
XENIX* 286

C LIBRARY GUIDE

*XENIX is a trademark of Microsoft Corporation.

Copyright© 1984, Intel Corporation
Intel Corporation, 3065 Bowers Avenue. Santa Clara, Caltforn'a 95051 Order N u m ber : 1 74542-00 1

XENIX* 286

c LI B RA RY G U ID E

Order Number: 174542-001

*XENIX is a trademark of Microsoft Corporation.

Copynght @ 1984 Intel Corporation

I Intel Corporat1on, 3065 Bowers Avenue, Santa Clara, California 95051 I

The information in this document is subject to change without notice.

Intel Corporation makes no warranty of any kind with regard to this material, including, but not limited to, the implied
warranties of merchantability and fitness for a particular purpose. Intel Corporation assumes no responsibility for any errors
that may appear in this document. Intel Corporation makes no commitment to update or to keep current the information
contained in this document.

Intel Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in an Intel product. No
other circuit patent licenses are implied.

Intel software products are copyrighted by and shall remain the property oflntel Corporation. Use, duplication or disclosure is
subject to restrictions stated in Intel's software license, or as defined in ASPR 7-104.9 (a) (9).

No part of this document may be copied or reproduced in any form or by any means without prior written consent of Intel
Corporation.

The following are trademarks oflntel Corporation and its affiliates and may be used only to identify Intel products:

BITBUS im iRMX Plug-A-Bubble
COMMputer iMDDX iSBC PROMPT
CREDIT iMMX iSBX Prom ware
Data Pipeline Insite iSDM QUEST .£i-enius in tel iSXM Que X
1 intelBOS Library Manager

Ripplemode
i Intelevision MCS
I2ICE inteligent Identifier Megachassis RMX/80

ICE inteligent Programming MICROMAINFRAME RUPI

iCS Intellec MULTIBUS Seamless

iDBP Intellink MULTICHANNEL SLD
iDIS iOSP MULTIMODULE SYSTEM2000
iLBX iPDS OpenNET UPI

XENIX is a trademark of Microsoft Corporation. Microsoft is a trademark of Microsoft Corporation. UNIX is a trademark of
Bell Laboratories.

REV. REVISION lllSTORY DATE

-001 Original issue 11/84

ii 8/84

CONTENTS

CHAPTER 1
INTRODUCTION
Prerequisites
Manual Organization
Notation
Using the C Library Functions

CHAPTER 2
STANDARD VO LffiRARY
Preparing for the 1/0 Functions

Special Names
Special Macros

Using Command Line Argu ments
Using the Standard Files

Reading from the Standard Input
Writing to the Standard Output
Redirecting the Standard Input
Redirecting the Standard Output
Piping the Standard Input and Output
Program Example

Using the Stream 1/0 Functions
Using File Pointers
Opening a File
Reading a Single Character
Reading a String from a File
Reading Records from a F ile
Reading Formatted Data from a File
Writing a Single Character
Writing a String to a File
Writing Records to a File
Writing Formatted Output
Testing for the End of a File
Testing for F ile Errors
Closing a File
Program Example

Using More Stream Functions
Using Buffered Input and Output
Reopening a File
Setting the Buffer
Putting a Character Back into a Buffer
Flushing a F ile Buffer

TABLE OF CONTENTS

PAGE

1-1
1-1
1-2
1-3

2-1
2-1
2-2
2-2
2-3
2-4
2-6
2-8
2-9
2-9
2-9

2-10
2-11
2-11
2-12
2-13
2-13
2-14
2-15
2-15
2-16
2-16
2-17
2-18
2-18
2-19
2-20
2-21
2-21
2-22
2-22
2-23

i i i

Table of Contents

Using the Low-Levell/0 Functions
Using File Descriptors
Opening a File
Reading Bytes from a File
Writing Bytes to a File
Closing a File
Program Examples

Using Random Access I/0
Moving the Character Pointer
Moving the Character Pointer in a Stream
Rewinding a File
Getting the Current Character Position

CHAPTER 3
SCREEN PROCESSING
Screen, Processing Overview
Using the Library
Preparing for the Screen Functions

Init ializing the Screen
Using Term inal Capability and Type
Using Default Terminal Modes
Using Default Window Flags
Using the Default Terminal Size
Terminat ing Screen Processing

Using the Standard Screen
Adding a Character
Adding a String
Printing Formatted Output
Reading a Character fro m the Keyboard
Reading a String from the Keyboard
Reading Formatted Input
Moving the Current Posit ion
Inserting a Character
Inserting a Line
Deleting a Character
Deleting a Line
Clearing the Screen
Clearing a Part of the Screen
Refreshing from the Standard Screen

Creating and Using W indows
Creating a Window
Creating a Subwindow

iv

Adding and Printing to a Window
Reading and Scanning for Input
Moving a W indow's Current Position
Inserting Characters
Deleting Characters
Clearing the Screen
Refreshing from a Window
Overlaying W indows
Overwriting a Screen
Moving a Window

XENIX C Libraries

PAGE

2-24
2-24
2-24
2-25
2-26
2-26
2-26
2-29
2-29
2-3 0
2-3 0
2-31

3-1
3-2
3-3
3-3
3-4
3-5
3-5
3-5
3-5
3-6
3-6
3-7
3-7
3-8
3-8
3-9

3-1 0
3-1 0
3-1 0
3-11
3-11
3-12
3-12
3-12
3-13
3-13
3-14
3-14
3-16
3-17
3-18
3-18
3-19
3-20
3-21
3-21
3-22

XENIX C Libraries

Reading a Character fro m a W indow
Touching a Window
Deleting a W indow

Using Other Window Functions
Drawing a Box
Displaying Bold Characters
Restoring Nor mal Characters
Sett ing Window Flags
Scrolling a Window

Combining Move ment with Action
Controlling the Terminal

Setting a Terminal Mode
Clearing a Terminal Mode
Moving the Terminal's Cursor
Getting the Terminal Mode
Setting a Terminal Type
Reading the Terminal N arne

CHAPTER 4
CHARACTER AND STRING PROCESSING
Using the Character Functions

Testing for an ASCII Character
Converting to ASCII Characters
Testing for Alphanu merics
Testing for a Letter
Testing for Control Characters
Testing for a Deci mal Digit
Testing for a Hexadecimal D igit
Testing for Printable Characters
Test ing for Punctuation
Testing for White Space
Testing for Case in Letters
Converting the Case of a Letter

Using the String Functions
Concatenating Strings
Com paring Strings
Copying a String
Getting a String's Length
Concatenating Characters to a String
Comparing Characters in Strings
Copying Characters to a String
Reading Values from a String
Writ ing Values to a String

CHAPTER 5
PROCESS CONTROL
Using Processes
Calling a Program
Stopping a Progam
Overlaying a Program
Executing a Program through a Shell
Duplicating a Process

Table of Contents

PAGE

3-22
3-23
3-23
3-24
3-24
3-24
3-25
3-25
3-26
3-26
3-27
3-27
3-28
3-28
3-29
3-29
3-29

4-1
4-1
4-2
4-2
4-3
4-3
4-4
4-4
4-4
4-5
4-5
4-5
4-6
4-6
4-7
4-7
4-8
4-8
4-9
4-9

4-10
4-10
4-11

5-1
5-2
5-3
5-3
5-5
5-5

v

Table of Contents

Waiting for a Process
Inheriting Open Files
Program Example

CHAPTER 6
PIPES
Opening a P ipe to a New Process
Reading and Writing to a Process
Closing a P ipe
Opening a Low- Level Pipe
Reading fro m and Writ ing to a Low-Level P ipe
Closing a Low-Level Pipe
Program Examples
FIFOs

CHAPTER 7
SIGNALS
Using the signal Function

Disabling a Signal
Restoring a Signal's Default Action
Catching a Signal
Restoring a Signal
Program Example

Controlling Execution with Signals
Delaying a Signal's Action
Using Delayed Signals with Syste m Functions
Using Signals in Interactive Programs

Using Signals in Multiple Processes
Protecting Background Processes
Protecting Parent Processes

CHAPTER 8
USING SYSTEM RESOURCES
Allocating Space

Allocating Space for a Variable
Allocating Space for an Array
Reallocating Space
Freeing Unused Space

Locking Files
Preparing a File for Locking
Locking a File
Program Example

Using Semaphores

vi

Creating a Semaphore
Opening a Semaphore
Requesting Control of a Semaphore
Checking the Status of a Se maphore
Relinquishing Control of a Semaphore

XENIX C Libraries

PAGE

5-6
5-7
5-7

6-1
6-2
6-3
6-3
6-4
6-5
6-5
6-7

7-1
7-2
7-3
7-4
7-5
7-6
7-6
7-7
7-8
7-8
7-9

7-1 0
7-1 0

8-1
8-1
8-2
8-3
8-3
8-4
8-4
8-5
8-5
8-6
8-6
8-7
8-8
8-8
8-9

XENIX C Libraries

Using Shared Memory
Creating a Shared Data Segment
Entering a Shared Data Segment
Leaving a Shared Data Segment
Getting the Current Version Nu mber
Wait ing for a Version Nu mber
Freeing a Shared Data Segment

CHAPTER 9
ERROR PROCESSING
Using the Standard Error File
Using the errno Variable
Printing Error Messages
Using Error Signals
Encountering Syste m Errors

APPENDIX A
ASSEMBLY LANGUAGE INTERFACE
C Calling Sequence
Entering an Asse mbly Routine
Return Values
Exiting a Routine
Program Example

APPENDIX B
XENIX 286 RELEASE 3 PROGRAMMING DIFFERENCES
Executable File Format
Revised Syste m Calls
ioctl Function
Version 7 Additions
Path N arne Resolution
Using the mount and chown Funct ions
Super-Block and File Syste m Format
Change in Word Order within Double-Words

APPENDIX C
SYSTEM FUNCTIONS
Finding Functions
Error Codes
Definitions

Process ID
Parent Process ID
Process Group ID
tty Group ID
Real U ser ID and Real Group ID
Effect ive User ID and Effective Group ID
Super-User
Special Processes
Filename
Pathnam e and Path Prefix
Directory

Table of Contents

PAGE

8-9
8-10
8-1 1
8-1 1
8-12
8-13
8-13

9-1
9-2
9-2
9-3
9-3

A-1
A-1
A-2
A-2
A-2

B-1
B-1
B-1
B-2
B-2
B-2
B-2
B-2

C-1
C-2
C-6
C-6
C-6
C-6
C-6
C-6
C-6
C-7
C-7
C-7
C-7
C-7

vii

Table of Contents

Root Directory and Current Working Directory
File Access Permissions

Function Descriptions
a641, 16a

viii

abort
abs
access
acct
alarm
assert
at of, atoi, atol
BESSEL
bsearch
chdir
chmod
chown
chroot
chsize
close
CONY
creat
creatse m
crypt, set key, encrypt
cterm id
ctime, localt ime, gmtime, ascti me, tzset
CTYPE
curses
cuserid
DBM
defopen, defread
dup, dup2
ecvt, fcvt, gcvt
EXEC
exit
exp, log, log1 0, pow, sqrt
fclose, fflush
fcntl
ferror, feof, clearerr, fileno
ceil, fabs, floor, fmod
fopen, freopen, fdopen
fork
fread, fwrite
frexp, ldexp, modf
fseek, ftell, rewind
gam ma
getc, getchar, fgetc, getw
getcwd
getenv
getgrent, getgrgid, getgrnam, setgrent, endgrent
getlogin
get opt
get pass

XENIX C Libraries

PAGE

C-8
C-8
C-8
C-9

C-10
C- 1 1
C- 12
C-14
C-1 5
C- 16
C- 17
C-18
C-19
C-2 0
C-2 1
C-23
C-24
C-2 5
C-2 6
C-2 7
C-28
C-3 0
C-32
C-33
C-34
C-36
C-37
C-39
C-40
C-42
C-43
C-44
C-45
C-49
C-5 0
C-5 1
C-5 2
C-54
C-5 5
C-56
C-58
C-59
C-60
C-6 1
C-62
C-63
C-64
C-65
C-66
C-68
C-69
C-7 1

XENIX C Libraries

getpid, getpgrp, getppid
getpw
getpwent, getpwuid, getpwna m, setpwent, endpwent
gets, fgets
getuid, geteuid, getgid, getegid
hypot
ioctl
kill
ltol, ltol3
link
lock
locking
logname
!search
!seek
malloc, free, realloc, calloc
mknod
mktemp
monitor
mount
nap
nice
nlist
open
opensem
pause
perror, sys _err list, sys _ nerr, errno
pipe
popen, pclose
printf, fprintf, sprintf
profil
ptrace
putc, putcha� fputc, putw
putpwent
puts, fputs
qsort
rand, srand
rdchk
read
regex, regc mp
sbrk, brk
scanf, fscanf, sscanf
sdenter, sdleave
sdget, sdfree
sdgetv, sdwaitv
setbuf
setj mp, longj mp
setpgrp
setuid, setgid
shutdn
signal
sigsem

Table of Contents

PAGE

C-72
C-73
C-74
C-7 5
C-76
C-77
C-78
C-79
C-8 1
C-82
C-83
C-84
C-87
C-88
C-89
C-90
C-92
C-94
C-95
C-97
C-99

C-1 0 0
C-1 0 1
C- 102
C-1 0 5
C-106
C-107
C-1 0 8
C-1 0 9
C-1 1 0
C-113
C-1 14
C-1 17
C-1 19
C-1 2 0
C- 12 1
C-122
C-1 2 3
C-124
C-1 2 6
C-128
C-130
C-133
C-134
C-1 36
C-1 3 7
C-138
C-1 3 9
C-140
C-141
C-142
C-146

ix

Table of Contents

sinh, cosh, tanh
sleep
ssignal, gsignal
stat, fstat
stdio
stime
STRING
swab
sync
syste m
tgetent, tgetnum, tgetflag, tgetstr, tgoto, tputs
time, ftime
ti mes
tmpfile
tmpnam
TRIG
ttyname, isatty
uli mit
umask
umount
una me
ungetc
unlink
us tat
uti me
wait
waitsem, nbwaitse m
write
xlist, fxlist

APPENDIX D
FILE FORMATS
a. out
acct
ar
checklist
core
cpio
dir
dump
file syste m
in ode
master
mnttab
sccsfile
types
ut mp, wt mp

APPENDIX E
RELATED PUBLICATIONS

INDEX

X

XENIX C Libraries

PAGE

C-147
C-148
C- 149
C-1 5 1
C-1 5 3
C- 1 5 5
C- 156
C- 1 5 8
C- 1 5 9
C- 160
C- 1 6 1
C- 163
C-1 6 5
C- 166
C-1 6 7
C- 168
C- 169
C-1 7 0
C- 1 7 1
C-1 7 2
C- 173
C- 1 7 5
C-1 7 6
C- 1 7 7
C- 178
C-180
C-182
C-183
C-1 8 5

D-2
D-3
D-4
D-5
D-6
D-7
D-8

D-1 0
D-1 3
D-14
D-1 7
D- 18
D-22
D-23
D-24

CHAPTER 1
INTRODUCTION

This manual describes functions provided by the C libraries of the XENIX system. Each
library contains multiple functions organized into a single library file. These functions
support device-independent input/output (1/0), display and window 1/0, and operating
system functions such as process control, signaling events, interprocess com municat ion,
dynamic storage allocation, process synchronization, and error processing. Miscellaneous
functions are provided to support nu m eric co mputation, data base program m ing,
encryption, character and string manipulation, and other applications.

Included in the functions described in this manual are all the system calls that define
the XENIX kernel. These functions can be called by the C program mer like all the
others and are not distinguished fro m the other library functions.

Prereq u is ites

This manual presu mes that you understand the C program m ing language and basic
program m ing concepts. This manual also presu mes so me knowledge of XENIX or U NIX.
You should be familiar with the shell sh; all program ming examples using a shell use sh.

Man ual Organ ization

This manual contains eight tutorial chapters (2-9) covering different groups of functions.
Appendix C contains reference descriptions for all the C library functions, including
many that are not mentioned in the tutorial chapters. Chapters in this manual are

1 . Introduction: manual overview, prerequisites, organizat ion, and notation.

2. Standard 1/0 Library: funct ions that allow a program to read and write files and
devices in the XENIX system.

3. Screen Processing: a library of screen processing funct ions including support for
windows.

4. Character and String Processing: functions to classify characters and to copy,
compare, and search strings.

5. Process Control: funct ions that enable a progra m to execute other programs or
create multiple copies of itself.

6 . Pipes: functions for efficient interprocess com munication.

7. Signals: functions that allow programs to control the handling of various syste m
events, including so me caused by program errors.

1-1

Introduction XENIX C Libraries

8. System Resources: funct ions for dynam ic me m ory allocat ion, sharing memory
between processes, locking file regions, and using se m aphores to synchronize use
of other resources.

9. Error Processing: funct ions that support progra m handling of errors returned by
other system functions.

Appendixes in this m anual are

A. Assembly Language Interface: how to call C funct ions fro m assembly language
and how to write assem bly language routines that can be c alled fro m C.

B. XENIX 286 Release 3 Programming Differences: some of the differences between
versions of XENIX and UNIX.

C. System Functions: descriptions of all the C library functions, including m any that
are not mentioned in the tutorial chapters. Also lists error codes used by the
funct ions.

D. File Formats: some infor mation on so me of the file for m ats used in XENI X.

E. Related Publications: Descript ions and ordering inform ation for all XENIX 286
Release 3 m anuals and any other publicat ions referenced b y this m anual.

Notation

These notat ional convent ions are used i n this m anual:

• Literal names are bolded where they occur in text, e.g., /sys/include, printf,
dev_tab, EOF.

• Syntactic categories are italicized where they occur and indicate that you must
subst itute an instance of the category, e.g. , filename.

• In exa mples of dialogue with the XENIX 286 syste m , characters entered by the
user are bolded.

• In synt ax descriptions, optional ite ms are enclosed in brackets ([]).

• Items that c an be repeated one or more t i mes are followed by an ellipsis (•••).

• Items that c an be repeated zero or more t i mes are enclosed in brackets and
followed by an ellipsis ([] •••).

• A choice bet ween items is indicated by separating t he items w ith vertical bars
< I).

1-2

XENIX C Libraries Introduction

Using the C Library Functions

To use the C library functions you must include the proper function call and definitions
in the program and make sure the corresponding library is given when the program is
compiled. The standard C library, contained in the file llbc.a, is automatically given
when you compile a C language program. Other libraries, including the screen updating
and cursor movement library in the file libcurses.a, must be explicitly specified when
you compile a program using the -1 option of the cc com mand (see "cc: a C Compiler" in
the XENIX 286 Programmer's Guide).

1-3

CHA PTE R 2
STANDA RD 1/0 LI B RA RY

Nearly all programs use some form of input and output (1/0). Some programs read from
or write to files stored on disk. Others write to devices such as line printers. Many
programs read fro m and write to the user's terminal. For this reason, the standard C
library provides several predefined 1/0 functions that a program mer can use in
programs. These 1/0 functions are typically i m ple m ented in all C program m ing
environm ents, not just XENIX or UNIX syste ms. Thus programs using these functions
are highly portable.

This chapter explains how to use the I/0 functions in the standard C library. In
particular, it describes

• Com m and line arguments

• Standard input and standard output files

• Stream functions for ordinary files

• Low-level functions for ordinary files

• Random access functions

Preparing for the 1/0 Functions

To use the standard 1/0 functions a program must include the file stdio.h, which defines
the needed constants, macros, and data types. To include this file, place the following
line at the beginning of the program:

#inc l ude < std i o. h >

The actual functions are contained in the library file libc.a. This file is automatically
read whenever you compile a program, so no special argu ment is needed when you
invoke the compiler.

Special Names

The standard I/0 library uses many names for special purposes. In general, these names
can be used in any program that has included the stdio.h file. The following is a list of
the special names:

2-1

Standard 1/0 Library XENIX C Libraries

stdin The name of the standard input file

stdout The nam e of the standard output file

stderr The name of the standard error file

EOF The value returned by the read routines on end-of-file or error

NULL The null pointer, returned by pointer-valued functions to indicate an error

FILE The name of the file type used to declare pointers to streams

BSIZE The size in bytes suitable for an I/0 buf�er supplied by the user

Specia l M a cros

The functions getc, getchar, putc, putchar, feof, ferror, and fileno are actually macros,
not functions. This means that you cannot redeclare them or use them as targets for a
breakpoint when debugging.

Usi n g Com mand Li ne Arg u ments

The XENIX syste m lets you pass information to a program at the same t ime you invoke
it for execut ion. You can do this with com mand line argu ments.

A XENIX com mand line is the line you type to invoke a program. A co m mand line
argument is anything you type in a XENIX co m mand line. A com mand line argument
can be a file name, an option, or a nu mber. The first argu ment in any com mand line
must be the file name of the program you wish to execute.

When you type a co mmand line, the syste m reads the first argu ment and loads the
corresponding program. It also counts the other argu ments, stores the m in me mory in
the same order in which they appear on the line, and passes the count and the locations
to the main function of the program.

To access the argu ments, the main function must have two parameters: argc, an integer
variable containing the argu ment count, and argv, an array of pointers to the argu ment
values. You can define the parameters by using the lines

mai n(argc, argv)
i nt argc ;
char *argv[] ;

at the beginning of the main program function. When a program begins execut ion, argc
contains the count, and each element in argv contains a pointer to one argument.

2-2

XENIX C Libraries Standard I/0 Library

An argum ent is stored as a null-terminated string (i.e., a string ending with a null
character). The first string (referenced by argv[O]) is the program name. The argu ment
count is never less than 1, since the program name is always considered the first
argu ment.

In the following example, com mand line argu ments are read and then echoed on the
term inal screen. This program is similar to the XENIX echo co m mand.

mai n(argc, argv) /* echo arguments */
int argc;
char *argv[] ;
{

i nt i ;

for (i = 1 ; i < argc; i + +)
pri ntf(" % s% c " , argv[i] , (i < a rgc- 1) ? ' ' : '\n') ;

}

In the example above, an extra space character is added at the end of each argu ment to
separate it fro m the next argument. This is required, since the system automatically
removes leading and trailing white space characters (i.e., spaces and tabs) when it reads
the argu ments from the com mand line. Adding a newline character to the last argu ment
is for convenience only; it causes the shell prompt to appear on the next line after the
program terminates.

When typing argu ments on a com mand line, make sure each argument is separated fro m
the others by one or more white space characters. If an argu ment must contain white
space characters, enclose that argu ment in double quotation marks. For example, in the
com mand line

d i splay 3 4 " echo hel l o "

the string "echo hello" i s treated as a single argu ment. Also enclose i n double quotation
marks any argu ment that contains characters recognized by the shell (e.g., <, > , I, and
i).

Using t h e Stan dard F i les

Whenever you invoke a program for execution, the XENIX syste m auto matically creates
a standard input, a standard output, and a standard error file to handle a program's input
and output needs. Since the bulk of input and output of most programs is through the
user's own ter minal, the system normally assigns the user's terminal keyboard and screen
as the standard input and output, respectively. The standard error file, which receives
any error messages generated by the program, is also assigned to the terminal screen.

2-3

Standard 1/0 Library XENIX C Libraries

A program can read the standard input file and write the standard output file with the
getchar, gets, scanf, putchar, puts, and printf functions. The standard error file can be
accessed using the stream functions described in the section "Using Stream 1/0" later in
this chapter.

The XENIX syste m lets you redirect the standard input and output using the shell's
redirection symbols. This allows a program to use other devices and files as its chief
source of input and output in place of the term inal keyboard and screen.

The following sections explain how to read from and write to the standard input and
output and how to redirect the standard input and output.

Read i n g from the Sta nda rd In p ut

You can read fro m the standard input with the getchar, gets, and scanf functions.

The getchar function reads one character at a time fro m the standard input. The
function call has the form

i nt c ;

c = getchar() ;

where c is the variable to receive the character. It must have int type, because the
possible return value EOF is outside the range of the type char. The function normally
returns the character read but will return the end-of-file value EOF if the end of the
file or an error is encountered.

The getchar function is typically used in a condit ional loop to read a string of characters
fro m the standard input. For example, the following function reads cot characters fro m
the standard input, or until EOF is read. The example function returns EOF if the end­
of-file was encountered, else it returns 0.

read n(p, cnt)
char p[] ;
i nt cnt;
{

i nt i , c ;

i = 0;
wh i l e (i < cnt)

}

if ((p[i + +] = getchar()) = = EOF) {
p[i] = 0; I* nul l term i nator *I
return(EOF) ;

}
p[i] = 0; I* nul l term i nator *I
return(O) ;

Note that if getchar is reading fro m the keyboard, it waits for characters to be typed
before returning.

2-4

XENIX C Libraries Standard 1/0 Library

The gets function reads a string of characters from the standard input into a given
memory location. The function call has the form

gets(s)

where s is a pointer to the location to receive the string. The function reads characters
until it finds a newline character, then replaces the newline character with a null
character. The function returns the null pointer value NULL if the end of the file or an
error is encountered. Otherwise, it returns the value of s.

gets is typically used to read a full line from the standard input. For example, the
following program fragment reads a line fro m the standard input, stores it in the
character array cmdln and calls a function (called parse) if no error occurs.

char cmd l n [S IZE] ;

i f (gets(cmd l n) ! = N U LL)
parse() ;

In this case, the length of the string is assu med to be less than SIZE-1.

Note that gets does not check the length of the string it reads, so overflow can occur.

The scanf function reads one or more values from the standard input where a value is a
character, a character string, or a decimal, octal, hexadecim al, or floating-point
number. The function call has the form

scanf (format [, a rgptr] . ..)

where format is a pointer to a string that defines the format of the values to be read
and each argptr is a pointer to a variable that is to receive a value. There must be one
argptr for each assignment specified in the format string. Some formats are "%c" for a
character, "%s" for a string, and "%d", "%o", or "%x" for a decimal, octal, or
hexadecimal nu mber respectively. (Other formats are described in scanf in Appendix
C.) scanf normally returns the nu mber of assignments successfully made but returns
EOF if the end of the file or an 1/0 error is encountered. (An input format error simply
causes pre mature return with a s maller number of successful assignments, 0 if the first
input ite m is incorrectly formatted.)

Unlike the getchar and gets functions, scanf skips all white space characters, reading
only those characters that make up a value. It then converts the characters, if
necessary, into the appropriate string or number.

The scanf function is typically used whenever formatted input is required, i.e., input
that must be typed in a special way or that has a special meaning. For example, in the
following program fragment, seanf reads both a name and a number from the same line.

char name[20] ;
i nt number;

scanf(" %s %d " , name, &number);

2-5

Standard 1/0 Library XENIX C Libraries

In this example, the string "%s %d" defines what values are to be read (a string and a
deci m al number). The string is copied to the character array name and the number to
the integer variable number. Note that pointers to these variables are used in the call
and not the actual variables the mselves.

When reading from the keyboard, scanf waits for values to be typed before returning.
Each value must be separated from the next by one or more white space characters
(such as spaces, tabs, or even newline characters). For example, for the function

scanf(" %s %d % c " , name, age, sex) ;

an acceptable input is

John 27
M

If a value is a nu mber, it must have the appropriate digits, that is, a decimal nu mber
must have decimal digits, octal nu mbers octal digits, and hexadecimal nu mbers
hexadecimal digits.

If scanf encounters an error, it i m mediately stops reading the standard input. Before
scanf can be used again, the illegal character that caused the error must be removed
from the input using the getchar function.

You may use the getchar, gets, and scanf functions in a single program. Just reme mber
that each function reads the next available character, m aking that charact er
unavailable to the other functions.

Note that when the standard input is the terminal keyboard, the getchar, gets, and scanf
functions usually do not return a value until at least one newline character has been
typed. This is true even if only one character is desired.

Writ ing to the Sta ndard Outp ut

You can write to the standard output with the putchar, puts, and printf functions.

The putchar function writes a single character to the standard output. The function call
has the form

i nt putchar(c)

where c is the character to be written. The function normally returns the same
character it wrote, but will return EOF if an error is encountered.

2-6

XENIX C Libraries Standard 1/0 Library

The function is typically used in a condit ional loop to write a string of characters to the
standard output. For example, the function

writen(p, cnt)
char p[] ;
i nt cnt;
{

i nt i ;

whi l e (--cnt > = 0)
putchar(* p + +);

putchar('\n ') ;

writes cnt characters plus a newline character to the standard output.

The puts function copies the string found at a given memory location to the standard
output. The function call has the form

puts(s)

where s is a pointer to the location containing the string. The string may be any nu mber
of characters but must end with a null character. The function writes each character in
the string to the standard output (not including the null character) and then writes a
newline character.

Since the function automatically appends a newline character, it is typically used when
writing full lines to the standard output. For example, the following program fragment
writes one of three strings to the standard output.

char c;

switch(c) {
case(' 1 ') :

}

puts(" Contin u i ng . . . ") ;
break;

case('2') :
puts("AI I done. ") ;
break;

defau l t :
puts(" Sorry, there was an error . ") ;

The string t o b e written depends on the value of c.

2-7

Standard 1/0 Library XENIX C Libraries

The printf function writes one or more values to the standard output where a value is a
character, character string, or a deci mal, octal, hexadecimal, or floating-point number.
The function automatically converts nu mbers into the proper display format. The
function call has the form

pri ntf(format [, a rg] . . .)

where format is a pointer to a string that describes the format of each value to be
written and each arg is either a value to be written or, in the case of a character string,
a pointer to the string. There must be one arg for each for mat in the format string.
Some formats are "%c" for a character, "%s" for a string, and "%d", "%o", or "%x" for a
decimal, octal, or hexadecimal nu mber respectively. Other formats are described in
printf in Appendix C. printf normally returns the nu mber of characters actually printed
but returns a negative value if an error was encountered.

The printf function is typically used when formatted output is required, i.e., when the
output must be displayed in a certain way. For example, you may use the function to
display a nam e and nu mber on the same line as in the following example.

char name[] ;
i nt number;

pri ntf(" person = %s, age = % d " , name, number);

In this example, the format indicators "%s" and "%d" define how the output values are
to be converted to characters, as a string and a decimal nu mber respectively. The
output values are copied fro m the charact er array name and the integer variable
number. Note that characters in the format string other than format indicators, i.e.,
"person = " and ", age = ", are copied to the output of printf unchanged.

You may use the putchar, puts, and printf funct ions in a single program. Just remember
that the output appears in the same order as it is written to the standard output.

Red i rect ing the Sta ndard Input

You can change the standard input fro m the terminal keyboard to an ordinary file by
using the normal shell redirect ion symbol, <. This sy mbol directs the shell to open the
file named following the symbol for reading as the standard input. For example, the
following co m mand line opens the file phonelist as the standard input to the program
qial.

d ia l < phonel i st

The dial program may then use the getchar, gets, and scanf functions to read characters
and values from this file. Note that if the file does not exist, the shell displays an error
message and stops the program.

Whenever getchar, gets, or scanf are used to read fro m an ordinary file, they return the
value EOF if the end of the file or an error is encountered. You may want to check for
this value to m ake sure you do not continue to read characters after an error has
occurred.

2-8

XENIX C Libraries Standard 1/0 Library

Redi rectin g the Sta ndard Output

You can change the standard output of a program fro m the terminal screen to an
ordinary file by using the shell redirection symbol, >. The symbol directs the shell to
open for writing the file whose name i m mediately follows the symbol. For example, the
co m mand line

d i a l > savephone

opens the file savephone as the standard output of the program dial instead of the
terminal screen. You may use the putchar, puts, and printf functions to write to the
file.

If the file does not exist, the shell automatically creates it. If the file exists, but the
program does not have perm ission to write the file, the shell displays an error message
and does not execute the program.

Pi p ing the Sta ndard I n put a nd Output

Another way to redefine the standard input and output is to create a pipe. A pipe
simply connects the standard output of one program to the standard input of another.
The programs may then use the standard output and input to pass information from one
to the other. You can create a pipe by using the standard shell pipe symbol, 1.

For example, the com mand line

d i a l I we

connects the standard output of the program dial to the standard input of the program
we. (The standard input of dial and standard output of we are not affected.) If dial
writes to its standard output with the putehar, puts, or printf functions, we can read this
output with the getehar, gets, or scanf functions.

Note that when the program on the output side of a pipe terminates, the system
automatically places the value EOF in the standard input of the program on the input
side. Pipes are described in more detail in Chapter 6, "Pipes."

Progra m Exa mple

This section shows how you may use the standard input and output files to perform a
useful task. The eestrip (for "control character strip") program defined below strips out
all ASCII control characters fro m its input except for newline and tab. You may use
this program to display text or data files that contain characters that may disrupt your
terminal screen.

2-9

Standard 1/0 Library

#i nc lude < std io. h >

mai n() /* ccstri p : stri p control characters *I
{

}

i nt c ;
wh i l e ((c = getchar()) ! = EOF)

if «c > = " && c < o 1 77) II
c = = '\t' II c = = '\n ')
putchar(c) ;

exit(O) ;

XENIX C Libraries

You can strip and display the contents of a single file by changing the standard input of
the ccstrip program to the desired file. The co mmand line

ccstri p < doc.t

reads the contents of the file doc. t, strips out control characters, then writes the
stripped file to the standard output.

If you wish to strip several files at the same ti me, you can create a pipe bet ween the
cat co m mand and ccstrip.

To read and strip the contents of the files filel, file2, and file3 and then display them on
the standard output, use the co mmand

cat fi l e1 fi l e2 fi l e31 ccstri p

If you wish to save the stripped files, you can redirect the standard output of ccstrip.
For example, the following com mand line writes the stripped files to the file clean.

cat fi l e1 fi l e2 f i l e31 ccstri p > c lean

Note that the exit function is used at the end of the program to ensure that any program
that executes the ccstrip program will rece ive a normal termination status (typically 0)
from the program when it co mpletes. An explanation of the exit function and how to
execute one program under control of another is given in Chapter 5, "Process Control."

Usi n g the Stream 1/0 F u n ct ions

The functions described so far have all read fro m the standard input and written to the
standard output. The next step is to show functions that access files not already
connected to the program. One set of standard 1/0 functions allows a program to open
and access ordinary files as if they were a "stream" of characters. For this reason,
these functions are called "stream functions."

2- 10

XENIX C Libraries Standard 1/0 Library

Unlike the standard input and output files, a file to be accessed by a stream function
must be explicitly opened with the fopen function. The function can open a file for
reading, writing, or appending. A program can read fro m a file with the getc, fgetc,
fgets, fgetw, fread, and fscanf functions. It can write to a file with the putc, fputc,
fputs, fputw, fwrite, and fprintf functions. A program can test for the end of a file or
for an error with the feof and ferror functions. A program can close a file with the
fclose function.

Usi n g F i le Pointers

Every file opened for access by the stream functions has a unique pointer associated
with it called a file pointer. This pointer, defined with the predefined type FILE found
in the stdio.h file, points to a structure that contains information about the file, such as
the location of the buffer (the intermediate storage area between the actual file and the
program), the current character position in the buffer, and whether the file is being read
or written. A file pointer is returned by the fopen function as described in the next
section. Thereafter, the file pointer may be used to refer to that file unt il the file is
explicitly closed by calling fclose.

A file pointer is defined with a statement such as

FILE * i nfi l e;

The standard input, output, and error files, like other opened files, have corresponding
file pointers. These file pointers are named stdin for standard input, stdout for standard
output, and stderr for standard error. Unlike other file pointers, the standard file
pointers are predefined in the stdio.h file. This means a program may use these pointers
to read and write fro m the standard files without first using the fopen function to open
the m.

The predefined file pointers are typically used when a program needs to alternate
between the standard input or output file and an ordinary file. Although the predefined
file pointers have the type FILE, they are constants, not variables. They cannot be
assigned values.

Ope n i n g a F i le

The fopen function opens a given file and returns a pointer (called a file pointer) to a
structure containing the data necessary to access the file. The pointer may then be
used in subsequent stream functions to read from or write to the file.

The function call has the form

F I LE *fp;

fp = fopen(fi l ename, type)

where fp is the pointer variable to receive the file pointer, filename is a pointer to the
name of the file to be opened, and type is a pointer to a string that defines how the file
is to be opened. The type string may be "r" for reading, "w" for writing, or "a" for
appending, i.e., open for writ ing at the end of the file.

2-11

Standard 1/0 Library XENIX C Libraries

A file may be opened for different operations at the same time if separate file pointers
are used. For exam ple, the following program fragment opens the file named
/usr/accounts for both reading and appending.

F I LE *rp, *wp;

rp = fopen("/usr/accounts " , " r ") ;
w p = fopen("/usr/accounts " , " a ") ;

Opening an existing file for writing destroys the old contents. Opening a n exist ing file
for appending leaves the old contents unchanged and causes any data written to the file
to be appended to the end.

Trying to open a nonexistent file for reading causes an error. Trying to open a
nonexistent file for writ ing or appending causes a new file to be created. Trying to open
any file for which the program does not have appropriate permission causes an error.

fopen normally returns a, valid file pointer but returns NULL if an error is encountered.
Check for NULL after each call to fopen to prevent reading or writing after an error.

Reading a S ing le Cha ra cter

The getc and fgetc functions return a single character read from a given file and return
the value EOF if the end of the file or an error is encountered. The function calls have
the form

i nt c ;

c = getc(stream)

c = fgetc(stream)

where stream is the file pointer to the file to be read and c is the int variable to receive
the character. The return value is always an integer.

The functions are typically used in condit ional loops to read a string of characters from
a file. For example, the following program fragment reads characters into a buffer
fro m the file given to it by infile until the end of the }ile or an error is encountered, or
the buffer is filled.

i nt i , c;
char buf[MAX] ;
F I L E * i nfi l e ;

i = 0;
whi le {(c = getc(i nfi l e)) ! = EOF && i < MAX)

buf[i + +] = c ;

The only difference between the functions i s that getc is defined as a macro and fgetc
as a true function. This means that, unlike getc, fgetc may be passed as an argument in
another function, used as a target for a breakpoint when debugging, or used to avoid any
side effects of macro processing.

2-1 2

XENIX C Libraries Standard 1/0 Library

Reading a String from a File

The fgets function reads a string of characters from a file to a given memory location.
The function call has the form

fgets(s, n, stream)

where s is a pointer to the location to receive the string, n is a count of the maximu m
number of characters to be stored (including the terminating null), and stream is a file
pointer for the file to be read. The function reads n-1 characters or through the first
newline character, whichever occurs first. The function writes a null character at the
end of the string. fgets returns NULL if the end of file or an error is encountered.
Otherwise, it returns the pointer s.

fgets is typically used to read a full line from a file. For example, the following
program fragm ent reads a string of characters from the file given by myfile.

char cmd l n [MAX] ;
FI LE *myfi le ;

if (fgets(cmd l n , MAX, myfi l e) ! = NULL)
parse(cmd l n) ;

In this example, fgets reads the string into the character array cmdln.

Reading Records from a Fi le

The fread function reads one or more fixed-length records from a file and copies the m
to a given me mory location. The function call has the form

fread(ptr, si ze, n items, stream)

where ptr is a pointer to the location to receive the records, size is the size (in bytes) of
each record to be read, nitems is the nu mber of records to be read, and stream is the
file pointer of the file to be read. ptr can be a pointer to a variable of any type (fro m a
single character to a structure). size, an integer, should give the numbe·r of bytes in
each item you wish to read. One way to ensure this is to use the sizeof function (see the
example below). fread always returns the number of records it read, regardless of
whether or not the end of file or an error was encountered.

2-13

Standard 1/0 Library XENIX C Libraries

fread is typically used to read binary data from a file. For example, the following
program fragment reads one record fro m the file given by database and copies the
records into the structure person.

F I L E *database;
struct record {

char name[20] ;
i nt age;

} person;

fread(&person, si zeof(person), 1 , database);

Nate that since fread does not explicitly indicate errors, the feof and ferror functions
should be used to detect end of file or error conditions. These functions are described
later in this chapter.

Read ing Formatted Data from a F i le

fscanf reads formatted input fro m a given file and copies it to the memory location
given by the respective argument pointers, just as the scanf function reads fro m the
standard input. The function call has the form

fscanf(stream , format [, a rgptr] . . .)

where stream is the file pointer of the file to be read, format .is a pointer to the string
that defines the format of the input to be read, and each argptr is a pointer to a
variable that is to receive some formatted input. There must be one argptr for each
assignment specified in the format string. Some formats are "%c" for a character, "%s"
for a string, and "%d", "%o", or "%x" for a decimal, octal, or hexadecimal ·nu mber
respectively. Other formats are described in scanf in Appendix C. fscanf normally
returns the nu mber of successful assignments made but returns EOF if it encounters end
of file or an 1/0 error.

fscanf can be used to read files that contain both nu mbers and text. For example, this
program fragment reads a name and a decimal nu mber from the file given by file.

F I L E *fi le ;
char name[20] ;
i nt pay;

fscanf(fi l e, " % s % d\n " , name, &pay) ;

This program fragment copies the name to the character array name and the number to
the integer variable pay.

2- 14

XENIX C Libraries Standard 1/0 Library

Writing a Single Character

The putc and tputc functions write single characters to a given file. The function calls
have the forms

i nt putc{c, stream)

and

i nt fputc(c, stream)

where c is the character to be written (of type char) and stream is a file pointer to the
file to receive the character. The functions normally return the character written but
return EOF if an error is encountered.

These functions are typically used in conditional loops to write a string of characters to
a file. For example, the following program fragment writes characters from the array
name to the file specified by out until the end of the array or a null character is
encountered.

FI LE *out;
char name[MAX] ;
i nt i ;

for (i = 0 ; i < MAX && name[i]! = '\0' ; i + +)
fputc{name[i] , out) ;

The only difference between the putc and fputc functions is that putc is defined as a
macro and fputc as a true function. This means that fputc, unlike putc, may be used as
an argu ment to another function, as the target of a breakpoint when debugging, or to
avoid the side effects of macro processing.

Writing a String to a File

The fputs function writes a string to a given file. The function call has the form

fputs(s, stream)

where s is a pointer to the string to be written and stream is a file pointer to the file.

fputs can be used with gets to copy strings from one file to another. For example, in
the following program fragment, gets and fputs are combined to copy strings from the
standard input to the file specified by out.

FI LE *out;
char cmdl n[MAX] ;

if { gets(cmd l n) ! = EOF)
fputs(cmd l n, out) ;

fputs returns 0 i f successful, EOF i f an error i s encountered.

2-15

Standard I/0 Liprary XENIX C Libraries

Writ ing Reco rd s to a F i le

The fwrite function writes one or more records to a given file. The function call has the
form

fwrite(ptr, si ze, n i tems, stream)

where ptr is a pointer to the first record to be written, size is the size (in bytes) of each
record, nitems is the number of records to be written, and stream is the file pointer of
the file. ptr may point to a variable of any type (from a single character to a
structure). size should give the nu mber of bytes in each item to be written. One way to
ensure this is to use the sizeof function (see the example below). fwrite always returns
the number of ite ms actually written to the file whether or not an error is encountered.

fwrite is typically used to write binary data to a file. For example, the following
program fragm ent writes one record to the file given by database.

F I LE *database;
struct record {

char name[20] ;
i nt age;

} person;

fwrite(&person, si zeof(person), 1 , database) ;

Because the function does not report errors, the ferror function should be used for error
checking.

Writ ing Formatted Output

The fprintf function writes formatted output to a given file, just as the printf function
writes to the standard output. The function call has the form

fpri ntf(stream, format [, arg] . . .)

where stream is a file pointer to the file to be written, format is a pointer to a string
that defines the format of the output, and each arg is an argument to be written. There
must be one arg for each format conversion in the format string. Some formats are
"%c" for a character, "%s" for a string, and "%d", "%o", or "%x" for a decimal, octal, or
�exadeci mal nu mber respectively. Other formats are described in printf in Appendix C.
If a string is to be written, the corresponding arg is a pointer to the string. For all other
formats, the value to be converted is supplied directly as an arg. fprintf returns the
number of characters written, returning EOF if an 1/0 error is encountered.

2-1 6

XENIX C Libraries Standard 1/0 Library

fprintf can be used to write output that contains both numbers and text. For example,
to write a name and a decimal nu mber to the file specified by outfile, use the following
program fragment.

FILE *outfi le;
char name[20] ;
i nt pay;

fpri ntf(outfi le,"%s %d\n " , name, pay) ;

The name is copied from the character array name and the number from the integer
variable pay.

Testing for the End of a File

The feof function returns the value -1 if a given file has reached its end. The function
call has the form

feof(stream)

where stream is the file pointer of the file. The function returns -1 only if the file has
reached its end, otherwise it returns 0. The return value is always an integer.

The feof function is typically used after calling functions with return values that are not
a clear indicator of an end-of-file condition. For example, the following program
fragment checks for end of file after each record is read. The reading stops as soon as
feof returns -1.

char name [1 0] ;
FILE *stream ;

do
fread (name, si zeof(name) , 1 , stream) ;

whi l e (!feof(stream));

2-17

Standard 1/0 Library XENIX C Libraries

Testi ng for F i le Errors

The ferror function tests a given stream file for an error. The function call has the
form

ferror(stream)

where stream is the file pointer of the file to be tested. The function returns a nonzero
(true) value if an error is detected, otherwise it returns zero (false). The function
returns an integer value.

ferror is typically used to test for errors before a subsequent read or write to the file.
For example, in the following program fragment ferror tests the file given by stream.

FI LE *stream ;
char x[S] ;

whi l e (! ferror(stream))
fread(x, s izeof(x), 1 , stream) ;

If ferror returns zero, the next item in the file specified by stream is copied to x.
Otherwise, execution passes to the next statement.

Further use of a stream after an error is detected may cause undesirable results.

Clos ing a F i le

The fclose function closes a file by breaking the connection between the file pointer and
the structure created by fopen. Closing a file empties the contents of the corresponding
buffer and frees the file pointer for use by another file. The function call has the form

fc lose(stream)

where stream is the file pointer of the file to close. The function normally returns 0 but
will return -1 if an error is encountered.

The fclose function is typically used to free file pointers when they are no longer
needed. This is important because usually no more than 20 files can be open at the same
time. For example, the following program fragment closes the file given by infile when
the file has reached its end.

F I LE * i nfi l e ;

i f (feof(i nfi l e))
fcl ose(i nfi l e) ;

Note that whenever a program terminates normally, the fclose function is automat ically
called for each open file, so no explicit call is required unless the program must close a
file before its end. Also, the function automatically calls fflush to ensure t hat
everything written to the file's buffer actually gets to the file.

2-1 8

XENIX C Libraries Standard 1/0 Library

Program Example

This section shows you how to use the stream functions for a useful task. The following
program, which counts the characters, words, and lines found in one or more files, uses
the fopen, getc, fprintf, and fclose functions to open, read, write, and close the given
files. The program incorporates a basic design com mon to other XENIX programs,
namely, it uses the file names found in the co m mand line as the files to open and read,
or if no names are present, it uses the standard input. This allows the program to be
invoked on its own or to be the receiving end of a pipe.

#i nc lude < std io. h >

mai n(argc, argv) /* we : count l i nes, words, chars */
i nt argc;

· char *argv[] ;
{

i nt c, i , i nword ;
F I LE *fp, fopen();
long l i nect, wordct, charct;
long tl i nect = 0, twordct = 0, tcharct = 0;

i = 1 ;
fp = std i n ;
do
{

i f (argc > 1 &&

}

(fp = fopen(argv[i] , " r")) = = N U LL) {
fpri ntf (stderr, "we : can't open % s\n " ,

a rgv[i]) ;
cont inue;

l i nect = wordct = charct = i nword = 0;
whi l e ((c = getc(fp)) ! = EOF) {

}

charct + + ;
i f (c = = '\n ')

l i nect + + ;
i f (c = = " I I c = = '\t' I I c = = '\n ')

i nword = 0;
e lse i f (i nword = = 0) {

i nword = 1 ;
wordct + + ;

}

2-1 9

Standard 1/0 Library

}

pri ntf(" % 71d % 71d % 71d " , l i nect, wordct, charct) ;
pri ntf(argc > 1 ? " % s\n " : " \n " , argv[i]) ;
fc lose(fp) ;
tl i nect + = l i nect;
twordct · + = wordct;
tcharct + = charct;

} whi l e (+ + i < argc);
i f (argc > 2) . . .

pri ntf(" % 71 d % 7 1d % 71d tota l\n " , tl i nect,
twordct, tcharct) ;

exi t(O) ;

XENIX C Libraries

The program uses fp as the pointer to rece ive the current file pointer. Init ially this is
set to stdin in case no file names are present in the com mand line. If a file name is
present, the program calls fopen and assigns the file pointer to fp. If the file cannot be
opened (in which case fopen returns NULL), the program writes an error message to the
standard error file stderr with the fprintf function. The function prints the format
string "we: can't open %s", replacing the "%s" with the name pointed to by argv[i].

Once a file is opened, the program uses the getc function to read each character fro m
the file. A s i t reads characters, the program keeps a count o f the nu mber o f characters,
words, and lines. The program continues to read until the end of the file is encountered,
that is, when getc returns the value EOF.

Once a file has reached its end, the progra m uses the printf function to display the
character, word, and line counts at the standard output. The format string in this
function causes the counts to be displayed as long decimal nu mbers with no more than
seven digits. The program then closes the current file with the fclose function and
examines the co m mand line argu ments to see if there is another file name.

When all files have been counted, the program uses the printf function to display a grand
total at t he standard output and then stops execution with the exit function.

Usi n g M o re Stream F u n ct ions

The stream functions allow more control over a file than just opening, reading, writing,
and closing. The functions also let a program take an existing file pointer and reassign
it to another file (si milar to redirecting the standard input and output files) as well as
manipulate the buffer used for inter mediate storage between the file and the program.

2-20

XENIX C Libraries Standard 1/0 Library

Using Buffered Input and Output

Buffered 1/0 is an input and output technique used by the XENIX syste m to cut down the
time needed to read from and write to files. Buffered 1/0 lets the syste m collect the
characters to be read or written and then transfer them all at once rather than one
character at a t im e. This reduces the number of times the syste m must access the 1/0
devices and consequently provides more t ime for running user programs. Not all files
have buffers. For example, files associated with terminals, such as the standard input
and output, are not buffered. This prevents unwanted delays when transferring the input
and output. When a file does have a buffer, the buffer size in bytes is given by the
mainfest constant BSI ZE, which is defined in the stdio.h file.

When a file has a buffer, the stream functions read from and write to the buffer instead
of the file. The syste m keeps track of the buffer and when necessary fills it with new
characters (when reading) or flushes (copies) it to the file (when writing). Normally, a
buffer is not directly accessible to a program; however, a program can define its own
buffer for a file with the setbuf function. setbuf also can change a buffered file to be
an unbuffered one. The ungetc function takes a character that has been read and pushes
it back into the buffer. The ffiush function flushes an output buffer, sending its
contents on to the receiving process or device driver.

Reopen i ng a F i le

The freopen function closes the file associated with a given file pointer, then opens a
new file and gives it the same file pointer as the old file. The function call has the form

freopen(newfi le , type, stream)

where newfile is a pointer to the name of the new file, type is a pointer to the string
that defines how the file is to be opened ("r" for reading, "w" for writing, and "a" for
appending), and stream is the file pointer of the old file. The function returns the file
pointer stream if the new file is opened. Otherwise, it returns NULL.

freopen is most often used to attach the predefined file pointers stdin, stdout, and
stderr to other files. For example, the following program fragment opens the file
named by newfile as the new standard output file.

char * newfi l e;
F I LE * nfi l e ;

nfi l e = freopen(newfi l e, "w" , stdout) ;

This has the same effect a s using the redirection symbols i n the com m and line o f the
program.

2-2 1

Standard 1/0 Library XENIX C Libraries

Sett i n g the Buffer

The setbuf function changes the buffer associated with a given file to the program's own
buffer. It can also change the access to the file to no buffering. The function call has
the form

setbuf(stream, buf)

where stream is a file pointer and buf is a pointer to the new buffer or is NULL if no
buffering is desired. If a buffer is given, it must be BSIZE bytes in length, where BSIZE
is a constant defined in stdio.h.

setbuf is typically used to to create a buffer for the standard output when it is assigned
to the user's terminal, improving execution t ime by eli m inating the need to write one
character to the screen at a t ime. For example, the following program fragment
changes the buffer of the standard output to the location referenced by p.

char * p;

p = mal loc(BS IZE) ;
setbuf(stdout, p) ;

The new buffer i s BSIZE bytes long.

setbuf can also be used to change a file fro m buffered to unbuffered input or output.
Unbuffered input and output generally increase the total t ime needed to transfer large
nu mbers of characters to or fro m a file but give the fastest transfer speed for individual
characters.

setbuf should be called i m mediately after opening a file and before reading or writing to
it. Furthermore, fclose or ffiush must be called to flush the buffer before term inating
the program. Otherwise, some data written to the buffer may not be written to the file.

Putt ing a Cha racter Back into a B uffer

The ungetc function puts a character back into the buffer of a given file. The function
call has the form

ungetc(c, stream)

where c i s the character t o put back and stream i s the file pointer o f the file. The
function normally returns the same character it put back but returns EOF if an error is
encountered.

