

(* l i nesw[tp- >t l i ne] . l i nput)(tp,c,O);
}else { - - J* Txrdy i ntr *I

i f(i 534d ebug > = 1)
pri ntf(" ltxrdy, ") ;

#end i f

}
}

4-32

tp- >t state & = - BU SY; I* the character i s out *I
I* the next ca l l shou ld rea l l y go thru i 534proc() *I
i 534start(tp) ; /* do the next one *I
i f((tp- >t state & OASLP) && (tp- >t outq .c cc < =

}

- ttlowat[tp- >t cflag& CBAU D])) {
tp- >t state & = - OASLP; -

wakeup((caddr _ t)&tp- >t_ outq) ;

XENIX 286 Device Drivers Term inal Drivers

}

outb(&DBbase- > PIC[1] .csr, G ETI NT) ;
status = i nb(&DBbase- > PIC[1] .csr) ;
i f ((status & GOODI NT) = = GOOD INT) {
I* check bit 7 for i ntr *I

gotone + + ;
outb(&DBbase- > PIC[1] . csr, P IC EOI) ;
status & = Ox07; - I* mask off garbage b its *I
if (status > = 4) I* carri er detect *I

tp = (struct tty *) (&i 534tty[board*4] + (status-4)) ;

switch(status)
case 0 :

break ;
case 1 :

break ;

{I* switch on i nterrupt *I
I* pit 1 cntr 4 *I

I* p it 1 cntr 5 *I

case 2 : I* r i ng i nd a l l *I
wakeup((cadd r t)& i 534wakeu p) ;
break ; -

case 3 : I* present next *I
break ;

case 4 : I* port 0 detect* I
case 5 : I* port 1 detect* I
case 6 : I* port 2 detect* I
case 7 : I* port 3 detect* I

i f((tp- >t state & (CARR ON I ISOPE N))

}

= -;- (CARR ONj iSOPEN)) {
signa l (tp- >t pgrp, S IG H U P) ;
tp- >t state& = -CARR ON;
I* - -

* fl i ck dtr off to cause hardware
* hang up on modem
*I
taddr = i 534addr[tp-i 534tty] ;
mask = i nb(&DBbase- > PIC[1] . msr) I (1 < < status);
outb(&DBbase- > PIC[1] .msr, mask) ;

I* carri er detect off *I
wh i le ((i nb(&DBbase- > USART[tadd r&03]. cntrl) &

S TXRDY) = = 0)
; I* wait for txrdy *I

outb(&DBbase- > USART[taddr&03] .cntrl , S ER) ;

break ;

} I* end switch *I
} I* end if good i nt *I

} I* end if a l i ve *I
} I* end for *I
} wh i l e(gotone) ;

4-33

Terminal Drivers

I*
* This procedu re hand les 1/0 functions. It is ca l l ed at both
* task ti me by the l i ne d i sc i p l i ne routi nes, and at i nterru pt ti me
* by i 534i ntr() . (NOTE : at thi s t ime, i 534i ntr() ca l l s i 534start()
* d i rectly. It does not pass through th is routi ne, si nce th i s routi ne
* does nothi ng to start output before cal l i ng i 534start() . Th i s is
* done th i s way in the i nterest of effi ci ency.
* i 534proc hand les any device dependent functi ons requ i red

XENIX 286 Device Drivers

* upon suspend i ng, resum i ng, b lock i ng, or unb locki ng output; fl ush i ng
* the i nput or output queues; ti m i ng out; send i ng break characters,
* or starti ng output.
*
* TITLE : i 534proc
*
* CALL: i 534proc(tp,cmd)
*
* I NTERFACES : xen ix (l i ne d i sc ipl i ne routi nes), i 534i ntr
*
* CALLS: i 534start
*
* change h i story :
* I l k 100 1
* Added this routi ne.
*
*I
i nt i 534brk() ;

i 534proc(tp,cmd)
regi ster struct tty *tp;
int cmd ;
{

reg ister i nt port;
struct db534 * DBbase;
short taddr;

I* i /o board base add r *I

#ifdef DEBUG

#end i f

4-34

i f(i 534debug > = 1) ;
pri ntf(" i 534proc cmd = % d " ,cmd);

tadd r = i 534add r[tp- i 534tty] ;
switch(cmd) {
case T RFLUSH : /* fl ush i nput queue */

return;
case T WFLUSH : /* fl ush output queue */
case T-RES U M E : /* resume output *I

tp- >t state & = - TTSTOP;
i 534start(tp) ; /* start output */
return;

case T SUSPE N D : /* suspend output */
tp- >t state I = TTSTOP;
tp- >t state & = - BUSY; /* output no l onger i n progress */
retu rn;

XENIX 286 Device Drivers

}

I*

case T BLOCK : I* send stop char *I
If (putc(CSTOP, &tp- >t outq) = = 0) {

tp- >t state I = TB LOCK;
i 534start(tp) ;

}
return ;

case T U NBLOCK : I * send start char *I
If (putc(CSTART, &tp- >t outq) = = 0) {

}

tp- >t state & = -TB LOCK;
i 534start(tp) ;

return ;
case T TIM E :

tp- >t state & = -TIM EOUT;
i 534start(tp) ;
return ;

I* ti me out *I

case T BREAK : I* send nu l l for .25 sec *I
DBbase = (struct db534 *) i 534cfg [taddr > > 2] . c base;
port = (i nt) &DB base- > USART[taddr & 03] . cntrl ; -

whi l e ((i nb(port) & S _ TXRDY) = = 0)

I* d i sab le recei ver, send break *I
outb(port, S SBRKIS TXEN) ;
ti meout(i 534brk, tp , HZ/4) ;
sleep((caddr _ t)&tp- >t_state) ;
retu rn ;

case T OUTPUT :
l534start(tp) ;

}; I* end switch *I

I* wait for txrdy *I

I* start output *I

* This procedure starts output on a usart if needed . i 534start gets a
* character from the character queue, outputs the character to the usart,
* and sets the BUSY flag . The busy flag gets unset when the character
* has been transm itted by i 534i ntr() .
*
* TITLE : i 534start
*
* CALL: i 534start(tp)
*
* I NTERFACES : i 534proc
*
* CALLS : ti meout, wakeu p, getc, outb, SPL
*

Terminal Drivers

4-3 5

Terminal Drivers XENIX 286 Device Drivers

* H i story :
*
*
*
*
*
*
*
*I
i nt ttrstrt() ;

i 534start(tp)

1000

100 1

1 1 1 3182 : Removed the hardware probi ng for txrdy and added
a set of the busy f lag which gets u nset on txrdy
i nterrupt.

pl b 6/28/83
removed race cond it ion
I l k 1 /29184
sys 3 port

reg ister struct tty *tp;
{

reg i ster i nt c ;
i nt s;
i nt cntrl port1 dataport;
struct d b534 * DBbase;
short tadd r;

tadd r = i 534addr [tp-i 534tty] ;

I* control and data ports for usa rt *I
I* i/o board base addr *I

DBbase = (struct d b534 *) i 534cfg [taddr > > 2] .c base;
cntrl port = (i nt) &DB base- > USART[tadd r & 03] .cntrl ;
data port = (i nt) &DB base- > USART[tadd r & 03] .data ;

#ifdef DEBUG

#end i f

4-36

i f(i 534debug > = 1) {

}

pri ntf(" \n i 534start : un i t = % x" I taddr) ;
pri ntf("ttstate = % x " I tp- > t state) ;
pri ntf("ustatus = % x\" I i nb(cntrl port)) ;

s = SPL() ;
if (tp- >t state&(TI M EOUTj B USYjTTSTOP)) { /* 100 1 : added TTSTOP *I

spl x(s) ;
retu rn ;

}
tp- >t state I = B USY; /* 1 000 *I
spl x(s);
i f ((c = getc(&tp- >t outq)) > = 0) {

if ((tp- >t oftag & OPOST) = = 0) {

}

whiTe ((i nb(cntrl port) & S TXRDY) = = 0)
I* wait for txrdy *I

outb(dataportl c) ;

XENIX 286 Device Drivers Term inal Drivers

}
e lse

el se { /* cooked 100 1 */
if (c = = 0200) {

if((c = getc(&tp- >t outq)) < 0) return ;

}

i f(c >0200){ -

}

tp- >t state I = T IM EOUT;
tp- >t-state & = - BUSY;
ti meout(ttrstrt, (cadd r _ t)tp, (c&0 1 77)) ;
retu rn ;

wh i l e ((i nb(cntrl port) & S _ TXRDY) = = 0)

outb(dataport, c) ;
} I* e lse cooked mode *I

tp- >t_state & = - BUSY; I* 1000 *I

I* wait for txrdy *I

i f(tp- >t state& TTl OW && tp- >t outq .c cc = = 0) {

}

tp- >t state & = -TTIOW;- -

wakeup((caddr _ t)&tp- >t_ ofl ag) ;

i f(tp- >t state&OASLP&&tp- >t outq .c cc < = ttl owat[tp- >t cflag&CBAU D]) {

}
}

I*

tp- >t state & = -OASLP; -

wakeup((caddr _ t)&tp- >t_ outq) ;

* Th is procedu re rel eases the transm itter output.
* It i s used by the TCSBRK ioctl command . After . 25 sec
* timeout (see case B R EAK i n i 534proc), thi s procedu re is ca l l ed .
*
* TITLE :
*
* CALL:
*
* I NTERFACES :
*
* CALLS :
*
* change h istory :
* I l k
*
*
*I

i 534brk

i 534brk(add r)

ti meout (through i 534proc)

wakeu p

100 1
Added th i s routi ne.

4-3 7

Terminal Drivers XENIX 286 Device Drivers

i 534brk(tp)
regi ster struct tty *tp;
{

regi ster i nt port;
struct db534 * DBbase;
short taddr;

I* i/o board base addr */

taddr = i 534addr[tp-i 534tty] ;
D B base = (struct db534 *) i 534cfg [taddr > > 2] .c base;
port = (i nt) &DB base- > USART[tadd r & 03] . cntrl ; -

I* enab le receiver, i f supposed to */
outb(port,S RTSIS E RIS DTRIS TXE NI((tp- >t cflag&CREAD) ? S RXEN : O)) ;

}
wakeup((cadd r

_
t)&tp- >t

_
state) ; -

I*
* This proced u re hand l es the i octl system cal l s for such thi ngs as baud
* rate changes and various hardware control changes from the i n it ia l set
* up. Cu rrently on ly baud rate changes are supported .
*
* TITLE : i 534ioctl
*
* CALL : i 534ioct l (dev, cmd, arg, fl ag)
*
* I NTERFACES : ioctl
*
* CALLS :
*
* H i story:
*
*
*I

i 534param, tti ocom

100 1 added new i octl com mands

i 534ioctl (dev, cmd , arg, fl ag)
i nt dev;
int cmd, fl ag ;
fadd r _ t a rg ;
{

}

4-38

reg i ster struct tty *tp;
reg i ster i nt un it;

unit = dev & M INORMSK;
tp = (struct tty *) & i 534tty[uni t] ;
i f (ttiocom(tp,cmd, arg , dev)) {

i 534param(dev);
}

I* do i t */

CHAPTE R 5
B LOC K D RIVE RS

This chapter describes the elements of XENIX 2 8 6 block device drivers. A block device
is organized as an array of blocks, each block containing BSIZE bytes. The blocks must
be randomly accessible in a reasonable t ime; for example, the kernel might reference
block 3, then block 789, and then block 5 0 , and each access should take only a fraction
of a second even though the blocks are scattered on the device.

Magnetic disk drives, bubble me mories, and RAM disks all qualify as randomly
accessible block devices. A RAM disk is simply an area of RAM se miconductor me mory
that is set aside to si mulate a disk drive. The advantage of a RAM disk is that it can be
accessed much more rapidly than a magnetic disk; however, the contents of a RAM disk
are lost if syste m power is lost. Some of the advantages of a RAM disk can also be
achieved by si mply increasing the number of block buffers in the XENIX syste m. Tape
drives do not qualify as block devices, because data on tapes must be accessed
sequentially, and si mulating random access in software would result in unacceptably
poor performance.

A block device m ay contain one or more XENIX file systems. A file syste m is a
hierarchy of directories and files starting at the superblock on the device. All
manipulation of file system structures is done by kernel code; a block device driver
simply reads and writes physical blocks without knowledge of the structure of the file
system. The kernel also manages the allocation and deallocation of free space on the
device; the block device driver simply reads and writes physical blocks as requested by
the kernel.

This chapter begins by describing how blocks are buffered by the kernel and the driver,
and then gives a more detailed overview of block drivers. The remainder of the chapter
describes a hypothetical hard disk driver. In the hypothetical driver and in actual hard
disk drivers, each physical disk is divided into a number of partitions. Each partition has
a distinct minor device number and a distinct device special file and is a dist inct logical
device. Each partition can contain a XENIX file syste m and be opened, closed, and
accessed independent of the other partitions. Thus when discussing block devices,
device can mean either a logical device (such as a disk partition) or an ent ire physical
device that may contain several partitions.

5- 1

Block Drivers XENIX 2 8 6 Device Drivers

Block Buffer i n g

This section describes how the kernel and block device drivers buffer blocks to be
transferred between a block device and user me mory. The functionality described is
provided almost entirely by the kernel and you can write a driver without understanding
most of the material in this section. However, this section will help you understand the
buf and iobuf data structures used by block drivers and how the kernel attempts to
minimize and optimize disk accesses.

The kernel maintains a global pool of block buffers, each BSIZE bytes, that it uses as
needed. Each buffer is referenced by a buffer header that contains information about
the buffer and what it is used for. The buffer header is defined by the data type struct
buf in the include file buf.h, which is listed in Appendix E of this manual.

Each block device capable of operating concurrently has a separate device-specific
header of type struct iobuf. This header references the buffers being used for the
device. The device-specific header is defined in the include file iobuf.h, which is listed
in Appendix F of this manual.

There are three lists that a block buffer can be on; a buffer is always on one of these
lists and may be on two si multaneously:

1. The kernel's free list contains all block buffers available for allocation or reuse.
The free list is circular and doubly linked. The av forw pointer in the buffer
header points to the next buffer header on the free list. The av_back pointer in
the buffer header points to the previous buffer header on the free list. The buffer
is on the free list whenever the B_BUSY flag in the b_flags word of the buffer
header is clear (0). The kernel handles the free list; the driver never needs to
manipulate it. There is only one systemwide free list and all available block
buffers are on it.

2. The driver's active list contains all block buffers for which the driver has been
called to perform a read or a write, but for which 1/0 has not been completed. The
head of the active list is the device-specific header of type struct iobuf. The
active list is circular and doubly linked. The av_forw pointer in the buffer header
points to the next buffer header on the active list. The av_back pointer in the
buffer header points to the previous buffer header on the act ive list. The b actf
and b _ actl pointers in the device-specific header reference the first and - last
buffer headers in the active list respectively. If the active list is e mpty, then
b actf and b actl should each contain the address of the device-specific header
(i-:-e., the header points to itself if the list is empty). The buffer is on the active
list whenever the B_BUSY flag in the b_flags word of the buffer header is set (1).
The driver handles the active list, calling the kernel disksort routine to insert a
buffer in the list. Driver code must initialize the active list and remove buffers
when 1/0 is completed. Note that there are multiple active lists, one for each
distinct 16-bit block device number.

5-2

XENIX 286 Device Drivers Block Drivers

3. The device-specific device list contains all block buffers that contain current valid
copies of blocks on the associated device. The device lists act as a cache, so that
disk blocks mirrored in the device lists need not be read from disk. Also, disk
blocks being written can be put on both the device list and the free list but not
actually transferred until a shortage of blocks causes the written blocks to be
needed elsewhere. The head of a device list is the device-specific header of type
struct iobuf. Each device list is circular and doubly linked. The b forw pointer in
the buffer header points to the next buffer header on the device liSt. The b_back
pointer in the buffer header points to the previous buffer header on the device list.
The b_forw and b_back pointers in the device-specific header reference the first
and last buffer headers in the device list respectively. If the device list is e mpty,
then b forw and b back should each contain the address of the header (i. e. , the
header-points to itself if the list is empty). A buffer is on a device list whenever
the B_DONE flag in the b_flags word of the buffer header is set (1). The kernel
handles the device lists; driver code does not need to manipulate these lists. Note
that there are mult iple device lists, one for each distinct 1 6-bit block device
number.

