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Foreword 

XENIX enjoys the lion's  share of the multiuser market today. This operat­
ing system has been installed on more computers worldwide than all other 
UNIX systems combined . Over 85 percent of all microprocessor-based com­
puters running any version of UNIX are running XENIX. 

In 1980, Microsoft Corporation released their commercially enhanced 
version of UNIX-the XENIX Operating System-for microprocessor­
based computers . In 1982, The Santa Cruz Operation (SCO) became 
Microsoft's co-development partner and alternate source for XENIX. SCO 
and Microsoft have continued to work together cooperatively to develop 
and enhance XENIX as UNIX has moved into System V and microproces­
sor technology has moved up to the 80286 and beyond. 

The SCO XENIX Operating System features the XENIX Development 
System, which includes a C compiler and a complete DOS support library. 
This, coupled with the standard XENIX capability to copy files to and from 
a DOS partition, makes XENIX an excellent choice for a DOS development 
system. The XENIX approach to shared information and resource comput­
ing for PCs integrates UNIX and DOS, multiuser and LAN, and PC and 
mainframe into a unified environment unprecedented in its power, produc­
tivity, and price performance per user . 

With Inside XENIX, Christopher L. Morgan has created an excellent 
and much needed reference work for the serious C programmer who wants 
to use the XENIX Operating System Development System to create new 
software solutions specifically for the XENIX and DOS environments . 
Inside XENIX is worthy of being a college course text on "XENIX and the 
Multiuser Developer, " and soon may find itself in that role . 

We at SCO recognize and appreciate the painstaking work that has 
resulted in this comprehensive book and are proud to be able to welcome 
the reader to explore the future of shared information and resource com­
puting by taking a close look at Inside XENIX. 

Doug Michels ,  Vice President 
The Santa Cruz Operation 

v 



vi 

Preface 

The XENIX operating system and its attendant development system bring 
the power of minicomputers and mainframes to desktop microcomputers . 
XENIX is a direct descendant of the popular UNIX operating system and is 
a full-blown multitasking system for single users . 

XENIX has an extensive set of software development tools developed 
at AT&T's Bell Labs, the University of California at Berkeley, and Micro­
soft Corporation. With these tools programmers can develop sophisticated 
application programs that run under XENIX, UNIX, or PC-DOS. 

This book is for programmers who have had experience with other 
microcomputer program development environments , such as PC-DOS, 
MS-DOS, CP/M, BASIC, or Pascal. It is also for people who have had 
some UNIX experience. They will gain from this book because we present 
some material that even experienced UNIX programmers may not be ac­
quainted with. This book will also be of benefit to XENIX system adminis­
trators who need to understand how XENIX works and who must write an 
occasional program for it . 

This book is designed to help a new user/programmer quickly learn 
what XENIX is , what it can do, and how to develop programs with the 
XENIX system. We help you get started with the system as a whole and 
learn the various major programming tools . You will learn the general phi­
losophy of XENIX applications in which large programs are built of small 
general purpose pieces . 

We introduce XENIX programming tools including: 

0 editing programs 
0 debugging tools 
0 compilers 
0 text processors 
0 program generators 

We also explain: 



D XENIX's  file system 
D general layout 
D how jobs are run 
D how devices such as terminals , printers , and disk drives are 

connected 
D how to install new devices 

Preface 

This book assumes that you have access to a microcomputer that has 
the XENIX operating system. Typically this is an IBM XT, IBM AT, or 
equivalent to one of these. A number of different manufacturers make 
machines of these classes . 

The first three chapters are introductory. The first chapter explains 
XENIX in terms of its history and role in computing, relating it to oper­
ating systems in general, to UNIX (which was developed for the larger 
timesharing minicomputers) , and to the smaller microcomputer operating 
systems such as PC-DOS and CP/M. The second chapter takes a tour 
through a typical XENIX system, providing an overview of the system and 
introducing many of the topics that are covered in the rest of the book. The 
third chapter describes the programming tools , starting with the main edit­
ing program and ending with a discussion of debugging tools . 

The last seven chapters cover major topics with examples . These exam­
ples are usually short illustrations of features of the system or demonstra­
tions of programming techniques that are possible with the system. They 
consist of system commands and programs written in the C programming 
language or in the language of one of the programming tools . 

Chapter 4 introduces filters. These are text processing tools that per­
form many of the basic jobs in the system. This chapter introduces the 
XENIX standard 1/0 functions and several kinds of system files including 
library files . 

Chapter 5 introduces screen and keyboard 1/0, an important part of 
the system because it controls the efficiency with which humans can com­
municate with the computer . 

Chapter 6 discusses system variables . These control the way the system 
is set up for each of its users . Users can adjust these variables to make the 
system behave in a number of different useful ways . 

Chapter 7 describes XENIX file systems . It discusses how files are 
stored and organized within the system. It covers file management variables 
that control such things as file security. 

Chapter 8 elaborates on how XENIX breaks its work into processes 
that compete with each other in the system for the CPU, memory, and 
other resources such as terminals . This chapter shows how processes can 
communicate with each other and exchange data. 

Chapter 9 delves into the kernel, the innermost part of the system, and 
describes how devices such as terminals , printers , disk drives , and local area 
networks are connected to the system. It shows how a XENIX system can 
be reconfigured to handle a different set of devices . 

vii 



Preface 

Chapter 10 concludes the book with a discussion of advanced pro­
gramming tools that can be used to create programs such as compilers and 
interpreters that understand human language. Our examples demonstrate 
how to use these tools to write programs that understand a simple subset of 
English and programs that understand algebraic expressions . 

This book takes a "special topics" approach to XENIX, surveying the 
major areas , but concentrating on a few major parts of the system. The 
hundreds of system commands and library functions simply cannot be thor­
oughly covered in a book of this size . However , their nature and use can be 
understood by sampling certain key commands . These key commands either 
provide information about the system or perform useful programming 
functions . 

The book is designed to be read sequentially by beginners . However , 
because some beginners may want to skip some discussions that rely on the 
C programming language, we have included plenty of material using system 
commands to describe the system. In fact , we show how to write simple 
"scripts" in the system command languages . Advanced readers may want 
to quickly go through Chapters 2 and 3 ,  then choose topics to study from 
the remaining chapters . All readers will benefit by trying the examples on 
their own XENIX system. 

We hope that you enj oy and profit from this book . Happy 
XENIXing ! 
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Preliminaries 

XENIX System V brings minicomputer and mainframe capabilities to 
desktop machines . Its hundreds of system commands and library functions 
provide a rich programming development environment. 

In this chapter we introduce the XENIX operating system and pro­
gram development system and explain our relationship to it as application 
programmers who are new to XENIX, but who have had experience with 
other program development environments . 

We trace the ancestry of XENIX back through AT&T's System V to 
the earlier versions of the UNIX operating system for these larger timeshar­
ing machines . We discuss powerful XENIX programming tools developed 
at the University of California at Berkeley. We also explain how XENIX 
maintains a kind of upward compatibility with earlier microcomputer oper­
ating systems . 

This chapter puts XENIX in perspective with smaller and larger sys­
tems and sets the stage for the rest of the book in which we explore specific 
features of XENIX. 

XENIX System V 

In this book we explore XENIX System V from the point of view of a pro­
grammer who has had experience with other program development systems, 
such as CP/M, PC-DOS, BASIC, or Pascal, but who now needs to under­
stand XENIX. We take a "special topics" approach in which we explore 
major programming subsystems, such as shell scripts or C programming; 
components of the system, such as file 1/0 and device drivers ;  and tools , 
such as system commands that act as text processors . By going into some 
depth in these areas, you gain working knowledge of some of the key com­
mands and structures in the system and learn basic approaches that extend 
throughout XENIX. 

XENIX opens up the world of minicomputer and mainframe comput­
ing to 1 6-bit microcomputers . It is a powerful operating system that brings 
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multitasking, a large repertoire of system commands, and an extensive set 
of system libraries to 1 6-bit microcomputers, for example, the IBM XT, 
IBM AT and newer 32-bit machines such as the IBM PS/2 Model 80. At the 
same time it allows development for and file transfers with the most popu­
lar 16-bit operating systems, MS-DOS and PC-DOS. 

The heart of XENIX System V largely conforms to AT&T's  standards 
for UNIX System V. In fact, its success depends partly on its conformance 
with this standard. However, XENIX also includes some very valuable en­
hancements from the University of California at Berkeley and some addition­
al features from its developers, Microsoft and Santa Cruz Operation (SCO) . 

The Berkeley enhancements to XENIX include such features as its vis­
ual screen editing program (see Chapter 3),  its software routines for con­
necting intelligent terminals (see Chapter 6) and its program generator tools 
(see Chapter 10) .  

The Microsoft enhancements to  XENIX include a set of DOS com­
mands to read and write to MS-DOS or PC-DOS formatted disks . Also 
included in the XENIX enhancements are libraries of functions that allow 
development of MS-DOS and PC-DOS applications while in XENIX. These 
extensions allow programmers to work in the more powerful UNIX-like 
environment, then transfer their work to the smaller, more established 
microcomputer operating systems . 

The SCO enhancements include multiple console screens , device driv­
ers for peripheral devices , and some administrative programs . 

Exceptions to the AT&T standard include lack of virtual memory and 
lack of ability to temporarily stop jobs from the keyboard . The default 
choice of the erase character and kill line keys also is improved in XENIX 
to use the control keys, control h (backspace) , and control u ,  rather than the 
original pound sign (#) and at sign ( @  ) .  These exceptions are minor com­
pared with the extensive set of features that are in total conformity with the 
AT&T standard. 

What Is an Operating System? 

4 

XENIX is an operating system, but what does that really mean? Because 
this book is aimed primarily at programmers and the like, you as a reader 
should be already familiar with the basic functions of an operating system, 
having used one or more. Perhaps you could even come up with several def­
initions of this term. However, we need a common understanding that also 
helps beginning readers place XENIX within the context of such systems, 
small and large. 

We can draw an analogy between what operating systems do for com­
puter systems and what governments do for people. Governments come in 
all sizes and provide a wide variety of services for people, but their main 
function is to provide management so that people can safely share re­
sources . 

Operating systems also come in all sizes , but their function is to man-
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age and provide support for computer systems, allowing computer software 
to share a computer system's resources. 

Basically, an operating system consists of software that allows people 
to use computer hardware. Without software, a computer system cannot be 
effectively controlled to do useful work. 

The most basic tasks of an operating system are to load programs into 
memory, start them up, and provide support routines for input from such 
devices as keyboards and card readers and output to such devices as printers 
and terminal screens . The first generation of operating systems allowed ear­
ly mainframe computers to read programs from decks of punch cards and/ 
or from reels of paper tape in "batch" processing fashion. The first cassette 
tape and floppy disk microcomputer operating systems didn't do much 
more, but in some cases displayed the contents of the tape or disk. 

More recent operating systems also provide facilities for developing 
new programs . Thus they also normally include editors, assemblers, and de­
buggers. Small single user microcomputer operating systems, such as 
CP/M and MS-DOS, provide such facilities . 

Still larger operating systems,  such as those for timesharing mainframe 
and minicomputers , provide the necessary management for many simulta­
neous users to share the computer system's  resources . System resources in­
clude devices, such as its CPU, memory, disk drives , keyboards, screens, 
terminals, and printers , as well as more abstract objects, such as its pro­
grams and data. For example, management is needed because users have to 
have exclusive access to some resources, such as printers, but can share oth­
er resources, such as some program code. Other resources ,  such as CPU's ,  
have to be quickly shuttled from user to user . 

XENIX provides this kind of management . It allows single users to 
run a variety of different jobs that simultaneously compete for the comput­
er system's  resources . With XENIX, a single user can run a number of dif­
ferent tasks at the same time, perhaps several editing sessions and some 
background tasks all at once. 

Still larger systems often provide extensive tools for program develop­
ment, including sophisticated screen editors, compilers,  libraries of routines, 
linkers, symbolic debuggers, program generators, and program maintenance 
systems. XENIX has a rich set of such tools including the v i  screen editor, 
its C compiler that automatically invokes an assembler and linker as needed, 
its adb symbolic debugger, program generators such as l e x  and y a c c, and its 
make program maintenance systems. 

Even larger systems protect programs and data from unauthorized ac­
cess and from crashing the system. As we shall see in Chapter 2, XENIX 
provides many of the protection techniques ,  such as passwords and permis­
sion bits, used in much larger systems. However, XENIX's ability to pro­
vide complete protection from crashes is limited by the hardware that it 
runs on. For example, the hardware configurations of an IBM XT allow 
one program to accidentally clobber another program's  memory and even 
bring down the entire operating system. However, with well-tested soft­
ware, this is not a problem. 

5 
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Multiuser systems require accounting systems that keep track of sys­
tem usage and allow system managers to monitor and tune system perform­
ance and detect unauthorized use. This is important when a large number of 
users share the same system. XENIX provides such an accounting system. 
However, the accounting information that is produced tends to overwhelm 
the smaller ( 10  to 20 megabyte) hard disks currently used on microcomput­
ers , so XENIX users may prefer to turn off this feature. Larger hard disks 
( 40 to 80 megabytes) are becoming popular . These can easily accommodate 
full use of XENIX's accounting systems . 

A Short History of UNIX 

6 

XENIX traces its history back to 1969 when Ken Thompson at AT&T's Bell 
Laboratories in Murray Hill, New Jersey, developed the first version of 
UNIX on a PDP-7 , a small minicomputer. 

UNIX was developed at a time when computer managers ,  users , and 
programmers were reeling from the complexities of large operating systems 
with complicated job control languages . Thus, Thompson tried to keep the 
system small and simple. The first versions of UNIX were single user 
systems . 

Although the first version of UNIX was written in assembly language, 
Thompson began writing parts of the system in a programming language 
that he called B. Later, Dennis Ritchie joined Thompson to develop the C 
programming language and rewrite most of the system in this new program­
ming language, providing one of the most important reasons for UNIX's  
success, namely portability. Moving the system to a new central processor 
can, to a large extent, be reduced to writing a C compiler for the new 
machine. 

Because the system was used to develop itself, an extensive set of pro­
gramming tools was produced as the system grew and matured. Instead of 
developing large general purpose tools , smaller tools were constructed. The 
system was developed to make it easy to interconnect these tools to create 
larger special purpose programming tools quickly. During this period, 
UNIX was used largely by researchers within Bell Laboratories at AT&T. 

A C compiler was included with the system so that the entire system 
can recompile itself. Editors , debuggers ,  tools for extracting information, 
and tools for producing documentation added to the self sufficiency of the 
system. 

For a long time UNIX stayed within AT&T because AT&T was barred 
by federal regulations from the computer business . However, during the mid­
dle 1 970s special arrangements were made with universities, for example, the 
University of California at Berkeley. In 1976, the first public version (version 
6) was distributed, and in 1978, version 7 was publicly released, both with 
special licensing agreements . These versions are the basis for most current 
versions of UNIX, including XENIX System V (see figure 1 - 1 ) .  



Figure 1-1 
Ancestry of XENIX 

First vers ion 
of U N I X  

Preliminaries 

Version 7 was moved by the University of California at Berkeley to Dig­
ital Equipment Corporation (DEC) VAX supermini computers. At Berkeley, 
the VAX version of UNIX developed into what is called version 3 BSD 
(Berkeley Standard) in 1979, then version 4. 1 BSD in 198 1 ,  and version 4.2 
BSD in 1984. Many features, such as virtual memory, were added for these 
larger computers . However, many other features and tools were developed, 
for example, the v i  editor and the terminal 1/0 routines, and are of univer­
sal interest. These are the so-called Berkeley enhancements that have been in­
corporated within XENIX. The Berkeley versions have been installed on 
powerful supermini computers . These machines use modern reduced 
instruction-set architectures to provide high performance for UNIX users . 
Meanwhile AT&T, after the release of version 7, moved responsibility for 
UNIX from the Research Group to the UNIX Support Group. This group 
produced System III in 1981 and System V in 1983. 

XENIX was originally based on System III, but in 1985 , it switched to 
System V and is now almost totally compatible with AT&T System V. 

7 
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A Short History of Microcomputers 

8 

At the same time UNIX was being developed, microcomputers came into 
being . At first (mid 1970s), they were considered to be mere toys created by 
hobbyists . 

Based around the first 8-bit microprocessors, the first microcomputers 
consisted of table-top boxes filled with integrated circuit boards that connect­
ed to such peripheral devices as keyboards, video screens, and cassette tape 
recorders . Often microcomputers were programmed via toggle switches on a 
front panel, at least to get them started. 

Microcomputers soon developed into useful machines for applications 
like word processing, games, and education, and business uses such as in­
ventory and accounting. These machines were called personal computers 
because they provided individuals with their own stand-alone computers for 
about the cost of an automobile . A large number of people began writing 
programs for these machines , which revolutionized the computer industry, 
bringing it much closer to the average citizen. 

Some of the first operating systems for microcomputers were develop­
ment systems that were loaded from paper tape or cassette tape into the 
memory of the machine. These usually included an editor, assembler, and 
debugger/command interpreter . Programs were saved on cassette tape. 

Later, ROM-based systems were introduced. The most popular ones ran 
an interpreter for the BASIC programming language. For these machines, 
the operating system consisted of the BASIC interpreter, with perhaps a spe­
cial machine level monitor or debugger mode. With this system, BASIC pro­
grams could be edited, tested, then run as application programs on the 
system. 

The advent of the floppy disk facilitated the development of more so­
phisticated operating systems, for example, CP/M by Digital Research. 
This operating system consists of a central core that is automatically loaded 
into the computer's  memory when the machine is first turned on. The cen­
tral core contains an I/0 system (BIOS) and a manager program (BDOS), 
both of which stay in memory while the machine is on, and a command in­
terpreter (CCP) that is often overlayed (replaced) by application programs 
loaded from the floppy disk . The command interpreter used simple but ef­
fective syntax for the time, much like that used on minicomputer operating 
systems by Digital Equipment Corporation. 

CP/M soon became the most popular operating system in the world 
with an extensive software base of applications for business, education, and 
personal use. Because it had a separately configurable I/0 section, it was 
portable to a wide class of 8-bit machines . Later, versions were developed 
for the newer 16-bit microcomputers . A multiuser version (MP/M) was also 
developed with 8-bit , 16-bit , and hybrid versions . 

Microsoft Corporation of Bellevue, Washington, became a large 
supplier of software for microcomputers by developing FORTRAN and 
BASIC compilers that ran under CP/M. Microsoft's BASIC interpreter 
served as an industry standard with a version that ran under CP/M and 
other versions and that served as complete operating systems for many oth­
er machines . 
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In the early 1980s, IBM introduced their personal computer, the IBM 
PC. This computer was and is based on the Intel 8088 microprocessor chip, 
a transition from the earlier 8-bit microprocessors to the more modern 
1 6-bit , then 32-bit microprocessors . IBM's operating system for this rna­
chin�. PC-DOS, was developed by Microsoft at IBM's request . Microsoft 
also offers its own version, MS-DOS, for compatible machines made by 
other manufacturers . 

The first version of MS-DOS and PC-DOS was very much like CP/M, 
but the second version introduced some of the fundamental features of 
UNIX. These features , including 1/0 redirection and tree-structured direc­
tory systems, are quite independent of whether the system supports a single 
user or many and show the strong influence of UNIX. 

An example of a UNIX-like feature found in MS-DOS is redirection 
through the use of less-than ( <) and greater-than (>) symbols . These sym­
bols allow a programmer and ordinary users to specify any destination, for 
example, the screen, printer , communications line, or even a disk file for 
the output of programs. The symbols also allow input to programs that 
come from any source, including the keyboard, communications line, or an 
ordinary file. In addition, we can use the vertical bar symbol ( :) to set up 
"pipelines" in which the output of one program is fed as the input to an­
other . These pipelines conveniently combine small stand-alone programs to 
form larger programs that accomplish complex tasks , such as report genera­
tors; word processing tools , such as spelling and grammar checkers ; and 
program generators .  

Tree-structured directories also are familiar to  MS-DOS and PC-DOS 
programmers . These directories allow users to organize information in 
terms of categories within categories . At each point in the tree, subdirec­
tories can be given meaningful names according to the information they 
contain. 

Microcomputers are still evolving. The recent availability of inexpen­
sive hard disks on machines like the IBM XT made possible and indeed rea­
sonable the installation of large operating systems such as XENIX. 

Newer machines use 32-bit microprocessors and a million bytes or so of 
main memory. Hard disks allow these machines to handle tens of millions of 
bytes of secondary storage. Desktop machines offer much larger capacities 
than the early minicomputers on which UNIX was first developed and are 
able to easily handle the demands of today's versions of XENIX. Still newer 
architectures for microcomputers use reduced instruction-set architectures to 
boost performances of personal work stations beyond minicomputers and 
mainframes of the past. For these systems, a UNIX-like operating system 
such as XENIX is the system of choice because of its portability and 
configurability. 

XENIX Today 

In the context of machines like the IBM XT, XENIX represents a step up 
in microcomputer operating systems over CP/M and MS-DOS because it 
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brings the minicomputer and mainframe UNIX operating system to desktop 
machines that are used by individuals . XENIX is larger and more sophisti­
cated than the earlier microcomputer operating systems , but it is smaller 
than the large mainframe operating systems.  

In fact, XENIX can be a multiuser system for individual users . I t  al­
lows a number of users to log onto the same console screen and keyboard at 
once. A couple of keystrokes allows one to flip from user to user . In that 
spirit, one person usually logs onto the system as several users , perhaps 
opening a copy of the editing program for a number of different files that 
all belong to the same project . 

The user can attach two ordinary terminals to the two serial communi­
cations lines, but a machine like the IBM XT does not support intensive ac­
tivity by more than one user at a time. Newer, faster XT compatibles and 
AT-type computers can comfortably support much more activity. Several 
implementations of XENIX, including the SCO version, are licensed for up 
to 16 work stations . 

No matter what the performance is, it is extremely convenient for a 
single user to "open" a number of windows into the system, perhaps edit­
ing several files at once and flipping to another screen to compile the results 
every once in a while . This saves time and keystrokes without putting a 
strain on the system. In addition, the user and the operating system can eas­
ily run light tasks in the background, perhaps checking a calendar or moni­
toring system activity . 

XENIX has some structural similarities with single user microcomput­
er operating systems like CP/M and MS-DOS in that it has a central pro­
gram that remains in memory at all times and a command interpreter that 
can be replaced by an application program or other system utilities like 
editors and compilers when they are invoked. In XENIX, the central pro­
gram is called the kernel and the command interpreter is called a shell. Like 
these other systems , commands can be built into the command interpreter 
or contained in system files . However, both the shell commands and file 
commands that come with XENIX are much more extensive. Of course, a 
wide variety of useful programs has been written to run under PC-DOS and 
MS-DOS on the IBM PC, XT, AT, and compatible computers , but most 
are larger applications : editors , spreadsheets, and data base programs . 

XENIX is actually compatible with MS-DOS and PC-DOS via a col­
lection of special XENIX "DOS" commands including dos l s  and dos c p  
that imitate the more general l s (list files in a directory) and c p (copy) com­
mands . These commands allow XENIX users to list directories of and copy 
files to and from MS-DOS and PC-DOS diskettes and hard disk partitions . 
It is also possible to use the excellent facilities of XENIX to develop pro­
grams that run under MS-DOS. 

Our Approach to XENIX 

1 0  

In this book, we demonstrate the wide variety o f  programming environ­
ments available within the XENIX operating system. We write shell scripts 
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in a command language of the operating system. These correspond to batch 
files in PC-DOS and "submit" files in CP/M. However, the XENIX shell 
languages are much more powerful and complete. We also create C pro­
grams and special programs in languages that are used for special utilities , 
such as the string processing tool awk, the lexical analyzer generator L e x, 
and the parser generator y a c c .  With these last two tools we are able to 
build programs that translate human language into actions a machine can 
perform. 

In each case, we take advantage of existing software and try to write 
the minimum amount of code to accomplish the job or illustrate the point . 
Using existing software has many advantages , including shorter develop­
ment time, reduced effort, and smaller programs . The results are more uni­
form and thus easier to understand and maintain. 

We are not able to cover each of the hundreds of commands and li­
brary functions in detail in a book this size. Rather, we survey the entire 
system and present certain representative areas in detail . Some of the major 
areas are: string processing commands that sort, search, and transform 
strings; terminal //0 routines that help bridge the gap between users and 
the machine, file /10 routines to manage the secondary storage; and pro­
cess control commands and routines to control how work is managed with­
in the system. We also delve into the kernel of the XENIX system, again 
studying terminal I/0 routines but at a much lower level. We finish with 
some very useful advanced programming tools that generate programs 
which recognize language and thus help to bridge the gap between humans 
and machines . 

We will see that XENIX is a system which allows new users to get use­
ful work done after a few hours of training. It normally takes a few weeks 
for users to know confidently their way around the system and perhaps a 
few months to become expert, but even after years of experience, a persis­
tent user can learn something new about XENIX every day. 

Summary 

In this chapter, we have introduced the XENIX operating and development 
system as a powerful program development environment, complete with a 
full set of program development tools . 

We have described XENIX's history, starting with the first single user 
version of the UNIX operating system in 1969 and extending through the 
latest versions of UNIX for timesharing supermini computers that led to to­
day's versions on XENIX. We have discussed also the history of microcom­
puters from their humble beginnings to today' s powerful machines that are 
fully capable of supporting XENIX. 

We have related XENIX to operating systems in general, other ver­
sions of UNIX, and other microcomputer operating systems . Finally, we 
have discussed our basic approach to XENIX in this book . 

1 1  
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Questions and Answers 

12  

Questions 

Answers 

1 .  What is an operating system and what does it do? 
2. How does XENIX compare to the CP/M operating system? 
3 .  I n  what ways i s  XENIX compatible with UNIX and PC-DOS? 

1 .  An operating system is a set of computer programs that helps 
control a computer to make it useful . At a minimum, it allows 
users to load and run programs and gives them 1/0 support. 
Often, operating systems include program development tools, such 
as editors, assemblers, and debuggers . More advanced systems 
include multitasking, which allows computer resources such as 
CPUs, main memory, and secondary storage to be shared among 
several users . 

2 .  Both XENIX and CP/M are designed to run on microcomputers. 
However, XENIX is considerably more complex and sophisticated 
than CP/M. XENIX is a multiuser system designed for modern 
and more powerful microcomputers ,  whereas CP/M is a single­
user system developed for the earlier, smaller computer systems . 
XENIX has an extensive set of system utilities , including a C 
compiler, a screen editing program, a debugging program, and 
various text processing programs . CP/M comes with a minimal set 
of utilities, including a line editing program, an assembler, and a 
debugger. XENIX has other features, such as a tree-structured 
directory system, password security, and 1/0 direction, that 
CP/M doesn't have. 

3 .  XENIX is very compatible with UNIX. XENIX is a direct 
descendant of UNIX. It is a microcomputer implementation of 
UNIX, having the same directory structure, the same extensive set 
of utilities , and the same system calls . XENIX is compatible with 
PC-DOS in that it has DOS commands to transfer files between it 
and PC-DOS. The XENIX C compiler has an option that 
compiles programs to run under PC-DOS. 
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This chapter provides an overview of a typical XENIX system in operation. 
We approach the system as a new user who sits down at a terminal and is 
given a guided tour by a more experienced user . This is a scouting trip that 
exposes most of the major areas we explore in the rest of the book. 

Our tour begins with logging in, then uses specific examples of useful 
commands and their resulting output to explain how the system is set up 
and how we can use it to develop and run our own programs as well as take 
advantage of what the system can do for us. 

We will see such commands as env (short for environment) to display 
the basic assumptions that the system makes about us . This env command 
shows such key information as our "home" directory, our "path ,"  our 
"shell ,"  and the directory for mail . We discuss each of these in detail. 

Our tour explores XENIX's tree-structured directory system, using 
such basic commands as the pwd command to show our current location, 
the lx  command to display what's there, the cd  command to move around, 
and the mo re command to display the contents of long files . We also use the 
c a t  command to display the contents of particular files and to illustrate 
how programs work in cooperation in this system through I/0 redirection 
and pipelining. 

Our tour continues into the system's security, including passwords, file 
permissions, and the superuser. Next, we see how XENIX organizes its 
work into separately running "processes . "  We use the ps command to dis­
play all the currently active processes and see how they also form a tree. 
Finally, we explore the innermost part of the system, namely its kernel, and 
see how devices are connected to the system via "device drivers" in the 
kernel. 

This chapter serves as a second level introduction to the XENIX sys­
tem by showing details of the system in operation. Most of the commands 
and terms introduced here are explored more thoroughly in subsequent 
chapters of this book. 

1 5  
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A Guided Tour 

Let's  take a tour of a XENIX system, introducing commands that help you, 
as a user, understand the what, why, and where of the system. This tour 
should be of interest even to experienced users of other UNIX-like systems 
because we present commands that check the system out, revealing the par­
ticulars of how it is set up . In subsequent chapters we explore in much 
greater detail many of the concepts introduced on this tour . 

Logging In 

1 6  

Suppose we, as new users/programmers, have been given an account on a 
microcomputer system running XENIX System V.  This particular computer 
system happens to be an IBM XT with four active console screens and an 
additional (dumb) terminal connected to a serial communications line, but 
any XENIX System V behaves in a similar manner . The differences are not 
in the commands that we issue, but only in the details of the outputs that we 
see . 

We have been given an account named i amnew and a secret password. 
Usually, accounts are given names that are related to users ' own names , 
such as their first or last names , nicknames , or initials . However, people 
often use names like wombat and s h a rk .  We can use any name we wish with 
the following restrictions : it must be at least three but not more than eight 
characters long, begin with a lowercase letter , consist of only lowercase let­
ters and numbers, and not be already in use . The password follows much 
the same rules . 

Let 's  sit down at the "dumb" terminal and learn the ropes . We begin 
with the login. When we step up to the terminal, we see the login prompt 
xen i x86! l og i n : .  The first part xen i x86 is the name of our system, and 
the second part l og i n :  invites us to log in : 

Note: The .-J symbol signifies that you press return . This symbol is used at 
the end of lines that you type. 

xen i x86 ! log i n :  i amnew� 
Password : 

We type our assigned password and press return, then we see : 



We l come to  XEN I X  System V 
fo r persona l computers  

B rought to  you  by 
The Santa C ruz Ope rat i on 

TERM = (ans i > dumb� 
Termi na l type i s  dumb 
% 

Organization 

After giving the login name, we give our assigned password (that 's  hid­
den from view) . Next the system asks for the type of terminal . We respond, 
giving dumb as the terminal type. The prompt % indicates that the system is 
ready for normal input . Different prompts normally indicate different user 
"environments" in XENIX. For example, while the system is in mainte­
nance mode, a pound sign (#) appears at the beginning of each command 
line . However, any user can change the current prompt with the p rompt 
command. 

The Environment 

Let's begin with the env command. The reason for introducing this com­
mand first is that it shows many of the basic assumptions the system is 
making about you, thus it introduces many of the assumptions that we can 
make about it . 

On many systems a command like env is unnecessary because the sys­
tem behaves essentially in one way all the time. However, XENIX, like any 
other type of UNIX system, can be initially configured in a wide variety of 
ways that control how the system first responds to you, then as you work 
with it , you can gradually modify your environment . 

Here is the output from the env command: 

% env._l 
HOME=/us r/ i amnew 
PATH= : /usr / i amnew/b i n : /b i n : /us r/b i n 
TERM=dumb 
HZ=21lJ 
TZ=PST8PDT 
SH ELL=/b i n /csh  
MA I L=/us r/spoo l /ma i l / i amnew 
TERMCAP=su : dumb: un : unknown : co#81ll : os : am 

1 7  
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Each line o f  the output displays a different environmental variable. 
We go through environmental variables in detail in this chapter . In Chapter 
5 ,  we discuss system variables in general . 

HOME 

The first variable, namely HOME, gives us a place to start when we first log 
in. It is our home directory. The directories form a tree (see figure 2- 1) .  The 
line HOME=/ u s r / i amnew specifies a path through the tree by listing a series 
of subdirectories starting from the root of the tree and ending at our HOME  
directory. 

Figure 2-1 
The HOME directory 

I -- root 

user 

iamnew -- HOME 

Our HOME directory happens to be at the third level: below the direc­
tory u s r, which is below the root of the entire system. The root itself is 
indicated by a slash (/) , and each level is separated by a slash (/) . A user's 
home directory can be placed anywhere in the tree, but it is customary to 
place user home directories under the u s r directory. 

Let's demonstrate how the l x  command displays the contents of HOME. 
At first a user's home directory contains only hidden files , so we use a spe­
cial option of the l x command to display all files . If we don't use this 
option, we see nothing . The a l l  option is indicated with a -a after the com­
mand name. 

% l x  -a.-J 
• • • •  cshrc  . log i n  

Four files . , • •  , . c s h r c ,  and . l og i n  now appear (see figure 2-2) . The 
first two names automatically occur as hidden files in every XENIX direc-
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tory. The first one • is a reference to the directory itself, and the second one 
. •  is a reference to the parent directory that, in this case, is u s r. These 
directories allow relative references to be made within the directory system. 

The third and fourth files . c s h r c and • l og i n are s c r i pt files con­
taining a series of operating system commands . They are included normally 
in a user's HOME directory when that user is added to the system. They 
can be modified subsequently by the user . These scripts are executed when 
the user logs in, which causes automatic initialization of the user ' s  
environment. 

Figure 2-2 
The contents of HOME 

I -- root 

The name l x is unique to XENIX. It is part of a family of slightly dif­
fering commands that are used to list directories, including l, l c, and the 
familiar UNIX l s command. 

The Root 

Let's apply the l x  command to the root directory of the whole system. This 
time, we follow the l x command name with the name of the desired direc­
tory, namely a slash (/) : 

% l x  /.-J 
b i n boot dev etc l i b  lost+found 
mnt once tmp us r xen i x 

This shows the top of the directory tree (see figure 2-3). 

1 9  
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Figure 2-3 
The top of the tree 

I 

b i n  boot dev etc l ib  lost + found mnt once tmp usr xen i x  

All these entries have special meaning to the system, and some have 
particular interest in this book. The directory b i n contains operating system 
commands . The directory dev contains special files connecting the system 
to its peripheral devices , such as disk drives , terminals , and printers . The 
memory of the system is even represented as a file called mem in this direc­
tory. The directory et c contains commands and data files that are espe­
cially useful to system managers . The directory l i b  contains object code 
library files that can be linked to other programs . The directory 
lost+found contains recovered files that get disconnected from the tree . 

The directory tmp contains temporary files created by various system utili­
ties . The directory u s  r contains our HOME directory. 

Finding Commands 

When we look in the b i n directory, we see some of the system commands . 
The name b i n is short for binary files. These are files that contain execut­
able machine code . That is , they contain programs already compiled and 
thus those that can run directly on the system. 

We give the pathname / b i n to the l x  command: 

% l x  /b i  n..-J 
STTY [ a db adb286 adb86 a r  as asm 
asx awk bac kup banne r basename ca l cat cb  
c c  chg rp c hmod c hown c h root cmc hk  cmp comm 
copy cp cpi o csh csp l i t  date de dd 
df d i ff  d i ff3 d i rcmp d i rname d i sab l e  dtype du 
dump dumpd i r echo ed ed i t  eg rep enab l e  env 
ex expr false fg rep f i l e  f i nd fsc k get opt 
gets g rep g rpchec k hd hd r head i d  i pc rm 
i pcs j o i n  k i l l  l l c  l d  l f  l i ne 
l n  l r  l s  l x  make masm mkd i r mv 
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nchec k newg rp n i ce n l  nm nohup od passwd 
p r  pr i ntenv ps pstat pwadm i n pwc heck  pwd ran l i b 
red regcmp resto r  restore rm rmd i r r sh  sddate 
sd i ff sed set key sett i me sh s i ze s l ee sort 
st r i ngs  st r i p stty su sum sync t a i l t a r  
tee test t i me touch t r  t rue t set t sort 
tty una me un i q  ved i t  v i  v i ew we who 
whodo xargs yes 

This long list contains just some of the XENIX commands that are 
directly available to ordinary users. 

To see some other commands, look at the environmental variable 
PATH. This contains a list of directory paths (separated by colons) that the 
system uses to search for commands that the user types in. In this case 
PATH is : 

PATH=:/us r / i amnew/bi n:/b i n:/us r/bi n 

Thus, the first directory searched is / u s r / i  amnew/ b i  n, then / b i n, then 
/ u s r / b i  n. The first is a subdirectory (if it exists) of iamnew's account, but 
the others are standard system directories filled with system commands .  

Terminal Control 

Let's  return to the environment . The next environmental variable is 
TERM=dumb. 

When we logged on, we specified a dumb terminal. In Chapter 6, we 
learn about connecting intelligent terminals that allow cursor control on the 
screen, such as those used in screen editors like v i  . The last environment 
variable TERMCAP tells the system exactly how to communicate special 
screen commands with such a terminal. 

The file t t y s  in the / et c  directory specifies the most fundamental 
things about how all the system's terminals are connected. You can obtain a 
listing by using the mo re command followed by the pathname et c / t t ys: 

more /et c /gettydefs  

The mo re command is useful for displaying large files (more than one 
screenful) . It displays a page at a time. Use the prompt at the bottom of the 
screen to indicate when you wish to proceed Gust press the space bar when 
you are ready) . With this prompt, you can also ask for help to get directly 
into such features as an editor or a search routine. Mo re is a Berkeley en­
hancement of System V.  

Here is  the result on our system: 

21 
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% more /et c /ttys� 
1 mconso l e  
1 mtty02 
1 mtty03 
1 mtty04 
0mtty05 
0mtty06 
06tty1 1 
1 ktty1 2 
01 tty1 3  
01 tty1 4 

Each line lists information about a different terminal. The first charac­
ter is either a 0 (meaning not enabled) or a 1 (meaning that the terminal can 
be used) . The second character specifies a particular type of configuration for 
that terminal. The configurations are defined in a file called get t yd e f s  that 
is also in the I et c directory. The remaining characters name the particular 
device driver to be used (discussed later in this chapter and in Chapter 9) . 

The configuration information in get t ydefs  specifies such things as 
initial baud rate, login prompt, and login program for each terminal 
communications line . You can use the mo re command on the pathname 
/et c /get t ydefs  to list these t t y  definitions . 

Our particular terminal is connected to t t y1 2 (line 8 in the t t y s  file) . 
It uses t t y  definition k, which has a 2400 baud rate among other things . 

Once you are logged in, the s t t y  command allows you to change the 
settings of your terminal line. Typing this command with the option -a (for 
all ) displays all current settings : 

% stty  -a� 
speed 2400 baud ; L i ne = 0; i nt r  = DEL ;  qu i t = � : ; e rase = �h ; 
k i l l = �u ; eof = �d ; eo l = � ·  
pa renb -pa rodd c s7 -cstopb hupc l c read -c loca l 
- i gnbrk  brk i nt i gnpa r -pa rmrk  - i npc k i st r i p - i n l c r  - i gnc r i c rn l 
-i uc l c  
i xon i xany -i xoff 
i s i g  i canon -xcase echo ec hoe echok  -ec hon l -nof l s h  
opost -o lcuc  on l c r  -oc rn l -onoc r -on l ret -of i l l  -ofde l tab3 f f 1  

Here we see among other things that the speed i s  2400 baud, the 
interrupt key is del, the erase key is control h (backspace) the kill line key is 
control u, and the end of file (end of text) key is control d. We also see that 
parity is enabled and is even ignored for input, the word length is 7 ,  and we 
are using the X-ON/X-OFF protocol. 



Keeping Time 

The next two environmental variables HZ  and TZ help keep time: 

HZ=20 
TZ=PST8PDT 

Organization 

The first one tells the system how often a timer interrupts the system to 
manage events that happen on a periodic basis, such as switching control 
from user to user to achieve timesharing . In this case, it 's  20 times a second. 
In larger systems, this rate is usually higher so that the system is interrupted 
more often. 

The second one specifies the time zone. We happen to be using Pacific 
Standard Time with Pacific Daylight Savings, which is eight hours different 
from Greenwich time. 

The Shell 

The next variable specifies the shell . A shell is an operating system com­
mand interpreter . It sits between the user and the kernel of the operating 
system (see figure 2-4) . The kernel forms the heart of the operating system 
and contains routines to manage the resources of the system, including its 
memory, CPU, disk drives , terminals , and printers . 

USER 

Figure 2-4 
The shell and the kernel 

¢::::::::::::> 0 Shell 
Commands 

SHELL 

� 
System 
Calls D 

KERNEL 

The shell understands human-generated commands, whereas the ker­
nel only understands function calls called system calls, which can only be 
invoked by programs running in the system. 

In our case, the shell is 

SHE LL=/bi n/csh  

The shell i s  a program located in  the directory / b i n and i s  named c s h . 
This is the famous University of California, Berkeley C-Shell (pronounced 
like sea shell) . 

XENIX provides a number of different shells including the standard 
Bourne shell sh ,  a visually oriented shell v s h, a restricted shell rsh ,  and a 
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special shell for machine to machine communications . However, in this 
book we use the C-Shell . It is particularly well suited to programmers be­
cause of its many interactive features , such as its ability to remember previ­
ous commands, and its rich programming structures . 

Different shells have different prompts . For example, the Bourne shell 
normally displays a dollar sign ($) and the C-Shell normally displays a per­
cent sign (Ofo) .  However, most shells allow you to change the prompt. Spe­
cial system accounts also often have distinctive prompts . 

The Berkeley C-Shell has a history feature that allows users to recall 
previous commands and parts of commands, editing them and combining 
them to form new commands . For example, if you have just typed a very 
long pathname as the argument to one command, then just a couple of 
characters ,  namely an exclamation point and a dollar sign ( ! $) invoke this 
pathname as the argument to the next command. Programmers can also use 
the history feature to short cut typing repetitious edit , compile, and testing 
commands . For example, once a command to edit a file with the v i  editor 
has been issued, then the full form need not be used again. Just typing an 
! v on a command line recalls an entire previous command line that began 
with the letter v. 

The c s h  can be used as a powerful operating system command lan­
guage with syntax like a higher level language. In Chapter 3, we write pro­
grams called scripts in this language. System administrators use scripts to 
set up complicated account systems and to monitor system behavior on a 
regular basis . Programmers can use it to process their files according to 
complicated rules . 

MAIL 

Finally, let 's  look at MA I L: 

MAI L=/usr/ spoo l /ma i l / i amnew 

This variable tells the system where to store unopened electronic mail 
for this user . Electronic mail allows users to leave notes for each other on 
the system. It is valuable on larger systems where lots of users are working 
together . It is particularly valuable when you need to communicate system 
problems to the system administrator . 

Some Key Directory and File Commands 

24 

Some commands are built into the shell , and some are contained in the 
system directories listed in the PATH variable. To read about the built-in 
shell commands , read the documentation for the c s h . To learn about the 
other commands, read about them individually in the documentation pro­
vided with your system. We now look at a number of these external file 
commands . 
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The Pwd Command 

The XENIX command pwd gives your current directory. It stands for print 
working directory. For us , right now, this command yields : 

% pwd._l 
/us r / i amnew 

In general, directory paths can either begin with the root (/) or they 
can begin at the current directory (as displayed by the pwd command) . That 
is , if you don't begin a pathname with a slash, the system in effect prefixes 
it with the output of pwd. For example 

/us r / i amnew/ . log i n  

is a long way to specify i amnew's login file, and currently 

. log i n  

is a short way to indicate the same path. 
The C-Shell permits a third method that specifies paths which begin 

with somebody's home directory. With this method you begin the path­
name with a tilde (-) . If the tilde is followed by a slash (/) , the path begins 
at your home directory. If the tilde is followed by somebody else's login 
name, the path starts from their home directory. For example: 

- / . l og i n 

and 

- i amnew/ . log i n  

both also specify i amnew's login file. 

The Cat Command 

The cat  command is useful for displaying the contents of a file . It stands 
for concatenate and is designed to combine a number of files into one. 
However, it is most often used to print a single file on the terminal screen. 

The cat  command allows us to demonstrate the important idea of I/0 
redirection. This is a powerful notion that extends far beyond this com­
mand and allows a programmer or even an ordinary user to send output to 
and receive input from any specified file or device. 

Without any parameters,  the cat  command expects input from the 
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standard input, which is normally the user's  keyboard, so whatever you 
type becomes input for the cat  command. The cat  command sends what­
ever it gets from input to the standard output, which is normally the user's 
terminal screen. The system usually saves input in buffers until you press 
the return key. This causes the cat  command to get its input a line at a time. 

Here is a sample : 

% cat.-J 
Thi s i s  what I type . �  
Th i s  i s  what I type . 
Here  i s  anot her  l i ne . �  
Here i s  anot her  l i ne .  
<cont ro l d> 

Each line appears twice: once as each character is typed and again af­
ter you press return . A control d at the end of the input terminates the cat  
command. 

In the text in the remainder of this book, we continue to show the ..,._1 
symbol at the end of every line that is typed in. 

The less-than ( <) and greater-than ( >) symbols help direct where the 
standard input is coming from and where it is to go . Other variations are 
possible, but let's stick to the basics in this chapter . 

The greater-than symbol (>) followed by a name causes the output to 
go to a file by that name. For example 

% cat >xxx� 
Th i s  i s  what I type . �  
<cont ro l d> 

sends the characters to a file called x x x.  
If we use the l x command to display our directory, we see this new file: 

% l x� 
X X X  

There are two ways to use the cat  command to display the contents of 
this file . The first uses redirection of output like this 
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cat < X X X  

and the other uses its natural default syntax: . 

cat X X X  

Here is  the result of typing the second version 

% cat xxx.-J 
Thi s i s  what I type . 

As we said previously, the cat  command is designed to combine sever­
al files into one. Thus, it expects a list of files as its parameters . For 
example 

% cat X X X  X X X  xxx.-J 
Th i s i s  what I t ype . 
Th i s i s  what I type . 
Th i s  i s  what I t ype . 

produces three copies of the line. We can store that in a file yyy with the 
following command. 

% cat X X X  X X X  X X X  >yyy 

Applying cat to the file yyy shows the three lines : 

% cat yyy.-J 
Th i s  i s  what I t ype . 
Th i s i s  what I type . 
Th i s i s  what type . 

Changing Directories 

The cd command is used to change the current working directory. For 
example 
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% cd I ,._J 

changes to the root directory. Then the pwd command gives 

and the l x command without any parameters gives 

% l x,._J 
b i n boot dev et c l i b  lost+found 
mnt once tmp u s r  xen i x 

Typing cd without any parameters returns us HOME:  

% cd,._J 
% pwd,._J 
/ us r / i amnew 

Making New Directories 

The mkd i r command allows ordinary users to make their own directories .  
For example 

% mkd i  r book,._J 

makes a new directory called book that resides under the current directory, 
namely / u s r / i  amnew (see figure 2-5) . 



Figure 2-5 
A new directory in our HOME 

I --- root 

Organization 

Then we could use cd to go to this new directory and make new direc­
tories there (see figure 2-6) . 

% cd book._l 
% mkd i r chap2._l 

Figure 2-6 
Another new directory 

I --- root 
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Combining Commands 

Notice that the output for the L x command is a simple unadorned list , plac­
ing the file names on the screen six per line. Some variations of this com­
mand, such as the more traditional L s, output the file names one per line. 

There is good reason for the simplicity of the XENIX commands . It 
allows us to combine a series of simple commands to form compound com­
mands that allow us to do some very sophisticated things . 

In Chapter 3 we write scripts that put commands together . In Chapter 
4, we describe how filtering programs can be hooked together in pipelines 
so that the output of one command is fed as input to another . This allows 
us to create large special purpose programs using small, general purpose 
programs . 

One of the basic philosophies of XENIX is to provide the right pieces 
and convenient methods for putting these pieces together so that program­
mers and other users can efficiently process textual information. 

DOS Commands 
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As we mention in Chapter 1 ,  XENIX is compatible with PC-DOS in that it 
can read and write diskettes formatted for PC-DOS. The commands 
dos L s, dos c p, and dos c at allow us to perform similar functions to the 
normal XENIX L s, c p  (copy) , and cat  commands . 

For example, the command 

dos l s  b :  

displays a directory of the PC-DOS files on a floppy diskette in drive B : ,  
and the command 

doscat b : my f i  L e . t xt  

displays the contents of  the PC-DOS file my f i  L e . t xt on drive B : .  
The command doscp  allows you to save XENIX files on PC-DOS 

diskettes and get them back again later . For example 

doscp myf i l e . c  b :  

copies the XENIX file my f i  L e  to a PC-DOS file on drive B : ,  and the 
command 

doscp b : myf i l e  
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copies that file back to the current working XENIX directory. 
Other "DOS" commands are available to add directories and remove 

files and directories . As we show in Chapter 3, it is also possible to compile 
programs so that they run under PC-DOS once they are moved to a 
PC-DOS diskette. 

Security is an important consideration in any computer system. Single user 
systems can be physically locked to restrict access to them, but larger sys­
tems require more elaborate measures . 

In larger systems we have the competing requirements of sharing re­
sources (both equipment and data) and protecting these resources from get­
ting into the wrong hands . 

Although XENIX is usually implemented on machines that have one 
or only a few users (usually one at a time) , it has the security measures of 
much larger systems that might support as many as several hundred differ­
ent users (although probably not at one time) . 

Password Security 

The first stage in security occurs at login. Here, users are required to supply 
login names (account names) and passwords . The passwords are all stored 
in a public file /et c / pa s swd that anyone can read who can get onto the sys­
tem. However, the passwords themselves are encrypted in secret codes that 
nobody should be able to read, not even the system. To see the password 
file, type: 

cat /etc /passwd 

For example: 

% cat /et c /passwd� 
root : i wk3uU i 0U j 2bU : 0 : 0 : The  Supe r User : / : /b i n / s h  
c ron : NOLOG I N : 1 : 1 : C ron Daemon for  pe r i od i c tasks : / :  
b i n : NOLOG I N : 3 : 3 : The  owne r of system f i les : / :  
uucp : : 4 : 4 : Account for  uucp 
p rog ram : /us r /spoo l /uucppub l i c : /u s r / l i b/uucp/uuc i co 
asg : NOLOG I N : 6 : 6 : The  Owne r of Ass i gnab l e  Dev i ces : / :  
sys i nfo : 3xWE3ec lmYowA : 1 0 : 1 0 : Access  to  System I nformat i on : / :  
network : NOLOG I N : 1 2 : 1 2 : Account for  ma i l prog ram : /us r / spoo l /m i cnet : 
l p : NOLOG IN : 1 4 : 3 : The lp  adm i n i st rato r : /us r / spoo l / l p :  
mo rgan : j 9J i j X7ztTR1 E : 201 : 51 : C  s he l l  ac count : /us r/mo rgan : /b i n / c s h  
i amnew : j 9N4G rb i Rnh/6 : 202 : 52 : Demonst rat i on : /us r/ i amnew : /b i n / c s h  
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guest : j 9c2 . gYbQBzkE : 203 : 52 : Guest Account : /u s r /guest : /b i n/ rsh  
smi t h : j 9c2 . gYbQBzkE : 204 : 50 : J ohn Smi t h : /us r/sm i t h : /b i n/sh  

You can see that this file contains a number of  entries , each with a 
number of fields (separated by colons) . Many of these entries belong to the 
system itself. For example, root is the login name of the superuser (normal­
ly the system administrator) and b i n is the owner of the system files . There 
are also entries for normal users such as mo rgan and i amnew. The entries in 
this file list the user's  login name, the password (encrypted) , the user's  iden­
tification number, the user's group identification number, a comment (lim­
ited to 20 characters) , the user's home directory, and login shell. 

The system encrypts the user's original password to give a sequence of 
characters that are stored in the password file right after the user's login 
name. When the user logs in, the system encrypts the password that the user 
gives in response to the password prompt. It compares the result with the 
encrypted password in the password file. If these two encrypted passwords 
agree, the user is permitted to use the system. A delay is built in so that an 
unauthorized user cannot easily use programs (as , for example, one used in 
the movie War Games) that repeatedly try different combinations to get 
into the system. 

If more security is needed, the password can be set up so that the user 
is forced to change it periodically. 

Groups 

Each user belongs to one or more groups . A group is a collection of users 
who needs special access to a set of common files . For example, all pro­
grammers working on the same software project might belong to the same 
group. Groups can be created by the system administrator. 

The user's primary group is specified in the password file, but a user 
can belong to a number of different groups. A public file /et c /g roup spec­
ifies group memberships .  That is, this file gives each group and the login 
names that belong to it . You can view this file with the command: 

cat /et c /g roup 

Here is the result: 

% cat /etc/g roup� 
root : x : 0 : root 
c ron : x : 1 : c ron 
b i n : x :3 : b i n , l p  
uucp : x : 4 : uucp 
asg : x : 6 : asg 
sys i nfo : x : 1 0 : uucp 
network : x : 1 2 : network 



g roup::50:demo , cdemo , vdemo , smi t h  
morgan::51 :morgan 
l ea rne r::52:i amnew , guest 

Organization 

Groups may be given passwords (the second field) , but this is not real­
ly necessary, nor is it desirable. Each group has a group identification (id) 
number (third field) . The fourth field specifies the members of that group. 

File and Directory Security 

Each file and directory on the system is assigned a special computer word 
that contains protection bits. Each file and directory is also assigned an 
owner and a group membership. In Chapter 7, we see how these protection 
bits , ownerships ,  and membership information are stored within the file 
system. 

To view the protection bits and ownerships , we use the - l  option (/ for 
long display) of the l s  command. Let's use the cd  command to move back 
to our HOME directory and see how the - l  option of the l s command dis­
plays this information. This time we type both commands on the same line, 
separating them with a semicolon: 

% c d ;  l s  - l,._J 
tota l 6 
d rwx r-x r-x 3 
- rw-r--r-- 1 
- rw-r--r-- 1 

i amnew 
i amnew 
i amnew 

l ea rner  
l ea rner  
l ea rner  

48  Apr 6 1 9:59 book 
28 Apr 6 1 9:51 X X X  
84 Apr 6 1 9:54 yyy 

The first column contains a ten-letter string that displays the file type 
and protection bits in human readable form. The file type indicates which 
files are directories and which files contain actual information.  For the first 
character, the d represents directories and a hyphen (-) represents ordinary 
files . The next three characters give read, write, and execute permissions ( r, 
w, and x) for the owner of the file . After that come three characters giving 
the read, write, and execute permissions for members of the file's group, 
and the last three characters for all others. A hyphen ( -) means no permis­
sion and the corresponding r, w, or x means that permission is granted. 

The third column gives the ownership of the file, and the fourth col­
umn gives its group membership. For example, the file x x x  belongs to user 
i amnew and to the group l ea rne r. The file x x x  has read and write permis­
sions for the owner (in this case i amnew) ,  but only read permission for 
members of the file's  group l ea rne r and all others . 

For ordinary files , read, write, and execute permissions are fairly obvi­
ous . That is , read permission allows one to read and copy the file, write 
permission allows one to modify it or delete it , and execute permission al­
lows one to execute it as a command. When you try to use a file that you 
don't have access to, the usual response is pe rmi s s i on den i ed. 

33 



Inside XENIX 

34 

For directories , read permissions allow the l x or l s type of commands 
to work, write permissions allow commands like mkd i r and c a t  > x x x  to 
work within that directory, and execute permissions allow the cd command 
to work on that directory and allow you to use that directory in a path to a 
command. 

Here are some more observations . If you own a file that has permis­
sions like --- rwx rwx,  you do not have read, write, or execute permissions 
to it, even if you belong to the same group that it belongs to . Likewise, if 
you do not own a file whose permissions are rwx--- rwx,  but belong to the 
group that it belongs to, you don't have any access to it . 

You might wonder why so many different kinds of permissions are 
necessary. The answer is that just about everything in XENIX, including 
text files , binary files , directories , and devices , appears as a file within one 
big tree . This permission scheme gives us the flexibility we need to individu­
ally control the various types of access by the various types of people to all 
of these kinds of files . 

Here are some examples : files that contain programs for system com­
mands should be executable by all , but readable and writeable only by a 
system account ( root or b i n) .  Public files that contain system data should 
be executable by nobody, writeable by a system account, and readable by 
all . My private text files should be readable and writeable only by me, exe­
cutable by nobody, and so on. 

When you create files and directories , several things determine their 
ownership , membership, and permissions . One is the corresponding owner­
ship, membership, and permissions for the directory in which the file or di­
rectory sits , another is the identity of the person making the change, and 
another is that person's uma s k. 

The Umask 

The uma s k  is a variable that controls the protection bits . It determines 
which protection bits get automatically turned off when you create a new 
file or directory. The uma s k  command allows a user to display his or her 
uma s k  variable . The command 

umask  

by itself displays the user's  uma s k  variable as three octal digits , the first of 
which controls the user 's  permissions , the second of which controls the 
group permission, and the third of which controls the permission of all oth­
ers . Octal digits are used because they encode bits in threes corresponding 
to the three kinds of permissions (namely, read, write, and execute) for each 
class of user . The nine bits in these three octal digits correspond to the nine 
different permissions for the file. For each bit , a one in the uma s k  turns off 
permission, and a zero leaves it alone. 

For example: 



% umask.-J 
022 

Organization 

The 0 on the left indicates that directories and binary files are created 
with full permissions, nothing turned off. The two 2s (binary 010) indicate 
that write permissions are turned off for both group members and others . 

When followed by an octal number, the uma s k  command also allows 
the user to change his or her uma s k. For example 

umask  077 

causes files and directories to be created with no permissions for group 
members or others, and 

umask  624 

causes files and directories to be created with no read or write permissions 
for the owner, no write permission for the group, and no read permission 
for others . Although the system allows this last choice, it is unlikely that 
anybody would use it . 

The Chmod Command 

The c hmod command allows users to change permissions for files . It can be 
used in a variety of ways to add, subtract, or simply specify owner, group, 
and other permissions for a specified file. However, only the owner (and 
the superuser) can use this command. 

Here are some examples of its use . The command 

c hmod +x mys c r i pt 

gives execute permissions to the owner , group , and all others . The 
command 

c hmod o-x mysc r i pt 

(that's  the letter o for others) takes execute permission away from others . 
The command 

chmod g-x mys c r i pt 

takes execute permission away from the group. The command 
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chmod u= mys c r i pt 

takes all permissions away from the user, whereas the command 

chmod u=wx mysc r i pt 

gives just write and execute permissions to the user . The permissions can 
also be given as three octal digits. For example, the command 

chmod 700 mysc r i pt 

gives all permissions to the user, but none to anybody else. 

The Superuser 

There is a special login name root that has very special privileges on the 
system. The password to this account should be guarded very carefully be­
cause the superuser has permission to read or write any file or directory in 
the entire system. The superuser can also shut down the system at any time. 

The superuser account is created when the system is first set up . If you 
know the superuser's  password, you can either log in as the superuser in the 
ordinary way, log into maintenance mode as the system is booted up, or use 
the su (switch user) command to become the superuser from any ordinary 
account. 

Processes 
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Every job that XENIX does is broken up into processes. These are running 
programs that are directly managed by the system. Processes are normally 
associated with the execution of a particular command. 

To see the processes that are currently running, type the ps (process 
status) command. This command has a number of useful options . The e 
option shows every process, and the f option shows a full listing. Here is 
the result : 

% ps -ef._l 
U I D  P I D  PP I D  c SliME TTY TIME  COMMAND 

root 0 0 3 Dec 31  ? 0:01 swappe r 
root 1 0 0 Dec 31 ? 0:02 /et c / i n i t  
root 31 1 0 1 3:1 1 :33 co 0:1 1 -sh 

morgan 32 1 0 1 3:1 1 :34 02 0:1 7 -csh 
root 1 8  1 0 1 3:1 1 :04 ? 0:04 /et c /update 

lp  23 1 0 1 3:1 1 :20 ? 0:02 /us r/ l i b/ lpsched 
root 27 1 0 1 3:1 1 :27 ? 0:03 /et c / c ron 



morgan 33 
root 64 

i amnew 56 
root 78 

morgan 42 
morgan 80 
i amnew 86 

1 0 1 3 : 1 1 :34 03 0 : 1 8  -csh 
1 0 1 3 : 45 : 26 04 0 : 04 - tty04 m 
1 0 1 3 : 39 : 57 2a 0 : 1 7  -csh  

31 0 1 3 : 56 : 04 co 0 : 05 v i ew /et c /passwd 
32 0 1 3 : 1 5 : 33 02 0 : 02 sh  

Organization 

33 0 1 3 : 58 : 40 03 0 : 02 more /us r/sys/ conf/ c . c  
56 1 4  1 4 : 00 : 57 2a 0 : 1 3  ps -ef 

This particular form of the ps command shows the login names of 
each process ,  the identification number of each process (PID), the identifi­
cation number of the process' parent process (PPID) , and what command 
is being executed. 

Let's trace the ancestry of these processes (see figure 2-7) . Process 
number 0 is running the swapper and belongs to the root (superuser). It is 
the first process created in the system when it is "booted up . "  The next 
process (id number 1 )  runs the program / et c / i  n i t .  This process parents 
many other processes including ones that run such system tasks as the print­
er l p s c hed and the master calendar c ron as well as user shells . For exam­
ple, process number 23 is running the printer, process number 27 is running 
c ron, process number 3 1  is running the standard shell for root on the con­
sole, process number 32 is running the C-Shell for mo rgan on the second 
console screen (TTY 02) , process number 33 is running the C-Shell for 
mo rgan on the third console screen (TTY 03) , and process number 56 is run­
ning the C-Shell for i amnew on the serial port (TTY 2a) . 

Figure 2-7 
Ancestry of some processes 
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Some of the shell processes have launched other processes . For exam­
ple, process 3 1  has a child number 78, which is using v i ew on the password 
file . The ps command itself is being run by process number 86, which be­
longs to process number 56. 

It is possible for a user to launch a number of processes from the same 
terminal screen by creating background tasks . To launch a background 
task, just type an ampersand (&) at the end of the command line. For exam­
ple, the command line: 

% c c  myprog ram . c  &� 

causes the C compiler c c to compile a program in the background, allowing 
you to run the shell in the foreground. Here is a sample of how that works : 

% c c  s howenv . c  &� 
1 1 4  
% ps� 
showenv . c  

P I D  TTY TIME COMMAND 
40 2a 0 : 22 c sh  

1 1 4  2a 0 : 01 c c  
1 1 5  2a 0 : 1 2  p s  
1 20 2a 0 : 02 Ld  

% ps� 
PID  TTY T IME COMMAND 
40 2a 0 : 22 c sh  

1 1 4  2a 0 : 01 c c  
1 21 2a  0 :  1 2  ps 
1 20 2a 0 : 1 8  Ld 

% ps� 
PID TTY TIME COMMAND 
40 2a 0 : 22 csh  

1 22 2a 0 : 1 0  ps  

We first type the command cc  showenv . c & to  compile a C program 
that is presented in Chapter 5 .  Because we finished the line with the amper­
sand (&) , that line was executed as a background task. As soon as c c  start­
ed, its process id was printed on the screen and the shell prompt % appeared , 
letting us know that we could type the next command. Then we typed ps as 
a foreground process to monitor the system. Meanwhile, the c c  command 
reported the file that it was working on. Then looking at the output of the 
ps command, we saw that the c c command was still running. In fact, it had 
launched another process (pid 120) to run the ld (linker) . As soon as the ps 
command is  completed, we typed another ps command, but the situation 
had not really changed. A third ps command shows us that c c  has finished. 