2-22

XENIX C Libraries Standard 1/0 Library

ungetc is typically used when scanning a file for the first character of a string of
characters. For example, the following program fragment puts the first character that
is not a white space character back into the buffer of the file given by infile, allowing
the subsequent call to gets to read that character as the first character in the string.

F I LE * i nfi l e ;
char name[20] ;

whi l e(i sspace(c = getc(i nfi l e)))

ungetc(c, std i n) ;
gets(name) ;

Putting a character back into the buffer does not change the corresponding file; i t only
changes the next character to be read.

Note that the function can put a character back only if one has been previously read.
The function cannot put more than one character back at a ti me. For example, if three
characters are read, then only the last character can be put back, never the first two.

Note that the value EOF must never be put back in the buffer.

Fl u sh i n g a F i le Buffer

The ffiush function e mpties the buffer of a given file by i m mediately writing the buffer
contents to the file. The function call has the form

ffl ush(stream)

where stream is the file pointer of the file. The function normally returns zero but
returns EOF if an error is encountered.

ffiush is used to guarantee that the contents of a partially filled buffer are written to
the file. For example, the following program fragment empties the buffer for the file
given by outtty if the variable errflag is 0 .

F I LE * outtty;
i nt errfl ag ;

i f (errfl ag = = 0)
ffl ush(outtty) ;

Note that ffiush is automat ically called by the fclose function to e mpty the buffer
before closing the file. This means that no explicit call to ffiush is required if the file is
being closed.

ffiush ignores any attempt to e mpty the buffer of a file opened for reading.

2-23

Standard 1/0 Library XENIX C Libraries

Using the Low-Level I/O F u n ct ions

The low-level 1/0 functions provide direct access to files and peripheral devices. They
are actually direct calls to the routines used in the XENIX operating system to read
from and write to files and peripheral devices. The low-level functions give a program
the same control over a file or device as the system, letting it access the file or device
in ways that the stream functions do not. However, low-level functions, unlike stream
functions, do not provide buffering or any other useful services of the stream funct ions.
This means that any program that uses the low-level functions has the complete burden
of handling input and output.

The low-level functions, like the stream functions, cannot be used to read fro m or write
to a file until the file has been opened. A program may use the open function to open an
existing or a new file. A .. file can be opened for reading, writ ing, or appending.

Once a file is opened for reading, a program can read bytes from it with the read
function. A program can write to a file opened for writ ing or appending with the write
function. A program can close a file with the close function.

Usi ng F i le Descri ptors

Each file that has been opened for access by the low-level funct ions has a unique integer
called a "file descriptor" associated with it. A file descriptor is s im ilar to a file pointer
in that it ident ifies the file. A file descriptor is unlike a file pointer in that it does not
point to any specific structure. Instead, the descriptor is used internally by the system
to access the necessary information. Since the system maintains all information about a
file, the only access to a file for a program is through the file descriptor.

There are three predefined file descriptors (just as there are three predefined file
pointers) for the standard input, output, and error files. The descriptors are 0 for the
standard input, 1 for the standard output, and 2 for the standard error file. As with
predefined file pointers, a program may use the predefined file descriptors without
explicitly opening the associated files.

Note that if the standard input and output files are redirected, the syste m changes the
default assign ments for the file descriptors 0 and 1 to the named files. This is also true
if the input or output is associated with a pipe. File descriptor 2 can be redirected but
normally re mains attached to the terminal.

Ope n i ng a F i le

The open function opens an exist ing or a new file and returns a file descriptor for that
file. The function call has the form

fd = open(nam e, access [,mode]) ;

2-24

XENIX C Libraries Standard I/0 Library

where fd is the integer variable to receive the file descriptor, name is a pointer to a
string containing the file name, access is an integer expression giving the type of file
access, and mode is an integer nu mber giving a new file's perm issions. open normally
returns a file descriptor (a positive integer), but returns -1 if an error is encountered.

The access expression is formed by using one or more of the following constants:
0 RDONLY for reading, 0 WRONLY for writing, 0 RDWR for both reading and
writing, O_APPEND for appending to the end of an existing file, and O_CREAT for
creating a new file. (Other constants are described in open in Appendix C.) The
constants are defined in the fcntl.h include file. The logical O R operator (I) can be
used to combine the constants. The argument mode is required only if O_CREAT is
specified. For example, in the following program fragment, open is used to open the
exist ing f i le named /usr/accounts for read ing and open t he new file named
/usr/tmp/scratch for reading and writing.

i nt i n, out;

in = open("/usr/accounts " , 0 RDO N LY) ;
out = open(" /usr/tmp/scratch� 0 _ RDWR I 0 _ CREAT, 0754) ;

In the XENIX syste m, each file has 9 bits of protection information that control read,
write, and execute perm ission for the owner of the file, for the owner's group, and for
all others. A three-digit octal number is the most convenient way to specify the
permissions. For instance, in the example above, the octal number 0754 specifies read,
write, and execute permission for the owner, read and execute perm ission for the group,
and read-only perm ission for all others.

Note that if O_CREAT is given and the file already exists, then open destroys the file's
old contents.

There is a limit (usually 20) to the number of files that a program can have open
si multaneously. Therefore, any program that intends to process many files must be
prepared to reuse file descriptors by closing unneeded files.

Read i n g Bytes from a F i le

The read function reads one or more bytes of data from a given file and copies them to
a given memory location. The function call has the form

i nt n read, n, fd ;
char*buf;

n read = read(fd, buf, n) ;

where 11:_ read is the variable to receive the count of bytes actually read, fd is the file
descriptor of the file, buf is a pointer to the me mory location to receive the bytes read,
and n is the desired number of bytes to be read. The function normally returns the same
num ber of bytes as requested but will return fewer if the file does not have that many
bytes left to be read. read returns 0 if- the file has reached its end and - 1 if an error is
encountered.

When the file is a terminal, read normally reads only through the next newline.

2-25

Standard 1/0 Library XENIX C Libraries

Writi n g Bytes to a F i le

The write funct ion writes one or more bytes from memory to a file. The function call
has the form

i nt n written , n, fd ;
char*buf;

n written = write(fd, buf, n) ;

where n written is the variable to receive a count of bytes actually written, fd is the
file descriptor of the file, buf is a pointer to the memory location containing the bytes
to be written, and n is the number of bytes to be written.

write always returns the number of bytes actually written. It is considered an error if
the return value is not equal to the nu mber of bytes requested to be written.

Closi n g a Fi le

The close funct ion breaks the connection between a file descriptor and an open file and
frees the file descriptor for use with so me other file. The function call has the form

d ose(fd)

where fd is the file descriptor of the file to close. close normally returns 0 but will
return -1 if an error is encountered.

close is typically used to close files that are no longer needed. For example, the
following program fragment closes the standard input if the argu ment count is greater
than 1.

i nt fd ;

if (argc > 1)
dose(0) ;

Note that all open files in a program are closed when a program terminates normally or
when the exit function is called, so no explicit calls to close are required in these cases.

Pro g ra m Exa mples

This section shows how to use the low-level 1/0 functions to perform useful tasks. It
presents three examples that use the low-level 1/0 functions as the sole method of input
and output.

2-26

XENIX C Libraries

The first program copies its standard input to its standard output.

#defi ne B U FS I Z E BSI Z E

mai n() I * copy i nput to output *I
{

}

char buf[B U FS IZE] ;
i nt n ;

wh i l e ({n = read(0 , buf, B U FS IZE)) > 0)
write(1 , buf, n) ;

exit(O);

Standard 1/0 Library

The program uses the read function to read BUFSIZE bytes from the standard input (file
descriptor 0). It then uses write to write the same number of bytes it read to the
standard output (file descriptor 1). If the standard input file size is not a multiple of
BUFSIZE, the last read returns a smaller nu mber of bytes to be written by write, and
the next call to read returns zero.

This program can be used like a copy com m and to copy the content of one file to
another. You can do this by redirecting the standard input and output files.

The second example shows how the read and write functions can be used to construct
higher level functions like getchar and putchar. For example, the following is a version
of getchar, which performs unbuffered input:

#defi ne CMASK 0377 I* for maki ng chars > 0 *I

i nt getchar() I* unbuffered si ng l e character i nput *I
{

char c;
retu rn((read(O, &c, 1) > 0) ? c & CMASK : EOF) ;

}

The variable c must be declared char, because read accepts a character pointer. In this
case, the character being returned must be masked with octal 03 77 to ensure that it is
positive; otherwise sign extension may make it negative.

The second version of getchar reads input in large blocks but hands out the characters
one at a t ime:

#defi ne CMASK 0377 I* for maki ng characters > 0 *I
#defi ne B U FS I Z E BS I Z E

getchar() I* buffered vers ion *I
{

stati c char buf[BU FS IZE] ;
stati c char *bufp = buf;
stati c i nt n = 0;

2-27

Standard I/0 Library

}

if (n = = 0) { /* buffer i s empty */
n = read(O, buf, B U FS IZE) ;
bufp = buf;

}
return((--n > = 0) ? *bufp + + & CMASK : EOF);

XENIX C Libraries

Again, each character must be masked with the octal constant 0377 to ensure that it is
positive.

The final example is a si mplified version of the XENIX utility, cp, a program that copies
one file to another. The main simplificat ions are that this version copies only one file
and does not perm it the second argu ment to be a directory.

2-28

#defi ne B U FS IZE BS IZE
#defi ne PM ODE 0644 /* RW for owner, R for group, others */

mai n (a rgc, argv) /* cp : copy f 1 to f2 *I
i nt a rgc;
char * argv[] ;
{

}

i nt f 1 , f2, n ;
char buf[BU FS I Z E] ;

i f (argc ! = 3)
error(" Usage : cp from to" , N U LL) ;

i f ((f 1 = open(argv[1] , 0 RDON LY)) = = - 1)
error(" cp : can't open % s" , a rgv[1]) ;

i f ((f2 = open(argv[2] , 0 CREAT I 0 WRON LY, PMODE)) = = - 1)
error(" cp : can't create % s " , argv[2]) ;

whi l e ((n = read(f1 , buf, BU FS I ZE)) > 0)
if (write(f2, buf, n) ! = n)

error(" cp : write error" , N U LL) ;
ex it(O) ;

error(s 1 , s2) /* pri nt error message and d i e */
char *s 1 , *s2;
{

}

pri ntf(s 1 , s2) ;
pri ntf(" \n ") ;
exit(1) ;

XENIX C Libraries Standard 1/0 Library

Using Random Acc;ess 1/0

Input and output operations on any file are normally sequential. This means each read
or write takes place at the character position immediately after the last character read
or written. The standard library, however, provides a number of stream and low-level
functions that allow a program to access a file randomly, that is, to exactly specify the
position it wishes to read from or write to next.

The functions that provide random access operate on a file's "character pointer." Every
open file has a character pointer that points to the next character to be read from that
file, or the next place in the file to receive a character. Normally, the character
pointer is maintained and controlled by the system, but the random access functions let
a program move the pointer to any position in the file.

M ovin g the Character Poi ntei

The lseek function, a low-level function, moves the character pointer in a file opened
for low-level access to a given position. The function call has the form

l ong l seek(fd, offset, orig i n)
i nt fd ; l ong offset; i nt orig i n ;

where fd i s the file descriptor of the file, offset is the number of bytes to move the
character pointer, and origin is the number that gives the starting point for the move.
origin can be 0 for the beginning of the file, l for the current position, and 2 for the
end. lseek returns the new character pointer value as measured in bytes from the
beginning of the file.

For example, the following call forces the current position in the file whose descriptor
is 3 to move to the 5 1 2th byte from the beginning of the file.

l seek(3, (long)5 1 2, 0)

Subsequent reading or writing will begin at that position. Note that offset must be a
long integer and fd and origin must be integers.

The function may be used to move the character pointer to the end of a file to allow
appending, or to the beginning as in a rewind function. For example, the call

l seek(fd, (long)O, 2) ;

prepares the file for appending, and

l seek(fd, (long)O, 0) ;

rewinds the file (moves the character pointer to the beginning). Notice the "(long)O"
argu ment; it could also be written as

OL

2-29

Standard 1/0 Library XENIX C Libraries

Using lseek it is possible to treat files more or less like large arrays, at the price of
slower access. For example, the following simple function reads any number of bytes
from any arbitrary place in a file:

get(fd , pos, buf, n) /* read n bytes from posit ion pos */
i nt fd , n ;
long pos;
char * buf;
{

}

l seek(fd , pos , 0) ; I* get to pos *I
return(read(fd, buf, n)) ;

M ovi ng the Cha racter Pointe r in a Strea m

The fseek function, a stream function, moves the character pointer in a file to a given
location. The function call has the form

fseek(stream , offset, ori g i n)

where stream is the file pointer of the file, offset is the number of characters to move
to the new position (it must be a long integer), and origin is the starting position in the
file of the move (it must be 0 for beginning, 1 for current position, or 2 for end of the
file). fseek normally returns zero but will return EOF if an error is encountered.

For example, the following program fragment moves the character pointer to the end of
the file specified by stream.

F I LE *stream ;

fseek(stream , (long)O, 2) ;

fseek can be used on either buffered or unbuffered files.

Rewi nd i n g a F i le

The rewind function, a stream function, moves the character pointer to the beginning of
a given file. The function call has the form

rewi nd(stream)

where stream is the file pointer of the file. The function is equivalent to the following
function call

fseek(stream , OL, 0);

It is chiefly used as a more readable version of the call.

2-3 0

XENIX C Libraries Standard 1/0 Library

Getting the Cu rrent Cha racter Position

The ftell function, a stream function, returns the current position of the character
pointer in the given file. The returned position is always relative to the beginning of the
file. The function call has the form

l ong p;
p = ftel l (stream) ;

where stream is the file pointer of the file and p is the variable to receive the position.
The return value is always a long integer. The function returns the value -1 if an error
is encountered.

ftell is typically used to save the current location in the file so that the program can
later return to that posit ion. For example, the following program fragment first saves
the current character position in oldp, then later restores the file to this position if the
current character position is greater than 80 0.

F I LE *outfi l e ;
long o ldp ;

old p = fte l l (outfi l e) ;

i f ((ftel l (outfi l e)) > 800)
fseek(outfi le , o ldp, 0) ;

ftell is identical to the function call

I seek(fd , (long)O, 1)

where fd is the file descriptor of the given stream file.

2-3 1

CHA PT E R 3
SC R E EN PROC E SSING

This chapter explains how to use the screen updating and cursor movement library
named curses. The library provides functions to create and update screen windows, get
input from the screen or windows, and move the cursor within the screen or within a
window.

Screen Processing Overview

The purpose of screen processing is to give a program a simple and efficient way to use
the capabilities of a given terminal. The terminal must be connected to the standard
input and output files of a screen processing program. Screen processing does not rely
on the given terminal's type. Instead, the screen processing functions use the XENIX
terminal capability file /etc/termcap to tailor their actions for any given terminal. This
makes a screen processing program terminal-independent. The program can be run with
any terminal that is described in the /etc/termcap file.

The screen processing functions access a term inal screen by working t hrough
intermediate "screens" and "windows" in memory. A screen is a representation of what
the entire terminal screen should look like. A window is a representation of what so me
portion of the terminal screen should look like. A screen can be made up of one or more
windows, and a window can be as small as a single character or as large as an entire
screen.

Before a screen or window can be used, it must be created using the newwin or subwin
functions. These function define the size of the screen or window in terms of lines and
columns. Each position in a screen or window represents a place for a single character
and corresponds to a si milar place on the terminal screen. Positions are nu mbered
according to their line and colu mn. For example, the position in the upper left corner of
a screen or window is numbered (O, O) and the position i m mediately to its right is {0, 1).
A typical screen has 24 lines and 8 0 columns. Its upper left corner corresponds to the
upper left corner of the terminal screen. A window, on the other hand, may be any size
and its upper left corner can correspond to any position on the terminal screen. For
convenience, the initscr function that init ializes a program for screen processing also
creates a default screen, stdscr (for "standard screen"), which may be used without first
creating it. The function also creates curser (for "current screen"), which contains a
copy of what is currently on the terminal screen.

Screen Processing XENIX C Libraries

To display characters at the terminal screen, a program must write these characters to
a screen or window using screen processing functions such as addch and waddch. If
necessary, a program can move to the desired position in the screen or window by using
the move or wmove functions. Once characters are in a screen or window, the program
can copy the characters to the terminal screen by using the refresh or wrefresh
function. These functions update the term inal screen according to what has changed in
the given screen or window. Since the term inal screen is not changed until a program
calls refresh or wrefresh, a program can maintain several different windows, each
containing different characters for the same portion of the terminal screen. The
program can choose which window should actually be displayed before updating.

A program can continue to add new characters to a screen or window as needed and edit
these characters by using functions such as insertln, deleteln, and clear. A program can
also combine windows to make a composite screen using the overlay and overwrite
functions. In each case, the refresh or wrefresh function Is used to copy the changes to
the terminal screen.

Usi ng the L ibra ry

To use the library in a program, you must add the line

#i ncl ude < cu rses. h >

to the beginning of your program. The curses.h file contains definit ions for types and
constants used by the library.

The actual screen processing functions are in the library files libcurses.a and
libtermlib.a. These files are not auto matically read when you co mpile your program, so
you must include the appropriate library switches in your invocation of the compiler.
The com mand line must have the form

cc fi l e . . . - l curses - l term l i b

where file i s the name o f the source file you wish t o compile. You may give more than
one filename if desired. You may also use other compiler options in the co m mand line.
For example, the com mand

cc ma i n . c i ntf.c - ! curses - lterm l i b -o sam ple

compiles the files main.c and intf.c and copies the executable program t o the file
sample after linking the screen processing library files to the program.

Note that the curses.h file automatically includes the file sgtty.h in your program. This
file must not be included twice.

3-2

XENIX C Libraries Screen Processing

The screen processing library has a variety of predefined names. These names refer to
variables, constants, and types that can be used with the library functions. The
following is a list of these names:

curser A pointer to the current version of the terminal screen. It has type pointer
to WINDOW.

stdscr A pointer to the default screen used for updating when no explicit screen is
defined. It has type pointer to WINDOW.

def term A pointer to the default terminal type if the type cannot be determined. It
has type pointer to char.

my_term Terminal type flag. If TRUE, causes the terminal specification in def_term
to be used, regardless of the real terminal type. It has type bool.

ttytype A pointer to the full name of the current terminal, with type pointer to char.

LINES Nu mber of lines on the terminal, of type int.

COLS Number of columns on the terminal, of type int.

ERR Error flag. Returned by functions on an error, of type int.

OK Okay flag. Returned by functions on successful operation, of type int.

reg A storage class; identical to register storage class.

bool A type; identical to type char.

TRUE The Boolean true value (1).

FALSE The Boolean false value {0).

Prepa r ing for the Screen F u nctions

The initscr and endwin functions perform the operations required to initialize and
terminate screen processing in a program. The following sections describe these
functions and how they affect the terminal.

In itia l iz ing the Screen

The initscr function initializes screen processing for a program by allocating the
required memory space for the screen processing functions and variables and by setting
the terminal to the proper modes. The function call has the form

i n itscr()

No arguments are required.

3-3

Screen Processing XENIX C Libraries

inintscr must be used to prepare the program for subsequent calls to other screen
processing functions and for using screen processing variables. For example, in the
following program fragment initscr initializes the screening processing functions.

#i ncl ude < cu rses .h >

mai n ()
{

i n i tscr() ;
if (strcm p(ttytype, " dumb") = = 0)

fpri ntf(stderr, " Term i na l type can 't d isp lay screen. ") ;

In this example, the predefined variable ttytype is checked for the currrent terminal
type.

The function returns ERR if me mory allocation causes an overflow.

Using Termina l Ca pabi l ity a nd Type

The initscr function uses the terminal capability descriptions given in the XENIX
system's /etc/termcap file to prepare the screen processing functions for creating and
updating terminal screens. The descriptions define the character sequences required to
perform a given operation on a given terminal. These sequences are used by the screen
processing functions to add, insert, delete, and move characters on the screen. The
descriptions are automatically read from the file when screen processing is initialized,
so direct access by a program is not required.

The initscr function uses the shell's TERM variable to determ ine which term inal
capability description to use. The TERM variable is usually assigned an identifier when
a user logs in. This identifier defines the terminal type and is associated with a
terminal capability description in the /etc/termcap file.

If the TERM variable has no value, the functions use the default terminal type in the
library's predefined variable def_term. This variable initially has the value "dumb" (for
"du mb terminal"), but the user may change it to any desired value. This must be done
before calling the initscr function.

In some cases, it is desirable to force the screen processing functions to use the default
terminal type. This can be done by setting the library's predefined variable my_ term to
the value TRUE. The full name of the current terminal is stored in the predefined
variable tty type.

Terminal capabilities, types, and identifiers are described in detail in termcap in "Files"
in the XENIX 286 Reference Manual.

3-4

XENIX C . Libraries Screen Processing

Using Defa u lt Termin a l M odes

The initscr function automatically sets a terminal to default operation modes. These
modes define how the terminal displays characters sent to the screen and how it
responds to characters typed at the keyboard. initscr sets the terminal to E CHO mode,
which causes characters typed at the keyboard to be displayed on the screen, and RAW
mode, which causes characters to be used as direct input (no editing or signal processing
is done).

The default terminal modes can be changed, if desired, by using the appropriate
funct ions described in the section "Setting a Terminal Mode" near the end of this
chapter. If the modes are changed, they must be changed i m mediately after calling
initscr. Terminal modes are described in tty in "Devices" in the XENIX 286 R eference
Manual.

Usin g Defa u lt Wi ndow Flags

The initscr function automatically clears the cursor, scroll, and clear flags of the
standard screen to their default values. These flags, called the window flags, define
how the refresh function affects the terminal screen when refreshing from the standard
screen. When clear, the cursor flag prevents the terminal's cursor from moving back to
its original location after the screen is updated, the scroll flag prevents scrolling on the
screen, and the clear flag prevents the characters on the screen from being cleared
before being updated. The flags may be changed by using the functions described in the
section "Setting Window Flags" later in this chapter.

Usin g the Defa u lt Termi na l S ize

The initscr function sets the terminal screen size to a default number of lines and
columns. The default values are given in the predefined variables LINES and COLS. If
desired, you can change the default size of a term inal by sett ing the variables to new
values. This should be done before the first call to initscr. If done after the first call, a
second call to initscr must be made to delete the existing standard screen and create a
new one.

Terminating Screen Processi ng

The endwin function terminates the screen processing in a program by freeing all
memory resources allocated by the screen processing functions and restoring the
terminal to the state it was in before screen processing began. The function call has the
form

endwi n(}

No arguments are required.

3-5

Screen Processing XENIX C Libraries

The function must be used before leaving a program that has called the initscr function
to restore the terminal to its previous state. The function is generally the last function
call in the program. For example, in the following program fragm ent initscr and endwin
form the beginning and end of the program.

#incl ude < curses. h >

mai n()
{

}

i n i tscr() ;
I* Program body. */
endwi n();

endwin should not be called in your program until after calling initscr, gettmode, or
setterm.

Usin g the Sta n d a rd Screen

The following sections explain how to use the standard screen to display and edit
characters on the terminal screen.

Add i ng a Character

The addch function adds a given character to the standard screen and moves the
character pointer one position to the right. The function call has the form

addch(ch)

where ch gives the character to be added; it must have char type. For example, if the
current position is (O,O), the function call

addch('A')

places the letter 'A' at this position and moves the pointer t<? (0, 1).

If a newline ('\n') character is given, the function deletes all characters from the current
position to the end of the line and moves the pointer one line down, or if the newline
flag is set, the function deletes the characters and moves the pointer to the beginning of
the next line. If a return ('\r') is given, the function moves the pointer to the beginning
of the current line. If a tab ('\t') is given, the function moves the pointer to the next tab
stop, adding enough spaces to fill gap between the current position and the stop. Tab
stops are placed at every eight character positions.

The function returns ERR if it encounters an error, such ·as illegal scrolling.

3-6

XENIX C
.
Libraries Screen Processing

Add ing a String

The addstr function adds a string of characters to the standard screen, placing the first
character of the string at the current position and moving the pointer one position to
the right for each character in the string. The function call has the form

addstr(str)

where str is a character pointer to the given string. For example, if the current position
is (0, 0), the function call

addstr(" l i ne ") ;

places the beginning of the string "line" at this position and moves the pointer to (0,4).

If the string contains newline, return, or tab characters, the funct ion performs the same
actions as described for the addch function. If the string is longer than can fit on the
current line, the string is truncated.

The function returns ERR if it encounters an error such as illegal scrolling.

Printing Formatted Output

The printw function prints one or more values on the standard screen, where a value
may be a string, a character, or a decimal, octal, or hexadecimal nu mber. The function
call has the form

pri ntw(fmt [, arg] . . .)

where fmt is a pointer to a string that defines the format of the values, and arg is a
value to be printed. If more than one arg is given, each must be separated fro m the
preceding item with a com ma. For each arg given, a corresponding format must be
given in fmt. A format may be "%s" for string, "%c" for character, and "%d", "%o", or
"%x" for a decimal, octal, or hexadecimal number respectively. (Other form ats are
described in printf in Appendix C, "Syst e m Functions." If "%s" is given, the
corresponding arg must be a character pointer. For other formats, the actual value or a
variable containing the value may be given.

The function is typically used to copy both numbers and strings to the standard screen at
the same t ime. For example, if the current position is (0 ,0), the function call

pri ntw(" % s %d " , name, 1 5) ;

prints a name given by the variable "name" at position (0,0) and the num ber " 1 5"
i m mediately after the name.

The function returns ERR if it encounters an error such as illegal scrolling.

3-7

Screen Processing XENIX C Libraries

Readi n g a Character from the Keyboard

The getch function reads a single character from the terminal keyboard and returns the
character as a value. The function call has the form

c = getch()

where c is the variable to receive the character.

The function is typically used to read a series of individual characters. For example, in
the following program fragm ent characters are read and stored unt il a newline
character is encountered.

char c, p [MAX] ;
i nt i ;

i = 0;
wh i l e ((c = getch()) ! = '\n ' && i < MAX- 1)

p[i + +] = c;
p[i] = '\0' ; I* term inati ng nu l l */

If the terminal is set to ECHO mode, the function copies the character to the standard
screen. If the terminal is not set to RAW or NO E CHO mode, the function automatically
sets the terminal to CBREAK mode, then restores the previous mode after reading the
character. Terminal modes are described later in this chapter, in the section
"Controlling the Terminal."

The function returns ERR if it encounters an error such as illegal scrolling.

Read i n g a Strin g from the Keyboa rd

The getstr function reads a string of characters from the terminal keyboard and copies
the string to a given location. The function call has the form

getstr(str)

where str is a character pointer to the location to receive the string. When typed at the
keyboard, the string must end with a newline character or with the end-of-file
character. The extra character is replaced by a null character when the string is stored.

The function is typically used to read names and other text from the keyboard. For
example, the following program fragment reads a file name from the keyboard and
stores it in the array name.

char name[20] ;

getstr(name) ;

3-8

XENIX C Libraries Screen Processing

If the terminal is set to ECHO mode, the function copies the string to the standard
screen. If the terminal is not set to RAW or NO ECHO mode, the function automatically
sets the terminal to CBREAK mode, then restores the previous mode after reading the
characters. Terminal modes are described later in this chapter, in the section
"Controlling the Terminal."

The function returns ERR if it encounters an error such as illegal scrolling.

Reading Formatted Input

The scanw function reads one or more values from the terminal keyboard and copies the
values to given locations. A value may be a string, character, or decimal, octal, or
hexadecimal nu mber. The function call has the form

scanw(fmt [, argptr] . . .)

where fmt is a pointer to a string defining the format of the values to be read and
argptr is a pointer to the variable to receive a value. If more than one argptr is given,
they are separated by com mas. For each argptr given, a corresponding format must be
given in fmt. A format may be "%s" for string, "%c" for character, and "%d", "%o", or
"%x" for decimal, octal, or hexadecimal number respectively. (Other form ats are
described in scanf in Appendix C, "System Functions.")

scanw is typically used to read a combination of strings and numbers from the keyboard.
For example, in the following program fragment scanw reads a name and a num ber from
the keyboard.

char name[20] ;
i nt i d ;

scanw(" % s % d " , name, & id) ;

In this example, the input values are stored in the character array name and the integer
variable id.

If the ter minal is set to ECHO mode, the function copies the string to, the standard
screen. If the terminal is not set to RAW or NO ECHO mode, the function automatically
sets the terminal to CBREAK mode, then restores the previous mode after reading the
characters. Terminal modes are described later in this chapter, in the section
"Controlling the Terminal."

The function returns ERR if it encounters an error such as illegal scrolling.

3-9

Screen Processing XENIX C Libraries

M oving the Cu rrent Positio n

The move function moves the pointer t o the given position. The function call has the
form

move(y, x)

where y is an integer value giving the new row position, and x is an integer value giving
the new column position. For example, if the current position is (O,O), the function call

move(4, 4)

moves the pointer to (4,4).

The function returns ERR if it encounters an error such as illegal scrolling.

Insertin g a Character

The insch function inserts a character at the current position and shifts the existing
character (and all characters to its right) one position to the right. The function call
has the form

i nsch(c)

where c is the character to be inserted.

The function is typically used to insert a series of characters into an existing line. For
example, in the following program fragment insch is used to insert the nu mber of
characters given by cnt into the standard screen at the current position.

i nt cnt;
char * stri ng;

whi l e (cnt ! = 0) {
i nsch(stri ng [--cnt]) ;

}

The function returns ERR if it encounters an error such as illegal scrolling.

Inserting a Li ne

The insertln function inserts a blank line at the current position and moves the exist ing
line (and all lines below it) down one line, causing the last line to move off the bottom
of the screen. The function call has the form

i nsert! n ()

No arguments are required.

3-1 0

XENIX C
.
Libraries Screen Processing

The function is used to insert additional lines of text into the standard screen. For
example, in the following program fragment insertln is used to insert a blank line when
cnt is equal to 79.

i nt cnt;

i f (cnt = = 79)
i nsertl n();

The function returns ERR if it encounters an error such as illegal scrolling.

Deleting a Cha racter

The delch function deletes the character at the current position and shifts the character
to the right of the deleted cha:i."acter (and all characters to its right) one posit ion to the
left. The function call has the form

del ch()

No arguments are required.

The function is typically used to delete a series of characters from the standard screen.
For example, in the following program fragment delch deletes cnt characters beginning
at the current position.

i nt cnt;

wh i I e (cnt ! = 0) {
del ch();
cnt-- ;

}

Deleting a Line

The deleteln function deletes the current line and shifts the line below the deleted line
(and all lines below it) one line up, leaving the last line in the screen blank. The
function call has the form

delete ln ()

No arguments are required.

The function is used to delete existing lines from the standard screen. For example, in
the following program fragment deleteln is used to delete a line from the standard
screen if cnt is 79.

i nt cnt;

if (cnt = = 79)
deletel n();

3-1 1

Screen Processing XENIX C Libraries

Clea ring the Screen

The clear and erase functions clear all characters from the standard screen by replacing
them with spaces. These functions are typically used to prepare the screen for new
text.

The clear function clears all characters fro m the standard screen, moves the pointer to
(O,O), and sets the standard screen's clear flag. The flag causes the next call to the
refresh function to clear all characters from the terminal screen.

The erase function clears the standard screen, moves the pointer to (0 ,0), but does not
set the clear flag. For example, in the follow ing program fragment clear clears the
screen if the input value is 1 2.

char c ;

i f { {c = getch{)) = = 1 2)
dear{) ;

Clea ring a Pa rt of the Screen

The clrtobot and clrtoeol functions clear one or more characters from the standard
screen by replacing the characters with spaces. The functions are typically used to
prepare a part of the standard screen for new characters.

The clrtobot function clears the screen fro m the current position to the bottom of the
screen. For example, if the current position is (1 0,0), the function call

drtobot{) ;

clears all characters on line 1 0 and all lines below line 1 0.

The clrtoeol function clears the standard screen from the current position to the end of
the current line. For example, if the current position is (10, 1 0), the function call

cl rtoeol () ;

clears all characters from (10, 1 0) to (10, 79). The characters at the beginning of the line
remain unchanged.

Note that both the clrtobot and clrtoeol functions do not change the current position.

Refresh ing from the Sta nda rd Screen

The refresh function updates the terminal screen by copying one or more characters
from the standard screen to the term inal. · The function effectively changes the
terminal screen to reflect the new contents of the standard screen. The function call
has the form

refresh{)

No arguments are required.

3-12

XENIX C Libraries Screen Processing

The function is used solely to display changes to the standard screen. The funct ion
copies only those characters that have changed since the last call to refresh and leaves
any exist ing text on the terminal screen. For example, in the follow ing program
fragment refresh is called twice.

addstr("The fi rst ti me.\n ") ;
refresh() ;
addstr("The second ti me.\n ") ;
refresh() ;

In this example, the first call to refresh copies the string "The first t ime." to the
terminal screen. The second call copies only the string "The second t ime." to the
terminal, since the original string has not changed.

The function returns ERR if it encounters an error such as illegal scrolling. If an error
is encountered, the function attempts to update as much as the screen as possible
without causing the scroll.

Creati ng a n d Usi n g Wi ndows

The following sections explain how to create and use windows to display and edit text on
the term inal screen.

Creating a Window

The newwin function creates a window and returns a pointer that may be used in
subsequent screen processing functions. The function call has the form

wi n = newwi n(l i nes, cols, beg i n_y, beg i n_ x)

where win is the pointer variable to receive the return value, lines and cols are integer
values that give the total nu mber of lines and colu mns in the window, and begin_y and
begin_x are integer values that give the line and column positions, respectively, of the
upper left corner of the window when displayed on the terminal screen. The win
variable must have type pointer to WINDOW.

The function is typically used in programs that maintain a set of windows, displaying
different windows at different t imes or alternating bet ween windows as needed. For
example, in the following program fragment newwin creates a new window and assigns
the pointer to this window to the variable midscreen.

WIN DOW *m idscreen;

m idscreen = newwi n(S, 1 0, 9, 35) ;

The window has 5 lines and 1 0 colu mns. The upper left corner of the window is placed
at position (9,35) on the ter minal screen.

3- 13

Screen Processing XENIX C L ibraries

If either lines or cols is zero, the function automatically creates a window that has
LINES - begin_y lines or COLS - begin_x columns, where LINES and COLS are the
predefined constants giving the total nu mber of lines and columns on the terminal
screen. For example, the funct ion call

newwi n(O, 0, 0, 0)

creates a new window with its upper left corner at position (0 ,0) and with LINES lines
and COLS columns.

Creati n g a Su bwindow

The subwin function creates a subwindow and returns a pointer to the new window. A
subwindow is a window that shares all or part of the character space of another window
and provides an alternate way to access the characters in that space. The function call
has the form

swi n = subwi n(wi n, l i nes, col s, beg i n _y, begi n_ x)

where swin is the pointer variable to receive the return value, win is the pointer to the
window to contain the new subwindow, lines and cols are integer values that give the
total number of lines and colu mns in the subwindow, and begin_y and begin_x are integer
values that give the line and column position, respectively, of the upper left corner of
the subwindow when dislayed on the terminal screen. The swin variable must have
WINDOW type.

The function is typically used to divide a large window into separate regions. For
example, in the following program fragment subwin creates the subwindow na med
cmdmenu in the lower part of the standard screen.

WI N DOW *cmdmenu ;

cmd menu = subwin(stdscr, 5, 80, 1 9, 0) ;

In this example, changes to cmdmenu affect the standard screen as well.

Adding a nd Printi ng to a Wi ndow

The waddch, waddstr, and wprintw functions add and print characters, strings, and
riumbers to a given window.

The waddch function adds a given character to the given window and m oves the
character pointer one position to the right. The funct ion call has the form

waddch(win , ch)

3-14

XENIX C
.
Libraries Screen Processing

where win is a pointer to the window to receive the character and ch gives the
character to be added; it must have char type. For example, if the current position in
the window "midscreen" is (O,O), the function call

waddch(m idscreen, 'A')

places the letter 'A' at this position and moves the pointer to (0, 1).

The waddstr function adds a string of characters to the given w indow, placing the first
character of the string at the current position and moving the pointer one position to
the right for each character in the string. The function call has the form

waddstr(wi n, str)

where win is a pointer to the window to receive the string and str is a character pointer
to the given string. For example, if the current posit ion is (O,O), the function call

waddstr(m idscreen, " l i ne ") ;

places the beginning of the string "line" at this posit ion and moves the pointer to (0,4).

The wprintw function prints one or more values on the given window, where a value m ay
be a string, a character, or a decimal, octal, or hexadecimal number. The function call
has the form

wpri ntw(wi n, fmt [, a rg] . . .)

where win is a pointer to the window to receive the values, fmt is a pointer to a string
that defines the format of the values, and arg is a value to be printed. If more than one
arg is given, each must be separated from the preceding with a com ma. For each arg
given, a corresponding format must be given in fmt. A format may be "%s" for string,
"%c" for character, and "%d", "%o", or "%x" for decimal, octal, or hexadeci m al number
respect ively. (Other formats are described in printf in Appendix C , " Syst e m
Functions.") If "%s" is given, the corresponding arg must be a character pointer. For
other formats, the actual value or a variable containing the value may be given.

The function is typically used to copy both nu mbers and strings to the standard screen at
the same time. For example, in the following program fragment wprintw prints a name
and then the number 1 5 at the current position in the window midscreen.

char * name;

wpri ntw(midscreen, " %s % d " , name, 1 5) ;

Note that when a newline, return, or tab character is given to a waddch, waddstr, or
wprintw function, the functions perform the sam e actions as described for the addch
function. The functions return ERR if they encounter errors such as illegal scrolling.

3- 1 5

Screen Processing XENIX C Libraries

Readi n g a nd Sca n n i n g for Input

The wgetch, wgetstr, and wscanw functions read characters, strings, and numbers from
the standard input and usually echo the values by copying them to the given window.

The wgetch function reads a single character from the standard input and returns the
character as a value. The function call has the form

c = wgetch(wi n)

where win is a pointer to a window, and e is the character variable to receive the
character.

The function is typically used to read a series of characters from the keyboard. For
example, in the follow ing program fragment wgetch reads characters until a colon (:) is
found.

char c, d i r [MAX] ;
i nt i ;

i = 0 ;
whi l e ((c = wgetch(cmdmenu)) ! = ' : ' && i < MAX)

di r[i + +] = c;

The wgetstr function reads a string of characters from the terminal keyboard and copies
the string to a given location. The function call has the form

wgetstr(win , str)

where win is a pointer to a window, and str is a character pointer to the location to
receive the string. When typed at the keyboard, the string must end with a newline
character or with the end-of-file character. The extra character is replaced by a null
character when the string is stored.

The function is typically used to read names and other text from the keyboard. For
example, in the following program fragment wgetstr reads a string from the keyboard
and stores it in the array filename.

char fi l ename[20] ;

wgetstr(cmdmenu, fi l ename) ;

The wscanw funct ion reads one or more values from the standard input and copies the
values to given locations. A value may be a string, character, or decimal, octal, or
hexadecimal number. The function call has the form

wscanw(wi n, fmt [, argptr] . . .)

3-16

XENIX C Libraries Screen Processing

where win is a pointer to a window, fmt is a pointer to a string defining the format of
the values to be read, and argptr is a pointer to the variable to receive a value. If more
than one argptr is given, each must be separated from the preceding by a com ma. For
each argptr given, a corresponding format must be given in fmt. A format may be "96s"
for string, "96c" for character, and "96d", "96o", or "96x" for dec i m al, octal, or
hexadecimal number respectively. (Other form ats are described in scanf in Appendix C,
"System Functions.")

The function is typically used to read a combination of strings and numbers from the
keyboard. For example, in the following program fragment wscanw reads a name and a
number from the keyboard.

char name[20] ;
i nt id ;

wscanw(midscreen, " % s % d " , name, &id) ;

In this example, the name is stored in the character array name and the number in the
integer variable id.

If the terminal is set to ECHO mode, the function copies the string to the given window.
If the terminal is not set to RAW or NO ECHO mode, the function automatically sets the
terminal to CBREAK mode, then restores the previous mode after reading the
character.

The functions return ERR if they encounter errors such as illegal scrolling.

M oving a Window's Cu rrent Position

The wmove function moves the current position of a given window. The function call
has the form

wmove(wi n, y, x)

where win is a pointer to a window, y is an integer value giving the new line position,
and x is an integer value giving the new colu mn position. For example, the function call

wmove(m idscreen, 4, 4)

moves the current position in the window midscreen to (4,4).

The function returns ERR if it encounters an error such as illegal scrolling.

3-1 7

Screen Processing XENIX C Libraries

Inserti ng Characters

The winsch and winsertln functions insert characters and lines into a given window.

The winsch function inserts a character at the current position and shifts the existing
character (and all characters to its right) one position to the right. The function call
has the form

wi nsch(win , c)

where win is a pointer to a window, and c is the character to be inserted.

The function is typically used to edit the existing contents of the given window. For
example, the function call

winsch(m idscreen, 'X') ;

inserts the character 'X' at the current position in the window midscreen.

The winsertln function inserts a blank line at the current position and moves the existing
line (and all lines below it) down one line, causing the last line to move off the botto m
of the screen. The function call has the form

winsertl n(wi n)

where win is a pointer to the window to receive the blank line.

The function is used to insert lines into a window. For example, in the following
program fragment winsertln inserts a blank line at the top of the window cmdmenu,
preparing it for a new line.

char l i ne [80] ;

wmove(cmd menu, 3, 0) ;
wi nsertl n(cmdmenu) ;
waddstr(cmdmenu, l i ne) ;

Both functions return ERR i f they encounter errors such as illegal scrolling.

Oeleti n g Characters

The wdelch and wdeleteln functions delete characters and lines from the given window.

The wdelch function deletes the character at the current position and shifts tpe
character to the right of the deleted character (and all characters to its right) one
position to the left. The function call has the form

wdelch(wi n)

where win is a pointer to a window.

3-1 8

XENIX C Libraries Screen Processing

The function is typically used to edit the existing contents of the standard screen. For
example, the function call

wdelch{midscreen);

deletes the character at the current position in the window midscreen.

The wdeleteln function deletes the current line and shifts the line below the deleted line
(and all lines below it) one line up, leaving the last line in the screen blank. The
function call has the form

wdeletel n{ wi n)

where win is a pointer to a window.

The function is typically used to delete existing lines from a given window. For
example, in the following program fragment wdeleteln deletes the lines in midscreen
until cnt is equal to zero.

i nt cnt;

whi l e { cnt ! = 0) {
wdeletel n{midscreen);
cnt--;

}

Cleari ng the Screen

The wclear, werase, wclrtobot, and wclrtoeol functions clear all or part of the
characters from the given window by replacing the m with spaces. The functions are
typically used to prepare the window for new text.

The wclear function clears all characters from the window, moves the pointer to (0,0),
and sets the standard screen's clear flag. The flag causes the next refresh function call
to clear all characters from the terminal screen. The function call has the form

wclear{ wi n)

where win is a pointer to the window to be cleared.

The werase function clears the given window, moves the pointer to (0, 0), but does not
set the clear flag. It is used whenever the contents of the terminal screen must be
preserved. The funct ion call has the form

we rase{ wi n)

where win is a pointer to the window to be cleared.

3-19

Screen Processing XENIX C L ibraries

The wclrtobot function clears the window from the current position to the bottom of the
screen. The function call has the form

wei rtobot(win)

where win is a pointer to the window to be cleared. For example, if the current position
in the window midscreen is (10 ,0), the function call

wel rtobot(m idscreen) ;

clears all characters on line 1 0 and all lines below line 10.

The wclrtoeol function clears the standard screen from the current position to the end
of the current line. The function call has the form

wei rtoeol (wi n)

where win is a pointer to the window to be cleared. For example, if the current position
in midscreen is (10 , 1 0), the function call

d rtoeol (m idscreen);

clears all characters fro m (10, 1 0) to the end of the line. The characters at the
beginning of the line remain unchanged.

Note that the wclrtobot and wclrtoeol functions do not change the current posit ion.

Refreshi n g from a Wi ndow

The wrefresh funct ion updates the terminal screen by copying one or more characters
from the given window to the terminal. The function effectively changes the terminal
screen to reflect the new contents of the window. The function call has the form

wrefresh(wi n)

where win is a pointer to a window.

The function is used solely to display changes to the window. The function copies only
those characters that have changed since the last call to wrefresh and leaves any
�xisting text on the terminal screen. For example, in the following program fragment
wrefresh is called twice.

3-2 0

waddstr(cmdmenu, "Type a command name\n ") ;
wrefresh(cmdmenu) ;
waddstr(cm dmenu, " Command : ") ;
wrefresh(cmdmenu) ;

XENIX C Libraries Screen Processing

In this example, the first call to wrefresh copies the string "Type a com mand name" to
the terminal screen. The second call copies only the string "Co m m and: " to the
terminal, since the original string has not changed.

The function returns ERR if it encounters an error such as illegal scrolling. If an error
is encountered, the function attempts to update as much as the screen as possible
without causing the scroll.

Overlayi n g Wi ndows

The overlay function copies all characters except spaces from one window to another,
moving characters from their original positions in the first window to identical positions
in the second. The function effectively lays the first window over the second, lett ing
characters in the second window that would otherwise be covered by spaces remain
unchanged. The function call has the form

overlay{ wi n 1 , wi n2)

where winl is a pointer to the window to be copied, and win2 is a pointer to the window
to receive the copied text. The starting positions of winl and win2 must match,
otherwise an error occurs. If winl is larger than win2, the function copies only those
lines and columns in winl that fit in win2.

The function is typically used to build a composite screen from overlapping windows.
For example, in the following program fragment overlay is used to build the standard
screen from two different windows.

WIN DOW * i nfo, *cmdmenu;

overlay{i nfo, stdscr) ;
overlay{cmdmenu, stdscr) ;
refresh{) ;

Overwriting a Screen

The overwrite function copies all characters, including spaces, from one window to
another, moving characters fro m their positions in the first window to identical
positions in the second. The funct ion effectively writes the contents of the first window
over the second, destroying the previous contents of the second window. The function
call has the form

overwrite{ wi n 1 , wi n2)

where winl is a pointer to the window to be copied, and win2 is a pointer to the window
to receive the copied text. If winl is larger than win2, the function copies only those
lines and columns in winl that fit in win2.

3-2 1

Screen Processing XENIX C Libraries

The function is typically used to display the contents of a temporary window in the
middle of a larger window. For example, in the following program fragment overwrite
is used to copy the contents of a work window to the standard screen.

WI N DOW *work;

overwrite(work, stdscr) ;
refresh() ;

Movi ng a Wi ndow

The mvwin function moves a given window to a new position on the terminal screen,
causing the upper left corner of the window to occupy a given line and colu mn position.
The function call has the form

mvwi n(wi n , y, x)

where win is a pointer to the window to be moved, y is an integer value giving the line
to which the corner is to be moved, and x is an integer value giving the column to which
the corner is to be moved.

The function is typically used to move a temporary window when an exist ing window
under it contains information to be viewed. For example, in the following program
fragment mvwin moves the window named work to the upper left corner of the terminal
screen.

WI N DOW *work;

mvwin(work, 0, 0) ;

The function returns ERR if it encounters an error such as an attempt to move part of a
window off the edge of the screen.

Read ing a Cha racter from a Window

The inch and winch functions read a single character from the current pointer position
in a window or screen.

The inch function reads a character from the standard screen. The function call has the
form

c = i nch()

where c is the character variable to receive the character read.

The winch function reads a character fro m a given window or screen. The function call
has the form

c = wi nch(wi n)

where win is the pointer to the window containing the character to be read.

3-2 2

XENIX C Libraries Screen Processing

The functions are typically used to compare the actual contents of a window with what
is assumed to be there. For example, in the following program fragment inch and winch
are used to compare the characters at position (0,0) in the standard screen and in the
window nai;Iled altscreen.

char c 1 , c2;

c 1 = i nch() ;
c2 = wi nch(altscreen) ;
if (c 1 ! = c2)

error() ;

Note that reading a character from a window does not alter the contents of the window.

Tou ch ing a Window

The touchwin function makes the entire contents of a given window appear to be
modified, causing a subsequent refresh call to copy all characters in the window to the
terminal screen. The function call has the form

touchwi n(wi n)

where win is a pointer to the window to be touched.

The function is typically used when two or more overlapping windows make up the
terminal screen. For example, the function call

touchwi n(l eftscreen);

is used to touch the window named leftscreen. A subsequent refresh copies all
characters in leftscreen to the terminal screen.

Deleting a Window

The delwin function deletes a given window from me mory, freeing the space previously
occupied by the window for other windows or for dynamically allocated variables. The
function call has the form

delwi n(wi n)

where win is the pointer to the window to be deleted.

The function is typically used to remove temporary windows from a program or to free
memory space for other uses. For example, the function call

delwi n(m i dscreen) ;

removes the window midscreen.

Note that you must delete subwindows from a window before deleting the window. If
you do not, the memory space held by the subwindow becomes inaccessible.

3-23

Screen Processing XENIX C Libraries

Usi ng Other Wi ndow Fu nct ions

The following sections explain how to perform a variety of operations on existing
windows, such as setting window flags and drawing boxes around the window.

Drawing a Box

The box function draws a box around a window using the given characters to form the
horizontal and vertical sides. The function call has the form

box(w in , vert, hor)

where win is the pointer to the desired window, vert is the vertical character, and hor is
the horizontal character. Both ver and hor must have char type.

The function is typically used to distinguish one window from another when combining
windows on a single screen. For example, in the following program fragment box
creates a box around the window in the lower half of the screen.

WIN DOW *cmdmenu;

cmd menu = subwi n(stdscr, 5, 80 , 1 9, 0) ;
box(cmdmenu, ' 1 ' , '-') ;

If necessary, the function will leave the corners of the box blank to prevent illegal
scrolling.

Displaying Bold Characters

The wstandout function sets the standout character attribute, causing characters
subsequently added to the given window to be displayed as bold characters. The
function call has the form

wstandout(win)

where win is a pointer to a window.

wstandout is typically used to make error messages or instructions clearly visible when
displayed at the terminal screen.

Note that the actual appearance of characters with the standout attribute depends on
the given terminal. This attribute is defined by the SO and SE (or US and U E) sequences
given in the terminal's termcap entry (see termcap in "Files" in the XENIX 286
Reference Manual).

3-24

XENIX C tibraries Screen Process ing

Restoring Normal Cha racters

The wstandend function restores the normal character attribute, causing characters
subsequently added to a specified window to be displayed as normal characters. The
function call has the form

wstandend(wi n)

where win is a pointer to a window.

Setting Window Flag s

The leaveok, scrollok, and clearok functions set o r clear the cursor, scroll, and clear­
screen flags. The flags control the action of the refresh function when called for the
given window.

The leaveok function sets or clears the cursor flag that defines how the refresh function
places the terminal cursor and the window pointer after updating the screen. If the flag
is set, refresh leaves the cursor after the last character to be copied and moves the
pointer to the corresponding position in the window. If the flag is cleared, refresh
moves the cursor to the same position on the screen as the current pointer position in
the window. The function call has the form

l eaveok(wi n , state)

where win is a pointer to the window containing the flag to be set, and state is a
Boolean value defining the state of the flag. If state is TRUE the flag is set; if FALSE,
the flag is cleared. For example, the function call

leaveok(stdscr, TRU E) ;

sets the cursor flag.

The scrollok function sets or clears the scroll flag for the given window. If the flag is
set, scrolling through the window is allowed. If the flag is clear, then no scrolling is
allowed. The function call has the form

scrol l ok(wi n, state)

where win is a pointer to a window, and state is a Boolean value defining how the flag is
to be set. If state is TRUE, the flag is set; if FALSE, the flag is cleared. The flag is
initially clear, making scrolling illegal.

3-2 5

Screen Processing XENIX C Libraries

The clearok function sets and clears the clear flag for a given screen. The function call
has the form

clearok(wi n, state)

where win is a pointer to the desired screen, and state is a Boolean value. The function
sets the flag if state is TRUE, and clears the flag if FALSE. For example, the function
call

clearok(stdscr, TRU E)

sets the clear flag for the standard screen.

When the clear flag is set, each refresh call to the given screen automatically clears the
screen by passing a clear-screen sequence to the terminal. This sequence affects the
terminal only; it does not change the contents of the screen.

If clearok is used to set the clear flag for the current screen curser, each call to refresh
automatically clears the screen, regardless of which window is specified in the call.

Scro l l i n g a Window

The scroll function scrolls the contents of a given window upward by one line. The
function call has the form

scrol l (wi n)

where win is a pointer to the window to be scrolled.

Com b i n i n g Movement with Action

Many screen operations move the current position of a given window before performing
an action on the window. For convenience, you can combine a nu mber of functions with
the movement prefix. This combination has the form

mvfunc([wi n,] y, x [, arg] . . .)

where func is the name of a function, win is a pointer to the window to be operated on
Of necessary), y is an integer value giving the line to move to, x is an integer value
giving the column to move to, and arg is a required argu ment for the given function. If
more than one argument is required, they must be separated with com m as. For
example, the function call

mvaddch(1 0, 5, 'X') ;

moves the position to (10 ,5) and adds the character 'X'. The operation is the same as
moving the position with the move funct ion and then adding a character with addch.