The purpose of the device lists is to allow the kernel to access frequently
referenced information on block devices without having to actually access the
device. If the kernel needs to read block b on device d, it first searches the device
list for the device; if block b is found, the kernel does not issue a read request to
the device driver. The kernel uses an auxiliary hash table to reduce the t ime
required for searches. The hashing and searching are done entirely by the kernel
and do not affect the driver.

A block buffer is usually on the free list and a device list at the sam e t ime. Block
buffers on the free list are ordered using the Least Recently Used algorithm. When a
block that contains valid device data is read, it is put at the end of the free list. Block
buffers to be allocated are re moved from the front of the free list and will either be
block buffers that do not contain valid device data (are not on a device list) or those
block buffers with data that has not been referenced for the longest ti m e. Because of
this algorithm, frequently read blocks, such as those that contain directory information,
are normally in main me mory, reducing disk accesses.

A block buffer can also be on an active list and a device list at the same t ime. When a
block is being written, it is placed on the device list and then goes on the active list
until it is successfully written. This is understandable because the block buffer contains
valid data even befo�e-the write operation completes.

A block buffer is on the free list and no other list if it contains no cached data and is
not being used for a read or a write. A block buffer is on an active list and no other list
if it is being used to read in a block of data. A block buffer is never on a device list and
no other list; a block buffer on a device list is always also on either the free list or an
active list. Finally, a block buffer is never on the free list and an act ive list at the
same time.

When a block is written, the kernel must also check the cache formed by the collected
device lists, to invalidate any previous copy of that block that is in the cache. This
ensures that the cache contains only the most recent version of any block.

5-3

Block Drivers XENIX 286 Device Drivers

The buffer header data structure, of type struct buf, contains the following fields:

b_fiags flag word containing the following flags:

B READ set (1) if block is to be read, clear (O) if block is to be written.

B DONE set (1) if block is on device list (in cache).

B ERROR set (1) by driver if transfer failed.

B BUSY set (1) by kernel if the driver has been called with the buffer; the
driver must call disksort to insert the buffer in the active list;
the driver must handle 1/0 transfers and then unlink the buffer
from the active list; the driver must then call the kernel routine
iodone for the buffer; iodone clears B BUSY and places the
buffer on the free list and on the deviCe list unless an error
occurred.

b forw

b back

av forw

av back

b dev

b bcount

b_paddr

b blkno

b error

5-4

There are other flags used only by the kernel that do not need to be
understood to write a driver. All the flag names are defined as integer
constants that are the bit masks used to test, set, or clear the actual flags.
For example bp->b _ flags&B _READ can be used to test the read flag; bp­
b> _ fiags I= B _READ can be used to set the read flag; bp->b _flags &=
-B _READ can be used to clear the read flag. The include file buf.h also
defines the value 0 as the so-called "pseudo-flag" B _WRITE. Be careful when
using B _WRITE in programs, as it is not a bit mask and cannot be used to
test, set, or clear a flag in the same way as the other constants.

the forward pointer for the device list (cache), used if B DONE is set.

the backward pointer for the device list (cache), used if B _DONE is set.

the forward pointer for the free list (available list) if B BUSY is clear, else
the forward pointer for the active list (pending transfers)if B_BUSY is set.

the backward pointer for the free list (available list) if B BUSY is clear, else
the backward pointer for the active list (pending transfers) if B BUSY is set.

the device number, major and minor.

number of bytes to be transferred, always an exact mult iple of BSIZE for
block devices.

physical address in main memory of the buffer associated with this header.

block nu mber on device.

error code to be returned in u.u error if iodone is called on the block with
B ERROR set.

XENIX 286 Device Drivers Block Drivers

b resid nu mber of bytes not transferred when an error was encountered.

b_cylin cylinder nu mber, computed by driver and used by disksort routine to order
requests in the active list.

The device-specific header, of type struct iobuf, contains the following fields:

b_fiags NOT USED.

b forw the head forward pointer for the device list (cache) for this device.

b back the head backward pointer for the device list (cache) for this device.

b actf the head forward pointer for the active list (pending transfers).

b actl the head backward pointer for the active list {pending transfers).

b dev device number.

The re maining fields of iobuf, not referenced by the kernel at all, are really private to
the device driver and may be used or ignored as desired by the driver writer:

b active busy flag.

b errcnt error count (for soft error retry and recovery).

io addr device register address for memory-mapped device registers.

io sl, io s2 - -
"space for drivers to leave things." The driver writer should define
appropriate driver variables as needed and not use these fields. They are
defined only for compatibility with existing drivers.

5-5

Block Drivers XENIX 286 Device Drivers

Block D river Overview

This section provides an overview of a block driver, based on an understanding of the
kernel's buffering system and how it works.

A block device driver normally supports both a block interface to the device and a
character interface to the device. The character interface is also known as the "raw"
interface. The character interface is invoked by opening a device special file that
specifies that it is a character device with the major nu mber of the block device driver.
Because a character device has been opened, the kernel calls the driver via the switch
table cdevsw, calling the routines ix:xxopen, ixxxclose, ixxxread, ix:xxwrite, and ix:xxioctl
as needed. The character interface is provided for two reasons. First, reading and
writing via the character interface bypasses the block buffering syste m, which is more
efficient for some applications, such as copying an entire disk. Second, the character
interface provides the ixxxioctl routine, used for disk formatting. Because this routine
is provided in the character interface, it is not part of the block interface. Though
called the "character" interface, the buffers used for reading and writ ing must have a
size equal to an integer multiple of the system buffer size BSIZE.

The block interface to a device is normally invoked by accessing a file or directory in a
file system on the device. A kernel variable root specifies the device nu mber to use for
the root directory, which is the beginning of a chain that leads to any mounted file
system and block device. The major device nu mber for the device containing the
desired file or directory is used to index the block device switch table bdevsw, which for
each block major nu mber contains the routines ix:xxopen, ixxxclose, and ixxxstrategy,
and also the data structure ix:xxtab, the device-specific header for lists of buffers. The
header ix:xxtab is of type struct iobuf. Accessing a file or directory always uses the
block interface to a device, never the character interface.

The block interface to a device can also be invoked by opening the device special file
for the device in the directory /dev. The device special file specifies that the device is
a block device and specifies major and m inor device nu mbers. The m inor nu mber can
distinguish multiple drives, partit ions in a partit ioned device, or type of media if
different types are supported. Note that the character and block interfaces to a device
have separate device special files with distinct names but with the same maj or and
minor nu mbers. To open a device special file directly, a user or program must normally
have super-user privileges if it previously contained a file system, or else be the owner
of the special file. When either device special file for a block device is opened directly,
the resulting file descriptor corresponds to a file that contains all the bytes of the
corresponding disk or partition. Reading or writing this file reads or overwrites bytes
of the disk or partition, without regard to directory structure, allocated or free blocks,
or file allocations. Writing to this "file" can corrupt or destroy information in the
target partition or disk.

5-6

XENIX 286 Device Drivers Block Drivers

A block device driver contains the following routines and data structure referenced by
the kernel, for both the block and character interfaces:

ixxxinitO

ixxxopen(dev, oflag)

ixxxclose(dev, oflag)

ixxxstrategy(bp)

ixxxintr(level)

ixxxread(dev)

ixxxwrite(dev)

ixxxioctl(dev, cmd,
cmdarg, ofiag)

struct iobuf ixxxtab

Called at syste m st artup to deter m ine which devi ces
managed by the driver are present and to initialize the
devices and associated data structures.

Called when the device is mounted. (The root device is
mounted by the kernel at syste m startup, result ing in an
ixxxopen call.) Also called if a device special file for the
device is opened directly.

Called when the device is unmounted. (The kernel does not
allow the root device to be unmounted.) Also called when a
device special file for the device that was opened directly
is closed.

Called with a buffer header containing a read or write
request for a device managed by the driver. Inserts the
request into the device's active list sorted by cylinder
nu mber. Ensures that 1/0 is ongoing or started.

Called when a device managed by the driver interrupts the
C P U . Deter m i nes which d e v i c e sent t h e i n t errupt .
Acknowledges the interrupt and reads device status to
check for errors. Calls iodone to return the associated
buffer to the kernel. Starts the next 1/0 request, if any.

Character interface rout ine. C alled t o transfer data
directly from the device to user me mory. Calls the kernel
routine physio, which calls ixxxstrategy.

Character interface rout ine. C alled to transfer data
directly from user me mory to the device. Calls the kernel
routine physio, which calls ixxxstrategy.

Character interface routine. Called for special device
functions, such as formatting a disk.

Device-specific header for active list and device list of
buffer headers.

5-7

Block Drivers XENIX 286 Device Drivers

Driver F i les

The driver code is contained in three files:

• sys/h/i:xxx.h defines constants used by the driver.

• sys/cfg/c:xxx.c defines data structures used by the driver.

• sys/io/i:xxx.c defines the driver routines.

The file sys/h/i:xxx.h is included by the other two files:

#i ncl ude I I • ./hli xxx. h 11

The main driver file sys/io/ixxx.c should also include these files:

#incl ude 1 1 • ./hlbuf. h "
#i ncl ude " . ./hliobuf.h
#i ncl ude I I • ./hlparam .h 11
#i ncl ude I I • ./hluser.h "

I* for buf data structure *I
I* for iobuf data structu re *I
I* for BS IZE - buffer si ze *I
I* for u structu re and error codes *I

Adding the device to the configuration also requires editing the files sys/conf/master
and sys/conf/xenixconf, as described in Chapter 6 , "Add ing Dr ivers t o t h e
Configuration."

The following sections describe these files in more detail and include some example
code for a hypothetical hard disk driver.

Driver Co nsta nts

These constants are defined in the example sys/h/ixxx.h:

5-8

#defi ne i xxx N U M
#defi ne i xxx-N P

#defi ne i xxx CPO
#defi ne i xxx-TPC
#defi ne i xxx -SPT
#defi ne i XXX -bPS
#defi ne i xxx -SPC

4
8

600
4

1 0
5 1 2

I* number of d rives supported by d ri ver *I
I* max # of partiti ons per d ri ve *I

I* cyl i nders per dr ive
I* tracks per cyl i nder
I* sectors per track
I* bytes per sector

*I
*I
*I
*I

(i xxx SPT* i xxx TPC)
- I* sectors per cyl i nder

#defi ne i xxx BPC ((i xxx SPC * i xxx bPS)IBS IZE)
*I

- I* blocks per cyl i nder (ca l cu l ation
must not overf low and must have no
remai nder) *I

I* There must be an i nteger number of sectors per b lock and an i nteger
number of blocks per cyl i nder. *I

XENIX 286 Device Drivers Block Drivers

I* reg i ster offsets *I
#defi ne RCM D 0 I* offset of 8-bit com mand reg ister
#defi ne RSTAT 1 I* offset of 8-bit status regi ster
#defi ne RCYL 2 I* offset of 1 6-bit cyl i nder reg ister
#defi ne RTRK 4 I* offset of 8-bit track reg i ster
#defi ne RSEC 5 I* offset of 8-bit sector reg ister
#defi ne RADRL 6 I* offset of 1 6-bit reg ister conta i n i ng

l ow 1 6-bits of transfer add ress i n
physical memory

#define RADRH 8 I* offset of 8-bit register conta i n i ng
h igh 8-bits of transfer add ress i n
physical memory

#defi ne RSCNT 9 I* 8-bit number of sectors to transfer

I* command codes *I
#defi ne CRESET 0 I* Reset devi ce and control l er.
#defi ne CEN I NT 1 I* Enable dev ice i nterrrupts.
#defi ne CD IS I NT 2 I* D isab le dev ice i nterru pts.
#defi ne CREAD 3 I* Read contiguous sectors from device.
#defi ne CWRITE 4 I* Write conti guous sectors to device.
#defi ne CFORMAT 5 I* Format the med i a i n the devi ce .

I* status regi ster b i t m asks *I
#defi ne Sl NT 1 I* This d rive i nterrupted .
#defi ne SERR 2 I* An error i n the l ast operati on.
#defi ne SBUSY 4 I* The d ri ve i s busy and cannot accept

a command (except CRESET, which i s
a lways accepted) .

#defi ne SENA 8 I* Dr ive i nterrupts are enabled .

I* devi ce m inor number format i s xxxddppp, xxx = not used, shou l d be 0
dd = drive n u m ber, ppp = parti t ion num ber *I

#defi ne dr ive(dev) ((dev&037) > > 3)
#defi ne part(dev) (dev & 07)

I* ioctl com mand code for formatti ng a d ri ve *I
#defi ne IOC FMT 0

I* status val ues used i n devi ce status array *I

*I
*I
*I
*I
*I

*I

*I
*I

*I
*I
*I
*I
*I
*I

*I
*I

*I
*I

#defi ne ABSE NT 0 !* Drive i s not i n the system . *I
#defi ne PRESENT 1 I* Dr ive is present but not open. *I
#defi ne OPEN 2 !* Drive i s present and open. *I
#defi ne LOCKED 3 I* Dr ive shou ld not be accessed (e.g . ,

i t i s bei ng formatted) . *I
I* ABSENT appl i es to an enti re dr ive and only need to be

ass igned i n the i xxx sts e lement for partiti on 0 to take effect,
e .g . : i xxx

_
sts[d r] [Oj= ABSENT; *I

5-9

Block Drivers XENIX 286 Device Drivers

Driver Data Str u ctu res

These data structures are defined in the example sys/cfg/cxxx.c:

5-10

I * base add resses for control ler reg i sters i n port add ress space */
unsigned i xxx _ adr[ixxx _ N U M] = { Ox8000, Ox8020, Ox8040, Ox8060 };

I* partition si zes for the fi rst hard d i sk d ri ve, which holds the
root fi l e system, swap space, and user fi l es. */

#defi ne ROOTSZ 200 I* # of cyl i nders i n root partition */
#defi ne SWAPSZ 1 00 /* # of cyl i nders i n swap partit ion */
#defi ne USERSZ (i xxx CPO - (ROOTSZ + SWAPSZ))

I* # of cyl i nders in user partiti on */

I* partit ion si zes for subsequent hard d i sks; each d i sk i s d i vi ded
i nto two " extra " pa rtitions. */

#defi ne EX 1 SZ 300 I* # of cyl i nders in extra partiti on */
#defi ne EX2SZ (i xxx CPD - EX 1 SZ)

I* # of cyl i nders in extra partit ion 2 *I

struct partitn {
unsigned cyl ;
unsi gned len ;

I * starti ng cyl i nder of partit ion
I* # of b locks in partit ion

}

I* partit i on tab le */
struct partitn i xxx par[i xxx N U M] [i xxx NP] = {

}

0, i xxx CPD* i xxx BPC,- /* enti re d isk
0, ROOTSZ* i xxx BPC, /* root partiti on
ROOTSZ, SWAPSZ* ixxx BPC, /* swap partit ion
(ROOTSZ + SWAPSZ), USERSZ* i xxx BPC,/* user partition
0,0,0,0,0,0,0,0, /*partiti ons 4 . . 7 not used

0, i xxx CPD* i xxx BPC,
0, EX 1 SZ* i xxx BPC,
EX 1 SZ, EX2SZ* i xxx BPC,
0,0,0,0,0,0,0,0,0,0,

0, i xxx CPD* i xxx BPC,
0, EX 1 SZ* i xxx BPC,
EX 1 SZ, EX2SZ* i xxx BPC,
0,0,0,0,0,0,0,0,0,0,

0, i xxx CPD* i xxx BPC,
0, EX 1 SZ* i xxx BPC,
EX 1 SZ, EX2SZ* i xxx BPC,
0,0,0,0,0,0,0,0,0,0