Organization 

In Chapter 8 ,  we discuss processes in more detail , showing how any 
process can spawn new processes and how one process can synchronize with 
another one. 

The Kernel 

As its name implies , the kernel of XENIX is the central program of the op­
erating system. It consists of a collection of routines and data structures 
that are permanently housed in the computer's  main memory and per­
form XENIX's most basic business . This includes allocating and schedul­
ing resources , such as the CPU, the memory, and the floppy and hard 
disks . It also contains device drivers that perform lower level tasks , such as 
transferring data between the computer and its peripheral devices . 

Entry Points 

One way to understand the kernel is through its "entry points" (see figure 
2-8) . These provide access to the majority of its functions and thus define 
the kernel in terms of the services that it performs . 

Figure 2-8 
Entry points to the kernel 
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Hardware 

The kernel's entry points fall into three major categories : system calls , 
hardware service requests, and error conditions . All three types of entry 
points are handled by interrupts. An interrupt is an event that causes the 
computer to stop what it is doing and perform some special processing task . 
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Because its entry points are handled by interrupts, the kernel can be thought 
of as an event-driven or interrupt-driven program. 

System Calls 

Let's begin with the system calls . XENIX has about 70 system calls . They 
include: e x i t ,  s t a t ,  u s t a t ,  c h mod, open, c l o s e , w r i t e, geteu i d, 
get u i d, get g i d, get eg i d, exec ve, f o r k, get p i d, k i l l ,  wa i t , pau s e, 
and s i gna L .  We use these directly in our C programs throughout the rest of 
this book . XENIX has a host of other calls that support other commands at 
higher levels in the system. 

System calls allow applications and systems programs to request such 
services as file transfers and program control. 

System calls serve as an interface between "outer" parts of the system, 
namely user and system programs, and the "inner" parts of the operating 
system, namely the kernel . That is , they provide entry points from applica­
tions and system utility programs to routines that sit within the kernel of 
the operating system. An application program connects to these system 
calls via libraries that are automatically linked to the program when it is 
compiled. 

To see a list of all the routines and tables in the kernel, use the nm com­
mand on the file / xen i  x. This -file contains a machine code copy of the ker­
nel . The command name nm stands for print name list. It extracts symbol 
names from object files . Such files are not directly readable by humans, but 
the nm allows you to "peek" inside in spite of this . The -n option places the 
output in increasing numerical order according to its address: 

nm -n / xeni x 

Some of the output of this command is 

003f : 1 9ba T start 
003f : 1 c8c T __ i d l e 
003f : 1 ca6 T __wai t loc 
003 f :  1 cb1 T __ save 
003 f : 1 d0d T __ resume 
003f : 1 d56 T __ set j mp 
003f : 1 d83 T __ Long j mp 
003f : 1 da4 T __gct i me 
003f : 1 da8 T __ sp l0 
003f : 1 da8 T __ taskt i me 
003f : 1 dae T __ sp l 1  
003f : 1 db4 T __ sp l2  
003f : 1 dba T __ sp l3 
003f : 1 dc0 T __ sp l4  
003f : 1 dc6 T __ sp L S  



003f : 1 dc c  T _sp l6  
003 f : 1 dd2 T _sp l7 
003f : 1 de0 T _sp l x  

Hardware Interrupts 
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Under XENIX (as with most multiuser systems) , the majority of devices 
pass data to and from the computer via hardware interrupts . These are 
hardware signals that alert the CPU when a device is ready for attention. 
Having the devices signal for attention in this way provides a convenient 
method for allowing the various user devices to function independently 
while the computer goes about its normal business . 

An Example 

Let's see what happens when a user presses a key on a keyboard. (A similar 
thing happens when a printer, disk, or communication line is ready to make 
a transfer of data.) Suppose that we are running a program which is expect­
ing a line of input from the keyboard (having made a system call) . This pro­
gram could be a shell or some application program. 

While the program waits for our input, it "sleeps,"  allowing other 
processes in the system to do their work. When we press the a key on the 
keyboard, the keyboard hardware generates an interrupt that causes the 
CPU to stop whatever it is doing and execute a special interrupt service rou­
tine . This routine moves the ASCII code for this key from a keyboard hard­
ware register to a keyboard buffer (actually a series of buffers) . The CPU 
then returns to what it was doing before it was interrupted. This happens 
each time you press a new key until you press return . At that point, the 
interrupt service routine "wakes" up the program that was waiting for the 
input. Our program then grabs the entire line of input from the system's 
buffers and begins to process it . 

Hardware Entry Points to the Kernel 

These hardware interrupts provide another set of entry points to the kernel. 
That is , when the CPU receives such an interrupt signal, it immediately be­
gins to execute some code that sends it into the kernel. 

Whenever a device is ready to transfer data, a hardware interrupt is 
generated that causes the CPU to stop what it is doing (perhaps in the mid­
dle of another user's program) and begin to execute a special service routine 
to handle the transfer . This service routine resides within the kernel and 
usually belongs to a particular device driver. When the action is completed, 
the CPU normally returns to what it was doing before the interrupt . 

While the interrupt is being serviced, the system is in what is called in­
terrupt time. During this time it is in the kernel but not under control of any 
particular user . As a rule, the process that is responsible for the interrupt is 
not the process that was interrupted. 

Interrupt service routines should act quickly and only when work can 
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actually be performed. If a buffer is too full or if the device is otherwise 
busy, the service routine returns (quits) instead of actively waiting or even 
sleeping . This allows other routines in the kernel and other user processes to 
proceed, perhaps emptying buffers or performing other useful work while 
the devices recover from their last actions . Once they have cleared, these 
other routines can directly call the interrupt routine to finish its business .  

In addition to the peripheral devices that may generate hardware inter­
rupts , a clock (actually a timer) interrupts the CPU on a regular basis . This 
entry point allows XENIX to manage a number of different activities , such 
as scheduling processes and updating internal statistics ,  that have to be 
done on a regular basis .  This prevents any single process from "hogging" 
the CPU. Without such an interrupt , multiuser timesharing would not be 
possible . 

Devices 

For our purposes , a device is a piece of hardware that generates and/ or 
consumes data. Examples include terminals , printers, modems, and disk 
drives . 

Each device that is to work with a XENIX system requires a device 
driver . A device driver consists of a set of routines and structures that han­
dle the lowest or most device-dependent parts of the job of exchanging data 
between the device and the more central parts of the computer , namely the 
memory and CPU. As we see in Chapter 9, you can install your own set of 
device drivers to customize the system to suit your own needs . 

A XENIX system often comes with a rather complete set of device 
drivers . With the SCO distribution of XENIX for an IBM XT, there are 
drivers to handle four console screens on the monochrome or color display, 
a printer on the parallel port , other printers , two terminals or two modems 
on the serial ports (or one each) , two floppy disks, and two hard disks . 

A XENIX system has two types of device drivers : block-oriented device 
drivers and character-oriented device drivers . The file / u s  r I s y s l  conf  I c .  c 
contains a list for each in the form of a table . These tables are stored as sepa­
rate structures within the kernel and contain the addresses of certain key rou­
tines and data structures belonging to these drivers . You can obtain a listing 
by using the mo re command followed by this pathname: 

mo re /usr/sys/conf / c . c  

Block-oriented device drivers are those for which data is transferred to 
applications and system programs in fixed size blocks . For example, a flop­
PY or hard disk normally is organized as an array of physical blocks (see 
figure 2-9) . Any read or write operation is physically implemented, at least 
at the lowest levels , as transfers of entire sectors between memory and the 
disk. That is, even to transfer a single byte, a whole sector must be moved. 

Character-oriented device drivers allow arbitrary numbers of bytes to 
be transferred at one time (see figure 2- 10) .  Character-oriented drivers are 



Figure 2-9 
Sectors on a disk 
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normally used for such devices as printers and terminals , but with the prop­
er buffering, even disks can be handled by character-oriented drivers in ad­
dition to their more fundamental block-oriented drivers. 

Figure 2-10 
Character-oriented devices 

Each installed device is connected to the system via a special file in the 
directory system. These device files are normally kept in the I dev directory, 
right under the root of the directory system. Each special file has permis­
sions , an owner , a group, a date of creation, a date of modification, and so 
on, just like an ordinary file. However, instead of having a byte count, it 
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has two special device numbers : a major device number and a minor device 
number. Also, it has a file type of either b for block-oriented device drivers 
or c for character-oriented drivers . 

The major number corresponds to the row position of the device driver 
in the device table specified by the configuration file c .  c. The minor num­
ber is used by the driver routines themselves to determine which particular 
copy of the device is being referenced. 

For example, applying the l s  - l  command to the path /dev / t t y 1 1 
might yield the following output on the screen: 

c rw-rw-rw- 2 root root 5 ,  0 Oct 21 22 : 1 8  t t y1 1 

The c in column 1 indicates that this is a special device file that con­
nects a character-oriented device with the system. The 5 toward the middle 
where the byte count normally appears is the major number, and the 0 fol­
lowing it is the minor number. 

Likewise, applying the l s  - l  command to the path /dev / t t y1 2 might 
yield: 

c rw--w--w- 2 i amnew lea rne r 5 ,  8 Apr 8 1 6 :35  tty1 2 

Here, the file type is c (for character-oriented) , the major number is 5, 
and the minor number is 8. 

In Chapter 9, we study the kernel and its device drivers in more detail 
and show how you can develop and install your own device driver . 

Summary 
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In this chapter, we have taken a tour of the system to introduce you to the 
general "lay of the land" and given you practical experience with actual 
XENIX commands . We began with how to log in and explored such topics 
as the environment, the tree-structured directory system, the command 
shell, I/0 redirection, system security, the kernel, and device drivers .  

In  subsequent chapters, we explore many of  these issues in  detail . We 
explore system variables (including the environment) in Chapter 5, screen 
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and keyboard 1/0 in Chapter 6, files and directories in Chapter 7 ,  process 
control in Chapter 8, and device drivers in Chapter 9.  

Questions and Answers 

Questions 

Answers 

1 .  
2.  

3 .  

4 .  

How long can a XENIX login name be? 
How can you find out how a XENIX user has configured his or 
her environment? 
How can you see what files and directories are located directly 
under the root? 
How can you see the name of your current directory? 

5 .  
6 .  
7 .  
8 .  

Can an ordinary XENIX user make new directories? If  so ,  how? 
What does c a t  stand for? What can you do with this command? 
How can you see what processes are running on a XENIX system? 
How can you see what devices are connected to your XENIX 
system? 

1 .  
2 .  

A XENIX login name can be as long as eight characters . 
Typing the env command shows your current environment. You 
can also examine a user's • l og i n and . c s h r c script files to see 
how his or her environment is initialized. 

3 .  Typing l x I displays the files and directories directly under the 
root. For more information about these files and directories ,  type 
l I .  This gives a "long" listing. 

4 .  The pwd command prints the path to your current directory. This 
path is a list of directories through the directory tree from the root 
to your current directory. 

5 .  Yes, an ordinary user can make a new directory. I f  you are 
currently in a directory for which you have write permission, 

% mkd i r name._l 

creates a new subdirectory with the name name. 

6.  Cat  stands for concatenate. This command can be used to display 
the contents of text files . As the name implies,  it concatenates the 
contents of one or more files , sending the result to the standard 
output. With 110 redirection this command can be easily used to 
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save text from the keyboard to a specified file or send the 
concatenation of several files to one file . 

7 .  The ps command can be  used to display information about 
processes currently running on the system. The -ef  option shows 
a fair amount of information about each process on the system. 

8 .  The command 

% l s  - l  /dev.,._J 

displays a long listing of the device directory that contains files 
which represent each active device driver on the system. 
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Programming Tools in  XEN IX 

This chapter introduces the excellent fundamental programming tools pro­
vided by XENIX. XENIX programmers can use these tools to good advan­
tage to edit, compile, debug, and manage their program development in the 
C programming language. XENIX programmers can also use the C-Shell as 
a powerful command interpreter and even develop sophisticated applica­
tions programs using it . 

Editing programs is essential to a good programming environment. 
In this chapter we introduce the v i  screen-editing program with a subset 
of its most powerful commands so that you can create and modify your 
programs . 

The operating system itself should be programmable . In this chapter 
we show how to write script files that consist of operating system com­
mands housed within modern program control structures . 

Debugging is also important. Often the fastest way out of a program­
ming mess is to see exactly what the program is doing at the lowest levels . In 
this chapter, we show an example of this for the a db debugging tool. 

Developing large programs often involves putting together a number 
of different source files that generate a number of intermediate 

·
files . Some­

times the situation becomes complicated, involving repetitious actions . In 
this chapter, we introduce the ma ke program manager that automates the 
process of putting together large programs . 

Overview 

The XENIX System V is a very powerful programming environment. With 
it, a single user can have a number of screens open into various parts of a 
programming project and use sophisticated tools to control the project, 
such as editors, compilers , interactive and batch command interpreters , 
debuggers , language analyzers ,  and updating mechanisms . 

From the main keyboard, we can use function keys to select instanta­
neously among four or more screens. This multitasking approach is very 
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useful when you have a number of different files that are being put together 
to form an entire program. A good example of this occurs when you use 
several different compilers on different files that comprise the entire job .  In 
that case you can open a separate screen for each source code file and 
another to run the compilers and test the results . As we see in Chapter 10 ,  
this situation is  quite possible even for small programs because of the rich 
variety of different and yet interrelated programming tools available with 
the XENIX programming environment . 

Editing with Vi 
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An editing program is one of the most important tools that a programmer 
has . It should allow the programmer to display and enter and modify pro­
gram and data text . 

The main editor on the XENIX system is called v i ,  which is short for 
visual editor. V i  is a screen editor . It displays a portion of the text on the 
screen and allows the user to move a cursor around to edit any part of it . 
Furthermore, v i  has a rich set of commands (more than are needed even by 
experienced users) . We examine a subset of all these commands in enough 
detail to edit files in an efficient manner . 

V i  is an extension of a line editing program called e x  • There is another 
line editing program called ed . However, we wish to take advantage of the 
screen editing available with today's microcomputer systems . 

V i  has three or so modes of operation, including a screen command 
mode, an ex command mode, and an insertion mode . You can tell when 
you're in the ex mode because a special command line appears at the bot­
tom of the screen with a colon at the extreme left side . However, immediate 
recognition between the other two modes is a problem because no visual 
clues distinguish them. Pressing escape safely takes you to command mode 
when you lose track of which of the two modes you are in. 

V i  can be configured via system files to work with most any terminal 
or terminal emulator to take advantage of arrow keys and screen com­
mands , such as clear screen, clear line, insert line, and cursor movement. 

Entering and Exiting 

To edit a file under v i ,  type the line from the shell : 

% v i f i lename.-1 

where f i L e n  a me is the name of the file that you want to edit . It is also pos­
sible to enter v i  without giving a file name. 
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entering and exiting vi 

vi.-J 
vi filename.-J 
escape 
:q.-J 
:q! .-J 
:wq.-J 
zz 

enter vi, editing no file 
enter vi , editing filename 
return to command mode 
exit vi , making no changes 
exit vi, forgetting all changes 
save changes, then exit 
save changes and exit 

You can exit v i  in a few different ways, but you must be in command 
mode first . (Just press escape first) . To quit without changing anything, 
press the colon (:) key, then the q, then return. This won't work if you have 
changed anything in the file . If you really want to quit and ignore all 
changes, then type : q ! , then return. Incidentally, pressing : puts you into the 
ex  line editor mode (for one command line' s  worth of commands) . 

To save your work and quit, type ZZ (two uppercase zs) . If you see 
ZZ on the screen, you are in insert mode, not command mode. If this hap­
pens, press backspace a couple of times to remove the ZZ, press escape to 
return to the command mode, then type ZZ. ZZ won't appear on the screen, 
but you eventually see the familiar % or $ prompt indicating that you are 
back in the c s h  or s h  shell program. 

Cursor Commands 

Once in v i  you are in the screen command mode. That is , you can move the 
cursor around the screen (and the file) and you can invoke various other 
modes such as the ex  and insert modes . 

cursor commands 

h character left 
1 character right 
j line down 
k line up 
4h four characters left 
41 four characters right 
4j four lines down 
4k four lines up 
backspace character left 
space character right 

line up (to beginning of line) 
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line feed line down 
return beginning of next line 
w word right 
b word left 
e end of word 
0 beginning of line 
$ end of line 
H upper left corner of screen 
L lower left corner of screen 
control f forward one screen 
control b backward one screen 
230 go to line 23 
control g display current line number 

The four keys h, j ,  k,  and I (lowercase) are the standard way to move 
the cursor . In the screen command mode, h moves the cursor left, j moves it 
down, k moves it up , and I moves it right . However, the system often can be 
programmed to allow the arrow keys to be used as well . Other keys help, 
too. For example, backspace moves the cursor to the left, space moves it 
right, the - key moves it up a line, linefeed command moves it down a line, and 
return moves it to the beginning of the text on the next line. 

Some keys give word-oriented cursor motions . For example, w moves 
the cursor forward to the beginning of the next word in the file, b moves the 
cursor backwards one word in the file . In both cases the cursor lands on the 
first letter of the word. To get to the end of the next word, use an e .  

The keys 0 (zero) and $ move the cursor to  the beginning and end, 
respectively, of the current line. 

Some keys are page-oriented. For example, H moves the cursor to the 
"home" position (upper left corner of the screen) and L moves the cursor 
to the lower left corner of the screen. Control f moves forward one screenful 
and control b moves backward one screenful. 

The G key (uppercase) moves to a designated line in the file. Just type 
the line number first, then a G. The cursor moves to the beginning of that 
line. Control g displays the current line number at the bottom of the screen. 

Entering Text 

When you first enter v i , you cannot immediately begin entering text, but 
there are a number of keys you can press to get into text entry mode. The i 
key causes text to be inserted before the character where the cursor is now. 
The a key causes text to be appended after the character where the cursor is 
now. Capitalizing these commands causes text to be inserted (in the case of 
I) or appended (in the case of A) with respect to the whole current line. 



entering text 

insert before current character 
a append after current character 
I insert at beginning of line 
A append after end of line 
o open line after current line 
0 open line before current line 
escape exit insert mode 

Programming Tools 

The o and 0 keys open up new lines . In the case of o ,  the new line is 
appended after the current one. In the case of 0, a new line is inserted 
before the current one. In both cases , you enter the insert mode in which 
the keys you press are entered directly into the file. 

To exit the insert mode, press escape . If you don't want to be in insert 
mode but are not sure whether you are, you can always press escape to get 
back to the screen command mode. 

Removing and Copying Text 

removing and copying text 

X remove cursor character 
lOx remove ten characters forward 
X remove previous character 
lOX remove ten previous characters 
dw remove rest of word 
dd remove current line 
dO remove beginning of line 
d$ remove end of line 
yw yank rest of word 
yy yank current line 
yO yank beginning of line 
y$ yank end of line 
4dw remove four words 
4dd remove four lines 
4yy yank four words 
4yd yank four lines 
4"adw remove four words and put in buffer a 
4"bdd remove four lines and put in buffer b 

53 



Inside XENIX 

54 

4"ayw 
4"byy 
rna 
d'a 
y'a 
cw 
r 

u 
p 

yank four words into buffer a 
yank four lines into buffer b 
mark position a 

delete from current position to a 

yank from current position to a 

change word 
replace character 
undo changes 
put text 

V i  maintains some hidden buffers where it holds text that you have 
removed. You can also copy text into these buffers without removing the 
text from your file. 

From screen command mode, you can remove the character on the 
cursor by pressing x or the character before the cursor by pressing X. If you 
type a number first, the system removes that many characters . 

To remove a word, place the cursor on the first letter of the word, 
press d,  then w. To remove the current line, press d ,  then d .  To remove the 
beginning of a line, press d, then 0 (that's  zero) . To remove the rest of the 
line, press d ,  then $ .  This is part of a larger picture in which the letter d is 
followed by a command to move the cursor . 

The y key stands for yank. This key places text in the delete buffer with­
out removing it from the file. Just like the d key, it is followed with a second 
key that specifies the range of characters affected. For example, yy yanks the 
line, yw yanks the rest of the word, and y$ yanks the rest of the line. 

Both the d and y keys may be preceded by a count that multiplies their 
effect, and they can be directed to place their text into any one of 26 special 
buffers labeled by the letters a through z. For example: 

2"add 

deletes two lines and stores them in buffer a. Furthermore, successive (unla­
beled) deletes (and yanks) are stored in a queue of buffers labeled 0 through 
9 so that they can be recovered later (as we shall see through the use of the 
p command) . 

The m command marks a position in the text . For example ma places a 
hidden mark a at the current cursor position. You can go back to this posi­
tion later by typing 

• a  

However, m is perhaps more useful in conjunction with a d or y com-
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mand. For example, moving the cursor to the beginning of a block of text , 
marking it with an rna, then moving to the end of the block and typing 

d ' a  

deletes it . 
The c key stands for change. It works in a similar way to that of the d 

and y keys as far as the range of text that is affected. For example, to 
change a word, place the cursor at the beginning of the word, type c, then 
w. A $ sign appears at the end of the area that is to be changed. You can 
finish your changes by pressing escape . 

To remove the effects of the last insert or delete command, press u .  To 
replicate the last insert or delete command, press . (that's  a period) . 

The p key is used to put text back into the file that has been re­
moved or yanked previously. Pressing p places the most recently removed 
or yanked text into the file at the position starting after the cursor . 

You can use the p command to place text from the labeled buffers into 
the file. Thus, you can use the d or y commands to save a section of text 
into a labeled buffer, then use the p command to place text wherever you 
want Gust move the cursor there first) . 

Reading or Writing to Other Files 

The commands r and w allow text to be read and written from and to other 
files . They are ex commands ,  so you type a colon first , which appears at 
the bottom of the screen, as does the rest of the command. 

reading and writing to other files 

:r xxx.-J 
:w,._l 
:w xxx..._l 
:20, 30 w xxx.-J 

read in contents of file xxx 
save current file 
save current file in file xxx 
save lines 20-30 in file xxx 

For example, : r xyz  reads the contents of the file x y z  into the current 
file at the current cursor position, and the command : w x x x  writes the con­
tents of the current file to the file x x x. You can precede the w with a range 
of line numbers such as 3 1  6. For example 

: 3 1 6 w xxx._l 

saves lines 3 through 6 in file x x x .  
The cursor commands d o  not work with these commands because they 

are strictly ex commands . 
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Searching and Replacing 

The slash (/) command searches for string patterns (regular expressions 
with ordinary and special command characters such as * •  [ ,  J ,  +, and \) . 
See Chapter 4 for a discussion of regular expressions . 

searching and replacing 

'- elephant ,._1 
'- [ eE]lephant ,._1 
:g/catalog/s/cat/dog/g ,._1 

:g/cat/s/ /dog/g ,._1 

search for elephant 
search for elephant or Elephant 
search for catalog, replacing just 
the cat by dog each time 
replace all strings cat by dog 

When you press the slash (/) , it appears at the bottom of the screen 
just like the colon does (although you are not in the ex mode) . Type in the 
pattern, press return, and v i  begins the search. Once the pattern is found, 
you can search for the next instance by pressing the n key. 

To do global search and replacements , you can use the e x  command, 
: g /,  to specify the string to search for and the string to replace it . For ex­
ample, suppose you type: 

: g / cata log/s/ cat /dog/g,._l 

This rather complicated instruction finds all lines that contain catalog, 
then substitutes dog for cat each time that cat occurs on that line . More of­
ten, you might type 

: g / cat /s / /dog/g,._l 

to replace all instances of cat by dog in the file. Here, the second specifica­
tion of cat on the command line (after the / s /  for substitute) is not explicit­
ly given but is understood as a default choice. 

Many variations of the : g /  command are possible, but this is enough 
to start, and it should last most people a very long time. 

Writing Shell Programs 
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As we mentioned in previous chapters , a XENIX shell is really a command 
interpreter . It's like having a BASIC interpreter that has all the system com­
mands built into it . 

A shell reads and executes operating system commands written in a 
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special shell language. Each shell has its own language for these commands. 
Two major shells come with XENIX: the Bourne or standard shell s h  and 
the C-Shell c s h  (pronounced like sea shell) , developed at the University of 
California, Berkeley. 

To write a shell program, use an editor, such as v ; ,  to write the com­
mands into an ordinary text file, then use c h mod to change the permissions 
of this file to make it executable. For example, suppose we wish to write a 
shell program called mystatus  that prints the date, the current working di­
rectory, and the current environment. We begin by entering the v ;  editing 
program with the command 

% v i  mystatus,._J 

then type i to enter the insert mode. We type the lines 

ending each line with a return . Next, we press escape to get to the v ;  com­
mand mode, then ZZ to exit the editor and return to the shell prompt. Fi­
nally, we type 

% chmod +x mystatus,._J 

to add "execute" permission for all users to the file mys t a t u s. 
Such a shell program is called a script file. When you type 

% mystatus,._J 

the system tries to execute the commands listed within the file . 
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Selecting the Shell 

You can force a script to run under a shell of your choosing by typing a 
command line consisting of the shell name followed by the script name. For 
example from the shell prompt, the command 

% csh  mysc r i pt� 

executes the script mys c r i  pt under the Berkeley c s h.  That is ,  its commands 
are interpreted according to Berkeley's rules . 

If you execute a script directly, the first line determines which shell it 
runs under . If it is a comment, it runs under c sh, but if it is not a comment, 
the script runs under s h . Comment lines begin with a pound sign (#) .  For 
example, if mys c r i pt consists of the following two lines 

#Th i s runs under  t he Berke l ey she l l  
set 

and has execute permission, then 

% mysc r i pt� 

runs the set command under csh .  However, if the (executable) file 
my s c r i pt consists of the single line 

set 

then 

% mys c r i pt � 
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runs the set command under s h .  
The reason why w e  choose the command set i n  these examples i s  that 

it produces distinctively different output depending on which shell it runs 
under. See Chapter 5 on system variables for a discussion of what this out­
put means . 

When you wish to run a script directly, remember to use c h mod to 
make it executable. For example 

chmod u+x mys c r i pt 

makes the file mys c  r i pt executable for the file's owner. 

Passing Parameters 

It is often useful to pass parameters to a script . This allows you to write 
general purpose scripts that work on arbitrary files. 

Within the script file, we can designate the values of these parameters as 
the variables $0, $1 , $2, and so on, or as $argv[O] , $argv[l] , $argv[2] , and so 
on. The first one is the name of the script (designated by $0 or $argv[O]) .  

passing parameters 

$0 name of script 
$ 1  first parameter 
$2 second parameter 
$3 third parameter 

Here is a script file called myec ho that demonstrates parameter passing. 
It uses the e c ho command that displays whatever string parameters you give 
it. Double or single quotes group a series of words into a single parameter. 

#examp l e  of pa rameter  pass i ng to a s c r i pt 
echo "The s c r i pt pa rameters  a re : "  
echo " zero =" $0 
echo " one =" $1 
echo " two =" $2 

You can use vi as described in the preceding discussion to enter these 
lines in a file called mye c ho, then use e c ho to give it execute permissions . If 
we run it with parameters a l pha ,  beta,  gamma like this 

% myecho a lpha beta gamma� 
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we get the following results : 

The s c r i pt pa rameters  a re :  
ze ro = myecho 
one = a lpha 
two = beta 

Let's see how this script works. The first line is a comment. Thus, this 
script runs under the C-Shell . The next line contains the e c h o  command. It 
simply prints its single string parameter as the message 
The  s c r i pt pa ramet e r s  a re : .  

The next line also contains an e c ho command. Its first parameter is 
the string z e ro = and its second parameter is the string variable $0. It 
prints the line 

zero = myecho 

in which the first parameter is  printed literally and the second causes the 
name of the script file to appear. Similarly the next two lines "echo" a liter­
al string, followed by the value of a parameter . The value alpha is substitut­
ed for $1 and the value beta is substituted for $2. Notice that gamma is ig­
nored because $3 is never used in the script. 

Here is a more practical example. Suppose that you have written a 
program called myp rog ram, and you wish to test it against data files 
testllllll through t e s t 1 7 that are in a directory called - mo rgan / pa s c a l .  
Suppose that you wish to test the files one by one with a minimum o f  typing. 

One solution is to use v i  or cat  to write a script file. Let's  use cat  to 
make this file and name it r: 

% cat > r.-l 
#Sc r i pt to test myprog ram aga i nst test f i les  
myprog ram - morgan/pasca l /test$1 
<cont ro l d> 

We use c hmod to make the file executable: 

% chmod +x r.-l 
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Then typing the short command 

% r 00.-J 

has the effect of executing the long command line 

myprog ram -mo rgan/pasca l /test00 

and typing the command 

% r 01 .-J 

has the effect of executing the command line 

myprog ram -morgan/pasca l /test01 

In both cases , running the script causes the command line to be execut­
ed with the parameter substitution for $1 . 

Expressions and Control Structures 

The Berkeley C-Shell gets its name because its syntax is much like that of 
the C language. In particular it has a number of control structures , such as 
i f, wh i l e, and sw i t c h . There is even a kind of f o r  loop called forea c h  
that implements counting loops . 

Expressions-These control structures use expressions just as any control 
structure does in an ordinary programming language. However, these ex­
pressions are made up from strings . 

Here are some binary operators : 

! =  

! -

equal 
not equal 
matches 
does not match 

The last two operators match a string expression on their left to a regular 
expression on their right . 
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Here are some unary operators that operate on a file name to their 
right. 

-e does the file exit? 
- r  does the file have read permission? 
-w does the file have write permission? 
-x does the file have execute permission? 
-d is the file a directory? 

There are also the pathname modifiers that can be placed immediately 
after pathname variables : 

: r extract the root 
: h extract the head 
: t extract the tail 

The next section gives examples of these expressions . 

If-There are two possible ways to write the i f  control structure. One way is: 

i f  (express i on) command 

This first one is quite limited because it resides on a single line of the 
file. You cannot have any further control structures within it . Another 
form of the i f  is : 

i f  (express i on)  t hen 
command 
command 

command 
end i f 

This second form is very general. Here the i f must begin the line. It 
must be followed by the expression (in parentheses) and that is followed by 
t hen. Any number of commands can come between the i f  line and the 
end i f. The end i f must be at the beginning of the line. 

A further variation includes one or more e l s e  clauses . Each e l se  
must be  at the beginning of  the line: 

i f  ( express i on)  t hen 
command 

command 
e l se  i f  (express i on)  t hen 

command 
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command 
e l se i f  

e l se 
command 

command 
end i f 

With an example script, let's illustrate how some of this works . When 
applied to a pathname, this script first checks to see whether the file exists .  
If the file exists, the script prints the root, head, and tail, then various per­
missions . The root of a pathname is everything but its extension, the head is 
everything but the file name, and the tail is the file name itself, including 
any extension. The following script file, which we call f, illustrates what 
these terms mean: 

# s c r i pt to  i l lust rate express i ons and i f  statements 
i f  <-e $1 ) t hen 

echo root : $1 : r  
echo head : $1 : h  
echo ta i l :  $1 : t  

i f  <-r  $1 > echo " read pe rmi ss i on" 
i f  <-w $1 ) echo "wr i t e  permi ss i on" 
i f  <-x $1 ) echo "execute permi ss i on" 
i f  (-d $1 ) echo " i s a d i rectory" 
i f  (-f $1 ) echo " i s an ordi na ry f i l e" 
i f  (-z $1 ) echo "has zero s i ze" 
i f  <-o $1 ) echo "be longs to  you" 

e l se  
echo $1 does  not  ex i st 

end i f 

The first line is a comment, forcing the script to be run under c sh .  The 
next line is an i f  clause that tests whether the first parameter is a pathname 
leading to an actual file. The next two blocks are executed if the expression 
is true because they come after the i f  • • •  t hen line and before the e l se 
line. The first block consists of three lines to display the root, head, and tail 
of the pathname, and the second block checks various conditions such as 
read, write, and execute permissions, and whether it's  a directory or ordi­
nary file or has zero length. The last part of the script contains an e l se 
clause that proclaims that the file doesn't exist (in case the i f  fails) . 

Here are some examples of this script's  use. We give it the very short 
name f for convenience. Let's apply it first to a file x .  c in our current 
directory. 
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% f x . c.-J 
root : x 
head : x . c  
t a i l :  x . c  
read permi ss i on 
w r i te  permi ss i on 
i s  an o rd i na ry f i l e  
be longs to you 

In this first case, the root of the path x • c is just x,  the head and the 
tail are both the file's name x .  c. This file has read, write, but not execute 
permissions, and is an ordinary file that belongs to the user . Let's try again: 

% f x.-J 
x does not ex i st 

In this case, we gave a pathname to a file that doesn't exist . Now let's 
use it to explore some system files : 

% f /b i n/who.-J 
root : /b i n/who 
head : /b i n 
t a i l :  who 
execute permi ss i on 
i s  an o rd i nary f i l e  

This third case checks out the w h o  system command. Its pathname is 
/ b i n/who  of which / b i n is the head and who  is the tail . This file has only 
execute permissions for us and is an ordinary file that does not belong to 
us . 

% f _ ._J  
root : /us r/morgan 
head : /us r 
t a i l :  morgan 
read pe rmi s s i on 
w r i t e  pe rmi ss i on 
execute permi s s i on 
i s  a d i rectory 
be longs to  you 
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In this fourth case, the tilde ( - )  signifies our home directory. In this ex­
ample, it expands as the path / u s r/mo rgan to a directory that belongs to us 
and for which we have read, write, and execute privileges . 

% f - /book/chap3/x . c� 
root : /us r/mo rgan/book/chap3/x  
head : /us r/morgan/book/chap3 
t a i l :  x . c  
read permi ss i on 
w r i t e  permi ss i on 
i s  an o rd i nary f i l e  
be longs to you 

The last case illustrates a longer pathname - / book / c hap3 / x o c . The 
root is everything but the last o c, the head is everything but the last x .  c and 
the tail is just the name x o c .  We have already discussed its read, write, and 
execute permissions and ownership. 

Foreach-The forea c h  statement implements a counting loop . This is espe­
cially valuable for running through lists such as parameters or pathname 
expansions . 

The forea c h  statement has the following form: 

foreach  name ( l i st )  
command 

command 
end 

Here is an example script of how this works 

#examp l e  of foreach 

foreach  i tem (Sa rgv) 
i f  ( !  -d S i t em> f i l e S i tem 
end 

The first line is a comment forcing the script to run under the Berkeley 
C-Shell c s h . The second line contains the forea c h  statement. The shell 
variable i t em is created and is ready to be loaded with the items in the list 
$a rgv (the arguments that are passed to this script) . The third line applies 
the f i l e command to the pathname in i t em provided that the file is not a 
directory. Note the $ before i t em gives its string value. The f i l e  command 
was designed to report as much information as possible about a given file. 

Here is a sample run in which this file is applied to the files under the 
root. 
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% for  I * ,._J 
/boot : cannot open for read i ng 
/xeni x :  sepa rate standa lone executab l e  not st r i pped , M i dd le mode l 

From this we learn that the root directory contains two files that are 
not directories themselves . The file boot does not give us permission to read 
it, and the file xen ;  x contains machine code. We study this second file in 
Chapter 9. 

Wblle Loops-The wh ; le statement allows you to execute a block of com­
mands as long as a condition is true. The general form is : 

wh i l e  < expres s i on) 
command 

command 
end 

Here is an example of how to implement a f o r  loop with a wh ; l e  
statement: 

#examp l e  of wh i l e  loop 

wh i le ($1 ! = "") 
echo $1 
s h i ft 
end 

The conditional expression for this w h ;  l e is $1 ! = " " . That is , argu­
ment number one is not the empty string. Thus the w h ;  l e  loop continues as 
long as argument one is nonempty. In the body of the loop, we simply echo 
that argument. This is done just to test and demonstrate the loop control. It 
is a good idea to start programming this way to test your ideas before too 
many extraneous issues cloud whatever basic syntax problems you might 
have. 

The s h ;  ft  statement shifts all the arguments to the left so that argu­
ment two is now argument one, and so on. Thus we are really looking at the 
second argument, the second time through the loop, and so on. The shift 
statement can be applied to other lists besides the list of arguments . This is 
just the default case. 

The w h ;  le statement can be used with b rea k and cont ; nue  state­
ments to stop the loop prematurely or move onto the next interaction of the 
loop prematurely. 
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Here, we apply it to the argument list l u s r l s ys l * , which is a list of 
all files in the directory I us r I sys .  It just gives us a listing of that directory. 

% w loop /us r/sys / * ,._J 
/usr/ sys/conf 
/us r / sys/h  
/us r / sys / i o  
/usr/sys/mdep 
/us r/sys/sys  

Switch-The s w i t c h  statement is  like the s w i t c h  statement in C or the case 
statement in Pascal . 

It has the form: 

swi t c h  ( st r i ng> 

case  st r i ng1 : 
commands 
b reaksw 

case  st r i ng2 : 
commands 
breaksw 

defau l t : 
commands 
b reaksw 

endsw 

Here is an example: 

#examp l e  of swi t c h  

foreach i tem (Sargv)  
swi t c h (Si t em) 

case "* • c" : 
echo $i tem " i s  a c f i l e . "  
breaksw 

case  "* • h" : 
echo $ i t em " i s  an i nc lude f i l e . "  
b reaksw 

case  "* . o" :  
echo $ i t em " i s  a n  obj ect f i l e . "  
breaksw 

case  "* • s" : 
echo S i t em " i s  an assemb ly  l anguage f i l e . "  
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b reaksw 
defau l t : 

endsw 
end 

echo $ i t em " i s  not a c ,  i nc lude , obj ect , or assemb l y  f i l e . "  
b reaksw 

This script has a fo rea c h  loop that runs the s w i t c h  statement through 
all the pathnames in the argument list . For each item in the list , we check to 
see whether it matches one of the cases * • c , * • h , * • o ,  or * • s , which 
are files with special file extensions . For each of these cases , we print the 
pathname with a short message. 

Each case ends with a b re a k s w  command. This is different from 
b re a k  that is used in C.  The default case handles all items not caught by the 
regular cases . The entire sw i t c h  statement ends with an endsw.  

Let's try it on the files in a directory that we study in Chapter 9 which 
has a variety of different file types . 

% cases /us r /sys/ conf/* ..-J 
/us r/sys/conf /KMseg . o  i s  an obj ect f i l e .  
/us r/ sys/conf/ K l i bc . a  i s  not a c ,  i nc l ude , obj ect , o r  as semb l y  

f i l e .  
/usr/ sys/conf/README i s  not a c ,  i nc lude , obj ect , o r  assemb ly  

f i l e .  
/us r/ sys/conf / c . c  i s  a c f i l e .  
/us r /sys/conf/c . o  i s  a n  ob j ect f i l e .  
/us r /sys/conf/ conf i g  i s  not a c ,  i nc lude , obj ect , o r  assemb ly  

f i l e .  
/usr/ sys/conf/hd i nsta l l  i s  not a c ,  i nc lude , obj ect , o r  assemb ly  

f i l e .  
/us r /sys/conf/ l i n�xen i x  i s  not a c ,  i nc l ude , ob j ect , o r  as semb ly  

f i l e .  
/us r/sys/conf/makef i l e  i s  not a c ,  i nc lude , obj ect , o r  . a ssemb l y  

f i l e .  
/ us r /sys/conf/maste r  i s  not a c ,  i nc lude , obj ect , o r  assemb ly  

f i l e .  
/us r / sys/conf/oemsup . o  i s  a n  ob j ect f i l e .  
/us r /sys/conf/pi cmask . c  i s  a c f i l e .  
/us r /sys/conf/p i cmask . o  i s  a n  ob j ect f i l e .  
/us r/ sys/conf/ rkseg i s  not a c ,  i nc lude , ob j ect , o r  as semb ly  

f i l e .  
/us r/ sys/conf/ space . c  i s  a c f i l e .  
/us r/sys/conf/ space . o  i s  a n  ob j ect f i l e .  
/us r /sys/conf/te rmsw . c  i s  a c f i l e .  
/usr/ sys/conf/te rmsw . o  i s  a n  ob j ect f i l e .  
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/us r / sys/conf/xeni xconf i s  not a c ,  i nc lude , ob j ect , o r  assemb ly  
f i l e .  

Controlling 1/0 

Let's now look at how to make scripts interactive, how to make them send 
input to commands, and how to use output from command. 

script 1/0 

line get a line of input 
< < send input to a command 

To get input from the user, use the L i ne command. It expects from 
the keyboard a line of input that ends with a newline character. Here is an 
example: 

#examp l e  of i nput f rom the  user  

echo "What i s  your name? \c"  
set  name= ' l i ne '  
echo "H i , "  $name 

First, the script uses e c ho to print the message "What is your name? " 
on the screen. The \ c  at the end of the line causes the cursor to stay at the 
end of the line, waiting for input . The next line gets the answer from the 
user . The backward single quotes around the L i ne command causes it to be 
executed and get its output so that it can be temporarily assigned to the 
variable name. On the last line, we echo the name back with the usual 
salutation. 

Here is a typical run: 

% i nput._l 
What i s  you r name? C h r i stopher._l 
H i , C h r i stopher  

Sometimes you might have to send input to a command that is  invoked 
from the script . A special form of redirection is used in that case. It is speci­
fied by « followed by a word that appears later in the file. Everything be­
tween the «wo rd and wo rd is sent to the corrimand. 
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Here is an example: 

#examp l e  of send i ng i nput to  a command 
t r  " [ a-z ) "  " [A-Z J ' '  «EOF 
Th i s l i ne was i n  upper- and lowe rcase . 
EOF 
echo · "ok" 

The first command is t r, which is short for translate. It is a classic fil­
ter. That is, it is a program that takes input from the standard input, trans­
forms it in some way, then sends it out the standard output. In this case, it 
replaces each character in the string abc  • • •  z with the corresponding char­
acter in the string ABC • • •  Z. See Chapter 4 for more on filters . The «EOF at 
the end of this line introduces the text to be sent to the t r command as its 
input. The EOF on a line by itself ends this special text . The e c ho on the 
next line helps verify when the text ends . 

Here is the result when we run this script : 

% send._! 
TH I S  L INE  WAS IN UPPER- AND LOWERCASE . 
ok  

You can see that the text sent to the t r command has been capitalized, 
but the o k on the line after the magic word EO F is not . 

Compiling with the C Compiler 

70 

Most of the programs that make up the XENIX system are written in C.  
That is , C is  the basic development language for this operating system. Al­
though the basic XENIX system does not include the C compiler, the devel­
opment system is built around it . 

Throughout this book we use examples of C programs along with oth­
er kinds of programs, such as scripts and specialized programs such as l e x  
and ya c c . 

This book does not attempt to teach you the C programming lan­
guage. We recommend C Primer Plus by Mitchell Waite, Stephen Prata, 
and Donald Martin to get started and, once you know the basics , The C 
Programming Language by Brian W. Kernighan and Dennis M.  Ritchie as a 
reference. 

C acts both as a higher level and a lower level language. It acts like a 
modern higher language because it supports control structures such as sub­
routines, blocks (complex statements) , i f-t h en-e l se statements, and 
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w h i l e  loops. It also supports a variety of data structures , including arrays 
and programmable structures like Pascal's records . It acts as a lower level 
language because it has operations that correspond to the way central proc­
essors tend to handle data. For example, you can directly increment a vari­
able or add any number to it . 

If you are familiar with Pascal, learning C is not that hard. All the ba­
sic structures are there, although they are implemented a bit differently, so 
it might take you a few weeks to get used to the differences. When you see 
how these work, you will be pleasantly surprised because C's  many extra 
features allow you to do things that you have always wanted to but weren't 
allowed to do in Pascal. 

Developing Programs for PC-DOS and MS-DOS 

The ability to use XENIX to develop programs for PC-DOS and MS-DOS 
is an important reason for using the XENIX Development System. In this 
section we show how to invoke the XENIX C Compiler to compile a C pro­
gram into a file that runs as a command under PC-DOS or MS-DOS. 

Let's begin with an example C program that can be compiled to run 
under either XENIX or PC-DOS. Programs that use special features of 
XENIX, such as pathnames for files, would have to be modified (at the 
source code level) to run under PC-DOS or MS-DOS. Our program just 
uses "standard 110" (see Chapter 4) and thus does not have to be modified 
to run under either system. 

We used the XENIX v i  editor to create the file . Let's use the XENIX 
cat  command to list it : 

% cat h i  . c.-J 
I *  a C p rog ram * I  

ma i n ( )  
{ 
i nt x ;  
c ha r  name [80 J ; 

p r i nt f <"What i s  your name? ") ; 
s canf ("%s" , name> ; 
p r i nt f ("What i s  you r favo r i te  number ,  %s? " ,  name> ; 
scanf ("%d" , &x> ; 
p r i ntf ("You r favor i t e  numbe r i s  %d , %s . \n" , x ,  name> ; 
} 

This program asks for your name and your favorite number, then re­
ports this information back to you. It uses the standard 110 functions 
p r i  nt f and s c anf .  
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During the development of this program, we compile it to run under 
XENIX with the command 

% c c  h i . c,._J 
% L x._1 

which produces the file a . out .  We run that with the command: 

% a . out._l 

Once the program is working under XENIX, we compile the program 
for PC-DOS. We use the -o option to specify the file name h i . com with the 

• com (command) file extension for PC-DOS, and we use the dos option of 
the C compiler to request special -dos C libraries that connect to dos sys­
tem calls and a special dos linker to create a command file with the proper 
dos format . 

% c c  -o h i . com -dos h i . c._l 
h i . c  

Next we use the dos c p command to move the resulting file h i  • com to 
drive b :  where we have placed a PC-DOS formatted diskette . 

% doscp h i . com b : ._l 

Now we can shut down XENIX, boot up PC-DOS, and try the new 
PC-DOS command h i :  



A>b : h i .-J 
What i s  you r name? E l i zabeth._! 
What i s  your favo r i t e  numbe r ,  E l i zabet h?  7.-J 
You r favor i t e  number i s  7 ,  E l i zabet h .  

Programming Tools 

Debugging 

Lint 

XENIX has a number of tools to help you understand programming errors . 
These include l i nt ,  a program to detect errors in C programs and adb, 
which allows you to examine a program in machine- and assembly code as it 
runs. 

Lint checks C language programs. It gives you details about possible errors 
in your program that the normal C compiler ignores . The C compiler was 
designed to run quickly, so its error checking was kept to a minimum. 
Thus, another program, namely l i nt ,  was developed to help programmers 
discover errors and otherwise clean up their programs. 

Here is an example of a C program that has lots of bugs in it . We have 
used the n l utility to number the lines so that you can better read the error 
diagnostics from both the C compiler and l i nt .  The ba option causes all 
lines to be numbered including "blank" lines . 

% n l  -ba ma r red . c.-J 
1 I *  examp l e  of  a C p rog ram w i t h  e r rors  for  L i nt to  cat ch  * I  
2 
3 i nt x ,  y ;  
4 c h a r  * st r ;  
5 
6 ma i n O  
7 { 
8 i n i t i a l i ze ( ) ; 
9 process (3 . 1 ) ;  

1 0  c loseup ( ) ;  
1 1  } 
1 2  
1 3  i n i t i a l  i ze O  
1 4  { 
1 5  st r = "Bas i c Met hod" ; 
1 6  X = 5 . 27 ;  
1 7  
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1 8  
1 9  p rocess ( r ) 
20 i nt r ;  
21 { 
22 doub l e  z · , 
23 wh i l e (1 ) 
24 } 
25 X -= z · , 
26 t =- z/2 ; 
27 } 
28 retu rn ( x  + 0 . 1 ) ;  
29 z += 1 ;  
30 } 
31  
32 doi t O  / *  Th i s i s  neve r ca l l ed .  * I  
33 { 
34 } 
35 
36 c loseup ( )  
37 { 
38 p r i nt f ("bye\n" ) ; 
39 } 
40 

When we run the C compiler, we only get one error, namely an unde­
clared variable t on line 26. 

% c c  ma r red . c..-J 
ma r red . c  
ma r red . c (26) : e r ro r  65 : "t" unde f i ned 

However, when we run l i nt,  we see lots of problems . In particular, 
l i nt suspects that on line 25 , we have not initialized properly the variable 
z before using it . On line 26, it agrees with the C compiler that we have not 
declared the variable t, but also on that same line it notes that we have used 
the confusing notation: =-. This was abandoned because statements like 

x=-3 ; 

could be interpreted as either "x is assigned - 3"  or as "x is decremented 
by 3 . "  L i nt also detects that t has not been initialized and that it is never 
used. On line 30, it sees that the normal return (no argument) is not consis­
tent with an earlier return (which returns the value of an expression) . 
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% L i nt ma r red . c� 

ma r red . c  
----------------------------
(25)  warni ng : z may be used before set  
(26) t unde f i ned 
(26) warni ng : o ld-fas h i oned ass i gnment operator  
( 26)  wa rn i ng :  t may be  used before set 
(26) warn i ng :  t set but not used i n  funct i on p rocess  
(30)  warni ng : funct i on p rocess has return (e ) ; and return ;  
wa rn i ng :  a rgument unused i n  funct i on :  

(20)  r i n  p rocess 
warn i ng :  statement not reached 

(28) (29) 

----------------------------
name used but not def i ned 

J B LEN l l i bc (54) 
name def i ned but never used 

y ma r red . c (3 )  
do i t  ma r red . c (33) 

funct i on a rgument < numbe r > used i ncons i stent l y  
p rocess ( a rg 1 ) ma r red . c <21 ) : :  ma r red . c <9>  

funct i on retu rns va lue wh i c h  i s  a lways i gnored 
p rocess p r i nt f  

L i nt also finds on line 20 that we have never used the argument r in 
the function p roce s s, and it finds that lines 28 and 29 are never executed. 

As far as global variables and procedures are concerned, l i nt finds 
that the variable y declared on line 3 and the function do i t defined starting 
on line 33 are never used. 

L i nt finds a problem on lines 21  (really 1 9-20) and 9 that the argument 
to the function process is inconsistent as far as its data type (floating point 
or integer) . Finally, l i nt notes that values returned from the functions 
proc e s s  and p r i  nt f are ignored. 

Sometimes l i nt gets too paranoid or verbose about errors . Fortunate­
ly, there are ways to silence it , even selectively. This can be done by insert­
ing comments like I *  N o T R E  A c H E D  * I  before the potential problem. 

L i nt does not catch every kind of error . For example, you might acci­
dentally load data into a string that has not been allocated the proper 
amount of space. For this kind of error a "debugger, "  such as a db is often 
helpful. 

Adb stands for a debugger. It allows you to run through your program on a 
machine or assembly language level. 
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Suppose that you have written a C program that seems to be acting un­
predictably, perhaps crashing the system. Here is an example: 

% n l  -ba t hebug . c� 
1 I *  Examp l e  of C prog ram fo r debugg i ng * I  
2 
3 c ha r  * st r ;  
4 
5 ma i n O  
6 { 
7 i n i t st r ('Bas i c  Met hod') ; 
8 } 
9 

1 0  i n i t st r ( s )  
1 1  c har  * s ;  
1 2  { 
1 3  reg i ster  i nt i ;  
1 4  reg i ster  c har  c ;  
1 5  for ( i  = 0 ;  ( c  = s [ i ] )  ! =  0 ;  i ++ )  st r [ i J = c ;  
1 6  } 
1 7  

The program has one global variable: s t  r a string pointer . The main 
program calls a subroutine that accepts a literal string Ba s i c Met hod which 
we pass . The subroutine i n i t s t r then has a f o r  loop that attempts to 
transfer the string to the global variable st r. However, there is an error be­
cause st r is not properly initialized. Let's see exactly what goes wrong. 

Before running adb you should prepare an assembly language listing 
of the program. We obtained it by typing 

c c  -s t hebug . c  

which places the assembly language in a file called t h ebug . s :  

Stat i c Name A l i ases 

T ITLE the  bug 
TEXT SEGMENT BYTE PUB L I C  "CODE" 
TEXT ENDS 
DATA SEGMENT WORD PUB L I C  "DATA" 
DATA ENDS 

CONST SEGMENT WORD PUBL I C "CONST" 
CONST ENDS 

BSS SEGMENT WORD PUB L I C  "BSS" 
BSS ENDS 
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DGROUP GROUP CONST , BSS , DATA 
ASSUME CS : _TEXT , OS : DGROUP , SS : DGROUP , ES : DGROUP 

EXTRN c h kst k : NEAR 
DATA SEGMENT 

st r : WORD 
ENDS 
SEGMENT 

EXTRN 
DATA 
DATA 

$SG1 1 DB ' Ba s i c Met hod ' , 00H 
EVEN 

DATA 
TEXT 

. comm _st r , 02H  
ENDS 

SEGMENT 
; L i ne 6 

PUB L I C  ma i n  
ma i n  PROC NEAR 

push  bp 
mov 
mov 
ca l l  
push  
push  

L i ne 7 
mov 
push  
ca l l  
add 

L i ne 8 
$EX9 : 

pop 
pop 
mov 
pop 
ret 

ma i n  ENDP 
s = 4 

; L i ne 1 1  
PUB L I C  

i n i t st r  
push  
mov 
mov 
ca l l  
push  
push  

bp , sp 
ax , 0  

ch kst k 
d i  
s i  

ax , OF FSET 
ax  

i n i t st r 
sp , 2  

s i  
d i  
sp , bp 
bp 

i n i tst r 
PROC NEAR 

bp 
bp , sp 
ax , 4  

d i  
s i  

chkst k 

c = -2 
reg i s ter  s i  = 

L i ne 1 2  

DGROUP : $SG1 1 
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Li ne 1 3  
L i ne 1 4  
Li ne 1 5  

$F1 6 :  

$FC1 7 :  

$F1 9 :  

$FB1 8 :  

mov si , 0  

mov bx , [bp+4J ; s  
mov a l , [ bx J [ s i J 
mov [ bp-2 J , a l  ; c  
cmp 
j ne 
j mp 
j mp 

i nc 
j mp 

mov 
mov 
mov 
j mp 

a l  , 0  
$+5 
$FB1 8 
$F 19  

s i  
$F1 6 

bx ,_st r 
a l , [ bp-2] ; c  
[ bx J [ s i J , a l  
$FC1 7 

; L i ne 1 6  
$EX1 3 :  

pop s i  
pop d i  
mov sp , bp 
pop bp 
ret 

i n i t st r  ENDP 
TEXT ENDS 

END 

This is our road map. Now let's start adb: 

% adb.-J 
* 

Adb automatically reads in the file a .  out and gives us the * prompt. 
Incidentally, if the file c o re (from a core dump) is present, it also reads that. 

Let's look at various key points in this program. S t a rt is at the 
very beginning of the code segment (see 8086/8088 16-Bit Microprocessor 
Primer by Christopher L.  Morgan and Mitchell Waite) . We list the very 
first few instructions there . The syntax is the label s t a rt ,  followed by a , 4  
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to indicate the number of instructions (four) we wish to see, then a ? to in­
dicate that we look in a .  out rather than co re, followed b� i to indicate 
that we wish to see the output as instructions . Here is the result : 

* start , 4? i .-J  

start : j mp 
_sysca  l :  j mp 
_st kg ro :  j mp 

j mp 

nea r sta rt0 
nea r _st kg ro+1 9 .  
nea r _st kg ro+1 6 .  
nea r _st kg ro+1 6 .  

M a  i n is the name of the main program. We use the same format to list 
the first ten instructions there: 

* ma i n ,  1 0? i .-J 
ma i n :  push bp 

mov bp , sp 
mov ax , 0 .  
ca l l  nea r c hkstk  
push di  
push  s i  
mov ax , 21 30 .  
push ax 
c a l l nea r i n i t st r 
add sp , 2 .  

We see how our subroutine i n i t s t r is called. Apparently, a pointer to 
the literal string Bas i c Met hod is pushed on the stack before this function 
is called. 

Let's set a breakpoint (stopping point) at ma i n  and another one at 
i n i t s t r. Do this by typing the name followed by a : b r. In general, the co­
lon (:) indicates program control commands. 

* ma i n : b r.-J 
* i n i t st r : br.-J 

Now that we've put on the "brakes,"  let's start it running. The com­
mand is : r.  
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* : r.-J 
a . out : runn i ng 
b reakpo i nt ma i n :  push  bp 

It stops at the first breakpoint ma i n. To continue, we type : co: 

* : co.-J 
a . out : runn i ng 
b reakpoi nt i n i t st r :  push bp 

Now it stops at i n i t s  t r. We use the ? command to display the first 25 
instructions starting at the current address , which is now i n i t s t r .  In this 
case, the current address is the default . The format is given by i a, which 
says to display absolute addresses in addition to instructions . 

* , 25 ? i a.-J 
i n i t st r :  push- bp 
i n i t st r+1 . :  mov bp , sp 
i n i t st r+3 . : 
i n i  t st r+6 . : 
i n i t st r+9 . : 
i n i t st r+1 0 . : 

mov 
ca L L  
push 
push 

i n i t st r+1 1 . :  mov 
i n i t st r+1 4 . : mov 
i n i t st r+1 7 . : mov 
i n i tst r+1 9 . : mov 
i n i t st r+22 . : cmp 
i n i t st r+24 . : j ne 
i n i t st r+26 . : j mp 
i n i t st r+29 . : j mp 
i n i t st r+32 . : i nc 
i n i t st r+33 . : j mp 
i n i t st r+36 . : mov 
i n i t st r+40 . : mov 
i n i t st r+43 . : mov 
i n i t st r+45 . : j mp 
i n i t st r+48 . : pop 
i n i t st r+49 . : pop 

ax , 4 .  
nea r 
d i  
s i  
s i , 0 .  

c h kst k 

bx , [ bp+4 . J 
a l , [bx J + [ s i J 
[ bp-2 . J , a l  
a L , 0 .  

i n i t st r+29 . 
nea r i n i t st r+48 . 
nea r i n i t st r+36 . 
s i  
nea r i n i t st r+1 4 .  
bx , s t  r 
a l , [ bp-2 . ]  
[ bx J + [ s i J , a l  
nea r i n i tst r+32 . 
s i  
d i  



i n i t st r+50 . : mov 
i n i t st r+52 . : pop 
i n i t st r+53 . : ret 
i n i t st r+54 . : 

sp , bp 
bp 

Programming Tools 

We now suspect that the problem is near i n i t s t r+43, which is a 
move instruction. Let's  set a breakpoint there and continue execution to 
that place. 

* i n i t st r+43 : b r�r 
* : co._l 
a . out : runni ng 
breakpo i nt i n i t st r+43 . : mov [ bx l + [ s i l , a l  

Now let's see what is contained in the po i nt e r  registers b x  and s i  that 
are used in our suspicious move instruction. The syntax is < followed by the 
name of the register, followed by an equal (=) sign to display its actual 
value: 

* <bx=._l 
63 . : 0 .  
* <s i =._l 
63 . : 0 .  

In both cases , the offset value (to the right of the colon) is zero . We 
now go back to st r and to see what that is . It should be zero because it was 
loaded into bx.  

We give the address st  r, a ? to indicate the a .  out file, then an x to in­
dicate hexadecimal notation. 

* st r?x._l 
st r :  0xllJ 

The answer is zero . Now let's see what zero points to . We type 0? to 
find out . 
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* 0?._l 
71 . : 0 . : 0x7eeb 

Something is there already. Let's single step past the suspicious in­
struction. The syntax is : s.  

* : s._l 
a . out : runn i ng 
stopped at i n i t st r+32 . : i nc s i  

We find ourselves at i n i t st r  because o f  a jump. Let's  look again at 
what's at zero: 

* 0?._l 
71 . : 0 . : 0x7e42 

Sure enough, the memory has changed, but where are we? Let's  try 
s t a rt :  

* sta rt ?._l 
sta rt : 0x7e42 

It's  the same stuff. If we display this in instruction format, we see that 
the code at s t a rt has been corrupted: 

* start , 4? i ._l  
start : i nc 

j l e 
adc 

dx 
etext+-21 44 . 

bp , bx 
push  c s  
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Let's continue and see whether it gets more corrupted: 

* : co.-J 
a . out : runn i ng 
b reakpo i nt i n i t st r+43 . : mov [ bx l + [ s i l , a l  
* : co.-J 
a . out : runn i ng 
b reakpo i nt i n i tst r+43 . : mov [ bx l + [ s i l , a l  
* start?x.-J 
start : 0x61 42 
* start , 4? i .-J  
sta rt : i nc dx 

pop a 
_sys ca l :  j mp nea r _st kg ro+1 9 .  
_st kg ro :  j mp nea r _st kg ro+1 6 .  

Yes, it does . We have located the problem. The string is being trans­
ferred right over our program. If we had more text it would overwrite the 
code that we are actually executing, perhaps causing a serious crash. Let's  
quit adb with the command $q and go back to the drawing board. 

* $q.-J 

Automating Program Development 

The ma ke program helps control jobs that involve a number of different 
source files and files that depend on them. This program expects to find a 
file, normally called ma kef i l e, in your current directory. At least, that's 
the default case. This file contains a list of dependencies and commands for 
updating these files. Normally, this updating process involves compiling, 
but any operating system commands could be used. To start the process ,  
the programmer types the command ma ke. 

Let's look at an example from Chapter 10  (without getting into any of 
the concepts there) . Suppose that we have four source files eng3 . y, eng . l, 
eng . h, and eng . c . The first is written in the yac c language, the second is 
written in the l e x  language, and the last two are written in C.  

To compile eng3 . y ,  we type 

yacc  eng . y  
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and get the file y .  t a b . c, which is C source code. To compile eng . l, we type 

lex  eng . l 

and get the file l e x . yy . c, which is also C source code. 
Because of i nc l ude directives in eng3 . y, the resulting C program file 

y .  tab . c has include directives to include the files l e x . yy . c, eng . h, and 
eng . r. Thus, compiling y .  t a b . c with the C compiler puts the entire pro­
gram together. Figure 3-1  gives a diagram of these relationships . 

Figure 3-1 
Dependency relations for eng 

eng. 1  
lex 

lex.yy.c 

� yacc 
eng. 3.y y.tab.c 

eng. h 

7 eng.r 

Here is the ma ke f i  l e: 

# make f i l e  for  eng 

# A mac ro def i n i t i on 

ENG . Y=eng3 . y  

# The ru les : 

eng : lex . yy . c  y . t ab . c eng . h  eng . r  
c c  -o eng y . t ab . c  

lex . yy . c :  eng . l 
lex  eng . l 

y . tab . c :  S < ENG . Y) 
yac c  S ( ENG . Y) 

cc eng 

The first line begins with a pound sign (#) and thus is a comment. Next 
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comes a section for macro definitions . We have defined the macro ENG . Y to 
be equal to the file name eng3 . y. We do this because eng3 . y is just one of 
three possible ya c c  programs that we might want to use. Defining a macro 
allows us to make this selection by changing just one statement in our 
makefile. 