3-26

XENIX C Libraries Screen Processing

Contro l l i n g the Term i n a l

The following sections explain how t o set the terminal modes, how t o m ove the
terminal's cursor, and how to access other aspects of the terminal.

Setting a Terminal M ode

The crmode, echo, nl, and raw functions set a terminal to the corresponding mode,
causing subsequent input fro m the terminal's keyboard to be processed accordingly.

The crmode function sets the CBREAK mode for the terminal. The mode preserves the
function of editing and signal keys, allowing input to be edited as it is typed and
allowing signals to be sent to a program from the keyboard. The function call has the
form

crmode()

No arguments are required.

The echo funct ion sets the ECHO mode for the terminal, causing each character typed
at the keyboard to be displayed at the terminal screen. The function call has the form

echo()

No argu ments are required.

The nl function sets a term inal to NEWLINE mode, causing all newline characters to be
mapped to a corresponding newline and return character combination. The function call
has the form

nl ()

No argu ments are required.

The raw funct ion sets the RAW mode for the terminal, causing each character typed at
the keyboard to be sent as direct input. The mode disables the function of the edit ing
and signal keys and disables the mapping of newline characters into newline and return
combinations. The function call has the form

raw()

No arguments are required.

3-27

Screen Processing XENIX C Libraries

Cleari n g a Termi nal Mode

The nocrmode, noecho, nonl, and noraw funct ions clear a t er m i nal fro m the
corresponding mode, allowing input to be processed according to a previous mode.

The nocrmode function clears a terminal from the CBREAK mode. The function call
has the form

nocrmode()

No arguments are required.

The noecho function clears a terminal from the ECHO mode. This mode prevents
characters typed at the keyboard from being displayed on the terminal screen. The
function call has the form

noecho()

No argu ments are required.

The nonl function clears a terminal from NEWLINE mode, causing newline characters to
be mapped into the mselves. This allows the screen processing functions to perform
better opti mization. The function call has the form

non I ()

No argu ments are required.

The noraw function clears a terminal form RAW mode, restoring normal editing and
signal generat ing funct ion to the keyboard. The function call has the form

no raw()

No arguments are required.

Movi ng the Termi na l's Cu rsor

The mvcur function moves the terminal's cursor from one posit ion to another. The
function call has the form

mvcur (l ast_y, last_ x, new _y, new x)

where last_y and last_x are integer values giving the last line and column position of the
cursor, and new_y and new_x are integer values giving the new line and colu mn position
of the cursor. For example, the function call

mvcur(1 0, 5, 3, 0)

moves the cursor from (10,5} to (3 ,0} on the terminal screen.

The function can only be used to perform special tasks in programs that do not use other
screen processing functions.

3-28

XENIX C Libraries Screen Processing

Getting the Terminal M ode

The gettmode function returns the current tty mode. The function call has the form

s = gettmode()

where s is the variable to receive the status.

The function is normally called by the initscr function.

Setting a Terminal Type

The setterm function sets the terminal type to the given type. The function call has the
form

setterm(name)

where name is a pointer to a string containing the terminal type identifier. The
function is normally called by the initscr function but may be used in special cases.

Reading the Terminal Name

The longname function converts a given termcap identifier into the full name of the
corresponding term inal. The function call has the form

longname(termbuf, name)

where termbuf is a pointer to the string containing the terminal type ident ifier, and
name is a character pointer to the location to receive the long name. The terminal type
identifier must exist in the /etc/termcap file.

The function is typically used to get the full name of the term inal currently being used.
Note that the current terminal's identifier is stored in the variable ttytype, which may
be used to receive a new name.

3-29

CHA PT E R 4
C HA RACTE R AND STRING P ROC E S SING

Character and string processing are an i mportant part of many programs. Programs
regularly assign, manipulate, and compare characters and strings to complete their
tasks. For this reason, the standard library provides a variety of character and string
processing functions. These functions are a convenient way to test, translate, assign,
or compare characters and strings.

To use the character functions in a program, the file ctype.h, which provides the
definitions for special character macros, must be included in the program. The line

#i ncl ude < ctype .h >

must appear at the beginning of the program.

To use the string functions, no special action is required. These functions are defined in
the standard C library and are available whenever you compile a C program.

Usi n g the Cha racter F u n ctio ns

The character functions test and convert characters. Many character functions are
defined as macros and thus cannot be redefined or used as targets for breakpoints when
debugging.

Testing for a n ASCI I Character

The isascii function tests for characters in the ASCII character set, i.e., characters
whose values range from 0 to 127 . The function call has the form

i sasc i i (c)

where c is the character to be tested. The function returns a nonzero (true) value if the
character is ASCII, otherwise it returns zero (false). For example, in the following
program fragment isascii determines whether or not the value in c read from the file
given by data is in the acceptable ASCII range.

FI LE *data;
i nt c ;

c = fgetc(data) ;
i f (! i sasc i i (c))

notext() ;

In this example, a function notext is called if the character is not in range.

Character and String Processing XENIX C Libraries

Converti ng to ASCI I Characters

The toascii function converts non-ASCII characters to ASCII. The function call has the
form

c = toasc i i (i) ;

where c is the variable to receive the character, and i is the integer value to be
changed. The function creates an ASCII character by masking out all but the low 7 bits
of the non-ASCII value. If i is already an ASCII character, no change takes place. For
example, the function call

asc i i = toasc i i (1 60) ;

converts value 160 to 32, the ASCII value of the space character.

The function is typically used to prepare non-ASCII characters for display at the
standard output. For example, in the following program fragment toascii converts each
character read fro m the file given by the variable oddstrm.

F I LE *oddstrm;
i nt c ;

c = toasc i i (getc(oddstrm)) ;
i f (i spri nt(c) II i sspace(c))

putchar(c) ;

If the resulting character is printable or is white space, it is written to the standard
output.

Testi ng for Al pha n u merics

The isalnum function tests for letters and deci mal digits, i .e. , the alphanu m eric
characters. The function call has the form

i sa l nu m(c)

where c is the character to test. The function returns a nonzero (true) value if the
character is alphanu meric, otherwise it returns zero (false). For example, the function
call

i sa l num(' 1 ')

returns a nonzero value, but the call

isal num('@')

returns zero.

4-2

XENIX C Libraries Character and String Processing

Testing for a Letter

The isalpha function tests for uppercase or lowercase letters, i . e . , alphabetic
characters. The function call has the form

isa l pha(c)

where c is the character to be tested. The function returns a nonzero (true) value if the
character is a letter, otherwise it returns zero. For example, the function call

i sa l ph a(' a')

returns a nonzero value, but the call

isa l pha('2')

returns zero.

Testi ng for Co ntrol Cha racters

The iscntrl function tests for control characters, i.e., characters with ASCII values in
the range 0 to 3 1 or are 127 . The function call has the form

iscntrl (c)

where c is the character to be tested. The function returns a nonzero (true) value if the
character is a control character, otherwise it returns zero (false). For example, in the
following program fragment iscntrl determines whether or not the character in c read
from the file given by infile is a control character.

FI LE * i nfi l e, *outfi le ;
i nt c ;

c = fgetc(i nfi l e) ;
i f (! i scntrl (c))

fputc(c, outfi l e) ;

The fputc function is ignored if the character is a control character.

4-3

Character and String Processing XENIX C Libraries

Testi ng for a Deci mal Digit

The isdigit function tests for decimal digits. The function call has the form

i sd ig i t(c)

where c is the character to be tested. The function returns a nonzero value if the
character is a digit, otherwise it returns zero. For example, in the following program
fragment a sequence of digits read from a file is interpreted as a decimal unsigned
integer.

F I LE * i nfi le ;
i nt c , num ;
num = 0 ;
whi le (i sd i g i t(c = getc(i nfi l e)))

num = num * 1 0 + (c - '0') ;

Testi ng for a H exadeci ma l Digit

The isxdigit function tests for a hexadeci mal digit, that is, a character that is either a
decimal digit or an uppercase or lowercase letter in the range A to F. The function call
has the form

i sxd ig it(c)

where c is the character to be tested. The function returns a nonzero value if the
character is a hexadecimal digit, otherwise it returns zero. For example, in the
following program fragment isxdigit tests whether a hexadecimal digit is read from the
standard input.

i nt c;

c = getchar() ;
i f (i sxd ig i t(c))

hexmode();

In this example, a funct ion named hexmode is called if a hexadecimal digit is read.

�esti ng for Pri nta ble Characters

The isprint function tests for printable characters, i.e., characters whose ASCII values
range from 32 to 126. The function call has the form

i spri nt(c)

where c is the character to be tested. The function returns a nonzero value if the
character is printable, otherwise it returns zero. Note that the space character (ASCII
value 3 2) is considered printable.

4-4

XENIX C Libraries Character and String Processing

Testi ng for Pu n ctuation

The ispunct function tests for punctuation characters, i.e., characters that are printable
characters but not alphanu meric characters. The function call has the form

ispunct(c)

where c is the character to be tested. The function returns a nonzero value if the
character is a punctuation character, otherwise it returns z ero.

Testi ng for Wh ite Space

The isspace function tests for white-space characters, i.e, the space, horizontal tab,
vertical tab, carriage return, formfeed, and linefeed (newline) characters. The function
call has the form

i sspace(c)

where c is the character to be tested. The function returns a nonzero value if the
character is a white-space character, otherwise it returns zero.

Testi ng for Ca se in Letters

The isupper and islower functions test for uppercase and lowercase letters respectively.
The function calls have the form

isupper(c)

and

is lower(c)

where c is the character to be tested. Each function returns a nonzero value if the
character is the proper case, otherwise it returns zero. For example, the function call

isupper('b')

returns zero (false), but the call

i s lower('b')

returns a nonz ero (true) value.

4-5

Character and String Processing XENIX C Libraries

Converti ng the Case of a Lette r

The tolower and toupper functions convert the case of a given letter. The function calls
have the form

c = tolower(i) ;

and

c = tou pper(i) ;

where c is the variable to receive the converted letter, and i is the letter to be
converted. For example, the statement

lower = tolower('B') ;

converts 'B' to 'b' and assigns it to the variable lower, and the statement

upper = toupper('b') ;

converts 'b' to 'B' and assigns it to the variable upper.

The tolower function returns the character unchanged if it is not an uppercase letter.
Si milarly, the toupper function returns the character unchanged if it is not a lowercase
letter.

These functions are typically used to make the case of the characters read from a file
or standard input consistent. For example, in the following program fragment tolower
changes the character read from the standard input to lowercase before it is compared.

if (tolower(getchar()) ! = 'y')
exi t(O) ;

This conversion allows the \!lser to type either 'Y' or 'y' to prevent the program from
executing the exit function.

Usi ng the Str i ng F u n ctions

The string functions concatenate, compare, copy, or count the nu mber of characters in a
string. Two special string functions, sscanf and sprintf, let a program read fro m and
write to a string in the same way the standard input and output can be read and written.
These functions are convenient when reading or writing whole lines containing values of
several different formats.

Many string functions have two forms: a form that manipulates all characters in the
string and one that manipulates a given nu mber of characters. This gives programs very
fine control over all or parts of strings.

4-6

XENIX C Libraries Character and String Processing

Concatenatin g Stri ngs

The strcat function concatenates two strings by appending the characters of one string
to the end of another. The function call has the form

strcat(dst, src)

where dst is a pointer to the string to receive the new characters, and src is a pointer to
the string containing the new characters. The function appends the new characters in
the same order as they appear in src, then appends a null character to the last character
in the new string. The function always returns the pointer dst.

The function is typically used to build a string such as a full path name from two smaller
strings. For example, in the following program fragment strcat concatenates the string
"temp" to the contents of the character array dir.

char d i r [MAX] = " /usrf" ;

strcat(d i r, " tem p ") ;

Note that the dest ination region must be large enough to hold the concatenated string.
strcat does not check for overflow.

Compari n g Strings

The strcmp function compares the characters in one string to those in another and
returns an integer value showing the result of the comparison. The function call has the
form

strcm p(s 1 , s2)

where sl and s2 are pointers to the strings to be compared. The function returns zero if
the strings are equal (i.e., have the same characters in the same order). If the strings
are not equal, the function returns the difference between the ASCII values of the first
unequal pair of characters. The value of the second string character is always
subtracted from the first. For example, the function call

strcmp(" Character A " , " Character A") ;

returns zero since the strings are identical in every way, but the function call

strcmp(" Character A " , " Character B ") ;

returns -1 because the ASCII value of 'A' i s one less than the ASCII value o f 'B'.

Note that the function continues to compare characters until a mismatch is found. If
one string is shorter than the other, the function stops at the end of the shorter string.
For example, the function call

strcmp(" Character A" , " Character ")

returns 6 5 , i.e., the difference between the null character a t the end o f the second
string and the 'A' at the end of the first string.

4-7

Character and String Processing XENIX C Libraries

Copyi ng a Stri n g

The strcpy function copies a given string t o a given location. The funct ion call has the
form

strcpy(dst, src)

where src is a pointer to the string to be copied, and dst is a pointer to the locat ion to
receive the string. The funct ion copies all characters in the source string src to the
dest inat ion dst and appends a null charact er to the end of the new string. If dst
contained a string before the copy, that string is destroyed. The function always returns
a pointer to the new string, dst.

For example, in the following program fragment strcpy copies the string "not available"
to the locat ion given by nam e.

char na [] = " not avai l abl e " ;
char name [20] ;

strcpy(name, na);

Note that the locat ion to receive a string must be large enough to contain the string.
The function does not detect overflow.

Getti ng a Stri n g's Length

The strlen function returns the nu mber of characters contained in a given string. The
funct ion call has the for m

str len(s)

where s is a pointer to a string. The count includes all charact ers up to, but not
including, the first null character. The return value is always an integer.

In the following program fragm ent, strlen is used to deter m ine whether or not the
contents of innam e are short enough to be stored in nam e. Note that the source length
must be less than the nu m ber of characters available in the dest ination, t o allow for the
null charact er appended to the copied string.

4-8

char * i nname;
char name[MAX] ;

i f (strl en(i n name) < MAX)
strcpy(name, i nname) ;

XENIX C Libraries Character and String Processing

Concatenati ng Cha racters to a String

The stmcat function appends one or more characters to the end of a given string. The
function call has the form

strncat(dst, src, n)

where dst is a pointer to the string to receive the new characters, src is a pointer to the
string containing the new characters, and n is an integer value giving the nu mber of
characters to be concatenated. The function appends the given number of characters to
the end of the dst string, then returns the pointer dst. Unlike strcat, the number of
characters to be concatenated by stmcat is explicitly specified.

In the following program fragment, strncat copies the first three characters in "letter"
to the end of "cover".

char cover(] = " cover" ;
char letter[) = " l etter " ;

strncat(cover, l etter, 3);

This example creates the new string "coverlet" in "cover".

Compa ring Cha racters in Stri ngs

The stmcmp function compares one or more pairs of characters in two given strings and
returns an integer giving the result of the comparison. The function call has the form

strncmp(s 1 , s2, n)

where sl and s2 are pointers to the strings to be compared, and n is an integer value
giving the nu mber of characters to compare. The function returns zero if the first n
characters are identical or if n is zero. Otherwise, the function returns the difference
between the ASCII values of the first unequal pair of charact ers. The funct ion
generates the difference by subtracting the second string character from the first.

For example, the function call

strncmp(" Character A " , " Character B " , 5)

returns zero because the first five characters are identical, but the function call

strncmp(" Character A " , " Character B " , 1 1)

returns -1 because the value of 'A' is one less than 'B'.

Note that the function continues to compare characters until a m is match or the end of a
string is found. The function returns zero if an end of string is encountered before a
mismatch (which only occurs if the strings are identical and n is greater than their
length).

4-9

Character and String Processing XENIX C Libraries

Copyi n g Cha ra cters to a Stri ng

The strncpy function copies a given nu mber of characters to a given string. The
function call has the form

strncpy (dst, src, n)

where dst is a pointer to the string to receive the characters, src is a pointer to the
string containing the characters, and n is an integer value giving the nu m ber of
characters to be copied. The function either copies the first n characters in src to dst,
or if src has fewer than n characters, copies all characters up to the first null charact er.
The function always returns the pointer dst.

In the following program fragment, strncpy copies the first three characters in date to
day.

char date [29] = " Fri Dec 29 09 : 35 :44 EDT 1 982 " ;
char day[MAX] ;

strncpy(day, date, 3);

In this example, day receives the string "Fri".

Rea d i n g Va l u es from a Stri ng

The sscanf function reads one or more values from a given character string and stores
the values at specified memory locations. The function is s imilar to the scanf function,
which reads values fro m the standard input. The function call has the form

sscanf {s, format [, argptr] . . .) ;

where s is a pointer to the string to be read, format is a pointer to the string defining
the format of the values to be read, and argptr is a pointer to the variable that is to
receive the values read. If more than one argptr is given, they must be separated by
com mas. The format string may contain the same formats as given for scanf (see scanf
in Appendix C). The function always returns the number of values read.

The function is typically used to read values from a string containing several values of
different formats or to read values from a program's own input buffer. For example, in
the following program fragment sscanf reads two values from the string pointed to by
datestr.

char datestr[] = " TH U MAR 29 1 1 : 04 :40 EST 1 983 " ;
char month [4] ;
char year[S] ;

sscanf(datestr, " % *3s% 3s% *2s% *8s% *3s%4s " , month, year) ;
pri ntf(" % s, % s\n " , month, year) ;

The first value (a three-character string) is stored at the location pointed to by month.
The second value (a four-character string) is stored at the location pointed to by year.

4-1 0

XENIX C Libraries Character and String Processing

Writi ng Va l u es to a Stri ng

The sprintf function writes one or more values to a given string. The function call has
the form

spri ntf(s, format [, arg] . . .)

where s is a pointer to the string to receive the value, format is a pointer to the string
defining the format of the values to be written, and arg is the variable or value to be
written. If more than one arg is given, they must be separated by com m as. The format
string may contain the same formats as given for printf (see printf in Appendix C).
After all values are written to the string, the function adds a null character to the end
of the string. The function normally returns the number of characters written (not
including the terminating null). Fewer than the expected number of characters may be
written if a formatting error is encountered.

The function is typically used to build a large string from several values of different
formats. For example, in the following program fragment sprintf writes three values to
the string pointed to by cmd.

char cmd [1 00] ;
char *doc = "/usr/src/cmd/cp. c "
i nt width = 50;
i nt length = 60;

spri ntf(cmd, " pr -w% d - l % d % s\n " , width, length, doc);
system(cmd) ;

In this example, the string created by sprintf is used in a call to the system funct ion.
The first two values are the decimal numbers given by width and length. The last value
is a string (a file name) and is pointed to by doc. The final string has the form

pr -wSO - 1 60 /usr/src/cmd/cp.c

Note that the string to receive the values must have sufficient length to store those
values. The function does not check for overflow.

4- 1 1

CHAPTER 5
PROC ESS CONTRO L

This chapter describes the process control functions of the standard C library. These
functions let a program call other programs, using a method si milar to calling functions.

There are a variety of process control functions. The system and exit functions provide
the highest level of execution control and are used by l'Ilost programs that need a
straightforward way to call another program or terminate the current one. The execl,
execv, fork, and wait functions provide low-level control of execut ion and are for those
programs that must have very fine control over their own execution and the execution
of other programs. Other process control functions such as abort and exec are described
in detail in Appendix C, "System Functions."

The process control functions are part of the standard C library. Since this library is
automatically read when compiling a C program, no special library argum ent is required
when invoking the compiler.

Usi ng Processes

"Process" is the term used to describe a program executed by the XENIX syste m. A
process consists of instructions and data, and a table of information about the program,
such as its allocated memory, open files, and current execution status.

You create a process whenever you invoke a program through a shell. The system
assigns a unique process ID to a program when it is invoked and uses this ID to control
and manage the program. The unique IDs are needed in a syste m running several
processes at the same t i me.

You can also create a process by directing a program to call another program. This
causes the syste m to perform the same functions as when it invokes a program through a
shell. In fact, these two methods are actually the same method--invoking a program
through a shell is nothing more than directing a program (the shell) to call another
program.

5- 1

Process Control XENIX C Libraries

Ca l l i n g a Prog ram

The system funct ion calls the given program, executes it, and then returns control to
the original program. The function call has the form

system(cmd l i ne)

where cmdline is a pointer to a string containing a shell command line. The co m mand
line must be exactly as it would be typed at the term inal, that is, it must begin with the
program name followed by any required or optional argu ments. For example, the call

system(" date ") ;

causes the syste m t o execute the date com mand, which displays the current t i m e and
date at the standard output. The call

system (" cat > response ") ;

causes the syste m t o execute the cat command. I n this case, the standard output is
redirected to the file response, so the com mand reads from the standard input and
copies this input to the file response.

The system function is typically used in the same way as a function call to execute a
program and return to the original program. For example, in the following program
fragment system calls a program whose name is given in the string cmd.

char name[20] , cmd [40] ;

pri ntf(" Enter fi lename: ") ;
scanf(" % s" , name);
spri ntf(cmd, " cat %s " , name) ;
system(cmd);

Note that the string in cmd is built using the sprintf function and contains the program
name cat and an argu ment (the file name read by scanf). The effect is to execute the
cat com mand with the given file name.

When using the system function, it is important to re member that buffered input and
output functions, such as getc and putc, do not change the contents of their buffer until
it is ready to be read or flushed. If a program uses one of these functions, then executes
a co m mand with the system function, that com mand may read or write data not
intended for its use. To avoid this proble m, the program should clear all buffered input
and output before making a call to the system function. You can do this for output with
the ffiush function and for input with the setbuf function described in the section "More
Stream Functions" in Chapter 2, "Standard 1/0 Library."

5-2

XENIX C Libraries Process Control

Sto p p i n g a Prog ra m

The exit function stops the execution of a program by returning control to the system.
The function call has the form

exit(status)

where status is the integer value to be sent to the system as the term ination status.

The function is typically used to terminate a program before its normal end, such as
after a serious error. For example, in the following program fragment exit stops the
program and sends the integer value 2 to the system if the fopen funct ion returns the
null pointer value NULL.

Fl LE *ttyout;

i f (fopen(ttyout, " r ") = = N U LL)
exit(2) ;

Note that the exit function auto matically closes each open file in the program before
returning to the system. Thus, no explicit calls to the fclose or close functions are
required before an exit.

Over layi ng a Prog ra m

The execl and execv functions cause the syste m to overlay the calling program with the
given one, allowing the calling program to term inate while the new program continues
execution.

The execl function call has the form

exec l (pathname, command-name, argptr . . .)

where pathname is a pointer to a string containing the full path name of the com mand
you want to execute, command-name is a pointer to a string containing the name of the
program you want to execute, and argptr is one or more pointers to strings that contain
the program argu ments. Each argptr. must be separated fro m any other argu ment by a
com m a. The last argptr in the list must be the null pointer value NULL. For example,
in the call

exec l ("/b i n/date " , " date " , N U LL) ;

the date com mand, whose full path name i s "/bin/date", takes no argu ments, and i n the
call

exec l ("/b i n/cat" , " cat " , fi l e 1 , fi l e2, N U LL) ;

the cat com m and, whose full path name is "/bin/cat", takes the pointers filet and file2
as argu ments.

5-3

Process Control XENIX C Libraries

The execv function call has the form

execv(pathname, ptr) ;

where pathname is the full path name of the program you want to execute, and ptr is
pointer to an array of pointers. Each ele ment in the array must point to a string. The
array may have any number of ele ments, but the first element must point to a string
containing the program name, and the last must be the null pointer, NULL.

The execl and execv functions are typically used in programs that execute in two or
more phases and com municate through temporary files (for example a two-pass
com piler). The first part of such a program can call the second part by giving the name
of the second part and the appropriate argu ments. For example, the following program
fragment checks the status of errflag, then either overlays the current program with the
program pass2, or displays an error message and quits.

char *tmpfi le ;
i nt errfl ag ;

i f (errflag = = 0)
execl (" /usr/bi n/pass2 " , " pass2 " , tm pfi l e, N U LL) ;

else {

}

fpri ntf(stderr, " E rror % d : Qu itti ng " , errflag) ;
exi t(2);

The execv funct ion is typically used to pass arguments to a program when the precise
nu mber of argu ments is not known beforehand. For example, the following program
fragment reads argu ments from the com mand line (beginning with the third one), copies
the pointer of each to an ele ment in cmd, sets the last ele ment in cmd to NULL, and
executes the cat co m mand.

char *cmd [] ;

cmd [O] = " cat " ;
for (i = 3; i < argc; i + +)

cmd [i] = argv[i] ;
cmd [argc] = N U LL;

execv("/bi n/cat " , cmd) ;

The execl and execv functions return control to the original program only if there is an
error in finding the given program (e.g. , a m isspelled path name or no execute
permission). This allows the original program to check for errors and display an error
message if necessary. For example, the following program fragment searches for the
program display in the /usr/bin directory.

exec l ("/usr/bi n/d i sp lay " , " d i sp lay " , N U LL) ;
fpri ntf(stderr, " Can 't execute 'd i sp l ay' \n ") ;

I f the program display i s not found o r lacks the necessary perm issions, the original
program resu mes control and displays an error message.

5-4

XENIX C Libraries Process Control

Note that the execl and execv funct ions will not expand metacharacters (e.g., <, >, *, ? ,
[, and]) given in the argu ment list. If a program needs these features, it can use execl
or execv to call a shell as described in the next section.

Execut ing a Prog ra m t h rough a She l l

One drawback o f the execl and execv functions i s that they d o not provide the
metacharacter features of a shell. One way to overcome this proble m is to use execl to
execute a shell and let the shell execute the co m m and you want.

The function call has the form

exec l ("/bi n/sh " , " sh " , " -c " , cmd l i ne, N U LL) ;

where cmdline is a pointer to the string containing the com mand line needed to execute
the program. The string must be exactly as it would appear if typed at the ter minal.

For example, a program can execute the com mand

cat * . c

(which contains the metacharacter *) with the call

exec l ("/bi n/sh " , " sh " , " -c " , " cat * . c " , N U LL) ;

In this example, the full path name /bin/sh and co m mand name sh start the shell. The
argu ment -c causes the shell to treat the argu ment "cat *.c" as a whole com mand line.
The shell expands the metacharacter and displays all files that end with .c, something
that the cat com mand cannot do by itself.

D u p l icat i n g a Process

The fork function splits an execut ing program into two independent and fully­
functioning processes. The function call has the form

i nt fork()

No argu ments are required.

The function is typically used to make multiple copies of any program that must take
divergent actions as a part of its normal operation, e.g., a program that must use the
execl function yet still continue to execute.. The original program, called the "parent"
process, continues to execute normally, just as it would after any other function call.
The new process, called the "child" process, starts its execution at the same point, that
is, just after the fork call. (The child never goes back to the beginning of the program to
start execution.) The two processes now execute as independent programs.

5-5

Process Control XENIX C Libraries

The fork function returns a different value to each process. To the parent process, the
function returns the process ID of the child. The child process ID is always a posit ive
integer and is always different than the parent ID. To the child, the function returns 0.
All other variables and values remain exactly as they were in the parent.

The return value is typically used to determine which steps the child and parent should
take next. For example, in the program segment

char *cmd ;

if (fork() = = 0)
execl (1 1 /bi n/sh " , 11 Sh I I , I I -c �� , cmd, N U LL) ;

The child's return value, 0 , causes the expression "fork() = = 0" , to be true, and therefore
the execl function is called. The parent's return value, on the other hand, causes the
expression to be false, and the function call is skipped. Executing the execl function
causes the child to be overlayed by the program given by cmd. This does not affect the
parent.

If fork encounters an error and cannot create a child, it will return the value -1 . It is a
good idea to check for this value after each call.

Wa iti n g for a Process

The wait function causes a parent process to wait until its child processes have
co mpleted their execution before continuing its own execution. The function call has
the form

wait(ptr)

where ptr is a pointer to an integer variable. It receives the term ination status of the
child from both the syste m and the child itself. The function normally returns the
process ID of the terminated child, so the parent may check it against the value
returned by fork.

The function is typically used to synchronize the execut ion of a parent and its child and
is especially useful if the parent and child processes access the same files. For
example, the following program fragment causes the parent to wait while the program
named by pathname (which has overlaid the child process) finishes its execution.

5-6

i nt status;
char * pathname;
char *cmd [] ;

i f (fork() = = 0)
execv(pathname, cmd) ;

wa it(&status) ;

XENIX C Libraries Process Control

The wait function always copies a status value to its argu ment. The status value is
actually two 8-bit values combined into one. The low-order 8 bits is the termination
status of the child as defined by the system. This status is zero for normal term ination
and nonzero for other kinds of ter mination, such as termination by an interrupt, quit, or
hangup signal (see signal in Appendix C for a description of the various kinds of
termination). The next 8 bits is the termination status of the child as defined by its own
call to exit. If the child did not explicitly call exit, the status is zero.

I n h er it i n g O pen F i les

Any program called by another program or created as a child process to a program
automatically inherits the original program's open files and standard input, output, and
error files. This means if the file was open in the original program, it will be open in
the new program or process.

A new program also inherits the contents of the input and output buffers used by the
open files of the original program. To prevent a new program or process from reading
or writing data that is not intended for its use, these buffers should be flushed before
calling the program or creating the new process. A program can flush an output buffer
with the ffiush function and an input buffer with setbuf.

Prog ram Exa m p le

This section shows how to use the process control functions to control a si mple process.
The following program starts a shell on the terminal given in the com mand line. The
terminal is assu med to be connected to the syste m through a line that has not been
enabled for multiuser operation.

#i nc lude < std io . h >

mai n(argc, argv)
i nt argc;
char *argv [] ;
{

i nt status;

5-7

Process Control

}

}

if (argc < 2) {
fpri ntf(stderrl I I N o tty g i ven .\n 1 1) ;
exit(1) ;

i f (fork() = = 0) {

}

i f (freopen(argv [1] , 1 1 r 1 1 1 Std i n) = = N U LL)
ex it(2) ;

i f (freopen(argv[1] , 1 1 W 1 1 1 Stdout) = = N U LL)
ex it(2) ;

i f (freopen(argv[1] , 11 W 11 1 Stderr) = = N U LL)
ex i t(2) ;

exec l (l l/bi n/sh I I

I

II sh II

I N U LL) ;

wai t(&status) ;
if (status = = 5 1 2)

fpri ntf(" Bad tty name : % s\n " I argv[1]) ;

XENIX C Libraries

In this example, the fork funct ion creates a duplicate copy of the program. The child
changes the standard input, output, and error files to the new terminal by closing and
reopening the m with the freopen funct ion. The term inal name pointed to by argv must
be the name of the device special file associated with the term inal, e.g., /dev/tty03.
The exec! function then calls the shell, which uses the new term inal as its standard
input, output, and error files.

The parent process waits for the child to terminate. The exit funct ion term inates the
process if an error occurs when reopening the standard files. Otherwise, the process
continues until the CONTROL-D key is pressed at the new term inal.

5-8

CHAPTE R 6
P IP ES

A pipe is an artifical file that a program may create and use to pass inform ation to
other programs. A pipe is s imilar to a file in that it has a file pointer and/or a file
descriptor and can be read from or written to using the input and output functions of the
standard library. Unlike a file, a pipe does not represent a specific file or device.
Instead a pipe represents temporary storage in memory that is independent of the
program's own me mory and is controlled entirely by the system.

Pipes are chiefly used to pass information between programs, just as the shell pipe
symbol (I), is used to pass the output of one program to the input of another. This
elim inates the need to create temporary files to pass information to other programs. A
pipe can also be used as a te mporary storage place for a single program. A program can
write to the pipe, then read that information back at a later t ime.

The standard library provides several pipe funct ions. The popen and pclose functions
control both a pipe and a process. popen opens a pipe and creates a new process at the
same time, making the new pipe the standard input or output of the new process. pclose
closes a pipe and waits for termination of the corresponding process. The pipe function,
on the other hand, gives low-level access to a pipe. The function is s imilar to the open
function, but opens the pipe for both reading and writing, returning two file descriptors
instead of one. The program can either use both sides of the pipe or close the one it
does not need. The low-level input and output functions read and write can be used to
read from and write to a pipe. Pipe file descriptors are used in the sam e way as other
file descriptors.

Open i n g a Pi pe to a N ew Process

The popen function creates a new process and then opens a pipe to the standard input or
output file of that new process. The function call has the form

popen(command, type)

where command is a pointer to a string that contains a shell com mand line, and type is a
pointer to a string that defines whether the pipe is to be opened for reading or writing
by the original process. The string may be "r" for reading or "w" for writing. The
function normally returns the FILE pointer to the open pipe but will return the null
pointer value NULL if an error is encountered.

6-1

Pipes XENIX C Libraries

popen is typically used by programs that need to call another program and pass
substantial amounts of data to that progra m. For example, in the following program
fragment popen creates a new process for the cat com mand and opens a pipe for
writing.

F I LE * pstrm ;

pstrm = popen(II cat > response I I ,
I I w I I) ;

The new file pointer given by pstrm links the standard input of the co mmand with data
written by the program. Data written to the pipe using pstrm will be used as input by
the cat co m mand.

Read i n g a n d Writ ing to a Process

fscanf, fprintf, and other stream functions may be used to read from or write to a pipe
opened by the popen function. These functions have the same form as described in
Chapter 2 .

The fscanf function can be used to read fro m a pipe opened for reading. For exam ple, in
the following program fragment fscanf reads from the pipe given by pstrm.

F I LE *pstrm ;
char name[20] ;
i nt number;

pstrm = popen(11 cat11 , 11 r ") ;
fscanf(pstrm, II %s % d " , name, &num ber) ;

This pipe is connected to the standard output of the cat com mand, so fscanf reads the
first name and nu mber written by cat to its standard output.

The fprintf function can be used to read from a pipe opened for writing. For example,
in the following program fragment fprintf writes the string pointed to by buf to the pipe
given by pstrm.

F l LE * pstrm ;
char buf[MAX] ;

pstrm = popen(llwc" , 11 W 11) ;
fpri ntf(pstrm, II % s I I , buf) ;

This pipe is connected to the standard input of the we com mand, so the com m and reads
and counts the contents of buf.

6-2

XENIX C Libraries Pipes

Clos ing a Pi pe

The pclose function closes the pipe opened by the popen function. The function call has
the form

pclose(stream)

where stream is the file pointer of the pipe to be closed. The function normally returns
the exit status of the command issued as the first argument of its corresponding popen
but will return the value -1 if the pipe was not opened by popen.

For example, in the following program fragment pclose closes the pipe given by pstrm if
the end-of-file value EOF has been found in the pipe.

F I LE *pstrm ;

if (feof(pstrm))
pcl ose (pstrm) ;

Open i ng a Low-Level Pi pe

The pipe function opens a pipe for both reading and writ ing. The function call has the
form

pi pe(fd)

where fd is a pointer to an array of two int elements. Each ele ment receives one file
descriptor. The first ele ment receives the file descriptor for the reading side of the
pipe; the second element receives the file descriptor for the writ ing side. The function
normally returns 0 but will return -1 if an error is encountered. For example, in the
following program fragment pipe creates two file descriptors if no error is encountered.

i nt chan [2] ;

if (pi pe(chan) = = - 1)
exit(2) ;

The array ele ment chan[O] receives the file descriptor for the reading side of the pipe,
and chan[l] receives the descriptor for the writing side.

pipe is typically used to open a pipe in preparation for linking it to a child process. For
example, the following program fragment creates a child process if it successfully
creates a pipe.

i nt fd [2] ;

if (pi pe(fd) ! = - 1)
i f (fork() = = 0)

cl ose(fd [1]) ;

6-3

Pipes XENIX C Libraries

Note that the child process closes the writ ing side of the pipe. The parent can now pass
data to the child by writing to the pipe; the child can retrieve the data by reading the
pipe.

Read i n g from a n d Writ i n g to a Low-Level P i pe

The read and write input and output functions can be used to read and write characters
to a low-level pipe. These functions have the same for m and operation described in
Chapter 2, "Standard 1/0 Library."

read can be used to read from the read side of an open pipe. For example, in the
following program fragment read reads MAX characters from the read side of the pipe
given by chan.

i nt chan [2] ;
char buf[MAX] ;
i nt number;

pi pe(chan) ;
number = read(chan[O] , buf, MAX) ;

In this example, read stores the characters in the array buf.

Note that unless the end-of-file character EOF is encountered, a read call waits for the
given nu mber of characters to be read before returning.

write can be used to write to the write side of a pipe. For example, in the following
program fragment write writes MAX characters fro m the character array buf to the
writing side of the pipe given by chan.

i nt chan [2] ;
char buf[MAX] ;
i nt number;

pi pe(chan) ;
number = write(chan[1] , buf, MAX);

If the write function finds that a pipe is too full, it waits until some characters have
been read before completing its operation.

6-4

XENIX C Libraries Pipes

Closi n g a Low-Level Pi pe

The close funct ion can be used to close the reading or the writing side of a pipe. The
function has the same form and operation as described in Chapter 2, "Standard 1/0
Library." For example, the function call

close(chan [O])

closes the reading side of the pipe given by chan, and the call

cl ose(chan [1])

closes the writing side.

The syste m copies the end-of-file value EOF to a pipe when the process that m ade the
original pipe and every process created by that process has closed the writing s ide of the
pipe. This means, for example, that if a parent process is sending data to a child
process through a pipe and closes the pipe to signal the end of the file, the child process
will not receive the EOF value unless or until it has closed its own write s ide of the
pipe.

Prog ra m Exa m p les

This section shows how to use the process control functions with the low-level pipe
function to create functions sim ilar to the popen and pclose functions.

The first example is a modified version of the popen function. The modified function
identifies the new pipe with a file descriptor rather than a file pointer. It also requires
a mode argu ment rather than a type argument, where the mode is 0 for reading or 1 for
writing.

#incl ude < std io. h >

#defi ne READ 0
#defi ne WRITE 1
#defi ne tst(a, b) (mode = = READ ? (b) : (a))
stati c i nt popen _pid ;

popen(cmd, mode)
char *cmd ;
i nt mode;
{

i nt p [2] ;

if (pi pe(p) < 0)
retu rn(N U LL) ;

6-5

Pipes

}

if ((popen p id = fork()) = = 0) {
close(tst(p [WRITE] , p [READ])) ;
c lose(tst(O, 1)) ;

}

dup(tst(p[READ], p [WRITE])) ;
cl ose(tst(p [READ] , p [WRITE])) ;
exec l ("/bi n/sh " , " sh " , " -c " , cmd, 0) ;
exit(1) ; /* sh cannot be fou nd *I

if (popen p id = = - 1)
return(NU LL) ;

cl ose(tst(p[READ] , p[WRITE])) ;
retu rn(tst(p[WRITE] , p [READ])) ;

XENIX C Libraries

The function creates a pipe with the pipe function first. It then uses the fork function
to create two copies of the original process. Each process has its own copy of the pipe.
The child process decides whether it is supposed to read or write through the pipe, then
closes the other side of the pipe and uses execl to overlay the new process and execute
the desired program. The parent closes the side of the pipe it does not use.

The sequence of close functions in the child process is a trick used to link the standard
input or output of the child process to the pipe. The first close determ ines which side of
the pipe should be closed and closes it. If mode is WRITE, the writ ing side is closed; if
READ, the reading side is closed. The second close closes the standard input or output
depending on the mode. If the mode is WRITE, the input is closed; if READ, the output
is closed. dup creates a duplicate of the side of the pipe st ill open. Since the standard
input or output was closed i m mediately before this call, this duplicate receives the same
file descriptor as the standard file. The syste m always chooses the lowest available file
descriptor for a newly opened file. Since the duplicate pipe has the same file descriptor
as the standard file, it beco mes the standard input or output file for the process.
Finally, the last close closes the original pipe, leaving only the duplicate.

The following example is a modified version of the pclose function. The modified
version requires a file descriptor as an argu ment rather than a file pointer.

6-6

#i nc l ude < si gnal . h >

pcl ose(fd) /* c lose pi pe fd *I
i nt fd ;
{

i nt r, status;
i nt (*hstat)(), (* i stat)(), (*qstat)();
extern i nt popen _pid ;

cl ose(fd) ;

i stat = signa i (S JG I NT, S IG IG N) ;
qstat = s igna i (S JGQU IT, S IG JG N) ;
hstat = s igna i (S IG H U P, S JG _IG N) ;

XENIX C Libraries

}

whi l e ((r = wait(&status)) ! = popen _pid && r ! = - 1)

if (r = = - 1)
status = - 1 ;

signa i (S IG I NT, i stat) ;
signa i (S IGQU IT, qstat) ;
signa i (S IG H U P, hstat) ;

return(status);

P ipes

The function closes the pipe first. It then uses a while statement to wait for the child
process given by popen_pid. If other child processes ter minate while it waits, it ignores
them and continues to wait for the given process. It stops waiting as soon as the given
process terminates or if no chiid process exists. The funct ion returns the termination
status of the child or returns -1 if an error was detected.

The signal function calls used in this example ensure that no interrupts interfere with
the waiting process. The first set of functions causes the process to ignore the
interrupt, quit, and hang up s ignals. The last set restores the signals to their original
status. The signal function is described in detail in Chapter 7 , "Signals."

Note that both example functions use the external variable popen _pid to store the
process ID of the child process. If more than one pipe is to be opened, the popen _pid
value must be saved in another variable before each call to popen, and this value must
be restored before calling pclose to close the pipe. The functions can be modified to
support more than one pipe by changing the popen _pid variable to an array indexed by
the file descriptor.

FI FOs

XENIX Release 3 supports another kind of pipe, called a FIFO, also known as a "named
pipe." FIFOs are created as special files in the file syste m, using the mknod function or
the mknod com mand. Like other files, FIFOs can be opened, written, read, and closed.
Like pipes, data written to a FIFO by one process can be read (and removed) by another.
Only data that has been written but not yet read is stored in a FIFO, in strict first-in­
first-out order. Reading data fro m a FIFO removes it fro m the FIFO. Because FIFOs
are imple mented in the file syste m, data in a FIFO is better protected from syste m
crashes, and also can be independent o f any particular process. A good example o f using
a FIFO is transaction logging for a data base system. Transaction records can be
written to the FIFO and periodically read by an archiving process that writes the m to
tape.

The 0 NDELAY flag in the open flags modifies the behavior of the open, read, and
write functions for FIFOs. See these functions in Appendix C, "Syste m Functions," for
more detail. Appendix C also describes the mknod function used to create a FIFO. The
corresponding mknod com mand is described in "Commands" in the XENIX 286 R eference
Manual.

6-7

CHA PTE R 7
SIGNA LS

This chapter explains how to use C library functions to process signals sent to a program
by the XENIX system. A signal is the system's response to an unusual condition that
occurs during execution of a program, such as a user pressing the INTERRUPT key or
the syste m detecting an illegal operation. A signal interrupts normal execution of the
program and initiates an action such as terminating the program or displaying an error
message.

The signal function of the standard C library lets a program define the action of a
signal. The function can be used to disable a signal to prevent it from affecting the
program. It can also be used to give a signal a user-defined action.

The signal function is often used with the setjmp and longjmp functions to redefine and
reshape the action of a signal. These functions allow programs to save and restore the
execution state of a program, giving a program a means to jump from one state of
execution to another without a complex assembly language interface.

To use the signal function, you must add the line

#i ncl ude < si gna l . h >

to the beginning of the program. The signal.h file defines the various constants used as
arguments by the function. To use the setjmp and longjmp functions you must add the
line

#i ncl ude < setj m p.h >

to the beginning of the program. The setjmp.h file contains the declaration for the type
jmp_buf, a template for saving a program's current execution state.

Usi ng the sig n a l Fu nction

The signal function changes the action of a signal from its current action to a given
action. The function has the form

signa l (sigtype, ptr)

where sigtype is an integer or constant that defines the signal to be changed, and ptr is
a pointer to the function defining the new action or a constant giving a predefined
action. The function always returns a pointer value. This pointer defines the signal's
previous action and may be used in subsequent calls to restore the signal to its previous
value.

7 - 1

Signals XENIX C Libraries

ptr may be SIG IGN to indicate no action (ignore the signal) or SIG DFL to indicate the
default action. -The sigtype may be SIGINT for interrupt signal, caused by pressing the
INTE RRUPT key, SIGQUIT for quit signal, caused by pressing the QUIT key, or
SIGHANG for hangup signal, caused by hanging up the line when connected to the
syste m by a modem. (Other constants for other signals are given in signal in
Appendix C.)

For example, the function call

signa i (S IG I NT, S IG _IGN)

changes the action of the interrupt signal to no action. The signal will have no effect on
the program. The default action is usually to terminate the program.

The following sections show how to use the signal function to disable, change, and
restore signals.

Disa bl i n g a S ignal

You can disable a signal, i.e., prevent it from affecting a program, by using the SIG IGN
constant with signal. The function call has the form -

signa l (si gtype, S IG _IGN)

where sigtype is the manifest constant of the signal you wish to disable. For example,
the function call

signa i (S IG I NT, S IG IG N) ;

disables the interrupt signal.

The function call is typically used to prevent a signal fro m terminat ing a program
executing in the background (e.g., a child process that is not using the term inal for input
or output). The system passes signals generated from keystrokes at a terminal to all
programs that have been invoked from that terminal. This means that pressing the
INTER RUPT key to stop a program running in the foreground will also stop a program
running in the background if it has not disabled that signal. For example, in the
following program fragment signal is used to disable the interrupt signal for the child.

7-2

#inc l ude < si gna l . h >
mai n ()
{

else {

}

i f (fork() = = 0) {
si gna i (SIG I NT, S IG IG N) ;
J* Chi l d process. */
}

J* Parent process. *I
}

XENIX C Libraries Signals

This call does not affect the parent process, which continues to receive interrupts as
before. Note that if the parent process is interrupted, the child process continues to
execute until it reaches its normal end.

Restori ng a S ig nal's Defa u lt Acti on

You can restore a signal to its default action by using the SIG_DFL constant with signal.
The function call has the form

signa l (sigtype, S IGDFL)

where sigtype is the constant defining the signal you wish to restore. For example, the
function call

signa i (S IG I NT, S IG
_

DFL)

restores the interrupt signal to its default action.

The function call is typically used to restore a signal after it has been temporarily
disabled to keep it from interrupting critical operations. For example, in the following
program fragment the second call to signal restores the signal to its default action.

#i nc l ude < si gna l . h >
#i nc l ude < std io. h >

ma i n ()
{

}

F I LE *fp;
char record [B U F] ;

si gna l (S IG I NT, S I G IG N) ;
fp = fopen(" my fiie " , " r") ;
fread(record , auF, 1 1 fp) ;
si gna l (S IG I NT, S IG DFL) ;

In this example, the interrupt signal is ignored while a record is read fro m the file
my_file.

7-3

Signals XENIX C Libraries

Catch i n g a Sig n a l

You can catch a signal and define your own action for i t by providing a function that
defines the new action and giving the funct ion as an argu ment to signal. The function
call has the form

si gna l (s igtype, newptr)

where sigtype is the constant defining the signal to be caught, and newptr is a pointer to
the function defining the new act ion. For example, the function call

si gna i (S IG I NT, catch)

changes the action of the interrupt signal to the action defined by the function nam ed
catch.

The function call is typically used to let a program do additional processing before
terminating. In the following program fragment, the function catch defines the new
action for the interrupt signal.

#i ncl ude < signa l . h >

mai n ()
{

}

i nt catch() ;

pri ntf(" Press I NTERRU PT key to stop.\n ") ;
si gna l (S I G I NT, catch);
wh i l e (1) {

I* Body */
}

catch ()
{

}

pri ntf(" Program term i nated .\n ") ;
exit(1) ;

The catch function prints the message "Program terminated" before stopping the
program with the exit function.

A program may redefine the action of a signal at any ti me. Thus, many progra ms define
different actions for different conditions. For example, in the following program
fragment the action of the interrupt signal depends on the return value of a function
named keytest.

7-4

XENIX C Libraries

#i nc lude < signa l . h >

main()
{

}

i nt catch 1 0 I catch20;

if (keytestO = = 1)
signa i (S IG I NTI catch 1) ;

e l se
signa i (S IG I NTI catch2) ;

Signals

Later the program may change the signal to the other action or even a third action.

When using a function pointer in the signal call, you must make sure that the function
name is defined before the call. In the program fragment shown above, catchl and
catch2 are explicitly declared at the beginning of the main program function. Their
formal definitions are assumed to appear after the signal call.

Restoring a S igna l

You can restore a signal to its previous value by saving the return value of a signal call,
then using this value in a subsequent call. The function call has the form

si gna l (sigtypel oldptr)

where sigtype is the constant defining the signal to be restored and oldptr is the pointer
value returned by a previous signal call.

The function call is typically used to restore a signal when its previous action may be
one of many possible actions. For example, in the following program fragment the
previous action depends solely on the return value of a function keytest.

#i ncl ude < si gnal . h >
mai n()
{

}

i nt catch 1 0 I catch20;
i nt (*savesi g)() ;
i f (keytestO = = 1)

signa i (S IG I NTI catch 1) ;
el se

si gna i (S IG INTI catch2);
savesi g = s igna l (S IG I NTI S IG IG N) ;
compute() ; -

signa i (S IG I NT1 saves ig) ;

In this example, the old pointer is saved in the variable savesig. This value is restored
after the function compute returns.

7-5

Signals XENIX C Libraries

Progra m E xa mple

This section shows how to use the signal function to create a modifed version of the
system function. In this version, system disables all interrupts in the parent process
until the child process has completed its operation. It then restores the signals to their
previous actions.

#i nc lude < std io. h >
#i ncl ude < signa l . h >

system (s) /* run command stri ng s *I
char *s;
{

}

i nt status, pid, w;
register i nt (* i stat)(), (*qstat)() ;

if ((p id = fork()) = = 0) {

}

exec l ("/bi n/sh " , " sh " , " -c " , s, N U LL) ;
exit(1 27) ;

istat = signa i (S IG I NT, S IG IGN) ;
qstat = si gnai (S IGQU IT, S IG IG N) ;
wh i l e ((w = wa it(&status)) ! = p id && w ! = - 1) ;

if (w = = - 1)
status = - 1 ;

si gna i (S IG I NT, i stat) ;
si gna i (S IGQU IT, qstat) ;
retu rn(status);

Note that the parent uses the while statement to wait until the child's process ID pid is
returned by wait. If wait returns the error code -1 no more child processes are left, so
the parent returns the error code as its own status.

Contro l l i n g Execution with S ignals

Signals need not be used only t o terminate programs. Many signals can be redefined to
delay their actions or even cause actions that terminate a portion of a program without
terminating the entire program. The following sections describe how signals can be
caught and used to provide control of a program.

7-6

XENIX C Libraries Signals

Delaying a S igna l's Action

You can delay the action of a signal by catching the signal and redefining its action to
be nothing more than setting a globally-defined flag. Such a signal does nothing to the
current execution of the program. Instead, the program continues uninterrupted until it
can test the flag to see if a signal has been received. It can then respond according to
the value of the flag.

The key to a delayed signal is that all functions return execution to the exact point at
which the program was interrupted. If the function returns normally, the program
continues execution just as if no signal occurred.

Delaying a signal is especially useful in programs that must not be stopped at an
arbitrary point. If, for example, a program updates a linked list, the action of a signal
can be delayed to prevent the signal from interrupting the update and destroying the
list. For example, in the following program fragment the function delay used to catch
the interrupt signal sets the globally-defined flag sigflag and returns i m mediately to the
point of interruption.

#i nc l ude < si gnal . h >
i nt si gfl ag;

mai n ()
{

}

i nt delay ();
int {*savesig)() ;
extern i nt s igflag ;

si gna i {S IG I NT, delay) ; I* Delay the si gna l . *I
updatel i st() ;
savesi g = si gna i (S IG I NT, S IG IG N) ; I* D isab le the s igna l . *I
if (si gflag)

-

I* Process del ayed s igna ls i f any. *I

delay ()
{

extern i nt si gfl ag;

sigflag = 1 ;
}

In this example, if the signal is received while updatelist is executing, it is delayed until
after updatelist returns. Note that the interrupt signal is disabled before processing the
delayed signal to prevent a change to sigflag when it is being tested.

Note that the system automatically resets a signal to its default action i m mediately
after the signal is processed. If your program delays a signal, make sure that the signal
is redefined after each interrupt. Otherwise, the default action will be taken on the
next occurrence of the signal.

7-7

Signals XENIX C Libraries

Usi ng Delayed S ignals with System Functio n s

When a delayed signal i s used t o interrupt the execution o f a XENIX syste m function,
such as read or wait, the syste m forces the funct ion to stop and return an error code.
This action, unlike actions taken during execut ion of other functions, causes all
processing performed by the system function to be discarded. A serious error can occur
if a program interprets a system function error caused by delayed signals as a normal
error. For example, if a program receives a signal when reading the term inal, all
characters read before the interruption are lost, making it appear as though no
characters were typed.

Whenever a program intends to use delayed signals during calls to system functions, the
program should include a check of the function return values to ensure that an error was
not caused by an interruption. In the following program fragment, the program checks
the current value of the interrupt flag intflag to make sure that the value EOF returned
by getchar actually indicates the end of the file.

i f (getchar() = = EOF)
if (i ntfl ag)

I* EOF caused by i nterru pt *I
else

I* true end-of-fi l e *I

Using S ignals i n Interactive Programs

Signals can be used in interact ive programs to control the execution of the program's
various com mands and operations. For example, a signal may be used in a text editor to
interrupt the , current operation (e.g., displaying a file) and return the program to a
previous operation (e.g., wait ing for a com mand).