I* enti re d i sk
I* extra partit ion
I* extra partit ion
I* partiti ons 3 . . 7 not used

I* enti re d i sk
I* extra partiti on
I* extra partit ion
I* partiti ons 3 . . 7 not used

I* enti re d i sk
I* extra partit ion
I* extra partiti on
I* partitions 3 . . 7 not used

I* devi ce headers for l i sts of acti ve buffers and cached buffers. */
struct i obuf i xxxtab[i xxx N U M] ;

*I
*I

*I
*I
*I
*I
*I

*I
*I
*I
*I

*I
*I
*I
*I

*I
*I
*I
*I

XENIX 286 Device Drivers

I* buffer headers for raw transfers *I
struct buf i xxx raw[i xxx N U M] ;

I* status for each d ri ve and partiti on *I
unsigned i xxx _sts[i xxx _ N U M] [i xxx_ N P] ;

ixxxinit Proced u re

i xxxi n it();
{
int d r;
i nt pa;

I* d ri ve i ndex *I
I* partiti on i ndex */

I* l oop through d ri ves *I

}

for (d r = 0; d r < i xxx N U M ; d r + +) {

}

I* Check to see i f d ri ve i s present. *I
out(i xxx adr[d r] + RCYL, Ox5aa5);
i f (i n (i xxx adr[d r] + RCYL) ! = Ox5aa5) {

I* Drive is not present. *I

el se {

}

pri ntf(" i xxx d ri ve % d ABSENT\n " , d r) ;
i xxx sts[d r] [O] = ABSENT;
}

I* Drive is present. *I
pri ntf(" i xxx d ri ve % d PRESENnn " , dr) ;
for (pa = 0 ; pa < i xxx NP; pa + +) {

}
i xxx _sts[dr] [pa] = PRESENT;

I* Reset the d ri ve. *I
outb(i xxx ad r[d r] + RCM D, CRESET) ;

I* I n iti a l i ze the acti ve l i st for the d ri ve. *I
i xxxtab[d r] . b actf = &i xxxtab[d r] ;
i xxxtab[d r] . b -act! = &i xxxtab[d r] ;

Block Drivers

This procedure is called via the switch dinitsw during syste m initialization. ixxxinit
checks for the presence of each possible device handled by the driver. This checking is
done by writing a test pattern to a device register that will store it and then reading the
register. If the pattern is read back, the device is present. In the example procedure,
the cylinder nu mber register is used for the test. The pattern Ox5aa5 is chosen to
include both zero bits and one bits, as an absent device is most likely to be read as all
zero bits or all one bits. ixxxinit should call printf with a message for each device
checked, indicat ing if it is absent or present. (The kernel version of printf writes its
output directly on the system console device, shutt ing off interrupts to do so; it should
be used sparingly or just for debugging.) For each drive present, ixxxinit resets it to
place it in a known state and also init ializes the drive's ixxxtab header.

5-1 1

Block Drivers

ixxxopen Proced u re

i xxxopen(dev, ofl ag)
dev t dev; /* device number, major/m i nor */
i nt ofl ag; /* open mode fl ags, NOT USED */
{
i nt dr = d rive(dev) ; /* d ri ve number */
i nt pa = part(dev) ; /* partit ion number */

i f (d r > = i xxx N U M I I i xxx sts[dr] [O] = = ABSENT)

XENIX 286 Device Drivers

u .u error = E NX IO; /* II No such device or add ress " *I

i f (i xxx sts[d r] [O] = = LOCKED)
u . u error = EBUSY; /* " Mount device busy " */

e lse {
i xxx sts[d r] [pa] = OPEN ;
outb(i xxx ad r[d r] + RCM D, CEN INT);

}
}

ixxxopen is called by the kernel via bdevsw when the device dev is mounted (either by
the mount syste m call or at syste m initialization for the root, pipe, or swap devices).
ixxxopen can also be called via cdevsw or bdevsw if the device special file for dev is
opened with the open syste m call. Note that ixxxopen is not called if a file on the
device is opened.

ixxxopen first checks its parameters, ensuring that the drive nu mber is valid and that
the device is neither absent nor locked. Errors are indicated by assigning an error code
to u.u _error. If no errors are encountered, ixxxopen assigns the device status as OPEN
and enables device interrupts.

Note that because the kernel always calls ixxxopen for a device before calling other
driver routines, ixxxopen is the only routine that must validate the device number and
check for device ABSENT status.

For devices that use different types of media (e.g., either single density or double
density flexible disks), the media type can be encoded in the minor number, and
ixxxopen can determine media type and configure the device controller and driver tables
accordingly.

5-1 2

XENIX 286 Device Drivers

ixxxclose Proced u re

ixxxcl ose(dev, ofl ag)
dev t dev; /* device number, maj or/m i nor */
int oflag; /* open mode fl ags, NOT USED */
{
int d r = d ri ve(dev) ; /* drive number */
int pa = part(dev) ; /* partit ion n u m ber */

if (i xxx sts[d r] [O] = = LOCKED)
u .u error = EBUSY; /* " Mount device busy " *I

e lse {
ixxx _sts[d r] [pa] = PRESE NT;

}
}

Block Drivers

ixxxclose is called by the kernel via bdevsw when the device dev is unmounted (with the
umount syste m call) or at syste m shutdown. ixxxclose can also be called via bdevsw or
cdevsw if a device special file for dev was opened directly and then closed with the
close syste m call. Note that ixxxelose is not called if a file on the device is closed.

If the device is locked, ixxxclose indicates an error by assigning a code to u.u error.
Otherwise, ixxxclose simply updates the device status and returns.

5-13

Block Drivers XENIX 286 Device Drivers

ixxxstrategy Proced u re

i xxxstrategy(bp)
register struct buf *bp;
{
i nt d r = dri ve(bp- > bdev) ; /* d ri ve number *I
i nt pa = part(bp- > bdev) ; I* part it ion number *I
i nt bl = bp- > b_blkno + (bp- > b bcount + BMASK) > > BS H I FT) ;

I* l astblock number *I
i nt msk; I* for savi ng i nterrupt mask *I

}

if (bp- > b bl kno > = i xxx par[d r) [pa] . l en I I
(bl > ;- i xxx par[d r] [paflen && -(bp- > b flags & B READ)) {
I* I nd i cate error. *I -

bp- > b flags I = B E RROR;
bp- > b -error = E NXIO; I* code to assign to u . u error *I
i odone(bp) ; -

}

el se {

}

if (bl > = i xxx par[d r] [pa] . l en) {

}

bp- > b resid = op- > b count - BS IZE*
- (i xxx par[dr'] [pa] . l en - bp- > b bl kno + 1) ;

bp- > b _count - = -bp- > b _resid ; -

bp- > b cyl i n = i xxx_par[dr] [pa] .cy l + bp- > b_ bl kno/i xxx_BPC;
msk = spl buf();
d isksort(&i xxxtab[d r] , bp) ;
if (! i xxxtab[dr] . b acti ve)

i xxxsta rt(dr);
spl x(msk) ;

This procedure is called by the kernel via bdevsw or fro m physio when a block must be
physically read from or written to a device managed by the driver. ix:xxstrategy first
checks block nu mber within partition and last block requested within partition (if a
write). A block out of bounds error is handled by setting the B _ERROR bit in the
b_fiags field of the buffer header and calling iodone.

If the request is a read request and extends beyond the last block of the partit ion, then
the request is truncated to fit.

For valid requests, the cylinder nu mber is computed and stored in the buffer header for
use by the disksort routine. splbuf and splx are used to guarantee exclusive access to
the active list for calling disksort and ixxxstart. disksort sorts the request into the
act ive list based on cylinder nu mber, to reduce disk head movement. ix:xxstart needs to
be called to start I/0 if there is no I/0 active for the drive. When there is an active
transfer, the co mpletion interrupt will call ixxxintr, which will start the next transfer.
Only when there is not an active transfer (not an interrupt yet to happen) for the drive
is ixxxstart called to "pri me the pu mp" of the interrupt-driven cycle. Note that both
disksort and ix:xxstart must be called with interrupts locked out (to at least the level of
splbuf).

5-14

XENIX 286 Device Drivers Block Drivers

Finally, note that ixxxstrategy can be called to transfer multiple blocks, not just single
blocks. Examples of mult iple block transfers are program loading, process swapping,
and some uses of the raw interface.

ixxxsta rt Proced u re

i xxx start(d r)
i nt d r; I* va l idated d rive nu mber *I
{
reg ister struct buf *bp = i xxxtab[dr] . b actf;

-reg i ster unsi gned sec;
reg ister unsigned adr ;
reg i ster i nt pa ;

if (bp ! = &ixxxtab[d r]) {

else

}

I* active l i st not empty *I
pa = part(bp- > b dev) ;
sec = (unsi gned) bp- > b bl kno*(unsigned)(BS IZE/i xxx bPS) ;
adr = i xxx ad r[dr] ; - -

out(ad r + RCYL, i xxx par[dr] [pa] .cyl + sec/ixxx SPC) ;
sec % = i xxx SPC; - -

outb(adr + RTRK, sec/i xxx SPT) ;
outb(adr + RSEC, sec% i xxx SPT);
outb(adr + RSCNT, bp- > b bcount/i xxx bPS) ;
out(ad r + RADRL, bp- > b -paddr & Oxffif) ;
outb(adr + RADRH, bp- > b paddr > > 1 6) ;
outb(adr + RCM D, ((bp- > b- flags&B READ)?CREAD : CWRITE) ;
i xxxtab[d r] . b active = 1 ; - -

}

I* act ive l i st empty */
ixxxtab[d r] . b active = 0;

ixxxstart is called from ixxxstrategy (process-ti me) and from ixxxintr (interrupt-time)
to start the next disk transfer (if any) for a drive. Interrupts must be locked out when
ixxxstart is called. ixxxstart maintains the flag b_active in the ixxxtab[dr] header;
b active is set (1) if the device controller has been sent a transfer and a completion
interrupt can be expected. b active is clear (O) if no transfer is outstanding and no
completion interrupt can be expected. If b active is O, ixxxstrategy must call ixxxstart
to start 1/0.

-

Note that ixxxstart does no validation of the requested block number and byte count;
these values are validated by ixxxstrategy.

5-15

Block Drivers

ixxxintr Proced u re

i xxxi ntr(l evel)
i nt l evel ; /* i nterrupt l evel from 8259A Programmable

{
regi ster i nt d r;
regi ster i nt sts;

I nterrupt Contro l le r (P IC) , NOT USED */

reg i ster struct buf *bp;

}

for (d r = 0; d r < i xxx N U M ; d r + +) {
i f (i xxxtab[d r] . b active &&

}
}

((sts = i nb(i xxx ad r[d r] + RSTAT) & S I NT)) {
bp = i xxxtab[d r) . b actf;
if (sts & SERR) { -

}

bp- > b flags I = B ERROR;
deverr(&i xxxtab[dr] ,bp, sts, 0) ;

i xxxtab[d r] . b actf = bp- >av forw;
if (i xxxtab[d r[b actl = = bp)

ixxxtab[d r] .b actl = bp- >av back;
bp- > b resid = 0; -

ixxx start(dr) ;
iodone(bp) ;

XENIX 286 Device Drivers

ixx:xintr is called by the kernel for each interrupt that occurs for a device managed by
the driver. This example driver presu mes that all devices managed by the driver use the
same interrupt level, requiring ixxxintr to poll for interrupts. The for loop is for polling
each device. The major if statement ignores interrupts unless the device status
indicates that the drive interrupted and the b active field of ixxxtab[dr] indicates that
an interrupt is expected. -

If an interrupt is handled, an error indication in the drive status causes the B ERROR
flag in the buffer header to be set and deverr to be called to report the error. (An
actual driver might include more sophisticated error handling, such as retry for soft
errors.)

For any transaction, whether it ended with or without error, the buffer header for the
transaction is re moved from the device's doubly-linked active list. ixxxstart is called to
start the next transaction in the active list (if any). iodone is then called to dispose of
the buffer for the transaction just completed. iodone handles copying any read data to
the calling process's address space, placing the buffer on the device list and the free
list, and updating the buffer state flags.

5- 1 6

XENIX 286 Device Drivers

ixxxread and ixxxwrite Proced u res

i xxxread(dev)
dev t dev;
{ -

I* devi ce number, major/m inor */

}
physi o(i xxxstrategy, &i xxx _raw[dri ve(dev)] ,

ixxxwrite(dev)
dev t dev;
{ -

I* devi ce number, major/m i nor */

}
physi o(i xxxstrategy, &i xxx _raw[dri ve(dev)) ,

Block Drivers

dev, B READ) ;

dev, B WRITE) ;

These procedures are called in response to read and write syste m calls on a file
descriptor that has been opened for "raw" character 1/0 to the device special file. These
procedures are never called when reading or writing ordinary files; file syste m 1/0
always uses the block 1/0 interface.

When a block device special file is opened directly, either in block or character mode,
the "file" opened is the sequence of all the physical bytes on the device or in the disk
partition. Reading and writing a block device at this level ignores all the structures
placed on the disk by the file system: super-blocks, inodes, directories, etc. There are
obvious dangers in writing a block device at this level. Normally only the super-user can
open a device special file and use these facilities.

Such low-level 1/0 to a block device is used for copying disks (as byte-for-byte images
vs. individually copying files) and may be useful for other system functions, such as
backing up devices or troubleshooting block devices. A separatE' interface is provided to
this low-level 1/0 for efficiency reasons. It is desirable to bypass the kernel's co mplex
{and normally desirable) block buffering algorithms when an entire disk is being copied.

Instead of copying data from disk to kernel buffer and then to user space and then to
another kernel buffer and finally to the destination device, with all the buffer
manipulation code as well, raw 1/0 copies one or multiple buffers directly to an area of
user memory {ixxxread); raw 1/0 can then be used to copy the blocks directly to the
destination device (ixxxwrite).

For raw 1/0, an area of user me mory that is an integer multiple of BSIZE bytes in size
must be set aside as a buffer for the blocks being read. This area is specified as the
source and destination for the read and write system calls. For raw 1/0, the byte count
specified to these system calls must be an integer mult iple of BSIZE bytes.

The physio routine called by both ixxxread and ixxxwrite works as follows:

1. The buffer header that is its second argument is used as a buffer header to "fool"
the block driver routines. physio assigns fields in this header to reference the area
of user memory to be used as the source or destination of the transfer. {The
address and count are available to physio in the u structure.)

5-1 7

Block Drivers XENIX 286 Device Drivers

2. physio then calls the driver's own strategy routine, its first argu ment, to do the
transfer directly to or fro m user memory. To the strategy routine, the request
appears in a buffer header like any other buffer header. Thus the driver calls
physio for raw 1/0 and is then called by physio. The other two argu ments to physio
are the device number and a flag indicating whether the operation is a read or a
write.

3. physio also locks the calling process into its present me mory location and prevents
the calling process from being swapped. This is to ensure that the buffer in user
memory is there when the driver does the transfer.

ixxxioctl Proced u re

i xxxioctl (dev, cmd, cmdarg, oflag) ;
dev t dev; /* device number, major/m i nor *I
i nt cmd ; /* command code */
i nt *cmdarg; /* poi nter to arguments in user memory *I
i nt oflag ; /* open flags for the devi ce, NOT USED */
I*

ixxxioctl is called in response to an ioctl system call for a device. Note that this syste m
call i s only available via the raw, character interface t o a block device. Typically the
only command code defined for a block device is for formatting, e.g. , formatting a track
of the device based on a table given as the cmdarg parameter. The code for such
formatting is device-dependent. Handling a formatting request may involve the
ixxxstrategy, ixxxstart, and ixxxintr routines if the request is inserted into the normal
stream of requests for the device.

5-1 8

CHAPTE R 6
ADDI N G DRIVE RS

TO TH E CO N FI G U RATI O N

This chapter describes how to add a new device driver to XENIX:

1. Edit a master file to add information about your driver.

2. Edit a xenixconf file to add information about your driver.

3. Edit two makefile files to add information about your driver.

4. Use the make com mand to create a new XENIX kernel.

5. Edit /dev/makefile to add mknod com mands for your device; then execute make to
create the device special files for your device.