Ma kef i l e  contains three rules : one to make the file eng by compiling 
y . t ab . c ,  a second to make the file l e x . yy . c, using Lex on the file eng . l ,  
and a third to  make the file y • t a b . c ,  using Yacc on the file defined by  the 
macro ENG . Y. 

Let's run this ma ke  f i l e. The lx command demonstrates that we start 
with just the source files and the ma ke  f i l e  in a directory: 

% l x.-J 
eng . h  eng . l eng . r  eng1 . y  eng2 . y  eng3 . y  makef i l e  

Let's use the n option to show what m a k e  actually does : 

% make -n.-J 
lex  eng . l 
yacc  eng3 . y  
c c  -o eng y . tab . c  

We see that it invokes all three rules . Notice that the macro substitutes 
eng3 . y for ENG . Y. Now, let's really run ma ke. 

% make.-J 
lex  eng . l 
yac c  eng3 . y  
cc  -o eng y . tab . c  
y . tab . c  

Now the directory contains more files : 

% Lx.-J 
eng eng . h  eng . l eng . r  eng . y  eng1 . y  eng2 . y  
eng3 . y  l ex . yy . c  makef i l e  y . tab . c  y . t ab . o  

Let's use the touc h command to make the file eng . r newer than all 
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the rest, then call ma ke  again. Only the C compiler is invoked because the 
other files are up to date. 

% touch eng . r.-J 
% make.-J 

c c  -o eng y . tab . c  
y . tab . c  

If we touch eng3 . y and type make  again, both ya c c  and c c  are 
invoked: 

% touch eng3 . y.-J 
% make.-J 

yacc eng3 . y  
c c  -o eng y . tab . c  

y . tab . c  

If we type make  again, we get a message saying that our files are up to 
date: 

% make.-J 
• eng • i s  up to  dat e .  

Summary 

86 

In this chapter, we have introduced and explored the basic tools that pro­
grammers use in the XENIX operating system. These include the v i  screen 
editing program, the shell command language, the C compiler, the a db de­
bugger, and the ma ke  program manager . 

These tools provide a firm foundation for programmers to efficiently 
develop applications and systems programs. This chapter can be used as an 
example-driven reference for the basic tools needed to create programs dis­
cussed in the rest of the book. 
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Questions and Answers 

Questions 

Answers 

1 .  Name XENIX's standard program development utilities . 

2.  How can you use the vi  text editing program to move a block of 
text in a file? 

3 .  What are script files and why are they useful? 

4.  How do you compile a C program under XENIX? 

5 .  What is a debugger program? 

1 .  V i  is the standard screen editing program, c c is the C compiler, 
l i nt is the C program checker, adb is the debugger program, and 
make is the program maintainer. 

2.  There are several ways to  move a block of  text using v i  . One way 
is to mark the end of the block by moving the cursor there and 
typing rna, then move the cursor to the beginning of the block and 
type d '  a to delete it , and finally move the cursor right before the 
new position and type p to "put" it there . 

3 .  Script files are text files that contain operating system (shell) 
commands. When these files are "run" the commands are 
interpreted and executed by one of the XENIX shell programs . 
Such scripts can contain complicated sequences of commands, 
such as are used in administering the system or developing 
programs and text documents . They can act as system utilities that 
tie together other system utilities . 

4. If your C program is stored in a file my f i  l e . c,  type: 

% c c  myf i  l e . c.-J 

The result is stored in a file called a .  out.  The compiler has many 
options to handle various special circumstances . 

5 .  A debugger program, such as adb, allows you to display memory 
and CPU registers in various formats and to run programs either a 
single step at a time or using breakpoints to halt at specified places 
in the program. It allows a programmer to see exactly what 
happens when a program executes . 
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Effective processing of text is an important central goal of XENIX. A pro­
gram to process text is called a filter. This chapter explains what filters are 
and how they can be developed and used effectively in the XENIX operat­
ing system. 

We explain the standard input, output, and error streams. We show 
how to use several existing filters and put them together to form larger pro­
grams . _  We also introduce a powerful programming tool called l e x  to create 
filters, and we develop a simple filter in the C programming language. 

What Is a Filter? 

The idea of a filter is simple . It is a program that processes information 
from a single source and delivers that information to a single destination. In 
this chapter, we deal with filters that process character strings (see figure 
4- 1 ) .  An example is a sorting program, because it processes strings by 
arranging them in a specified order . 

This is the 
input. It 
consists of � 
ordinary text ---,/ 
characters. 

Figure 4-1 
The idea of a filter 

This is the 
output. I t  
is derived 
from the 
input in  
some way. 

Putting it another way, for our point of view, a filter accepts textual 
input, then produces textual output that is derived from the input. In 
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XENIX, a filter is a program that accepts input from the standard input 
and sends its output to the standard output. The default source for stand­
ard input is the keyboard, and the default destination for the standard out­
put is the screen. 

As an example, the XENIX sort  command is a filter . If we type the 
command line 

% sort,._l 

in response to a shell prompt, the system waits for us to type some lines 
from the keyboard. Suppose we type 

t h i  s,._l 
t hat ,._I 
the re,._l 
<cont ro l d> 

the system prints these words after alphabetizing them: 

t hat 
t h e re 
t h i s 

Some Simple Examples 

The simplest example of a filter is a program that sends every character it 
receives without changing it (see figure 4-2) . The c a t  command can act as 
such a filter . As we saw in Chapter 2, this command is not entirely useless 
even though it seems trivial at first . 

Trivial things often play very important roles in building larger, more 
complex, structures . In this case, the cat  filter allows us to copy text files 
from one place to another. In a following section, we build our own trivial 
filter using the C programming language. 

A slightly more interesting example is a program that changes lower­
case letters to uppercase (see figure 4-3) .  Of course, it should also pass num­
bers and punctuation marks through unchanged. 



Input ___ ) 

Figure 4-2 
A trivial filter 

Figure 4-3 

----,> Output = Input 

Lower- and uppercase filter 

This is > some text. __ _ 

What Are Filters Good For? 

> THIS I S  SOME ----,. TEXT. 

Filters 

Many programming problems can be solved with the judicious use of fil­
ters . A classic example is a spelling checker . It can be constructed as a series 
of filters (see figure 4-4) . We construct such a program in this chapter. 

The first filter converts a document so that each word occupies a single 
line. This filter also removes all spaces, tabs, periods, commas, and other 
punctuation marks . A second filter sorts this list of words, and a third filter 
removes word repetitions . Finally, a system command is used to look for 
matches between the words in this list and the words in a dictionary file, 
reporting all mismatches . As we proceed through this chapter, we will see 
filters that perform many of these key steps, and we will put all the steps 
together to make such a program. 

Filters can operate on either single characters or larger patterns such as 
words, and they can move these larger patterns around before they are 
output. 

Redirection of 1/0 

Because XENIX treats devices such as keyboards, screens, and printers as 
files , 1/0 redirection boils down to the ability to control the flow of a pro­
gram's input and output to and from any specified file. 
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Figure 4-4 
A spelling checker 

The Eng l i sh  lag uage is one of the hardest lang uages to spel. 

I I  Separate words and � make uppercase 

T H E  
E N G L I S H  
LAG UAGE 
IS 
O N E  
O F  
T H E  
HARDEST 
LAN G UAG ES 
TO 
SPEL 

�Sort 

ENGLISH 
HARDEST 
I S  
LAG UAG E 
LANGUAGES 
O F  
O N E  
S P E L  
T H E  
T H E  
T O  

::==:;> 
Remove 
repeats 

ENGLISH 
H A R D EST 
I S  
LAGUAGE 
LA NG UAGES 
O F  
O N E  
S P E L  
T H E  
TO 

=====;> 
Compare L-----...1 
with 
dictionary 

There are three standard 110 streams. They are called s t d i  n, s tdout,  
and stde r r, which stand for standard input, standard output, and standard 
error output. The first handles standard input, the second handles standard 
output, and the third handles error messages separately from standard out­
put . These "files" are automatically opened when your program starts and 
remain open until it finishes . 

To a program, these streams act like files that are always open for 
reading (in the case of s t d i  n) or writing (in the case of stdout and stde r r) .  
S t d i  n usually comes from the keyboard, but can be  redirected to  come from 
any specified source. Stdout usually goes to the screen, but can be redi­
rected to go to any specified destination. The last one, stde r r, is used to 
send error messages , usually to the screen. 

The usefulness of filters stems from XENIX's inherent ability to redi­
rect standard 1/0, that is , obtain standard input from arbitrary sources and 
send standard output to arbitrary destinations . You might want the input to 
come from the keyboard or from a file, and you might want the output to 
go to the screen, a printer, or to the input of another filter (see figure 4-5) . 



Figure 4-5 
Redirection of 1/0 

o---/� 
Disk f i le 

Controlling Redirection 

Filters 

Disk F i le 

Let's start by learning how to specify redirection in a command line. In a 
following section, we see how to write programs that can use redirection. 

Normally, without any special indications, a filter takes its input from 
the keyboard and sends its output to the screen. However, some simple 
additions to the command line allow you to specify the source of the input 
and the destination for the output. 

PC-DOS users should be familiar with the most common cases . A < 
followed by a file name in the command line specifies the source for input 
and a > followed by a file name specifies the destination for output. For 
example the command line 

% f i l t e r  <myf i l e  >yourf i le� 

causes the program f i l t e r  to take its input from my f i  l e  and send its output 
to you r f i  l e. Also, a » followed by a file name indicates that the output 
should be appended to the previous contents of the file . This avoids the 
problem of clobbering an existing file and is especially handy for system 
accounting in which data is accumulated over long periods of time. 

The XENIX operating system handles these three redirection com­
mands in the same way as PC-DOS. However, other variations are possible 
in XENIX. For example, in the C Shell, the addition of 

95 



Inside XENIX 

96 

>& myf i l e  

to  a command line diverts both the output and any error messages to the 
file myf i  l e. For example, the command 

% c c  myprog ram . c  >&e r rors� 

sends all the diagnostic output from compiling myp rog ram . c  to the file 
e r rors .  Then later we can use the more command to examine e r ro rs :  

% more e r ro rs� 

This can be very useful if we wish to execute jobs as background tasks 
(see Chapter 2) . For example, placing an ampersand (&) at end of the com­
mand line 

% c c  myprog ram . c  >&er rors  &� 

runs the C compiler as a background task and collects all the output in the 
file e r r o r. Meanwhile, we can do something else without worrying about 
any of the output until we are ready for it . 

Normally, diagnostic messages go to the screen, no matter where the 
standard output has been directed. 

Programming Standard 1/0 

The key to 110 redirection lies in the notion of "standard 110 . "  A C pro­
grammer can think of standard 110 as a collection of input and output 
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routines that are called by any program that is to act as a filter . The program­
mer writes the program independently of where the input is coming from or 
where the output is going to, and uses these standard 110 functions . 

Each of the standard 1/0 routines actually connects to a software 
"switch" hidden within the operating system that is activated by any redi­
rection commands in the command line . For example, the statement 

x = get cha r O ;  

in a C program normally takes a character from the keyboard as soon as 
one is ready and places it in the variable x. However, if <my f i  L e  appears in 
the command line, the system "turns the switch" so that standard input 
grabs a character from the file myf i  L e, then puts it in x.  

Include Files and Standard C Libraries 

XENIX's standard 1/0 routines are located in two places , the standard C 
library and the std i o . h  include file . The standard C library is a machine 
language file located in the XENIX directory I L i b. The C compiler knows 
where this is, so you don't have to know. The s t d i o . h  file contains 
human readable C source code and is located in the XENIX directory 
/ u s r/ i nc l ude.  Again, the C compiler knows where that is, so you don't 
have to. However, because it is human-readable you might want to find it 
and examine it . We won't discuss its contents here because it is proprietary 
and subject to change from system to system. The file extension . h is short 
for header. This extension is used because these files are customarily (but 
not necessarily) included at the head or top of C programs . 

Many of the standard 1/0 routines are actually duplicated in these two 
places in slightly different form because of the space versus time trade-offs 
we discuss in the following text. However, you should compile your pro­
grams using both sources (as we describe in this section) . 

The XENIX manuals are written under the assumption that you are 
using both the C library and the std  i o .  h include file. Clearly, the designers 
of XENIX (and its UNIX ancestors) intended you to use both. It is to your 
advantage to use both, because you then have all the standard 1/0 features 
available to you . For example, the std i o . h file defines certain useful con­
stants , such as the code for end of file, yet the s t d i o . h  file depends on the 
standard C library to ultimately communicate with the system through a 
system call. 

If you happen to be writing a C program that uses standard 110, you 
must place the line 

# i nc lude <std i o . h> 

near the top of your C program, with the pound sign (#) in the leftmost col­
umn. In the example C program, you see this line. 

To use the standard C library with any C program, compile the pro­
gram in the normal way: 
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cc mycprog ram . c  

The compiler always automatically uses the standard C library, even 
when you specify other libraries . For example, the - l m option specifies the 
mat h library, which contains such things as the sine and cosine functions . 
Thus: 

c c  myprog ram . c  - Lm 

uses both the standard C library and the math library. 
When there is a conflict between an include file and a C library, the 

include file wins . This is because the contents of any include file are com­
bined with your program as it is compiled . In contrast, the C library is com­
bined next during the linking process . The linking stage only knows about 
and tries to resolve subroutine references that still are unresolved after the 
compilation is complete. 

Because include files are C source files , they are easy to maintain. This 
is true for both the include files that you write and for the ones that come 
with the system. 

It is not a good idea to rely on a particular distribution of routines or 
other structures between the system's standard 110 include file and its 
standard C library. This is subject to change. The actions and behavior of 
these routines do not change. Thus , it is important to understand how these 
routines are used and how they are supposed to act . XENIX designers and 
implementers are very careful about maintaining consistency at this level . 
We discuss these behavior details in the next few subsections . 

You can find a whole collection of such include files in the same direc­
tory as std i o . h . You can use such XENIX commands as f i nd to find all 
public include files (with read permission all along the path) in your system. 
Just ask f i nd to report all file names of the form * . h .  Here is what such a 
command line would look like: 

f i nd I -name 1 * .  h 1 -pr i nt 

The first parameter , a slash ( /) ,  indicates that the search begins at the root 
of the directory system, the option -name followed by the * . h indicates that 
we are looking for file names of the form * . h ,  and the option -p r i nt indi­
cates that the resulting path should be printed when such a name is found. 

The string * . h is an example of a regular expression. A regular expres­
sion is a string pattern that is used as a template to match other strings . In 
this case, the * acts as a wild card that matches an arbitrary string of char­
acters that begin a file name. The . h requires our search to find files whose 
name ends with a . h .  

On a new system, most of the include files are in the directory 
/ u s r / i nc l ude. This is called the standard include directory (see figure 4-6) . 
A few more are in /us r / i  nc  l ude/ sys .  For these you have to place a s y s /  
i n  front o f  the file name to get down into the s y s  subdirectory of 
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/ u s r/ i nc  l ude.  As a system gets used, programmers develop their own 
include files , placing them in their own directories . When these files are 
included in a C program, the angle brackets are replaced by double quotes 
like this : 

# i nc lude "my i nc ludef i l e . h" 

Figure 4-6 
The standard include directory 

b i n  boot dev etc l i b  lost + found mnt once tmp usr xen ix  

i n c lude 

Standard 110 Streams 

The standard I/0 commands are special cases of more general file com­
mands . Basically, file commands allow you to open, close, read from, and 
write to files , as well as determine and modify file parameters. In Chapter 
7, we explore general files in much more detail. This chapter concentrates 
on standard I/0. 

In general, when you open a file, you create an I/0 stream that con­
nects your program to that file . When you want to access that file, you pass 
its name as an argument to the appropriate file I/0 function . Pascal pro­
grammers recognize streams as file variables . 

More explicitly, a C program that opens a file with stream myf i  l e  must 
declare my f i l e with the statement 

F I LE * myf i  l e ;  

and open the file with a statement such as 

myf i l e  = fopen ("f i l ename" , r > ; 

Then if you wish to use a file I/0 function called get  c to read a char-
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acter from that file and put it into a character variable c ,  the following 
function call should appear within your program: 

c = get c (myf i le > ; 

As we mentioned above, the three special standard 1/0 streams are 
already open. Thus you do not need to declare them or open them. You 
may simply use them by the names std i  n, stdout,  and stde r r. The first 
handles standard input, the second handles standard output, and the third 
handles error messages separately from standard output . 

Std i n, stdout,  and stde r r  can be used as arguments in the general file 
system calls . However, we wish to use the special standard 1/0 functions 
that don't require a file (stream) reference as an argument but assume either 
s t d i  n or stdout (whichever is appropriate) . In the next couple of sections, 
we investigate these special functions and how they relate to functions that 
access arbitrary files . 

Standard Input 

In versions of XENIX that we use, both the standard C library and the 
std i o . h  include file contain the following input routines :  get c ,  get c h a r, 
fgetc ,  getw, get s, fget s, s c anf ,  and f s canf .  

Get c i s  the most basic file function for reading characters from a file. 
The other input functions can be defined in terms of it . Its single argument 
is st ream belonging to an open file. In this chapter, we deal only with stand­
ard 1/0 streams . These are predefined by the system and always open. As 
we mentioned before, in Chapter 7 we discuss how to set up streams that 
belong to arbitrary files . 

The version of get c that is defined in the include file s t d i o . h  is a 
macro. That is, each time you invoke it , an entire routine is inserted directly 
in your program. This scheme takes up more room than a normal function 
call, but it runs a bit faster , an important consideration if the routine is to 
be executed many thousands of times in a program. 

Get c returns an integer that contains the ASCII code of the next char­
acter in the file. On some machines integers are 1 6  bits, but other machines 
use larger sized integers . 

If get c develops an error or if you have reached the end of the file, 
get  c returns a value of - 1 .  If you need to refer to this value to stop read­
ing once you have reached the end of a file, you should use the constant 
identifier EOF instead of - 1 .  This makes the program more readable and 
portable. The assignment of - 1  to EOF is done in the s t d i o . h  file . 

Get c h a r  is defined so that it acts just like get c ( st d i  n ) . The name 
get  c h a r  is shorter to type and easier to understand than get c ( st d i  n ) . It 
returns an integer that is the ASCII code of the next character from the 
standard input stream, and it also returns the values EOF upon error and 
end of file . Because the get c ha r  function uses standard input, it tries with­
out any special < indicator in the command line, to read a character from 
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the keyboard, and it can be made to read from other files by placing a < file 
reference in the command line. 

The copy of get c h a r  in std i o .  h is also a macro for speed of execution. 
The fget c function is equivalent to getc ,  but it is implemented as a C 

function. Each invocation of this becomes a call to a single block of code 
located elsewhere. Thus fget c takes up less space in a program but runs 
slower. 

It is interesting to note that there are also versions of get c and get  c h a r  
in the standard C library that are implemented as C functions rather than as 
macros,  but the include file versions take precedence. 

Getw  returns the next integer from a specified file. Considering that a 
file is just a series of bytes, it gets an integer worth of bytes . On the IBM 
XT this is two bytes . It is thus not character oriented and of little interest to 
us in this chapter . 

Get s returns the address of a string that contains the next line of input 
from the standard input . C programmers say this is a pointer to the string. 
The get s function changes the newline characters at the end of the lines into 
a NULL (ASCII value zero) . Fget s does the equivalent task for a specified 
file. It has three arguments , the first of which is a string where the data is 
placed, the second of which is an integer that specifies a maximum size for 
the string (including the zero) , and the third is a stream belonging to an 
open file. 

S c a n f  is a powerful routine for reading standard input according to a 
specified format . C programmers should be quite familiar with the way it 
works, but we provide a quick rundown here. It returns an integer that indi­
cates how far it was able to get with its job .  Scanf  has a variable number of 
arguments . The first argument is a string that describes the format expected 
for the input, and the rest of the arguments are pointers to the various 
places to store the data. For example 

scanf < "%d%o%x%s" , &x , &y , &z , you rst r i ng) ; 

reads from standard input, looking for a sequence of characters that repre­
sents an integer in decimal notation, an integer in octal notation, an integer 
in hexadecimal notation, then a string. It stores the integers in x, y, and z,  
respectively, and the string in you rst  r i ng. A full description of the various 
formats can be found in a XENIX manual or a book on the C language. 

F s canf  is the general routine for reading input from a file according to 
a specified format. Its first argument specifies the file, and the rest are the 
same as for s c anf .  

Standard Output 

Standard output is much the same as standard input. Both the standard C 
library and the std  i o .  h include file contain the following input routines : 
put c, put c h a r, fput c,  putw, put s,  fput s, f p r i nt f, and p r i nt f .  

Again, put  c i s  the most basic file function for writing characters to  a 
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file . The others can be defined in terms of it . It has two arguments : The 
first is an integer that contains the ASCII code of the character to be writ­
ten, and the second is a stream that belongs to an open file . 

The function put c returns an integer that is its first argument, namely 
the ASCII code of the character that was just written to the file. 

Put c ha r ( c )  is defined to act like put c ( c , stdout ) .  That is , it writes 
the character in the integer variable c to the standard output . Because this 
function uses standard output, if there is no special > indicator in the com­
mand line, it writes the character to the screen. 

Both put c and the put c h a r  in the include file std i o .  h are implemented 
as macros like the corresponding get routines . That is, each time you 
invoke one of them, an entire routine is inserted directly in your program. 

Fput c is equivalent to put c, but it is implemented as a C function. That 
is, each invocation of this becomes a call to a single block of code located 
elsewhere. There are also versions of put c and put c h a r in the standard C 
library that are implemented as C functions rather than macros . 

Putw sends an integer to a specified file . Because it is not character ori­
ented, it is of little interest to us in this chapter. 

Put s sends a specified string to the standard output . The string is the 
function's single argument . The string must be terminated by an ASCII 
zero (null) character . It returns the EOF value if there is an error . Fput s is 
the general file function to send a specified string to a specified file . It has 
two arguments . The first argument is the string to be sent and the second 
specifies the file to send it to . 

P r i  nt f is a powerful routine for writing to the standard output accord­
ing to a specified format. It corresponds to s c anf,  and like s c a n f  should be 
quite familiar to C programmers. 

P r i  nt f has a variable number of arguments . The first argument is a 
string that describes the format for the output, and the rest of the argu­
ments are pointers to where the data is stored. For example 

p r i nt f ( " Count = %d , add ress = %x , %s" , x ,  add r ,  you r comment ) ;  

prints Count = , the contents of x in decimal , the string " , add ress  = ", 
then the contents of add r in hexadecimal, a comma, then the string stored 
in the variable you rcomment.  A full description of the p r i  nt f function and 
the various formats can be found in a XENIX manual or a book on the C 
language. 

F p r i  nt f is the general routine for writing formatted output to a speci­
fied file according to a specified format . Its first argument specifies the file, 
and the remaining arguments are the same as for p r i  ntf .  

Buffer Control 

1/0 devices such as keyboards and disks often require temporary storage 
areas called buffers. Buffers are necessary because 1/0 generally comes and 
goes at rates of speed that the CPU cannot efficiently handle . Buffers store 
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these characters in a fixed sized block while they are waiting to be processed 
or sent somewhere else. 

In particular, a keyboard produces characters one by one in an irregu­
lar pattern at a rate much slower than the CPU could handle them. On the 
other hand, the disk system sends and receives fixed sized blocks of a thou­
sand or so characters at speeds faster than the CPU might be able to handle 
them. 

When keyboard input is buffered, each character you type is not 
immediately available to functions like get c h a r. Instead, you have to wait 
for a return at the end of a line of text before get c h a r  returns any characters 
from that line. This is not appropriate for character-oriented applications 
such as editors , but it does have the advantage that a line of text can be 
modified with such actions as delete character (usually backspace) while the 
line is still being entered . The system automatically takes care of this edit­
ing, relieving your program of the responsibility. 

Fortunately for applications that require it, there is also a way to make 
characters immediately available as soon as they are typed. You can use the 
setbuf  routine to turn off buffering for the s t d i  n stream when your pro­
gram first starts up . In general, setbuf allows you to specify your own 
buffer for any open file. The first argument specifies the file, and the sec­
ond argument is a pointer to the desired buffer. To turn off buffering for 
the file, make the buffer pointer in the second argument a nu L L  (zero) value. 

End of File Detection 

The function feof can be used to determine when a file ends . It has a single 
parameter that is a file pointer . Feof returns an integer, which is zero as 
long as the file has not completely been read and nonzero when the end of 
the file has been reached . For standard input, the end of file condition is 
true after return or enter is pressed . 

Standard Error Stream 

In addition to standard input and output streams, the stream stde r r  trans­
mits errors to the user independently of where the standard output has been 
sent . It goes to the screen. From a command line in the C shell, it is possible 
to send the standard error stream to the same place as the standard output 
stream. From a command line in the Bourne shell , it is possible to send the 
standard error stream to any file . 

Programming Filters 

Now let's look in detail at some filters. We start with a trivial example writ­
ten in C, then we explore some filters provided with XENIX. 

Writing Filters in C 

Our first example is a C program that just passes its input unchanged to its 
output . Such a program may seem completely useless . However, it can be 
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used to copy files from one place to another . Later we see how filters that 
are already in the system do this and more. 

Here is the C program: 

I *  t r ; v ; a t  t ;  l t e r  p rog ram * '  

# ; nc l ude<std ; o . h> 

ma ; n o  
{ 
; nt c ;  
w h ; L e  < < c=get char ( ) ) ! =EOF )  put cha r ( c ) ; 
} 

Let's examine it in detail. The line 

causes the standard I/0 header file std i o . h  to be included, providing all the 
features of standard I/0 discussed previously. The angle brackets (< and > 
around the file name s t d i o .  h indicate that the compiler should find this 
include file in the system's standard directory for include files . This hap­
pens to be / u s r / i  nc l ude (see figure 4-6) . If you enclose an include file name 
in double quotes rather than angle brackets , the compiler tries to find the 
file in your current working directory. 

Our filter program essentially consists of a main function that is a 
w h i l e  loop . This loop continues as long as the end of file character has not 
been received from the standard input . Each time through this loop, a sin­
gle character is fetched from standard input and sent to standard output . 

The i nt c ;  statement before the w h i l e  loop declares the variable c to 
be an integer to match the output data type of the get c ha r  function. 

Let's look at the w h i l e  statement in more detail . In the conditional 
part, the variable c is assigned the result returned from the function 
get c h a r and this is also compared to the constant EOF, which indicates the 
end of the file . The w h i l e  loop continues as long as the function result and 
the constant EOF are not equal . 

In the action part of the w h i l e  statement, the integer ASCII code in c 
is sent to the standard output via the put c h a r  function. The compiler auto­
matically converts ASCII codes into their corresponding characters during 
the function call . 

Assuming that we have entered this program in the system under the 
file name s i mp l e .  c, we can compile it with the following command 

cc s ; mp l e . c  

which produces a file called a .  out.  
Before we give a .  out a better name, let's test it . We type: 
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% a . out,._l 
Th i s i s  a test  of ou r s i mp l e  f i l t e r . ,._l  

As soon as we press the final return, a second copy of the line of text 
"This is a test of our simple filter . "  appears just below the first . To end the 
session, type a control d .  

The first copy of the text is  produced by standard input as we type the 
individual characters . However, these characters are stored in a buffer until 
you press return at the end of the line . The second copy is produced by 
standard output once it gets the characters .  

Let's  rename the a .  out file with the command: 

mv a . out text copy 

With the aid of I/0 redirection, we can use this command as its name 
suggests .  

First let's use i t  to create a file . Try typing: 

% text copy >mytext,._l 
Th i s i s  a L i ne of text , ,._l  
and t h i s i s  a second L i ne o f  text . ,._l  
<cont ro l d> 

Then the file myt ext contains these two lines of text . Remember that 
each line of text ends with a return, and the entire text entry ends with a 
control d .  

We can use our newly created text copy command to list the file as 
well . For example, the command line 

text copy <mytext 

prints the file myt ext  on the screen. 
Finally, we can use this command to copy the contents of one file to 

another . For example, the command line 

text copy <mytext >you rtext 

copies the contents of the file myt ext  to the file you rtext .  You can, of 
course, use text  copy to verify this . 
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Using Standard Filters 

Most simple text processing tasks have already been developed for XENIX 
and are available to the ordinary user. The job that our t ext copy does is no 
exception. 

Let's look at some of the simple filters that come with XENIX. Some 
of the standard filters are : t r, g rep, eg rep, and fg rep. We see how these do 
what our text copy program does and more. We also look at sort .  These 
programs are typically written in C, but their source code is not included 
with the system. 

Using Tr-T r  is a filter that transfers characters from the standard input to 
the standard output, substituting certain characters for others as specified 
in the command line. Its name is short for translate and it is , in effect , a 
character translation program. It converts text character by character ac­
cording to a set of rules . 

Without any parameters t r transfers characters directly without any 
substitutions . However, t r also can be "programmed" to perform a num­
ber of variations on the theme of character substitutions . For example, it 
can be programmed to perform the first stage of the spelling checker men­
tioned earlier , namely separating each word in the document and placing it 
on its own line of text . 

Let's start with t r with no parameters .  In this case, it sends characters 
from standard input straight through to standard output . Without any redi­
rection, it prints each line you type on the keyboard to the screen--just like 
our t ext copy program. Each character appears twice, once as it is being 
typed and again as the entire line is sent to standard output . For example, if 
you type 

% t r.-l 
Th i s  i s  a L i ne of text . .-J 

a second copy of the line 

Th i s i s  a L i ne of text . 

appears under the first . Like our own text copy program, it can be used to 
create files , display files , and copy files . 
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You can see that with redirection, t r becomes a useful file utility. 
Most people use cat  to perform these same functions . Although c a t  is not a 
true filter (because it normally accepts input from a file) , it can be used as a 
filter if it is invoked with no parameters (excepting, of course, redirection 
commands) . 

Now let's look at how t r can be used in a nontrivial manner to do 
more than simply copy characters . T r can accept any combination of three 
option flags, and it can accept zero , one, or two string parameters .  

Without any option flags , the characters in  the first string are replaced 
by the corresponding characters in the second string. For example, the com­
mand line 

t r  ' abed ' ' ABCD ' <myfi  L e  

prints the file myf i  L e on the screen, substituting uppercase equivalents only 
for the characters a, b, c, and d. Although not always necessary, it is a good 
idea to place single quotes around all strings in a command line. This pre­
vents the shell from interpreting special characters such as * ,  [, or J that we 
may want to pass without modification to t r. 

Perhaps you wish to replace all lowercase characters with their upper­
case equivalents . It would be awkward to type the entire alphabet twice, 
once in lowercase, then again in uppercase. Instead, you can use a range 
specifier . 

Ranges of characters can be indicated with square brackets . For exam­
ple, the command line 

t r  ' [ a-z ] ' ' [A-Z J ' <myf i l e  >you rf i l e 

translates all lowercase characters of myf i  L e  to uppercase and places the 
result in you r f i  L e. 

Finite or infinite repetitions of a character also can be indicated with 
square brackets ([]) . For example, [X*6] stands for the string XXXXXX 
(that's six Xs) . This is useful in the second string when a whole range of 
characters in the first string is to be replaced by a single character in the sec­
ond string. The number following the * gives the repetition count . If it 
begins with a zero, it is in octal. Otherwise it uses decimal notation.  If this 
number is missing or has a zero value, it is assumed to be infinite. For 
example, if you wanted to replace every character in the first string by an 
X, you would make the second string equal to [ X *  J ,  which stands for 

[ XXXXXXXXXXX • • .  ] 
where the three dots represent an endless series of Xs . This means that all 
characters in the first string are converted to one of these Xs . 

A special character , such as newline (which is normally triggered by 
pressing return) or tab , can be indicated with a backslash ( \ )  followed by its 
ASCII code in octal . For example 
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t r  1 1 1 \01 1 1 <assmf i l e  

replaces all spaces by the tab character (octal 0 1 1 = decimal ASCII code 9) . 
The -c option flag allows you to specify the set of characters not to 

convert. That is, the c stands for the complement of the given set of charac­
ters . For example 

t r  -c 1 [ a-zJ [A-Z J 1 1 [ \01 2* J 1 <mytest 

prints out the file myt est  on the screen, replacing all nonalphabetical char­
acters by the octal 012,  which is decimal 1 0  ASCII or control j ,  the linefeed 
character . This is XENIX's newline character . The * indicates infinite repe­
tition of the linefeed character in the second string. This has the effect of 
putting each word on a new line, but things like multiple spaces cause lines 
to be double-spaced or worse . 

Another option flag is -d . This causes all characters in the first string 
to be deleted from the output . For example 

t r  -d 1 1 <mytest 

prints the file myt est  on the screen, deleting all spaces . 
The third and final option is -s. This causes repeated substitute char­

acters to be replaced by a single copy of that character . It can be used in 
combination with other options such as -c .  For example 

t r -cs  1 [ a-zJ  [A-Z J 1 1 [ \01 2* J 1 <myt est 

prints the file on the screen, replacing all series of nonalphabetical charac­
ters by a single newline character . This has the effect of putting each word 
in the file on a separate line of the output . Recall that this is the first step of 
the spelling checker . 

It would not be hard to write a C program that performs the actual char­
acter translation. Such a program would use a table stored in memory to look 
up a new ASCII code for each character. However, it would be much more 
difficult to write a C program that would set up this translation table according 
to specifications such as those used by t r. Thus, special cases of t r are easy to 
create, but its full power would take significant effort to match. 

Using Grep, Egrep, and Fgrep-The g rep family of programs provide a 
way to find matching patterns in lines of one or more files . They all can be 
used as filters .  Generally, they print all lines that contain a specified pat­
tern. For example the command line 

% g rep 1 XEN IX 1 �  



Filters 

prints out lines of input that contain the word XENIX. The g rep family is 
useful for doing such things as searching the password file for somebody's 
name or searching all the include files in / u s r / i  nc  L ude for a particular vari­
able name. 

The name g rep stands for g / re/p, which means "globally match regu­
lar expression and print ."  The three different versions of g rep vary in the 
type of pattern matching commands they accept and the type of string 
matching algorithms they use. 

Eg rep is a bit more powerful than g rep both in commands and in the 
speed of the algorithm. However, eg rep tends to take up more memory 
when executing. 

Fg rep searches for fixed strings but runs fast and takes up little space. 
In general, these commands have a number of options, including 

ignoring upper- and lowercase or reporting all lines not matched. After 
these options, they expect a string expression that describes the patterns to 
match. Finally, there is a list of files to search through. If no files are listed, 
standard input is used, making them filters . For example 

g rep -y ' repo rt ' 

prints out all lines of input that contain the word report ignoring case . 
In any case, the output of these g rep programs goes to standard out­

put, thus making these programs filters in this default case . 
Let's start with fg rep because it has the simplest pattern matching 

commands, namely fixed strings . In following text, we investigate the more 
complicated cases possible with g rep and eg rep. 

When fg  rep is used with no parameters , it specifies no strings to match 
and operates on standard input. This means that it acts just like our trivial 
filter. That is , the command line 

fg rep 

produces the same results as t e x t  copy, t r, or cat .  
If  we  specify a string parameter for fg rep, we can use i t  to  print only 

those lines that contain a copy of this string. For example 

fg rep ' i s '  <mytext 

prints out only those lines in myf i  Le that contain the string i s . 
If you need to search for a list of strings, you can use the -f option to 

specify a file where the strings are located. In this case, fg rep would report 
whenever any of the strings matched. For example, if the file "matches" 
contained the following lines 

i s  
t he 

the command 
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fg rep - f  mat ches  <mytext 

would print out all the lines of myt ext that contain is or the. If a line con­
tains both strings , it is printed only once . 

So far , we have only examined fixed strings . Now let 's  look at the 
string expressions that g rep and eg rep can handle . These are called regular 
expressions. Various varieties of regular expressions are used in editors and 
string matching programs throughout XENIX in such places . 

G rep uses what is called limited regular expressions , and eg rep uses a 
somewhat more powerful set called full regular expressions . 

Regular expressions are defined according to a set of rules , starting 
with expressions for single character matches . These single character match­
ing expressions then can be formed into matching expressions according to 
another set of rules . 

Single character matching expressions can consist of any regular char­
acter (not including the characters [, ] ,  " , $ , and \ ) .  These special charac­
ters can be used to indicate special kinds of matching situations . 

A backslash ( "- ) is used to make an expression that matches a special 
character literally. Place the backslash in front of the special character . You 
can also match tabs, backspaces , and newlines with "- t, "- b ,  and "- n 
respectively. 

The square brackets ( [ J )  enclose choices of characters . For example, 
[ abc ] stands for the choice of a, b, or c. Ranges can be indicated with a 
hyphen, even in combination with other choices . For example, [ abcQJ-9 ] 
indicates the choice of a, b, c ,  or any digit . 

An empty string inside square brackets is not allowed. In fact, a right 
square bracket immediately following a left square bracket is assumed to be 
one of the choices ! 

A caret (") is used in two ways : 1) at the beginning of an entire string 
expression to indicate that the string expression is to match the beginning of 
the line, and 2) at the beginning of a string enclosed in square brackets to 
complement the set of choices given in the square brackets (to match all 
characters that are not in the string) . 

A dollar sign ($) is used at the end of a string expression to indicate 
that the string expression is to match the end of the line . 

A period (.) is used to indicate a match of any one character sequence 
except newline. 

Multicharacter regular expressions can be constructed from one char­
acter regular expressions in a number of ways that we describe next . 

A one character regular expression is a special case of a regular 
expression. 

A one character regular expression followed by an asterisk (*), is a reg­
ular expression that matches zero or more repetitions of the one character 
regular expression . 

The special combinations \ { and \ } are used to bracket ranges for 
matching repetitions of one character regular sequences . That is , if m and n 
are non-negative integers , then \ { m \ }  indicates exactly m repetitions , 
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\ {m I \} indicates at least m repetitions, \ {m 1 n \ }  indicates at least m repeti­
tions and at most n matches . These modifiers are placed after the one char­
acter regular expressions that they modify. For example X \{2 1 5 \ }  indicates 
exactly 2, 3 ,  4, or 5 repetitions of the character X . 

A sequence consisting of one or more regular expressions is itself a 
regular expression. 

The special combinations \ ( and \ )  are used to bracket regular 
subexpressions that then can be referenced later with a special combination 
\ n, where n is a single digit indicating one of as many as nine (possibly 
nested) subexpressions . For example, the expression a bc \ ( 1 234\ ) de\1  \ 1  
expands to  abc1 234de1 2341 234. I t  has one copy of  1 234, some other char­
acters, then two repetitions of it . 

Finally, the caret (" ) can begin a regular expression to indicate that 
matching must start at the beginning of the line, and a dollar sign ($) can 
end a regular expression to indicate that matching must happen all the way 
to the end of the line . For example, the expression ""Th i s i s  t he l i ne$ 
must match the line Th i s  i s  t h e  L i ne exactly. 

Combining all these special controls can lead to some pretty intricate 
and powerful string matching expressions . For example, the expression 
""\ ( [ A-Za-z \ .  J * \ > \ 1  $ matches lines that contain exactly two repetitions 
of a string consisting of alphabetical characters , spaces , and periods . 

We can use such expressions with g rep. For example 

g rep ' "\ ( [A-Za-z \ . ] * \ ) \ 1 $ '  

acts as a filter that sends all lines that match the above string expression. 
Unfortunately, eg rep does not work with the \ ( \ ) expressions, but it 

has other operators such as + (one or more repetitions of an expression) . 

Sort- Sort  is another example of a filter supplied with XENIX. As its 
name implies , it takes its input (standard input if no files are specified) , 
sorts it , and sends the result to standard output . It can also merge files if 
several files are listed as input . 

The sort  program has a number of option flags that control such 
things as the order of the sort, upper- and lowercase distinctions, and the 
character positions of the sorting key field within the line. 

Here is an example: 

% sort._l 
here.-J 
i s.-J 
a.-J 
l i st.-J 
of.-J 
words.-J 
i n.-J 

1 1 1  
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l owe rcase,._J 
cont ro l d 

produces the following output 

a 
here  
i n  
i s  
l i st 
l owe rcase 
of 
words 

A more elaborate example would be 

sort -t \ ;  +1 -2 <shapes 

where s h apes contains the following 

1 ; po i nt 
2; l i ne 
3 ; cu rve 
4 ; c i r c l e  
S ; squa re 
6 ; rectang l e  

would produce the list : 

4 ; c i r c l e  
3 ; cu rve 
2; l i ne 
1 ; po i nt 
6 ; rectang l e  
S ; squa re 

In the command line, the -t option says that a semicolon (;) separates 
the fields . Notice that a backslash ( \ )  precedes the semicolon, making sure 
that this semicolon is literally passed to sort .  Otherwise, XENIX would 
think that the semicolon separated the command line into two separate 
commands . 

Next, the +1 -2 specifies the key fields . Field numbers begin with zero. 
This combination says that to form the sorting key, use field number one 
(the second field) up to but not including field number two. Notice that the 
resulting list has this field in order, even though field zero is now out of 
order . 
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Other Filters-XENIX has other filter programs . The program sed (which 
stands for stream editor) is a programmable filter . The programs for sed 
are editing commands, much like ex  mode commands of v i .  Actually, they 
conform more to the line editing program ed. 

An example is the command line: 

% sed -e ' s / i ntege r/ rea l /g '  <test01 >test01 . new� 

It causes the contents of the file t e s t 01 to be read, substituting all 
instances of i ntege r with the word rea l ,  and placing the modified text in 
the file t est01 • new. 

The -e option for sed specifies that an editing command follows on 
the command line. In this case, the editing command is the subst i t u t e  
command: 1 s / i nt eg e r / rea l lg 1 •  The initial s stands for substitute. I t  is 
followed by slashes ( /) that delimit a regular string expression and a literal 
string. The regular expression (in this case, i nt eg e r) matches the strings 
that are to be replaced, and the literal string (in this case rea l) specifies the 
string to replace them. The final g indicates that this process is to be done 
"globally, "  that is, for all nonoverlapping matching instances in the input . 

If we don't specify a file for input, sed reads its input from the stand­
ard input . Here, we have redirected the input from the file t est01  and out­
put to the file test01 • new. 

The s ed program accepts many other editing commands, but we do not 
discuss them here . With the -f option, these commands can even be speci­
fied in a separate file. 

The program awk  can also serve as a filter . The name awk  is comprised 
of the initials a, w, and k of its developers : A. V. Abo, P .  J. Weinberger, 
and B. W.  Kernighan. Awk is useful for extracting and rearranging informa­
tion from files that are organized in tabular form, such as the password file 
or a mailing list . It processes each line of a file according to specified rules 
that operate on the various fields in that line . Here is an example of its use. 
The command line 

awk -F : ' {pr i nt $1 } '  </et c / passwd 

prints the login name for each account on the system. 
For the awk  command, the - F  option specifies the field separator, 

which in this case is a colon ( :) .  The quoted string indicates an action to 
take. In this case 1 {p r i nt $1 } 1 specifies that the first field should be 
printed . For the password file, this is the login name. 

The a w k  command has other options , including the -f option that spec­
ifies a file from which it reads instructions . Instructions to awk  form a pro-

1 1 3  
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programming language with variables , arithmetic and relational operators, 
control structures , and built-in functions . With it , you can compose reports 
or build data tables that people and other programs can use. 

Putting Filters Together 

Now that we have a variety of filters , let's show how to put them together 
to make larger programs. We present a spelling checker program, designed 
along the lines laid out in the beginning of this chapter . 

The first step is to place each word on a separate line . To do this, use 
the t r command in the form: 

t r  -cs  1 [ a-z l [A-Z l 1 1 [ \01 2* l 1 

As we saw earlier, this replaces multiple occurrences of nonalphabetic 
characters by newlines . 

The next step is to translate all lowercase letters to uppercase. This can 
also be done with the t r command: 

t r  1 [ a-zl  1 1 [ A-Z l 1 

Sorting comes next with the sort command 

sort 

Now we have to remove multiple occurrences of words . The system 
command u n i  q does this : 

un i q  

We can connect the commands with the pipeline symbol : , making the 
output for each command go to the input for the next command. We put 
what we have so far in a script file called spe L L e r. For more details on 
script files , see Chapter 3 .  We use the backslash ( \ )  to continue the com­
mand line onto several lines . Here is our spe L L e r  script: 

#spe l l i ng checker - ext racts  words 
t r  -cs  1 [ a-z HA-Z l 1 1 [ \01 2* 1 1  : \ 
t r 1 [ a-zl  1 1 [A-Z l 1 : \ 
sort : \ 
un i q  : \ 

This accepts text from the standard input and sends a sorted, capital­
ized list to the standard output . If spt e s t  is a text file containing the text 

Th i s i s  a test  of the  spe l l i ng p rog rm .  The output i s  reedy to  
check  aga i nst t he di st i ona ry . 



the command line 

% spe l l e r  <sptest� 

produces the list : 

A 
AGA I NST 
D I ST IONARY 
I S  
OF 
OUTPUT 
PRGRAM 
REEDY 
SPELLING  
TEST 
THE 
TO 

It looks like we really do need a spelling checker ! 

Filters 

The final step is to match the results against a dictionary. This can be 
done with the XENIX comm command that compares two files and prints the 
differences .  Unfortunately, this is not a filter. We must direct the output of 
our speller to a file, then use comm to compare this file against the dictionary. 
We can use the -23 option of comm to show only the words in our list that do 
not match the dictionary. Here is how the complete job looks: 

% spe l l e r  <sptest  >sptmp� 
% comm -23 sptemp myd i ct i ona ry� 
D I STIONARY 
PRGRAM 
REEDY 

This displays the misspelled words DISTIONARY, PRGRAM, and 
REEDY. We use a temporary file s ptmp to hold the word list for comm. 

Writing Filters Using Tools Such as Lex 

Now let 's  see how to write filter programs using l ex .  The name Lex stands 
for Lexical Analyzer. With l e x, we specify the pattern matching that we 
wish, and l e x  generates the appropriate C program. 

1 1 5  
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A Quick Example-Let' s  start with a program equivalent t o  our t e x t c opy 
program. Here is the L e x  program: 

%% 
. ECHO;  

We look at L e x  syntax in detail in following text , but let ' s  preview this 
particular program now. 

Each L e x  program has three parts : a definitions section, a rules sec­
tion, and a user routines section . The %% separates the sections . In our case, 
the %% separates the first section (empty in this case) from the second part . 
This separator is always necessary. 

If the third part (user routines) is empty (as it is in this case) , no sepa­
rator is needed after the second (rules) section. 

Our program consists of a single rule : 

. ECHO 

This rule looks for arbitrary characters and prints them to the stand­
ard output stream. 

The period ( .)  is a string matching expression that matches any charac­
ter except newline, and ECHO is a C macro that prints whatever was found 
in the matching process .  E C HO is defined in the L e x . yy . c .  We explain how 
this works in following text . 

Suppose this is stored in a file called t r i  L e x . L .  To turn it into a run­
ning program, you must first translate it into a C program via the command: 

% lex  t r i l ex . l� 

The result is a C program stored in a file in L ex .  yy . c .  To compile 
this, you should use the command : 

% c c  l ex . yy . c  - l l� 

Now you have an executable program called a .  out that acts as a trivi­
al filter . The - L L option causes the system (in particular, the linker) to 
search the Lex library for routines such as rna i n  to turn our code into a 
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stand-alone program. Lex is often used in conjunction with y a c c  (discussed 
in Chapter 10) to produce a function that is part of a larger program. 

You can test this program out, then rename it if you would like to 
keep it . 

Now let 's  look at how l e x  programs work and develop some interest­
ing examples . 

Lex Rules-Let ' s start with a discussion of l e x  rules . Each l e x  rule has two 
parts : the first is a string matching expression and the second is a C action. 
The string matching expressions are similar to but even more elaborate than 
those available under the g rep family . 

The C action can be any valid C statement (or multiple C statements in 
curly brackets) . Lex provides a number of variables that can be used in 
these action statements . Incidentally, l e x  can be used to create programs in 
certain other languages such as Ratfor . In that case, the action statements 
would be written in that language and the command line to "lex" the pro­
gram would be a little different . 

Word Substitutions-We now demonstrate some simple pattern substitu­
tions that can be done rather nicely with l e x .  Our program replaces all oc­
currences of the string z e ro by the digit 0, all occurrences of the string 
one by the digit 1, and so on through the string n i ne. All other text is cop­
ied as is .  

Here is the example: 

%% 
zero p r i nt f ("fil") ; 
one p r i nt f ("1 " > ;  
two p r i nt f ("2") ; 
t h ree p r i nt f ("3") ; 
fou r p r i nt f ("4"> ; 
f i ve p r i nt f ("S"> ; 
s i x  p r i nt f <"6") ; 
seven p r i nt f ("7"> ; 
e i ght  p r i nt f ("8") ; 
n i ne p r i nt f <"9") ; 

The string matching expressions are simple strings of ordinary charac­
ters , and the actions are simple formatted print statements to standard 
output . 

This example, unfortunately, replaces occurrences of these strings in 
the middle of words as well as for whole words . It is possible to write a Lex 
program that would handle this situation in a reasonable way. The problem 
is in coming up with an appropriate definition. 

Inserting Material Before Each Line-Now let 's  look at a program to insert 
a tab before each line: 

1 1 7  
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%% 
" · pr i nt f <"\t%s" , yytext > ; 

As we discussed previously, an initial caret (" ) in a string matching 
expression begins matching at the beginning of a line . The period (.) indi­
cates any character except newline. Here we are looking for a beginning of 
a nonempty line . 

In the action part, a string expression is printed that has a tab charac­
ter followed by the string yytext ,  which is where the matching character is 
stored. You can use this string variable in your programs . 

The line number is another variable that is available to the Lex pro­
grammer . It is stored as the variable yy l i neno. Here is an example Lex 
program to insert the line number, a colon, and a tab before each line: 

%% 
" · * '" pr i nt f ("%d : '- t%s" , yy l i neno-1 , yytext > ;  

The pattern matching expression is " .  * \ n .  It matches an entire line, 
empty or nonempty. The initial caret ( ") says that the match must begin at 
the beginning of a line. The period ( . ) stands for an arbitrary character that 
is not a newline character . The asterisk ( * )  says that this character may be 
repeated zero or more times . The newline \n indicates that the pattern 
includes the newline at the end of the line. If we used a dollar sign ($) in this 
spot, each line would be counted twice . 

The action statement is a formatted print statement. It prints the 
expressions yy l i neno-1 and yytext  according to the format %d : \t%s .  
Notice that the line number yy l i neno must be  decremented by one because 
the line count increases after the newline character is found. In the format, 
%d indicates that the line number should be printed as an integer in decimal 
notation, the : is an actual colon, the \ t indicates a tab , and the %s indi­
cates that the second expression yytext  should be printed as a string. 

Lex has many other features that we have not even touched on, but 
this introduction should give you some idea of its power in making custom 
filters . 

How Lex Programs Work-The C programs that l e x  creates for you are 
table driven with a relatively small amount of code. That is, most of the 
programming is controlled by tables of data associated with the program. 

The main task is to match string expressions . When you "lex" your 
program, l e x  converts these expressions to a tree structure called a transi­
tion diagram that is stored in tables as part of the resulting C program. For 
example, figure 4-7 gives the transition diagram for the name-to-number fil­
ter given above. 

Each leaf of this tree represents a successful search . The leaves are 
assigned numbers that drive a s w i t c h  statement which houses the various C 
action statements given in your original l e x  program. 
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Figure 4-7 
A matching tree 
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Because the resulting C programs are driven by data, much of the 
code is common to all programs produced by L ex .  Table-driven programs 
tend to work well once a moderate level of complexity has been reached . 
However, for a trivial case like our first L e x  program, it is definitely 
overkill . 

Summary 

In this chapter we have discussed filters ,  the fundamental working pro­
grams in a XENIX system. These programs operate on standard input and 
send it out, transformed, to standard output . We discussed how filters can 
be used to solve programming problems ; how to program them in C;  how 
to use existing filters , such as t r, g rep, and sort  that come with the 
XENIX operating system; and how to use the L e x  program to quickly de­
sign your own custom filters . 

In Chapter 10,  we see how the L e x  program can be used in a different 
context to build C functions that recognize strings . The functions pass on 
numerical values called tokens depending on what strings they find . This is 
the first stage in constructing a language translation program. 

1 1 9  
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Questions 

Answers 

1 .  What is a filter? 

2.  Why are filters useful in XENIX? 

3 .  Can you write your own filter in XENIX? 

4. Name several XENIX utilities that can be used as filters .  

5 .  Write a Lex program to change double-spaced text into single­
spaced text . 

1 .  A filter is a program that takes input from a single source and 
sends it to a single destination. In XENIX the source should be the 
standard input and the destination should be the standard output . 

2.  Filters are useful in XENIX because they allow a large class of 
complicated jobs to be broken into a series of small, simple steps 
that can be performed by general purpose utilities . Using pipelines 
or ordinary files with 1/0 redirection, output from one step can be 
easily sent to the input of the next step or conveniently stored for 
future processing. 

3 .  Yes, you can write filter programs in a language such as C.  Such 
programs use standard 1/0 functions from the standard C library 
to handle their input and output . You can also use Lex to write 
filter programs . 

4. Some XENIX utilities that can act as filters are: t r, sort ,  g rep, 
eg rep, fg rep, sed, and awk. 

5 .  Here is a Lex program to change double-spaced text into single­
spaced text : 

%% 
" \ n \n" {pr i nt f < " \ n" ) ; }  







System Variables 

This chapter explains shell and environmental variables and parameter pass­
ing. XENIX handles all of these as string variables. Using string variables 
for these has the advantage over using numerical variables , in that many 
different types of information, including both numerical and string, can be 
stored and handled in a uniform manner . Conversions between string and 
numerical types can be performed by the system and the user as needed. 

Shell and environmental variables are used to set up an environment 
that controls how your commands are interpreted. This applies to both 
existing system programs and programs that you write. In this chapter, we 
explore these variables in detail, and see how to use them and pass them 
along from process to process in the system. 

The Environment 

Let's begin with environmental variables . Each process has its own environ­
ment. The environment is a list of string variables that is passed along with 
any command parameters. A process then can access these variables via 
addresses passed to it as arguments for its main program. 

The environmental variables contain useful information about the user 
to whom that particular process belongs . They specify such things as the 
user's home directory, path for searching for commands, and starting shell . 

When a user logs on, the system spawns a process that runs the user 's  
shell. This shell process is  the user's  primary process ,  the one from which 
all other of the user's processes descend. The environment attached to this 
process is the user's  primary environment . 

The system sets up the starting environment for the shell process . This 
includes the user's home directory HOME, the initial path to the user's  com­
mands PATH, the current terminal type TERM, a speed variable HZ (hertz) 
that gives the number of times per second that the system timer interrupts 
the CPU, the time zone TZ, and the initial shell S H E L L. 
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Right after a shell starts up , it executes some scripts that may redefine 
these string variables and set others . These additional variables may include 
MA l L  and TERM CAP. MA l L  specifies a path to a file that contains incoming 
mail, and TERMCAP is a copy of the t e rmcap  entry (see Chapter 6) . These 
scripts can be modified by the user or system manager to customize the 
user's operating "environment. "  

When a new process is launched, it normally "inherits" its environ­
ment from the original process. We study this phenomenon in subsequent 
text. 

Certain programs, such as the shell , mail, and editor programs, use en­
vironmental variables to determine how to act. For example, programs in 
Chapter 6 that involve terminal 110 use, TERM and TERMCAP.  We present a 
program later in this chapter that uses PATH to find commands in the direc­
tory system. 

Structure of an Environment 

Environment consists of an array of pointers to strings . The last pointer is 
null , which signifies the end of the list . 

Each string consists of a name, followed by an equal sign (=)  and a 
value. The entire string is terminated by a zero byte . Thus, the name of the 
variable is packed into the string together with its value, separated by the 
equal sign. 

Our next example demonstrates this structure and shows how it relates 
to parameter passing. In this short "warm up" exercise, we do not need to 
pass any arguments to this command. In a subsequent C program we will . 

Example C Program to Display Environment 

Let's look at a C program that displays its environment. When you invoke 
this program as a command, it displays the addresses and contents of its en­
vironment variables . You should be aware that these addresses are relative 
to the value of the data segment pointer (the DS register for the 8086 or 
8088 CPU), which is generally different for each process running in the 
machine. 

�65258 : HOME=/us r/morgan 
�65275 : PATH= : /us r/mo rgan/b i n : /b i n : /usr/b i n 
�6531 1 :  TERM=unknown 
�65324 : HZ=20 
�65330 : TZ=PST8PDT 
�65341 : S HELL=/b i n/csh  
�65356 : TERMCAP=au i a1 000 : co#80 : L i #23 : am : bs : cm=\ E=%+\040%+\040 : 
ho=\E=\040\040 : ce=\E\001 \021 : cd=\E\001 \022 : c L=A L : so=\E\004\025 
0\024@ : se=\ E\004\025@\0240 : us=\E\002\024J : ue=\ E\002\0240 



Here is a listing of the s h owenv command: :  

I *  p rog ram t o  s how env i ronment * I  
ma i n (a rgc , a rgv , envp) 

i nt a rgc ; 
c h a r  * a rgv [ ]  
c h a r  * envp [ ] ; 
{ 
i nt i =0 ;  
c h a r  * pt r ;  
w h i l e  Cpt r=envp [ i ++] ) 

p r i nt f ("@%u : %s\n" , pt r ,  pt r > ; 
} 

Variables 

The main program has two arguments to help pass parameters from 
the command line and a third to pass the environment. The first argument 
a rg c  is an integer that specifies how many parameters were given, the sec­
ond argument a rgv is an array of strings that are the actual parameters giv­
en in the command line, and the third parameter envp points to an array 
that holds the environment variables. This is how our process inherits its 
environment . 

Notice that the arguments a rgc ,  a rgv, and envp are declared right af­
ter rna i n  is declared, but before its initial curly bracket . You can see that 
a rg c  is an integer, and that a rgv and envp are pointers that point to a list 
of pointers which point to characters . This is what the combination of an 
asterisk ( * ) and [ ]  mean literally. This combination is the standard mecha­
nism used by C to handle arrays of strings . Other languages use pointers, 
but they often hide many of these details from the programmer . For exam­
ple, normally a string array in BASIC, such as A$(5), is stored internally as 
an array of character counts and pointers to where the characters of the 
strings are actually stored. 

Within the main program, an integer i and a string pt r are declared as 
local variables . This makes them only accessible to rna i n. 

The main program consists of a w h i l e  loop that grabs a pointer from 
envp, advances to the next pointer, and prints its value as an unsigned inte­
ger (its address) and as a string (the characters that it points to) . The w h i l e  
loop continues as long as the pointer is not null . Recall that a null pointer 
signifies the end of the list . 

Example System Commands 

Fortunately, you really don't need to write a C program to examine your 
environment . The env command (without any parameters) does this for 
you, providing a display much like the one from our s howenv command, 
but without the address information. Here is a typical output from env . 
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HOME=/us r/morgan 
PATH= : /us r/mo rgan/bi n : /bi n : /usr/b i n 
TERM=a1 000 
HZ=20 
TZ=PST8PDT 
SHELL=/b i n/csh  
TERMCAP=au : a1 000 : co#80 : L i #23 : am : bs : cm=\E=%+\040%+\040 : 
ho=\E=�040\040 : ce=\E\001 \021 : cd=\E\001 \022 : c L=A L : so=\E  
\004\0250\024@ : se=\E\004\025@\0240 : us=\E\002\024J : ue=\ 
E \002\0240 

Inheriting Environments 

We have seen how our s howenv program inherits an environment. In gener­
al, when the user runs a command from the shell (other than built-in shell 
commands) , the shell spawns a new process to handle that command which 
inherits the environment of the shell (see figure 5- 1 ) .  

Figure 5-l 
Inheriting environments 

Parent 
Environment 

Child 
Environment 

If this process spawns still another process ,  it normally passes the envi­
ronment along, although you can modify the environment as it is passed 
along. It is quite possible for this to continue for some time. In fact, a shell 
can launch another shell, and so on. 

You might notice that there are no C functions or non-shell commands 
to permanently change the environment. This is because each process can 
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only change its own environment or the environment of the command that 
it is launching. Like genetic mutations, any changes to a particular com­
mand's environment can only be inherited "forward" and never "back­
ward" to the parent shell. 

The Env Command 

The env command can be used to assist with passing modified environ­
ments forward. For example: 

% env "TEMP=H I THERE" s howenv.._J 

executes our program s howenv with an added environment variable TEMP 
that is  equal to HI  T H ERE.  Notice that quotes are needed because of the 
space character in our string. 

When this command line is executed, it displays the current shell envi­
ronment plus the new environment variable TEMP=H I THERE. If you then 
type 

or 

% s howenv.._J 

you see the current shell environment, but without TEMP=H I THERE  because 
the environment is inherited "forward" but never "backward. "  

The env command can also be used to start up a new copy o f  a shell 
with a specially modified environment . For example 
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% env TERM=unknown TERMCAP= csh� 

invokes a copy of the c sh shell with an unknown terminal and a blank 
TERMCAP descriptor . Notice that no quotes are needed around the string 
variables because there are no spaces and other special characters in these 
strings . 

When you run commands , such as v i  and mo re, from this copy of the 
shell , you get different results than at other times . For example, v i  assumes 
that your terminal does not allow cursor motion on the screen and mo re 
does not try to display its highlighted --Mo re-- message at the bottom of 
the screen. However, if  you exit from this shell (by pressing c ont ro L d or 
typing the exit command), and return to the shell from which env was in­
voked, v i  and mo re behave as they did previously. 

The Run Program 

Various forms of the exec  function can help the C programmer achieve re­
sults similar to those obtained from the env command. We illustrate this 
with our next example, a C program called run. It works much like the env 
command when it  launches another command. Our run command executes 
a specified program with a modified inherited environment. 

The run program expects a list of arguments .  The first ones specify 
new or modified environmental variables that are to be added or replaced . 
These are distinguished by the presence of equal signs (=) .  The remaining 
arguments form the name of a command file and its arguments . 

When run executes , it first displays the new environment that it is cre­
ating, numbering, and displaying each variable as it is processed. Next , run 
displays the new set of arguments ,  starting with the name of the new com­
mand. Finally, it displays messages as it searches directories for the speci­
fied command file . It always searches the current directory first , then the 
directories specified in the user's PATH variable . When it finds the file con­
taining the command, it executes that command. 

Let 's  try the following command line to illustrate how run works : 

% run A=B TERM=unknown env showenv� 

First, comes the run command. Then the environmental variables A=B 
and TERM=unknown, followed by the command env with an argument 
s howenv. 