To provide this control, the function that redefines the signal's action must be able to
return execution of the program to a meaningful locat ion, not just the point of
interrupt ion. The standard C library provides two functions to do this: setj mp and
longjmp. The setjmp funct ion saves a copy of a program's execution state. The longjmp
function changes the current execution state to a previously saved state. The functions
cause a program to continue execution at an old location with old register values and
status as if no operations had been perfor med between the t ime the state was saved and
the time it was restored.

The setjmp function has the form

setj mp(buffer)

where buffer is the variable to receive the execution state. It must be explicitly
declared with type jmpbuf before it is used in the call. For example, in the following
program fragment setjmp copies the execution state of the program to the variable
oldstate defined with type jmpbuf.

jmpbuf o ldstate;

setj m p(ol dstate) ;

7-8

XENIX C Libraries Signals

Note that after a setjmp call, the buffer variable contains values for the program
counter, the data and address registers, and the process status. These values must not
be modified in any way.

The longjmp function has the form

l ongj m p(buffer)

where buffer is the variable containing the execution state. It must contain values
previously saved with a setjmp function. The function copies the values in the buffer
variable to the program counter, data and address registers, and the process status
table. Execution continues as if it had just returned from the setjmp function that
saved the previous execution state. For example, in the following program fragment
setjmp saves the execution state of the program at the location just before the main
processing loop and longjmp restores it on an interrupt signal.

#i ncl ude < signa l . h >
#inc lude < setj m p. h >

mai n()
{

}

jmpbuf sj buf;
i nt oni ntr() ;

setj mp(sj buf) ;
si gna i {S IG I NT, on i ntr) ;

!* ma i n processi ng loop */

oni ntr()
{

}

pri ntf(II \n I nterru pt\n I I) ;

longj mp(sj buf) ;

I n this example, the action of the interrupt signal a s defined by onintr i s t o print the
message "Interrupt" and restore the old execut ion state. When an interrupt signal is
received in the main processing loop, execut ion passes to onintr, which prints the
message and then passes execution back to the · main program function, making it appear
as though control is returning from the setjmp function.

Using Sig n a ls i n M u lti p le Processes

The XENIX syste m passes all signals generated at a given terminal to all programs
invoked at that terminal. This means that a program has potential access to a signal
even if that program is executing in the background or as a child to some other program.
The following sections explain how signals may be used in multiple processes.

7-9

Signals XENIX C Libraries

Protecting Backgro u nd Processes

Any program that has been invoked using the shell's background symbol (&) is executed
as a background process. Such programs usually do not use the term inal for input or
output and complete their tasks silently. Since these programs do not need additional
input, the shell automatically disables the signals before executing the program. This
means signals generated at the terminal do not affect execution of the program. This is
how the shell protects the program from signals intended for other programs invoked
from the same terminal.

In some cases, a program that has been invoked as a background process may also
atte mpt to catch its own signals. If it succeeds, the protection from interrupt ion given
to it by the shell is defeated, and signals intended for other programs will interrupt the
program. To prevent this, any program intended to be executed as a background process
should test the current state of a signal before redefining its action. A program should
redefine a signal only if the signal is enabled. For example, in the following program
fragment the action of the interrupt signal is changed only if the signal is not currently
being ignored.

#i ncl ude < signa l . h >

mai n()
{

}

i nt catch();

i f (signa i (S IG I NT, SIG IG N) ! = SIG I G N)
si gna i (S IG I NT,catch);

!* Program body. */

This step lets a program continue to ignore signals if it is already doing so and change
the signal if it is not.

Protecti ng Pa rent Processes

A program can create and wait for a child process that catches its own signals only if
the program protects itself by disabling all signals before calling the wait function. By
disabling the signals, the parent process prevents signals intended for the child processes
fro m term inating its call to wait. This prevents serious errors that may result if the
parent process continues execution before the child processes are finished.

7- 10

XENIX C Libraries Signals

For example, in the following program fragment the interrupt signal is disabled in the
parent process i m mediately after the child is created.

#i nc l ude < signa l . h >

mai n ()
{

}

i nt (*savei ntr)() ;

if (fork () = = 0)
exec l (. . .) ;

savei ntr = si gnal (S IG I NT, S IG IG N) ;
wait(&status) ;
si gnal (S IG I NT, savei ntr) ;

The signal's action is restored after the wait function returns normal control to the
parent.

7-1 1

CHA PT E R 8
U SING SYSTEM R E SO U RC ES

This chapter describes the standard C library functions that let programs share the
resources of the XENIX system. The functions give a program the means to queue for
the use and control of a given resource and to synchronize its use with use by other
programs.

In particular, this chapter explains how to

• Allocate me mory for dynamically required storage

• Lock a file to ensure exclusive use by a program

• Use semaphores to control access to a resource

• Share data space to allow interaction between programs

A l locati ng Space

Some programs require significant changes to the size of their allocated memory space
during different phases of their execution. The me mory allocation functions of the
standard C library let programs allocate space dynamically. This means a program can
request a given number of bytes of storage for its exclusive use at the moment it needs
the space and free this space after it has finished using it.

There are four memory allocation functions: malloc, calloc, realloc, and free. The
malloc and calloc functions are used to allocate space for the first t ime, allocating a
given number of bytes and returning a pointer to the new space. The realloc function
reallocates an existing space, allowing it to be used in a different way. The free
function returns allocated space to the syste m.

Allocati ng Space for a Variable

The malloc funct ion allocates space for a variable containing a given nu mber of bytes.
The function call has the form

mal loc(si ze)

where size is an unsigned number that gives the number of bytes to be allocated. For
example, the function call

table = mal l oc(4)

8- 1

Using System Resources XENIX C Libraries

allocates four bytes of storage. The function normally returns a pointer to the starting
address of the allocated space but will return NULL if there is not enough space to
allocate.

The funct ion can be used to allocate storage for strings that vary in length. For
example, in the following program fragment malloc is used to allocate space for ten
different strings, each of a different length.

i nt i ;
char *temp[1 00] ;
char *stri ngs[1 0] ;
unsigned i si ze ;

for (i = 0 ; i < 1 0 ; i + +) {
scanf(" %s " , tem p) ;

}

i s ize = strl en (temp) + 1 ; !* Al l ow for n u l l term i nator. *I
stri ng[i] = mal l oc(i si ze) ;
if (stri ng[i] ! = N U LL)

strcpy(stri ng [i] , tem p) ;
e lse

!* error processi ng *I

In this example, the strings are read from the standard input. The function strlen is
called to get the size in bytes of each string, and the strcpy function is called to copy
each string from temp to string[i].

Al locati ng Space for an Array

The calloc function allocates storage for a given array and initializes each element in
the new array to zeros. The function call has the form

ca l loc(n, si ze)

where n is the nu mber of ele ments in the array, and size is the number of bytes in each
ele ment. The funct ion normally returns a pointer to the starting address of the
allocated space but will return NULL if there is not enough memory. For example, the
function call

tab le = ca l loc(1 0, 4) ;

allocates space for a 1 0-ele ment array. Each elem ent has 4 bytes.

The function is typically used in programs that must process large arrays without
knowing the size of an array in advance. For example, in the following program
fragment calloc is used to allocate storage for an array of values read from the standard
input.

8-2

XENIX C Libraries

i nt i ;
long tab le [] ;
unsi gned i nurn ;

scanf(" % d " , & inurn) ;
tab le = ca l l oc(i nurn, si zeof(long)) ;
if (tab le = = N U LL)

else
I* error processi ng *I

for (i = 0; i < i nu rn ; i + +)
scanf{ " % D " , tabl e [i]) ;

Using System Resources

Note that the nu mber of elements is read from the standard input before the elem ents
are read. Also note the use of the C operator sizeof to specify the ele ment size rather
than using a m achine-dependent number.

Rea l locatin g Space

The realloc function changes the size of a block and returns a pointer to the (possibly
moved) block. The block's contents are unchanged up to the lesser of the new and old
sizes. The function call has the form

rea l l oc(ptr, si ze)

where ptr is a pointer to the starting address of the space to be reallocated, and size is
an unsigned nu mber giving the new size in bytes of the reallocated space. The function
normally returns a pointer to the start ing address of the allocated space but will return
NULL if there is not enough space to allocate. If NULL is returned, the block
referenced by ptr may be destroyed.

realloc can be used to expand or contract a dynamic storage block as needed. For
example, a block used for a compiler's symbol table can be reallocated with a larger size
if it beco mes full, retaining its previous contents at the start of the new larger block.

Freeing U n u sed Space

The free function frees unused memory space previously allocated by a malloc, calloc,
or realloc function call. The function call has the form

free(ptr)

where ptr is the pointer to the starting address of the space to be freed. This pointer
must be a non- NULL value returned by a malloc, calloc, or realloc function.

8-3

Using Syste m Resources XENIX C Libraries

The function is used exclusively to free space that is no longer used or to free space to
be used for other purposes. For example, in the following program fragment free frees
the space pointed to by table if the first element is equal to zero.

extern
i nt tab le [] ;

i f (tab le [O] = = 0)
free(table) ;

Locki ng F i les

Locking a file is a way to synchronize file use when several processes may require
access to a single file. The standard C library provides one file locking function, the
locking function. This function locks or unlocks a specified section of a file, preventing
all other processes that wish to use the section from gaining access. A process may
lock an entire file or only a small portion. In any case, only the locked section is
protected; all other sections may be accessed by other processes as usual.

File locking protects a file from the damage that may be caused if several processes try
to read or write to the file at the same time. It also provides unhindered access to any
portion of a file for a controlling process. Before a file can be locked, however, it must
be prepared using the open and lseek functions described in Chapter 2 , "Standard 1/0
Library." To use the locking function, you must add the line

#i ncl ude < sys/l ocki ng . h >

to the beginning of your program. The file sys/locking.h contains definitions for the
modes used with the function.

Prepari n g a F i le fo r Locking

Before a file can be locked, it must first be opened using the open function, then
properly positioned by using the lseek function to move the file's character pointer to
the first byte to be locked.

The open function is used once at the beginning of the program to open the file. The
lseek function may be used any nu mber of ti mes to move the character pointer to each
new section to be locked. For example, the following statements prepare a region
beginning at byte posit ion 1 ,024 in the file reservations for locking.

8-4

i nt fd ;
fd = open(" reservations " , 0 RDO N LY) ;
lseek(fd, 1 024, 0) ;

-

XE NIX C Libraries Using Syste m Resources

Locki n g a F i le

The locking function locks one or more bytes of a specified file, beginning at the current
character position in the file. The function call has the form

l ock i ng{fi l edes, mode, si ze)

where filedes is the file descriptor of the file to be locked, mode is an integer value that
defines the type of lock to be applied to the file, and size is a long integer value giving
the size in bytes of the file section to be locked or unlocked. If size is zero, or extends
beyond the end of file, then all the file from the pointer posit ion to the end of file is
locked or unlocked. mode may be LK_LOCK for locking the given bytes, or LK_UNLCK
for unlocking the m. For example, in the following program fragment locking locks 100
bytes a t the current character pointer position i n the file given by fd.

fd = open{" data " , 0 RDWR) ;
l ocki ng{fd , LOCK, 1 00) ;

The function normally returns the nu mber of bytes locked or unlocked but will return -1
i f i t encounters an error.

For more information on this subject, see the entry locking in Appendix C.

Progra m E xa mple

This section shows how to lock and unlock a small section in a file using the locking
function. In the following program, the function locks 100 bytes in the file data, which
is opened for reading and writing. The locked portion of the file is accessed, then
locking is used again to unlock the file.

#inc lude < sysll ocki ng. h >
main (}
{
i nt fd, err;
char *data ;

}

fd = open(" data " , O RDWR) ; I* Open data for RJW *I
if (fd = = - 1) -

el se {

}

perror(" ") ;

l seek(fd , 1 OOL, 0) ; I * Seek to pos 1 00 *I
err = locki ng(fd, LK LOCK, 1 00L) ; I* Lock bytes 1 00-200 *I
if {err = = - 1) {

-

I* process error return *I
}

else {
I* read or write bytes 1 00 - 200 i n the fi l e *I

l seek(fd , 1 00L, 0) ; I* Seek to pos 1 00 *I
locki ng(fd , LK _ U N LCK, 1 00L) ; I* Lock bytes 1 00- 1 99 */

8-5

Using Syste m Resources XENIX C Libraries

Usi ng Sem a p h o res

The standard C library provides a group of functions, called the semaphore functions,
that can be used to control access to given system resources. The functions create and
use se maphores. Semaphores are special files that have names and entries in the file
syste m but contain no data. The se maphore functions restrict access to a se maphore to
one process at a t ime; all other processes wishing to access the semaphore must wait.
This means a se maphore can be used to control a process's access to a syste m resource
by requiring that process to obtain control of the semaphore before performing any
tasks with the resource.

There are five semaphore functions: creatsem, opensem, waitsem, nbwaitsem, and
sigsem. The creatsem function creates a se maphore. The se maphore may then be
opened and used by other processes. Another process can open a se maphore with the
opensem function. Processes request control of a semaphore with the waitsem or
nbwaitsem function. Once a process has control of a se maphore, it can carry out tasks
using the associated resource. All other processes must wait. When a process has
finished using the resource, it can relinquish control of the se maphore with the sigsem
function. This lets other processes obtain control of the se maphore and use the
corresponding resource.

Creati n g a Sema phore

The creatsem function creates a se maphore, returning a semaphore nu mber that can be
used in subsequent semaphore functions. The function call has the form

creatsem{sem name, mode)

where sem _name is a character pointer to the path name of the semaphore, and mode is
an integer value that defines the access mode of the semaphore. Se maphore names have
the same syntax as regular file names. The names must be unique. The function
normally returns an integer sem aphore nu mber that can be used in subsequent
se maphore functions to refer to the se maphore. The function returns -1 if it encounters
an error, such as atte mpting to create a se maphore that already exists or using the
name of an exist ing regular file.

The function is typically used at the beginning of one process to clearly define the
sem aphores it intends to share with other processes. For example, in the following
program fragment creatsem creates a semaphore named "ttyl" before preceding with its
tasks.

8-6

mai n{)
{
i nt tty 1 ;
Fl L E * ftty 1 ;

}

tty 1 = creatsem{ 11 tty 1 I I , 0777) ;
ftty 1 = fopen{ 11 /dev/tty0 1 I I , l l w ") ;
!* Program body. *!

XENIX C Libraries Using Syste m Resources

Note that fopen is used i m mediately after creatsem to open the file /dev/ttyOl for
writing. This is one way to make the association between a se maphore and a device
clear.

The mode 0 7 7 7 defines the semaphore's access permissions. The permissions are s imilar
to the permissions of a regular file. A semaphore may have read permission for the
owner, for users in the same group as the owner, and for all other users. The write and
execution perm issions have no meaning. Thus, 0777 means read permission for . all users.

No more than one process ever need create a given se maphore; all other processes
simply open the semaphore with the opensem function. Once created or opened, a
se maphore may only be accessed using the waitsem, nbwaitsem, or sigsem functions.
The creatsem function may be used more than once during execution of a process. In
particular, it can be used to reset a semaphore if a process fails to relinquish control
before terminating.

Ope n i n g a Sema phore

The opensem function opens an existing semaphore for use by the calling process. The
function call has the form

opensem(sem _name)

where sem_name is a pointer to the path name of the semaphore. The function returns
a semaphore nu mber that may be used in subsequent semaphore functions to refer to the
se maphore. The function returns -1 if it encounters an error, such as trying to open a
se maphore that does not exist or using the name of an existing regular file.

The function is typically used by a process just before it requests control of a given
se maphore. A process need not use the funct ion if it also created the se maphore. For
example, in the following progra m fragment opensem is used to open the semaphore
named semaphore!.

i nt sem 1 ;

i f ((sem 1 = opensem(" semaphore 1 ")) ! = - 1)
wa itsem(sem 1) ;

In this example, the semaphore number is assigned to the variable seml. If the number
is not -1, then seml is used in the se maphore function waitsem, which requests control
of the semaphore.

A se maphore must not be opened more than once during execution of a process.

8-7

Using System Resources XENIX C Libraries

Req u esti n g Co ntrol of a Sema p h o re

The waitsem function requests control of a given se maphore for the calling process. If
the se maphore is available, control is given i m mediately. Otherwise, the process waits.
The function call has the form

waitsem(sem num)

where sem num is the semaphore nu mber of the semaphore to be controlled. If the
se maphore is not available (if it is under control of another process), the function forces
the requesting process to wait. If other processes are already waiting for control, the
request is placed next in a queue of requests. When the semaphore becomes available,
the first waiting process receives it. When this process relinquishes control, the next
process receives control, and so on. The function returns -1 if it encounters an error
such as request ing a se maphore that does not exist or request ing a semaphore that is
locked by a dead process.

The function is used whenever a given process wishes to access the device or syste m
resource associated with the semaphore. For example, in the following program
fragment waitsem signals the intent ion to write to the file given by "ttyl".

i nt tty 1 ;
F l LE *ftty 1 ;

wa itsem(tty 1) ;
fpri ntf(ftty 1 , " Changi ng tty dri ver\n ") ;

Checki ng t h e Statu s o f a Sema phore

The nbwaitsem (for "non-blocking wait") function checks the current status of a
se maphore. If the semaphore is not available, the function returns the error value - 1 .
Otherwise, it gives immediate control of the semaphore to the calling process. The
function call has the form

nbwa itsem(sem num)

where sem_num is the se maphore nu mber of the se maphore to be checked. The function
returns -1 if it encounters an error such as requesting a se maphore that does not exist.
The function also returns -1 if the process controlling the requested se maphore
�erm inated without relinquishing control of the semaphore. The case of the se maphore
being held by another process is dist inguished by an errno value of ENAV AIL.

nbwaitsem is typically used in place of waitsem to take control of a se maphore only if it
is available.

8-8

XEN IX C Libraries Using System Resources

Rel i n q u ish ing Control of a Semap hore

The sigsem function causes a process to relinquish control of a semaphore and to signal
this fact to the next process wait ing for the semaphore. The function call has the form

si gsem(sem _ num)

where sem num i s the se maphore nu mber o f the sem aphore to relinquish. The
se maphore must have been previously created or opened by the process. Furthermore,
the process must have previously taken control of the semaphore with the waitsem or
nbwaitsem function. The function returns -1 if it encounters an error such as trying to
relinquish a se maphore that does not exist or that it does not control.

sigsem is typically used after a process has finished accessing the corresponding device
or system resource. This allows wait ing processes to take control. For example, in the
following program fragment sigsem signals the end of control of the se maphore ttyl.

mai n ()
{
i nt tty 1 ;
F I LE *temp, *ftty 1 ;

wa itsem(tty 1) ;
whi l e ((c = fgetc(tem p)) ! = EOF)

fputc(c, ftty 1) ;
si gsem(tty 1) ;

This example also signals the end of the copy operat ion to the se m aphore's
corresponding device, given by fttyl.

Note that a se maphore can become locked to a dead process if the process fails to signal
the semaphore before terminating. In such a case, the semaphore must be reset by using
the creatsem function.

Usi n g Shared M e mory

Shared memory is a method by which one process shares its allocated data space with
another process. Shared memory allows processes to pool information in a central
location and directly access that information without the burden of creating pipes or
temporary files.

The standard C library provides several functions to access and control shared me mory.
The sdget funct ion creates and/or adds a shared memory segment to a given process's
data space. To access a segment , a process must signal its intention with the sdenter
function. Once a segment has completed its access, it can signal that it is finished using
the segment with the sdleave function. The sdfree function is used to re move a segment
from a process's data space. The sdgetv and sdwaitv functions are used to synchronize
processes when several are accessing the segment at the same ti me.

8-9

Using Syste m Resources XENIX C Libraries

To use the shared data functions, you must add the line

#i nc l ude < sd . h >

at the beginning of the program. The sd.h file contains definitions for the constants
and macros used by the functions.

Creat ing a Sha red Data Seg ment

The sdget function creates a shared data segment for the current process, or if the
segment already exists, attaches the segment to the data space of the current process.
The function call has the form

sdget(path, fl ag [, si ze, mode 1)

where path is a character pointer, fiag is an integer value that defines how the segment
should be created or attached, size is an integer value that defines the size in bytes of
the segment to be created, and mode is an integer value that defines the access
perm issions to be given to the segment if created. The size and mode values are used
only when creating a segment. fiag may be SD _ RDONLY for attaching the segment for
reading only, SD_WRITE for attaching the segment for reading and writing, SD_CREAT
for creating the segment given by path if it does not already exist, or SD _UNLOCK for
allowing si multaneous access by multiple processes. The values can be combined by
logically ORing the m. The SD UNLOCK value is used only if the segment is created.
The function returns the address of the segment if it has been successfully created or
attached. Otherwise, the function returns -1 if it encounters an error.

The function is most often used to create a segment to be shared by another process.
The function may then be used in the other process to attach the segment to its data
space. For example, in the following program fragment sdget creates a segm ent and
assigns the address of the segment to the variable shared.

#i ncl ude < sd . h >

mai n()
{
char *shared , *spath ;

}
shared = sdget(spath, SO_ CREAT, 5 1 2 , 0777) ;

8- 1 0

XENI X C Libraries Using System Resources

When the segment is created, the size 5 1 2 and the mode 0777 are used to define the
segment's size in bytes and access permissions. Access permissions are similar to
permissions given to regular files. A segment may have read or write permission for the
owner of the process, for users belonging to the same group as the owner, and for all
other users. Execute permission for a segment has no meaning. For example, the mode
0666 means read and write perm ission for everyone, but 0660 means read and write
perm issions for the owner and group processes only. When first created, a segment is
filled with zeros.

Note that the SD _UNLOCK flag used on systems without hardware support for shared
data m ay severely degrade the execution performance of the program.

Enteri n g Shared Data Seg ment

The sdenter function signals a process's intention to access the contents of a shared data
segment. A process cannot effectively access the contents of the segment unless it
enters the segment. The function call has the form

sdenter(addr [, fl ag])

where addr is a pointer to the segment to be accessed, and fiag is an optional integer
value that defines how the segment is to be accessed. The fiag may be SD _ RDONLY for
indicating read-only access to the segment, or SD NOW AIT for returning an error if the
segment is locked and another process is currently accessing it. These values may also
be combined by logically ORing them.

The function normally waits for the segment to become available before allowing access
to it. A segment is not available if the segment has been created without the
SD _UNLOCK flag and another process is currently accessing it.

In general, it is unwise to stay in a shared data segment any longer than it takes to
exam ine or modify the desired location. The sdleave function should be called after
each access. When in a shared data segment, a program should avoid using syste m
functions. System functions can disrupt the normal operations required to support
shared data and may cause some data to be lost. In particular, if a program creates a
shared data segment that cannot be shared simultaneously, the program must not call
the fork function when it is accessing the segment.

Leavin g a Shared Data Seg ment

The sdleave signals a process's intention to leave a shared data segment after reading or
modifying its contents. The funct ion call has the form

sd leave(addr)

where addr is a pointer to the desired segment. The function returns -1 if it encounters
an error, otherwise it returns 0.

8- 1 1

Using System Resources XENIX C Libraries

sdleave should be called after each access to shared data to terminate the access. If
the segment's lock flag is set, the function must be called after each access to allow
other processes to access the segment. For example, in the following program fragment
sdleave terminates each access to the segment given by shared.

#i nc l ude < sd . h >

mai n()
{
char *shared ;

}

sdenter(sha red) ;
I* write to segment *I
sd l eave(shared) ;

Getti ng the Cu rrent Version N u mber

The sdgetv function returns the current version number of the given data segment. The
function call has the form

sdgetv(addr)

where addr is a character pointer to the desired segment. A segment's version number
is initially zero, but is incre mented by one whenever a process leaves the segment using
the sdleave function. Thus, the version nu mber is a record of the number of times the
segment has been accessed. The function's return value is always an integer. It returns
-1 if it encounters an error.

The function is typically used to choose an action based on the current version number
of the segment. For example, in the following program fragment sdgetv determines
whether or not sdenter should be used to enter the segment given by shared.

#inc lude < sd . h >

mai n ()
{
char *shared ;

i f (sdgetv(shared) > 1 0)
sdenter(sha red) ;

In this example, the segment is entered if the current version number of the segment is
greater than 1 0 .

8- 1 2

XENIX C Libraries Using System Resources

Wa iti n g for a Version Nu mber

The sdwaitv function causes a process to wait until the version number for the given
segment is no longer equal to a given version number. The function call has the form

sdwaitv(addr, vnum)

where addr is a character pointer to the desired segment, and vnum is an integer value
that defines the version nu mber to wait on. The function normally returns the new
version nu mber; it returns -1 if it encounters an error. The return value is always an
integer.

The function is typically used to synchronize the actions of two separate processes. For
example, in the following program fragment the program waits while the process
corresponding to version number 3 performs its operations in the segment.

i f (sdwa itv(sdseg, 3) = = - 1)
fpri ntf(stderr, " Cannot fi nd segment\n ") ;

If an error occurs while the program is waiting, the example code prints an error
message.

Freei n g a Shared Data Seg ment

The sdfree function detaches the current process from the given shared data segment.
The function call has the form

sdfree(add r)

where addr is a pointer to the segment to be freed. The function returns the integer
value 0 if the segment is freed. Otherwise, it returns -1.

If the process is currently accessing the segment, sdfree automatically calls sdleave to
leave the segment before freeing it.

Segments that have been freed by all attached processes are destroyed by the system.

8- 1 3

CHA PTER 9
E R RO R PROCESSING

A variety of errors can occur when a program atte mpts to access the XENIX operating
syste m through the standard C library functions. Errors range from problems with
accessing files to allocating memory. In most cases, the system simply reports the error
and lets the program decide how to respond. The XENIX syste m terminates a program
only if a serious error has occurred, such as a me mory addressing error.

This chapter explains how to process errors, describes the functions and variables a
program may use to detect and respond to errors, and shows some ways to handle errors.

Usi n g the Sta n d a rd E rror F i le

The standard error file is a special output file that can be used by a program to display
error messages. The standard error file is one of three standard files (standard input,
output, and error) automatically created for the program when it is invoked.

The standard error file, like the standard output, is normally assigned to the user's
terminal screen. Thus, error messages written to the file are displayed at the screen.
The file can also be redirected by using the shell's redirection symbol (>). For example,
the following com mand redirects the standard error file to the file errorlist.

% d ia l 2 > errorl i st

In this case, subsequent error messages are written to the given file.

The standard error file, like the standard input and standard output, has predefined file
pointer and file descriptor values. The file pointer stderr can be used with stream 1/0
functions to write data to the error file. The file descriptor 2 may be used with low­
level 1/0 functions to . write data to the error file. For example, in the following
program fragment, stderr is used to write the message "Unexpected end of file." to the
standard error file.

if ({c = getchar{)) = = EOF)
fpri ntf(stderr, " U nexpected end of fi l e.\n ") ;

The standard error file is not affected by the shell's pipe symbol (I }; even if the standard
output of a program is piped to another program, errors generated by the program will
st ill appear at the terminal screen (or in the appropriate file if the standard error output
is redirected).

9-1

Error Processing XENIX C Libraries

Usi n g the errno Va r iable

The errno variable i s a predefined external variable that contains the error nu mber of
the · most recent XENIX system function error. Errors detected by syste m functions,
such as access perm ission errors and lack of space, cause the syste m to assign a distinct
nu mber to errno and return control to the program. The error number identifies the
error condit ion. errno can be read by subsequent statements that process the error.

errno is typically read i m mediately after a system function has returned an error. In
the following program fragment, errno is read to determine the course of action after
an unsuccessful call to the open function.

i f ((fd = open(" accounts " , O RDON LY)) = = - 1)
switch (errno) {

-

}

case(EACCES) :
fd = open("/usr/tmp/accounts " , 0 RDON LY);
break ; -

defau lt :
ex it(errno) ;

In this example, if errno is equal to the constant EACCHS, permission to open the file
accounts in the current directory is denied, so the file is opened in the directory
/usr/tmp instead. If errno is any other value, the program term inates.

To use errno in a program, it must be explicitly defined as an external variable with int
type. Note that the file errno.h contains manifest constant definitions for each error
nu mber. These constants may be used in any program in which the line

#i nc l ude < errno .h >

is placed at the beginning of the program. The meaning of each error constant is
described in the introduction to Appendix C.

Pri nt i n g E rror M essages

The perror function copies a short error message describing the most recent system
function error to the standard error file. The function call has the form

perror(s)

where s is a pointer to a string containing additional information about the error.

9-2

XENIX C Libraries Error Processing

The perror function places the given string before the error message and separates the
two with a colon (:). The error message corresponds to the current value of the errno
variable. For example, in the following program fragment perror displays the message

accounts : Perm iss ion den ied .

if errno is equal to the constant EACCES.

if (errno = = EACCES) {
perror(II accounts II) ;

}
fd = open(11 /usr/tmp/accounts ll , 0 _ RDON LY);

The error messages displayed by perror are stored in an array named sys_errno, an
external array of character strings. The perror function uses the variable errno as the
index to the array element containing the desired message.

Usi n g E rro r S ig n a ls

Some program errors cause the XENIX syste m to generate error signals. These signals
are passed back to the program that caused the error and normally term inate the
program. The most com mon error signals are SIGBUS, the bus error signal; SIGFPE, the
floating point exception signal; SIGSEGV, the segment violation signal; SIGSYS, the
syste m call error signal; and SIGPIPE, the pipe error signal. Other signals are described
in signal in Appendix C.

A program can, if necessary, catch an error signal and perform its own error processing
by using the signal function. This function, as described in Chapter 7, "Signals", can set
the action of a signal to a user-defined action. For example, the function call

signa i (S IGBUS, fi xbus) ;

sets the action of the bus error signal to the action defined by the user-supplied function
fixbus. Such a function usually atte mpts to rem edy the problem or at least display
detailed information about the proble m before terminating the program .

For details about how to catch, redefine, and restore these signals, see Chapter 7 ,
"Signals."

E n co u nter i n g System E rrors

Programs that encounter serious errors, such as hardware failures or internal errors,
generally do not receive detailed reports on the cause of the errors. Instead, the XENIX
syste m treats these errors as "system errors" and reports them by displaying a syste m
error message o n the syste m console. This section briefly describes some aspects of
XENIX system errors and how they relate to user programs. For a complete list and
description of XENIX syste m error messages, see the section "Messages" in the XENIX
286 R eference Manual.

9-3

Error Processing XENIX C Libraries

Most syste m errors occur during calls to syste m functions. If the syste m error is � recoverable, the system will return an error value to the program and set the errno �
variable to an appropriate value. No other information about the error is available.

Although the syste m lets two or more programs share a given resource, such as an 1/0
device, it does not keep close track of which program is using the resource at any given
ti me. When an error occurs, the system returns an error value to all programs
regardless of which caused the error. No inform ation about which program caused the
error is available.

Syste m errors that occur during routine 1/0 operations init iated by the XENIX system
itself generally do not affect user programs. Such errors cause the syste m to display
appropriate syste m error messages on the syste m console.

Some syste m errors are not detected by the syste m until after the corresponding
function has returned successfully. Such errors occur when data written to a file by a
program has been queued for writ ing to disk at a more convenient t ime, or when a
portion of data to be read from disk is found to already be in memory and the remaining
portion is not read until later. In such cases, the system assumes that the subsequent
read or write operation will be carried out successfully and passes control back to the
program along with a successful return value. If the subsequent operation is not carried
out successfully, it causes a delayed error.

When a delayed error occurs, the system usually attempts to return an error on the next
call to a system function that accesses the same file or resource. If the program has
already terminated or does not make a suitable call, then the error is not reported.

9-4

APP ENDIX A

ASS E M B LY LANG UAG E INTERFAC E

This appendix explains how to use 8086/2 86 assembly language routines with C language
programs and functions. In particular, it explains how to call asse mbly language
routines from C language programs and how to call C language functions from an
assembly language routine. This gives the assembly language program m er access to all
the library functions described in this manual.

C Ca l l i n g Seq uence

To receive values fro m C language function calls or to pass values to C functions,
assembly language routines must follow the C argu ment passing conventions. C
language funct ion calls pass their argu ments to the given functions by pushing the value
of each argu ment onto the stack. The call pushes the value of the last argu ment first
and the first argu ment last. If an argument is an expression, the call computes the
expression's value before pushing it onto the stack.

Arguments with char, int, or unsigned type occupy a single word (16 bits) on the stack.
Arguments with long, fioat, or double type occupy a double word (32 bits) with the
value's low order word occupying the first word. Note that char type argu ments are
sign-extended to int type before being pushed on the stack. Sim ilarly, fioat type
arguments are sign-extended to double type.

If an argu ment is a structure, the function call pushes the last word of the structure
first and each successive word in turn until the first word in pushed.

Enter i ng a n Assem bly Rout ine

Asse mbly language routines that receive control from C funct ion calls should preserve
the contents of the bp, si, and di registers and set the bp register to the current sp
register value before proceeding with their tasks. The following example illustrates the
recom mended instruction sequence for entering an assembly language routine called
from C:

entry : push bp
mov bp,sp
push di
push si

This is the same sequence used by the C compiler.

A- 1

Asse mbly Language Interface XENIX C Libraries

If this sequence is used, the last argu ment pushed by the function call (which is the first
argu ment given in the call's argument list) is at address 4(bp) in small model programs or
address 6(bp) in middle or large model programs (because a long call is used and both CS
and IP are pushed).

·

The above instruction sequence is reco m mended even for entering a routine that does
not modify the si or di registers, because it allows backtracking with the adb program
during program debugging.

Return Va l u es

Assembly language routines that return values to C language callers must follow the C
return value conventions. C funct ions place return values with type int, char, or
unsigned in register ax; return values with type long are placed in ax (low word) and dx
(high word).

To return a structure or a float ing point value, C functions place the address of the
structure or value in register ax. The structure or floating-point value must be in a
static me mory area.

Exiti ng a Routine

Assembly language routines that return control to C programs should restore the values
of registers bp, si, and di before returning control. The following instruction sequence
can be used:

pop si
pop d i
l eave
ret

Prog ra m Exa m ple

To illustrate the assembly language interface, consider the following example o f a C
function.

A-2

add(i , j)
i nt i , j ;
{

return(i + j) ;
}

XENIX C Libraries Asse mbly Language Interface

If written as an assembly language routine, this function must save the proper registers,
retrieve the the argu ments from the stack, add the arguments, place the return value in
the ax register, then restore registers and return control. The following is an example
of how the routine can be written (in small model).

add :
push bp
mov bp,sp
push d i
push si
mov ax, *4(bp)
add ax, *6(bp)
pop si
pop d i
leave
ret

If, on the other hand, the C function is to be called by an assembly language rout ine, the
routine must contain instructions that push the arguments on the stack in the proper
order, call the function, and clear the stack. It may then use the return value in the ax
register. The following is an example of the instructions that can do this.

push <j va l ue >
push < i va l ue >
ca l l add
add sp,*4

A-3

APP END I X B

XENIX 286 R E LEA S E 3
P ROGRA M M ING DI FFE R ENC E S

This appendix lists some of the differences between XENIX Release 3 , XENIX Release
1, and UNIX Syste m III. It is intended to aid users who wish to convert system calls in
exist ing application programs for use on other systems.

Executa ble F i le Format

XENIX Release 3 uses a new a.out executable file format. This format is s imilar to the
old a.out format but contains additional information about the executable file such as
text and data relocat ion bases, file segment information, target m achine identification,
word and byte ordering, and symbol table and relocation table format. The a.out file
also contains the revision nu mber of the kernel, used during execut ion to control access
to system functions. To execute existing programs in a.out format, you must first
convert to the new format.

Revised System Ca lls

Some system calls in XENIX Release 3 have been revised and do not perform the same
tasks as the corresponding calls in U NIX System III. The following table lists the revised
system calls.

System Call # XENIX R2 function System III function

35 ft ime unused
38 unused clocal
39 unused setpgrp
40 unused cxenix
57 unused utssys
62 clocal fcntl
63 cxenix uli mit

The cxenix function provides access to system calls unique to XENIX Release 3. The
clocal function provides access to all calls unique to an OEM.

ioctl Fu n ction

XENIX Release 3 supports some XENIX Release 1 ioctl calls. The available XENIX
Release 1 ioctl calls are: TIOCSETP, TIOCSETN, TIOCGETP, TIOCSETC, TIOCGETC,
TIOCEXCL, TIOCNXCL, TIOCHPCL, TIOCFLUSH, TIOCGETD, and TIOCSETD.

8- 1

Program m ing Differences XENIX C Libraries

Version 7 Add itions

XENIX Release 3 maintains a nu mber of UNIX V7 features that were dropped fro m
UNIX System III. In particular, XENIX Release 3 continues to support the dup2 and
ftime functions. The ftime function, used with the ctime function, provides the default
value for the time zone when the TZ environment variable has not been set. This m eans
a binary configuration program can be used to change the default t ime zone. No source
license is required.

Path Name Resolution

If a null path name is given, XENIX Release 1 interprets the name to be the current
directory, but UNIX System III considers the name to be an error. XENIX Release 3
uses the version nu mber in the a.out header to determine what action to take.

If the symbol "· · " is given as a path name when in a root directory defined using the
chroot function, XENIX Release 1 moves to the next higher directory. XENIX Release 3
also allows the " · · " sy mbol in a root directory but restricts its use to the super-user.

Usi n g t h e mount and chown F u n ct ions

Both XENIX Release 3 and UNIX Syste m III restrict the use of the mount syste m call to
the super-user. Also, both allow the owner of a file to use chown to change the file
ownership.

Su per-Block and F i le System Format

XENIX Release 3 uses a new internal format for its super-blocks and file syste ms. File
syste ms fro m XENIX Release 1 or UNIX systems should be transferred using the tar
command, described in the XENIX 286 Reference Manual.

Chan ge i n Wo rd Order with i n Dou ble-Words

XENIX Release 3 has changed the order in which words are stored within double-words,
as co mpared to XENIX Release 1. The least significant word of a double-word quantity
is now stored at the lower memory address; the most significant word of a double-word
quantity is now stored at the higher me mory address. Users transferring binary data
between Release 1 and Release 3 systems, especially floating-point or long nu mbers,
may have to use special programs to convert their data.

B-2

A PPENDI X C

SYSTE M FUNCTION S

This appendix describes all syste m functions provided by XENIX. Syste m functions
include all syste m calls that can be made to the XENIX kernel, as well as many other
useful routines. All syste m calls and some other routines are included in the standard
library libc. libc is searched whenever any C program is linked. Other routines are
contained in a variety of libraries. For each library, three different library files are
provided, for linking with small-, middle-, and large-model programs respectively.

To use routines in a library other than the standard library, the appropriate library must
be linked by specifying -lname to the compiler or linker, where nam e is one of the
following library names:

• curses screen, windows, and cursor manipulation functions

• dbm data base manage ment functions

• m math functions

• termcap functions to access the termcap terminal capabilities file

F ind i ng F u n ction s

Most functions i n this appendix are listed i n alphabetical order. However, some related
functions are listed together out of alphabetical order. If you cannot find a function,
refer to the Index at the back of this manual; it includes all function names as indexed
terms in alphabetical order.

Each function description in this appendix references any related functions, com mands,
files, or file formats under the heading "See Also" in the funct ion descript ion.
Referenced functions can be found in this appendix and are si mply listed by name.
References to other entries in this manual are specified by name and section.
References to entries in other manuals are specified by nam e, section, and m anual.

C- 1

System Functions XENIX C Libraries

Error Cod es

Many functions, especially syste m calls, have error returns. An error condition is
indicated by an otherwise impossible return value, frequently -1 if a nu mber is being
returned, or NULL if a pointer is being returned. An error code is stored in the external
variable errno. errno should be checked i m mediately after an error return is detected,
to better determine the cause of the error.

The syste m call descriptions do not list all possible error codes, because many errors are
possible for most of the calls. The error codes are defined in the include file <error.h>.
The following alphabetical list describes all these codes:

HACCES "Permission denied''
An attempt was made to access a file in a way forbidden by the protection system.

HAGAIN "No more processes"
A fork failed because the syste m's process table is full or the user is not allowed
to create more processes.

HBADF "Bad file nu mber"
Either a file descriptor refers to no open file, or a read request is made to a file
open only for writing, or a write request is made to a file open only for reading.

HBUSY "Mount device busy"
An atte mpt was made to mount an already-mounted device, or an atte mpt was
made to dismount a device that contains an active file (an open file, a current
directory, a mounted-on file, or an active text segment}, or an attempt was made
to enable accounting when it was already enabled.

HCIDLD "No child processes"
A wait was executed by a process with no exist ing or unwaited-for child processes.

ED HADLOCK "Would deadlock"
A process's atte mpt to lock a file region would c ause a deadlock between
processes contending for control of that region.

HDOM "Math argu ment"
The argument of a m ath library function is outside the do main of the function.

HEXIST "File exists"
An existing file was referenced in an inappropriate context, e.g., link.

HFAULT "Bad address"
An address fell outside the bounds of the calling process's address space. This
error is usually due to a bad pointer argu ment to a function.

HFBIG "File too large"

C-2

The size of a file exceeded the maximum file size (1 , 082 ,2 0 1 , 088 bytes} or the
process's file size lim it (see ulimit}.

XENIX C Libraries Syste m Functions

EINTR "Interrupted syste m call"
An asynchronous signal (such as SIGINT or SIGQUIT) that the user has elected to
catch occurred during a system call. If execution is resu med after processing the
signal, it appears as if the interrupted system call returned this error condit ion.

EINVAL "Invalid argu ment"
Some invalid argument (e.g., dismounting an unmounted device or specifying an
undefined signal to signal).

EIO "1/0 error"
Some physical 1/0 error. This error may, in some cases, occur on a call following
the one to which it actually applies.

EISDIR "Is a directory"
Attempt to write on a directory.

EMFILE "Too many open files"
The calling process tried to open a file when it had 20 file descriptors open
already.

EMLINK "Too many links"
An attempt was made to make more than the maximum nu mber of links (1 , 0 0 0} to
a file.

ENAVAIL "Not available"
An opensem, waitsem, or sigsem call was issued to a se maphore that had not been
init ialized by calling creatsem; or, sigsem was called out of sequence, before the
calling process called waitsem on the se maphore; or, nbwaitsem was called on a
se maphore that was being used by another process; or, a semaphore on which a
process was waiting has been left in an inconsistent state when the process
controlling the se maphore exited without relinquishing control by calling sigsem;
or, a name file (se maphore, shared data, etc.) was specified when not expected.

ENFILE "File table overflow"
The syste m's table of open files is full and no more open calls can be accepted, at
least temporarily.

ENODEV "No such device"
An attempt was made to apply an inappropriate syste m call to a device, e.g. , read
a writ e-only device.

ENOENT "No such file or directory"
The named file or directory does not exist, or a null path name was specified.

ENOEXEC "Exec format error"
An atte mpt was made to execute a file that does not start with a valid magic
nu mber (see a.out in Appendix D, "File Formats").

ENOMEM "Not enough space"
An exec or sbrk call requested more space than the system can supply (not a
temporary condition; the maxi mum space available is a system parameter); or, the
arrange ment of text, data, and stack segments requires too many segmentation
registers; or, there is not enough swap space during a fork call.

C-3

Syste m Functions XENIX C Libraries

ENOSPC "No space left on device"
During a write to an ordinary file, there is no free space left on the device.

ENOTBLK "Block device required"
A nonblock file was mentioned where a block device is required, e.g. , in calling
mount.

ENOTDIR "Not a directory"
A nondirectory was specified where a directory is required, e.g., as an argu m ent to
chdir.

ENOTNAM "Not a semaphore"
A semaphore function was called with an invalid semaphore nam e or invalid
se maphore identifier.

ENOTTTY "Not a typewriter"
An atte mpt was made to perform a terminal function on a device that is not a
terminal.

ENXIO "No such device or address"
An atte mpt was made to open a device that does not exist or is not on-line.

EPERM "Not owner"
An attempt was made to access a file in a way forbidden except to its owner or
the super-user; or, an ordinary user attempted an action allowed only to the super­
user.

EPIPE "Broken pipe"
An atte mpt was made to write to a pipe for which there is no process wait ing to
read the data written. (This error normally generates a signal; this error code
results if the signal is ignored.)

ERANGE "Result too large"
The result of a math function exceeds the range that can be represented in the
dest ination data type.

EROFS " Read-only file system"
An atte mpt was made to modify a file or directory on a device mounted as read­
only.

6SPIPE "Illegal seek"
lseek was called on a pipe.

ESRCH "No such process"
A process specified in a call to kill or ptrace cannot be found.

ETXTBSY "Text file busy"

C-4

An attempt was made to execute a pure-procedure program file that was open; or,
an atte mpt was made to open for writing a pure-procedure program file that was
being executed.

XENIX C Libraries System Functions

BUCLBAN "Structure needs cleaning"
An attempt was made to mount a file system with a super-block that is not
flagged as "clean."

BXDEV "Cross-device link"
An atte mpt was made to link to a file on another device.

E2BIG "Arg list too long"
An argu ment list longer than 5 1 2 0 bytes was presented in a call to execl, execle,
execlp, execv, execve, or execvp.

C-5

Syste m Functions XENIX C Libraries

Defi n it ions

This section defines some of the terms used in the function descript ions.

Process I D

Each active process i n the syste m is uniquely identified by a posit ive integer called a
process ID. The range of this ID is from 0 to 3 0, 000 .

Pa rent Process I D

A new process is created by a currently active process; see fork. The parent process ID
of a process is the process ID of its creator.

Process G ro u p I D

Each active process is a member of a process group identified by a positive integer
called the process group ID. This ID is the process ID of the group leader. This grouping
p'ermits the signaling of related processes; see kill.

tty G rou p I D

Each active process can be a me mber of a terminal group identified by a positive
integer called the tty group ID. This grouping is used to term inate a group of related
processes upon termination of one of the processes in the group; see exit and signal.

Rea l User I D and Real G ro u p I D

Each user allowed on the syste m i s identified by a positive integer called a real user ID.

Each user is also a member of a group. The group is identified by a positive integer
called the real group ID.

An active process has a real user ID and real group ID that are set to the real user ID
and real group ID, respectively, of the user responsible for creating the process.

Effecti.ve U ser I D and Effective G ro u p I D

An active process has an effective user I D and an effective group ID used t o determine
file access permissions. The effect ive user ID and effective group ID are equal to the
process's real user ID and real group ID respectively, unless the process or one of its
ancestors evolved from a file that had the set-user-ID bit or set-group ID bit set; see
exec.

C-6

XENIX C Libraries Syste m Functions

Su per-User

A process is recognized as a ru.per-user process and is granted special privileges if its
effective user ID is 0.

Specia l Processes

The processes with process IDs of 0 and 1 are special processes and are referred to as
procO and proc 1.

procO is the scheduler. procl is the initialization process (init). procl is the ancestor of
every other process in the system and is used to control the process structure.

Fi le Name

Names with up to 14 characters can name an ordinary file, special file, or directory.

These characters can be selected from the set of all character values excluding null and
the ASCII code for I (slash).

Note that it is generally unwise to use *, ?, [, or 1 in file names because of the special
meaning attached to these characters by the shell. Likewise, the high-order bit of the
characters should not be set.

Path Name and Path Prefix

A path name is a null-terminated character string start ing with an optional slash (/)
followed by zero or more directory names separated by slashes, optionally followed by a
file name. A file name is a string of 1 to 14 characters other than the ASCII slash and
null; a directory name is a string of 1 to 14 characters (other than the ASCII slash and
null) naming a directory.

If a path name begins with a slash, the path search begins at the root directory.
Otherwise, the search begins fro m the current working directory.

A slash by itself names the root directory.

Unless specifically stated otherwise, the null path name is treated as if it named a
nonexistent file.

Di rectory

Directory entries are called links. By convention, a directory contains at least two
links, • ("dot") and • • ("dot dot"). Dot refers to the directory itself and dot dot refers to
its parent directory.

C-7

Syste m Functions XENIX C Libraries

Root Di rectory a nd Cu rrent Working Di rectory

Each process has assoc iated with it a root directory and a current working directory for
resolving path name searches. A process's root directory need not be the root directory
of the root file system. See chroot.

Fi le Access Permissions

Read, write, or execute/search permissions on a file are granted to a process if one or
more of the following are true:

• The process's effective user ID is super-user.

• The process's effective user ID matches the user ID of the owner of the file and
the appropriate access bit of the "owner" portion (0700) of the file mode is set.

• The process's effective user ID does not m atch the user ID of the owner of the
file, but the process's group ID matches the group of the file and the appropriate
access bit of the "group" portion (070) of the file mode is set.

• The process's effective user ID does not match the user ID of the owner of the
file, and the process's effective group ID does not match the group ID of the file,
but the appropriate access bit of the "other" portion (0 7) of the file mode is set.

Otherwise, the corresponding perm issions are denied. See chmod.

F u n ct ion Descr ipt ions

Subsequent sections of this appendix are function descriptions. For each funct ion, the
appendix specifies syntax, operation, information about error returns, and references to
related functions, co m mands, or files.

C-8

XENIX C Libraries

a641, 164a - Convert between long integer and base-64 ASCII.

Synta x

long a641 (s)
char *s ;

char * 1 64a(l)
l ong I ;

Descri pt ion

Syste m Functions

These rout ines maintain nu mbers stored in base-64 ASCII. This is a notation by which
long integers can be represented by up to six characters; each character represents a
"digit" in a radix-64 notation.

The characters used to represent "digits" are • for 0, I for 1, 0 through 9 for 2-1 1 , A
through Z for 1 2-3 7, and a through z for 38-63 .

a641 takes a point er to a null-term inated base-64 representation and returns a
corresponding long value. 164a takes a long argu ment and returns a pointer to the
corresponding null-terminated base-64 representation.

N otes

The value returned by 164a points to static data that is overwritten by each call.

C-9

System Functions XENlX C Libraries

a bort - Generate an lOT fault.

Synta x

abort()

Descr i pt ion

abort sends an lOT signal to the calling process. This usually results in termination with
a core dump.

It is possible for abort to return control if SIGIOT is caught or ignored.

See Also

exit, signal

adb in "Program m ing Commands" in the XENIX 286 Programmer's Guide

Diag n ostics

Usually returns "abort - core du mped" fro m the shell.

C- 1 0

XENIX C Libraries

a bs - Integer absolute value.

Synta x

i nt abs(i)
i nt i ;

Description

abs returns the absolute value of its integer operand.

See Also

fabs

Notes

Syste m Functions

If the argu ment to abs is the largest negative integer supported by the hardware, then
abs returns the largest negative integer as its result.

C- 1 1

System Functions

access - Determine accessibility of a file.

Syntax

i nt access(path, amode)
char * path ;
i nt amode;

Descr i ption

XENIX C Libraries

path points to a path name naming a file. access checks the named file for accessibility
according to the bit pattern contained in amode, using the real user ID in place of the
effective user ID and the real group ID in place of the effective group ID. The bit
pattern contained in amode is constructed as follows:

04 Read
02 Write
0 1 Execute (search)
00 Check existence of file

The file is not accessible if one or more of the following are true:

• path is an illegal address. [EFAULT]

• The path name is null or the named file does not exist. [ENOENT]

• A component of the path prefix is not a directory. [ENOTDIR]

• A component of the path prefix denies search perm ission, or the file mode does
not permit the requested access. [EACCES]

• Write access is requested for a file on a read-only file system. [EROFS]

• Write access is requested for a pure-procedure (shared text) file that is being
executed. [ETXTBSY]

The owner of a file has permission checked with respect to the "owner" read, write, and
execute mode bits, me mbers of the owner's group other than the owner have per missions
checked with respect to the "group" mode bits, and all others have perm issions checked
with respect to the "other" mode bits.

If the super-user calls access, the file's permission bits are not checked and accessibility
is granted (if there are no errors in referencing the file).

C- 1 2

XENIX C Libraries System Functions

Ret u rn Va l ue

If the requested access is perm itted, 0 is returned. If access is denied or some other
error is encountered, -1 is returned and errno is assigned an error code.

See Also

chmod

C- 1 3

Syste m Functions

acct - Enable or disable process accounting.

Syntax

i nt acct(path)
char *path ;

Descri ption

XENIX C Libraries

acct is used to enable or disable the system's process accounting routine. If accounting
is enabled, an accounting record is written on an accounting file for each process that
terminates. Term ination can be caused by a signal or by calling exit. The effective
user ID of the calling process must be super-user to use this call.

path points to the path name of the accounting file. (The accounting file for mat is
given in the entry acct in Appendix D, "File Formats.") Accounting is enabled if path is
not NULL and no errors occur during the syste m call. Accounting is disabled if path is
NULL and no errors occur during the system call.

acct fails if one or more of the following are true:

• The effective user ID of the calling process is not super-user. [EPERM]

• path is an illegal address. [EF A UL T]

• The path name is null or the named file does not exist. [ENOENT]

• A component of the path prefix is not a directory. [ENOTDIR]

• A component of the path prefix denies search permission, or the file mode does
not permit the requested access, or the named file is not an ord inary file.
[EACCES]

• The named file is in a read-only file system. [EROFS]

• An attempt was made to enable accounting when it is already enabled. [EBUSY]

Retu rn Val ue

I f successful, 0 i s returned. Otherwise, - 1 i s returned and errno assigned a n error code.