6. Restart your syste m using the new kernel, with the device hardware installed in
your syste m.

The last section of this chapter describes how to delete a device driver from your
XENIX syste m.

Readers of this chapter should also read the XENIX 286 Installation and Configuration
Guide, which contains more information about configuration, including device driver
configuration.

This chapter assu mes that you have written your driver, as described in Chapters 1-5, in
three files:

• sys/h/ixxx.h defines constants used by the driver.

• sys/cfg/cxxx.c defines configuration data structures used by the driver.

• sys/io/ixxx.c defines the driver routines and any driver data structures that are
independent of syste m configuration.

The location of the sys directory in your system depends on whether or not you have
purchased XENIX 2 86 source code. In systems without source code, sys is contained in
the root directory and has an absolute path name of /sys. In syste ms with source code,
sys is contained in the usr directory and has an absolute path name of /usr/sys.

You must be logged in as the super-user to perform many of the tasks described in this
chapter. When you restart the system with the new kernel, there should be no other
users on the system.

6-1

Adding Drivers to the Configuration XENIX 286 Device Drivers

Ed iting the master Fi le

You must add one l ine of infor m at ion about your device driver t o the f i le
sys/conf/master. This is a text file and can be changed with any of the editors.

The file begins with com ment lines, indicated by asterisks (*) in colu mn 1. The table of
devices in the configuration follows the initial com ments and is shown in F igure 6-1. A
sample master listing is in Appendix G of this manual.

There are 14 fields in the line that describes a device, but some fields are unused for
particular devices. To fill in the line, you must know the answers to these questions:

1. What is the name of your device? What is the prefix used for your driver routines,
if different fro m the device name?

2. Does your device support a block interface? If it does, then what major number do
you want to use for the block interface?

3. Does your device support a character interface? If it does, then what major
number do you want to use for the character interface?

4. Does your device use interrupts? If so, what interrupt level(s) does it use?

5. What standard driver routines are not present in your driver and should be replaced
by nodev or nulldev in the cdevsw or bdevsw tables?

6. What is the maximum nu mber of boards handled by your driver?

* The fol l owi ng dev i ces a re those that can be spec ifi ed i n the system
* descri pti on fi l e . The name speci fi ed must agree with the name shown.
*
* The fi rst twe lve entri es i n both the " bdevsw" and the " cdevsw" are
* reserved for use as b lock devi ces. The l ast fou r of these entri es
* are reserved for add iti onal I ntel devi ces and customer block devi ces.
* Al l b lock devi ces have the same " bdevsw" and " cdevsw" number.
* The " cmaj " number 1 is reserved for use by the memory d ri ver.
*
*name vsi z msk typ hnd l r na bmaj cmaj # na vec 1
* 1 2 3 4 5 6 7 8 9 1 0 1 1

vec2
1 2

vec3 vec4
1 3 1 4

* -
i2 1 5 1 0 1 37 0 1 4 i 2 1 5 0 0 0 2 - 1 0005 0 0 Oa
i2 1 6 1 0 1 37 0 1 4 i 2 1 6 0 2 2 2 - 1 0005 0 0 Oa
i2 1 4 1 0 1 37 0 1 4 i 2 1 4 0 3 3 2 - 1 0005 0 0 Oa
i208 1 0 1 37 0 1 4 i208 0 4 4 2 - 1 0003 0 0 Oa
ramd 0 0 1 36 054 ramd 0 5 5 1 - 1 0 0 0 Oa
x log 1 0 1 37 0 1 4 x log 0 6 6 2 - 1 0005 0 0 Oa

Figure 6-1. Device Table from sys/conf/master

6-2

XENIX 286 Device Drivers Adding Drivers to the Configuration

*
* The next twel ve entri es i n the 11 Cdevsw ll are reserved for character
* devi ces. The II cmaj I I number 1 2 is reserved for use by the tty driver.
*
l p 0 1 32 004 l p 0 0 1 3 1 - 1 0 1 07 0 0 Oa
i74 0 1 37 004 i 74 0 0 1 4 1 - 1 0006 0 0 Oa
i 1 88 0 1 37 004 i 1 88 0 0 1 5 2 - 1 0003 0002 0 Oa
i 552 0 1 37 004 i S 52 0 0 1 6 1 - 1 0004 0 0 Oa
i278 0 1 37 004 i278 0 0 1 7 1 - 1 0003 0 0 Oa
i 544 0 1 37 004 i 544 0 0 1 8 4 - 1 0003 0 0 Oa
i 534 0 1 37 004 i 534 0 0 1 9 4 - 1 0003 0 0 Oa
*
* These a re I ntel devi ces that use an i nterrupt vector but do not
* have any l l bdevsw ll or 11 Cdevswll entry.
*
debug 0 0 dbg 0 0 0 1 - 1 000 1 0 0 Oa
sl ave7 0 0 sl 0 0 0 1 - 1 0007 0 0 Oa
*
* The fol l owing devi ces must not be specifi ed i n the system descri pt ion
* fi l e (xeni xconf) . These are pseudo d rivers and the c l ock d river.
*
memory 0 06 0324 mm 0 - 1 1 0 0 0 0 Oa
tty 0 027 0324 sy 0 - 1 1 2 0 0 0 0 Oa
cl ock 1 000 032 1 0 - 1 - 1 0 0 0 0 Oa
$$$

Figure 6-1. Device Table from sys/conf/master (Continued)

Field 1, name, is the name of the device. The name begins in colu mn 1 and is from 1 to
8 characters long. This name must be the same as the nam e used to identify the device
in the xenixconf file. Intel devices are customarily identified as ixxx, e.g., i534 for the
iSBC 5 3 4 board. If li mited to 4 characters, Field 1 can be identical to Field 5, hndler.

Field 2, vsiz, is the nu mber of interrupt levels used by the device driver. Typically,
each board uses a separate interrupt level. This nu mber should be less than or equal to
the nu mber of interrupt levels specified in Fields 1 1 to 14 (4 levels maxi mum). Some
drivers, such as that for the i544, use only a single interrupt level even if mult iple
boards are present; such a driver must poll the boards to determine the source of each
interrupt. If a device does not use interrupts, then Field 2 is 0. A "virtual" device such
as a RAM disk is an example of a device that does not use interrupts.

Field 3, msk, is an octal bit mask indicating which standard driver routines are present:

0 1 0 0 init routine present
0020 open routine present (else replace with nulldev)
0 0 1 0 close routine present (else replace with nulldev)
0004 read routine present (else replace with nodev)
0002 write routine present (else replace with nodev)
0 0 0 1 ioctl routine present (else replace with nodev)

6-3

Adding Drivers to the Configuration XENIX 286 Device Drivers

Note that neither the intr routine nor the strategy routine of block drivers is listed. The
intr routine must be provided for all drivers that use interrupts. The strategy routine is
mandatory for all block drivers. You can form the bit mask for your device by taking
the mask values for all the routines present in your driver and ORing the m. For
example, for a line printer driver that provided all routines except read and ioctl, the
mask value would be 0 132. The kernel routine nodev replaces missing read, write, or
ioctl routines. nodev indicates an error if it is called. The kernel routine nulldev
replaces missing open or close routines in the cdevsw or bdevsw tables. nulldev does
nothing when called, simply returning to its caller.

Field 4, typ, is an octal bit mask indicating device type and some miscellaneous
information:

02 0 0 Only one specification of the device is allowed; i.e., only one line
in master's device table can refer to the device.

0040 The device does not use interrupts.

0 0 2 0 The device is required i n the configuration. A required device is
always included by the config program and must not be specified
in the xenixconf file.

0 0 1 0 The device provides a block interface.

0 0 0 4 The device provides a character interface.

You can form the bit mask to specify for your device by taking all the mask values that
apply to your driver and O Ring them. Terminals and simple character devices have type
0 04. Disks, which normally support a "raw" character interface as well as a block
interface, have type 0 14. A RAM disk might not need a character interface and could
have type 0 1 0 .

Field 5, hndlr, i s the value that i s prefixed to the standard routine names to produce the
routine names used in your driver. For example, if lp is the value of the hndlr field for
your device, your routine names must be lpinit, lpopen, etc. The prefix- can be from 1 to
4 characters in length. The prefix must begin with a letter, and the characters in the
prefix must be l imited to those allowed in C identifiers. The prefix is used to generate
the routine names in the switch tables dinitsw, cdevsw, bdevsw, and vecintsw. You can
reduce confusion if your prefix is the same as the device name in Field 1 .

Field 6 , na, is not used and should be 0.

Field 7, bmaj, is the major nu mber used for the device's block interface. If the device
does not have a block interface, the field is unused and typically 0 or -1. A major
nu mber of zero is allowed.

Field 8, cmaj, is the major number used for the device's character interface. If the
device does not have a character interface, the field is unused and typically 0 or -1. A
major nu mber of zero is allowed.

For devices with both block and character interfaces, the same maj or nu mber is
typically used for both interfaces. While the block and character major numbers for a
device can be different, it is reco mmended that they be the same.

6-4

XENIX 286 Device Drivers Adding Drivers to the Configuration

Field 9, I, is the maxi mu m nu mber of boards supported by the device driver that may be
present in the system.

Field 10, na, is not used and should be -1.

Fields 1 1 , 1 2 , 13, and 14 together contain up to four octal interrupt levels used by the
driver. Unused interrupt levels should be zero; zero is not allowed as a valid interrupt
level. Levels should be in the range 1-0377 octal {1-255 deci mal). The levels specified
must not conflict with those used by other devices and must be the same as those
actually used by the hardware. If only one level is specified, use Field 1 1 ; if two levels
are specified, use Fields 1 1 and 1 2 , etc.

The letter a i m mediately follows field 14 because the config program does not allow a
newline to i m m ediately follow the field list. Any other character can be used, but 'a' is
traditional.

The device table is organized as follows:

1. All block devices

2. All character devices

3. Special devices {e.g., debug) that use only an interrupt level and have no bdevsw or
cdevsw entry

4. Pseudo devices that must not be specified in the xenixconf file {e.g., tty)

The line containing $$$ terminates the device table. Subsequent sections of master give
the line discipline table {for terminals), the alias table, and the tunable parameters
table. All these are included in the master list ing in Appendix G.

There is a tradeoff in choosing a major number for your device. If you choose a small
major nu mber, close to the nu mbers now being used by Intel, you may conflict with
future Intel usage as Intel supports more devices. Of course, such a conflict is very easy
to resolve, since your driver code should not depend on the major number in any way and
only your master entries would need to be revised. If you choose a large major nu mber,
you expand the size of the switch table{s), wasting memory with null entries in those
tables. Major numbers 7 , 8, 9, 1 0 , and 1 1 are available {in Release 3 of XENIX 286) for
customer block devices or future Intel devices. Major nu mbers 20 and above are
available {in Release 3 of XENIX 2 86) for any customer device or future Intel devices.

The name, prefix, major nu mbers, and interrupt levels for your device should be distinct
from those used by other devices. The only exception to this rule is that a conflict
between two devices is allowed if only one of the m is ever included in the configuration
via the xenixconf file. For example, the i534 driver and the i544 driver use the same
interrupt level, thus only one of them may be included in your XENIX configuration
{unless you modify the master file to place one of these devices at a different interrupt
level and modify the hardware jumpers accordingly).

6-5

Adding Drivers to the Configuration XENIX 286 Device Drivers

Ed iti ng xen ixco nf

You must add one line about your driver t o the file sys/conf/xenixconf. This i s a text
file and can be edited with any XENIX editor. xenixconf specifies exactly which of the
devices described in master are to be included in the new kernel that you are building.
master must be changed only when adding a new driver or changing an interrupt level.
xenixconf is changed when you add or remove devices. xenixconf begins with a block of
com ments, which have asterisks (*) in column 1. The device list follows the comment
block, e.g.:

* Devi ces
*

i2 1 5 1
i 534 0
i 544 0
i 1 88 1
i74 1
l p 1
ramd 0
debug 0
root i2 1 5
pi pe i2 1 5 1
swap i2 1 5 2 1 1 88

Each device entry consists of a device name and an include flag. The flag is 1 if the
driver should be included in the system (i.e., there is hardware for it to support).
Otherwise, the flag is 0. If the flag is O, then the named driver is not included in the
configuration, regardless of any entry in master. For example, in the configuration
specified above, the i534, i544, ramd, and debug devices are not included. Note that if a
device defined in master is not listed at all in xenixconf, that is equivalent to list ing the
device with a flag value of 0.

Entries in the xenixconf device list are in no particular order; you can insert your device
at any point.

The lines with the names root, pipe, and swap are not new devices. These lines appear
at the end of the device list and name devices used for system purposes. In the
configuration specified above, the root file system uses the i2 1 5 device, which is also
used for swap space and pipe space.

A sample xenixconf listing is in Appendix H of this manual.

6-6

XENIX 286 Device Drivers Adding Drivers to the Configuration

Ed it i n g the makefi les

The next editing task in adding a driver to the configuration is the revision of two
makefiles: sys/cfg/makefile and sys/io/makefile. Both are text files and can be
changed with any of the editors. Both are less than a page long and must be changed in
only one place. In both files, the changes are made in the line that begins OBJS= ; you
need to delete old object file names and add the name of an object file to each list.

In sys/cfg/makefile, delete the names of any object modules for which there is not a
corresponding source file in sys/cfg; these object modules have already been generated
and added to lib_ioc. Then add the name of the object file for your driver's
configuration data structures: c:xxx.o.

In sys/io/makefile, delete the names of any object modules for which there is not a
corresponding source file in sys/io; these object modules have already been generated
and added to lib io. Then add the name of the object file for your main driver code:
ixxx.o.

Note that si mple file names, not path names, are used. Names in the lists are separated
by spaces. If the list extends across more than one line, all lines but the last must end
with a backslash {\) i m mediately followed by the newline character. The object files
named in the list may not exist yet; the purpose of makefiles is to automate the process
of producing such derived files as needed. Makefiles and the make program are
described in the chapter " make: Program Maintainer" in the XENIX 286 Programmer's
Guide.

M a k i n g a New Kernel

To make a new XENIX kernel, follow these steps:

1. Change your directory to sys/cfg and execute the make co m m and (with no
argu ments). This compiles new or changed driver configuration files and adds
them to the library of driver configuration structures, sys/cfg/lib_ioc.

2. Change your directory to sys/io and execute the make com m and {with no
arguments). This compiles new or changed driver code and adds the resulting
object files to the library of driver object modules, sys/io/lib_io.

3. Change your directory to sys/conf and execute the command

make xen ix

This make command calls the config program that constructs the C program file
c.c using the information in master and xenixconf. c.c is compiled and linked with
the other files and libraries in the kernel. The new boatable kernel is placed in the
file sys/conf/xenix. c.c contains the device switch tables, dinitsw, cdevsw,
bdevsw, and vecintsw. A sample c.c listing is in Appendix I of this manual.

6-7

Adding Drivers to the Configuration XENIX 286 Device Drivers

The new kernel must be placed in the root directory, /, before it can be used. You
should not overwrite your present kernel, /xenix, because you do not know whether the
new kernel will work or not. You should use a new file name, such as /xenix. test, when
you move your new kernel to the root directory.

Maki n g the Device Specia l Fi le

For programs or commands to access your device, one or more special files must exist
for it in the /dev directory. A special file can be created with the mknod com mand,
with the form

/etc/mknod name c major minor

or

/etc/m knod name b major minor

where name is the new file name. c is specified for character interfaces; b is specified
for block interfaces. A single special file can support either a character or block
interface, but not both. For devices with both interfaces, two special files are needed
to access the different interfaces. Finally, the major nu mber of the device and the
minor nu mber of the new special file are specified. Note that a separate special file
must be created for each minor number. The major and minor numbers may be specified
in either decimal or octal. For example, to create special files for two line printers:

/etc/m knod /dev/l pO c 7 0
/etc/m knod /dev/l p 1 c 7 1

While there are no formal nam ing conventions for device special files, you may want to
consult the existing nodes in /dev and name your files in the same way. For example,
nodes for raw (character) interfaces to block devices begin with 'r'; nodes for partit ions
on block devices have names such as 'wO' (entire disk), 'wOa', 'wOb', and 'wOe' (partit ions
for parts of the disk).