The output looks something like this: 



Variables 

Env i ronment : 
0 :  HOME=/us r/mo rgan 
1 :  PATH= : /us r/mo rgan/bi n : /b i n : /us r/b i n 
2 :  TERM=a1 000 
3 :  HZ=20 
4 :  TZ=PST8PDT 
5 :  S HELL=/b i n/csh  
6 :  TERMCAP=au l a1 000 : co#80 : l i #23 : am : bs : cm=\E=%+\040%+\040 : 
ho=\E=\040\040 : ce=\E\001 \021 : cd=\E\001 \022 : c l=A L : so=\E\00 
4\0250\024@ : se=\ E\004\025@\0240 : us=\E\002\024J : ue=\ E\002\ 
0240 
7 :  A=B 
2 :  TERM=unknown 

A rgument s :  
env 
s howenv 

Pat h s : : /us r /mo rgan/bi n : /b i n : /us r/b i n 
Name : env 

Sea r c h i ng for env 
Sea r c h i ng for /us r/morgan/b i n/env 
Sea r c h i ng for /b i n/env 
@65258 : HOME=/us r/morgan 
@65275 : PATH= : /us r /mo rgan/b i n : /b i n : /usr/b i n 
@6531 1 :  TERM=unknown 
@65324 : HZ=20 
@65330 : TZ=PST8PDT 
@65341 : SHELL=/bi n/csh  
@65356 : TERMCAP=au l a1 000 : co#80 : l i #23 : am : bs : cm=\E=%+\040%+\040 : 
ho=\E=\040\040 : ce=\E\001 \021 : cd=\E\001 \022 : c l=A L : so=\E\004\025 
0\024@ : se=\E\004\025@\0240 : us=\E\002\024J : ue=\E \002\0240 
@65529 : A=B 

Let's go through this output slowly. You might notice that this output 
is much more verbose than usual for XENIX commands because our ver­
sion of run is designed to educate rather than be used as a normal com­
mand. With a bit of editing surgery, it could be made suitable for ordinary 
use, but in that form it would duplicate the env command. 

First , you see the modified environment being created. Variables such 
as HOME, PATH, and TERM are read from the old environment. Then the new 
variable A=B is added to the end of the list and the modification for TERM is 
processed, replacing the old value. When the list is displayed later, every­
thing is properly arranged. 
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Next, you see the two new arguments :  env and s h owenv.  The first is 
the new command and the second is its "first" argument, a command that 
eventually is executed by env. 

Next, you see the PATH variable: 

: /us r/mo rgan/bi n : /bi n : /us r/bi n 

the command name env, and a series of statements showing which particu­
lar paths are being searched. 

Finally, you see the env s howenv command being executed.  It dis­
plays the output of s h owenv showing the new environment, including the 
new value of TERM and the new variable A=B. 

Here is the program: 

I *  execute a prog ram w i t h  a mod i f i ed env i ronment * '  

#def i ne MAXENVC 1 00 
c ha r  * getenv O , * st rtok O , * st rcat O ;  

i nt envc ; 
c har  * envp [MAXENVC ] ; 

ma i n (o lda rgc , o lda rgv , o ldenvp) 
i nt o lda rg c ;  
c h a r  * o lda rgv [ ] ; 
c har  * o ldenvp [ J ; 
{ 
i nt i ,  a rg c ;  
c h a r  * * a rgv , pat h s [ 1 00J , * d i r ;  

i f  (o lda rgc < 2 )  { p r i nt f ("Too few a rgument s . \n") ; ex i t ( 1 ) ; } ;  

p r i nt f ("\nEnv i ronment : \n") ; 

I *  i nsert o ld env i ronment i nto  new env i ronment * '  
for < i =0 ;  <o ldenvp [ i J ! =  0)  && envc<MAXENVC ; i ++)  

i nse rtenv (o ldenvp [ i J > ;  

I *  i nsert new va r i ab les  f rom a rg l i st i nto  envi ronment * '  
for ( i =1 ; ( i <o ldargc )  && envc<MAXENVC ; i ++)  

i f ( ! i nsert env <o lda rgv [ i J ) )  brea k ;  

I *  set u p  new a rg l i st * I  
p r i nt f ("\nArgument s : \n"> ; 
a rgc  = o ldargc - i ;  
a rgv = &o ldargv [ i J ;  
for ( i =0 ;  i <a rgc ; i ++) p r i ntf ("%s\n" , a rgv [ i ] ) ; 



I *  f i nd t he new command ' s  pat hs  and name * I  
st rcpy (pat h s , getenv ("PATH") ) ;  
p r i nt f C"\nPat hs : %s\n" , pat hs > ; 
p r i nt f C"Name : %s\n\n" , a rgv [0] ) ;  

I *  search  and execute new command * I  
exec C0 , a rgv) ; 
i f Cd i  r=st rtok (pat hs , " : ") )  exec Cd i  r ,  a rgv) ; 
wh i  L e (di  r=st rtok (0 , " : ") )  exec Cd i  r ,  a rgv) ; 
} 

I *  i nsert va r i ab l e  i nto . env i ronment * I  
I *  rep lace  i t em i f  mat c h ,  append i f  no mat c h  * I  
i nt i nse rtenv (var )  

c ha r  * va r ;  
{ 
i nt mat ch  = 0 ;  
i n t  j ;  
c har  ename1 [ 1 000] , ename2 [ 1 000 ] ; 

st rcpy (ename1 , va r ) ; 
st rto k < ename1 , "=") ; 
i f ( ! st rtok (0 , "=") ) ret u rn 0 ;  

for < j =0 ;  j < envc ; j ++) 
{ 
st rcpy ( ename2 , envp [ j ] ) ;  
st rtok (ename2 , "="> ; 
i f ( st rcmp (ename1 , ename2) == 0 >  

} 

{ 
pr i ntf C"%d : %s\n" , j ,  envp [ j ] = var ) ; 
mat c h = 1 ;  
} 

i f ( ! mat c h )  
{ 
p r i nt f C"%d : %s\n" , envc , envp [ envc]  = var ) ; 
envc++ ;  
} 

ret u rn 1 ;  
} 

I *  sea rch  pat h  and L aunch command * I  
exec (d i r ,  a rgv)  

char * d i r ,  * a rgv [ ] ; 
{ 
c ha r  command [40 J ; 

Variables 
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i f  ( ! d i r ) spr i nt f ( command 1 "%s" 1 a rgv [0 ] ) ;  
e l se spr i  nt f <command 1 "%s /%s" I d i  r I a rgv [0 ] ) ;  

pd nt f <"Sea r c h i  ng fo r %s\n" 1 command) ; 
execve ( command 1 a rgv 1 envp) ; 
} 

Let's go through the code for this program. It uses three external 
string functions get env, st rtok, and st  r c a t .  The first gets a single vari­
able from the environment, and the others help with the computation of the 
path for the commands.  

The integer envc is  used to count the environmental variables , and the 
string array envp is used to store pointers to the new environmental vari­
ables . The envp is declared to have space for 100 string pointers , which 
should be enough to handle most environments .  

The Main Program-The main program has three arguments : an integer 
o ldagc ,  and two string arrays, o ldagv and o l denvp. These access the orig­
inal parameters and environment . 

Several local variables are declared. The integer i is a general purpose 
indexing variable. The variables a rg c  and a rgv  form the arguments of the 
new command. We pass them to the new program through the system's 
e x ecve function. 

Two string variables pat h s  and d i  r are also declared. They assist in 
computing paths to search for the command file. 

The first statement of the main program makes sure that there are 
enough arguments . There must be at least two, one for the run command 
itself and one for the command it executes . If there are less than two, it 
aborts the program with an error message. 

The next section of the program builds the new environment . First we 
insert the old environment into the new environment. A f o r  loop indexes 
through the old environment, calling our i nsert env routine to place each 
old variable into the new environment. In the following text , we study this 
routine. We have only allocated MAXENVC number of "slots" for variables 
in our new environment, thus we restrict the index i from going beyond this 
limit with the condition env c <MAXENVC .  We also want to make sure that we 
stop at the end of the list of old variables , hence we also have the termina­
tion condition o ldenvp [ i l ! = 0. 

Next we insert the new variables into the environment. We use a f o r  
loop that indexes, starting with i = 1 to grab the first variable from the com­
mand line. The termination condition is similar to the one for the previous 
f o r  loop, except that here we check to see whether i is less than the count 
o lda rgc .  Each time through the loop we call i ns e rt env to place the new 
variable in the environment . If this function returns false, indicating no 
equal sign (=),  we "break" out of the f o r  loop . 

The next section of the main program computes and prints the argu-
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ments of the new command. The value of the index i immediately after 
the last f o r  loop points to the name of the new command. Thus the ex­
pression o ld a rg c - i becomes the new argument count a rg c ,  and the 
statement : 

a rgv = &o lda rgv [ i ] ;  

causes the pointer a rgv to point to the new command in the list of com­
mand arguments . Here the ampersand (&) computes a pointer to the i t  h 
argument . Thus the array a rgv of string pointers is a subset of the original 
array o lda rg.  One advantage of this approach is that we don't need addi­
tional storage for a rgv.  

We then execute a for  loop to print all of these arguments . 
Next, we compute the paths to find the new command. We call 

s t rcpy to copy the PATH variable to our own local variable pat h s. We 
must copy this string because we will be inserting zeros into it as we pick out 
the individual directory paths in it . We use the get env function to get PATH 
from the old environment. We print this value, then we print the command 
name as found in a rgv [ QJ J . 

We begin by searching for the command in the current directory by 
calling our own routine exec .  Its first parameter has a value of zero , 
which indicates that no directory is to prefix the command name. Its sec­
ond parameter is a rgv. This contains the name of the command as its 
zeroth entry. 

We call st rtok  to find the directory names in our pat h s  variable. 
This routine extracts substrings (tokens) from a string given as the first pa­
rameter . The substrings are assumed to be separated by a character given 
by the second parameter . In this case, colons separate the directory paths 
within the PATH variable. Thus our second parameter is a colon ( : ) .  Later 
we use this same "token" routine to get the name of an environmental vari­
able from its string definition. 

We call st rtok  once, naming the string explicitly as its first parame­
ter. This gets the first substring. Then we call it repeatedly with a value of 
zero to get subsequent substrings . A wh i l e  loop controls the repeated appli­
cations of this routine. The w h i l e  loop continues until st r t o k  returns a 
value of zero . Each time that we get a possible directory pathname, we call 
our exec  routine to search for and execute the command within that direc­
tory. If the command's name is found, the exec  routine executes the com­
mand and never returns back to our run program. Otherwise it returns,  
ready to try the next path . If no path is successful, the run command re­
turns to the shell . 

The lnsertenv Routine-The routine i nse rtenv is defined next . It has one 
argument, a string pointer va r that specifies the variable to be inserted into 
the new environment. 

The routine has several local variables : mat c h  is an integer to help look 
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for matches between the new variable and variables already placed in the 
environment, j is an integer used for indexing through the new environ­
ment, and ename1 and ename2 are strings for temporary storage of the en­
vironmental variables as we compare their names . Notice that ename1 and 
ename are each allocated 1000 bytes of storage to handle such large vari­
ables as TERMCAP definitions . (This is studied in the next chapter .) 

The i nse rtenv routine first calls st  r c py to copy the new variable 
string va r into ename 1 and calls st  rtok  to find the name of this environ­
mental variable within its defining string . In this case the string separator 
character is an equal sign (= ) . We can st rtok  again with a zero pointer to 
look for the right side of the equal sign. If the right-hand side doesn't exit , 
st  rtok  returns with a zero (null) value, and we return from our routine 
with a value of zero . Thus we continue only if va r is of the correct form. 

Next a for  loop runs through the current new environment. For each 
variable in the new environment, we call st  rcpy  to copy it into ename2 
and st  rtok  to extract the variable name (the left side of the equal sign) . 
The st  rtok  routine replaces the equal sign with a zero, terminating the 
substring that consists of the name. We then call st r c mp to compare the 
two names, ename1 and ename2. If the names are equal, we replace the cur­
rent string with the new string and set the variable match to 1 .  

If we complete the entire for  loop without finding a match, we place 
the new variable at the end of the environment, incrementing the count 
variable envc .  We then return with a value of 1 ,  indicating a successful 
placement of the new variable . 

The Exec Routine-Next comes the exec  routine. This prepares a call to the 
system's exe cve routine. It has two parameters : d i  r is a pathname and 
a rgv is a list of arguments . This routine has one local variable command, 
which is a string that contains the path to the command. 

If d i  r is zero, we form the command name from just its name (as con­
tained in a rgv [0 l ) ,  otherwise we form the command name from the direc­
tory path in d i  r as well as the name in a rgv [ 0 ] . In either case we call 
s p r i  nt f to place the path in the string "command. "  

Finally, we call execve  to attempt to execute the command. The 
execve  command is just one version of the system's execute  commands . 
See the XENIX Development System Reference Guide for more details . In 
this form, there are three parameters: a path to a command, a pointer to a 
list of arguments , and a pointer to a list of environmental variables . This 
last parameter is our new environment. 

Shell Variables 
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noc L obbe r, that affect the way the shell behaves . The first prevents the C 
shell from exiting when control d is entered, and the second prevents the 
shell from overwriting an existing file without special override commands . 
You can also create and use your own shell variables as string variables in 
shell scripts . 

Shells have commands to examine and modify their variables and ways 
to move values from the shell variables to the environment. These com­
mands vary from shell to shell . For example, under the Bourne shell, a shell 
variable may be defined with a simple assignment statement such as : 

$TERM=a1 000.-J 

(Notice the dollar sign ($) prompt that is used by the Bourne shell) . 
Under the C shell , the set command must be used like this : 

% set TERM=a1 000.-J 

In both shells , the set command with no parameters lists the shell 
variables . 

For some shells, certain shell variables are copied automatically to the 
environment when they are changed. For example, under the C shell, a 
modification to t e rm changes TERM. 

Using Shell Variables in Scripts 

Shell variables can be used as program variables for shell scripts . Following 
is an example of a script for the C shell that searches the system's password 
file for a given set of login names . The names are read from a separate file 
that is specified by the user. 

The example also illustrates some of the control structures available in 
the C shell and both file and interactive input to shell scripts . 

Let's look at how this program runs . If the file L og L i st contains the 
following 

root 
bob 
morgan 
chris 
Morgan 
uucp 

the output of our script program might look like 
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Chec k i ng Log i n names i n  f i l e :  Log l i st� 
Searc h i ng fo r root i n  password f i l e :  
root : 7w04yuSbC /t3U : 0 : 0 : The Supe r Use r : / : /b i n / sh  
" root" found . 

Sea r ch i ng for  bob i n  password f i l e :  
"bob" not found . 

Sea rc h i ng for  mo rgan i n  password f i l e :  
mo rgan : j 9J i j X7ztTR1 E : 203 : 51 : mo rgan ' s  c s h  
ac count : /u s r /morgan : /b i n / csh  
"morgan" found . 

Searc h i ng for  c h r i s i n  password f i l e :  
" c h r i s" not found . 

Sea r c h i ng for  Morgan i n  password f i l e :  
"Morgan" not found . 

Sea r c h i ng for  uucp i n  passwo rd f i l e :  
uucp : : 4 : 4 : Ac count for uucp 
p rog ram : /us r / spoo l /uucp : /us r / L i b/uucp/uuc i co 
"uucp" found . 

The script first prompts the user for the name of the file containing the 
login names . Here we typed l og l i st .  Then for each name in that file, it is­
sues a message saying that it is searching for that name. If it finds the name, 
it prints out its entry from the password file . It then reports whether or not 
the name was found. 

In a real situation, the l og l i st file might be a class list with the last 
and first names of 30 students , and the script might try to assign unique 
login names to each student, perhaps using each first name and some of 
each last name as needed. It might also go ahead and set up the account 
once a unique name has been found. 

Here is the listing for our script: 

# examp le  s c r i pt for C s he l l  

echo "Check i ng Log i n  names i n  f i l e :  \c" 
set L f i le  = \ ' L i ne \ ' 

set L i st = \ ' cat  S l f i  L e \ ' 

foreach Logname ($ L i st )  
echo "\nSear ch i ng for  $ Logname i n  password f i l e : "  
g rep " ""${ Logname} : "  /et c /passwd 



end 

i f ($status )  t hen 
echo "\"${ Logname}\" not found . "  

e l se  
echo "\"${ Logname}\" found . "  

end i f 

Variables 

The script begins with a comment line, a good idea in any program­
ming environment. The first line uses the built-in e c ho command to print a 
prompt asking for the name of the file containing the names . The prompt is 
enclosed in double quotes to make the trailing \ c  work. This suppresses the 
usual "newline" character at the end of the e c ho, leaving the cursor at the 
end of this line. 

The next line sets a variable l f i l e, reading its value from the output 
of the l i ne command. This command is enclosed in backward quotes to 
cause its output to be used as part of the command line. The l i ne com­
mand reads a line (terminated by a "newline") from the console. 

Next we use set  again to define the shell variable l i st as equal to the 
contents of the specified file. Here we enclose c a t  $ l  f i l e in backward 
quotes so that the output of c a t  applied to this file is used as part of the 
command line for the set command. Here the dollar sign ($) causes the 
l f i l e  variable to be evaluated. Without the dollar sign ($) , the word 
l f i l e  would have been used literally in the cat  command. 

A fo rea c h  loop comes next . It uses the variable l ogname as a kind of 
indexing variable, setting it to each name in l i st in turn. 

Within the loop, the e c ho command explains that we are searching for 
this particular name in the password file, and the g rep command searches 
for it in / et c / pa s s wd. Notice that the search pattern "${ l ogname} : is a bit 
complicated. The initial caret (") character tells g rep to look for the name 
only at the beginning of lines. The dollar sign ($) introduces the shell vari­
able and the curly brackets separate it from the colon that follows it . The 
colon is needed to match the colon separating the login name from the next 
field of this entry in the password file. This ensures a match with complete 
login names . Otherwise, g rep might be satisfied by matching just the first 
few letters of a name. 

After g rep, an i f  t h en  e l se construction prints a message re­
porting the success of the match. Here the variable s t a t u s  contains the 
t rue / f a l se result from g rep. This result becomes the argument of the i f . 
Notice the backslashes in front of the quotes to allow the quotes to be print­
ed on the screen rather than being interpreted immediately. 

The i f  t hen e l se is terminated with an end i f and the forea c h  is 
terminated with an end. Notice that we have used indentation to make our 
script more readable. 

Summary 

In this chapter we have studied environmental and shell variables . These 
variables are stored as strings within the computer's  memory. 
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Environmental variables are attached to particular processes and are 
inherited along with command arguments from a process to its children. 

Shell variables belong to a particular shell. They can be used as 
program variables in shell scripts and to control the way the shell itself 
behaves . 

Our examples include C programs, simple system commands, and shell 
scripts that use and display these variables . 

Questions and Answers 
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Questions 

Answers 

1 .  What is the difference between environmental variables and shell 
variables? 

2.  Is PATH a shell variable or an environmental variable? Why? 
3 .  How can you find out the values o f  your shell and environmental 

variables? 
4. Where are the shell and environmental variables stored? 
5 .  What kind o f  programs can use these variables? 
6.  What kind of information is  normally stored in these variables? 

Give three examples . 

1 .  Environmental variables are associated with each process and are 
inherited from process to process,  whereas shell variables are 
associated with a particular copy of a shell program. 

2.  No. PATH i s  an environmental variable. Environmental variables 
customarily are written with all uppercase letters . Also, PATH can 
be used by any process (not just shell processes) to help launch 
another process. There is also a shell variable called pat h that 
contains the same information. 

3 .  The env command can be used to display your environmental 
variables , and the set  command can be used to display your shell 
variables . The e c ho command can be used to display individual 
environmental and shell variables . 

4. Environmental variables for each process are stored in memory 
with the arguments of the command that launched the process .  
Shell variables are stored within a shell program. 

5 .  Scripts and the shell itself use shell variables . Environmental 
variables can be passed to and used by any program. (This 
includes shell programs.) 
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6.  Environmental variables store system and user information such 
as the path to the user's home directory, the paths to search for 
commands, the user's terminal type, and paths where mail is 
stored. Shell variables store some of the same information, plus 
information about how the shell is to behave and variables used by 
shell scripts . 
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XEN IX Screen and Keyboard : 
Cu rses and Termcap 

Providing an easy-to-use "human interface" for users is  an increasingly 
important requirement for operating systems . Such a connection between 
machine and the humans that use it plays an important role in the overall 
productivity of the system. 

This chapter describes screen and keyboard I/0. We study packages of 
terminal I/0 routines called curses and termcap. These routines allow intel­
ligent terminals to use such visually oriented programs as the v i  editing 
program and the visual shell . 

The cu rses  and t e rmcap programs were developed at the University 
of California, Berkeley, to support their v i  screen editor.  This editor relies 
on these routines for all of its screen editing capabilities . It just won't func­
tion as a screen editor if you tell the system that you have a "dumb" termi­
nal. Instead, it remains in the line editor e x  mode. 

An accompanying public data file called t e rmcap  contains descrip­
tions of almost every type of terminal that you might connect to a XENIX 
system. This makes it easy to attach new terminals . No new programs need 
be written. Only a new t e rmcap  data entry must be created. This can save 
hours of programming time, especially in large organizations where many 
types of terminals are required. 

Because cu rses  and t e rmcap  are implemented as function calls to sys­
tem library routines , they make it convenient for any XENIX utility to fully 
use the screen and keyboard capabilities common to most modern computer 
terminals and workstations. These include the ability to clear and write text 
to selected portions of the screen, to scroll , to insert and delete lines , and to 
use special keys such as home and the arrow keys . 

To better explain these facilities , we present three example programs : a 
program called t u rt L e, which allows you to "drive" the cursor around the 
screen; a program called d i a L og, which allows a user to enter a mailing 
address by filling in blanks on the screen using simple editing commands; 
and a program called s howt e rm, which shows the vital statistics about your 
terminal. 
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We start with some c u r s e s  screen routines . They comprise one of several 
system libraries available to a C programmer . Other system libraries include 
the standard C library, which we have used in previous chapters ; the 
t e rmcap library, which supports c u r s e s; the standard math library, which 
contains such functions as sine and cosine; the L e x  library to support L e x; 
and the y a c c  library to support y a c c .  These libraries are located within the 
directory I L i b. The C compiler knows where they are and which ones to 
use when you provide on the command line the right hints to compile your 
program . For example, the - L m option invokes the standard math library 
and the - L c u r s e s  option invokes the c u r s e s  library. 

The functions in the c u r s e s  library allow us to move a cursor around 
a screen . 

The Turtle Program 

Let's  introduce an example C program called tu rt L e  that demonstrates the 
most basic capabilities of c u r s e s .  This program allows the user to "drive" 
around the screen using the the h, j ,  k, and I keys, just as you can with v i .  
See figure 6-1 for a sample screen . 

Figure 6-1 
Output of t u rt L e  program 
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When this program starts, it clears the screen and displays an x in the 
upper left corner of the screen. To move down, press j ;  to move up, press 
k; to move right , press I; and to move left press h. As you move the cursor, 
a trail of x characters is printed on the screen. 

The program "assumes" that you have an intelligent terminal, that is, 
one that can respond to cursor commands , and it "assumes" that the screen 
has at least 80 columns and 20 rows . Later in the chapter we will see how a 
program can read the t e rmcap file to find these things out itself and take 
needed defensive action if such assumptions are not true. 

Our program uses the cu rses  header file and the associated library file 
c u rses ,  which in turn uses functions in the library file t e rmc ap. Accord­
ingly, our program has the following include statement : 

# i nc l ude <cu rses . h> 

and can be compiled as follows: 

cc  t u rt l e . c  - l cu rses - l t e rmcap 

Here is the program: 

I*  C p rog ram to move cursor  a round t h e  sc reen * I  

#i nc l ude <cu rses . h> 
#def i ne EOT 4 

I*  C x ,  y )  i s  pos i t i on on sc reen * '  
i nt x=1 , y=1 ; 

ma i n O  
{ 
c ha r  c h ;  

I *  set u p  sc reen and t e rm i na l  I /0 * I  
i n i t s c r O ;  
c rmode O ;  
noecho O ;  
non l 0 ;  

/ * c l ea r  sc reen and ma rk  f i rst pos i t i on * '  
c l ea r < > ; 
ma r k i t O ;  

I *  ma i n  loop for  mov i ng a round sc reen * I  
wh i l e ( ( c h=get c h ( ) ) ! =EOT) 

sw i t c h C c h )  
{ 
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} 

case 1 h 1 : i f ( x > 1 )  x-- ; ma r k i t ( ) ;  break ; 
case  • j • :  i f (y < 20) y++ ;  ma r k i t ( ) ;  brea k ;  
c a s e  1 k 1 : i f (y > 1 )  y-- ; ma r k i t ( ) ; brea k ;  
c a s e  1 l 1 :  i f ( x < 78) x++ ;  ma r k i t < > ;  brea k ;  
c a s e  1 2 :  x=1 ; y=1 ; c l ea r < > ; ma r k i t C > ;  
} 

I *  restore s c reen and t e rmi na l I IO * I  
endwi n O ; 

I *  rout i ne to  move cursor  and ma rk  i t  w i t h  an x * I  
ma r k i t O  
{ 

} 

move ( y ,  x > ; 
addch ( • x • > ;  
addc h ( 1 \b 1 ) ;  
ref resh ( ) ;  

Let's examine this program carefully because it demonstrates many of 
the most basic features of the cu rses  and t e rmcap packages . By studying it 
you can learn some of the basic ways the v i  works . Perhaps you want to 
use this as a basis for your own screen editor . 

The i nc l ude directive causes the header file cu rses . h  to be included 
in your program. The def i ne statement defines a global constant BOT to 
have a value of 4 (the ASCII code for control d) . 

Two global variables x and y are declared to be integers and are both 
initialized to a value of 1 .  These hold the cursor position during the 
program. 

The main part of the program declares one variable c h  of type c h a r. 
This variable is used to hold a character from the keyboard. 

Initialization-The first few commands in the main program initialize the 
variables needed by the cursor routines and set up the keyboard 1/0 for 
interactive editing. 

The i n i t s c r  routine initializes the c u rses  library. You must call this 
routine before you use any of these routines . It performs such duties as 
allocate and initialize a copy of a screen in memory, called the standard 
screen. All cu rses  commands first write to this screen, and the results are 
later copied to the terminal as needed. 

Having a copy of the screen in memory is very handy. It allows you to 
interrupt your programs that use cu rses ,  then return to them later with the 
screen exactly as you left it . The same kind of thing happens when you 
switch from one console user screen to another with the alt function-key 
combinations of SCO's version of XENIX. In this case, each console user 
has a separate copy of the screen in memory. When you switch console 
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users, the next screen image is rapidly sent to the console screen. This pro­
cess can happen so quickly because the actual physical screen is memory 
mapped. That is, the image that appears at each character position on the 
screen is stored as a code in the memory of the computer. Thus, changing 
screens merely involves moving blocks of data around in memory. 

In the C program, the three cu rses  function calls c rmode, noe c h o, 
and non l affect s t t y  settings for communication to and from your 
terminal. 

The c rmode routine causes each character to be processed as soon as it 
is ready. Specifically, a newline character doesn't need to be present before 
each individual character is processed. As a result, this routine also turns 
off the usual editing for lines of keyboard input, such as deleting characters 
and killing lines . 

The noe c ho routine suppresses the echoing for characters . Four differ­
ent kinds of echoing actually are turned off by this routine: ordinary char­
acter echoing, backspacing while deleting characters , echoing newline 
characters , and echoing a newline on killing a line. 

The non l routine causes an ASCII 10 (the newline character) to be 
treated just like any other character . The normal situation is for this charac­
ter to be "mapped" to a carriage return (ASCII 1 3) ,  then a linefeed (ASCII 
10-the "official" newline) . Normally during input the return or enter 
(ASCII 1 3) key also is "mapped" to newline (ASCII 10) .  If this feature is 
on, some of our cursor commands get mauled on certain terminals . 

In addition, there is a routine called raw, which is of no help to us in 
this program. In fact, using it would cause our program to "hang," and it 
would not even respond to the interrupt key. This routine completely ignores 
all of the special character mapping, including our cursor commands . 

Each of these terminal mode setting routines has an opposite that re­
verses its effect . 

From the shell , the s t t y  command displays and allows you to set 
many terminal characteristics . It turns out that the c u rses  routines affect 
various groups of terminal characteristics controlled by s t t y. For example, 
the ec ho and noe c h o  routines control the e c ho, ec hoe, e c hon l, and e c h o k  
terminal characteristics under s t t y ' s control . 

If you press the interrupt key (usually delete or ASCII 127) , you return 
to the shell with your terminal in a rather terrible state : no echoing and no 
special handling of newline. 

Clearing the Screen-The next routine, c l ea r, clears the standard screen. 
However, the standard screen is merely a copy of the screen in memory. 
This is not enough to clear the terminal screen itself. We need to call a 
c u rses  routine called ref re s h  before the information is transferred from 
the standard screen to the actual screen. Ref r e s h  is called in our own rou­
tine ma r k  i t , which is called next . 

Our ma r k  i t  routine moves the cursor to row y and column x and plac­
es an x there. It also backspaces, returning the cursor to row y, column x. 
This routine follows the main program. 
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The Main Loop-The main loop comes next . It consists of a w h i l e  loop 
that fetches a character using the c u r s e s  routine get c h  and continues as 
long as this character is not EOT (ASCII 4) . Inside the w h  i l e loop a 
s w i t c h  statement selects among five different actions depending on which 
character was fetched. In the first four cases (the cursor keys [h , j ,  k, or 1]) ,  
i t  checks for a bounds limit for the cursor position. Then if  the cursor i s  in 
bounds, it adjusts the x, y position accordingly and calls ma r k  i t to update 
the actual screen. Finally, if the character is an ASCII 12 (formfeed) , it 
clears the standard screen, resets x and y to 1 ,  and calls ma r k  i t to transfer 
this information to the actual screen . 

Closing Up-After the w h i l e  loop completes , the cu rses  routine endw i n is 
called to return the screen output and keyboard to the state they were in be­
fore the program was run. The main program then ends . 

Marking the Character Position-Let ' s take a look at our ma r k i t routine . 
It first calls the c u rses  routine move to move the cursor to position x, y.  
The arguments for this function are two integer variables : first the row po­
sition, then the column position. Recall that x and y are global variables , 
defined before the main program, thus the ma r k i t routine can refer to 
them freely. 

Then the routine calls add c h  to place an x at the cursor position and 
calls add c h  a second time to backspace the cursor, returning it to position 
x, y. The add c h  routine has a single argument that is a character . Note that 
backspace is denoted by the escape sequence '- b. 

Lastly, the cu rses  routine r e f r e s h  is called . It has no arguments . As 
we said earlier, its function is to refresh the terminal screen. 

If we wanted to move the cursor around without marking its position, 
we would eliminate the two calls to add c h . However, then there would be 
no "trail" of x characters . 

String 1/0 
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Our next program illustrates some more cu rses  routines , including ones to 
display strings arbitrarily placed on the screen . These routines form the ba­
sis for visually oriented interaction between users and computers , an in­
creasingly more important part of modern computing environments . 

The Dialog Program 

The example program called d i a l og helps a user enter a mailing address .  It 
displays labels for the various parts of the address , including the first name, 
last name, street , city, state, and zip code . The user can type each part in a 
blank area following the label for that part (see figure 6-2) . 

In this program, pressing return moves the cursor to the next item. 
Pressing return while on the last item moves the cursor to the first item. 
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Figure 6-2 
Screen layout for d i a L og program 

Enter Mai l ing Address (ESC to exit ,  RET for next ent ry) 

Last name: F i rst name: 

Street: 

City: State: Zip:  

Pressing escape ends the session. In our case, ending the session ends the 
program. However, this would normally be part of a larger program that 
allows the user to enter and modify an entire mailing list. In that case, an 
escape might move to the next mailing address or, perhaps,  return to some 
command mode. 

The program is compiled as follows: 

c c  d i a l og . c  - L cu rses - L t e rmcap 

Now let's  examine the program: 

I *  d i a Log to ent e r  a m a i L i ng add r e s s  * I  

I *  The u s e r  f i L l s i n  t he b l anks on t he sc ree n ,  p r e s s i ng 

return key to go to t h e next pa rt of t he add ress and 

es cape key to f i n i s h .  Ba c k spa ce key e rases i nd i v i dua l 

c h a ra c t e r s  and cont ro l -u keyst roke de l et e s  an ent i re 

i t em . 

* I  

# i n c l ude <cu r ses . h> 
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I *  max 1 1 s  numbe r of i tems i n  add ress * I  
#def i ne max i  ( ( s i zeof (dl i s t > > l < s i zeof (st ruct d l t em) ) )  

I *  < x ,  y)  i s  pos i t i on on s c reen * I  
i nt x=1 , y=1 ; 

I *  t he t i t l e  for  the  sc reen * I  
st ruct dT i t l e 

{ 
i nt y ,  x ;  
c har  * st r ;  
} 

t i t l e = 

I* pos i t i on of t i t l e * I  
I *  t i t l e st r i ng * I  

{ 1 ,  3 ,  "Ent e r  ma i l i ng add ress \  
(use E S C  to ex i t and RET f o r  next i t em) "} ; 

I *  a ma i l i ng add ress i s  an a r ray of d l tems * I  
st ruct d l t em 

{ 
I* pos i t i on of l abe l * I  
I* po i nt e r  to t he l abe l st r i ng * I  
I* pos i t i on of ed i t  st r i ng * I  

i nt y l ,  x l ;  
c har  * st r l ;  
i nt ye , xe ;  
i nt maxe ;  
i nt cnt e ;  

I*  max i mum numbe r characters  i n  ed i t  st r i ng * I  
I* character  count i n  ed i t  st r i ng * I  

c har  st re [41 J ;  
} 

d li st [ J =  
{ 

I* the  ed i t  st r i ng * I  

I *  y l ,  X l ,  st r l ,  ye , xe , max e ,  

} ;  

m a i  n O  
{ 

{ 3 ,  
{ 3 ,  
{ 5 , 
{ 7 ,  
{ 7 ,  
{ 7 ,  

5 , 
33 , 

5 , 
5 , 

25 , 
46 , 

char  c h ;  
i n t  i , j ; 

" Last name : " ,  
" F i rst name : " ,  
"St reet : " ,  
"C i ty : " ,  
"State : " ,  
"Z i p : " ,  

i nt done=FALS E ;  

3 ,  1 6 ,  
3 ,  45 , 
5 , 1 3 ,  
7 ,  1 1 , 
7 ,  32 , 
7 ,  51 , 

I *  set up sc reen and t e rmi na l 1 10 * I  
i n i t s c r < > ; c rmode < > ;  noecho < > ;  non l < > ;  

1 5 , 
1 5 , 
40 , 
1 2 ,  
1 2 ,  

5 , 

cnt e ,  st re * I  
0 ,  I t i l  } ,  
0 , 1 1 1 1  } ,  
0 ,  1 1 1 1  } ,  
0 ,  " "  } ,  
0 ,  " "  } ,  
0 ,  . . . .  } 

I *  c lea r s c reen and d i sp lay t i t l e and i t em l abe l s  * I  
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c lea r O ;  
mvaddst r (t i t le . y ,  t i t l e . x ,  t i t l e . st r> ; 
for ( i  = 0 ;  i < max i ; i ++) 

mvaddst r (d li st [ i l . y l ,  d li st [ i l . x l ,  d li st [ i ] . st r l > ; 
refresh ( ) ;  

i =0 ;  
move (dli st [ i l . ye ,  dl i st [ i l . xe> ; 
refresh ( ) ;  

wh i l e  ( ! done> 
{ 
swi t c h ( c h=get ch < > > 

{ 
case 27 : I *  escape key to  ex i t * I  

done = TRUE ;  
brea k ;  

case ' \ r ' : I*  ret u rn key t o  se lect  next i tem * I  
i f (++i ==max i )  i =0 ;  
move (dl i st [ i l . ye , dl i st [ i l . xe +dli st [ i l . cnte> ; 
brea k ;  

case ' \b ' : I*  bac kspace de l etes  a c h a racter  * I  
i f  Cdl i st [ i l . cnte > 0)  

{ 
addst r ("\b  \b"> ; 
dl i st [ i l . cnte--; 
(dl i st [ i l . st re) [dli st [ i l . cnte l  = 0 ;  
} 

brea k ;  

case 21 : I *  cont ro l u de l etes  t h e  i tem * I  
for ( j =0 ;  dl i st [ i l . cnte > 0 ;  j ++) 

{ 
addst r ("\b  \b") ; 
dl i st [ i l . cnte-- ; 
(dl i st [ i l . st re ) [dli st [ i l . cntel  = 0 ;  
} 

brea k ;  

defau l t : I*  hand l e  regu l a r  c ha racte r s  * I  
i f (d li st [ i l . cnte < dl i st [ i l . maxe && c h  >= 32)  

{ 
(dl i st [ i l . st re) [dli st [ i ] . cntel  = c h ;  
d li st [ i l . cnte++;  
addc h ( c h > ; 
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} 
brea k ;  

} 
refresh ( ) ; 
} 

I *  d i sp l ay t he f i na l  va lues i n  t he l i st * I  
n l  0 ;  
move <dli st [max i - 1 J . ye +2 , dl i st [max i - 1 J . xe> ; 
p r i ntw ("\n\n") ; 
fo r (  i =0 ;  i <max i ; i ++) p r i ntw ("%d : \t%s \n" , i ,  d Li st [ i J . st re ) ; 
p r i ntw ("\n\n") ; 
ref resh < > ; 

endwi n O ; 
} 

Initialization-As in the previous program, we include the header file 
c u rses . h and declare global variables x and y that hold the position of the 
cursor on the screen. 

We also define a macro ma x i  that is the number of items in an address .  
It  is  defined using a #def i ne directive. The name maxi is  replaced when you 
run the program by the string given in the def i ne statement before that por­
tion of the program is compiled. In this case, we define ma x i  as :  

( ( s i zeof (dli s t ) ) l ( s i zeof < st ruct d l t em) ) )  

This definition is the total size of the mailing list d L i s t divided by the 
length of any of its entries . Such a definition allows us to add items to 
d L i s t without having to update rna x i  each time. 

The Data Structures-In this program, we have two C structures : the first 
dT i t  l e holds information for a title that is displayed along the top of the 
screen, and the second d l i  st holds information about the mailing address 
itself. These are variables declared outside of any function, thus they are 
static external variables . This means that they are global to all procedures 
and remain in memory throughout the execution of the program. 

The dT i t l e structure contains the line and column positions for the 
location of the beginning of the title on the screen and a string containing 
the text of the title . 

The d l  i st  structure is an array of d l t em, where each d l t em is a struc­
ture that specifies one mailing address . Within d l t em are the individual 
parts of the mailing address , such as the first name, last name, city, or 
state. In each case, there is a label, such as C i t y : ,  and an edit string where 
the actual data (for example, the name of the city) is stored. In particular, 
the structure d l t em has the following members : two integers containing the 
line and column positions for the beginning of the label, a pointer to a 
string containing the text of the label, two more integers for the line and 
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column for the beginning of an edit string, the maximum size of the edit 
string, the current size of the edit string, and a pointer to the edit string. 

Both structures are initialized as part of their declaration. You should 
study the values given within the program. 

For each item, the current size is set to 0 and the text string is empty. 
Notice that the string pointers for the label string and the edit string are 
defined differently . In the first case, the string pointer for the label is de­
fined via: 

c ha r  * st r l  

This allots space within the d l tem structure for a pointer and allows 
the actual contents of the string (which is stored elsewhere) to be any 
length. The length is then determined by the initialization section of the def­
inition for d l i  st .  For example, because the label string C i t y :  has five 
characters, the label string pointer st r l for the city item points to an area 
of memory containing six bytes of storage (one extra to hold a zero to ter­
minate the string) . 

In contrast, the pointer for the edit strings is defined via: 

char  st re [41 J 

This provides a pointer (within the d l t em structure) to an area of mem­
ory containing exactly 41 character positions (bytes) for the edit string. No­
tice that we need one more than the maximum length of any of the edit 
strings . This is because of the trailing zero byte that is required as a string ter­
minator. If we used the same type of definition as for the label, we might 
have to specify a string of 41 zeros . As it is, we waste some space because 
only one item, namely the street address, can allow as many as forty charac­
ters . The others occupy only the first 5 ,  12,  or 1 5  bytes of the allocated space. 

The Main Program-In the main program, several more variables are de­
clared: a character variable c h to hold characters as they are being proc­
essed, an integer i used as an index to d l  i st ,  an integer j used to index 
through the edit string, and an integer done used to control the termination 
of the program. These are "automatic" variables ; that is , they are created 
and initialized each time the function is called. 

In this case rna i n would be called only once, but if this function is re­
named and used as a part of a larger program, these variables would be 
properly initialized each time the function is called. In particular, the vari­
able done needs to be initialized to FALSE (zero) each time. 

The first actions of the main program are to set up the screen and ter­
minal I/0. Here i n i t s c r  initializes the c u rses  variables , and c rmode, 
noec ho, and non l configure the terminal I/0 for single character input 
with no echo and no special mapping for new l i ne. 

We call c l ea r (to clear the screen) and mvaddst r a number of times to 
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place the title and all the labels on the screen. A f o r  loop runs through all 
the labels stored in d l i  st .  Notice that mvaddst  r allows us to specify both 
the position and content of the string. After we place all this information 
on the standard screen, we call ref resh  to cause the information to appear 
on the actual screen. 

Before we begin the main loop, we reinitialize i to a value of zero to 
indicate the first item of the mailing address, and we call move to place the 
cursor at the beginning of the edit string for the first item. We call ref r e s h  
to  display this cursor update . 

The main loop is a wh i L e  loop that executes as long as done is false . 
Recall that done is initialed to FALSE at the beginning of rna i n each time it 
is called . The w h i  L e loop contains a s w i t c h statement and a call to 
ref resh .  The argument for the sw i t c h  is the expression c h=get c h  0 that 
fetches the next character from the standard input and sends it to the 
s w i t c h .  The ability to do two actions at once like this is one feature that 
makes C so powerful. It can, however, make C harder to read than other 
languages . 

The first case of the s w i t c h  statement is if the character is escape . 
Here, we set done equal to TRUE to end the main loop . 

The next case is if the character is return . This is used to select the next 
item. To accomplish this , we increment i ,  setting it equal to 0 if it becomes 
equal to rna x i  . This allows the user to cycle through all items of the address . 
After i is updated, we use the move function to move the cursor to the end 
of the i t h  edit string. 

Next is the case for backspace . This is used to delete characters from 
the current edit string. If the character count (as given by d L  i st  [ i J .  c n t e) 
is greater than zero , we issue a backspace, a space, then another backspace . 
We also place a zero in the corresponding character position of the edit 
string, thus shortening the string. Notice that we use two hyphens ( - -) to 
decrement the count variable before we use it as an index in the statement 
that zeros the character position. 

The last regular case is for a control u .  This is used to "kill" an entire 
edit string for an item. Here we use a f o r  loop to delete all characters in the 
edit string in the same way that individual characters are deleted with the 
backspace . 

The last case under the s w i t c h  is the defau L t .  This is used to handle 
regular characters that are to be entered into the edit string. Here, we test to 
see whether the edit string has reached its maximum length and whether the 
character is within the normal character set (ASCII code at least 32) . If so , 
we move the character into the edit string and call add c h  to display the 
character on the screen. Notice that the ++ increment happens after we load 
the character into the edit string. In this way, we always point to the next 
available character position in the string. 

At the end of the program, we display the list to confirm that the in­
formation was properly stored in the edit strings. We use a f o r  containing 
a p r i  ntw  function to display the edit string in formatted form. Here, we 
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display the item's number, a colon, a tab , then the string, followed by a 
newline. After a couple of newlines and a refresh, the program ends . 

Terminal Capabilities 

Now that we have seen how terminal I/0 routines can be used, let's go 
deeper into how they work. In this section we explore the t e rmcap file and 
its associated routines . 

The name termcap is short for terminal capabilities. This file contains 
entries for each type of terminal that can be connected to the system. Each 
entry describes how a particular type of terminal behaves for such programs 
as the screen editor v i  and the visual shell v s h .  In particular , these entries 
store terminal characteristics such as the number of rows and columns on 
the screen, the command sequences for moving the cursor, and the com­
mand sequences for clearing selected parts of the screen. 

Because many different kinds of terminals exist, this file can be fairly 
large, perhaps lOOK for a really complete set of terminals. Many general 
types of terminals have several entries, each describing a different variant. 
For example, an IBM PC might have different entries for each type of dis­
play. At the time of this writing, the IBM PC does have different entries , 
but they all do the same thing. 

The t e rmcap file is located in the et c directory, thus its full pathname 
is / et c / t e rmcap. Just type the command 

more / et c /t e rmcap 

to view the file. It is a public file, so any user may read it and use the infor­
mation contained within it . 

If you wish to develop or use your own special private t e rmcap en­
tries , you can set them up. You merely set the environment variable 
TERMCAP equal to either the path name of the t e rmcap  file of your choice or 
a string containing your termcap entry. Each shell has a slightly different 
way of doing this . For example, under the C-shell, you might type 

setenv TERMCAP /usr/myaccount /myte rmcap 

if your t e rmcap file is called myt e rmcap and is located in mya c c ount in the 
directory u s  r. 

Sample Termcap Entry 

Let's  look at a sample t e rmcap  entry to see how information is encoded 
there. Later we provide a program that displays this information in a more 
readable form. 

Our sample t e rmcap  entry describes a simple terminal emulation pro-
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gram that is run on a graphics workstation connected to our XENIX sys­
tem. This program turns a microcomputer workstation into an intelligent 
terminal that responds to a few control sequences to do such things as move 
the cursor and change the attributes of displayed text . We choose this exam­
ple for a number of reasons-it's  simple, it' s  ours , and it illustrates a wide 
range of terminal capabilities . 

Here is what the entry looks like: 

au : a1 000 : G raph i cs  Term i na l  Emu l ator : \  
: co#80 : l i #23 : \  
: am : bs : \  
: cm=\E=%+ %+ : \  
: ho=\E  : \  
: ce=\E\001 \021 : cd=\E\001 \022 : c l=AL : \  
: so=\ E\004\0250\024@ : se=\ E\004\025@\0240 : \  
: us=\E\002\024J : ue=\E\002\0240 : 

Let's go through each "capability" of this entry. Notice that although 
it is just one long string, it has several lines and lots of "white space" for 
readability. To indicate continuation, each line, except the last , ends in a 
backslash ( "- ) . 

The first line gives identification codes for this particular terminal . 
These identifiers are separated by the vertical bar < i >  character . The first 
identifier, au, is a two-letter designator required for historical reasons. That 
is, it was used by an older version (UNIX version 6) of the operating sys­
tem, but is no longer used directly. It now acts as a place marker. The sec­
ond identifier, a 1 000, is the official name that the users and the system use 
to refer to this terminal type. The third identifier is a longer name that acts 
like a comment and describes the terminal in English.  We have called this 
terminal emulator a1 000 because it uses the A-1000 graphics subsystem by 
Graphics Development Laboratories for its text display screen. (Incidental­
ly, this emulator program also has a graphics mode that allows us to run 
full color graphics programs on the XENIX system with the display han­
dled by the A-1000.) 

The rest of the entry consists of capabilities . Each capability has a 
two-letter designator . There are three types of capabilities : Boolean, numer­
ical, and string. They can be listed in any order . We shall describe each type 
as we proceed through our particular entry. 

The second line of our termcap entry gives the number of columns and 
lines of characters on the terminal screen. In this case, we have 80 columns 
and 23 lines . Both of these quantities are numerical capabilities . Numerical 
capabilities are specified by giving the two-letter designator of the capability 
(for example, co for number of columns and L i for number of lines) fol­
lowed by a #, then the decimal representation of its value. For example 
co#80 says that the screen has 80 columns . 
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The third line contains some Boolean capabilities . These "flags" act 
like logical variables that specify whether a certain feature is present or ab­
sent . Here, am specifies that the terminal has automatic margins, and bs 
specifies that the terminal uses the normal backspace character (ASCII 8) .  
Automatic margins means that the terminal automatically wraps around to 
the next line and scrolls if necessary when text goes beyond the end of any 
line. Boolean capabilities are indicated by merely listing the two-letter 
identifier . 

The next line contains a string capability em  that specifies how to move 
the cursor around the screen. This is perhaps the most complex capability. 
It requires that two integers secretly be sent to the terminal . By secretly, we 
mean that these integers do not actually appear on the screen, but rather are 
used to control it . A number of different formats can be used for encoding 
this information. 

The em string capability uses format specifiers much like the ones used 
by the p r i  nt f function in C. However, they are extended to take care of 
special cases that are normally programmed in C.  In our case, the em string 
is given by: 

"cm=\E=%+ %+ 1 1  

The \E stands for the escape character (ASCII 27) . This is sent first . 
Most terminal control sequences begin with an escape. 

Next is an equal sign {=) .  This is sent literally to the terminal after the 
escape. After the equal sign is a byte described by the format specifier %+. 
This means that the sent character has an ASCII code consisting of the de­
sired integer plus the ASCII code for a space (ASCII 32) .  In this case, we 
are sending the row (the line number, counting from 0 from the top of the 
screen) . A second %+ says that the column is to be sent in the same way. If 
the row and column are to be sent in the reverse order, a % r is placed in the 
string before either format specifier . 

In designing our terminal emulation program, we choose the above 
representation because it is very compact and does not conflict with other 
control sequences . Other formats for em use decimal expansions for the row 
and column. These use such things as %d that are closer to the formats 
available in C .  These are less compact because more characters must be sent 
to expand a number into its decimal representation. 

You might wonder why 32 was added to the row and column values . 
Adding this "bias" causes the transmitted byte values to fall between 32 
and 1 1 1 ,  thus allowing the terminal or terminal emulator to avoid "danger­
ous" values between 0 and 3 1 .  Some of these values such as 0 and 10 are 
intercepted by the XENIX system and either absorbed or mapped to differ­
ent codes . A value of 0 is especially bad because it is used as a string termi­
nator (signaling the end of a string) and as a pad character (sent but ignored 
later to cause timing delays) . A value of 10 is also bad because it is the 
ASCII code for newline . This is often expanded by XENIX to a carriage 
return-linefeed sequence (ASCII 1 3 ,  then 10) .  
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The next line specifies the control character for "homing" the cursor. 
Here we use a special case of the em specifier that we just described. The 
string \ E  means "Move the cursor to column 0 and row 0, " ,  which is 
exactly what is meant by "home ."  The v ;  editor uses this control sequence 
directly when it brings the cursor to the home position after displaying the 
file information on the bottom of the screen. 

The next line of our t e rmcap  entry gives three commands to clear por­
tions of the screen. The first ce clears to the end of the line, the second cd 
clears to the end of the display, and the third c l  clears the entire screen. 
The first two ce= \ E \001 \021 and cd= \ E\001 \022 cause special codes (oc­
tal 021 and octal 022, respectively) to be sent to the A-1000 display system. 

Here we use an interesting trick to get the code to the A- 1 000. Immedi­
ately after the escape (designated by a \ E) is an "escape count" that speci­
fies how many additional characters are in the escape sequence. This allows 
us to send a specified number of characters directly to the A-1000 without 
the usual interpretations performed by the terminal emulation program. 

In both cases, we have just one additional character, thus a \001 fol­
lows the escape designator . For c e  (clear to end of line) , the additional 
character's code is octal 021 ,  and for cd (clear to end of display) , the code 
is octal 022. It is relatively easy to design a terminal emulation program so 
that whenever it detects an escape, it picks up the count, then sends that 
many subsequent characters directly to the display subsystem. 

The c l (clear the whole screen) capability is handled differently. Here, 
a single control character " L  (formfeed) is sent. We could have used 
c l = \ E= \ E \001 \022, which combines "home" and "clear to end of dis­
play, " but that would have been much longer, and it is useful for other ap­
plications to have the terminal emulator respond directly to formfeed. 

On the next line are the codes for s t a ndout mode. In this mode, char­
acters are displayed in high contrast to their normal appearance. Most 
terminals implement this mode as reverse video . Here, the capability 
so= \ E \004\0250\0241il causes the terminal to start standout mode and 
the capability se= \ E\004\0251il\0240 causes the terminal to end stand­
out mode. 

Let's look more closely. In both cases we generate escape sequences 
that are four additional characters long, thus each begins with an escape \ E  
followed by an escape count o f  four \004. Next, the A-1000 code 025 (oc­
tal) controls the background color of the characters subsequently displayed. 
For so (start standout) , an 0 (ASCII 4F hexadecimal) is sent. Only the four 
lowest bits (OF hex) are used by the A-1000 .  This selects color 1 5  (OF in hex­
adecimal) , which is normally bright white. Next the A-1000 code 024 (oc­
tal) controls the foreground color of the characters subsequently displayed. 
Here we send an at sign (@ , ASCII 40 hex) , which is stripped by the A-1000 
to make color 0-normally black. The se  (end standout) capability just re­
verses the above actions . You can see that we went to considerable trouble 
to avoid sending codes in the range 0 through 1 5 ,  which as we noted above 
cause problems with XENIX. 

The last line specifies how unde r s c o re mode is to be actuated. Here, 
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the capability us=\E \002\024J starts the underscoring of all subsequent 
characters and the capability ue= \ E \002 \0240 ends it . You should be able 
to see that u s  changes the foreground color of characters to color number 
10 and ue changes the foreground color back to color number 1 5 .  

The Showterm Program 

Let's look at an example program that displays this information and more in 
a readable format. This program also illustrates how to use the system's 
t e rmcap library routines, which read the t e rmcap  file and its entries for you. 

We call the program s howt e rm. Once it is compiled and given this 
name, you can run it . You should see a display something like this : 

You r t e rmi na l i s  ca l l ed a1 000 and has 23 l i nes and 80 co lumns , 
automat i c  ma rg i ns ,  and the  usua l bac kspace .  Some of i t s 
capabi l i t i es a re :  

cursor  bac kwa rd 
cursor  fo rwa rd 
cursor  up 
cursor  down 
cursor  home 
i nsert  cha racte r  
de l et e  cha ract e r  
i nsert l i ne 
de l et e  l i ne 
c l ea r to end of d i sp l ay 
c l ea r to end of l i ne 
c l ea r who l e  sc reen 
s ta rt standout mode 
end standout mode 
s ta rt unde rscore mode 
end unde rscore  mode 
cursor  key left  
cursor  key r i ght 
cursor  key up 
cursor  key down 

be : 
nd : 
up : 
do : 
ho : 
i c :  
de : 
a l :  
d l :  
cd : 
c e :  
c l :  
so : 
se : 
us : 

1 4  

27 1 1 9  
27 1 1 7  
1 2  
27 4 21 79 20 64 
27 4 21 64 20 79 
27 2 20 74 

ue : 27 2 20 79 
k l :  
k r :  
ku : 
kd : 

Used 48 bytes  to  store capabi l i t i es .  

Abso lute  cursor  mot i on < em> examp les : 
co l 0 ,  row 0 :  27 61 32 32 
co l 0, row 1 :  27 61 33 32 
co l 0, row 2 :  27 61 34 32 
co l 0, row 3 :  27 61 35 32 
co l 1 0 ,  row 0: 27 61 32 42 
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co l 1 0 ,  row 1 :  27 61 33 42 
co l 1 0 ,  row 2 :  27 61 34 42 
co l 1 0 ,  row 3 :  27 61 35 42 
co l 20 , row 0 :  27 61 32 52 
co l 20 , row 1 :  27 61 33 52 
co l 20 , row 2 :  27 61 34 52 
co l 20 , row 3 :  27 61 35 52 
co l 30 , row 0 :  27 61 32 62 
co l 30 , row 1 :  27 61 33 62 
co l 30 , row 2 :  27 61 34 62 
co l 30 , row 3 :  27 61 35 62 

You might want to p i pe this through mo re as follows : 

% showte rm : mo re� 

This allows you to examine the output one screenful at a time. Notice 
that the --Mo re-- at the bottom of the screen appears in "standout" mode. 

Notice that many of these capabilities are blank; that is , they are not 
implemented. You only need to implement the ones that we have in order to 
make v i ,  mo re, and our d i a l og and t u rt l e  programs work properly. 

The s howt e rm program requires the standard C library and the 
t e rmcap library, but not the c u rses  library, hence it is compiled as 
follows : 

% c c  showt e rm . c  - l te rmcap� 

Now let's examine the program. 

I *  show t e rm i na l capabi l i t i es * I  

# i nc l ude <std i o . h> 
# i nc l ude <sgtty . h> 

c har  te rm i nfo [ 1 024l ; 
c har  PC ; 
c ha r  * UP ;  

I * t e rm i na l i nfo rmat i on * I  
I *  pad cha ract e r  * I  
I *  up character  sequence * I  
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i nt bs ; 
c ha r  * B C ;  
short  ospeed = 82400 ; 

I *  usua l bac kspace?  * I  
I *  bac kspace sequence * I  
I *  baud rate * I  

stat i c  c har  two rk [ 1 00l ; 
i nt out c O ;  

stat i c  c har  * cmpt r ;  

ma i n O  
{ 
c ha r  * P , * tname ; 
i nt i ,  l astcap ,  co l ,  row ; 
c har  * tget st r O , * tgoto O , * getenv O ; 

stat i c  st ruct 
{ 
c har  * i d ;  
c ha r  * l abe l ;  
c ha r  * lac ; 
} 
cap [ ]  = 
{ 

{"be" , "cursor  
{"nd" , "cursor  
{"up" , "cursor  
{"do" , "cursor  
{"ho" , "cursor  
{" i c" ,  " i nsert 
{"de" , "de l ete  
{"a l " ,  " i nse rt 
{"d l " ,  "de l ete  

bac kwa rd be : 
fo rwa rd nd : 
up up : 
down do : 
home ho : 
character  i c :  
character  de : 
l i ne a l :  
l i ne d l :  

{"cd" , "c lear  to  end of d i sp l ay cd : 
{"ce" , "c lear  to  end of l i ne ce : 
{"c l" , "c lear  who le  sc reen c l :  
{"so" , "sta rt standout mode so : 
{"se" , "end standout mode se : 
{"us" , "sta rt unde rscore  mode us : 
{"ue" , "end unde rscore mode ue : 
{"k l" , "cu rsor  key left  k l :  
{"kr" , "cu rso r key r i ght k r :  
{"ku" , "cursor  key  up  ku : 
{"kd" , "cursor  key  down kd : 

} ;  
l ast cap = 20 ; 

I I  

I I  

I I  

I I  

I I  

I I  

I I  

I I  

I I  
I I  

I I  

I I  
I I  

I I  

I I  

I I  

I I  

I I  

I I  

I I  

I } ,  
I } ,  
I } ,  
I } ,  
I } ,  
I } ,  
I } ,  
I } ,  
I } ,  
I } ,  
I } ,  
I } ,  
I } ,  
I } ,  
I } ,  
I } , 
I } ,  
I } ,  
I } , 
I } 
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t name = getenv ("TERM") ; 
p r i nt f ("\ fYour te rmi na l i s  ca l l ed %s " ,  t name) ; 

sw i t c h  (tgetent (termi nfo , t name) ) 
{ 
case -1 : p r i nt f <"\nCannot open t e rmcap f i l e . \n") ; 

e x i t ( 1 ) ;  
break ;  

c ase  0 :  p r i nt f <" ,  but i s  not i n  te rmcap f i l e . \n") ; 
e x i t ( 1 ) ;  
b reak ; 

} 
p r i nt f <"and has %d L i nes and %d co lumns , \n" , 

tgetnum (" L i " ) , tgetnum ("co") ) ;  

i f  (tget f l ag ("am") ) p r i nt f <"automat i c  ma rg i ns ,  " ) ; 
e l se pr i nt f ("no automat i c  ma rg i ns ,  ") ; 

i f  (bs=tget f L ag ("bs") ) p r i  nt f <"and the  usua L bac kspace .  ") ; 
e l se p r i nt f ("and does not have the  usua l backspace .  ") ; 

I *  Load and d i sp lay se l ected capabi l i ty st r i ngs  * I  

p r i nt f <"Some of  i t s \ncapabi l i t i es a re : \n\n") ; 

p = two r k ;  
for  ( i =0 ;  i < L astcap;  i ++) 

{ 
cap [ i ] . Loc = tget st r ( cap [ i ] . i d , &p) ; 
p r i nt f (" %s" , cap [ i J . L abe L > ; 
t put s ( cap [ i J . Loc , 1 ,  out c ) ; 
p r i  ntf <"\n") ; 
} 

I *  d i sp l ay examp les  of abso lute  cursor  mot i on * I  

i f  Cbs)  BC  = "\b" ;  e l se BC = cap [0J . Loc ; 
UP = cap [2 J . Loc ; 

cmpt r = tget st r ("cm" , &p> ; 
p r i ntf ("\nUsed %d bytes to store capabi l i t i es . \n" , p - twork ) ; 

p r i nt f <"\nAbso lute cursor  mot i on ( em) examp les : \n") ; 
for  (co l=0 ;  co l<40 ; co l+=1 0) 

for ( row=0 ; row<4; row++) 
{ 
p r i  nt f <"co L %2d , row %2d : " ,  co L ,  row) ; 



} 

tput s (tgoto ( cmpt r ,  co l ,  row> , 1 ,  out c ) ; 
p r i  nt f <"\n") ; 
} 

I *  charact e r  output rout i ne used by tput s * I  

out c ( c )  
c h a r  c ;  
{ 
p r i  nt f ("%d " ,  c ) ; 
} 
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The program includes two header files : s t d i  o .  h and sget t y. The first 
is needed because we use the standard I/0 p r i  nt f routine, and the second 
is used when we specify the baud rate of the terminal. 

There are a number of external variables : t e rm i  nfo is an array of 
1 024 characters that holds your t e rmcap entry. PC is the "pad" character 
used to help create timing delays . UP is a string that points to the control se­
quence for moving the cursor up one line of text, bs is an integer that holds 
the bs Boolean capability, BC is a string that holds the backspace control se­
quence, and ospeed is of type s h o rt (a byte in many current implementa­
tions of C) and holds a code for the baud rate. 

Two r k  is a static array of characters that holds the string capabilities in 
the form in which they are to be sent (except for em, which needs further 
processing before it is ready to be sent) . Out c is a function that sends indi­
vidual characters to the terminal. We define our own "diagnostic" out c 
function at the end of the program. It must be declared here because it is 
passed as a parameter in some of the termcap routines . Finally, cmpt r is a 
pointer to where the em  capability is stored in t wo r k. 