See Also

acct in Appendix D, "File Formats"

accton, acctcom in "Co m mands" in the XENIX 286 Reference Manual

C- 14

XENIX C Libraries

alarm - Set process alarm clock.

Syntax

uns igned a l arm(sec)
uns igned sec;

Description

System Functions

alarm instructs the calling process's alarm clock to send the signal SIGALRM to the
calling process after the number of real-time seconds specified by sec have elapsed.

Alarm requests are 'not stacked; successive calls reset the calling process's alarm clock,
replacing any previously set alarm.

If sec is 0 , any previously made alarm request is canceled without setting a new request.

Retu rn Va l u e

alarm returns the amount o f t ime previously re maining i n the calling process's alarm
clock.

See Also

pause, signal

C- 1 5

Syste m Functioqs XENIX. C Libraries

assert - Help verify validity of program.

Syntax

#i nc lude < assert.h >

assert(expressi on) ;

Descri ption

This macro is useful for putting diagnostics . int'o programs. When it i s executed, if
expression is false, it prints "Assertion failed: file ryz, line nnn" on the standard error
file and exits. ryz is the source file and nnn the source. line nu �"ber of the assert
statement. Compiling with the preprocessor option -DNDEBUG causes assert to be
ignored.

See Also

cc in "Program m ing Com mands" in the XENIX 286 Programmer's Guide

C- 1 6

XENIX C Libraries

atof, atoi , atol - Convert ASCII to nu mbers.

Synta x

doub le atof(nptr)
char *nptr;

i nt atoi(nptr)
char *nptr;

long atol(nptr)
char * nptr;

Descri ption

Syste m Functions

These functions convert a string pointed to by nptr to floating, integer, or long integer
representation respectively. The first unrecognized character ends the string.

atof recognizes an optional string of tabs and spaces, then an optional sign, then a string
of decimal digits optionally containing a decimal point, then an optional e or H followed
by an optionally signed integer.

atoi and atol recognize an optional string of tabs and spaces, then an optional sign, then
a string of deci mal digits.

See Also

scanf

N otes

There are no provisions for overflow.

C- 1 7

System Functions

B E SSE L : jO, j 1 , j n , yO, y1 , yn - Bessel functions.

Syntax

#i ncl ude < math. h >

doubl e j O(x)
doub le x;

doub le j 1 (x)
doub le x;

doub le j n(n, x) ;
i nt n ;
doub le x ;

doub le yO(x)
doub le x;

doub le y 1 (x)
doub le x;

doub le yn(n, x)
i nt n ;
doub le x;

Descri ption

XENIX C Libraries

These functions calculate Bessel functions of the first and second kinds for real
argu ments and integer orders.

Diag nost ics

Negative argu ments cause yO, yl, and yn to return a huge negative value.

C-1 8

XENIX C Libraries

bsea rch - Binary search.

Syntax

char *bsearch(key, base, ne l , width, com par)
char *key;
char * base;
i nt nel , width ;
i nt (*compar)() ;

Description

System Functions

bsearch returns a pointer into a table indicating the location at which a datu m can be
found. NULL is returned if the key cannot be found in the table. The table must be
sorted in increasing order. key is a pointer to the datu m to be searched for. base is a
pointer to the base of the table. nel is the number of (fixed-size) elements in the table.
width is the size of an ele ment in bytes. compar is a pointer to the comparison routine.
It is called with two arguments that are pointers to the elements being compared. The
routine must return an integer less than, equal to, or greater than 0 depending on
whether the first argument is to be considered less than, equal to, or greater than the
second.

Note that the format of the key and the table ele ments and how they are ordered are
determined by the caller via the caller-supplied comparison routine.

See Also

lsearch, qsort

C-19

Syste m Functions

chd i r - Change the working directory.

Syntax

i nt chd i r(path)
char * path ;

Descri ption

XENIX C Libraries

path points to the path name of a directory. chdir causes the named directory to
become the current working directory, the start ing point for path searches for path
names not beginning with '/'.

chdir fails and the current working directory is un�hanged if one or more of the
following are true:

• path is an illegal address. [EFAULT]

• The path name is null or the named directory does not exist. [ENOENT]

• A co mponent of the path name is not a directory. [ENOTDIR]

• A component of the path name denies search perm ission. [EACCES]

Ret u r n Va l u e

If successful, 0 is returned. Otherwise, - 1 is returned and errno is assigned an error
code.

See Also

chroot

C-2 0

XENIX C Libraries

ch mod - Change mode of a file.

Syntax

i nt chmod (path, mode)
char * path ;
i nt mode;

Descri pt ion

Syste m Functions

Path points to a path name naming a file. The file can be an ordinary file, directory, or
special file (e.g., a device). chmod sets the access permission portion of the named
file's mode according to the bit pattern contained in mode.

Access permission bits are interpreted as follows:

040 0 0
0 2 0 0 0
0 1 0 0 0
00400
0 0 2 0 0
0 0 1 0 0
0 0 0 7 0
0 0 0 0 7

Set user I D o n execution.
Set group ID on execution.
Save text image after execution.
Read by owner.
Write by owner.
Execute (or search if a directory) by owner.
Read, write, execute (search) by group.
Read, write, execute (search) by others.

The effective user ID of the calling process must match the owner of the file or be
super-user to change the mode of a file.

If the effective user ID of the process is not super-user, mode bit 0 1 0 0 0 (save text
image after execution) is cleared.

If the effect ive user ID of the process is not super-user or the effective group ID of the
process does not match the group ID of the file, mode bit 02000 (set group ID on
execution) is cleared.

If an executable file is prepared for sharing, then mode bit 0 1 0 0 0 prevents the system
fro m abandoning the swap-space image of the program-text portion of the file when its
last user terminates. Thus, when the next user of the file executes it, the text need not
be read fro m the file system but can simply be swapped in, saving time. Many syste ms
have relatively small amounts of swap space, and the save-text bit should be used
sparingly, if at all.

C-2 1

Syste m Functions XENIX C Libraries

chmod fails and the file mode is unchanged if one or more of the following are true:

• The effective user ID does not match the owner of the file and the effective user
ID is not super-user. [EPERM]

• path is an illegal address. [EFAULT]

• The path name is null or the named file does not exist. [ENOENT]

• A component of the path prefix is not a directory. [ENOTDIR]

• A component of the path prefix denies search permission. [EACCES]

• The named file is in a read-only file system. [EROFS]

Retu rn Va l u e

If successful, 0 is returned. Otherwise, -1 i s returned and errno is assigned an error
code.

See A lso

chown, mknod

C-2 2

XENIX C Libraries Syste m Functions

chown - Change the owner and group of a file.

Syntax

i nt chown(path, owner, g roup)
char * path;
i nt owner, group ;

Description

path points to a path name naming a file. The file can be an ordinary file, directory, or
special file (e.g., a device). The owner ID and group ID of the named file are set to the
numeric values contained in owner and group respectively.

The effective user ID of the calling process must match the owner of the file or be
super-user to change the ownership of a file.

If chown is invoked by other than the super-user, the set-user-ID and set-group-ID bits
of the file mode, 04000 and 02000 respectively, are cleared.

chown fails and the owner and group of the named file are unchanged if one or more of
the following are true:

• The effective user ID does not match the owner of the file and the effective user
ID is not super-user. [HPERM]

• path is an illegal address. [HFAULT]

• The path name is null or the named file does not exist. [ENOENT]

• A component of the path prefix is not a directory. [ENOTDIR]

• A component of the path prefix denies search perm ission. [EACCHS]

• The named file is in a read-only file system. [EROFS]

Retu rn Va l u e

If successful, 0 i s returned. Otherwise, -1 i s returned and errno is assigned a n error
code.

See Also

chmod

C-23

Syste m Functions

ch root - Change the root directory.

Syntax

i nt chroot(path)
char * path ;

Descri ption

XENIX C Libraries

path points to a path name naming a directory. chroot causes the named directory to
become the root directory, the start ing point for path searches for path names beginning
with '/'.

The effective user ID of the process must be super-user to change the root directory.

The •• entry in the root directory is interpreted to mean the root directory itself. Thus,
•• cannot be used to access files outside the subtree rooted at the root directory.

chroot fails and the root directory is unchanged if one or more of the following are true:

• The effective user ID is not super-user. [.EPRRM]

• path is an illegal address. [EFAULT]

• The path nam e is null or the named file does not .exist. [RNOENT]

• A component of the path name is not a directory. [ENOTDIR]

• A co mponent of the path prefix denies search permission. [RACCES]

Ret u r n Va l u e

If successful, 0 is returned. Otherwise, - 1 is returned and errno is assigned an error
code.

See Also

chdir

chroot in "Co m mands" in the XENIX 286 Reference Manual

C-2 4

XENIX C Libraries

chsize - Change the size of a file.

Synta x

i nt chsi ze(fi ldes, si ze)
i nt fi l des;
long si ze;

Descri ption

System Functions

This routine changes the size of the file associated with the file descriptor fildes to be
exactly size bytes in length, by either truncating the file or padding it with an
appropriate nu mber of bytes. If size is less than the initial size of the file, then all
allocated disk blocks between size and the initial file size are freed.

The maxi mum file size as set by ulimit is enforced when chsize is called, rather than on
subsequent writes. Thus chsize fails, and the file size re mains unchanged if the new
changed file size would exceed the process's file size lim it.

Retu rn Val u e

I f successful, 0 i s returned. Otherwise, -1 i s returned and errno i s assigned an error
code.

See A lso

creat, dup, lseek, open, pipe, ulimit

N otes

In general, if chsize is used to expand the size of a file, when data is written to the end
of the file, intervening blocks are filled with zeros.

C-2 5

Syste m Functions'

close - Close a file descriptor.

Syntax

i nt cl ose(fi Ides)
i nt fi ldes;

Descr i pt ion

XENIX C Libraries

fildes is a file descriptor obtained fro m a creat, dup, fcntl, open, or pipe system call.
close closes the file indicated by fildes.

close fails if fildes is not a valid open file descriptor for the calling process. [EBADF]

Retu rn· Va l u e

If successful, 0 i s returned. Otherwise, -1 is returned and errno i s assigned an error
code.

See Also

creat, dup, exec, fcntl, open, pipe

C-26

XENIX C Libraries

CONV : tou p per, tolower, toasci i - Translate characters.

Syntax

#incl ude < ctype.h >

i nt tou pper(c)
i nt c ;

i nt tolower(c)
i nt c ;

i nt tou pper(c)
i nt C;

i nt tolower(c)
i nt c ;

i nt toasc i i (c)
i nt c;

Descr iption

Syste m Functions

toupper and tolower have as domain the range of getc: the integers from -1 through
2 5 5. If the argu ment of toupper represents a lowercase letter, the result is the
corresponding uppercase letter. If the argument of tolower represents an uppercase
letter, the result is the corresponding lowercase letter. All other arguments in the
domain are returned unchanged.

_toupper and _tolower are macros that accomplish the same thing as toupper and
tolower but have restricted domains and are faster. toupper requires a lowercase
letter as its argument; its result is the corresponding uppercase letter. _tolower
requires an uppercase letter as its argu ment; its result is the corresponding lowercase
letter. Arguments outside these domains cause undefined results.

toascii returns its argu ment with all bits cleared that are not part of a standard ASCII
character.

Because toupper and tolower are imple mented as macros, they should not be used where
unwanted side effects may occur. If toupper and tolower are "undefined" with lundef,
then the corresponding library functions are linked instead, allowing any argu ments to
be used without worry about side effects.

See Also

CTYPE

C-2 7

Syste m Functions

creat - Create a new file or rewrite an exist ing one.

Syntax

i nt creat(path, mode)
char * path ;
i nt mode;

Descri ption

XENIX C Libraries

Creat creates a new ordinary file or prepares to rewrite an exist ing file named by the
path name pointed to by path.

If the file exists, the length is truncated to 0 and the mode, owner, and group are
unchanged. For a new file, the file's owner ID is set to the process's effective user ID,
the file's group ID is set to the process's effective group ID, and the low-order 12 bits of
the file mode are set to the value of mode modified as follows:

• All bits set in the process's file mode creation mask are cleared. See umask.

• The "save text i mage after execution" bit of the mode is cleared. See chmod.

Upon successful completion, a nonnegative integer, namely the file descriptor, is
returned and the file is open for writ ing (even if the mode does not permit writ ing). The
file pointer is set to the beginning of the file. The file descriptor is set to remain open
across exec system calls (see fcntl).

creat fails and the file is not created or rewritten if one or more of the following are
true:

• path is an illegal address. [EFAULT]

• The path name is null or the named file does not exist. [ENOENT]

• A component of the path prefix is not a directory. [ENOTDIR]

• A co mponent of the path prefix denies search permission, or the file does not
already exist and the directory in which the file is to be created does not permit
writing, or the file exists and write perm ission is denied. [EACCES]

• The named file is in a read-only file syste m. [EROFS]

• The named file is a pure procedure (shared text) file that is being executed.
[ETXTBSY]

• The named file is an exist ing directory. [EISDIR]

• The process has twenty file descriptors open. [EMFILE]

C-2 8

XENIX C Libraries Syste m Functions

Ret u r n Va l u e

If successful, the new file descriptor (always nonnegative) i s returned. Otherwise, -1 is
returned and errno is assigned an error code.

See Also

close, dup, lseek, open, read, umask, write

C-2 9

System Functions

creatsem - Create an instance of a binary semaphore.

Syntax

i nt creatsem(sem name, mode)
char *sem name;
int mode;

Descri ption

XENIX C Libraries

creatsem creates a binary semaphore, identified by a distinct integer, to be used by
waitsem and sigsem to manage mutually exclusive access to a resource, shared variable,
or crit ical section of a program. creatsem returns a unique semaphore nu mber, which is
then used as the parameter in waitsem and sigsem calls. Semaphores are special files
with length zero. The file name space is used to provide unique ident ifiers for
se maphores. mode sets the accessibility of the semaphore using the same format as file
access bits. Access to a semaphore is granted only on the basis of the read access bit;
the write and execute bits are ignored.

A semaphore can be operated on only by a synchronizing pri mitive (waitsem or sigsem),
or by a function that initializes it to some value (creatsem), or by a function that opens
the semaphore for use by a process (opensem). Synchronizing primitives are guaranteed
to execute without interruption once started. These primit ives are used by associating a
se maphore with each resource (including crit ical code sections) to be protected.

The process controlling the semaphore should issue

sem _ num = creatsem(" semaphore " , m ode);

to create, initialize, and open the se maphore for that process. All other processes using
the se maphore should issue

sem _ num = opensem(" semaphore ")

t o access the se maphore's identification value. Note that a process cannot open o r use a
se maphore that has not been initialized by a call to creatsem, nor should a process open
a semaphore more than once in one period of execution. Both the creating and opening
p�ocesses use waitsem(sem_num) and sigsem(sem_num) to use the semaphore sem_num.

C-3 0

XENIX C Libraries Syste m Functions

creatsem fails and the se maphore is not created if one or more of the following are
true:

• sem name is an illegal address. [EFAULT]

• A component of the path prefix is not a directory. [ENOTDIR]

• A component of the path prefix denies search permission. [EACCES]

• Write access is requested for a semaphore in a read-only file syste m. [EROFS]

• sem_name names an existing file that is not a semaphore. [ENOTNAM]

• sem name names an existing semaphore that is open for use by other processes.
[EEXIST]

Return Va l u e

If successful, the new semaphore number (always nonnegative) i s returned. Otherwise, -

1 is returned and errno is assigned an error code.

See Also

open, waitsem, sigsem

N otes

After calling creatsem, a program must still call waitsem to gain control of a given
resource.

C-3 1

Syste m Functions

crypt, setkey I encrypt - Encryption functions.

Syntax

char *crypt(key, sa lt)
char *key, *sa lt ;

setkey(key)
char *key;

encrypt(b lock, edfl ag)
char *b lock;
i nt edfl ag ;

Descr i pt ion

XENIX C Libraries

crypt is the password encryption routine. It is based on the National Bureau of
Standards Data Encryption Standard (DES), with variations intended (among other
things) to frustrate use of hardware imple mentations of the DES for key search.

The first argu ment to crypt is a user's typed password. The second is a two-character
string chosen from the set [a-zA-Z0-9./]; this salt string is used to perturb the DES
algorithm in one of 4096 different ways, after which the password is used as the key to
encrypt repeatedly a constant string. The returned value points to the encrypted
password, in the same alphabet as the salt. The first two characters are the salt itself.

The setkey and encrypt functions provide access to the actual DES algorithm. The
argu ment of setkey is a character array of length 64 containing only bytes with nu meric
value 0 or 1. If this string is divided into groups of 8, the low-order byte in each group
is ignored, leading to a 56-bit key that is set into the machine.

The argu ment to encrypt is likewise a character array of length 64 containing only bytes
with numeric value 0 or 1. The argu ment array is modified in place to a sim ilar array
representing the bits of the argu ment after having been subjected to the DES algorithm
using the key set by setkey. If edflag is 0, the argu ment is encrypted; if nonzero, it is
decrypted.

See A lso

getpass

passwd in "Commands" in the XENIX 286 Reference Manual

Notes

The return value from crypt points to stat ic data that is overwritten by each call.

C-3 2

XENIX C Libraries

ctermid - Generate a file name for a terminal.

Syntax

#i nc l ude < std io.h >

char *cterm id (s)
char *s;

Descri ption

Syste m Functions

ctermid generates a null-terminated string that refers to the controlling terminal for
the current process when used as a file name.

If s is NULL, the string is stored in an internal static area, the contents of which are
overwritten at the next call to ctermid, and the address of which is returned. Otherwise,
s is assu med to point to a character array of at least L ctermid elements; the string is
placed in this array and the value of s is returned. The constant L ctermid is defined in
<stdio.h>.

Notes

The difference between ctermid and ttyname is that ttyname must be given a file
descriptor and returns the actual name of the terminal associated w ith that file
descriptor, while ctermid returns a string ("/dev/tty") that refers to the terminal if used
as a file name. Thus ttyname is useless unless the process already has at least one file
open to a terminal.

See Also

ttyname

C-33

System Functions XENIX C Libraries

cti me, loca lt i me, g mtime, asct ime, tzset - Convert date and t ime to ASCII.

Syntax

char *cti me(cl ock)
long *c lock;

#i nc l ude < ti me .h >

struct tm * loca lti me(c lock)
long *c lock;

struct tm *gmti me(c lock)
long *c lock;

char *asct i me(tm)
struct tm *tm ;

tzset()

extern I ong ti mezone;
extern i nt dayl i ght;
extern char tzname;

Descri pt ion

ctime converts a t ime pointed to by clock (such as returned by time) into ASCII and
returns a pointer to a 26-character string in the following form. All the fields have
constant width:

Sun Sep 1 6 0 1 : 03 : 52 1 972\n

localtime and gmtime return pointers to structures containing the t ime broken down
into fields, of type tm. localtime corrects for the t ime zone and possible daylight
savings ti me; gmtime converts directly to GMT (Greenwich Meridian Time), which is the
t ime the XENIX syste m uses. asctime converts a broken-down time to ASCII and
returns a pointer to a 26-character string.

The structure declaration for tm is defined in /usr/include/time.h.

These quantities give the t ime on a 24-hour clock, day of month (1-3 1), month of year
(0-1 1), day of week (Sunday = 0), year - 1900 , day of year (0-36 5), and a flag that is
nonzero if daylight savings t ime is in effect.

C-3 4

XENIX C Libraries System Funct ions

The external long ·variable timezone contains the difference, in seconds, between G MT
and local standard t ime (in EST, timezone is 5*60*60}; the external integer variable
daylight is nonzero only if the standard U.S.A. Daylight Savings Time conversion should
be applied. The program knows about the peculiarities of this conversion in 197 4 and
197 5.

If an environment variable named TZ is present, asctime uses the contents of the
variable to override the default t i me zone. The value of TZ must be a three-letter t ime
zone name, followed by a nu mber representing the difference between local t ime (with
optional sign} and Greenwich t ime in hours, followed by an optional three-letter name
for a daylight time zone. For example, the setting for New Jersey would be EST5EDT.
The effects of setting TZ are thus to change the values of the external variables
timezone and daylight; in addition, the t ime zone names contained in the external array
tzname are set fro m the environment variable, e.g. :

char *tzname[2] = {" EST" , " EDT" };

The function tzset sets the external variables from TZ; it is called by asctime and may
also be called explicitly by the user.

See Also

getenv, time

Notes

The return values point to static data that is overwritten by each call.

C-3 5

System Functions XENIX C Libraries

CTYPE : isa l p h a , isu pper, is lower, i sd ig it, , isxd ig it, isa l n u m , ' I Sspace,
isp u n ct, ispr i n t, isgraph, iscntr l , isasci i � Classify characters.

Syntax

#i ncl ude < ctype .h >

i nt i sa l ph�(c)
i nt c;

Descri pt ion

These macros classify ASCII-coded integer values by table lookup. Each is a predicate
returning nonzero for true, zero for false. isascii is defined on all integer values; the
rest are defined only where isascii is true and on the single non-ASCII value EOF (see
STDIO).

isalpha

isupper

islower

isdigit

isxdigit

isalnum

isspace

ispunct

isprint

isgraph

iscntrl

isascii

C-3 6

c is a letter

c is an uppercase letter

c is a lowercase letter

c is a decimal digit [0-9]

c is a hexadecimal digit [0-9], [A-F] or [a-f]

c is an alphanu meric (letter or digit)

c is a space, tab, carriage return, line feed (newline), vertical tab, or
form feed

c is a punctuation character (neither control nor alphanu meric)

c is a print ing character, octal 040 (space) through octal 0 176 (tilde)

c is a graphic printing character, like isprint except false for space

c is a delete character (octal 0 17 7) or ordinary control character (octal
0 - 0 3 7)

c is an ASCII character (octal 0 - 0 177)

XENIX C Libraries System Functions

cu rses - Perform screen, window, and cursor functions.

Syntax

cc [flags 1 fi l es - ! curses - lterm l i b [l i bra r ies]

Description

These routines give the user a method of updating screens with reasonable opt imizat ion.
They keep an image of the current screen, and the user sets up an i mage of a new one.
Then the refresh function is called to make the current screen look like the new one. In
order to initialize the routines, initscr must be called before any of the other routines
that deal with windows and screens are used.

The screen routines are linked with the loader options -lcurses and -ltermlib. The
screen functions and data structures are described in detail in Chapter 3, "Screen
Processing." These major functions are provided:

addch(ch)
addstr(str)
box(win,vert, hor)
clearO
clearok(scr, boolf)
clrtobotO
clrtoeolO
crmode()
del win(win)
echoO
eras eO
getchO
getstr(str)
gettmodeO
inchO
initscrO
leaveok(win, boolf)
longname(termbuf, name)

Adds a character to stdscr
Adds a string to stdscr
Draws a box around a window
Clears stdscr
'Sets clear flag for scr
Clears to bottom on stdscr
Clears to end of line on stdscr
Sets CBREAK mode
Deletes win
Sets ECHO mode
Erases stdscr
Gets a char through stdscr
Gets a string through stdscr
Gets tty modes
Gets char at current (y, x) coordinates
Initializes screens
Sets leave flag for win
Gets long name from termbuf

C-3 7

Syste m Functions

move(y, x)
mvcur(lasty, lastx, newy, newx)
newwin(lines, cols, begin _y, begin_ x)
niO
nocrmodeQ
noechoO
nonlO
norawO
overlay(winl, win2)
overwrite(winl, win2)
printw(fmt [, arg] •••)
rawO
refreshO
scanw(fmt [,argptr] • • •)
scroll(win)
scrollok(win, boolf)
setterm(name)
unctrl(ch)
waddch(win, ch)
waddstr(win, str)
wclear(win)
wclrtobot(win)
wclrtoeol(win)
werase(win)
wgetch(win)
wgetstr(win, str)
winch(win)
wmove(win, y, x)
wprintw(win, fmt [, arg] • • •)
wrefresh(win)
wscanw(win, fmt [, argptr] •••)

Moves to (y, x) on stdscr
Actually moves cursor
Creates a new window
Sets newline mapping
Unsets CBREAK mode
Unsets ECHO mode
Unsets newline mapping
Unsets RAW mode

XENIX C Libraries

Overlays winl on win2
Overwrites winl on top of win2
Sends formatted output to stdscr
Sets RAW mode
Makes current screen look like stdscr
Sends formatted input fro m stdscr
Scrolls win one line
Sets scroll flag for win
Sets term variables for name
Returns printable version of ch
Adds char to win
Adds string to win
Clears win
Clears to bottom of win
Clears to end of line on win
Erases win
Gets a char through win
Gets a string through win
Gets char at current (y, x) in win
Sets current (y, x) coordinates on win
Sends formatted output to win
Makes screen look like win
Sends formatted input from win

Chapter 3, "Screen Processing," describes these functions and some additional screen
processing functions.

See Also

stty, setenv

termcap in "Files" in the XENIX 286 Reference Manual

Cred it

This utility was developed at the University of California at Berkeley and is used with
permission.

C-3 8

XENIX C Libraries

cuserid - Get the login name of the user.

Syntax

#i ncl ude < std io.h >

char * cuserid (s)
char *s;

Description

System Functions

cuserid generates a character representation of the login name of the owner of the
current process. If s is NULL, this representation is generated in an internal static
area, the address of which is returned. Otherwise, s is assu med to point to an array of
at least L_cuserid characters and the representation is left in this array. The constant
L cuserid is defined in <stdio.h>.

Diagnostics

If the login name cannot be found, cuserid returns NULL; if s is non-NULL in this case,
a single null character is stored at *s.

See Also

getlogin, getpwuid

Notes

cuserid uses getpwnam; thus the results of a user's call to the latter are overwritten by
a subsequent call to the former.

C-39

Syste m Functions XENIX C Libraries

DBM : d bm i n it, fetch , store, delete, fi rstkey, n extkey - Perform data base
functions.

Syntax

typedef struct { char *dptr; i nt ds i ze ; } datum ;

i nt dbmi n it(fi l e)
char *fi l e ;

datum fetch(key)
datum key;

i nt store(key, content)
datum key, content;

i nt de lete(key)
datum key;

datum fi rstkey() ;

datum nextkey(key) ;
datum key;

Descri pt ion

These functions maintain key/content pairs i n a data base. The functions can handle
very large (one billion blocks) data bases and can access a keyed ite m in one or two file
system accesses. The functions are obtained with the loader option -ldbm.

keys and contents are described by the datum data type. A datum specifies a string of
dsize bytes pointed to by dptr. Arbitrary binary data, as well as normal ASCII strings,
are allowed. The data base is stored in two files. One file is a directory containing a
bit map and has ".dir" as its suffix. The second file contains all data and has ".pag" as
its suffix.

Before a data base can be accessed, it must be opened by dbminit. At the t ime of this
Gall, the files file.dir and file.pag must exist. (An empty data base is created by
creating zero-length .dir and .pag files.)

Once open, the data stored under a key is accessed by fetch and data is placed under a
key by store. A key (and its associated contents) is deleted by delete. A linear pass
through all keys in a data base may be made, in an (apparently) random order, by use of
firstkey and nextkey. firstkey returns the first key in the data base. Given any key,
nextkey returns the next key in the data base. The following code can be used to
traverse a data base:

C-40

for (key = fi rstkey() ; key.d ptr ! = N U LL; key = nextkey(key)) {
I* code to access/change record goes here *I

}

XENIX C Libraries Syste m Functions

Diag n ostics

All functions that return an int indicate errors with negative values. A zero return
value indicates success. Routines that return a datum indicate errors with a dptr value
of NULL.

Notes

Every .pag file contains holes so that its apparent size is about four t imes its actual
content. Older XENIX syste ms may create real file blocks for these holes when
touched. These files cannot be copied by normal means (cp, cat, tp, tar, ar) without
filling in the holes.

dptr pointers returned by these functions point into stat ic storage that is changed by
subsequent calls.

The su m of the sizes of a key/content pair must not exceed the block size BSIZH (1024
bytes in XENIX Release 3) . Moreover all key/content pairs that hash together must fit
in a single block. store returns an error if a disk block fills with inseparable data.

delete does not physically reclai m file space, although it does make it available for
reuse.

The order of keys returned by firstkey and nextkey depends on a hashing function, not on
anything interesting.

These routines are not re-entrant, so they should not be used on more than one data base
at a t ime.

Cred it

This utility was developed at the University of California at Berkeley and is used with
perm iss ion.

C-4 1

System Functions

defopen, defread - Read default entries.

Syntax

i nt defopen(fi l ename)
char *fi l ename;

char *defread(pattern)
char *pattern ;

Descr i ption

XENIX C Libraries

defopen and defread are a pair of routines designed to allow easy access to default
definition files. XENIX is nor mally distributed in binary form; the use of default files
allows OEMs or site adm inistrators to customize ut ility defaults without having the
source code.

A program first calls defopen with the path name of a file containing the default
entries. defopen returns 0 if it is successful in opening the file. If defopen fails, it
returns the (nonzero) error code assigned to errno by fopen.

The program then calls defread with a character string, pattern. defread reads the
previously opened file fro m the beginning until it encounters a line beginning with
pattern. defread then returns a pointer to the first character in the line after the initial
pattern. This line has been read into static storage; the newline at the end of the line is
replaced by a null character. The next call to defread may overwrite the line.

defread returns NULL if a default file is not open, if pattern could not be found, or if it
encounters any line in the file longer than 1 2 8 characters.

When all items of interest have been extracted fro m the opened file, the program may
call defopen with the name of another file to be searched, or it may call defopen with
NULL, which closes the default file without opening another.

Fi les

1;he XENIX convention is for a system program xyz to store its defaults (if any) in the
file /etc/default/xyz.

C-42

XENIX C Libraries System Functions

d u p, d u p2 - Duplicate an open file descriptor.

Syntax

i nt dup(fi l des)
i nt fi ldes;

dup2(fi l des, fi l des2)
i nt fi l des, fi l des2;

Descri ption

fildes is a file descriptor obtained from a creat, open, dup, fcntl, or pipe system call.
dup returns a new file descriptor having the following in com mon with the original:

• Same open file (or pipe)

• Same file pointer (i.e., both file descriptors share one file pointer)

• Same access mode (read, write, or read/write)

The new file descriptor is set to re main open across exec syste m calls. See fcntl.

dup returns the lowest available file descriptor. dup2 causes fildes2 to refer to the
same file as fildes. If fildes2 already referred to an open file, it is closed first.

dup fails if one or more of the following are true:

• fildes is not a valid open file descriptor. [EBADF]

• , Twenty file descriptor� are currently open. [EMFILE]

Ret u r n Va l u e

I f successful, dup returns the (nonnegative) file descriptor. Otherwise, - 1 i s returned
and errno is assigned an error code.

See A lso

creat, close, exec, fcntl, open, pipe

C-43

System Functions

ecvt, fcvt, gcvt - Numeric output conversions.

Synta x

char *ecvt(va l ue, nd ig i t, decpt, si gn)
double va l ue ;
i nt nd ig it, *decpt, *sign ;

char *fcvt(va l ue, nd ig it, decpt, s ign)
double va l ue ;
i nt ndi g it, *decpt, *si gn ;

char *gcvt(va l ue, nd ig it, buf)
doub le va l ue ;
i nt nd ig i t;
char *buf;

Descr i pt ion

XENIX C Libraries

ecvt converts value to a null-term inated string of ndigit ASCII digits and returns a
pointer thereto. The low�order digit of the string produced is rounded. The position of
the decimal point relative to the beginning of the string is stored indirectly through
decpt (negative means to the left of the returned digits). If the sign of the result is
negative, the int pointed to by sign is nonzero, otherwise it is zero.

fcvt operates in the same way as ecvt, except that the correct digit is rounded for
FO RTRAN F format output of the nu mber of digits specified by ndigits.

gcvt converts value to a null-ter minated ASCII string in buf and returns a pointer to buf.
It attempts to produce ndigit significant digits in FORTRAN F format if possible,
otherwise it uses FORTRAN E format, ready for printing. Trailing zeros may be
suppressed.

See A lso

printf

Notes

The return values of ecvt and fcvt point to a static data area that is overwritten by
each call.

C-44

XENIX C Libraries System Functions

EXEC : execl, execv, execle, execve, execl p, execvp - Execute a file.

Syntax

i nt exec l (path, argO, arg 1 , . . . , argn, N U LL)
char *path, *argO, *arg 1 , . . . , *argn ;

i nt execv(path, argv)
char * path, *argv[] ;

i nt execl e(path, argO, arg 1 , . . . , argn, N U LL, envp)
char *path , *argO, *arg 1 , . . . , *argn, *envp[] ;

i nt execve(path, argv, envp) ;
char * path, *argv[] , *envp[] ;

i nt execl p(fi l e, argO, arg 1 , . . . , argn, N U LL)
char *fi le , *a rgO, *arg 1 , . . . , *argn ;

i nt execvp(fi l e, argv)
char *fi l e, * a rgv[] ;

Descri pt ion

exec in all its forms transforms the calling process into a new process. The new process
is constructed from an ordinary, executable file called the "new process file." There
can be no return from a successful exec because the calling process is overlaid by the
new process.

path points to a path name that identifies the new process file.

file points to the new process file path name. The path prefix for this file is obtained (if
it is a relative path name) by a search of the directories passed as the environment line
"PATH =".

argO, argl, ... , argn are pointers to null-terminated character strings. These strings
constitute the argu ment list available to the new process. By convention, at least argO
must be present and point to a string that is the same as path (or its last component).

argv is an array of character pointers to null-terminated strings. These strings
constitute the argu ment list available to the new process. By convention, argv must
have at least one me mber, and it must point to a string that is the same as path (or its
last component). argv is terminated by a NULL element.

envp is an array of character pointers to null-terminated strings. These strings
constitute the environment for the new process. envp is terminated by a NULL
ele ment.

C-4 5

System Functions XENIX C Libraries

File descriptors open in the calling process re main open in the . new process, except for
those whose close-on-exec flag is set; see fcntl. For those file descriptors that re main
open, the file pointer is unchanged.

Signals set to terminate the calling process are set to term inate the new process.
Signals set to be ignored by the calling process are set to be ignored by the new process.
Signals set to be caught by the calling process are set to terminate the new process; see
signal.

If the set-user-ID mode bit of the new process file is set {see chmod), exec sets the
effective user ID of the new process to the owner ID of the new process file. Si milarly,
if the set-group-ID mode bit of the new process file is set, the effective group ID of the
new process is set to the group ID of the new process file. The real user ID and real
group ID of the new process re main the same as those of the calling process.

Profiling is disabled for the new process; see profil.

The �ew process also inherits the following attributes from the calling process:

Nice value {see nice)

Process ID

Parent process ID

Process group ID

tty group ID {see exit and signal)

Trace flag {see ptrace)

Ti me left until an alar m clock signal {see alarm)

Current working directory

Root directory

File mode creation mask {see umask)

File size li mit {see ulimit)

utime, stime, cutime, and cstime {see times)

Fro m C, two interfaces are available. execl is useful when a known file with known
arguments is being called; the arguments to execl are the character strings constituting
the file and the argu ments. The first argument is conventionally the same as the file
name {or its last component). A NULL argument must end the argument list.

The execv version is useful when the nu mber of argu ments is unknown in advance. The
argu ments to execv are the name of the file to be executed and a vector of strings
containing the argu ments. The last argu ment must be NULL to terminate the list.

C-46

XENIX C Libraries

When a C program is executed, it is called as follows:

mai n(a rgc, a rgv, envp)
i nt argc;
char * *argv, * *envp;

Syste m Functions

where argc is the argu ment count and argv is an array of character pointers to the
argu ments themselves. As indicated, argc is conventionally at least one and the first
me mber of the array argv points to a string containing the name of the file.

argv is directly usable in another execv because argv[argc] is 0.

envp is a pointer to an array of strings that constitute the environment of the process.
Each string consists of a name, an "=", and a null-terminated value. The array of
pointers is terminated by a NULL ele ment. The shell passes an environment entry for
each global shell variable defined when the program is called. The C run-time start-off
routine places a copy of envp in the global cell environ, which is used by execv and execl
to pass the environment to any subprograms executed by the current program. The exec
routines use lower-level routines as follows to pass an environment explicitly:

execle(file, argO, argl, • • • , argn, 0, environ);

execve(file, argv, environ);

execlp and execvp are called with the same argu ments as execl and execv but duplicate
the shell's actions in searching for an executable file in a list of directories. The
directory list is obtained from the environment.

exec fails and returns to the calling process if one or more of the following are true:

• A pointer argument is an illegal address, or the new process file is not as long as
indicated by the size values in its header. [EFAULT]

• The path name for the new process file is null or the named file does not exist.
[ENOENT]

• A component of the path prefix is not a directory. [ENOTDIR]

• A component of the path prefix denies search permission, or the new process file
is not an ordinary file, or the new process file mode denies execute permission.
[EACCES]

• The new process file has the appropriate access perm ission but has an invalid
magic nu mber in its header. [ENOEXEC]

• The new process file is a pure procedure (shared text) file currently open for
writing by some process. [ETXTBSY]

• The new process requires more memory than is allowed by the system-imposed
limit MAXMEM. [ENOMEM]

• The new process's argu ment list exceeds the size li mit of 5 12 0 bytes. [E2BIG]

C-47

Syste m Functions XENIX C Libraries

Retu rn Va l u e

exec returns t o the calling process only if an error has occurred; - 1 i s returned and errno
is assigned an error code.

See Also

exit, fork

C-48

XENIX C Libraries

exit - Terminate a process.

Syntax

exit(status)
i nt status;

Descri ption

exit terminates the calling process with the following consequences:

• All file descriptors open in the calling process are closed.

Syste m Functions

• If the parent process of the calling process is executing a wait, it is notified of the
calling process's termination and the low-order 8 bits (i .e., bits 0 37 7) of status are
made available to it; see wait.

• If the parent process of the calling process is not executing a wait, the calling
process is transformed into a zombie process.. A zombie process is a process that
only occupies a slot in the process table; it has no other space allocated e ither in
user or kernel space. The process table slot that it occupies is partially overlaid
with t ime accounting information (see <sys/proc.h>) to be used by times.

• The parent process ID of all of. the calling process' existing child processes and
zombie processes is set to 1 . This means the initialization process inherits each of
these processes.

• An accounting record is written on the accounting file if the syste m's accounting
routine is enabled; see acct.

• If the process ID, tty group ID, and process group ID of the calling process are
equal, the SIGHUP signal is sent to each process that has a process group ID equal
to that of the calling process.

See Also

signal, wait

Wa r n i n g

See Warning i n signal.

C-49

System Functions XENIX C Libraries

exp, log, log 1 0, pow, sq rt - Exponential, logarithm, power, square root functions.

Synta x

#i ncl ude < math . h >

doubl e exp(x)
double x;

doubl e I og(x)
doubl e x;

doubl e l og 1 O(x)
doubl e x;

doubl e pow(x, y)
doubl e x, y;

doub le sqrt(x)
doubl e x;

Descri pt ion

exp returns the exponential function of x, which i s the nu mber e raised to the x power,
where e is the base of the natural logarithms.

log returns the natural logarith m of x.

loglO returns the base 1 0 logarith m of x.

pow returns x.Y.

sqrt returns the square root of x.

Diagnostics

�xp and pow return a huge value when the correct value would overflow. So m e
overflows can cause errno t o be set t o ERANGE. log and loglO return a huge negative
value and set errno to EDOM when x is negative or zero. pow returns a huge negative
value and sets errno to EDOM when x is negative or zero and y is not an integer, or
when x and y are both zero. sqrt returns 0 and sets errno to EDOM when x is negative.

See Also

hypot, sinh

C-5 0

XENIX C Libraries Syste m Functions

fclose, ffl ush - Close or flush a stream.

Syntax

#i nc l ude < std io. h >

i nt fclose(stream)
F I LE *stream ;

i nt ffl ush(stream)
F I LE *stream ;

Descri ption

fclose causes any buffers for the named stream to be emptied and the file to be closed.
Buffers allocated by the standard input/output functions are freed.

fclose is performed automatically for all open streams of a process on calling exit.

ffiush causes any buffered output data for the named output stream to be written to the
file. The stream re mains open.

These functions return 0 for success and EOF if any errors are detected.

See Also

clos�, fopen, setbuf .

C-5 1

Syste m Functions XENIX C Libraries

fcntl - Control open files.

Syntax

#inc l ude < fcntl . h >

i nt fcntl (fi ldes, cmd, a rg)
i nt fi ldes, cmd, arg ;

Descri ption

fcntl provides for control over open files. fildes is an open file descriptor obtained from
a creat, open, dup, fcntl, or pipe syste m call.

The cmds available are

F DUPFD

F GETFD

F SETFD

F GETFL

F SETFL

C-52

Return a new file descriptor as follows:

Lowest numbered available file descriptor greater than or equal
to arg.

Same open file (or pipe) as the original file.

Same file pointer as the original file (i.e., both file descriptors
share one file pointer).

Same access mode (read, write, or read/write).

Same file status flags (i.e. , both file descriptors share the same
file status flags).

The close-on-exec flag associated with the new file descriptor is
set to re main open across exec system calls.

Get the close-on-exec flag associated with the file descriptor fildes. If
the low-order bit is 0 the file remains open across exec, otherwise the
file is closed on execution of exec.

Set the close-on-exec flag associated with fildes to the low-order bit of
arg (0 or 1 as above).

Get file status flags.

Set file status flags to arg. Only certain flags can be set.

XENIX C Libraries System Functions

fcntl fails if one or more of the following are true:

• fildes is not a valid open file descriptor for the calling process. [EBADF]

• cmd is F DUPFD and 20 file descriptors are currently open. [EMFILE]

• cmd is F DUPFD and arg is less than zero or greater than 19. [EINVAL]

Retu rn Va l u e

Upon successful completion, the value returned depends o n cmd as follows:

F DUPFD A new file descriptor

F GETFD Value of flag (only the low-order bit is defined)

F SETFD Value other than -1

F GETFL Value of file flags

F SETFL Value other than -1

Otherwise, - 1 is returned and errno is assigned an error code.

See Also

close, exec, open

C-53

System Functions

ferror I feof I clea rerr I f i leno - Determine stream status.

Syntax

#inc l ude < std io. h >

i nt feof(stream)
F ILE *stream ;

i nt ferror(stream)
F ILE *stream

c learerr(stream)
F I LE * stream

i nt fi l eno(stream)
F I LE *stream ;

Descri ption

XENIX C Libraries

feof returns nonzero when end-of-file is read on the named input stream, otherwise
zero.

ferror returns nonzero when an error has occurred reading or writing the named stream,
otherwise zero. Unless cleared by clearerr, the error indicator lasts until the stream is
closed.

clearerr resets the error indicator on the named stream.

fileno returns the integer file descriptor associated with the stream; see open.

feof, ferror, and fileno are implemented as macros; they cannot be redeclared.

See Also

open, fopen

C-54

XENIX C Libraries System Functions

fabs, f loor, cei l, fmod - Absolute value, floor, ceiling, remainder functions.

Syntax

#incl ude < math. h >

doub le fabs(x)
doub le x;

doub le floor(x)
doub le x;

doub le cei l (x)
double x;

doub le fmod(x, y)
doub le x, y;

Descri ption

fabs returns the absolute value of x.

fioor returns the largest integer not greater than x (as a double precision number).

ceil returns the smallest integer not less than x (as a double precision number).

fmod returns the number f such that x = iy + f, for some integer i, and 0 <= f < y.

See Also

abs

C-5 5

System Functions

fopen, freopen, fdopen - Open a stream.

Syntax

#i ncl ude < std i o. h >

F I LE *fopen(fi l ename, type)
char *fi l enam e, *type;

FILE *freopen(fi lename, type, stream)
char *fi l enam e, *type;
F I LE *stream ;

F I LE *fdopen(fi ldes, type)
i nt fi l des;
char *type;

Descri ption

XENIX C Libraries

fopen opens the file named by filename and associates a stream with it. fopen returns a
pointer used to identify the stream in subsequent operations.

type is a character string having one of the following values:

r Open for reading

w Create for writ ing

a Append; open for writing at end of file, or create for writ ing

r+ Open for update (reading and writing)

w+ Create for update (reading and writing)

a+ Append; open or create for update at end of file

freopen substitutes the named file in place of the open stream. It returns the original
value of stream. The original stream is closed, regardless of whether the open
ultimately succeeds.

freopen is typically used to attach the preopened streams stdin, stdout, and stderr to
specified files.

C-56

XENIX C Libraries Syste m Functions

fdopen associates a stream with a file descriptor obtained from open, dup, creat, or
pipe. The type of the stream must agree with the mode of the open file. type must be
provided because the standard 1/0 library has no way to query the type of an open file
descriptor. fdopen returns the new stream.

When a file is opened for update, both input and output may be done on the resulting
stream. However, output may not be directly followed by input without an intervening
fseek or rewind, and input may not be directly followed by output without an intervening
fseek, rewind, or an input operation that encounters end of file.

Diagnostics

fopen and freopen return NULL if filename cannot be opened.

See Also

open, fclose

C-5 7

System Functions XENIX C Libraries

fork - Create a new process.

Syntax

i nt fork();

Description

fork creates a new process. The new process (child process) is an exact copy of the
calling process (parent process} except for the following:

• The child process has a unique process ID.

• The child process has a different parent process ID (i.e., the process ID of the
parent process}.

• The child process has its own copy of the parent's file descriptors. Each of the
child's file descriptors shares a com mon file pointer with the corresponding file
descriptor of the parent.

• The child process' utime, stime, cutime, and cstime are set to 0 ; see times.

• The time left on the parent's alarm clock is not passed on to the child.

fork fails and no child process is created if one or more of the following are true:

• The syste m's limit on the total nu mber of processes being executed would be
exceeded, or the system's lim it on the total nu mber of processes associated with a
single user would be exceeded. [EAGAIN]

• Not enough memory is available to create the forked image. [ENOMEM]

Retu rn Val ue

If successful, fork returns 0 to the child process and returns the (nonzero) process ID of
the child process to the parent process. Otherwise, -1 is returned to the parent process,
I)O child process is created, and errno is assigned an error code.

See Also

exec, wait

C-58

XENIX C Libraries

fread, fwrite - Buffered binary input and output.

Syntax

#inc lude <std io.h >

i nt fread((char *) ptr, si zeof(*ptr) , n i tems, stream)
F I LE *stream ;

i nt fwrite((char *) ptr, s i zeof(*ptr), n items, stream)
F I LE *stream ;

Description

Syste m Functions

fread reads, into a block beginning at ptr, nitems of data each of size sizeof(*ptr) from
the named input stream. It returns the nu mber of ite ms actually read.

fwrite writes, from a block beginning at ptr, nitems of data each of size sizeof(*ptr) to
the named output stream. fwrite returns the number of ite ms actually written.

Each ite m read or written is sizeof(*ptr) bytes long.

See Also

fopen, getc, gets, printf, putc, puts, read, scanf, write

C-5 9

System Funct ions XENIX C Libraries

frexp, ldexp, modf - Split floating-point nu mber into a mantissa and an exponent.

Synta x

double frexp(va l ue, eptr)
doubl e va l ue ;
i nt *eptr;

double ldexp(va l ue, exp)
double va l ue ;
i nt exp;

double modf(va l ue, i ptr)
doub le va l ue, * i ptr;

Descri ption

frexp returns the mantissa of value as a double quantity x, of magnitude less than 1 , and
stores an integer n such that value = x*2 D in the int referenced by eptr.

ldexp returns the double quantity: value*2 exp

modf returns the posit ive fractional part of value and stores the integer part in the int
referenced by iptr.

C-60

XENIX C Libraries

fseek, ftell , rewi n d - Reposition a stream.

Syntax

#i nclude < std io.h >

i nt fseek(stream, offset, ptrname)
FI LE *stream ;
long offset;
i nt ptrname;

long ftel l (stream)
F I LE *stream ;

rewi nd(strea m)
F I LE *stream ;

Description

Syste m Functions

fseek sets the position of the next input or output operation on the stream. The new
position is at the signed distance offset bytes from the beginning, the current position,
or the end of the file, depending on whether ptrname has the value O, 1, or 2.

fseek undoes any effects of ungetc.

ftell returns the current value of the file pointer offset relative to the beginning of the
file associated with the named stream. The offset is measured in bytes.

rewind(stream) is equivalent to fseek(stream, O L, 0).

After fseek or rewind, the next operation on an update file m ay be either input or
output.

Diag nostics

fseek returns nonzero for improper seeks (in which case the file pointer is not moved),
and zero if successful.

See Also

fopen, lseek

C-6 1

Syste m Functions

g a m ma - Log gam ma function.

Syntax

#i ncl ude < math .h >
extern i nt si gngam ;

double gam ma(x)
double x;

Descri ption

XENIX C Libraries

gamma returns th� natural logarithm of the absolute value of the gam ma function of the
absolute value of x. The sign of the gam rna function is returned in the external integer
signgam. To calculate the gam ma function, use C code like the following:

y = gamma(x) ;
if (y > 88.0)

error() ;
else

y = exp(y) * si gngam ;

Diagn ostics

For negative integer argu ments, a huge value is returned, and errno is set to EDOM.

C-62

XENIX C Libraries Syste m Functions

getc, getcha r, fgetc, getw - Get character or word from a stream.

Syntax

#incl ude < std io.h >

i nt getc(stream)
FI LE *stream ;

i nt getchar() ;

i nt fgetc(stream)
FI L E *stream ;

i nt getw(stream)
FI LE *stream ;

Descri ption

getc returns the next character from the named input stream. Note that because getc
is i mplemented as a macro, it m ay handle arguments with side effects incorrectly. In
particular, getc(*f++) does not operate correctly.

getchar() is identical to getc(stdin).

fgetc behaves like getc, but is a genuine function, not a macro; it may therefore be used
as an argument. fgetc runs more slowly than getc, but takes less space per invocation.

getw returns the next word from the named input stream. getw returns the constant
EOF upon end-of-file or error, but since that is a valid integer value, feof and ferror
should be used to check the success of getw. getw assumes no special alignment in the
file.

Diagnostics

These functions return EOF on end-of-file or on a read error. A stop with the message
"Reading bad file" written to stderr means that an attempt has been m ade to read from
a stream that has not been opened for reading by fopen.

See Also

ferror, fopen, fread, gets, putc, scanf

C-63

System Functions

getcwd - Get path name of current working directory.

Syntax

i nt getcwd(pnbuf, max i en)
char *pnbuf;
i nt max len ;

Description

XENIX C L ibraries

Getcwd determ ines the path name of the current working directory and places it in the
buffer pnbuf. The length excluding the terminating null character is returned. maxlen
is the length of the buffer in bytes. If the length of the (null-terminated) path name
exceeds maxlen, no path name is stored and a length <= 0 is returned.

Notes

maxlen (and the buffer referenced by pnbuf) must be one more than the maxi mu m length
of the path name, to allow for the term inating null.

C-64

XENIX C Libraries

getenv - Get value for environment name.

Syntax

char *getenv(name)
char * name;

Description

Syste m Functions

Getenv searches the environment list for a string of the form name=value and returns a
pointer to a null-terminated string containing value if such a string is present, otherwise
returns NULL.

See Also

exec

sh in "Commands" in the XENIX 286 Reference Manual

C-65

System Functions XENIX C L ibraries

getg rent, getg rgid, getg rn a m, setgrent, endgrent - Get group file entry.

Syntax

#incl ude < grp. h >

struct group *getgrent() ;

struct group *getgrgid (g id)
i nt g id ;

struct group *getgrnam(name)
char * name;

i nt setgrent() ;

i nt endgrent() ;

Description

getgrent, getgrgid and getgrnam each return pointers to group structures. The form at
of a group structure is defined in /usr/include/grp.h.

The fields of this structure are

gr_name The name of the group

gr _passwd The encrypted password of the group

gr_gid The numerical group ID

gr_mem NULL-terminated vector of pointers to the individual me mber names

getgrent reads the next line · of the system's group file, so successive calls to getgrent
can be used to search the entire file. getgrgid and getgrnam search from the beginning
of the file until a matching gr_gid or gr_name field is found, or until end-of-file is
encountered.

setgrent rewinds the group file to allow repeated searches. endgrent closes the group
file when processing is complete.

Diagnostics

NULL is returned by getgrent, getgrid, or getgrnam on end-of-file or error.

C-66

XENIX C Libraries

F i les

/etc/group

See Also

getlogin, getpwent

Notes

Syste m Functions

All group structures returned are static data that is overwritten by 1each call.

C-67

System Functions XENIX C Libraries

getlog i n - Get login name.

Syntax

char *getlogi n() ;

Descri ption

getlogin returns a pointer to the login name as found in /etc/utmp. getlogin can be used
in conjunction with getpwnam to locate the correct password file entry when the same
user ID is shared by several login names.

If getlogin is called within a process not attached to a terminal, it returns NULL. The
correct procedure for determining the login name is to call cuserid, or to call getlogin
and if it fails, to call getpwuid.

Diag n ostics

Return NULL if a login name is not found.