You should edit the file /dev/makefile and add the mknod com mands for your device.
Then make /dev your directory and run make. This will execute any needed mknod
commands to create device special files. Only the super-user can create device special
files.

Ad d i ng Ter m i n a l Information

I f you are adding a terminal device driver to your system, you may have to add
information to two system files: /etc/ttytype and /etc/ttys. Refer to the section
"Adding a Terminal" in the chapter "Tailoring the Environment" in the XENIX 286
System Administrator's Guide for more information on this subject. If a new type of
terminal is being connected to your driver, then you may have to add informat ion to the
file /etc/termcap, described in "Files" in the XENIX 286 Reference Manual.

6-8

XENIX 286 Device Drivers Adding Drivers to the Configuration

Execut i n g the New Kernel

Before booting the new kernel, be certain that any hardware required by your driver is
properly installed. You can then boot your new kernel, as described in the XENIX 286
Installation and Configuration Guide.

Delet ing a Device Driver

To delete a driver from your system, follow these steps:

1. Change the include flag for the driver in xenixconf to 0.

2. Make a new kernel, as described in this chapter.

3. Delete any device special files that refer to the driver (using the rm com mand).
(This step is not mandatory; you can leave the special files in /dev if they may be
used again in the future.)

4. Reboot your system with the new kernel.

The driver will not be present in the new kernel. However, the driver source and object
code will st ill be present and maintained by the makefiles. If you delete the three
driver files, you should also re move references to the driver in sys/cfg/makefile and
sys/io/makefile. If you delete the device special files for the driver, then you should
remove the corresponding mknod com mands in /dev/makefile.

6-9

APPE N DI X A
M E M O RY-MAPP E D 1/0 FOR DRIVERS

This appendix describes how device drivers can read and write device registers that are
mapped into the memory address space outside of the kernel data segment. This is an
alternative to mapping device registers into the 1/0 port address space, which supports
2 16 port addresses. The me mory address space can be used to allow more efficient
control of device registers with a greater variety of iAPX 286 instructions. For
example, instructions to increment a memory location or to move a block of bytes or
words can be applied directly to 'device registers mapped into me mory. Memory­
mapped 1/0 is used by some Intel-supplied drivers, including the iSBC 544 and iSBC
188/48 drivers.

Sma l l M odel Ker n el

The XENIX 286 kernel (which includes all device driver code) is imple mented as a small
model program with a single data segment. The single kernel data segment increases
speed and reduces storage require ments in the kernel, because data pointers in the
kernel are simply 16-bit offsets.

There is not enough space in the kernel data segment for memory-mapped 1/0 devices,
so separate segments must be created to frame the device registers and to be used when
accessing the device. After such a segment is created, the peek and poke routines
described in this appendix can be used to access the device registers.

Creati n g the Seg ment Descri ptor

An available descriptor in the iAPX 286 Global Descriptor Table (GDT) is allocated by
calling dscralloc, which returns the selector for the descriptor. The descriptor must
then be initialized by calling mmudescr with parameters that specify the selector, the
segment's physical base address, the segm ent's length, and access rights for the
segment.

unsigned dscra l l oc() ;
I*
Al l ocates an ava i l ab le descri ptor in the G lobal Descri ptor Tab le for
the use of the ca l l er . Retu rns the se lector for the al l ocated
descri ptor. Does NOT i n it i a l i ze the descri ptor.
*I

If no more descriptors are available, a major kernel error results. The total nu mber of
descriptors available in the G DT is a configuration option.

A-1

Memory-Mapped 1/0 XENIX 286 D evice Drivers

mmudescr(sel ector, padd r, cei l , access)
unsigned
long
unsi gned
i nt

sel ector;
paddr;
ce i l ;
access;

I* sel ector for descri ptor bei ng overwritten *I
I* conta i ns 24-bit physi ca l base address *I
I* segment length m i nus one *I
I* l ow byte of access i s used as access

rig hts byte of the descri ptor. *I

In calling mmudescr, use an access value of Ox92. Bit 7 is set to indicate that the
segment is present. Bits 6 and 5 are clear to indicate maxi mu m privilege level (0),
appropriate to a segment being accessed from kernel code. Bit 4 is set to indicate a
segment descriptor. Bit 3 is clear to indicate a data descriptor (versus a code
descriptor). Bit 2 is clear to indicate that any expansion of the segment will be up, not
down (not applicable in this case). Bit 1 is set to indicate that the segment is writable.
Bit 0 is clear indicating that the segment has not yet been accessed.

The following code illustrates the creation of a segment to frame a device that maps
16K bytes of me mory starting at physical address OxfeOOOO :

unsi gned sel ector = dscra l l oc() ;
mmudescr(se lector, OxfeOOOO, Ox3fff, Ox92) ;

The Pee k Rou t i n es

The following peek routines are part of the XENIX 286 kernel:

A-2

peek(offset, selector, cou nt, add r)
unsigned offset; I* offset i nto sou rce data segment *I
unsigned selector; I* segment se lector for sou rce data segment *I
unsi gned count; I* number of bytes to transfer (0-65535) *I
char *addr; I* desti nat ion address in kernel data segment

I*
(short poi nter, offset only) *I

Copies count bytes beg inn ing at offset i n the data segment specifi ed
by sel ector, to an area of the same si ze beg i nn i ng at add r i n the
kernel data segment. count can be 0, in which case no bytes are
copied .
*I

i nt peekb(offset, sel ector)
unsi gned offset; I* offset i nto sou rce data segment *I
unsigned se lector; I* segment selector for source data segment *I
I*
Reads one byte at the spec ifi ed offset i n the spec ifi ed data segment.
The va l ue read is retu rned as an i nt va l ue i n the range 0-255.
*I

XENIX 286 Device Drivers Memory-Mapped 1/0

i nt peekw(offset, sel ector)
unsi gned offset; I* offset i nto sou rce data segment *I
unsi gned sel ector; I* segment selector for sou rce data segment *I
I*
Reads one word (two bytes) at the spec ifi ed offset i n the speci fi ed
data segment. The va l ue read is retu rned as an i nt.
*I

For single bytes or words, the peekb or peekw routines should be used instead of peek.

Th e Poke Routi n es

The following poke routines are part of the XENIX 286 kernel:

poke(offset, sel ector, count, addr)
unsi gned offset; I* offset i nto desti nation data segment *I
unsi gned sel ector; I* segment sel ector for desti nati on segment *I
unsigned count; I* number of bytes to transfer (0-65535) *I
char *add r; I* source add r�s i n kernel data segment

I*
(short poi nter, offset on ly) *I

Copies count bytes beg i nn i ng at add r i n the kernel data segment, to
an area beg i nn ing at offset i n the data segment spec ified by se lector.
count can be 0, i n which case no bytes are cop ied .
*I

pokeb(offset, sel ector, va l ue)
unsi gned offset; I* offset i nto desti nat ion data segment *I
unsi gned sel ector; I* segment sel ector for desti nati on segment *I
i nt va l ue; I* i nt with low byte to be poked *I
I*
Writes the low byte of val ue (val ue & Oxff) at the spec ifi ed offset
i n the spec ifi ed data segment.
*I

pokew(offset, sel ector, va l ue)
unsi gned offset; I* offset i nto desti nation data segment *I
unsigned sel ector; I* segment se lector for desti nat ion segment *I
i nt va l ue; I* i nt (word) val ue to be poked *I
I*
Writes the word va l u e at the speci fi ed offset i n the spec if ied
data segment.
*I

For single bytes or words, the pokeb or pokew routines should be used instead of poke.

A-3

APP E N DI X B
CO NVE RTI N G DRIVE RS FRO M

R E LEAS E 1 TO RE LEAS E 3 O F X E N I X 286

This appendix describes how changes in the device driver interface affect the conversion
of drivers. The changes made to the device driver interface in XENIX Release 3
represent improvements over the Release 1 version. Relatively few changes are
required to convert a block driver from Release 1 to Release 3. While significant
changes have been made to character devices (particularly terminal drivers), conversion
should not require a major rewrite of the code.

The changes in character device drivers are pri m arily the result of the m ore
sophisticated controllers available on the market. New hardware and better f irm ware
have reduced the workload of the machine-dependent line discipline routines. They are,
therefore, simplified under Release 3. In general, as a device increases in functionality,
the driver-device interface becomes more complex: the device requires m ore
information, and the driver must provide it. Consequently, the driver routines in
Release 3 are expanded, and the tty structure has been alt ered to hold m ore
information.

Block device driver changes are fairly minor and result from the fact that XENIX
Release 3 supports large model programs. The changes that are included affect the
static buffer header associated with each device (a cosmetic upgrade) and the way in
which the driver addresses me mory.

Terminal Drivers

tty Stru ctu re

Significant changes have been made in this area. Many fields previously present in the
product have been eliminated or replaced; new fields have been added.

Table B-1 shows fields that have changed in the tty structure. Note that some have
been replaced by new fields in the Release 3 version, while others have been eli minated.

Table B-2 shows the Release 3 fields that did not exist in the Release 1 tty structure.
Some of these new fields contain information that was previously contained in a
different Release 1 field. Others are entirely new; they have no Release 1 counterpart
and contain no Release 1 information. The tty structure is defined in the include file
tty.h, which is listed in Appendix C of this manual.

An example of an actual Release 3 terminal driver appears in Chapter 4, "Term inal
Drivers." Studying the example code in Chapter 4 m ay help you to understand the points
made about converting terminal drivers in this appendix.

B-1

Converting Drivers

Release 1 Field

int (*t _ oproc)

Oint (*t iproc)O

struct chan *t chan

caddr _ t t _linep

caddr t t addr

dev t t dev

short t _flags

short t 2state

char t erase

char t kill

char t _ ispeed

char t _ ospeed

union t un

B-2

XENIX 286 Device Drivers

Table B-1 . Changed tty Fields

Comment

Pointer routine to
start output

Pointer routine to
start input

Destination
channel for
multiplexed files

Auxiliary line
discipline pointer

Device address

Device nu mber

octl models

Driver-specific
state

Erase character

K ill character

Input speed

Output speed

Extended ioctl
control structures

Release 3 Field Com ment

int (*t_proc)O Pointer to new routine
that starts input and
output, and changes
the tty structure if
necessary. The driver
writer must write this
new routine.

(eliminated)

(eli minated)

short t addr

(eli minated)

(eliminated)

(eliminated)

(eliminated)

(eliminated)

(elim inated)

(eliminated)

(eliminated)

Multiplexed files not
supported.

No longer needed.

Device nu mber.

t addr field used.

Replaced by several
fields.

Now bit- mapped in
char control array
field.

Now bit- mapped in
char control array
field.

Both speed fields are
replaced by a single
bit-mapped speed in
the new control mode
field.

Information encoded
in new mode fields.

XENIX 286 Device Drivers

New Field

ushort t _ iflag

ushort t _ oflag

ushort t _ cfiag

ushort t _lflag

ushort t _ xflag

chart t row

struct tty*t_chan

Convert ing Drivers

Table B-2. New tty F ields

Com ment

Input modes; values for this field are located in the new
file termio.h. Release 1 drivers were concerned w ith
very few input modes; most were not an option. This is
an expanded capability of R elease 3 .

Output modes; values for this field are also located i n
t h e n e w file termio.h. In Release 1, both input and
output mode values were default (assu m ed) or ignored
in the line d isc ipline rou t i n e s . H o w e v e r , s o m e
controllers need this infor m ation, and these fields allow
a user to set the modes.

Control modes; values for this field are also located in
the new file termio.h. This field serves the sa m e
purpose that the tc structure together with the ttiocb
structure served in Release 1 : it changes the tty
characteristics (e.g., baud rate).

Line discipline modes; new to Release 3. These m odes
are used by the line discipline rout ines. Bits for this
field are defined in termio.h.

External protocol m odes; new to Release 3 . These
allow different protocols. Bits for this field are defined
in termio.h.

Current row; it m ay be useful to so m e drivers to know
which line a user is on if the last line has been reached.

Pointer to multidrop channels.

B-3

Converting Drivers XENIX 2 8 6 Device Drivers

Changes to Routi n es

Under Release 1, the routines required to interface with the XENIX kernel included

ixxxinit
ixxxopen
ixxxclose
ixxxstart
ixxxread
ixxxwrite
ixxxintr
ixxxioctl

The ixxxstart routine is no longer a required interface routine; it is now an opt ional
internal routine. Replacing and expanding considerably on the function of ix:xxstart is
ixxxproc� It is a required routine, and a field in the tty structure (tp->t_proc) holds a
pointer to it. Several line discipline routines including ttyclose, ttyflush, canon, ttrstrt,
ttyread, and ttywrite call ixxxproc to effect som e change on the output.

The parameters to ixxxproc include tp and cmd. tp is a pointer to the tty structure;
ixxxstart takes tp as its only parameter. Thus, w ith this param eter alone, ixxxproc
could acco mplish what ixxxstart does. However, the expanded capability of ixxxproc is
reflected in its second argu m ent, cmd, which dict ates what action--if any--ixxxproc
should take. The commands that must be handled and their meanings are listed in Table
B-3.

Command

T TIME

T WFLUSH

T RESUME

T OUTPUT

T SUSPEND

T BLOCK

T UNBLOCK

T RFLUSH

T BREAK

B-4

Table B-3 . ixxxproc Com mands

Function

Ti m e delay for outputt ing a break has finished.

Flush output queue.

Output was stopped or someone is waiting for the output
queue to drain.

Start output.

Stop output on this line.

Block input.

Start input.

So meone is waiting to flush the input queue.

Send a break.

XENIX 286 Device Drivers Convert ing Drivers

In Release 1, these functions were handled as m achine-independent features. Since they
are truly machine-dependent, they are now included as a user-written routine. In
converting a Release 1 driver to Release 3 , ixxxstart may be made a routine internal to
ixxxproc, and code to handle the other co m mands listed in Table B-3 would have to be
written.

The new ixxxproc procedure is now called with two argu m ents:

tp /* poi nter to tty structu re */
cmd /* user com mand to change output */

An example of code for an ixxxproc procedure is contained in Chapt er 4, "Term inal
Drivers."

In Release 3, ixxxioctl is called by the kernel with the first two argu m ents swapped:

i xxxioctl (cmdarg, dev, add r, flag)

That is, in Release 1 , ixxxioctl was called in this order:

i xxxioctl (dev, cmdarg, addr, flag)

Note that the cmdarg argu m ent is a long type under Release 3 . Form erly, it was an int.

In addition to the file tty.c, which under Release 1 contained all the line discipline
routines, there now exists a file ttO.c. So m e of the line discipline rout ines are located
in tty.c, and the others are located in ttO.c. (This inform ation is useful only to source
code customers.)

Another new Release 3 file is ttold.h. It contains all the Release 1 structure definitions
that Release 3 requires in order to maintain U NI X Version 7 co m pat ibility. These
definitions include the ioctl user structures, so that user progr a m s w ritt en under
Release 1 will be source-compatible under Release 3 . If the ttold.h file is included in a
Release 3 driver and all other Release 3 changes have been made, then user programs
should be co mpatible.

B-5

Converting Drivers XENIX 2 8 6 Device Drivers

Li ne Discip l ine Routines

The line discipline routines (those accessible b y the driver) i n Release 1 have been
replaced by a new set of rout ines in Release 3, as Table B-4 indicates. So m e of the
nam es have re mained the same, and the functionality has changed only in that the new
driver routine ixxxproc does most of the work these routines did in Release 1. These
Release 3 routines are listed in the linesw table. (Note that the arrange m ent of routines
in Table B-4 does not indicate a correspondence between all pairs of rout ines. E.g. ,
l_rend does not correspond to l_input.)