The main program has a number of "local" variables . P is a general 
string pointer, used to help load capabilities from their t e rmcap  format to 
t wo r k  where they are stored in a more compact form. Tname is a string 
pointer for the terminal' s  name. The integers i ,  l a st c a p, co l ,  and row are 
used in our program in ways that we shall soon describe. The functions 
tget s t r, tgoto, and get env are external string functions and thus must be 
declared to be used. Tget st r and tgoto belong to the t e rmca p  library, and 
get env belongs to the regular C library. 

Next, we build a static structure array cap  that houses in a compact, 
orderly, and readable form all the information that we need for each string 
capability. It is an array of structures, each containing a string pointer i d 
that points to the two-letter designator for the capability, a string pointer to 
l a be l that points to a longer description of the capability, and a string 

pointer l a c  that points to where the compact form of the capability com­
mand is to be stored in the local work string buffer twork. After building 
this structure, we set l a s t c a p  equal to the number of string capabilities 
currently in c ap. To add more capabilities to cap, we simply type in more 
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lines into its initialization section, and increase the value assigned to 
l a s t  cap  accordingly. 

Now the work begins . We use getenv  to obtain the name of the termi­
nal as it is stored in the environment variable TERM. This name is stored in 
the string t name. Our first p r i  nt f statement announces this name to the 
user. Next we call tget ent to load the corresponding t e rmcap  entry into 
the string buffer t e rm i  nfo. This buffer must be at least 1024 characters 
long to accommodate the largest possible t e rmcap  entry. 

We use the result from tget env to determine whether the load opera­
tion was successful . A sw i t c h  statement prints out two possible errors : 
C a nnot open  t e rm c a p  f i l e  and does  not h a v e  ent r y  i n  t e rm c a p  
f i l e. I n  either case, we call e x i t .  I f  all goes well, w e  proceed with the 
program. 

Our next p r i  n t f  statement displays the number of rows and columns 
on your terminal screen. We call tget num to get these numerical capabilities 
for p r i  ntf .  

Next we  check the Boolean capabilities am and bs .  We use tget f l ag 
to fetch their values from the t e rmcap entry. We feed these values into 
i f e l se  statements,  which print messages to the user about these capa­
bilities . 

The string capabilities are displayed next . Here, a f o r  loop indexes 
(with the variable i) through our cap structure, loading each capability 
into the work area t wo r k, getting a pointer c ap [ i  J . l oc  to it , printing out 
the label description, and calling t put s to send it to the terminal . The lo­
cal string pointer p increments through t wo r k  as we load each string 
capability. 

In our case we have arranged it so that tput s prints diagnostic infor­
mation only. In fact , each "character" is sent to our own out c function 
that displays the decimal expansion of that character . In real life, the char­
acter would be sent directly to the screen . 

The final set of displays that our program produces show sample cur­
sor motion sequences . Before we can do this, we must properly initialize the 
strings BC and UP and make cmpt r point to the em capability string in 
t w o r k  (loading it there as we do) . We also print a message indicating how 
much storage we have used in two r k. This is the final value of p minus the 
ba se address of t wo r k. In C we can merely subtract these pointers and 
print the result as an integer . 

The cursor motion examples are printed using a double f o r  loop, in­
dexing through the rows and columns (integer variables row and co l) .  At 
the heart of this double f o r  loop, we call t got o to evaluate the em com­
mand string for specific rows and columns, then call t pu t s  to send the re­
sult to the terminal. We use a p r i  nt f statement to label each sample 
output. 

The program concludes with the out c routine to send characters to the 
screen. Here we use a p r i  n t f  statement to convert the character to the deci­
mal expansion of its ASCII code. 
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Summary 

In this chapter we have discussed terminal 1/0. We presented three C pro­
grams that illustrate important aspects about how terminal 1/0 works. 

First we showed how to use the c u r ses  system library function to con­
trol terminal 1/0. We saw that a programmer can write code that fully uses 
the screen editing capabilities of modern terminals and yet is independent of 
the particular terminal that is connected to the system. 

Finally, we showed how a program can use t e rmcap  routines to deter­
mine exactly what terminal capabilities are available on the currently con­
nected terminal. 

Questions and Answers 

Questions 

Answers 

1 .  What are some terminal capabilities? 

2.  How does the system know your terminal's  capabilities? 

3 .  What kinds of programs use terminal capabilities? 

4. Give a C statement that moves the cursor to the second line, third 
column on the terminal screen. 

5 .  On the SCO version o f  XENIX, the user can rapidly flip among 
several console screens . How it is possible for cursor control to 
work on several programs running at once, each on a different 
console screen? 

6 .  Why i s  it necessary to  call the c rmode routine in  certain interactive 
programs? 

1 .  The capabilities of accepting commands to 1 )  move the cursor to 
any position on the screen, 2) clear the screen, and 3) selectively 
erase portions of the screen. 

2.  The environmental variable TERM tells which type of terminal you 
are using, and the environmental variable TERMCAP can store the 
actual capabilities . These variables can be set automatically by the 

• l og i n  script during login, and they can be set or changed later by 
the user . The file /et c /t e rmcap contains the capabilities of 
almost any terminal that you might wish to connect to the system. 

3 .  Screen editor programs, interactive programs that allow the user 
to move around a terminal screen, and programs that highlight 
portions of the screen use terminal capabilities . 
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4. The C statement 

move ( 1 , 2 ) ;  

moves the cursor to line 1 ,  column 2.  Note that the numbering for 
lines and columns begins with 0.  Also note that the c u r s e s  
commands require a call t o  ref res h  before you see the results. 

5 .  Each program writes its screen output to a copy o f  the screen that 
resides in regular memory. When the user flips to the screen that 
belongs to the program, the copy of the screen in regular memory 
is quickly loaded to the actual screen memory. 

6. The c rmode routine causes each character to be interpreted 
immediately rather than waiting until a newline is pressed . This is 
important for interactive programs that use single character 
commands . 
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FUes and Directories 

Because keyboards , disk drives , terminal screens , commands , directories , 
and even memory appear as files in the XENIX system, understanding 
XENIX file systems is crucial to understanding the entire system. 

This chapter shows how to write programs that examine and modify 
the way files are stored and managed, including file permissions and owner­
ship . We also discuss and demonstrate how to read from and write to files 
at the lowest levels of file I/0. 

We discuss file security. In particular , we discuss how file ownership 
and read/write/execute permissions provide a three-level system to help 
protect data and programs from unauthorized access and modification. 

In this chapter you can find example programs to display the contents 
of a directory, display file attributes , and display and interactively modify 
current user and group identification numbers and permissions . There is 
also a short program to illustrate the most basic file system calls . 

Files, Directories, and File Systems 

Like most other operating systems, XENIX organizes the information that 
it manages in files which are stored on a medium such as a floppy or hard 
disk (see figure 7- 1 ) .  A file can be thought of as a logically organized block 
of data that can be accessed by a name, or more precisely a path. 

Accessing Files 

A file normally resides in a kind of dormant status on the storage device . 
To get information to or from a file, it must be opened. When you are fin­
ished with a file, especially if you have written to it , you should close it to 
return it to its dormant status . This last step flushes any last bytes from 
memory to storage and updates any parameters, such as its new size. In this 
chapter, we see how this is done in XENIX. We explore high- and low-level 
routines that do this . 
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File Systems 

This chapter 
shows how 
to write 
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File: chap S 

Figure 7-1 
A file 

Physical Media 

In XENIX and many other systems, files are located within a tree structure 
of directories called a file system. A file system is stored on a device such as 
a hard disk. Several file systems can be "grafted" together to form a larger 
tree system of directories (see figure 7-2) . 
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I 

Figure 7-2 
Grafting file systems 
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Physical and Logical Organization of Files 
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The way files are organized can be understood from two major points of 
view: physical and logical. By physical organization, we mean how and 
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where the individual bytes of the file are stored on the storage media. For 
example, physically, XENIX files are normally stored on a hard disk in 
blocks. They can, however, be stored on sectors of floppy disks or on 
tape. By logical organization, we mean how the user , programmer, or 
higher levels of the system gain access to files . This is normally via their 
names or paths . 

The physical organization of files is controlled at lower levels of the 
system and should not be of great concern to an applications programmer 
or even to a systems manager . Physical organization becomes important 
only when things go wrong, for example, failures in the storage media. 
However, in this chapter, we discuss the physical organization to help pro­
vide a better understanding of files . 

The logical organization of files is of much more concern to users, 
programmers, and managers of a XENIX system. In this chapter we mostly 
approach XENIX files through their logical organization. 

Paths, Trees, and Directories 

If you have worked with PC-DOS or MS-DOS, you should be familiar with 
tree-structured directories . In fact, some of the commands to navigate the 
tree are almost identical in DOS and XENIX. For example, in both systems 
cd is used to change the currently selected directory. There are, however, 
some differences . For example, in PC-DOS, cd with no parameter prints 
the current directory without changing directories , but in XENIX it changes 
the current directory, making it the user's  "home" directory. 

XENIX, like PC-DOS, has a root directory at the top of the tree (see 
figure 7-3) . The root is distinguished by the fact that it is contained in no 
other directories . 

Figure 7-3 
The root 

1 - the root directory 
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As we have indicated, each file in the system can be located by a path. 
A path consists of a list of names separated by slashes (1) . The names in the 
list specify a downward journey through the tree structure (see figure 7-4) . 
This downward journey is performed automatically by the operating system 
when you specify a path to many of the file management routines . 

uucp  

Figure 7-4 
A path through the tree 

path: /usr/smith/cfi les/stats 

f i l ters stats 

Notice that the name separator slash (/) used in XENIX is different 
than the backslash ( '- )  used by PC- and MS-DOS. In XENIX the root 
directory is symbolically indicated by a I, and the same symbol is used to 
separate names in a path. 

A path that begins with a I starts at the root . A path that does not 
begin with a I starts at the user's  current directory. For example, the path 
/ u s r / i nc l ude/std i o . h  indicates the file std i o . h  contained in the direc­
tory i nc l ude, which is contained in the directory u s r, which is contained in 
the root directory. In contrast , if the current directory is / u s r / myname, the 
path c hap  7 I d l • c indicates the file d l .  c that is contained in the directory 
c hap7 that is contained in the directory myname that is contained in the 
directory us r, which is in the root . 

Structure of Directory Files 

Enough generalities-let' s  look at what makes this system work . 
Each directory, including the root directory, is itself a file containing a 

list of the names of the files directly under it in the tree . 
The organization of a XENIX directory file is very simple : It is an 

array of structures that are pairs consisting of a 1 6-bit integer called an 
i-node number and a 14-byte string containing a file name. The i-node num­
ber specifies a particular 64-byte entity called an i-node where the physical 
information about how the file is stored is kept . Each different file in the 
system, including each different directory, requires a separate i-node. We 
look at the contents of i-nodes in more detail in following text . 
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You can view a directory as a part of a relational data base for the 
operating system. It is a table that relates a set of file names with i-nodes . 
Each file name/i-node pair is called a link because it links the logical struc­
ture file system (nodes of a tree structure) with information about its physi­
cal storage (blocks on a disk) . 

By knowing the name of each directory and all the links that it con­
tains , you (and the operating system) can reconstruct the tree structure of 
the directory system. If you examine the resulting structure carefully, you 
see that some links have the same i-node number. For example, the L, L c ,  
L f ,  L r, L s, and the Lx  commands in the / b i n directory have the same 

i-node number. This means that these commands share a common storage. 
That is, they share the same node. 

It is interesting to note that the code for a family of commands with 
the same i-node can determine which command was invoked to call it by 
looking at the zeroth parameter from the command line. Thus, different 
command names can be used to generate different options of basically the 
same command. Once a file is placed in the system under one name, the L n 
command can be used to create other links to it . 

Directory Display Program 

Let's look at a C program called d L that displays the contents of a direc­
tory. The program can read the directory, just like other programs can read 
other files . As an extra bonus, in addition to demonstrating the structure of 
directory files , this program also illustrates how to read files and pass pa­
rameters from the command line . 

By examining the program and its output, we can see explicitly how 
directories are organized. To run it , type its name, d L , with a single parame­
ter that is a path to a directory. The output displays the links, one per line 
with an i-node number followed by a file name. Here is the output: 

691 0 
632 0 0  
684 test 
696 d i raa 

From this output, we see that the file o that indicates the present direc­
tory has i-node number 691 ,  the file o o that indicates the directory directly 
above has i-node number 632, the file test  has i-node number 684, and the 
file d i  raa has i-node number 696. 

Here is the program: 

I *  d i rectory dump * I  

# i nc lude<std i o o h> 
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ma i n ( a rgc 1 a rgv)  
i nt a rgc ; 
c ha r  * a rgv [ J ; 
{ 
F I LE * i nput ; 
i nt i node 1 i 1 done=0 ; 
c har  name [ 1 4J ; 
i f  ( a rgc  < 2 )  { pr i nt f C"Too few a rgument s . \n") ; ex i t ( 1 ) ; } 
i f C C i nput = fopen ( a rgv [ 1 ] 1 " r" ) ) ! = NULL)  

{ 
wh i l e  ( ! done) 

{ 
i node = getw ( i nput ) ; 
for  C i =0 ;  i < 1 4 ;  i ++) name [ i ] = get c ( i nput ) ; 
i f ( !  Cdone=feof C i nput ) ) )  p r i  nt f ("%5d %s \n" 1 i node 1 name) ; 
} 

f c lose ( i nput ) ; 
} 

e l se p r i nt f ("Cannot open d i rectory f i l e . \n") ; 
} 

To compile the program, type: 

cc d l . c  

It requires no special libraries other than the standard C library. 
Let's  examine this program in detail. 
Because we use standard I/0 functions g e t w, get c ,  f eof,  and 

p r i  nt f, we include the header file s t d i  o .  h .  
The main program has two arguments to help pass parameters from 

the command line. The first argument a rg c  is an integer that specifies how 
many parameters were given, and the second argument a rgv is an array of 
strings that are the actual parameters given in the command line. Notice 
that the arguments a rg c  and a rgv are declared right after ma i n  is declared 
but before its initial curly bracket . 

The main program begins with the declaration of local parameters for 
main. The file pointer i nput is used as a parameter to specify the file that 
we are reading from. The integer i node is used to hold the i-node numbers . 
The integer i is used to index through the characters of the file names in the 
directory. The integer done is used to control the program flow. It is initial­
ized to 0, which means FALSE because initially we are not done. 

The first action in rna i n is to make sure that there are at least two 
parameters : the zeroth parameter, which is the name of the program, and 
the first parameter, which should be a path to the desired directory. If there 
are less than two parameters, we print an error message and exit the 
program. 

Next, we attempt to open the specified directory file with the fopen 
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function. This prepares the file for reading by loading the appropriate file 
management data into memory. The first argument of fopen is a rgv [ 1 J 
that points to the first parameter in the command line . The second parame­
ter of fopen is a string r, indicating that the file is being opened for read­
ing. Fopen returns a pointer which we assign to the file pointer i nput.  

If the file is  successfully opened, the returned pointer is  nonzero and 
can be used to access the file . In that case we enter a w h i l e  to read the file 
and display its contents . 

The w h i l e  loop continues as long as done is false. In it, we first get an 
integer that we store in i node. This should be the i-node number. Next, we 
use a f o r  loop to read the bytes of a file's name from the directory, placing 
them in the string name. We call feof to check whether we have gone 
beyond the end of the directory file . If not, we print a line of text that con­
tains the i-node number (5 digits and a space), and the file name. Each time 
through, the wh i l e  loop prints a line of information about one file in the 
directory. 

After the directory has been read, we call f c  l o s e  to close it . Notice 
that the calls getw and get c,  used to read from the directory file, and the 
f c  lose  function all have a single argument that is our file pointer i nput . 
Thus, one of the roles of the fopen function is to return this file pointer for 
use by all the rest of the file functions we wish to use. 

If fopen was unsuccessful, we print an error message: Cannot open 
d i recto ry f i l e. 

This program displays precisely what is contained in a directory file. 
There are regular commands that display this information. For example, 
the l s command with the i and a options 

L s  - i a 

produces a listing much like our d l program. Here is the output of l s - i a :  

L s  - i a d i ra 
691 . 
632 • •  
696 d i raa 
684 test  

Notice that the output of the l s i s  sorted, whereas the output of  our 
program is not . Also, note that our program produces strange results if it is 
applied to a file that is not a directory. Thus, our d l program is not appro­
priate as a regular system command. 

Physical Layout of a File System 

Physically, a file system occupies a number of blocks on a disk or similar 
media (see figure 7-5) . On a hard disk for an IBM XT, each block contains 
1024 bytes . In subsequent discussion we assume this block size . 
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Figure 7-5 
A file system occupies blocks of storage 
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Block 
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The first block i s  not used directly by  the file system itself but i s  avail­
able to be used for such things as a boot program to start up the system. 

Next comes a block, called the super block, that contains information 
about how the file system itself is organized. It specifies such things as how 
many blocks are dedicated to the file systems, what blocks are free, and 
how large the blocks are.  

After the super block comes a number of blocks that contain i-nodes . 
Since i-nodes are 64 bytes long and each block contains 1024 bytes, each 
block contains 16  i-nodes . Because the i-node numbers are 1 6-bit integers ,  
there can be at most 65 ,536 of them. However, only about 2,000 are allo­
cated on an IBM XT or an IBM PC with a tO-megabyte hard disk. 

After the i-node blocks come the blocks containing the actual file data. 

Exploring the Super Block 
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Let's look at the super block in more detail . It contains information, such 
as the number of blocks devoted to i-nodes and the total number of blocks 
in the entire file system. It also contains lists and counts of free blocks and 
i-nodes . The exact format for this information is described in the header file 
/ u s r / i nc l ude / s ys / f i l sys . h . 

If you have the proper permissions Gust become the superuser), you 
may examine the file systems directly to see these numbers. Each file system 
actually appears as a file that is normally located in the directory I dev.  A list 
of the files representing the currently operational file systems is contained in 
the public file /et c /mntt ab. The format of this file is described in the in­
clude file / u s r / i nc l ud e / s y s /mnt tab . h. You can then use a tool such as 
od (octal dump) to dump the contents of / e t c /mnt t ab and the files listed 
in it. 

Here is an od dump of /et c /mnt t a b: 

% od -oc /et c /mnttab� 
0000000 067562 0721 57 000000 000000 000000 000000 000000 027400 

r o o t \0 \0 \0 \0 \0 \0 \ 
0000020 000000 000000 000000 000000 000000 000000 000000 000000 
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\Ill \Ill \Ill \fll \Ill \Ill \Ill \Ill \Ill 
* 
llllllllllll2211l llllllllllllllllll 11155423 01 7262 

\fll \Ill 11123 [ 262 11136 
llllllllllll226 

We use the oc option of od to display the contents in both octal and 
character format. The first 1 5  bytes gives the file name root where the file 
system appears as a file in the directory /dev.  The next 1 5  give the 
pathname I where it is logically attached to the whole directory system. 

If we use the - l  (long) option of the l s command to look at the own­
ership and permissions for· this file, we see: 

% L s  - L  /dev/ root� 
b rw------- 1 sys i nfo sys i nfo 1 ,  4111 Oct 21  1 985 /dev/ root 

This file belongs to sys  i nfo, one of the system accounts . Let's use the 
su command to switch to this user, then use od with the -d (decimal number 
format) to view this file. Of course, these numbers (and perhaps addresses) 
are different on your system. Notice that we need the password for 
s y s  i nfo. This password is usually determined when the system is installed. 

% su sys i nfo.-J 
Pas swo rd :  (We g i ve t he password fo r "sys i nfo" here)  
$ od -d /dev/ root� 
111111111111111111111 2811186 2811186 2811186 2811186 2811186 2811186 2811186 2811186 
* 
lllflllll211lllllll 1111111 41 1118837 lllllllllllllll llllllllllll6 11161 82 lllllllllllllll 11158111111 lllllllllllllll 
lllllllll211l211l 1116573 lllflllllllllll 1116639 111111111111111 1116546 111111111111111 1116438 111111111111111 
11111111121114111 1116642 111111111111111 1116651 111111111111111 1116629 111111111111111 1116652 111111111111111 

We hit the interrupt key (usually del) to stop the dump. Otherwise it 
would go on for millions of bytes . The addresses beginning at 2000 belong 
to the super block. According to the include file f i l s y s . h, the first word 
(two bytes) contains the number of blocks used for the i-node list ( 141  in 
this dump) , the second and third words contain the total number of blocks 
in the file system (8837 here) , and the fourth word contains the number of 
i-nodes in the list of free i-nodes ( 100 here) . Next comes the list of free 
i-nodes . As we just saw, there are 100 of these in our system. Each one 
takes four bytes . This list does not contain all free i-nodes, just the first few 
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( 100 in this case) . The system can use this list to quickly allocate storage for 
new files as they are created. 

Continuing past this list and the list of free blocks, let's look at the 
area near the end of the super block . 

00031 40 00826 00000 00000 24545 07858 02205 00000 01 293 
00031 60 00001 00068 00000 00000 00000 00000 00000 00000 
0003200 00000 00000 00000 00000 00000 00000 00000 00000 

At address 3 1 52 is the number of free blocks (2205 here) and at ad­
dress 3 1 56 is the number of free i-nodes ( 1293) . 

The Df Command 

Fortunately, there are more convenient ways that even ordinary users 
can use to get the useful information about a file system. For example, the 
d f  command with the -t option given like this 

df -t 

produces an output something like this : 

% df  -t._l 
I ( /dev/ root ) : 441 0 b locks  1 293 i -nodes 

1 7674 tot a l  b locks , 282 for  i -nodes)  

Here, there i s  just one file system. It  i s  attached at I ,  the root , and it 
can be directly accessed as the file /dev/ root . The output says that current­
ly there are 4410 free (unused) blocks out of a total of 1 7674 blocks . It also 
says that there are 1293 free i-nodes and 282 blocks reserved for i-nodes . 

Unfortunately, the term block in this printout means something differ­
ent than the physical 1024 byte blocks discussed previously. Here, a block 
contains 5 12 bytes . As a result we must divide the numbers of blocks given 
in the printout by two to give the actual numbers of physical blocks . Thus, 
2205 physical blocks are free out of 8837, 141 blocks are reserved for 
i-nodes . Actually, two of these i-node blocks are used for the other pur­
poses , namely the boot block and the super block . With 16 i-nodes per 
physical block and a net 1 39 blocks for i-nodes , there is room for a total 
2224 i-nodes . 

The Fsck Command 

The f s c k  command also gives some of this information, but it is measured 
in 5 12-byte logical blocks . F s c k  is normally used during bootup to check 
the file system out after a crash or other kind of abnormal shutdown, but 
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you can run it under the sys i nfo account. In that case, it only checks the 
file system and doesn't try to fix any problems . 

It might print out the following: 

$ f s c k._l 

/dev/ root 
* * Phase 1 - Chec k B locks  and S i zes 
* * Phase 2 - Check Pat hnames 
* *  Phase 3 - Chec k Connect i v i ty 
* * Phase 4 - Check  Reference Count s 
* * Phase 5 - Check  F ree Li st 
931 f i l es  1 2982 b locks  441 0 f ree 

This was printed just after the previous output screen, and, in fact, it 
is reporting under the same conditions as the preceding screen. You can see 
that there are still 4410  logical (5 12  byte) blocks free . We also see that 12982 
logical blocks have been used for files . Adding the number of free blocks 
(4410  logical = 2205 physical) with the number of blocks used ( 12982) gives 
1 7392. Adding the number of logical blocks used for boot (2 logical = 1 
physical) , super block (2 logical = 1 physical) , and i-nodes (278 logical = 
139  physical) , gives 1 7674, which are the total logical blocks allocated to the 
file system as listed on the screen reproduced previously. Thus we can ac­
count for every block in the file system. This is one of the jobs of f s c k. 

As far as the i-nodes are concerned, 93 1 already are used for files . 
Adding the number free ( 1293) gives 2224, the same total that we calculat­
ed above. 

Example C Program: Ustat 

You can obtain also the number of free blocks and i-nodes in a C program 
by calling the ustat  function. This function requires that you give the de­
vice number of the file system. We discuss how to obtain this number and 
what it means in the next section. 

Following is the output of our C program, which is called ustat ,  
named after its principal system function: 

% ustat 296._1 
Dev i ce  number :  296 
Number of f ree b locks : 2205 
Number of f ree i nodes : 1 293 

Here, the device number of the file system is 296. Again, the number of 
free blocks is 2205 physical blocks and the number of free i-nodes is 1293 . 
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To compile the program, type: 

cc -o ustat ustat . c  

No special libraries are needed . 
To use the program, type its name, followed by a list of device num­

bers that belong to file systems. 
Here is a listing of the C program us t at :  

I *  f i l e  system stat i st i c s * I  

# i nc l ude <sysltypes . h> 
# i nc l ude <ustat . h> 
ma i n  ( a rgc , a rgv)  

i nt a rgc ; 
c har  * a rgv [ J ; 
{ 
st ruct ustat t hebuf ; 
i nt dev , i ;  

i f  ( a rgc  < 2 )  { p r i nt f ("Too few a rgument s . \n") ; ex i t ( 1 ) ; } 
for  ( i =1 ;  i < a rgc ; i ++ )  

} 

{ 
dev = atoi ( a rgv [ i J ) ;  
p r i ntf ("Dev i ce numbe r :  %d\n" , dev) ; 

i f  ( ! ustat (dev , &t hebuf ) ) 
{ 
p r i nt f <"  Numbe r of f ree b locks : % ld \n" , thebuf . f_t f ree) ; 
p r i nt f (" Numbe r of f ree i nodes : %d\n" , t hebuf . f_t i node) ; 
} 

e l se p r i nt f ("Cannot get stat i st i c s on dev i ce %d\n" , dev ) ; 
} 

Examining the program in detail, we see that it includes two "header" 
files : s y s / t ypes . h  (actually / us r / i nc l ude / sy s / t ypes . h) and ustat . h  
(actually / us r / i n c l ude/ustat . h) .  The first contains definitions of various 
types used in the data structure returned by u st at that is described in the 
second. 

The main program has the two parameter passing arguments a rg c  (the 
count) and a rgv (the array of strings) . This program can accept a whole list 
of device numbers of file systems . Thus a rg c  can be large. 

The local variables for ma i n  are declared next . Thebuf is defined as a 
structure of type u s  tat ,  which is defined in the include file ustat . h. Dev is 
an integer that holds the device number, and i is an integer that indexes 
through the list of device numbers given by the user . 
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As before, we make sure that there are at least two arguments : the 
name of the program and the first device number . If not , we print an error 
message and return back to the shell . 

Then we execute a for  loop that goes through the entire list of device 
numbers specified in the command line. For each one we call a t o i  to con­
vert from the string representation of the number to its internal binary inte­
ger representation, storing this in the integer variable dev.  We print this 
number for verification, and we use it to call ustat .  

The call to  ustat  i s  inside an i f  statement . Its arguments are dev  and 
&t h ebuf .  We have already explained the first argument . The second is a 
pointer (using &) to t h ebuf where the results of u s t a t  are stored after the 
call. Ustat  returns an integer that tells whether the call was successful . A 
zero value means success . By placing a logical not operator ! before the 
name u s  t a t ,  we cause the conclusion part of the i f  to be executed if all 
goes well . 

With a successful call to us  tat ,  we call p r i  nt f to print the number of 
free blocks and the number of free i-nodes . These now are stored in the 
structure members f t f  ree and f t i node of t hebuf .  These members cor­
respond to members

-
of the structure for the super block . U s t a t  transfers 

these values from the super block of the specified file system. 
If the call to ustat  is unsuccessful, we print an error message to 

that effect . 

Now let 's  examine i-nodes in detail. As we mentioned above, these are 
stored in the blocks immediately after the super block and before the actual 
files . They are data structures that act as gateways to the physical storage of 
the files . 

Example Program: Stat 

The system's  stat  function provides a C programmer with access to much 
of the information contained in an i-node. We will look at a C program 
called s t a t  that calls this function and displays the information it provides . 

To use the program, type its name followed by a list of paths. 
Wildcards can be used to automatically generate such lists . 

Here is a typical output of our stat  program: 

$ stat /.-J 
Pat h :  I 
F i l e  mode 
I node numbe r 
Dev i ce  I D  

s t  mode : 40755 
st i no :  2 
st dev : 296 
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Spec i a l  dev i ce  1 0  
Number o f  L i nks  
User  1 0  

s t  rdev : 397 

G roup 1 0  
S i ze i n  bytes 
Last access 
Last mod i f i cat i on 
Last status change 

st  n l  i nk :  
s t  u i d :  
st_g i d :  
s t  s i ze :  
s t  at i me :  
s t  mt i me :  
st ct i me :  

1 1  
3 (b i n )  
3 (b i n )  
240 
Sun Apr 27 00 : 05 : 47 1 986 
Mon Oct 21 23 : 29 : 48 1 985 
Mon Oct 21 23 : 29 : 48 1 985 

This shows the data for just one path, namely I ,  which is the root of 
the entire directory system and hence the root of our file system. The first 
line of output confirms the path. 

Before we describe each of these quantities in detail, let 's  look at the 
program to see how they are obtained. 

I *  f i l e  stat i st i c s  * '  
# i nc l ude <sys/types . h> 
# i nc l ude <sys/ stat . h> 
# i nc lude <pwd . h> 
# i nc l ude <g rp . h> 
# i nc l ude <t i me . h> 

st ruct passwd * getpwu i d O ; 
st ruct g roup * getg rg i d O ; 

ma i n  ( a rgc , a rgv)  
i nt a rgc ; 
c ha r  * a rgv [ J ; 
{ 
st ruct stat t hebuf ; 
c ha r  * pat h ;  
i n t  i ;  

i f  ( a rgc  < 2 >  { p r i nt f ("Too few a rgument s . \n"> ; ex i t ( 1 ) ; } 
for  ( i =1 ;  i < a rgc ; i ++)  

{ 
pat h = a rgv [ i J ;  
p r i nt f ("Pat h :  %s\n" , pat h > ; 

i f  ( ! stat (path , &t hebuf ) ) 
{ 
p r i nt f (" F i l e  mode 

t hebuf . st_mode> ; 
p r i nt f ( " I node numbe r 

thebuf . st_i no) ; 
p r i nt f ("Oev i ce 1 0  

t hebuf . st_dev> ; 

st mode : %o\n" , 

st i no :  %d\n" , 

st dev : %d\n" , 
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} 

p r i nt f < "Spec i a l  dev i ce  I D  st rdev : %d\n" , 
thebuf . st_rdev> ; 

p r i nt f ("Number of L i nks  st  n l i nk :  %d\n" , 
t hebuf . st_n l i nk > ; 

p r i  nt f <"User  I D  st  u i  d :  %d" , 
t hebuf . st_u i d ) ; 

p r i nt f (" (%s ) \n" , 
getpwu i d (t hebuf . st_u i d ) ->pw name> ; 

p r i nt f ("G roup I D  st_g i d :  %d" , 
t hebuf . st_g i d ) ; 

p r i nt f ("  (%s ) \n" , 
get g rg i d (t hebuf . st_g i d ) ->g r name> ; 

p r i nt f ("S i ze i n  bytes  st s i ze :  % Ld\n" , 
t hebuf . st_s i ze> ; 

p r i  nt f <" Last  access  st at i me : %s" , 
ct i me <&t hebuf . st_at i me ) ) ;  

p r i nt f ( "Last  mod i f i cat i on st_mt i me :  %s" , 
ct i me (&t hebuf . st_mt i me > > ;  

p r i nt f < " Last status change st_ct i me :  %s" , 
ct i me <&t hebuf . st_ct i me > > ;  

p r i nt f ("\n") ; 
} 
e l se  p r i nt f <"Cannot get stat i st i c s on %s\n" , pat h ) ; 
} 

The program is compiled as follows : 

cc  stat . c  

That is, it requires no special C libraries . 
The program has a large number of include files . Types . h defines cer­

tain basic data types used by the system. Stat . h defines the members of the 
s t a t  structure returned by the stat  function. Pwd . h provides definitions 
used to access information about user ID contained in the password file 
( /et c /pas swd) . G rp . h  contains definitions needed to access information 
about group IDs contained in the group file ( I  e t c  I g roup) .  T i me .  h helps us 
use the date and time data. 

Next, we declare two external functions get pwu i d, which returns a 
pointer to a structure of type pa s s wd, and getg rg i d, which returns a point­
er to a structure of type g roup. The structure pas swd contains the informa­
tion from an entry in the password file and the structure g roup contains the 
information from an entry in the group file. 

The main program has two arguments a rg c  and a rgv  that are used to 
pass parameters from the command line as we have done in previous pro­
grams . A rg c  and a rgv  also are declared as before . 

The main program has a number of local variables . Thebuf is a struc-
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ture of type stat .  Notice that we actually declare t hebuf and not a pointer 
to it . This ensures that space is allocated for this structure. It is the pro­
grammer's responsibility to maintain space for the data returned from 
stat .  Pat h is a string pointer to a copy of the pathname. I is an integer 
that indexes through a list of paths . 

The program first checks to make sure that there are enough argu­
ments (at least two, one for the command name and one for at least one 
pathname) . If there are too few arguments , we print an error message and 
exit the program. 

Next a f o r  loop, indexed by i ,  runs through the list of pathnames in­
voked by the command line . Here, wildcards and other such expansions can 
be used in the command line to cause a long list of pathnames to appear in 
a rgv. 

Each pathname is fetched from a rgv [ i  J and printed. The pat h and a 
pointer to t hebu f are passed to the s t a t  function. If stat  was successful, 
it returns a zero value, otherwise it returns a -1 . We test this value in an i f 
statement, printing out the values of the various members of the stat  struc­
ture if stat  is successful, and if not, printing out an error message. 

We also call getpsu i d  and getg rg i d  to access the password and 
group files to convert the ID numbers into user and group names . 

Exploring File Attributes 

Now let 's  return to the output from our s t a t  program, using it to motivate 
discussion of various quantities stored in an i-node . 

File Modes-The second line of output from our s t a t  program gives the 
file mode. This contains permission bits to control access to the file . It is 
displayed in octal because most of the bits come in groups of three. Let's  
examine these bits , starting from the left .  

File Types-The upper four bits , bits 1 5  through 12 ,  form the file type. 
There are four main types of files , then some more elusive types . Table 7-1 
shows the types . 

Type 10  is used for ordinary files . These include text files and files that 
contain programs, such as l s , cat ,  or v i . Type 04 is used for directories . 
Type 02 is used for files that represent character-oriented devices , such as 
terminals . Type 06 is used for block-oriented devices , such as disks or file 
systems . 

The remaining four listed are harder to find. For example, type 01  is 
used for currently active p i  pes .  These are temporary files created to hold 
output when commands are pipelined together . For example, for the 
pipeline 

L s  - L  : mo re 

a temporary file is created to hold the output of the l s command while it is 
being displayed by more .  



Octal Code 

1 0  
04 
02 
06 
07 
03 
05 
0 1  
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Table 7-1 
Codes for file types 

Binary Code 

1000 
0100 
0010  
01 10 
01 1 1  
001 1 
0101  
0001 

Type 

ordinary files 
directories 
special : character 
special : block 
special : multiplexed block 
special : multiplexed character 
special : name 
special : pipe 

P i  pes are so elusive that they don't appear in the directory system. 
However, you can find currently open p i  pes by looking down the MODE  col­
umn in the output of pstat .  The pipes are associated with the i-nodes with 
mode 1 QJQJQJQJ (octal) , which has the pattern 0001 for its upper four bits . 

Types 03 and 07 refer to files that are shared by several processes . 

Special Permissions-The next two bits , 1 1  and 10,  of the mode word help 
regulate some special security situations, allowing or preventing processes 
to take on higher privileges than normally allowed for the user. These bits 
only work for files that contain directly executable programs . They have no 
effect for shell scripts . 

As we discussed in Chapters 2 and 5 ,  when a program is run, a process 
is "spawned" to manage it . This process has a number of identification 
numbers associated with it . These include: the real user ID, the effective 
user ID, the real group ID, and the effective group ID. These IDs are 
checked against the IDs and permissions of any file that the process tries 
to access.  

Bit 1 1  is described as the set user ID on execution bit , and bit 1 0  is de­
scribed as the set group ID on execution bit . If bit 1 1  has a value of 0, the 
process that is being spawned takes on an effective user ID equal to the 
user's ID . If bit 1 1  has a value of 1 ,  the process takes on its effective user 
ID equal to the user ID of the owner of program file. In either case, the real 
user ID of the process is set equal to the ID of the user. Thus the "real" 
user ID is always available. 

Most commands have bit 1 1  equal to 0, thus, they take on the same ef­
fective user ID as the real user ID and are treated with the same level of 
privilege as the user who executes them. Some commands ,  such as su, mv, 
pa s swd, and newg rp have this bit equal to 1 .  They need extra privileges to 
get their work done, so they can act like the owner of some very critical 
files , such as the password and group files . 
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Bit 1 0  is similar to bit 1 1 ,  but it controls the group ID instead of the 
user ID . This gives a more subtle way of getting extra privileges . 

Here is a C program that displays the real user ID, the effective user 
ID, real group ID, and the effective group ID . All of these quantities are re­
turned by various system functions as you can see from this program. 

I *  get user  and g roup I Ds * I  

ma i n ( )  
{ 
p r i nt f C"Rea l user  I D  number :  
p r i nt f C"Effect i ve user  1 0  numbe r :  
p r i nt f C"Rea l g roup 1 0  numbe r :  
p r i nt f C"Effect i ve g roup 1 0  numbe r :  
p r i nt f C"Process g roup 1 0  numbe r :  
} 

Try compiling this program 

c c  get i d . c  

%d\n" , 
%d\n" , 
%d\n" , 
%d\n" , 
%d\n" , 

getu i d O > ;  
geteui  d 0 ) ;  
getg i d O ) ;  
geteg i d 0 ) ;  
getpg rp O ) ;  

renaming it get i d, then setting bits 1 1  and 10 with the command : 

c hmod u+s , g+s get i d  

Now run the command from some other user and some other group 
and see what happens . Suppose that the file was created by user number 
203 , whose current group ID number is 5 1 ,  and that the command is 
called by user number 204, whose group ID number is 52. Then the output 
looks like : 

Rea l user  1 0  numbe r :  204 
Effect i ve user  I D  numbe r :  203 
Rea l g roup I D  number : 52 
Effect i ve g roup 1 0  numbe r :  53 

The Sticky Bit-Bit 9 is called the sticky bit because it controls how hard 
the system holds onto the file after users are finished with it . When this bit 
has a value of 1 ,  the program is retained in swap (memory or temporary 
disk storage) even if all users have finished with it . This speeds up the next 
use of it . The sticky bit can only be set by the super user using the t permis­
sion designation in the c hmod command . Popular programs such as v i ,  c c , 
and l s have this bit set . 

User, Group,  and Other Permissions-The last nine bits , in bit positions 8 
through 0, control permissions (see figure 7-6) . They come in sets of three . 
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Bits 8,  7 ,  and 6 control permissions for the file's owner. Bits 5 ,  4, and 3 
control permissions for the file's group . Bits 2, 1 ,  and 0 control permission 
for all others . 

b i t  8 b i t  7 

Figure 7-6 
Permission bits 

bit 6 b i t  5 b it  4 b i t  3 b i t  2 b i t  1 b i t  0 

Within each set, the first bit controls reading, the second bit controls 
writing, and the third controls execution. Thus, bit 8 controls reading by 
the owner, bit 7 controls writing by the owner, bit 6 controls execution by 
the owner, bit 5 controls reading by a member of the file's group, and so 
on. These permissions use the effective user and group so that the set user 
and group bits work as "advertised. "  

As mentioned before, the c hmod commands allow the owner and the 
super user to change these permissions . The C function c hmod lets C pro­
grams run by the owner or by the super user do the same. 

Other Fields of the 1-Node 

Let's look at some of the other members of the i-node structure reported 
by stat .  

Device Numbers-There are two device ID numbers stored in the i-node. 
The first device ID number indicates the particular device on which the file 
is stored. That is, this device number indicates membership . In our case, all 
our files belong to device number 296. 

A second device ID, called the special device ID, is used for files that 
represent devices (special block or character types of files) . In our case, the 
file system is represented by file I dev I root that has special device number 
296 . That is, it is the physical owner of all our files . 

Device ID numbers are 16-bit integers whose upper byte is called the 
major device number and whose lower byte is called the minor device num­
ber . The major number indicates a particular physical device driver (see 
Chapters 2 and 9) to control a class of devices , such as hard disks , floppy 
disks , or memory. The minor device number indicates a particular use or 
function. The minor device numbers are passed to the device drivers so that 
they may select a particular function to perform. 

In our case, the major special device number of I dev I root is 1 (because 
296 is 1 *256+40). This is also the major special device number of the files 
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/dev/ hd0, /dev/ hd00, /dev/ hd02, and /dev/ swap, all of which represent 
the hard disk in some way and are handled by the hard disk device driver. 

Normally devices are stored in the directory dev.  To check out the var­
ious device numbers, type: 

l /dev 

This is equivalent to the - l  option of the l s command. 

Number of Links-Each i-node keeps track of the number of links that ref­
erence it (including • and • •  names) . For example, if the directory d i  ra 
contains the files di raa and test,  where di raa is a directory and test is 
an ordinary file, the i-node for d i  ra has three links: one because it belongs 
to a directory itself, a second because of its • reference to itself, and a third 
because of a • •  reference in the d i  raa file . 

User and Group IDs-Each i-node contains identification for the file's 
owner and the file's group . These numbers , together with the permission 
bits and a process' s  effective user and group IDs, help determine who can 
access the file. For example, if a process has its user number equal to the 
user number in the i-node, and the permission bit for writing by the owner 
is equal to 1 ,  the process can write to the file (or erase it) . 

The name of the owner can be found in the file / e t c / pa s swd and the 
name of the group (if there is a name) can be found in the file /et c /g roup. 
Our program stat  demonstrates how a C program can access these files to 
find these names . The files can be read by anyone but only written to by the 
super user because of the way that their permission bits are set . 

Size-The size of the file is also stored in the i-node. It is stored as a 32-bit 
integer, thus limiting the size to a mere 4,294,967,296 bytes . 

Times-There are three times stored in an i-node: the time of last access ,  
the time of last modification, and the time of last status change. 

The time of last access is set by the system calls c reat ,  mknod, p i pe, 
ut i me, and read. These commands either create the file, "touch" it (up­
date its status) , or read from it . 

The time of last modification is set by the system calls c reat ,  mknod, 
p i pe, ut i me, and w r i t e. These commands either create the file, "touch" 
it , or write to it . 

The time of last status change is set by the system calls c hmod, c hown, 
c reat,  l i n k, mknod , p i pe, ut i me, and w r i t e. These commands either 
create the file, "touch" it , write to it , or change its attributes . 

Table 7-2 summarizes all of this . 

Modifying File Attributes 
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The last program in this chapter demonstrates how to modify a file using a 
dialog. The program called vm (for view and modify) displays the ownership 



Function 

ere at 

mknod 

pipe 
utime 

read 

write 

chmod 

chown 

link 

Last 

Table 7-2 

Updating times 

Last 
Access Modification 

X X 

X X 

X X 

X X 

X 

X 
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Last 
Status 

Change 

X 

X 

X 

X 

X 

X 

X 

X 

and permissions of a specified file and allows a user to edit each item (see 
figure 7-7). 

Figure 7-7 

Output of the vm program 

Permissions for f i l e :  a.out 

Owner #: 1 02 name: morgan 

Grou p#:252 name: e l m  

Mode: 755 

Set owner: n Set g roup:  n Sticky bit:  n 

Owner read: y Owner write: y Owner execute: y 

Group read: y Owner write: y Group execute: y 

Others read: y Others write: n Others execute: y 
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While the program is running, you can move the cursor from one file 
attribute to the next by pressing control z. Control a backs up one item, 
return enters the new value of an item (staying at the same item) , backspace 
backs up one character while editing, and escape exits the program. When 
you exit, the current values are printed on the screen and you are asked 
whether you want them saved. Pressing y or Y updates the file's attributes 
with the new values . Pressing any other key causes the program to exit with­
out saving this information. 

Some of the items are linked together . For example, the owner's name 
is derived from the owner's ID number using the system's  password file 
/ et c / pa s swd. Thus , when the ID number is changed, the program auto­
matically updates the name. Conversely, whenever you change the name, 
the program automatically tries to update the ID number . However, many 
possible ID numbers do not correspond to any user names . In this case, the 
name is made blank, but the ID number is left as entered. 

The group ID and name are similarly linked using the system group 
file /et c / g roup. 

The permission bits (displayed individually as y or n values) are linked 
to the file mode number (displayed here in octal) . When you change a per­
mission bit (pressing return, control a, or control z to register the new value) , 
the mode changes . When you change the mode, the permission bits also 
change accordingly. 

Here is the program: 

I *  v i ew and mod i fy permi ss i ons of a f i le  * I  

# i nc l ude <cu rses . h> 
# i nc l ude <sysltypes . h> 
# i nc l ude <sys l stat . h> 
# i nc lude <pwd . h> 
# i nc l ude <g rp . h> 

st ruct passwd * getpwu i d 0 ,  * getpwnam ( ) ;  
st ruct g roup * getg rg i d O , * getg rnam O ; 

I *  t he  t i t l e for  the  s c reen * I  
st  ruct dTi t l e 

{ 
i nt y ,  x ;  
c ha r  st r [255 l ; 
} 

t i t l e [ ]  = 
{ 

I*  pos i t i on of t i t l e * I  
I *  t i t  l e st r i ng * I 

I *  y ,  x ,  st r * I  
{ 1 1 3 1 I I  I I }  1 

{ 2 ,  3 ,  "Cnt l A = prev i t em , Cnt l Z = next i t em , \  
RET = ent e r  i t em , ESC  = f i n i s h"} 



Files & Directories 

} ;  
#def i ne lastt i t l e ( ( s i zeof ( t i t le ) ) l ( s i zeof ( st ruct dT i t l e ) ) )  

I *  st ructure of the  s c reen * I  
st ruct d i tem 

{ 
i nt y l ,  X l i I* pos i t i on of l abe l * I  
c ha r  * st r l ;  I*  po i nt e r  to  t he l abe l st r i ng * I  
i nt ye , x e ;  I*  pos i t i on of  edi t st r i ng * I  
i nt maxe ;  I*  max i mum numbe r charact ers  i n  ed i t  st r i ng 
i nt cnt e ;  I* c ha racter  count i n  ed i t  st r i ng * I  
c ha r  st re [41 J ;  I *  po i nt e r  to  ed i t  s t r i ng * I  
} 

dL i st [ J =  
{ 
I *  y l ,  X l ,  

{ 5 ,  5 , 
{ 5 ,  22 , 
{ 7 ,  5 ,  
{ 7 ,  22 , 
{1 1 ,  5 ,  
{1 3 ,  5 ,  
{1 3 ,  22 , 
{1 3 ,  39 , 
{1 5 ,  5 ,  
{1 5 ,  22 , 
{1 5 ,  39 , 
{1 7 ,  5 ,  
{1 7 ,  22 , 
{1 7 ,  39 , 
{1 9 ,  5 ,  
{1 9 ,  22 , 
{1 9 ,  39 , 

} ;  

s t  r l ,  
"Owner  # · " . , 
"name : " ,  
"G roup # : " ,  
"name : " ,  
"Mode : " ,  
"Set owne r : " ,  
"Set g roup : " ,  
"St i c ky b i t : " ,  
"Owner read : " ,  
"Owner  w r i te : " ,  
"Owner  execut e : " ,  
"G roup read : " ,  
"G roup w r i t e : " ,  
"G roup execut e : " ,  
"Ot hers  read : " ,  
"Ot hers  w r i t e : " ,  
"Ot hers  execut e : " ,  

ye , x e ,  max e ,  cnt e ,  st re 
5 ,  1 4 ,  5 ,  0 ,  } ,  
5 ,  28 , 1 2 ,  0 ,  } ,  
7 , 1 4 , 5 ,  0 ,  } ,  
7 , 28 , 1 2 ,  0 ,  } ,  

1 1  , 1 1  , 4 ,  0 ,  } ,  
1 3 ,  1 9 ,  1 , 0 ,  } ,  
1 3 ,  36 ,  1 , 0 ,  } ,  
1 3 ,  55 , 1 , 0 ,  } ,  
1 5 ,  1 9 ,  1 , 0 ,  } ,  
1 5 ,  36 ,  1 , 0 ,  } ,  
1 5 ,  55 , 1 , 0 ,  } ,  
1 7 ,  1 9 ,  1 ,  0 ,  } ,  
1 7 ,  36 , 1 , 0 ,  } ,  
1 7 ,  55 , 1 , 0 ,  } ,  
1 9 ,  1 9 ,  1 , 0 ,  } ,  
1 9 ,  36 ,  1 ,  0 ,  } ,  
1 9 ,  55 , 1 , 0 ,  } 

#def i ne last i t em ( ( s i zeof (dL i st ) ) l ( s i zeof ( st ruct d i t em) ) )  

ma i n ( a rgc , a rgv)  
i nt a rgc ; 
c ha r  * a rgv [ J ; 
{ 
st ruct stat t hebuf ; 
c ha r  * pat h ;  
c ha r  c h ;  
i nt i , j ; 
i nt newed i t=TRU E ,  done=FALSE ;  
i nt f l ags ;  

* I  

* I  
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i f  ( a rg c  < 2 )  { p r i nt f ( "Too few a rgument s . \n") ; ex i t < 1 > ; } 
pat h = a rgv [ 1 ] ;  

i f  ( stat (pat h 1 &t hebu f ) ) 
{p r i nt f ("Cannot get s t at i st i c s  on % s \ n" 1 pat h ) ; ex i t ( 1 ) ; } 

I *  set up s c reen and t e rm i na l I IO * I  
i n i t s c r < > ; c rmode < > ;  noe c ho < > ; non L < > ; 

I *  c l ea r s c reen and d i sp l ay t i t l e and i t em L a be l s  * I  
c L ea r O ; 

s p r i ntf ( t i t l e [ 0 J . st r 1 "Permi s s i ons for f i L e :  %s" 1 pat h ) ; 
f o r ( i =0 ;  i < Last t i t l e ;  i ++) 

mvaddst r (t i t l e [ i ] . y 1  t i t l e [ i ] . X 1  t i t l e [ i ] . st r > ; 

s p r i ntf <dli st [0] . st re 1 "%d" , t hebuf . st_u i d ) ; 
s p r i  ntf ( d l i  st [ 2 ] . st re 1 "%d" 1 t hebuf . st_g i d ) ; 
s p r i  ntf ( d l  i st [4] . st re I "%4o" 1 t hebuf . st_mode & 07777) ; 

fo r ( i  = 0 ;  i < Last i t e m ;  i + + )  
{ 
mvaddst r (d l i st [ i ] . y l 1  d l i st [ i ] . x l 1  d l i st [ i ] . st r l > ; 
i ns e rt ( i ) ;  
} 

updat e (0) ; 
updat e ( 2 ) ; 
updat e <4> ; 

moveto ( i =0 > ; 
ref resh ( ) ;  

wh i l e  ( ! done) 
{ 
swi t c h ( c h=get c h ( ) )  

{ 
case  27 : I* es cape key t o  ex i t  * I  

done = TRUE ;  
b rea k ;  

case  ' \ r ' : I *  ret u rn key to se l e ct  next i t em * I  
i f ( ! newed i t )  updat e < i > ;  
newed i t  = TRUE ;  
brea k ;  

case  1 :  I* cont ro l a goes bac kwa rd one i t em * I  
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i f ( ! newed i t )  update ( i ) ;  
newed i t = TRUE ; 
i -- ;  
i f ( i ==-1 > i = last i tem-1 ; 
moveto ( i ) ;  
brea k ;  

case 26 : I *  cont ro l z goes fo rwa rd one i tem * I  
i f ( ! newed i t )  update ( i ) ;  
newed i t = TRU E ;  
i ++ ;  
i f ( i == last i t em>  i =0 ;  
moveto ( i ) ;  
b rea k ;  

case 21 : I *  cont ro l u de l etes  t h e  i tem * I  
de l et e ( i ) ;  
updat e ( i ) ;  
newed i t = TRU E ;  
brea k ;  

case ' \b ' : I *  bac kspace de l etes  a cha racter  * I  
i f  ( (d li st [ i l . cnte > 0)  && ! newed i t )  

{ 
addst r ("\b  \b") ; 
dl i st [ i ] . cnte-- ;  
dl i st [ i l . st re [dl i st [ i l . cnte l  = 0 ;  
} 

brea k ;  

defau l t : I *  hand l e  regu l a r  characters  * I  
i f  ( c h  >= 32)  

{ 
i f  < newed i t )  de l et e ( i ) ;  
newed i t = FALSE ;  
i f (dl i st [ i l . cnte < dl i st [ i l . maxe>  

{ 

} 
brea k ;  

} 
refresh ( ) ;  
} 

dl i st [ i l . st re [dl i st [ i l . cnte l  = c h ;  
dl i st [ i l . cnte++ ;  
addc h < c h > ; 
} 
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} 

I *  d i sp lay t he  f i na l  va lues i n  t he  l i st * I  
n l O ;  
c l ear O ;  
move ( 1 , 0) ;  
p r i ntw ("Pat h :  %s\n" , pat h > ; 
p r i ntw ("Owne r :  %s\t (%s ) \n" , dl i st [0 l . st re ,  d li st [ 1 l . st re > ; 
p r i ntw ("Group : %s\t (%s ) \n" , dl i st [ 2 l . st re ,  d l i st [3 l . st re > ; 
p r i ntw ( "Mode : %s\n" , d l i st [4l . st re > ; 
p r i ntw ("\n\n"> ; 
p r i ntw ("Save c hanges <yin> ? " ) ; 
ref resh ( ) ;  

c h  = get c h O ;  
p r i ntw ("%c \n\n" , c h > ; 
ref resh ( ) ;  
i f ( ( c h== ' y ' ) l l  ( c h== ' Y ' ) )  

{ 
sscanf (dL i st [4J . st re , "%o" , &f lags> ; 
c hmod (pat h ,  f l ags > ; 
c hown (pat h ,  ato i (dL i st [0J . st re ) , ato i (dL i st [2 J . st re> > ;  
} 

endw i n O ; 

updat e ( i ) 
i nt i ;  
{ 
i nt j ,  f l ags ;  
st ruct passwd * pwpt r ;  
st ruct g roup * g rpt r ;  

sw i t c h ( i ) 
{ 
case 0 :  I *  i ==0 * I  

j = atoi (dL i st [0J . st re> ; 
de l et e <0> ; 
sp r i  nt f <d li st [0 ] . st re , "%d" , j ) ;  
i nsert (0) ; 
de l ete < 1 > ;  
setpwent < > ;  
i f ( (pwpt r = getpwu i d ( j ) )  ! = NULL)  

spr i  nt f (dL  i st [ 1 ] .  st re , "%s" , pwpt r->pw_name> ; 
e l se sp r i nt f <dL i st [ 1 J . st re ,  " " ) ;  
i nse rt < 1  > ;  
brea k ;  

case 1 :  I *  i ==1 * I  
setpwent < > ;  
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i f C (pwpt r = getpwnam (dli st [ 1 l . st re» ! = NULL>  
{ 

e l se 

de l et e <0> ; 
spr i  nt f <dl i  sH0l . st re 1 1 1%d1 1  1 pwpt r->pw_u i d ) ; 
i nsert (0) ; 
} 

{ 
de l et e < 1 > ;  
spr i  nt f Cd L  i st [ 1  l .  st re 1 1 1  1 1 ) ;  
i nsert ( 1 ) ;  
} 

brea k ;  
case 2 :  I *  i ==2 * I  

j = ato i (dL i st [ 2 l . st re> ; 
de l ete <2 > ; 
spr i nt f (dLi st [2 l . st re 1 1 1%d1 1 1 j ) ;  
i nsert <2> ; 

de l ete (3 ) ; 
setg rent 0 ;  
i f ( (g rpt r = get g rg i d ( j ) )  ! = NULL>  

spr i nt f CdL i st [3l  . st re 1 1 1%S 1 1  1 g rpt r->g r_name > ; 
e l se spr i nt f <dl i st [3l . st re 1 1 1  1 1 ) ;  
i nsert (3 ) ; 
brea k ;  

case 3 :  I *  i ==3 * I  
setg rent 0 ;  
i f ( (g rpt r = getg rnam (dL i st [3 l . st re> > ! = NULL)  

{ 
de l ete (2) ; 
spr i nt f <dL i st [2 l . st re 1 1 1%d1 1 1 g rpt r->g r_g i d> ; 
i nsert <2> ; 
} 

e l se 
{ 
de l et e (3 ) ; 
spr i  nt f (dl i  st [3 ] . st re 1 1 1  1 1 ) ;  
i nsert (3) ; 
} 

brea k ;  
case 4 :  I *  i ==4 * I  

f lags = 0 ;  
ss canf C d l i  st [4 l . s t  r e  1 1 1%01 1 1 &f lags ) ; 
de l ete <4> ; 
spr i  nt f Cd L  i st [4 ] . st re 1 1 1%4o1 1  1 f l ag s > ; 
i nse rt <4> ; 
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for ( j =121 ;  j <1 2 ;  j ++ )  
{ 
i f  ( ( 1 «j )  & f l ags)  spr i nt f Cd li st [ 1 6-j l . st re ,  "y") ; 
e l se spri  nt f Cdl i  st  [ 1 6- j l .  st  re , "n") ; 
i nsert ( 1 6- j ) ;  
} 

brea k ;  

case 5 :  
case 6 :  
case 7 :  
case 8 :  
case 9 :  
case 1 121 :  
case 1 1 : 
case 1 2 :  
case 1 3 :  
case 1 4 :  
case 1 5 :  
case 1 6 :  

sw i t c h (dl i st [ i ] . st re [121 ] ) 
{ 
case ( ' y ' ) :  brea k ;  
case < ' 1 ' > :  
case C ' Y ' ) :  dl i st [ i l . st re [121l  = ' y ' ; brea k ;  
defau l t : dl i st [ i l . st re [121]  = ' n ' ; b rea k ;  
} 

i nsert ( i ) ;  

f l ags  = 121 ;  
for ( j =121 ;  j <1 2 ; j ++ )  

f lags : = ( ( (dl i st [ 1 6-j l . st re [121l  -- ' y ' )  & 1 )  << j ) ;  
de l et e <4> ; 
spr i  nt f (dli  st [4] . st re ,  "%4o" , f lags) ; 
i nse rt C4> ; 
brea k ;  

} 
moveto ( i > ;  
} 

de lete ( i ) 
i nt i ;  
{ 
i nt j ;  
moveto ( i ) ;  
for C j =121 ;  j < dl i st [ i l . cnte ;  j ++)  

{ 



Files & Directories 

addst r (" " ) ; 
dL i st [ i J . st re [ j J  = 0 ;  
} 

dL i st [ i J . cnte = 0 ;  
moveto ( i ) ;  
} 

i nse rt ( i ) 
i nt i ;  
{ 
mvaddst r (dL i st [ i J . ye ,  dL i st [ i J . xe ,  dL i st [ i J . st re > ; 
d L i st [ i J . cnte = st r len (dL i st [ i J . st re) ; 
} 

moveto ( i ) 
i nt i ;  
{ 
move (dLi st [ i J . ye ,  d Li st [ i J . xe ) ; 
} 

Now let 's  examine this program in detail. 
It uses five include files : c u r ses . h because we wish to move the cursor 

around the screen, s y s / types . h  and s y s / stat . h  because we need file sta­
tistics , pwd . h because we are looking things up in the password file, and 
g rp . h because we are using the group file. 

Four external string functions, getpwu i d, get pwnam, get g rg i  d, and 
getg rname, are declared. The first two are used to search the password file, 
and the second two are used to search the group file. 

There are two global structures, t i t l e and d L i  s t that we declare and 
initialize. T i t l e contains a couple of lines of titles for the screen. The first 
line is initially blank and is filled in later with the name of the file. At the end 
of t i t  l e, l a stt  i t  l e is a macro that specifies the number of title entries . 

The second structure d l i  st  contains a list of the items that are dis­
played on the screen. Every item has a label and an edit string, each with x 
and y coordinates to designate placement on the screen. In this list are the 
owner's  ID, the owner's  name, the group ID, the group name, the file 
mode, and twelve permission bits . At the end of d l i  st ,  the macro 
l a st i t em specifies the number of entries in d l  i st .  

The main program has the usual two arguments to  help pass argu­
ments from the command line. In this case, we pass the pathname of the 
file that we wish to change. 

There are a number of local variables in the main program. Thebuf is 
a buffer of type stat  for holding information about the file returned from 
the stat  function. Pat h is a string that holds the pathname, c h  is used to 
hold single characters,  i is an integer variable used as an index to t i t  l e 
and d l  i st ,  and j is an integer used as a temporary variable in several dif­
ferent ways. 
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Newed i t  is an integer that helps with the editing of items . It is true 
(nonzero) if an item is being edited, but not yet entered or reconciled with 
the password file , group file, or other items . It is initialized to a value 
of TRUE. 

Done is an integer that helps with program control . It is initially set to 
FALSE, and it is set to TRUE when the program should terminate. 

F l a g s  is a temporary variable used to hold the file mode during 
computation. 

The program begins by checking to see whether there are too few argu­
ments in the command line or whether it cannot find the file . In either case, 
it issues the appropriate error message and exits . 

Next , we initialize the screen and keyboard 1/0 for the c u rses  rou­
tines , turning off echoing and the usual mapping of carriage return and 
linefeed. We also clear the screen. 

We use the s p r i  nt f (formatted print to a string) function to load a 
message about the pathname into the title , then we use the c u r s e s  routine 
mvadd s t  r to place the titles on the screen . 

We next use s p r i nt f to load the owner ID number, the group ID 
number, and the file mode from the s t a t  buffer into the edit strings of 
d l i  st for display on the screen . A f o r  loop displays the data in d l i  st on 
the screen. We then call a routine update  three times to fill in the owner 
name, group name, and permission bits . The upda t e  routine appears near 
the end of the program. It is used mainly to adjust certain items when other 
related items are modified. 

Next we initialize some variables for our main loop, setting i equal to 
0 to edit the first item and calling our own moveto function to move the 
cursor to that item. We call re f re s h  to update the display screen before en­
tering the main loop . 

The main loop is handled by a w h i  l e statement that contains sw  i t c h 
to select and perform an action and a ref resh  to show the results on the 
display. 

The s w i t c h  statement fetches a character from the keyboard and se­
lects the appropriate action based on the value of that character . 

For escape (ASCII 27) , done is set equal to TRUE to terminate the pro­
gram. This first terminates the w h i le  loop, then gives the user a chance to 
save the new values before the program terminates . 

For return ( '\. r) we "close" the editing of the currently selected 
item. Here, we call updat e if newed i t is FALSE, then set newed i t 
to TRUE. 

For control a (ASCII 1 ) ,  we call update in the same way that we do for 
a return and we increment i , setting it to zero if it becomes equal to the 
number of items . This ensures that we cycle through all of the items . 