Fi les

/etc/utmp

See A lso

cuserid, getgrent, getpwent

N otes

The return value points to static data that is overwritten by each call.

C-68

XENIX C Libraries

getopt - Get option letter from argu ment vector.

Syntax

#incl ude < std io. h >

i nt getopt(argc, argv, optstri ng)
i nt argc;
char * *argv;
char *optstri ng;

extern char *optarg ;
extern i nt opti nd ;

Descr iption

Syste m Functions

getopt returns the next option letter in argv that matches a letter in optstring. optstring
is a string of recognized option letters; if a letter is followed by a colon, the option is
expected to have an argument that may or may not be separated from it by white space.
optarg is set to point to the start of the option argument (if any) on return from getopt.

getopt places in optind the argv index of the next argu ment to be processed. optind
should be zero before the first call to getopt.

When all options have been processed (i.e., up to the first nonoption argu ment), getopt
returns EOF. The special option - can be used to delimit the end of the options; EOF is
returned, and - is skipped.

Diagnostics

getopt prints an error message on stderr and returns a question mark (?) if it encounters
an option letter not included in optstring.

Exa m ples

The following program fragment shows how to process the arguments for a com mand
that can take the mutually exclusive options a and b, and the options f and o, both of
which require argu ments:

C-69

System Functions

C-7 0

mai n (argc, argv)
i nt argc ;
char * *argv;
{

}

i nt c ;
i nt aflg = 0;
i nt bflg = 0;
i nt errflg = 0;
char *ffi l e = N U LL;
char *ofi l e = NU LL;

extern i nt opti nd ;
extern char *optarg ;

whi l e ((c = getopt (argc, argv, " abf : o : ")) ! = EOF)
switch (c) {
case 'a' :

if (bflg)
errflg + + ;

el se
aflg + + ;

break;
case 'b' :

i f (aflg)
errflg + + ;

el se
bfl g + + ;

break;
case 'f' :

ffi l e = optarg ;
break;

case 'o' :
ofi l e = optarg;
break;

case ' ?� :
errfl g + + ;

}
if (errflg) {

}

fpri ntf (stderr, " usage : . . . ") ;
exit(1) ;

XENIX C Libraries

XENIX C Libraries

getpass - Read a password.

Synta x

char *getpass(prom pt)
char *prompt;

Descri pt ion

Syste m Functions

getpass reads a password from the file /dev/tty, or if that cannot be opened, fro m the
standard input, after prompting with the null-terminated string prompt and disabling
echoing. A pointer is returned to a null-terminated string of at most eight characters.

F i les

/dev/tty

See Also

crypt

Notes

The return value points to static data that is overwritten by each call.

C-7 1

System Functions XENIX C Libraries

getpid, getpg rp, getppid - Get process, process group, and parent process IDs.

Synta x

i nt getp id() ;

i n t getpg rp() ;

i nt getpp id() ;

Descri pt ion

getpid returns the process I D o f the calling process.

getpgrp returns the process group ID of the calling process.

getppid returns the parent process ID of the calling process.

See Also

exec, fork, setpgrp, signal

C-72

XENIX C Libraries

getpw - Get name fro m unique identifier.

Synta x

getpw(u id , buf)
i nt u id ;
char *buf;

Descr ipt ion

Syste m Functions

getpw searches the password file for the (nu merical) uid, and fills in buf with the
corresponding line, null-terminated; getpw returns zero if successful, nonzero if uid
cannot be found.

F i les

I etc/passwd

See Also

getpwent

Notes

This routine is included only for compatibility with prior systems and should not be used;
see getpwent for routines to use instead.

C-73

Syste m Functions XENIX C Libraries

getpwent, g etpwuid, getpwna m, setpwent, end pwent - G et password file
entry.

Syntax

#i ncl ude < pwd . h >

struct passwd *getpwent() ;

struct passwd *getpwnam(name)
char * name;

struct passwd *getpwu i d(u id)
i nt u i d ;

i nt setpwent() ;

i nt endpwent() ;

Descri pt ion

getpwent, getpwnam, and getpwuid each returns a pointer to a structure containing the
fields of an entry line in the password file. All return NULL on end-of-file or error. The
structure of a password entry is defined in /usr/include/pwd.h. The pw _comment field is
unused.

getpwent reads the next line in the file, so successive calls can be used to search the
entire file. getpwuid and getpwnam search from the beginning of the file until a
matching uid or name is found, or end-of-file is encountered.

setpwent rewinds the password file to allow repeated searches. endpwent closes the
password file when processing is co mplete.

Fi les

I etc/passwd

See Also

getgrent, getlogin

Notes

The return values of getpwent, getpwnam, and getpwuid point to static data that is
overwritten by each call.

C-74

XENIX C Libraries

gets, fgets - Get a string from a stream.

Syntax

#i ncl ude < std io . h >

char *gets(s)
char *s;

char *fgets(s, n , stream)
char *s;
i nt n;
F I LE *stream ;

Descri pt ion

System Functions

gets reads a string into s from the standard input stream stdin. The string is terminated
by a newline character, which is replaced in s by a null character. gets returns its
argument. gets cannot check for string overflow.

fgets reads n-1 characters, or up to a newline character (which is retained), whichever
comes first, from stream into the string s. The last character read into s is followed by
a null character. fgets returns its first argument.

Diag nost ics

gets and fgets return NULL on end-of-file or error.

See Also

ferror, fopen, fread, getc, puts, scanf

Notes

gets deletes the new line ending its input, but fgets keeps it.

C-7 5

System Functions XENIX C Libraries

getu id, geteu id, g etg id, geteg id - Get real user, effective user, real group, and
effective group IDs.

Syntax

i nt getu id {) ;

i nt geteu id {);

i nt getg id {) ;

i nt geteg id {) ;

Descri pt ion

getuid returns the real user ID of the calling process.

geteuid returns the effective user ID of the calling process.

getgid returns the real group ID of the calling process.

getegid returns the effective group ID of the calling process.

See Also

setuid

C-76

XENIX C Libraries

hypot - Determ ine Euclidean distance.

Syntax

#inc lude < math . h >

double hypot(x, y)
double x, y ;

doub le cabs(z)
struct { doub le x, y; } z ;

Descri ption

Both hypot and cabs return

sqrt(x*x + y*y)

Both take precautions against unwarranted overflows.

System Functions

cabs is used instead of hypot when computing the distance from the origin of a complex
number z, represented as a structure containing the real (x) and imaginary (y)
components of the complex nu mber.

See Also

sqrt

C-77

System Functions

ioct l - Control character devices.

Synta x

#i ncl ude < sys/ioctl . h >

ioctl (fi l des, request, arg)
i nt fi ldes;
i nt request;
i nt *arg ;

Descr iption

XENIX C Libraries

ioctl performs a variety of functions on character special files (devices). The writeups
of various devices in the section "Devices" in the XENIX 286 Reference Manual discuss
how ioctl applies to them.

ioctl fails if one or more of the following are true:

• fildes is not a valid open file descriptor. [EBADF]

• fildes is not associated with a character special device. [ENOTTY]

• request or arg is not valid. (See tty in "Devices" in the XENIX 286 Reference
Manual.) [EINVAL]

Return Va l u e

If successful, 0 i s returned. Otherwise, -1 i s returned and errno i s assigned an error
code.

See Also

tty in "Devices" in the XENIX 286 Reference Manual

C-7 8

XENIX C Libraries Syste m Functions

ki I I - Send a signal to a process or a group of processes.

Syntax

i nt ki l l (p id , si g)
i nt p id , sig ;

Descri ption

kill sends a signal to a process or a group of processes. The process or group of
processes to which the signal is to be sent is specified by pid. The signal that is to be
sent is specified by sig and is either one from the list given in signal or 0. If sig is 0 (the
null signal), error checking is performed but no signal is actually sent. This can be used
to check the validity of pid.

The effective user ID of the sending process must match the effective user ID of the
receiving process unless the effective user ID of the sending process is super-user or the
process is sending to itself.

The processes with process IDs of 0 and 1 are special processes and are referred to as
procO and procl respectively.

If pid is greater than zero, sig is sent to the process with process ID equal to pid. pid
may equal l.

If pid is 0 , sig is sent to all processes excluding procO and procl with process group ID
equal to the process group ID of the sender.

If pid is -1 and the effective user ID of the sender is not super-user, sig is sent to all
processes excluding procO and procl with real user ID equal to the effective user ID of
the sender. ·

If pid is - 1 and the effective user ID of the sender is super-user, sig is sent to all
processes excluding procO and procl.

If pid is negative but not -1 , sig is sent to all processes with process group ID equal to
the absolute value of pid.

kill fails and no signal is sent if one or more of the following are true:

• The sending process is not sending to itself, its effective user ID is not super-user,
and its effective user ID does not match the real user ID of the receiving process.
[EPERM]

• No process can be found corresponding to that specified by pid. [ESRCH]

• sig is not a valid signal nu m ber. [EINV AL]

C-79

System Functions XENIX C Libraries

Retu rn Va l u e

If successful, 0 i s returned. Otherwise, - 1 i s returned and errno i s assigned an error
code.

See Also

getpid, setpgrp, signal

kill in "Co m mands" in the XENIX 286 Reference Manual

C-8 0

XENIX C Libraries

13tol , lto l3 - Convert between 3-byte integers and long integers.

Synta x

1 3tol (l p, cp, n)
long * l p;
char *cp;
i nt n ;

ltol 3(cp, l p, n)
char *cp ;
long * l p;
i nt n ;

Descri ption

System Functions

13tol converts a list of n 3-byte integers packed into a character string pointed to by cp
into a list of long integers pointed to by lp.

ltol3 performs the reverse conversion from long integers (lp) to 3-byte integers (cp).

These functions are useful for file system maintenance where the block nu mbers are 3
bytes long.

See A lso

file system in Appendix D, "File Formats"

C-8 1

Syste m Functions

l i n k - Link a new directory entry to an exist ing file.

Syntax

i nt l i nk(path 1
I path2)

char *path 1 I * path2;

Descri ption

XENIX C Libraries

pathl points to a path name nam ing an exist ing file. path2 points to a path name
naming the new directory entry to be created. link creates a new link (directory entry)
for the existing file.

link fails and no link is created if one or more of the following are true:

• pathl or path2 is an illegal address. [EF A UL T]

• Either path name is null or the file named by pathl does not exist. [ENOENT]

• A component of either path prefix is not a directory. [ENOTDIR]

• A component of either path prefix denies search perm ission, or the directory that
will contain the new link denies write perm ission. [EACCES]

• path2 names an exist ing file or link. [EEXIST]

• pathl names a directory, and the effect ive user ID is not super-user. [EPERM]

• The file named by pathl and the link named by path2 would be on different devices
(different file systems). [EXDEV]

• The requested link is in a directory on a read-only file system. [EROFS] ·

Retu rn Va l u e

If successful, 0 i s returned. Otherwise, - 1 i s returned and errno i s assigned an error
code.

See Also

link in "Com mands" in the XENIX 286 Reference Manual

C-82

XENIX C Libraries

lock - Lock a process in pri mary me mory.

Syntax

l ock{ flag)
i nt fl ag;

Descr iption

System Functions

If fiag is nonzero, the process executing this call will not be swapped except if the
process is required to grow. If fiag is zero, the process is unlocked and can again be
swapped normally. lock can only be called by the super-user.

N otes

Locked processes interfere with the compaction of primary me mory and can cause
deadlock. Systems with small memory configurations should avoid using this call. It is
best to lock processes soon after booting because this tends to lock the m into one end of
me mory, avoiding fragmentation.

C-83

Syste m Functions

locki n g - Lock or unlock a file region for reading or writing.

Synta x

#incl ude < locki ng . h >

locki ng(fi ldes, mode, si ze) ;
i nt fi ldes, mode;
long s ize;

Descri ption

XENIX C Libraries

locking allows a specified nu mber of bytes in a file to be controlled by the locking
process. Other processes that atte mpt to read or write a portion of the file containing
the locked region may sleep until the area becomes unlocked depending on the mode in
which the file region is locked. A process that attempts to write to or read a file region
that has been locked against reading and writ ing by another process {using the
LK LOCK or LK NBLCK mode) sleeps until that region of the file has been released by
the

-
locking process. A process that atte mpts to write to a file region that has been

locked against writing by another process {using the LK_RLCK or LK_NBRLCK mode)
sleeps until that region of the file has been released by the locking process, but a read
request for that region proceeds normally.

A process that atte mpts to lock a region of a file that contains areas that have been
locked by other processes sleeps if it has specified the LK _LOCK or LK _ RLCK mode in
its lock request, but returns with the error EACCES in errno if it specified LK _ NBLCK
or LK NBRLCK.

fildes is the file descriptor returned by a successful creat, open, dup, or pipe system
call.

mode specifies the type of lock operation to be performed on the file region. The
available values for mode are

LK UNLCK 0
Unlocks the specified region. The calling process releases a region of the file it
had previously locked.

LK LOCK 1
Locks the specified region. The calling process will sleep until the entire region is
available if any part of it has been locked by a different process. The region is
then locked for the calling process and no other process may read or write in any
part of the locked region (lock against read and write).

LK NBLCK 2

C-84

Locks the specified region. If any part of the region is already locked by a
different process, return the error EACCES in errno instead of waiting for the
region to become available for locking (nonblocking lock request).

XENIX C Libraries System Functions

LK RLCK 3
Same as LK _LOCK except that the locked region may be read by other processes
(read permitted lock).

LK NBRLCK 4
Same as LK_NBLCK except that the locked region may be read by other processes
(nonblocking, read permitted lock).

size is the nu mber of contiguous bytes to be locked or unlocked. The region to be locked
starts at the current offset in the file. If size is 0, the entire file (up to a maxi mum of
2 3 0 bytes) is locked or unlocked. size may extend beyond the end of the file, in which
case only the process issuing the lock call may access or add information to the file
within the boundary defined by size.

The potential for a deadlock occurs when a process controlling a locked area is put to
sleep by accessing another process's locked area. Thus calls to locking, read, or write
scan for a deadlock prior to sleeping on a locked region. An error return is made if
sleeping on the locked region would cause a deadlock (and errno is assigned the value
EDEADLOCK).

Lock requests may, in whole or part, contain or be contained by a previously locked
region for the same process. When this occurs, or when adjacent regions are locked, the
regions are combined into a single area if the mode of the lock is the same (i.e., either
read permitted or regular lock). If the mode of the overlapping locks differ, the locked
areas will be assigned assu m ing that the most recent request must be satisfied. Thus if
a read-only lock is applied to a region, or part of a region, that had been previously
locked by the same process against both reading and writing, the area of the file
specified by the new lock will be locked for read only, while the remaining region, if
any, will remain locked against reading and writing. There is no arbitrary lim it to the
number of regions that can be locked in a file. However, there is a syste m-wide limit on
the total number of locked regions. This li mit is 2 0 0 for XENIX syste ms.

Unlock requests may, in whole or part, release one or more locked regions controlled by
the process. When regions are not fully released, the remaining areas are still locked by
the process. Release of the center section of a locked area requires an additional
locked ele ment to hold the separated section. If the lock table is full, an error is
returned, and the requested region is not released. Only the process that locked a file
region can unlock it. An unlock request for a region that the process does not have
locked, or that is already unlocked, has no effect. When a process terminates, all locked
regions controlled by that process are unlocked.

If a process has done more than one open on a file, all locks put on the file by that
process are released on the first close of the file.

Although no error is returned if locks are applied to special files or pipes, read/write
operations on these types of files ignore any locks. Locks cannot be applied to a
directory.

C-85

System Functions XENIX C Libraries

Diag nostics

locking returns -1 if any of the following errors occur: if any portion of the region has
been locked by another process for the LK_LOCK and LK_RLCK actions and the lock
request is to test only (errno = EACCES), if the file specified is a directory (errno =

EACCES), if locking the region would cause a deadlock (errno = EDEADLOCK), or if
there are no more free internal locks (errno = EDEADLOCK).

See Also

close, creat, dup, lseek, open, read, write

C-86

XENIX C Libraries System Functions

log n a me - Find login name of user.

Syntax

char * logname() ;

Descr iption

logname returns a pointer to the null-term inated login name. It extracts the
$LOGNAME variable from the user's environment.

F i les

/etc/profile

See Also

env, login in "Commands", and profile in "Files" in the XENIX 286 Reference Manual

C-87

Syste m Functions

lsea rch - Linear search and update.

Syntax

char * l search(key, base, nel p, width, com par)
char * key;
char * base;
i nt * nel p;
i nt width ;
i nt(* compar)() ;

Descr iption

XENIX C Libraries

lsearch returns a pointer into a table indicating the location at which a datum can be
found. If the item was not in the table, lsearch adds it at the end of the table and still
returns its address. key points to the item to be searched for. base points to the base
of the table. nelp points to an integer containing the number of ele ments in the table.
This number is incremented by lsearch if lsearch adds the ele ment at the end of the
table. Table entries have a fixed size of width bytes. compar is the comparison routine.
The routine is called with pointers to the two ele ments being compared. The routine
must return zero if the ite ms are equal and nonzero otherwise.

Note that the format of the ite ms and how they are tested for equality are determined
by the caller via the caller-supplied co mparison routine.

Notes

Unpredictable events can occur if there is not enough room in the table to add a new
item .

See Also

bsearch, qsort

C-88

XENIX C Libraries Syste m Functions

lseek - Move read/write file pointer.

Syntax

long l seek(fi ldes, offset, whence)
i nt fi ldes;
l ong offset;
i nt whence;

Descr iption

fildes i s a file descriptor returned from a creat, open, dup, or fcntl syste m call. lseek
sets the file pointer associated with fildes as follows:

• If whence is 0, the pointer is set to offset bytes.

• If whence is 1 , the pointer is set to its current location plus offset.

• If whence is 2, the pointer is set to the size of the file minus offset.

On successful completion, the resulting pointer location as measured in bytes from the
beginning of the file is returned.

lseek fails and the file pointer is not changed if one or more of the following are true:

• fildes is not an open file descriptor. [EBADF]

• fildes refers to a pipe or FIFO. [ESPIPEl

• whence is not 0, 1 , or 2. [EINV AL and SIGSYS signal]

• The result ing file pointer would be negative. [EINVAL]

If lseek fails, -1 is returned and errno is assigned an error code.

Som e devices are incapable of seeking. The value of the file pointer associated with
such a device is undefined.

See Also

creat, dup, fcntl, open

C-89

Syste m Functions

m a l loc, free, rea l loc, ca l loc - Allocate main memory.

Synta x

char * ma l loc(si ze)
uns igned size;

free(ptr)
char * ptr;

char * rea l l oc(ptr, si ze)
char * ptr;
uns igned si ze ;

char *ca l l oc(ne lem, e lsi ze)
uns igned ne lem, e lsi ze;

Descr i pt ion

XENIX C Libraries

malloc and free provide a simple, general-purpose memory allocation package. malloc
returns a pointer to a block of at least size bytes beginning on a word boundary.

The argu ment to free is a pointer to a block previously allocated by malloc, realloc, or
calloc; the space is returned to the free list for further allocation.

It is evident that grave disorder can result if the free memory managed by malloc is
overwritten or if free is called with an incorrect value.

malloc allocates the first contiguous reach of free space found in a circular search from
the last block allocated or freed, coalescing adjacent free blocks as it searches. It calls
sbrk to get more memory from the system when there is no suitable space already free.

realloc changes the size of the block pointed to by ptr to size bytes and returns a
pointer to the (possibly moved) block. The block contents are unchanged up to the lesser
of the new and old sizes.

realloc also works if ptr points to a block freed since the last call of malloc, realloc, or
<;!alloc; thus sequences of free, malloc, and realloc can exploit the search strategy of
malloc to do storage compaction.

calloc allocates space for an array of nelem elem�nts of size elsize in bytes. The
allocated space is init ialized to zeros.

Each of the allocation routines returns a pointer to space suitably aligned (after possible
pointer coercion) for storage of any type of object.

C-90

XENIX C Libraries System Functions

Diagn ostics

malloc, realloc, and calloc return NULL if there is no available me mory or if the free
me mory structure has been detectably corrupted by some process storing outside the
bounds of a block. If realloc returns NULL, the block pointed to by ptr may be
destroyed.

C-9 1

Syste m Functions

mknod - Make a directory, or a special or ordinary file.

Syntax

i nt m knod(path, mode, dev)
char *path ;
i nt mode, dev;

Descri ption

XENIX C Libraries

mknod creates a new file named by the path name pointed to by path. The mode of the
new file is init ialized from mode, where mode is interpreted as follows:

0 1 7 0 0 0 0 File type; one of the following:
0 0 1 0 0 0 0 Named pipe special
0 0 20 0 0 0 Character special
0040 0 0 0 Directory
0 0 5 0 0 0 0 Name special file
0 0 6 0 0 0 0 Block special
0 1 0 0 0 0 0 or
0 0 0 0 0 0 0 Ordinary file

0 0 0 4 0 0 0 Set user I D o n execution

0 0 0 2 0 0 0 Set group ID on execution

000 10 0 0 Save text image after execution

0 0 0 0 7 7 7 Access permissions; constructed from the following
0000400 Read by owner
0 0 0 0 2 0 0 Write by owner
0 0 0 0 1 0 0 Execute {search on directory) by owner
0 0 0 0 0 7 0 Read, write, execute {search) by group
0 0 0 0 0 0 7 Read, write, execute {search) by others

Values of mode other than those above are undefined and should not be used.

The file's owner ID is set to the process's effective user ID. The file's group ID is set to
the process's effective group ID.

The low-order 9 bits of mode are modified by the process' file mode creation mask: all
bits set in the process' file mode creation mask ar

'
e cleared. See umask. If mode

indicates a block, character, or name special file, then dev is a configuration-dependent
specification of a character or block 1/0 device or of a name file type. If mode does not
indicate a block, character, or name special file, then dev is ignored. For block and
character special files, dev is the special file's device nu mber. For nam e special files,
dev is the type of the name file, either a shared memory file or a se maphore.

C-92

XENIX C Libraries System Functions

mknod may be invoked only by the super-user for file types other than named pipe
special.

mknod fails and the new file is not created if one or more of the following are true:

• The process's effective user ID is not super-user. [EPERM]

• path is an illegaJ address. [EF A ULT]

• The path name is null or a component of the path prefix does not exist. [ENOENT]

• A component of the path prefix is not a directory. [ENOTDIR]

• The directory in which the node is to be created is in a read-only file system.
[EROFS]

• The named file exists. [EE:�OST]

Retu rn Va l u e

If successful, 0 i s returned. Otherwise, -1 i s returned and errno i s assigned an error
code.

See Also

chmod, creatsem, exec, sdget, umask

file system in Appendix D, "File Formats"

mkdir, mknod in "Co m mands" in the XENIX 286 Reference Manual

Notes

Se maphore files should be created with creatsem.

Shared data files should be created with sdget.

C-93

Syste m Functions

mktemp - Make a unique file name.

Syntax

char * m ktemp(tem pl ate)
char *templ ate;

Descr iption

XENIX C Libraries

mktemp replaces template with a unique file name and returns the address of the
te mplate. The template should look like a file name with six trailing X's; the X's are
replaced with a zero followed by the current process ID.

See Also

getpid

Notes

It is possible to run out of letters.

C-94

XENIX C Libraries Syste m Functions

mon itor - Prepare execution profile.

Syntax

monitor(l owpc, h ighpc, buffer, bufsize, nfunc)
i nt(* lowpc)(), (*h ighpc)() ;
short buffer[] ;
i nt bufsize, nfunc;

Descr i ption

An executable program created by cc with the -p option automatically includes calls for
monitor with default parameters; monitor needn't be called explicitly except to gain
fine control over profiling.

monitor is an interface to profil. lowpc and highpc are the addresses of two functions;
buffer is the address of a user-supplied array of bufsize short integers. monitor
arranges to record a histogram of periodically sampled values of the program counter,
and of counts of calls of certain functions, in the buffer. The lowest address sampled is
that of lowpc and the highest is just below highpc. At most nfunc call counts can be
kept; only calls of functions compiled with the profiling option -p of cc are recorded.
For the results to be significant, especially where there are small, heavily used routines,
the buffer should be no more than a few t imes smaller than the range of locations
sampled.

To profile the entire program, it is sufficient to use

extern etext() ;

monitor(2, etext, buf, bufsi ze, nfunc) ;

ete:xt lies just above all the program text.

To stop execution monitoring and write the results on the file mon.out, use

monitor(O) ;

The program m ing com m and prof can then be used to exam ine the results.

C-95

System Functions

Fi les

mon.out

See Also

profil

XENIX C Libraries

cc, prof in "Programming Com mands" in the XENIX 286 Programmer's Guide

C-96

XENIX C Libraries Syste m Functions

mou nt - Mounts a file system.

Syntax

i nt mount(spec, d i r, rwflag)
char *spec, *d i r;
i nt rwflag;

Descri ption

mount requests that a re movable file system contained on the block special file
identified by spec be mounted on the directory identified by dir. spec and dir are
pointers to path names.

Upon successful completion, references to the path name dir refer to the root directory
of the mounted file system.

The low-order bit of rwflag is used to control write permission on the mounted file
system; if 1, writing is forbidden, otherwise writing is permitted according to individual
file accessibility.

mount may be invoked only by the super-user.

mount fails if one or more of the following are true:

• The effective user ID is not super-user. [EPERM]

• Either spec or dir is an illegal address. [EFAULT]

• A path name is null, or a named file does not exist. [ENOENT]

• A component of a path prefix is not a directory, or dir is not a directory.
[ENOTDIR]

• spec is not a block special device. [ENOTBLK]

• The device associated with spec is not on line or not in the system. [ENXIO]

• The device associated with spec is currently mounted or the directory dir is
currently mounted on, is someone's working directory, or is otherwise busy.
[EBUSY]

C-97

System Functions XENIX C Libraries

Retu rn Va l ue

If successful, 0 is returned. Otherwise, -1 is returned and errno is assigned an error
code.

See Also

umount

mount in "Co m mands" in the XENIX 286 Reference Manual

C-98

XENIX C Libraries

nap - Suspend execution for a short interval.

Syntax

l ong nap(peri od)
long period ;

Description

Syste m Functions

The current process is suspended from execution for at least the number of milliseconds
specified by period, or until a signal is received.

Return Va lue

I f successful, a long integer giving the nu mber of milliseconds actually slept i s returned.
If the process received a signal while napping, the return value is -1 and errno is
assigned EINTR.

See Also

sleep

Notes

This function is driven by the system clock, which in most cases has a granularity of
tens of milliseconds.

C-99

System Functions

n ice - Change priority of a process.

Syntax

i nt n i ce(i ncr)
i nt i ncr;

Descri ption

XENIX C Libraries

nice adds the value of incr to the nice value of the calling process. A process's nice
value is a positive number for which a higher value results in lower CPU priority.

A maxi mum nice value of 39 and a minimum nice value of 0 are i mposed by the system.
Requests for values above or below these li mits result in the nice value being set to the
corresponding limit.

nice fails and does not change the nice value if incr is negative and the effective user ID
of the calling process is not super-user. [EPHRM]

Retu rn Va l u e

If successful, nice returns the new nice value - 20. E.g., a return value o f 3 indicates a
new nice value of 23. Unlike most system calls, nice can return a negative value,
including -1, even if successful.

See Also

exec

nice in "Commands" in the XENIX 286 Reference Manual

C-1 0 0

XENIX C Libraries

n l ist - Get entries from name list.

Syntax

#incl ude < a.out. h >
n l ist(fi l ename, n l)
char *fi l ename;
struct n l i st n l [] ;

Descri ption

Syste m Functions

nlist examines the name list in the given executable output file and selectively extracts
a list of values. The name list consists of an array of structures containing names,
types, and values. The list is terminated with a null name. Each name is looked up in
the name list of the file. If the name is found, the type and value of the name are
inserted in the next two fields. If the name is not found, both entries are set to 0. See
a.out for a discussion of the symbol table structure.

Diag nostics

All type entries are set to 0 if the file cannot be found or if it is not a valid name list.

See Also

a.out in Appendix D, "File Formats"

C-1 0 1

Syste m Functions

open - Open file for reading or writing.

Syntax

#i ncl ude < fcntl . h >
i nt open(path, oflag [, mode])
char * path ;
i nt oflag, mode;

Descri pt ion

XENIX C Libraries

path points to a path name naming a file. open opens a file descriptor for the named
file and sets the file status flags according to the value of oflag. oflag values are
constructed by ORing flags fro m the following list (only one of the first three flags
below should be used):

0 RDONLY Open for reading only.

0 WRONLY Open for writing only.

O_RDWR Open for reading and writing.

0 NDELAY This flag may affect subsequent reads and writes. See read and write.

When opening a FIFO with 0 _ RDONL Y or 0 _ WRONLY set:

If 0 NDELA Y is set:

An open for reading-only returns without delay. An open for writ ing-only
returns an error if no process currently has the file open for reading.

If 0 NDELA Y is clear:

An open for reading-only blocks until a process opens the file for writing. An
open for writing-only blocks until a process opens the file for reading.

When opening a file associated with a com munication line:

If 0 NDELA Y is set:

The open returns without waiting for carrier.

If 0 NDELA Y is clear:

The open blocks until carrier is present.

C- 1 0 2

XENIX C Libraries Syste m Functions

0 APPEND If set, the file pointer is set to the end of the file when it is opened.
Otherwise, the file pointer is set to the beginning of the file when it is
opened.

0 _ CREAT If the file exists, this flag has no effect. Otherwise, the file's owner ID is set
to the process's effective user ID, the file's group ID is set to the process's
effective group ID, and the low-order 12 bits of the file mode are set to the
value of mode modified as follows (see creat):

All bits set in the process's file mode creation mask are cleared. See umask.

The "save text image after execution" bit of the mode is cleared. See chmod.

O_TRUNC If the file exists, its length is truncated to 0 and the mode and owner are
unchanged.

0 EXCL If O_EXCL and O_CREAT are set, open fails if the file exists.

O_SYNCW Every write via this file descriptor will be synchronous, i.e., when the write
syste m call returns, data is guaranteed to have been written to the device.

The new file descriptor is set to remain open across exec system calls. See fcntl.

open fails and no file descriptor is returned if one or more of the following are true:

• path is an illegal address. [EFAULT]

• The path name is null, or 0 CREAT is not set and the named file does not exist.
[ENOENT]

-

• A component of the path prefix is not a directory. [ENOTDIR]

• A component of the path prefix denies search permission, or requested access to
the named file is denied. [EACCES]

• The named file is a directory, and write access is requested. [EISDIR]

• Write access is requested for a file on a read-only file system. [EROFS]

• Write access is requested for a pure procedure (shared text) file that is be.ing
executed. [ETXTBSY]

• The named file is a device special file, and the device is not on line or not in the
system; or, the named file is a FIFO, write-only access is requested, 0 _ NDELAY
is set, and no process has the file open for reading. [ENXIO]

• 0 _ CREAT and 0 _ EXCL are set, and the named file exists. [EEXIST]

• Twenty file descriptors are currently open in the calling process. [EMFILE]

C- 103

System Functions XENIX C Libraries

Retu rn Va l u e

If successful, the (nonnegative) file descriptor is returned. Otherwise, -1 is returned,
and errno is assigned an error code.

See Also

chmod, close, creat, dup, fcntl, lseek, read, umask, write

C-1 04

XENIX C Libraries System Functions

opensem - Open a semaphore.

Syntax

i nt = opensem{sem name);
char *sem name;

Descri ption

opensem opens a se maphore file named by sem_name and returns a unique se maphore
identification nu mber used by waitsem and sigsem. creatsem should always be called to
initialize the se maphore before the first attempt to open it, or to reset the se maphore if
it has become inconsistent due to an exiting process neglecting to do a sigsem after
issuing a waitsem.

Diagnostics

opensem returns -1 if one or more of the following errors occur; errno is assigned an
error code:

• sem _name is an illegal address. [EF A ULT]

• sem_name is null or the named semaphore does not exist. [ENOENT]

• A component of the path prefix is not a directory. [ENOTDIR]

• A component of the path prefix denies search permission or the semaphore file
mode does not permit the requested access. [EACCES]

• sem _name specifies a file that is not a semaphore file. [ENOTNAM]

• The se maphore has become invalid due to inappropriate use. [ENOTAVAIL]

See Also

creatsem, waitsem, sigsem

C- 1 0 5

System Functions XENIX C Libraries

pa use - Suspend a process until a signal occurs.

Syntax

i nt pause() ;

Descri ption

pause suspends the calling process until it receives a signal. The signal must be one not
currently set to be ignored by the calling process.

If the signal causes term ination of the calling process, pause does not return.

If the signal is "caught" by the calling process and control is returned fro m the signal
catching function (see signal), the calling process resu mes execution fro m the point of
suspension, with a return value of -1 from pause and errno set to EINTR.

See Also

alarm, kill, signal, wait

C- 1 0 6

XENIX C Libraries System Functions

perror I err no, sys-errl ist, sys-n err - Print system error messages.

Synta x

perror(s)
char *s;

extern i nt errno;
extern char *sys_ errl ist[] ;
extern i nt sys_ nerr;

Descr iption

perror produces a short error message on the standard error, describing the last error
encountered during a system call from a C program. First the argu ment string s is
printed, then a colon, then the message and a newline. To be of most use, the argu ment
string should be the name of the program that incurred the error. The error number is
taken from the external variable errno, which is set when errors occur but not cleared
when correct calls are made.

To simplify variant formatting of messages, the vector of message strings sys _err list is
provided; errno can be used as an index in this table to get the message string without
the newline. sys_nerr is the largest message number provided for in the table; it should
be checked because new error codes may be added to the syste m before they are added
to the table.

C- 1 0 7

Syste m Functions

pipe - Create an interprocess channel.

Synta x

i nt pi pe(fi ldes)
i nt fi l des[2] ;

Descri ption

XENIX C Libraries

pipe creates an 1/0 mechanis m called a pipe and returns two file descriptors, fildes[O]
and fildes[1]. fildes[O] is opened for reading and fildes[1] is opened for writ ing.

Writes of up to 5 1 2 0 bytes of data are buffered by the pipe before the writ ing process is
blocked. A read-only file descriptor fildes[O] accesses the data written to fildes[1] on a
first-in-first-out basis.

No process may have more than 20 file descriptors open simultaneously.

pipe fails if 1 9 or more file descriptors are already open. [EMFILE]

Return Val u e

If successful, 0 i s returned. Otherwise, -1 i s returned and errno is assigned an error
code.

See Also

read, write

sh in "Co m mands" in the XENIX 286 Reference Manual

C- 1 0 8

XENIX C Libraries

popen, pclose - 1/0 to or from a process.

Syntax

#inc lude < std io. h >

FI LE *popen(command, type)
char *command, *type;

i nt pclose(stream)
F I LE *stream ;

Descri ption

Syste m Functions

The argu ments to popen are pointers to null-terminated strings containing, respectively,
a shell command line and an 1/0 mode, either "r" for reading or "w" for writ ing. popen
creates a pipe between the calling process and the command to be executed. The value
returned is a stream pointer that can be used (as appropriate) to write to the standard
input of the com mand or read from its standard output.

A stream opened by popen should be closed by pclose, which waits for the associated
process to terminate and returns the exit status of the com mand.

Because open files are shared, a type "r" com mand can be used as an input filter and a
type "w" co m mand as an output filter.

Diagn ostics

popen returns NULL if files or processes cannot be created or if the shell cannot be
accessed.

pclose returns -1 if stream is not associated with a popened co m m and.

See Also

fclose, fopen, pipe, system, wait

Notes

Only one stream opened by popen can be in use by a process at once.

Buffered reading before opening an input filter can leave the standard input of that
filter mispositioned. Si milar proble ms with output filters can be forestalled by careful
buffer flushing, e.g., with ffiush; see fclose.

C- 109

System Functions

pri ntf 1 fp ri ntf 1 spri ntf - Format output.

Syntax

#i nc l ude < std i o. h >

int pri ntf(format [I arg] . . .)
char *format;

i nt fpri ntf(stream l format [I arg] . . .)
F ILE *stream ;
char *format;

i nt spri ntf(s, format [I arg] . . .)
char *sl format;

Descri ption

XENIX C Libraries

printf places output on the standard output stream stdout. fprintf places output on the
named output stream. sprintf places output, followed by the null character {'\0 ') in
consecutive bytes starting at s; the caller must ensure that enough storage is available.
Each funct ion returns the nu mber of characters trans m itted (not including the
terminating null in the case of sprintf) or a negative value if an output error was
encountered.

Each of these functions converts, formats, and prints its args under control of the
format. The format is a character string that contains two types of objects: plain
characters, which are si mply copied to the output stream, and conversion specifications,
each of which results in fetching of zero or more args. The results are undefined if
there are insufficient args for the format. If the format is exhausted while args re main,
the excess args are si mply ignored.

Each conversion specification is introduced by the character %. After the %, the
following appear in sequence:

• Zero or more fiags, which modify the meaning of the conversion specification.

• An optional decimal digit string specifying a m ini m u m field width. If the
converted value has fewer characters than the field width, it will be padded on the
left (or right, if the left-adjust ment flag (see below) has been given) to the field
width.

• A precision that gives the mini mu m nu mber of digits to appear for the d, o, u, x,
or X conversions, the nu mber of digits to appear after the decimal point for the e
and f conversions, the maxi mu m number of significant digits for the g conversion,
or the maxi mum nu mber of characters to be printed from a string in s conversion.
The precision takes the form of a period (.) followed by a deci mal digit string: a
null digit string is treated as zero.

C-1 1 0

XENIX C Libraries System Functions

• An optional 1 specifying that a following d, o, u, x, or X conversion character
applies to a long integer arg.

• A character that indicates the type of conversion to be applied.

A field width or precision may be indicated by an asterisk (*) instead of a digit string. In
this case, an integer arg supplies the field width or precision. The arg actually
converted is not fetched until any arg that supplies width or precision is fetched, so the
args specifying field width or precision must appear before the arg (if any) to be
converted.

The flag characters and their meanings are

+

blank

I

The result of the conversion is left-just ified within the field.

The result of a signed conversion is always formatted with a sign (+ or -).

If the first character of a signed conversion is not a sign, a blank is
prepended to the result. This implies that if the blank and + flags both
appear, the blank flag is ignored.

This flag specifies that the value is to be converted to an "alternate
form." For c, d, s, and u conversions, the flag has no effect. For o
conversion, it increases the precision to force the first digit of the result
to be a zero. For x (X) conversion, a nonzero result has Ox (OX) prepended
to it. For e, E, f, g, and G conversions, the result will always contain a
decimal point, even if no digits follow the point (normally, a deci m al
point appears in the result of these conversions only if a digit follows it).
For g and G conversions, trailing zeros are not removed from the result .
(They normally are.)

The conversion characters and their meanings are

d,o,u,x,X

f

e,E

The integer arg is converted to signed decimal, unsigned octal, decimal,
or hexadecimal not ation (x and X) respectively; the letters abcdef are
used for x conversion and the letters ABCDEF for X conversion. The
precision specifies the mini mum nu mber of digits to appear; if the value
being converted can be represented in fewer digits, it will be expanded
with leading zeros. The default precision is 1. The result of converting a
zero value with a precision of zero is a null string (unless the conversion
is o, x, or X and the I flag is present).

The float or double arg is converted to decimal notation in the style " [­
]ddd.ddd", where the nu mber of digits after the decimal point is equal to
the precision specification. If the precision is missing, six digits are
output; if the precision is explicitly 0, no decimal point appears.

The float or double arg is converted in the style "[-]d.ddde+-dd", where
there is one digit before the decimal point and the number of digits after
it is equal to the precision; when the precision is missing, six digits are
produced; if the precision is zero, no deci mal point appears. The E
format code will produce a nu mber with E instead of e introducing the
exponent. The exponent always contains exactly two digits.

C- 1 1 1

System Functions XENIX C Libraries

g,G

c

s

96

The float or double arg is printed in style f or e (or in style E in the case
of a G format code), with the precision specifying the nu m ber of
significant digits. The style used depends on the value converted: style e
will be used only if the exponent result ing from the conversion is less
than -4 or greater than the precision. Trailing zeros are re moved from
the result; a decimal point appears only if it is followed by a digit.

The character arg is printed.

The arg is taken to be a string (character pointer) and characters from
the string are printed until a null character {'\0') is encountered or the
nu mber of characters indicated by the precision specification is reached.
If the precision is missing, it is taken to be infinite, so all characters up
to the first null character are printed.

Print a 96; no argu ment is converted.

In no case does a nonexistent or small field width cause truncation of a field; if the
result of a conversion is wider than the field width, the field is s imply expanded to
contain the conversion result. Characters generated by printf and fprintf are printed as
if putchar had been called (see putc).

Exam ples

To print a date and time in the form "Sunday, July 3, 1 0: 02", where weekday and month
are pointers to null-terminated strings:

pri ntf(" % s, %s %d , % 2d : % 2d " , weekday, month, day, hour, m i n) ;

To print p i t o five decimal places:

pri ntf(" pi = % .Sf" , 4*atan(1 . 0)) ;
I* The angle with tangent 1 . 0 is 45 degrees, or pi/4 rad i ans. *I

See Also

ecvt, putc, scanf

C- 1 1 2

XENIX C Libraries

profi l - Execution t ime profile.

Syntax

profi l (buff, bufs iz , offset, sca le)
char *buff;
i nt bufs iz, offset, sca l e;

Description

Syste m Functions

buff points to an area of core whose length (in bytes) is given by bufsiz. After this call,
the user's program counter is examined each clock tick, where a clock tick is so me
fraction of a second. offset is subtracted from it and the result mult iplied by scale. If
the resulting nu mber corresponds to a word inside buff, that word is incre mented.

scale is interpreted as an unsigned, fixed-point fraction with binary point at the left:
0 1 77777 (octal) gives a 1 : 1 mapping of program counter values to words in buff; 0 7 7 7 7 7
(octal) maps each pair o f instruction words together; 02{octal) maps all instructions onto
the beginning of buff {producing a noninterrupting core clock).

Profiling is turned off by giving a scale of 0 or 1. It is rendered ineffective by giving a
bufsiz of 0. Profiling is turned off when an exec is executed but re mains on in child and
parent both after a fork. Profiling is turned off if an update in buff would cause a
memory fault.

See Also

monitor

prof in "Co m mands" in the XENIX 286 Reference Manual

C- 1 1 3

System Functions

ptrace - Trace a process.

Syntax

i nt ptrace(request, p id , addr, data) ;
i nt request, p id , data ;

Descri pt ion

XENIX C Libraries

ptrace provides a means by which a parent process can control the execution of a child
process. Its pri mary use is in the imple mentation of breakpoint debugging; see adb in
"Programming Com mands" in the XENIX 286 Programmer's Guide. The child process
behaves normally until it encounters a signal (see signal for the list), at which t ime it
enters a stopped state and its parent is not ified via wait. When the child is in the
stopped state, its parent can exam ine and modify its "memory image" using ptrace.
Also, the parent can cause the child either to term inate or to continue, with the
possibility of ignoring the signal that caused it to stop.

The addr argu ment is dependent on the underlying machine type, specifically the process
memory model. On systems where the me mory manage ment mechanism provides a
uniform and linear address space to user processes, the argu ment is declared as

i nt *addr;

which is sufficient to address any locat ion in the process's memory. On machines where
the user address space is segmented (even if the part icular program being traced has
only one segment allocated), the form of the addr argu ment is

struct {
i nt offset;
i nt segment;

} *add r ;

which allows the caller to specify segment and offset in the process address space.

The request argu ment determ ines the precise act ion to be taken by ptrace and is one of
the following:

0 This request must be issued by the child process if it is to be traced by its
parent. It turns on the child's trace flag that stipulates that the child should
be left in a stopped state upon receipt of a signal rather than the state
specified by func; see signal. The pid, addr, and data argu ments are ignored,
and a return value is not defined for this request . Peculiar results will ensue
if the parent does not expect to trace the child.

C- 1 14

XENIX C Libraries Syste m Functions

The re mainder of the requests can only be used by the parent process. For each, pid is
the process ID of the child. The child must be in a stopped state before these requests
are made.

1, 2 The word at location addr in the address space of the child is returned to the
parent process. If I and D spaces (Instruction and Data spaces) are
separated, request 1 returns a word fro m I space, and request 2 returns a
word from D space. If I and D spaces are not separated, either request 1 or
request 2 can be used with equal results. The data argu m ent is ignored.
These two requests fail if addr is not the start address of a word, in which
case a value of -1 is returned to the parent process and the parent's errno is
set to EIO.

3 With this request, the word at location addr in the child's USER area in the
syste m's address space (see <sys/user.h>) is returned to the parent process.
The data argu ment is ignored. This request fails if addr is not the start
address of a word or is outside the USER area, in which case a value of -1 is
returned to the parent process and the parent's errno is set to EIO.

4, 5 With these requests, the value given by the data argument is written into the
address space of the child at location addr. If I and D spaces are separated,
request 4 writes a word into I space, and request 5 writes a word into D
space. If I and D spaces are not separated, either request 4 or request 5 may
be used with equal results. Upon successful co mpletion, the value written
into the address space of the child is returned to the parent. These two
requests fail if addr is a location in a pure procedure space and another
process is executing in that space, or addr is not the start address of a word.
Upon failure a value of - 1 is returned to the parent process and the parent's
errno is set to EIO.

6 With this request, a few entries in the child's USER area can be written. data
gives the value to be written and addr is the location of the entry. The few
entries that can be written are the general registers, any floating-point
status registers, and certain bits of the processor status.

7 This request causes the child to resu me execution. If the data argu ment is 0 ,
all pending signals including the one that caused the child to stop are
canceled before it resu mes execution. If the data argu ment is a valid signal
number, the child resu mes execution as if it had incurred that signal, and any
other pending signals are canceled. In a linear address space me mory model,
the value of addr must be (int *)1 , or in a segmented address space the
segment part of addr must be zero and the offset part of addr must be
{int *)1. On successful completion, the value of data is returned to the
parent. This request fails if data is not 0 or a valid signal nu mber, in which
case a value of -1 is returned to the parent process and the parent's errno is
set to EIO.

C- 1 1 5

System Functions XENIX C Libraries

8 This request causes the child to terminate with the same consequences as
exit.

9 Execution continues as in request 7; however, as soon as possible after
execution of at least one instruction, execution stops again. The signal
nu mber from the stop is SIGTRAP. This is part of the mechanism for
implementing breakpoints. The exact imple mentation and behavior are C�U­
dependent.

As indicated, these calls (except for request 0) can be used only when the subject
process has stopped. The wait syste m call is used to determine when a process
stops; in such a case the termination status returned by wait has the value 0 1 7 7 to
indicate stoppage rather than genuine term ination.

To prevent security violat ions, ptrace inh ibits the set-user-ID facil ity on
subsequent exec calls. If a traced process calls exec, i t stops before executing the
first instruction of the new i mage, raising signal SIGTRAP.

Errors

ptrace also fails if one or more of the following are true:

• request is an illegal nu mber. [EIO]

• pid identifies a child that does not exist or has not executed a ptrace with request
0. [ESRCH]

See Also

exec, signal, wait

adb in "Program ming Com mands" in the XENIX 286 Programmer's Guide

Notes

The imple mentation and precise behavior of the ptrace syste m call depend on the
�pecific CPU and on the process/memory model used. Code using ptrace is not likely to
be portable across all imple mentations without so me change.

C- 1 1 6

XENIX C Libraries System Funct ions

putc, putcha r, fputc, putw - Put a character or word on a stream.

Syntax

#inc lude < std io. h >

i nt putc(c, stream)
char c ;
F I LE *stream ;

putchar(c)

i nt fputc(c, stream)
FI LE *stream ;

i nt putw(w, stream)
i nt w;
FI LE *stream ;

Descri pt ion

putc appends the character c to the named output stream. putc returns the character
written.

putchar(c) is defined as putc(c, stdout).

fputc behaves like putc but is a genuine function rather than a macro; it may therefore
be used as an argument. fputc runs more slowly than putc but takes less space per
invocation.

putw appends the word (i.e., integer) w to the output stream. putw neither assu mes nor
causes special alignment in the file.

The standard stream stdout is normally buffered only if the output does not refer to a
terminal; this default may be changed by setbuf. The standard stream stderr is by
default unbuffered uncondit ionally, but use of freopen will cause it to beco me
unbuffered; setbuf, again, will set the state to whatever i s desired. When an output
stream is unbuffered, information appears on the dest ination file or terminal as soon as
written; when it is buffered, many characters are saved up and written as a block. See
also fflush.

Diagn ostics

These functions return the constant EOF upon error. Since this is a good integer, ferror
should be used to detect putw errors.

C- 1 1 7

System Functions XENIX C Libraries

See Also

ferror, fopen, fwrite, getc, printf, puts

Notes

Because it is imple mented as a macro, putc treats incorrectly a stream argu ment with
side effects.

C- 1 1 8

XENIX C Libraries

putpwent - Write a password file entry.

Syntax

#incl ude < pwd. h >

int putpwent(p, f)
struct passwd * p;
F I LE *f;

Descri ption

System Functions

putpwent is the inverse of getpwent. G iven a pointer to a passwd structure created by
getpwent (or getpwuid or getpwnam}, putpwuid writes a line on the stream f that
matches the format of /etc/passwd.

Diagnostics

putpwent returns nonzero if an error is detected during its operation, otherwise zero.

See Also

getpwent

passwd in "Files" in the XENIX 286 R eference Manual

C- 1 1 9

System Functions

puts, fputs - Put a string on a stream.

Syntax

#i nc lude < std io. h >

int puts(s)
char *s;

i nt fputs(s, stream)
char *s;
F I LE *stream ;

Descri ption

XENIX C Libraries

puts copies the null-terminated string s to the standard output stream stdout and
appends a newline character.

fputs copies the null-terminated string s to the named output stream.

Neither routine copies the terminating null character.

Diagnostics

Both routines return EOF on error.

See Also

ferror, fopen, fwrite, gets, printf, putc

Notes

puts appends a newline; fputs does not.

C- 1 2 0

XENIX C Libraries

qsort - Sort.

Syntax

qsort(base, nel , width, com par)
char *base;
i nt ne l , width ;
i nt (*com par)() ;

Descri ption

Syste m Functions

qsort implements the quicker-sort algorithm. base is a pointer to the base of the data.
nel is the number of (fixed-length) elements to be sorted in ascending order. width is
the size of an ele ment in bytes. compar is the comparison routine to use. The routine is
called with pointers to the two elements being compared. The routine must return an
integer less than, equal to, or greater than zero, depending on whether the first element
is to be considered less than, equal to, or greater than the second ele ment.

See Also

bsearch, lsearch, strcmp

sort in "Co m mands" in the XENIX 286 Reference Manual

C- 1 2 1

Syste m Functions

ra nd, sra n d - Generate a random nu mber.

Syntax

srand(seed)
unsigned seed ;

i nt rand() ;

Descri ption

XENIX C Libraries

rand uses a mult iplicative congruential random nu mber generator with period 2 to
return successive pseudo-random numbers in the range from 0 to 2-1 .

The generator i s reinit ialized by calling srand with 1 as argu ment. It can b e set to a
random starting point by calling srand with an unsigned integer in argu ment seed.

C- 122

XENIX C Libraries

rdchk - Check to see if there is data to be read.

Syntax

rdchk(fdes)
i nt fdes;

Description

System Functions

rdchk checks to see if a process will block if it atte mpts to read the file designated by
the file descriptor fdes. rdchk returns 1 if there is data to be read or if it is the end of
the file (EOF). An example of calling rdchk before read:

if(rdchk(fi ldes) > 0)
read(fi ldes, buffer, nbytes) ;

Diagnostics

rdchk returns - 1 if an error occurs (e.g., EBADF), 0 if the process will block if it issues a
read, and 1 if it can read without blocking. errno is assigned the value EBADF if a
rdchk is done on a semaphore file or if the file specified doesn't exist.

See Also

read

C- 123

Syste m Functions

read - Read fro m a file.

Synta x

i nt read(fi ldes, buf, nbyte)
i nt fi l des;
char *buf;
unsi gned nbyte;

Descri ption

XENIX C Libraries

fildes is a file descriptor obtained fro m a creat, open, dup, fcntl, or pipe syste m call.

read atte mpts to read nbyte bytes from the file associated with fildes into the buffer
pointed to by buf.

On devices capable of seeking, read starts at the posit ion in the file given by the file
pointer associated with fildes. Upon return from read, the file pointer is incre mented by
the nu mber of bytes actually read.

Devices that are incapabl� of seeking always read fro m the current position. The value
of a file pointer associated with such a file is undefined.

Upon successful co mplet ion, read returns the nu mber of bytes actually read and placed
in the buffer; this nu mber may be less than nbyte if the file is associated with a
com munication line, or if the nu mber of bytes left in the file is less than nbyte. Zero is
returned when end-of-file is reached.

When attempting to read fro m an empty pipe (or FIFO):

• If 0 _ NDELA Y is set, read returns zero.

• If 0 _ NDELA Y is clear, read blocks until data is written to the file or the file is no
longer open for writ ing.

When atte mpting to read a file associated with a term inal that has no data currently
available:

• If 0 _ NDELAY is set, read returns zero.