The tty.h F i le

Release 1

l_open

1 close

1 read

1 write

1 ioctl

1 rint

1 rend

1 meta

1 modem

Table B-4. Line Discipline Routines

Release 3

l_open

1 close

1 read

1 write

1 ioctl

l_output

l_input

1 md mint

The most obvious change to tty.h is that much of its information has been expanded and
moved into two new files, ttold.h and termio.h. The ttold.h file contains structures as
defined under XENIX 2 8 6 Release 1 ; it allows compatibility w ith U NIX Version 7. The
termio.h file cont ains the bit values defined for the four new mode fields located in the
tty structure:

input modes
output modes
control modes
line disciplines

(tp->t ifiag)
(tp->t=ofiag)
(tp->t _ cfiag)
(tp->t _lflag)

Several fields contained in the tty structure under Release 1 have been eli m inated and
replaced by these four mode fields. The values for the new mode fields encode much
more inform ation than the Release 1 fields, reflecting the fact that the driver is
handling more than it did in the previous release.

The Release 1 fields that have been replaced include t_flags, t_state, t_2state, t_erase,
t_ kill, t _char, t _ ispeed, and t _ ospeed.

B-6

XENIX 2 8 6 Device Drivers Convert ing Drivers

A comparison between the Release 1 structure fields and the bit values for the Release
3 tty structure fields reveals that all Release 1 infor m ation is still present under
Release 3 . The form has simply changed as a result of the need to keep track of m ore
information. The values for the new Release 3 mode fields are displayed in Tables B-5 ,
B-6 , B-7, and B-8. These values are defined i n termio.h, which i s listed in Appendix D of
this manual.

Table B-5 . Input Modes Describing Basic Term inal Input Control

Input Modes Octal Values Comments

IGNBRK 0 0 0 0 0 0 1 Ignores break condition.

BRKINT 0 0 0 0 0 0 2 Signals interrupt o n break.

IGNPAR 0 0 0 0 0 0 4 Ignores characters w ith parity errors.

PARMRK 0 0 0 0 0 1 0 Marks parity errors.

INPCK 0 0 0 0 0 2 0 Enables input parity check.

ISTRIP 0 0 0 0 04 0 Strips characters.

INLCR 0 0 0 0 1 0 0 Maps newline t o carriage return on input.

IGNCR 0 0 0 0 2 0 0 Ignores carriage return.

ICRNL 0 0 0 0 4 0 0 Maps carriage return to newline o n input.

IUCLC 0 0 0 1 0 0 0 Maps uppercase t o lowercase o n input.

IXON 0 0 0 2 0 0 0 Enables start/stop output control.

IXANY 0 0 04 0 0 0 Enables any character t o restart output.

IX OFF 0 0 1 0 0 0 0 Enables st art/stop input control.

Table B-6. Output Modes Specifying Syste m Treat m ent of Output

Output Modes Octal Values Comments

OPOST 0 0 0 0 0 0 1 Postprocesses output.

OLCUC 0 0 0 0 0 0 2 Maps lowercase t o uppercase o n output.

ONLCR 0 0 0 0 0 0 4 Maps newline t o carriage return-newline o n output.

OCRNL 0 0 0 0 0 1 0 Maps carriage return t o newline on output.

ON OCR 0 0 0 0 0 2 0 No carriage return output at colu m n 0 .

ONLRHT 0 0 0 0 04 0 Newline performs carriage return function.

OFILL 0 0 0 0 1 0 0 Uses fill characters for delay.

OFDHL 0 0 0 0 2 0 0 Fill i s DEL, else NUL.

NLDLY 0 0 0 04 0 0 Selects newline delays.

CRDLY 0 0 0 3 0 0 0 Selects carriage return delays.

TABDLY 0 0 14 0 0 0 Selects horizontal tab delays.

BSDLY 0 0 2 0 0 0 0 Selects backspace delays.

VTDLY 0 0 4 0 0 0 0 Selects vertical tab delays.

FFDLY 0 1 0 0 0 0 0 Selects formfeed delays.

B-7

Converting Drivers XENIX 2 8 6 D evice D rivers

B-8

Table B-7. Control Modes Describing Hardware Control of the Ter m inal

Control Modes Octal Values Com ments

C8AUD 0 0 0 0 0 1 7 Baud rate:
80 0 Hang up
850 0 0 0 0 0 0 1 5 0 baud
875 00 0 0 0 0 2 7 5 baud
8110 0 0 0 0 0 0 3 1 1 0 baud
8134 0 0 0 0 0 0 4 1 34 . 5 baud
8150 00 0 0 0 0 5 1 5 0 baud
8200 0 0 0 0 0 0 6 2 0 0 baud
8300 0 0 0 0 0 0 7 3 0 0 baud
8600 0 0 0 0 0 1 0 6 0 0 baud
81200 0 0 0 0 0 1 1 1 2 0 0 baud
81800 0 0 0 0 0 1 2 1 8 0 0 baud
82400 0 0 0 0 0 1 3 2 4 0 0 baud
84800 0 0 0 0 0 14 4 8 0 0 baud
89600 0 0 0 0 0 1 5 96 0 0 baud
EXTA 0 0 0 0 0 1 6 External A
EXT8 0 0 0 0 0 1 7 External B

CSIZE 0 0 0 0 0 6 0 Character size:
CS5 0 5 bits
CS6 0 0 0 0 0 2 0 6 bits
CS7 0 0 0 0 0 4 0 7 bits
CS8 0 0 0 0 0 6 0 8 bits
CSTOP8 0 0 0 0 1 0 0 Sends 2 stop bits, else 1
CREAD 0 0 0 0 2 0 0 Enables receiver
PARENB 0 0 0 04 0 0 P arity enable
PARODD 0 0 0 1 0 0 0 Odd parity, else even
HUPCL 0 0 0 2 0 0 0 Hangs up o n last close
CLOCAL 0 0 0 4 0 0 0 Local line, else dial-up

Table B-8. L ine Discipline Modes Used to Control Term inal Function

Line Discipline
Modes

ISIG
ICANON
X CASE
ECHO
ECHOE

ECHOK
ECHONL
NOFLSH

Octal Values

0 0 0 0 0 0 1
0 0 0 0 0 0 2
0 0 0 0 0 0 4
0 0 0 0 0 1 0
0 0 0 0 0 2 0

0 0 0 0 040
00 0 0 1 0 0
0 0 0 0 2 0 0

Comments

Enables signals
Canonical input (erase and kill processing)
Canonical upper/lower presentation
Enables echo
Echoes erase character as
backspace-space-backspace
Echoes newline after kill charact er
Echoes newline
Disables flush after interrupt or quit

XENIX 286 Device Drivers Converting Drivers

Within termio.h is one defined structure called termio. It is the ioctl control packet;
that is, it contains all infor m ation needed by the ioctl rout ine. That infor m ation
includes all the mode inform ation listed in the four preceding tables plus inform ation on
which set of line routines to use, the external protocol modes, and settings for control
characters that were located in the Release 1 tty structure (erase, kill, etc.).

Block Device D rivers

Buffe r Cha nges

In Release 1, the buffer header was defined in the file buf.h, and all buffer headers,
including the stat ic buffer header for each device, were of this for m at. The static
buffer header did not use m ost of the fields as defined in buf.h because m ost of them
dealt with 1/0 request infor m ation. (The static buffer header merely acts as a queue
header.)

In Release 3, defining a new for m at for the stat ic buffer header distingu ishes the static
buffer header from a regular buffer header used to m ake 1/0 requests. The new form at
is defined in iobuf.h and has fields appropriate to a queue header. In block drivers, then,
the static buffer header is declared as iobuf rather than buf. (In Release 1, the static
buffer header was usually declared by the name bufh.) iobuf.h is listed in Appendix F of
this manual and is also described in Chapter 5, "Block Drivers."

Add ressing

In Release 1 , the buffer header as defined in buf.h contained several fields used to
address the device. These fields included a union of caddr t b addr and char b xmem.
In Release 3, these fields have been replaced w ith p addr, a single field representing a
24-bit physical address. Addressing is now much

-
si mpler. W herever the routine

physaddr was used in Release 1 to put together a physical address, bp->p _ addr can be
used directly.

The cmdarg argu m ent in the ioctl routine was a short pointer in Release 1 (where short
means 1 6-bit offset only). Because R elease 3 is large- model (and has m any data
segments), this argu m ent is now a long pointer. Recall that cmdarg is a pointer to a
structure in space. U nder Release 1 , the syste m routines fuword and fubyte were used
to access the fields in the structure. W ith Release 3, the syste m rout ine copyin can be
used to make a local copy of the structure, which is more efficient for accessing fields.
eopyin is described in Chapter 2, "Driver Fundamentals."

B-9

APP E N DI X C
tty. h I NCLU D E FI LE

This appendix lists the tty.h include file used by character drivers, including term inal
drivers. Note that tty.h includes the include file termio.h, which is Appendix D of this
m anual.

I*
* TH IS F I LE CONTAINS CODE WH ICH IS DES IG N E D TO B E
* PORTABLE BETWEEN D I FFE RENT MACH I N E ARCH ITECTU RES
* AND CON F IG U RATIONS. IT SHOU LD NOT REQU I RE ANY
* MODI F ICATIONS W H E N ADAPTI NG XEN IX TO N EW HARDWARE.
*I

i ncl ude "term i o. h "

I*
* A cl i st structu re i s the head of a l i nked l i st queue of characters.
* The routi nes getc* and putc* man ipu l ate these structu res.
*I

struct c l i st {

};

I*

i nt
struct
struct

c cc;
cblock
cbl ock

I* character count *I
I* poi nter to fi rst *I
I* poi nter to l ast *I

* A tty structu re is needed for each U N IX character device that
* i s used for norma l term i na l 1 0 .
*I
struct tty {

struct cl i st t rawq; I* raw i nput queue *I -
struct cl i st t canq; I* canon i ca l queue *I
struct cl i st t outq ; I* output queue *I
struct cblock *t buf; I* buffer poi nter *I
i nt (*t proc)() ; I* routi ne for dev ice functions *I
ushort t i flag ; I* i n put modes *I
ushort t ofl ag ; I* output modes *I
ushort t cfl ag ; I* control modes *I
ushort t I flag ; I* l i ne d i sc i pl i ne modes *I
ushort t xflag ; I* external protocol modes *I
short t state; I* i nternal state *I -
short t pgrp; I* process group name *I
char t l i ne; I* l i ne d i sc i pl i ne *I
char t de lct; I* de l i m iter cou nt *I
char t col ; I* cu rrent col umn *I
char t row; I* current row *I

C- 1

tty.h I nclude F ile

};
I*

uchar t
short
struct

t cc[NCC + 2] ;
t
-

addr;
tty *t chan;

* The structu re of a c l i st block
*I
#defi ne CLS IZE 24
struct cblock {

struct cblock *c next;
char c fi rst;

-
-

char c l ast; -
char (data [CLS IZE] ;

};
-

extern struct cblock cfree[] ;
extern struct cblock *getcb() ;
extern struct cblock *getcf() ;
extern struct cl i st ttnu lq ;

struct chead {
struct cblock *c next;
i nt (si ze;

};
extern struct chead cfreel i st;

struct i nter {
i nt cnt;

};

XENIX 2 8 6 Device Drivers

I* settable control chars *I
I* v7 com pati bi l i ty *I
I* mu lt i-d rop channels, poi nter to *I

I* control characters *I I* p ick up from term io .h *I

I* defau lt control chars *I I* p ick u p from term io .h *I

#defi ne TTI PRI 28
#defi ne TTOPRI 29

I* l i m its *I
extern
#defi ne
#defi ne
#defi ne

i nt
TTY HOG
TTXOLO
TTXOH I

I* i nput mod es *I

I* output mod es *I

I* control modes *I

ttl owat[] , tth iwat[] ;
256
60
1 80

I* l i ne d i sc ip l i ne 0 modes *I

I* defau lt speed *I

C-2

I* p ick u p from term io .h *I

I* p ick up from term io .h *I

I* p ick u p from term io .h *I

I* p ick up from term io .h *I

I* p ick up from term io. h *I

XENIX 2 8 6 Device Drivers

I* Hardware bits *I
#defi ne DON E
#defi ne I E NABLE
#defi ne OVERRU N
#defi ne FRERRO
#defi ne PERROR

I* I nternal state *I
#defi ne TIM EOUT
#defi ne WOPEN
#defi ne ISO PEN
#defi ne TBLOCK
#defi ne CARR ON

-#defi ne BUSY
#defi ne OASLP
#defi ne IASLP
#defi ne TTSTOP
#defi ne EXTPROC
#defi ne TACT
#defi ne ESC
#defi ne RTO
#defi ne Til OW
#defi ne TTXON
#defi ne TIXOFF

I* I output status *I

0200
0 1 00
040000
020000
0 1 0000

0 1
02
04
0 1 0
020
040
0 1 00
0200
0400
0 1 000
02000
04000
0 1 0000
020000
040000
0 1 00000

#defi ne CPRES 1

I* device com mands *I
#defi ne T OUTPUT 0
#defi ne T-TIM E 1
#defi ne T-SUSPEN D 2
#defi ne T-RESU M E 3
#defi ne T-BLOCK 4
#defi ne T-U NBLOCK 5
#defi ne T-RFLUSH 6
#defi ne T-WFLUSH 7
#defi ne T-BREAK 8

tty .h Include File

I* Delay ti meout in progress *I
I* Waiti ng for open to complete *I

I* Devi ce is open *I

I* Software copy of carrier-present *I
I* Output in progress *I
I* Wakeup when output done *I
I* Wakeup when i nput done *I
I* Output stopped by ctl -s *I
I* External processi ng *I

I* Last char escape *I

C-3

APP E N DIX D
te rm i o . h I NCLU DE FI LE

This appendix lists the termio.h include file used by term inal drivers. termio.h is
included by the include file tty.h, and terminal drivers can just include tty.h and will
still include all the definitions in termio.h. tty.h is listed in Appendix C of this m anual.

I*
* THIS F I LE CONTAI NS CODE WH ICH IS DES I G N E D TO BE
* PORTABLE B ETWEE N D I FFERENT MACH I N E ARCH ITECTU RES
* AN D CON F IGU RATIONS. IT SHOU LD NOT REQU I RE ANY
* MODI F ICATIONS W H E N ADAPTIN G XEN IX TO N EW HARDWARE.
*I

I*
* Mod ifi cation h i story
* 100 1 4130184
*
*
*
*I

#defi ne NCC

I* control characters *I
#defi ne VI NTR
#defi ne VQU IT
#defi ne VERASE
#defi ne VK ILL
#defi ne VEOF
#defi ne VEOL
#defi ne VM I N
#defi ne VTIM E
#defi ne VCEOF

8

0
1
2
3
4
5
4
5
NCC

comment
Added defi n iti ons for baud rates h i gher than
9600 baud . Al so added defi n it ions for extra fl ag
fie ld .