For control z (ASCII 26) , we close editing as before and decrement i ,  
setting it equal to one less than the number of items if it becomes equal 
to - 1 .  This ensures that we cycle through all items when we go in back­
ward order . 

For control u (ASCII 21) ,  we call our de l ete  routine to delete the item, 
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then call update  to adjust the other values accordingly. We also set 
newed i t to TRUE. 

For backspace ( ""- b) we check to see whether there are any characters to 
delete and that we are currently editing an item. If so, we send the string 
consisting of: backspace, space, backspace , and we make the last character in 
the edit string equal to zero . This terminates the string at the correct place . 
We use j as a temporary variable to store the position of the last character 
in the string, which we compute from the length of the string. 

All other characters are handled as the default case . Here we check to 
see whether the character is a control character . If it is not, we proceed. If 
newed i t is true, we delete the item first before inserting the character. We 
add the character only if the edit string is not too long (less than the maxi­
mum count for that item) . If all conditions are met, we place the character 
onto the screen and in the next character position. 

After the wh i L e  loop, we call c L ea r to clear the screen; move to line 1 ,  
column 0 of the screen; and call p r i  ntw to display the values on the screen. 
We then ask users if they want to save the values . If so, we call c hmod to set 
the permission bits and c hown to set the owner's and group's  IDs . Notice 
that we use the formatted scan function s s c a n f  to convert the octal string 
representation of the file permissions to an integer . 

The main program concludes with a call to endw i n. 
The update  routine is next . It has one argument, an integer i that 

specifies the current item we have been editing. Within the function, j is an 
integer that points to character positions, f L ags  is used to temporarily hold 
the permission bits , pwpt r points to entries from the password file, and 
g rpt r points to group entries in the group file . 

The routine consists of a sw i t c h  statement to cover the different cases 
of i ,  the item number . That is, each item requires a different procedure for 
updating . 

For items 0 and 2, we must translate numbers into names, looking them 
up in the password or group file respectively. First we establish the current 
value of the respective ID number. This is to rid ourselves of any inappropri­
ate input typed by the user . Then we update the name in the next item. 

To establish the ID number, we first call the a t o i  (ASCII to integer) 
function to grab the value from the edit string. This function returns the in­
teger value represented by the string. However, if the string cannot be inter­
preted as an integer, it returns a zero value. We call our de L et e  function to 
remove the item from the edit string and from the screen, call s p r i nt f to 
put a newly reformatted copy of the number in the edit string, then call 
i nse rt to display it on the screen. 

To update the name, we de L et e  it , then call get . . •  i d to search the 
password or group file. This returns a pointer, which is NULL if the search 
was unsuccessful . If we find a valid name, we call s p r i  nt f to place it in the 
edit string. If not, we put an empty string there . Finally, we call i nse rt to 
place it on the screen. 

Items 1 and 3 work the other way. That is, we are given newly edited 
names and we wish to look up the corresponding number . Here, an i f 
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statement fetches and checks the results of a search through the password 
or group file . If the search is successful, we update the number. If not, we 
blank the unsuccessful name. 

Item 4 is the file mode. It is similar to items 0 and 2. However, the 
number is in octal, so we must use the s s c an f  function to convert from oc­
tal ASCII to internal integer format. We then update the permission bits 
with a f o r  loop . We use s p r i  nt f to place y or n in the edit string and 
i ns e r t  to display the result on the screen. 

Items 5 and greater are the permission bits . We use a sw i t c h statement 
to clean up the edit string, making it either y or n. Three choices , Y, y, and 
1 become y. All others become n. We then recompute the file mode (bits 0 
through 1 1) .  A f o r  loop checks each permission bit edit string looking for a 
y to indicate that the corresponding bit should be set .  The result is accumu­
lated into a temporary variable called f l ags .  We delete the old value, load 
the new value, and display it on the screen. 

The last step in the update routine is to call moveto  to move the cursor 
to the beginning of the currently selected item. 

The de lete  function is much like a repeated character delete . It has a 
single integer parameter that is the item number. We use essentially the 
same code as the case of backspace in the main loop. Notice that we delete 
in a backward fashion. This means that the cursor is in the proper place 
when we finish. 

The i ns e rt function uses the mvaddst  r function of c u r s e s  to place 
the edit string for an item in the proper place on the screen. It has a single 
integer parameter, which is the item number. 

The moveto function uses the move function of c u rses  to place the 
cursor at the beginning of the edit string for an item. It has a single integer 
parameter, which is the item number. 

Fundamental File Reading and Writing Routines 
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Now that we have explored the structure of the file and directory system, 
let 's  look at some fundamental system calls for reading from and writing 
to files . 

We have already used some higher level routines , such as fopen, 
getc ,  and f c  lose, which are part of the standard 1/0 package. We now 
briefly discuss the five basic system functions that these are built on. If you 
need more details , consult the XENIX manuals . 

The Creat Function 

The c reat function creates a new file or makes an existing file ready for 
writing by first deleting its current contents . It expects two parameters , a 
string that is a pathname and an integer which contains the lower nine bits 
of the file mode word. If successful, it returns an integer called the file de­
scriptor. If unsuccessful, it returns a value of - 1 . 
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The Open Function 

The open function opens a file for reading or writing. It expects two or 
three parameters . The first is a string that contains the pathname, the sec­
ond is an integer containing information about how the file is to behave, 
and the third is optional and is an integer containing permission bits . If suc­
cessful, it returns an integer called the file descriptor . If not, it returns - 1 .  

The Lseek Function 

The l seek  function moves the current position (called the read/write point­
er) within an open file . It expects three parameters : an integer containing a 
valid file descriptor, such as one returned from c reat or open, a long inte­
ger that helps specify the desired byte position within the file, and an inte­
ger whence  that also helps specify the position. If the last parameter is 0, 
the current position is set to the value contained in the second parameter . If 
the last parameter is 1 ,  the current position is incremented by the second pa­
rameter . If the last parameter is 2, the current position is set equal to the 
size of the file plus the second parameter . If the function is successful, it re­
turns the newly set value of the current position. If unsuccessful, it returns 
a value of - 1 .  

The Read Function 

The read function reads a specified number of bytes from an open file. It 
expects three parameters : an integer containing a valid file descriptor, a 
character pointer to buffer where the bytes are stored once they are read, 
and an unsigned integer that specifies how many bytes to read. If success­
ful, it returns the actual number of characters read. This number may be 
less than the number of bytes requested if fewer characters are available. 
This happens for regular files stored on the disk and for files that are really 
1/0 channels . If unsuccessful the function returns a value of - 1 . If the end 
of the file is reached, a value of 0 is returned. 

The Write Function 

The w r i t e  function writes a specified number of bytes to an open file. It 
expects three parameters: an integer containing a valid file descriptor,  a 
character pointer to buffer where the bytes are stored that are to be written 
to the file, and an unsigned integer that specifies how many bytes to write. 
If  successful, it returns the actual number of characters written. If not 
enough room is available on the disk, this number may be less than the 
number of bytes requested . If unsuccessful in writing any bytes , the func­
tion returns a value of - 1 . 

Example Program: Save 

Here is a short example of a program that opens a file, writes to it , then 
closes it . To simplify matters, the characters that it writes come from stand­
ard input . 
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To use this program, type its name followed by the name of the file in 
which you want to save the text . 

I *  save a f i l e  f rom standa rd i nput * I  
# i nc lude<std i o . h> 
ma i n ( a rgc , a rgv) 

i nt a rgc ; 
c ha r  * a rgv U ; 
{ 
i nt f i d ,  c h ;  

i f  C a rgc < 2)  {pr i nt f C"Too few a rgument s \n") ; ex i t ( 1 ) ; } 

i f ( ( f i d  = c reat (argv [ 1 ] ,  0777) ) ! =  -1 ) 
{ 
wh i l e C C c h= get cha r ( ) ) ! =  EOF )  w r i t e ( f i d ,  &c h ,  1 ) ;  
c lose ( f i d ) ; 
} 

e l se pr i ntf C"Cannot c reate the  f i l e  %s \n" , a rgv [ 1 ] ) ;  
} 

The program is compiled without explicitly mentioning any C libraries . 
We see that the program passes arguments in the usual way from the 

command line using a rg c  and a rgv  parameters .  
The program has two integer variables , f i d contains the file descriptor 

and c h  holds the characters as they are being transferred from standard in­
put to the file. 

After checking that there are a least two arguments (one that is the 
command itself) , the program calls c reat  to try to create the specified file . 
Here, we pass the file permissions as an octal 0777, which indicates that all 
permissions are to be granted . However, any bits in a system variable called 
uma s k  are cleared . 

If c reat  is successful, we enter a w h i l e  loop, reading characters from 
standard input with the get c h a r  function and calling w r i t e  to send them 
to the specified file . The loop continues until we reach the end of the input 
file (control d for keyboard input) . 

The w r i te  function uses a single character buffer c h, thus, its second 
parameter is the pointer &ch  to c h  and its third parameter is 1 , which repre­
sents the length of the buffer . 

After the w h i l e  loop, we call c l ose to close the file. Its single parame­
ter is the file descriptor . 

This concludes our discussion of save . c. There are several other low 
level file routines including dup and fcnt  l that we won't go into here . 
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Summary 

In this chapter we have explored files, their attributes , and how they are or­
ganized in file systems . We have seen how directories help organize files in a 
hierarchical manner . We have seen that the directories themselves are files 
in the file system that contain links to i-nodes where file attributes and in­
formation about files are stored. 

We have seen example programs that display the contents of directo­
ries and i-nodes , and a program to interactively modify file permissions and 
ownership . 

We have also discussed five fundamental file routines from which 
many of the others are built . With these you can read and write to files in a 
reasonably direct manner . 

Questions and Answers 

Questions 

Answers 

1 .  Can everything in XENIX be represented by a file? 

2.  How do the rules for forming pathnames differ between XENIX, 
UNIX, and PC-DOS? 

3 .  What information is stored in a directory file in XENIX? Where is 
the rest of the information stored for the files in a directory? 

4. How are file permissions stored? 

5 .  Name five fundamental XENIX system calls for file 1/0 . 

1 .  No, not everything in XENIX can be represented by a file , but 
ordinary files; directories; peripheral devices, such as keyboards, 
screens , terminals , printers , communication networks; and even 
internal devices , such as memory, can be represented by files . An 
example of something that is not represented by a file is a process . 

2.  XENIX and UNIX use the same rules for forming pathnames. 
PC-DOS uses backslashes ( '- ) instead of ordinary slashes ( / )  to 
separate the individual directory names in a pathname. 

3 .  A directory file contains a list of names (file or directory) with 
their i-node number . The rest of the information about these files 
and subdirectories is stored in the corresponding i-nodes . I-nodes 
are stored near the beginning of the physical storage for a file 
system. 
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4.  The read, write, and execute permissions for a file's owner, group, 
and all others are stored as bits in a 16-bit computer word within 
the file's i-node. 

5 .  Five fundamental XENIX file I/0 system calls are :  open, c l ose, 
read, w r i t e, and l seek. 
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Process Control 

XENIX is essentially a multitasking system for a single user . It divides its 
work into manageable packages called processes. Each process runs its own 
program and is allowed to compete with all the other processes for the com­
puter's  CPU, memory, and other resources . 

This chapter discusses how XENIX manages its processes through a 
master control table, and how it allows them to give birth, wait for each 
other, exchange data, and die . A number of example programs written in 
the C programming language illustrate these concepts . 

Processes 

As we have seen, work is accomplished in the XENIX system by processes . 
Whenever a program is to be run, a process is created to manage the execu­
tion of that program. 

In Chapter 2, we studied the output of the ps command that displays 
information about the various processes currently in the system. Let 's  take 
a closer look at some different output from this command. The -e l option 
displays a "long" (detailed) listing: 

% ps -e l._l 
F S U I D  P I D  PP I D  C P R I  N I  ADDR S Z  WCHAN TTY TIME  CMD 
3 s 0 0 0 0 0 20 2a40 2 47472 ? 0 : 01 swappe r 
0 s 0 1 0 0 30 20 98 1 5  65566 ? 0 : 02 i n i t  
0 s 201 33 1 0 30 20 ef 23 65646 co 0 : 1 7  c s h  
0 s 202 34 1 0 30 20 1 37 23 65726 02 0 : 1 7  c s h  
1 s 0 1 8  1 0 40 20 3900 1 2  37252 ? 0 : 02 update 
0 s 1 4  25 1 0 26 20 aa 26 1 50650 ? 0 : 02 Lpsched 
1 s 0 29 1 0 26 20 4500 26 1 5 1 21 4  ? 0 : 02 c ron 
0 s 1 0  35 1 0 30 20 de 1 7  66226 03 0 : 1 0  s h  
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1 s 201 36 1 Ill 30 20 5980 23 66306 04 0 : 1 8  c s h  
1 s 201 37 1 Ill 30 20 4f80 23 66366 2a 0 : 1 7  c s h  
Ill s 201 46 33 Ill 29 20 1 elll 58 47546 co lll : lll2 L s  
0 s 202 47 34 fll 28 20 21 a 44 47636 02 0 : 08 v i  
1 s 1 0  49 35 fll 29 20 6ac0 1 3  47756 03 0 : 01 od 
1 R 201 51 36 1 7  5 8  20 3c00 6 04 4 : 09 yes 
1 R 201 57 37 1 6  58 20 31 c0 26 2a 0 : 1 3  ps 

This gives a view of the system's process control table, which it uses to keep 
track of all its processes . 

The first column, F, contains the process flags . This is a number that 
gives the status of processes . Various bits of this number indicate such 
things as the process' presence in memory. For the first process (running 
swappe r as indicated by the last column) , a value of three (bits 0 and 1 on) 
indicates that the process is in main memory and is a system (kernel) pro­
cess. For the second, third, and fourth processes , a value of 0 indicates that 
the process is not currently in main memory. That is, it is currently 
"swapped out . "  For the fifth process (and others) , a value of 1 indicates 
that it is currently in memory, definitely a prerequisite for it to run. 

The second column, S ,  gives the process state. This is a letter designat­
ing whether the process is running ( R) ,  sleeping (S) ,  waiting (W) ,  stopped (T) ,  
or terminated (Z) .  Most of these processes are sleeping (an S) , but the last 
two, yes  and ps, are running ( R) .  

The third column, UID, gives the user identification number. User 
number 0 denotes the root , the super user . The root owns several of the sys­
tem's processes , including swappe r, i n i t , update, and c ron. User number 
10 denotes the account s y s  i nfo. It is running a shell c s h  and the ad com­
mand (octal dump) . User number 201 is running several shells ( c s h) and the 
ps command. 

The fourth column, PID, gives the process identification number . 
The fifth column, PPID, gives the identification number of the pro­

cess 's  parent. In Chapter 2, we used these numbers to trace the ancestry of 
some processes , making a family tree . 

The sixth column, C, gives the CPU utilization. This is the percent of 
usage that the process is making of the CPU . 

The seventh column, PRI, gives the priority . Priority is used by the 
kernel to help schedule processes in an equitable fashion. A lower priority 
number means better treatment and a higher number means worse treat­
ment . Generally, whenever a process is getting use of the CPU, its priority 
is increased, so it is given worse treatment next . This prevents any process 
from ' 'hogging' '  the CPU. 

The eighth column, NI , gives the "niceness" for the process.  This is a 
number used in computation of the priority. It can be increased by the user 
with the n i ce  command. For example 

n i ce  +1 0 ps -e l 

causes the ps command to be run with a n i ce  number augmented by 10 ,  
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which results in a higher priority number. This gives worse service to our 
command and is "nice" to everyone else. Only the super user can decrease 
the niceness . In this display all processes have niceness 20, the default . 

The ninth column, ADDR, gives the location of the process in mem­
ory, if it is in memory, or on the disk, if it is swapped out. 

The tenth column, SZ, gives the size of the process in blocks . 
The eleventh column, WCHAN, is used to control sleeping and wak­

ing up. In Chapter 9, we see how this works . 
The twelfth column, TTY, identifies the terminal that the process is 

using. Several of the system's process commands, including swappe r, 
i n  i t , updat e, and c ron are not attached to any terminal and thus have a ? 
in this column. The console is denoted by co. This is running a shell and the 
l s command. The other console screens are denoted by 02, 03, and 04. 
These are all in use. The serial line 2a is also being used to run this particu­
lar ps command. 

The thirteenth column, TIME, shows the execution time for each pro­
cess in minutes and seconds . 

The last column, CMD, displays the command that the process is 
executing. 

The Fork Function 

The primary method for creating new processes is the fo r k  function. It 
truly acts like a fork in the road of execution, causing a process to split into 
two with each half heading down a separate side of the fork . 

The two processes are identical, except for the functional result 
returned from the f o r k  function. For the child process, the f o r k  function 
returns an integer value of zero, and for the parent, it returns the process 
identification number of the child . Otherwise they have the same code to 
execute. Of course, they can behave radically differently based upon this 
one value. 

A First Warmup Example 

Here is a short warmup program that illustrates how the f o r k  function 
works . When you run this program, it prints two lines on the screen. One 
line reads : I am t h e  pa rent . ,  and the other reads : I am t he c h i l d . 
These lines may occur in either order because they are generated by two sep­
arate processes running independently of each other . 

ma i n ( )  
{ 
i f ( fork O ==IlJ) p r i nt f < " I  am t he  pa rent . \n" ) ; 
e l se p r i nt f ( " I  am the c h i ld . \n") ; 
} 

209 
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Let's look the program listing. There is only a main program consist­
ing of an i f  statement . The condition for the i f  executes the f o r k  func­
tion. A zero result from f o r k  indicates the parent, and so the message 
I am t h e  pa rent . is printed. A nonzero result indicates the child, and so 
the message I am t h e  c h i ld . is printed . 

Using Semaphores 

Let's explore how processes can be synchronized as they demand exclusive 
access to resources such as the terminal. 

We will look at an example program called sem that uses a synchroniz­
ing technique called a semapho re. In XENIX, a semaphore  is a special type 
of file that always has zero length. We will see how it acts as a "flagman" 
controlling traffic on a one-way stretch of road, causing some processes to 
wait while others proceed. This is valuable when several processes share 
something (a resource) like a terminal, file, or printer that requires exclusive 
access for proper performance of the system. In our example we will see 
why access to the user's terminal needs to be protected in this way. 

Several system operations are associated with semaphores . They include 
c reat sem to create semaphore files, wa i t sem to wait for exclusive access to 
a semaphore, and s i g sem to signal when a process wants to relinquish a 
semaphore. There are other operations as well, but these are all we need. 

You can think of a semaphore as a ticket, granting a process exclusive 
access to a section of code in your program. You place a wa i t  sem at the be­
ginning of the section of code and the s i g s em at the end. Such a section of 
code is called a critical section. Within its boundaries you can place state­
ments that require exclusive access to a particular resource . 

Several rules must be carefully followed. 

1 .  Critical sections must not overlap . 

2. Critical sections must not contain loop structures . 

3 .  All statements that access the shared resource must fall within a 
critical section bounded by the semaphore operations . 

Rule number three is particularly important . The proper protection of 
shared resources depends on having each process observe this rule . If pro­
cess A sets up a critical section correctly, but process B does not , process A 
gets no protection. 

Example Program 

210 

Let's see how our sem program creates a semaphore, then uses it to control 
a parent and child process resulting from a f o r k  operation. We also closely 
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examine what happens to the process identification numbers during 
forking. 

Both the parent and the child print several lines of output to the termi­
nal. Each line printed by the child is indented by a tab character , whereas 
lines printed by the parent are not indented. With no synchronization, the 
outputs often get garbled as they compete for the terminal. 

O r i g i na l  process  i d  = 1 047 
I am 1 047 , t he pa rent of c h i ld 1 048 . 
I have exc l us i ve use of  t he te rmi na l 
because I have taken t he semaphore 

I am the c h i ld  w i t h  process i d  = 1 048 . 
I have exc lus i ve use of the  t e rmi na l 
because I have t a ken the  semaphore 
by execut i ng t he wa i t sem funct i on .  
I w i l l  now re l i nqui s h  i t  by execut i ng t he  wa i t sem 
funct i on .  

I w i l l  now re l i nqui sh i t  w i t h  the  
s i gsem funct i on .  
t w i t h  t he 

s i gsem funct i on .  
Ex i t i ng w i t h  status = 5 .  

The c h i ld  1 048 has  f i n i shed . 
Status was 500 . 

As you can see, the program first displays its process identification 
number before the f o r k. Next, the parent announces itself, giving its pro­
cess identification number and the process identification number of its 
child. It then claims to have exclusive access to the terminal because it has 
taken the semaphore. However, this version of the program does not use 
semaphores, thus the child can interrupt any time. The child, in fact, does 
interrupt at this point . After the child prints a few lines , the parent inter­
rupts again, actually in the middle of one of the child's  lines . 

Here is a typical output from a proper version of the program. The 
parent begins and is allowed to continue to the end of its speech until it re­
linquishes the semaphore. 

O r i g i na l  process i d  = 969 
C reat i ng semapho re s1 . 
I am 969 , t he pa rent of c h i ld  972 . 
I have exc l u s i ve use of t he t e rm i na l  
because I have taken t he semaphore 
by execut i ng t he wa i t sem funct i on .  
I w i l l  now re l i nqu i sh i t  w i t h  the  
s i gsem funct i on .  

21 1 
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I am t he  c h i ld  w i t h  process i d  = 972 . 
I have exc lus i ve use of t he  t e rm i na l 
because I have taken t he  semapho re 
by execut i ng t he wa i t sem funct i on .  
I w i l l  now re l i nqu i s h i t  w i t h  the  
s i gsem funct i on .  
Ex i t i ng w i t h  status = 5 .  

The  c h i ld  972 has  f i n i s hed . 
Status was 500 . 

It is quite possible for the child to gain access to the terminal first . 

Or i g i na l  process i d  = 967 
C reat i ng semapho re s1 . 

I am t he c h i ld  w i t h  p rocess  i d  = 968 . 
I have exc lus i ve use of t he t e rmi na l 
because I have taken the  semapho re 
by execut i ng the wa i t sem funct i on .  
I w i l l  now re l i nqui sh  i t  w i t h  the  
s i g sem funct i on .  
Ex i t i ng w i t h  status = 5 .  

I am 967 , t he  pa rent of c h i ld 968 . 
I have exc l u s i ve use of t h e  termi na l 
because I have taken t he  s emaphore 
by execut i ng t he  wa i t sem funct i on .  
I w i l l  now re l i nqui sh  i t  w i t h  t he  
s i g sem funct i on .  
The c h i ld  968 has f i n i shed . 
Status was 500 . 

Now let 's  examine the program itself. This is the proper version of the 
program. The unsynchronized version is made by removing all lines that in­
volve the semaphore . 

I *  spawn a p rocess * I  
ma i n O  

{ 
i nt p ,  x ,  s 1 ; 
p r i nt f <"Or i g i na l  process i d  = %d\n" , getp i d O ) ;  
i f ( ( s 1 =c reat sem ("s1 " ,  0777) ) >0) 

p r i nt f <"C reat i ng semapho re s1 . \n") ; 
e l se 

{ 
p r i nt f <"Cannot c reate semapho re s 1 . \n") ; 
ex i t ( 1 ) ;  
} 
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i f ( (p=for k ( ) ) ! =0) 
{ 
wai t sem (s 1 > ;  

p r i nt f (" I  am %d , t he pa rent of c h i ld  %d . \n" , getpi d O , p) ; 
pr i ntf ( " I  have exc lus i ve use of the  t e rmi na l \n") ; 
p r i nt f <"because I have taken t he semaphore\n") ; 
p r i nt f ("by execut i ng the  wai t sem funct i on . \n") ; 
pr i nt f ( " I  w i l l  now re l i nqui s h  i t  w i t h  t he\n") ; 
p r i nt f ("s i gsem funct i on . \n") ; 

s i gsem (s 1 ) ;  
p r i nt f <"The c h i ld  %d has f i n i shed . \n" , wa i t (&x > > ;  
p r i nt f ("Status was %x . \n" , x ) ; 
} 

e l se  

} 

{ 
wa i t sem (s 1 ) ;  

p r i nt f ("\t i am t he  c h i ld w i t h  process i d  = %d . \n" , 
getpi d O ) ;  

p r i nt f <"\t i have exc lus i ve use of t he  t e rmi na l \n") ; 
p r i ntf <"\tbecause I have taken t he semaphore\n") ; 
p r i nt f ("\tby execut i ng t he wa i t sem funct i on . \n") ; 
p r i nt f <"\t i w i l l  now re l i nqui s h  i t  w i t h  t he\n") ; 
p r i nt f (" \ts i gsem funct i on . \n") ; 

s i gsem (s 1 ) ;  
wa i tsem ( s1 ) ;  

p r i ntf ("\tEx i t i ng w i th  status = 5 . \n") ; 
s i g sem (s 1 ) ;  
ex i t <S > ; 
} 

The main program declares three integer variables : p to hold the result 
of the fork, x to hold a status result returned from child to parent, and s1  
to  hold a semaphore identification number. 

The program first calls the get  p i  d function to determine the current 
process identification number before any "forking" takes place . It an­
nounces this in the first line of output . 

Next, we try to create a semaphore. We call c reat sem much like we 
would call c reat if we wished to create an ordinary file . 

The c reat sem function expects two parameters : a string containing 
the name of the semaphore and an integer containing the file access mode 
(see Chapter 7) . If the result returned by this function is - 1 ,  an error must 
have occurred , thus we exit the program with an error message :  
Cannot c reate  semaphore  s 1 . If everything goes okay, we print the 
message: C reat i ng semapho re s 1 . 

Next, we call f o r k  to split off the child process . If the result of the 
fork is nonzero, we handle the parent, otherwise we handle the child . 

21 3 
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The code for the parent begins with a wa i t s em function. This intro­
duces the critical section. The s i g s em function ends it . All statements with­
in the critical section have been indented to make this section stand out 
clearly. 

After the parent's  critical section, we call the wa i t  function to wait for 
the child to finish . The wa i t function returns an integer containing the pro­
cess identification number of the terminating child . The argument of the 
wa i t  is a pointer to an integer in which the status is placed . The status word 
contains two parts : its upper eight bits contain whatever number was placed 
in the argument to the child's e x i t  function, and the lower eight bits con­
tain the status of the child's exit as determined by the operating system. A 
value of zero here means normal successful exit by the child. 

The child's  program is contained within the e l se  clause .  The child has 
two critical sections , each is "bracketed" by a wa i t  sem at its beginning and 
a s i  g s em at its end . Each statement within the critical sections is indented. 
Each line of output begins with a tab so that it is clearly recognizable as be­
longing to the child . After the critical sections the child exits , placing a val­
ue of 5 in the argument of the exit . This value was chosen arbitrarily so that 
you could recognize it when it was picked up and printed by the parent . 

We can have as many critical sections as we please. Other processes 
may interrupt between them but not during them. 

In this example, we have but one semaphore . If we have multiple re­
sources , we could have a separate semaphore for each . 

Another way that processes are synchronized is through the use of signals. 
A signal is a software device for interrupting running processes . Sig­

nals can be generated in a number of ways including : pressing special keys 
on your terminal keyboard, disconnecting your telephone connection to the 
computer , or an error condition such as a memory addressing error or a 
bad parameter to a system call . They also can be generated by the k i l l  
command or k i l l  function call . 

In XENIX the various types of signals are numbered from 1 to 19 , al­
though Microsoft warns that they plan to discontinue use of signals with 
numbers 1 8  and 19 .  

Signals can be  aimed at particular processes . For example , the k i l l  
command sends a specified signal to a set of specified processes . The fol­
lowing command line sends signal number 9 to processes with identification 
numbers 34, 63, and 84: 

k i l l  -9 35 63 84 

Signal number 9 causes processes to terminate . If you don't specify the 
signal number, the k i l l  command sends signal number 1 5 , which is a 
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"more polite" request for a process to die as we will see in following text . It 
is interesting to note that the k i L L instruction is used to send all signals , 
even ones that are not deadly. 

Some signals can be "trapped" by the processes to which they are 
aimed, and some cannot . For example, signal number 1 5  (polite request to 
die) can be trapped, but signal number 9 cannot (direct order to die) . 

Example Program 

Here is an example program that uses signal numbers 1 5  (software termi­
nate) and 1 6  (user defined signal 1) to communicate between a parent and a 
child process. 

Let's  begin with the program's output. It consists of a series of diag­
nostic messages , thus, this program is purely educational rather than useful 
in its own right . 

Sett i ng the  ac know ledge rout i ne .  
Sett i ng the  stoppi ng rout i ne .  
The pa rent 384 t r i es t o  s i gna l t he  c h i ld  385 w i t h  the  resu l t  0 .  
The pa rent w i l l  now pause . 

The c h i ld  acknow l edges t he  s i gna l .  
The c h i ld  w i l l  now wa i t  for t he  f l ag . 
The c h i ld  t r i es to s i gna l t he pa rent w i t h  the  resu l t  0 .  
The c h i ld w i l l  now pause . 

The pa rent ac know l edges t he s i gna l .  
The pa rent j ust woke up w i t h  the  resu l t  - 1 . 
The pa rent t r i es to  k i l l  c h i ld  w i t h  resu l t  0 .  

The c h i ld  i s  stopp i ng .  
The pa rent i s  now e x i t i ng .  

When you run this program, you first see messages generated before the 
birth of the child saying that an acknowledge and a stop routine have been 
set up. This means that routines have been set up to trap signal numbers 16  
and 1 5 .  When we study the program listing, we will see how this i s  done. 

Next you see a message from the parent indicating that it is trying to 
signal the child . The parent then pauses , waiting for the child. 

Next messages from the child say that it acknowledges the signal and it 
is waiting for a software flag that is set in its acknowledge routine. These 
two events could happen in either order because the child may get the signal 
before or after it begins waiting for the signal . In either case, the child does 
not try to signal back until both messages have appeared.  After the child 
signals the parent, it pauses . 

The parent now responds, acknowledging the acknowledge signal from 
the child . It announces that it just "woke up" and that it is now trying to 
kill the child . 

The child now says that it is stopping . The parent then signs off too . 

21 5 



Inside XENIX 

21 6 

I*  t h i s prog ram i L lust rates s i gna l s .  * '  

# i nc lude<s i gna l . h> 

i nt c h i ld , pa rent , f l ag ; 

ma i n O  
{ 
i nt ac know l edge ( ) , stopp i ng ( ) , status ; 
i f ( ! s i gna l (S I GUSR1 , ac know ledge) ) 

p r i nt f ("Sett i ng t he ac know l edge rout i ne . \n"> ; 
e l se  

{ 
p r i nt f ("Cannot set t he ac know l edge rout i ne . \n") ; 
e x i t < 1 > ;  
} 

i f ( ! s i gna l ( S I GTERM , stopp i ng ) ) 
p r i nt f ("Sett i ng t he stopp i ng rout i ne . \n") ; 

e l se 
{ 
p r i nt f ("Cannot set t he stopp i ng rout i ne . \n"> ; 
e x i t < 1 > ;  
} 

pa rent = getpi d ( ) ; 
i f ( ( c h i ld=for k < > > ==0> 

{ 
p r i  ntf C"\tThe c h i ld w i  l l  now wa i t  for  t he f Lag . \n" , c h i ld ) ; 
wh i l e ( ! f l ag) '* do not h i ng * I ; 
p r i nt f ("\tThe c h i ld  t r i es to  s i gna l t h e  pa rent " ) ; 
p r i nt f ("wi t h  the  resu l t  %d . \n" , k i l l (pa rent , S I GUSR1 » ;  
p r i nt f ("\tThe c h i ld  w i l l  now pause . \n") ; 
p r i nt f ("\tThe c h i ld j ust woke up w i t h  t he resu l t  %d . \n" , 

pause ( ) > ;  
p r i nt f ("\tNorma l ex i t  for c h i ld . \n") ; 
} 

e l se 
{ 
p r i nt f <"The pa rent %d t r i es to  s i gna l t he c h i ld  %d " ,  

pa rent , c h i ld > ; 
p r i nt f C"wi t h  the  resu l t  %d . \n" , 

k i l l ( c h i ld , S I GUSR1 > > ;  
p r i nt f ("The pa rent w i l l  now pause . \n") ; 
p r i nt f ("The pa rent j ust woke up w i t h  t he  resu l t  %d . \n" , 

pause ( ) > ;  
p r i ntf ("The pa rent t r i es to  k i l l  c h i ld  w i t h  resu lt  %d . \n" , 

k i l l C c h i ld , S I GTERM) ) ;  
wai t C&status > ;  
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} 

p r i nt f <"The pa rent i s  now e x i t i ng . \n") ; 
} 

ac know Ledge 0 
{ 
i f (getpi d ( ) ==pa rent ) 

p r i nt f <"The pa rent ac know ledges t he s i gna l . \n") ; 
e l se 

p r i nt f <"\tThe c h i Ld ac know l edges the  s i gna l .  \n") ; 
f l ag = 1 ;  
} 

stopp i ng ( )  
{ 
i f (getpi d ( ) ==pa rent ) 

p r i nt f <"The pa rent i s  stopp i ng . \n") ; 
e l se 

p r i nt f <"\tThe c h i ld  i s  stopp i ng . \n") ; 
ex i t ( 1 6> ; 
} 

When we look at the listing, we see a main program and two addition­
al functions a c know l edge and stopp i ng return integers . These functions 
trap signals 16  (user defined signal 1 )  and 1 5  (software terminate) . The list­
ing also includes the file s i gna l .  h that contains the official names of the 
signal numbers . 

The integers c h i l d, pa rent,  and f l ag are external variables that are 
shared by the main program and its signal trapping routines . 

The main program declares a c know l edge and stopp i ng to be integer 
functions and s t a t u s  to be an integer . We then use the s i gna l function to 
redirect signals 16 and 15 (officially S I GUSR1  and S I GTERM) so that they are 
trapped by our signal trapping routines . The s i gna l function has two pa­
rameters : the first is the signal number, and the second is the address of the 
trap routine given by its name. The C compiler can provide this address if 
these functions are properly declared as we have done. If the s i gna l  func­
tion fails either time, we print an error message and exit . 

Before "forking" ,  we call get p i  d to get the parent's identification 
(placing it in the external variable pa rent) .  This is needed by the child to 
communicate with the parent . 

We f o r k  with an i f  statement that provides separate codes for the 
child and the parent . The result of the f o r k  function is placed in the vari­
able c h i ld .  Recall that for the parent , this is the child's  p i  d (process id) , 
but for the child, it is 0 .  

The child' s  program falls directly under the i f . It consists of a series 
of p r i nt f statement and a wh i l e  loop with an empty action statement . 
The messages in the p r i  ntf  statements are all indented with a tab . The 
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child first declares it will wait for a flag . Then the wh i l e  loop waits for 
flag to become true . The child explains that it is trying to signal the parent 
and executes the k i l l  function to do so . The first parameter of k i l l  is the 
p i  d of the desired process (in this case for the parent) , and the second is 
the identification number of the desired signal (in this case, user defined 
signal l ) .  

The child declares that it will pause.  The next statement i s  a "wake 
up" announcement that displays the result of the pause function. The 
wake-up announcement should never be displayed because the parent 
k i l l s the child during this pause. Thus , the final statement No rma l ex i t  
for  c h i ld . should never be displayed. 

The parent's  program follows the e l se. The parent first calls k i l l  to 
signal the child. The first parameter is the p i  d of the child (as stored in the 
variable c h i  L d) , and the second is the signal number (specified as 
S I GUSR1 ) .  The parent executes a pause with explanation much as we saw 
previously for the child . However, its "wake up" announcement should ex­
ecute fully after returning from the pause. The parent announces that it will 
try to kill the child and executes the k i l l  function with first parameter 
c h i l d  and second parameter S I GTERM, the software terminate signal. The 
parent then issues the wa i t  command to wait for the child to terminate and 
announces that it is exiting. This is where the main program ends . 

The a c know l edge routine contains an i f  statement that checks the 
current p i d  against pa rent.  If the current p i d is that of the parent, it an­
nounces that the parent acknowledges the signal, otherwise it announces 
that the child acknowledges the signal. In either case, the last statement of 
the routine sets the g l oba l (external) variable f L ag true. 

The stopp i ng routine is structured in much the same way as the 
a c know l edge routine. However, it concludes with an e x i t statement, caus­
ing the process to terminate. It becomes the programmer's responsibility to 
terminate a trapped software termination signal. This is why there are two 
levels of termination, a polite level that can be trapped and an involuntary 
one that cannot be redirected in this manner . You should realize that some 
processes refuse to die even when hit with the "hard" kill signal 9 
(S  I G K I  L L) .  This happens sometimes when they crash. The only way to kill 
these is to shut down the system. 

Let's explore how p i  pes provide natural channels for communication of 
data between processes . A p i pe is an unnamed file that can be written to by 
one process and read from by another. 

XENIX provides a couple of levels of routines for managing pipes . At 
the lowest level, the p i  pe function allows a programmer to set up a p i  pe 
file for reading and writing. It is actually opened twice: once for reading 
and once for writing. The programmer must f o r k, then have the parent and 
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child grab the correct ends of the pipe. An example is given in the XENIX 
programmer's  reference manual. 

A higher level function popen creates the pipe and another process at 
the other end of that pipe. We explore this function in our next example 
program. 

Example Program 

Our example program f s i ze  demonstrates how the popen function works . 
It calls the popen function twice, once to create a process that sends its out­
put to our program and second to create a process that receives our output 
(see figure 8- 1 ) .  This arrangement of processes is called a p i pe l i ne. You 
can see from the diagram that p i pe is an apt name for the unnamed files 
that connect the processes . 

Figure 8-1 
A pipeline 

Our Process 

o-. -- -o - - - - o 
Input Pipe Output Pipe 

The popen function expects two parameters : a string specifying an s h  
shell command and a string containing either r for read or w for write. In 
the first case, the shell command is executed and its output can be read 
from the pipe. In the second case, the shell command and its input comes 
from what is written to the pipe. 

The popen function returns a file pointer for the file if all goes well , 
and zero if not. 

In our f s he program, we popen the shell command l s  [ - l in read 
( r) mode and the shell command so rt in the write (w) mode. Our program 
takes the directory information from the first pipe, transforms it by grab­
bing only the size in bytes and the name of each file, then sends the results 
line by line to the second pipe to be sorted by the sort  program at the other 
end of the pipe. 

Our f s i  ze program has a few extra diagnostic statements to let you 
know when it is opening and closing its pipes . If you examine the output, 
you see these statements around a directory listing with names and sizes that 
are ordered by increasing size from a semaphore of length zero to an exe­
cutable a • out file. 
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Open i ng i nput pi pe .  
Open i ng output p i pe .  
C los i ng i nput pi pe wi t h  resu lt  0 .  

0 s 1  
20 a1 2345678901 23 

1 1 1  forks . c  
330 forks . o  
91 3 pi pe . c  
939 pi pe . o  

1 01 2  nosem . c  
1 1 1 9  nosem . o  
1 287 sem . c  
1 287 x . c  
1 364 sem . o  
1 388 x . o 
1 767 s i g . c  
1 788 s i g . o  
6094 nosem 
6353 sem 
9860 a . out 

C los i ng output p i pe w i t h  resu l t  0 .  

Notice that the input pipe (whose output we are reading) closes before 
the data is displayed to the screen and that the output pipe closes after the 
data is displayed. This is because the sort process on the end of the second 
pipe must get all of its input before it can output anything. 

Now let 's  examine the listing. 

I*  p rog ram to  i l lust rate pi pes * I  

# i nc lude<std i o . h> 

ma i n O  
{ 
F I LE * popen O ,  * P1 ,  * p2 ;  
i nt status ; 
c ha r  mode [ 1 1 ] ,  l i nks [6] , owne r [9] , g roup [9 ] , 

s i ze [6 ] , mont h [4] , day [3 ] , t i me [6 ] , name [1 5 J ;  

i f <p1 = popen (" l s  - l " ,  " r") ) 
p r i nt f ("Open i ng i nput pi pe . \n") ; 

e l se 
{ 
pr i nt f <"Cannot open i nput p i pe . \n") ; 
ex i t < 1 > ;  
} 



i f (p2 = popen ("sort" , "w") ) 
p r i nt f ("Open i ng output p i pe . \n"> ; 

e l se  
{ 
p r i nt f <"Cannot open output p i pe . \n") ; 
ex i t ( 1 ) ;  
} 

i f  ( ! feof (p1 > ) fscanf (p1 , "%* s%* s") ; 
wh i l e ( f scanf (p1 , "%s%s%s%s%s%s%s%s%s" ,  

mode , l i nks , owne r ,  g roup , s i ze ,  
mont h ,  day , t i me ,  name) ! =EOF )  

fpr i nt f (p2 ,  "%6s %s\n" , s i ze ,  name> ; 

Process Control 

p r i nt f ("C los i ng i nput p i pe w i t h  resu lt  %d . \n" , pc lose ( p1 ) ) ;  
p r i nt f ("C los i ng output p i pe w i t h  resu l t  %d . \n" , pc lose (p2> > ;  

} 

The program includes the standard I/0 file s td  i o .  h. The main pro­
gram declares the following functions and variables : popen is a function re­
turning a file pointer (see Chapter 7) , p1 and p2 are file pointers , s t a t u s  is 
an integer, and mode, l i n k s, owne r, g roup, s i ze,  mont h,  day,  t i me, and 
name are string variables . These are dimensioned to accommodate one more 
character (to include a terminating null character) than allowed for each 
variable. 

First, the input pipe is opened. An i f statement checks the result re­
turned from the popen function. If the result is nonzero, we issue the mes­
sage Open i ng i nput f i l e. If not, we issue an error message and exit the 
program. The first argument of the popen statement is the s h  shell com­
mand l s  - l , which produces a "long" listing of the current directory. The 
second argument is r, which indicates that we wish to read this output into 
our program. 

Next, the output pipe is opened. As above, an i f statement separates 
success from failure. Here, the first parameter of popen is the command 
sort  and the second parameter is w because we will write to this pipe . 

Now we use the f s canf  function to read the first line from the input 
pipe and throw it away. The first parameter of f s c a n f  is a file pointer of 
the file we wish to read. We use the file pointer p1 from the input pipe. The 
second parameter is the format %* s %  * s specifier. This indicates two 
strings that are to be ignored . 

The main loop comes next. It consists of a wh i l e  loop that calls 
f s c a n f  to input a line of text . Again, we use the file pointer p1 to indicate 
the input file. The format specifier indicates that nine strings are expected. 
We list all nine variables , but we could have used the %* s notation to skip 
most of them. In fact, we only print two of these, s i ze and name, to the 
output pipe. The w h i l e  loop continues until the s c a n f  returns a zero to in­
dicate no more strings can be read from the input pipe. 
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After the main loop, we close both pipes . The pc l o s e  function ensures 
proper closure of the pipe. Once it is executed, it causes a wait until the pro­
cess at the other end of the pipe terminates . This allows the main program 
to terminate last, which is a good idea if you want your shell to remain 
asleep until the entire job is done. 

Summary 

In this chapter we have studied XENIX processes . We have examined the 
output of the ps command to see examples of such quantities as process pri­
ority and CPU utilization, and we have developed example C programs to 
illustrate process control system calls including fo r k, wa i t , s i gna l ,  and 
p i pe. Our example programs clearly display how processes are born, live in 
cooperation and communicate with each other, and die. 

Questions and Answers 
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Questions 

Answers 

1 .  What is a process? 
2 .  How can you tell a child from its parent process? 
3 .  Why is it necessary to synchronize certain processes? 
4. What is a pipe? 

1 .  A process is a running program that is managed by the operating 
system as a unit of work. In XENIX each command is executed by 
a separate process. The XENIX operating system allows many 
processes to exist at once. They all share the CPU, memory, and 
other resources of the computer system. XENIX keeps a master 
table of all current processes . 

2 .  When the f o r k  system call causes a process to  split into a parent 
and child process, the two processes are identical except for the 
value returned from the f o r k  function. This value is zero for the 
child. For the parent process, it is the process identification 
number of the child. 

3 .  Processes have to b e  synchronized when they share the same 
resources . For example, processes must wait their turn at sharing 
the CPU, a terminal screen, or a printer . Otherwise, they would 
produce garbled results . Shared data also can be corrupted if 
shared in an unsynchronized manner. 
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4. A p i pe is an open but unnamed file that allows the output of one 
process to be buffered (temporarily stored) until it is used as input 
by another process . Pipes can be created by XENIX at the request 
of users . Commands to do so are built into the shell programs and 
are implemented through system calls . 
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Device Drivers 

Peripheral devices such as terminals, line printers , disk drives , and local 
area networks are connected to a XENIX system via device drivers. Device 
drivers are collections of routines and data structures in the kernel that han­
dle the lowest levels of 1/0 between these devices and processes running 
within the computer. 

Instead of presenting our own example programs, we carefully analyze 
a case study that is given in one of the XENIX manuals . This case study 
gives a device driver for a terminal. Source code for this example can be 
found in the chapter "Sample Device Drivers" in the XENIX Programmers 
Guide manual. However, the origin of this example dates back to a course 
on device drivers developed by AT&T. You should look at the source code 
as you read our discussion. This chapter supplies more complete and basic 
descriptions of the ways these routines work than can be found in the 
XENIX manuals . 

The first part of the chapter describes device drivers and the kernel in 
general, the second part presents the case study, and a third part discusses 
how to install a device driver. 

Overview 

For the purposes of this chapter, a device is a piece of computer hardware 
that generates and/ or consumes data. Examples include terminals, printers ,  
modems, and disk drives . 

Each device that is to work with a XENIX system requires a device 
driver. These drivers consist of sets of routines and structures that handle 
the lowest or most device-dependent parts of the job of exchanging data 
between the devices and the more central parts of the computer, namely the 
memory and CPU. 

The device drivers are connected to XENIX in the following ways: 1 )  
their code and data structures sit within the kernel of  the XENIX system, 2) 
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they are called upon by other higher level routines in the kernel that are 
invoked by system calls , 3) they can call upon lower level routines in the 
kernel, 4) they generally have interrupt routines to handle interrupts caused 
by the corresponding devices , and 5) they have a special "device" file entry 
that sits within the file directory system. 

In this chapter, we explore these concepts in great detail, but for now 
you should understand that the device driver routines sit inside the kernel, 
generally "talk" to devices via interrupts,  and are referenced by programs 
outside the kernel through standard system calls on the corresponding spe­
cial device file . 

XENIX provides a way for sites with ordinary software licenses to 
install their own device drivers . This way, each XENIX system can be cus­
tomized to better meet the hardware requirements of its particular site. This 
chapter shows how to perform customization of a XENIX system. 

Although, we describe how to install your own device drivers, you 
should understand that a XENIX system often comes with a rather com­
plete set of device drivers . With the SCO distribution of XENIX for an 
IBM XT, drivers are available to handle at least four console screens on the 
monochrome or color display, a printer on the parallel port , two terminals 
or two modems on the serial ports (or one each) , two floppy disks, and two 
hard disks . We will see how these fit into the standard system and how to 
add more devices to such a system. 

The Kernel 
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As its name implies , the kernel of XENIX is the central program of the 
operating system. It consists of a collection of routines and data structures 
that are permanently housed in the computer's  main memory and perform 
XENIX' s  most basic business ,  including allocating and scheduling 
resources . These resources include the CPU, the memory, and the disk , as 
well as performing lower level tasks such as transferring data between the 
computer and its peripheral devices . 

Device drivers sit inside the kernel and form an integral part of its 
operations, providing the device-dependent parts of gateways between it 
and the I/0 devices that it manages (see figure 9- 1 ) .  The driver routines are 
called by other parts of the kernel and in turn, use some of the kernel' s  
other routines and data structures . Therefore, it i s  helpful to have a general 
understanding of the organization and functioning of the kernel, especially 
in regard to its role as the overall manager of devices . 

Although management of the memory and the CPU occupy a consid­
erable amount of the kernel's  time and space, the routines and structures 
that it uses to manage these internal "devices" form a permanent part of 
the system. That is , they are not subject to modification by sites with ordi­
nary software licenses . 
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Figure 9-1 
The kernel and its device drivers 

Kernel Entry Points 

One way to understand the kernel is through its entry points (see figure 
9-2) . These provide access to the majority of its functions and in some 
sense, define the kernel in terms of the services that it performs. 

The kernel's entry points fall into three major categories : system calls, 
hardware service requests, and error conditions. 

All three types of entry points are handled by interrupts ,  which make 
the kernel into an event driven or interrupt driven system. 

Both system calls and hardware interrupts are essential to the design 
and operation of device drivers . 

System Calls 

Let's begin with the system calls . XENIX has about 70 system calls . We 
have used a number of them explicitly in our C programs. For example, in 
previous chapters we have used e x i t, stat ,  ust at ,  c h mod, open, c l ose, 
w r i t e, geteu i d, get u i d, get g i d, geteg i d, execve, f o r k, get p i d, k i l l , 
wa i t , pause, and s i gna l .  Many other system calls are invoked to support 
the various system commands that we have used. 
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Figure 9-2 
Entry points to the kernel 

Application 
and 
System 
Programs 

� 
System Calls --------....., 

� Kernel 

Task Time ++(Buffers)++ Interrupt 
Routines Routines 

� 
'-------- Hardware Interrupts -

� I Hardware 

For device drivers ,  system calls such as : open, c l ose,  read, and 
w r i t e  that are used to access ordinary files are also used to access devices . 
These calls , when applied to the special files that are associated with device 
drivers ,  cause 1/0 transfers to and from the devices . For example, in Chap­
ter 7 we applied the od (octal dump) program to read the bytes of the file 
system stored on our hard disk. We also can use commands , such as cat ,  to 
write output to the printer or terminal. For example, the command 

% cat myf i l e  >/dev/ l p0� 

sends myf i  l e  to the printer by redirecting the standard output to the special 
device file I devI l pQJ and writing to it. 

The System Call Interrupt 

In general, each system call function performs a few housekeeping chores , 
then invokes a special software interrupt (the INT 5 instruction on the IBM 
XT) . This provides a further level of protection, isolating the kernel from 
the outside world. 

Before calling this interrupt, the function places the code number of 
the particular system call in a special register (register AX on the IBM XT) . 
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Once this software interrupt is executed, its interrupt service routine uses 
this code number to dispatch to the appropriate system call routine within 
the kernel . You can use the debugger adb described in Chapter 3 to verify 
this for yourself. 

XENIX uses many of the same code numbers also used by various ver­
sions of UNIX. These code numbers fall in a range between 1 and 63 . For 
example, 1 normally means ex i t , 2 normally means f o r k, 3 normally 
means read, 4 normally means w r i te,  and 5 normally means open. How­
ever, XENIX has changed certain codes, deleted others , and added several 
new codes above 63 to handle such things as semaphores . For example, 
code 1 1  was execv, but in XENIX execv  calls exec ve, which uses code 59. 
It is interesting to note that the current XENIX manuals do not mention 
execv  or execve  as system calls , although they are described along with the 
other library functions . 

The software interrupt instruction provides the possibility of some 
very strong protection of the kernel from the users . On many minicomput­
ers and mainframes,  the execution of such a software interrupt changes the 
computer's  memory, suddenly forcing the CPU to use memory "pages" 
belonging solely to the operating system rather than those belonging to the 
user. At the same time that the memory is changing, it puts the CPU into a 
special kernel state, allowing it to execute certain privileged instructions 
that give it power to change things (such as the kernel' s  memory and CPU 
priorities) that should not be accessed by ordinary users . 

On the IBM XT, the hardware does not support such memory protec­
tion or CPU privilege schemes . However, the XENIX software does make a 
big distinction between user mode and kernel mode. The execution of this 
software interrupt thus really does signal "officially" the entrance of the 
CPU into the kernel . 

Task Time 

Once the CPU has entered the kernel through a system call, it is still per­
forming work for a particular user (running the user 's  process) , but because 
it is executing code inside the kernel, it is no longer under control of the 
user . This ' 'twilight zone' ' is called kernel task time. 

Often, a system call results in a request for service that cannot immedi­
ately be satisfied. This may happen when a process makes a system call to 
transfer data to or from an external device that is not ready. In this case, 
rather than actively waiting, a t a s k  t i me routine inside the kernel (such as 
a driver routine) causes the process to s l eep, relinquishing the CPU so that 
other processes may use it . Therefore, making a system call often causes a 
running process to lose the CPU (see figure 9-3).  

Hardware Interrupts 

At the same time that processes are making system calls to the kernel, 
devices are interrupting the kernel to service these requests . While the inter-
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Figure 9-3 
Task  t i me and going to s l eep 

process # 1  process # 1  

/ 

rupt is being serviced, the system is in what is called i nt e r rupt t i me. Dur­
ing this time, control has passed to the kernel but not under control of any 
particular user . In fact, as a rule, the process that is responsible for the 
interrupt is not the process that was interrupted . 

Interrupt service routines normally act quickly and only when work 
can actually be performed. One reason why interrupt routines can proceed 
quickly is that the t a s k  t i me portions of the driver routines do much of 
the work . These t a s k  t i me routines package and unpackage the data in 
forms that are very convenient for the interrupt routines . Essentially, the 
t a s k  t i me routines prepare the data and hardware for i nt e r rupt t i me 
transfer by the interrupt routines . 

Device Driver Routines 

Now let's study the drivers in more detail to see what they are composed of 
and what is required to develop them. 

Each driver is really a collection of routines and structures . The 
addresses of many of these are listed in special device tables that we study in 
this section. These tables provide "entry points" to these drivers and are 
used by XENIX to connect the drivers to the rest of the system. 

Each driver consists of a t a s k  t i me part , which comes into action 
only as a result of system calls , and an i nt e r rupt t i me part, which comes 
into action as a result of hardware interrupts (see figure 9-2) . 

Block and Character Drivers 
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Let's begin with an organizational chart of the driver routines . In Chapter 2 
we discussed two tables : one for block oriented device drivers and another 
for character-oriented device drivers . 
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These tables are stored as separate structures within the kernel and 
contain the addresses of certain key routines and data structures belonging 
to these drivers. These tables also control how the devices are interfaced to 
the file system through major device numbers. 

Block-oriented device drivers are those for which data is transferred 
to applications and system programs in fixed-sized blocks . For example, a 
floppy or hard disk is normally organized as an array of physical sectors 
(see figure 9-4) . Any read or write operation is physically implemented, at 
least at the lowest levels , as transfers of entire sectors between memory 
and the disk.  That is ,  even to transfer a single byte, a whole sector must 
be moved . 

Figure 9-4 
Sectors on a disk 

Sector 

In this chapter we closely examine a character-oriented device driver 
for a terminal. Character-oriented device drivers allow arbitrary numbers of 
bytes to be transferred at one time (see figure 9-5) . Character-oriented driv­
ers are normally used for such devices as printers and terminals , but with 
the proper buffering, even disks can be handled by character-oriented driv­
ers in addition to their more fundamental block-oriented drivers . 

It is convenient to label the block-oriented drivers as : bO, b l ,  b2, and 
so on, and the character-oriented drivers as : cO, c l ,  c2, and so on. This 
numbering stresses the fact that block and character drivers are stored in 
separate tables . 

Let's  look at the device drivers installed in the kernel of version 3 .0 of 
XENIX for the IBM XT (see table 9- 1 ) .  This is a typical small system. 
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Figure 9-5 
Character-oriented devices 

XENIX System V is organized along the same lines but has more devices , 
including network communication drivers .  

label 

bO 
b l  
b2 
b3 

cO 
c 1  
c2 
c3 
c4 
c5 
c6 

Table 9-1 
Device drivers for an IBM XT 

name 

no device installed 
no device installed 
floppy disk 
hard disk 

console 
tty 
memory 
floppy disk (as a character device) 
hard disk (as a character device) 
serial line 
printer 

Our tables show four block-oriented and seven character-oriented de­
vice drivers . 

The first two block-oriented device drivers (bO and b l )  are empty de­
vices that don't do anything. The third device driver (b2) controls the flop­
PY disks and the fourth (driver b3) controls the hard disks . 

For the character-oriented device drivers : driver cO controls the con-
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sole, driver cl  controls a logical device called the tty , driver c2 controls the 
memory, driver c3 controls the floppy disk as a character-oriented device, 
driver c4 is the hard disk (character-oriented device) , driver c5 controls the 
serial lines, and driver c6 controls the printer . 

It is interesting to note that memory is treated as a character-oriented 
device. Some utilities , such as pstat ,  read this device to directly read bytes 
in the operating system's memory. 

The Device Tables 

The addresses of the routines and data structures for the various block- and 
character-oriented drivers are organized in two tables inside the kernel . In 
addition, the kernel also contains a table of driver routines and structures 
designed especially for devices used as terminals . 

As we mentioned in Chapter 2, source code for all three tables is pro­
vided in the file / u s r / sy s / conf/ c . c . When you install a new device you 
must modify this file to include the names of your new routines and struc­
tures in a new "row" in one or more of these tables . We see exactly what is 
required in following text. 

The bdevsw table holds addresses of certain key routines and data 
structures for block-oriented device drivers (see table 9-2) . Each row of this 
table holds addresses of routines for a logically different driver . The rows 
are numbered starting from 0 and correspond to the labeling system men­
tioned above. 

Table 9-2 
Bdevsw table for an IBM XT 

device open close strategy buffer 

bO none none none none 
b l  none none none none 
b2 flo pen flclose flstrategy &fltab 
b3 dkopen dkclose dkstrategy &dktab 

Similarly, the cdevsw table holds addresses of character-oriented driv­
er routines (see table 9-3) . The l i nesw table holds further addresses for de­
vices acting as terminals . 

Special Device Files 

These tables provide the kernel direct access to these driver routines and 
their data structures but because these tables are "locked up" within the 
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Table 9-3 
Cdevsw table for an mM XT 

device open close read write ioctl 

cO en open enclose cnread en write cnioctl 
c l  syopen syclose syread sywrite syioctl 
c2 none none mmread mmwrite none 
c3 flo pen flclose flread flwrite flioctl 
c4 dkopen dkclose dkread dkwrite dkioctl 
c5 sioopen sioclose sioread siowrite sioioctl 
c6 lpopen lpclose none lpwrite none 

kernel, there is no direct way for ordinary application programs to call 
them. To remedy this situation, special file entries are created (using the 
mknod command as described subsequently in this chapter) and placed in 
the ldevl  directory. We have already seen a number of these special 
device files . 

Each such special file has permissions, an owner, a group, a date of 
creation, a date of modification, and so on, just like an ordinary file . How­
ever, instead of having a byte count, it has two special device numbers : a 
major device number and a minor device number. Also, it has file type of 
either b for block-oriented device drivers or c for character-oriented drivers . 

The file type tells which of the two tables bdevsw or cdevsw in the ker­
nel to use. Consistent with the table names discussed earlier, file type b re­
fers to block devices and file type c refers to character devices . 

The major number corresponds to the row position of the device driver 
in that table. The single letter file type and the major device number combine 
to form the labeling system that we used in our organizational charts . 

The minor number is used by the driver routines themselves to deter­
mine which particular copy or function of the device is being referenced. 
For example, different serial communications lines can be handled by the 
same driver but differentiated from each other by a minor device number. 

Looking at the I dev directory for examples as we did in Chapter 2, we 
see that applying the l s - l  command to the path I dev I l p0 might yield the 
following output on the screen: 

c-w--w--w- 1 b i n b i n 6 ,  0 Oct 21 1 985 l p0 

The first column contains the file type and permissions . The first letter 
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c indicates that this is a special file with file type c, . The 6 toward the mid­
dle where the byte count normally appears is the major number, and the 0 
following it is the minor number. This would be c6 in our table. 

Likewise, applying the L s  - L  command to the path /dev / t t y2a 
might yield : 

c rw--w--w- 2 morgan morgan 5 , 8 Apr 27 20 : 55 tty2a 

Here, the file type is c, the major number is 5 ,  and the minor number 
is 8 .  Combining the file type and the major device number gives us the label 
c5 in our organizational chart . 

The system programmers or administrators who wish to create these 
special files must know the file type and major and minor device numbers 
as set up in the kernel . With this knowledge, they can execute the mknod 
command to make these files . For example, to create these files , program­
mers or administrators might have typed: 

mknod /dev/ L p0 c 6 0 
mknod /dev/tty2a c 5 8 

File Operation Routines for Devices 

Because device drivers are treated like files in the directory system, it is not 
surprising, and indeed a central part of XENIX's design ensures that, de­
vices can be opened, closed, read, and written like ordinary files . The writ­
ing and reading represent transfers of information to and from the devices . 
Opening and closing are needed to initialize the device and condition the 
system to make and complete these transfers . 

As you can see, these routines are mirrored to some degree within the 
bdevsw and cdev sw  tables . These tables tell the XENIX kernel how to per­
form these functions for each device driver . 

In this section we introduce the necessary routines . In following text , 
we describe them in detail . 

Block Routines 

For block-oriented drivers, three routines are listed in the bdevsw  table: a 
routine to open the device, a routine to close the device, and a st rategy 
routine. The st rategy routine handles both reading from and writing to 
the device, depending on what parameters are passed to it . In addition, 
there is a pointer to a data structure called d_t ab that keeps track of com-
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mands currently being handled by the driver . This structure is of type 
i obuf,  which is defined in the include file /us r / i n c l ud e / s ys / i obuf . h . 
The operating system "schedules" these requests to optimize the perform­
ance of the block device (such as a disk) and the system as a whole . 

Character Routines 

The list in cdevsw for character-oriented drivers consists of an open rou­
tine, a c l ose  routine, a read routine, a w r i t e  routine, and a special 
cant ro l routine . 

The device driver routines in cdevsw directly correspond to the sys­
tem calls that operate on ordinary files . In fact , the system call open, 
when applied to a special device file , actually causes the open routine to be 
called for the corresponding device . Likewise, the system calls : c l ose, 
read, and w r i t e  indirectly call the c l ose, read,  and w r i t e  driver 
routines . 

Terminal Routines 

The c .  c configuration file for the kernel also contains the l i nesw  table, 
which is used in conjunction with the routines in cdevsw to control devices 
that are used as terminals . These consist of open, c l ose, read,  w r i t e, 
cant ro l ,  i n, out,  and modem routines . These routines are used in con­
junction with the character-oriented device driver routines to control the 
corresponding devices, such as keyboards, video screens, and serial 1/0 com­
munication lines , when they are used as terminals . 

Interrupt Routines 

The interrupt routines for the drivers are also listed in the c . c file. They be­
long to a logically different part of the kernel (the i nt e r rupt t i me por­
tion) than the other driver routines (which belong to the t a s k  t i me por­
tion) . However, all the routines for a particular driver tend to be physically 
grouped together in the same section of code within the kernel . 

Interrupt routines usually handle the lowest level of 1/0 transfers . To 
facilitate these transfers , buffers are set up in the kernel and in user pro­
grams . Then the device driver routines help package these individual bytes 
into blocks that are stored in buffers for transfer between memory and 
hardware ports of the device controllers . 