• If 0 _ NDELAY is clear, read blocks until data becomes available.

read fails if one or more of the following are true:

• fildes is not a valid file descriptor open for reading. [EBADF]

• buf is an illegal address. [EFAULT]

C- 124

XENIX C Libraries Syste m Functions

Retu rn Va lue

I f successful, a nonnegative integer i s returned giving the nu mber o f bytes actually read.
Otherwise, -1 is returned and el.'T'Ilo is assigned an error code.

See A lso

creat, dup, fcntl, ioctl, open, pipe

tty in "Devices" in the XENIX 286 Reference Manual

Notes

Reading a region of a file locked by another process with locking causes read to block
indefinitely until the locked region is unlocked.

C- 1 2 5

Syste m Functions XENIX C Libraries

regex, regcm p - Compile and execute regular expressions.

Syntax

char * regcmp(stri ng 1 [, str i ng2, . . .] , N U LL) ;
char *stri ng 1 , *str i ng2, . . . ;

char *regex(re, subject [, retO, . . .]) ;
char *re, *subject, * retO, . . . ;

Descri ption

regcmp co mpiles a regular expression and returns a pointer to the compiled form.
malloc is called to allocate space for the compiled expression. It is the user's
responsibility to free unneeded space so allocated. A NULL returned by regcmp
indicates an incorrect argument. The program ming com mand regcmp ("Program ming
Co m mands" in the XENIX 286 Programmer's Guide) in most cases can eli minate any
need for calling the regcmp function from user programs.

regex executes a compiled pattern against the subject string. Additional argu ments can
be passed to receive values back. regex returns NULL on failure, or a pointer to the
next unmatched character if successful. A global character pointer, _locl points to
where the match began. regcmp and regex are derived from the pattern matching
capabilities of the ed editor program, with slight changes in syntax and se mantics. The
following are the valid symbols and their associated meanings:

[]*. t

$

+

These symbols retain their current meaning.

Matches the end of the string. \n matches a newline.

Within brackets, the hyphen means through. For example, [a-f] is equivalent
to [abcdef]. - can appear by itself only if used as a first character or a last
character. For example, the character class expression []-] mat ches the
characters 1 and -.

A regular expression followed by + means "one or more ti mes." For example,
[0-9]+ is equivalent to [0-9][0-9]*.

{m} {m,} {m, u}

C- 126

Integer values enclosed in Hie indicate the nu mber of t i m es that the
preceding regular expression is to be applied. m is the minimum number and
u is a nu mber, less than or equal to 2 5 5 , that is the maxi mum. If only m is
present, it indicates the exact number of t i mes the preceding regular
expression is to be applied. {m,} is analogous to {m,infinity}. The operator *
is equivalent to {0,}. The operator + is equivalent to {1,}.

XENIX C Libraries Syste m Functions

(• • •)$n The value of the string matched by the enclosed regular expression is
returned and assigned to the (n+ l)th argu m ent following the subj ect
argument. At most ten enclosed regular expressions are allowed by regex.
regex makes its assignments unconditionally.

(• • •) Parentheses are used for grouping. An operator, e.g., *, +, 0, can work on a single
character or a regular expression enclosed in parentheses, e.g., (a*(cb+)*)$0.

By necessity, all of the symbols defined above are special. They must be escaped using
backslash (\) to be used as themselves.

Exa m p les

Example 1 :

char *cu rsor, *newcursorl * ptr;

newcursor = regex({ptr = regcmp(" \n " I 0)) , cu rsor) ;

This example matches a leading newline in the subject string referenced by cursor.

Example 2:

char ret0[9], * newcursorl * name;

name = regcmp(" ([A-Za-z] [A-Za-z0-9] {017})$0" I 0) ;
newcursor = regex(namel " 1 23Testi ng32 1 " , retO) ;

This example matches through the string "Testing3" and returns the address of the
character after the last matched character (the address of the test string plus 1 1) . The
string "Testing3" is copied to the character array retO.

See A lso

malloc

ed in "Co m mands" in the XENIX 286 Reference Manual

regcmp in "Program m ing Com mands" in the XENIX 286 Programmer's Guide

C-1 2 7

System Functions

sb rk, brk - Change data segment space allocation.

Syntax

char *sbrk(i ncr)
i nt i ncr;

char * brk(add r)
char *addr;

Descri pt ion

XENIX C Libraries

sbrk and brk are used to dynamically change the amount of space allocat ed for the
calling process's data segment; see exec. The change is made by resetting the process's
"break value." The break value is the address of the first location beyond the end of the
data segment. The amount of allocated data space increases as the break value
increases.

sbrk adds incr bytes to the break value and changes the allocated space accordingly. incr
can be negative, in which case the amount of allocated space is decreased.

In large model programs, if incr is greater than the number of unallocated bytes
re maining in the current data segment, sbrk automatically allocates all the requested
bytes in a new data segment. This guarantees that the requested bytes will reside
entirely in one segment. If incr is negative and equal to the nu mber of allocated bytes
in the current data segment, that segment is automatically freed for other use. If incr
is negative and greater in magnitude than the number of allocated bytes in the current
data segment, then that segment is freed, and the additional bytes are re moved fro m
the next data segment containing space allocated by sbrk.

sbrk fails without making any change in the allocated space if such a change would
result in more space being allocated than is allowed by the syst e m ; see ulimit.
[ENOMEM]

brk sets the current break value to addr and changes the allocated dat a space
accordingly. brk fails if the address references a data segment that does not exist, or if
it references beyond the maxi mum possible size of the current data segment.

Return Va l u e

On successful completion, sbrk and brk return pointers t o the beginning o f the allocated
space. Otherwise, -1 is returned and errno is assigned an error code. In large model
programs, if sbrk allocates a new data segment, the return value is the starting address
of the new segment.

C-1 2 8

XENIX C Libraries System Funct ions

See Also

exec

Notes

In large model programs, the call sbrk(O) does not necessarily return the starting address
of the next sbrk call. In part icular, if the next call causes an addit ional data segment to
be allocated, the break values returned by these two calls will not be the same. The
return value fro m sbrk(O) should only be regarded as a marker for the original end of
data.

C- 1 2 9

System Functions

sca nf, fsca n f, ssca nf - Convert and format input.

Synta x

#i ncl ude < std i o . h >

i nt scanf(format [, poi nter] . . .)
char *format;

i nt fscanf(stream l format [I poi nter] . . .)
F I LE * stream ;
char * format;

i nt sscanf(s1 format [I poi nter] . . .)
char *sl * format;

Descr i pt ion

XENIX C Libraries

scanf reads fro m the standard input stream stdin. fscanf reads fro m the nam ed input
stream. sscanf reads from the character string s. Each funct ion reads charact ers,
interprets the m according to a format, and stores the results in its argu ments. Each
expects, as argu ments, a control string format described below, and a set of pointer
arguments indicating where the converted input should be stored.

The control str ing usually contains conversion spe c if icat i ons used to d i r e c t
interpretat ion o f input sequences. The control string may contain

1 . Blanks, tabs, o r newlines, which cause input t o be read u p t o the next non-white­
space character.

2 . An ordinary character (not %) , which must match the next character of the input
stream.

3. Conversion spec ifications consist ing of the character %, an opt ional assign ment
suppressing character *, an opt ional nu merical maxi mu m field width, and a
conversion character.

A conversion specificat ion directs the conversion of the next input field; the result is
placed in the variable pointed to by the corresponding argum ent, unless assign ment
suppression was indicated by *· An input field is defined as a string of nonspace
characters; it extends to the next inappropriate character or until the field width, if
specified, is exhausted.

C- 130

XENIX C Libraries System Functions

The conversion character indicates the int erpret at ion of the input f ield; the
corresponding pointer argument must usually be of a restricted type. The following
conversion characters are allowed:

96 A single 96 is expected in the input at this point; no assignm ent is done.

d A decimal integer is expected; the corresponding argu ment should be an
integer pointer.

o An octal integer is expected; the corresponding argu ment should be an integer
pointer.

·

x A hexadeci mal integer is expected; the corresponding argu ment should be an
integer pointer.

s A character string is expected; the correspondiug argu ment should be a
character pointer pointing to an array of characters large enough to accept the
string and a terminating \0, which is added automatically. The input field is
terminated by a space character or a newline.

c A character is expected; the corresponding argu ment should be a character
pointer. The normal skip over space characters is suppressed in this case; to
read the next nonspace character, use 96ls. If a field width is given, the
corresponding argument should refer to a character array; the indicat ed
number of characters is read.

e, f A floating-point number is expected; the next field is converted accordingly
and stored through the corresponding argument, which should be a pointer to a
float. The input format for floating-point nu mbers is an optionally signed string
of digits, possibly containing a decimal point, followed by an optional exponent
field consisting of an E or an e followed by an optionally signed integer.

[Indicates a string that is not to be deli mited by space characters. The left
bracket is followed by a set of characters and a right bracket; . the charac�e�s
between the brackets define a set of characters making up the string. If the
first character is not a caret (), the input field consists of all characters up to
the first character that is not in the set between the brackets; if the first
character after the left bracket is a caret, then the input field consists of all
characters up to the first character that is in the set of tqe remaining
characters between the brackets. The corresponding argu ment must point to a
character array.

The conversion characters d, o, and x may be capitalized and/or preceded by 1 to
indicate that a pointer to long rather than to int is in the argu ment list. Sim ilarly, the
conversion characters e and f may be capitalized and/or preceded by 1 to indicate that a
pointer to double rather than to fioat is in the argu ment list. The character h will, some
time in the future, indicate short data ite ms.

scanf conversion terminates at HOF, at the end of the control string, or when an input
character conflicts with the control string. In the latter case, the offending character
is left unread in the input stream. This is very important to re me mber, because subtle
errors can occur if this is not taken into account.

C-1 3 1

Syste m Functions XENIX C Libraries

scanf returns the number of successfully matched and assigned input ite ms; this nu mber
can be zero in the event of an early conflict between an input character and the control
string. If the input ends before the first conflict or conversion, EOF is returned.

Note that the success of literal matches and suppressed assignm ents is not directly
determinable. Also, trailing white space, including newlines, is left unread unless
matched in the control string.

Exa m p les

The call

i nt i ; float x; char name[SO] ;

scanf(" % d % f%s " , & i , &x, name) ;

with the input line

25 54.32E- 1 thompson

assigns 25 to i, 5.432 to x, and the character sequence thompson\0 to the character
array name. The call

i nt i ; fl oat x; char name[SO] ;

scanf(" % 2d % f% *d% [1 234567890] " , & i , &x, name);

with the input line

56789 0 1 23 56a 72

assigns 56 to i and 789.0 to x, skips 0123, and assigns the character sequence 56\0 to the
character array name. The next call to getchar will return 'a'.

See Also

at of, getc, printf

C- 1 3 2

XENIX C Libraries System Functions

sdenter, sd l eave - Synchronize access to a shared data segment.

Syntax

#i nc lude < sd . h >

i nt sdenter(add r, f lags)
char *addr;
i nt fl ags;

i nt sd l eave(addr)
char *add r ;

Descri pt ion

sdenter i s used to indicate that the current process i s about to access the contents of a
shared data segment. The actions performed depend on the value of nags. nags values
are formed by O Ring together entries from the following list:

SD NOWAIT

SD RDONLY

If another process has called sdenter but not sdleave for the indicated
segment, and the segment was not created with the SD _UNLOCK flag
set, returns an error instead of waiting for the segment to beco me
free.

Indicates that the process wants only to read the data, not modify it.

sdleave is used to indicate that the current process is done modifying the contents of a
shared data segment.

Only changes m ade between invocations of sdenter and sdleave are guaranteed to be
reflected in other processes. sdenter and sdleave are very fast; consequently, it is
recom mended that they be called frequently rather than leave sdenter in effect for any
period of t ime. In part icular, system calls should be avoided between sdenter and
sdleave calls.

The fork syste m call is forbidden between calls to sdenter and sdleave if the segment
was created without the SD _UNLOCK flag.

Ret u r n Va l u e

If successful, 0 is returned. Otherwise, - 1 is returned and errno assigned an error code.

See Also

sdfree, sdgetv

C- 133

Syste m Functions XENIX C Libraries

sdget, sdfree - Attach or detach a shared data segment.

Syntax

#inc l ude < sd . h >

char *sdget(path, flags, [si ze, mode])
char * path ;
i nt f lags, s i ze, mode;

i nt sdfree(addr) ;
char *addr;

Descri pt ion

sdget attaches a shared data segment to the data space of the current process. The
actions performed are controlled by the value of nags. nags values are constructed by
ORing flags fro m the following list:

SD RDONLY Attach the segment for reading only.

SD_WRITE Attach the segment for both reading and writ ing.

SD CREAT

SD UNLOCK

If the segment named by path exists, this flag has no effect. Otherwise,
the segment is created according to the values of size and mode. Read
and write access to the segment is granted to other processes based on
the permissions passed in mode; perm issions are encoded in the same
way as for nor mal files. Execute permission is meaningless. The
segment is init ialized to contain all zeros.

If the segment is created because of this call, the segment is made so
that more than one process can be between sdenter and sdleave calls.

sdfree detaches the current process from the shared data segment attached at the
specified address. If the current process has done an sdenter but not an sdleave for the
specified segment, an sdleave is done before detaching the segment.

When no process remains attached to the segment, the contents of that segm ent
disappear, and no process can attach to the segment without creating it by calling sdget
with the SD _ CREAT flag.

C-1 3 4

XENIX C Libraries System Functions

Retu rn Va l u e

If successful, the address at which the segment was attached is returned (by either
function). Otherwise, -1 is returned and errno is assigned an error code.

See A lso

sdenter, sdgetv

Notes

Use of the SD _UNLOCK flag on systems without hardware support for shared data may
cause severe performance degradation.

c.,. 1 3 5

Syste m Functions

sdgetv, sdwa itv - Synchronize shared data access.

Syntax

#i nc l ude < sd . h >

i nt sdgetv(addr)
i nt sdwai tv(addr, vnum)
char *add r;
i nt vnum ;

Descri ption

XENIX C Libraries

sdgetv and sdwaitv can be used to synchronize cooperating processes that are using
shared data segments.. The return value of both routines is the version nu mber of the
shared data segment attached to the process at address addr. The version number of a
segment changes whenever some process does an sdleave for that segment.

sdgetv simply returns the version number of the indicated segment.

sdwaitv causes the current process to sleep until the version nu mber for the indicated
segment is no longer equal to vnu m.

Ret u rn Va l u e

If successful, both functions return a posit ive integer that is the current version nu mber
for the specified shared segment. Otherwise, -1 is returned and errno is assigned an
error code.

See A lso

sdenter, sfree

C- 136

XENIX C Libraries

set buf - Assign buffering to a stream.

Syn ta x

#i nc lude < std i o. h >

setbuf(stream , buf)
FI LE *stream ;
char * buf;

Descri ption

System Functions

setbuf is used after a stream has been opened but before it is read or written. It causes
the character array buf to be used instead of an automatically allocated buffer. If buf
is NULL, 1/0 will be completely unbuffered.

The constant BUFSIZ tells how big an array is needed:

char buf[BU FS IZ] ;

A buffer i s normally obtained from malloc upon the first getc o r putc o n the file, except
that output streams directed to term inals and the standard error stream stderr are
normally not buffered.

A com mon error is allocating buffer space local to a function or a code block, and then
failing to close the stream in the same function or block.

See A lso

fopen, getc, malloc, putc

C- 1 3 7

Syste m Functions

Setj m p, l o n gj m p - Perform a nonlocal "goto."

Synta x

#i ncl ude < setj m p. h >

i nt setj m p(env)
j m p _ buf env;

i nt longj mp(env, va l)
j m p buf env;
i nt va l ;

Descri ption

XENIX C Libraries

These routines are useful for dealing with errors and interrupts encountered in a low­
level subroutine of a program.

setjmp saves its stack environment in env for later use by longj mp. It returns value 0.

longjmp restores the environment saved by the last call of setjmp. It then returns in
such a way that execution continues as if the call of setjmp had just returned the value
val to the corresponding call to setjmp; control must not have returned from the
function that calls setjmp in the interim. longjmp cannot return the value 0. If longjmp
is invoked with a second argument of 0, it returns 1 . All accessible data have values as
of the time longjmp was called.

See Also

signal

C- 138

XENIX C Libraries System Functions

setpg r p - Set process group ID.

Synta x

i nt setpgrp() ;

Descri pt ion

setpgrp sets the process group ID of the calling process to the process ID of the calling
process and returns the new process group ID.

Retu rn Val u e

setpgrp returns the value of the new process group ID.

See Also

exec, fork, getpid, intro, kill, signal

C- 1 3 9

Syste m Functions

set u i d , setg id - Set user and group IDs.

Synta x

i nt setu id (u id)
i nt u i d ;

i nt setg id (g id)
i nt g id ;

Descri pt ion

XENIX C Libraries

setuid is used to set the real user ID and effective user ID of the calling process. Either
the previous effective user ID of the process must be super-user, or the previous real
user ID of the process must be equal to the uid argu ment. Otherwise, the user IDs are
not changed. [EPERM]

setgid is used to set the real group ID and effective group ID of the calling process.
Either the effective user ID of the process must be super-user, or the previous real
group ID of the process must be equal to the gid argument. Otherwise, the group IDs
are not changed. [EPERM]

Ret u r n Va l u e

If successful, 0 is returned. Otherwise, - 1 is returned and errno is assigned an error
code.

See Also

getuid

C- 140

XENIX C Libraries

s h u td n - Flush block 1/0 and halt the CPU.

Syntax

#i nc l ude < sys/fi l sys. h >

shutd n(sbl k)
struct fi l sys *sbl k ;

Descri pt ion

System Functions

shutdn causes all information in core memory that should be on disk to be written out.
This includes modified super-blocks, modified inodes, and delayed block 1/0. The super­
blocks of all writable file systems are flagged as "clean," so that they can be remounted
without cleaning when XENIX is rebooted. shutdn then prints "Normal Syste m
Shutdown" o n the console and halts the CPU.

If sblk is nonzero, it specifies the addr�ss of a super-block that is written to the root
device as the last 1/0 before the halt. This facility is provided to allow file system
repair programs to supercede the system's copy of the root super-block with one of their
own.

shutdn locks out all other processes while it is doing its work. However, it is
recom mended that user processes be killed before calling shutdn as some types of disk
activity could cause file systems to not be flagged "clean."

The caller must be the super-user.

See Also

mount

fsck, shutdown in "Com mands" in the XENIX 286 Reference Manual

C- 141

Syste m Functions XENIX C Libraries

sig n a l - Specify the action to be taken when a particular signal is received.

Syntax

#i ncl ude < signa l . h >

i nt(*si gna l (s ig , func))()
i nt s ig ;
i nt(*fu nc)() ;

Descri pt ion

signal allows the calling process to choose one of three ways in which i t i s possible to
handle the receipt of a specific signal. sig specifies the signal and func specifies the
choice.

sig can be assigned any one of the following except SIGKILL:

SIGHUP
SIGINT
SIGQUIT
SIGILL
SIGTRAP
SIGIOT
SIGEMT
SIGFPE
SIGKILL
SIGBUS
SIGSEGV
SIGSYS
SIGPIPE
SIGALRM
SIGTERM
SIGUSRl
SIGUSR2
SIGCLD
SIGPWR

0 1 Hangup
0 2 Interrupt
03* Quit
04* Illegal instruction (not reset when caught)
0 5 * Trace trap (not reset when caught)
06* 1/0 trap instruction
0 7 * Emulator trap instruction
08* Floating-point exception
09 Kill (cannot be caught or ignored)
1 0 * Bus error
1 1 * Segmentation violation
1 2 * Bad argument t o system call
1 3 Write o n a pipe with no one t o read it
14 Alarm clock
1 5 Software termination signal
1 6 User-defined signal 1
1 7 User-defined signal 2
1 8 Death o f a child (see Warning below)
1 9 Power fail (see Warning below)

Signals marked with an asterisk (*) may write a core image of the signalled process as
their default action.

C- 142

XENIX C Libraries System Functions

func is assigned one of three values: SIG DFL, SIG _ IGN, or a function address. The
actions specified by these values are as follows:

• SIG DFL Terminate the calling process on receiving the specified signal. When a
process is terminated, there are these consequences:

• Any open file descriptors for the process are closed.

• If the parent process of the terminated process called wait, it is
notified of its child process's term ination and supplied the
term inating signal nu mber; see wait. Otherwise, if the parent
process of the term inat ed proc ess did not call wait, the
terminated process is transformed into a "zombie" process. (See
exit for a definit ion of zombie processes.)

• The parent process ID of each of the terminated process's child
processes is set to 1; this means that the procl initialization
process inherits the child processes of a terminated process.

• If process accounting is enabled, then an accounting record is
written on the accounting file; see acct.

• If the term inated process's process ID, tty group ID, and process
group ID are equal, then the signal SIGHUP is sent to all
processes with a process group ID equal to the process group ID
of the term inated process.

• A "core image" of the terminated process is stored in the current
working directory of the terminated process if sig is one of the
signals marked with an asterisk in the above list, and if the
effective user ID and the real user ID of the terminated process
are equal, and if an ordinary file named "core" either exists and is
writable or can be created in the current working directory of the
terminated process. If the "core" file is created, it has a mode of
octal 0 666 modified by the file creation mask (see umask), a file
owner ID equal to the effective user ID of the term inated
process, and a file group ID equal to the effective group ID of the
terminated process.

• SIG IGN Ignore the specified signal. (Note that SIGKILL cannot be ignored.)

• function
address

On receiving the specified signal, call the specified function. The
signal number sig will be passed as the only argu ment to the function.
After the function is called, the kernel changes the action for the
signal to SIG _ DFL, unless the signal is SIGILL, SIGTRAP, SIGCLD, or
SIGPWR. signal must be called again to use the function to catch the
specified signal again. (Note that SIGKILL cannot be caught by a
function.)

C-143

Syste m Functions XENIX C Libraries

When a signal to be caught with a function call occurs during an interruptable system
call (e.g., pause), then the signal-catching function is executed and the interrupted
syste m call returns - 1 to the calling process with errno assigned the error code EINTR.

Calling signal cancels a pending signal sig except for a pending SIGKILL signal.

signal fails if one or more of the following are true:

• sig is SIGKILL or an illegal signal nu mber. [EINVAL]

• func is an illegal address. [EF A UL T]

Ret u rn Va l u e

If successful, signal returns the previous value of func for the specified signal sig.
Otherwise, - 1 is returned, and errno is assigned an error code.

See Also

kill, pause, ptrace, setj mp, wait

kill in "Co m m ands" in the XENIX 286 Reference Manual

Wa r n i n g

Two other signals that behave differently than the signals described above exist in this
release of the system:

SIGCLD 1 8
SIGPWR 19

Death of a child (not reset when caught)
Power fail (not reset when caught)

There is no guarantee that, in future releases of XENIX, these signals will continue to
behave as described below; they are included only for compatibility with other versions
of XENIX. Their use in new programs is strongly discouraged.

C-1 44

XENIX C Libraries Syste m Functions

For these signals, func is assigned one of three values: SIG_DFL, SIG_IGN, or a function
address. The actions prescribed by these values are as follows:

SIG_DFL - Ignore signal (default action)
The signal is to be ignored.

SIG_IGN - Ignore signal
The signal is to be ignored. Also, if sig is SIGCLD, the calling process's child
processes will not create zombie processes when they terminate; see exit.

function address - catch signal
If the signal is SIGPWR, the action to be taken is the same as that described above
for func equal to function address. The same is true if the signal is SIGCLD,
except that while the process is executing the signal-catching funct ion, any
received SIGCLD signals will be queued and the signal-catching function will be
continually re-entered until the queue is e mpty.

SIGCLD affects two other system calls (wait and exit) in the following ways:

wait If the func value of SIGCLD is set to SIG IGN and a wait is executed, the
wait will block until all of the calling process's child processes terminate; it
will then return a value of -1 with errno set to ECHILD.

exit If, in the exiting process's parent process, the func value of SIGCLD is set to
SIG_IGN, the exiting process will not create a zombie process.

When processing a pipeline, the shell makes the last process in the pipeline the parent of
the preceding processes. A process that may be piped into in this manner (and thus
become the parent of other processes) should take care not to set SIGCLD to be caught.

Notes

The constant NSIG in signal.h standing for the number of signals is always at least one
greater than the actual number.

C- 145

System Functions

sigsem - Signal a process wait ing on a se maphore.

Syntax

si gsem(sem _ num) ;
i nt sem num ;

Descri pt ion

XENIX C Libraries

sigsem signals a process waiting on the se m aphore sem_num that it may proceed and use
the resource governed by the semaphore. sigsem is used in conjunction with waitsem to
allow synchronization of processes wishing to access a resource. One or more processes
may waitsem on the given semaphore and will be put to sleep until the process that
currently has access to the resource issues a sigsem call. If there are any waiting
processes, sigsem causes the process next in line on the semaphore's queue to be
rescheduled for execution. The semaphore's queue is organized in first in first out
(FIFO) order.

·

Diag n ostics

sigsem fails and has no effect if one or more of the following are true:

• sem num does not refer to a semaphore file. [ENOTNAM]

• sem_num refers to a se maphore that has not been opened with opensem. [EBADF]

• sem_num refers to a se maphore that is not owned by the calling process, i.e., the
calling process has not called waitsem on the se maphore before sigse m.
[ENAVAIL]

Ret u rn Va l u e

If successful, 0 is returned. Otherwise, - 1 i s returned and errno i s assigned an error
code.

See Also

creatsem, opensem, waitsem

C- 146

XENIX C Libraries

si n h, COSh , ta n h - Hyperbolic functions.

Synta x

#i ncl ude < math . h >

doubl e s i nh(x)
doub le x ;

doub le cosh(x)
doub le x ;

doub le tanh(x)
doub le x;

Descr ipt ion

System Functions

These functions compute the designated hyperbolic functions for real argum ents.

Diag n ostics

sinh and cosh return huge values of appropriate sign when the correct value would
overflow.

C- 147

Syste m Functions

sleep - Suspend execution for an interval.

Syntax

unsi gned s leep(seconds)
uns igned seconds;

Descri ptio n

XENIX C Libraries

The current process is suspended from execution for the nu mber of seconds specified by
the argument. The actual suspension t ime may be less than that requested because
scheduled wakeups occur at fixed one-second intervals, and any caught signal will
terminate the sleep following execution of that signal's catching routine. Also, the
suspension ti me may be longer than requested by an arbitrary amount due to the
scheduling of other activity in the system. The value returned by sleep will be the
"unslept" amount (the requested t ime minus the t ime actually slept) in case the caller
had an alar m set to go off earlier than the end of the requested sleep time, or was
prematurely aroused due to another caught signal. -

The routine is imple mented by sett ing an alarm signal and pausing until it (or some other
signal) occurs. The previous state of the alarm signal is saved and restored. The calling
program may have set up an alar m signal before calling sleep; if the sleep time exceeds
the time until such alarm signal, the process sleeps only until the alarm signal would
have occurred, and the caller's alarm catch routine is executed just before the sleep
routine returns. But if the sleep time is less than the time until such alarm, the prior
alarm time is reset to go off at the same time it would have gone off without the
intervening sleep.

See Also

alarm, nap, pause, signal

C- 148

XENIX C Libraries

ssig n a l, gsig n a l - Software signals.

Syntax

#i nc lude < si gna l . h >

i nt(*ssigna l (s ig, action))()
i nt si g, (*acti on)() ;

i nt gsigna l (s ig)
i nt si g ;

Descri ption

Syste m Functions .

ssignal and gsignal implement a software facility s imilar to signal. This facility is used
by the standard C library to enable the user to indicate the disposition of error
conditions and is also made available to the user for his own purposes.

Software signals made available to users are associated with integers in the range 1
through 1 5. An action for a software signal is established by a call to ssignal, and a
software signal is raised by a call to gsignal. Raising a software signal causes the action
established for that signal to be taken.

The first argu ment to ssignal is a nu mber identifying the type of signal for which an
action is to be established. The second argument defines the action; it is either the
nam e of a (user-defined) action function or one of the constants SIG DFL (default) or
SIG_IGN (ignore). ssignal returns the action previously established for that signal type;
if no action has been established or the signal number is illegal, ssignal returns
SIG DFL.

gsignal raises the signal identified by its argu ment, sig:

• If an act ion function has been established for sig, then that action is reset to
SIG DFL and the act ion function is entered with argu ment sig. gsignal returns the
value returned to it by the action function.

• If the action for sig is SIG_IGN, gsignal returns the value 1 and takes no other
action.

• If the action for sig is SIG _ DFL, gsignal returns the value 0 and takes no other
action.

• If sig has an illegal value or no action was ever specified for sig, gsignal returns
the value 0 and takes no other action.

c� I49

Syste m Functions XENIX C Libraries

Notes

There are some additional signals with nu mbers outside the range 1 through 15 used by
the standard C library to indicate error condit ions. Thus, some signal nu mbers outside
the range 1 through 15 are legal, although their use may interfere with the operation of
the standard C library.

C- 1 5 0

XENIX C Libraries

stat, fstat - File status.

Syntax

#inc lude < sys/types .h >
#i nc l ude < sys/stat. h >

i nt stat(path, buf)
char * path;
struct stat *buf;

i nt fstat(fi l des, buf)
i nt fi l des;
struct stat *buf;

Descri ption

System Functions

path points to a path name naming a file. Read, write, or execute permission for the
named file is not required, but all directories listed in the path name leading to the file
must be searchable. stat obtains information about the named file.

Similarly, fstat obtains information about an open file known by the file descriptor
fildes, obtained from a successful open, creat, dup, fcntl, or pipe system call.

buf is a pointer to a stat structure into which inform ation is placed concerning the file.

The contents of the structure pointed to by buf include the following fields:

ushort
ino t
dev t

dev t

short
ushort
ushort
off t
tim e t
t ime t
t ime t

st_mode;
st_ino;
st_dev;

st_rdev;

st_nlink;
st_uid;
st_gid;
st size;
st=ati me;
st mtim e;
st=cti me;

I* File mode; see mknod *I
I* Inode nu mber *I
I* ID of device containing *I
I* a directory entry for . this file *I
I* ID of device *I
I* This entry is defined only for *I
I* special files *I
I* Nu mber of links *I
I* User ID of the file's owner *I
I* Group ID of the file's group *I
I* File size in bytes *I
I* Time of last access *I
I* Time of last data modification *I
I* Time of last file status change *I
I* Times are measured in seconds since *I
I* 0 0:00 :00 G MT, Jan. 1, 1 9 7 0 *I

C- 1 5 1

Syste m Functions XENIX C Libraries

The following list gives more information about four of these fields:

st atime

st mtime

st ctime

st rdev

Ti m e when file data was last accessed. Changed by the following
syste m calls: creat, mknod, pipe, read, uti me.

Tim e when data was last m odified. Changed by the following system
calls: creat, mknod, pipe, utime, write.

Tim e when file status was last changed. Changed by the following
system calls: chmod, chown, creat, link, mknod, pipe, utime, write.

Device identification. In the case of block and character special files
this contains the device maj or and minor nu mbers; in the case of shared
m e m ory and se maphores, it contains the type code. The file
/usr/include/sys/types.h contains the macros major and minor for
ext r a c t i n g m aj o r and m i n o r n u m bers fro m st rdev. S e e
/usr/include/sys/stat.h for the se maphore and shared memory type code
values S INSEM and S INSHD.

stat fails if one or more of the following are true:

• path or buf is an illegal address. [EF A ULT]

• The path nam e is null, or the named file does not exist. [ENOENT]

• A component of the path prefix is not a directory. [ENOTDIR]

• A component of the path prefix denies search permission. [EACCES]

fstat fails if one or more of the following are true:

• fildes is not a valid open file descriptor. [EBADF]

• buf is an illegal address. [EFAULT]

Ret u rn Val u e

For both functions, if a call is successful, 0 i s returned. Otherwise, - 1 is returned and
errno is assigned an error code.

See Also

chmod, chown, creat, link, mknod, time, unlink

C-1 52

XENIX C Libraries System Functions

std i o - Standard buffered input and output.

Syn ta x

#inc l ude < std io . h >
F I LE * std i n , *stdout, *stderr;

Descri pt ion

The stdio library contains an efficient, user-level 1/0 buffering scheme. The in-line
macros getc and putc handle characters quickly. The macros get char, put char, and the
higher-level routines fgetc, fgets, fprintf, fputc, fputs, fread, fscanf, fwrite, gets, getw,
printf, puts, putw, and scanf all use getc and putc; they can be freely intermixed.

A file with associated buffering is called a "stream" and is declared to be a pointer to a
defined type FILE. fopen creates certain descriptive data fo:r a stream and returns a
pointer to designate the stream in all further transactions. Normally, three open
streams with constant pointers are declared in the "include" file and associated with the
standard open files:

• stdin standard input file

• stdout standard output file

• stderr standard error file

An integer constant EOF is :returned on end-of-file o:r error by most functions that deal
with streams (see the individual descriptions for details).

Any program that uses this package must include the header file of pertinent macro
definitions, as follows:

#i ncl ude < std io. h >

Most of the functions and constants mentioned in this section of the manual are
declared in that "include" file and are described elsewhere. The constants and the
follow ing "functions" a:re implemented as macros (redeclaration of these nam es is
perilous): getc, getchar, putc, putchar, feof, ferror, and fileno.

C- 1 53

Syste m Functions XENIX C Libraries

Diag n ostics

Invalid stream pointers can cause grave disorder, possibly including progra m
term ination. Individual function descriptions describe possible error conditions.

See Also

close, ctermid, cuserid, fclose, ferror, fopen, fread, fseek, getc, gets, open, popen,
printf, putc, puts, read, scanf, setbuf, system, tmpnam, write

C- 1 54

XENIX C Libraries

sti m e - Set the time.

Syntax

#inc l ude < sys/types .h >
#i nc l ude < syslti meb. h >

ti m e t sti me(tp)
long *tp;

Descri ption

Syste m Functions

stime sets the syste m's idea of the t ime and date. tp points to the value of t ime as
measured in seconds from 0 0 : 0 0 : 0 0 GMT January 1, 1 970.

stime fails if the effective user ID of the calling process is not super-user. [HPERM]

Ret u r n Va l u e

If successful, 0 i s returned. Otherwise, -1 i s returned and errno is assigned an error
code.

See A lso

time

C-1 5 5

Syste m Functions XENIX C Libraries

STR I N G : strcat, strncat, strcmp, strn cm p, strcpy, strncpy, str len, strchr,
str rch r, strpbrk, strspn, strcspn, strto k - String operations.

Syntax

cha r *strcat(s 1 , s2)
char *s 1 , *s2;

char *strncat(s 1 , s2, n)
char *s 1 , *s2 ;
i nt n ;

i nt strcmp(s 1 , s2)
char *s 1 , *s2;

i nt strncm p(s 1 , s2, n)
char *s 1 , *s2;
i nt n ;

char *strcpy(s 1 I s2)
char *s 1 , *s2;

char *strncpy(s 1 I s2, n)
char *s 1 , *s2;
i nt n ;

i nt strl en(s)
char * s;

char *strchr(s, c)
char *s, c ;

char *strrchr(s, c)
char *s, c ;

char *strpbrk(s 1 I s2)
char *s 1 , *s2 ;

i nt strspn(s 1 I s2)
cha r *s 1 , *s2;

i nt strcspn(s 1 , s2)
char *s 1 , *s2;

char *strtok(s 1 , s2)
char *s 1

I
*s2;

C-1 56

XENIX C Libraries System Functions

Descr i ption

These functions operate on null-terminated strings. They do not check for overflow of
any receiving string.

strcat appends a copy of string s2 to the end of string sl. stmcat copies at most n
characters. Both return a pointer to the null-terminated result.

strcmp compares its argu ments and returns an integer greater than, equal to, or less
than O, according as sl is lexicographically greater than, equal to, or less than s2.
strncmp makes the same comparison but examines at most n characters.

strcpy copies string s2 to sl, stopping after the null character has been moved. stmcpy
copies exactly n characters, truncating or null-padding s2; the target m ay not be null­
terminated if the length of s2 is n or more. Both return sl.

strlen returns the nu mber of nonnull characters in s.

strchr (strrchr) returns a pointer to the first (last) occurrence of character c in string s,
or NULL if c does not occur in the string. The null character terminating a string is
considered to be part of the string.

strpbrk returns a pointer to the first occurrence in string sl of any character from
string s2, or NULL if no character from s2 exists in sl.

strspn (strcspn) returns the length of the init ial segment of string sl which consists
entirely of characters from (not from) string s2.

strtok considers the string sl to consist of a sequence of zero or more text tokens
separated by spans of one or more characters from the separator string s2. The first
call (with pointer sl specified) returns a pointer to the first character of the first token,
and will have written a null character into sl i m mediately following the returned token.
Subsequent calls, with NULL for the first argu ment, work through the string sl in this
way until no tokens re main. The separator string s2 can be different from call to call.
When no token re mains in sl, NULL is returned.

Notes

strcmp uses native character comparison, which is signed on so m e machines and
unsigned on others.

All string move ment is performed character by character starting at the left. Thus
overlapping moves toward lower addresses work as expected, but overlapping moves
toward higher addresses can yield surprises.

C- 1 5 7

System Functions

swa b - Swap bytes.

Synta x

swab(from , to, n bytes)
char *from, *to;
i nt nbytes;

Descri pt ion

XENIX C Libraries

swab copies nbytes pointed to by from to the position pointed to by to, exchanging
adjacent even and odd bytes. It is useful for transporting binary data between machines
that differ in the ordering of bytes within words. nbytes should be even.

C- 1 5 8

XENIX C Libraries System Functions

syn c - Update disks.

Syntax

sync() ;

Descri pt ion

sync causes all information in me mory that should be on disk to be written out. This
includes modified super-blocks, modified inodes, and delayed block 1/0.

It should be used by programs that exam ine a file system, for example fsck, df, etc.

The writ ing, although scheduled, is not necessarily complete upon return from sync.

See A lso

sync in "Co m mands" in the XENIX 286 R eference Manual

C- 1 5 9

Syste m Functions

system - Execute a shell command.

Synta x

#i ncl ude < std i o. h >

i nt system(stri ng)
char *stri ng ;

Descri pt ion

XENIX C Libraries

system causes the string to be given to the shell sh as input as if the string had been
typed as a co m mand at a terminal. The current process waits until the new shell
invocation has co mpleted then returns the exit status of the shell.

Diag n ostics

system stops if it can't execute sh.

See Also

exec

sh in "Co m mands" in the XENIX 286 Reference Manual

C- 1 6 0

XENIX C Libraries System Functions

tgetent, tgetn u m, tgetf lag, tgetstr, tgoto, tputs - Terminal functions.

Synta x

char PC;
char *BC;
char * U P;
short ospeed ;

tgetent(bp, name)
char *bp, * name;

tgetnu m(id)
char * i d ;

tgetfl ag(i d)
char * i d ;

char * tgetstr(id , a rea)
char * i d , * *a rea ;

char * tgoto(cm, destcol , destl i n e)
char *em;
i nt destcol , destl i ne;

tputs(cp, affcnt, outc)
char *cp;
i nt affcnt;
i nt(* outc)() ;

Descri ption

These functions extract and use capabilit ies from the terminal capability data base
termcap, described in "Files" in the XENIX 286 Reference Manual . These are low-level
routines; see CURSES for a higher-level package.

tgetent extracts the entry for terminal name into the buffer at bp. bp should be a
character buffer of size 1 0 2 4 and must be retained through all subsequent calls to
tgetnum, tgetflag, and tgetstr. tgetent returns -1 if it cannot open the termcap file, 0 if
the terminal name given does not have an entry, and 1 if all goes well. tgetent searches
the environment for a TER MCAP variable. If found, and the value does not begin with a
slash, and the terminal type name is the same as the environment string TERM, the
TERMCAP string is used instead of reading the termcap file. If it does begin with a
slash, the string is used as a path name rather than /etc/termcap. This can speed up
entry into programs that call tgetent, as well as to help debug new term inal descriptions
or to make one for your terminal if you can't write the file /etc/termcap.

C- 1 6 1

Syste m Functions XENIX C Libraries

tgetnum gets the nu meric value of capability id, returning -1 if is not given for the
terminal. tgetflag returns 1 if the specified capability is present in the term inal's entry,
0 if it is not. tgetstr gets the string value of capability id, placing it in the buffer at
area, advancing the area pointer. It decodes the abbreviations for this field described in
termcap, except for cursor addressing and padding information.

tgoto returns a cursor addressing string decoded from em to go to colu mn destcol in line
destline. It uses the external variables UP (fro m the up capability) and BC (if be is given
rather than bs) if necessary to avoid placing \n, CONTROL-D or NULL in the returned
string. (Programs that call tgoto should be sure to turn off the T AB3 bit (see tty in
"Devices" in the XENIX 286 Reference Manual), since tgoto may now output a tab. Note
that programs using termcap should norm ally turn off T AB3 anyway s ince so me
terminals use CONTROL-I for other functions, such as nondestructive space. If a 96
sequence is given that is not understood, then tgoto returns OOPS.

tputs decodes the leading padding information of the string cp; affcnt gives the nu mber
of lines affected by the operation, or 1 if this is not applicable; outc is a routine called
with each character in turn. The external variable ospeed should contain the output
speed of the term inal as encoded by stty. The external variable PC should contain a pad
character to be used (from the pc capability) if a null character is inappropriate.

F i les

/usr/lib/libtermcap.a
/etc/term cap

See A lso

CU RSES

-ltermcap library
term inal capabilities data base

tty in "Devices" and termcap in "Files" in the XENIX 286 Reference Manual

Notes

These routines can be linked by using the linker option -ltermcap.

Cred it

This ut ility was developed at the University of California at Berkeley and is used with
permission.

C- 162

XENIX C Libraries System Functions

ti me, ft i me - Get time and date.

Syntax

ti me t ti me(tloc)
ti me-t *t loc ;

#i nc lude < sys/types. h >
#i nc lude < sys/ti meb. h >

fti me(tp)
struct ti meb *tp;

Descri ption

time returns the value o f t i m e in seconds since 00 :00 :00 G MT, January 1 , 1 9 70 .

If tloc (taken as an integer) i s not NULL, the return value is also stored in the location
to which tloc points.

ftime returns the time in a structure (see below under Return Value).

time fails if tloc is not NULL and is an illegal address. [EFAULT]

ftime fails if tp is an illegal address. [EFAULT]

Retu rn Va l u e

I f successful, time returns the elapsed t ime i n seconds. Otherwise, -1 i s returned and
errno is assigned an error code.

ftime fills in a structure pointed to by its argu ment, as defined by <sys/timeb.h>:

I*
* Structure retu rned by fti me system ca l l
*I
struct ti meb {

};

time t ti me;
unsigned short m i l l i tm ;
short ti mezone;
short dstflag;

C- 163

System Functions XENIX C Libraries

The structure contains the t ime since the epoch in seconds, up to 1 0 0 0 m illiseconds of
more precise interval, the local t ime zone (measured in minutes of t ime westward from
Greenwich), and a flag that, if nonzero, indicates that Daylight Savings t ime applies
locally during the appropriate part of the year.

See Also

ctime, stime

date in "Co m mands" in the XENIX 286 Reference Manual

C- 164

XENIX C Libraries

ti mes - Get process and child process t imes.

Syntax

#i nc l ude <ti mes. h >

long ti mes(buffer)
struct tmbuf {

long uti me;
long sti me;
long cuti me;
long csti me;

} buffer;

Descr i ption

Syste m Functions

times fills the structure pointed to by buffer with time-accounting inform ation. This
information comes from the calling process and each of its terminated child processes
for which it has executed a wait.

All times are in clock ticks where a tick is some fraction of a second.

utime is the CPU time used while executing instructions in the user space of the calling
process.

stime is the CPU time used by the syste m on behalf of the calling process.

cutime is the sum of the utimes and cutimes of the child processes.

cstime is the su m of the stimes and cstimes of the child processes.

times fails if buffer is an illegal address. [EFAULT]

Retu rn Va l u e

I f successful, times returns the elapsed real t ime, i n clock ticks, since an arbitrary point
in the past, such as the system start-up time. This point does not change from one
invocation of times to another (so long as the syste m does not shut down). Otherwise, if
times fails, -1 is returned and errno is assigned an error code.

See Also

exec, fork, time, wait

C- 1 6 5

System Functions XENIX C Libraries

tm pfi l e - Create a temporary file.

Synta x

#i ncl ude < std io . h >

F I LE *tmpfi l e() ;

Descri pt ion

tmpfile creat es a t e m porary f ile and returns a correspond ing FILE pointer.
Arrange ments are made so that the file is automatically deleted when the process using
it term inates. The file is opened for update.

See Also

creat, fopen, mktemp, tmpnam, unlink

C- 166

XENIX C Libraries System Functions

tm pnam - Create a name for a temporary file.

Synta x

#i ncl ude < std io . h >

char *tmpnam(s)
char *s;

Descri pt ion

tmpnam generates a file name that can safely be used for a temporary file. If s is
NULL, tmpnam leaves its result in an internal static area and returns a pointer to that
area. The next call to tmpnam may overwrite the contents of the area. If s is not
NULL, then s is assu m ed to be the address of an array of at least L tmpnam bytes;
tmpnam places its result in that array and returns s as its value.

-

tmpnam generates a different file name each t ime it is called.

Files created using tmpnam and either fopen or creat are only te mporary in the sense
that they reside in a directory intended for temporary use, and their names are unique.
The user should use unlink to re move the file when its use is ended.

See Also

creat, fopen, mktemp, unlink

Notes

If called more than 17 ,576 ti mes in a single process, tmpnam will start recycling
previously used names.

Between the t ime a file name is created and the file is opened, it is possible for so me
other process to create a file with the same name. This can never happen if that other
process is using tmpnam or mktemp, and the file names are chosen so as to render
duplication by other means unlikely.

C- 167

System Functions XENIX C Libraries

TRIG : si n, COS, ta n , asi n , acos, ata n , ata n2 - Trigonometric functions.

Syntax

#i nc l ude < math . h >

dou ble si n(x)
doub le x;

double cos(x)
double x;

double asi n(x)
dou ble x;

double acos(x)
double x;

double atan(x)
double x;

doub le atan2(y, x)
doub le x, y;

Descri ption

sin, cos and tan return trigono metric functions o f radian argu ments. The magnitude of
the argu ment should be checked by the caller to make sure the result is meaningful.

asin returns the arc sin in the range -pi/2 to pi/2.

acos returns the arc cosine in the range 0 to pi.

atan returns the arc tangent of x in the range -pi/2 to pi/2.

atan2 returns the arc tangent of y/x in the range -pi to pi.

Diag nostics

Argu ments of magnitude greater than 1 cause asin and acos to return value 0.

Notes

These routines can be linked with the linker option -lm.

C-168

XENIX C Libraries

ttyn a me, isatty - Find the name of a terminal.

Syntax

char *ttyname(fi l des)
i nt fi l des;

i nt i satty(fi l des)
i nt fi l des;

Descri ption

System Functions

ttyname returns a pointer to the null-terminated path name of the terminal device
associated with file descriptor fildes. ttyname returns NULL if fildes does not
reference a term inal device in directory /dev.

isatty returns 1 if fildes is associated with a terminal device, 0 otherwise.

Fi les

/dev/*

Notes

The return value from ttyname points to static data that is overwritten by each call.

C-1 6 9

Syste m Functions

u l i m it - Get and set user li mits.

Syntax

long u l i m i t(cmd, newl i m it)
i nt cmd ;
long newl i m i t;

Descri ption

XENIX C Libraries

This function provides for control over process li m its. The cmd values available are

1 Get the process's file size l imit. The li mit is in units of 5 1 2-byte blocks and is
inherited by child processes. The limit applies only for writing f iles; files of any
size can be read.

2 Set the process's file size li mit to the value of newlimit. Any process m ay
decrease this li mit, but only a process with an effective user ID of super-user may
increase the li mit. ulimit fails and the li mit is unchanged if a process with an
effective user ID other than super-user atte mpts to increase its file size limit.
[EPERM]

3 Get the maximum possible break value. See sbrk.

Ret u rn Va l u e

If successful, a nonnegative value i s returned. Otherwise, -1 i s returned and errno is
assigned an error code.

See Also

chsize, sbrk, write

Notes

The file lim it is only enforced on writes to regular files. Tapes, disks, and other devices
of any size can be written.

C- 1 7 0

XENIX C Libraries

u mask - Set and get file creation mask.

Syntax

i nt umask(cmask)
i nt cmask;

Descr i ption

Syste m Functions

umask sets the calling process's file mode creation mask to cmask and returns the
previous value of the mask. Only the low-order nine bits of cmask and the file mode
creation mask are used.

Ret urn Val u e

The previous value of the file mode creation mask is returned.

See Also

chmod, mknod, open

mkdir, mknod, sh in "Co m m ands" in the XENIX 286 Reference Manual

C- 1 7 1

Syste m Functions

umou nt - Unmount a file system.

Syntax

i nt u mount(spec)
char *spec;

Descri ption

XENIX C Libraries

umount requests that a previously mounted file system contained on the block special
device identified by spec be unmounted. spec is a pointer to a path name. After
unmounting the file system, the directory on which the file system was mounted reverts
to its ordinary interpretation.

umount may be invoked only by the super-user.

umount fails if one or more of the following are true:

• The effective user ID of the calling process is not super-user. [EPERM]

• spec is an illegal address. [EF A ULT]

• The path name is null or the named device special file does not exist. [ENOENT]

• A component of the path prefix is not a directory. [ENOTDIR]

• The named node is not a block device. [ENOTBLK]

• The named device is not on-line or not installed in the system. [ENXIO]

• The named device is not mounted. [EINVAL]

• A file on the named device is open or otherwise busy. [EBUSY]

Ret u r n Val ue

If successful, 0 is returned. Otherwise, -1 is returned and errno is assigned an error
code.

See Also

mount

mount in "Com mands" in the XENIX 286 Reference Manual

C-1 72

XENIX C Libraries

u na me - Name of current XENIX system.

Syntax

#i nc lude < sys/utsname.h >

i nt uname(name)
struct utsname * name;

Descri ption

System Functions

uname stores information identifying the current XENIX system in the structure pointed
to by name.

uname uses the structure defined in <sys/utsname.h>:

struct utsname {

};

char sysname[9] ;
cha r nodename[9] ;
char rel ease[9] ;
char versi on[9] ;
unsi gned short sysori g i n ;
unsi gned short sysoem ;
long sysseri a l ;

uname writes a null-terminated character string naming the current XENIX syste m in
the character array field sysname. Sim ilarly, nodename contains the name that the
syste m is known by on a com munications network. release and version further identify
the operating system. sysorigin and sysoem identify the source of the XENIX version.
sysserial is a software serial nu mber that may be zero if unused.

uname fails if name is an illegal address. [EFAULT]

Retu rn Val u e

If successful, a nonnegative value is returned. Otherwise, - 1 i s returned and errno is
assigned an error code.

C-1 7 3

Syste m Functions XENIX C Libraries

See Also

uname in "Co m mands" in the XENIX 286 Reference Manual

Notes

Not all fields may be set on a particular system.

C- 1 74

XENIX C Libraries

u n getc - Push character back into input stream.

Syntax

#i ncl ude < std io. h >

i nt ungetc(c, stream)
char c ;
F ILE *stream ;

Descri pt ion

Syste m Functions

ungetc pushes the character c back on an input stream. c is returned by the next getc
call on that stream. ungetc returns c.

One character of pushback is guaranteed provided something has been read from the
stream and the stream is actually buffered. Attempts to push back EOF are rej ected.

ungetc returns EOF if it cannot push a character back.

fseek erases all me mory of pushed back characters.

See Also

fseek, getc, setbuf

C-1 7 5

System Functions

u n l i n k - Remove directory entry.

Syntax

i nt un l i n k(path)
char *path;

Descri pt ion

XENIX C Libraries

unlink re moves the directory entry named by the path name pointed to by path.

The named file is unlinked unless one or more of the following are true:

• path is an illegal address. [EF A UL T]

• The path name is null or the named entry does not exist. [ENOENT]

• A component of the path prefix is not a directory. [ENOTDIR]

• A component of the path prefix denies search permission, or write per mission is
denied for the directory containing the entry to be re moved, or the entry to be
re moved is a directory and the effective user ID of the calling process is not
super-user. [EACCES]

• The directory containing the entry is in a read-only file system. [EROFS]

• The entry to be unlinked is the last link to a pure procedure (shared text) file that
is being executed. [ETXTBSY]

• The entry to be unlinked is the mount point for a mounted file system. [EBUSY]

When all links to a file have been re moved, and when all processes that have the file
open have closed it, then the space occupied by the file is freed.

Ret u rn Va l u e

If successful, 0 is returned. Otherwise, - 1 is returned and errno is assigned an error
c·ode.

See Also

close, link, open

rm in "Co m mands" in the XENIX 286 Reference Manual

C-1 7 6

XENIX C Libraries

ustat - Get file system statistics.