#defi ne VCEOL (NCC + 1)
I* RESERVED true EOF char (V7 compatabi l ity) *I
I* RESERVED true EOL char *I

#defi ne CN U L
#defi ne CDEL
I* defau lt control chars *I
#defi ne CESC
#defi ne CI NTR
#defi ne CQU IT
#defi ne CERASE
#defi ne CK I L L
#defi ne CEOF
#defi ne CST ART
#defi ne CSTOP

0
0377

'\\'
0 1 77
034
'\0 1 0'
'\025'
04
02 1
023

I* DEL *I
I* FS, cntl l *I
I* backsp *I
I* cntl u *I
I* cntl d *I
I* cntl q *I
I* cntl s *I

D- 1

term io.h I nclude File XENIX 2 8 6 Device Drivers

I* i nput modes *I
#defi ne IGN B RK 000000 1
#defi ne BRK I NT 0000002
#defi ne I GNPAR 0000004
#defi ne PARM RK 00000 1 0
#defi ne I N PCK 0000020
#defi ne IS TR IP 0000040
#defi ne I N LCR 0000 1 00
#defi ne IG NCR 0000200
#defi ne ICRNL 0000400
#defi ne I UCLC 000 1 000
#defi ne IX ON 0002000
#defi ne IXANY 0004000
#defi ne IX OFF 00 1 0000

!* output modes *I
#defi ne OPOST 000000 1
#defi ne OLCU C 0000002
#defi ne ONLCR 0000004
#defi ne OCRN L 00000 1 0
#defi ne ON OCR 0000020
#defi ne ON LRET 0000040
#defi ne OF I LL 0000 1 00
#defi ne OF DEL 0000200
#defi ne N LDLY 0000400
#defi ne NLO 0
#defi ne N L 1 0000400
#defi ne CRDLY 0003000
#defi ne CRO 0
#defi ne CR 1 000 1 000
#defi ne CR2 0002000
#defi ne CR3 0003000
#defi ne TABDLY 00 1 4000
#defi ne TABO 0
#defi ne TAB 1 0004000
#defi ne TAB2 00 1 0000
#defi ne TAB3 00 1 4000
#defi ne BSDLY 0020000
#defi ne BSO 0
#defi ne BS 1 0020000
#defi ne VTDLY 0040000
#defi ne VTO 0
#defi ne VT 1 0040000
#defi ne FFDLY 0 1 00000
#defi ne FFO 0
#defi ne F F 1 0 1 00000

D-2

XENIX 2 8 6 Device Drivers

I* control mod es *I
#defi ne
#defi ne
#defi ne
#defi ne
#defi ne
#defi ne
#defi ne
#defi ne
#defi ne
#defi ne
#defi ne
#defi ne
#define
#defi ne
#define
#define
#define
#defi ne
#defi ne
#defi ne
#defi ne
#defi ne
#def ine
#defi ne
#defi ne
#defi ne
#define
#defi ne
#defi ne
#defi ne
#defi ne
#define
#defi ne

C8AU D
EX8AU D
80
850
875
8 1 1 0
8 1 34
8 1 50
8200
8300
8600
8 1 200
8 1 800
82400
84800
89600
8 1 9200
838400
85 1 800
876800
EXTA
EXT8
CS IZE
CS5
CS6
CS7
CS8
CSTOP8
CREAD
PAREN8
PARODD
H U PCL
CLOCAL

00000 1 7
0070000
0
000000 1
0000002
0000003
0000004
0000005
0000006
0000007
00000 1 0
00000 1 1
00000 1 2
00000 1 3
00000 1 4
00000 1 5
00000 1 6
00000 1 7
00 1 00 1 7
00200 1 7
00000 1 6
00000 1 7
0000060
0
0000020
0000040
0000060
0000 1 00
0000200
0000400
000 1 000
0002000
0004000

I* l i ne d isc i p l i ne 0 modes *I
#defi ne IS IG 000000 1
#defi ne ICANON 0000002
#defi ne XCASE 0000004
#defi ne ECHO 00000 1 0
#defi ne ECHOE 0000020
#defi ne ECHO K 0000040
#defi ne ECHONL 0000 1 00
#defi ne NOFLSH 0000200
#defi ne XCLU DE 0 1 00000

termio.h Include File

!* *V7* exc lus ive use */

D-3

ter m io.h Include File

I* external protocol modes * I
#defi ne XLS IG 0000 1 77
#defi ne RS232 0000000
#defi ne RS422 000000 1
#defi ne RS485 0000002
#defi ne XHDLC 000 1 000
#defi ne XSDLC 0002000
#defi ne XB ISC 0004000
#defi ne X25 00 1 0000
#defi ne XMTDP 0020000

#defi ne SSPEED 1 3

I*
* loctl control packet
*I
struct term i o {

};

D-4

unsigned short
unsigned short
unsi gned short
uns igned short
char
uchar t

I* type of l i ne s igna l i ng *I
I* RS 232 1 i ne *I
I* RS 422 l i ne *I
I* RS 485 1 i ne *I
I* hd I c packet protocol *I
I* sd lc packet protocol *I
I* b i -sync protocol *I
I* CCITT x .25 packet protocol *I
I* m u ltid rop device *I

XENIX 286 D evice Drivers

I* defau l t speed : 7 = 300, 1 3 = 9600 baud *I

c i flag ;
c-oflag ;
c-cflag ;
c-lflag ;
c-l i ne;
c-cc[NCC] ;

I* i nput modes *I
I* output modes *I
I* control modes *I
I* l i ne d i sc ipl i ne modes *I
I* l i ne d i sc i p l i ne *I
I* control chars *I

APP E N DI X E
b uf. h I NCLU D E F I LE

This appendix lists the buf.h include file, which is included by block drivers. Chapt er 5 ,
"Block Drivers", contains a more detailed description of the buf data structure.

I*
* TH IS F I LE CONTA I NS CODE WH ICH IS DES IG N E D TO B E
* PORTABLE B ETWEEN D I F FERENT MACH I N E ARCH ITECTU RES
* AN D CON F IG U RATIONS. IT SHOU LD NOT REQU I RE ANY
* MODIF ICATIONS WHEN ADAPTI NG XEN IX TO N EW HARDWARE .
*I

I*
* Each buffer i n the pool is usual ly doub ly l i nked i nto 2 l i sts :
* the device with which it i s currently assoc iated (always)
* and a lso on a l i st of b locks avai lab le for a l l ocation
* for other use (usual ly) .
* The latter l i st i s kept in l ast-used order, and the two
* l i sts are doubly l i nked to make it easy to remove
* a buffer from one l i st when it was fou nd by
* looki ng through the other.
* A buffer is on the ava i lab le l i st, and i s l i ab le
* to be reassigned to another d i sk block, i f and on ly
* i f it i s not marked BUSY. When a buffer is busy, the
* avai lab le- l i st poi nters can be used for other pu rposes.
* Most drivers use the forward ptr as a l i nk i n thei r 110 active queue.
* A buffer header conta i ns a l l the i nformation requ i red to perform 110.
* Most of the routi nes which mani pu l ate these thi ngs are i n b io .c .
*I
struct buf
{

i nt
struct
struct
struct
struct
dev t
unsigned
paddr t

#defi ne paddr(X)
daddr t
char
unsigned
*I
ushort
queue *I

};

b flags;
buf * b forw; -
buf * b back;
buf *av forw; -
buf *av back;
b dev; -
b bcount;
b
-

paddr; -
X- > b padd r -

b bl kno; -
b error;
i ntb resi d ;

b cyl i n ; -

I* see defi nes below *I
I* headed by d

_
tab of conf. c *I

I* I I *I
I* position on free l i st, *I
I* if not BUSY* I
I* maj or + mi nor device name *I
I* transfer cou nt *I
I* physica l add ress *I

I* block # on device *I
I* retu rned after 1/0 *I
I* words not transferred after error

I* cyl i nder number for d i sk i/o

E-1

buf.h Include F ile

extern
extern
extern
extern
extern
extern

struct buf buf[] ;
struct buf bfreel i st;
struct buf * l p p;
i nt lp count;
i nt l p-wmark;
char sabuf[] [BSIZE] ;

B U FMAPOU T
bigetl () ;

XENIX 2 8 6 Device Drivers

I* The buffer pool itse lf *I
I* head of ava i lab le l i st *I
I* Low priority poi nter *I
I* N u m ber of l ow prior ity buffers *I
I* Low pr iority water mark *I

#ifdef
long
#else
#defi ne
#defi ne
#defi ne
#defi ne
#defi ne
#defi ne
#end i f

bigetc(bp,cp) (*(char *) (bp- > b padd r + cp))
bi get(bp,cp) (*(i nt *) (bp- > b padd r + cp))
b igetl (bp,cp) (*(l ong *) (bp- > b paddr + cp))
bi putc(bp,cp,c) (*(char *) (bp- > b paddr + cp) = c)
bi put(bp,cp,c) (* (i nt *) (bp- > b paddr + cp) = c)
b i putl (bp,cp,c) (*(l ong *) (bp- > b _paddr + cp) = c)

paddr _ t bufbase;

I*
* These flags are kept i n b fl ags.
*I -

#defi ne B WRITE 0
#defi ne B-READ 0 1
#defi ne B-OON E 02
#defi ne B-E RROR 04
#defi ne B-BUSY 0 1 0

ifdef DH ISTO
I*

I* non-read pseudo-flag *I
I* read when 1/0 occurs *I
I* transacti on fi n i shed *I
I* transact ion aborted *I
I* not on av forwlback l i st *I

* We are runn i ng out of bits i n the buffer flags. There is on ly one
* bit flag left which is 040000. Si nce B MAP and B PHYS are not used
* I stold them for the DH ISTO program-:-B PHYS was set i n mdeplphysi o
* but never tested . -

*I
#defi ne
#defi ne
#defi ne

#else

#defi ne
#defi ne
#end i f

E-2

B BM ISS
B-USERB
DH MAX

020
040
8 1 92

020
040

I* S ign i fi es a buffer m iss, i .e went to d i sk *I
I* S ign i fi es a user buffer * I
I* Maxi mum number of dh i sto dev ice data poi nts *I

I* Physi ca i iO potentia l ly usi ng U N I BUS map *I
I* Th is bl ock has the U N I BUS map a l l ocated *I

XENIX 2 8 6 Device Drivers buf .h Include F ile

#defi ne
#defi ne
#defi ne
#defi ne
#defi ne
#defi ne
#defi ne
#defi ne
#define

I*

B WANTE D 0 1 00
B-AG E 0200
B-ASYNC 0400
B-DELWRI 0 1 000
B-OPEN 02000
B-STALE 04000
B-CYLI N 0 1 0000
B-LOWPRI 020000
B-UAREA 0 1 00000

I* issue wakeup when BUSY goes off *I
I* de l ayed write for correct agi ng *I
I* don't wa it for 110 com pletion *I
I* don't write ti l l bl ock leaves avai lab le l i st *I
I* open routi ne ca l l ed *I

I* buffer contai ns a cyl grp header *I
I* Buffer conta ins l ow pri ority data *I
I* add u-area to a swap operation *I

* Fast access to buffers in cache by hash i ng .
*I

#defi ne bhash(d ,b) ((struct buf *)&hbuf[((i nt)d + (i nt)b)&v. v h mask])

struct hbuf
{

};

i nt b flags;
stru ct bUt * b forw;
struct buf *b -back;

extern struct h buf hbuf[] ;

E-3

APP E N DI X F
iobuf .h I NCLU D E FI LE

This appendix lists the iobuf.h include file, which is included by block drivers. Chapter
5, "Block Drivers", describes the iobuf data structure in more detail.

I*
* TH IS F I LE CONTAINS CODE WH ICH IS DESI G N E D TO B E
* PORTABLE B ETWEEN D I FFERENT MACH I N E ARCH ITECTU RES
* AND CONF IG U RATIONS. IT SHOU LD NOT REQU I RE ANY
* MOD I F ICATIONS WH EN ADAPTI NG XEN IX TO N EW HARDWARE.
*I

I*
* Each block device has a iobuf, wh ich contai ns private state stuff
* and 2 1 i st heads: the b forwlb back l i st, which is doubly l i nked
* and has a l l the bufferscurrently associated with that maj or
* devi ce; and the d actfld actl l i st, which i s pri vate to the
* device but in fact Is alwaysused for the head and ta i l
* of the 1/0 queue for the device .
* Various routi nes i n bio.c l ook at b forwlb back
* (notice they are the same as in theouf structu re)
* but the rest is private to each devi ce d ri ver .
*I
struct i obuf
{

};

#defi ne
#defi ne

#defi ne
#defi ne
#defi ne

i nt b flags; I* see buf.h *I
struct bUf * b forw; I* fi rst buffer for th i s dev *I

-struct buf *b back; I* l ast buffer for this dev *I
struct buf *b -actf; I* head of 110 queue *I
struct buf * b -actl ; I* ta i l of 110 queue *I

-dev t b dev; I* maj or + m i nor d evi ce name *I
char b-active; I* busy flag *I

-char b errcnt; I* error count (for recovery) *I
-physadr io add r; I* csr address *I
-i nt io s 1 ; I* space for d ri vers to l eave th i ngs
-*I

i nt io s2; I* space for d rivers to l eave thi ngs
*I

tabin it(dv,stat) {O,O,O,O,O,makedev(dv,O) ,O,O,O,O,O,stat,O,O}
N DEVREG (si zeof(struct devi ce)lsi zeof(i nt))

B ONCE 01
B-TAPE 02
B-TIM E 04

I* flag for once only d rive r operations *I
I* th is is a magtape (no bdwrite) *I
I* for timeout use *I

F- 1

APPE N DI X G
maste r F I LE

This appendix lists a n example of the master file, which you must edit t o specify the
configuration of your XENIX 286 system. Note that the master file that you receive
with your XENIX syste m may be different. Chapter 6, "Adding Drivers t o the
Configuration", contains more inform ation about the master file.

* The fol l owi ng devi ces are those that can be specif ied in the system
* descri pti on fi le . The name specif ied must agree with the name shown.
*
* The fi rst twelve entries i n both the l l bdevswll and the 11 Cdevswll are
* reserved for use as b lock devi ces. The last four of these entries
* are reserved for add it ional I ntel devi ces and customer b lock devi ces.
* Al l block devi ces have the same ll bdevsw ll and ll cdevswll number.
* The I I cmaj I I number 1 i s reserved for use by the memory dri ver.
*
*name vsi z msk typ hnd l r na bmaj cmaj # na
* 1 2 3 4 5 6 7 8 9 1 0

vec 1
1 1

vec2 vec3 vec4
1 2 1 3 1 4

* -
i2 1 5 1 0 1 37 0 1 4 i2 1 5 0 0 0 2 - 1 0005 0 0 Oa
i 2 1 6 1 0 1 37 0 1 4 i2 1 6 0 2 2 2 - 1 0005 0 0 Oa
i 2 1 4 1 0 1 37 0 1 4 i2 1 4 0 3 3 2 - 1 0005 0 0 Oa
i208 1 0 1 37 0 1 4 i208 0 4 4 2 - 1 0003 0 0 Oa
ramd 0 0 1 36 054 ramd 0 5 5 1 - 1 0 0 0 Oa
xlog 1 0 1 37 0 1 4 x log 0 6 6 2 - 1 0005 0 0 Oa
*
* The next twe lve entri es i n the 11 Cdevswll are reserved for character
* devi ces. The I I cmaj I I number 1 2 is reserved for use by the tty dr iver.
*
l p 0 1 32 004 l p 0 0 1 3 1 - 1 0 1 07 0 0 Oa
i74 0 1 37 004 i 74 0 0 1 4 1 - 1 0006 0 0 Oa
i 1 88 0 1 37 004 i 1 88 0 0 1 5 2 - 1 0003 0002 0 Oa
i 552 0 1 37 004 i 552 0 0 1 6 1 - 1 0004 0 0 Oa
i278 0 1 37 004 i278 0 0 1 7 1 - 1 0003 0 0 Oa
i 544 0 1 37 004 i 544 0 0 1 8 4 - 1 0003 0 0 Oa
i 534 0 1 37 004 i 534 0 0 1 9 4 - 1 0003 0 0 Oa
*
* These are I ntel devi ces that use an i nterrupt vector but do not
* have any ll bdevswll or 1 1 Cdevswll entry.
*
debug 0 0 dbg 0 0 0 - 1 000 1 0 0 Oa
slave7 0 0 sl 0 0 0 - 1 0007 0 0 Oa
*
* The fol l owi ng devi ces must not be speci fi ed i n the system descri pti on
* fi l e (xeni xconf) . These are pseudo d rivers and the c lock driver.
*
memory 0 06 0324 mm 0 - 1 1 0 0 0 0 Oa
tty 0 027 0324 sy 0 - 1 1 2 0 0 0 0 Oa
clock 1 000 032 1 0 - 1 - 1 0 0 0 0 Oa

G - 1

master File XENIX 2 8 6 Device Drivers

$$$
*
* The fol l owi ng are the l i ne d i sci pl i ne tab le entri es.
*
tty ttopen ttclose ttread ttwrite ttioctl tti n ttout nu l l dev

$$$$$
*
* The fol l owi ng entri es form the a l i as table .
*
i 2 1 5 d i sk
i 1 88 seria l
sm sim
$$$
*
* The fol l owi ng entri es form the tunable parameter table .
*
buffers N B U F 0
sabufs NSABU F 20
hashbuf NHBU F 1 28
i nodes N I NODE 1 00
fi l es N F I LE 1 00
mounts NMOU NT 6
coremap CMAPS IZ (NPROC*2)
swapmap SMAPS IZ (NPROC*2)
ca l l s NCALL 25
procs NPROC 50
texts NTEXT 40
c l i sts NCLIST 1 20
locks NFLOCKS 50
maxproc MAXU PRC 1 5
ti mezone T IM EZO N E (8*60)
pages NCOREL 0
dayl i ght DSTFLAG 1
cmask CMASK 0
maxprocmem MAXM EM 0
shdata NSDSEGS 25
maxbuf MAXBU F 1 92

G-2

APPE N DI X H
xen ixconf F I LE

This appendix lists an example of the xenixconf file, which you edit to specify the
configuration of your XENIX 2 8 6 syst e m. Note that the xenixconf file that you receive
with your XENIX syste m m ay be different. Chapt er 6, "Adding Drivers to the
Configurat ion", cont ains more infor m ation about the xenixconf file.