In general, the t a s k  t i me write or read routines fill or empty these 
buffers from and to the application or system program as they are ready to 
do so, and the interrupt routines empty or fill these buffers to and from the 
device as it is ready to do so. This smooths out the interaction between the 
programs and the devices , allowing them to proceed almost independently 
from each other, at least over the short run. 

If a device does not use interrupts ,  it is not necessary to supply one . 
All the interrupt routines that are present are listed in the structure 
vee  i nt sw that is defined and initialized in the c .  c file. 
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Initialization Routines 

Some devices need initialization when the machine is first turned on or 
rebooted. There is a special place in the c . c file for such initialization rou­
tines (the d i  n i  t sw table) . However, in the particular version that we used, 
only one routine was installed .  Its name i n i t i bm implies that it initializes 
everything that needs initialization on a standard IBM personal computer 
(an XT, in particular) . 

Routines in the Kernel Used by Device Drivers 

Now let 's  discuss some routines within the kernel that are used by device 
drivers . A device driver can use any routine in the kernel, but these are of 
particular use to device drivers. 

Synchronization Routines 

We begin with a discussion of routines that synchronize the driver routines 
with each other and the rest of the system. 

The Spl Routines 

The sp l 5  and sp l x  routines control when interrupts can happen. They help 
set the "level" of interrupts . The level controls which devices can currently 
interrupt the CPU. 

Often, it is important to ' 'turn off' ' certain interrupts during certain 
operations . This is especially important when two independent processes 
have access to the same data, and in particular when there is a danger that 
they might access the same data in an interlocking manner. The task time 
portion of a driver may call an sp l function to disable its i nt e r rupt t i me 
portion to prevent such an interlock . 

In Chapter 8 (process control) we saw an example indicating the neces­
sity for enforcing "mutual exclusion" between processes competing for ac­
cess to the same resources . In that example, two processes were competing 
for the same terminal screen. Without proper synchronization they messed 
up each other's  messages on the screen. 

However, potential conflicts between the t a s k  t i me and i nt e r rupt 
t i me portions of a driver are a bit more subtle . In this case, both may be 
updating a buffer variable, such as a character count . 

For example, a t a s k  t i me routine may load a count into a CPU regis­
ter and be interrupted by the interrupt routine that also loads the count into 
a CPU register, increments it , then updates it back into memory. Later, the 
t a s k  t i me version takes over again and decrements the CPU register 
(saved from before) and updates the count in memory, overwriting the 
work of the interrupt routine. The result is that the count is decremented 
when it really should be kept the same. That is, the two actions should have 
canceled each other (see figure 9-6) . 
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process #1 

A - count 

A - A + 1  

count - A 

Figure 9-6 
Overlapping operations 

process #2 

A - count 

A - A - 1  

count - A 

reg A of process #1 has count 

reg A of process #2 has count 

increment reg A of process #1 
decrement reg A of process #2 

original count plus 1 
original count minus 1 

In this chapter, we describe a protection scheme using the sp  l function 
for the read, write, and interrupt routines of a driver , which enforces mutu­
al exclusion for "critical sections" of driver routines in much the same way 
that semaphores are used to bracket critical sections of applications 
programs . 

For driver routines , we precede a critical section with a statement like 

x = sp l 5 0 ;  

and end it with the statement : 

sp l x < x > ; 

There are actually a whole series of sp  l routines , starting with sp  lliJ, 
which enables interrupts from all sources to sp  l7, which disables all 
of them. 

The sp  L S  routine disables interrupts from the disk drives , the printer , 
and the keyboard. Thus , it could be used within the driver routines for any 
of these devices . 

The sp l x routine at the end of the critical section is used to restore the 
interrupt level to what it was before the critical section. It has a single argu­
ment that should be an expression whose value is the same as the value re­
turned by the sp l function that precedes the critical section. 

The real difficulty in using the sp  l functions is in judging exactly 
where the critical sections are and where to place the sp l function calls . 
Here are some rules : 

D A critical section should contain a complete operation, such as 
putting something into a buffer or taking something out of it . This 
includes updating all buffer variables such as byte counts . 

D Critical sections should not overlap each other or contain loops . 

Now let's look at the sp l functions . Figure 9-7 shows these functions 
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for the version of XENIX running on the IBM XT. This information is 
specified by the structure s p l ma s k  in the file c .  c .  

Figure 9-7 
Sp l routines for the IBM XT 
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In this particular version of XENIX, s p l 0, sp l 1 , and sp l 2  enable all 
interrupts ;  sp  l3  enables all but the floppy disk, the hard disk, and "stray" 
interrupts ; s p l 4  and sp l 5  disables everything sp l3 does, plus the keyboard 
and the printer; sp l 6  additionally disables the clock; and sp l7 disables all 
interrupts including both serial 1/0 lines . 

Let's see how these routines work. This is important if you wish to un­
derstand the value returned from sp l 5  and passed to s p l x. In the above ex­
ample, this value was stored in the variable x .  

For most machines , there i s  a memory location or  1/0 port called the 
interrupt enable register that controls which device interrupts are enabled 
(can be triggered) and which are disabled (ignored) . Each bit in this location 
controls a different source of interrupts . Placing a particular bit pattern of 
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zeros and ones in that location turns on and off the corresponding inter­
rupts . Such a bit pattern is called an interrupt mask. On the IBM XT, the 
interrupt enable register is 1/0 port 3 3 .  Figure 9-7 shows how its bits are 
assigned . 

The routines sp l0  through sp l7 are implemented as functions that re­
turn the current interrupt mask from the interrupt enable register and set a 
new one (chosen from the sp l ma s k  array) . Figure 9-7 shows the interrupt 
masks for the IBM XT. 

The s p l x routine should be used in conjunction with the preceding 
functions to restore the previous state of the interrupt enable register (see 
figure 9-8) . The sp l x  routine expects a single integer argument, which it 
places in the interrupt enable register . 

Figure 9-8 
Bracketing critical sections with sp l functions 

x = sp1 5( ); 

Critical Section 

splx(x); 

Sleep and Wakeup 

The s l eep and wa keup functions also help synchronize device driver rou­
tines . These functions allow a process to become dormant once it has done 
all it can, thus helping to prevent it from getting too greedy or too hungry 
for data. The idea is that if a process is sleeping, it cannot be eating. 

These functions handle a coordination problem different from mutual 
exclusion, which is handled by the sp l routines . 

The s l eep function in the kernel should not be confused with the 
s l eep command or the s l eep system call , although the s l eep command 
and system call normally do call this "inner" kernel s l eep function. 

Generally, when a driver routine has initiated a request for 1/0 trans­
fer and has done everything it needs to do before that request is completed, 
it should call the s l eep function to wait for the completion. 

When the request is satisfied (normally by the driver's  interrupt service 
routine) , a call to wa keup (by the service routine) forces the sleeping routine 
to continue, starting right after its s l eep statement . 

The s l eep function expects two integer arguments: a number called 
the wait channel number, and a number that specifies the priority at which 
the process sleeps. 
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The wakeup function expects one integer argument that is called the 
wait channel number. This is an integer that relates a wakeup to the corres­
ponding s l eep  function. Each wa keup only wakes up those processes that 
went to sleep with that particular wait channel number. 

As a matter of custom, the wait channel numbers are derived from ad­
dresses of data structures within the kernel. Usually these are data struc­
tures related to the reason for waiting. For example, the wa i t  system call 
uses the wait channel number, which is the address of that process 's  entry in 
the kernel's  table of current processes in the system. 

It is interesting to note that the ps -e l command displays the wait 
channel numbers (in octal) for each process in the kernel's process table. 
Figure 9-9 shows typical output from this command. See Chapter 8 for a 
description of the rest of the output for this command. 

% ps - el 

F S  UID PID PPID c 
3 s 0 0 0 1 
0 s 0 1 0 0 
1 s 0 31 1 0 
1 s 0 32 1 0 
1 s 0 1 8  1 0 
0 s 1 4  23 1 0 
1 s 0 27 1 0 
1 s 0 33 1 0 
1 s 0 34 1 0 
1 s 201 35 1 0 
1 A 201 40 35 36 

Figure 9-9 
Output of ps -e l 

PAl Nl ADDA SZ WCHAN TTY TIME CMD 
0 20 2a40 2 47472 ? 0:00 swap per 

30 20 6c 1 5  65566 ? 0:02 i n  it 

28 20 3c00 1 5  47532 co 0:04 getty 

28 20 3fc0 1 5  47636 02 0:04 getty 

40 20 3900 1 2  37252 ? 0:01 update 

26 20 7d 26 1 51 100 ? 0:02 lpsched 

26 20 6640 26 1 50764 ? 0:01 cron 

28 20 4380 1 5  47742 03 0:04 getty 

28 20 5080 1 5  50046 04 0:04 getty 

30 20 4740 22 66366 2a 0:17 csh 

68 20 5440 26 2a 0:12 ps 

The p s t a t  command also lists this and other tables, but in much 
greater detail, showing the addresses where many of these tables are located 
within the kernel's memory. A user can often use this information to learn 
why a process is sleeping and consequently how to wake it. 

Unfortunately, because wait channel numbers are 1 6-bit integers, they 
are too small to hold complete addresses . For example, the IBM XT's CPU 
uses addresses that consist of segment numbers and offsets (see 8086/8088 
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16-Bit Microprocessor Primer by Christopher L. Morgan and Mitchell 
Waite) . In general, most XENIX machines use anywhere from 20 bits to 32 
bits to specify addresses . However, the kernel's  data structures normally re­
side in an area of memory that is less than the 64K bytes that can be covered 
by 16-bit addressing. With this restriction, each address in the kernel yields 
a unique channel number by chopping off all but the lower 16 bits . 

Now let 's  look at p r i o r i t y, the second parameter of the s l eep func­
tion. P r i o r i t y  is used by the kernel to help it schedule processes in an equi­
table fashion. In Chapter 8, we saw how the ps -e l displays the priorities 
of all the processes running in the system. 

Priority value PZERO (specified in the file / u s r / i nc l ude / s y s / pa ram . h) 
is a kind of "zero point," in that processes that call s l eep with lower priority 
values than this cannot be wakened by signals . That is , they are given "better 
treatment" as far as sleeping is concerned. Note that a process that sleeps so 
"deeply" that it won't respond to signals cannot be interrupted from the 
keyboard. 

The Timeout Function 

The t i me out function causes a process to sleep for a specified number 
of clock "ticks . "  The value HZ (as specified in the file / u s r / i  nc l ude/  
s y s / pa ram . h) assigns the number of  clock ticks that occur per second. On 
the IBM XT, HZ is equal to 20 . Thus , a count of one causes a process on 
an IBM XT to sleep for 1 /20 of a second. Realize that putting a process to 
sleep does not cause the whole system to sleep . In fact , it tends to improve 
the chances of other processes to get work done. 

The t i me out function expects three integer parameters : a pointer to a 
function, an argument code, and the number of clock ticks before the pro­
cess is to wake up . In the case study for a terminal driver , we see how this 
routine brings about a necessary delay while a break is being sent out over 
the communication line . 

Transfer Functions 

The kernel contains a number of low level routines for transferring informa­
tion between memory and devices and between different parts of memory. 

Input and Output Functions-The i n, out,  i nb, and out b routines imple­
ment the absolutely lowest levels of 1/0 . That is, they allow a driver to talk 
directly to 1/0 ports . 

The i n  and i nb functions expect a single integer argument that speci­
fies the hardware port number (see the aforementioned 808618088 16-bit 
Microprocessor Primer) and returns the current contents of that port . The 
first function returns a 16-bit value and the second returns an 8-bit (byte­
sized) value. 

The out and out b functions expect two integers : a port number and 
the value to be sent to that port . The first sends a 1 6-bit value and the sec­
ond an 8-bit value (the lower 8 bits) . 



Device Drivers 

Memory Transfer Functions-The c opy i o function provides a way to trans­
fer blocks of memory from one location in the kernel to another. It is used 
by block-oriented device drivers. See the XENIX manual for more details . 

Structures in the Kernel Used by Device Drivers 

Now let 's  investigate some structures in the kernel that are used by device 
drivers . 

The User Block 

Each user has a block of memory in the kernel called its u area. The u area 
is not directly accessible to the user . Rather it is used by the kernel to man­
age user processes while it resides in main memory (not swapped out or 
logged out) . 

The u area can be viewed as a C structure of type u s e r  and given the 
name u. Some of its members, u . u  base, u . u  count,  u . u  o f f set ,  and 
u . u  s eg f l g, are useful for passing data back and forth between a user's  
program and the t a s k  t i me portions of a device driver . 

The u .  u ba se  is the base address in memory where the data is located. 
The u .  u c ount is the number of bytes to be transferred. The u .  u o f f set 
i s  the location of the data within the "file ."  The u . u  segf l g  specifies the 
direction of transfer. 

-

When a process makes a system call , its "context" (contents of its 
CPU registers) is saved in the u area, its stack pointer is pointed to a local 
system stack within the u area, and the parameters of the call are placed in 
the u. After verifying the parameters and grabbing others from the file 
structures , the higher level routines in the kernel may call a device driver 
that uses the values in the u to do its work. When the system call is complet­
ed, the registers are restored to their original state, including the stack 
pointer. 

For example, a w r i te  command has parameters consisting of a file 
identifier, a buffer pointer, and a byte count. The buffer pointer is copied 
into u .  u b a s e, the byte count is copied into u .  u c o u n t ,  and the 
u . u  o f f set is loaded from the file structure that is set up when the device 
file is opened. 

It is important for a device driver designer to realize that the user's 
process has been stopped at its u area in the manner described above. In 
particular, the stack in the u area is only 1024 bytes long, so a device driver 
must not push large amounts of data on the stack, and in fact, must make 
sure that the stack has room for return addresses from subroutines as well 
as data. Note that variables local to a subroutine are automatically pushed 
onto the stack, so there cannot be a lot of local data. 

The kernel contains functions c pa s s  and pa s s e  that can assist a driv­
er's  t a s k  t i me routines by transferring characters between it and the user. 
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The 1/0 Buffers 

Buffering is essential to the proper functioning of interrupt routines be­
cause they operate independently from the rest of the system, yet process 
data needed by the rest of the system. 

Character-oriented device drivers have different buffering structures 
than block-oriented drivers . Character-oriented drivers normally use a 
structure called a clist for buffers . Block-oriented device drivers normally 
use a structure called buffer. 

The Clist 

A clist consists of a collection of buffers called cblocks. Each cblock con­
tains only a few characters (24 in our implementation) , but they link togeth­
er to form a larger structure, namely the clist . The clist structure can hold a 
large number of bytes (characters) of data. 

Technically, a clist is a C structure consisting of a total character 
count, a pointer to the first cblock in the list, and a pointer to the last 
cblock in the list (see figure 9-10) .  Each cblock consists of a pointer to an­
other cblock (the next cblock or the nil pointer if there aren't  any more) , a 
pointer to the first character in the cblock, a pointer to the last character in 
the cblock, and an array of CLSIZE characters , where CLSIZE is a con­
stant such as 24. 

cblock 

Figure 9-10 
Clists 

cblock cblock cblock 

The kernel provides routines for moving data in and out of clists . The 
get c function gets a single 

·
character from the specified clist . Its single pa­

rameter specifies the clist. The put c function puts a single character into 
the specified clist . Its first parameter specifies the character and its second 
parameter specifies the clist . These routines can be used by both the 
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t a s k  t i me and i nt e r rupt t i me portion of the driver, providing an easy 
way to use any clist as a buffer between these two portions of the driver . 

Other functions act upon one cblock of a clist at a time. These include 
get c b, put c b, get c f, and put c f. The first two move a cblock to and from 
a specified clist and the last two get and put cblocks into a " free" list of 
cblocks . 

Finally, function put c h a r sends characters directly to the console 
screen. This function is useful for sending error messages to the console 
when the system gets into trouble. 

Tty Structure 

Associated with each device used as a terminal is a structure called a t t y. 
This structure contains variables to manage the two-way exchange of data 
between a user program and the terminal that it uses . 

From Chapter 5 ,  we saw that terminals can be configured in a number 
of different ways, including their baud rate, parity, whether they assume 
the terminal is connected via a modem, whether they echo characters, 
whether they use XON/XOFF protocol, and how they treat the carriage re­
turn and linefeed characters . The t t y  structure contains bits to store these 
options and variables to help perform the indicated functions . They also 
buffer the characters as they come in and go out . 

Let 's  examine the members of the t t y  structure that relate to device 
drivers (see figure 9- 1 1) .  

The first three members are pointers to  clists where characters are tem­
porarily stored as they come in and go out of the system. The first clist is 
called the raw input queue. This is where characters are stored as they first 
come in from the serial line. The second is the canonical queue where char­
acters are stored after they are processed (translated and expanded) and are 
waiting to be used by the user process . The third clist is the output queue 
where characters are stored while they wait to be sent out the serial line to 
the terminal. 

The fifth member of the t t y  structure is a pointer to a part of the de­
vice driver called the t t y's procedure. This function performs a variety of 
actions : outputting a character, starting and ending a break, and handling 
the XON/XOFF protocol. The particular action that it performs is deter­
mined by a command code passed to it as its second parameter . 

The sixth, seventh, and eighth members of t t y  are 1 6-bit unsigned in­
tegers called flags, which specify how the terminal is to behave. 

The t i f  lag  specifies input modes , such as how the driver is to re­
spond to break conditions and parity errors from the input line, how car­
riage return and linefeed are handled (mapped to each other or perhaps ig­
nored) , whether or not the XON/XOFF protocol is to be used for input, 
and how the XON/XOFF protocol is to work if it is used . 

The t of  lag  specifies output modes, such as whether output is to be 
processed as it is sent, whether lowercase letters are to be mapped to upper­
case upon output, how carriage return and linefeed are to behave for out-
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Figure 9-11 
Tty structure 
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put, and how much delay is required for such characters as carriage returns ,  
linefeeds, tabs, and form feeds . 

The t c f  l ag specifies the control modes, such as whether the inter­
rupt and quit keys are active, whether erase (a character) and kill (a line) are 
in effect, and whether characters are echoed. 

The t l f l ag specifies the line discipline modes . At present this feature 
is ignored. 

-

The tenth member of t t y  is a 1 6-bit integer called t s t a t e. Its bits 
specify the various states that the driver can be in. It is necessary to pro­
gram a driver in terms of "states" because the driver consists of a collec­
tion of routines called individually by the system when it needs to do so . 
That is, the driver cannot act like a regular program that starts up, goes 
through a series of calculations and decisions, then ends . 
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The states are of special concern to the p roc routine in the driver be­
cause it performs many of the state transitions . 

The integer t s t a t e  has the following state bits : bit 0 (TIMEOUT) 
tells if a delay is in progress, such as when a break is being sent out the seri­
al line; bit 1 (WOPEN) tells if the driver is waiting for a carrier as a result 
of trying to open up the line for use with a modem; bit 2 (ISOPEN) tells if 
the driver is active (open); bit 3 (TBLOCK) tells if the driver is blocked; bit 
4 (CARR_ON) tells if the carrier is on; bit 5 (BUSY) tells if the serial line 
is in the process of sending a character to the terminal; bit 6 (OASLP) tells 
whether the driver is sleeping because it is waiting for output to be sent; bit 
7 (IASLP) tells whether the driver is sleeping because it is waiting for more 
input; bit 8 (TTSTOP) tells whether output is stopped by an XOFF (control 
S) condition; bit 12 (TTIOW) may be used by a process that has gone to 
sleep while waiting to send output; bit 1 3  (TTXON) tells if an XON charac­
ter should be sent as the next character (as soon as the output line is ready) ; 
bit 14  (TTXOFF) does the same for the XOFF character . 

Other members of t t y  include the current row and column of the cur­
sor on the screen but are not used by the driver, at least a minimal one like 
the case study we discuss in this chapter . 

Block-Oriented Devices 

For block-oriented devices , the system does much more of the processing 
than it does for character-oriented device drivers . When a user process 
makes a system call to read or write so many bytes from or to a block­
oriented device driver, the system breaks the bytes into standard-sized 
blocks and calls the driver's  st rat egy to process each block. 

The job of the st rategy routine is to place these blocks on a queue. 
This queue is allocated to the particular driver and provides a buffer be­
tween i t s  t a s k  t i m e port ion  (the s t r a t e g y  r o ut ine)  and i t s  
i nt e r rupt t i me portion (its interrupt routine) . The st rategy routine has 
a single parameter that points to a structure called a buffer. This structure 
contains the block of data and the desired action to be performed on it . 

The st rategy routine normally calls the kernel' s  d i  s ksort  routine to 
place the request in the driver's  buffer queue. The d i  s k sort  routine con­
tains an algorithm to minimize the work that a typical disk must do to satis­
fy the requests on the queue. The algorithm is somewhat like that used by 
an elevator to minimize its travel while reaching all requested floors of a 
building. For example, assume there are requests for track 8, then track 40, 
then track 9, then track 50. The disksort routine would sort the tracks in in­
creasing numerical order so that the disk head does not have to move back 
and forth so many times . 

Block-oriented devices can also be served by character-oriented driv­
ers . The kernel provides a routine called phys  i o that interfaces a character­
oriented driver to a corresponding block-oriented driver . 
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Our case study is a device driver for a terminal. Its job is complicated by the 
fact that it deals with two-way communication, and, more importantly, be­
cause some of the characters have to be expanded and/or transformed as 
they are sent or received and others cause delays . Also XON/XOFF proto­
col and break conditions need to be handled. 

The routines we study are given the prefix td  and are associated with a 
particular serial communications line. Other routines, given the t t  prefix 
(line discipline) , handle terminals in general . These two types of routines 
work in cooperation, calling each other to get the job done. 

It is interesting to note that not all terminals are connected to the com­
puter via serial lines . In fact, for the SCO version of XENIX for the IBM 
XT, the first four or so terminals are implemented as the attached keyboard 
and screen. In this case, the t t  line discipline routines would be used, but 
with different device driver routines . 

Externals 

The terminal driver has a global area in which include files are specified and 
global constants and variables are declared. 

The include files are : pa ram . h, which defines the values for many of 
the system parameters of XENIX; d i r .  h, which specifies the structure of 
directories ; use r .  h, which defines the u structure that the kernel has for 
each active user; f i l e • h, which defines the parameters needed to manage a 
file; t t y . h, which defines character-oriented device structures , including 
among other things the clist structure that is used as the buffer; and 
conf . h, which contains definitions of such things as the block and charac­
ter tables , as well as the more specialized terminal driver routines . Note that 
this file is not the same as the c .  c file in which these structures are actually 
initialized. 

For this terminal driver, there are many hardware locations to define 
(see figure 9-12) .  Here, the terminal is connected to a serial communications 
line that has seven ports (hardware registers) associated with it . They are: 1 )  
received data, 2) transmitted data, 3 )  status, 4) control,  5) interrupt enable, 
6) baud rate control, and 7) interrupt identification. 

The first two ports are input and output ports (hardware registers) 
through which the characters are passed. The third port gives various pieces 
of information in its eight bits . One bit tells when the input port has data to 
be read and another bit tells when the output port is ready to take more 
data. Other bits give various error conditions, such as parity error or mis­
matched formats . Another bit indicates whether a terminal on the serial line 
is ready to receive anything. Each bit is specified by a different constant in 
this code. 

The fourth port, the control port, has a number of constants associat­
ed with it, specifying different values for control parameters such as num­
ber of bits per serial word, type of parity, and break condition. 
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Figure 9-12 
Hardware connections for serial communications 
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The break condition needs special explanation . To understand it , you 
should start with an understanding of how normal characters are sent on a 
serial communications line . Such a data line carries a voltage of either a 
low value (less than - 3 volts) or a high value (greater than + 3  volts) . 
Each character is sent as a string of bits , where each bit is indicated with 
either a low voltage for a value of one or a high voltage for a value of 
zero. A break consists of a constant zero bit value (high voltage) for a 
much longer time than just one character (perhaps a quarter to half a sec­
ond or longer) . On some terminals the break key causes this condition to 
be sent as long as it is held down. The break condition is used as a special 
signal to indicate a radical change in the way a computer is to act . For ex­
ample, it may be used on XENIX or UNIX systems during login to change 
the attempted baud rate . 

The fifth port, the interrupt enable port, has three constants that spec­
ify the bits that control (enable or disable) interrupts from the receiver 
(incoming data) , interrupts from the transmitter (outgoing data) , and inter­
rupts generated by changes in the modem (carrier detection) . 

The sixth port, the baud rate control, has a constant defined for each 
possible baud rate. These range from 0 to 1 9200 baud. (Zero baud is nor­
mally a special signal to "hang up" the (phone) line.) 

The seventh port, the interrupt detection port, has constants that de­
fine which of its bits correspond to which of the three sources of interrupts :  
transmit (ready to  send), receive (ready to  receive) , and modem change (car­
rier detect or hang up) . 

The interrupt vectors are also defined as constants here, giving their 
number (2) and locations in memory. 

There are two global variables : a t t y  structure (as defined in the in­
clude file t ty . h) ,  and an array of integers, called td add r, that contains 
the base addresses of each of the two serial lines . Many of the driver rou­
tines have a local pointer that points to this global t t y  structure . 
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The Open Routine 

Now let 's  begin with the routine tdopen that opens the serial communica­
tions line for use with a terminal (see figure 9- 13 ) .  

Figure 9-13 
Tdopen routine 

no 
Set error: No such device 

al ready open for exc l usive use 
and not the  su pper user? 

yes 
Set error: Busy 

exit 

This routine expects two integer parameters : a minor device number 
and a control flag . 

Tdopen has several local variables : a register (temporary) pointer to a 
structure of type t t y, an integer for holding addresses , and an integer x 
that is used in conjunction with the sp L functions . 

The tdopen routine first checks to see whether the minor device num­
ber is within range (less than the number of devices) . If it is not , it calls a 
function called set e r ro r  and return. It passes the value ENX I O, indicating 
the error No such  dev i ce. Essentially, the set e r ro r  function moves the 
error code into the u .  ue r ro r member of the user's u area. 

The tdopen routine next checks to see whether the device has already 
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been opened for exclusive use. This information is stored in a bit in the 
l f l ag member of the t t y  structure for this driver . The routine also calls 

the kernel function suse r and checks to see whether the process is the super 
user (root) . If the file is already open for exclusive use and the user is not 
the super user (a system administrator) the routine sets the error code 
EBUSY and returns . 

If the tdopen routine continues , an i f  statement checks to see whether 
the device is already open or is waiting for an open to complete . The reason 
why it might be waiting at this point is that it might be waiting for a carrier 
detect signal from the modem after initiating a telephone call . This normal­
ly takes a while, so the process often s l eeps after it attempts to "turn on" 
the carrier but has not gotten a carrier immediately. Later , its s l eep is "in­
terrupted" from the carrier detection circuitry. All of this is handled by 
this tdopen routine as we shall see. 

The tdopen routine determines the state of the open and c a r r i e r  
from certain bits in the t s t a t e  member of the t t y  structure. As we ex­
plained in our description of t t y  previously in this chapter, these bits pro­
vide a standard set of states for terminal drivers . 

If the serial communications device file is not already opened or in the 
process of being opened, the routine attempts to open the device . To do so, 
it calls tt i n i t to initialize the serial line, then places the address of the 
driver's  tdproc  into the t p roc member of the driver's  t t y  structure. Fi­
nally, it calls tdpa ram to configure the serial line with such things as the 
baud rate, parity, etc . (according to parameters specified in other members 
of t t y) .  

The routine continues after the i f with a critical section , which 
should not be interrupted by the driver's  interrupt routines . The s p l S  pro­
tects the beginning of this section. As described above, this routine tempo­
rarily disables certain interrupts (including the driver's  interrupt routines 
that can affect the data which is being worked on in the critical section) . 

Within the critical section, the routine first sets appropriately the carri­
er bit in the c f  lag  member of the t t y  structure. More precisely, it checks 
the c loca l bit of c f  l ag to see if the line is being used with a modem rather 
than for a direct connection (local mode) . If so, it calls the driver's  
tdmodem function to turn on the carrier . If this is  successful, it  sets the car­
rier bit in t s t a t e. On the other hand, if the line is being used for direct 
connection, it simply turns off this carrier state bit . 

Next, still within the critical section, the routine waits for a carrier, if 
it is supposed to . The FNDELA Y bit of the second parameter ( cont ro l 
f l ag) passed to this open routine specifies whether a wh i l e  loop waits for 
the carrier . 

Here, the desired condition (carrier bit on) is placed in the conditional 
part of the w h i l e  statement. Within the body of the loop, the waiting to 
open bit is set in t s t a t e, and the kernel's  s l eep function is called. The 
parameters passed to s l eep are a wait channel number equal to the address 
of one of the driver's  queues and priority equal to TT I PR I .  This priority has 
a value of 28 in our particular implementation, which is greater than PZERO 
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(a value of 25 in our implementation) . Thus, the sleep can be broken by sig­
nals . In the case of waiting for a carrier, we want to be able to interrupt 
(signal) from the keyboard if there are problems. 

Notice that s l eeping occurs within the critical section. Recall that the 
process gives up the CPU while it sleeps, thus interrupts are most likely to be 
enabled during this time, allowing the carrier detect (modem) interrupt rou­
tine to be triggered, which then wakes up the process that is sleeping here. 

Finally, still within the critical section, the l open routine listed in the 
l i nesw table is called. Recall that this table is initialized in the c .  c part of 

the kernel. The code for making this call involves some fancy C contortions 
as it looks up the address of the function in an array of structures (namely, 
the l i nesw  table) . The l open routine initializes the variables associated 
with terminals in general (whatever device it might be connected to) . 

Just before returning, the routine ends its critical section with an s l px 
routine, returning the state of the interrupts to what it was before the criti­
cal section. 

The Close Routine 

The t d c  lose  routine in many respects has to reverse the actions of the open 
routine (see figure 9-14) .  

Figure 9-14 
Td c lose  routine 

The c l ose routine has one local variable, a pointer to a t t y  structure. 
It first calls the l c l ose  routine listed in the l i nesw table. This does 

the general things thaChave to be done when a terminal is closed. Then it 
continues, doing things particular to closing a serial communications line. It 
checks the HUPCL bit of the c f  l ag member of the t t y  to see whether it 
should turn off the carrier. If so, it calls tdmodem (described subsequently) 
to turn off the connection to the modem (hang up the line) . Next, it turns 
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off the exclusive use bit of the l f l ag member of the t t y  structure, then it 
calls out b to send a zero byte out the interrupt enable port to turn off all in­
terrupts from the serial line. 

The Read Routine 

The t d read routine calls the l i nesw table routine l read, passing it a 
pointer to the driver' s  t t y  structure (see figure 9- 1 5) .  This general routine 
(not listed in the manual) takes characters from the input queue (canonical 
input queue) . 

The Write Routine 

Figure 9-15 
Td read routine 

The t dw r i  t e  routine calls the l i nesw table routine l w r i t e, passing it a 
pointer to the driver's  t t y  structure (see figure 9- 1 6) .  This general routine 
puts characters into the output queue. 

The Param Routine 

Figure 9-16 
Tdw r i  te routine 

The tdpa ram routine sets up the serial communication line with such pa­
rameters as baud rate, parity, and word size (see figure 9- 17) .  It is called by 
the tdopen and t d i  oct  l routines . 
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Figure 9-17 
Tdpa ram routine 

The tdpa ram routine has several local (register) integer variables : 
c f  l ag is a copy of the byte in the t t y  structure that contains such things as 
the baud rate, add r contains the base address of 110 ports for the serial 
line, speed holds baud rates , and t emp is just a temporary variable for ma­
nipulating bit patterns . A variable x is declared, but not used. 

The tdpa ram routine begins with the baud rate . A baud rate of zero 
indicates "hang up" the telephone line . An i f  statement looks for this con­
dition. It checks the baud rate bits in c f l ag as copied from the t c f l ag 
field of the t t y  structure . If they are all zero, it calls i nb to read the current 
value of the control register, does some logical ANDs to turn off just the 
DTR (data set ready) and RTS (request to send) bits in the control port, then 
outb to put the result back into the control register . The routine returns 
without setting anything more. 

If the baud rate is not zero, the routine continues . It calls out b to send 
the baud rate code to the baud rate control register . 

Next the routine sets the word size, stop bits , parity, DTR, and RTS 
values . The various bits in c f l ag are tested with i f statements and the ap­
propriate values are logically ORed into t emp. The computed value in 
t emp is sent out the control port of the serial line . 

Finally, the enable interrupt bits for read and write are turned on in 
the interrupt enable register . Actually, the read interrupt is only enabled if 
the read bit in cf l ag is on. 

The Modem Control Routine 

The modem control routine tdmodem is in charge of turning on and off the 
carrier on the modem by changing certain control bits of the serial lines (see 
figure 9-1 8) .  



Figure 9-18 
Tdmodem routine 

turn  on modem t u rn off modem 
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The t dmodem routine has two integer parameters : dev,  which is the mi­
nor device number, and cmd, which is a command code for this routine. 
The two commands are: TURNON and TURNOF F. 

The routine consists of a s w i t c h  statement on the second parameter 
cmd. If the command is TURNON, the interrupt enable bits in the interrupt 
control register are turned on, and the DTR and RTS bits in the serial con­
trol register are also turned on. If the command is TURNOF F, all of these bits 
in both registers are turned off. In both cases, the i nb function is used to 
get the original values for these registers so that other bits are preserved and 
the out b is used to put back modified values . 

The routine returns with the contents of the status port (ANDed with 
SDSR) . This returns the status of the carrier. 

The Interrupt Routine 

The routine t d i nt r handles the interrupts (see figure 9- 19) .  It has a single 
integer parameter vee .  A value of VECT0 (defined earlier as 3) indicates de­
vice number zero and a value of VECT1 (defined earlier as 5) indicates device 
number one. These are the interrupt location numbers assigned to the two 
serial lines . If the parameter is neither of these values , the routine calls the 
kernel' s  p r i  nt f routine to print an error message. 

After setting the device number, a wh i l e  ensures that each possible in­
terrupt from the selected serial line is handled. The contents of the interrupt 
identification port are read into the variable i i r. The wh i l e  loop continues 
as long as any bits are set in this quantity. Within the body of the w h i l e, a 
series of i f statements checks each of the three possible bits that indicate 
each of the three possible interrupts . 

If the IXMIT bit is set, it calls tdx  i nt ,  the routine to handle interrupts 
from the transmitter . If the IRECV bit is set, it calls t d r i nt ,  the routine to 
handle interrupts from the receiver . Finally, if the IMS bit is set, it calls 
tdmi  nt ,  to handle changes in status of the modem signals . 
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end 

Figure 9-19 
Td i nt r routine 

pri nt  e rror message 

The Transmitter Interrupt Routine 

The Transmitter Interrupt routine tdx i nt begins by testing the status regis­
ter to see whether the transmit circuits are ready to send the next character 
(see figure 9-20) . 

Figure 9-20 
Tdx i nt routine 

yes 
send XON 

yes 
send X(;)FF 

The tdx  i nt routine calls the i nb function to read the status register . If 
the transmit ready bit (bit number 1)  is set (equal to 1 ) ,  it clears the "busy" 
bit of t s t a t e  and executes one of three actions depending on the state of 
the driver . 
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The first possible state is TTXON, which occurs when the driver needs 
to send an XON character next. Here the TTXON bit of t s t a t e  is set 
(equal to 1 ) .  In this case, it sends the CSTART (XON) character out the 
data port and turns off the TTXON bit of t state. 

The second possible state is TXXOFF, which occurs when the driver 
needs to send an XOFF character next. The TTXOFF bit of t s t a t e  indi­
cates this state. If this bit is set, the routine sends the CSTOP character out 
the data port and turns off the TTXOFF bit . 

The third possible state is to send a regular character from the t t y's out­
put buffer. In this case, the driver tdproc sends the next character out from 
the buffer. In following text, we study how the tdproc  routine does this. 

The Receiver Interrupt Routine 

The Receiver Interrupt routine td r i nt first calls i nb to get a byte from the 
data port and put it into the variable c (see figure 9-21) .  It calls i nb to get a 
byte from the status port and put it into the variable stat us .  It then looks 
at various bits in status  to find errors . For each error it finds, it sets a cor­
responding bit in c. It calls the l i nput routine in the l i nesw table to put 
the character into the raw input queue. 

Figure 9-21 
Td r i  nt routine 

The Modem Change Interrupt Routine 

The Modem Change Interrupt tdmi  nt routine handles two cases : when the 
carrier is first detected and when the carrier is lost (see figure 9-22) . 

The tdmi  nt routine begins by checking the CLOCAL bit of t t f  l ag .  
This bit indicates whether the communications line is  being used with a mo­
dem or not. If the CLOCAL bit is set, it returns without any further action 
(no modem control) . 

Next it checks the SDSR bit (data set ready) of the status port. This bit 
gives the true condition (hardware) of the carrier as it comes through the 
DSR signal line from the modem. This determines whether the carrier is just 
coming on or just going off. 
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Figure 9-22 
Tdm i nt routine 

yes 

If the SDSR bit is set (equal to one) , the carrier must have just ap­
peared. In this case, it checks t s t a t e  to see whether the carrier bit (soft­
ware) was off. If the carrier was off, it turns the carrier state bit on in 
t s t a t e  and calls wa keup to wake the tdopen routine that was waiting for 
the carrier . 

If the SDSR bit was clear (equal to zero) , the carrier must have just 
been lost . In this case, it checks the carrier state bit in t s t a t e. If this is 
on, it checks whether the device driver is open (using the the ISOPEN bit in 
t s t a t e) .  If all of this is true, it calls the kernel function signal to send the 
"hang up" signal to the process itself, the tdmodem function to physically 
turn off the line and the t t y f  l u s h  function to empty the read and write 
buffers .  If the device was not open, it merely turns off the carrier bit in 
t s t a t e. 

The 110 Control Function 

The I/0 Control function allows processes to modify the parameters of the 
communications lines while these lines are open (see figure 9-23) .  It is called 
by the kernel when the user's process makes the 110 Control system call . 
This call is described in the programmer's reference portion of the XENIX 
manuals . It has a couple of different forms depending on the action that is 
specified. The actions are basically: 

1 .  Get the parameters for a particular terminal, placing them into a 
particular data structure called a termio. 



Device Drivers 

2.  Set the parameters for a particular terminal from a termio 
structure. 

3 .  Wait for the output queue to empty, perhaps sending a break 
condition for a quarter of a second. 

4 .  Start or  stop the output. 

5 .  Flush the input and/or output queues . 

Figure 9-23 
Td i o c t  l routine 

For this particular device driver, the 1/0 Control routine merely acts 
as an interface between the system call and the routine that actually does 
the work . It has four parameters : dev, which is the minor device number; 
c md, which specifies the particular action required; a rg, which specifies the 
arguments; and mode. 

It calls the t i ocom function, passing these parameters along to be 
processed by this routine, which places the information in the t t y  struc­
ture. If this is successful, it calls the driver's  tdpa ram routine to send the 
corresponding information to the device. 

The Procedure Function 

The driver's  procedure function performs a number of miscellaneous low 
level functions , including ending a break condition, flushing the output 
buffer, resuming the output, outputting a character, suspending the trans­
mission, blocking the 1/0, flushing the input buffer, unblocking the 1/0, 
and sending a break (see figure 9-24) . 

The tdp roc function has two parameters : t p, a pointer to a t t y  struc­
ture, and c md, which specifies the particular action to be performed. 

Time Out-The T T I ME command is designed to end a break condition or 
other type of delay. The tdp roc routine is called with this command pa­
rameter when the time expires from a T BREAK  command (another action 
of the tdproc  routine) . 

-

When the tdproc  function is given the T T I M E  command, it clears the 
TIMEOUT bit of t s t a t e  and turns off the break bit in the control port 
for the serial line . Then it jumps to the label sta rt at the beginning of the 
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Figure 9-24 
Tdp roc routine 

no characters left 
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section of code to handle the T OUTPUT command. Here it looks for charac­
ters to send to the device from the output buffer. 

Flush the Write Buffer and Resume-The commands to flush the output 
(T W F LUS H) buffer and to resume (T RESUME) are handled by the same code. 
In both cases , the routine turns off the TTSTOP bit of t s t a t e  and jumps to 
st a rt where it looks for characters to send. 

-
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Output-The T OUTPUT command sends characters that are waiting in the 
output buffer tothe serial line. 

It first checks t s t a t e  to see whether the device driver is in 
TIMEOUT, TTSTOP, or BUSY states . If so, it returns without any further 
action. 

If the routine continues, it checks the TTIO W bit of t__state and the 
character count in the output queue. If the TTIOW bit is on and no charac­
ters are in the output queue, it turns off the TTIOW bit and "wakes up" 
whatever process was waiting for output to drain from the output queue. It 
uses a "wait channel" number equal to the address of the t o f  l ag member 
of the driver's  t t y  structure. 

-

The routine next has a wh i l e  loop that tries to get characters from the 
output queue and send them out the serial line. In the conditional part of 
the wh i l e, a character is fetched from the output queue, placed in the vari­
able c, and checked to see whether it is non-negative. In the body of the 
wh i l e, the OPOST bit of t of l ag is examined. If this is on and the charac­
ter in c has an ASCII code equal to 128 (specifying a delay) , it gets the next 
character to determine the length of the delay. If the delay character has a 
negative value, the routine returns, discarding the character. If not, an i f 
statement checks to see whether the ASCII code of the character is greater 
than 128.  If so the routine sets the TIMEOUT bit and calls the kernel's  
t i meout routine and exits . 

Finally, within the wh i l e  loop, if none of these special conditions pre­
vail, the BUSY bit of t state  is set true, the character is sent out the data 
port, and the routine ends . 

Mter the wh i l e  loop, an i f  statement checks the OASLP bit of 
t state  and the relative size of the output buffer (relative to the baud rate) . 
Ifthe OASLP state bit is on and if there are "few" characters in the buffer, 
it turns off the OASLP state bit and wakes up whatever process is sleeping, 
with the wait channel equal to the address of the driver's  output queue. 

Suspend-To perform the T SUSPEND command, one statement turns on 
the TTSTOP bit of t stat e:-This is one of the three conditions that cause 
the T_OUTPUT command to return without doing anything. 

Block and Unblock-The T B LO C K  and T UNB LOC K commands help manage 
the XON/XOFF protocol for the serial line. 

For the T B LO C K  command, the TTXON state bit is turned off, the 
TBLOCK bit is turned on, and the BUSY bit of t s t a t e  is checked. If 
busy, the TTXOFF bit is turned on, and if not busy ,the CSTOP character 
is sent out the serial port. 

The T UNB LO C K  command turns off the TTXOFF and TBLOCK bits of 
t state, checks the BUSY bit. If busy, it turns on the TTXON state bit and 
returns, and if not busy, it sends the CST AR T character out the data port. 

Flushing the Input Buffer-The T R F LUSH command is performed by an i f  
statement that checks the TBLOCK bit of t s t a t e. If this bit is set 
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(blocked) , the routine returns with no further action. If not set, it continues 
into the T UNB LO C K  case where it tries to send the XON character to the de­
vice on the other end of the serial line. 

Sending a Break-The T B R EAK  command first turns on the CBREAK bit 
in the control port of the serial line, then turns on the TIMEOUT bit of 
t s t a t e, calls t i meout to cause t t  r s t a  rt to occur a quarter second later 
(HZ/4) . The t t rsta rt command in turn calls tdproc  to end the break 
condition. 

Installing Device Drivers 

264 

Let's conclude the chapter by laying out the steps for installing a new device 
driver . Many of these steps have been discussed in preceding parts of the 
chapter, but this section brings all the steps together . 

There are really two extreme cases under which you want to install a 
new device driver . One is when you acquire a new device that comes with 
its own driver and installation instructions and facilities , and the other is 
when you start from scratch with your own drivers . We are assuming the 
second case. 

There are five major steps in installing a new device driver from 
scratch. They are 

1 .  Writing the code for the device driver 

2 .  Inserting references into certain system files that are used to make 
the kernel 

3 .  Compiling a new copy of the kernel 

4.  Installing the new kernel on the hard or floppy disk 

5 .  Making a directory entry for the new driver 

Writing the Code 

The first step is to write the code. You would develop a file much like those 
discussed in the examples . This file would contain an external section in 
which various global constants and variables are declared, and it would 
have a number of functions including ones listed in the device tables, ones 
that serve as interrupt routines , and ones that support these . 

Normally, you would start with an existing driver, such as the serial 
line driver given in the XENIX manual and discussed in this chapter . 

Modifying System Files 

The next step is to modify the c .  c file . This file contains tables , variables , 
and constants that interface driver routines and structures to the kernel. 

Depending on the version that you have, this file might contain the ta-
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bles : v e c i nt sw,  i nt ma s k, s p l ma s k, bd ev sw,  c d e v s w, d i nt s w, and 
l i nesw. It contains constants that specify the number of available re­
sources , such as screens, buffers , open files , and running processes . It con­
tains variables such as : bdev c nt,  cdev cnt ,  l i ne c nt,  nb l kdev, n c h rdev, 
rootdev, p i  pedev, and swapdev. 

When a new device is installed, some of these tables may have to be 
modified. If the tables change size, some of the variables also have to be 
changed, but the constants should not be affected. 

Let's  examine the different ways that these tables might be modified. 

Interrupts-The vee  i nt sw table lists the interrupt vectors in the order in 
which they appear to the hardware. 

For the IBM PC, the Intel 8259 Interrupt Controller (see 8086/8088 
16-bit Microprocessor Primer by Christopher L.  Morgan and Mitchell 
Waite) handles eight possible different devices . The first two devices are the 
interval timer (device number 0) and the keyboard (device number 1 ) ,  which 
are hardwired through the main circuit board. The remaining six are han­
dled by signal lines on the IBM's main bus and can be connected to device 
controllers on plug-in circuit boards . 

IBM has set certain standard assignments for device interrupts by pro­
viding boards that use these interrupt signal lines . Interrupt signal lines 3 
and 4 are assigned to the two serial lines , number 5 is assigned to the hard 
disk, number 6 to the floppy disk, and number 7 to the printer . 

Interrupt number 2 is not used, at least by the version of XENIX that 
we used. Thus, room is available for one level of interrupt customization. 
Currently st ray i nt is installed here . If you had a board that used this line 
on the bus , you could replace st rayi nt in vec i nt sw by the name of your 
routine to handle interrupts from this board. 

Depending on the version of the system, the tables i ntma s k  and 
sp  lma s k  may be in the file c .  c or the file p r i  ma s k . c .  These tables give bit 
patterns to be sent to the Interrupt Controller chip for disabling interrupts 
for various devices . The second table is used by the sp l functions . 

These tables are complicated by the fact that the devices are disabled 
in a certain order so that the pattern for disabling each device includes cer­
tain bits that disable others . For the IBM XT the order is : first, nothing 
disabled; second, just the floppy and hard disks and stray; third, add the 
keyboard and printer; fourth, add the timer; and fifth, add the serial com­
munication lines . 

If you installed a new device, you would have to place it somewhere in 
this scheme. You should, of course, place it near the most comparable de­
vice of the ones already installed. For example, if you installed a third serial 
line, you would treat its interrupt just like the interrupts for the first two se­
rial lines , disabling it last . 

You should be aware that "messing" with these tables can produce 
systems that won't work properly. Of course, you should back up your sys­
tem properly before trying to install any new version of the kernel . This in­
cludes any source code files such as the c .  c and p r i  ma s k . c files . 
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Block Devices-As we have discussed previously, the bdevsw table contains 
the names of routines for the block-oriented devices . If a new block device 
is added, a new row must be added to this table and the variables bdevc nt 
and nb l kdev must be incremented. However, if you are merely replacing an 
existing driver you might have to change the names in the table. If the 
names are the same, you would not even have to change the names . In that 
case, you probably would not even have to change the c . c file at all. 

Character Devices-The cdevsw contains names of character-oriented de­
vice drivers .  Routines already discussed include open, c l ose, read,  w r i t e, 
and cont ro l .  If you wish to add another terminal, printer, or other 
character-oriented device, you have to add a row to this table and adjust the 
variables cdevcnt and n c h rdev. If you are installing a block-oriented de­
vice, it might also have a character-oriented driver that needs to be added to 
this table. 

Again, if you are merely replacing an existing driver, you may just 
change some names or you may not even need to modify the c . c file at all . 

Compiling a Kernel 

The ma ke facilities in the development system allow you to automatically re­
compile new parts of the kernel . You may have to modify the ma kef i l e  file 
to include the names of the new drivers . See Chapter 3 for details on how 
make  works and how to use it . 

After you have compiled your new driver file and the modified c • c 
file, you must relink the kernel to include these files . The file l i n k xen i x 
in lus r l sy s l conf is a shell script included in the L i n k  K i t that automati­
cally saves the old kernel and creates a new one. You probably need to add 
the name of the new driver to the ld  command in l i nk xen i  x. It should go 
after the names of the other drivers, but before the - l  option specifier . 

Making a Device Directory Entry 

The next step is to create a new file entry in the ldev directory. You need to 
be the super user (root) to do this and subsequent steps . 

If you merely want to replace an existing device driver with the same 
connections to the outer parts of the system, you may not have to perform 
this step . 

As we discussed earlier in this chapter, you use the mknod command 
(in the I et c directory) to define special files for devices .  This command al­
lows you to specify its name, type (block or character) , and major and mi­
nor device numbers . 

You should study the names assigned to other devices already in the 
I dev directory to arrive at a name that is consistent with the usual conven­
tions . For example, disks have block-oriented drivers with certain names 
like hdlll and character-oriented drivers in which this name is prefixed by an 
r, which stands for raw. 

Recall that the major device number specifies the row position of the 
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driver in the bdevsw or cdevsw table and that the minor device number is 
handled by the driver itself. 

Here is an example of the mknod command for installing a new serial 
driver name t t y1 5 as a character-oriented device with major device number 
5 and minor device number 2: 

/et c /mknod t ty1 5 c 5 2 

Testing a Kernel 

The next step is to test the new version of the kernel by installing it on the 
floppy disk system. 

First copy it from the configuration directory / u s r / sy s / conf  to the 
root directory, giving it the name x en i x • new: 

cp  /us r /sys/conf/xeni x /xeni x . new 

Halt the system with the command: 

# ha l t sys (as  t he  super use r)  

You eventually get the reboot or  shut off prompt. Press any key to get 
the boot prompt. Now type xen i  x .  new and press return . The system should 
boot up with the new version of XENIX. You can test it now. 

You should realize that certain commands , such as ps and pstat  read 
the file / x e n i  x and do not work properly if used as usual. For the ps com­
mand, the -n option allows you to specify a different kernel file; such as 
/ xen i  x .  new. 

Installing the Kernel on the Hard Disk 

When the new kernel is thoroughly tested, the hd i n s t a  l l  command in the 
directory / u s r / s y s / conf  saves the old kernel file and installs the new one. 

Summary 

In this chapter we have studied some of the innermost parts of the system, 
its device drivers . These drivers consist of a number of routines and data 
structures that we studied in great detail. We saw how these routines and 
structures are connected to the kernel via device tables described in system 
files . We have studied the functions of these routines and structures and 
how they interact with other routines and structures in the kernel. We also 
discussed the special device files that connect these drivers to XENIX's di­
rectory system. 

We saw that character and block devices are handled differently with 
different sets of routines and structures . 
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We investigated a case study of a device driver for a serial communica­
tion line that is connected with a terminal . We saw how this device driver's  
routines connected to special built-in terminal control routines as  well as  the 
usual device tables in the kernel . 

Finally, we discussed how to install new device drivers by recompiling 
the kernel . 

Questions and Answers 
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Questions 

Answers 

1 .  What is the role of the XENIX kernel? 

2.  How do you install new devices in a XENIX system? 

3 .  How can a program send information to an installed device on a 
XENIX system? 

4.  What are some system tables that XENIX uses to manage its 110 
devices? 

1 .  The XENIX kernel is the central part of the operating system. It 
contains routines to handle system calls and hardware interrupts .  
I t  contains the system's device drivers , which handle the lowest 
levels of 110. 

2 .  To install a new 110 device in XENIX, you must develop or 
otherwise acquire a device driver , which is a set of routines to 
handle certain standard transactions between the system and the 
device, you must modify certain system tables , you must compile a 
new version of the kernel that includes these routines and these 
changes , you must install the new kernel , and you must create a 
new special device file in the directory system. 

3 .  To send information directly to a device, you can open its device 
file and write to it . This can be done through ordinary file utilities 
or from programs that use ordinary file system calls . 

4.  Some system tables that XENIX uses to manage its 110 devices 
are bdevsw, which contains a list of its block-oriented device 
drivers , and cdevsw, which contains a list of its character-oriented 
device drivers . The vee  i ntsw  table contains a list of interrupt 
service routines . 
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Yacc 

This chapter explores two powerful XENIX programming tools, Yacc (pro­
nounced yak) and Lex. Both of these tools are programs that make other 
programs according to specifications . Lex uses regular expressions for its 
specifications and Yacc uses grammars. In combination, these two tools can 
make translators, compilers, and other programs that take actions accord­
ing to language that is given to them. 

In Chapter 4, we introduced Lex as a means of producing stand-alone 
filter programs. In this chapter, we see how Lex can be used within a larger 
programming environment, where it provides the first level of analysis for 
textual input to a program. 

We see how Lex helps specify the way a C program recognizes charac­
ters and how it groups them into larger units, such as words represented by 
tokens . Then we see how Yacc specifies the way a C program recognizes 
groups of tokens and arranges them in a hierarchical structure, according to 
some rules of grammar. 

We study several examples, including a program that understands a 
simple subset of English. We start out small and build this into a program 
that can carry on a dialogue in simple English with a user . 

We do not try to explain every feature of Yacc and Lex, but rather 
provide a sound foundation for further reading and exploration. We finish 
the chapter with a small example of how Yacc and Lex can handle numeri­
cal information. 

Yacc is a program that was originally designed to make programming lan­
guage compilers. These are programs that take input in the form of source 
code in some programming language and produce it as output code in some 
target language. It can be the basic starting point for writing your own 
BASIC compiler, C compiler, Pascal compiler, or a compiler for your own 
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XYZ processing language. It is just a tool, for not all of the work required 
to make a language compiler can be done by Yacc alone. 

The name Yacc stands for Yet Another Compiler Compiler. That is, it 
is a compiler that makes compilers . However, Yacc is capable of making 
more than language compilers . It can help make language interpreters or 
any program that is controlled by language. This is important to the area of 
artificial intelligence and in modern programming in general. 

Lex is a program that makes lexical analyzers. These are programs that rec­
ognize character strings . However, programs produced by Lex do more. 
They can take specified actions based on what they find. 

In Chapter 4, we saw how Lex can be used to make filters, programs 
that send textual output to the standard output which is directly determined 
by textual input coming from the standard input . In this case, the actions 
normally consist of formatted print statements . 

In this chapter , we use Lex to produce C functions that return numeri­
cal values called tokens that depend on standard textual input given to it . 
Such programs sometimes are called tokenizers. 

Comparison Between Lex and Yacc 

In many ways Y ace is similar to Lex. Both programs expect as input a file 
that contains a set of specifications , and both produce as output a file 
containing C routines that can be compiled and run (see figure 10- 1 ) .  Essen­
tially, Lex produces filters (string analyzers) and tokenizers and Yacc pro­
duces parsers (syntax analyzers) . A tokenizer and a parser can be combined 
to form a translator program. 

An English Analogy 
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To understand how Yacc and Lex work, let 's  explore the strong similarity 
between the way they work and the way we understand natural languages 
such as English. This is the basis for the main example of this chapter . 

Recognizing individual English words corresponds to Lex's job, where­
as organizing them into sentences (often called parsing sentences) corres­
ponds to Yacc's job .  In fact, as we see in our first example, Lex and Yacc are 
actually powerful enough to analyze and translate English-like sentences with 
English-like grammar. However, a complete analysis and translation of Eng­
lish according to a few neat rules is currently beyond the reach of even 
linguists. 
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Figure 10-1 
Lex and Y ace files 

(vacc program)-! Yacc 1 -(y.tab.c) 

( Lex program)- � --( lex .yy.c ) 

(y t•; o) J 0-(• ,t) 

lex.yy.c 

Let's begin with a simple example of what Yacc can do with a small 
subset of English. We see how Lex recognizes English words and Yacc puts 
these words together into phrases . 

Grammar Symbols 

In English, grammar is built using parts of speech such as : sentences ,  predi­
cates , subjects, objects, verbs, nouns, noun phrases , numerals, and adjec­
tives . In the Yacc language, these same ideas are represented by grammar 
symbols . 

In our Yacc example, we assign single letter names to these grammar 
symbols, but the names can be any reasonable length you want. 

Table 10- 1  shows the grammar symbols that we choose to have for our 
simple subset of English. 

Table 10-1 
Grammar symbols for simple subset of English 

symbol 

v 
N 
M 

c 

name 

verb 
noun 
modifier (adjective) 
count (numeral) 
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s 
p 
a 
b 
r 

Table 10-1 (cont.) 

sentence 
predicate 
subject 
object 
noun phrase 

The first four symbols V, N, M, and C are capitalized. These represent 
parts of speech, such as verbs, nouns, and modifiers that are words . These 
words are recognized by the routines generated by Lex and turned into to­
kens (integer value representations) . These tokens are in turn sent to the 
parsing routine generated by Yacc. Grammar symbols that correspond to 
tokens are called terminals because they are at the lowest levels of syntax. 
By syntax we mean grammar. 

The next five symbols (s , p ,  a, b,  and r) are called nonterminals and re­
side at higher levels of the syntax. These are groups of terminals , such as 
sentences , subjects, objects, predicates, and noun phrases . These symbols 
are organized in a tree (hierarchical) structure. Sentences are at the highest 
and noun phrases at lower levels . We now explore how to specify this hier­
archy to Yacc. For example, the sentence T homa s t a ke s  t h ree red 
ma rb l e s . can be organized in the tree shown in figure 10-2. 

Syntax Rules 

The grammatical specifications for Yacc are given in a tabular form as a set 
of syntax rules (the grammar) with corresponding action rules (how they are 
translated or acted on) . 

For English, the normal word order for a sentence is subject followed 
by predicate. Of course, imperative sentences (that is , commands) have only 
a predicate. Here is how this could be specified in the Yacc language: 

s a P 
p 

Here s (standing for sentence) is in the leftmost column, indicating 
that it is being defined. It is followed by a : in the middle column, indicat­
ing that its definition follows. The definition consists of a, standing for 
subject, then p for predicate. On the next line, the definition continues with 
a vertical bar in the middle column, indicating that there is another possible 
expansion of s. This is called an alternative expansion. Here the alternative 
is given as p in the right column. This corresponds to a command sentence 
like Ha l t  • made of just a predicate. On the next line, the ; indicates that 
the definition for s ends . 
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Figure 10-2 
Parsing an English sentence 

three red marbles 

The first line of this definition corresponds to the tree structure in fig­
ure 10-3(A) and the second line corresponds to the tree structure in figure 
10-3(B) . 

s (sentence) 

/ '\.  
a (subject) p (predicate) 

(A) 

Figure 10-3 
Trees for sentences 

s (sentence) 

I 
p (predicate) 

(B) 

Grammar rules like this one are called productions. Here is how this 
rule might appear in a book on compiler design: 

s -> a p l p 

In English, we know that a predicate consists of a verb and such things 
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as adverbs,  objects , and prepositional phrases . In our simple subset, we al­
low it to consist of a verb followed by an object : 

p v b 

Notice that the right-hand side of this rule has a capital letter (denot­
ing a terminal) followed by a lowercase letter (denoting a nonterminal) . The 
terminal (V) comes from the Lex routine (more on this later) , while the 
nonterminal (b) is defined further within our Yacc program (next) . 

Figure 10-4 shows the tree structure for our simple type of predicate . 

Figure 10-4 
Tree structure for predicates 

p (predicate) 

1 \  
V (verb) b (object) 

Here is how this rule would appear as a production in a grammar : 

p -> v b 

In English, a subject or object of a sentence consists of a noun phrase 
that is broken down further into nouns and their modifiers . In the Yacc lan­
guage, this is written with the following three rules . 

a 

b 

r 

r 

r 

N 
M N 
C N 
C M N 

Here, subjects (a) and objects (b) are both defined as noun phrases ( r) .  
You might wonder why we need three symbols , a, b ,  and r ,  that do the 
same thing . Making a and b different allows us to better determine what ac­
tions to take, and having r provides an economy in maintaining the pro­
gram, in that it makes the program more compact and understandable as 
we shall see . 
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Figure 10-5 shows the trees for our subjects , objects , and noun 
phrases . 

Figure 10-5 
Trees for subjects, objects, and noun phrases 

a (subject) b (object) 

I I 
r (noun phase) r (noun phrase) 

r (noun phrase) 

I 
r (noun phase) 

I �  
r (noun phrase) 

1\ 
N (noun) M (modifier) N (noun) C (count) N (noun) 

r (noun phrase) 

/I� 
C (count) M (modifier) N (noun) 

Here is how these rules would appear as productions in a grammar : 

a -> r 
b -> r 
r -> N M N : C N : C M N 

Of course, English is more complicated than we have described here 
because it has more parts of speech with more rules and is filled with 
strange exceptions to almost any rules that have been applied to it . Thus, a 
complete set of rules for the English language would be huge . 

Parts of a Yacc Program 

Now let's organize this grammar into a Yacc program. Such a program 
consists of three parts : a declarations section , a rules section , and 
user routines. Each part is separated by %% on a single line . 

Rules Section 

Let's begin with the middle section, the rules section . We describe the rules 
section that makes our grammar rules into a working program that recog­
nizes English sentences . 
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We need to place these rules in the middle section of a Yacc program. 
We also need to specify some actions to take as each part of speech is recog­
nized. In a Yacc program, the actions are fragments of C code written to 
the right of the corresponding syntax rules in curly brackets . For example, 
here is a rules section with some "diagnostic" print statements for our sim­
ple English example: 

s 

p 

a 

b 

r 

a p ' \n '  
P ' \n '  
e r ro r  

v b 

r 

r 

N 
M N 
C N 
C M N 

{pr i nt f (" dec l a rat i ve sentence\n" ) ; }  
{p r i nt f (" i mperat i ve sentence\n" ) ; }  
{pr i nt f (" e r roneous sentence\n") ; }  

{pr i nt f (" pred i cate\n") ; }  

{p r i nt f <" sub j ect \n") ; }  

{p r i nt f ("  ob j ect \n" ) ; }  

The previous listing forms the rules portion of a Yacc program. It sits 
in the center of the full Yacc program. As we go along, we add the other 
sections to make the program run. 

Notice that we have added an e r ro r  line to the rule for sentences . This 
executes when the program finds a syntax error. We have also added 
newline characters to the end of our valid sentences . 