Syntax

#i ncl ude < sys/types. h >
#i ncl ude < ustat. h >

i nt ustat(dev, buf)
i nt dev;
struct ustat * buf;

Descri pt ion

Syste m Functions

ustat returns information about a mounted file system. dev is a device nu mber
identifying a device containing a mounted file system. buf is a pointer to a ustat
structure that includes the following elem ents:

daddr t
i no t
char
char

f tfree;
f-ti node;
f-fname[G] ;
f=fpack [G] ;

I* Tota l free b locks */
I* N u m ber of free i nodes *I
I* F i l sys name *I
I* F i l sys pack name *I

ustat fails if one or more of the following are true:

• dev is not the device nu mber of a device containing a mounted file system.
[EINVAL]

• buf is an illegal address. [EF A UL T]

Retu rn Va l u e

If successful, 0 i s returned. Otherwise, - 1 i s returned and errno is assigned an error
code.

See Also

stat

file system in Appendix D, "File Formats"

C- 1 7 7

Syste m Functions

uti me - Set file access and modification ti mes.

Syntax

#inc lude < sysltypes. h >

i nt uti me(path, ti mes)
char * path ;
struct uti m buf *ti mes;

Descri ption

XENIX C Libraries

path points to a path name naming a file. utime sets the access and modification times
of the named file.

If times is NULL, the access and modification times of the file are set to the current
time. A process must be the owner of the file or have write perm ission to use utime in
this manner.

If times is not NULL, times is interpreted as a pointer to a utimbuf structure and the
access and modification ti mes are set to the values contained in the designated
structure. Only the owner of the file or the super-user may use utime this way.

The ti mes in the utimbuf structure are measured in seconds since 0 0 : 0 0 : 0 0 G MT,
January 1, 1970 :

struct

};

uti m buf
ti me t
ti me t

{
acti me ;
modti me;

I* access ti me *I
I* mod i fi cati on ti me *I

utime fails if one or more of the following are true:

• times is not NULL and the effect ive user ID is not super-user and does not match
the owner of the file. [EPERM]

• path is an illegal address or times is not NULL and is an illegal address. [EFAULT]

• The path name is null or the named file does not exist. [ENOENT]

• A component of the path prefix is not a directory. [ENOTDIR]

• A component of the path prefix denies search permission or times is NULL, the
effective user ID is not super-user and not the owner of the file, and write access
is denied. [EACCES]

• The file is in a read-only file system. [EROFS]

C-1 7 8

XENIX C Libraries Syste m Functions

Ret u r n Va l u e

If successful, 0 is returned. Otherwise, - 1 i s returned and errno is assigned an error
code.

See Also

stat

C- 1 79

System Functions

wa it - Wait for a child process to stop or terminate.

Syn ta x

i nt wa i t(stat l oc)
i nt *stat l oc ;

Descr i pt ion

XENIX C Libraries

wait suspends the calling process until it receives a signal that is to be caught (see
signal), or until any one of the calling process's child processes stops in a trace mode
(see ptrace) or terminates. If a child process stopped or term inated prior to the call on
wait, return is im mediate.

If stat_loc is not NULL, 1 6 bits of information called "status" are stored in the low­
order 16 bits of the location pointed to by stat_loc. status can be used to differentiate
between stopped and terminated child processes, and if the child process term inated,
status identifies the cause of term ination and passes useful information to the parent.
This is accomplished in the following manner: if the child process stopped, the high­
order 8 bits of status will be zero and the low-order 8 bits will be set equal to 0 1 77
octal. I f the child process term inated due to an exit call, the low-order 8 bits o f status
will be zero and the high-order 8 bits will contain the low-order 8 bits of the argu ment
that the child process passed to exit; see exit. If the child process terminated due to a
signal, the high-order 8 bits of status will be zero and the low-order 8 bits will contain
the nu mber of the signal that caused the ter minat ion. In addit ion, if the low-order
seventh bit (i.e., bit 0200) is set, a "core image" of the child process will have been
produced; see signal.

If a parent process terminates without waiting for its child processes to ter minate, the
parent process ID of each child process is set to 1. This means the procl init ialization
process inherits the child processes.

wait fails and returns immediately if one or more of the following are true:

• stat_loc is not NULL and is an illegal address. [EFAULT]

• The calling process has no exist ing unwaited-for child processes. [ECHILD]

C-1 80

XENIX C Libraries Syste m Funct ions

Retu rn Va l u e

If successful, wait returns due t o a stopped or terminated child process and the process
ID of the child is returned. Otherwise, if wait returns because the calling process has
received a signal, -1 is returned and errno is assigned EINTR. Otherwise, -1 is returned
and errno is assigned another error code.

See Also

exec, exit, fork, pause, signal

Wa rn i n g

See Warning in signal.

C- 1 8 1

Syste m Functions XENIX C Libraries

wa itsem, n bwa itsem - Await or check access to a resource governed by a
se maphore.

Syntax

waitsem(sem num) ;
i nt sem num ;

nbwa itsem(sem num) ;
i nt sem num;

Descri pt ion

waitsem gives the calling process access to the resource governed by the se maphore
sem num. If the resource is in use by another process, waitsem puts the calling process
to sleep until the resource becomes available; nbwaitsem returns the error ENAVAIL.
waitsem and nbwaitsem are used in conjunct ion with sigsem to allow synchronization of
processes wishing to access a resource. One or more processes may waitsem on the
given se maphore and will be put to sleep until the process with current access to the
resource issues sigsem. sigsem causes the process that is next in line on the se maphore's
queue to be rescheduled for execution. The se maphore's queue is organized in first-in­
first-out (FIFO) order.

waitsem and nbwaitsem fail if one or more of the following are true:

• sem_num does not refer to a semaphore file. [ENOTNAM]

• sem_num refers to a se maphore that has not been previously opened by calling
opensem or creatsem. [EBADF]

• The process controlling the se maphore terminates without relinquishing control
(with signal). [ENA VAIL]

Ret u r n Va l u e

If successful, waitsem and nbwaitsem return a nonnegative value. Otherwise, - 1 is
�eturned and errno is assigned an error code.

See Also

creatsem, opensem, sigsem

C- 1 8 2

XENIX C Libraries

write - Write to a file.

Syntax

i nt write(fi ldes, buf, nbyte)
i nt fi l des;
char * buf;
uns igned nbyte;

Descr iption

Syste m Functions

fildes is a file descriptor obtained from a creat, open, dup, fcntl, or pipe system call.

write atte mpts to write nbyte bytes from the buffer pointed to by buf to the f ile
associated with fildes.

On devices capable of seeking, the actual writing of data proceeds fro m the posit ion in
the file indicated by the file pointer. The f ile pointer is incre mented by the nu mber of
bytes actually written.

On devices incapable of seeking, writing always takes place starting at the current
posit ion. The value of a file pointer associated with such a device is undefined.

If the 0 _APPEND flag of the file status flags is set, the file pointer is set to the end of
the file prior to each write.

write fails and the file pointer is not changed if one or more of the following are true:

• fildes is not a valid file descriptor open for writing. [EBADF]

• buf is an illegal address. [EFAULT]

• An atte mpt is made to write to a pipe that is not open for reading by any process.
[EPIPE and SIGPIPE signal]

• An atte mpt is made to write a file that exceeds the maxi mu m file size or the
process's file size l imit (see ulimit). [EFBIG]

If a write requests that more bytes be written than there are room for (e.g., the ulimit
or the physical end of a medium), only as many bytes as there are room for are written.
For example, suppose there is space for 20 bytes more in a file before reaching a li mit.
A write of 5 1 2 bytes then returns 20. The next write of a nonzero nu mber of bytes will
give a failure return (except as noted below).

C-1 8 3

Syste m Functions XENIX C Libraries

If the file being written is a pipe {or FIFO), no partial writes are perm itted. Thus, a
write to a pipe or FIFO fails if a write of nbyte bytes would exceed a li mit.

If the file being written is a pipe {or FIFO) and the O_NDELAY flag of the file flag word
is set, then write to a full pipe {or FIFO) returns a count of 0. Otherwise (O_NDELAY
clear), write to a full pipe (or FIFO) blocks until space beco mes available.

Ret u r n Va l u e

If successful, the nu mber of bytes actually written is returned. Otherwise, - 1 is
returned and errno is assigned an error code.

See Also

creat, dup, lseek, open, pipe, ulimit

Notes

Writing a region of a file locked with locking causes write to block until the locked
region is unlocked.

C-184

XENIX C Libraries

xl ist, fxl ist - Get name list entries from files.

Syn ta x

#inc l ude < a .out. h >

xl i st(fi l e name, x l)
char *fi l e name;
struct x l i st x l [] ;

i nc l ude < a .out. h >
#i nc l ude < std io. h >

fxl i st(fp, x l)
F I L E *fp;
struct x l i st x l [] ;

Descr ipt ion

System Functions

fxlist performs the same function as xlist, except that fxlist accepts a pointer to a
previously opened file intead of a file name.

xlist examines the name list in the given executable output file and selectively extracts
a list of values. The name list structure xl consists of an array of xlist structures
containing names, types and values. The list is terminated by either a pointer to a null
name or by a NULL pointer. Each name is looked up in the name list of the file. If the
name is found, the type and value of the name are inserted into the next two fields. If
the name is not found, both entries are set to zero. See a.out in Appendix D, "File
Formats," for a discussion of the xlist structure.

If the object file is in a.out format, and if the symbol name given to xlist is longer than
eight characters, then only the first eight characters are used for co mparison. In all
other cases, the name given to xlist must be the same length as a name list entry in
order to match.

If two or more symbols happen to match the name given to xlist, then the type and value
used are those of the last symbol found.

C-185

Syste m Functions XENIX C Libraries

Ret u rn Va l u e

If successful, 0 i s returned. A zero return does not indicate that any or all of the given
symbols were found. Otherwise, -1 is returned and all type entries are zeroed. A -1
return can be because the file cannot be read, i s not an object file, or contains an
invalid name list.

See A lso

a.out in Appendix D, "File Formats"

C- 1 8 6

APPEN DI X D

FI LE F O R MATS

This section outlines the formats o f various files. Usually, these structures can b e found
in the directories /usr/include or /usr/include/sys.

D- 1

File Formats XENIX C Libraries

a.out - Format of asse mbler and link editor output.

Descri pt ion

a.out i s the output file of the assembler as and the link editor ld. Both programs will
make a.out executable if there were no errors in asse mbling or linking, and no
unresolved external references.

See Also

as, ld, nm, strip in "Program ming Com mands" in the XENIX 286 Programm er's Guide

D-2

XENIX C Libraries File Formats

acct - Format of per-process accounting file.

Syntax

#inc lude < sys/acct. h >

Descri ption

Files produced as a result of calling acct have records in the for m defined by
<sys/ acct.h>.

In ac_fiag, the AFORK flag is turned on by each fork and turned off by an exec. The
ac_comm field is inherited from the parent process and is reset by any exec. Each t ime
the system charges the process with a clock tick, it also adds the current process s ize to
ac_mem computed as follows:

(data si ze) + (text si ze) I (number of i n-core processes usi ng text)

The value of ac mem/ac stime can be viewed as an approxi mation to the mean process
size, as modified by text.:Sharing.

See Also

acct, exec, fork in Appendix C, "Syste m Functions"

acct, acctcom in "Co m m ands" in the XENIX 286 Reference Manual

Notes

The ac mem value for a short-lived co m mand gives little information about the actual
size of-the com mand because ac mem may be incre mented while a different com mand
(e.g. , the shell) is being executed by the process.

D-3

File Formats XENIX C Libraries

ar - Archive file for mat.

Descr i pt ion

The archive com mand ar i s used t o co mbine several files into one. Archives are used
mainly as libraries to be searched by the link editor ld.

A file produced by ar has a "magic nu mber" at the start, followed by the constituent
files, each preceded by a file header. The m agic nu mber is 0 1 7 7 545 octal. The header
of each file is 26 bytes long and is declared in /usr/include/ar.h.

Each file begins on a word boundary; a null byte is inserted bet ween files if necessary.
Nevertheless, the size given reflects the actual size of the file exclusive of padding.

Note that there is no provision for e mpty areas in an archive file.

See Also

ar, ld in "Program ming Com mands" in the XENIX 286 Programmer's Guide

D-4

XENIX C Libraries File Formats

checkl ist - List of file systems processed by fsck.

Descript ion

Residing in the directory /etc, checklist contains a list of up to 1 5 special file names.
Each special file name is contained on a separate line and corresponds to a file system.
Each named file syste m is auto matically processed by the fsck co m mand when that
program is invoked, but only if no file systems are given explicitly on the fsck com mand
line.

See Also

fsck in "Co m mands" in the XENIX 286 Reference Manual

D-5

File Formats XENIX C Libraries

core - Format of core image file.

Descri pt ion

XENIX writes out a core image of a term inated process when any of various errors
occur. See signal for the list of reasons; the most co m mon are me mory violations,
illegal instructions, bus errors, and user-generated QUIT signals. The core image is
called core and is written in the process's working directory {provided it can be; normal
access controls apply). A process with an effective user ID different fro m the real user
ID will not produce a core image.

The first section of the core image is a copy of the syste m's per-user data for the
process, including the registers as they were at the t ime of the fault. The size of this
section depends on the parameter usize, defined in /usr/include/sys/param.h. The
re mainder represents the actual contents of the user's core area when the core i mage
was written. If the text segment is read-only and shared, or separated fro m data space,
it is not du mped.

The format of the information in the first section is described by the user structure of
the system, defined in /usr/include/sys/user.h. The locations of registers are outlined in
/usr/include/sys/reg.h.

See Also

setuid, signal in Appendix C, "Syste m1 Functions"

adb in "Com mands" in the XENIX 286 Reference Manual

D-6

XENIX C Libraries

cpio - Format of cpio archive.

Descri pt ion

The header structure, when the c option i s not used, is

struct {
short h mag ic,

h-dev,
h
-

i no,
h-mode,
h-u id ,
h-gid ,
h-n l i nk,
h-rdev,
h-mti me[2] ,
h-namesi ze,
h -fi l esi ze[2] ;

char h-name[h names i ze rounded to word] ;
} Hdr;

File Formats

When the c option is used, the header information is described by the statement

sscanf(Chd r, " % 6o% 6o% 6o% 6o % 6o% 6o% 6o% 6o% 1 1 1o% 6o% 6o% s " ,
&Hdr. h mag i c,&Hdr. h dev,&Hdr .h i no,&Hdr .h mod e,
&Hdr. h-u id ,&Hdr. h g id ,&Hdr. h nlTnk,&Hdr .h rd ev,
&Longti me, &Hdr. h _ namesi ze,&Longfi le, Hd r. h _name) ;

Longtime and Longfile are equivalent to Hdr.h_mtime and Hdr.h_filesize respectively.
The contents of each file are recorded in an elem ent of the array of varying length
structures, archive, together with other items describing the file. Every instance of
h_magic contains the constant 0 7 0 7 0 7 (octal). The ite ms h_dev through h_mtime have
meanings explained in stat. The length of the null-terminated path name h _name,
including the null byte, is given by h _namesize.

The last record of the archive always contains the name TRAILER!!! . Special files,
directories, and the trailer are recorded with h _ filesize equal to zero.

See Also

stat in Appendix C, "System Functions"

cpio, find in "Co m m ands" in the XENIX 286 Reference Manual

D-7

File Formats XENIX C Libraries

d i r - Format of a directory.

Synta x

#i ncl ude < sys/d i r . h >

Descri ptio n

A directory behaves exactly like an ordinary file, except that no user may write into a
directory. The fact that a file is a directory is indicated by a bit in the flag word of its
inode entry {see file system in this appendix). The structure of a directory is given in
the include file /usr/include/sys/dir.h.

By convention, the first two entries in each directory are "dot" (.) and "dotdot" (••). The
first is an entry for the directory itself. The second is an entry for the parent directory.
The meaning of dotdot is modified for the root directory of the master file system;
there is no parent, so dotdot has the same meaning as dot.

See Also

file system

D-8

XENIX C Libraries File Formats

d u m p - Incre mental du mp tape format.

Descri pt ion

The dump and restor com mands are used to write and read incre mental dump magnetic
tapes.

A du mp tape consists of a header record, some bit mask records, a group of records
describing file system directories, a group of records describing file system files, and
so me records describing a second bit mask.

The header record and the first record of each description have the format described by
the structure included by

#inc lude < du mprestor .h >

Fields in the dumprestor structure are described below.

NTREC is the nu mber of blocks in a physical tape record. MLEN is the nu mber of bits
in a bit map word. MSIZ is the nu mber of bit map words.

The TS _ entries are used in the c _type field to indicate what sort of header the header
record is. The types and their meanings are as follows:

TS TYPE

TS INODE

TS BITS

TS ADDR

TS END

TS CLRI

MAGIC

CHECKSUM

Tape volu me label.

A file or directory follows. The c _ dinode field is a copy of the disk
inode and contains bits telling what sort of f ile this is.

A bit mask follows. This bit mask has a one bit for each inode that was
dumped.

A subblock to a file (TS_INODE). See the description of c_count below.

End of tape record.

A bit mask follows. This bit mask contains a 1 bit for all inodes that
were empty on the file system when du mped.

All header blocks have this number in c_magic.

Header blocks checksu m to this value.

D-9

File Formats XENIX C Libraries

The fields of the header structure are as follows:

c_type

c date

c ddate

c volume

c_tapea

c inumber

c_magic

c checksum

c dinode

c count

c addr

The type of the header.

The date the du mp was taken.

The date the file system was dumped from.

The current volu me nu mber of the du mp.

The current block nu mber of this record. This is counting blocks, not
bytes.

The number of the inode being du mped if this is of type TS_INODE.

Contains the value MAGIC above, truncated as needed.

Contains whatever value is needed to m ake the block su m to
CHECKSUM.

A copy of the inode as it appears on the file system.

Count of characters that describe the file. A character is zero if the
block associated with that character was not present on the file
syste m; otherwise, the character is nonzero. If the block was not
present on the file system, no block was du mped; the block is replaced
as a hole in the file. If there is insufficient space in this block to
describe all of the blocks in a file, TS ADDR blocks will be scattered
through the file, each one picking up where the last left off.

The array of characters that is used as described above.

Each volu me except the last ends with a tapemark (read as an end of file). The last
volume ends with a TS_END block and then the tape mark.

The structure idates describes an entry of the file where du mp history is kept.

See Also

file system

dump, restor in "Commands" in the XENIX 286 Reference Manual

D- 10

XENIX C Libraries File Formats

fi le system - Format of system volume.

Syntax

#i ncl ude < sys/fi l sys.h >
#i ncl ude < sys/types .h >
#i ncl ude < sys/para m . h >

Descri.ption

The file system is divided up into a number of 1 0 24-byte blocks. It imposes a particular
structure and usage upon these disk blocks. File system structures are located in the
file /usr/included/sys/filsys.h.

XENIX 286 Release 3 includes a number of performance i mprovements that not only
make its file system significantly different from Release 1 but also make

·
the two file

systems inco mpat ible. The Release 1 file system maintained a structure in a 1K block
at the beginning of the file system. The structure, or super-block, described the entire
system, and data blocks were allocated fro m an array of 1 0 0 free data blocks
maintained in the super-block. A si milar free list existed for the inodes.

Release 3 replaces the free list allocation scheme with a bit map extent allocation
scheme and imposes a cylinder grouping strategy on the file system. Cylinder grouping
is a method of partitioning the file system into one or more groups that contain inodes
and data blocks. Associated with each cylinder group is a cylinder group structure that
maintains information about the cylinder group. The cylinder group structure, which
resides in a 1K block at the beginning of the cylinder group, is referred to as a cylinder
group block. The Release 3 file system layout is as follows:

5 c i . . i dd . . . dd c i .. i dd . . . dd c i . . i dd . . . dd

where S denotes the super-block that maintains the location of each cylinder group
block denoted by C. Each cylinder group block, in turn, maintains the location of the
inode blocks, denoted by i, and the data blocks, denoted by d, within a particular
cy Iinder group.

Defined in the filsys.h include file is struct filsys, which is the structure for the super­
block. Within this structure is an array of structures, struct cginfo, which contains
information about the cylinder groups. Each cylinder group block contains a structure,
struct cylinder, describing the inodes and data blocks in the cylinder group.

W ithin struct cginfo, the variable fs_cgblk is the disk block address of the cylinder group
block. Within struct cylinder, the array cg_bits contains the bit map of the data blocks
in the cylinder group. (Note that the bit map describes only data blocks, not inode
blocks. !nodes are allocated from a link list of free inodes.) Each bit in the bit map
array represents one data block. If the bit is set to one, the data block is free. If the
bit is set to zero, the data block is allocated.

·

D-1 1

File Formats XENIX C Libraries

The file syste m's bit map extent allocation policy preallocates a nu mber of blocks to a
file. As a file grows, a nu mber of blocks are preallocated out of the bit m ap and
reserved for the file. When the file is closed, any unused blocks are returned to the bit
map. The extent bit map allocation policy tries to force contiguous files. The size of
the file syste m's extent (the nu mber of blocks to preallocate) is a configuration
parameter and may vary from 1 to 3 2 blocks. The default extent size is 8 blocks.

In addition, the filsys.h file contains BMAPSIZE, which defines the maximum size of a
cylinder group bit map, and MAXCGS, which describes the maximu m nu mber of cylinder
groups per file system. Both are crucial to file syste m performance.

BMAPSIZE*8 is the total nu mber of data blocks that can exist in any one cylinder group.
Since inode blocks are not described by the bit map, the file syste m can support cylinder
group sizes up to 8 MB. With the bit map size of 994 bytes, the cylinder group can
support 994 * 8, or 7952, data blocks. The default inode blocks-to-data-blocks ratio is 2
data blocks to 1 inode, so a syste m supporting 7952 data blocks could support 7 9-52 I 2,
or 3976, inodes. Since each 1 K block can contain 16 inodes, the cylinder group would
need 3976 I 16, or 248.5 blocks for inodes. (lnodes are easier to handle on block
boundaries, so 248.5 would be rounded up to 249 blocks.) Counting the cylinder group
block, the entire cylinder group would require a total of 7952 + 249 + 1, or 8202 , blocks.

MAXCGS describes the nu mber of cylinder groups in the file syste m. The file syste m
structure will support 80 cylinder groups, each containing 8 MB, s o the maxi mu m file
syste m partition size is 640 MB. However, since inode numbers are only 16 bits, the
most inodes the file syste m can contain is actually 6 5 , 5 3 5. With a 2048-byte-to-1-inode
ratio, file system partitions larger than 1 3 0 MB are restricted in the nu mber of inodes
they can contain. It is suggested that disks larger than 40 MB be separated into two file
systems, one for the root and one for the user. For user file systems larger than 1 3 0
MB, mult iple user file syste m partitions are recom mended.

In creating a file system, keep in mind a nu mber of variables: the size of a cylinder
group, the blocks-to-inode ratio, and the extent size of the file system. As the last
cylinder group in the file syste m will seldom be a full cylinder group, take care when
choosing the size of the cylinder groups. (The last cylinder group size must be as close
to the others as possible. Otherwise, the last group may have a large number of inode
blocks and few data blocks.) The suggested ratio is 2 data blocks to 1 inode. For file
syste ms larger than 1 3 0 MB, increase the rat io to 3 or 4 blocks per inode.

The extent size is applicat ion-dependent. For a normal XENIX syste m, an extent size of
8 or less is adequate. However, applications with large files require a larger extent
size, which forces the files to be contiguous.

F i les

/usr/include/sys/filsys.h
/usr/include/sys/types.h
/usr/include/sys/param.h

D- 12

XENIX C Libraries

See Also

in ode

fsck, mkfs in "Commands" in the XENIX 286 Reference Manual

File Formats

D- 13

File Formats

i n od e - Format of an inode.

Syntax

#i nc l ude < sys/types. h >
#i nc l ude < sys/i no. h >

Descri ption

XENIX C Libraries

An inode for a plain file or directory in a file system has the structure defined by
<sys/ino.h>. For the meaning of the defined types off_t and time_t, see types.

Fi les

/usr/include/sys/ino.h

See Also

file system, types

stat in Appendix C, "System Functions"

D-1 4

XENIX C Libraries File Formats

master - Format of master device information table.

Descri ption

This file is used by the config program (in "Commands" in the XENIX 286 Reference
Manual) to obtain device information that enables it to generate the configuration files.
Note that config is not a normal user com mand.

The file consists of three parts, each separated by a line with a dollar sign {$} in column
1 . Part 1 contains device information; part 2 contains names of devices that have
aliases; and part 3 contains tunable parameter information. Any line with an asterisk {*}
in column 1 is treated as a com ment.

There are 1 4 fields in the Part 1 lines that describe devices, but some are unused and
others are redundant� Fields in Part 1 lines are free format, separated by blanks or
tabs. To fill in the line for a device, you must know the answers to these questions:

1. What is the name of your device? What is the prefix used for your driver routines,
if different fro m the device name?

2. Does your device support a block interface? If it does, then what major number is
used for the block interface?

3. Does your device support a character interface? If it does, then what major
number is used for the character interface?

4. Does your device use interrupts? If so, what interrupt fevel{s} does it use?

5. What standard driver routines are not present in your driver and should be replaced
by nulldev in the cdevsw or bdevsw tables?

6. What is the maximum nu mber of boards handled by your driver that can be present
in a system?

Field 1 , name, is the name of the device, beginning in colu mn 1 and from 1 to 8
characters long. Intel devices are custo marily identified as ixxx, e.g., i534 for the iSBC
534 board. If limited to 4 characters, field 1 can be identical to Field 5, hndler.

Field 2 , vsiz, is the size of the device's interrupt vector in words. If the device uses
interrupts, this field is the number of interrupt levels used, normally 1. If the device
does not use interrupts, this field is 0. A "virtual" device such as a RAM disk is an
example of a device that does not use interrupts.

D- 1 5

File Formats XENIX C Libraries

Field 3, msk, is an octal bit mask indicating which standard driver routines are present:

0 1 0 0 init routine present
0 0 2 0 open routine present
0 0 1 0 close routine present
0004 read routine present
0002 write routine present
0 0 0 1 ioctl routine present

Note that the strategy routine of block drivers and the intr routine of all drivers that
handle interrupts are not listed. The strategy routine is mandatory for all block drivers.
The intr routine must be provided for all drivers that use interrupt levels. You can form
the bit mask to use for your device by taking the mask values for all the routines
present in your driver and ORing them. For example, for a line printer driver that
provided all routines except read and ioctl, the mask value would be 0 132 . The kernel
routine nulldev replaces missing routines in the cdevsw or bdevsw tables. nulldev does
nothing when called, simply returning to its caller.

Field 4, typ, is an octal bit mask indicating device type and some miscellaneous
information:

020 0 Only one specification of the device i s allowed. I.e., only one
line in master's device table can refer to the device.

0040 The device does not use interrupts.
0020 The device i s required in the configuration.
0 0 1 0 The device provides a block interface.
0 0 04 The device provides a character interface.

You can form the bit mask to use for your device by taking all the mask values that
apply to your driver and ORing the m. Term inals and simple character devices have type
004. Disks, which normally support a "raw" character interface as well as a block
interface, have type 0 14. A RAM disk might not need a character interface and could
have type 0 10.

Field 5, hndlr, is the prefix that is prepended to the standard routine names to produce
the routine names used in your driver. For example, if lp is the value of the hndlr field
for your device, your routine names must be lpinit, lpopen, etc. The prefix can be from
1 to 4 characters in length. The prefix must begin with a letter, and the characters in
the prefix must be li mited to those allowed in C identifiers. The prefix is used to
generate the routine names in the switch tables dinitsw, cdevsw, bdevsw, and vecintsw.
It can reduce confusion if your prefix is the same as the device name in Field 1.

Field 6, na, is not used and should be zero.

Field 7, bmaj, is the major nu mber used for the device's block interface. If the device
does not have a block interface, the field is not used but typically zero. A major
number of zero is allowed.

D- 16

XENIX C Libraries File Formats

Field 8, cmaj, is the major nu mber used for the device's character interface. If the
device does not have a character interface, the field is not used but typically zero. A
major number of zero is allowed.

For devices that have both block and character interfaces, the same major number is
typically used for both interfaces. This is not required; the block and character major
nu mbers for a device can be different.

Field 9, ##, is the maximu m number of boards supported by the device driver that may be
present in the system. This number is only used for checking against another such
number in the xenixconf file. This nu mber has nothing to do with the nu mber of devices
or range of minor device nu mbers that your driver supports.

Field 1 0, na, is not used and should be -1.

Fields 1 1 , 12 , 13 , and 14 contain up to four octal interrupt levels used by the driver.
Unused interrupt levels should be zero; zero is not allowed as a valid interrupt level.
Levels should be in the range 1-0 3 7 7 (1-255). The levels specified must be. compatible
with those used by other devices and must be the same as those actually used by the
hardware! The letter a must im mediately follow field 14.

There is no ordering of entries in the device table. You can insert the line for your
device at any posit ion in the table. The name, prefix, major numbers, and interrupt
levels for your device must be distinct from those used by other devices.

Part 2 contains lines with 2 fields separated by blanks or tabs. Field 1 is the alias name
of the device, fro m 1 to 8 characters. Field 2 is the reference name of the device, fro m
1 to 8 characters, as named in Field 1 of the device's line in Part 1 .

Part 3 contains lines with 2 or 3 fields separated by blanks or tabs. Field 1 is the
parameter name as it appears in the descript ion file, from 1 to 20 characters. Field 2 is
the parameter name as it appears in the c.c file, from 1 to 20 characters. Field 3 is the
default parameter value of from 1 to 20 characters; parameter specification is required
if this field is o m itted.

See Also

config in "Com m ands" in the XENIX 286 Reference Manual

XENIX 286 Installation and Configuration Guide

"Adding Drivers to the Configuration" in the XENIX 286 Device Driver Guide

Notes

The config program is only for systems that have configurable kernels. It resides in the
/usr/sys/conf directory.

D- 17

File Formats

mntta b - Format of mounted file system table.

Syntax

#i ncl ude < std io .h >
#i ncl ude < mnttab. h >

Descr ipt ion

XENIX C Libraries

The file mnttab resides in the /etc directory. It contains a table of devices mounted by
use of the mount com mand.

Each table entry contains the path name of the directory on which the device is
mounted, the name of the device special file, the read/write permissions of the special
file, and the date when the device was mounted.

The maxi mu m nu mber of entries in mnttab is based on the system parameter NMOUNT
located in /usr/sys/conf/c.c, which defines the number of allowable mounted special
files.

See Also

mount in "Co m mands" in the XENIX 286 Reference Manual

D-1 8

XENIX C Libraries File Formats

sccsf i le - Format of an sees file.

Descript ion

An SCCS file is an ASCII file. I t consists of six logical parts: the checksum, the delta
table (contains information about each delta}, user names (contains login names and/or
numerical group IDs of users who may add deltas), flags (contains definitions of internal
keywords}, com ments (contains arbitrary descriptive information about the file), and the
body (contains the actual text lines intermixed with control lines}.

Throughout an SCCS file there are lines that begin with the ASCII SOH (start of
heading} character (octal 00 1). This character, hereafter referred to as the control
character, will be represented graphically as @. Any line described below that is not
depicted as beginning with the control character is prevented from beginning with the
control character.

Entries of the form DDDDD represent a five-digit string (a number between 0 0 0 0 0 and
99999).

Each logical part of an SCCS file is described in detail below.

Checksu m

The checksu m is the first line of an SCCS file. The form of the line is

@hDDDDD

The value of the checksum is the su m of all characters except those of the first line.
The @hR provides a magic nu mber of 0 64 0 0 1 octal.

Delta Ta b l e

The delta table consists of a variable number of entries of the form

@s DDDDD/DDDDD/DDDDD
@d < type > < SCCS I D > yr/mo/da hr : m i : se < pgmr> DDDDD DDDDD
@i DDDDD . . .
@x DDDDD . . .

@g DDDDD . . .
@m < M R number >

@c < comments > . . .

@e

D- 19

File Formats XENIX C Libraries

The first line (@s) contains the number of lines inserted/deleted/unchanged respectively.
The second line (@d) contains the type of the delta (currently, normal: D and re moved:
R), the SCCS ID of the delta, the date and time of creation of the delta, the login name
corresponding to the real user ID at the time the delta was created, and the serial
numbers of the delta and its predecessor respectively.

The @i, @x, and @g lines contain the serial nu mbers of deltas included, excluded, and
ignored respectively. These lines are optional.

The @m lines (optional) each contain one MR nu mber associated with the delta; the @c
lines contain co m ments associated with the delta.

The @e line ends the delta table entry.

User Names

User names is a list of login names and/or nu merical group IDs of users who may add
deltas to the file, separated by newlines. The lines containing these login names and/or
numerical group IDs are surrounded by the bracketing lines @u and @U. An e mpty list
allows anyone to make a delta.

Flags

Flags are keywords used internally. (See admin in "Program m ing Com mands" in the
XENIX 286 Programmer's Guide for more information on their use.) Each flag line takes
the form

@f < flag > < optional text >

The fol l owi ng fl ags are defined :

D-20

@f t <type of program >
@f v < program nam e >
@f i
@f b
@f m < modu le nam e >
@f f <floor >
@f c < cei l i ng >
@f d <defau lt-si d >
@f n
@f j
@f I < lock-rel eases >
@f q < user defi ned >

XENIX C Libraries File Formats

The t flag defines the replacement for the % Y% identificat ion keyword.

The v flag controls prompting for M R numbers in addition to com ments; if the optional
text is present, it defines an MR number validity checking program.

The i flag controls the warning/ error aspect of the "No id keywords" message. When the
i flag is not present, this message is only a warning; when the i flag is present, this
message will cause a fatal error. (The file will not be gotten, or the delta will not be
made.}

When the b flag is present, the -b keyletter may be used with the get com mand to cause
a branch in the delta tree.

The m flag defines the first choice for the replacement text of the %M% identification
keyword.

The f flag defines the "floor" release, the release below which no deltas may be added.

The c flag defines the "ceiling" release, the release above which no deltas may be added.

The d flag defines the default SID to be used when none is specified on a get com mand.

The n flag causes delta to insert a "null" delta (a delta that applies no changes} in those
releases that are skipped when a delta is made in a new release. (For example, when
delta 5. 1 is made after delta 2. 7, releases 3 and 4 are skipped.) The absence of the n
flag causes skipped releases to be completely empty.

The j flag causes get to allow concurrent edits of the same base SID.

The 1 flag defines a list of releases locked against editing (get with the -e keyletter}.

The q flag defines the replacement for the %Q% identification keyword.

Com ments

Com ments consist of arbitrary text surrounded by the bracketing lines C}.t and C}.T. The
com ments section typically contains a description of the file's purpose.

Body

The body consists of text lines and control lines. Text lines do not begin with the
control character; control lines do. There are three kinds of control lines: insert,
delete, and end:

@I DDDDD
@D DDDDD
@E DDDDD

D-2 1

File Formats XENIX C Libraries

The digit string (DDDDD) is the serial nu mber corresponding to the delta for the control
line.

See Also

admin in "Program m ing Com mands" in the XENIX 286 Programmer's Guide

D-2 2

XENIX C Libraries File Formats

types - Primit ive system data types.

Synta x

#inc l ude < sys/types.h >

Descri pt ion

The data types defined in the include file <sys/types.h> are used in XENIX syste m code;
some data of these types are accessible to user code.

The form daddr_t is used for disk addresses except in an inode on disk. (See file
system.) Ti mes are encoded in seconds since 00 :00 :00 GMT, January 1, 1970. The m ajor
and minor parts of a device code specify kind and unit number of a device and are
installation-dependent. Offsets are measured in bytes from the beginning of a file. The
label_t variables are used to save the processor state while another process is · running.

See Also

file system

D-2 3

File Formats XENIX C Libraries

utmp, wtm p - Formats of utmp and wtmp entries.

Descri pt ion

The files utmp and wtmp hold user and accounting information for use by com mands
such as who, acctconl, and login. They have the following structure, as defined by
/usr/include/utmp.h:

struct utmp
{

};

F i les

char
char
long

/etc/utmp
/usr/adm/wtmp
/usr/include/utmp.h

See Also

ut-l i ne [8] ;
ut name[8] ;
ut ti me;

I* tty name *I
I* log i n name *I
I* ti me on *I

acctcon, login, who, write in "Com mands" in the XENIX 286 Reference Manual

D-24

APPENDI X E

RE LATED PU B LICATION S

Copies of the following publications can be ordered from

Literature Depart ment
Intel Corporation
3 0 6 5 Bowers Avenue
Santa Clara, CA 9 5 0 5 1

Overview of the X EN IX 286 Operating System, Order Number 1 7 43 8 5 -- XENIX history,
XENIX uses, basic XENIX concepts, and an overview of other XENIX manuals.

XENIX 286 Installation and Configuration Guide, Order Number 1 7 4386 -- how to install
XENIX on your hardware and tailor the XENIX configuration to your needs.

XENIX 286 User's Guide, Order Number 1 74387 -- a tutorial on the most-used parts of
XENIX, including terminal conventions, the file syste m, the screen editor, and the shell.

XENIX 286 Visual Shell User's Guide, Order Number 1 74388 -- a XENIX com mand
interface ("shell") that replaces the standard com mand syntax with a menu-driven
com mand interpreter.

XENIX 286 System Administrator's Guide, Order Number 174389 -- how to perform
syste m ad ministrator chores such as adding and re moving users, backing up file systems,
and troubleshooting system problems.

XENIX 286 R eference Manual , Order Nu mber 1 743 90 -- all com mands in the XENIX 286
Basic System.

XENIX 286 Programmer's Guide, Order Number 174391 -- XENIX 286 Extended System
com mands used for developing and maintaining programs.

XENIX 286 C Library Guide, Order Number 17 4542 -- (this manual) standard subroutines
used in program ming with XENIX 286, including all system calls.

XENIX 286 Device Driver Guide, Order Number 1 74393 - - how to write device drivers
for XENIX 286 and add the m to your system.

XENIX 286 Text Formatting Guide, Order Number 174541
Syste m com m ands used for text formatting.

XENIX 286 Extended

XENIX 286 Communications Guide, Order Number 17446 1 - - installing, using, and
administering XENIX networking software.

C is described in The C Program ming Language by Brian W. Kernighan and Dennis M.
Ritchie. One copy is supplied with Intel's XENIX product. Additional copies can be
ordered from the publisher, Prentice-Hall, Inc., Englewood Cliffs, NJ 07632.

E- 1

L IND EX

·----

Most bolded entries in this index are funct ion or macro names. Other types of bolded
entries are followed by a descriptive phrase, such as "include file," "variable," or "file
format."

_tolower, C-2 7
_toupper, C-2 7

a.out file format, B-1 , D-2

a.out.h include file, C-1 0 1, C-1 8 5
a641, C-9
abort, C-1 0
abs, C-1 1
access, C-1 2
acct, C- 1 4
acct accounting file format, D-3
acct.h include file, D-3
acos, C- 168
addch, 3-6, C-3 7
addstr, 3-7, C-3 7
alarm, C- 1 5
ar archive file format, D-4
asctime, C-34
asin, C-1 6 8
assert, C-16
atan, C-1 6 8
atan2, C-168
atof, C-1 7
atoi, C-1 7
atol, C-17

BC variable, C-1 6 1
Bessel functions, C-1 8
box, 3-24, C-3 7
brk, C-1 2 8
bsearch, C-1 9

cabs, C-77
calloc, 8-2, C-90
ceil, C-5 5
character classification routines, 4-1 ,

C-36
character conversion rout ines, 4-6, C-27
chdir, C-20

checklist file format, D-5
chmod, C-2 1
chown, C-23
chroot, C-2 4
chsize, C-2 5
clear, 3-12, C-3 7
clearerr, C-54
clearok, 3-2 5 , 3-26, C-37
close, 2-26, C-2 6
clrtobot, 3-12, C-37
clrtoeol, 3-12, C-37
core file format, D-6
cos, C- 168
cosh, C-147
cpio archive file format, D-7
creat, C-28
creatsem, 8-6, C-3 0
crmode, 3-27 , C-3 7
crypt, C-32
ctermid, C-33
ctime, C-34
ctype.h include file, 4-1 , C-2 7, C-36
curses library for screen, window, and

cursor functions, 3-1, C-3 7
curses.h include file, 3-2
cuserid, C-3 9

database functions, C-40
daylight variable, C-34
dbm library for database functions, C-40
dbminit, C-40
defopen, C-42
defread, C-4 2
delch, 3-1 1, C-37
delete, C-4 0
deleteln, 3-1 1, C-3 7
delwin, 3-23 , C-3 7
dir.h include file, D-8
directory format, D-8

lndex- 1

Index

du mp tape format, D-9
dumprestor.h include file, D-9
dup, C-43
dup2, C-43

echo, 3-2 7, C-37
ecvt, C-44
encrypt, C-3 2
endgrent, C-66
endpwent, C-7 4
endwin, 3-5 , C-37
erase, 3-12, C-3 7
errno variable, 9-2, C-2, C-1 07
error codes, C-2
exec family of functions, C-45

execl, 5-3 , C-45
execle, C-4 5
execlp, C-4 5
execv, 5-3, C-45
execve, C-4 5
execvp, C-4 5

exit, 5-3, C-49
exp, C-50

fabs, C-5 5
fclose, 2-18, C-5 1
fcntl, C-52
fcntl.h include file, C-5 2, C- 102
fcvt, C-44
fdopen, C-56
feof, 2-17 , C-54
ferror, 2-18, C-54
fetch, C-40
ffiush, 2-23 , C-5 1
fgetc, 2-12, C-63
fgets, 2-13, C-7 5
FIFO, 6-7
file system format, D-1 1
fileno, C-54

· filsys.h include file, C-141 , D-1 1
first key, C-4 0
fioor, C-5 5
fmod, C-5 5
fopen, 2- 1 1, C-56
fork, 5-5, C-5 8
fprintf, 2 - 1 6 , C-1 1 0
fputc, 2-15, C-1 1 7
fputs, 2-15, C-120
fread, 2-13 , C-5 9
free, 8-3, C-90
freopen, 2-2 1 , C-56

lndex-2

frexp, C-6 0
fscanf, 2-14, C-1 3 0
fseek, 2-30, C-6 1
fstat, C- 1 5 1
ftell, 2-3 1, C-6 1
ftime, C-163
fwrite, 2-16, C-5 9
fxlist, C-18 5

gamma, C-62
gcvt, C-44
getc, 2-12, C-63
getch, 3-8, C-3 7
getchar, 2-4, C-63
getcwd, C-64
getegid, C-76
getenv, C-65
geteuid, C-76
getgid, C-76
getgrent, C-66
getgrgid, C-6 6
getgrnam, C-6 6
getlogin, C-6 8
get opt, C-6 9
getpass, C-7 1
getpgrp, C-72
getpid, C-72
getppid, C-72
getpw, C-73
getpwent, C-7 4
getpwnam, C-7 4
getpwuid, C-7 4
gets, 2-5, C-7 5
getstr, 3-8, C-3 7
gettmode, 3-29, C-37
getuid, C-76
getw, C-63
gmtime, C-34
grp.h include file, C-66
gsignal, C-14 9

XENIX C Libraries

hyperbolic functions, C-147
hypot, C-77

inch, 3-22, C-3 7
initscr, 3-3, C-3 7
ino.h include file, D-14
inode format, D- 14
insch, 3-10, C-3 7
insertln, 3-1 O , C-3 7
ioctl, C-78

XENIX C Libraries

ioctl.h include file, C-78
isalnum, 4-2 , C-36
isalpha, 4-3, C-36
isascii, 4- 1, C-36
isatty, C-169
iscntrl, 4-3, C-36
isdigit, 4-4, C-36
isgraph, C-36
islower, 4-5, C-36
isprint, 4-4, C-36
ispunct, 4-5, C-36
isspace, 4-5, C-36
isupper, 4-5, C-36
isxdigit, 4-4, C-36

jO , C-1 8
jl, C-1 8
jn, C-1 8

kill, C-79

13tol, C-8 1
164a, C-9
ldexp, C-6 0
leaveok, 3-25 , C-3 7
library names, C-1
link, C-8 2
localtime, C-34
lock, C-83
locking, 8-4, C-84
locking.h include file, 8-4
log, C-5 0
loglO, C-5 0
logname, C-8 7
longjmp, 7-9, C- 138
longname, 3-2 9, C-3 7
lsearch, C-88
lseek, 2-2 9, C-89
lto31, C-8 1

malloc, 8-1, C-90
master file format, D-1 5
math.h include file, C- 18, C-50 , C-55 ,

C-62 , C-77, C-147, C-168
mknod, C-92
mktemp, C-94
mnttab file format, D-1 8
mnttab.h include file, D-1 8
modf, C-6 0
monitor, C-9 5

mount, C-97
move, 3-1 0, C-38
mvcur, 3-28, C-38
mvwin, 3-22, C-38

nap, C-99
nbwaitsem, 8-8, C-182
newwin, 3-13, C-38
nextkey, C-40
nice, C-1 0 0
nl, 3-27, C-38
nlist, C-1 0 1
nocrmode, 3-28, C-38
noecho, 3-28, C-38
nonl, 3-28, C-3 8
noraw, 3-28, C-38

open, 2-24, C-102
opensem, 8-7, C-1 0 5
ospeed variable, C-16 1
overlay, 3-2 1, C-38
overwrite, 3-2 1, C-38

param.h include file, D-1 1
pause, C-1 0 6
PC variable, C-1 6 1
pclose, 6-3, C-109
perror, 9-2, C-1 0 7
pipe, 6-3, C-1 08
popen, 6-1, C-1 0 9
pow, C-50
printf, 2-8, C-1 1 0
printw, 3-7, C-38
profil, C-1 13
ptrace, C-1 14
putc, 2-15, C-1 1 7
putchar, 2-6, C-1 17
putpwent, C-1 19
puts, 2-7, C-1 2 0
putw, C-1 1 7
pwd.h include file, C-7 4 , C-1 1 9

qsort, C-12 1

rand, C-1 2 2
raw, 3-27 , C-38
rdchk, C- 1 2 3
read, 2-25, C-124
realloc, 8-3 , C-90
refresh, 3-12 , C-3 8

Index

Index-3

Index

regcmp, e-1 2 6
regex, e-126
rewind, 2-3 0, e-6 1

sbrk, e-1 2 8
scanf, 2-5, e-130
scanw, 3-9, e-38
sees file formats, D-1 9
scroll, 3-26, e-38
scrollok, 3-25 , e-38
sd.h include file, 8- 1 0 , e- 133, e- 134,

e-136
sdenter, 8-1 1 , e-1 3 3
sdfree, 8-13, e- 134
sdget, 8- 10 , e-134
sdgetv, 8-12, C- 136
sdleave, 8-1 1, e-1 3 3
sdwaitv, 8-13, e- 1 3 6
setbuf, 2-2 2, e- 1 3 7
setgid, e-140
setgrent, e-66
setjmp, 7-8, e-1 3 8
setjmp.h include file, 7 - 1 , e-138
setkey, e-32
setpgrp, e-1 3 9
setpwent, e-7 4
setterm, 3-2 9, e-3 8
setuid, e-140
shutdn, e-14 1
signal, 7-1, 9-3, e-142
signal.h include file, 7-1, e-142, e-149
sigsem, 8-9, e-146
sin, e- 168
sinh, e-147
sleep, C- 148
sprintf, 4-1 1 , e-1 1 0
sqrt, e-5 0
srand, e-1 2 2
sscanf, 4- 1 0, e-1 3 0
ssignal, e-14 9
stat, e-1 5 1
stat.h include file, C-1 5 1
stdio library description, 2-1, e-1 53
stdio.h include file, 2-1, e-33, C-3 9,

e-5 1 , e-54, e-5 6, e-5 9, e-6 1 , e-63,
e- 109 , e-1 10 , C-1 1 7 , e-1 2 0 , e-130 ,
e-137, e-1 53, C-1 60, e-166, e-167 ,
e-1 7 5, e-185 , D-17

stime, C- 1 5 5
store, e-40

Index-4

strcat, 4-7, e-1 56
strchr, e-1 56
strcmp, 4-7, e-156
strcpy, 4-8, e-156
strcspn, e-1 5 6

XENIX e Libraries

string functions, 4-6, e- 156
strlen, 4-8, e-156
strncat, 4-9, e-156
strncmp, 4-9, e-156
strncpy, 4-1 0, e-156
strpbrk, e-1 56
strrchr, e-1 56
strspn, e-156
strtok, e-15 6
subwin, 3-14, e-38
swab, e-158
sync, e-159
sys err list variable, e-1 0 7
sys _ nerr variable, e-1 0 7
system, 5-2, e-160

tan, e-168
tanh, e-147
termcap terminal capabilities file,

3-1, 3-4
termlib library, e-3 7
tgetent, e-1 6 1
tgetflag, e-1 6 1
tgetnum, e-1 6 1
tgetstr, e-1 6 1
tgoto, e-161
time, e-163
time.h include file, e-34
timeb.h include file, e-1 5 5, e-163
times, e-165
times.h include file, e-16 5
timezone variable, e-34
tmpfile? e-166
tmpnam, e-167
toascii, 4-2, e-2 7
tolower, 4-6, e-2 7
touchwin, 3-23, e-38
toupper, 4-6, e-2 7
Trigonometric functions, e-168
tputs, e-1 6 1
ttyname, e-169
types.h include file, e- 1 5 1 , e-1 5 5 ,

e-163, e-1 7 7, e- 178, D-1 1 , D-14,
D-2 3

tzname variable, e-34

XENIX C Libraries

tzset, C-34

ulimit, C-1 7 0
umask, C-1 7 1
umount, C-1 7 2
uname, C-1 7 3
unctrl, C-3 8
ungetc, 2-22, C- 17 5
unlink, C-1 7 6
UP variable, C-1 6 1
ustat, C-1 7 7
ustat.h include file, C-1 7 7
utime, C - 1 7 8
utmp entry formats, D-24
utmp.h include file, D-24
utsname.h include file, C-1 7 3

waddch, 3-14, C-38
waddstr, 3-15, C-3 8
wait, 5-6, C-180
waitsem, 8-8, C- 182
wclear, 3-1 9, C-38
wclrtobot, 3-2 0 , C-38

wclrtoeol, 3-20 , C-38
wdelch, 3-18, C-38
wdeleteln, 3-19, C-38
werase, 3-1 9, C-38
wgetch, 3-16, C-3 8
wgetstr, 3-16, C-38
winch, 3-22 , C-3 8
winsch, 3- 18, C-3 8
winsertln, 3-18, C-38
wmove, 3-17, C-3 8
wprintw, 3-15, C-3 8
wrefresh, 3-20, C-38
write, 2-26, C-183
wscanw, 3-16, C-3 8
wstandend, 3-2 5, C-38
wstandout, 3-24, C-38
wtmp entry formats, D-24

xlist, C-185

yO, C-1 8
y1, C-1 8
yn, C-1 8

Index

Index-5

XEN IX 286 C Li brary Gu ide
1 74542-00 1

R E Q U E ST FOR R EA D E R'S COM M ENTS

I ntel 's Techn i ca l Publ i cations Departments attem pt to provi de pub l i cati ons that meet the needs of a l l
I ntel product users. Th i s form l ets you part ic i pate d i rectly i n the publ i cation process. Your comments
wi l l hel p us correct and i mprove our pub l i cations. Pl ease take a few m inutes to respond.

Please restri ct you r comments to the usabi l i ty, accu racy, organ i zati on , and com pl eteness of th i s
publ i cati on . I f you have any comments on the product that th i s publ i cat ion descri bes, p lease contact
you r I ntel representati ve. If you wish to order publ i cati ons, contact the Literatu re Department (see
page i i of th i s manua l) .

1 . Please descr i be any errors you fou nd i n th is publ i cation (i nc l ude page number) .

2 . Does th i s publ i cati on cover the i nformation you expected or requ i red? Pl ease make suggesti ons
for i mprovement.

·

3 . Is th i s the r ight type of pub l i cati on for you r needs? Is i t a t the r ight l evel ? What other types of
publ i cati ons are needed?

4. D id you have any d i ffi cu lty u nderstand i ng descr i pti ons or word i ng? Where?

5. Pl ease rate th i s publ i cati on on a sca l e of 1 to 5 (5 bei ng the best rati ng) .

NAM E __ __

TITLE

DATE

COMPANY NAM �DEPARTMENT--�

ADDRESS
--

CITY STATE

(CO U NTRY)

Pl ease check here i f you req u i re a wntten rep ly 0

Z IP COD E

WE'D L I K E YO U R COM M ENTS . . .

This document is one of a series descri b i n g I ntel p roducts. You r com me nts on the back of th is form

w i l l help us p rod uce better manuals. Each rep ly w i l l be carefu l l y rev iewed by the respon s i b l e

person. A l l comments a n d suggest ions beco me the p roperty o f I ntel Corporat ion .

B U S I N ESS R E PLY MAI L
FIRST CLASS PERMIT NO. 79 BEAVERTON, OR

POSTAG E WILL BE PA I D B Y A D D R ESSEE

I ntel Corporation
5200 N.E. Elam Young Pkwy.
Hillsboro, Oregon 971 23

O.M.S. Technical Publications

I II II I NO POSTAG E
N EC ESSARY

IF MAI LE D
I N TH E

U N I TED STATES

I NTEL CORPORATION, 3065 Bowers Avenue, Santa Cl ara , Ca l i forn ia 9505 1 (408) 987-8080

Pri nted m U .S .A.

SOFTWARE

0426/6K/0585/0SPS/AD