* TH IS F I LE CONTAI NS CODE WHICH IS SPEC I F IC TO THE
* INTEL 286/3 1 0 COM PUTER AND MAY REQU I RE MODI F ICATION
* WHEN ADAPT ING X E N IX TO N EW HARDWARE.
*
*
*
*
i 2 1 5
i 534
i 544
i 1 88
i74
lp
ramd
debug
root
pi pe
swap
*
*
*
ti mezone
dayl i ght
cmask

Devi ces

1
0
0
0

i 2 1 5 1
i 2 1 5 1
i 2 1 5 2 1 4 1 04

Local parameters

0

(8*60)
1

H-1

APP E N DI X I
c.c FI LE

This appendix lists a n example o f the c.c source file, which specifies your XENIX 2 8 6
syste m configuration, and which i s derived fro m master and xenixconf by running the
program config. Note that the c.c file on your XENIX syste m m ay be different. M ore
information about c.c is contained in Chapter 6, "Adding Drivers to the Configurat ion."

!*
* Configu ration i nformation
*I

#defi ne NBU F 0
#defi ne NSABU F 20
#defi ne NHBU F 1 28
#defi ne N I NODE 1 00
#defi ne N F I LE 1 00
#defi ne NMOU NT 6
#defi ne CMAPS IZ (NPROC* 2)
#defi ne SMAPS IZ (NPROC* 2)
#defi ne NCALL 25
#defi ne NPROC 50
#defi ne NT EXT 40
#defi ne NCLIST 1 20
#defi ne NFLOCKS 50
#defi ne MAXUPRC 1 5
#defi ne TI M EZON E (8*60)
#defi ne NCOREL 0
#defi ne DSTFLAG 1
#defi ne CMASK 0
#defi ne MAXMEM 0
#defi ne NSDSEGS 25
#defi ne MAXBU F 1 92

#i ncl ude I I • ./h/param . h 11
#i ncl ude " . ./h/conf. h 11
#i ncl ude I I • ./h/iobuf. h I I

extern nodev(), n u l ldev(), novec() ;

i nt clock();
i nt dbg i ntr() ;
i nt i 2 1 5i ntr() ;
i nt i74i ntr() ;
i nt l pi ntr() ;

1- 1

c.c File XENIX 2 8 6 Device Drivers

i nt (*veci ntsw[])() =

{
clock,
dbg i ntr,
novec,
novec,
novec,
i 2 1 5i ntr,
i 74i ntr,
no vee,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
no vee,
no vee,
no vee,
novec,
novec,
no vee,
no vee,
novec,
no vee,
novec,
novec,
novec,
novec,
no vee,
no vee,
no vee,
novec,
novec,
novec,
novec,
novec,
novec,
no vee,
novec,
novec,
novec,
novec,
no vee,
novec,
novec,
novec,
novec,

l-2

XENIX 2 8 6 Device Drivers

};

extern
extern

extern
extern
extern
extern

extern
extern

struct
{
I* 0*1
I* 1 *I
I* 2*1
I* 3*1
I* 4*1
I* 5*1
};

novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
novec,
no vee,
novec,
novec,
novec,
novec,
no vee,
novec,
no vee,
no vee,
l pi ntr,
novec,

struct iobuf i 2 1 5tab;
i 2 1 5open() , i2 1 5close(), i 2 1 5 i n it() , i 2 1 5read() , i 2 1 5write() ,
i 2 1 5 i octl () , i 2 1 5strategy();
i 74open() , i74cl ose() , i74i n it() , i 74read () , i 74write() , i 74ioctl () ;
l popen() , l pcl ose() , l p in it() , l pwrite() ;
struct i obuf ramdtab;
ramdopen() , ramdcl ose(), ramd i n it() , ramdread() , ramdwrite() ,
ramdstrategy() ;
mmread(), mmwrite() ;
syopen() , syread() , sywrite() , syi octl () ;

bdevsw bdevsw[] =

i 2 1 5open,
nodev,
nodev,
nodev,
nodev,
ramdopen,

i 2 1 5cl ose,
nodev,
nodev,
nodev,
nodev,
ramdclose,

i 2 1 5strategy,
nodev,
nodev,
nodev,
nodev,
ramdstrategy,

& i 2 1 5tab,
0,
0,
0,
0,
&ramdtab,

c.c File

1-3

c.c File XENIX 2 8 6 Device Drivers

struct cdevsw cdevsw[] =
{
I* 0*1
I* 1 *I
I* 2*1
I* 3*1
I* 4*1
I* 5*1
I* 6*1
I* 7*1
I* 8*1
I* 9*1
I* 1 0*1
I* 1 1 *I
I* 1 2*1
I* 1 3*1
I* 1 4*1
};

i nt
i nt

dev t
-dev t

dev -t
daddr t
i nt

i nt
{

};

i nt

struct
{
1*0*1

};

i nt

#i ncl ude

1-4

i 2 1 5openl
nu l l devl
nodevl
nodevl
nodevl
ramdopenl
nodevl
nodevl
nodevl
nodevl
node vi
nodevl
syopenl
l popenl
i 74openl

bdevcnt =
cdevcnt =

rootdev =
pi pedev =
swapdev =
swplo = 1 . I
nswap = 4 1 04;

(*d i n itsw[]) () =

i 2 1 5 i n i t1
i 74i n it1
l pi n it1
ramd i n it1
(i nt (*) ())0

i 2 1 5cl osel i 2 1 5read 1
nu l ldevl mmread l
nodevl nodevl
nodevl nodevl
nodevl nodevl
ramdc losel ramdread l
nodevl nodev,
nodevl nodevl
nodevl nodevl
nodevl nodevl
nodevl nodevl
nodevl nodevl
nu l l devl syreadl
l pc l osel nodevl
i 74closel i 74read 1

6 · I
1 5 ;

makedev(01 1) ;
makedev(01 1) ;
makedev(012) ;

i 2 1 5writel
mmwrite,
nodevl
nodevl
nodevl
ramdwritel
nodevl
nodevl
nodevl
nodevl
nodevl
nodevl
sywritel
l pwrite1
i 74writel

ttopen() l ttc l ose()l ttread()1 ttwrite()l tti octl () l tti n()l
ttout() ;

l i nesw l i nesw[] =

ttopenl ttc losel ttread l ttwritel tti octl , tti n l ttoutl nu l l devl
0

l i necnt = 1 ;

I I • ./hlspace. h I I

i 2 1 5 ioctl l
nodevl
nodevl
nodevl
nodevl
nodevl
nodevl
nodevl
nodevl
nodevl
nodevl
nodevl
syioct1 1
nodevl
i 74ioct l 1

APP E N DIX J
R E LATE D PU B LICATI O N S

Copies of the following publications can be ordered fro m

Literature Depart ment
Intel Corporation
3 0 6 5 Bowers Avenue
Santa Clara, CA 9 5 0 5 1

Guide to Using the iSBC 286/10 Single Board Computer, Order Nu mber 14 6 2 7 1 - - board
options for interrupt and 1/0 configurat ion.

Overview of the X EN IX 286 Operating System, Order Nu m ber 1 7 4 3 8 5 -- XENIX history,
XENIX uses, basic XENIX concepts, and an overview of other XENIX manuals.

X EN IX 286 Installation and Configuration Guide, Order Nu mber 1 7 4 3 8 6 -- how to install
XENIX on your hardware and tailor the XENIX configurat ion to your needs.

XENIX 286 User's Guide, Order Nu mber 1 74387 -- a tutorial on the most-used parts of
XENIX, including terminal convent ions, the file system, the screen editor, and the shell.

XENIX 286 Visual Shell User's Guide, Order Nu mber 1 74 3 8 8 -- a XENIX co m m and
interface ("shell") that replaces the standard com m and syntax with a m enu-driven
com mand interpreter.

X EN IX 286 System Administrator's Guide, Order Nu mber 17 4 3 8 9 -- how to perform
syste m ad m inistrator tasks such as adding and re moving users, backing up file syste ms,
and troubleshooting syste m proble ms.

XENIX 286 Communications Guide, Order Nu mber 1 7446 1 -- installing, using, and
adm inistering XENIX networking software.

XENIX 286 Reference Manual, Order Nu mber 1 74 3 9 0 -- all co m mands in the XENI X 2 8 6
Basic Syste m .

XENIX 286 Programmer's Guide, Order Nu mber 1 7 4 3 9 1 - - XENIX 2 8 6 Extended Syste m
com mands used for developing and maintaining programs.

X EN IX 286 C Library Guide, Order Nu mber 17 4 5 4 2 -- standard subroutines used in
program ming with XENIX 2 86 , including all syst e m calls.

XENIX 286 Device Driver Guide, Order Nu mber 1 74 3 9 3 - - (this m anual) how to write
device drivers for XENIX 2 8 6 and add the m to your syste m.

XENIX 286 Text Formatting Guide, Order Nu mber 1 7 4 5 4 1 - - XENIX 286 E xtended
Syste m co m mands used for text processing and formatting.

C is described in The C Programming Language by Brian W. Kernighan and Dennis M .
Ritchie. O n e copy i s supplied with Intel's XENIX product. Additional copies can b e
ordered fro m the publisher, Prent ice-Hall, Inc., Englewood Cliffs, N J 0 7 6 3 2 .

J- 1

I N D E X
1 i nte l® 1 1

�--�

bdevsw, 2-1 1 , 1-3
buf structure, 5-2, E- 1

cblock, 3-1
cdevsw, 2-1 1, 1-4
clist, 3-1
copyin, 2-14
copyout, 2-14

device nu mber, 2 - 1 0
dinitsw, 2-1 1

getc, 3-2

in, 2-13
inb, 2- 1 3
interrupt handling, 2-7
iobuf structure, 5-5, F- 1
iSBC 5 3 4 driver, 4- 1 2
ixxxclose, 2-1 1 , 3-5, 4-8, 5 - 1 3
ixxxinit, 2- 1 1, 3 - 6 , 4-7, 5- 1 1
ixxxintr, 2-1 1 , 3-9, 4-9, 5 - 1 6
ixxxioctl, 2-1 2, 4-1 1 , 5- 1 8
ixxxopen, 2-1 1 , 3-5, 4-8, 5- 1 2
ixxxparam, 4-7
ixxxproc, 4-1 0
ixxxread, 2-1 1 , 3-6, 4-9, 5- 1 7
ixxxstart, 3-8, 4- 1 1 , 5- 1 5
ixxxstrategy, 2 - 1 2 , 5-14
ixxxwrite, 2 - 1 2 , 3-7, 4-9, 5-1 7

line discipline routines, 4-2

m ajor m acro, 2 - 1 0
m akefiles, 6-7
m aster, 6-2, G-1
m e mory- mapped 1/0, A- 1
minor m acro, 2- 1 0 ·

out , 2 - 1 3
outb, 2-13

peek routines, A -2
poke routines, A -3
proc table entry, 2-5
putc, 3-2
sleep, 2-6
spl routines, 2-8

ttclose, 4-4
ttin, 4-5
ttinit, 4-3
ttioco m , 4-5
ttioctl, 4-5
ttopen, 4-4
ttout, 4-6
ttread, 4-4
ttwrite, 4-4
tty structure, 4-2, B- 1 , C-1

u structure, 2-5, 2 - 1 4

vecintsw, 2 - 1 1 , 1-2

w akeup, 2-6

xenixconf, 6-6, H - 1

lndex- 1

REQ U E ST FOR READ E R'S COM M E NTS

X E N I X 286
Devi ce Dri ver G u i de

1 74393-00 1

I ntel 's Tec h n i ca l P u b l i cati ons Depa rt m ents attem pt to p rov i d e p u b l i cati ons that m eet the needs of a l l
I ntel p rod u ct users. Th i s form l ets you pa rt i c i pate d i rect l y i n the p u bl i cati o n p rocess . You r com m e nts
wi l l h e l p us correct a n d i m prove o u r p u bl i cati ons. P l ease ta ke a few m i n utes to respon d .

P l ease restr i ct you r com m e nts to the u sa b i l i ty, accu racy, orga n i zat i o n , a n d com p l ete n ess of t h i s
p u bl i cati o n . I f you h a ve a n y com m e nts o n the p rod u ct that th i s p u b l i cati on d escr i bes, p l ease contact
you r I ntel representati ve . If you w i sh to ord e r p u bl i cati ons, contact the L i te ratu re Department (see
page i i of t h i s m a n u a l) .

1 . Pl ease d esc ri be a ny erro rs you fou nd i n th i s p u b l i cati on (i nc l u d e page n u m ber) .

2 . Does th i s p u b l i cati o n cove r t h e i nfor m at i on you expected o r req u i red ? P l ease m a ke su ggest i o n s
for i m provem ent.

3. I s th i s t h e r i g h t type of p u b l i cati o n for you r n eeds? I s it at t h e r i g ht l evel ? What oth e r types of
pu bl i cati ons a re need e d ?

4. Did you have a n y d i ff i c u l ty u nd e rsta n d i ng d escr i pti ons or word i ng ? Where?

5 . Pl ease rate th i s p u b l i cati on o n a sca l e of 1 to 5 (5 bei ng the best rati n g) .

NAM E __ ___
T I T L E

COM PAN Y NAM E/D E PARTM E N T

DAT E

A D D RE$5 --
C I TY STATE --------------------------

(CO U N T R Y)

Pl ease c h e c k here i f y o u req u , re a wr , tten rep ly D

Z I P CO D E ---------------------

WE ' D LI K E YO U R CO M M E NTS . . .

Th i s d o c u m ent i s one of a ser i es descr i b i n g I ntel p rod u cts. You r com m e nts on the back of th i s for m
wi l l h e l p u s p rod u ce better m a n u a l s . E a c h rep l y wi l l b e ca refu l l y revi ewed by the responsi b l e perso n .
Al l com m e nts a nd s u g g esti ons becom e t h e p roperty of I ntel Corporat i o n .

B U S I N E S S R E P LY MAI L
Fl RST CLASS PERMIT NO. 79 BEAVERTON, OR

POSTAG E W I L L B E PAI D B Y A D D RESS E E

Inte l Corporati o n
5200 N . E . E l a m Yo u n g Pa rkwa y
H i l l sb o ro, O re g o n 97 1 23

I SO-N T E C H N I CAL PU B LICATI O N S H F2- 1 -830

NO POSTAGE
N ECESSA R Y

I F MAILED
I N TH E

U N I TED STATES

intJ
I NTEL CORPORATION, 3065 Bowers Avenue, Santa Cl ara, Ca l i forn ia 9505 1 (408) 987-8080

Printed in U .S .A.

SOFTWARE

04 71 /7K/0685/WCP/ AD