Let's preview what these rules do . As the final program recognizes 
each part of speech, it prints out a message announcing that part of speech . 
That is , when you type a sentence, the resulting program prints an analysis 
of that sentence. Here is a sample of what these rules do when they are part 
of such a complete program: 

? Thomas takes t h ree red ma rb l es . �  
noun : Thomas 

sub j ect 
ve rb : takes 
a rt i c l e o r  count : t h ree 
mod i f i e r :  red 
noun : ma rb les  

ob j ect 
pred i cate 
dec l a rat i ve sentence 
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First the program recognizes the noun Thoma s that it says is the 
subject . Next the program recognizes the verb t a kes, the count t h ree, 
the modifier red, and the noun ma rb l es .  Now that it has all of the 
noun phrase t h r e e  r ed ma rb l es ,  it recognizes that phrase as the 
object . Because it has a verb and an object , it acknowledges the predi­
cate. Finally, because it has a subject and a predicate, it announces the 
full sentence . 

Of course, the program won't do that yet. We haven't even included 
our word recognizer (the Lex program) . Such a word recognizer would de­
liver the following sequence of tokens to the parser : 

N V C M N 

This stands for noun (Thomas) , verb (takes) , count (three) , modifier 
(red) , noun (marbles) . 

This simple set of actions doesn't do the kind of work required for a 
real application, but this level of action is handy for checking to see how a 
particular grammar works as it is being developed . This way we can test our 
ideas in a systematic manner as we develop them. In subsequent develop­
ment, we replace these actions with more useful ones . 

Yacc Declarations 

Now let's look at the first section of a Yacc program, the declarations sec­
tion. Here, we can define our terminals and any global variables that we 
need in our actions . 

In this example, the terminals are V, N, M, and C, standing for verb , 
noun, modifier, and count, respectively. These are integer-valued constants 
called tokens because they represent grammar symbols that are recognized 
by Lex and passed onto Yacc. 

The t o ken statement causes each of them to be assigned its own par­
ticular constant values . These values are greater than 256 so that actual 
characters can be passed along, too, by sending their ASCII values . No con­
flict arises because ASCII codes must fall within the range 0-255 . 

In our example, the token statement could be: 

%token V N M c 

The % introduces the token  statement. It is followed immediately by 
the keyword to ken.  Following this is a list of all grammar symbols that we 
wish to assign tokens (numerical values) . When Yacc compiles this state­
ment in a Yacc program, it assigns a separate token value to each symbol. 

The programmer then can use these names throughout the program 
without concern for their actual numeric value. In following text we see 
how Lex "returns, these values to Yacc. 
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User Subroutines 

The last section of a Yacc program contains supporting routines such as a 
main program, error handling routines , and the Lex program. Let's begin 
with a minimal set of these routines so that our program can stand by itself. 

In reality, you can leave this whole section empty if you invoke the 
Y a c c  library when you compile the program. However, these functions are 
easy to write and we wish to gradually gain more control over our program, 
so we do not use the Y a c c  library with our program. 

Main-Like all C programs, the main program is called main. It is the start­
ing point for the program. In the first version of our example, the main 
program calls yypa rse  the name of the routine that Yacc generates . This C 
function is called a parser because it is said to parse the grammar, meaning 
that it separates the incoming text into parts of speech. Here is what our 
main program looks like : 

ma i n O  
{ 
p r i nt f ("?  ") ; 
yypa rse O ;  
} 

This particular version prints a question mark, calls yypa rse, then re­
turns . Yypa rse  parses the text according to our rules . 

Error Functions-Two error functions are needed: yye r ro r  and yyw rap. 
The first one is invoked when a running Yacc program discovers an error, 
and the second is invoked to "wrap up" things at the end . 

In the first version of our example, we make these empty routines : 

yye r ro r O  
{ 
} 

yywrap O 
{ 
} 

The Lex Function 

The Lex routine can be defined in this section as well . It is called yy l e x .  
Again, its purpose is  to create tokens for Yacc . 

For starters, let's make this empty too . 

yy lex O 
{ 
} 
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Compiling a Yacc Program 

Let's put everything we've done so far into a file eng1 . y and compile it . 
Then we gradually add features until our program behaves in a responsible 
manner. 

Here is how the Y ace program looks all together: 

%token V N M C 
%% 
s 

p 

a 

b 

r 

%% 

ma i n O  
{ 
p r i nt f ("? " ) ; 
yypa rse O ;  
} 

yye r ro r O  
{ 
} 

yyw rap O 
{ 
} 

yy l e x O 
{ 
} 

a p ' \ n ' 
P ' \ n ' 
e r ro r  

v b 

r 

r 

N 
M N 
C N 
C M N 

{p r i nt f < "  dec l a rat i ve sent ence\n" ) ; }  
{p r i nt f < " i mperat i ve senten c e \ n" ) ; }  
{p r i nt f ( "  e r roneous sent enc e \ n" ) ; }  

{p r i nt f ( " pred i c a t e \n") ; }  

{p r i nt f ( " sub j ect \n") ; }  

{p r i nt f < "  obj ect \n") ; }  

The %% symbols separate the program into its three sections . It is im­
portant to have a blank line after the %% that separates the rules from the 
user subroutines . Otherwise, Yacc might run right over your user routines . 

To compile these programs, we issue the following Yacc statement: 
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yacc  eng1 . y  

This produces a file called y .  tab . c that contains over 500 lines of C 
code. This C code consists of a few C functions, which remain the same no 
matter what your Y ace program, that read some data which is also included 
and which depends upon your original Y ace program. 

The resulting C program y .  tab . c can be compiled into a binary file 
by issuing the following command to the C compiler : 

c c  y . t ab . c  

To run it , just type a .  out.  However, the results will not be spectacu­
lar . In fact the program just prints the message e r roneous sentence  and 
hangs there until you press the interrupt key (normally delete) . 

How Yacc Works 
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At this point we see how the resulting C program works . This is valuable if 
you want to debug problems or achieve the best performance from these 
tools . 

The command: 

yacc -v eng1 . y  

produces a "verbose" listing in a file called y .  output.  This file describes 
the internal states that your program uses to do its job .  

Here i s  a listing of  y . out put from this command: 

state Ill 
$accept : s Send 

e r ro r  s h i ft 4 
v s h i ft 6 
N s h i ft 7 
M s h i ft 8 
c s h i ft 9 
• e r ro r  

s goto 1 
a goto 2 
p goto 3 
r goto 5 

state  1 
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$ac cept : s $end 

$end accept 
• e r ro r  

s t a t e  2 
s a_p \n 

v s h i ft 6 
• e r ro r  

p go to  1 0  

state  3 
s p_\n 

\n  s h i ft 1 1  
e r ro r  

s t a t e  4 
s e r ro r  (3 ) 

reduce 3 

state 5 
a r ( 5 ) 

reduce 5 

state 6 
p v b 

N s h i ft  7 
M s h i ft  8 
c s h i ft  9 

e r ro r  

b go to  1 2  
r go to  13  

state  7 
r N (7)  

reduce  7 

state 8 
r M N 
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N s h i ft 1 4  
e r ro r  

s t a t e  9 
r C N 
r C M N 

N s h i ft 1 5  
M s h i ft 1 6  
• e r ro r  

s t a t e  1 0  
s a p_\n 

\n s h i ft 1 7 
• e r ro r  

s t a t e  1 1  
s : P \n_ ( 2 )  

• reduc e  2 

state  1 2  
p : v b (4) 

• reduc e  4 

s t a t e  1 3  
b r (6) 

• redu c e  6 

s t a t e  1 4  
r : M N (8) 

• redu c e  8 

s t a t e  1 5  
r : C N (9) 

• redu c e  9 

s t a t e  1 6  
r C M N 

N s h i ft 1 8 
• e r ro r  
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s t a t e  1 7  

s t a t e  1 8  

s : a p \ n_ ( 1 ) 

• reduc e  1 

r C M N ( 1 0)  

• reduc e  1 0  

9/1 27 t e rmi na l s ,  5 / 1 50 nont e rmi na l s  
1 1 /300 g ramma r ru l es ,  1 9/550 states 
0 s h i f t / redu c e , 0 reduc e / reduce conf l i ct s  repo rted 
1 0/ 1 90 wo r k i ng set s u sed 
memo ry :  states , et c . 86/3800 , pa r s e r  6/ 2000 
7/350 d i st i nct  looka head set s 
0 ext ra c l osures 
1 5  s h i ft ent r i es ,  1 except i ons 
7 goto ent r i es 
0 ent r i es saved by goto defau l t  
Opt i m i z e r  s pa c e  used : i nput 41 /3800 , output 23 / 2000 
23 t a b l e  ent r i es ,  1 ze ro 
ma x i mum spread : 260 , max i mum offset : 258 

This output describes a 19-state finite state machine for analyzing 
t o ken input. A finite state machine is an abstract computing machine that 
we can implement by a computer program. Such a machine consists of a set 
of states with transitions between these states that are caused by input. 

We now go through our parser in detail, explaining the basic theory 
behind its operation and design. This explanation shows all its states and 
how its state transitions depend on the tokens that it receives as input. 

The Augmented Grammar 

The operational basis of a Yacc program is a set of syntax rules derived 
from the grammar specified in the Yacc source code. The following list 
shows the derived rules for our English subset . We have pulled these rules 
from the verbose Yacc output listed previously. 

(0)  $a c c ept -> s Send 
( 1 ) s -> a p \ n  
( 2 )  s -> P \n 
(3)  s -> e r ro r  
(4)  p -> v b 
( 5 )  a -> r 
(6)  b -> r 
(7)  r -> N 
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(8)  r -> M N 
(9) r -> C N 
( 1 0 )  r -> C M N 

Each alternative is listed separately. The preceding list presents these 
"productions" using the more conventional -> notation instead of Yacc's : .  

This is called the augmented grammar because it has an extra produc­
tion for a c c ept.  The a c c ept symbol signals the end of the parsing. The 
parser finishes when it recognizes the $end character (ASCII code - 1) at 
the end of this added production for a c cept .  

You should examine carefully the verbose output to see where these 
rules occur . They are numbered within parentheses in this output to the 
right and they appear in an order according to where they are found within 
the finite state machine. The preceding list just reorders and reformats 
them. For example, look up rule number (4) in the Yacc verbose output. 

The States 

Each state of the parser is defined in terms of progress in recognizing its 
grammatical productions . As the parser receives tokens from the lexical an­
alyzer, it tries to match them with the right-hand sides of productions , using 
four possible operations : a c c ept, s h i ft ,  reduc e, and e r ro r. Successful 
matching of tokens is handled by the s h i ft operation, successful recogni­
tion of an entire production is handled by the reduce  operation, and suc­
cessful match of an entire sentence is handled by the a c cept operation. If 
the parser receives a token that it doesn't want, it uses the e r ro r  operation. 
We describe these operations in detail in following text, but for now, let 's  
continue with the states . 

The parser starts out at state 0. As soon as it gets a token, the parser 
must try to find a matching rule, that is, a rule (production) with that token 
as the first symbol on its right-hand side. For example, a token C matches 
the first symbol of the right-hand sides of both rules (9) and ( 10) .  In that 
case we say that the parser has made progress in recognizing either rule (9) 
or rule ( 10) .  

As the parser gets more tokens, it makes more progress . I f  it gets an M 
and then an N, it progresses all the way through the right-hand side of rule 
(10), and thus recognizes the left-hand side of (10),  which is the nonterminal r.  

Recognizing the nonterminal r might mean progress through rules (5) 
or (6) . We see exactly what it does do in following text , but this should give 
you an idea of what we mean by progress in recognizing productions . 

In the verbose listing, immediately following each state's  title line are 
some lines indicating this progress . An underscore (_) acts as a place mark­
er , indicating where the parser now is in the productions . Officially, a pro­
duction with such a place marker is called an item. 

Here are some examples in the verbose listing. State 0 looks like this : 

state 0 
$accept : s Send 



e r ro r  s h i ft 4 
V s h i ft  6 
N s h i ft  7 
M s h i ft 8 
c s h i ft 9 
• e r ro r  

s goto 1 
a goto 2 
p goto 3 
r goto 5 

It has the single item: 

$accept : _s Send 

Advanced Tools for Programmers 

The underscore before the s indicates that the parser has found noth­
ing yet in the production 

$accept -> s Send 

but is expecting an s. 
State 1 has the item: 

$accept : s_Send 

The position of the underscore indicates that the parser has found an 
s and is expecting to receive a $end in that production. 

State 2 has the item: 

s : a_p \n 

The position of the underscore indicates that the parser has found an 
a in the production 

s -> a p \n  

but not a p.  
State 5 has the item 

a : r ( 5 )  

which indicates that the parser has found an r in  the production a -> r 
and thus is done with that production. This is rule number 5 (as indicated to 
the right of the item) . 

State 4 has the item 
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s : e r ro r  (3 ) 

which indicates that the parser has found an error that it recognizes as a 
kind of s (rule 3-bad.ly formed sentence) . 

State 9 has two items: 

r C N 
r C M N 

This indicates that the parser has recognized a token C that could occur 
in either rule 9 or rule 10.  Here, the parser "hedges its bets" by keeping all 
possibilities open. 

Let's organize all of these states into what is called a transition dia­
gram (see figure 10-6) . You can see that this diagram appears to be a bit 
more complex than the rules that generated it . 

Figure 10-6 
Transition diagram for simple English 
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Deriving the States 

In this section we investigate how Yacc translates your Yacc program into a 
finite state machine. Although this understanding is not absolutely neces­
sary, it is helpful to an overall insight into the capabilities and limitations of 
translation programs that can be constructed using Yacc. 

We now show how to derive the states that are given in our verbose 
Yacc output. We use the augmented grammar rules . The method starts out 
with state 0 and applies repeated "closure" operations .  

The Starting Point-We start with rule 0 

$a c c ept -> s Send 

and make the item 

$a c c ept -> __ s Send 

which indicates the beginning of the $a c cept production. We call this the 
primary item. It generates the entire finite state machine by a series of clo­
sure operations that we describe next. 

When the underscore is in the beginning position of an item, we call it 
an initial item. The primary item is the first initial item. 

The Closure Operations-There are two types of closures , one to complete 
a state and another to get all the states . As we saw from examining our ver­
bose output, each state is really one or more items, that is, a set of items. 
The first type of closure adds items to a state until we can add no more, and 
the second type of closure adds states until we can add no more. 

Oosing Each State-Now let's look at the first type of closure. Here we 
take the closures of sets of items by repeatedly including initial items for 
each production of any symbol that is immediately to the right of an 
underscore. 

For example, for the first item, the symbol s is to the right of the un­
derscore, thus we look for productions that expand s. This gives the addi­
tional items: 

s -> __ a p \ n  
s -> _p \n 
s -> e r ro r  

These give rise to  initial items for productions that expand a and p. 
They are 

a -> r 
p -> __ v b 
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Again, we take a closure, adding initial items for r. We cannot add 
anything due to V because it is a terminal. That is , it does not appear on the 
left side of any production. 

Here is the complete set of items for state 0: 

$accept -> _s Send 
s -> _a p \n 
s -> _p \n 
s -> e r ro r  
a -> r 
p -> _v b 
r -> N 
r -> M N 
r -> C N 
r -> C M N 

These represent all the rules that might come from state 0, depending 
on what the next token is . 

The Yacc output only lists the first item because all the rest are gener­
ated from it , but we need them to complete our analysis . Yacc keeps these 
internally. 

Finding All States-Now let 's  explore how to make new states . This is the 
second type of closure . Here, we try to move the underscore over one place . 
This corresponds to recognizing grammar symbols . For example, state 1 is 
generated by recognizing an s and thus moving the underscore over the s in 
the first item in state 0. This gives : 

$accept -> s_Send 

This set cannot be further enlarged by closure because there are no 
nonterminals to expand on the right of the underscore . 

State 2 can be generated from state 0 by recognizing an a and thus mov­
ing the underscore across the a in rule 1 .  This gives the item: 

s -> a_p 

Because p is to the right of the underscore, we also get : 

P -> _v b 

No more closure is possible, thus we get the following two items for 
state 2: 

s -> a_p \n 
p -> v b 
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Producing state 9 is interesting because the underscore moves in two 
items at once. Moving the underscore across a C in the last two items gives 
the following two items: 

r -> C N 
r -> C M N 

That is all there is in state 9 because only terminals sit to the right of 
the underscore . 

The following list shows all 19  states . Notice how each one corre­
sponds to a different place on the diagram and how the diagram displays the 
rules in a pictorial form. For example, state 2 defined by 

s -> a_p \n 
p -> v b 

sits after an edge from state 0 labeled a and before edges labeled p that go 
to state 10  and an edge labeled V leading to state 6 that leads to an edge la­
beled b. 

state flJ 

state 1 

state 2 

state  3 

state 4 

state 5 

state  6 

$accept -> _s $end 
s -> _a p \n 
s -> _p \n 
s -> e r ror  
a -> r 
p -> _v b 
r -> N 
r -> M N 
r -> C N 
r -> C M N 

$accept -> s $end 

s -> a_p \n 
p -> _v b 

s -> p_\n 

s e r ro r  

a r 

p v b 
b -> r 
r -> N 
r -> M N 
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r -> C N 
r -> C M N 

state 7 
r -> N 

state  8 
r -> M N 

state 8 
r -> C N 
r -> C M N 

state 1 0  
s -> a p_\n 

state 1 1  
s -> P \n_ 

state 1 2  
p -> v b 

state 1 3  
b -> r 

state 1 4  
r -> M N 

state 1 5  
r -> C N 

state 1 6  
r -> C M N 

state 1 7  
s -> a p \n_ 

state 1 8  
r : C M N 

If we throw out all the items that are initial (underscore at the initial 
position) , but keep the very primary item (even though it is initial) , we get 
the items listed under the states in the verbose Yacc output. These restricted 
items form what are called kernel items. 

In practice, the situation is a bit more complicated because the parser 
sometimes needs to know what comes after an item to know how to handle 
that item properly. Thus, Y ace might have to divide some states into small­
er states that keep track of "lookahead" information. However, this is not 
a problem here. See Compilers: Principles, Techniques, and Tools by Aho, 
Sethi, and Ullman for a much more detailed discussion of the various meth­
ods for generating states.  

The Transitions 

In the verbose Y ace output, each state has a list of possible transitions from 
that state according to what symbol it recognizes next. You can see what 
they are by examining the full set of items for that state. Any symbol that is 
immediately to the right of an underscore gives rise to a transition. For 
those items, move the underscore across that symbol (that is, "recognize" 
the symbol) , then find the state to which these new items belong. 
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For example, state 0 consists of the following items: 

$ac c ept -> _s $end 
s -> _a p \ n  
s -> _p \n 
s -> e r ro r  
a -> r 
p -> _v b 
r -> N 
r -> M N 
r -> C N 
r -> C M N 

Thus, the parser that Y ace generates has transitions on the symbols s,  
a, r, e r ro r, r ,  V,  N, M ,  and C .  For example, if  the parser receives a 
t o ken N, it, in effect, moves the underscore across the N, turning the sev­
enth item into the item for state 7, thus leading to the transition from state 
0 to state 7. This is one of the edges of the transition diagram. At this point 
it has recognized the entire right-hand side of rule 7 and thus the grammar 
symbol r, a nonterminal. 

We see that the parser can recognize terminals, and from these, can 
recognize nonterminals . Let's look at some more examples . 

Recognizing an s moves the underscore across the s, changing the first 
item into an item that belongs in state 1 ,  thus it gives a transition from state 
0 to state 1 .  This is on the first line of the diagram. 

Skipping down to the transition on the symbol C, we have already seen 
that moving over it transforms the last two items into a total of two items, 
both in state 9,  thus giving the transition from state 0 to state 9,  which can 
be found toward the bottom of the diagram. 

The Parsing Operations 

The parser that Y ace generates is a table-driven program which uses the 
same algorithm every time. When you run Yacc on a Yacc program, it gen­
erates this table and packages it with a predesigned parse function and any 
code that you may include in your Yacc source code program. 

The parser generated by Y ace (see figure 10-7) reads input as tokens 
from an input queue (buffer) that is fed by the yy l e x  function. The parser 
uses a stack where it stores pairs (X , s) consisting of a grammar symbol (X) 
and a state number ( s) . 

The parser begins with the pair ( - 1  , 0) on the stack, indicating an 
empty grammar symbol and state zero. 

The parser performs four different operations: 

1 .  a c c ept 

2. s h i f t  

3 .  reduce  

4. e r ro r  
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Stack 

Figure 10-7 
Model of the parser 

Pars ing  
Algor i thm . . . . .  . 

Parsing Table 

The parser stops when it finishes an a c c ept or e r ro r  operation . Let's 
examine how each of these works . To truly understand, you have to go 
through some examples , as we do in following text . 

Accept-The a c c ept operation is performed when the parser reaches the 
end of the $acc ept production. This signals a successful parse of a sen­
tence. When this happens, the parser returns to the routine that called it . 

Shift-The s h i ft  operation is performed when the parser recognizes a new 
token at the front of the input queue. It removes this token from the input 
queue and pushes it onto the stack with the current state. The parser then 
goes to a state specified by the parsing table . 

Reduce-The reduc e  operation is performed when the parser recognizes a 
production. At this point the symbols on the right-hand side of the produc­
tion can be found on the stack with the states where they occurred. The 
reduc e  operation pops this information off the stack, then goes to the state 
indicated by the parsing table according to the symbol on the left-hand side 
of the production and the state uncovered on the stack. It then pushes the 
symbol on the left-hand side of the production onto the stack with the new 
state. This rule definitely requires examples , so hold on ! 

Error-The e r ro r  operation is performed when the parser cannot recog­
nize what has been given to it . It that case, it pops its stack until it enters a 
state where the error is legal, then tries to execute the corresponding action. 

The Parsing Table 

The parsing table is a two dimensional array whose rows are indexed by the 
states and columns are indexed by the grammar symbols . Each entry is 
assigned one of the four operations . Conventionally, a blank denotes the 
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e r ro r  operation. Entries in columns headed by terminals can be assigned 
a c c ept,  s h i ft ,  reduce,  or e r ro r  operations . Entries in columns headed 
by nonterminals can be assigned either e r ro r  or a state number (called a 
goto to that state) . 

For entries assigned the a c c ept or e r ro r  conditions, there are no fur­
ther parameters.  Entries assigned the s h i ft  operation are assigned the state 
number where they are to go to . Entries assigned the reduc e  operation are 
assigned the number of the grammar rule that they are to use . 

The verbose output of Y ace gives the entries of this parsing table in 
human readable form. For terminals it gives the grammar symbol followed 
by an operation name and any parameter . For nonterminals , it gives a 
goto followed by the state that should be used by a reduc e  operation. 
When we study our example, we will see how this works . 

See table 10-2 for the parsing table for our simple English example as 
specified by the verbose Y ace output . 

Table 10-2 
Parsing table for simple English program 

v N M c "- n  $end s a b p r error 

0 s6 s7 s8 s9 2 3 5 4 
1 accept 
2 s6 10  
3 s l l 
4 r3 r3 r3 r3 r3 r3 
5 r5 r5 r5 r5 r5 r5 
6 s7 s8 s9 12  13  
7 r7 r7 r7 r7 r7 r7 
8 s 14  
9 s 1 5  s 1 6  

10  s 17  
1 1  r2 r2 r2 r2 r2 r2 
12  r4 r4 r4 r4 r4 r4 
1 3  r6 r6 r6 r6 r6 r6 
14  r8  r8 r8 r8 r8 r8 
1 5  r9 r9 r9 r9 r9 r9 
1 6 s 1 8  
17  r 1  r 1  r 1  r 1  r 1  r 1  
1 8  r lO  r 10  r lO  r 10  r lO  r lO  

Entries that are assigned the e r ro r  operation are blank. Entries as-
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signed the a c c ept operation are filled in with the word ac c ept.  There is 
only one of these, namely the entry for state 1 with symbol $end. Entries 
assigned the s h i ft  operation are filled in with an s followed by the number 
of the new state. Entries assigned the reduc e  operation are filled in with an 
r followed by the number of the rule that is being used to make the reduc­
tion. A usual point of confusion is between the state numbers that follow 
the s h i ft  operation designator and the rule numbers that follow the 
reduce  operation designator. 

A Parsing Example 

The parser begins with state 0 on the stack and a string of tokens in the in­
put queue. It executes s h i ft  and reduce  operations until it encounters an 
a c c ept or e r ro r  operation. When this happens, it stops. 

Let's  follow the analysis of a particular string through the parser with 
this particular parsing table. 

Suppose we have a sentence such as : 

Thomas takes  t h ree red ma rb l es . \n 

A lexical analyzer should break it into the following series of tokens 

N V C M N \n  

because the first word Thomas is a noun, the second word t a ke s  i s  a verb , 
the third word t h ree is a count, the fourth word red is a modifier, and the 
fifth word ma rb l e s  is a noun. 

The parser starts out with the pair ( -1 1 0)  on the stack and the string 

N V C M N \n $end 

in the input queue. Here ( -1 1 QJ) is the pair consisting of the empty token 
and state 0. 

The first input token is N.  Looking at the preceding list in the row for 
state 0, under the column for token N, we see a s h i ft  operation to state 7 .  
This pushes the pair (N 1 7) onto the stack and changes the current state to 
7. It also advances the input pointer past the N. The stack now contains 

{-1 I 0) { N ,  7) 

and the input queue: 

V C M N \n $end 

Looking in row 7,  the entry under the token V contains a reduc e  oper­
ation using rule 7 

r -> N 
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which reduces an N to an r. We pop the pair (N , 7) off the stack, uncover­
ing the pair ( -1 , 0) that temporarily takes us back to state 0. Using the 
row for state 0 and the goto entry under the column for r we get the new 
state 5 .  The parser then pushes the pair ( r ,  5) onto the stack. The stack 
now contains : 

( -1 1 0) ( r 1 5 )  

The first token on the input queue i s  still V ,  but the current state i s  now 
5 .  Looking in row 5, under token V, we see another reduce operation. This 
time it reduces by rule 5 ,  which is 

a -> r 

We pop the ( r 1 5 )  off the stack, uncovering the pair ( -1 , 0)  
again. This takes us  back temporarily to  state 0.  We use row 0 with the 
goto for a to determine that the new state is 2. We push the pair (a , 2) onto 
the stack. The stack now contains : 

<-1 1 0) ( r 1 2 >  

The current state i s  2 and V i s  still on  the front of  the queue. Now, we 
are ready to shift the V. According to the preceding list, this takes us to 
state 6. The stack now contains 

<-1 1 0) ( a 1  2 ) ( V 1  6)  

and the input queue contains : 

C M N \n $end 

The list indicates a shift to state 9. The stack contains 

(-1 1 0 ) ( a 1  2 ) ( V 1  6) ( C 1  9) 

and the queue contains 

M N \n $end 

These last two symbols also are shifted onto the stack, giving us 

<-1 � 0 ) ( a l  2) < V I  6) ( C 1  9HM 1 1 6) ( N 1 1 8> 

on the stack and a nearly empty input queue (just the \ n and $end) .  We use 
the entry in row 16 ,  column \n, which says to reduce by rule 10:  

r -> C M N 
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This pops three pairs ( C , 9) ( M ,  1 6) ( N , 1 8) off the stack, uncovering 
the pair (V , 6) . This temporarily takes us back to state 6 with symbol r. We 
look this up in the parsing list and get 1 3  as the new state. We push the pair 
( r ,  1 3) onto the stack, getting 

<-1 , 0> < a ,  2 ) ( V ,  6) ( r ,  1 3 >  

o n  the stack. Now, state 1 3  with input \n  gives a reduction by rule 6 :  

b -> r 

We pop the pair ( r ,  1 3) off the stack, uncover (V , 6) again, find the 
new state 12,  and push the pair ( b ,  1 2) onto the stack. The stack. now 
contains : 

<-1 , 0Ha , 2 ) (V , 6) ( b ,  1 2 > 

According to the list, we should use rule 4 

p -> v b 

to reduce the V and b to p. Thus we pop the pairs (V , 6)  ( b ,  1 2) off the 
stack, uncovering (a , 2) , which returns us to state 2 with symbol p. We 
look up the goto for p and find state 10.  We then push (p , 1 0) on the 
stack, getting: 

(-1 , 0) ( a ,  2) ( p ,  1 0) 

State 10  with input token \ n  shifts to 10 

(-1 , 0) (a , 2 ) ( p ,  1 0) ( \n , 1 7 ) 

which allows us to reduce by rule 1 

s -> a p 

giving a stack 

<-1 , 0H s , 1 >  

and an input token $end. This leads to an a c cept operation, finishing the 
parse successfully. 

You should realize that the preceding example only shows the steps 
that the parser performs as it analyzes a sentence. As we shall see later, with 
the proper action statements , a parser also can produce useful results as it 
analyzes . 
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Lexical Analysis with Lex 

Now let's see how to use Lex to provide lexical analysis for our program. 
Lex programs have rules to recognize words and return tokens . 

A Lex program also consists of three parts : a definitions section, a 
rules section, and a user subroutines section. These sections are separated 
by the %% symbol . 

The rules section consists of a table of regular expressions and corres­
ponding actions for when they match parts of the input . (The input is a 
string of characters .) 

Regular Expressions 

As we have seen in previous chapters, a regular expression is a string expres­
sion that is used to match strings . For example, the expression 

[ A-Za-z l * 

specifies any string that contains zero or more occurrences of the letters A 
through z and a through z. 

Table 10-3 gives some of the rules that define regular expressions 
for Lex. 

expression 

X 

"x"  
\ X  

[s] 
[x-y] 
[""s] 
"" x  
x$ 
x? 
x* 
x+ 
x iy 
(x) 
x/y 
{ s }  
x{m,n} 

Table 10-3 
Rules for Lex regular expressions 

matches 

the character "x"  
1 1  x 1 1  even if 1 1  x "  i s  a special character 
"x" even if "x" is a special character 
any character in the string s 
any character in the range from x to y 
any character not in the string s 
an x at the beginning of a line 
an x at the end of a line 
x if it is there 
0 or more instances of x 
1 or more instances of x 
an x or y 
an x 
an x followed by a y 
an expression defined by s (in declarations) 
m through n occurrences of x. 
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Here is a short Lex program that finds the nouns Thomas, E l i zabet h,  
and ma rb l e ( s ) ;  the verbs g i ve, t a ke, and show; the colors red, g reen, 
and b l ue; and the numerals one through t en, and articles a and t he. In 
each case, it returns a token signifying its part of speech. This token is used 
by our Yacc program. The Lex program also recognizes unknown words 
and other "junk," returning the appropriate token. 

WS 
%% 
Thoma s / {ws} 
E l i zabet h / {ws} 
[MmJ a rb l eHws} 
[MmJ a rb l es / {ws} 
[ G g J i ve/{ws} 
[ Gg J i ves/{ws} 
[ Tt J a ke/{ws} 
[ Tt ] a kes/{ws} 
[ S s J how/ {ws} 
[ S s J hows /{ws} 
[ R r ] ed/{ws} 
[ Gg}een/ {ws} 
[ Bb J l u e / {ws} 
t he / {ws} 
a / {ws} 
1 / {ws} 
[Oo J ne/{ws} 
2 / {ws} 
[Tt ] wo/{ws} 
3 Hws} 
[ Tt ] h ree/{ws} 
4/{ws} 
[ F f J ou r Hws} 
S Hws} 
[ F f J i ve/{ws} 
6/{ws} 
[ S s J  i x Hws} 
7 / {ws} 
[ S s J even/{ws} 
8Hws} 
[ Ee J i ght /{ws} 
9/{ws} 
[ N n J i ne/{ws} 
1 0/{ws} 
[ Tt ] en/{ws} 

[ \ . ]  
\n  

[ \ . \ n ]  

{ ret u rn ( noun� 1 , 1 ) ) ; } 
{ retu rn ( noun ( 2 , 1 ) ) ; } 
{ retu rn ( noun (3 , 1 ) ) ; } 
{ ret u rn ( noun (3 , 2 ) ) ; } 
{ ret u rn (verb ( 1 , 2 ) ) ; } 
{ ret u rn (verb ( 1 , 1 ) ) ; } 
{ ret u rn (verb ( 2 , 2 ) ) ; } 
{ ret u rn (verb (2 , 1 ) ) ; } 
{ retu rn (verb (3 ,  2 ) ) ; } 
{ ret u r n (ve rb (3 , 1 ) ) ; } 
{ ret u rn <mod i f i e r ( 1 ) ) ; } 
{ ret u rn (mod i f i e r ( 2 ) ) ; } 
{ ret u rn (mod i f i e r (3 ) ) ; } 
{ ret u rn ( nume ra l (0) ) ; } 
{ ret u rn ( nume ra l ( 1 ) ) ; } 
I 
I 
{ ret u rn ( nume ra l ( 1 ) ) ; } 
I 
I 
{ ret u rn ( nume ra l (2 ) ) ; } 
I 
I 
{ retu rn (nume ra l (3 ) ) ; } 
I 
I 
{ ret u rn ( nume ra l (4) ) ; } 
I 
I 
{ retu r n ( nume ra l < S > > ; } 
I 
I 
{ retu rn ( nume ra l (6) ) ; }  
I 
I 
{ retu rn ( nume ra l (7) ) ; } 
I 
I 
{ return ( nume ra l (8) ) ; } 
I 
I 
{ ret u r n ( nume ra l (9) ) ; } 
I 
I 
{ retu r n ( nume ra l ( 1 0) ) ; } 

{ / *  gobb l e  t h i s up * f } 
{ retu r n (yytext [0 J ) ) ; } 
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[ A-Za-z ] +/ {ws} {p r i nt f < " unknown wo rd : %s\n" , yyt ext > ; ret u rn (W) ; }  
[ ""llJ-9A-Za-z \ . \ n ]  {p r i nt f ( " j unk : %s\n" , yyt ext > ; ret u rn ( J ) ; }  
%% 

noun ( i , n ) i nt i ,  n ;  
{name = i ;  num = n ;  p r i nt f ( "  noun : % s \ n" , yyt ext > ; ret u rn ( N ) ; }  

v e rb ( i , n) i nt i ,  n ;  
{act i on = i ;  vnum = n ;  p r i nt f < "  verb : %s\n" , yyt ext > ; ret u rn (V) ; }  

mod i f i e r ( i ) i nt i ;  
{co l o r = i ;  p r i nt f (" mod i f i e r :  %s\n" , yyt ext > ;  ret u rn (M) ; }  

nume ra l ( i )  i nt i ;  
{count = i ;  p r i nt f ( " a rt i c l e o r  count : %s\n" , yytext > ; ret u rn ( C ) ; }  

Declarations-In the declarations section, the string expression ws  is de­
fined. This stands for white space. It is a blank, period, or newline 
character. 

Rules-In the rules section, most every regular expression has a correspond­
ing action to its right that is written as C code and is inside curly brackets . 

First there are a series of vocabulary words. Each word is followed 
by a / {ws}  to indicate that it must be followed by white space. Most 
words (except for proper names) can begin with either a lower- or upper­
case letter . 

For the words that this Lex program recognizes , it returns tokens ac­
cording to their part of speech. These tokens are passed to our Y ace pro­
gram. The Lex program calls functions in the user subroutines section that 
handle the different parts of speech. For example, for nouns we call a func­
tion called noun, and for verbs, we call a function called ve rb. These func­
tions set various attributes, such as its numerical index in a dictionary and 
whether a word is singular or plural. In our case, we have separate lists for 
the various parts of speech. 

For our example, the nouns are numbered as follows: 

1 .  Thomas 
2. Elizabeth 
3 .  marble(s) 

The verbs are numbered: 

1 .  give 
2. take 
3 .  show 

The numerals are numbered according to their value. The articles a 
and t h e  are included here also and are given the value 0. Notice that each 
numeral can be given either as a word or as a string of digits. 
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The colors are numbered: 

1 .  red 

2. green 

3 .  blue 

After the built-in vocabulary, we look for extra white space 

{ws} 

which it should ignore. It prints error messages when it finds unknown 
words given by 

[ A-Za-z l +/ {ws} 

and junk given by 

[ A0-9A-Za-z \ . \ n l  

which i s  all the characters that it doesn't recognize. 

User Subroutines-The user subroutines section contains the routines 
noun, ve rb, mod i f i e r, and nume ra L that set some variables and return to­
ken values for the various parts of speech. 

This program could be modified to include a dictionary in which it 
could look up more words and classify them into their parts of speech . It 
could even add words to this dictionary in a dynamic manner so that it 
could gradually le�n an ever larger vocabulary. This dictionary would then 
correspond to a symbol table in a compiler . 

Connecting the Lex Program to the Yacc Program-If this Lex program is 
placed in a file eng . L ,  it can be compiled into C via the command: 

l e x eng . l 

The result is contained in a file called l e x . yy . c .  We can include this 
in our Y ace program with the directive 

# i n c l ude " l ex . yy . c " 

in place of the definition of the yy l e x  function that was originally an empty 
routine. 

We must modify our Yacc program in a couple of other ways to make 
it run with this new Lex program. Because our Lex program generates a 
couple of additional tokens, namely W for unknown word and J for unrec­
ognized junk, we must add W and J to the list of tokens . We also need to 
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i nc l ude a file in the declarations section that contains definitions of our 
global variables , and we beef up the main program with a do fo reve r 
wh i l e  loop that gives a prompt, then calls yypa rse.  

Here is  the new Yacc program. 

%{ 
# i nc l ude "eng . h" 
%} 
%token V N M C W J 
%% 
5 a p ' \n ' {p r i nt f ( "  dec l a rat i ve sent ence\n" ) ; }  

p ' \n ' {p r i nt f ( "  i mpe rat i ve sent ence\n") ; }  
e r ro r  { p r i nt f ( " e r roneous sent ence\n") ; }  

p v b 

a r 

b r 

r N 
M N 
C N 
C M N 

%% 

# i n c l ude " l ex . yy . c" 
ma i n O  

{ 
w h i  l e ( 1 ) 

{ 
p r i nt f ( " ?  " ) ; 
yypa rse O ;  
} 

} 
yye r ro r O  

{ 
} 

yyw rap O 
{ 
} 

{p r i nt f < " pred i c a t e \ n " ) ; }  

{p r i nt f < " sub j e c t \n") ; }  

{pri  nt f < " ob j e c t \n") ; }  

Notice that the i nc l ude directive in the declarations section is en­
closed between the symbols %{ and %}. These symbols allow us to insert C 
code anywhere we want in a Yacc program. 

Here is the new i nc lude file for global constants and variables . 
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I *  g l oba l va r i ab l es fo r Eng l i s h Yacc  p rog ram * '  

i nt name , count , co l o r ;  
i nt sname , s count , sco l o r ;  
i nt oname , ocount , oco l o r ;  
i nt a ct i on ;  
i nt num , vnum , snum ; 
c h a r * wh e r e ;  

stat i c c h a r  * nounname [ ]  = {" I " ,  "Thomas" , "E l i zabet h" , "ma rb l e s ( s ) "} ;  
s t at i c  c h a r  * ve rbname [ ]  = {"none" , "g i ve" , "ta ke" , "show"} ; 
stat i c c h a r * co l o rname [ ]  = {"no co l o r" , " red" , "g reen" , "b l ue"} ; 
stat i c  i nt ma rb l es [3 ] [ 4 J  = { 

{ 0 ,  0 ,  0 ,  0 } ,  
{ 0 ,  8 ,  4 ,  3 } ,  
{ 0 , 3 , 7 , 2 } , 

} ;  

There are variables to handle values associated with various tokens, 
storage for the marbles, and some strings containing vocabulary needed for 
input and output. We won't need all of this right away, but we include it 
here for convenience so that we can develop our program. In general, pro­
gram development begins with the data structures , so this is a natural step . 

Refining Our Example of Simple English 

304 

Now that we have prototypes of each part of our simple English under­
standing program, we can take a test run. In this section,  we discuss how to 
compile, debug, and extend our program. 

Compiling 

So far we have the files eng . h that contains the global variables : eng . l ,  
which contains the Lex program, and eng2 . y, which contains a second ver­
sion of our Yacc program. The Lex program has been l e xed with the 
command 

l e x  eng . l 

to produce a file l e x . yy . c. The Yacc program has been yac ced with the 
command 

yac c eng2 . y  

to produce a file y . tab . c. We now compile this second C source file with 
the command: 
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c c  y . t ab . c  

To run it we type: 

a . out 

Here is a session with this program. We end the session by pressing 
delete . 

% a . out 
? Thomas t a k e s  t h ree red ma rb l es . �  

noun : Thoma s 
sub j ect  

verb : t a kes 
a rt i c l e o r  count : t h ree 
mod Hi e r :  red 
noun : ma rb l e s  

ob j ec t  
p r ed i cate  
dec l a rat i ve sentence 

We start by typing a sentence: Thoma s t a k e s  t h ree red ma rb l e s . 
The lexical program finds the noun Thomas .  The parser reduces it to a sub­
ject. The lexical program finds the verb t a kes,  but the parser cannot re­
duce it yet. The lexical program finds the numeral t h ree, the modifier red, 
and the noun ma rb l es.  The parser reduces these to an object, then reduces 
the verb and object to a predicate. It finally reduces the subject and predi­
cate to a declarative sentence. 

? E l i zabet h g i ves t wo g reen ma rb l es . �  
noun : E l i zabet h 

sub j e c t  
v e r b : g i ves 
a rt i c l e o r  count : two 
mod H i e r :  g reen 
noun : marb l e s  

ob j ect  
p r ed i cate 
dec l a rat i ve sentence 

This time the subject is E l i zabet h, the verb is g i ves,  and the object is 
t wo g reen ma rb l es.  The next example shows an imperative sentence that 
begins with the verb t a ke. 
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? Take one ma rb l e . �  
verb : Take 
a rt i c l e o r  count : one 
noun : marb l e  

obj e c t  
p r ed i cate 
i mpe rat i ve sent ence 

<de l e t e> 

We see that it is quite possible for a computer to understand simple 
English . This is a crucial step in developing artificial intelligence programs . 
Such programs could run robots that follow our commands or access vast 
data bases for busy businessmen. In following text in this chapter, we make 
this particular program more intelligent . 

Debugging 

Sometimes you may need to see exactly how your parser is handling a par­
ticular thorny problem. The good news is that Yacc has built-in facilities 
for producing diagnostics . The bad news is that you have to go into the 
y .  tab  o c file to turn on this feature . 

You must do two things . The first is to cause the manifest constant 
YYDEBUG to be defined, and the second is to cause the variable yydebug to 
take on a nonzero value. You can use the editor to insert the line 

#def i ne YYDEBUG 1 

at the top of the y o  tab  o c file, then search for the line containing 

i nt yydebug ; 

and add =1 after the word yydebug so that this declaration now reads : 

i nt yydebug=1 ; 

Now compile y o t ab . c  again and type a . out to run it . We test it with 
the sentence Thoma s t a kes fou r b l ue ma rb l e s . We get : 

% a . out� 
? S t a t e  0, t o ken -none-
Thomas t a kes fou r b l ue ma rb l es . �  

noun : Thomas 
R e c e i ved token N 
S t a t e  7 ,  token -none-



Redu c e  by (7) " r  : N" 
Stat e 5 ,  token -none­
Reduc e  by ( 5 )  "a : r" 

sub j ect  
S t a t e  2,  token -none­

verb : t a kes 
R e c e i ved token V 
S t a t e  6 ,  token -none­

a rt i c l e or count : fou r 
R e c e i ved token C 
S t a t e  9 ,  token -none­

mod i f i e r :  b l ue 
Rec e i ved token M 
State 1 6 , to ken -none-

noun : marb l e s  
Recei ved token N 
State 1 8 ,  token -none­
Redu c e  by ( 1 0>  "r : C M N" 
S t a t e  1 3 ,  t o ken -none­
Redu c e  by (6) "b : r" 

ob j e ct  
State 1 2 ,  t o ken -none­
Redu c e  by (4) "p : V b" 

p r ed i cate 
S t a t e  1 0 ,  token -none­
R e c e i ved token -unknown­
State 1 7 ,  t o ken -none­
Reduc e  by < 1 > "s  : a p " 
I I I  

dec l a rat i ve sentence 
State 1 ,  token -none-

Advanced Tools for Programmers 

You should go through this output, following it around the transition 
diagram in figure 10-5 . It should agree with our previous run through the 
parsing table. 

Making the Program Smarter 

Let's conclude this example by replacing the diagnostic actions in the Yacc 
program with actions that have more meaning. We will have the program 
recognize what we say and respond with questions and reports on what 
it knows. 

Here is the third version of our Yacc program. It now calls functions 
to perform various actions in response to recognizing each grammar rule. 
Rather than directly defining dummy C functions in the user subroutine 
section, we have used the i nc l ude directive to bring it a set of routines de­
fined in the file eng . r, which we list after we list eng3 . y :  
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I *  Yacc  p rogram f o r  s i mp l e  subset of Eng l i s h * I  

%{ 
# i n c l ude "eng . h" 
%} 

%t oken V N M C W J 

%% 
s 

p 

a 

b 

r 

%% 

a p ' \ n ' 
P ' \n ' 
e r ro r  

v b 

r 

r 

N 
M N 
C N 
C M N 

# i n c l ude " l ex . yy . c" 
# i n c l ude "eng . r" 

{sentence1 ( ) ; YYACCEPT ; }  
{sent ence2 ( ) ; YYACCEPT ; }  
{sent encee r ro r < > ; YYABORT ; }  

{predi cate  0 ; } 

{sub j ect  0 ; }  

{ob j ect  0 ; }  

{nounph rase1 ( ) ; } 
{nounph rase2 ( ) ; } 
{nounph rase3 ( ) ; }  
{nounph rase4 ( ) ; } 

The identifiers YYACC EPT and YYABORT are macros defined by the 
parser within the file y . t ab . c .  They are equivalent to ret u rn (0)  and 
retu r n ( 1  ) , respectively. 

Here is the file eng . r that contains the user subroutines . 

I *  ma i n  p rog ram and suppo rt rout i nes for Eng l i s h Yac c  p rog ram * I  

ma i n O  
{ 
w h i l e ( 1 ) 

{ 

} 

where = "beg i nni ng" ; 
p r i nt f ( " ?  " ) ; 
i f  ( ! yypa r se ( ) ) repo rtma rb l e s ( sname , oco l o r > ; 
} 

yye r ro r  0 {p r i  nt f < " syntax e r ro r  aft e r :  %s \ n" , where) ; }  
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yyw rap O {pr i nt f ( "Thank you . \n") ; ret u rn C 1 > ; }  

I *  H e r e  i s  where a ct i on i s  t a ken a c c o rd i ng t o  t he synt a x . * I  

sentence1 0 
{ 

I *  Dec l a rat i ve Sent ence * I  

w h e r e  = "dec l a rat i ve sentence" ; 
i f  C ! c he c ksvnumbe r ( ) )  return C0) ; 
i f  C ! checksub j ect ( ) ) ret u rn C0> ; 
sentence 0 ;  
} 

sentence2 ( )  
{ 

I *  I mperat i ve Sent ence * I  

where = " i mpe rat i ve sentence" ; 
sname = 0 ;  I *  sub j ect  unde rstood t o  be " I "  * I  
sentence < > ;  
} 

sent encee r ro r  0 
{ 
p r i nt f ( " un recogn i zed senten c e \ n" > ; 
} 

sentence ( )  
{ 
i f  C ! c he c kob j ect ( ) ) ret u rn C0> ; 
swi t c h  C a c t i on)  

} 

{ 
case 1 :  I *  G i ve * I  

i f  (oco l o r  == 0> get c o l o r C > ;  
i f  (ocount == 0> get c ount C > ;  
updat ema rb l e s C sname , oco l o r , -ocount > ;  
b r ea k ;  

c a s e  2 :  I *  Ta ke * I  
i f  Coco l o r  == 0> get co l o r C > ;  
i f  Cocount == 0> get count C > ;  
updat ema rb l e s C sname , oco l o r , ocount > ;  
b r ea k ;  

c a s e  3 :  I *  Show * I  
b r ea k ;  

} 

p red i cat e O  
{ 
whe re = "pred i cate" ; 
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p r i nt f < "  %s : verb = %s \n" , whe re , ve rbname [ a c t i on l > ;  
} 

sub j ect  0 
{ 
where = "sub j e c t " ;  
repo rt noun O ;  
chec knnumbe r O ; 
s num = num ; 
s name = name ; 
s c o l o r  = co l o r ;  
s c ount = count ; 
} 

ob j e ct < >  
{ 
where = "ob j e c t " ;  
repo rt noun O ;  
c hec knnumbe r < > ;  
oname = name ; 
oco l o r  = co l o r ;  
ocount = count ; 
} 

repo rt noun O 
{ 
p r i nt f ( " %s : %s , co l o r  = %d , count = %d \n" , 

where , nounname [ name l , co l o r , count ) ;  
} 

nounph rase1 ( )  
{where = "noun ph rase w i t h  j u st noun" ; count = 0 ;  co l o r  = 0 ; }  

nounph rase2 0 
{where = "noun p h rase wi t h  noun and mod i f i e r " ;  count = 0 ; }  

nounph ra se3 ( )  
{where = "noun ph rase w i t h  noun and count " ;  co l o r  = 0 ; }  

nounph rase4 0 
{where = "noun ph rase w i t h  noun , mod i f i e r ,  and count " ; }  

c h e c k svnumbe r ( )  
{ 
i f ( s num == vnum) ret u rn < 1 > ;  
p r i nt f ( " Sub j e c t  and p red i c a t e  do not ag ree i n  numbe r . \n") ; 
ret u r n (0) ; 
} 

c hec knnumbe r ( )  
{ 
i f ( ( num == 1 )  & ( count > 1 ) )  {p r i nt f ( " Noun s hou ld be 

p l u ra l .  \n") ; }  
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i f  « num > 1 )  & ( count -- 1 ) )  { p r i  nt f ("  Noun s h ou ld be 
s i ngu l a r . \n") ; }  

} 

c he c ksub j ect ( )  
{ 
i f  < < sname >= 0) && ( sname < 3 ) ) ret u rn ( 1 ) ;  
p r i nt f ( " i nva l i d  sub j ect \n") ; 
ret u rn <0> ; 
} 

c h e c kobj ect ( )  
{ 
i f  <oname == 3 )  ret u rn ( 1 ) ;  
p r i  nt f < " i nva l i d  obj ect . \n") ; 
ret u rn (0) ; 
} 

repo rtma rb l es ( who , what ) 
i nt who , what ; 
{ 
i f (who == 0) p r i ntf < " \ n l  now have " ) ; 
e l se p r i nt f ( " \ n%s now has " ,  nounname [whoJ > ;  
i f (what > 0)  p r i nt f < "%d %s ma rb l e ( s ) . \ n" , 

ma rb l e s [whol [what ] , co l o rname [ what J ) ;  
e l se p r i nt f < "%d red , %d g reen , and %d b l ue ma rb l e ( s ) . \ n" , 

ma rb l e s [ whoJ [ 1 ] ,  ma rb l e s [whoJ [ 2 ] , ma rb l e s [who] [ 3 J ) ;  
} 

get co l o r O 
{ 
c ha r  s t r [ 80 J ; 
oco l o r  = 0 ;  
w h i l e  (oco l o r  = =  0 )  

{ 

} 

p r i nt f <"What co l o r ? " ) ; 
get s ( s t r ) ; 
i f  ( ! st rcmp ( st r ,  " red" ) ) oco l o r  = 1 ;  
e l se  i f  ( ! st rcmp ( st r ,  "g reen" ) ) oco l o r  = 2 ;  
e l se i f  ( ! st r c mp ( st r ,  "b l ue") ) oco l o r  = 3 ;  
e l se  p r i nt f < " l  c annot f i nd t h at co l o r . \n") ; 
} 

get count ( )  
{ 
c h a r  s t r [80 J ; 
i nt mat c h  = 0 ;  
w h i l e  (mat c h  ! =  1 )  

{ 
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} 

p r i nt f ("How many? " > ; 
g et s ( s t r > ; 
mat c h = s s c anf ( st r ,  "%d" , &ocount > ;  
i f  (mat c h  ! =  1 )  p r i nt f ("Ent e r  a nume r i c a l va l ue . " ) ; 
} 

updatema rb l es (whose , what , amount ) 
i nt whose , what , amount ; 
{ 
i f  ( ( whose>=0> && (whose<=2> && Cwhat>=0) && <what <=3 ) ) 

{ 
marb l e s [whose l [what l += amount ; 
i f  (ma rb l es [whose l [ what l < 0> ma rb l e s [whosel [what l = 0 ;  
} 

e l se p r i nt f ( "Out of range , whose = %d , what = %d \n" , whose , 
what > ; 

} 

We won't go into this code because it is really a side issue to convince 
you that we have the beginning of something useful. Here is a typical ses­
sion using our enhanced program. The program analyzes the sentence that 
you type, then responds by telling you how many marbles there are. Here is 
our first sentence: 

? Thomas t a kes ma rb l es . �  
noun : Thomas 

sub j ect : Thoma s , co l o r  = 0 ,  count = 0 
ve rb : t a kes 
noun : ma rb l e s  

ob j ect : ma rb l e s < s > , c o l o r = 0 ,  count = 0 
p red i cat e :  ve rb = t a ke 

What co l o r ?  red� 
How many? 3� 

Thomas now has  1 1  red ma rb l e < s > . 

In this example, we type the sentence Thoma s t a kes  ma rb l es .  The 
program analyzes and accepts this sentence but notices that you have not 
specified what color they are or how many there were. It asks for this infor­
mation, then reports how many marbles of this color that Thomas now has . 
The next example demonstrates that the program understands the meaning 
of the word show: 
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? Thomas shows ma rb l es . �  
noun : Thomas 

subj ect : Thomas , co lo r  = 0 ,  count = 0 
ve rb : s hows 
noun : ma rb les  

ob j ect : ma rb les ( s ) , co lor = 0 ,  count = 0 
pred i cate : verb = s how 

Thomas now has 1 1  red , 4 g reen , and 3 b lue ma rb l e ( s ) . 

You should examine the output of the rest of this session and check 
the marble totals . 

? Thomas g i ves a red ma rb l e . �  
noun : Thomas 

subj ect : Thomas , co lo r  = 0 ,  count = 0 
verb : g i ves 
a rt i c l e or  count : a 
mod i f i e r :  red 
noun : ma rb l e  

ob j ect : ma rb les ( s ) , co lo r = 1 ,  count = 1 
pred i cate : verb = g i ve 

Thomas now has 1 0  red ma rb l e < s > . 
? Show t he ma rb l es . �  

verb : S how 
a rt i c l e or count : the  
noun : ma rb les  

obj ect : marb les ( s ) , co lo r = 0 ,  count = 0 
pred i cate : verb = show 

I now have 0 red , 0 g reen , and 0 b l ue marb l e ( s ) . 
? Take two b l ue ma rb l es . �  

ve rb : Take 
a rt i c l e or  count : two 
mod i f i e r :  b lue 
noun : ma rb les  

obj ect : marb les ( s ) , co l o r = 3 ,  count = 2 
pred i cate : verb = take  

I now have  2 b lue ma rb l e < s > . 
? G i ve one b l ue ma rb l e . �  
verb : G i ve 
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a rt i c l e o r  count : one 
mod i f i e r :  b lue 
noun : ma rb le  

obj ect : ma rb l es ( s ) , co lo r = 3 ,  count = 1 
p red i cat e :  verb = g i ve 

I now have 1 b l ue ma rb l e ( s ) . 
?<de l et e> 

A Numerical Example 
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Let's look at a simple example of how Lex and Yacc can handle numbers 
and arithmetic expressions. 

Suppose that the language has the following input symbols : a token 
denoting a NUMBER; the operator symbols * ,  I, + ,  and -; and parenthe­
ses . Suppose that the grammar consists of the following grammar rules : 

( 1 ) l i ne -> expr 
(2)  expr  -> NUMBER 
(3 ) expr -> expr ' + '  expr 
(4)  expr  -> expr , _ ,  expr 
(5)  expr  -> expr '* ' expr 
(6) expr -> expr ' I '  expr 
(7)  expr  -> ' ( '  expr ' ) ' 

There are only a few levels of syntax here . We will see how Y ace uses 
operator precedence to sort out the different levels of expressions into terms 
and factors . 

Here is the source code for our Yacc program: 

%token NUMBER 
% left ' + ' , ' - '  
% l eft '* ' •  ' I '  

%% 

l i ne 

expr 

expr 

NUMB ER 
expr ' + '  
expr , _ ,  

expr '* ' 
expr ' I '  
' ( ' expr 

{p r i ntf ("%d\n" , $1 ) ; } 

expr {$$=$1 +$3 ; }  
expr {$$=$1 -$3 ; }  
expr {$$=$1*$3 ; }  
expr {$$=$1 1$3 ; }  
' ) ' {$$=$2 ; }  



%% 

# i nc l ude " l ex . yy . c" 
ma i n O  

{ 
p r i ntf ("? " ) ; 

' yypa rse O ;  
} 

yye r ro r O 
{ 
p r i nt f C"syntax e r ro r\n"> ; 
} 

yywrap O 
{ 
} 

The Declarations Section 

Advanced Tools for Programmers 

The declarations section declares one token NUMB ER.  This is sent by the lexi­
cal function yy l e x  when it finds a number (integer) . 

The l eft  directive does two things . It determines the grouping of the 
operations among themselves and the operator precedence from operator to 
operator . 

The l eft  directive specifies a set of operators . These are to be grouped 
from the left as they are evaluated . That is , if # is a l e ft operator, the 
expression 

X # Y # Z 

should be evaluated as follows : 

(X  # Y )  # Z 

If a number of l eft  operators is given, the precedence of the opera­
tors is determined in increasing order . In our example, + and - are listed in 
the first l e f t  directive, and * and I are listed in the second l e f t  directive. 
This places + and - at the same level as each other, but with lower prece­
dence than * and I .  

The Rules Section 

The rules section lays out the grammar described above. In addition, it 
specifies actions to take. 

For the production 

l i ne -> expr 

we print the value $ 1 .  This represents the value on top of a value stack that 
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runs parallel to the symbol and a state stack that we studied earlier . When 
the expression is completely evaluated, its value is found there . 

For each of the operators +, - , * ,  and I we take a separate but similar 
action. In each case, the value of the S1 is combined with the value S3 and 
placed in SS. The S1 corresponds to the first e x p r, the S2 is skipped be­
cause it corresponds to the operator itself, and the S3 corresponds to the 
second e x p r. These values are on the value stack before the expression is re­
duced. They are replaced by the value SS after the reduction . 

The action for the parenthesized expression, places the value S2 into 
SS. Here, S1 corresponds to the left parenthesis , S2 corresponds to e x p r  in 
the middle, and S3 corresponds to the right parenthesis . Therefore, S2 is 
what we want. 

The User Subroutines Section 

In the user subroutines section we have included minimal implementations 
for the functions ma i n, yye r ro r, and yyw rap. We have also i nc l uded the 
file l e x . yy . c. Next, we give a Lex program that generates this file . 

The Lexical Analyzer for Expressions 

Basically, the job of the lexical analyzer for our expression evaluator is to 
recognize and evaluate numbers , passing their value into the value stack 
and the token NUMBER  as the return value . It also should pass the operator 
symbols as tokens to be returned , and it converts newline 'into the Send 
token. 

Here is the Lex program. 

%% 
[0-9 1 +  
[-+* / 0 ]  
\n  

{yy l va l = atoi (yyt ext > ; ret u rn <NUMBER ) ; }  
{ return (yytext [0 J ) ; } 
{ return (-1 ) ; } 

The first line evaluates numbers. The regular expression [0-9] + matches 
a string of one or more digits . The library function a t o i  converts this string 
(stored in yytext) into an integer that is placed in the variable yy l va l .  The 
parser places the value of this on the value stack. 

The second line passes the ASCII values of the operator and grouping 
symbols back as tokens . The characters can be found in the first entry of 
yyt ext ,  namely yytext  [0 ] .  

The third line converts the newline character into end of file or the 
Send token. This has a value of - 1 .  

Running the Expression Evaluator 

Assuming that the Y ace program is stored in the file e . y and the Lex pro­
gram is stored in the file e .  l, we can compile the program with the follow­
ing three steps : 



Lex  e . L 
yacc  e . y  
c c  y . tab . c  

Here is a sample run: 

% a . out.._! 
? 5* ( 1 1 -1 +6) +1 00/ 4.._1 
1 05 

Advanced Tools for Programmers 

You can see that the program correctly evaluated the expression: 

5 *  ( 1 1 -1 +6) +1 00/4 

Figure 10-8 shows the transition diagram it  uses for parsing . This can 
be derived from the verbose output (using the -v option) of Yacc. 

Summary 

In this chapter , we have explored Lex and Yacc, two advanced program­
ming tools that produce routines to help programs interpret their input . 

We discussed how Lex recognized strings using regular expressions and 
how Yacc recognizes language specified by grammars (syntax rules) . We 
discussed how these two tools fit together to make a complete translator or 
interpreter . 

Our first example implemented a program that recognizes a simple 
subset of English, illustrating that artificial approaches work to some extent 
on natural languages . We saw how to specify grammars for Yacc and how 
Yacc converts these grammars into finite state machines , then into equiva­
lent parsing tables . We saw how these parsing tables are packed into C pro­
grams with routines developed using Lex to form a complete translator or 
interpreter program. 

We built our first example in three stages , first merely recognizing sen­
tences , then printing out diagnostics , and finally taking appropriate actions 
that depend on the input . 

Our second example was an expression evaluator, illustrating that 
these methods can be used to produce more traditional computer language 
interpreters and translators . 
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Figure 10-8 
Transition diagram for expression evaluator 
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Questions 

1 .  How does language translation and interpretation relate to 
operating systems? 

2.  What is  lexical analysis and what kind of rules does Lex use to 
describe it? 

3 .  What is syntactic analysis and what kind of rules does Yacc use to 
describe it? 

4. What is  a token? 



Answers 

Advanced Tools for Programmers 

1 .  Language translation and interpretation are essential to operating 
systems in a number of ways . One of the jobs of an operating 
system such as XENIX is to provide an interface between its 
human users and its internal services and data. This is often 
accomplished through the use of language translators and 
interpreters that are incorporated in shell programs . A compiler , 
such as the XENIX C compiler, is a language translator . Also, 
operating systems provide support for program development of 
new programs . Language development tools can assist with the 
development of "human interfaces" for these programs . 

2.  Lexical analysis is the recognition of individual word-like 
components of a language. In programming languages , this 
corresponds to the recognition of individual identifiers , keywords,  
operation symbols , separators , and terminators. Lex uses regular 
expressions to describe these components . 

3 .  Syntactic analysis is the recognition of phrase-like structures of a 
language. In programming languages , this corresponds to the 
recognition of such things as expressions , statements , control 
structures , and data structures . Yacc uses context-free grammars 
to describe these structures . These grammar rules are given as 
productions . 

4 .  A token is  an integer that represents an individual lexical 
component of a language . For example, each keyword is normally 
represented by a different token. The main output of lexical 
analysis is a stream of tokens that forms the main input for 
syntactic analysis . 
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